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Abstract

This thesis studies fuzzy model predictive control, looking for novel con-
tributions in his field. The main idea of the thesis is to adapt the classic
linear model predictive control to Takagi-Sugeno fuzzy systems. Al-
though these systems can be dealt with nonlinear model predictive con-
trol, there are many advantages when their particular structure is taken
into account.

The Takagi-Sugeno fuzzy systems are formed by a mixture of lin-
ear models that vary their importance weight (membership function)
depending on the value of the system state. In the last 15 years, this
structure has been used to develop a multitude of new applications and
a whole control theory by adapting robust control through linear matrix
inequalities (LMIs) to Takagi-Sugeno fuzzy systems. In these contribu-
tions the main idea is to design controllers valid for any known mem-
bership function. A priori, it seems very restrictive and too generic, but
since controllers know the membership functions, the control action will
depend on it, being a powerful design solution. This design philosophy
has been called shape-independent design.

In pre-thesis developments, it was observed that this type of design
philosophy for predictive control had not been studied in depth, so a first
approach to the fuzzy predictive control was addressed. Unfortunately,
the complexity of the problem increased exponentially with the control
horizon and it was left for the present thesis to develop the method-
ologies, notation and theorems necessary to treat the problem in all
its complexity, reaching solutions that increase its complexity through
adjustable parameters. The obtained controller solves the shape inde-
pendent fuzzy predictive control problem for a finite horizon, under some
complexity assumptions.

Pursuing the above goal, interesting intermediate results have been
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also developed: the design of a controller that (with adjustable degree of
complexity) stabilizes the system in the largest possible region, and a di-
rect adaptation of some iterative nonlinear predictive control techniques
to the Takagi-Sugeno fuzzy systems. Considerations about invariant set
theory for the Takagi-Sugeno problem have been developed to obtain
the relevant feasible/terminal sets.

These developments are based, in addition on the linear model pre-
dictive control, on copositive programming. Understanding a coposi-
tivity problem, the study of whether a polynomial is positive for any
positive value of its variables. In the case of fuzzy systems since the
membership functions are always positive, they easily enter into this
kind of problem with the proviso that there are other variables (the sys-
tem state) that are not always positive. This problem has been addressed
in the thesis by the application of Polya’s theorem.



Resumen

En esta tesis se estudia el control predictivo para modelos borrosos
Takagi-Sugeno, buscando aportaciones novedosas en este campo. La
idea principal de la tesis es adaptar el control predictivo lineal clásico
a los modelos borrosos Takagi-Sugeno. A pesar de que estos sistemas
pueden tratarse mediante control predictivo no lineal, existen muchas
ventajas si tenemos en cuenta su particular estructura.

Los sistemas borrosos Takagi Sugeno están formados por una pon-
deración de modelos lineales que van variando su peso (función de perte-
nencia) dependiendo del valor del estado del sistema. En los últimos
quince años se ha aprovechado esta estructura para desarrollar multitud
de nuevas aplicaciones y toda una teoŕıa de control adaptando el control
robusto mediante desigualdades matriciales lineales (LMIs) a sistemas
borrosos Takagi-Sugeno. En estas aportaciones la idea principal es la de
diseñar controladores que sean válidos para cualquier función de perte-
nencia conocida. Esto, a priori, parece muy restrictivo y demasiado
genérico, pero dado que los controladores conocen la función de perte-
nencia, la acción de control dependerá de ella, siendo al final una solución
de diseño muy potente. A esta filosof́ıa de diseño se le ha llamado diseño
independiente de la forma.

En desarrollos previos a la tesis, se observó que este tipo de filosof́ıa
de diseño para el control predictivo no se hab́ıa estudiado en profundi-
dad, entonces se abordó una primera aproximación al control predictivo
borroso. Desgraciadamente, la complejidad del problema aumentaba de
forma exponencial con el horizonte de control y se dejó para la presente
tesis desarrollar las metodoloǵıas, la notación y los teoremas necesarios
para tratar el problema en toda su complejidad, llegando a soluciones
que aumentan su complejidad mediante parámetros ajustables. El con-
trolador obtenido resuelve el problema de control predictivo borroso para
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cualquier forma de las funciones de pertenencia para un horizonte finito,
bajo algunas suposiciones de complejidad.

Para conseguir los anteriores objetivos, se han desarrollado resulta-
dos intermedios de interés: el diseño de un controlador que (con grado
de complejidad ajustable) estabiliza al sistema en la región más grande
posible, y la adaptación directa de algunas técnicas iterativas de control
predictivo nolineal a los sistemas borrosos Takagi-Sugeno. Se han de-
sarrollado consideraciones acerca de la teoŕıa de conjuntos invariables
para el problema Takagi-Sugeno con el fin de obtener los conjuntos
factibles/terminales pertinentes.

Estos desarrollos están basados, además de en la teoŕıa de con-
trol predictivo basada en modelos lineales, en la programación copo-
sitiva.Entendiendo como problema de copositividad, el estudio de si un
polinomio es positivo para cualquier valor positivo de sus variables. En
el caso de los sistemas borrosos al ser las funciones de pertenencia siem-
pre positivas entran facilmente dentro de este tipo de problemas con la
salvedad de que existen otras variables, (los estadosdel sistema) que no
son siempre positivos. Este problema se ha abordado en la tesis mediante
la aplicación del teorema de Polya.



Resum

En aquesta tesi s’estudia el control predictiu per models borrosos Takagi
Sugeno, buscant aportacions noves en aquest camp. La idea principal de
la tesi és adaptar el control predictiu lineal clàssic als models borrosos
Takagi Sugeno. Tot i que aquests sistemes poden tractar-se mitjançant
control predictiu no lineal, hi ha molts avantatges si tenim en compte la
seua estructura particular.

Els sistemes borrosos Takagi-Sugeno estan formats per una pon-
deració de models lineals que van variant el seu pes (funció de pertinença)
depenent del valor de l’estat del sistema. En l’última dècada s’ha apro-
fitat aquesta estructura per desenvolupar multitud de noves aplicacions
i tota una teoria de control adaptant el control robust mitjançant de-
sigualtats matricials lineals (LMIs) a sistemes borrosos Takagi-Sugeno.
En aquestes aportacions la idea principal és la de dissenyar controladors
que siguen vàlits per a qualsevol funció de pertinença coneguda. Això,
a priori, sembla molt restrictiu i massa genèric, però atès que els con-
troladors coneixen la funció de pertinença, l’acció de control dependrà
d’ella, sent al final una solució de disseny molt potent. A aquesta filosofia
de disseny se li ha anomenat disseny independent de la forma.

En desenvolupaments previs a la tesi, es va observar que aquest ti-
pus de filosofia de disseny per al control predictiu no s’havia estudiat en
profunditat, llavors es va abordar una primera aproximació al control
predictiu borrós. Malauradament, la complexitat del problema augmen-
tava de forma exponencial amb l’horitzó de control i es va deixar per a
la present tesi desenvolupar les metodologies, la notació i els teoremes
necessaris per tractar el problema en tota la seva complexitat, arribant
a solucions que augmenten la seva complexitat mitjançant paràmetres
ajustables. El controlador obtingut resol el problema de control predic-
tiu borrós per a qualsevol forma de les funcions de pertinença per a un
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horitzó finit, sota algunes suposicions de complexitat.

Per a assolir els objectius, s’han desenvolupat resultats intermedis
interessants: el disseny d’un controlador que (amb grau de complexitat
ajustable en el disseny) estabilitza al sistema en la regió més gran pos-
sible, i l’adaptació directa d’algunes tècniques iteratives de control pre-
dictiu nolineal als sistemes borrosos Takagi-Sugeno. S’han desenvolupat
consideracions sobre la teoria de conjunts invariables per al problema
Takagi-Sugeno per tal d’obtenir els conjunts factibles/terminals perti-
nents.

Aquests desenvolupaments estan basats, a més d’en la teoria de con-
trol predictiu basat en models lineals, en la programació copositiva. En-
tenent com problema de copositivitat, el estudi de si un polinomi és
positiu per a qualsevol valor positiu de les seves variables. En el cas
dels sistemes borrosos en ser les funcions de pertinença sempre positives
entren fàcilment dins d’aquest tipus de problemes amb l’excepció que
hi ha altres variables, (els estats del sistema) que no són sempre posi-
tius. Aquest problema s’ha abordat en la tesi mitjançant l’aplicació del
teorema de Polya.
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Chapter 1

Introduction

Traditionally, both in academic and industry sectors, control of nonlin-
ear systems has been dealt with linearization techniques, which allow
us to work with classical control methods (Ogata, 1996), like root lo-
cus, frequency response and so on. Linearized systems can yield similar
behaviour than the original one, but the basin of attraction and the
performance of controller are limited by the employed model.

There exist several control methods to deal with nonlinear systems,
such as backstepping, feedback linearization, passivity and so on (Slo-
tine, Li, et al., 1991). But, these methods usually require an analytic
reformulation of the system, hence, the complexity of the formulation
increases significantly depending on the kind of control and system. So,
if we only want to dealt with a system in specific region, Takagi-Sugeno
fuzzy models allow modelling the system in a systematic way, and the
developed control strategies can be, directly, applied for any TS fuzzy
model. There are some sources of conservatism in the approach, dis-
cussed in (Sala, 2009).

The main idea of the thesis will be focused on obtaining a predictive
control for TS systems, that were able to guarantee stability and mini-
mize a cost index. Hence, it is interesting to develop a fuzzy predictive
control based on the classical ones dating from the 1990s (Camacho &
Bordons, 2013), which could be susceptible to be reformulated to the
Takagi-Sugeno framework by means of techniques such as invariant set
theory and copositive programming, since these tools have been applied
for last years with successful results.

In the fuzzy model predictive control formulation, convex fuzzy sum-
mations of linear systems will appear, as this is the core of TS-fuzzy
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2 Objectives

modelling. In order to deal with them, Polya theorem is employed. It al-
lows approximating the nonlinear constraints to semidefinite ones (linear
matrix inequalities, LMI) with a defined complexity degree. Moreover,
for the shape independent problem, Polya theorem provides necessary
and sufficient LMI constraints as the complexity degree increases, as
discussed in (Sala & Ariño, 2007a).

A predictive control problem for TS systems must be solved by means
of convex optimization algorithms, which are not able to dealt with
these polynomial functions, thus the problem must be divided into easier
to handle problems, which are not usually an exact formulation of the
original problem, i.e. a set of feasible solutions can be ignored. This
issue is the main workhorse of the present thesis, but Polya theorem
can help us to reduce the gap between the original TS system and the
posterior formulation of this one.

Takagi-Sugeno models are a particular case of multi-model systems in
which they are interpolated via convex sums. On the other hand, another
widely-used multi-model framework is the so-called Markov Jump Linear
Systems (MJLS) (do Valle Costa, Fragoso, & Marques, 2006). They are
a class of stochastic systems, where the system switches between a finite
set of “modes” according to a specific probabilities, that are arranged
in a matrix, which is called Markov transition probability matrix. We
have considered that stochastic systems are susceptible to be formulated
together with non linear fuzzy systems, combining concepts of both.

1.1 Objectives

The main goal of the current thesis is to achieve more relaxed stability
conditions in fuzzy systems and less conservative (sub)-optimal results
in predictive fuzzy control, by means of copositive programming.

The objectives of the current work are basically two:

The first one of these is enhancing conditions in order to guaranty
the stability of the nonlinear systems, by means of new methodologies
based on Polya Theorem as well as invariant set theory. So, nonlinear
systems solutions are achieved by alternative methods, that can be more
efficient.

The other goal is to obtain a methodology to carry out a nonlinear
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predictive control, understood in a minimax setting as future member-
ship functions will be unknown, so that the outcomes may be more accu-
rate than obtained ones by traditional methods in multi-model systems,
either fuzzy or stochastic.

The presented contributions span several separated topics developed
during the thesis work. The chapters are mostly based on the textual
contents of some conference/journal papers so there are differences in
notation and some repetition of preliminary material.

1.2 Thesis structure

Several chapters form the current thesis: the next one is the state of the
art followed by two more chapters discussing some preliminary contri-
butions; these three ones form Part I:

Chapter 2: State of the art. Presents the background material
necessary to understand the thesis. Stability, non-linear fuzzy control,
predictive control, LMIs, copositive programming and invariant set the-
ory are presented, analysing their properties.

Chapter 3: Improved stability for Takagi-Sugeno systems by
applying Polya’s Theorem with multi-indices. In this chapter,
a copositive methodology is developed to carry out a Polya relaxation
according to the value of antecedents, which are available in the TS
modeling stage. Similar methodology is proposed in the paper (Ariño
& Sala, 2007) but it just employs two antecedents and two rules and it
does not use Polya expansion. So, at this chapter the methodology is
extended to any case. The contribution of this chapter is presented in
the paper (Querol, Ariño, Hernández-Mej́ıas, & Sala, 2014).

Chapter 4: Guaranteed Cost Control for Discrete Stochastic
Fuzzy Systems via LMIs. This chapter formulates a guaranteed
quadratic cost control method for a stochastic fuzzy system via LMIs.
The problem is carried out with restrictions on the states and inputs.



4 Thesis structure

Then, Part II contains three chapters, where, the main contribu-
tions of this work are discussed.

Chapter 5: Asymptotically Exact Stabilization for Constrained
Discrete Takagi-Sugeno Systems via Set-Invariance. With the
purpose of calculating the maximal polytopic set where a fuzzy system
can be stabilizable, a methodology is developed at this chapter. The
basic idea lies in developing a polytopic approximation to the maximal
control invariant set, which induces, too, a piecewise linear Lyapunov
function (polyhedral level sets). In addiction, copositive programming
is employed to maximize the size of the referred polytopic set. The con-
tributions of this chapter were submitted in paper (Ariño, Sala, Pérez,
Bedate, & Querol, 2017).

Chapter 6: Model Predictive Control for Discrete Fuzzy Sys-
tems via Iterative Quadratic Programming. A heuristic method-
ology is discussed in order to undertake a fuzzy predictive control prob-
lem by means of an iterative algorithm, in the framework of well-known
sequential quadratic programming (SQP) ideas. Thus, we minimize a
cost index and achieve more accurate results than shape-independent
methods based on LMIs, because the final result is shape-dependent.
Moreover this technique employees a terminal cost and a convex termi-
nal set. If we enforce some additional Lyapunov decrease constraints,
this predictive control method can obtain suboptimal control inputs,
that are able to stabilize the system, although algorithm convergence
has not been reached yet. The main contributions of this chapter are
presented in the paper (Ariño, Pérez, Querol, & Sala, 2014).

Chapter 7: Shape-Independent Model Predictive Control for
Takagi-Sugeno Fuzzy Systems. This chapter presents a minimax
predictive control method, to obtain a guaranteed cost in fuzzy systems,
based on generic copositive programming. A formulation of the model
predictive control of TS systems is discussed, so that results are valid
for any membership value (shape-independent) with a suitable account
of causality (control can depend on current and past memberships and
state), and a family of progressively better controllers can be obtained
by increasing Polya-related complexity parameters. So, optimal control
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actions are a parametric fuzzy polynomial equations, which are formu-
lated specifically for each model and time instant. The contributions
of this chapter are presented in the work (Ariño, Querol, & Sala, 2017,
submitted).

To close the thesis, Part III is presented where the conclusions and
future research (chapter 8), and the bibliography are included.





Part I

Preliminaries
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Chapter 2

State of the art

2.1 Introduction

In this chapter, the background to understand later developments in the
current thesis is going to be presented. Thus, first of all, the Lyapunov
stability concept will be discussed.

Linear Matrix Inequalities (LMIs) concept, as well as their prop-
erties, will be presented in the next section. LMIs are employed to
deal with nonlinear fuzzy systems and associated conditions, where the
copositive programming will be applied.

After, as expected, the concepts of fuzzy and stochastic systems will
be explained, besides the main features of these, like copositive condi-
tions and Polya theorem.

The predictive control is another matter discussed in the following
section, because it is one of the main topics of the current thesis, terms
like cost index, model predictive control (MPC), terminal set and cost,
receding horizon and optimizer are explained.

And finally, the set theory is going to be presented in the last sec-
tion, where concepts like invariant set and one-step set, employed in the
current thesis, will be presented.

2.2 Lyapunov Stability

Stability is one of the most important property employed in systems
analysis within the control engineering field. Nonlinear systems may
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10 Lyapunov Stability

have more complex and exotic behavior than linear systems, the mere
notion of stability is not enough to describe the essential features of their
motion. A number of more refined stability concepts, such as asymp-
totic stability, exponential stability and global asymptotic stability, are
needed. In this section, we define these stability concepts formally, for
autonomous systems, and explain their practical meanings.

Prior to formulate the Lyapunov equation features, it is necessary to
define a equilibrium point and what properties it has.

Considering an autonomous system ẋ = f(x, t), state x′ is an equi-
librium state (or equilibrium point) of the system, if once x(t) is equal
to x′ it remains equal to x′ over time. Mathematically, this means that
the constant vector x′ satisfies:

0 = f(x′) (2.1)

So, for a linear time-invariant system ẋ = A(t)x, provided that A is not
singular; if 0 = Ax′, then x′ = 0 is the single equilibrium point. On the
other hand, nonlinear systems can have multiple isolated equilibrium
points.

Essentially, stability in the sense of Lyapunov means that the system
trajectory can be kept close to the equilibrium point, starting sufficiently
near to it. So, let us define local stability as:

Definition 2.1 (Slotine et al., 1991) The equilibrium state x = 0 is said
to be stable if, for any e > 0, there exists h > 0, such that if ||x0|| < h
then trajectories ||x(t, x0)|| < e for all t > 0 . Otherwise, the equilibrium
point is unstable.

Also, asymptotic stability in the sense of Lyapunov (Slotine et al.,
1991) means that the equilibrium is stable, and besides, if the states
started around the equilibrium point, these ones are going to converge
to the equilibrium point when t→ ∞.

Definition 2.2 (Slotine et al., 1991) An equilibrium point x = 0 is
asymptotically stable if it is stable, and if in addition there exists some
e > 0 such that ||x(0)|| < e implies that x(t) → 0 as t→ ∞.
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In any system, an equilibrium point x = 0 is locally asymptotically
stable, if there exists an open region X containing the origin and a scalar
function V (x) continuous and differentiable so that:

V (x) > 0 ∀x ∈ X, x 6= 0

dV

dt
< 0 t ≥ 0 ∀x ∈ X

V (0) = 0

(2.2)

The function V (x) is called Lyapunov function (Khalil, 1996).

For instance, if a quadratic function V (x) = xTPx is proposed as
Lyapunov function where P is a definite positive matrix, i.e. P > 0,
condition V̇ (x) = ẋTPx+ xTPẋ < 0 ensures stability for a continuous-
time system (Boyd, El Ghaoui, Feron, & Balakrishnan, 1994; Khalil,
1996).

In the case of discrete-time systems xt+1 = f(xt) dealing with se-
quences of signals xt, t = 0, . . . ,∞ , equilibrium points fulfill x′ = f(x′),
but stability definition is identical (considering t to be an integer). The
Lyapunov stability theorem now is stated as:

Theorem 2.1 (Kalman & Bertram, 1960) A discrete-time system xt+1 =
f(xt) so that 0 = f(0) is locally asymptotically stable if there exists an
open region X containing the origin and a continuous scalar function
V (x) such that:

V (x) > 0 ∀x ∈ X, x 6= 0

V (f(x))− V (x) < 0 ∀x ∈ X

V (0) = 0

(2.3)

For instance, for a discrete-time system with a candidate Lyapunov
function V (xk) = xTk Pxk, the stability condition becomes V (xk+1) −
V (xk) = xTk+1Pxk+1 − xTk Pxk < 0.

Apart from quadratic Lyapunov functions, other more generic ones
have been proposed in literature, such as polynomial ones of degree
greater than 2 (Prajna, Papachristodoulou, & Parrilo, 2004), parameter-
dependent ones (Ding, 2010), etc. Some of them will be reviewed in later
sections.
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Figure 2.1: Lyapunov function example

2.3 Convex Optimization

The so-called convex optimization algorithms are a class of computa-
tionally efficient (polynomial time) optimization techniques that apply
to a class of problems to be discussed in this section.

A convex optimization problem is one in the form (Boyd & Vanden-
berghe, 2004):

min f0(x) s.t.

fi(x) ≤ bi; i = 1, . . . ,m
(2.4)

where the functions f0, . . . , fm : Rn → R are convex, i.e., satisfy

fi(αx+ βy) ≤ αfi(x) + βfi(y) (2.5)

for all x, y ∈ R
n and all α, β ∈ R with α+ β = 1, α ≥ 0, β ≥ 0.

Although powerful generic results can be estabilished from the above
setup, basically, are three particular classes of convex optimization prob-
lems which are widely used in the control engineering field (Boyd &
Vandenberghe, 2004):

� Linear Programming (LP): A general linear program has the
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form:

min cTx+ d

s.t.

Gx ≤ h

Ax = b

(2.6)

where G ∈ R
m×n and A ∈ R

p×n. Linear programs are, of course,
convex optimization problems. It is common to omit the constant
d in the objective function, since it does not affect the optimal (or
feasible) set.

� Quadratic Programming (QP): This convex optimization prob-
lem can be expressed in the form:

min
1

2
xTPx+ qTx+ r

s.t.

Gx ≤ h

Ax = b

(2.7)

where symmetric positive semi-definite matrix P = P T ∈ R
n,

G ∈ R
m×n, and A ∈ R

p×n. In a quadratic program, we minimize
a convex quadratic function over a polyhedron. Evidently, if P =
0, then QP reduces to LP. Note that, if P is not positive semi-
definite, the above problem might be non convex, posing additional
computational difficulties (Audet, Hansen, Jaumard, & Savard,
2000; Pardalos & Schnitger, 1988). A particular case (copositive
programming), relevant in the control problems objective of this
thesis, will be discussed later on in Section 2.4.

� Semidefinite programming (SDP): Following the analogy to
LP, a standard form SDP has linear equality constraints, and a
(matrix) nonnegativity constraint on the symmetric matrix vari-
able X ∈ R

n:

min tr(CX)

s.t.

tr(AiX) = bi i = 1, . . . , p

X ≥ 0

(2.8)
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where C,A1, . . . , Ap ∈ R
n are a symmetric matrices. Recall that

tr(CX) =
∑n

i,j=1CijXij is the form of a general real-valued linear
function on R

n. Actually, LP and QP can be conceived as a partic-
ular case of the SDP setup (Boyd et al., 1994). In fact, in control
engineering an equivalent formulation of the above SDP problem is
usually cast as optimisation over Linear Matrix Inequalites, which
will be briefly outlined in Section 2.3.1.

There are several techniques to solve the above problems (simplex,
interior point, duality, etc.) which are out of the objectives of this thesis.
The reader is referred to, for instance, (Boyd & Vandenberghe, 2004) for
further detail.

Software implementations of solutions for the above optimization
problems are available in most scientific computation packages (Matlab,
Mathematica, . . . ) in the case of linear and quadratic programming.
Code for optimising SDPs is less widespread in a general case, but there
are some tools which are widely used in a control engineering envirom-
nent, some of them commercial (Gahinet, Nemirovskii, Laub, & Chilali,
1994), and some of them freely available, such as (Löfberg, 2004; Sturm,
1999). Other tools/variations have appeared later on, but the enumera-
tion and comparison between them is not in the objectives of this thesis.

Sometimes, optimizing a particular objective funcion is not neces-
sary, i.e. just a feasible solution is required. Thus, obviously, if one of
the previous methods can achieve the optimal result, it is also able to
obtain a feasible one,actually in a faster way.

2.3.1 Linear Matrix Inequalities (LMIs)

Linear matrix inequalities (LMIs) is the name that SDP is often given
in control theory contexts. Convex optimization is used to numerically
solve LMIs. In this section, the LMI concept is going to be presented
together with its properties, which will be used in the present thesis to
solve optimal control problems further on.

A Linear Matrix Inequality (LMI) is an expression with the following
form:

A(x) := A0 + x1A1 + x2A2 + · · ·+ xmAm > 0 (2.9)

where:
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� x = {xi , i=1, . . . ,m} is a real vector,

� A0, A1, A2, . . . , Am ∈ R
n×n are symmetric matrices, and

� notation A(x) > 0 denotes that A(x) is a positive definite matrix,
i.e. where all its eigenvalues λ(A(x)) are positive.

An inequality form SDP, has no equality constraints, and one LMI1:

min cTx

s.t.

A0 + x1A1 + x2A2 + · · ·+ xmAm > 0

(2.10)

with decision variable x ∈ R
n, and symmetric matrices A0, A1, . . . , Am ∈

R
n×n, c ∈ R

n.

Let us discuss some relevant properties of LMIs.

