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“A bird flying about in a wood does not bump into the branches,
whereas in a room it will bump into the glass of the window.
This entitles us to say that the bird perceives the brunches but not the glass.

Do we ‘perceive’ the glass or do we merely know that it is there?”

Bertrand Russell
An outline of philosophy
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1 Introduction

This dissertation is framed in the study of the assignment problem involved in two-
sided markets. A great variety of situations could be actually considered as an
assignment problem. As a consequence, the term assignment problem seems to be
vague. The initial attempt of this introduction is to illustrate what kind of situations
we are going to consider, for our purposes, as an assignment problem. This will
be followed by a review of the literature on assignment problems and an overview
about the concerns of this Thesis.

As its name suggests, a two-sided market consists of a market with two sides or
sectors. However, it is necessary to make clear that in these markets each agent
belongs to one and only one side. Real life interactions provide valuable examples
of two-sided markets: students must be placed in schools, doctors must be assigned
to hospitals, buyers must find a house in the real estate market, agents must bid for
some paintings in an auction. It can be hardly denied the importance of the study
of these markets. On one hand, such a study gives insights for the understanding of
more complex economic situations. On the other hand, many day transactions are,
in fact, bilateral (Shapley & Shubik, 1972). Two essential features of the mentioned
examples are the presence of indivisibilities and that money may or may not be
involved in the possible allocations. The presence of indivisibilities shapes a central
question, what is the best possible way to make allocations in the market? Clearly,
the answer to this question is not unique since it depends on the properties we would
like to be satisfied. Suppose that we can choose always an allocation such that there
is no other alternative allocation available that makes some agent better off and no
one worse off. This is precisely the notion of (Pareto) efficiency. As a starting
point, efficiency seems to be an appealing property to choose an assignment. As
Mas-Colell et al. (1995) points out, efficiency serves as an important minimal test
for the desirability of an allocation. Hence we may consider here the assignment
problem as the choice of an efficient allocation of resources to agents. Moreover,
we will focus on those markets in which money, or a perfectly divisible good, is
fully transferable.

The seminal paper Gale & Shapley (1962) presents the marriage market to study
two-sided markets with indivisibilities and without money. In the marriage mar-
ket, each agent is endowed only with a preference over agents on the other sector



1 Introduction

and each agent is interested in making at most one partnership. Gale and Shapley
introduced stability as a solution concept. In a general way, we can describe the
notion of stability as follows. A matching is stable if: (i) every agent will not be
better off by leaving her/his current situation in order to become unmatched, and;
(i1) there is no unmatched pair of agents who both would be better off by break-
ing their partnerships to be matched together. Gale & Shapley (1962) shows the
existence of stable matchings with a simple and intuitive algorithm, the deferred

1

acceptance algorithm.” This paper laid the foundations of what now is called in

economics matching theory.?

Ten years later, Shapley & Shubik (1972) introduces a variant of the marriage
market, the assignment game.> In this paper, the authors consider a buyer-seller
market in which each agent desires to make at most one partnership. Unlike the
marriage market, utility can be transferred by means of a perfectly divisible ob-
ject, money.* It is assumed that agents’ preferences are quasi-linear with respect to
(w.r.t.) money. This assumption constitutes an advantageous starting point in the
analysis of markets with transferable utility. One consequence of this assumption is
that efficient assignments are found by solving the linear program that maximizes
the value (in money) of the assignment. Stability is now a property of the payoff
vector (in terms of money) that distributes the value attained by a matching. In an
elegant way, existence of stable payoffs is proved by means of the duality theory
of linear programming.’ The marriage market and its counterpart with transferable
utility, the assignment game, were both breaking points in the study of two-sided
markets without and with money, respectively.

After the assignment game, some papers explored more general markets. Some
of them kept bilateral exchanges but with more complex agents’ preferences. The
first generalization was made by Kaneko (1976). In this model, it is assumed that
each seller could have more than one object on sale while each buyer is interested
in at most one. In later works, mainly from the 1980s, it can be identified a re-
search line focused on the following concerns. First, existence and properties of

I'The deferred acceptance is considered as a successful story of the application of economic
theory to real life problems (Roth, 2002, 2008). It has been applied to the student placement in
New York and in Boston (Abdulkadiroglu et al., 2005b,a). Kojima & Manea (2010) offers two
characterizations of the deferred acceptance algorithm.

’Roth & Sotomayor (1990) is definitely a reference for matching theory. Sénmez & Unver
(2011) is a detailed survey.

3Nifiez & Rafels (2015) is a complete and recent survey on the assignment game and its exten-
sions.

“For a discussion of the role played by money as a mean of payment, we refer to Shapley &
Shubik (1977).

3Gale (1960) provides a wide treatment of linear programming and duality applied to economic
systems.



several notions of stability are analysed. Once the existence of stable outcomes is
guaranteed, many works tackle the following question, how a stable outcome can
be reached? Assuming that we can apply a procedure to do so, it is natural to re-
quire agents’ preferences as an input. In the case of quasi-linear preferences and
unitary demands, it is sufficient fo know the valuations of the agents over the ob-
jects. Suppose that we simply ask the agents to report their valuations to be able to
propose a stable outcome. Should we be concerned about misrepresentations of the
true valuations? It is a fact that the agents may attempt to manipulate the outcome
by lying about their valuations. Therefore, in a decentralized information context,
we must refine our previous question to what game or procedure does produce a
stable outcome and avoid incentives for agents to lie about their true valuations?
That is to say, we have to look for a game such that truth telling is an equilibrium of
the game and every equilibrium leads to the same stable outcome. For the classical
assignment game, these questions were addressed, for instance by Demange (1982)
and Leonard (1983). A complementary approach to strengthen our understanding
of the strategic behaviour of agents in the assignment game is given by Demange
et al. (1986) and Pérez-Castrillo & Sotomayor (2002). Demange et al. (1986) in-
troduces an ascending multi-item auction which leads to the best stable outcome for
the buyers. Instead, Pérez-Castrillo & Sotomayor (2002) provides a simple buying-
selling procedure which implements in subgame perfect equilibrium the best stable
outcome for the sellers.

Some other works have relaxed some assumptions of the classical assignment
model. Demange & Gale (1985) extends the assignment game by considering a
domain of preferences that includes quasi-linear preferences. The authors show that
some interesting properties of the classical model also hold in this more complex
market. For a market in which agents on one side can make many partnerships
while agents on the other sector can make at most one, we refer to Crawford &
Knoer (1981) and Kelso & Crawford (1982).

Recently, in more general two-sided markets, the relationship of assignment prob-
lems, linear programming, auctions and substitutability has been investigated (Hat-
field & Milgrom, 2005; Milgrom, 2009), see Milgrom (2007) for a discussion. All
these works have strengthened the knowledge for a better market design.

The aim of this Thesis is to provide a contribution to the study, from a game
theoretical approach, of the assignment problem involved in two-sided markets with
money. This Thesis is divided in three chapters corresponding to three main parts.
The purpose of this division is to consider different but complementary perspectives
in the research agenda of assignment problems. In the following paragraphs, we are
going to motivate and overview the three chapters.
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The second chapter considers the following situation. There is only one seller
in the market. This seller owns many indivisible objects on sale which are of the
same type but heterogeneous, e.g. houses, cars, pieces of art. On the other sector of
the market, many buyers meet and each one desires to acquire a certain number of
objects. Preferences are quasi-linear w.r.t. money and each buyer values packages
of objects additively up to a given capacity. Camina (2006) considers a particular
case in which each buyer can acquire at most one object. In our model, we ex-
plore the relationship between two main concepts used for the analysis of exchange
economies: the core and the Walrasian equilibrium. The first concept, the core,
captures a notion of stability in a context where agents may form coalitions and co-
operate. The idea is that each agent is well informed about everyone’s preferences.
A payoff vector belongs to the core of the market if no coalition of agents can make
a better agreement for them by trading only among themselves. On the other hand,
the Walrasian equilibrium is confined to a more competitive view. It relays on the
existence of a price system and an allocation of objects that guarantees that each
agent obtains, according to her/his preferences, one of her/his most preferred bun-
dle of objects given the prices. The relationship of these concepts has been widely
addressed in different scenarios. In fact, Edgeworth® started this line of research as
quoted by Mas-Colell et al. (1995). In the context of cooperative games, Mas-Colell
(1988) provides an interpretation of the core and its relationship with the Walrasian
equilibrium. For two-sided markets with indivisibilities, Shapley & Shubik (1972)
shows that the core equivalence theorem holds, i.e. the core and the set of payoff
vectors associated with Walrasian equilibria coincide. However, when assignment
markets become more complex, even allowing only one agent to make more than
one partnership, this coincidence is lost (Camifia, 2006; Sotomayor, 2007). Re-
cently, Mass6 & Neme (2014) establishes that for two-sided markets where multiple
partnership is allowed, the coincidence is obtained as a limit result for the replicated
market.

The aim of Chapter 2 is to determine under which conditions some particular core
elements are supported by Walrasian equilibria. That is to say, when coalitionally
rational agreements can be coordinated by means of competitive prices. In fact, in
this chapter we determine under which assumptions on buyers’ valuations, the core
equivalence theorem holds.

In Chapter 3, an implementation problem is considered. Similar to the previous
part, in this chapter we consider a situation in which there is only one seller owning
many heterogeneous objects on sale. Again, there are many buyers, each of them

®Edgeworth (1881).



desires to acquire many objects. Preferences are assumed to be quasi-linear w.r.t.
money and buyers’ valuations satisfy the gross-substitutes condition.” In an infor-
mal way, we say that objects satisfy the gross-substitutes condition if the following
holds. Suppose that given a price vector p, an agent wants to acquire the package
of objects . Assume that some prices increase and now we have a new vector of
prices p’ > p. Then this agent wants to acquire at least a package R’ at p’ and R’
contains each object belonging to R which price has not been increased in p'.

The aim of Chapter 3 is to provide a mechanism, that is a non-cooperative game,
to assign indivisibilities when the gross-substitutes condition is satisfied. Without
question, auctions are a powerful mechanism used in practice to allocate objects
(Milgrom, 2004). In most common auctions, the auctioneer does not play any
strategic role when the auction is carried out. Buyers (or bidders) are the only
agents who play strategically. Nonetheless, in some instances, the seller could take
an active role by bargaining with the buyers. Consider the next scenario inspired by
the implementation of the core of convex cooperative games proposed by Serrano
(1995). In a firm, one of the shareholders decides to sell its share of the assets. This
agent decides to bargain the sale of his portfolio to the other shareholders by means
of a sequence of offers and counteroffers. Another model which is closely related
is the non-cooperative game used in Wilson (1978) for an exchange economy in
which one agent centralizes the allocation of the goods.

We are interested in a particular outcome to be implemented in our setting, the
so-called Vickrey outcome.® The Vickrey outcome consists of an efficient allocation
of the objects and a payoff vector in which each buyer gets his marginal contribution
to the whole market. In the context of gross-substitutes, the Vickrey outcome has
appealing properties. It is an efficient outcome and it also belongs to the core of the
cooperative game associated to the market (Ausubel & Milgrom, 2002). Even more,
the Vickrey outcome gives to every buyer his maximum core payoff.® This chap-
ter follows the same line of research of Pérez-Castrillo & Sotomayor (2002). We
provide a two-stage mechanism which tries to mimic a simple bidding procedure
with a seller’s reply. This mechanism implements the Vickrey outcome in subgame
perfect equilibrium.

The final part of this Thesis is devoted to an axiomatic approach. The assignment
problem studied in the last section is the following. There are many objects to be al-

7See Kelso & Crawford (1982) and Gul & Stacchetti (1999) for a detailed discussion and appli-
cations.

8In fact, the mechanisms studied by Vickrey (1961), Clarke (1971) and Groves (1973). See
Milgrom (2004) for details.

“When there are two or more sellers, in more general assignment games, this outcome may not
be a core element (Sotomayor, 2002).
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located. We assume that the owners of the objects centralize them in an institution.
This institution is designated to distribute them according to some specified crite-
rion. Each agent can receive at most one object and monetary transfers are allowed.
Despite the fact that we are in a unitary demand case, we consider a quite general
domain of preferences that includes quasi-linear preferences. We assume that each
agent has a preference relation over bundles made of an object and some amount of
money satisfying the following requirements: money monotonicity, agents always
prefer to pay less money for each object; finiteness, the willingness to pay for each
object is finite; continuity, for any bundle, its upper and the lower contour sets are
both closed; and weak preference for real objects, it is weakly preferred to obtain
any real object than nothing.

In previous works, it has been shown that the minimum Walrasian equilibrium
has attractive features as a rule to distribute resources, see e.g. Demange & Gale
(1985). Tt is a fair'” rule and it also avoids incentives to be manipulated from the
point of view of buyers. On the domain of quasi-linear preferences and unitary
demands, the Vickrey allocation rule satisfies also these properties. However, on
the domain we consider, this is not true, since the Vickrey rule can be manipulated
(Morimoto & Serizawa, 2015). Hence, in our setting, a rule which always selects for
each market the minimum Walrasian equilibrium price vector is a strong candidate
to be an appealing allocation rule.

In Chapter 4, we analyse properties of the minimum Walrasian equilibrium rule.
We mainly focus on monotonicity properties. The aim of this chapter is to study
two-sided markets with money analogously to the study of Kojima & Manea (2010)
for two-sided markets without money. Particularly, we investigate properties of the
minimum Walrasian equilibrium rule in the next environments: general and quasi-
linear preferences. For each of these environments, we provide a characterization of
the minimum Walrasian equilibrium rule. It is important to remark that, unlike all
previous characterizations of the Vickrey rule or of the minimum Walrasian equilib-
rium rule (Chew & Serizawa, 2007; Saitoh & Serizawa, 2008; Ashlagi & Serizawa,
2012; Sakai, 2012; Adachi, 2014; Morimoto & Serizawa, 2015), we do not impose
any condition on the number of objects or on the number of agents. In particu-
lar, we allow for more objects than agents, which is not considered in the previous
characterizations.

19Here, we say that a rule is fair in the sense of Varian (1974), i.e. the rule satisfies (Pareto)
efficiency and envy-freeness. A rule is envy-free if every agent weakly prefers the bundle he is
allocated rather than any other bundle allocated to some other agent.
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2 One-seller assignment markets
with multi-unit demands: core and
Walrasian equilibrium?®

2.1 Introduction

In this model, we study markets with several buyers and only one seller. The seller
owns many indivisible and potentially different objects on sale. Being heteroge-
neous, the objects are of the same type, for instance different houses or different
tasks. On the other side of the market, each buyer has a non-negative valuation
for each object and a desire to acquire a certain number of objects. This number is
known as the capacity of the buyer. Since we are thinking of objects such as houses,
cars or jobs, it makes sense to assume that a buyer, even if he values all of them pos-
itively, is not interested in acquiring more units than those that can be of use to him.
We assume that buyers have quasi-linear preferences with respect to money and
value packages of objects additively up to a given capacity. Side-payments are al-
lowed. Our aim is to determine under which conditions all core allocations can be
priced by means of Walrasian equilibrium prices.

This market is a particular case of the one considered in Jaume et al. (2012) and
Mass6 & Neme (2014), where there are several sellers, each with a set of heteroge-
neous objects on sale. It is also a particular case of the package auction of Ausubel
& Milgrom (2002), where there is only one seller, but buyers may not value pack-
ages additively. Two-sided markets with one seller have also been considered in
Camifia (2006) and Stuart (2007). Two-sided markets with transferable utility are
first considered from the viewpoint of coalitional games in the assignment game
(Shapley & Shubik, 1972). In their market, buyers want to buy at most one unit and
the objects on sale belong to different sellers. The core is non-empty and coincides
with the set of Walrasian equilibrium payoff vectors (Gale, 1960). It has a lattice
structure with two particular core elements, one of them optimal for all buyers and

A paper based on this chapter has been accepted to be published at International Journal of
Economic Theory.
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2 One-seller assignment markets: core and Walrasian equilibrium

the other one optimal for all sellers.

When the assumptions of the classical assignment model are relaxed, the lattice
structure of the core and its coincidence with the set of Walrasian equilibrium pay-
off vectors do not hold in general. This is the case of many-to-many assignment
markets where both buyers and sellers may be willing to trade more than one object
and buyers value packages of objects additively up to their given capacity. The core
of this game is always non-empty but has no lattice structure and it remains an open
problem whether in this setting an optimal core element for each side of the market
does exist. However, even under the assumptions that each seller has a set of ho-
mogeneous objects on sale, Sotomayor (2002) shows that a worst core element for
each side of the market may not exist.

In the more encompassing many-to-many assignment model where each seller
has several units of potentially different objects, the set of Walrasian equilibrium
payoff vectors is non-empty and is strictly included in the core. However, let us
point out that the definition of Walrasian equilibrium in Jaume et al. (2012) and
Massé & Neme (2014) assumes that buyers demand as many copies of their pre-
ferred object as their capacities allow, being the prices given. Instead, we will
follow the notion of Walrasian equilibrium used for more general markets in Gul
& Stacchetti (1999), and also in Sotomayor (2007) and Arribillaga et al. (2014)
for many-to-many assignment markets. There, Walrasian equilibrium is defined by
means of a demand correspondence in which buyers maximize the utility of the
packages they can buy given prices and their capacities. As a consequence, when
buyers in a many-to-many assignment market value packages of objects additively,
it may be the case that in a demanded package a buyer may obtain different utilities
from the different objects that form the package.

In the present chapter, where we have only one seller with heterogeneous goods
and multi-unit demands, we study the relationship between the core and the set
of Walrasian equilibria. We say that a core allocation is supported by some Wal-
rasian equilibrium if it is the payoff vector associated to some Walrasian equilib-
rium. Then, this core allocation is said to be supported by that vector of Walrasian
equilibrium prices.

We first notice that the valuation functions of buyers in our model are monotone
and satisfy the gross-substitutes property (Gul & Stacchetti, 1999). This implies
that the characteristic function of the game is buyers-submodular and then, as an
immediate consequence of Ausubel & Milgrom (2002), the core has a very simple
structure: it is the non-empty set of efficient payoff vectors where each buyer gets
a non-negative payoff bounded by his marginal contribution to the whole market.
Hence, the core is endowed with a lattice structure by the partial order defined from
the point of view of buyers and there exists one optimal core element for each side
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of the market. Moreover, as in the assignment game, in the buyers-optimal core
allocation each buyer is paid his marginal contribution, that is, the Vickrey payoff
(Vickrey, 1961). Our first aim is to analize under which conditions the two optimal
core allocations are supported by Walrasian equilibria.

Also for valuations that are monotone and satisfy the gross-substitutes property,
Gul & Stacchetti (1999) characterizes the maximum and minimum Walrasian equi-
librium prices and show that even if the Vickrey outcome is not supported by the
minimum Walrasian equilibrium price vector, it will become an allocation supported
by a Walrasian equilibrium of the enlarged market obtained by a finite replication of
the original market. Compared to that, we look for sufficient conditions on the mar-
ket valuations that guarantee that the buyers-optimal core allocation (the Vickrey
outcome) comes from a Walrasian equilibrium.

In the literature, the relationship between the whole core and the set of Walrasian
equilibria has been addressed. In particular, Mass6 & Neme (2014) shows that
for many-to-many assignment markets, the core converges to the set of Walrasian
equilibrium payoff vectors in an infinite replication of the market. Although with
a slightly different definition of Walrasian equilibrium, they also show that this
coincidence may not be attained with a finite replication. Also in our setting, we
show that the core of the one-seller assignment game may not coincide with the
set of Walrasian equilibrium payoff vector when the original market is replicated
finitely many times. In particular, different to Gul & Stacchetti (1999) results for
the Vickrey outcome, we show that the seller-optimal core allocation may not come
from a Walrasian equilibrium in any finite replication of the one-seller assignment
market.

Further, we give necessary and sufficient conditions on the buyers’ valuations
so that the seller-optimal core allocation is supported by the maximum Walrasian
equilibrium prices. Finally, we also characterize those buyers’ valuations under
which the set of Walrasian equilibrium payoff vectors coincides with the core.

The chapter is organized as follows. In the next section, the model is introduced
and the necessary preliminaries are addressed. Section 2.3 is devoted to study under
which conditions the buyers-optimal and the seller-optimal core allocations come
from a Walrasian equilibrium. Finally, in Section 2.4 we characterize the coinci-
dence between the set of Walrasian equilibrium payoff vectors and the core.

2.2 The model and some preliminaries

The one-seller assignment market with multi-unit demands is defined by a 5-tuple
(M,{0},Q, A,r). The finite set of m buyers is denoted by M and the unique seller is
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2 One-seller assignment markets: core and Walrasian equilibrium

denoted by 0. The seller owns a finite set () of objects. These objects are indivisible
and heterogeneous, but of a similar type, let us say different houses or different
(maybe part-time) jobs.

Each buyer-object pair (7, ) € M x (Q has a potential gain a;; € R, interpreted
as the valuation of object 7 by buyer 7, where R stands for the set of non-negative
real numbers. Given a set S, we will denote by |S| the cardinality of S and 2°
the set of all subsets of S. Without loss of generality, we normalize to zero the
reservation value the seller has for each object. The valuation matrix, denoted by
A= (@ij)(i,j)e MxQ- captures each potential gain of all buyer-object pairs. More-
over, each buyer i € M can acquire r; € N objects and the vector r = (r;);e s € NM
indicates the buyers’ capacities. We assume that the seller owns some copies of a
dummy object, as many as the sum of all buyers’ capacities, Y ;< 7. With some
abuse of notation, each copy of this dummy object is denoted by jy and each buyer
values it at zero.

We assume that each buyer has a quasi-linear preference with respect to money
and values packages of objects additively up to their given capacity. That is, buyer
© € M values a package R C () by

max { Z aij}.
R'CR .
\R/ISM ]GR/

A matching p between S C M and (Q in the market (M,{0},Q, A,r), is a subset
of S x () such that each j € () belongs to at most one pair and each i € S belongs to
exactly r; pairs. Notice that it is possible to match any buyer with dummy objects
to complete his capacity. We denote by M (S,(Q) the set of matchings between
S C M and @, u(S) is the set of objects matched by x to some buyer in .S, and
when S = {i} we simply write (7). We denote by p~1(j) the buyer matched to
object j € @ by L.

Let (M,{0},Q,A,r) be a market. Given S C M, a matching u € M(S,Q) is
optimal for SU{0} if

Z Qjj > Z Qjj for all ,u' S M(S,Q)
(i.4)Em (i.5)en

We denote by M 4(S,Q) the set of optimal matchings between S and (@ in this

market.

Let us introduce the definition of a coalitional game with transferable utility (a
game). A game (/N,v) is a pair formed by a finite set of players /N and a charac-
teristic function v that assigns a real number v(.S) to each coalition S C N, with
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v(() = 0. The core of a game (N, v) consists of

Cv) = {m eRN

Z xizv(N),in >v(95) foralngN}.
1eEN €S

Now, we consider a game associated to one-seller assignment markets. The one-
seller assignment game related to a one-seller assignment market (M,{0},Q, A,r)
is denoted by (M U{0},v4). The worth of any coalition formed by only one type of
agents is zero, because in these cases there is no trade. When a coalition is formed
by a group of buyers S C M and the seller, the worth is given by the following
expression

va(SU{0}) = max {(Z aij}.

HEM(S,Q) i,j)Ep

Now, we define Walrasian equilibrium for a one-seller assignment market with
multi-unit demands (M, {0},Q, A,r). We define by 2% ={RCQ; |R|=r;} the set
of allowable packages of objects for a buyer ¢ € M. A price vector p = (pj)jcq €
Rg consists of one price for each object, with a price of zero for each dummy object.
We denote by P the set of all price vectors. For each price vector p € P, we denote
by D;(p) C 2,%. the demand set of buyer i at level prices p, that is

Di(p) = {R € 2%

Y (aij—pj) > Y (ai;—pj) forauR'ezg}. (2.1)
JER JER!

The demand set of any buyer is never empty, since at sufficiently high prices the
demand set can be formed only by dummy objects.

Definition 2.1. A pair (p, ) € P x M(M,Q) is a Walrasian equilibrium for a one-
seller assignment market (M, {0}, Q, A,r) if the following two conditions hold:
W.1 Forallie M, u(i) € Di(p),

W.2 Forall j € Q\ (M), pj =0.

If a pair (p, ) is a Walrasian equilibrium, we say that p is a Walrasian equilibrium
price vector. The payoff vector associated to (p, ) is (U(p, ),V (p, ) € RM x R,
where

Uilp,p) = Yjeu) (aij —pj) foreachie M, and

(2.2)
V(p,n) = Yjeqpj forthe seller.

Gul & Stacchetti (1999) shows that when all buyers value packages additive up
to a given capacity, these valuations satisfy the gross-substitutes condition' as well

I'The gross-substitutes condition was introduced by Kelso & Crawford (1982) and it requires
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2 One-seller assignment markets: core and Walrasian equilibrium

as monotonicity.” Then, the following consequences regarding the set of Walrasian
equilibria follow easily for one-seller assignment markets with multi-unit demands.

R.1 If (p,p) is a Walrasian equilibrium, then p is optimal and, for any optimal
matching 4/, (p, ) is also a Walrasian equilibrium.

R.2 The set of Walrasian equilibrium price vectors of the market is non-empty
and forms a complete lattice.

R.3 The maximum Walrasian equilibrium price for an object k£ € @) is

P = ma ajj ¢ — ma. ajj o . 2.3
o ueMﬁQ){(Z ]} ueM(M,g\{kn{(Z ‘7} 2

i.J)EN i,j)Ep

In order to express the minimum Walrasian equilibrium price of an object k € ()
in a market (M,{0},Q, A,r), we need to consider a new type of matchings. We
will allow only object k to be matched at most twice but not to the same buyer.
This is equivalent to introducing an identical copy of object & and restrict to usual
matchings that do not assign the two copies to the same buyer. With some abuse of
notation, we will denote this set of matchings by MF (M, Q). Now, we can give an
expression for the minimum Walrasian equilibrium prices.

R.4 The minimum Walrasian equilibrium price for an object £ is

= max a;; p — Mmax Aji ¢ . 2.4
B MGMk(M,Q){(Z J} MGM(MvQ){(Z ]} 4

i,5)€p S

Result R.1 and the existence of Walrasian equilibria can also be found in Arribil-
laga et al. (2014) for a more general assignment model. With respect to Result R.4,
which is proven by Gul & Stacchetti (1999) under the gross-substitutes condition,
we provide an alternative proof in the Appendix of this chapter, for the case where
valuations of packages are additive up to a capacity.

In the definition of Walrasian equilibrium, the owners of the objects do no play
any role. Hence the set of Walrasian equilibria of the one-seller assignment market
equals the set of Walrasian equilibria of the related many-to-one market where each
object belongs to a different seller. Moreover, Walrasian equilibrium prices are

that for any two price vectors p and ¢ such that ¢ > p, and any R € D;(p), there exists R’ € D;(q)
such that {j € R|p; = ¢,;} C R’

“Monotonicity simply says that if R’ C R then the valuation of package R is at least as high as
the valuation of R'.
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easily described by linear equalities and inequalities. A pair (p, ) € P X M(M,Q)
is a Walrasian equilibrium of (M, {0},Q, A,r) if and only if

0<pj <a;jforall (i,j) € u, pj=0forall j € @\ p(M), and
aij —pj > aip —py foreach i€ M, all j € pu(i)andall k € Q\ {u(i)}. (2.5)

To better analyze the relationship between the core and the Walrasian equilibria for
the one-seller assignment game, we first find a simple description of the core of this
game. To this end, we use a result in Ausubel & Milgrom (2002). They introduce
the notion of buyers-submodularity, which means that the marginal contribution of
a buyer to a coalition containing the seller decreases as the coalition grows larger.
A game (M U{0},v) is buyers-submodular? if for all i € M,

v((TU{i}) U{0}) —u(TU{0}) 2 v((SU{i}) U{0}) —u(SU{0}),  2.7)

forall 77C S C M\ {i}. The following result shows that the one-seller assignment
game is buyers-submodular.*

Proposition 2.2. Let (M,{0},Q,A,r) be a one-seller assignment market and let
(M U{0},v4) be its related one-seller assignment game. Then (M U{0},v,) is

buyers-submodular.

Proof. Recall that buyers’ valuations satisfy the gross-substitutes condition and
monotonicity (Gul & Stacchetti, 1999). Therefore, by Theorem 11 in Ausubel &
Milgrom (2002), the game (M U{0},v4) is buyers-submodular. O

Together with the fact that coalitions not containing the seller have null worth,
buyers-submodularity implies that the one-seller assignment game (M U{0},vy4) is
a big-boss game, as defined in Muto ez al. (1988).> As a consequence of Theorem 7
in Ausubel & Milgrom (2002), or also Theorem 3.2 in Muto et al. (1988), the core
of the one-seller assignment game is non-empty and can be described by

{(U,V)E]RMX]R Y Ui+ V =vs(MU{0}), 0<U; < M forallie M

eM
(2.8)
3Let (M U{0},v) be a game. Expression (2.7) is equivalent to
v(S1U{0}) 4+ v(S2U{0}) > v((S1US2)U{0})+v((S1NS2)U{0}), (2.6)

for all 1,55 C M.

“In order to make this chapter more selfcontained, an alternative proof of buyers-submodularity
of the one-seller assignment game is provided in the Appendix.

SBuyers submodularity clearly implies condition B2** in page 312 of Muto et al. (1988), which
implies B2 in the definition of big-boss game.
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2 One-seller assignment markets: core and Walrasian equilibrium

where M = vs(M U{0}) —va((M\ {i}) U{0}) denotes the marginal contri-
bution of buyer ¢ € M to the grand coalition, which is also known as the Vickrey
payoff for this agent. Furthermore, the core has a lattice structure with respect to the
usual order defined on buyers’ payoffs. Therefore, we can guarantee the existence
of one optimal core allocation for each side of the market. In the buyers-optimal
core allocation (U,V) € RM x R, each buyer gets his marginal contribution, i.e.
U;=M*foralli e M and V. =vs(MU{0}) — Lijcprr M. On the other hand, in
the seller-optimal core allocation (U, V) € RM x R, each buyer i € M gets U; =0
and V = v, (M U{0}). Thus, the core of the one-seller assignment game has an
optimal core allocation for each market sector as it happens in the classical Shapley
& Shubik (1972) assignment game. This is not known to be true for other many-to-
many assignment models (see e.g. Sotomayor, 2002).

A first relationship between core and Walrasian equilibria for many-to-many as-
signment markets is well known (see e.g. Theorem 36 in Arribillaga et al., 2014):
the payoff vector (U(p, ),V (p, 1)) associated to any Walrasian equilibrium (p, 1)
of the one-seller market (M,{0},Q, A, r) (or of any many-to-many assignment mar-
ket) belongs to the core of the associated game. However, there may be core alloca-
tions not supported by Walrasian equilibrium prices. In particular, we ask when the
two optimal core allocations are Walrasian equilibrium payoff vectors.

2.3 When optimal core allocations are supported by
Walrasian equilibria?

To begin the study of the relationship between optimal core allocations and the Wal-
rasian equilibria, we focus on conditions on the buyers’ valuations so that optimal
core allocations are supported by Walrasian equilibrium prices.

As it was remarked in the previous section, the set of Walrasian equilibrium pay-
off vectors is a subset of the core. Notwithstanding, the one-seller assignment mar-
ket has an interesting property which does not hold in more general many-to-many
assignment markets: the Vickrey outcome coincides with the buyers-optimal core
allocation. The relationship between the Vickrey outcome and the set of Walrasian
equilibria was addressed in Gul & Stacchetti (1999). They show that when the orig-
inal market is replicated finitely many times, the Vickrey outcome is supported by a
Walrasian equilibrium in the enlarged market. In fact, they show that it is sufficient
to replicate the market at least as many times as the number of objects. In spite
of that, we are interested in conditions to guarantee that optimal core allocations
are supported by a Walrasian equilibrium in the original market with no need of
replication.
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2.3 When optimal core allocations are supported by Walrasian equilibria?

The next proposition concerns the buyers-optimal core allocation and character-
izes those markets in which it is possible to allocate to each buyer (one of) his most
preferred package of objects. The feasibility of such an allocation characterizes
when the game is convex® and implies the existence of a Walrasian equilibrium
supporting the buyers-optimal core allocation.

Proposition 2.3. Let (M,{0},Q,A,r) be a one-seller assignment market and let
(M U{0},v4) be its related one-seller assignment game. The following assertions
are equivalent:

i. (MU{0},vy) is convex,

ii. There is a matching € M(M,Q) such that for each i € M,

Z a;j > Z a;j forall R € 27(‘:2_. (2.10)
JER(3) JeER

iii. The minimum Walrasian equilibrium price vector is p = (0, ...,0) € P.

Proof. . = 1. First, it can be deduced from Proposition 3.4 in Muto et al. (1988)
that (M U{0},v4) is convex if and only if for any S C M,

va(SU{0}) =va({0}) + ) M.

€5

Now, assume that (M U{0},v4) is convex. Take any p € M 4(M,Q), we have that

Y aij=va(MU{0}) =va({0})+ Y M=) M (2.11)

(1,5)en 1eM ieM

Since ¥ je (i) aij > M;* forall i € M, expression (2.11) implies that ¥ ;¢ ;) aij =
M. for all i € M. Moreover, for all i € M, let R; € 2,% be such that

Z Qjj > Z Qjj forall R € 27;QZ,.
JER; JER

Since (M U{0},v4) is convex, then

Y aij =va({i,0}) = M foralli € M,
JER;

A game (N,v) is convex if for all S,7 C N

v(S)+v(T) <v(SUT)+v(SNT). (2.9)
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2 One-seller assignment markets: core and Walrasian equilibrium

and as a consequence, for each 7 € M, we have Zjew-) ajj = ZjeRi ajj > ):jeR ajj
forall R € 2%.

i1. = 4ii. Take matching u of statement 7. and the price vector p = (0,...,0) € P.
It is immediate that by (2.10), u(i) € D;(p) for each i € N. Indeed, (p,p) is a
Walrasian equilibrium. The minimality of the price vector p is also immediate.

iii. = i. Since p = (0,...,0) € P is a Walrasian equilibrium price vector, then
there is a matching 4 € M(M,Q) such that (i) € D;(p) for all i € N. In fact,
because of null prices, notice that such p € M(M, Q) satisfies

Z Z aij =va(SU{0}) forall S C M.
i€Sjeu(q)

As a consequence, it is easy to see that MZU A= Yjeu(i) @ij for every i € M. Then,
we have that for any S C M,

Y M=) ) aij=va(SU{0}),

ies i€S jeu(i)
which shows that the game (M U{0},v4) is convex. O

Notice that if the above equivalent conditions hold, and x is a matching that allo-
cates to each buyer one of his preferred packages, then the Vickrey payoff to each
it € M 18 } e (i) @ij and hence it is attained at the minimum Walrasian equilibrium.
However, there are instances (see Example 2.4) in which the game is not convex but
the buyers-optimal core allocation still comes from a Walrasian equilibrium. To see
that, we only need to check whether for all i € M it holds M Z” A= Yicu) (a;; — 1_9].),
where p is an optimal matching and p € P can be computed following expression
(2.3).

The next example also shows that the fact the buyers-optimal core allocation is
supported by Walrasian equilibirum prices does not guarantee that all other core
allocations come from Walrasian equilibria.

Example 2.4. Consider a market with unitary capacities (M,{0},Q, A,r) given by
M ={1,2}, Q@ ={1',2"} and r = (1,1). For the purposes of this example, we show
no dummy objects. The valuation matrix A is the following

2

6 %)

Consider the one-seller assignment game (M U{0},v4). By (2.8), the core can be
described by the set of payoff vectors (U, V) € R3 x R, such that Uy + Uy +V =38,
Ui <4and Uy < 3.
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Take the unique optimal matching 1 = {(1,2),(2,1’)}. By (2.5), a price vector
pE Ri is a Walrasian equilibrium price vector if and only if 0 < py, <4, 0 <py <4
and 1 < py/ — py < 2. Since the corresponding payoff vector (Uy,Us; V') satisfies
Ur=4—py, Uy =4—py and V = py + py, we have pyr — py = (4 —Us) — (4 —
U1) = Uy — Us. Hence, the Walrasian equilibrium payoff vectors are described by
Up+Us+V =8,1<U;—-U<2,0<U; <4and 0 < Uy < 4. Figure 2.1 depicts
the core and the set of Walrasian equilibrium payoff vectors.

(0,0;8)
C(va)
S Uz <3
Uy <4 e
=
/(4,3;1)
Y \
AY
(8,0;0) (0,8;0)

Figure 2.1: The set of Walrasian equilibrium payoff vectors W E(A) is strictly in-
cluded in the core C'(vy4)

In the above example the game is not convex and the buyers-optimal core alloca-
tion is supported by a Walrasian equilibrium while the seller-optimal core allocation
is not. Moreover, although convexity is a strong condition, it is not sufficient to guar-
antee that the seller-optimal core allocation is supported by a Walrasian equilibrium,
as the following example illustrates.

Example 2.5. Consider (M, {0},Q, A,r) givenby M = {1,2}, Q@ = {1',2/,3'} and
r = (1,1). The valuation matrix A is the following

2y
12 @ 1
2\@ 1 1)
Notice that the game is convex and the seller-optimal core allocation is (U, V) =
(0,0;6). We can obtain the maximum Walrasian equilibrium prices p = (1,3,0) by

means of formula (2.4) and we see that the corresponding payoff vector is (U, V) =
(1,1;4) which is not the seller-optimal core allocation.
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2 One-seller assignment markets: core and Walrasian equilibrium

An interesting fact about the seller-optimal core allocation is the following one.
When the seller-optimal core allocation is not a Walrasian equilibrium payoff vec-
tor, even if the economy is replicated finitely many times a la Gul & Stacchetti
(1999), it may not be supported by any Walrasian equilibrium in the enlarged mar-
ket. To see this, consider the previous example. If we replicate the market finitely
many times, the replicas of object 3’ will be unmatched in any optimal matching.
As a consequence, the price of these replicas in any Walrasian equilibrium will be
zero. Assume there is a Walrasian equilibrium that supports the seller-optimal core
allocation in the enlarged market. In this equilibrium each buyer will pay for each
of his matched objects his own valuation of the object. But then, any buyer strictly
prefers a replica of object 3’ for free to his matched objects at the described prices,
and this contradicts these prices are Walrasian equilibrium prices.

In order to characterize when the seller-optimal core allocation is a Walrasian
equilibrium payoff vector, let us first define the set of desirable objects, 0% . We say
that an object is desirable if at least one buyer valuates it positively

Q4 ={j€Q | thereissomei € M such that a;; > 0}.

The following result gives a characterization of markets so that the seller-optimal
core allocation is a Walrasian equilibrium payoff vector.

Proposition 2.6. Let (M,{0},Q,A,r) be a one-seller assignment market. The
seller-optimal core allocation is a Walrasian equilibrium payoff vector if and only
if there is an optimal matching i € M (M, Q) and the following two conditions
are satisfied:

(a) For each j € p(M), a,-1(;); = a;j for all i € M\ {1},

(b) Q% C pu(M).

Proof. We first prove the ‘if” part. Assume that ;€ M 4 (M, Q) satisfies conditions
(a) and (D). Define pj = a,,-1(;); for all j € (M) and p; = 0 forall j € @\ u(M).
We show that 1(i) € D;(p) for all i € M. Take any i € M and consider any R € 27% :
Since p satisfies (a) and (b), and by definition of p, we have

Y (aj—pi)= Y, (aij—a,g)+ Y, (a;j—0)<0= (aij —pj),

JER JERNU(M) JER\u(M) jen(i)

and thus (i) € D;(p) for all i € M. Besides, by definition of p, we get p; =0
for each j € @\ u(M). Notice that (U(p, ),V (p,p)) is the seller-optimal core
allocation.

Now, we prove the ‘only if” part. Assume that (p,x) is a Walrasian equilibrium
and (U(p, ),V (p, p)) is the seller-optimal core allocation. By property R.1 in page
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2.4 The coincidence of the core and the set Walrasian equilibrium payoff vectors

16, we have that € M 4(M,Q). Moreover, in the seller-optimal core allocation
the seller’s payoff is equal to v 4 (M U{0}).
We claim that
pj = a,-1(;); forall j € p(M). (2.12)

If pj > a,-1;); for some j € u(M), then for all R € D,-1(;)(p) we have j ¢ R,
and as a consequence (p,p) is not a Walrasian equilibrium. On the other hand,
if pj < a,-1(;); for some j € pu(M) then ¥jcqpj < va(M U{0}) and the seller-
optimal core allocation is not the payoff vector of (p, u1).

Now, taking (2.12) into account, we shall prove that 4 satisfies condition (a) of
the statement. Assume on the contrary that there is some ¢ € M such that a;;, >
u-1(j1);, for some ji € Q with i € M\{p=t(j1)}. Let R € 291. be the package
formed by object j; and copies of the dummy object, i.e. R = {j1, 3,43, ...,jgi_l}.
Since ¥ ;e r(aij —pj) > 0= Y cp@)(aij —pj), we obtain that (i) ¢ D;(p) in con-
tradiction with (p, 1) being a Walrasian equilibrium. Then p satisfies (a). In order

a

to show (b), assume on the contrary that, there is some jo € Q% \ p1(M). By defi-
nition of Walrasian equilibrium, the price of this object is p;, = 0. Since j2 € Q%,
there is some ¢ € M such that a;;, > 0. This implies that (i) ¢ D;(p) because
Yjer(aij —pj) > Ljeui)(aij — pj) where R = {ja,78,72, ._.7].57;71}' This contra-
dicts (p, i) being a Walrasian equilibrium. Hence, p satisfies (b). [l

Condition (a) above requires that each object must be allocated to the buyer who
values it the most, while condition (b) simply says that each desirable object must
be allocated. Notice that condition (a) is not satisfied in Example 2.4, and condition
(b) is not satisfied in Example 2.5.

2.4 The coincidence of the core and the set Walrasian
equilibrium payoff vectors

In this section, we address the relationship between the whole core and the set of
Walrasian equilibria. The aim is to obtain conditions so that the core coincides
with the set of Walrasian equilibrium payoff vectors. For more general many-to-
many assignment markets but with a different definition of the demand set, Massé
& Neme (2014) shows that the sequence of cores of replicated markets converges
to the set of Walrasian equilibrium payoffs when the number of replicas tends to
infinity. Moreover, for any number of replicas there is a market with a core payoff
that is not a Walrasian equilibrium payoff. Also, for our definition of Walrasian
equilibrium that follows Gul & Stacchetti (1999), Example 2.5 shows that the pro-
cess of finite replication does not guarantee that the seller-optimal core allocation is
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2 One-seller assignment markets: core and Walrasian equilibrium

a Walrasian equilibrium payoff vector.

Since no core coincidence result can be achieved for arbitrary one-seller assign-
ment markets after a finite replication of the economy, we focus on the search of
conditions on buyers’ valuations that guarantee that all core allocations are sup-
ported by Walrasian equilibria. Taking into account Propositions 2.3 and 2.6, one
might wonder if convexity together with conditions (a) and (b) of Proposition 2.6
are sufficient to obtain the coincidence between the core and the set of Walrasian
equilibrium payoff vectors. The answer is negative as the next example shows.

Example 2.7. Consider a market (M, {0},Q, A,r) givenby M ={1,2},Q ={1',2"}
and r = (1,1). The valuation matrix A is the following

12

(:9)

Notice that the game is convex and conditions (a) and (b) of Proposition 2.6 hold.
Consider the core allocation (4,0;2). Notice that the unique optimal matching in
this market assigns object 1’ to buyer 2 and object 2’ to buyer 1. Because of the
unitary demands, the unique price vector that supports the core allocation (4,0;2)
is p = (2,0). However, p = (2,0) is not a Walrasian equilibrium price vector since

{1} & Da(p).

The following theorem is the main result of this chapter and characterizes the
coincidence between the set of Walrasian equilibrium payoff vectors and the core.
This theorem provides three conditions that together characterize when each core
element is supported by Walrasian equilibrium prices. First of all, it requires the
existence of an optimal matching satisfying those two conditions stated in Propo-
sition 2.6, i.e. each real object is assigned to a buyer who values it the most and
each desirable object must be assigned. Secondly, a new condition is required and
it is related to the idea of second best valuation. This condition in the next theo-
rem establishes that for each buyer, his marginal contribution to the market is not
higher than the difference between how much he values his assigned package of
objects and the sum of the highest valuation of all objects in that package when he
is not in the market. Hence the third condition also resembles the idea of the social
opportunity cost of allocating efficiently a package to a buyer.