Schur Complement

From (Cottle, 1974), let A(x) be a matrix partitioned as follows:

A =

(
A11 A12

A21 A22

)
(2.11)

then, A(x) < 0 is equivalent to:

A22 < 0 A11 −AT
12A

−1
22 A12 < 0 (2.12)

and
A11 < 0 A22 −A12A

−1
11 A

T
12 < 0 (2.13)

Congruence transformation

Taking a square matrix F ∈ R
n×n. Let U be a nonsingular matrix with

appropriated size, then the following two statements are equivalent:

F > 0 (2.14)

UTFU > 0 (2.15)
1Indeed, several matrix inequalities can be trivially rewritten as a single block-

diagonal one, and equalities can be supressed via variable ellimination.
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Cross Product Lemma

Following (Guerra, Kruszewski, Vermeiren, & Tirmant, 2006), let X, Y
and F = F T be definite positive matrices of appropriate dimensions.
Then:

XTY + Y TX ≤ XTFX + Y TF−1Y (2.16)

Xie and de Souza property

Another property is going to be presented in the current section, which
lies in the fact that; considering matrices Π < 0, X and a scalar α, the
following statement holds (L. Xie & de Souza, 1992):

(X + αΠ−1)TΠ(X + αΠ−1) ≤ 0 ⇔ XTΠX ≤ −α(XT +X)− α2Π−1

(2.17)

Finsler lemma

Taking x ∈ R
n, Q ∈ R

n×n and R ∈ R
m×n. The next four statements are

equivalent (Boyd et al., 1994; Skelton, Iwasaki, & Grigoriadis, 1997):

1. xTQx < 0 ∀x 6= 0 such that Rx = 0

2. RT
⊥QR⊥ being RR⊥ = 0

3. Q− σRTR < 0 for a scalar σ ∈ R

4. Q+XR +RTXT < 0 for some matrix X ∈ R
n×m

S-procedure

Let Fi(u), i = 1, . . . p be quadratic functions in the variable u ∈ R
n

defined as:

Fi(u) = uTTiu+ 2bTi u+ vi i = 0, . . . , p (2.18)

The S-procedure states that a sufficient condition for F0(u) > 0 ∀u
under constraints Fi(u) ≥ 0, i = 1, . . . , p is the existence of scalars
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{α1 ≥ 0, . . . , αp ≥ 0}, such that the next expression is satisfied for all u:

F0(u)−
p∑

i=1

αiFi(u) ≥ 0 (2.19)

Considering the vector ξ := (uT 1)T , we can express the above in matrix
form: (

T0 b0
bT0 v0

)
−

p∑

i=1

αi

(
Ti bi
bTi vi

)
≥ 0 (2.20)

2.3.2 Sum of Squares (SOS)

The so-called sum-of-squares technique was introduced in the control
systems community by (Prajna, Papachristodoulou, & Parrilo, 2004).
Let us summarise a handful of basic ideas on it.

Given a polynomial p(x), it may be expressed as SOS if it can be
formulated in the following way:

p(x) =
m∑

i=1

f2i (x) (2.21)

Definition 2.3 Given a set of multivariable polynomials f1, . . . , fm the
ideal associated with this set can be defined as:

ideal(f1, . . . , fm) = {f |f =
m∑

i=1

tifi ti ∈ R[x]} (2.22)

Definition 2.4 Given a set of multivariable polynomials g1, . . . , gp, the
cone associated with such set can be defined as:

cone(g1, . . . , gp) = {g|g = s0+
∑

i

sigi+
∑

i,j

sijgigj+
∑

i,j,k

sijkgigjgk+. . . }

(2.23)
where, sα ∈ R[x] are SOS polynomials.

Other properties:
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� Let a x point be, for which (f1(x) = 0, . . . , fm(x) = 0). Then
for any polynomial ti, ti(x)fi(x) = 0 holds and thus, if f ∈
ideal(f1, . . . , fm) then f(x) = 0

� Let a x point be, for which (g1(x) ≥ 0, . . . , gp(x) ≥ 0) for any SOS
polynomial si, si(x)gi(x) ≥ 0 holds and thus, if g ∈ cone(g1, . . . , gp)
then g(x) ≥ 0

SOS Optimization:

SOS optimization program is a problem with a linear cost function
and a special type of restrictions on the decision variables (Prajna, Pa-
pachristodoulou, & Wu, 2004)(Jarvis-Wloszek, 2003): the decision vari-
ables appear linearly as coefficients of some polynomials which are con-
strained to be SOS.

This problem may be formulated as:

min
uk∈Rn

cTu (2.24)

subject to:

ak,0(x) + ak,1(x)u1 + · · ·+ ak,n(x)un ∈ SOS(k = 1, . . . , Ns) (2.25)

The vector c ∈ R
n and monomials {ak,j} are given as part of the data

for the optimization problem, and the values of u ∈ R
n are the decision

variables.

Quadratic forms can be expressed as p(x) = xTQx where Q is a sym-
metric matrix. Similarly, polynomials of degree ≤ 2d can be formulated
as:

p(x) = z(x)TQz(x) (2.26)

In the vector z, all monomials degree are ≤ d. This is known as the
Gram matrix form. An important fact is that p is SOS, if and only if,
there exists a symmetric and positive semidefinite matrix Q such that
p(x) = z(x)TQz(x) (Chesi, 2010). This provides a interesting connec-
tion between SOS polynomials and positive semidefinite matrices, which
allows to state that SOS optimisation problems are a particular case of
the SDP ones, so they can be solved with the earlier presented SDP/LMI
software after a pre-processing layer forming such Gram matrices. Pack-
ages such as SOSTOOLS (Prajna, Papachristodoulou, & Parrilo, 2002)
or the Yalmip SOS module (Löfberg, 2004) can be used to take care of
such steps.
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Example 2.1 Taking a polynomial F (x) = 2x4+x3+2x2−3x, in order
to apply a optimization it can be formulated as LMI/SDP, such as it has
been explained above, so that, F (x) will be become zT (x)Qz(x):

F (x) =
(
1 x x2

)
Q




1
x
x2


 =

(
1 x x2

)



q11 q12 q13
q21 q22 q23
q31 q32 q33






1
x
x2


 (2.27)

Now, it is possible to apply a SDP optimization with the following coef-
ficients and restrictions.

q11 = 0

q12 + q21 = −3

q13 + q22 + q31 = 2

q23 + q32 = 1

q33 = 2

The ideal and cone concepts are used for local SOS optimization via
the so-called Positivstellensatz argumentations. For brevity, the reader
is referred to the above-cited works or the thesis (Jarvis-Wloszek, 2003).

The advent of sum-of-squares allowed to express nonlinear systems
as a convex combination of polynomial vertex models, based on a Taylor-
series expansion (Sala & Ariño, 2009). Fuzzy polynomial systems ap-
pear in, for instance (Tanaka, Yoshida, Ohtake, & Wang, 2009; Sala,
2009; Bernal, Sala, Jaadari, & Guerra, 2011) generalising earlier Takagi-
Sugeno approaches. Nevertheless, as these issues will not be used in this
thesis, detail of them is omitted for brevity.

2.4 Copositive programming

A function f(λ) : Rr 7→ R, mapping λ ∈ R
r to a real number, will be

denoted as copositive, if the next condition holds.

f(λ) ≥ 0 ∀ λ ≥ 0 (2.28)
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where λ ≥ 0 must be understood as element-wise nonnegativity.

Proving copositiveness for a generic function might be difficult. How-
ever, some results exist for homogeneous polynomials p(λ) of, say, degree
d, i.e., such that p(bλ) = bdp(λ) for any b ∈ R.

For instance (Bundfuss & Dür, 2008), consider f(λ) to be an homo-
geneous polynomial function of degree 2,

p(λ) =

r∑

i,j=1

λiλjpij (2.29)

it is clear that, if pij ≥ 0 and λi ≥ 0 for all i, j ∈ {1, . . . , r}, then
p(λ) ≥ 0. An analogous statement can be asserted for a parametric
polynomial copositive function p(λ, u) ≥ 0, u ∈ U. Indeed, consider
p(λ, u) as:

p(λ, u) =

r∑

i,j=1

λiλjpij(u) (2.30)

if pij(u) ≥ 0 and λi ≥ 0 for all i, j ∈ {1, . . . , r}; then p(λ, u) ≥ 0.
Note that, these previous copositive conditions are sufficient but not
necessary, i.e. although some pij(u) or pij were less than zero, functions
p(λ) and p(λ, u) could be still copositive2.

Note that equations (2.29) and (2.30) can be formulated in the fol-
lowing way:

p(λ) = λTPλ (2.31)

p(λ, u) = λTP (u)λ (2.32)

where polynomial coefficients are arranged in matrices P and P (u), so
that pij = {P}ij and pij(u) = {P (u)}ij .

Theorem 2.2 (Polya) Let p(λ) ≥ ǫ > 0 be a homogeneous polynomial
which is copositive when vector λ ≥ 0. Then, there exists a finite d ∈
N, where all the coefficients of the homogeneous polynomial below are
positive (Pólya, 1928):

p(λ)

(
r∑

i=1

λi

)d

(2.33)

2For instance, in degree 2 polynomials expressed as (2.31), there exist positive-
definite matrices P which have negative entries; see also Example 2.2.
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Theorem 2.3 An homogeneous polynomial p(λ) is copositive if and

only if there exists d ≥ 1 such that
(∑r

i=1 ξ
2
i

)d
p(ξ2i ) ∈ SOS (Reznick,

1995).

Example 2.2 Taking the polynomial p(λ) =
∑2

i=1

∑2
j=2 λiλjΞij, with

the next coefficients Ξ11 = 3,Ξ12 = −1.1,Ξ21 = −1.6,Ξ22 = 2.5, being
λi ≥ 0 and

∑r
i=1 λi = 1, this one can be formulated as:∑2

i=1

∑2
j=2 λiλjΞij = λ1λ1Ξ11 + λ1λ2 (Ξ12 + Ξ21) + λ2λ2Ξ22 = λ1λ13

+ λ1λ2 (−1.1 − 1.6) + λ2λ22.5
note that, not all the coefficients are positive, nevertheless:(∑2

i=1 λi

)2∑2
i=1

∑2
j=2 λiλjΞij = λ1λ1λ1λ1Ξ11 + λ1λ1λ1λ2(2Ξ11 + Ξ12

+ Ξ21) + λ1λ1λ2λ2 (Ξ11 + 2Ξ12 + 2Ξ21 + Ξ22) + λ1λ2λ2λ2(Ξ12 + Ξ21

+ 2Ξ22) + λ2λ2λ2λ2Ξ22 = λ1λ1λ1λ13 + λ1λ1λ1λ2 (2 ∗ 3− 1.1 − 1.6)
+ λ1λ1λ2λ2 (3 + 2 ∗ (−1.1) + 2 ∗ (−1.6) + 2.5) + λ1λ2λ2λ2(−1.1 − 1.6
+ 2 ∗ 2.5) + λ2λ2λ2λ22.5
all the coefficients of the above polynomial are positive.

In section 2.5.7, these methodologies will be applied on TS systems.

From the above considerations, a symmetric matrix P ∈ R
n is called

copositive if λTPλ ≥ 0, for all λ ≥ 0 (Dür, 2010). Obviously, all positive-
semidefinite matrices are copositive.

As described in (Dür, 2010), copositive programming is closely re-
lated to the general (possibly non-convex) quadratic programming prob-
lem, as one can be converted to the other one via some manipulations.

2.5 Takagi-Sugeno Models and Fuzzy Control

This section discuses the concept of Takagi and Sugeno (TS) fuzzy sys-
tems (Takagi & Sugeno, 1985) (Tanaka & Wang, 2004). Followed by
the IF-THEN procedures in order to construct such models. Then a
model-based fuzzy controller design using the concept of “parallel dis-
tributed compensation” (PDC) is described. Moreover, in this chapter,
the stability analysis and control design issues are shown, which can be
reduced to linear matrix inequalities (LMIs) problems. And finally, the
relaxing methodologies are presented in order to achieve a less conser-
vative solution for LMI conditions.
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The fuzzy model proposed by Takagi and Sugeno is described by
fuzzy IF-THEN rules which represent local linear input-output rela-
tions of a nonlinear system. The main feature of a TS fuzzy model is to
express the local dynamics of each fuzzy implication (rule) by a linear
system model.

The ith rules of the TS fuzzy models have the following form, where
the acronyms: CFS (Continuous Fuzzy System) and DFS (Discrete
Fuzzy System) denote the continuous and the discrete fuzzy systems,
respectively:

CFS:

IF z1(t) is Mi1 and . . . zp(t) is Mip

THEN

{
ẋ(t) = Aix(t) +Biu(t)

y(t) = Cix(t)
(2.34)

DFS:

IF z1(k) is Mi1 and . . . zp(k) is Mip

THEN

{
xk+1 = Aixk +Biuk

yk = Cixk
(2.35)

Here, Mij is the fuzzy set and r is the number of model rules; x(t) ∈ R
n

and xk ∈ R
n are the state vectors, u(t) ∈ R

m and uk ∈ R
m are the input

vectors, y(t) ∈ R
q and yk ∈ R

q are the output vectors, Ai ∈ R
nn , Bi ∈

R
nm, and Ci ∈ R

qn ; z1(t), . . . , zp(t) are known as premise variables that
may be functions of the state variables, external disturbances, and/or
time. We will use z(t) to denote the vector containing all the individual
elements z1(t), . . . , zp(t).

The TS systems can be modeled by means of sector nonlinearity
methodology, which ensures that, the interpolated models are an exact
formulation of the nonlinear system, in a limited local region on the state
space. Evidently, the models are interpolated by membership functions.

In the sector nonlinearity, there exists an area where, such as it is
depicted in the figure 2.2, for the system ẋ(t) = f(x(t)) ∈ [a1, a2]x(t)
with x(0) = 0. It is possible to achieve TS models with their corre-
sponding membership functions in a bounded sector defined by the lines
−d1 < x(t) < d2. The methodology to obtain all the elements for these
fuzzy models is going to be explained in this section.
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Figure 2.2: sector nonlinearity

Given a pair of x(t), u(t), the final outputs of the fuzzy systems can
be obtained as follows: CFS:

ẋ(t) =

∑r
i=1 wi(zt)(Aix(t) +Biu(t))∑r

i=1 wi(zt)
=

r∑

i=1

µi(zt)(Aix(t) +Biu(t))

(2.36)

y(t) =

∑r
i=1wi(zt)Cix(t)∑r

i=1 wi(zt)
=

r∑

i=1

µi(zt)Cix(t) (2.37)

The same for a discrete fuzzy system: DFS:

xt+1 =

∑r
i=1wi(zt)(Aixt +Biut)∑r

i=1 wi(zt)
=

r∑

i=1

µi(zt)(Aixt +Biut) (2.38)

yt =

∑r
i=1 wi(zt)Cixt∑r

i=1 wi(zt)
=

r∑

i=1

µi(zt)Cixt (2.39)

where:

zt = [z1(t), z2(t), . . . , zp(t)] (2.40)

wi(zt) =

p∏

j=1

Mi,j(zj(t)) (2.41)

µi(zt) =
wi(zt)∑r
i=1 wi(zt)

(2.42)
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for all t. The termMij(zj(t)) is the grade of membership of zj(t) inMij.
Since: { ∑r

i=1 wi(zt) > 0
wi(zt) ≥ 0 i = 1, 2, . . . , r

(2.43)

we have: { ∑r
i=1 µi(zt) = 1

µi(zt) ≥ 0 i = 1, 2, . . . , r
(2.44)

for all t.

The sector-nonlinearity technique can be conservative in some multi-
variable cases (Sala, 2009). Also, models and controller analysis can be
extended to piecewise setups (González, Sala, Bernal, & Robles, 2015;
Gonzalez, Sala, Bernal, & Robles, 2017). Some proposals to reduce
conservatism in the modelling step appear in (Robles, Sala, Bernal, &
González, 2016; Robles, Sala, Bernal, & Gonzalez, 2016).

2.5.1 PDC Compensator

The history of the so-called parallel distributed compensation (PDC) be-
gan with a model-based design procedure proposed by Kang and Sugeno
(Sugeno & Kang, 1986), however, the stability of the control systems was
not approached in the design procedure. This controller was called par-
allel distributed compensation (Wang, Tanaka, & Griffin, 1995) (PDC).

A PDC fuzzy controller is formulated as follows:

uk =

r∑

i=1

µi(zt)Fixk (2.45)

for brevity:

uk =

r∑

i=1

µiFixk (2.46)

The equation (2.46) is substituted in (2.38), and for a DFS we obtain:

xt+1 =

r∑

i=1

r∑

j=1

µiµj(Ai +BiFj)xt (2.47)

The same for a CFS:

ẋt =
r∑

i=1

r∑

j=1

µiµj(Ai +BiFj)xt (2.48)



State of the art 25

2.5.2 TS Stability

The TS systems stability was developed by (Tanaka & Sugeno, 1990)(Tanaka
& Sugeno, 1992), such as it is explained in the next theorems, which are
based on the Lyapunov stability definition, i.e. V (x) > 0, V̇ (x) < 0.

There are the following sufficient conditions for stability on DFS and
CFS (Tanaka & Wang, 2004), with a closed loop controller:

Theorem 2.4 A DFS as (2.47) is globally asymptotically stable if there
exists a common positive definite matrix P so that:

Qij = (Ai +BiFj)
TP (Ai +BiFj)− P (2.49)

for
∑r

i

∑r
j µiµjQij < 0 and i, j = 1, . . . , r

Theorem 2.5 A CFS as (2.48) is globally asymptotically stable if there
exists a common positive definite matrix P so that:

Qij = (Ai +BiFj)
TP − P (Ai +BiFj) (2.50)

for
∑r

i

∑r
j µiµjQij < 0 and i, j = 1, . . . , r

Techniques to relax the inequality
∑r

i

∑r
j µiµjQij < 0 will be pre-

sented in the following section 2.5.7.

2.5.3 Decay rate

Such as is indicated in (Tanaka, Ikeda, &Wang, 1998)(Tanaka, Taniguchi,
& Wang, 1998b), the speed of response is related to decay rate, which
consists in the largest Lyapunov exponent. Moreover, the decay rate is
a parameter employed usually in the controller design.

In a DFS the condition ∆V (x(t)) ≤ (α2 − 1)V (x(t)) is the same as:

being β = α2

minβ (2.51)

s.t.

X > 0 (2.52)
∑r

i=1

∑r
j=1 µiµjQij ≥ 0 (2.53)
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being:

X = P−1 Mi = FiX 0 < β ≤ 1 (2.54)

Qij =

(
βX (XAi +BiMj)

T

XAi +BiMj X

)
(2.55)

For a CFS, such as it is indicated in (Tanaka & Wang, 2004), the decay
rate condition is V̇ (x(t)) = −2αV (x(t)) for all trajectories, what is the
same:

Qij = GT
ijP + PGij + 2αP (2.56)

and to achieve a maximal decay rate with α > 0:

maxα (2.57)

s.t.

X > 0 (2.58)
∑r

i=1

∑r
j=1 µiµjQij ≤ 0 (2.59)

where:

X = P−1 Mi = FiX (2.60)

Qij = AiX +BiMj +XAT
j +MT

i B
T
j + 2αX (2.61)

The above decay-rate optimizations are in the class of quasi-convex
problems known as Generalized eigenvalue problems (GEVP) (Boyd &
El Ghaoui, 1993).

2.5.4 Guaranteed Cost

Sometimes, in control engineering, it is interesting to ensure an up-
per bound for a cost index, perhaps dependent on the initial condi-
tions.Usually, the cost index is a quadratic performance function, such
as is written below.

Such as is written in (Tanaka, Nishimura, & Wang, 1998) (Tanaka,
Taniguchi, & Wang, 1998a) (Tanaka, Taniguchi, & Wang, 1999), the
cost index for a discrete fuzzy system can be defined in the following
way:

JN→∞ =

∞∑

k=N

xTkHxk + uTk Fuk (2.62)
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Taking into account the Bellman theorem, which will be explained in the
section 2.7.2. The cost index can be limited by applying the following
condition in one step, i.e.

xTN+1PxN+1 − xTNPxN < −(xTNHxN + uTNFuN ) (2.63)

With the initial state x0, the cost index can be bounded by λ > xT0 Px0.
This latter condition holds if there exist the matrices Mi and X > 0
such that:

minλ (2.64)

s.t. (
λ xT0
x0 X

)
> 0 (2.65)

∑r
i=1

∑r
j=1 µiµjQij > 0 (2.66)

being

Qij =




X XAT
i +MT

j B
T
i X MT

j

AiX +BiMj X 0 0
X 0 H 0
Mj 0 0 F


 (2.67)

where P = X−1 and the PDC controller is formulated as Fi =MiX
−1

2.5.5 Constraint on the Control Input

Such as, it is indicated in (Tanaka & Wang, 2004), the next theorem
explains the conditions to bound the fuzzy system input:

Theorem 2.6 Assume that the initial condition x(0) is known. The
constraint ||u(t)||2 ≤ µ is enforced at all times t ≥ 0, if the next LMI
conditions hold:

(
1 x(0)T

x(0) X

)
≥ 0 (2.68)

(
X MT

i

Mi µ2I

)
≥ 0 (2.69)

where X = P−1 and Mi = FiX
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2.5.6 Constraint on the Output

Such as is discussed in (Tanaka & Wang, 2004), the next theorem ex-
plains the conditions in order to bound the output of a fuzzy system:

Theorem 2.7 Assume that the initial condition x(0) is known. The
constraint ||y(t)||2 ≤ λ is enforced at all times t ≥ 0, if the following
LMI conditions hold:

(
1 x(0)T

x(0) X

)
≥ 0 (2.70)

(
X XCT

i

CiX λ2I

)
≥ 0 (2.71)

hold, where X = P−1

2.5.7 Fuzzy summations and Polya Expansion

In previous sections, conditions in the form:

r∑

i=1

r∑

j=1

µiµjx
TQijx ≥ 0 (2.72)

have appeared in control design setups. These conditions are nonlinear
expressions, as µi are nonlinear function of the states. However, as
µi ≥ 0,

∑r
i=1 µi = 1 some sufficient LMI conditions have been proposed

in literature.

The simplest ones (Tanaka & Wang, 2004) are:

Qij +Qji ≥ 0, Qii ≥ 0

In (Tuan, Apkarian, Narikiyo, & Yamamoto, 2001), another sufficient
conditions for (2.72) are formulated:

Qii > 0 (2.73)

2

r − 1
Qii +Qij +Qji ≥ 0 i 6= j (2.74)

In (Xiaodong & Qingling, 2003), a fuzzy continuous system is stable if
satisfies the next theorem:
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Theorem 2.8 The fuzzy continuous system (2.48) is stable, if there
exist matricesMi, P, Yij ; where P is a symmetric positive definite matrix,
and Yii is symmetric, for i 6= j, Yji = Y T

ij , i, j = 1, 2 . . . , r. And the
following LMIs are satisfied:

PAT
i +MT

i B
T
i +AiP +BiMi < Yii (2.75)

PAT
i +MT

j B
T
i +AiP +BiMj + PAT

j +MT
i B

T
j

+AjP +BjMi < Yij + Y T
ij (2.76)

Where [Yij] < 0 and Fi =MiP
−1, i = 1, . . . , r

Theorem 2.9 The equilibrium of the DFS (2.48) is quadratically stabi-
lizable via PDC controller (2.46) if there exist matrices P > 0, Mi, i =
1, 2, . . . , r; Yiii, i = 1, 2, . . . , r; Yjii = Y T

iij , and Yiji, i = 1, 2, . . . , r, j 6= i,

j = 1, 2, . . . , r and Yijl = Y T
lji, Yilj = Y T

jli, Yjil = Y T
lij, i = 1, 2, . . . , r − 2,

j = i+ 1, . . . , r − 1, l = j + 1, . . . , r; satisfying the next LMIs:
(

−P ∗
AiP +BiMi −P

)
< Yiii i = 1, 2, . . . , r (2.77)

(
−3P ∗

2AiP +AjP +Bi(Mi +Mj) +BjMi −3P

)

≤ Yiij + Yiji + Y T
iij

i = 1, 2, . . . , r − 2, i 6= j, j = 1, 2, . . . , r (2.78)

(
−6P ∗

2(Ai +Aj +Al)P +Bi(Mj +Ml) +Bj(Mi +Ml) +Bl(Mi +Mj) −6P

)

≤ Yijl + Yilj + Yjil + Y T
ijl + Y T

ilj + Y T
jil

i = 1, 2, . . . , r − 2, j = i+ 1, . . . , r − 1, l = j + 1, . . . , r (2.79)




Y1,i,1 Y1,i,2 . . . Y1,i,r
Y2,i,1 Y2,i,2 . . . Y2,i,r
...

...
. . .

...
Yr,i,1 Yr,i,2 . . . Yr,i,r


 ≤ 0 i = 1, 2, . . . , r (2.80)

being Fj =MiP
−1, j = 1, 2, . . . , r
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However, the problem was finally closed with an asymptotically exact
(necessary and sufficient) condition as some complexity parmameter d
grows, called Polya relaxation in (Sala & Ariño, 2007a).

The relaxation consist in proving positiveness of the coefficients of
the expanded polynomial below, equal to that in (2.72) as

∑r
i=1 µi = 1:

(
r∑

l=1

µl

)d r∑

i=1

r∑

j=1

µiµjx
TQijx > 0 ∀x 6= 0 (2.81)

In order to compute the Polya relaxation, a multi-indices set Id, with
d-dimension, will be defined for an easy adjustment of polynomial coef-
ficients. So, this one is expressed as:

Id =
{
i = (i1, i2, . . . , id) ∈ N

d|1 ≤ ij ≤ r j = 1, . . . , d
}

(2.82)

with the above index, it is possible to write the following equation as:

∑

i∈Id

Qi =

r∑

i1=1

r∑

i2=1

· · ·
r∑

id=1

Qi1,i2,...,id (2.83)

and, each µi will have the next formulation:

µi =
d∏

l=1

µil = µilµi2 . . . µid i ∈ Id (2.84)

With the goal of simplifying the index Id, we use the index I
+
d , being

Id = ∪P(I+d ), which will ease computation of Polya’s relaxation.

I
+
d = {i ∈ Id|ip ≤ ip+1 p = 1, . . . , d− 1} (2.85)

Evidently:
∑

i∈Id

µiQi =

r∑

i=1

r∑

j=1

µiµjQij (2.86)

And moreover:
∑

i∈Id

µiQi1i2 =
∑

i∈I+
d

µi
∑

j∈P(i)

Qj1j2 =
∑

i∈I+
d

µiQ̃i (2.87)

being Q̃i =
∑

j∈P(i)Qj1j2 , and P(i) denotes the permutations of the
vector i.