Theorem 2.8. Let (M,{0},Q, A,r) be a one-seller assignment market and let (M U
{0},v4) be its associated one-seller assignment game. The core of (M U{0},v4)
coincides with the set of Walrasian equilibrium payoff vectors if and only if there is
an optimal matching p € M (M, Q) that satisfies the following three conditions:
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2.4 The coincidence of the core and the set Walrasian equilibrium payoff vectors

(a) For each j € (M), a,-1(4); = @ij forall i € M\ {15},

(b) Q% € (M),

(¢) M* <¥jcui) <aij — maxteM\{i}{atj}> forallie M.

Proof. We first prove the ‘if” part. Assume that some p € M4(M,Q) satisfies
(a), (b) and (c¢). We show that any (U,V) € C(vy4) is the payoff vector of some
Walrasian equilibrium. By conditions (a) and (c), for each ¢« € M, we can find some
(ij) jep(iy € R™ such that a;; > a;j > maxepp gi3{ar;} for all j € p(i) and

M4 =Y (aij —aij). (2.13)
Jeu(i)

Take any (U,V) € C(v4) and define b; = M;* — U; for all i € M. Since for all
i € M we have M4 > U; > 0, then M;* > b; > 0.

Let us define p € R¥ by

=1 ()i — PG if j € u(M)and M*4,, .. >0,
Qp=1(j); T MUA1( ) b;rl(j) n=t()
- pG
p = . .
’ Au=1(5)j if 7 € u(M) and M;’ﬁ‘l(j) =0,
! if j € Q\ u(M) or j = jo.
(2.14)

Notice that p € P (recall the definition of P in page 15). We show that p(i) €
D;(p) for all i € M. It is sufficient to see that a;; —pj > a;;, — py for all j € pu(4)
and all k € Q\ (7). To this end, let us see that for all i € M and all j € y(4) it holds
a;j —p; > 0 while a;;, —pr, < 0forall k € @\ 1(2). On one hand, take i € M such
that MZ-UA > (. Then Aij —Pj = Qjj — Qjj — aij}&” b, = (aij — Oéij)(l — %) > ( for
all j € ju(i). Take i € M such that M4 = 0. Then a;; — p; = a;; — a;; = 0 for all
j € u(7). On the other hand, take k € p(M) such that M;)i‘l(k) > 0. Then, for any

. B a, 1 - -1
i€ M\ {1 (k). we have ag, — pi = @ik — a1 sy — 2 Sl 8,y <0
n (k)

because a,,-1 (), > -1k > ik Take k € (M) such that iji‘l(k) = 0. Then for

any i € M\ {p~'(k)}, we have a;; —pi = a;;, — a,—1(kyk < 0 because of assumption
(a). Finally, consider k& € Q \ u(M). Then for any i € M, a;;, — pr, = 0 because of
(b). Thus p(i) € D;(p) for all i € M and p € P defined in (2.14). Hence, (p, 41) is a
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2 One-seller assignment markets: core and Walrasian equilibrium

Walrasian equilibrium. Then, the payoffs in this Walrasian equilibrium are

R
Uilp,p) = Y, (aij—pj)= ) (aiﬂ‘—%‘—Wbi)

JEu(7) Jeu(
bi v
= X (aij_aij)(l_—M?’A) = M;* = bi = U,
Jen() v

for all i € M such that M > 0, where the last equality comes from expres-
sion (2.13). Take now any ¢ € M such that MZU 4 = 0. From the definition of
pj in (2.14), we have U;(p, it) = Yjep(i)(@ij — Pj) = Ljeu)(@ij — aij) = 0= U,
Since (U(p, ),V (p, 1)) € C(vy) for any Walrasian equilibrium (p,p), by effi-
ciency, the seller’s payoff is V(p,u) = va(M U{0}) — Yicn Uilp, ) = va(M U
{0}) =Y Ui = V. This completes the proof of the ‘if” part.

Now, we prove the ‘only if” part. Assume that the core and the set of payoff
vectors associated with the Walrasian equilibria coincide. By Proposition 2.6, con-
ditions (a) and (b) hold for some optimal matching p € M 4(M,Q). Then, we
only have to prove (c). Assume on the contrary that for this y, there is some buyer
i’ € M such that M;* > ¥ic,ir)(airj — maxyepp (i13{ar;}). Recall the descrip-
tion of the core in (2.8) and consider (U,V) € C(vy4) with Uy = M,* for buyer
i' and U; = 0 for all € M \ {¢}. By assumption, there is a Walrasian equi-
librium (p, ') such that (U, V) is its payoff vector. Take this Walrasian equilib-
rium price vector p and matching ;o € M 4(M,Q) such that M;* > Yicut)(@ij —
max;ep\ (i3 {at; })- Then (p,u) is a Walrasian equilibrium (recall R.1 in page 16).
u-1(j); forall j € p(M\{d'}) and M;* =Y ic vy (ai; —pj). We
obtain Zje,u(i’)(ai’j —pj) = M;,JA > Zje,u(i’) (ai/j — maxieM\{i/}{aij}). As a con-
sequence, ¥ jc () MaXe (i {aij } > Ljepu(iry pj which implies that there is some
i € M\ {i'} such that a;; > p; for some j € p(i"). We then have that 1(¢) ¢ D;(p)
because a;;, —pr, = 0 < a;j — p; for all k& € pu(4) and the above j ¢ p(z). This con-

Therefore p; = a

tradicts that (p, 1) is a Walrasian equilibrium. Hence, condition (¢) holds. O

The above theorem gives a characterization of the coincidence of the core and the
Walrasian equilibria in one-seller assignment markets. Notice that the core and Wal-
rasian equilibrium payoff vectors do not coincide in Example 2.7 because condition
(¢) is not satisfied.

As a consequence of Theorem 2.8, when the buyers have a sufficiently large
capacity, the core coincides with the set of Walrasian equilibrium payoff vectors.
Indeed, when there are no capacity constraints (or each buyer has a capacity greater
than the number of non-dummy objects), an optimal matching assigns each object
to one of the buyers who values it the most. Hence, conditions (a) and (b) are
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2.4 The coincidence of the core and the set Walrasian equilibrium payoff vectors

satisfied. Moreover, when a buyer leaves the market, his objects are assigned to
the buyers with the second highest valuation, and this implies that for all ¢ € M,
condition (c¢) holds with an equality.

It is also quite straightforward to check that if for some capacities € N™ the
core of the market (M, {0}, Q, A,r) coincides with the set of Walrasian equilibrium
payoff vectors, then they also coincide if capacities are increased to r’ where r} > r;
forallz e M.

Finally, the following corollary allows us to obtain a stronger condition for the
coincidence of the core and the set of Walrasian equilibrium payoff vectors.

Corollary 2.9. Let (M,{0},Q,A,r) be a one-seller assignment market and p €
M4 (M, Q) be such that: (d) if (¢,7) ¢ 41, then a;; = 0. The core coincides with the
set of Walrasian equilibrium payoff vectors.

Proof. Tt is immediate to see that (d) implies conditions (a) and (b) of Theorem
2.8. Now, notice that for any ¢ € M,

Y oa= ) a— ) ) ay

JE(D) (t.j)En te M\{i} jen(t)
> vg(MU{0}) —va((M\{i})U{0}) = M. (2.15)

Since (d) holds, expression (2.15) implies condition (¢) of Theorem 2.8. Therefore,
(d) implies the coincidence between the core and the set of Walrasian equilibria.
]

Note that property (d) is stronger than convexity of the game and it represents
those markets where agents only value positively those objects optimally assigned
to them. The next example shows that if a buyer places a small positive valuation
on some object not assigned to him, the coincidence between core and Walrasian
equilibrium payoff vectors may be lost.

Example 2.10. Consider a market (M,{0},Q,A,r) given by M = {1,2}, Q =
{1",2'}, r = (1,1) and the following valuation matrix A, where 0 < & < 4:

12

()

Since the marginal contributions of the two buyers are 4 and 2 respectively, (0,2;4)
belongs to the core. This core element can only be supported by prices p = (0,4)
but at the price of 0, buyer 1 would prefer object 1" at price 0 rather than object 2’
at price 4. Hence, for any 0 < € < 4, the core of this market does not coincide with
the set of Walrasian equilibrium payoff vectors.
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2.5 Appendix

Now, we provide an alternative proof of Proposition 2.2 for the one-seller assign-
ment game.

Proof. First, consider r; = 1 for all ¢ € M. Let (M U{0},v4) be the one-seller
assignment game. We deduce from Theorem 1 in Shapley (1962), that for all 7,7’ €
M and all S C M\ {i,i'}

va((SU{0}) U{i}) —va(SU{0}) = va((SU{0}) U {i,i'}) —va((SU{0}) U{i'})

and, by repeatedly applying this, we obtain that (M U{0},v4) satisfies (2.7).

Now, consider r; > 1 for all i € M. We prove that (M U{0},v,4) satisfies (2.7).
Define a related market in which each buyer i € M is replicated r; times. Denote
by i(s) the s-th copy of i and by M the new set of buyers formed by replication of
all buyers in M. Notice that now each buyer has capacity one. Define the valuation
matrix A = (ai(S)j)(i(s),j)eMxQ by aj(s); = a;; for all (i,j) € M x Q and all s €
{1,...,7;}. In this way, we obtain (]T/[/, {0},Q, A7) with Ti(s) = 1 foralli(s) € M.
Notice that (M U{0},v4) and (M U {0},v ) are related:

va(SU{0}) =v;(SU{0}) forall S C M,

where S is formed by the replica of all buyers in S. Then, inequality (2.7) for the
game (M U{0},v4) is equivalent to

v (TU{i(1), .., i(r) ) U{0}) —v (T U{0})

> vz((SU{i(1),...,i(ri) }) U{0}) —vz(SU{0}),
(2.16)

where T, S and {i(1),...,i(r;)} are obtained by replicating all buyers in 7', S and
{i}, respectively. Define S; = T'U{i(1),...,i(r;)}, S2 = S and notice that Sy U Sy =
SU {i(1),...,i(r;)} and SN .Sy = T. Since demands of agents in M are unitary, the
game (M U{0},v7) satisfies (2.7), which is equivalent to (2.6). Then,

Ug(Sl u{0}) +UAV<SQ u{0}) > Uﬁ((sl USy)u{0}) —I—Ug((Sﬁ NSy)U{0}),

and rearranging terms leads to (2.16). Therefore (2.7) holds for the game (M U
{0}, v4). O

In this Appendix, we provide an alternative proof for expression (2.4) of the
minimum Walrasian equilibrium price. Here, we are going to denote objects by
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Greek letters. Given a market (M,{0},Q, A,r) and any object § € @, denote by B
the replica of 3, that is, a copy of 3 such that each buyer values 3 and 3 the same.
Let us consider the market (M, {0}, QU {3}, A? r) with this replicated object: the
set of objects is QU {3} and the valuation matrix is A® with aiﬂj = a;; forall (i,7) €
M x @) and af 5= ip for all = € M. Now, from the set M to the set of objects

QU{ 6 }, we define a restricted set of matchings: those matchings that do not assign
both objects (5 and B to the same buyer. This set of matchings have been denoted by
M5B (M,Q) in page 16. Now for the sake of clarity of the rest of the proof we need
to make more evident the copy of 5 and hence, we write

M(M,QU{BY) = {ne M(M.QU{B}) | if B € u(i) and § € (i), then i #'}.
2.17)

We denote by MA,@(M,Q U{B}) the set of optimal matchings in /T/l/(M,Q U
{B}). That is, a matching 1/ € M(M,Q U {j3}) belongs to M 45(M,Q U {5})

if Y jyep aby > Lo jyenay; for all g€ M(M,QU{B}). Since aj; = a;; for all

(1,j) € M x Q and af 5= aip for all i € M, with some abuse of notation, we write
a;; for all (i,7) € M x @ and a;g for all i € M, instead of aiﬂj and af 5 respectively.

The following remark will be useful in the sequel.

Remark 2.11. For all p € MVAB(M,QU {B}) such that 3 € pu(i1) and § € u(iz),

matching 77 = (1 \ { (i1, 3), (i2, ) }) U{ (i1, B), (i2, 5) } also belongs to M 45 (M,QU
{/3}). That is, we can interchange (3 with 3.

The next lemma, that is needed in the proof of Theorem 2.13, relates the origi-
nal market (M, {0},Q, A,r) and the market with a replica (M, {0}, QU {B}, AB )
whenever the object 5 € () is optimally assigned in the original market. We see that
in the market (M, QU {3}, A% r), there exists a restricted optimal matching such
that those objects that were unassigned remain unassigned and the object 5 remains
assigned to the same buyer.

Lemma 2.12. Let (M,Q, A,r) be a many-to-one assignment market, ;1 € M (M, Q)
and 3 € (M). Then there exists ji' € MVA;;(M,Q U{B}) such that

(a)if v € Q\ (M), then v € Q\ p/(M), and

(b) if B € (i), then B € pi' (7).

Proof. First, we prove condition (a) of the statement. Consider any matching p; €
M 45(M,QU{B}) and if B ¢ pu1(M) and 3 € 13 (M) just recall Remark 2.11 and
interchange ( and A in 1. So, we can assume without loss of generality that g €

p1(M).
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2 One-seller assignment markets: core and Walrasian equilibrium

IfQ\ u(M)=Q\ p1(M) then trivially // = pu1 satisfies condition (a).

Otherwise, if there is some v € 111 (M) \ (M), then there is a buyer ¢; such that
v € p1(i1) \ u(i1). Because of the capacity constraint of i, there is some object
o € pu(i) \ p1(iq). Notice that oy # 3 because 3 ¢ pu(M). If ay ¢ g (M), define
1 = (1 \ {(i1,7)}) U{(i1,a1)}. Notice that /' € M(M,QU{A3}). Then

0< aiyay —Giyy = Y, Gij— Y, Qg = Y, Gy > Y, Gigj,

Je (i1) jep(ir) Je (i1) jep(ir)

where the first inequality holds by the optimality of ;.. Then i/ € M 16 (M, QU{B})
and y ¢ p/(M).

If otherwise oy € i1 (M), then there is a buyer iy # i1 such that ay € 11 (i2). Since
o1 € ,ul(ig) \u(ig) there is some a9 € u(ig) \,ul(iz) and a1 # ag. If ap §§ ul(M),
we finish as above by taking p/ = (1 \ {(i1,7), (i2, 1) }) U{(i1, 1), (i2,2)}. Oth-
erwise, if ag € pi (M), there is some i3 such that s € py(i3) \ pu(is) and some
a3 € p(iz) \ p1(iz). We continue and obtain a sequence 7,a1,...,cq such that
v € p(in) \ plin), o € p(ie) \ pa(ie), ar € pa(iegr) \ plig) for ¢t € {1,....0 =1}
and ay € p(ig) \ pa (i)

Although buyers in the above sequence can be repeated, the objects aj, ..., can
be taken to be all different. Indeed, assume as induction hypothesis that for some
2<s<l,ai,..,as are all different (we already know that a; # ). Assume that
is = 1) for some k € {0, ...,s — 1}, that is both oy, s € 1 (i) \ pe(ix ). By assump-
tion on ayq,...,as, we have oy # as. Hence there exists agy1 € pu(ig) \ pa(ig) dif-
ferent from o1 1. The fact that a1, ..., o can be taken to be all different guarantees
that the sequence finishes with some [ > 1 such that a; & 1 (M).

Take then ,u' = (ul\{(il, k’), (ig,O&l), cens (Z'l,Ozlfl)}) U{(il,al), (iz, 042), ceny (il, CY[)}.
Moreover, we can assume without loss of generality that ' satisfies that if 5 € p/(4)
and (3 € /(i) then i # i'. Indeed, since 5 # oy for all t € {1,...,1}, we have that
3,3 € 11/ (i) can only happen if for some t € {1,...,1}, 3 = a; and § € 1 (i;). But
by definition of «, this means that a; € 1 (i;+1) and then by Remark 2.11, we can
interchange (3 and 3 in s in such a way that 8 € 11 (i;). This means, because of
B € (i), that 5 will be different from any a4 for all t € {1,...,1}.

It only remains to prove that ;/ € M 15 (M, QU{j3}). To see this, denote ag = .
Then, by optimality of y, we have

l
Zl Z @iyj 2 Z Z Qiyg,
t=1j

jep(it) t=lje(p(it)\{ar ) U{ou—1}
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which leads to

l l
0< Z‘,l(aitat - a’itOétfl) = 21 ( Z Qg5 — Z aitj)'
t= t=

JEW (it) Jep(ir)

As a consequence ji’ € MVAg(M,QU {B}) and v ¢ 1/ (M).

If there is more than one object 7y such that v € p (M) \ (M), repeat the above
procedure starting now from i’ to construct 4/ and so on, in order to get a matching
under the desired requirements.

Now, we prove condition (b) of the statement. Take ;1 € M 4(M,Q) and let i; €
M be such that 5 € u(iq). Let g € .//\/lvAg(M,Q U{S}) be a matching that satisfies
the requirements of condition (a). Trivially, if 5 € p;(i1) we are done. Otherwise,

we have 3 ¢ i1 (i1). If 3 ¢ pa (M) notice that ' = {(i,5) € M x (QU{B}) | (i,4) €
1} belongs to MVA;;(M,Q U{B}), B € 1/ (i1) and condition (a) is also satisfied. If
3 € pu1(iy) interchange ( and 3 in ju; and we are done. Finally, consider that § €
p1(M)\{p1(i1)}. Since g € /f(h) \ pt1(71) there is some object ay € gy (i) \ pu(i1).
Notice that oy # ( and a # 3. Since p satisfies the requirements of condition (a)
and o € pu (M), we have that a; € (M ). Then there is some buyer io # 71 such
that o € /L(ig).

Ifﬁ € ,ul(ig), define ,u’ = (,ul\{<i1,041), (Zg,ﬁ)}) U {(il,ﬁ), (ig,al)}. Then

2
Y ( Y ai- Y am) = Q8+ Qiga, — Qiray — Bin3

k=1 \jep/ (i) jem (ix)

je(u(i)\{s}){as} j€(pi2)\{aa HU{B}

2
Y Y ai- Y irj — )3 izj
k=1jeun(ix)

0, (2.18)

v

where the inequality comes from the optimality of .. Therefore,

2

2
Y Y ayy> Y iy (2.19)
L p

=1jep(ix)

implies that i/ € M 48 (M,QUA{ 3 }) and it satisfies all the requirements. The case
where 3 € yu1(i2) is analogous.

If B ¢ pu1 (i2) and B & 11 (ia), since oy € pu(iz) \ pa (ia), there is avg € pua (i) \ pu(d2).
Because j; satisfies the requirements of condition (a), there is some i3 € M such
that ag € p(i3). We continue with this procedure and we obtain a sequence of
objects 3,1, ...,y with I > 1, each one different from 3, such that 3 € w(in) \

,ul(il), o € /L1(it) \/L(it), o € N(it+1) \,ul(z'tﬂ) with ¢ € {1,...,l — 1} and § €
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111(i7) or 3 € pu1(i;). This end can be guaranteed since, by an argument similar to
the one used in the proof of part (a), the elements 1, ...,a;_1 can be chosen to be
all different. Assume 8 € p1(i;) (similarly for 3 € y1(4;)), then define 1/ = (1 \
{(i1, 1), (12,02),..., (i, 8)}) U{ (i1, B), (i2,01), ..., (i,c1—1) } and by applying the
same argument of (2.18) and (2.19) we obtain that p’' € //\/thg(M,Q U {B}) and
agents unassigned by p remain unassigned by p/ and moreover 5 € /' (i1). [

The next characterization of the minimum Walrasian equilibrium price vector is
inspired by a similar result of Bevid et al. (1999) in a model without capacity lim-
itations. However, notice that when there are no capacity limitations an optimal
matching consists of assigning each object to the buyer who values it the most.
Compared to that, when buyers are limited by capacity constraints, optimal match-
ings need to be carefully computed and the elimination of an object may cause a
reshuffling of all other objects.

Theorem 2.13. Let (M,{0},Q, A,r) be a one-seller assignment market, the mini-
mum Walrasian equilibrium price vector of (M,{0},Q, A,r) is p = @ﬁ)ﬁeQ where

Pg= _Mmax a;j ¢ — Mmax a;i ¢ foreach (€ Q.
- ueM(M,Qu{B}){(i,%:eu J} MGM(MQ){@,]Z)"@ J}

(2.20)

Proof. Given (M,{0},Q,A,r), let us prove that (p, ) is a Walrasian equilibrium
for (M,{0},Q,A,r) where € M4(M,Q) is any optimal matching and p is de-
fined by expression (2.20).

Assume that there is some buyer * such that x(i*) ¢ D;«(p). Then, R € D;=(p)
with R € 291.* \ {u(7*)}. We will prove that any object & € R\ p(i*) can be replaced
with any 3 € u(i*) \ R to obtain (R\ {a}) U{S} € D;(p). By way of contradiction,
assume that there exists & € R\ p(i*) and 8 € pu(i*) \ R such that (R\{a})U{3} ¢
D+ (p). Then

Z (ai+; _Qj) > Z (aixj —g_oj) which implies Pg =P, > Girp — ita;
JER je(R\{aH)u{s}

and from (2.20) we obtain

__max { Z aij}— __max { Z aij}>ai*ﬂ—ai*a.
HEM(M,QU{BY) | (i,j)ep HEM(M,QU{a}) | (i,j)ep

(2.21)

Take any p; € J/\/IVAB(M,QU {B}) such that 5 € i (i*) and if k € Q \ (M) then
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2.5 Appendix

k ¢ p1(M). Notice that such a matching does exist because of Lemma 2.12 in this
Appendix. We consider the following cases.

Case 1. a ¢ py(i*). Define p/ = (p1 \ {(¢*,8)}) U{(i*,&)} where & is the replica
of object @ € Q. Then p/ € M(M,QU{a}) and

__max { Z aij}z Z a5 — Z Qx5+ Z A+ j
(i.5)en (

peM(M,Quia}) i,j) € jEu (%) JEW (i*)

Z Ajj — Qjxg + Ai*a,
(ZJ)EHI

and since a;+g = a;+q, this contradicts (2.21).

Case 2. a € p1(i*). Since a € pup (M), because of the properties of pi, then a €
wu(M). Let i’ € M be such that a € p(i). Since o € R\ pu(i*), we deduce i’ # i*.
Case 2.1. 3 ¢ yuy(M). Define 7 = {(i,5) € M x (QU{B})|(i,5) € uu} and notice
that 7o € M 45 (M, QU {B}). Define i/ = (u\ {(i*,8)}) U{(i*,&@)}. Notice that
' € M(M,QU{a}). Then we have

Y ooy mas {(z }

(i,j)€pr peMM,QU{a}) | (ij)en
Z ( Z “w Z az’j) = QB — Qj*a,
ieM Njepu(i JEW(3)

which contradicts (2.21).