For instance, the Q̃i with i = 1122 will be:

Q̃i = Q11 + 2Q12 + 2Q21 +Q22 (2.88)
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2.5.8 Non-quadratic stabilization

From (de Oliveira, Bernussou, & Geromel, 1999) and (Daafouz & Bernus-
sou, 2001), a new stability condition for a fuzzy systems was developed,
with the following Lyapunov function:

V (xk) = xTkP(xk)xk (2.89)

with P(xk) =
∑r

i=1 µi(xk)Pi, a TS system is poly-quadratically stable if
satisfies the theorem 2.10:

Theorem 2.10 System as
∑r

i=1 µi(xk)(Ai+BFi)xk is poly-quadratically
stable, if and only if, there exist symmetric positive definite matrices Si,
Sj, Gi and Fi of appropriate dimensions such that:

(
Gi +GT

i − Si GT
i Q

T
i

QiGi Sk

)
> 0 (2.90)

being Qi = (Ai +BFi) with Si = P−1
i

Proof: Such as is discussed in (de Oliveira et al., 1999) and
(Daafouz & Bernussou, 2001), for a TS system formulated as:

r∑

i=1

µi(xk)(Ai +BFi)xk (2.91)

and with the following Lyapunov equation V (xk) = xTk
∑r

i=1 µi(xk)Pixk
with Pi > 0 ∀i, the system is poly-quadratically stable if it satisfies:

V (xk)− V (xk+1) > 0 ⇔ Pi −QT
i (Pk)Qi > 0 (2.92)

with Qi = Aj +BFi, for i = 1, . . . , r.

Thus, by applying Schur complement twice:

Sk −QT
i (Si)Qi > 0 (2.93)

where Sk = P−1
k , taking Gi = Si + giI with gi a positive scalar, we can

deduce:

g−2
i (Si + 2giI) > QT

i T
−1
ij Qi Tij = Sj −QiSiQ

T
i > 0 (2.94)
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Such as it is done in (de Oliveira et al., 1999) and (Daafouz & Bernussou,
2001), by employing the Schur complement in the previous equation, it
is possible replace gi, so that:

(
Gi +GT

i − Si (Si −Gi)Q
T
i

Qi(Si −Gi) Sj −QiSiQ
T
i

)
> 0 (2.95)

and finally, the equation (2.95) can be expressed as:
(

I 0
−Qi I

)(
Gi +GT

i − Si GT
i Q

T
i

QiGi Sk

)(
I −QT

i

0 I

)
> 0 (2.96)

being QiGi = AiGi +BMi with Mi = FiGi.

Such as is presented in (Guerra & Vermeiren, 2004), a non-quadratic
Lyapunov function is formulated as:

V (x) = xTk (Pz(xk))
−1 xk (2.97)

being Pz(xk) =
∑r

i=1 µi(xk)Pi, with the control action uk = Kz(xk)Pz(xk)
−1,

where Kz(xk) =
∑r

i=1 µi(xk)Ki

With the previous definitions for the Lyapunov function and the
control action, a TS system is stabilizable if it satisfies the theorem 2.11

Theorem 2.11 A system
∑r

i=1 µi(xk)(Aixk + Biuk), with the input
uk = Kz(xk)Pz(xk)

−1, is non-quadratically stabilizable, if there exist
symmetric positive definite matrices Pi of appropriate dimensions, such
that:

r∑

i=1

r∑

j=1

r∑

l=1

µi(xk)µj(xk)µl(xk+1)

(
Pi (AiPj +BiKj)

T

AiPj +BiKj Pl

)
> 0

(2.98)

Proof: From the Lyapunov equation (2.97), the condition V (xk)−
V (xk+1) > 0 must be satisfied to guaranty the stability, so:

xTk (Pz(xk))
−1 xk−xTk

(
Az(xk) +Bz(xk)Kz(xk) (Pz(xk))

−1
)T (

(Pz(xk+1))
−1
)

(
Az(xk) +Bz(xk)Kz(xk) (Pz(xk))

−1
)
xk > 0 (2.99)
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by taking out common factor, now, it is possible to apply the congruence
matrix Pz(xk), thus:

Pz(xk)− (Az(xk)Pz(xk) +Bz(xk)Kz(xk))
T (Pz(xk+1))

−1

(Az(xk)Pz(xk) +Bz(xk)Kz(xk)) > 0 (2.100)

Finally, the theorem 2.11 can be obtained by means of the Schur com-
plement application.

Another extended polynomial conditions for TS systems stability
are written in (Lendek, Guerra, & Lauber, 2012). Where z ∈ R

nz is the
scheduling vector, and it is assumed that the scheduling variables z(k)
are available at the time instant k. The subscript z− stands for the sum
being evaluated at time k−1, e.g., Az− =

∑r
i=1 µi(z(k−1))Ai, z+ means

evaluation at time k+ 1, e.g., Az+ =
∑r

i=1 µi(z(k +1))Ai; and multiple
subscripts imply multiple sums, e.g., Azz+ =

∑r
i=1 µi(z(k))

∑r
j=1 µj(z(k+

1))Aij .

Theorem 2.12 A system xk+1 = (Azxk + Bzuk), with the input uk =
KfGh

−1, is asymptotically stable, if there exist symmetric positive def-
inite matrix Pp; and Gh, Kf matrices of appropriate dimensions, such
that: (

Gh +GT
h − Pp (∗)

AzGz +BzKf Pp+(xk+1)

)
> 0 (2.101)

Theorem 2.13 A system xk+1 = (Azxk + Bzuk), with the input uk =
KfGh

−1, is asymptotically stable, if there exist symmetric positive defi-
nite matrix Pp; and Gh, Kf ones of appropriate dimensions, such that:




Ω1,1 + Pp (∗) . . . 0 0
Ω2,1 Ω2,2 . . . 0 0
0 Ω3,2 . . . 0 0
...

... . . .
...

...
0 0 . . . Ωα−1,α−1 0
0 0 . . . Ωα,α−1 −Pp−α




< 0 (2.102)

where Ωi,i−1 = Az+i−2Gh+i−2 − Bz+i−2Kf+i−2; Ωi,i−1 = −Gh+i−1 −
GT

h+i−1, i = 1, 2, . . . , α
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The next p-degree Homogeneous Polynomially Non-Quadratic Lya-
punov (HPNQL) function, (Ding, 2010), is expressed as follows:

V (xk) = xTk S
−1
p,zxk (2.103)

being Sp,z =
∑

p∈K(p) µ
pSp > 0, where µp denotes the vector-product

of membership functions µp = µp11 µ
p1
1 µ

p2
2 . . . µprr , and p = p1p2 . . . pr; by

definition, K(p) is the set of r-tuples, which are obtained as all possible
combinations of nonnegative integers pi, i ∈ {1, . . . , r}, such that p1 +
p2 + · · ·+ pr = p.

At time k + 1, it is appropriate to express V (xk+1) as:

V (xk) = xTk S
−1
p,z+xk (2.104)

where Sp,z+ =
∑

p∈K(p) µ
p
+Sp > 0

Theorem 2.14 (Ding, 2010) System
∑r

i=1 µi(xk)(Aixk+Biuk) subject
to uk = −Yp,zS−1

p,z is HPNQL stable if and only if there exist symmet-
ric matrices Sp and any matrices Yp, p ∈ K(p), a degree p ≥ 1, and
sufficiently large d ≥ 0, d+ ≥ 0 such that

∑

k∈K(p+d+)

hk
+

(p+ d+)!

π(k)
= 1

Lp
i,k :=

(p+ d+)!

π(k)

∑

j∈K(d),i�j)


 d!

π(j)

∑

s∈{1,...,r},is>js




×
(

Si−i−εs (∗)
AsSi−i−εs −BsYi−i−εs 0

)

+
(p+ d+ 1)!

π(i)

∑

l∈K(d+),k�l

(d+)!

π(l)

(
0 0
0 Sk−l

)
> 0 (2.105)

being π(p) = (p1!)(p2!) . . . (pr!) and εs as the r-tuple with its s-th element
being 1 and all other elements being 0.

For simplicity, we use the following shortenings in the sequel:




µi = µi(xt), µ = [µ1, . . . , µr]
T , µ+i = µi(xt+1)

µ+ = [µ+1 , . . . , µ
+
r ]

T , µk = µk11 , µ
k2
2 , . . . , µ

kr
r

µ+
k
= µ+

k1

1 µ+
k2

2 . . . µ+
kr

r , P (µ) =
∑r

i=1 µiPi

Pg(µ) =
∑

k∈K(g) µ
kPk, P

+
g (µ) =

∑
k∈K(g) µ

+k
Pk

(2.106)
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The fuzzy Lyapunov function, named homogeneous polynomially parameter-
dependent Lyapunov function (HPPD-LF) and associated control input
(X. Xie, Ma, Zhao, Ding, & Wang, 2013), are designed as follows:

ut = Fg1(µ)Gg2(µ)
−1xt (2.107)

V (xt) = xT (µ)Gg2(µ)
−TPg2(µ)Gg2(µ)

−1xt (2.108)

Theorem 2.15 (X. Xie et al., 2013) Consider the discrete-time T–S
fuzzy system xt+1 =

∑r
i=1 µ(xt)(Aixt+Biut) and the input uk = Fg1(µ)

Gg2(µ)
−1xt. For given g ∈ Z+, d1 ∈ Z+, and d2 ∈ Z+, the closed-loop

fuzzy system is globally asymptotically stable, if there exist symmetric
matrices Pk ∈ R

n×n(k ∈ K(g)), matrices Fk ∈ R
q×n, Gk ∈ R

n×n(k ∈
K(g)), symmetric matrices Rii

pq with q ∈ K(g+d1), p ∈ K(g+d2−1) and

i = 1, . . . , r, matrices Rij
pq = (Rji

pq)T with q ∈ K(g+d1), p ∈ K(g+d2−1),
and 1 ≤ i < j ≤ r, such as the following LMIs hold.


 ∑

k′∈K(d2),k≥k′

∑

i∈{1,2,...,r};ki>k′i

(g + d1)!

π(k′′′)

d2!

π(k′)

(
Pk−k′−ei ∗

AiGk−k′−ei +BiFk−k′−ei 0

)

+
∑

k′′∈K(g),k′′′≥k′′

(d1)!

π(k′′′ − k′′)

(g + d2 + 1)!

π(k)

(
0 ∗
0 Gk′′ +GT

k′′ − Pk′′

)


+
∑

1≤i≤r

Rii
(k−2ei)k′′′

+ He


 ∑

1≤i≤j≤r

Rij
(k−ei−ej)k′′′


 > 0

∀k′′′ ∈ K(g + d1), k ∈ K(g + d2 + 1) (2.109)

{
Rii

(k−2ei)k′′′
= 0, for ki − 2 < 0

Rij
(k−ei−ej)k′′′

= 0, for ki − 1 < 0 or kj − 1 < 0

R11

pq . . . R1r
pq

...
. . .

...
Rr1

pq . . . Rrr
pq


 < 0, ∀q ∈ K(g + d1), p ∈ K(g + d2 − 1)

(2.110)

The control action and Lyapunov function (multiinstant HPPD-LF)]
can be designed with the following forms (X. Xie, Yue, Zhang, & Xue,
2016):

ut = Fg(t−m+ 1, . . . , t)G−1
g (t−m+ 1, . . . , t)xt (2.111)



36 Takagi-Sugeno Models and Fuzzy Control

V (xt) = xTt
(
G−T

g (t−m+ 1, . . . , t)Ps(t−m+ 1, . . . , t)G−1
g (t−m+ 1, . . . , t)

)
xt

(2.112)

where Fg(t−m+1, . . . , t) =
∑(

ki ∈ K(gi),
i ∈ {1, 2, . . . ,m}

)∏m
i=1 µ

ki(t−m+ i)Fk1...km

and Gg(t−m+1, . . . , t) =
∑(

ki ∈ K(gi),
i ∈ {1, 2, . . . , m}

)∏m
i=1 µ

ki(t−m+ i)Gk1...km ,

Fk1...km ∈ R
n2×n1 , and Gk1...km ∈ R

n1×n1 are control gain matrices to be
determined, g1, . . . , gm ∈ Z+. Ps(t−m+ 1, . . . , t) =

∑(
ki ∈ K(gi),

i ∈ {1, 2, . . . , m}

)

∏m
i=1 µ

ki(t −m + i)Ps1sm , and Ps1...sm ∈ R
n1×n1 , s1, . . . , sm ∈ Z+. the

closed-loop fuzzy system can be represented as follows:

xt+1 =
(
A(µ) +B(µ)Fg(t−m+ 1, . . . , t)G−1g(t−m+ 1, . . . , t)

)
xt.

(2.113)

Theorem 2.16 (X. Xie et al., 2016) Consider the discrete-time T–S
fuzzy system xt+1 =

∑r
i=1 µ(xt)(Aixt+Biut) and the input uk = Fg1(µ)

Gg2(µ)
−1xt. For given g1, . . . , gm, s1, . . . , sm ∈ Z+ and d1, . . . , dm+1 ∈

Z+, the closed-loop fuzzy system is globally asymptotically stable, if there
exist symmetric matrices Ps1s2...sm ∈ R

n1×n1(si ∈ K(si), i ∈ 1, 2, . . . ,m),
matrices Fk1k2...km ∈ R

n2×n1 , Gk1k2...km ∈ R
n1×n1(ki ∈ K(gi), i ∈ {1, 2, . . .

. . . ,m}), symmetric matrices Rii
f1f2...fm+1

∈ R
2n1...2n1 with f l ∈ K(fl +

dm+2−l), l ∈ {1, 2, . . . ,m−1}, fm ∈ K(fm+d2−2), fm+1 ∈ K(fm+1+d1),
and i = 1, . . . , r, matrices Rij

f1f2...fm+1 = (Rji
f1f2...fm+1)

T ∈ R
2n1×2n1

with f l ∈ K(fl + dm+2−l), l ∈ {1, 2, . . . ,m − 1}, fm ∈ K(fm + d2 −
2), fm+1 ∈ K(fm+1 + d1), and 1 ≤ i < j ≤ r, such as the linear matrix
inequalities (LMIs) in terms of following equations hold.

Υf1f2...fm+1 +
∑

1≤i≤r

Rii
f1f2...fm−1(fm−2ei)fm+1

+He


 ∑

1≤i≤j≤r

Rij
f1f2...fm−1(fm−ei−ej)fm+1


 > 0 (2.114)

∀f l ∈ K(fl + dm+2−l), l ∈ {1, 2, . . . ,m− 1},
fm ∈ K(fm + d2), f

m+1 ∈ K(fm+1 + d1) (2.115)

f1 = max{g1, s1}, fi = max{gi, si, gi−1, si−1}, (i = 2, . . . ,m− 1),

fm = max{gm + 1, sm, gm−1, sm−1}, fm+1 = max gm, sm (2.116)
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Υf1f1...fm+1 =



∑
(
sj ∈ K(sj), f

j ≥ sj

j ∈ {1, 2, . . . ,m}

)
φs

1s2...sm

f1f2...fm+1 +
∑

(
kj ∈ K(kj), f

j ≥ kj , j ∈ {1, 2, . . . ,m − 1}
fm − km − el ≥ 0, l ∈ {1, 2, . . . , m}

)
ϕk1k2...kml

f1f2...fm+1

−
∑

(
sj ∈ K(sj), f

j+1 ≥ sj

j ∈ {1, 2, . . . , m}

)
ψs1s2...sm

f1f2...fm+1 +
∑

(
kj ∈ K(kj), f

j+1 ≥ kj ,

j ∈ {1, 2, . . . , m}

)
ωk1k2...km

f1f2...fm+1




(2.117)

φs
1s2...sm

f1f2...fm+1 =

(
m−1∏

i=1

(fi + dm−i+2 − si)!

π(f i − si)

)
(fm + d2 − sm)!

π(fm − sm)

(fm+1 + d1)!

π(fm+1)
(
Ps1...sm ∗

0 0

)
(2.118)

ϕk1k2...kml

f1f2...fm+1 =

(
m−1∏

i=1

(fi + dm−i+2 − gi)!

π(f i − ki)

)
(fm + d2 − 1− gm)!

π(fm − km − el)

(fm+1 + d1)!

π(fm+1)
(

0 ∗
AlGk1...km +BlFk1...km 0

)
(2.119)

ψs1s2...sm

f1f2...fm+1 =
(f1 + dm+1)!

π(f1)

(
m−2∏

i=1

(fi+1 + dm−1−i − si)!

π(f i+1 − si)

)
(fm + d2 − sm−1)!

π(fm − sm−1)

(fm+1 + d1 − sm)!

π(fm+1 − sm)

(
0 ∗
0 Ps1...,sm

)
(2.120)

ωk1k2...km

f1f2...fm+1 =
(f1 + dm+1)!

π(f1)

(
m−2∏

i=1

(fi+1 + dm−1−i − gi)!

π(f i+1 − ki)

)
(fm + d2 − gm−1)!

π(fm − km−1)

(fm+1 + d1 − gm)!

π(fm+1 − km)

(
0 ∗
0 He(Gk1...km)

)
(2.121)
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{
Rii

f1f2...fm−1(fm−2ei)fm+1 = 0, for fmi − 2 < 0

Rij
f1f2...fm−1(fm−ei−ej)fm+1 = 0, for fmi − 1 < 0 or fmj − 1 < 0



R11

f1f2...fm+1 . . . R1r
f1f2...fm+1

...
. . .

...
Rr1

f1f2...fm+1 . . . Rrr
f1f2...fm+1


 < 0

∀f l ∈ K(fl + dm+2−l), l ∈ {1, 2, . . . ,m− 1},
fm ∈ K(g + d2 − 1), fm+1 ∈ K(fm+1 + d1)

(2.122)

2.5.9 Other approaches

The previous subsections have reviewed the main issues which will be of
use in later developments. Nevertheless, fuzzy control is a mature field
nowadays and significant contributions in various settings have been
made. The review articles (Sala, Guerra, & Babuska, 2005) and (Feng,
2006) and references therein focus the main aspects prior to 2006, and
the recent review paper (Guerra, Sala, & Tanaka, 2015) discusses the
main novelties and perspectives of the field in the last decade.

Some issues worth pinpointing are, for instance:

The linear-fractional approach to fuzzy systems modelling (Tuan,
Apkarian, Narikiyo, & Kanota, 2004), which can in some cases provide
models with a lower number of rules, rational in the membership func-
tions.

The work (Lendek, Guerra, Babuska, & De Schutter, 2011) discusses
other non-quadratic control tools and the application to observers (which
have not been considered here as the results of the thesis focus on state
feedback).

Another issue is the fact that there might exist different Takagi-
Sugeno models for the same nonlinear system (say f(x) = x1x2 can
be either modelled as ψ(x1)x2, bounding ψ(x1) with consequents and
membership functions depending on x1, or as ψ(x2)x1 with bounds and
memberships depending on x2. Some guidelines to choose the “best”
model appear in (Robles, Sala, Bernal, & Gonzalez, 2016).

In fact, there is also the option of handling piecewise TS fuzzy models
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by independently applying sector-nonlinearity techniques in several re-
gions. These ideas, introduced in (Johansson, Rantzer, & Arzen, 1999),
have been developed in, for instance (Qiu, Feng, & Gao, 2012; Cam-
pos, Souza, Tôrres, & Palhares, 2013); recently, the work (Gonzalez
et al., 2017) provides asymptotically exact stability conditions for such
setting. Nevertheless, stabilization conditions for piecewise models are
non-convex (bilinear matrix inequalities) so their application is limited
due to such fact.

Also, there has been heavy work on the so-called adaptive fuzzy con-
trol in which a controller is tuned based on data, gradients of Lyapunov
functions, etc. instead of LMIs. The interested reader can consult,
for instance (Labiod, Boucherit, & Guerra, 2005; Boulkroune, Tadjine,
M’Saad, & Farza, 2008; Tong, Huo, & Li, 2014) and references therein.

Nevertheless, further details on the above ideas is omitted as it will
not be used in the contributions of this thesis.

2.6 Discrete-time Stochastic Markov-Jump Lin-

ear Systems

As is discussed in (do Valle Costa et al., 2006), a dynamical system is, in
a certain moment, described by a model G1. But it supposes that this
system is subject to abrupt changes that cause it to be described, after
a certain amount of time, by a different model, say G2. More generally
we can imagine that the system is subject to a series of possible changes
that make it switch, over time, among a countable set I = 1, . . . ,m of
models, for example, {G1, G2, . . . , Gm}.

We will assume that the jumps evolve stochastically according to a
Markov chain, that is, given that at a certain instant k the system lies
in mode i, and we can know the jump probability for each of the other
modes, and also the probability of remaining in mode i. Generally these
systems are called Markov Jump Linear System (MJLS). We know the
jump probability for each of the other modes, and also the probability
of remaining in mode i (these probabilities depend only on the current
operation mode). Notice that we assume only that the jump probability
is known: in general, we do not know a priori when, if ever, jumps will
occur. Summarizing the Markov chain transition probability matrix will
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can be builded as (L. Zhang & Boukas, 2009) (Boukas, 2007):

For a discrete system, the probability of being at time k+1 in mode
j, conditioned to being at time k in mode i will be denoted by πji,
forming a matrix:

Π = [πji] where θ(k) = i and θ(k + 1) = j (2.123)

being πji ≥ 0 and
∑m

j=1,i πji = 1

This class of systems are known in the international literature as
discrete-time Markov jump linear systems (MJLS). The Markov state
(or operation mode) will be denoted by θ(k).

A Stochastic discrete system MJLS is formulated as follows:

xk+1 = Aθ(k)xk +Bθ(k)uk (2.124)

θ(k) ∈ [1, . . . ,m] (2.125)

defining I = [1, . . . ,m]

2.6.1 Stochastic Stability

Concept of stochastic stability will be introduced at the present sec-
tion, this one consists in a specific Lyapunov function for a stochastic
systems, that was developed in (Daafouz, Riedinger, & Iung, 2002) (do
Valle Costa et al., 2006) (Xiong, Lam, Gao, & Ho, 2005) among others.

The stability definition of a stochastic discrete system was presented
by (do Valle Costa et al., 2006) as follows:

Definition 2.5 System (2.124) is said to be stochastically stable if, for
uk ≡ 0 and every initial condition x0 ∈ R

n and θ0 ∈ I, the following
holds:

E

{
∞∑

k=0

||xk||2 |x0, θ0
}
<∞

And subject to the following theorem:
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Theorem 2.17 (do Valle Costa et al., 2006) The unforced system (2.124)
is stochastically stable if, and only if, there exists a set of symmetric and
positive-definite matrices Pi; i ∈ I satisfying

AT
i P

iAi − Pi < 0 (2.126)

where P
i =

∑
j∈I πjiPj

A discrete MJLS is stabilizable if satisfies the next theorem:

Theorem 2.18 (L. Zhang & Boukas, 2009) Consider a closed-loop dis-
crete system (2.124), the corresponding system is stochastically stable, if
there exist matrices Xi > 0, Mi ∀i ∈ I, such that:

(
−X LiQi

∗ −Xi

)
< 0 (2.127)

being:

Qi = AiXi +BiMi (2.128)

Li = (
√
π1iI, . . . ,

√
πmiI)

T (2.129)

X = diag{X1, . . . ,Xm} (2.130)

with the following control action uk = Fixk where Fi =MiX
−1
i

2.6.2 Stability with partly unknown transition probabili-
ties

There exists the possibility that several mode transitions are not known
in a MJLS. These conditions were developed to guarantee the stability
of the system (L. Zhang & Boukas, 2009), despite this feature. The next
notation will be used in this section:

I i
k = {j | πji is known} (2.131)

I i
uk = {j | πji is unknown} (2.132)

Obviously I i = I i
k + I i

uk

A discrete MJLS is stable if satisfies the next theorem:
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Theorem 2.19 (L. Zhang & Boukas, 2009) Consider unforced system
(2.124) with partly unknown transition probabilities. The corresponding
system is stochastically stable, if there exist matrices Pi > 0, i ∈ I, such
that:

AT
i P

i
kAi + πikPi < 0 (2.133)

AT
i PjAi + Pi < 0 ∀j ∈ I i

uk (2.134)

being P
i
k =

∑
j∈Ii

k
πjiPj

Stabilization with partly unknown transition probabilities At
the current section, the stochastic systems have been dealt with a free re-
sponse, now, the systems will have a closed-loop proportional controller,
for a system with partly unknown transition probabilities.

A discrete MJLS is stabilizable if it satisfies the next theorem:

Theorem 2.20 (L. Zhang & Boukas, 2009) Consider a closed-loop dis-
crete system (2.124) with partly unknown transition probabilities. The
corresponding system is stochastically stable, if there exist matrices Xi >
0, Mi ∀i ∈ I, such that:

(
−X i

k Li
kQi

∗ −πikXi

)
< 0 (2.135)

(
−Xj Qi

∗ −Xi

)
< 0 ∀j ∈ I i

uk (2.136)

being:

Qi = AiXi +BiMi (2.137)

Li
k =

(√
πki1i

I, . . . ,
√
πkimiI

)T
(2.138)

X i
k = diag{Xki1

, . . . ,Xkim
}, ∀j ∈ I i

k (2.139)

with the following control action uk = Fixk where Fi =MiX
−1
i

There are also results in which the stability is proven in an interval
where each transition probability lies, see for instance (Xiong et al., 2005;
Kao, Xie, & Wang, 2014), apart from the mere known/unknown setup
discussed above.
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Last, MJLS have received interest in the last years, and consequently
more researchers have made improvements in this matter, in fields like
stability and stabilization (Yan, Song, & Park, 2017), predictive control
(J. Lu, Li, & Xi, 2013) or stochastically stable model predictive con-
trol (Patrinos, Sopasakis, Sarimveis, & Bemporad, 2014; Mej́ıas, 2016).
Nevertheless, predictive control on such models is “easier” than that on
Takagi-Sugeno ones, because Markov-Jump systems do not have “inter-
mediate” models whereas TS do.

2.7 Model Predictive Control

The model predictive control (MPC) is a term that includes a set of algo-
rithms that share a similar features (Mayne, Rawlings, Rao, & Scokaert,
2000) (Lee, 2011)(P. Scokaert & Mayne, 1998). In such algorithms, there
are always the following elements:

� Prediction Horizon: It denotes the number of steps to be pre-
dicted.

� Prediction Model: Used to predict the future states.

� Cost Index: It denotes the objective function in order to be
minimized.

� Optimizer: An algorithm employed to achieve the optimal control
actions, so that the cost index can be minimized.

� Receding Horizon: It means that at each sample time, only the
first control input is applied.

Such as is discussed in (Goodwin, Graebe, & Salgado, 2001): the
essential idea in Model Predictive Control (MPC) algorithms is to for-
mulate controller design as an on-line receding horizon optimization
problem, which is solved (usually by quadratic programming methods)
subject to certain constraints.

The MPC is a control algorithm based on solving online a optimal
control problem, the receding horizon approach can be summarized in
the following steps:
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1. At time k and for the current state xk, solve, on-line, an open-
loop optimal control problem over some future interval taking into
account of the current and future constraints.

2. Apply the first step values in the optimal control sequence.

3. Repeat the procedure at time (k+1) using the current state xk+1.

Given the following system:

xk+1 = f(xk, uk) (2.140)

the MPC at the instant k is computed by solving the next constrained
optimal control problem:

PN (x) : V 0
N (x) = minVN (x,U) (2.141)

being:

U = uk, uk+1, . . . , uk+N−1 (2.142)

VN (x,U) =

N−1∑

k=0

L(xk, uk) + F (xN ) (2.143)

subject to:

uk ∈ U k = 1, . . . , N − 1 (2.144)

xk ∈ X k = 1, . . . , N − 1 (2.145)

xN ∈ Xf (2.146)

where, the set of constrains U ∈ R
m, the feasible set X ∈ R

n and the
terminal set Xf ∈ R

n.

2.7.1 Quadratic Cost index

We have described the MPC algorithm in a rather general nonlinear
setting. However, it might reasonably be expected that further insights
can be obtained if one specializes the algorithm to cover the linear case
with quadratic cost function. Again we will use a state space set-up.
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Let us therefore assume that the system is described by the following
linear time invariant model (Goodwin, Seron, & De Doná, 2006):

xk+1 = Axk +Buk (2.147)

yk = Cxk (2.148)

where xk ∈ R
n, uk ∈ R

m and yk ∈ R
n.

By assuming that (A,B,C) are stabilizable and detectable, and as-
suming in the problem of tracking a constant set-point ys,that is, we
wish to regulate, to zero, the error ek = yk − ys.

Given knowledge of the current state measurement x(0), our aim is
to find the M -move control sequence u0, u1, . . . , uM−1 that minimizes
the finite horizon performance index (Goodwin et al., 2006):

J0 = [xN − xs]
TP [xN − xs] +

N−1∑

k=0

eTkQek

+
M−1∑

k=0

[uk − us]
TR[uk − us] (2.149)

being P > 0, Q > 0 and R > 0; the terminal, sequence and inputs
weighing matrices. In the above expression, us and xs denote the steady
state values:

us = −[C(I −A)−1B]−1ys (2.150)

xs = (I −A)−1Bus (2.151)

Finally, the prediction model to compute an optimization problem
can be formulated as:

X = ΓU +Θx0 (2.152)
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where:

X =
(
x1 x2 . . . xN

)T
(2.153)

U =
(
u0 u1 . . . uM−1

)T
(2.154)

Θ =




A
A2

...
AN


 (2.155)

Γ =




B 0 . . . 0 0
AB B . . . 0 0
...

...
. . .

...
...

AM−1B AM−2B . . . AB B
AMB AM−1B . . . A2B AB

...
...

. . .
...

...
AN−1B AN−2B . . . . . . AN−MB




(2.156)

being N the prediction horizon, andM the control horizon, thusM ≤ N

2.7.2 Bellman Theorem

The Bellman principle reduces an infinite period of optimization to only
two periods, thus, the optimal control input is more easy to achieve i.e.
if a generical control input is optimal in two consecutive time instants,
also it will be for all the other periods (R. E. Bellman & Dreyfus, 2015).

It writes the value of a decision problem at a certain point in time
in terms of the payoff from some initial choices and the value of the
remaining decision problem that results from those initial choices. This
breaks a dynamic optimization problem into simpler subproblems, as
indicated by the Bellman theorem (R. Bellman, 1956):

Theorem 2.21 The Bellman optimality condition states that: If uy =
uoptt , t ∈ [to, tf ], is the optimal solution for the above problem,then uoptt

is also the optimal solution over the (sub)interval [to+ δt, tf ],where to <
to + δt < tf .
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2.7.3 Non-lineal predictive control

Although, most of the industrial processes are not linear, the linear pre-
dictive control is the most widely extended. Mainly, because of two
reasons(Camacho & Bordons, 2013): the simplicity to solve the opti-
mization problem by Quadratic Programming (QP) and the adequacy
of the linear models within a bounded region.

But some cases linear models are not accurate enough, either be-
cause the linearization is lax or region is too broad. In these cases, it is
necessary to use a non-lineal models (E. S. Pérez, 2011).

The main handicap to use these models, is that QP cannot be used
to solve the optimization problem, and is necessary to use a Sequential
Quadratic Programming (SQP), what solve a sequence of optimization
subproblems, each of which, optimizes a quadratic index subject to linear
constraints that change in each iteration.

This technique has several issues (Biegler, 2000):

� In the original method is necessary the second order derivative of
nonlinear functions, that sometimes can’t be calculated

� The global convergence of the algorithm is not always guaranteed

� At each sample time, several QP problems must be solved, what
may imply a high computational cost.

� It is possible that the intermediate solutions provided by the algo-
rithm do not satisfy the original constraints.

Nonlinear predictive control is currently an active field of research.
There does not exist a generic guaranteed methodology for a general
case. Some approaches listed in (Camacho & Bordons, 2013) are:

� Extended linear MPC: Originally introduced for the DMC (Her-
nandez & Arkun, 1991). A term that does not depends on the
future inputs, so that it allows solving the problem by means of
QP.

� Local models: It lies in linearizing the nonlinear model around
different operating points, successively in each optimization (Kou-
varitakis, Cannon, & Rossiter, 1999)(Townsend & Irwin, 2001).
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� Suboptimal nonlinear MPC: It was proposed by (P. O. Scokaert,
Mayne, & Rawlings, 1999). The idea is instead of minimizing the
cost index, to seek a cost index so that satisfies the restrictions,
for decreasing the value of this index latter.

� Using short horizon: The idea is compute only the first control
action in the sequence (the unique that is going to be applied),
and use the linearized model to optimize the other control actions.
It is dealt with in (Kouvaritakis & Cannon, 2001).

� Control sequence decomposition: This methodology divides the
control actions in two groups, a control base sequence and a free
increment of this ones. Then, the response is separated due to
each one, by using for the first one a nonlinear model and other
lineal for the second one, it allows optimizing the free response by
means of a QP. Generally is necessary to use a iterative process
that sums two sequences, being such sum a new base sequence, it
is done until the free sequence is zero.

� Feedback linearization: It consists in a cancellation of the nonlinear
part of the system, which implies to have a quadratic cost index,
but restrictions nonlinear, which are approximated by linear ones.
equations(Botto, Van Den Boom, Krijgsman, & Da Costa, 1999).

� MPC based on Volterra models: When the nonlinear model of the
system is a second order Volterra model may be used a iterative
process, but very quick (Pearson & Ogunnaike, 2002), what, by
means of the computing of several QP’s can be obtained the op-
timal. A special case of Volterra models are Hammerstein and
Wiener models, that allow solving the optimization by the cancel-
lation of non linear part.

� Neural Networks: Because of, neural networks are universal ap-
proximations, that may also be used to optimize cost function
offline (Arahal, Berenguel, & Camacho, 1998).

Nowadays, current developments in MPC range from Contractive
Sets (Ariño, Pérez, Sala, & Bedate, 2014), to Hammerstein models
(Khani & Haeri, 2015) or LMIs (Xia, Yang, Shi, & Fu, 2010), as well as
applications in (Ariño, Pérez, & Sala, 2010), and (Q. Lu, Shi, Lam, &
Zhao, 2015). Nonlinear optimisation is pursued in (Biegler, 2010; Diehl,
Ferreau, & Haverbeke, 2009; Andersson, Åkesson, & Diehl, 2012).
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2.7.4 Fuzzy Model Predictive Control

The first references to fuzzy model predictive control with a certain en-
tity are found in (De Oliveira & Lemos, 1995) where the fuzzy models are
introduced in the model predictive control due to the capacity of these
models to be identified online. A multi-step prediction is implemented
and with this prediction a fuzzy controller is set. As can be observed,
this type of implementation falls far short of the ideas of linear model
predictive control and therefore the development of the thesis. In the
same line there are works such as (Maeda, Shimakawa, & Murakami,
1995) and (Wong, Shah, Bourke, & Fisher, 2000).

Other interesting applications of the model predictive control to
Takagi-Sugeno fuzzy systems are found in (Roubos, Mollov, Babuška,
& Verbruggen, 1999), in this article the authors treat predictive control
with all its basic ingredients. The optimization problem is obtained with
the linearized model in a plausible prediction of the model. These ideas
are similar to the implementation proposed in Chapter 6 of the thesis,
without considering feasibility issues, terminal maximal polyhedral set
and stability of a suboptimal solution treated in Chapter 6. In the same
line there are the works of (Li, Li, & Xi, 2004) (Abonyi, Nagy, & Szeifert,
2001) (Sivakumar, Manic, Nerthiga, Akila, & Balu, 2010) (Boumehraz
& Benmahammed, 2005).

The work (Kavsek-Biasizzo, Skrjanc, & Matko, 1997) and (T. Zhang,
Feng, & Lu, 2007) computes a linear MPC by freezing the memberships
at a particular instant and assuming, that, these ones will be constant
in the future; it might work in practice, but it lacks theoretical justi-
fication in fast transients. The work (Y. Lu & Arkun, 2000) presents
an interesting approach in which a sequence of quadratic cost bounds
and state-feedback gains solves (sub optimally) the MPC problem. The
great advantage is its computational tractability; however, it is well-
known that even for the linear case, under constraints, the optimal value
function is not quadratic in the state, so the approach is conservative.
Recent works, such as (Q. Lu et al., 2015), discusses networked interval
type-2 systems, but their results are still based on the 1-step equation
discussed above, so they are not solving a multi-step problem such as
most MPC literature understands. Another interesting result is found in
(Garćıa-Nieto, Salcedo, Mart́ınez, & Reynoso-Meza, 2010). It proposed
to model an N -step fuzzy system so that the membership functions are
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constant at each step, but the model matrices are modified. In this way
a simple predictive control is achieved to be solved, although it is true
that it is not able to correctly represent the TS fuzzy system.

Finally, the work of (Bedate, 2015) has served as the basis for the
development of the thesis. In this work, the prediction for a fuzzy sys-
tem in all its complexity is presented. The controller dependents on the
values of membership function at the prediction instant and an state
feedback PDC control law. The cost index is dealt with an approxima-
tion to its real value, while the constraints have to be satisfied for all
possible values of the membership functions. Stability is achieved by
setting a contractive function, that decreases with each step of the sys-
tem. The present thesis takes the idea of exploring to the maximum the
constraints for any possible value of the membership functions, but also
the control action depends on the membership function of the prediction
instant and of all previous ones up to current time. The proposed cost
index is minimized for the worse case; as its value decreases on time, it
can be stated as Lyapunov function in order to prove stability.

2.8 Invariant Set theory

The invariant set theory has been applied since the 90s, with a suc-
cessful outcomes by (Blanchini, 1999) (Kerrigan, 2000), in the control
engineering field.

In this section, we are going to outline the main concepts in this
theory.

First of all, let us consider a polytopic region Ω, which will be ex-
pressed as:

Ω = {x ∈ R
n|Tx+ s ≤ 0} (2.157)

The definition of invariant set was first presented by (Blanchini, 1999),
and it can be expressed as:

Definition 2.6 Invariant set (Blanchini, 1999) (Kerrigan, 2000): The
set Ω ⊂ R

n is positively invariant for the system xk+1 = f(xk) if and
only if for all xk ∈ Ω ⇒ f(xk) ∈ Ω
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Another interesting definition is the closed loop invariant set, i.e. when
a system is controlled by a control action uk:

Definition 2.7 Control invariant set (Blanchini, 1999) (Kerrigan, 2000):
The set Ω ⊂ R

n is positively invariant for the system xk+1 = f(xk, uk)
if and only if for all xk ∈ Ω ⇒ ∃uk ∈ U : f(xk) ∈ Ω

Robust invariant Sets:

Analogous to previous lines, but now for a systems subject to distur-
bances ωk, where ωk ∈ W, the definition of a Robust positively invariant
set is:

Definition 2.8 Robust invariant set (Blanchini, 1999) (Kerrigan, 2000):
The set Ω ⊂ R

n is robust positively invariant for the system xk+1 =
f(xk, ωk) if and only if ∀x0 ∈ Ω for all ωk ∈ W, so that the system
evolution satisfies xk ∈ Ω,∀k ∈ N.

In other words, Ω is robust invariant, if and only if, the next condition
holds:

xk ∈ Ω ⇒ xk+1 ∈ Ω, ∀wk ∈ W (2.158)

The same for a robust control invariant set, which can be defined as:

Definition 2.9 Robust control invariant set(Blanchini, 1999) (Kerri-
gan, 2000): The set Ω ⊂ R

n is robust invariant for the system xk+1 =
f(xk, uk, ωk) if and only if ∀x0 ∈ Ω and ∀wk ∈ W, exists uk ∈ U, so that
the system evolution satisfies xk ∈ Ω,∀k ∈ N.

In other words, Ω is robust invariant, if and only if:

xk ∈ Ω ⇒ ∃uk ∈ U : xk+1 ∈ Ω, ∀wk ∈ W (2.159)

Note that, actually, invariant sets are quite related to Lyapunov level
sets: if V is a Lyapunov function, its level sets {V (x) ≤ γ} are in-
variant. Also, robust invariant sets are, too, related to the concept of
inescapable sets conceived as level sets of a Lyapunov-like function (Sal-
cedo, Mart́ınez, & Garćıa-Nieto, 2008; Sala & Pitarch, 2016). Such level
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sets are, however, in most cases, conservative (as there are larger invari-
ant sets than the, for instance, ellipsoidal bounds arising from quadratic
Lyapunov functions).

Nevertheless, exact computation of the maximal invariant sets, in a
modelling region can be carried out in the linear case and an asymptot-
ically exact inner approximation for the Takagi-Sugeno shape indepen-
dent approach, via the so-called one-step sets discussed below.

2.8.1 One-step Set

The One-step set is another of the interesting concepts employed in the
set theory field, and necessary to achieve the invariant set.

The definition of invariant one-step set was presented by (Blanchini,
1991)(Kerrigan, 2000) like that:

Definition 2.10 The closed-loop one-step set Q(Ω) (Blanchini, 1991)
(Kerrigan, 2000): The Q(Ω) is the set of states in R

n for which an
admissible control input exists that will guarantee that the system will be
lead to Ω in one step.

what is the same:

Q(Ω) = {xk ∈ R
n|∃uk ∈ U : f(xk, uk) ∈ Ω} (2.160)

Similar for a system subject to disturbances ωk, with ωk ∈ W:

Definition 2.11 The robust closed-loop one-step set Q(Ω) (Blanchini,
1991) (Kerrigan, 2000): The Q(Ω) is the set of states in R

n for which
an admissible control input exists which will guarantee that the system
will be lead to Ω in one step, for all allowable disturbances ωk ∈ W.

Q(Ω) = {xk ∈ R
n|∃uk ∈ U : f(xk, uk, wk) ∈ Ω,∀wk ∈ W} (2.161)

Other definition used in the current thesis is the robust controllable
i -step set Ki(Ω,T), which is defined as:
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Definition 2.12 Given an arbitrary target T ⊂ Ω the set Ki(Ω,T) for
the system xk+1 = f(xk, uk, wk) is defined as:

Ki(Ω,T) = {x0 ∈ R
n|uk ∈ U,

xk ∈ Ωi−1
k=0, xi ∈ T, ∀wk ∈ W

i−1
k=0} (2.162)

From the above definition, Ki(Ω,T) is the largest subset of Ω, where
the states lies into Ω up to the i-1 step, and moreover in the i step,
states get into T which T ∈ Ω. The Ki+1(Ω,T) can be computed as
follows:

Ki+1(Ω,T) = Q(Ki) ∩ Ω (2.163)

And finally, in order to obtain the invariant set, the algorithm 1 is ap-
plied. It was developed by (Blanchini, 1999) and enhanced by (Kerrigan,
2000):

Algorithm 1 Calculation of the closed-loop N -step invariant set
KN (Ω,T)

1. Make i = 0 and K0(Ω,T) = T

2. While i < N :

(a) Ki+1(Ω,T) = Q (Ki(Ω,T)) ∩Ω

(b) If Ki+1(Ω,T) = Ki(Ω,T), end algorithm and KN (Ω,T) =
K∞(Ω,T) = Ki(Ω,T).

(c) i=i+1

2.8.2 Approximated One-Step Set for TS Fuzzy Systems

So far, the robust sets for linear systems have been dealt with in a
generic way, but now, the goal is to formulate previous statements in
more detail for non-linear systems, so that, it is necessary to employ a
TS fuzzy systems with local models. This methodology is going to be
presented in the following lines (Bedate, 2015).

Given a TS system with a PDC controller u =
∑r

i=1 Fix. Then, by
following the results in Section 2.5.7 the d-Polya expanded closed-loop
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TS system is (Ariño, Perez, Bedate, & Sala, 2013):

xk+1 =
∑

i∈I+
d

niµi(G̃ixk + B̃iwwk) (2.164)

being:

G̃i =
1

ni

∑

j∈P(i)

(Aj1 +Bj1Fj2) B̃iw =
1

ni

∑

j∈P(i)

Bj1w (2.165)

with
∑

i∈I+
d
niµi = 1

In order to improve the approximation of one-step fuzzy set, Polya
expansion is applied (Ariño et al., 2013), note that, a similar notation
is formulated in the section 2.5.7:

xk+1 =

(
r∑

i=1

µi

)d−2

· xk+1 =
∑

i∈Id

µi(Gi1i2xk +Bi1ωωk) (2.166)

From the previous equation:

∑

i∈Id

µi (Gi1i2xk +Bi1ωωk) =

∑

i∈I+
d

∑

j∈P(i)

µi (Gj1j2xk +Bj1ωωk) =

∑

i∈I+
d

µi
∑

j∈P(i)

(Gj1j2xk +Bj1ωωk) =

∑

i∈I+
d

niµi
∑

j∈P(i)

(
Gj1j2xk +Bj1ωωk

ni

)
=

∑

i∈I+
d

niµi

(
G̃ixk + B̃iωωk

)
(2.167)

Taking into account the above information, the one-step set will be for-
mulated as:

Q̃(Ω) = {xk ∈ R
n|T

(
G̃ix+Biωωj

)
+ s ≤ 0, ∀j = 1, . . . , nW,∀i ∈ I

+
d }

(2.168)
where ωj are the vertices of W and nW is the number of vertices.

The process to compute the invariant set is very similar to the dis-
cussed one in Section 2.8.1 by means of Algorithm 1.
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2.9 Conclusions

In the current chapter, some concepts have been presented in order to
understand the main contributions of the thesis, this background has in-
cluded several topics such as Fuzzy Control, Predictive Control, Markov-
Jump systems’ Control and Set Theory.

At the beginning, stability formulation and the LMIs have been
shown, because these ones are two of the most important math tools
in the control engineering, especially in fuzzy control.

After, TS fuzzy control systems have been explained together with
techniques and methodologies to deal with these systems. In such sec-
tion, the main concepts introduced have been Stability/Stabilization,
PDC controller, Guaranteed Cost, Constraints on inputs and/or out-
puts, and relaxation methodologies mainly based on copositive program-
ming, all these focused on TS systems.

Then, the stability and control of Markov-Jump linear systems has
been deal with, as well as, the formulation of these systems. Moreover,
there are presented the policies to study the stability and stabilization
in the stochastic control field.

Afterwards, the predictive control is summarised, which is one of the
most important issues discussed in this thesis. There are listed the main
features of this control, such as cost index , Bellman theorem, Riccati
equation, receding horizon, and non-linear predictive control.

At the end, Invariant Sets and their properties are explained, as well
as techniques to achieve a polyhedral invariant set, both for linear or
fuzzy systems.





Chapter 3

Improved stability for Takagi-Sugeno systems

by applying Polya’s Theorem with multi-indices

The present chapter researches the inherent tensor-product structure
of the Takagi-Sugeno models obtained by means of non-lineal sector
methodology (Tanaka & Wang, 2004), so that, it is possible to obtain
more relaxed stability conditions, that, if these ones were achieved for a
generic Takagi-Sugeno model (Sala & Ariño, 2007a). It occurs because
a fraction of the modeling information of these systems is usually lost,
when the stability conditions are applied, such as was formulated in (Ar-
iño & Sala, 2007). The current work extends the previous contribution
to get a asymptotically exact conditions by use of Polya theorem for TS
systems expressed in tensor-product structure.

A preliminary version of the contents of this chapter appears in
(Querol et al., 2014).

3.1 Introduction

Currently, Takagi-Sugeno (TS) fuzzy systems are widely employed for
modelling non-linear processes. It is because, there exists a system-
atic modelling methodology denoted as sector non-linearity (Tanaka &
Wang, 2004). By means of this technique, the obtained Takagi-Sugeno
model is equivalent to the non-linear in a compact bounded region.

The TS systems modelled by this technique or similar techniques
consist in an interpolation of local models (Tanaka & Wang, 2004). The
validity of these models is given by a set of rules, each one depends on
one or several membership functions, µij, what assessment the level of
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compliance for the rule. If each model depends on several functions, the
product of them is necessary to obtain the interpolation.

In most of previous works, connection among the local models has
been omitted, as well as, the product of membership functions µij. These
works assume a single membership function for each one of the local mod-
els. Both descriptions of the system are equivalent, the second approach
simplifies the computing to obtain the controller by means of LMIs, but
the system loses information about the model structure which produces
that the controller might be too much conservative. It was widely dis-
cussed in (Ariño & Sala, 2007), where, there is proved that, a better
PDC design can be achieved by maintaining the product structure in
the membership functions µij. Currently, it has been noted that the
stability conditions presented were conservatives, i.e. sufficient but not
necessary. This one has led to the suggestion, such as it has been done
for another kind of models (Sala & Ariño, 2007a), that, it is possible to
obtain stability conditions which are asymptotically necessary, as well
as sufficient.

The structure of this chapter is divided into the next four sections: at
the beginning there are the Preliminaries, where, stability conditions
and relaxation ones based on Polya theorem are presented. Next section
is Notation and Contributions, there are discussed the notation as
well as the main contributions of this chapter, in order to compute new
relax conditions based on Polya expansion. Following section contains
several Examples, where, the potential and the improvement achieved
by means of the current relaxation methodology are tested and com-
pared. Finally, Conclusions, where, the results of the current work are
assessed and discussed.

3.2 Preliminares

As has been mentioned previously, a TS system basically consists of
several models linked with a set of rules, such as can be read in the next
expression:

IF µ1,i1(z1(t)) and . . . and µp,ip(zp(t))

THEN

{
ẋ(t) = Aix(t) +Biu(t)

y(t) = Cix(t)

(3.1)
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where i = (i1, i2, . . . , ip).

Usually, for brevity the notation is simplified, so that, the indices of
vector i are handled as a single one. In this chapter, these indices are
not simplified, because, all the available information will be employed
on the development of new stability conditions. Thus, the fuzzy system
can be written as:

ẋ =

r1∑

i1=1

· · ·
rp∑

ip=1

µ1,i1 . . . µp,ip(Aix+Biu) i = (i1, i2, . . . , ip) (3.2)

For brevity, there are defined µi = µ1,i1 . . . µp,ip and
∑

i∈I =
∑r1

i1=1 . . .

· · ·∑rp
ip=1 where I denotes the set for all the possible values of i.

Here, we explain a method in order to design a PDC (Parallel Dis-
tributed Controller) (Tanaka & Wang, 2004). So, the control action is
formulated as:

u =
∑

i∈I

µiFix (3.3)

Therefore, the system behavior in closed-loop can be expressed with a
double sum, just as it is displayed in the next expression:

ẋ =
∑

i∈I

∑

j∈I

µiµj(Ai +BiFj)x (3.4)

i = (i1, i2, . . . , ip) j = (j1, j2, . . . , jp) (3.5)

µi = µ1,i1 , . . . , µp,ip (3.6)

Stability study and stabilization problem of the TS systems, have been
widely dealt with for the last ten years by several researchers like (Tanaka
&Wang, 2004)(Guerra & Vermeiren, 2004)(Tuan et al., 2001)(Fang, Liu,
Kau, Hong, & Lee, 2006), and more recently by (Ariño, Pérez, Sala, &
Bedate, 2014). As intermediate outcome, it can be employed, in order
to check the stability, the stabilization, or several capabilities, such as
decay-rate, disturbance rejection. It is enough with assessing, if a second
order matrix polynomial, formed by membership functions, is negative
definite.