Case 2.2. 3 € pu1(M). Let i” be such that 5 € 1 (i").
Case 2.2.1. i/ =4". Define i/ = (u1 \ {(#',5)}) U{(/',@)}. We then have that,
p'e M(M,Qu{a}),

max { Z aw} Z a5 — Z ayrj + Z ajrj
(4.7 (i

HEMM.QU{Y) | (ij)en Dem  jem() jen ()
Z CLZJ 73 + il a-
(l J)EM

By the optimality of x, we have a;«g + a1 > ai*q +a; 3. As a consequence,

R A T B T = _max { )3 aiﬂ}’
(i,7)Ep1 uEM(M,QU{d}) (i.5)en

which contradicts (2.21).
Case 2.2.2. 7' #i”. Since o € pu(i") \ p1(¢'), there is an object By € 1 (i) \ (7).
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2 One-seller assignment markets: core and Walrasian equilibrium

Case 2.2.2.a. 50 € ,U(Z*) Define :U/ = (:ul \ {(i/750>7 (l*vﬁ)}) U {<i/7d)7 (Z*7B0)}
Let us continue denoting by 1’ the matching that results by interchanging the roles

of 3 and 3 above. Then trivially 1/ € M(M,QU{a}) and we get

T TR I £ 1 (D AR Wy

(i.4)€m peM(M,QU{a}) | (ij)eun i€M \jep (i) JE (i)

= (ai/ﬂo - ai/d) -+ (az*ﬁ — ai*ﬂ()). (222)

By optimality of p, we have a; g, + @+ < aj+g, + ajo. Then, the following in-
equality (a;g, —ayq) + (aixg — @+ g,) < ajxg — a;* together with (2.22) contradicts
(2.21).

Case 2.2.2.b. fiy € pu(i"). Define 1 = (u1 \ {(¢', 60), (", 5)}) U{(7. ), (7", o)}
Then

aijj— _ max a; i aii
(m‘ém ! NGM(MvQU{&}){(i%:Eu J} ZZM (J€§) ’ J€§(i) J)

= (awo - ai’&) + (%/3 - ai”ﬂg)

= (aip, — ava) + (amz — aimg,) + (Qira — ai=g) + (aig — aixa).
(2.23)

By optimality of matching p, we have a;g, + ang + aixa < ajro + ajrg, + a;xg.
Then (ai’ﬂo — ai/a) + (ai//g — ai//go) + (ai*a — ai*ﬂ) + (ai*ﬂ — ai*a) < (az‘*g — ai*a)
together with (2.23) contradicts (2.21).

Case 2.2.2.c. By ¢ u(i*) and By ¢ p("). Recall that Sy € p1(i') and by the assump-
tions on 4 and the properties of p1, there is some i1 such that 5y € u(i1). Since
Bo ¢ pa(ir) there is some By € pun(i1) \ pu(in). If B € p(i*) or By € pu(i”) we fin-
ish by an argument similar to cases 2.2.2.a and 2.2.2.b, respectively. Otherwise,
we continue. Denote 7y = i’ and assume we reach a sequence (3,31, ...,/3; such
that 8; € (i) \ (ie), Be € p(ips1) \ p1(ig41) for t € {0,1,...,0 — 1}. The same
argument as in the proof of Lemma 2.12 allows us to choose all 5y, 51, ...,3; to be
different.

Hence, this procedure stops at some step [ > 1 such that either object 5; € 1 (i*)
or B € p1(¢"). Assume that the object 3; € p(i*) and define the following matching

= \{(@, Bo), (@, B), (i1, 81), -, (1, 1) ) UL (@', @), (i1, Bo), -, (i, Br—1), (8%, Bu) }-
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Then
Z aij  max { Y ai]} <Y ( Z ag— Y, aij)
= “EM(M’QU{d}) (i.5)En i€M \jepu (i) JEW (i)
!
= (ailﬂo - ai/&) + (al*ﬁ - ai*ﬁl) + Z (aikﬂk - aikﬂk_l)‘ (224)
k=1

By optimality of x1, we have a;/g, + aj+o + 22:1 @iy B, < Qirg + Qg + 22:1 @y By -
Then,

(ailﬁo - Cli/a) + (G’Z*ﬁ - a’i*ﬁl) + Z (alk,@k - aikﬂkfl) S a/i*ﬁ — Uj*q,
k=1

together with (2.24) contradicts (2.21).

For the object 3; € u(i"), we are going to take the following matching 1/ = (p1 \

{(i/aBO)a (i”7ﬁ~)7 (iiaﬂl)a sy (Zlaﬁl)}) U{(ila &)7 (ilaﬂ())a sy (ilaﬁl—l)a (i//aﬁl)} for MU
() U{a} and proceed analogously.

Therefore, we have proved that (R\ {a})U{3} € D;+(p). By repeatedly applying
this procedure that replaces an element of R\ x(:*) with another of 1(i*) \ R, we
obtain a sequence of sets of cardinality r;+ such that R; € D;«(p) forallt € {1,...,1}
and R; = p(i*), which proves that 1i(i*) € D;=(p). Notice finally that, from (2.20),
if € Q\ u(M) then p 5= 0. This concludes that (p, ;1) is a Walrasian equilibrium
for the market (M, {0},Q, A,7r).

Now, we see that indeed p = (p ﬁ) geq defined in (2.20) is the minimum Walrasian
equilibrium price vector. Let p be any Walrasian equilibrium price vector. Consider
any 6 € @ and its replica 3. Take an optimal matching 1 € M A(M,Q) and let
[ EMAB(M QU{f}) be such that if 3 € (i) for some i € M and k € Q\ (M),
then 5 € 1/(i) and k ¢ p/(M). The existence of such p/ € MAB(M QU{BY}) is
guaranteed by Lemma 2.12. Notice that if 3,3 ¢ 4/(M); or 3 € y/(M) and 5 ¢

(! (M);or B¢ y/(M)and § € 1/ (M), then

max a;j ¢ = Max @ij ¢
ueM(MQU{B}){(z):eu J} MGM(MQ){(%@ ]}

which implies that Py= 0 and, hence Ps <pg.

Otherwise, if 3, 3 € y// (M), then there exists some av € ju(M)\ i/ (M). Let i’ € M
be such that 3 € 1//(i'). Define R; = /(i) for all i € M\ {i'} and Ry = (1/ (i) \
{B})U{B}. Since (p, ) is a Walrasian equilibrium and because of the properties
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2 One-seller assignment markets: core and Walrasian equilibrium

of 4/, we obtain

Y (X on)2 Y (L a-n)

€M N jeu(q) teM \jER;
= ) - <p5+ ) ~Pj)-
(ZJ e jew (M)O\{B}

Then

max Z Qjj ¢ —Po = ~_ Max { Z aw} Dg;
“GMA(M’Q){(i,j)eu } HeM s (M.QUIBY | (i)ep
which implies
pg= _ max { Z aij}— max { Z aij}+pa
peM ,5(MQU{BY) | (if)yeu HEMAMQ) | (; eu

> _ max Z aij} max { Z azg} DPgs
“eMAﬁ(MvQU{ﬂ}){(iJ)GM HEMAMQ) { (i jyep -

where the last inequality holds because any Walrasian equilibrium price is non-

negative, i.e. p, > 0 for all a € Q).
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3 An implementation of the Vickrey
outcome with gross-substitutes

3.1 Introduction

In this chapter, we consider a market in which many buyers and only one seller
meet. The seller owns many indivisible and heterogeneous objects on sale. On the
other side of the market, each buyer is interested in packages of objects and has
a non-negative valuation for each of them. Preferences are assumed to be quasi-
linear with respect to money and buyers’ valuations satisfy monotonicity and the
gross-substitutes condition.! An outcome for this market specifies an allocation of
the objects to some buyers and the payment each of these buyers makes for his
assigned package of objects.

An outstanding outcome for this market is the Vickrey outcome?which has the fol-
lowing interesting properties, the allocation of the objects is efficient and if a buyer
gets a package, he pays the social opportunity cost of being allocating to him that
package. In spite of its properties, the Vickrey outcome may generate a low revenue
for the seller. To deal with this fact, it has been considered in the literature,® as a
competitive standard, the belonging of the (Vickrey) payoff vector associated with
the Vickrey outcome to the core of a related coalitional game. Ausubel & Milgrom
(2002) shows that if monotonicity and the gross-substitutes condition holds, then
the Vickrey payoff vector belongs to the core. Even more, it is the best core alloca-
tion for the buyers. In a recent paper, Goeree & Lien (2016) shows an impossibility
result for core-selecting auctions: if the Vickrey payoff vector does not belong to
the core, then no core-selecting auction exists.

In this chapter, we study whether the strategic interaction of all agents leads to
the buyers-optimal core allocation. In particular, we introduce a simple mechanism
which resembles a bidding procedure. While in standard auctions only buyers play,
a key feature of our mechanism is that all buyers and the seller interact in a com-

ICondition introduced by Kelso & Crawford (1982).

2In fact, VCG mechanisms (Vickrey, 1961; Clarke, 1971; Groves, 1973). See e.g. Milgrom
(2004) for details.

3See e.g. Day & Raghavan (2007) and Day & Milgrom (2008).
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3 An implementation of the Vickrey outcome with gross-substitutes

plete information environment. The mechanism works as follows. First, each buyer
requests (for instance, bidding in a sealed envelope) a package he would like to buy
and how much he would pay for it. Then, the seller decides the final allocation and
the prices. In more detail, she chooses a group of buyers, and she sells a package at
a price to each of these buyers in such a way that no buyer is worse off than with
his initial request.

A usual requirement for allocating objects is efficiency. When buyers request
packages of objects simultaneously, an overlapping problem may arise. Then, this
overlapping problem may produce a loss of efficiency in the allocation. In particu-
lar, if the seller is restricted to choose only among requested packages, the outcome
of a subgame perfect equilibrium (SPE) in pure strategies may not be efficient due
to a coordination problem among buyers’ requests. As a consequence, the outcome
of this equilibrium does not belong to the core. In order to avoid this problem, in
our mechanism, the seller is allowed to allocate non-requested packages as long as
this does not make any buyer worse off. We prove then that in any SPE, the final
allocation of the objects is efficient for the whole market. In a second result, we
prove that every SPE outcome of the game coincides with the Vickrey outcome of
the market.

If each buyer can acquire at most one object, Demange et al. (1986) proposes an
allocation mechanism described as follows. Selling prices start at reservation prices;
then every buyer requests the objects he would like to buy at the announced prices;
if it is possible to allocate each object to a buyer who requests it, the procedure is
done; otherwise, the price of the overdemanded objects is increased and the pro-
cedure is iterated with new prices. The mechanism leads to the Vickrey outcome.
When each object belongs to a different seller and each agent can make at most
one partnership, we are in the setting of the assignment game (Shapley & Shubik,
1972). For this market, Pérez-Castrillo & Sotomayor (2002) considers a buying and
selling procedure to implement in SPE the best core element for the sellers (which
is supported by the maximum Walrasian equilibrium price vector). The mechanism
works as follows. Simultaneously, each seller announces the price of her object.
Then, each buyer sequentially reports his preferred matchings, taking into account
what the previous buyer has reported. If buyers play a dominant strategy consisting
of truly reporting their indifferences, then the SPE outcomes correspond to the best
core element for the sellers.

Our work is also related to the pay-as-bid auction of Bernheim & Whinston
(1986). These authors consider a setting in which buyers want to buy packages
of heterogeneous objects. In the mechanism they propose, each buyer reports how
much he would pay for each package and the seller chooses an allocation of the
packages. If a buyer receives a package, then he pays his bid. This game has mul-
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tiple equilibria, some of them non-efficient. To overcome that, the authors restrict
the strategies of the buyers, the so-called truthful strategies to obtain SPE with good
properties. Notwithstanding, reporting a price for each package seems too com-
plex for real-world markets. This is why, by assuming that not only the buyers (as
in Bernheim & Whinston, 1986) but also the seller has complete information, our
mechanism only requires that each buyer reports one package he would like to buy
and how much he would pay for it. By allowing the seller to allocate non-requested
packages, as long as no buyer is made worse off, we show that all SPE of our game
is not only efficient but also leads to the Vickrey outcome of the market.

For an exchange economy, Wilson (1978) considers a mechanism in which all
but one agent play as buyers, the remaining agent plays as an auctioneer. First, all
buyers play simultaneously by requesting a set of feasible trades to the auctioneer.
In the second stage, the auctioneer chooses for each buyer at most one trade. If
a trade is chosen from a buyer, then he participates in the exchange. Otherwise,
he stays with his initial resources. The author shows that there exists a (principal)
Nash equilibrium which leads to a core allocation. It is shown that if the market is
replicated, then the outcome given by a (principal) Nash equilibrium is a Walrasian
equilibrium outcome. Though our mechanism has some resemblance with the game
in Wilson (1978), nevertheless, we are in a different setting.

Our approach to the implementation problem is more similar to that in Pérez-
Castrillo & Sotomayor (2002). The seller is the owner of all objects and they are all
indivisible. When buyers request, they only choose one package to buy. Moreover,
the seller can choose among non-requested packages. The mechanism provided
tries to capture a natural bidding procedure in which all agents play in complete
information. It produces efficient allocations in SPE. Moreover, it implements in
SPE, the Vickrey outcome. Since the gross-substitutes condition is satisfied, this
outcome is in the core, i.e. no coalition of players can improve its payoff by trading
only among themselves.

The chapter is divided as follows. Next section is devoted to an introduction of the
market and the cooperative game associated with it. In section 3, the mechanism
is presented and we characterize its set of SPE outcomes. Finally, the Appendix
contains some technical lemmas needed to establish the implementation result.

3.2 The market and some preliminaries

Consider a market with m buyers and only one seller. The finite set of buyers is
denoted by M = {1,2,...,m} and the seller is denoted by 0. She owns a finite set
of indivisible objects on sale, denoted by (). The set of objects () includes copies
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of a dummy object jp, as many as the number of buyers. Each buyer i € M has
a valuation for each package of objects,* w; : 2¢ — R such that w;(()) = 0 and
we assume that for each buyer ¢ and for each dummy object jo, w;(RU{jo}) =
w;i(R) for all R C @\ {jo}. Moreover, each agent has a quasi-linear preference
with respect to money on 2¢ x R. A price vector p € sz consists of a non-negative
price p; € R4 for each object j € (). We interpret this price as the quantity of money
to be paid by any buyer i € M if he acquires object j € .> Therefore, the utility
of a buyer « € M when he acquires a package R C () given a price vector p € Rg
is® w;(R) — Yjerpj- Given a price vector p € RQ, the demand set of buyer : € M
consists of

Di(p) = {R cQ

wi(R)— Y pj >wi(R') =Y. pj forall R C Q}.

JER JER!

Notice that the demand set of any buyer ¢ € M is never empty. Even at sufficiently
high prices, the demand of the buyer will include a package of null objects.
In all this chapter, we will assume some properties on the buyers’ valuations.

Assumption 3.1. For each buyer ¢ € M, his valuation w; satisfies
i. Monotonicity: w;(S) > w;(T) forall T'C S C Q.

ii. Gross-substitutes condition: for any two price vectors p,p’ € ]Rg such that
p' > p, and any R € D;(p), there exists R’ € D;(p') such that {j € R|p; =
Pt C R

Monotonicity says that for any buyer, the more objects in a package, the better.
In particular, we have that for each i € M, w;(S) > 0 for all S C Q). The gross-
substitutes condition was introduced by Kelso & Crawford (1982). This property
has been also widely used in Gul & Stacchetti (1999). When buyers’ valuations
do not satisfy it, market clearing prices may not exist. In an informal way, we say
that a buyer ¢’s valuation satisfies the gross-substitutes condition if the following
holds. Suppose that given a price vector p, buyer ¢ wants to acquire the package
of objects [?. Assume that some prices increase and now we have a new vector of
prices p’ > p. Then the buyer i wants to acquire at least a package R’ at p’ and
R’ contains each object belonging to R which price has not been increased in p'.
Different valuation functions that satisfy the two above properties can be found in
Gul & Stacchetti (1999). Take for instance, a buyer ¢ with a k;-satiation valuation,

“For each set S, we will denote by | S| the cardinality of S and by 2° the power set of S.
>We assume that the price of each null object is always zero.
®We will assume that any sum over the empty set is equal to zero.
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that is, ¢ values packages up to a given capacity k; € N, i.e. the valuation of buyer
i € M on any package Q' C () satisfies

wi(@Q) = max ¢ Y wi({j}) ¢
Q'CQ": jeq”
Q" [<ki
In this case, the valuation of a buyer over a package of objects is given by the addi-
tion of values the buyer gives to objects up to capacity k;. Notice that when k; = 1

for every © € M we are in the setting of Demange et al. (1986).

To sum up, our market is described by (M, {0}, Q,w) where w stands for buyers’
valuations w = (w;);cps and they satisfy Assumption 3.1.

Given a subset of buyers S C M, an allocation of () to S consists of a partition of
the set of all objects among agents in S, that is, (4;);cs such that ) = A; C @ is the
set of objects allocated to i € S, | J;eg A; = Q and A;N Ay = 0 if i # i’. We denote
by A(S) the set of all allocations of () to S. We say that an allocation A € A(S) is
efficient for S if

Y wi(As) > ) wi(A}) forall A € A(S).

(IS €S
We denote by .A*(S) the set of efficient allocations for S. Notice that A*(S) is
never empty for any non-empty coalition of buyers S C M.

Given a market (M, {0},Q,w), let us consider the coalitional game’ associated
with (M, {0},Q,w) as in Ausubel & Milgrom (2002). This game is denoted by
(M U{0},v) where the set of players is the set of agents of the market A/ U{0} and
the worth of each coalition is given as follows. The worth of the empty coalition
and the worth of any coalition formed by only one type of agents is zero because
in these cases there is no trade. When a coalition is formed by a group of buyers
() £ S C M and the seller, the worth is given by

AEA icS

v(SU{0}) = max { Z wi(A } 3.1)

TA game in coalitional form with transferable utility is a pair (N,v) formed by a finite set of
players N and a characteristic function v that assigns a real number v(S) to each coalition S C
N, with v(0) = 0. The core of a game (N,v) is C(v) = {x € RN | Y;cnxi = v(N),Yics i >
v(S) forall S C N}. We say that a game (NN,v) satisfies monotonicity if v(T") < v(S) for all
TCSCN.
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A payoff vector u € RM {0} consists of a payoff for each agent of the market.
That is, u; is the payoff associated to buyer ¢ € M and wug is the seller’s payoff.
Following Ausubel & Milgrom (2002), a payoff vector v* € RM W10} is the Vickrey
payoff vector® of the market (M, {0}, Q,w) if for each buyer i € M, we have that

=v(MU{0}) —v((M\{:})U{0}) (32)
and for the seller,
o(MU{0})— Y uf
ieM

A drawback of the Vickrey payoff vector is that it may generate a low payoff for
the seller (Milgrom, 2004). In order to determine when the seller’s payoff is too low,
we will consider the criterion used in Ausubel & Milgrom (2002), Day & Raghavan
(2007) and Day & Milgrom (2008). We say that seller’s payoff is unacceptably low
if the Vickrey payoff vector does not belong to the core of the associated coalitional
game (see expression (3.1). Ausubel & Milgrom (2002) shows that the Vickrey
payoff vector belongs to the core of the game (M U{0},v) if monotonicity and the
gross-substitutes condition are satisfied by each buyer valuation function. In that
case, the coalitional game is buyers-submodular.” This means that the marginal
contribution of any buyer to any coalition containing the seller decreases as the
coalition grows larger. More precisely, the game (M U{0},v) is buyers-submodular
ifforalli € M andall T C S C M\ {i}, it holds that

v(TU{0HU{i}) —o(TU{0}) = v((SU{0}H U{i}) —v(SU{0}).  (3.3)
An equivalent expression to (3.3) is the following one:
RERUISCRTOIES Wi CEOIREN O e
1€S\T
forall T C S C M.
The aim of the next section is to provide a mechanism for our market such that

the payoff vector in any Subgame Perfect Equilibrium is the Vickrey payoff vector
of the market.

8Notice that the Vickrey payoff vector is unique. The Vickrey payoff vector is the payoff vector
associated to the Vickrey auction or VCG mechanisms (Vickrey, 1961; Clarke, 1971; Groves, 1973).
See e.g. Ausubel & Milgrom (2002) and Milgrom (2004) for details.

9In the literature, this condition is sometimes called bidders-submodularity.
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3.3 A mechanism to implement the Vickrey outcome

In this section, we introduce a two-phase mechanism I' in a complete information
setting to implement the Vickrey payoff vector of our market with m buyers and
only one seller. Let us first describe the mechanism in an informal way. First, each
buyer announces a package of objects he wants to acquire and the price he would
pay for it. All these requests are made simultaneously. In the second phase, the final
allocation and the prices are determined: with the information of buyers’ requests,
the seller chooses a coalition of buyers and assigns to each of these buyers a package
at a price. The seller is allowed to allocate the requested package to a buyer at his
proposed price or a different package at a price that makes this buyer not worse off
than with his initial request.

In more detail, let (M, {0},Q,w) be a market that satisfies Assumption 3.1 and
assume all agents have complete information. The two phases of the mechanism I'
are:

1. Buyers play simultaneously. Each buyer ¢ € M announces a tentative package
0 # B; C Q and how much he would pay for it, (B;,z;) € 29 x R,

We denote by (B,z) the requests of all buyers to the seller, where B =
(Bi)iem and x = (xi)iem-

2. Once the seller receives the requests of all buyers (B, x), the seller chooses
a triple (S, A,p) where: a) S C M is a non-empty coalition of buyers; b)
A € A(S) is an allocation of @ to S; and ¢) p = (p;)ies € RY under the

constraint!?

w;i(A;) — pi > w;i(B;) —x; foreach i€ S. (3.5)

Once the seller has played, the mechanism I' ends. The payoff of each agent is
the following. If a buyer ¢ € M belongs to .5, he receives the package A;, he pays
p; and his payoff is w;(A;) — p;. If a buyer i € M does not receive a package, that
isi € M\ S, he pays nothing and his payoff is zero. The seller’s payoff is Y ;c g pi-

Once the mechanism I ends, its outcome is (A, p) € A(S) x RY, that is, the coali-
tion S C M of buyers, the allocation chosen by the seller and the payment p; each
buyer ¢ € S has to make for the package allocated to him. We say that an outcome
(A,p) € A(S) x ]Ri of the mechanism I" is a Vickrey outcome'! if the payoff vector

19Notice that the seller can at least choose (S, A, p) where S = {4} for some i € M, the allocation
is A= (4;) with A; = Q and p; = x;.

Tt is known that different allocations may produce the Vickrey payoff vector, see e.g. Gul &
Stacchetti (1999).
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3 An implementation of the Vickrey outcome with gross-substitutes
associated to (A, p) is the Vickrey payoff vector of the market.

Notice that in the mechanism I', once buyers have made requests, the seller is
able to allocate non-requested packages to buyers as long as these buyers are not
made worse off than with their initial request. The following example shows that
if the seller is restricted to choose which packages to allocate only among those
requested that do not overlap, then in a SPE the allocation of the objects may not be
efficient for the entire set of buyers.

Example 3.2. Consider a market (M, {0},Q,w) where M = {1,2}, Q = {q1,¢2}
and the valuations are w1 ({q1}) =3, w1({q2}) =4, w1({q1,¢2}) =6, w2 ({q1}) =5,
wa({go}) = 4 and wo({q1,q2}) = 5.!* Suppose that both buyers request package
{q1,q2} at price 5. Assume that the seller can make the final allocation only among
requested packages with the proposed prices by the buyers. There is a SPE where
the seller allocates the requested package to buyer 1 at the proposed price and noth-
ing to buyer 2. The payoff vector is then (1,0,5) € RM {0}, Consider the allocation
A e A(M) where Ay = {q2} and A2 = {q1}, buyer 1 pays 2.5 for A; and buyer 2
pays 3.5 for Ag. The payoff vector is then (1.5,1.5,6). Each agent is strictly better
off and hence (1,0,5) does not belong to the core of the game (M U{0},v).

The previous example shows that simultaneous requests, in general, could gener-
ate a coordination problem which may damage the efficiency of the final allocation.
As a consequence of that situation, the payoff vector does not belong to the core
of the associated coalitional game. Also in the pay-as-bid auction of Bernheim &
Whinston (1986), although agents place bids on every possible package of objects,
non-efficient equilibria appear. Nevertheless, in the mechanism I efficiency may be
improved because the seller can allocate packages that have been not requested at
a price that makes the buyers who receive them no worse off than with their initial
request.

The following lemma remarks that when the seller chooses the outcome that max-
imizes her payoff given any buyers’ strategy profile, she will price packages as high
as possible given constraint (3.5). As a consequence, in any SPE, inequality in (3.5)
is satisfied as an equality.

Lemma 3.3. Consider any market (M,{0},Q,w) and let (B,x) be an arbitrary
buyers’ strategy profile in the mechanism I. Then, in any best reply to (B, x), the

12For the purposes of this example, we include no dummy objects.
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3.3 A mechanism to implement the Vickrey outcome

seller chooses (S, A,p) such that ) #S C M, A€ A(S) and p € Ri satisfies
w;i(A;) —pi = wi(B;) —x; foralli€S. (3.6)

Proof. Given (B,x), let (S,A,p) be a best reply of the seller i.e. () # S C M,
A€ A(S) and w;(A;) — p; > w;(B;) — x; for each i € S. By way of contradiction,
suppose that w;«(A+) — pix > w;=(By*) — x4+ for some i* € S. Consider the triple
(S,A,p') where ) # S C M, A € A(S) and p' € RY, that satisfies p}; = p; for all
i€ S\ {i*} and p. = wi(Aj+) — (wi(Bj=) — x4+). Notice that pl. satisfies con-
straint (3.5), pi. > pi= and Y¥;cqp} > Y;cgpi which contradicts that the seller was
maximizing her payoff at (S, A,p). N

Another lemma is needed before being able to present a SPE of our mechanism.
This lemma says that, given any market, if the objects are efficiently allocated to a
coalition S of buyers, then each buyer ¢ € S values the package he receives above
his marginal contribution to S U{0} in the game (M U{0},v), see expression (3.1).

Lemma 3.4. Consider any market (M,{0},Q,w) and the related game (M U{0},v),
see expression (3.1). For any set of buyers ) # S C M and any A = (A;)jes €
A*(S), we have that

wi(A;) >v(SU{0}) —v((S\{i})U{0}) forallic S. (3.7)

Proof. Take any set of buyers () £.S C M, any A= (4;);cs € A*(S)and any i; € S.
If S = {i1}, then A;;, = @ and the result follows immediately. Otherwise, if |S| > 1,
choose iy € S\ {i1} and define the following allocation A" € A(S\ {i1}) where
Aéz = Aiz U Az’1 and Aé = A, foreachi € S\ {il,iz}. Notice that, Wi, (AZ'Q UAz‘l) >
w;, (A;,) because of the monotonicity assumption on buyers’ valuations. Then, we
have

Wiy (Ail) = Z wi(Ai) - Z wz’(Ai) > Z wi(Ai> - Z wi(AD

i€S ieS\{i1} i€S i€S\{i1}

> 0(SU{0}) —v((S\{i}) U{0}).
0

Now, we start the analysis of the mechanism I'. We are interested in the SPE of
this mechanism in pure strategies. The following result contains the description of
a SPE in which the payoff vector is the Vickrey payoff vector of the market. The
following result guarantees the non-emptiness of the set of SPE of I'.
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3 An implementation of the Vickrey outcome with gross-substitutes

Theorem 3.5. For any market (M,{0},Q,w), a Vickrey payoff vector is attained in
a Subgame Perfect Equilibrium of the mechanism T'.

Proof. We show there exists a SPE of the mechanism I in which its payoff vector
is the Vickrey payoff vector of the market (M, {0}, Q,w).

Firstly, we describe the strategy of each buyer. We denote by M =v(M U{0})—
v((M\{i})U{0}) the marginal contribution of buyer i € M to the grand coalition
in the game (M U{0},v). Take any A = (A;);enr € A*(M) an efficient allocation
for the coalition M of buyers. By expression (3.7) in Lemma 3.4, we have that

wi(A;) > M forall i € M.

As a consequence, fix an efficient allocation A = (A;);cpr € A*(M) and, for each
buyer i € M, define his strategy as (B;, x;) where B; = A; and x; € R satisfies

wi(AZ-) —X; = sz for all 7 € M. (3.8)

We denote this buyers’ strategy profile by (A, x).

Now, we describe the seller’s strategy. On one hand, if the buyers’ strategy profile
is (A, ), then the seller replies with (M, A,p) where p = (p;)icys € RY satisfies
p; = z; for each 7 € M. Otherwise, in any other strategy profile of the buyers, we
assume the seller replies with an action that maximizes her payoff.

Let us argue that the above strategies form a SPE of I'. Firstly, we have to prove
that the action (M, A,p) maximizes the seller’s payoff given the buyers’ strategy
profile (A,z). Consider any other seller’s action (S’ A’,p') where () # S' C M,
Ale A(S")and p' € ]Rjgr/ satisfies

w;(AY) — ph > wi(A;) —x; forall i € S’ (3.9)
We obtain
Zpizzxizz <wi(Ai)—Mf)—v MU{O} ZMU
ieM ieM ieM ieM
>o(Su{op - Y My > ) <wz Al M;’) > Y vl (3.10)
€S’ e8! €S’

where the first inequality comes from buyers-submodularity (3.4) with S = M and
T = S’, the second one by expression (3.1) and the third one by expression (3.9).
This concludes that the seller’s action (M, A,p) is a best reply for the seller to the
buyers’ strategy profile (A,z). Since by definition of the seller’s strategy, she is
maximizing in any other different strategy profile of the buyers, the first part of the
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3.3 A mechanism to implement the Vickrey outcome

backward induction is done.

Now, we see that any buyer i € M, by requesting (A;, ;) where w;(A;) —x; =
MY, is playing a best reply to the other agents’ strategies in the simultaneous phase
of the mechanism I'. Assume buyer ¢ € M unilaterally modifies his request to
(B, ;). Recall that the seller’s strategy is to maximize her payoff. Let (S, A, p’)
be her reply to the buyers’ strategy profile in which buyer i € M requests (B;, z})
and the remaining buyers k € M \ {i} play (Aj,x)) where wy(Ay) —x1, = M}.
Two cases must be analyzed.

Case 1: wi(B;) — x < w;(A;) — ;.

If i ¢ S, then the payoff for buyer 7 is 0 which does not exceed his previous payoff
wi(Aj) —pi = wi(A;) —x; = MP > 0. In case i € S, by Lemma 3.3 we know that
the payoff for buyer ¢ € M under this deviation (B;, z}) is w;(A}) — p,. Notice that
w;(A}) — pi = wi(B;) — o <w;(A;) — z, where the last inequality comes from the
assumption of the Case 1. As a consequence, buyer ¢ is not better off and we are
done.

Case 2: wi(B;) — x, > w;(A;) — ;.

Let ¢ > 0 be such that w;(B;) — z} = (w;(A;) — ;) +&. We first point out that for
all A= (Ap)gern iy € A*(M\{i}) and all k € M \ {i}, it holds

My < o((M\{i}) U{0}) —v((M\ {i,k}) U{0}) < wp(Ap),

where the first inequality is due to buyers-submodularity (3.3) and the second one
because of expression (3.7) in Lemma 3.4. As a consequence, we define p =
(Pr)kenr\(iy such that by = wy,(Ay) — MY >0 for all k € M \ {i}. By using these
prices, the seller obtains

Y m- ¥ (wk@m—M;;):v«M\{z‘})u{O})— Y

ke M\{i} keM\{i} keM\{i}

=v(MuU{o})— Y MP=Y p (3.11)
keM keM

In fact, this guarantees that by excluding the deviating buyer ¢ and choosing (M \
{i}, A, p) the seller can achieve the same payoff as previous to the deviation.

We see now that given any best reply (S’, A’,p') of the seller to the buyers’ strat-
egy profile in which buyer i requests (B;, «) and the remaining buyers k € M \ {i}
play (Ay,xj) where wy(Ay) — x3, = MY, the deviating buyer 7 does not belong to
S’. Assume on the contrary that the seller’s best reply is (S’, A’,p) with i € ',
By Lemma 3.3 we know that wy(A}) — p). = wi(Ax) — xy for all k € S"\ {i}
and w;(A}) — p, = w;(B;) — «}. Define the following p” € RS by pj, = pj, for all
ke S"\{i} and p! = pl + where ¢ is defined at the beginning of Case 2. Notice
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3 An implementation of the Vickrey outcome with gross-substitutes

that

pi = pi+e = pi+ (wi(B) — ) — (wi(Ai) — ;)
= (wi(A7) = (wi(B;) — 7)) + (wi(B;) — a7) — (wi(A;) — x7))
= w;(A}) — (wi(Ay) — z;).

Hence, w;(A}) — p!/ = w;(A;) — x; and the triple (S’, A’,p") satisfies expression
(3.5) and hence it was also available for the seller as a reply to the buyers initial
strategy (A, x). Since we already know that (M, A, p) was a best reply of the seller
to the buyers’ strategy profile (A, ), see expression (3.10), we have Y ;g p) <
Y ke Px and we obtain

ZP2<(ZPk>+€—ZP <Y =Y 7

keS! kes! kes’ keM keM\{i}

where the last equality follows from expression (3.11). Therefore, we see that the
seller gets a higher payoff by choosing (M \ {i}, A, D), that excludes buyer i, instead
of choosing any (S’, A’, p’). Hence, the unilateral deviation of buyer 7 in Case 2 does
not make him better off.

By expression (3.8) and the fact that p; = z; for all © € M, this shows that the
payoff vector in the described SPE is the Vickrey payoff vector. This concludes the
proof that there is a SPE that yields a Vickrey outcome. [

Our aim now is to prove that in fact, in any SPE, each buyer gets his marginal
contribution. The next proposition proves that in any SPE, the final allocation of
the goods is efficient for the whole market. In fact, we prove that in any SPE, the
best reply of the seller (S, A, P) to the buyers’ requests is efficient for the coalition
of agents, that is A € A*(.5).

Proposition 3.6. Let (B, x) be the buyers’ strategy profile in an arbitrary Subgame
Perfect Equilibrium of " and let (S, A,p) be the reply of the seller to (B, x) in this
SPE. Then

Y wi(4i) = v(SU{0}) = (M U{0}).

€S

Proof. Consider any SPE of I". Let (S, A,p), where ) # S C M, A = (Aj)ies €
A(S) and p € Ri satisfies (3.5), be the reply of the seller to the buyers’ strategy
profile (B, ) in this SPE. First, we prove Y ;cgw;(A;) = v(SU{0}). Notice that
by the definition of the game (M U{0},v), see (3.1), we have Y ;c g w;(A;) < v(SU
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{0}). Assume on the contrary that

Y wi(Ai) <v(SU{0}). (3.12)

€S

Case 1. There is an allocation A" = (A});c5 € A*(S) such that w;(A;) > w;(B;) —x;
for all i € S. We then define p, = w;(A}) — (w;(B;) — x;) for each i € S. We have

%= X ()~ (wi(B) ~) ) = o(50 0D~ £, (wi(B) ;)

€S €S €S
> Y <w2 i)—fc’z')) =Y pi
€S €S

where the last equality follows from Lemma 3.3. This contradicts the fact that
(S, A,p) maximizes the seller’s payoff given (B, x).

Case 2. For every allocation A’ = (A});cs € A*(S), there is some buyer i € S
such that w; (A}) < w;(B;) — ;.

By applying Lemma 3.8, in the Appendix, there exist () T C S and an allocation
A = (A;)ier € A*(T) such that w;(A;) > w;(B;) — x; for all i € T'. Moreover, by
the assumption of Case 2 7" # S, and then Lemma 3.8 guarantees

Y (wi(Bi)—xi) > v(SU{0}) —v(TU{0}). (3.13)

i€eS\T

Define p; = w;(A;) — (w;(B;) — x;) for all i € T. Notice that (T, A,p) satisfies the
requirement in expression (3.5) given (B,x). Thus, since (5, A, p) maximizes the
seller’s payoff, given (B, x), we obtain

y (wi(A) (w;(B ) Yo=Y pi=Y, ( (A )—(wi(Bz')—fCi))

€S €S €T €T

=ov(Tu{0})- Y (wi(Bz‘) - f'fz) :

€T
where the first equality follows from Lemma 3.3. Since 7" & .S, then we have
v(SU{0}) —v(TU{0}) > Z wi(A;) —v(TU{0}) > Z (wi(BZ-) — :r;z) ,
€8 1€S\T

which contradicts (3.13). Hence Y ;c g w;(A4;) = v(SU{0}).

Now, we prove v(SU{0}) =v(M U{0}). If S = M, we are done. Otherwise,
by monotonicity of the game v, we have that v(SU{0}) < v(M U{0}). Assume
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on the contrary that v(SU{0}) < v(MU{0}). LetZ={I C M\ S | v(SU{0}) <

v((SUI)U{0})}. Notice that Z is non-empty since M \ S € Z. Let I be a minimal

coalition in Z with respect to the inclusion relation C, notice that () # I. Take any

i1€landall RC S

v((RU{in)UA{0}) —o(RU{0}) 2 v((SU{ir}) U{0}) —v(SU{0})

> w((SUT)U{0}) —o((SUT\ {ir})U{0}) >0,
(3.14)

where the two first inequalities come from buyers-submodularity (3.3) and the strcit
inequality from the minimality of /.

Case 1: There exists A’ € A*(SU{i1}) such that w;(A}) > w;(B;) — x; for all
i€S.

Define p; = w;(A}) — (w;(B;) — ;) for each i € S. Since by assumption, (S, A, p)
is a best reply to (B, x) in the selected SPE, by Lemma 3.3 we have that

Ypi=Yuwl4)-Y <wi<Bi> _)

€S €S €S

Now, since we have already proved Y ;cgw;(A4;) = v(SU{0}), we have

¥ o= (50101 - X, (w8~ ) <ol(sUL) 0 0)) - X (wi(B)—:)

€S €S €S

= Y wi4)-) (wi(Bi) —xi) =Y pi+wi (A}, (3.15)

1€SU{i1} €8 €8

where the inequality follows from expression (3.14). Moreover, notice that w;, (A;1 ) >
v((SU{i1})Uu{0}) —v(SU{0}) > 0 where the first inequality follows from Lemma
3.4 and the second one from (3.14). Let £ > 0 be such that

wi (Aj) >e>0and Y p;i <) pj+ws (A]) —e. (3.16)

€S €S

Claim: Buyer i has incentives to unilaterally deviate from (B;,,z;,) to (A; ,z; ),

where ] = w;, (A}) —e¢.

To prove the claim, let (S VA, p) be the reply of the seller when only buyer ¢; de-
viates. Notice that if 7; ¢ S , since also i1 € I C M \ S, then he has no incentives to
deviate because both payoffs are zero. We show that ¢; € S. By way of contradic-
tion, assume that i; ¢ S. By Lemma 3.3, we know that j; = w;(A;) — (w;(B;) — ;)
for all i € S. Recall that (S, A,p) is a best reply of the seller to the original buyers’
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strategies (B, x). Then, since i1 ¢ S, notice that

Yo=Y =) wi(A)-Y (wi(Bi> —xi)- (3.17)
s i€S i€S i€S

Nevertheless, consider (S'U {i1}, A’,p") where A" = (A});csuqiy € A (SU{i})

as defined previously and p} = w;(A}) — (w;(B;) — ;) for each i € S and pj, = ] .

Making use of expressions (3.17) and (3.16), we have

Y p=Yhial =Ygt (wh(A;g—a) - Y 0> Y

ieSU{i1} €S €S €8 icS

This shows that the triple (S U {1}, A’,p’) is a better reply when only buyer 7,
deviates and contradicts that (S, A, p) is a best reply with i; ¢ S. Hence, in a best
reply of the seller (S, A, ) when only buyer i; deviates, we have that i; € S. By
Lemma 3.3 his payoff is wy, (Aj, ) — pi, = wi, (A]) =} =& > 0. This shows then
that buyer 77 has incentives to unilaterally deviate as it was claimed.

Since buyer 71 has incentives to deviate, this contradicts that the agents follow a
SPE.

Case 2: For all A" € A*(SU{i1}), there is some 7 € S such that w;(A]) <
wi(Bi) — Xy,

By applying Lemma 3.9, in the Appendix, there exist 7' ¢ S and A € A*(T'U

{i1}) such that w;(A;) > w;(B;) —x; forall i € T and

E (w80 a) > ol(SU ) U{0) - (T ) U o))

1eS\T
> v(SU{0}) —o((T'U {1 }) U{0}), (3.18)

where the last inequality comes from the monotonicity of v. Define p; = w;(A;) —
(w;i(B;) — x;) for each i € T'. Taking (3.18) into account, we get

gépi = i;ng‘(Az’) - zgé (wi(Bz') - %) =v(SU{0}) - ieZg (wi(Bi) - wz)

(U U{o) - ¥ (waz-)—xi) _ Y i wn (A,

€T €T

where the first equality follows from Lemma 3.3. Therefore, buyer 7 has incentives
to deviate (the argument follows similarly as in the previous Claim in this proof).
This completes the proof and hence v(SU{0}) = v(M U{0}). O

The following theorem is the main result of this chapter. It shows that in any Sub-
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game Perfect Equilibrium, the game I" always leads to the Vickrey payoff vector of
the market. This mechanism involves the strategic behavior of all agents in the mar-
ket. First, we saw in the previous result that in any SPE, all objects are efficiently
allocated among all buyers. Now, Theorem 3.7 shows that in any SPE each buyer
will get a payoff equal to his marginal contribution to the whole market. As a con-
sequence of the assumption on the buyers’ valuations, it turns out that the Vickrey
payoff vector belongs to the core of the associated coalitional game. Hence, once
the agents have played any SPE of the game I', no coalition of agents can improve
their current payoff by trading only among themselves.

Theorem 3.7. The outcome of any SPE of I' is a Vickrey outcome of the market

(M, {0}, Q, w).

Proof. Fix any SPE of I'. Let (B,z) be the buyers’ strategy profile in this SPE
and denote by (S, A, p) the seller’s reply to (B, z). First, take any i; € S and let
(8%, A% pi1) be as stated in Lemma 3.10 in Appendix taking ¢ = ;. Define D C M
by D =SUS".

Firstly, we show that for any A € A*(D\ {i1}), we have w;(A;) > w;(B;) — z; for
alli € D\ {i1}. To this end, assume on the contrary there exists A € A*(D\ {i1})
and some iz € D\ {i1} such that w;, (B;,) — x;, > w;,(A;,). Notice that

wiy(By) — iy > wiy(Aiy) 2 o(D\ {i1})U{0}) — (D {i1,i2}) U {O})
> w(DU{0}) — v(D\ {iz}) U{0}) >0, (3.19)

where the second inequality comes from Lemma 3.4 and the third one follows from
buyers-submodularity of v.

Take an arbitrary A’ € A*(D\ {ia}). If w;(A}) > w;(B;) —x; foralli € D\ {ia},
define p} = w;(A}) — (w;(B;) — ;) for all i € D\ {i2}. Therefore

% o= i) - X, (w8 -a:) = ols0 b~ £ (wi(5) )

€S €S €S €S
=v(D — w;(B;) — x;
(DU{0}) ZD( (B) )
<o((D\{hu{op)— ¥ (w¢<Bi>—wi): Y
i€ D\{is} i€D\{is}

where the first equality comes from Lemma 3.3, the second equality from Propo-
sition 3.6, the third equality follows from Proposition 3.6, monotonicity of v and
(wi(B;) —x;) = 0 for all i € S\ S (see Remark 3.11 in Appendix) and the in-
equality from (3.19). This contradicts the fact that (.S, A, p) maximizes the seller’s
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payoff. Then for all A’ € A*(D \ {i2}), there is a buyer i € D\ {i2} such that
wz'(Aé) < wi(BZ') —X;.