∑

i

∑

j

µiµjx
TQijx < 0, ∀x 6= 0 (3.7)
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Generally, this problem is carried out with the membership functions
simplified, because, it is assumed that given i, j, k and l then µiµj 6=
µkµl, what is not always right, such as is indicated as follows:

µ(1,1) = µ11µ21, µ(2,2) = µ12µ22,

µ(1,2) = µ11µ22, µ(2,1) = µ12µ21

Note that µ(1,1)µ(2,2) = µ(1,2)µ(2,1), this idea was developed by (Ariño
& Sala, 2007), where some stability conditions are obtained exploiting
these equalities. The problem of the conditions obtained in such work, it
is that these were not asymptotically exact because the Polya Relaxation
in (Sala & Ariño, 2007b), discussed on Section 2.5.7 of this thesis, was
not yet published. This issue is tackled in this work.

Following, in order to explain this relaxation sequel, there are pre-
sented the contributions of (Sala & Ariño, 2007a), as well as (Powers &
Reznick, 2001), where Polya’s theorem application is presented to relax
inequalities with the next structure:

∑

i

∑

j

µiµjx
TQijx < 0, ∀x 6= 0 (3.8)

by keeping the membership functions in a simplex i.e. µi > 0,
∑

i µi = 1.

So, the equation (3.8) can be expressed as:

(
r∑

l=1

µl

)d−2 r∑

i=1

r∑

j=1

µiµjx
TQijx < 0 (3.9)

r∑

i1=1

r∑

i2=1

· · ·
r∑

id=1

µi1µi2 . . . µidx
TQi1i2x < 0, ∀x 6= 0 (3.10)

This expression can be arranged like it is discussed in (3.13), by doing
a notation change, such as is discussed in the following lines:

Id,r = {i = (i1, i2, . . . , id) ∈ N
p|1 ≤ ij ≤ r ∀j = 1, . . . , d} (3.11)

another way to refer to kth element in the index i is i(k) = ik.

I
+
d,r = {i ∈ Id,r|ik ≤ ik+1, k = 1, . . . , d− 1} (3.12)
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Note that, I+d,r contains all the indices of different monomials belonging
to the polynomial (3.10), thus, this polynomial can be expressed using
only these monomials, i.e.

∑

i∈Id,r

µix
TQix =

∑

i∈I+
d,r

µix
T Q̃ix < 0, ∀x 6= 0 (3.13)

where Qi = Qi1,i2 .

Therefore, the coefficients value of polynomial Q̃i are straightforward
to get from (3.14), such as is itemized in (Sala & Ariño, 2007a).

Q̃i =
∑

j∈P(i)

Qj i ∈ I
+
d,r (3.14)

taking into account that P(i) denotes all the possible permutations of
the vector i.

3.3 Notation and main work

At this section, the notation is developed, which will be employed to
carry out the relaxation of the inequalities by means of Polya theorem
(Sala & Ariño, 2007a).

The notation (3.7) is similar to the employed one in (Tanaka &Wang,
2004), which consists of arranging the indices for rules, but, when Polya
is applied (Sala & Ariño, 2007a), the computation of the polynomial
coefficients of (3.7) is a complex problem. This issue makes interesting
to think up a notation that collects the antecedents of each rule, to ease
the coefficients collecting.

Therefore, Qi is defined so that this one is equivalent to Qi,j, pre-
sented in (3.7). Such as is written in the following example:

Qij = Q(i1,i2,...,ip),(j1,j2,...,jp) (3.15)

Qī = Q(i1,j1),...,(ip,jp) (3.16)

In order to explore all the possible values of Qī, the next set will be
defined:

Dp,d = {i = (i1, i2, . . . , ik, . . . , ip)|ik ∈ Id,rk∀k = 1, 2, . . . , p} (3.17)
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According to the new indices arrangement, stated in (3.15) and (3.16),
as well as, set definition (3.17); it is possible to formulate the condition
(3.7) as follows:

Ξ(t) =
∑

ī∈Dp,2

µ̄ix
TQīx (3.18)

Let membership functions be µ̄i > 0 and
∑

ī∈Dp,1
µ̄i = 1. In the same

manner as was done in (3.9), it is possible to multiply the conditions
(3.18) by (

∑
j̄∈Dp,1

µj̄)
d−2 = 1.

Ξ(t) =


 ∑

j̄∈Dp,1

µj̄




d−2
∑

ī∈Dp,2

µ̄ix
TQīx (3.19)

Ξ(t) =
∑

ī∈Dp,d

µ̄ix
TQīx (3.20)

At this point, like in (3.13), a polynomial defined by the membership
functions can be formulated as the following sum of monomials:

∑

ī∈Dp,d

µ̄iQī =
∑

ī∈D+
p,d

µ̄iQ̃ī (3.21)

The set D+
p,d is defined in (3.22), so that monomials of membership func-

tions are not repeated in the sum.

D
+
p,d = {̄i = (i1, i2, . . . , ik, . . . , ip)|ik ∈ I

+
d,rk

∀k = 1, 2, . . . , p} (3.22)

The coefficients Q̃ī are obtained by joining all the equal products of µ̄i,

such as is displayed in the next expression, where Q̃ī is:

Q̃ī =
∑

j̄∈P (̄i)

Qj̄ ī ∈ D
+
p,d (3.23)

By defining P(i) as all the possible permutations of each one of sub-
indices ik of ī

P (̄i) = {̄j | jk ∈ P(ik), k = 1 . . . p} (3.24)
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Clearly, considering that, the value of all the monomials µ̄i is positive,

the polynomial is negative if all the coefficients Q̃i are negative too. This
condition is, indeed, sufficient but not necessary. The Polya theorem (see
Theorem 2.2 on page 20) proves that, as the value of d increases, this
condition is each time less conservative, and when d tends to infinity,
these coefficients have to be negative.

As it is noted above, efficient computerization of coefficients in the
polynomial (3.21) is not a easy problem. In order to simplify this issue, it
is necessary to have in mind thatQī = Q(i1(1),i1(2),...,i1(d))...(ip(1),ip(2),...,ip(d))

takes the same value for a different set of indices ī, j̄ where ik(1) = jk(1)
and ik(2) = jk(2), since this one is obtained from a double sum i.e.
Qī = Q(i1(1),i1(2))...(ip(1),ip(2)). This consideration shows that some of the
polynomial coefficients are repeated, therefore, it is not necessary to cal-
culate all the sum about P (̄i), such as, it has been defined in (3.24) to
obtain Q̃i.

In fact, it is possible to formulate Q̃ī =
∑

j̄∈Dp,2
Cī(̄j)Qj̄, where Cī

is the number of times that Qj̄ element appears in the sum. This value

can be calculated as the number of permutations in the index ī, when
the j̄ values have been deleted. In the case when the j̄ values are not
in ī, the Cī(̄j) is 0. For instance, for the indices ī = (1, 1, 1, 2)(1, 1, 2, 2)
and j̄ = (1, 2)(1, 2), the index formed after the values deleting will be
ī − j̄ = (1, 1)(1, 2). To calculate the number of times that this value
appears in the sum, the number of possible permutations of each element
is computed and multiplied. It is observed that, for (1, 1) there is a single
permutation and for (1, 2) there are two possible permutations. Thus,
it is clear that C(1,1,1,2)(1,1,2,2)((1, 1)(1, 2)) = 2.

In order to obtain systematically the value of Cī(̄j), similar method
is employed in (Ding, 2010), the following combinatorial expression may
be used:

Ci1,...,ip(j1, . . . , jp) =

p∏

k=1

(d− 2)!

M(ik, jk)
(3.25)

being

M(i, j) =
∏

l∈i

(m(i, l) −m(j, l))! (3.26)

Where the function m(i, l) denotes the scalar l multiplicity in a vector
i, i.e. if i = (1, 1, 2, 3) then m(i, 1) = 2, m(i, 2) = 1 and m(i, 3) = 1.
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3.4 Examples

3.4.1 Example 1

Let’s set out a example which consists of a system with two member-
ship functions and two antecedents. With current notation, the system
equations are written as:

ẋ =
∑

ī∈Dp,1

µ̄i(Aīx+Bīu) (3.27)

beingAī = Ai1(1),i2(1),...,ip(1), Bī = Bi1(1),i2(1),...,ip(1) and µ̄i = µi1(1)µi2(1) . . .
. . . µip(1). The system is controlled by a closed loop PDC: u =

∑
j̄∈Dp,1

µj̄Fj̄x

ẋ =
∑

ī∈Dp,1

µ̄i(Aīx+Bī

∑

j̄∈Dp,1

µj̄Fj̄x) (3.28)

the indices ī and j̄ can be grouped in a new index in the set Dp,2

ẋ =
∑

ī∈Dp,2

µ̄i(Aī(1) +Bī(1)F̄i(2))x (3.29)

where ī(1) = (i1(1), . . . , ip(1))

In order to guarantee Lyapunov stability in the nonlinear system,
it is necessary to check that, for a positive definite P matrix, the next
condition is satisfied:

xTPẋ+ ẋTPx < 0 (3.30)

hence, in order to satisfy previous condition (3.30) for a fuzzy system, a
sufficient condition (shape-independent) is the following set of inequali-
ties:

Q̃ī > 0 ∀ ī ∈ D
+
p,d (3.31)

where, Q̃ī is formulated in (3.23) and associated matrices Qī are defined
as:

Qī = −Xī(1)A
T
ī(1)

−Aī(1)X +Bī(1)Mī(2) +MT
ī(2)
BT

ī(1)
(3.32)

being

X > 0 X = P−1 (3.33)

Mī(2) = F̄i(2)P (3.34)
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If sum expansion is not applied (d = 2), for a system with three mem-
bership functions and two antecedents for each one, it occurs that the
coefficients Qī that form Q̃ī for ī = (1, 2)(1, 2)(1, 2) are:

Q̃(1,2)(1,2)(1,2) = Q(1,2)(1,2)(1,2) +Q(1,2)(1,2)(2,1)

+Q(1,2)(2,1)(1,2) +Q(1,2)(2,1)(2,1)

+Q(2,1)(1,2)(1,2) +Q(2,1)(1,2)(2,1)

+Q(2,1)(2,1)(1,2) +Q(2,1)(2,1)(2,1) (3.35)

Following with the previously presented case, we can see what happens
if the sum is expanded up to d = 4, for a system with two membership
functions and two antecedents each one. The coefficients Qī belonging

to Q̃ī for the case ī = (1, 1, 1, 2)(1, 1, 1, 2) are:

Q̃(1,1,1,2)(1,1,1,2) =

C(1,1,1,2)(1,1,1,2)((1, 1)(1, 1))Q(1,1)(1,1)

+ C(1,1,1,2)(1,1,1,2)((1, 1)(1, 2))Q(1,1)(1,2)

+ C(1,1,1,2)(1,1,1,2)((1, 1)(2, 1))Q(1,1)(2,1)

+ C(1,1,1,2)(1,1,1,2)((1, 2)(1, 1))Q(1,2)(1,1)

+ C(1,1,1,2)(1,1,1,2)((1, 2)(1, 2))Q(1,2)(1,2)

+ C(1,1,1,2)(1,1,1,2)((1, 2)(2, 1))Q(1,2)(2,1)

+ C(1,1,1,2)(1,1,1,2)((2, 1)(1, 1))Q(2,1)(1,1)

+ C(1,1,1,2)(1,1,1,2)((2, 1)(1, 2))Q(2,1)(1,2)

+ C(1,1,1,2)(1,1,1,2)((2, 1)(2, 1))Q(2,1)(2,1)

(3.36)

C(1,1,1,2)(1,1,1,2)((1, 1)(1, 1)) =
2!

1!1!

2!

1!1!
= 4 (3.37)

C(1,1,1,2)(1,1,1,2)((1, 1)(1, 2)) =
2!

1!1!

2!

2!0!
= 2 (3.38)

C(1,1,1,2)(1,1,1,2)((1, 1)(2, 1)) =
2!

1!1!

2!

2!0!
= 2 (3.39)

C(1,1,1,2)(1,1,1,2)((1, 2)(1, 1)) =
2!

2!0!

2!

1!1!
= 2 (3.40)

C(1,1,1,2)(1,1,1,2)((1, 2)(1, 2)) =
2!

2!0!

2!

2!0!
= 1 (3.41)
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C(1,1,1,2)(1,1,1,2)((1, 2)(2, 1)) =
2!

2!0!

2!

2!0!
= 1 (3.42)

C(1,1,1,2)(1,1,1,2)((2, 1)(1, 1)) =
2!

2!0!

2!

1!1!
= 2 (3.43)

C(1,1,1,2)(1,1,1,2)((2, 1)(1, 2)) =
2!

2!0!

2!

2!0!
= 1 (3.44)

C(1,1,1,2)(1,1,1,2)((2, 1)(2, 1)) =
2!

2!0!

2!

2!0!
= 1 (3.45)

3.4.2 Example 2

In this section, an illustrative example is proposed, this one shows a
TS model formed by 3 membership functions that can take 2 values,
therefore, we have a model with 8 interpolated linear models. To assess
and compare the current work contribution, two variables a y b have
been employed. It allows solving the problem, knowing for which values
of these parameters is possible to prove the stabilization of the system
with a PDC (Tanaka & Wang, 2004), with different methodologies and
sum expansions d. The tests have been carried out by means of two
methodologies: (Sala & Ariño, 2007a) and the proposed in the current
work.

A1,1,1 = A1 =

(
0.5 −0.05
0 −5

)

B1,1,1 = B1 =

(
a+ 0.01

0.1

) (3.46)

A1,1,2 = A2 =

(
−10 0
0 −10

)

B1,1,2 = B2 =

(
1
0.2

) (3.47)

A1,2,1 = A3 =

(
−1 0.1
0 −2

)

B1,2,1 = B3 =

(
1
0.4

) (3.48)



Improved stability for Takagi-Sugeno systems by applying
Polya’s Theorem with multi-indices 67

A1,2,2 = A4 =

(
b −0.01
0 −3

)

B1,2,2 = B4 =

(
1

0.05

) (3.49)

A2,1,1 = A5 =

(
−0.7 0.2
0 −1

)

B2,1,1 = B5 =

(
1
0.1

) (3.50)

A2,1,2 = A6 =

(
2 −0.01
0 −2

)

B2,1,2 = B6 =

(
1
0.6

) (3.51)

A2,2,1 = A7 =

(
−0.5 0.1
0 −1

)

B2,2,1 = B7 =

(
1
0.3

) (3.52)

A2,2,2 = A8 =

(
b −0.05
0 −3

)

B2,2,2 = B8 =

(
1
0.2

) (3.53)

So, if the following conditions are satisfied, for all “flattened”vertices
A1, . . . , A8, the system becomes stable:

Qij = −XAi −AT
i X +BiMj +MT

j B
T
i (3.54)

X > 0 (3.55)

Mj = FjX
−1 (3.56)

In the figure 3.1, with the methodology developed by (Sala & Ariño,
2007a), there are displayed the parameters a and b for which is possible
to achieve a PDC controller, in order that the system becomes stable,
note that, in this particular case, obtained results have been the same
ones, regardless of d value. On the other hand, in the figure 3.2, there are
the values for the a and b parameters for which the system is stable with
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a specific PDC, employing the methodology developed in the current
work, in section 3.3. In both cases have been expanded the membership
sums degree up to values of d = 2, 3, 4, 5, 6, so comparing the figures the
improvement is significant.

−8 −7 −6 −5 −4 −3

−10

−8

−6

−4

−2

0

2

b

a

 

 

Figure 3.1: With Classic Polya (Sala & Ariño, 2007a), from d = 2 to
d = 6 [no improvement occurs].
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−10

−8
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d=2
d=3
d=4
d=5
d=6

Figure 3.2: With Multi-indices Polya
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3.4.3 Example 3

This example is similar to the previous one, but it will deal with a TS
system with two membership functions, one has two antecedents and the
other one three. The local models of the system are:

A1,1 = A1 =

(
0.5 −0.05
0 −5

)

B1,1 = B1 =

(
a+ 0.01

0.1

) (3.57)

A1,2 = A2 =

(
−10 0
0 −10

)

B1,2 = B2 =

(
1
0.2

) (3.58)

A1,3 = A3 =

(
−1 0.1
0 −2

)

B1,3 = B3 =

(
1
0.4

) (3.59)

A2,1 = A4 =

(
b −0.01
0 −3

)

B2,1 = B4 =

(
1

0.05

) (3.60)

A2,2 = A5 =

(
−0.7 0.2
0 −1

)

B2,2 = B5 =

(
1
0.1

) (3.61)

A2,3 = A6 =

(
2 −0.01
0 −2

)

B2,3 = B6 =

(
1
0.6

) (3.62)

Note that, in the figure 3.3, obtained results have been the same ones,
regardless of d value, so without our proposals no improvement appears.
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Figure 3.3: With Classic Polya (Sala & Ariño, 2007a), from d = 2 to
d = 6 [no improvement appears]
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Figure 3.4: With Multi-indices Polya
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Also in this example, the loss of information, caused by not using the
multi-index model, produces a stability condition which is more conser-
vative (Figure 3.3) with respect to the multi-index solution appearing
on Figure 3.4.

3.5 Conclusions

In the present chapter, a methodology based on Polya theorem is devel-
oped (Sala & Ariño, 2007a). It allows expanding sums of membership
functions in the TS systems, so that, the stability conditions become
more relaxed, avoiding the loss of information from flattening a tensor-
product expression while also introducing a convenient notation for han-
dling such tensor-product considerations in the realm of Polya theorem.





Chapter 4

Guaranteed Cost Control for Discrete

Stochastic Fuzzy Systems via LMIs

This chapter seeks to present a methodology to carry out a guaranteed
cost control for a Markov-Jump Nonlinear Systems (MJNLSs), where the
states and input actions can be constrained to quadratic functions. The
nonlinear system will be modeled by Takagi-Sugeno methodology (TS).
The PDC controller (Guerra & Vermeiren, 2004) (Tanaka &Wang, 2004)
is applied in the current chapter, which allows performing an optimal
or suboptimal controller with guaranteed cost, regardless membership
functions, when moreover the states and the inputs can be bounded by
several constraints.

4.1 Introduction

A guaranteed cost control for a Fuzzy TS system with stochastic tran-
sitions among modes is going to be dealt with in the current chapter,
where the jump transitions are based on Markov matrix, which contains
the transition probabilities among several TS systems. Other approaches
about the stochastic control field can be found in (L. Zhang & Boukas,
2009) (Sheng, Gao, Zhang, & Chen, 2015) (Hernández-Mej́ıas, Sala, Ar-
iño, & Querol, 2015) (Mej́ıas, 2016).

In order to compute a suboptimal control, since the control actions
are suited for any membership function, several LMI conditions have
been developed, so that the guaranteed cost can be minimized taking
into account the requirements of the stochastic fuzzy system. To deal
with the nonlinear conditions, methodologies like Polya’s relaxation can
be applied to obtain the PDC controllers and the feasible quadratic area

73
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(Sala & Ariño, 2007a).

4.2 Preliminaries and Notation

At the current chapter, the Markov jump Takagi-Sugeno system will be
formulated as:

xk+1 =

rθ(k)∑

i=1

µi,θ(k)(xk)
(
Ai,θ(k)xk +Bi,θ(k)uk

)
(4.1)

Where θ(k) is the active mode at the k step. Each one of the s stochastic
modes are arranged in I = {1, . . . , s}, being Ai,θ(k) ∈ R

n and Bi,θ(k) ∈
R
n×m the matrices of fuzzy system. Moreover, rθ(k) denotes the max-

number of TS models for the stochastic mode θ(k), being µi,θ(k) each

one of the membership functions,
∑rθ(k)

i=1 µi,θ(k) = 1, for stochastic mode
θ(k) ∈ I.

Taking the transition probability matrix P = πji which p(θ(k+1) =
j|θ(k) = i) = πji, and by using the Markov chain definition we can
calculate each future possibility by means of:

p(θ(t+ k) = j|θ(t) = i) = eTj P
kei (4.2)

being ei a s-dimensional vector, where the ith element is equal to one,
and the rest of elements are zeros.

Moreover in this chapter we assume that there exists a diagnoser
such that, at time k, the mode θ(k) is known, as well as, the plant state
xk and the Markov chain probability matrix does not change over time.

The fuzzy summations for a particular mode will be denoted with:

Ξ̃k,l :=

rl∑

i=1

µi,l(xk)Ξi,l (4.3)

Taking the previous system (4.1), PDC control action presented in
(Guerra & Vermeiren, 2004) can be applied for each stochastic mode:

uk = F̃k,θ(k)

(
P̃k,θ(k)

)−1
xk θ(k) ∈ I (4.4)
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where F̃k,θ(k) =
∑rθ(k)

i=1 µi,θ(k)(xk)Fi,θ(k) and P̃k,θ(k) =
∑rθ(k)

i=1 µi,θ(k)(xk)Pi,θ(k),

being F̃k,θ(k) ∈ N
m×n and P̃k,θ(k) ∈ N

n matrices, for all θ(k) ∈ I and
i ∈ {1, . . . , rθ(k)}

Thus, the equation (4.1) converts to:

xk+1 =

(
Ãk,θ(k) + B̃k,θ(k)F̃k,θ(k)

(
P̃k,θ(k)

)−1
)
xk (4.5)

for brevity, the active mode at k instant may be denoted as θ, so the
next notation can be used further on:

xk+1 =

(
Ãk,θ + B̃k,θF̃k,θ

(
P̃k,θ

)−1
)
xk (4.6)

4.3 Guaranteed cost fuzzy stochastic control

Firstly, the Lyapunov candidate equation will be presented, akin to
(Guerra & Vermeiren, 2004), but having in mind that the considered
system is fuzzy and stochastic, these properties have been employed to
formulate the following equation:

Vk = xTk

(
P̃k,θ

)−1
xk (4.7)

where θ is the mode at the instant k. So that, the estimated Lyapunov
equation at the instant k + 1 may be formulated as:

E(Vk+1) =

s∑

l=1

πlθ

(
xTk+1

(
P̃k+1,l

)−1
xk+1

)
(4.8)

The objective function minimized in this chapter is a quadratic cost
index, which is expressed as follows:

Lk =
(
xTkQxk + uTkRuk

)
(4.9)

where Q ≥ 0 and R ≥ 0 are the weighing matrices, with appropriate
dimensions, for the states and the inputs respectively. The main idea
of this chapter is to minimize the cost index. Note that, the expected
infinite-time cost may be formulated as:

J∞ = E

(
∞∑

k=0

(
xTkQxk + uTkRuk

)
)

(4.10)
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To approach this issue, note that previously, similar considerations
were had in mind in (Tanaka & Wang, 2004) for continuous systems,
where those were formulated in order to achieve a fuzzy guaranteed cost.
So that, matrices Pi,θ must be able to bound the value of the infinite
horizon J∞.

This bounding may be obtained by constraining the per-stage weight-
ing with the next condition (4.11). So according to Bellman theorem
(R. Bellman, 1956), in order to optimize the control actions, the decre-
ment in one step by the cost index can be formulated as follows:

E

(
xTk+1

(
P̃k+1,θ+

)−1
xk+1 − xTk

(
P̃k,θ

)−1
xk

)
< −E

(
xTkQxk + uTkRuk

)

(4.11)

being θ+ the future mode at the instant k + 1.

Indeed, if (4.11) holds, summing from k = 0 to k = ∞, the final
controller will be stabilising taking x∞ = 0; e.i. the cost index (4.10)

is bounded by xT0

(
P̃0,θ(0)

)−1
x0, like it is expressed in the following

equation:

E

(
∞∑

k=0

(
xTkQxk + uTkRuk

)
)

≤
(
xT0

(
P̃0,θ(0)

)−1
x0

)
(4.12)

Because at the k-instant, the mode is known, the previous equation
(4.11) can be simplified to the following one:

E

(
xTk+1

(
P̃k+1,θ+)

)−1
xk+1

)
− xTk

(
P̃k,θ

)−1
xk < −

(
xTkQxk + uTkRuk

)

(4.13)
So, the xk+1 is a deterministic value, because the xk and the current
mode θ(k) are known, xk+1 =

∑r
i=1

∑r
j=1 µiµj(Ai,θ(k)+Bi,θ(k)Fj,θ(k))xk,

thus the previous equation can be written as:

xTk+1E

((
P̃k+1,θ+

)−1
)
xk+1 − xTk

(
P̃k,θ

)−1
xk < −

(
xTkQxk + uTkRuk

)

(4.14)

For the estimated matrix E

((
P̃k+1,θ+

))
, we will take E

((
P̃k+1,θ+

)−1
)

=
∑

θ+∈I p(θ+|θ)
(
P̃k+1,θ+

)−1
, so that expected matrix arises as
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∑
θ+∈I πθ+θ

(
P̃k+1,θ+

)−1
, which, moreover, allows guaranteeing stochas-

tic stability.

The equation (4.14) is based on the previous expression (4.11). Fi-
nally, this equation for a MJNLSs guaranteed cost control is formulated
as:

xTk+1

∑

θ+∈I

πθ+θ

(
P̃k+1,θ+

)−1
xk+1 − xTk

(
P̃k,θ

)−1
xk + xTkQxk+

+ xTk

(
P̃k,θ

)−T (
F̃k,θ

)T
RF̃k,θ

(
P̃k,θ

)−1
xk < 0 (4.15)

By developing the above equation (4.15), we obtain:

xTk+1




s∑

θ+=1

πθ+θ

(
P̃k+1,θ+

)−1


xk+1 − xTk

(
P̃k,θ

)−1
xk

+ xTkQxk + xTk

(
P̃k,θ

)−T (
F̃k,θ

)T
RF̃k,θ

(
P̃k,θ

)−1
xk < 0 (4.16)

Note that if the condition (4.16) holds for all k instants, the equations
(4.11) and (4.12) are satisfied too. A guaranteed cost control is dealt
with in theorem 4.1, where membership functions can be different among
stochastic modes. So, it offers a solution to minimize estimated cost
index (4.10).

Theorem 4.1 If there exist matrices Pi,θ > 0 and Fi,θ ∀θ ∈ I, i ∈
{1, . . . , rθ}, so that the system (4.6) satisfies the following conditions
(4.17), the cost index J∞ is bounded by V0, defined by Lyapunov equation
(4.7) with k = 0, i.e. J∞ < V0:

R =

rθ∑

i=1

rθ∑

j=1

r1∑

l1=1

· · ·
rs∑

ls=1

µi,θµj,θµ
+
l1,1

. . . µ+ls,sR
θ
ijl1...ls > 0 ∀ θ ∈ I

(4.17)
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with

Rθ
ijl1...ls

=




Pi,θ (∗) . . . (∗) (∗) (∗)
Ai,θPj,θ +Bi,θFj,θ π−1

1θ Pl1,1 0 0 0 0
... 0

. . . 0 0 0
Ai,θPj,θ +Bi,θFj,θ 0 0 π−1

sθ Pls,s 0 0
Pi,θ 0 0 0 Q−1 0
Fi,θ 0 0 0 0 R−1




(4.18)

where µi,θ = µi,θ(xk) and µ+i,θ = µi,θ(xk+1). Moreover, note that (4.17)
polynomial may be relaxed by Polya’s method (Sala & Ariño, 2007a)
(Scherer & Hol, 2006) or other techniques.

Proof:

Now, considering the Markov modes set I = {1, . . . , s}; for brevity
the model at k instant will be denoted as θ, and for the instant k+1, it
will be called θ+. So, taking the equation (4.16) for a stochastic fuzzy
system:

xTk+1




s∑

θ+=1

πθ+θ

(
P̃k+1,θ+

)−1


xk+1 − xTk

(
P̃k,θ

)−1
xk + xTkQxk+

xTk

(
P̃k,θ

)−T (
F̃k,θ

)T
RF̃k,θ

(
P̃k,θ

)−1
xk < 0 (4.19)

the xk+1 values can be formulated in the equation (4.19), and following,
in order to avoid the quadratic dependence, the Schur complement is
applied:




(
P̃k,θ

)−1

(∗) . . . (∗) (∗) (∗)

Ãk,θ + B̃k,θF̃k,θ

(
P̃k,θ

)−1

π−1
1θ P̃k+1,1 0 0 0 0

... 0
. . . 0 0 0

Ãk,θ + B̃k,θF̃k,θ

(
P̃k,θ

)−1

0 0 π−1
sθ P̃k+1,s 0 0

I 0 0 0 Q−1 0

F̃k,θ

(
P̃k,θ

)−1

0 0 0 0 R−1




> 0

(4.20)

Such as is done in (do Valle Costa et al., 2006), by means of χθ matrix,
a congruence transformation is carried out in (4.20). So, the condition
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R > 0 arises as:

χθ = Diag(P̃k,θ, I, I, . . . , I, I) (4.21)

R =




P̃k,θ (∗) . . . (∗) (∗) (∗)
Ãk,θP̃k,θ + B̃µ,θF̃µ,θ π−1

1θ P̃k+1,1 0 0 0 0
... 0

. . . 0 0 0

Ãk,θP̃k,θ + B̃k,θF̃k,θ 0 0 π−1
sθ P̃k+1,s 0 0

P̃k,θ 0 0 0 Q−1 0

F̃k,θ 0 0 0 0 R−1




(4.22)

Finally, the previous equation can be formulated as:

R =

rθ∑

i=1

rθ∑

j=1

r1∑

l1=1

· · ·
rs∑

ls=1

µi,θµj,θµ
+
l1,1

. . . µ+ls,sR
θ
ijl1...ls > 0 ∀ θ ∈ I

(4.23)

Rθ
ijl1...ls =




Pi,θ (∗) . . . (∗) (∗) (∗)
Ai,θPj,θ +Bi,θFj,θ π−1

1θ Pl1,1 0 0 0 0
... 0

. . . 0 0 0

Ai,θPj,θ +Bi,θFj,θ 0 0 π−1
sθ Pls,s 0 0

Pi,θ 0 0 0 Q−1 0
Fi,θ 0 0 0 0 R−1




(4.24)

4.4 Constrained fuzzy stochastic control

We are going to take the following quadratic constraints for the states
and inputs:

||x|| ≤ γ ||u|| ≤ φ (4.25)

From the condition xT0
(
P θ0
µ

)−1
x0 ≤ δ−1, it is possible offer a method-

ology to reduce the suboptimal guaranteed cost for a certain starting
point x0. So δ

−1 value is the max-estimated guaranteed cost of equation
(4.10). At corollary 4.1, this methodology is formulated:
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Corollary 4.1 If there exist matrices Pi,θ > 0 and Fi,θ ∀θ ∈ I, i ∈
{1, . . . , rθ}, so that the system (4.6) satisfies the following conditions
(4.26) for a specific starting point x0 and θ0; the estimated cost index
(4.10) is bounded by δ−1 parameter, so that J∞ < V0, and restrictions
(4.25) are not violated:

max δ s.t.

Pi,θ0 − δx0x
T
0 ≥ 0 ∀ i

γδ − Pi,θ ≥ 0 ∀ i, θ ∈ I
(
Pi,θ (Fi,θ)

T

Fi,θ δφ

)
≥ 0 ∀ i, θ ∈ I

R =

rθ∑

i=1

rθ∑

j=1

r1∑

l1=1

· · ·
rs∑

ls=1

µi,θµj,θµ
+
l1,1

. . . µ+ls,sR
θ
ijl1...ls > 0 ∀ θ ∈ I

(4.26)

being

Rθ
ijl1...ls

=




Pi,θ (∗) . . . (∗) (∗) (∗)
Ai,θPj,θ +Bi,θFj,θ π−1

1θ Pl1,1 0 0 0 0
... 0

. . . 0 0 0
Ai,θPj,θ +Bi,θFj,θ 0 0 π−1

sθ Pls,s 0 0
Pi,θ 0 0 0 Q−1 0
Fi,θ 0 0 0 0 R−1




(4.27)

being membership functions µi,θ = µi,θ(xk), µ
+
i,θ = µi,θ(xk+1). Moreover,

note that, polynomial (4.26) may be relaxed by Polya’s method (Sala &
Ariño, 2007a) (Scherer & Hol, 2006) or other techniques.

Proof: Omitted as it is a juxtaposicion of the concepts in the proof
of Theorem 4.1 and the bound on the control gain (Ariño et al., 2010).

4.5 Example

In this example, we discuss the TS inverted pendulum system by the
approach of local approximation in fuzzy partition spaces, the TS system
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has the same structure that the equation (4.1):

xk+1 =

2∑

i=1

µi,θ(k)Ai,θ(k)xk +Bi,θ(k)uk (4.28)

The TS local models are based on (Tanaka & Wang, 2004); and the
system has three modes:
Mode 1:

A1,1 =

(
0 1
g

4l/3−aml 0

)
B1,1 =

(
0
−a

4l/3−aml

)
(4.29)

A2,1 =

(
0 1
2g

π(4l/3−amlβ2)
0

)
B2,1 =

(
0

−aβ
4l/3−amlβ2

)
(4.30)

Mode 2:

A1,2 =

(
0 1
g

4l/3−aml 0

)
B1,2 = 0.5

(
0
−a

4l/3−aml

)
(4.31)

A2,2 =

(
0 1
2g

π(4l/3−amlβ2)
0

)
B2,2 = 0.5

(
0

−a′β
4l/3−amlβ2

)
(4.32)

Mode 3:

A1,2 =

(
0 1
g

4l/3−a′ml 0

)
B1,2 = 0.5

(
0

−a′

4l/3−a′ml

)
(4.33)

A2,2 =

(
0 1
2g

π(4l/3−a′mlβ2) 0

)
B2,2 = 0.5

(
0

−a′β
4l/3−a′mlβ2

)
(4.34)

being l = 0.2, m = 0.1, M = 1, β = cos(88o), a = 1/(M + m) and
a′ = 1/(1.25 ·M +m). With the following jump probability transition
matrix P, for Markov chain:

P =




0.7 0.1 0.3
0.2 0.8 0.2
0.1 0.1 0.5


 (4.35)

In this example, the membership functions are the same for all the
modes:

if x1 ≤ 0 µ1,1 = µ1,2 =
π/2 + x1
π/2

µ2,1 = µ2,2 = 1− µ1,1 (4.36)
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if x1 > 0 µ1,1 = µ1,2 =
π/2 − x1
π/2

µ2,1 = µ2,2 = 1− µ1,1 (4.37)

Note that, the system is bounded, and the constraints for the control
action uk and the states xk are:

−10 ≤ uk ≤ 10 (4.38)(
−π/2
−π/2

)
≤ xk ≤

(
π/2
π/2

)
(4.39)

With the next weighing matrices Q and R, for the estates and the input,
respectively:

Q =

(
0.5 0
0 0.5

)
R = 0.5 (4.40)

Finally, PDC control actions are applied, the states trajectory and input
values are displayed in figure 4.1 and 4.21
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Figure 4.1: simulation 1 to 20 time instants

PDC controllers have been calculated according to the theorem 4.1
and the corollary 4.1, in order to relax the conditions, with a Polya
expansion up to degree 50 of the involved fuzzy summations. The feasible

1During the simulation, the system has been subjected to abrupt mode changes
according to the Markov matrix (4.35).
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sets and the trajectory from the point x0 = [−0.165; 0.80] are displayed
in the next figure:

x
1

x 2

Feasible sets and Trajectory
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Trajectory From Point [−0.165; 0.80]

Figure 4.2: Quadratic Sets and Trajectory

The estimated guaranteed cost for the point x0 = [−0.165; 0.80] is
4.9142 and the calculated cost in this simulation has been 3.0397.

4.6 Conclusions

The present chapter presents a stochastic fuzzy guaranteed cost control,
where several Markov modes and Takagi Sugeno models are combined
into a single system. It attempts to show how copositive programming,
Polya expansion, can be employed on several kind of systems, and not
only for a TS one.
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Chapter 5

Asymptotically Exact Stabilization for
Constrained Discrete Takagi-Sugeno Systems

via Set-Invariance

Note: The contribution of this chapter is based on the fol-
lowing publication:

Ariño, C., Sala, A., Pérez, E., Bedate, F. and Querol, A.
(2016). Asymptotically exact stabilisation for constrained
discrete Takagi-Sugeno systems via set-invariance. Fuzzy
Sets and Systems, 316, 117–138.

Given a Takagi-Sugeno system, this chapter proposes a novel method-
ology to obtain the state feedback controller guaranteeing the largest
(membership-shape independent) possible domain-of-attraction with con-
traction rate performance λ, based on λ-contractive sets from polyhedral
linear system literature. The resulting controller is valid for any reali-
sation of the memberships, as usual in most TS literature. As a Polya-
related complexity parameter grows, the proposal in this work obtains
an asymptotically exact approximation to the largest shape-independent
controllable domain of attraction. The frontier of such approximation
can be understood as the level set of a polyhedral control-Lyapunov func-
tion. Convergence of a proposed iterative algorithm is asymptotically
necessary and sufficient for TS system stabilisation: for a high-enough
value of the complexity parameter, any conceivable shape-independent
Lyapunov controller design procedure will yield a proven domain of at-
traction smaller or equal to the algorithm’s output.

87
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5.1 Introduction

A large class of nonlinear systems can be exactly expressed, locally in
a compact region of interest (denoted as Ω in the sequel), as a fuzzy
Takagi-Sugeno (TS) model, using the “sector nonlinearity” methodol-
ogy (Tanaka & Wang, 2004), embedding the nonlinearity into a convex
time-varying combination of “vertex” linear equations, where the convex
combination’s coefficients, say µ, are usually denoted as membership
functions.

Once these locally exact fuzzy models are available, model-based sta-
bility analysis and control design for such systems can be handled via
some conditions on the vertex models; conditions which involve only
the vertex models and disregard the actual “shape” of the memberships
are called shape-independent (Sala, 2009): they introduce some con-
servativeness, as shape-independent conditions refer to the “family” of
systems sharing the same vertices, instead of the single nonlinear one
which originated the TS model.

The most widespread approach to the above shape-independent sta-
bility and control design problems for TS systems are the Linear Matrix
Inequality (LMI) results in literature (Tanaka, Ikeda, & Wang, 1996;
Ariño & Sala, 2007; Sala et al., 2005; Seidi & Markazi, 2011; Zou & Li,
2011).

If decay-rate performance is pursued, most of the above LMI results
can be understood as finding a Lyapunov function such that V (xk+1) ≤
V (λxk), for a given value of the contraction rate λ (or optimising it
via, say, bisection), see (Goh, Turan, Safonov, Papavassilopoulos, & Ly,
1994). The classes of controllers are called PDC (Tanaka & Wang, 2004)
if the controller is chosen as a combination of vertex actions sharing the
same membership functions as the controlled plant; or non-PDC if other
functions of the memberships are used (Guerra & Vermeiren, 2004).
Past and future memberships may be involved in the Lyapunov function
and non-PDC controllers (Guerra, Kerkeni, Lauber, & Vermeiren, 2012;
Kruszewski, Wang, & Guerra, 2008; Lendek, Guerra, & Lauber, 2015).

In most literature, once a feasible Lyapunov function is found, ei-
ther quadratic V (x) = xTPx (Tanaka & Wang, 2004) or nonquadratic
(Guerra & Vermeiren, 2004), the stability or control problems are con-
sidered solved, and the proven stability domain is the largest level set



Asymptotically Exact Stabilization for Constrained Discrete
Takagi-Sugeno Systems via Set-Invariance 89

{V (x) < Vc} inside the region Ω. Actually, given V (x), a slightly larger
set is possible (Pitarch, Sala, Ariño, & Bedate, 2012); furthermore, the
LMI solution V (x) may be non-unique: so, the actual domain of attrac-
tion can be much larger than the Lyapunov level set. The developments
in this chapter will be also compared to the above-cited options con-
sidering delayed/future values of membership functions in nonquadratic
Lyapunov functions.

Apart from state constraints arising from the local modelling region,
control action saturation is also an important issue. LMI analysis of sat-
urated controllers needs additional restrictions forcing non-saturation on
a particular level set (Tanaka & Wang, 2004) or, for instance, iterative
approaches (Ariño et al., 2010), or the system states vector has to be ex-
tended in order to design an antiwindup gains (Da Silva & Tarbouriech,
2005). Determining the largest stabilisable domain of attraction in a
given region Ω via LMI under constraints remains basically unsolved:
there are powerful results using polynomial-fuzzy Lyapunov functions
and multi-sum controllers, but changes of variable render some steps
conservative in controller synthesis and, also, maximum-volume formu-
lae do not exist for non-quadratic level sets.

In robust (polytopic) linear control, the above problem has been suc-
cessfully addressed based in set-invariance ideas, originating in the 70’s
(Bertsekas, 1972), with later refinements (Gilbert & Tan, 1991; Kerri-
gan, 2000; E. Pérez, Ariño, Blasco, & Mart́ınez, 2011; Blanchini, 1999;
Kvasnica, Grieder, Baotić, & Morari, 2004). The relationship between
both approaches lies in the fact that condition V (xk+1) ≤ V (λxk) means
that the level sets of the Lyapunov functions are λ-contractive, in the
sense introduced in (Kerrigan, 2000).

The connection to fuzzy control systems hasn’t been, however, ex-
ploited in literature to the author’s knowledge. A first work in such
direction appears in (Ariño, Pérez, Sala, & Bedate, 2014), and extend-
ing such results motivates the research presented in this chapter.

The goal of this chapter is studying stabilisation of discrete-time TS
systems based on geometric set invariance considerations under affine
state and control constraints, avoiding LMIs. Inspired on that idea, a
prior paper (Ariño, Pérez, Sala, & Bedate, 2014) proposes using polytope-
handling software to find the maximal (i.e., largest) λ-contractive set in
Ω, for a given open-loop or closed-loop (being the controller fixed, a pri-
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ori) fuzzy system, using an asymptotically exact algorithm. It is shown
in such a paper that, by sheer definition, such a set will be larger than
any level set obtained with a shape-independent Lyapunov approach.
Algorithms from earlier polytopic system literature are adapted in the
above-cited work to the multiple summations arising in closed-loop PDC
fuzzy systems, by combining those results with the ones using Polya’s
theorem (Ariño & Sala, 2007). The above paper does exploit that infor-
mation under state and input constraints but, however, considers only
stability analysis of a pre-existing PDC controller.

The objective of this work is to extend the results in (Ariño, Pérez,
Sala, & Bedate, 2014) to (possibly non-PDC) fuzzy controller synthe-
sis, obtaining an estimate of the largest set inside a polytopic region
of interest Ω in which there exists an admissible (i.e., within saturation
limits) controller such that the set is made λ-contractive in closed loop.
The chapter improves on current shape-independent fuzzy LMI-based
literature in several key aspects:

� A Lyapunov function is not needed (although a polyhedral one is
obtained as a by-product), as the argumentation is purely based
on set-invariance results.

� The algorithm is asymptotically exact, so given enough computing
resources it would equal or beat any shape-independent Lyapunov
result, by sheer definition of the maximal λ-contractive set.

� The controller structure can also be expanded so that it may ap-
proach any continuous non-PDC controller (using polynomials in
memberships, which are universal function approximators in the
unit simplex (Cotter, 1989)).

Of course, it also improves over earlier robust-linear polytopic controllers
using related approaches (Gilbert & Tan, 1991; Kerrigan, 2000), by the
fact that the knowledge of the membership functions is actually exploited
in fuzzy control systems.

There are three issues left out of the scope of this work: (a) for
brevity, only a disturbance-free case is considered; extensions could
be made in systems with additive disturbances adapting (Ariño et al.,
2013); (b) there are other shape-dependent results (Sala & Ariño, 2008;
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Bernal, Guerra, & Kruszewski, 2009) whose output might be less con-
servative than the ones in this work; (c) although the results in this
work would overcome any shape-independent result with enough com-
putational resources, there may exist LMI results which obtain accept-
able controllers in practice with less computational resources than those
needed to match them via the proposals in this work.

The structure of the chapter is as follows: Sections 5.2 and 5.3 state
the goal of the chapter and discuss preliminary definitions and results.
Section 5.4 precisely defines shape-independent sets for fuzzy control
systems. Section 5.5 details an algorithm for the computation of poly-
topic λ-contractive sets which can be proved to asymptotically obtain
the maximal shape-independent λ-contractive set. Section 5.6 presents
two different procedures to compute the control action: an online opti-
misation and an explicit offline solution. Further discussion and com-
parative analysis with prior literature appears in Section 5.7. Finally,
some examples appear in Section 5.8, and a conclusion section closes the
chapter.

5.2 Problem statement

Consider a discrete-time nonlinear system:

xk+1 = f(xk, uk) (5.1)

such that f has continuous partial derivatives, where xk ∈ R
n represents

the state vector and uk ∈ R
m stands for the control actions at time

instant k.

It is well known that such system can be equivalently expressed (lo-
cally in a compact region X of the state-space (Tanaka & Wang, 2004),
denoted as modelling region), as a TS fuzzy system with r rules or local
models:

xk+1 = f̃(µ(xk), xk, uk) :=
r∑

i=1

µi(xk)(Aixk +Biuk) (5.2)

where Ai, Bi are the so-called consequent model matrices and µi : X 7→
[0, 1] represent membership functions, grouped for convenience onto a
vector of membership functions, µ(x) := (µ1(x) . . . µr(x))

T . Member-
ship functions are defined in such a way so that, for any x ∈ X, µ(x)
belongs to the (r−1)-dimensional standard simplex ∆ ⊂ R

r, defined as:
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∆ := {µ = (µ1, . . . , µr) ∈ R
r |

r∑

i=1

µi = 1, µi ≥ 0 i : 1 . . . r} (5.3)

Notation f̃(µ, x, u) is a shorthand for future developments; note that
that f̃ is linear in µ and, (separately) in (xk, uk). Also, when mem-
berships in several instants of time are involved, notation hi ∈ ∆,
hi := µ(xk+i) will be used.

The problem this chapter aims to solve is the determination of a
fuzzy control law which stabilizes the TS system (5.2) in the largest
possible subset of a polytopic region Ω, with Ω ⊂ X. Such controller
design procedure must be understood as finding a set of valid initial
conditions Cλ and a feedback law u(x, µ) which ensures that xk ∈ Ω
for all k ≥ 0, and limk→∞ xk = 0 if x0 ∈ Cλ, while fulfilling control
constraints u(x, µ(x)) ∈ U for all x ∈ Ω, for all possible shapes of the
membership µ(x) as long as µ(x) ∈ ∆ (shape-independent stabilisation).
Coefficient λ will be related to a“contraction rate”performance measure.
The formal meaning of shape-independent stabilisation with contraction
rate λ will be made clear later in Section 5.4.

By assumption, modelling region X and input constraint set U will
be compact, convex, polytopes, containing the origin. So, they can be
defined by affine constraints, expressed as vector inequalities:

X = {x ∈ R
n | Rx ≤ l} (5.4)

U = {u ∈ R
m | Su ≤ s} (5.5)

being R, S matrices and l, s vectors with compatible dimensions, with
vector inequalities to be understood as element-wise; abusing the nota-
tion, a scalar at the right-hand side of an inequality should be understood
as affecting each of the rows at the left-hand side.

Actually, in most cases of practical interest Ω will be intentionally
set to be equal to the modelling region X, but the developments in this
work do not necessarily require so from a theoretical point of view.

5.3 Preliminary definitions and results

Given an arbitrary set Ω, notation λΩ will denote the linear scaling of
the set Ω by λ ≥ 0. If Ω is defined as Ω := {x ∈ R

n : M(x) ≤ 0},
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for an arbitrary vector of constraint functions M(·), the scaled set is
λΩ := {x :M(λ−1x) ≤ 0}.

Definition 1 ((Kerrigan, 2000)) A set Ω ⊂ X is control λ contrac-
tive (given 0 ≤ λ ≤ 1) for the system (5.1) if and only if, for any x in Ω
there exists an admissible input such that the successor state lies in λΩ,
i.e., if x ∈ Ω ⇒ ∃u ∈ U : f(x, u) ∈ λΩ.

Obviously, u above might be non-unique, and, too, the set of feasible
u depends on x, denoted as UΩ(x) := {u ∈ U | f(x, u) ∈ Ω}. If U is a
polytope, and f(x, u) is affine in control, i.e., f(x, u) = f̄(x) + ḡ(x)u,
then UΩ(x) is a polytope, too. Trivially, a contracting state-feedback
controller u(x) can be implemented by any arbitrary selection from the
set-valued map UΩ(x); however, additional hypothesis are needed on U,
Ω and f so that there exists a continuous selection u(x) (Michael, 1956).
The scalar λ will be denoted as geometric contraction rate. Decay-rate
stability requires contraction at all future time, requiring the definition
of suitable Lyapunov functions:

Definition 2 A function V (x) such that V (0) = 0 is a (local) con-
trol Lyapunov function (CLF) ensuring geometric contraction rate λ
for system (5.1) if there exists a set Ω ⊂ X including the origin in
which, for all x ∈ Ω ∼ {0}, V (x) > 0 and there exists u ∈ U such that
V (f(x, u)) ≤ V (λx) .

The above definition is an adaptation to the discrete-time and con-
traction rate setting of well-known concepts defined in, for instance,
(Sontag, 1999) for continuous-time stabilization.

From the definition, it can be proved that level sets (inside Ω) of
any CLF ensuring contration rate λ are control λ-contractive and, for
any time k ≥ 0, V (xk) ≤ V (λkx0). In many common cases, V (x) is a
homogeneous degree-q polynomial in x, then V (λx) = λqV (x); standard
discrete decay-rate formulas V (xk+1) ≤ λ2V (xk) arise with, for instance,
q = 2.

Definition 3 (Maximal control λ-contractive Set) A set, to be de-
noted as Cλ

∞(Ω), is the maximal control λ-contractive set contained in a
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region Ω for the system xk+1 = f(xk, uk) if and only if Cλ
∞(Ω) is control

λ-contractive and contains all the control λ-contractive sets contained in
Ω.

Corollary 5.1 Any level set of a local CLF in X ensuring contration
rate λ is a subset of the maximal control λ-contractive set in X.

Proof: Evident, because of the above-mentioned fact that the re-
ferred level sets are control λ-contractive and all such sets are subsets of
the maximal one.

In the particular case of λ = 1, a control λ-contractive set is also
denoted in literature (Kerrigan, 2000) as control invariant set, and the
maximal control λ-contractive set is denoted as the maximal control
invariant set C∞(Ω).

Definition 4 Given an arbitrary target set Ω, the one-step set Q(Ω) is
the set of states x in X from which the next state of system (5.1) can be
driven to Ω with an admissible u ∈ U, i.e.,

Q(Ω) := {x ∈ X|∃u ∈ U : f(x, u) ∈ Ω}

Note that x ∈ Q(Ω) iff UΩ(x) 6= ∅. Also, Definition 1 could be
rewritten saying that Ω is control λ-contractive iff Ω ⊂ Q(λΩ).