By applying Lemma 3.8, in the Appendix, taking S = D\ {i2}, there exist () #
T & D\ {iz} and A € A*(T) such that w;(A;) > w;(B;) —x; for all i € T and

(wi<Bi> —) S o((D\ {i2}) U{0}) — w(TU{0}).
ie(D\{i2})\T

Making use of (3.19) notice that

T (B =) > o(D\1i2)) U 0)) ~ o(TU{0))

1€D\T
+u(DU{0}) —o((D\{iz}) U{0}) = o(DU{0}) —o(TU{0}).  (3.20)

Define p; = w;(A;) — (w;(B;) — x;) for each i € T'. We have

v(DU{0}) — Z < —xz) =v(SU{0}) - Y, <U)z‘(Bi)—l’i)

eD €S
_ i%‘éwi(Ai) —ZEZS (wi(Bi) - xz) = Z;pi
> ¥ (o - ¥ (w50 —2:).

where the first equality follows from Proposition 3.6, monotonicity of v and (w;(B;) —
x;) = 0forall i € S"\ S (see Remark 3.11 in Appendix), the second equality comes
from Proposition 3.6, the third equality comes from Lemma 3.3 and the first inequal-
ity follows from the fact that (.S, A, p) maximizes the seller’s payoff. Then,

o(DU{0}) —o(Tu{0}) > ¥ (wi(Bi) —x)

1€eD\T

This contradicts (3.20). Hence for every i; € S and any allocation A € A*(D\
{il}), we have wz(flz) > wi(Bi) —x;forallze D \ {Zl}

Now, we prove that the outcome of any SPE is a Vickrey outcome. For any i1 € S,

fix Ae A*(D\ {i1}). Now, define a price vector j = (Pi)ieD\{ir} € Rf\{il} such
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3 An implementation of the Vickrey outcome with gross-substitutes

that p; = w;(A;) — (wi(B;) — x;) for all i € D\ {i1}. We have

U0 - ¥ (i) —ai) = Lt - X (wi(B)—:) = L

€S €S €S €S

O A R (CANCINC R Vi (IR

ieD\{i1} i€D\{i1}

—o(@N U= T (w0 -a),

ieD\{i1}

where the first equality follows from Proposition 3.6, the second equality from
Lemma 3.3, the inequality since (S, A,p) maximizes the seller’s payoff and the
last equality from Lemma 3.13 (in Appendix). Then,

T OIEEAHETOIES o (IR B Wl (R )

€8 t€D\{i1}

Since D = SU S and w;(B;) —x; = 0 for all i € S\ S (see Remark 3.11 in
Appendix), we obtain

v(MU{0}) —o((M\ {i1}) U{0}) > wi, (Biy) — @iy (3.21)

We have proved then that A/ > w;(B;) — x; for all ¢ € S. We see now that
wZ(BZ) —x; > MZU forallz € S.

Take any buyer i1 € S, let (S, A’ p'1) be as in the statement of Lemma 3.10
taking t = 71. Then

w00 ()~ E (w(B) ) = Lwil4) - X (w(B) o) = T

€S 1€S €S €S
Z p = U Szl U {O}) Z (wZ(BZ) - Z)SZ> s
ieSi ieSi

where the first equality follows from Proposition 3.6, the second equality follows
from Lemma 3.3, the third equality follows from Lemma 3.10 and the last equality
follows from Lemma 3.10 and Lemma 3.12 in Appendix. Then,

o(MU{0})—v(STu{oy) = ¥ (wi(Bi)—:ci)— y (wi(Bi)—:m).

icS\Sh i€Si\ S

By expression (3.33), we know that w;(B;) —x; = 0 for all i € S\ S (see Remark
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3.11 in Appendix). On one hand, we obtain

o(MU{0}) —v(s"ufoh) = Y (wi(BZ-) —xi). (3.22)

i€S\S1
On the other hand, by buyers-submodularity (3.4), we have

v(MU{o})—v(shufoh) > Y, My>= Y M, (3.23)
icM\ S i€S\S1

where the last inequality follows since M;” > 0 for each ¢ € M. Making use of
expressions (3.22) and (3.23), we obtain

) (wi(Bi)—xi>Z Y, My (3.24)

icS\Sh icS\Sh

Making use of expressions (3.21) and (3.24), we conclude that w;(B;) — z; = M
for all 2 € S. This shows that in any SPE of the mechanism I', if a buyer ¢ obtains
a package of objects, i.e. i € S, he requests (B;,z;) such that w;(B;) —x; = M.
By Lemma 3.3, we obtain that the payoff for each buyer i € S under any SPE is his
marginal contribution M. Moreover, the payoff for each buyer i € M \ S is zero
which is exactly his marginal contribution M (see Proposition 3.6). Since the reply
of the seller in any SPE includes an efficient allocation for the market, we conclude
that the payoff vector given in any SPE is the Vickrey payoff vector of the market.
This completes the proof. ]

3.4 Appendix

The following lemmas are used in the main results of this chapter.
Lemma 3.8. Letr (B, x) be the buyers’ strategy profile in any SPE of the mechanism
I, defined in page 45. For any non-empty coalition of buyers S C M, we have

either:

1. there exists an efficient allocation A = (A;);es € A*(S) such that w;(A;) >
wi(B;) —z foralli € S, or

2. there exist a non-empty subcoalition of buyers T'C S and an efficient allo-
cation A = (Aj)ier € A*(T) such that w;(A;) > wi(B;) —x; for alli € T
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3 An implementation of the Vickrey outcome with gross-substitutes

and

y (wi(Bi) - a:> > u(SU{0}) —u(TU{0}).

1eS\T

Proof. First, notice that whenever S = {i} for some ¢ € M, then for the allocation
A= (4;) € A*(S) where A; = @, it holds that

wi(A;) > wi(B;) > wi(B;) — ;. (3.25)

Now, we proceed to prove this lemma. Take any non-empty coalition of buyers
S C M. If there exists an efficient allocation A! = (Al);cs € A*(S) such that
wi(A}) > wji(B;) —x; for all i € S, we are done. Otherwise if for some i € S it
holds that w;(A}) < w;(B;) — i, let Ty = S. Fix one A = (A});e, € A*(T1). We
know that there is some 77 € 73 such that

Denote now Ty = T3 \ {41} and notice that T # () since otherwise 77 = {41} and
expression (3.26) contradicts (3.25). By inequality (3.26) and by Lemma 3.4, we
have

wiy (Biy) — iy > wiy (A) > o(T1U{0}) —o((T1\ {ir}) U{0})
W(SUL0}) — o(T3 U {0}). (3.27)

If there is an allocation A? = (A?);cr, € A*(T2) such that w;(A?) > w;(B;) — z;
for all i € T\ {i1}, we are done taking 7' = Th. Otherwise, fix one A% = (A2);cp, €
A*(T5), we know that there is some iy € T3 such that

Wiy (A7) < wiy(Biy) — 4. (3.28)

Denote now T3 = Ty \ {i2} and notice that T3 # () since otherwise T5 = {i} and
expression (3.28) contradicts (3.25). By inequality (3.28) and by Lemma 3.4, we
have

wiy(Biy) — 2y > wiy(AZ) > 0(TyU{0)) —o(To\ {2} U{0}).  (3:29)

By adding (3.27) and (3.29), we get

Y (wi(Bi) — :cz) > u(SU{0}) —ou(T3U{0}).

iES\Tg
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3.4 Appendix

By proceeding recursively, we construct a sequence of sets {77,...,7)1} such
that Ty = S, Tj\ Tj1 = {4} for 1 € {1,...,k}, AL € A(Ty) for 1 € {1,....k+1},
wiz<‘4§'l) < w;y(By,) —x;, forl € {1,...,k} and

Z (wi(Bi) —a:i) > v(SU{0}) —v(Tj.1U{0}) forl e {1,....k}.

1€\ T 41

Now if there is an efficient allocation A**! € A*(Tj},,;) such that wi(AfH) >
w;i(B;) —x; for all i € Ty 1, we are done taking 7' = T}, ;. Otherwise, we continue
the procedure one more step. Notice that, since S is finite, we will eventually reach
T, with |T,.| = 1. In that case, this procedure ends because of expression (3.25). [

The following lemma proceeds similarly to the previous one. Then, we state it
without a proof.

Lemma 3.9. Let (B, x) be the buyers’ strategy profile in any SPE of the mechanism
I defined in page 45. For any non-empty coalition of buyers S & M and any i’ €
M\ S, we have either:

1. there exists an efficient allocation A = (A;);csuqin, € A*(SU{i'}) such that
wi(A;) > wi(B;) —x; foralli € S, or

2. there exist a subcoalition of buyers T' & S and an efficient allocation A =
(Ad)ierugry € A(TUL'}) such that wi(A;) > wi(B;) —x; foralli € T and

y (wai)—xi) > o((SUL'}) U{0}) —u((TU{i'}) U{0}).

i€eS\T

The next lemma shows that in any SPE, and for any buyer who receives a pack-
age, there is an alternative action that makes the seller indifferent.

Lemma 3.10. Consider any SPE of I'. Let (B, x) be the buyers’ strategy profile
in this SPE and let (S, A,p) be the reply of the seller to (B,x) in this SPE. For
each buyer t € S, there is a triple (S', A pt) such that S* C M\ {t}, A € A(S?),
pt=(p)jest € ]RJS: satisfies w;(AL) — pt > w;(B;) — x; for all i € S* and

Y pi= ) pi (3.30)

1€ St €S

Proof. Notice that if p, = 0, it is straightforward to find a triple (S'\ {t}, A’,p’)
that satisfies equality (3.30). Assume now that there is a buyer ¢ € S such that
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3 An implementation of the Vickrey outcome with gross-substitutes

pt > 0 and that for all S* C M\ {¢}, all A" € A(S?) and all (p);cqt € R:g: such that
w;(AL) —pt > w;(B;) — x; for all i € S*, it holds

Y i< Y i (3.31)

€St €8

Since (3.31) holds for all 5* € M\ {t}, all A’ € A(S") and all (p!);cg: € RS such
that w; (AY) — p! > w;(B;) — z; for all i € S*, buyer ¢ has incentives to deviate by
slightly decreasing the price he proposed to pay for the package B; in such a way
that the inequality (3.31) is still maintained. This contradicts that the agents follow
a SPE. ]

An immediate consequence of the previous lemma is the following. Since (.S, A, p)
is a best reply of the seller to (B,z), we have that (S?, A%, p') is also a best reply of
the seller to (B, ) and a direct consequence of Lemma 3.3 is that

w;i(AY) — pt = wi(B;) —x; forallic S*. (3.32)

The next remark easily follows from Lemma 3.10.

Remark 3.11. Consider any SPE of I'. Let (B, x) be the buyers’ strategy profile in
this SPE and let (S, A,p) be the reply of the seller to (B,x) in this SPE. Consider
any t € S and let (S?, A’, p!) be as in the statement of Lemma 3.10. Then

w;(B;) —x; =0 foralli € S*\ S. (3.33)

Otherwise, if for some i € S* \ S, w;(B;) —x; > 0, buyer i has incentives to increase
a bit x;, to make the seller choose (S, A!, p') instead of (S, A, p), so that the buyer
1 gets a positive payoff.

Lemma 3.12 is related with the previous lemma. It says that for each buyer ¢ who
gets a package in equilibrium, if we consider (S?, A%, pt) as stated in Lemma 3.10,
then A! is efficient for S?.

Lemma 3.12. Consider any SPE of I. Let (B,x) be the buyers’ strategy profile in
this SPE and let (S, A,p) be the reply of the seller to (B, x) in this SPE. For each
buyert € S, let (S', A, pt) be as in the statement of Lemma 3.10. Then

Y wi(AL) = o(S'U{0}).

€St

Proof. Let (S, A,p) be the reply of the seller to (B, x) under a SPE. Take any buyer
t € S and let (S?, A' p') be as in the statement of Lemma 3.10, i.e. S* C M\ {t},
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Al = (Al);c g0 € A*(S') and p' € RS satisfies (3.5). Assume on the contrary that
Yicst wi(AL) <v(S'U{0}), see expression (3.1) for the definition of (M U{0},v).

If there is an allocation A’ € A*(S?) such that w;(A}) > w;(B;) —z; forall i € S,
then define p; = w;(A%) — (w;(B;) — z;) for each i € S. We have

Yopi=Y pi=) wi(A)-Y (wi(Bz’)—xi)

€S i€St 1eSt €St
<v(Stu{0}) - Z (wZ —:CZ) Z i
€St 1€5t

where the first equality comes from Lemma 3.10 and the second equality from ex-
pression (3.32). This contradicts the fact that (S, A, p) maximizes the seller’s pay-
off. Therefore, for every A’ € A*(S") there is some i € S* such that w;(4}) <
wi(Bi) —Xj.

By applying Lemma 3.8 to S = S, there exist ) # T' ¢ S? and an efficient allo-
cation A € A*(T) such that w;(A;) > w;(B;) — x; foralli € T and

Y (wi(Bi)—xi) > v(S'U{0}) —v(TU{0}). (3.34)

1€STN\T

Define p; = w;(A;) — (w;(B;) — x;) for all i € T. Since (S, A,p) maximizes the
seller’s payoff, we obtain

¥ ()~ (B -2)) = £ b=

ieSt ieSt (Ish)
>Y pi=) wi(A)-) (wi<Bi) —l“z')
i€T i€T i€T

— oo - X (B -z ),

€T

where the first equality comes from expression (3.32) in Appendix and the second
equality from Lemma 3.10 in Appendix. Since 7' C S*, we have

F ()T = ¥ (wmy-n).

ieSt ieSN\T
This contradicts (3.34). Hence ¥ ;c ¢ wi(A!) = v(S*U{0}). O

The next lemma relates Lemma 3.10 and 3.12. For any equilibrium of T', let S be
the set of buyers who get a package, ¢ € S and S’ be as stated in Lemma 3.10. Then
the worth attained by the coalitions (S\ {t})US* and M \ {t} is the same.
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3 An implementation of the Vickrey outcome with gross-substitutes

Lemma 3.13. Consider any SPE of I. Let (B,x) be the buyers’ strategy profile in
this SPE and let (S, A, p) be the reply of the seller to (B,x) in this SPE. For each
buyert € S, let (St, A, pt) be as in the statement of Lemma 3.10 and let D = SU S,
Then

v((DA{EH) U{0}) = v((M\{t}) U{0}).

Proof. Fix a SPE. Let (S, A,p) be the reply of the seller to (B,x) in this SPE.
Take any buyer ¢t € S. Let (St, At,pt) be as in the statement of Lemma 3.10 and
let D = SUSt First, we show that v((S*U {i1})U{0}) = v(S* U {0}) for any
i1 € M\ D. Assume on the contrary that there is some ¢; € M \ D such that

v((StU{i })u{0}) > v(STu{0}). (3.35)

If there is an allocation A’ € A*(S*U{i1}) such that w;(A}) > w;(B;) — z; for all
i € S, then define p, = w;(A}) — (w;(B;) — x;) for each i € S*. Since (5, A,p)
maximizes the seller’s payoff and because of Lemma 3.10, we have

Yo=Y p=u(s'ufoh) - ¥ (waz-)—xi)
(IS i€St ieSt

<u((S'ufnhuiop - ¥ <wi<Bz->—xi)

i€St

= )Y wi(A)-) (wz’(Bz') - fﬂz) =Y pitwi (A7),
ieStU{ir} €St €St

where the first equality comes from Lemma 3.10 in Appendix, the second equality
comes from expression (3.32) and Lemma 3.12 both in Appendix. Therefore, buyer
11 has incentives to deviate following a similar argument as in expression (3.15).
This contradicts that the agents play a SPE. Therefore, for any A’ € A*(S'U{i1})
there is some i € S* such that w; (A}) < w;(B;) — ;.

By applying Lemma 3.9 to S = S* and i’ = i1, there exist T ¢ S and A € A*(TU

{i1}) such that w;(A;) > w;(B;) —x; for all i € T" and

T (w8 =) > (8 U U O~ o (TU L)) U ()
1€SN\T
> v(S"U{0}) —v((TU{ir}) U{0}), (3.36)

where the second inequality comes from monotonicity of v. Define p; = w;(A;) —
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(w;i(B;) — x;) for each i € T'. Taking (3.36) into account, we obtain

Y= X st=u(s'ooh- ¥ (wls)-a)

€S €St €St
<ot U ) - X (wiB) )
ier
= ) wi(A)-Y, (wi<Bz’) —%) =Y it wi (4y),
1€TU{i1} €T €T

where the first equality comes from Lemma 3.10 in Appendix, the second equality
comes from expression (3.32) and Lemma 3.12 both in Appendix. Therefore, buyer
11 has incentives to deviate following a similar argument as in expression (3.15).
This contradicts that the agents play a SPE. Hence, we have shown that for any
neM \ D

v((S*u{ir})U{0}) = v(S*U{0}) (3.37)

Now, we prove v((D\ {t})U{0}) = v((M \{t})U{0}). Assume on the contrary
that v((D\ {t}) U{0}) < v((M\ {t})U{0}). Define the following set of buyers
I={ICM\D|v(D\{t})u{0}) <v(((D\{t})UI)u{0})}. Notice that Z is
non-empty and I # () for all I € Z. Take any I € Z and any i1 € I, we have that

v((8"U{ih) u{0}) —v(s"U{0})
> o(((D\{t}) Ui }) U{0}) —v((DA\{tH) U{0})
> o((D\{t}) U U{0}) —o(((D\{tHUT\{i1})U{0}) >0,  (3.38)

where the first two inequalities come from buyers-submodularity (3.3) and the last
inequality since i1 € I € Z. However, expression (3.38) contradicts (3.37). This
completes the proof. Hence, v((D\ {t})U{0}) =v((M \ {t})U{0}). O
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4 Axioms for the minimum
Walrasian equilibrium in
assignment problems with unitary
demands

4.1 Introduction

We consider assignment problems in which a set of indivisible objects needs to be
allocated to a group of agents. Each object can be allocated to at most one agent and
monetary transfers are allowed. Every agent has a preference over bundles made of
one object and money to be paid. The objects may have one or several owners, but
the owners do not play any strategic role. It may be assumed that they handle their
objects to a centralized institution. This institution will choose an allocation rule to
distribute the objects among the agents according to some specified criterion.

An allocation rule specifies, for each preference profile of the agents, an assign-
ment of objects and the corresponding price to be paid for each object. Efficiency
and fairness can be identified as usual requirements to distribute resources.! In this
chapter, we study these and other properties for such rules.

In assignment problems where agents have (strict) preferences over the objects,
the objects have priorities over the agents and monetary transfers are not allowed,
an allocation rule specifies only an assignment of the objects to the agents for each
preference profile. In this setting, an outstanding rule is the one that selects the
allocation determined by Gale & Shapley (1962) deferred acceptance algorithm. In
Kojima & Manea (2010) a first axiomatization of the deferred acceptance is ob-
tained with unspecified priorities. The aim of this chapter is to perform a similar
analysis for markets with indivisibilities in which money is allowed.

The purpose of this chapter is to study the minimum Walrasian equilibrium rule
in two settings. The first one considers general preferences and in the second setting
agents have quasi-linear preferences.

I'See for instance Maskin (1987) and Alkan ef al. (1991).
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4 Axioms for the minimum Walrasian equilibrium in assignment problems

Each agent has a preference relation over bundles made of an object and some
amount of money, satisfying the following requirements: money monotonicity, agents
always prefer to pay less money for each object; finiteness, the willingness to pay
for each object is finite; continuity, for any bundle, the upper and the lower con-
tour sets are both closed; and weak preference for real objects, it is always weakly
preferred to obtain any real object than nothing. The first three requirements have
been considered in the literature, see for instance Alkan et al. (1991) or Morimoto
& Serizawa (2015).

The related two-sided assignment market has been widely studied in Demange
& Gale (1985). It is known that the set of Walrasian equilibria is non-empty. Even
more, the set of Walrasian equilibrium price vectors has a complete lattice structure
which guarantees the existence of the minimum Walrasian equilibrium price vector.
The authors prove also that each buyer (agent) has no incentive to manipulate the
minimum Walrasian equilibrium rule. In Miyake (1998), the strategic behaviour
of the agents is analysed. It is shown that among all Walrasian equilibrium select-
ing rules, the unique that is not manipulable by any buyer (agent) is the one that
produces a minimum Walrasian equilibrium.

In Morimoto & Serizawa (2015) it is shown that, under the assumption that there
are strictly more agents than objects, the minimum Walrasian equilibrium rule is
characterized by: individual rationality, efficiency, strategy-proofness and no sub-
sidy for losers. An allocation rule is individually rational if each agent would be no
worse off if he had received no object and paid nothing. An assignment of objects is
efficient if there is no other assignment that makes some agent strictly better off and
each remaining agent no worse off. A rule is efficient if it always selects efficient
assignments. Strategy-proofness states that no agent has incentives to unilaterally
misrepresent his true preference. No subsidy for losers requires that if an agent gets
a null object, then he will pay a non-negative price for it. Notwithstanding, as they
point out, this characterization does not hold when the number of objects exceeds
the number of agents. This is also true with quasi-linear preferences. Consider
the case with only one agent with quasi-linear preferences and two objects on sale.
Take into account the following rule: assign to the agent his most valued object at a
price of zero and let the other object with a strictly positive price. It is easy to see
that the four axioms are satisfied but the price vector given by the rule is not a Wal-
rasian equilibrium price vector. Hence, the minimum Walrasian equilibrium cannot
be characterized with those four axioms in a general setting that does not impose
any condition on the number of objects with respect to the number of agents.

The first result of the present chapter is a characterization of the minimum Wal-

Morimoto & Serizawa (2015) imposes also a strict preference for real objects.
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rasian equilibrium rule. We allow for any number of objects and any number of
agents. We prove that the minimum Walrasian equilibrium rule is characterized by
desirability of positively priced objects, non-wastefulness, envy-freeness and mono-
tonicity with respect to willingness to pay. Desirability of positively priced objects
requires that if an object j has a strictly positive price, it is because there is an agent
who strictly prefers to acquire j for free to his assigned bundle. Non-wastefulness is
a weak condition of efficiency. It is inspired by non-wastefulness used in Kojima &
Manea (2010). This axiom says that if an object is not assigned, it is because every
agent weakly prefers the object he gets at its given price to this non-assigned object
for free. Envy-freeness® reflects a notion of fairness and means that every agent
weakly prefers his allocation to any other object at its given price. It is known that
when the number of agents exceeds the number of objects, envy-freeness implies
efficiency (Svensson, 1983). However, this is not true when there are more objects
than agents. We prove that efficiency is implied by envy-freeness, non-wastefulness
and desirability of positively priced objects. The last axiom of our characterization
is monotonicity with respect to willingness to pay: if an agent misrepresents his true
preference by weakly decreasing his willingness to pay for all objects, he will not be
better off. That is, monotonicity with respect to willingness to pay avoids incentives
to declare a lower willingness to pay for the objects.

An additional axiom is introduced with the name of antimonotonicity. This prop-
erty avoids incentives to lie in the following way. If an agent misrepresents his true
preference by weakly decreasing or increasing his willingness to pay for all ob-
jects, he will not be better off. It is clear that strategy-proofness implies antimono-
tonicity and antimonotonicity implies monotonicity with respect to willingness to
pay. Similar to the result shown in Miyake (1998), we prove that among Walrasian
equilibrium selecting rules, the unique that satisfies monotonicity with respect to
willingness to pay is the one that produces the minimum one.

The second part of this chapter assumes that each agent has a preference that is
quasi-linear with respect to money. That is to say, each agent has a non-negative
valuation for each object in terms of money. These valuation functions are a par-
ticular case of the model with gross-substitutes* considered in Gul & Stacchetti
(1999), where it is proved the non-emptiness of the set of Walrasian equilibria and
the existence of the minimum Walrasian equilibrium prices.

In this setting, a well-known mechanism that produces the minimum Walrasian
equilibrium is an ascending multi-item auction introduced by Demange et al. (1986).
Even more, the minimum Walrasian equilibrium rule is characterized by strategy-
proofness, individual rationality and efficiency, see for instance Holmstrom (1979)

3 As considered in Alkan ef al. (1991).
4Condition introduced by Kelso & Crawford (1982).
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and Chew & Serizawa (2007). However, the assumption that the number of objects
is lower than the number of agents is crucial for this characterization.

The characterization given in the first part of the present chapter, holds for the do-
main of quasi-linear preferences. However, in order to obtain a better understanding
of the minimum Walrasian equilibrium rule, we provide an alternative characteriza-
tion in the setting of quasi-linear preferences without strategy-proofness and with-
out making use of envy-freeness. We prove that an allocation rule is the minimum
Walrasian equilibrium rule if and only if it satisfies desirability of positively priced
objects, efficiency, antimonotonicity and non-wastefulness. This characterization
holds for any number of objects and any number of agents.

The chapter is organized as follows. In the next section, the model with general
preferences is introduced and a characterization of the minimum Walrasian equi-
librium on this domain is provided. Section 3 is devoted to study the case with
quasi-linear preferences.

4.2 General preferences

The problem concerns the allocation of a finite set O of indivisible objects (or indi-
visibilities) to a finite set /V of agents. We will denote by n the number of agents
and by o the number of objects. The set O of objects includes at least one real object
and a null object gp with as many copies of it as the number of agents. We denote
by o* the number of real objects. Each indivisible object can be assigned to at most
one agent. There is also a perfectly divisible object, called money. The endowment
of each agent 7 € N consists of enough money to buy any object.

Each agent 7 has a complete and transitive binary relation over bundles made
of an object j € O and money m € R. That is to say, a preference (relation) R;
on O x R. Let P; and I; be the strict preference and the indifference relations
associated with R?;, respectively. Given a preference relation R; and a bundle
(7,m) € O x R, the upper contour set of (j,m) at R; consists of C'(R;, (j,m)) =
{(j/,m") e OxR | (j/,m') R; (j,m)}. Similarly for the lower contour set of (j,m)
at R;, C(R;,(j,m)) ={(',m") € OxR | (j,m) R; (j/,m')}. We assume that for
each agent « € N, each preference R?; satisfies the following properties.

(A.1) Money monotonicity: For each j € O and each m,m’ € R, if m > m/, then
(],m/> P; (jam)

(A.2) Finiteness: For each 7,7’ € O and each m € R, there exist m/,m” € R such
that (j/,m’) R; (j,m) and (j,m) R; (j/,m").
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4.2 General preferences

(A.3) Continuity: For each bundle (j,m) € O xR, C(R;,(j,m)) and C(R;, (j,m))
are both closed sets.

(A.4) Weak preference for real objects: For each j € O, (j,0) R; (¢o,0).

Conditions (A.1), (A.2) and (A.3) have been considered in the literature, see for
instance Alkan et al. (1991) and Morimoto & Serizawa (2015). In Morimoto &
Serizawa (2015), a strong version of (A.4) is used. If a preference R; satisfies prop-
erties (A.1), (A,2), (A.3) and (A.4), then I?; will be called a classical preference. We
denote by R¢ the set of classical preferences. Given a preference R; € R¢, similar
to Alkan et al. (1991), we say that m represents the willingness to pay of i for object
j at R; when (j,m) I; (qo,0) and it will be denoted by W P(R;, j). Because of (A.2)
and (A.3), such an amount m does exist, and, by (A.1), it is unique.

A profile of classical preferences consists of an n—tuple of classical preferences,
one for each agent i € N and it will be denoted by R = (R;);en € R}, where R}
stands for the set of all n—tuples of classical preferences. For any S C N, R_g
stands for (R;);cn\ g, if S = {i'}, we write R_.

A preference R; is a quasi-linear preference if for each object j € O there is a
“valuation"? a;j such that: (i) a;; > 0, (ii) a;q, = 0 and for each (j,m) € O x R and
each (j',m’) € O xR, (j,m) R; (j',m’) if and only if a;; —m > a;j —m'. We will
denote by R o the set of quasi-linear preferences. Notice that Rg € Re.

An assignment of the objects is an n—tuple z = (2;)jen = (21,...,2n) € O™ such
that if i # ¢/, then 2; # 2. We denote by O, C O the set of objects assigned under z
and let Z be the set of all assignments. A price vector, p = (p;)jeo € R, consists
of a price p; > 0 for each object j € O and p,, = 0 for each copy of the null object
qo- We denote by P the set of all price vectors. Given an assignment z € Z and a
price vector p € P, an allocation consists of a bundle (z;,p.,) for each agent 7, and
it will be denoted by ((2;,pz,))ien-

Now, we are going to define the Walrasian equilibrium. Let us first introduce the
notion of demand set. Given R; € R¢ and p € P, we denote by D(R;,p) C O the
demand set of © with R; at p, that is

D(Ri,p)={j €0 | (j,pj) Ri (',pj) forallj'€ O} .

>The valuation of agent i for object j is given by the willingness to pay.
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4 Axioms for the minimum Walrasian equilibrium in assignment problems

The demand set of any agent is never empty. At sufficiently high prices, the
demand set can be formed only by null objects.

A Walrasian equilibrium is a price vector together with an assignment of objects
such that each agent obtains an object belonging to his demand set given the prices,
and the price of each non-assigned object is zero.

Definition 4.1. Given a preference profile R € R}, a pair (p,z) € P x Z is a Wal-
rasian equilibrium at R, if the following two conditions hold:

e 2 € D(R;,p) foralli e N,
e pj=0forallj € O\O..

If (p, ) is a Walrasian equilibrium at R € R}, we say that p is a Walrasian equi-
librium (WE) price vector. We denote by PWE) C P the set of WE price vectors
at R.

It is known by Demange & Gale (1985), that for any R € R:

e The set of Walrasian equilibria is not empty.

o PW(H) has a complete lattice structure.®

e There exists a unique p € PWE) guch that p<pforallpe PWE) | named
the minimum WE (MWE) price vector. Then, a Walrasian equilibrium (p, 2)
will be called a minimum Walrasian equilibrium.

It is known by Morimoto & Serizawa (2015) that any minimum Walrasian equi-
librium satisfies the demand connectedness property for any R € Rp:

e Demand connectedness. Let (p, z) be a minimum Walrasian equilibrium at R2.
For each j € O with p;> 0, there is a sequence of different agents {1,2,...,i}
such that: z; = ¢y or P, = 0; 2; # qo and P, > 0foreachl e {2,...;i—1};
zi = jand {2,241} € D(R;,p) foreachl € {1,....i —1}.7

Mechanisms used to allocate objects which produce Walrasian equilibria have
been widely considered in the literature, see for instance Demange et al. (1986) and
Pérez-Castrillo & Sotomayor (2002). These types of mechanisms, which satisfy

Let p,p’ € P be two price vectors. Their join ¢ = p\/ p’ and meet s = p A p’ are the price vectors
defined by ¢; = max{p;,p}} and s; = min{p;,p’ }, respectively. A set of price vectors P’ C P is a
lattice if for any two p,p’ € P’, both pVp' € P’ and pAp’ € P’. The lattice is complete if for any
P’ C P infP" € P and supP” € P'.

See Miyake (1998) and Roth & Sotomayor (1990) for a detailed discussion of this property.
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interesting properties related to fairness and efficiency, are examples of (allocation)
rules that produce assignments and prices according to the preferences of the agents.

An (allocation) rule f consists of a pair of maps (f°, f) from preference pro-
files to assignments and price vectors. That is, for any R € R, the rule f pro-
duces an assignment f°(R) € Z and a price vector f™(R) € P. In other words,
given R € R¢, j = [{(R) is agent i’s assignment and f;"(R) the price agent i
has to pay for his assigned object j at 2. We will use the following notation to
denote the bundle given by f to agent i at R, f;(R) = (f/(R), f}c”ig( R)(R)). With
some abuse of notation and when no confusion arises, we will denote the price of
object f?(R) assigned to ¢ by f/"(R). Hence the allocation will be denoted by
(fi(R))ien = ((fP(R), f"(R)))ien. Notice that when there are more objects than
agents some objects are not assigned by the rule, but the rule specifies a price for
each object. Therefore, any agent i is able to compare his bundle (f?(R), f/"(R))
with any other bundle, including those made of a non-assigned object j at its given

price, that s, (j, /;"(R)).

A rule f is a Walrasian equilibrium (WE) rule if for each preference profile
ReRE (f™(R), f°(R)) € P x Z is a Walrasian equilibrium at R. A rule f is the
minimum Walrasian equilibrium (MWE) rule if for each R € R}, (f™(R), f°(R)) €
P x Z is a minimum Walrasian equilibrium at R.3

In the following, we introduce some classical and new properties (axioms) for
allocation rules. A natural requirement in allocation problems is efficiency. It entails
the maximization of the welfare of all agents as a whole. Given R € R?, 2,2/ € Z
and p,p’ € P, the allocation ((z;,ps,))icn Pareto-dominates ((zg,p’zg))ieN at R if

o (2,p.) R (z;,pfzg) foralli € N,
® (zi,pz;) Pi (#,p),) for some i € N,
® YienDz; 2 Lien Pl

We say that an allocation ((z;,p-;))icn satisfies efficiency at R € R if no allo-
cation Pareto-dominates it at R. Now, we introduce efficiency as an axiom.

8The MWE rule is not unique because there might be different assignments of objects compat-
ible with the MWE price vector. Notwithstanding, for each pair of Walrasian equilibria (z,p) and
(2',p) where p is the MWE price vector, we have that (z;,p_) I; (2],p_,) for all i € N. Therefore,

more precisely, we characterize the class of MWE rules. For a similar treatment of rules that are
uniquely defined up to some indifference, see for instance Adachi (2014) or Morimoto & Serizawa
(2015).
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4 Axioms for the minimum Walrasian equilibrium in assignment problems

Definition 4.2. Efficiency: A rule f satisfies efficiency (EFF) if for each R € R},
(fi(R));en satisfies efficiency at R.

Morimoto & Serizawa (2015) shows that the MWE rule is efficient. The follow-
ing axiom, individual rationality, implies that every agent will pay for his assign-
ment, at most, his willingness to pay for it.

Definition 4.3. Individual rationality: A rule f satisfies individual rationality (IR)
if forall R € R and all i € N,

fi(R) R; (q0,0).

Definition 4.4. Desirability of positively priced objects: A rule f satisfies desirabil-
ity of positively priced objects (DO) if for all R € R and all j € O,

fi(R) >0=(4,0) P; fi(R) for some i € N.

Desirability of positively priced objects says that whenever an object j has a
positive price, there is an agent ¢ who is getting a bundle (k, py) but strictly prefers
j for free.

Definition 4.5. Non—wastefulness: A rule f satisfies non—wastefulness (NW) if for
all Re Rg,alli € Nandallj € O\Ogop),

The notion of non-wastefulness is used in Kojima & Manea (2010) for an allo-
cation problem in which money is not allowed. It is a weak condition of efficiency.
Our axiom says that if an object j is not assigned, it is because every agent weakly
prefers his allocation rather than acquiring j for free.

The following property, envy-freeness, has been widely studied in Svensson (1983)
and in Alkan et al. (1991). We consider the definition of envy-freeness used in
Alkan et al. (1991). It requires that every agent weakly prefers his allocation to any
other object at its given price.

Definition 4.6. Envy—freeness: A rule f satisfies envy—freeness (EF) if for all R €
Rpandalli € N,

fi(R) Ri (4, fj"(R)) forall j € O.

Envy-freeness reflects an idea of fairness. When there are as many agents as ob-
jects, it is known that envy-freeness implies efficiency (Svensson, 1983). Nonethe-
less, that implication does not hold when there are strictly more real objects than
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agents. A natural question is then under which conditions envy-freeness implies
efficiency. The following result shows that if an allocation rule satisfies EF, NW
and DO, then it satisfies also EFF and IR.

Proposition 4.7. On the domain R, if a rule f is EE, NW and DO then [ is EFF
and IR.

Proof. 1t is straightforward to see that EF implies IR because we have as many null
objects as the number of agents. Suppose that f satisfies EF, NW and DO but not
EFF. This implies that there is a preference profile R € R such that (f(R);)icn is
Pareto-dominated by some allocation ((z;,p;))ien at R. We are going to consider
two cases.

Case 1: Oyo(py = O;. By EF, we have that for every i € N
fi(R) R (5, fj"(R)) for all j € O.

Now, since ((2;,pi))ic N Pareto-dominates ( f;(R));cn, we have that (2, p.,) R; fi(R)
foralli € N and (2y,p.,) Py fy(R) for some agent i'. Therefore, for each agent 1,
we have

(2i,pz) Ri fi(R) R; (4, f}"(R)) forall j € O,

in particular (z;,p;) R; (2, fI'(R)) with a strict preference for some agent ¢'. This
implies that

Y p= < Y from(B).
iEN ieN
which contradicts that ((z;, p;));en Pareto-dominates (f;(R));cn at R.

Case 2: Oyo(gy # O.. By NW of f, for each j € O\ Oyo(py, fi(R) R; (j,0) for
every i € N. Now, DO of f implies f]"(R) = 0 for each j € O\ Ofo(p). Define
N ={i e N|f?(R) € Opo(ryNO,}. Take any j € O\ Oo(p) which means that
j = zi, for some iy € N. Since ((z;,p;))ien Pareto-dominates (f;(R));en at R, we
have that

(J:p5) Riy fi,(R) Riy (5,0),
and from money monotonicity, p; = 0. That is, p; = 0 for each j € O, \ O Fo(R)-

For any i € N, making use of EF, we have

(2i:pz;) Ri fi(R) Ri (j, fj"(R)) forall j € O,

75



4 Axioms for the minimum Walrasian equilibrium in assignment problems

with a strict preference for some agent i’ € N. This implies that

Y pe= ) v < ) S (R), (4.1)

iEN ieEN ieN

where the first equality comes from the fact that p; = 0 for each j € O, \ Ofo(p).
Therefore, (4.1) contradicts that ((z;,p.,));en Pareto-dominates (f;(R));ecn at R.
]

In order to introduce the following axiom, we say that R; € R¢ is a monotonic
transformation of R, € R¢ (R; m.t. R)) if the willingness to pay for any real object
J increases in some amount €; > 0 at [2; with respect to his willingness to pay for it
at . That is, for all j € Q with j # qo there is £; > 0 such that

(]7m) IZ (QOaO) = (j7m_€j) ]z/ (QQ,O).

The next property, monotonicity with respect to willingness to pay, avoids incen-
tives to misrepresents the willingness to pay by decreasing it.

Definition 4.8. Monotonicity with respect to willingness to pay: A rule f satisfies
monotonicity with respect to willingness to pay (MWP) if for all R € R, alli € N
and all R] € R such that B; m.t. R., then

fi(R) R; fi(R—i,R}).

An immediate consequence of monotonicity with respect to willingness to pay is
the following: the price of any object j assigned to some agent ¢ does not decrease
if object j is again assigned to 7 when he weakly decreases his willingness to pay.
A strong version of the monotonicity with respect to willingness to pay is strategy-
proofness.

Definition 4.9. Strategy-proofness: A rule f satisfies strategy-proofness (SP) if for
all Re Ry, alli € N and all R € R,

fi(R) R; fi(R—,R}).

It is shown in Demange & Gale (1985) that the MWE rule is not manipulable,
that is to say, it satisfies strategy-proofness. For the domain of quasi-linear prefer-
ences, see Leonard (1983) for a similar result.

Under the assumption that there are strictly more agents than objects to be allo-
cated, Morimoto & Serizawa (2015) characterizes the rule that produces the min-
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imum Walrasian equilibrium with strategy-proofness, individual rationality, effi-
ciency and no subsidy for losers.® Nevertheless, the assumption that there are more
agents than objects is crucial in their characterization. As the authors point out,
when the number of objects exceeds the number of agents, the characterization
does not hold. Without restriction on the number of objects in relationship with the
number of agents, the following result gives a characterization of the minimum Wal-
rasian equilibrium in which envy-freeness and monotonicity with respect to willing-
ness to pay play a fundamental role.

Theorem 4.10. On the domain R, a rule f is the MWE rule if and only if f satisfies
MWP, EF, NW and DO.

Proof. The “if” part. First, we prove that if f satisfies EF, DO and NW, then for
any R € R}, (f™(R), f°(R)) is a Walrasian equilibrium at R.

Take any R € Rp. Notice that EF of f implies that f(R) € D(R;, f"(R)) for
each i € N and NW of f implies that if j € O\ Ogo(p), then fi(R) R; (j,0) for
all i € N. Therefore, DO of f implies that, if j € O\ Oyo(p), then f"(R) = 0.
Hence (f™(R), f°(R)) is a Walrasian equilibrium at R. It remains to see that it is a
minimum Walrasian equilibrium at R.

Let f satisfy the four axioms and p € PW(E) be the MWE price vector at R.
Assume by contradiction that the price vector f*(R) is not the MWE price vector
at R. Let (p, z) be a minimum Walrasian equilibrium at 1. Therefore, p; < fi"(R)
for all j € O and for some object k, p, < fi""(R). Since f™(R) € PW(E) we have
that ;" (R) > 0.

Since f™(R) € PV () and fi*(R) > 0, by definition of Walrasian equilibrium,
k is assigned to some agent. Let ¢ be the agent such that f?(R) = k. On one hand,
notice that if z; # k, then

(zpﬂéi) R; (k,p,) P (k, fi"(R)) = [i(R).
On the other hand, if z; = k, then
(ziop, ) Bi (k, [ (R)) = fi(R).
By continuity of R;, there exists a small € > 0 such that

(20, +2) P (b, S (R)).

No subsidy for losers means that if an agent gets a null object, she/he will pay a non-negative
price for it.

77



4 Axioms for the minimum Walrasian equilibrium in assignment problems

Consider the preference R, € R¢ for agent i such that (j,0) I} (go,0) for every
j€0\{z} and (gi,gzi +¢) I! (go,0). Since <§i’]_9zi +¢) P (k, fi"(R)) R; (90,0),
there is an o > 0 such that (z;,p_ +e+a) [; (qo,0). Hence the willingness to pay
for object z; at R; is greater than the willingness to pay for z; at R,. Moreover,
the willingness to pay for any other object at R; is 0, hence R; m.t. R]. Denote
by R’ = (R_;, R;) the new preference profile. Notice that (z,p) is still a Walrasian
equilibrium at R’. Even more, we see below that in every Walrasian equilibrium
at R’, agent i gets object z;, which follows from the Decomposition Lemma in
Demange & Gale (1985).

Suppose by way of contradiction that there exists a Walrasian equilibrium (p*, z*)
at R such that z} # z;. By definition of R, we know that W P(RY,j) = 0 for all
j € O\ {z;}. Notice that if 2 # gy there is another Walrasian equilibrium (p', z’) in
which z] = g and for all remaining agents ¢t € N'\ {i}, z; = 2/ and the price vector is
the same p’ = p*. Hence, w.1.0.g. assume that in (p*, 2*), 2} = go. Making use of the
Decomposition Lemma (see Appendix for a proof applied to our setting), Corollary
4.26 (in Appendix) establishes that if for some Walrasian equilibrium (]_9, z) there is
an agent i € N such that (z;, BZ) P! (qo,0), then in each Walrasian equilibrium he
will obtain a real object j, which is a contradiction with 2} = qo.

Since in every Walrasian equilibrium at R’ agent ¢ will obtain 2, then the maximum-
WE price of object z; at R’ is at most P, +¢. Hence

Ji(R) Ri (200, +2) i fi(R).

Therefore, agent 7 has incentives to misrepresent his preference, by decreasing,
his willingness to pay. This completes the proof of the “if” part.

The “only if” part. Let f be the MWE rule. It easily follows that f satisfies EF.
Since the price of any non-assigned object is zero, envy-freeness implies NW. As
it was remarked, f satisfies SP, then f satisfies also MWP. Finally, we will see that
DO is satisfied. Assume by way of contradiction that there is an object j € O such
that f"(R) > 0 and f;(R) R; (j,0) forall i € N. Consider (p,z) € P x Z such that
the price for each object k € O\ {j} is p, = f{"(R) and p; = 0. The assignment of
the objects is given by z; = f?(R) for each i € N. Notice that (p, z) is a Walrasian
equilibrium and contradicts the minimality of f™(R). Therefore, there is an agent
i such that (j,0) P; fi(R) and DO holds. O

The previous result gives a new characterization for an allocation rule which al-
ways selects, for any preference profile, a minimum Walrasian equilibrium. This
characterization relies on the axiom MWP. Intuitively, the result of Theorem 4.10 is
divided in two parts. First, we show that if a rule satisfies EF, NW and DO, then it
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always selects a Walrasian equilibrium for any preference profile. Taking this into
account, we show that uniqueness is provided by MWP. This axiom captures the
attempt of the agents to misrepresent the maximum amount of money they do want
to pay for each object. That is to say, MWP requires that no agent will be better off
if he decreases the willingness to pay for some or all objects.

Since SP implies MWP, an immediate consequence of the previous theorem is
the following corollary.

Corollary 4.11. For any R € R}, arule f is the MWE rule if and only if f satisfies
SP, EF, NW and DO.

The next property takes into account monotonic transformation of the willing-
ness to pay. Suppose that an agent tries to manipulate an allocation rule by weakly
increasing or decreasing the willingness to pay for all objects, the next axiom an-
timonotonicity avoids this behavior. It is clear that monotonicity with respect to
willingness to pay is a necessary condition for antimonotonicity.