Definition 5 ((Gilbert & Tan, 1991)) The so-called i-step set Cλ
i (Ω)

is recursively defined, starting with Cλ
0 (Ω) := Ω as Cλ

i+1(Ω) := Q
(
λCλ

i (Ω)
)
∩

Ω, for i ≥ 0.

If there exists a finite i such that Cλ
i+1(Ω) = Cλ

i (Ω), it can be proved
(Kerrigan, 2000) that Cλ

i (Ω) is the maximal one in Definition 3. Such
set will be denoted as Cλ

∞(Ω). Also, in case such finite i does not exist,
but there exists Cλ

∞, for any 1 ≥ λ∗ > λ, there exist a finite i∗ such that
Cλ
i is control λ∗-contractive for all i ≥ i∗, albeit possibly non-maximal

(Blanchini, 1994, Theorem 3.2).

Efficient computational characterisation of the one-step set Q in Def-
inition 4 can only be easily carried out for special cases of f ; for instance,
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the linear case (Kerrigan, 2000). Actually, extending the idea to the TS
case is the main motivation of this work.

In order to do that, we recall Polya’s theorem, which is a key tool for
the results presented in the Takagi-Sugeno controller synthesis in later
sections.

Theorem 5.1 (Polya) (Powers & Reznick, 2001) If a real homoge-
neous polynomial F (µ1, . . . , µr) is (strictly) positive in the (r − 1) di-
mensional standard simplex ∆, then there exists a sufficiently large d ≥ 0
such that all the coefficients of the polynomial (µ1+· · ·+µr)dF (µ1, . . . , µr)
are positive.

5.4 Shape-Independent one-step and λ contrac-

tive sets for fuzzy control systems

In order to obtain the i-step sets in Definition 5, iterative computation
of the one-step set in Definition 4 is needed. For a TS system, such set
is:

Q(Ω) = {x ∈ X | ∃u ∈ U :

r∑

i=1

µi(x)(Aix+Biu) ∈ Ω} (5.6)

The shape of Q(Ω) may be very hard to compute, due to the nonlin-
earities in the membership functions µi(x). Indeed, determining if a
particular x belongs to Q(Ω), for convex Ω, is computationally simple
as f̃(µ(x), x, u) is, actually, an affine function1 of u; however, the diffi-
culty lies in determining an explicit expression for the boundary of Q(Ω)
needed for the iterations in Definition 5.

A reasonable approach, in order to deal with this drawback, is dis-
regarding the information about the actual value of the membership
functions, dealing with the Takagi-Sugeno model for any possible value
of µi –assumed known to the controller, as done in most TS literature
(i.e., a shape-independent analysis (Sala, 2009))–. Hence, the one-step
set in Definition 4 should be replaced by the one below:

1For instance, for fixed x, µ(x), if Ω is a polytope, the problem is a linear pro-
gramming feasibility one.
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Definition 6 The shape-independent one-step set of a TS system (5.2)
is

Qsi(Ω) := {x ∈ X | ∀µ ∈ ∆ ∃u ∈ U :

r∑

i=1

µi(Aix+Biu) ∈ Ω} (5.7)

The definition ensures that for each (x, µ) ∈ Qsi(Ω)×∆ there exists
a non-empty set of fuzzy (i.e., membership-dependent) control actions
defined as:

UΩ(x, µ) := {u ∈ U | f̃(µ, x, u) ∈ Ω} (5.8)

If Ω is polyhedral, the set UΩ(x, µ) is itself a polytope, for fixed x and
µ; optimisation problems on UΩ(x, µ) will be discussed in Section 5.6.
Unfortunately, exact computation of Qsi is still cumbersome, due to the
nonlinearities involving products of µi with x and u.

Let us show that Qsi(Ω) ⊂ Q(Ω). Indeed,

Q(Ω) = {x ∈ X | for µ ≡ µ(x)∃u ∈ U :

r∑

i=1

µi(Aix+Biu) ∈ Ω} ⊃ Qsi(Ω)

(5.9)
as the conditions in the left-hand side of (5.9) involve only the single
point µ(x), instead of the whole simplex in (5.7).

Any function u(x, µ), u : Qsi(Ω)×∆ 7→ U, so that u(x, µ) ∈ UΩ(x, µ)
would be a valid fuzzy state-feedback control law to steer any state in
Qsi(Ω) to Ω in one step applying u(x, µ(x)), valid for any actual shape
of µ(x). Although there might be many options, the referred controller
u(x, µ) can be selected to be continuous, which will be important for
later developments:

Lemma 5.1 Let us assume Ω is described by Ω := {x : g(x) ≤ 0} with
g being a vector of affine functions (polytopic Ω). Then, there exists a
continuous function u : Qsi(Ω)×∆ 7→ U, such that f̃(µ, x, u(x, µ)) ∈ Ω.

Proof: The proof follows an argumentation analogous to the lin-
ear case in (Artstein & Raković, 2008, Proposition 3.2). In this case,
UΩ(x, µ) = {u ∈ U | g(f̃(µ, x, u)) ≤ 0} can be understood as a set-valued
map. Convexity of U, plus g ◦ f being affine in u (for fixed µ and x),
ensure UΩ(x, µ) is a closed convex set for all (x, µ) ∈ Qsi(Ω)×∆. Also,
it is a set-valued map which can be proved to be continuous (because,
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again, g ◦ f is continuous). The classical Michael’s convex selection the-
orem (Michael, 1956, Theorem 3.2) implies that a continuous selection
u : Qsi(Ω)×∆ 7→ U exists.

A shape-independent definition of λ-contractiveness for TS systems
is now presented:

Definition 7 Given 0 ≤ λ ≤ 1, a set Ω ⊂ X is shape-independent
control λ-contractive for the system (5.2) if and only if, for any (x, µ)
in Ω × ∆ there exists an admissible (possible non-unique) input u ∈ U

such that f̃(µ, x, u) ∈ λΩ; equivalently, iff Ω ⊂ Qsi(λΩ). Given a region
X, a shape-independent control λ-contractive set Ω is maximal if any
other shape-independent control λ-contractive set in X is contained in
Ω.

As Qsi(λΩ) ⊂ Q(λΩ), any shape-independent λ-contractive sets are
also λ-contractive sets for the system (5.1) from which the TS model
came from, as Ω ⊂ Qsi(λΩ) ⊂ Q(λΩ). So, studying shape-independent
control λ-contractive sets is a way to guarantee similar contraction prop-
erties for nonlinear systems; of course this is, actually, the leitmotif of
most TS fuzzy control developments.

Basically, the generic goal of shape-independent fuzzy controllers (de-
signed with contraction objective in mind) should be approaching the
above maximal shape-independent set: no algorithm can prove a larger
set by definition. The results in this chapter will present a constructive
procedure to approach it with increasing accuracy.

Proposition 5.1 If Ω is shape-independent control λ-contractive for the
TS system (5.2), then any linear scaling γΩ, with 0 < γ ≤ 1, is shape-
independent control λ-contractive, too.

Proof: Considering x ∈ γΩ, with any arbitrary γ ≤ 1. Then, as
γΩ ⊂ Ω, for any (x, µ) ∈ γΩ×∆ there exists u such that f̃(µ, γ−1x, u) ∈
λΩ, because γ−1x ∈ Ω. Linearity of f̃ in 2nd and 3rd arguments allows
to state that:

f̃(µ, γ−1x, u) = γ−1f̃(µ, x, γu) ∈ λΩ
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hence, f̃(µ, x, γu) ∈ λ(γΩ). So, the control γu ∈ U drives x ∈ γΩ to
λ(γΩ).

Hence, as shape-independent control λ-contractive sets are control
λ-contractive, the following well-known result and Proposition 5.1 can
be joined to induce a control Lyapunov function, if a shape-independent
control λ-contractive set is found:

Proposition 5.2 ((Blanchini, 1999)) Consider Ω = {x ∈ R
n|

max1≤i≤nh
Hix ≤ 1}. If γΩ is control λ-contractive, for the TS system

(5.2), for all 0 ≤ γ such that γΩ ∈ X then

V (x) := max
1≤i≤nh

(Hix) (5.10)

is a control Lyapunov function ensuring contraction rate λ.

The nesting of contractive sets in Proposition 5.1 allows, too, the
following corollary to be stated (proof omitted for brevity):

Corollary 5.2 A set Ω is shape-independent control λ-contractive for a
TS system, if and only if, for any x0 ∈ Ω, for any membership sequence
(h0, h1, . . . , hk−1) ∈ ∆k, there exists a control law u(x, µ), with µ = hk
at time k, such that xk = f̃(hk−1, xk−1, u(xk−1, hk−1)) ∈ λkΩ, i.e., any
initial state in it converges to the origin with a geometric contraction
rate λ.

Modifying the iterations in Definition 5, the following result can be
stated:

Lemma 5.2 For λ < 1, the maximal shape-independent control λ con-
tractive set in a region Ω ⊂ X would be obtained if the iteration

C̄λ
i+1(Ω) = Qsi

(
λC̄λ

i (Ω)
)
∩Ω,

initialised with C̄λ
0 (Ω) = Ω, converges in a finite number of steps, i.e.,

C̄λ
∞(Ω) := C̄λ

i+1(Ω) = C̄λ
i (Ω) for some finite i. The set C̄λ

i (Ω) will be
denoted as i-step shape-independent set.
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Proof: The proof comprises three steps:

1. First, the fact that C̄λ
i is shape-independent control λ-contractive

if C̄λ
i = C̄λ

i+1. Indeed, for any i, if there exists a state x ∈ C̄λ
i

and a membership µ ∈ ∆ such that f̃(µ, x, u) cannot be steered to
λC̄λ

i with an admissible u, then such state will not belong to C̄λ
i+1.

Hence, convergence will not occur until such x does not exist.

2. Second, let us prove that no point x ∈ Ω, x 6∈ C̄λ
i can be steered

to λC̄λ
∞ for all µ: if there existed x which could be steered to

λC̄λ
i such point would belong to C̄λ

i+1; again, convergence cannot
happen until no such x exists.

3. Finally, as λC̄λ
∞ contains the origin, and λ < 1, any stabilising tra-

jectory should eventually enter λC̄λ
∞ (Corollary 5.2). However, the

above second assertion states that for states outside C̄∞ there exists
at least one value of membership for which entering λC̄λ

∞ is impos-
sible. Hence, no larger shape-independent control λ-contractive
set exists.

Given a nonlinear system, the set C̄λ
∞ obtained from a TS model of it

is a subset of the “true” Cλ
∞ discussed in Section 5.3, due to the inherent

conservatism of shape-independent TS analysis (Sala, 2009).

5.5 Inner approximation of shape-independent
control λ-contractive sets for TS systems

The above shape-independent sets need choosing a particular controller
parametrisation u(x, µ) in order to be computable whith available com-
putational geometry software such as MPT (Kvasnica et al., 2004). This
is the topic of this section.

The simplest approximation is choosing u not depending on mem-
berships. Indeed, let us consider:

Q0
si(Ω) := {x ∈ X | ∃u ∈ U : Aix+Biu ∈ Ω ∀ i = 1 . . . r} (5.11)

The above expression comes from plugging a membership-independent
u(x, µ) := u(x) into (5.7) and considering that

∑r
i=1 µi(Aix+Biu) ∈ Ω

if and only if Aix+Biu ∈ Ω for all i. Obviously, Q0
si(Ω) ⊂ Qsi(Ω).
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In fact, the set Q0
si(Ω) is the robust one-step set in uncertain poly-

topic systems literature (Pluymers, Rossiter, Suykens, & De Moor, 2005):
its main drawback is its conservativeness coming from the fact that, for
a given state, the control action should be the same for any value of the
membership functions.

5.5.1 Fuzzy controllers (single-sum)

Given that µi(xk) are actually known, a clear improvement is defining a
so-called parallel distributed control parametrisation in the form:

u(x) =

r∑

j=1

µj(x)uj(x) (5.12)

which defines a different “vertex controller” uj(x) for each model. This
well-known formula is, of course, the key idea behind “fuzzy” controllers
since the 1990s. The closed-loop system with the parametrisation (5.12)
can be written as

xk+1 =

r∑

i=1

r∑

j=1

µi(xk)µj(xk)(Aixk +Biuj(xk)) (5.13)

Let us introduce the augmented notation

ū(x) =




u1(x)
...

ur(x)


 , Ej = [0m×m0m×m . . . Im×m . . . 0m×m] (5.14)

being Ej an m× (mr) matrix with an identity matrix in the j-th block
position, for 1 ≤ j ≤ r. In this way, we have uj(xk) = Ejū(xk), so the
closed-loop system can be written as the augmented-input one:

xk+1 =

r∑

i=1

r∑

j=1

µi(xk)µj(xk)(Aixk +BiEj ū(xk)) (5.15)

where the new input is a vector of length r × m. In this case, disre-
garding again the fact that memberships depend on state, the shape-
independent one-step set of system (5.15), to be denoted as Q1

si(Ω), is
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readily expressed as:

Q1
si(Ω) :=



x ∈ X | ∃ū ∈ U

r,

r∑

i=1

r∑

j=1

µiµj(Aix+BiEj ū) ∈ Ω ∀µ ∈ ∆





(5.16)
where ū is understood as a length-r vector whose elements belong to U;
such elements must be the same for all membership values but might be
different for different states; in an analogous way to (5.8), a set ŪΩ(x)
could be suitably defined, and a continuous ū(x) : Q1

si(Ω) 7→ U
r can

be proven to exist2, thus justifying the chosen parametrisation (5.12),
obtained from ū(x) by reverting back the vertical stacking to a fuzzy
summation.

Now, Q0
si(Ω) ⊆ Q1

si(Ω) ⊂ Qsi(Ω) because forcing all uj to be equal
converts (5.16) into the particular case (5.11) and, on the other hand,
the parametrisation of the underlying u(x, µ) in (5.7) is generic, not
restricted to being linear as (5.12) postulates. Notation Q1

si is used
to emphasise that the candidate controller is a polynomial of degree 1
in the memberships. More general controller parametrisations will be
discussed in Section 5.5.3.

5.5.2 Asymptotically exact polytopic inner approxima-
tion of Q1

si(Ω)

On the sequel, we will assume that Ω is a polytope defined as

Ω := {x |RΩx ≤ lΩ} (5.17)

for some matrices RΩ and vector lΩ. As
∑
µi = 1, Q1

si(Ω) can be
expressed as

2The proof in this case would be analogous to Lemma 5.1, adding the fact that
the infinite intersection of closed convex sets is itself also closed and convex; details
omitted for brevity.
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Q1
si(Ω) =


x ∈ X | ∃ū ∈ U

r,
r∑

i=1

r∑

j=1

µiµj (RΩ(Aix+BiEj ū)− lΩ) ≤ 0 ∀µ ∈ ∆





(5.18)

The main issue regarding Q1
si(Ω) in (5.16) is the fact that a double-

fuzzy summation (Sala & Ariño, 2007a) appears in its expressions, so
necessary and sufficient conditions for computing (5.18) cannot be stated
in a convex form. So, relaxations of the double sum are needed. This
kind of problems have been widely studied in the field of copositive
programming and LMI control for TS systems (Sala & Ariño, 2007a;
Kruszewski, Sala, Guerra, & Ariño, 2009).

The goal of this section is adapting the procedures in the referred
works, based on Polya’s theorem (here recalled as Theorem 5.1), to the
problem of computing approximations to Q1

si(Ω). In order to do that,
the notation for d-dimensional indices in (Ariño & Sala, 2007; Sala &
Ariño, 2007a; Ariño, Pérez, Sala, & Bedate, 2014) will be used:

i = (i1, i2, . . . id), Id = {1, . . . , r}d

I
+
d = {i ∈ Id|is ≤ is+1, s = 1, . . . , d− 1}

so I
+
d indexes all the different monomials µi of an homogeneous degree-d

polynomial (taking into account commutativity). For instance, for d = 3
and r = 2 we can define I

+
3 = {111, 112, 122, 222} – with some abuse of

notation shorthanding (1, 1, 1) as 111, etc.

Notation ni will denote the number of elements of perm(i), being
perm(i) the set of permutations of an element of I+d in Id. In the above
case n111 = n222 = 1, n112 = n221 = 3 (because perm(111) = {111},
perm(112) = {112, 121, 211}, . . . ).

Denoting as µi := µi1µi2 . . . µid , the following identities are straight-
forward:

r∑

i1=1

r∑

i2=1

. . .

r∑

id=1

µi1µi2 . . . µid =

(
r∑

i=1

µi

)d

=
∑

i∈Id

µi =
∑

i∈I+
d

niµi = 1

(5.19)
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because µi = µj if j ∈ perm(i). The reader is referred to (Ariño &
Sala, 2007; Sala & Ariño, 2007a; Ariño, Pérez, Sala, & Bedate, 2014)
for further details on the multiindex notation and relevant properties.

Continuing with the example with d = 3 and r = 2, we have

1 =

2∑

i1=1

2∑

i2=1

2∑

i3=1

µi1µi2µi3 =

µ31︸︷︷︸
µ111

+ 3︸︷︷︸
n112

µ21µ2︸ ︷︷ ︸
µ112

+ 3︸︷︷︸
n122

µ1µ
2
2︸ ︷︷ ︸

µ122

+ µ32︸︷︷︸
µ222

=
∑

i∈I+3

niµi

.

In order to apply Theorem 5.1, as (
∑r

i=1 µi)
d−2 = 1 for any d, we

rewrite equation (5.15), denoting ū(xk) with shorthand ūk, as

xk+1 =

(
r∑

i=1

µi

)d−2 r∑

i=1

r∑

j=1

µiµj(Aixk +BiEj ūk) =

=
r∑

i1=1

r∑

i2=1

. . .
r∑

id=1

µi1µi2 . . . µid(Ai1xk +Bi1Ei2 ūk) (5.20)

Denoting Gi1i2 = [Ai1 Bi1Ei2 ], and reordering the terms of the
summation (5.20) we get

xk+1 =
r∑

i1=1

r∑

i2=1

. . .
r∑

id=1

µi1µi2 . . . µidGi1i2

[
xk
ūk

]
=
∑

i∈Id

µiGi1i2

[
xk
ūk

]
=

=
∑

i∈I+
d

µi




∑

j∈perm(i)

Gj1j2



[
xk
ūk

]
=
∑

i∈I+
d

µiniG̃i

[
xk
ūk

]
(5.21)

being G̃i the average values of Gi1i2 over all permutations of a particular
ordered multidimensional index, i.e.;

G̃i :=
1

ni
·
∑

j∈perm(i)

Gj1j2 (5.22)

For instance, in the above case d = 3, r = 2, we would get:

G̃111 = G11, G̃112 =
1

3
(G11 +G12 +G21),

G̃122 =
1

3
(G12 +G21 +G22), G̃222 = G22 (5.23)
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With the new equivalent expression (5.21) of the system dynamics,
the one step set (of course, identical to that in (5.16), as (5.21) is a mere
rewriting of (5.15) in the new notation for any d ≥ 2), can be written as

Q1
si(Ω) =




x ∈ X | ∃ū ∈ U

r :
∑

i∈I+
d

niµiG̃i

[
x
ū

]
∈ Ω ∀µ ∈ ∆





(5.24)

Now, if Ω were a polytope (5.17), from (5.19) we can cast the evident
equivalence:

RΩ



∑

i∈I
+
d

niµiG̃i

[
x
ū

]
 ≤ lΩ ⇔ RΩ



∑

i∈I
+
d

niµiG̃i

[
x
ū

]
 ≤



∑

i∈I
+
d

niµi


 lΩ

(5.25)

Now, the right-hand side inequality is actually equivalent to:

∑

i∈I+
d

niµi

(
RΩG̃i

[
x
ū

]
− lΩ

)
≤ 0 (5.26)

so, as niµi are all non-negative, we can assert that existence of ū such
that

RΩG̃i

[
x
ū

]
≤ lΩ (5.27)

is a sufficient condition for x ∈ Q1
si(Ω). So, it becomes clear that a

sufficient condition for a given point to belong toQ1
si(Ω) is that it belongs

to the polytopic complexity-d subset arising from the inequality in (5.27),
denoted as:

Q̃1
d(Ω) :=

{
x ∈ X | ∃ū ∈ U

r : G̃i

[
x
ū

]
∈ Ω ∀i ∈ I

+
d

}
(5.28)

because, indeed, the above argumentation ensures Q̃1
d(Ω) ⊂ Q1

si(Ω).

It can be proved, following the asymptotic exactness results derived
from Polya argumentations (Powers & Reznick, 2001), that the polytopic
set Q̃1

d(Ω) will tend to Q1
si(Ω) as the complexity parameter d tends to

infinity. This is done in the lemma below:

Lemma 5.3 If x belongs to the interior of Q1
si(Ω), for a polytopic Ω

expressed as (5.17), there exists a finite d such that x ∈ Q̃1
d(Ω).
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Proof: Indeed, for x in the interior of Q1
si(Ω), using the original

definition (5.15), i.e., d = 2, there exists γ < 0 such that

∑

i∈I+2

niµi

(
RΩG̃i1i2

[
x
ū

]
− lΩ

)
≤ γ < 0 (5.29)

So standard Polya-argumentations (Powers & Reznick, 2001; Sala &
Ariño, 2007a) show that there is a finite d such that, expanding (5.29)
in the same way as done in (5.21), i.e.,

∑

i∈I+
d

niµi

(
RΩG̃i

[
x
ū

]
− lΩ

)
=
∑

i∈I+2

niµi

(
RΩG̃i1i2

[
x
ū

]
− lΩ

)
(5.30)

results in a d-th degree homogeneous polynomial in µi at the left-hand
side of the equation such that the polynomial coefficients will be all non-
positive. Requiring non-positiveness of all such coefficients is, actually,
what (5.28) states once matrices RΩ, lΩ defining the shape of Ω are
plugged in.

5.5.3 Extension to multiple-parametrization controllers.

A more flexible controller parametrisation uk(µ) can be set up as a
c-dimensional fuzzy summation, c > 1, as suggested in, for instance,
(Ariño & Sala, 2007):

u(x) = uc(x, µ) :=
∑

i∈I+c

niµi(x)ui1i2...ic(x) (5.31)

For each state, this fuzzy control parametrisation is a degree-c homoge-
neous polynomial in the memberships.

Lemma 5.1 ensures that, for a fixed x, there exists a control function
u(x, µ) which is continuous in the memberships (in fact, so it will be in
the state, too, but this will not be needed for the moment) fulfilling the
required constraints on successor states. Any arbitrary continuous con-
troller parametrization u(x, µ), in the compact region ∆ can be approx-
imated to any desired accuracy by a polynomial in µ, as (5.31) proposes
(polynomials are universal function approximators (Cotter, 1989)); the
idea will be later used to prove asymptotic exactness of some algorithms,
via increasing the degree c.
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With the above general parametrization (5.31), consider conform-
ing ū vertically stacking all ui1i2...ic(x) and suitably defining matrices
Ei1i2...ic so that ui1i2...ic(x) = Ei1i2...ic ū(x) in the same way as it was
done in (5.14). For instance, for c = 2 in a system with 2 rules, ū would
be defined as ū = (uT11 u

T
12 u

T
22)

T , as well as suitable E11 = (I 0 0),
E12 = E21 = (0 I 0) and E22 = (0 0 I). Then, for d = 3, the closed loop
would be

xk+1 =
∑

i∈I3

µi(xk) (Ai1xk +Bi1Ei2i3 ū(xk)) (5.32)

With the extra decision variables in ū, a larger polytopic approxima-
tion Q̃c

d, d > c of the “ideal” shape-independent one-step set Qsi will be
defined below, where superscript c denotes the degree of the controller
parametrisation, and subscript d denotes the total Polya complexity pa-
rameter. The definition of such Q̃c

d will be analogous to (5.28) but with
different sizes of ū and i:

Q̃c
d(Ω) :=

{
x ∈ X | ∃ū ∈ U

ρ, ρ = card(I+c ) : G̃i

[
x
ū

]
∈ Ω ∀i ∈ I

+
d

}

(5.33)
where, actually, the expression of G̃i in (5.21) should be reworked in
order to fit the higher dimensionality. For illustration, in the above ex-
ample (5.32), in order to define Q̃2

4(Ω) we would need Gijk = (Ai BiEjk)
and, subsequently:

G̃1111 = G111, G̃1112 =
1

4
(G111 +G112 +G121 +G211),

G̃1222 =
1

4
(G122 +G212 +G221 +G222),

G̃1122 =
1

6
(G112 +G121 +G211 +G221 +G212 +G122), G̃2222 = G222

For brevity, details on the construction of ū and G̃i in other cases are
left to the reader. The above definition (5.33) generalises the cases
of controller degrees c = 0, implicitly assumed in (5.11), and c = 1,
explicitly defined in (5.12) and used in (5.28). It can be proved that
Q̃c

d ⊂ Q̃c′

d′ when c
′ ≥ c and d′ ≥ d (details omitted for brevity).



Asymptotically Exact Stabilization for Constrained Discrete
Takagi-Sugeno Systems via Set-Invariance 107

Algorithm 2 Computation of the λ-contractive set Ĉλ
∞

Inputs: c, d, Ω, λ.

1. Make i = 0, Ĉλ
0 = Ω

2. Repeat :

(a) i=i+1

(b) Ĉλ
i = Q̃c

d

(
λĈλ

i−1

)
∩ Ω

Until Ĉλ
i = Ĉλ

i−1;

3. Set Ĉλ
∞ = Ĉλ

i ; end.