Definition 4.12. Antimonotonicity: A rule f satisfies antimonotonicity (AM) if for
all R € Ry, alli € N and all R; € R, such that R; m.t. R} then

fi(R) R; fi(R—i,R;) and fi(R—i,R;) R} fi(R).
If we focus only on WE rules, the following corollary of the previous theorem

gives a characterization of the MWE rule.

Corollary 4.13. On the domain R}3, a WE rule f is the MWE rule if and only if f
satisfies Antimonotonicity.

The next examples show the independence of the axioms used in Theorem 4.10.
Example 4.14. Given any R € R, define A = max;cy xeo{ W P(R;, k)}. Consider

arule f such that for each ? € R, each agent gets a null object and

F(R) = A if j € {k € O| there is some i € N such that W P(R;, k) > 0},
J ] 0 otherwise.

Notice that the rule satisfies DO, MWP and EF, but NW is violated.

4.2)

Example 4.15. Consider arule f that when there are more than two agents and only
one object coincides with the maximum Walrasian equilibrium rule and otherwise
with the minimum Walrasian equilibrium rule. Then this rule f satisfies EF, NW
and DO, but MWP is violated.
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4 Axioms for the minimum Walrasian equilibrium in assignment problems

Notice that in the previous example, the maximum Walrasian equilibrium price
of the object is given by the highest willingness to pay of the object. This agent has
incentives to announce a lower willingness to pay.

Example 4.16. Consider a rule f such that for each R € R, (p, f°(R)) € P x Z
is a minimum Walrasian equilibrium. Now we are going to define f”*(R). For each
assigned object j € Oyo(g), []"(R) =D and f7"(R) =1 for each j € O\ Opo(p).
Notice that the rule satisfies EF, NW and MWP, but DO is violated.

Example 4.17. Given any R € R, label every agent and every object. When there
are more real objects than agents, consider the MWE rule. When there are more
agents than real objects, let f be the rule that assigns object 1 to agent 1, object 2
to agent 2, and so on. Each real object at a price of zero. This rule satisfies MWP,
NW, DO but EF is not satisfied.

4.3 Quasi-linear preferences

In this section, it is assumed that agents have quasi-linear preferences in money.
It is known that when there are strictly more agents than objects, the MWE rule is
characterized by strategy-proofness, efficiency and individual rationality, see Holm-
strom (1979) and Chew & Serizawa (2007). Notwithstanding, this characterization
does not hold when the number of objects exceeds the number of agents. Our char-
acterization for the MWE rule in Section 2 also holds for the domain of quasi-linear
preferences. However, we now provide a new characterization for the quasi-linear
domain without making use of envy-freeness or strategy-proofness. Therefore, we
perform a broader analysis for the MWE rule which does not depend on the number
of agents and the number of objects.

A preference R; of an agent ¢ € N is a quasi-linear preference if for each ob-
ject j € O there is a “valuation" a;; such that: (i) a;; > 0, (ii) a4, = 0 and for
each (j,m) € O xR and each (j',m’) € O xR, (j,m) R; (j/,m') if and only

if a;j —m > a;; —m'.

In this section, we write a; = (ai;)jeo to represent the
preference of agent i and denote by A the set of all (vector of) valuations. Then,
a = (a;);en € A" denotes a profile of valuations and A", the set of all possible
profiles. Moreover, for each ¢ € N, (a—¢) stands for (a;);e z {4}~ In this section, we

write f(a) instead of f(R). That is to say, f°(a) € Z and f™(a) € P.

In Gul & Stacchetti (1999), the Walrasian equilibrium has been widely studied.
In particular, the non-emptiness of the set of Walrasian equilibria and the complete
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lattice structure of the set of WE price vectors are proved under the presence of
gross-substitutes.!” In fact, the authors establish an expression to obtain the MWE
prices in terms of agents’ valuations. Since the quasi-linear preferences considered
in this section satisfy the gross-substitutes condition and are monotonic, the results
in Gul & Stacchetti (1999) apply in our setting. Therefore, in order to be able to
express and make use of the expression for the MWE price given in Gul & Stacchetti
(1999), for an arbitrary object k in this section, we will introduce an identical copy
of object k, denoted by .1

With some abuse of notation, we will denote the set of assignments of O U {l%}
by Z*. Now, we can give an expression for the MWE prices. The MWE price of
object k is given by

_ b L 4.
P, felag)i{za”l} I%g({zazzl} (4.3)

1€EN 1eEN

Since preferences are quasi-linear, an assignment z of the objects is efficient for
ae A" if

ZEargmaz,cz Z Ayt o 4.4)

ieEN
Following Chew & Serizawa (2007), a rule on the domain of quasi-linear prefer-
ences A satisfies efficiency if for every a € A", it selects an efficient assignment at

Q.

Remark 4.18. In the Appendix of the Chapter 2 of this Thesis it is shown that if for
some efficient assignment z € Z, k = z; for some agent ¢ € IV, then there exists an
assignment 2’ € Z* such that k = 2} and

Z @,/ = Max { Z aizl} i 4.5)

iEN 2€2k | jen

When the number of agents exceeds the number of objects, it is well known that
on the domain of quasi-linear preferences with unitary demands, the MWE prices
coincide with the prices given by the Vickrey rule.!> Even more, the MWE rule
is characterized by strategy-proofness, individual rationality and efficiency, see for
instance, Holmstrom (1979) and Chew & Serizawa (2007). However, the assump-

Tntroduced by Kelso & Crawford (1982).

1'We assume that this copy k of object k € O satisfies that each agent is always indifferent to
acquire, at any quantity of money, the original object k or its copy k.

12See Gul & Stacchetti (1999), Demange et al. (1986) and Leonard (1983).
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4 Axioms for the minimum Walrasian equilibrium in assignment problems

tion that the number of objects is lower than the number of agents is crucial for that
characterization.

The following result is a characterization of the minimum Walrasian equilibrium
for quasi-linear preferences with no restriction on the number of objects. In this
new characterization, antimonotonicity is used instead of strategy-proofness.

Theorem 4.19. On the domain of quasi-linear preferences, a rule f is the MWE
rule if and only if f satisfies AM, EFF, NW and DO.

Proof. The “if” part. Suppose that f satisfies AM, EFF, NW and DO, then we show
that f is a MWE rule. Take any a € A" and let p be its MWE price vector. Assume
by way of contradiction that f;"(a) # p, for some k € O. Consider two cases.

Case 1: fi""(a) > p,. Consider that object k is not allocated. NW and DO of f
imply that f;""(a) = 0. Hence f}""(a) =0=p, . Assume now thatk = f{(a) for some
t € N. Take a' = (a_y,a;) where a; = 0 forall j € O\ {k} and p, < aj, < fi"(a).
Then

max {Z %} =) g = Y G Tan> ), Gt
ieN

z€Zz=k | jen ieN\{t} ieN\{t}
= Y it max { Y azz} — Y Gifea)
ieN\{t} z€Z" | ieN iEN

/

where the third equality comes from (4.3) and the last one comes from Remark 4.18.
Therefore, by EFF of f, f{(a') = f{(a) = k. Because of NW, f is IR, which implies
f'(d") < aj;, because aj, — f7*(a’) > 0. Hence f;"(a’) < f{"(a) which contradicts
AM of f.

Case 2: fi"(a) <p,. If k is not allocated, then p, = 0. Since the prices are
non-negative, f;"(a) < 0 is a contradiction, which implies that & must be allocated.

Assume now that k = f{(a) for some ¢ € N. Take a’ = (a—y,a;) where aj; =0
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4.3 Quasi-linear preferences

forall j € O\ {k} and f]""(a) < aj, < p,. Notice that

zegfl:%i(:k { Z iz, } Z alfo - Z @ifo(a) + agk < Z @i fo(a) +]—9k

ieN ieN iEN\{t) iENN{t)
= ) ifp(a) ¥ max { )3 a} - ) dip)
iEN\{t} z€ZP ieN ieEN

/
= max Z Qiz; ¢ — G, = 1MAX Z Wiz, (-
2€2F | jenN z€2Z:21#k ieN

Therefore by EFF of f, it holds that f(a’) # k. Let k' = f{(d’), then a},, = 0.
By IR of f, because of NW, f;*(a’) = 0. Then

0= ay, — fir(a) <ay,— fi"(a),

which contradicts AM of f. This completes the proof of the “if” part.
The “only if” part. Since it is known that the MWE rule f satisfies SP, it satisfies
also AM. It is clear that f satisfies EFF, NW and DO. ]

The following examples show that each of the axioms used in Theorem 4.19 is
independent from the other axioms.

Example 4.20. Consider an efficient rule such that the price of each object is zero.
This rule trivially satisfies EFF, NW and DO but AM is violated.

Example 4.21. Consider an efficient rule such that the price of each assigned object
coincides with its MWE price and set a positive price for each non-assigned real
object. Notice that the rule satisfies SP, NW and EFF. Since SP implies AM, then it
also satisfies AM, but DO is not satisfied.

Example 4.22. If 0* # n, consider the minimum Walrasian equilibrium rule. If
0o* = n, consider the following rule. All objects are assigned efficiently and every
agent gets a real object. The price of each object is its MWE price plus 1. This rule
satisfies AM, DO and EFF but NW is not satisfied.

Example 4.23. First, label every agent and every object. When there are more
objects than agents, consider the MWE rule. When there are more agents than real
objects, let f be the rule such that assigns object 1 to agent 1, object 2 to agent 2,
and so on each real object at a price of zero. This rule satisfies AM, NW, DO but
EFF is not satisfied.

83



4 Axioms for the minimum Walrasian equilibrium in assignment problems

4.4 Appendix

In this Appendix, we provide a proof of the Decomposition Lemma, Corollary 1
and Property 1: (A) introduced in Demange & Gale (1985) applied to our setting.
For the sake of comprehensiveness, see also Roth & Sotomayor (1990).

Lemma 4.24. (Decomposition Lemma, Demange & Gale, 1985) Let R € R} be
a preference profile and let (2*,p*) and (z,p) be two Walrasian equilibria at R.
Let N* = {t € N|(z},p%) Bt (2,p2)}, N ={t € N|(z,pz) Bt (2,p%)} and
NO={t € N|(zt,pz) It (+*,p};) }. Let O* = {j € Olp; > p;}, O={j € Olp; >}
and O° = {j € Olp; =pj;}. Ifi € N*, then 2} € O. Similarly, ifi € N, then z; € O*.
Moreover, if j € O, then j is assigned to some 1 € N under z* and i € N. Similarly,
if 1 € O, then j is assigned to some i € N under z and i € N*.

Proof. Let (z*,p*) and (z,p) be two Walrasian equilibria at R. By Walrasian equi-
librium of (z,p) we have that for each i € N, (2;,p.;) R; (j,pj) for any j € O. If
i € N*, then (zj,pz;) P; (zi,pz;). By transitivity, (z;‘,p%) B (zi,p2) Ri (2],p27)-
By money monotonicity, we have that p7. < p,» which implies that z7 € O. A
symmetrical argument choosing : € N’ shows that zi € O,

Assume now there is some j € O*. This means that pj > p; and then p§ > () which
implies that j is assigned to some ¢ € N under z*, i.e. j = 2. Hence we have that
(4,pj) P; (j,p;f). By Walrasian equilibrium of (z,p), we have that (2;,p.,) R; (,p;).
By transitivity, (z;,pz,;) Ri (7,p;) P ( j,p;'f). Which shows thati € N. A symmetrical
argument choosing j € O, shows that j is assigned to some ¢ € N under z and
i€ N™. O]

The next corollary is a consequence of the previous lemma. In Demange & Gale
(1985), the corollary is stated as Corollary 1, we provide a proof for our particular
setting.

Corollary 4.25. (Corollary 1, Demange & Gale, 1985) Let I? € R} be a preference
profile and let (z*,p*) and (z,p) be two Walrasian equilibria at R. Let N*, N, N 0
O*, O and OV be as in the statement of Lemma 4.24. Then Uy 2 = O* = U 27

Similarly, U;c v+ 2 = O = Ujen~ -

Proof. Because of the previous lemma, for every i € N, we know that z; € O*.
Then

U=z c o (4.6)
(S
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Moreover, we know that for every j € O, there is an agent ¢ € /N such that j = 2
and 7 € N, then

o* c 4. (4.7)
1EN
Making use of expressions (4.6) and (4.7), we have that

U U= U=

ieN 1EN 1EN

<|o*| <

: (4.8)

Therefore, expression (4.8) implies that ;e 2; = O" = U;cny 2/. By a similar
argument, we can prove that (J;c y« 2/ = O = U;en+ % O]

The next property is stated in Demange & Gale (1985) as Property 1: (A). This
property states that if in a Walrasian equilibrium there is an agent who strictly
prefers his allocation in this equilibrium to a null object at zero price, then in every
Walrasian equilibrium he will be assigned to a real object.

Corollary 4.26. (Property 1: (A), Demange & Gale, 1985) Let R € R be a pref-
erence profile and let (z,p) be a Walrasian equilibrium at R. If (z;,p.,) P; (o,0)
for some 7 € N, then in every Walrasian equilibrium (p*, 2*) at R, 2 # qo.

Proof. Let (z,p) be a Walrasian equilibrium at R. Assume that for some i € N,
(zi,p2) P (q0,0) and let (p*, 2*) be another Walrasian equilibrium at R with 2 =
qgo. Define N as in the Decomposition Lemma, then 7 € /N. But 2 is a null object
and it cannot belong to O* because its price in every Walrasian equilibrium is zero,
and this contradicts Corollary 4.25. [
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S Concluding remarks

This dissertation is devoted to the study of the assignment problem framed in two-
sided markets with indivisibilities where money is allowed to be transferable. The
Thesis is divided in three parts, the underlying aim of this division is to provide dis-
tinct perspectives of the assignment problem. We explore three main processes to
determine allocations: the Walrasian equilibrium, the cooperative exchange among
coalitions of agents, and a non-cooperative approach.! The second chapter of this
dissertation analyses the relationship of the core and the Walrasian equilibrium.
The third chapter is confined to the implementation problem: we provide a non-
cooperative game to implement the best core allocation for the agents belonging
to one sector of the market. Finally, the last chapter considers an axiomatic ap-
proach of the minimum Walrasian equilibrium. In the following paragraphs, we
will present and overview the main results of each chapter. Moreover, we will con-
clude with some implications and possible further research.

The second chapter is devoted to the study of markets with the presence of a sin-
gle seller and many buyers. Each buyer wants to acquire a fix quantity of objects.
The first result shows that the cooperative game associated to the market is buyers-
submodular. As a consequence, the core of this game can be easily described: a
payoff vector belongs to the core if each buyer gets a non-negative payoff not ex-
ceeding his marginal contribution to the whole market and the worth of the market
is distributed among all agents. We study then under which valuations the game is
convex. We have an interesting result: we show that if the game is convex, then the
marginal contribution of any buyer to any pair of coalitions formed by any group of
buyers and the seller is the same. Moreover, when this happens, the buyers-optimal
core allocation is always supported by a minimum Walrasian equilibrium of the
market and it turns out that the price of each object is zero under this situation.
Convexity of the game implies the existence of a matching in which each buyer
obtains one of his most preferred packages of objects. Although this interesting
property is meaningful for the relationship between the buyers-optimal core alloca-
tion and Walrasian equilibria, it is not sufficient to guarantee that the seller-optimal

"'Wilson (1978) points out these three processes to allocate resources in exchange economies.
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5 Concluding remarks

core allocation will be supported by the maximum Walrasian equilibrium prices.
We provide a characterization of those markets for which the seller-optimal core
allocation is the maximum Walrasian equilibrium payoff vector. This characteriza-
tion says that the seller will obtain the worth of the entire market under Walrasian
equilibrium prices if and only if all desired objects are allocated and each object
is, in fact, allocated to one of the buyers who value it the most. Finally, we un-
dertake the main question of this model: under which conditions all coalitionally
rational agreements can be coordinated by means of Walrasian equilibrium prices?
We provide a characterization of such situation. The core coincides with the set of
Walrasian equilibrium payoff vectors if and only if there is a matching such that
all desired objects are allocated, each object is allocated to one of the buyers who
values it the most and the marginal contribution of each buyer to the entire market
is bounded by the difference between how much he values the package he obtained
and the second best valuation for each object in that package. Moreover, we pro-
vide an alternative proof of the known formula to compute the minimum Walrasian
equilibrium price of each object.

In the third chapter, we analyze exchanges in markets with a single seller and
many buyers as in the previous setting. However, this model considers more general
preferences for the buyers: since we only require that the gross-substitutes condition
is satisfied. This exchanges are carried out in a non-cooperative framework. The
aim of this chapter is to study the strategic behavior of the agents, when all of them
trade in a competitive environment.

The chapter provides a simple mechanism in which all buyers and the seller play.
Initially, buyers submit requests or bids. Then the seller decides the allocation of
the objects and the final prices. This mechanism relates the SPE outcomes with the
core. A key point of this mechanism is the role played by the seller, which may
improve the efficiency of the final allocation. There are two remarks to note from
this mechanism. First, although the seller has the final decision, in any outcome of
this mechanism, if a buyer gets a package he has not requested, he will get at least
the same utility provided by his request. In particular, in any SPE outcome, in spite
of the market power of the seller, every buyer gets his maximum core payoff. This
means that even in the case in which only some buyers get a package, there is no
coalition of agents that can improve the outcome trading only by themselves.

We have shown that all SPE yield the best core element for buyers. A natural
question related to this result is whether Walrasian equilibrium prices may support
this core outcome. In general, the answer is in the negative. Notwithstanding, when
the gross-substitutes condition is satisfied, the existence of Walrasian equilibria is
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guaranteed.2 Even more, if we replicate the market a la Gul & Stacchetti (1999),3
similar to the result in Wilson (1978), the best core element for buyers becomes
competitive and hence, the outcome of any SPE of our mechanism is supported by
some Walrasian equilibrium. That is, in the replicated market, the selling prices of
packages given by the mechanism are supported by the minimum Walrasian equi-
librium price vector of the market.

In the last chapter, we consider the problem arising from the following situation.
In a two-sided market, a group of buyers desire to acquire objects owned only by
agents on the other side of the market. It is assumed that each buyer can acquire
at most one object and has a preference in a domain that includes quasi-linear pref-
erences. The owners of the objects will centralize all of them in an institution or
in a clearing house for their allocation. The institution will then determine a pro-
cedure to allocate the indivisibilities. A natural question is then how to allocate
the objects? Some criterion could be required to be satisfied by the allocation rule,
e.g. Pareto-efficiency, fairness, egalitarian or Rawl’s criteria.* In the economic
problem just described, if Pareto-efficiency is required to the allocation rule that
distributes resources, then, because of the First Theorem of the Welfare Economics,
we know that every Walrasian equilibrium leads to a Pareto-efficient allocation. We
can then add some other properties that lead to some particular Walrasian equilib-
rium, or otherwise we could restrict our problem to choose only among the set of
Walrasian equilibria, hence which Walrasian equilibrium rule should be chosen? In
previous works Demange & Gale (1985) and Morimoto & Serizawa (2015) show
that the minimum Walrasian equilibrium satisfies desirable properties as an out-
standing rule to allocate indivisibilities, e.g. group strategy-proofness and fairness.
The Chapter 4 of this Thesis can be understood as an extension of the previous
works in which we study properties of the minimum Walrasian equilibrium un-
der different environments. We provide the following characterizations. When the
objects are heterogeneous, the minimum Walrasian equilibrium is the unique rule
satisfying non-wastefulness, envy-freeness, desirability of positively priced objects
and monotonicity with respect to willingness to pay. For the quasi-linear domain,
the minimum Walrasian equilibrium rule is characterized by antimonotonicity, non-
wastefulness, efficiency and desirability of positively priced objects.

Properties of the minimum Walrasian equilibrium are approached in the last chap-
ter of this Thesis, in the context of general agents’ preferences. Due to the features

’In fact, the set of Walrasian equilibrium price vectors has a complete lattice structure (Gul &
Stacchetti, 1999)

3See Section 5 in Gul & Stacchetti (1999).

4See Feldman & Serrano (2006) for a discussion.
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5 Concluding remarks

of these preferences, it is not possible to report all indifference sets for each agent.
This leads to the following situation. Suppose that a government or a company is,
in fact, interested in applying the minimum Walrasian equilibrium to allocate in-
divisibilities. The first question is then, can this task be carried out? In the case
of quasi-linear preferences, the answer is in the positive: the agents need to report
the willingness to pay for each object. In the domain of preferences considered in
Chapter 4, reporting the entire preference is impossible. Hence, what information
is needed to compute the minimum Walrasian equilibrium of the market? Let me
provide some ideas for simple cases. In the case of a single object, it is sufficient
to report the willingness to pay. However, suppose that there are two objects to be
allocated, a and b and two agents. In this case, reporting the willingness to pay may
not be sufficient to compute the minimum Walrasian equilibrium. In this particular
case, each agent has to report how much she/he would pay for object a in order to
be indifferent with respect to object b for free and vice versa. In situations with
more objects and agents, providing an answer becomes more complex. In order to
offer an answer, in future research we would investigate a procedure to guarantee
the computation of the minimum Walrasian equilibrium with general preferences.

Following the same line of research of Chapter 4, we propose as future research
to study the following situation. Consider a market in which buyers and sellers, or
firms and workers, meet. A feature of the market is that each agent is interested in
at most one partnership with agents on the other market sector. For each partnership
there is a non-negative gain that can be split between the partners. The natural solu-
tion concept introduced to analyse these market situations is stability. An outcome
of the market specifies a matching and a price vector. It is known that an outcome is
stable if it is individually rational and there is no buyer-seller partnership and a price
for the object owned by this seller so that, at this price, both buyer and seller are
better off making a new partnership than under the previous outcome. It is known
that stable outcomes do exist and there is one for each market sector in which all
its members get their best stable payoff. We address the following point, among
stable rules, which are the properties that characterize the best stable outcome for
each sector of the market?

A possible extension of the study of two sided markets under an axiomatic ap-
proach is the following. In some market situations, agents on the first sector may be
interested in making more than one partnership with the agents on the second sector
(or in acquiring a package of objects in the case of buyers) while each agent on the
second sector may be interested in only one partnership (or owning only one object
on sale in the case of sellers). This markets are called many-to-one markets (see e.g.
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Sotomayor, 2002) and it is known that under quasi-linear preferences, monotonic-
ity and gross-substitutes condition, the minimum Walrasian equilibrium does exist
(Gul & Stacchetti, 1999). As future research, we also focus on axioms in order to
characterize the minimum Walrasian equilibrium in this setting.
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