5.5.4 Polytopic inner approximation of the maximal shape-
independent control λ-contractive set

As the actual Qsi used in Lemma 5.2 is out of reach with finite compu-
tational resources, we will modify it by substituting Qsi by the polytopic
shape-independent approximation Q̃c

d. The result is Algorithm 2. Once
restricted to polytopic sets, the computational geometry tools in the
MPT toolbox (Kvasnica et al., 2004) allow implementing the above al-
gorithm to find Ĉλ

i in a few lines of Matlab
® code.

Proposition 5.3 For any positive c, d, i, we have: Ĉλ
i ⊂ C̄λ

i (Ω); hence,

if the corresponding iterations converge Ĉλ
∞ ⊂ C̄λ

∞(Ω) (inner approxima-
tion). Also, the converged Ĉλ

∞ is shape-independent λ-contractive for the
TS model (5.2).

Proof: The first statement arises from the fact that Q̃c
d ⊂ Qsi so

each iteration yields a progressively smaller set. The second statement
is proved from the fact that Ĉλ

∞ = (Q̃c
d(λĈλ

∞) ∩ Ω) ⊂ Qsi(λĈλ
∞).

The above proposition states that the algorithm may have obtained
a non-maximal λ-contractive set. However, the asymptotic exactness of
the Polya result allows to state the following result extending Lemma
5.3, using int(S) to denote the interior of a set S:
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Theorem 5.2 Given any integer i > 0, for every x ∈ int(C̄λ
i (Ω)), there

exists a pair of finite c, d such that, when Algorithm 2 is run with such
complexity parameters, then x ∈ int(Ĉλ

i ).

Proof: Considering any arbitrary i, let us assume the polytopic S
is expressed as S = {Rix ≤ li} for some Ri, li. Then, if x belongs to
the interior of Qsi(S) there exists γ > 0 and there exists a continuous
u(x, µ) such that Rif̃(µ, x, u(x, µ))− li ≤ γ < 0 for all µ ∈ ∆, by Lemma
5.1 and the fact that being x an interior point, inequalities defining the
set must be strictly fulfilled.

Now, universal approximation of polynomials enables us tu ensure
that there exists a degree-c polynomial in µ in the form (5.31), say
uc(x, µ) which, for fixed x, approximates the continuous function u(x, µ)
in the compact set ∆ up to a precision ‖u(x, µ) − uc(x, µ)‖ ≤ ε with ε
as small as needed so that Ri(f̃(µ, x, u(x, µ)) − f̃(µ, x, uc(x, µ))) ≤ γ/2.
This allows us to assert that there exists a finite c such that:

Rif̃(µ, x, u
c(x, µ))− li ≤ γ/2 < 0

Now, the left-hand side of the above expression can be trivially con-
verted to an homogeneous polynomial of degree c+1 on the simplex ∆.
Hence, asymptotic exactness of Polya theorem (Theorem 5.1) ensures
that there exists a finite complexity parameter d such that all coeffi-
cients of the degree d expansion of Rif̃ − li are strictly negative. Hence,
x ∈ int(Q̃c

d(λS)), by definition of Q̃c
d.

Now, an induction argumentation is needed. Starting from C̄λ
0 =

Ĉλ
0 = Ω, if x1 ∈ int(C̄λ

1 ) then there exist c1,d1 such that x1 ∈ int(Q̃c1
d1
(Ω)∩

Ω). if x2 ∈ int(C̄λ
2 ), then there exists u, depending on x2 and µ, in

U such that x1 := f̃(µ, x2, u) ∈ int(C̄λ
1 ) so the above c1, d1 ensure

f̃(µ, x2, u) ∈ int(Q̃c1
d1
(Ω) ∩ Ω): hence, x2 ∈ Qsi(Q̃

c1
d1
(Ω) ∩ Ω). Now,

letting S = Q̃c1
d1
(Ω) ∩ Ω we can assert that there exist c2, d2 such that

x ∈ int(Q̂c2
d2
(Q̃c1

d1
(Ω)∩Ω)∩Ω). The argumentation can follow on for any

i: if x ∈ int(C̄λ
i ) there exist a sequence d1, . . . , di, c1, . . . , ci such that x

belongs to Ĉλ
i . The required c and d in the theorem statement will be

the maximum c and d of the respective sequences.
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5.6 Controller computation from λ-contractive
sets

The obtained polytopic λ-contractive sets, after Algorithm 2 convergence
in a finite number of iterations, induce a control Lyapunov function and
associated controllers, to be discussed in this section.

Let us assume that the converged set Ĉλ
∞ is defined as a polytope

Ĉλ
∞ = {x | max1≤i≤nh

Hix ≤ 1} for some row vectors Hi. Then, Proposi-
tion 5.2 immediately allows defining a control Lyapunov function (5.10).
However, the only problem addressed up to this point is the existence
of a continuous control law (Lemma 5.1), but not any constructive pro-
cedure to find it; notwithstanding, it is well known that, once a control
Lyapunov function is available, computation of a controller is possible
(Sontag, 1989).

As the set of valid control actions U
λĈλ

∞
(x, µ) defined in (5.8), is

polyhedral for known x and µ (actually, µ would be the measured µ(x)),
optimisation of a convex cost index over UλĈλ

∞
(x, µ(x)) can be efficiently

solved via convex programming. Such optimisation is a widely used
choice to constructively compute the above-referred control action in
the polyhedral-robust control literature referred to in the introduction;
details and adaptation to the fuzzy case will be presented next. Let us
discuss two possible options: on-line and off-line optimisation.

5.6.1 On-line optimisation

In on-line operation, state and membership values are known at the time
of computing the control action, so the model xk+1 = A(µ(xk))xk +
B(µ(xk))uk, affine in the control action uk, renders:

xk+1 =Mk +Nkuk, Mk := A(µ(xk))xk, Nk := B(µ(xk))

andMk andNk are matrices known at time k once xk has been measured.
A reasonable course of action would be proposing a cost index depending
only on the current control action uk, choosing a suitable one in the
convex set UλĈλ

∞
(xk, µ(xk)) = {u ∈ U | maxiHi(Mk + Nku) ≤ λ}. In

this way, there would be no need to actually build up a“fuzzy”controller
(5.12), as uk can be directly optimised.
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Of course, decrescence of the piecewise-linear Lyapunov function
(5.10) and admissibility of uk (i.e, uk ∈ U) need to be introduced as
optimisation constraints, irrespective of the chosen cost index.

Several optimisation criteria may be chosen, for instance:

1. Achieving the fastest decay, by minimising the predicted next value
of the polyhedral Lyapunov function (5.10), i.e., given xk, selecting
uk equal to the optimal solution below

uk := argmin
u∈U

V (xk+1) = argmin
u∈U

max
i∈{1,...,nh}

Hi(Mk +Nku) (5.34)

which is a standard linear minimax problem, which can be cast as
a linear programming (LP) one,

uk = argminu δ

subject to: u ∈ U, Hi(Mk +Nku) ≤ δ ∀i (5.35)

Note that, for xk ∈ Ĉλ
∞(Ω), the minimal δ will be lower than λ

because, by construction, Ĉλ
∞(Ω) is a set in which constraints (5.35)

are feasible for δ = λ.

2. Minimising the “control effort” subject to the contraction condi-
tion V (xk+1) = maxiHi(Mk + Nkuk) ≤ V (λxk) which forces the
Lyapunov function to be decreasing. If the control effort is mea-
sured in 1-norm (sum of absolute value of elements) or ∞-norm
(elementwise maximum) then the problem is also an LP one; it it
is measured in 2-norm, then it is a QP one. Again, feasibility is
guaranteed for xk ∈ Ĉλ

∞(Ω).

Note that, even if the controller to be found on-line does not appear
to be a “fuzzy” controller, it does indeed depend on the membership
values, asMk = A(µ(xk)) andNk = B(µ(xk)). Note, too, that the above
on-line LP/QP problems may be feasible even outside the guaranteed
(but conservative, shape-independent) set Ĉλ

∞ computed by Algorithm 2;
however, such feasibility cannot be guaranteed by the shape-independent
analysis in earlier sections.

5.6.2 Off-line optimisation

Although the above on-line optimisation solution is, actually a one-step
optimisation (hence with low computational complexity as the number
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of decision variables is the number of inputs), an off-line computation of
a controller solution can be obtained if so wished.

Indeed, analogously to (Bemporad, Morari, Dua, & Pistikopoulos,
2002), an explicit piecewise fuzzy controller can be designed under the
setup in this work, as an off-line version of (5.35). Indeed, consider
the augmented input ū(x) defined in (5.14), either from (5.12) or, with
higher-dimensional controllers (5.31), composed of vertically stacking
uj1...jc(x), j ∈ I

+
c in a vector of length ρ = card(I+c ). Replacing in (5.35)

the closed-loop fuzzy model (5.21) –or the higher-complexity versions
implicitly considered in (5.33)–, we have an optimisation problem:

ū∗(x) := argmin
ū
δ subject to:

uj1...jc ∈ U, Hi



∑

j∈I+
d

njµj(x)G̃j

[
x
ū

]

 ≤ (

∑

j∈I+
d

njµj)δ ∀i (5.36)

which, as written, cannot yet be solved off-line because memberships
are unkown at design time. To overcome such issue, for the controller
(5.31), the proposal is choosing the optimal decision variables given by
the solution of

ū∗(x) = argminū δ

subject to: uj1...jc ∈ U, HiG̃j

[
x
ū

]
≤ δ ∀i ∀j ∈ I

+
d (5.37)

because, following analogous argumentations to those leading from (5.24)
to (5.28), all feasible solutions of problem (5.37) are feasible, too, in
(5.36). Actually, the developments in previous section prove that prob-
lem (5.37) is feasible in the set Ĉλ

∞ resulting from Algorithm 2 (details
omitted for brevity).

Explicit solution As (5.37) is a linear programming problem once x
is fixed (when actually measured), the optimal state-dependent solution
ū∗(x) has an explicit expression, piecewise-affine in x, which can be
obtained via multi-parametric linear programming, considering x as a
parameter, in the form ū∗(x) = F (x)x+ σ̄(x) with F (x) and σ̄(x) being
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a piecewise constant (mρ)×n matrix and a (mρ)×1 vector, respectively;
for details on how such solutions can be obtained with suitable software,
the reader is referred to (Kvasnica et al., 2004).

Now, reverting the vertical stacking in ū∗(x) to the originating mul-
tidimensional fuzzy summation, i.e., writing the controller as in (5.12)
or (5.31), the optimal controller arising from (5.37), can be expressed as

u∗(x) =
∑

i∈I+c

niµi(x) (Fi(x)x+ σi(x)) (5.38)

where Fi(x) and σi(x) are piecewise constant m×n matrices and m× 1
vectors, respectively, suitably extracted from F (x) and σ̄(x).

This formula (piecewise-affine multi-sum PDC controller) gives in-
teresting theoretical insights and, as above discussed, does not require
on-line optimization. The other proposed optimisation setups (con-
trol effort in 1, 2 or ∞ norm) would also give rise to piecewise fuzzy-
controllers (details, almost identical, are omitted for brevity). Anyway,
the drawback is that, even if likely faster in runtime execution, perfor-
mance with off-line optimisation will be inferior to that with on-line one
(5.34), due to the explicit use of the measured value of the membership
in (5.34), instead of the setting in (5.37) where memberships do not ap-
pear. Nevertheless, proven worst-case performance bounds are identical
in both alternatives.

5.7 Discussion and comparison with existing ap-
proaches

This section will compare the result with other approaches in set-invariance
and Lyapunov/LMI literature, including the fuzzy control and fuzzy
Lyapunov functions.

Set-invariance prior literature Let us first remind how this work
generalises existing set-invariance control approaches: Contractiveness
concepts are used to obtain necessary and sufficient constrained robust
stability and stabilisation conditions for polytopic systems in (Kerrigan,
2000). The work (Ariño, Pérez, Sala, & Bedate, 2014) generalises the
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idea to asymptotically shape-independent necessary and sufficient sta-
bility conditions for TS systems, and the proposal here presented covers
the asymptotically shape-independent necessary and sufficient stabilisa-
tion conditions for constrained TS systems.

Other Lyapunov/LMI approaches Omitting detail, results from
Section 6 in (Ariño, Pérez, Sala, & Bedate, 2014), dealing with generic
Lyapunov functions, can be adapted to the stabilisation case here, with
minor modifications (changing to control Lyapunov functions), so the
following can be stated:

Lemma 5.4 If a function V (x) and a controller ū(x), conformed as in
(5.33) for some controller complexity c, have been proved to exist (with
whatever method) such that

V (G̃i

[
x
ū

]
) ≤ V (γx) ∀i ∈ Id+ (5.39)

then, Algorithm 2 with complexity parameters c, d converges in a finite
number of iterations for γ < λ and the resulting λ-contractive set is
larger than the Lyapunov level sets.

Proof: Omitted, as it is analogous to Propositions 1, 2 and Corol-
lary 2 (computing an explicit bound on the number of needed iterations)
in (Ariño, Pérez, Sala, & Bedate, 2014), with argumentations dating to
(Blanchini, 1994; Kerrigan, 2000).

Theorem 5.2, combined with the above Lemma, discussing the rela-
tionship with any conceivable methods to find Lyapunov functions are
the key ones in this work: the ideal shape-independent i-step sets can-
not be computed, but Polya relaxations allow running the iterations in
Algorithm 2 with an approximation to C̄λ

i which can be made as precise
as wished. Then, the obtained sets with Algorithm 2 beat Lyapunov
level sets in the sense of Lemma 5.4. In fact, by maximality and convex-
ity argumentations, they beat the union of all feasible solutions of any
Lyapunov inequality (5.39), see Figure 5.2 in a later example.

Hence, the result closes (in theory) the shape-independent control
design for constrained TS systems. Note, however, that as the number
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of decision variables in ū and the summation dimension d increases,
the computational complexity of the resulting problem grows heavily so
only reasonably small values of c and d in Q̃c

d can actually be searched
in practice.

Generic controller parametrizations Note that the proposed piece-
wise multiple-sum fuzzy affine controller structure in (5.38) is more gen-
eral than many non-piecewise fuzzy controller choices in literature and,
importantly, it is a result (asymptotically exact) of the proposed optimal
control, whereas most literature proposes a particular control structure
(or a fixed piecewise partition) a priori.

5.7.1 Relation with Fuzzy Lyapunov functions

Some approaches in literature propose fuzzy Lyapunov functions so its
level sets are Vγ := {x : V (µ(x), x) ≤ γ}. Of course, such sets are shape-
dependent, as they are defined in terms of µ(x). Clearly, the largest set
that can be certified to belong to Vγ without knowing the specific shape
of µ(x) is:

Vsi,γ :=
⋂

µ∈∆

{x : V (µ, x) ≤ γ} = {x : max
µ∈∆

V (µ, x) ≤ γ} (5.40)

Of course, the proposal in this chapter can only be compared to
level sets in the above form Vsi,γ . Importantly, the proposal here allows
seamless incorporation of non-symmetric constraint sets, whereas other
LMI-based approaches might have difficulties in doing it.

Future/delayed fuzzy Lyapunov approaches More powerful Lya-
punov function and controller parametrisations with “future” member-
ships values have been proposed in the α-samples approach (Kruszewski
et al., 2008), and, also, with “past” memberships ones (Guerra et al.,
2012). Combinations including both past and future memberships ap-
pear in (Lendek et al., 2012, 2015). The conditions in the cited references
are shape-independent, in the sense that they consider neither the rela-
tionship between the memberships in different times nor the one between
memberships and states.



Asymptotically Exact Stabilization for Constrained Discrete
Takagi-Sugeno Systems via Set-Invariance 115

The remainder of the section discusses specific details about the re-
lationship between these proposals and the set-invariance one here pro-
posed.

In order to encompass the different fuzzy (delayed/future) Lyapunov
function approaches in other literature with an unified notation, generic
fuzzy Lyapunov functions will be considered in the form V (Υ, x), where
Υ is a delay-line set of membership vectors

Υ := {µ(xk+s), . . . , µ(xk+1), µ(xk), µ(xk−1), . . . , µ(xk−l)} (5.41)

for some chosen values of look-ahead horizon s and delay l parameters.

In order to add causality constraints (control cannot depend on fu-
ture membership values), the operator F (·) will extract the future (non-
causal) elements, i.e., F (Υ) := {µ(xk+s), . . . , µ(xk+1)}, and P (·) will
contain past ones,i.e., P (Υ) := {µ(xk−1), . . . , µ(xk−l)}. So, under this
setting causal fuzzy controllers must be in the form u(µ(x), P (Υ), x).
Geometric λ-contractive conditions amount to

V (Υ, λx)− V (Υ+, f̃(µ(x), x, u(µ(x), P (Υ), x))) > 0 ∀x ∈ Ω ∼ {0}
(5.42)

where Υ+ denotes the vector of memberships evaluated one step forward
in time, i.e., from look-ahead s+ 1 until delay l − 1.

The above expression is shape-dependent, but we can assert the fol-
lowing general shape-independent stabilization conditions replacing the
elements of Υ and Υ+ by arbitrary vectors (respectively denoted as Υsi

and Υ+,si) lying in the unit simplex:

Lemma 5.5 The closed-loop fuzzy system: xk+1 = f̃(µ(xk), xk, u(µ(xk),
P (Υ), xk)) is locally stable with contraction rate λ if there exist a con-
troller u(µ, P (Υsi), x) and a Lyapunov function V (Υsi, x) such that

V (Υsi, λx)− V (Υ[+,si], f̃(µ, x, u(µ, P (Υsi), x))) > 0 (5.43)

being Υsi = {hs, . . . , h1, µ, h−1, · · · h−l}, Υ[+,si] = {h(s+1), . . . , h1, µ, h−1, . . .
. . . , h−l+1}, holds for all x ∈ Ω, x 6= 0, for all hs+1, . . . , h−l, µ in ∆.

In the above assertion, with a slight abuse of notation, P (Υsi) should
be understood as the operator extracting“past”elements {h−1, . . . , h−l}.
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On the following, shorthand notation Υsi ∈ ∆ should, too, be under-
stood as each element of Υsi belonging to ∆.

Proof: Direct because (5.43) implies (5.42) (it is a particular choice
of memberships).

Conditions (5.43) are a contraction rate version analogous to the ones
proved in LMI settings such as, for instance, (Guerra et al., 2012; Lendek
et al., 2015). The relationship of such conditions with the geometric
setting in this work is proven in the theorem below:

Theorem 5.3 If condition (5.43) holds for all Υsi, Υ+,si ∈ ∆, then the
level sets in Ω of:

Vsi(x) = min
P (Υsi)∈∆

max
F (Υsi)∈∆,µ∈∆

V (Υsi, x) (5.44)

are shape-independent control λ-contractive.

Proof: As (5.43) hold for any possible value of Υ+, they do for the
particular values of {hs+1, . . . , h1} = {h̄+s+1, . . . , h̄

+
1 } given by

{h̄+s+1, . . . , h̄
+
1 } = arg max

F (Υ+,si)∈∆
V (Υ+,si, f̃(µ, x, u(µ, P (Υsi), x)) (5.45)

So, we can assert

0 < V (h̄+s , . . . , h̄
+
1 , µ, P (Υsi), λx)

− V (h̄+s+1, . . . , h̄
+
1 , µ, P (Υ[+,si]), f̃(µ, x, u(µ, P (Υsi), x))) (5.46)

Then, denoting

{h̄s, . . . , h̄1, h̄} = arg max
h,h1...,hs∈∆

V (hs, . . . , h1, h, P (Υsi), λx) (5.47)

for any P (Υ[si]) in ∆, we have:

0 < V (h̄s, . . . , h̄1, h̄, P (Υsi), λx)

− V (h̄+s+1, . . . , h̄
+
1 , µ, P (Υ[+,si]), f̃(µ, x, u(µ, P (Υsi), x))) (5.48)

Denote now:

{h−1, . . . , h−l} = arg min
P (Υsi)∈∆

(
V (h̄s, . . . , h̄1, h̄, P (Υsi), λx)

)
(5.49)
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so, as the above (5.48) holds for any P (Υ[si]) in ∆, it does for
{h−1, . . . h−l} = {h−1, . . . , h−l}, i.e.,

0 < V (h̄s, . . . , h̄1, h̄, h−1, . . . , h−l, λx)−
V (h̄+s+1, . . . , h̄

+
1 , µ, h−1, . . . , h−l+1, f̃(µ, x, u(µ, h−1, . . . , h−l, x)))

(5.50)

and, at last, denoting

{h+, h+1 , . . . , h+−l+1} =

arg min
h,h1,...,h−l+1∈∆

V (h̄+s+1, . . . , h̄
+
1 , h, . . . , h−l+1, f̃(µ, x, u(µ, h−1, . . . , h−l, x)))

(5.51)

we have, for all µ ∈ ∆:

0 < V (h̄s, . . . , h̄1, h̄, h−1, . . . , h−l, λx)−
V (h̄+s+1, . . . , h̄

+
1 , h

+, h+−1, . . . , h
+
−l+1, f̃(µ, x, u(µ, h−1, . . . , h−l, x)))

(5.52)

In the last inequality, the only still “free” variable ranging in the
unit simplex is the membership at the current instant. All other past
of future ones have been replaced by suitable maximisers or minimisers.
In particular,

Vsi(λx) =

min
P (Υsi)∈∆

max
F (Υsi)∈∆,µ∈∆

V (Υsi, λx) = V (h̄s, . . . , h̄1, h̄, h−1, . . . , h−l, λx)

(5.53)

and, using the resulting controller u(µ, h−1, . . . , h−l, x) in (5.52), such

that xk+1 = f̃(µ, x, u(µ, h−1, . . . , h−l, x)), we have:

Vsi(xk+1) =

V (h̄+s+1, . . . , h̄
+
1 , h

+, h+−1, . . . , h
+
−l+1, f̃(µ, x, u(µ, h−1, . . . , h−l, x)))

(5.54)

Hence, expression (5.52), proves that there exists a control action such
that Vsi(λx)− Vsi(xk+1) > 0.
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Theorem 5.3 extends the concept of shape-independent level sets
(5.40) to the case of past and future memberships (indeed, (5.40) is a
particular case of level sets of (5.44)). The importance of the theorem
is twofold:

1. by asymptotical exactness, if any proposal in literature proves a
sufficient condition for (5.43), then, any point in the interior of the
level sets of Vsi(x) in X will be found by the proposed algorithm
with a high-enough value of the complexity parameters.

2. Vsi is a “standard” Lyapunov function: intuition is “reconciled”
with the results, in the sense that Lyapunov functions involv-
ing past and future memberships are transformed to standard
ones depending only on the current state (at least in the shape-
independent case). Also, even if past memberships appear in the
controller in (5.42), the controller actually used to prove contrac-
tiveness in the above proof is independent of the past “measured”
memberships (as required by the λ-contractiveness definition): the
arguments h−1, . . . , h−l in the controller u(µ, h−1, . . . , h−l, x) are
actually a function of x, as (5.49) shows.

Comparison with shape-dependent options Note that suppos-
edly “future” values of µ and x are, in fact, predictions based on current
x, µ(x). As stability conditions hold for any future memberships, the
following shape-dependent Lyapunov function is, too, proven if (5.43)
holds from any LMI literature result3:

Vsd(xk) := min
h−1,...,h−l∈∆

V (h−l, . . . , h−1, µ(xk), µ(xk+1), . . . , µ(xk+s), xk)

(5.55)
Obviously, given some scalar γ, the level sets Vsd,γ = {Vsd(x) ≤ γ}
will be larger than those Vsi,γ = {Vsi(x) ≤ γ} with Vsi from (5.44),
as Vsd(x) ≤ Vsi(x). Note, however, that comparing the largest level
sets Vsd,γ∗

1
and Vsi,γ∗

2
in region Ω, forcefully γ∗2 ≥ γ∗1 , as Vsi,γ∗

1
⊂ Vsd,γ∗

1
.

So, the proven domain of attraction with Lyapunov functions (5.55) or
(5.44) will be “different”: there might be some states proven to contract
to the origin by Vsd but not Vsi and vice-versa (with no clear inclusion
in either sense).

3As“past” is irrelevant for stability, minimisation on past memberships can be car-
ried out for larger level sets, details omitted for brevity. Such minimisation appears,
then, in (5.55).
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5.8 Examples

Consider a TS system xk+1 =
∑2

i=1 µi(Aixk +Biuk) with model matri-
ces:

A1 =

(
0.95 0.3
0.7 1.1

)
A2 =

(
0.1 0.7
0.2 0.4

)
(5.56)

B1 =

(
0.4
0.5

)
B2 =

(
0.1
2

)
(5.57)

Subject to the constraints in inputs and states:

−10 ≤ uk ≤ 10,

(
−10
−10

)
≤ xk ≤

(
10
10

)
(5.58)

For the sake of illustration, even if results are valid for any member-
ship shape, some system trajectories will be later simulated using as
membership functions:

µ1(x) = (10− (1 0)x)/20, µ2(x) = 1− µ1(x) (5.59)

5.8.1 Comparison with fuzzy-delayed Lyapunov function

With the above plant, a comparative study with LMIs in (Lendek et al.,
2012, Corollary 1) will be made first.

LMI settings The cited proposal uses a delayed Lyapunov function
and a non-PDC controller, respectively given by:

V (xk, xk−1) = xTk

(
r∑

i=1

µi(xk−1)Pi

)−1

xk (5.60)

uk =




r∑

i=1

r∑

j=1

µi(xk−1)µj(xk)Fij






r∑

i=1

r∑

j=1

µi(xk−1)µj(xk)Hij




−1

xk

(5.61)

As discussed in Section 5.7.1, even if the above Lyapunov function is
a “fuzzy” one, the (non-fuzzy) Lyapunov function (5.44) particularised
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for (5.60), i.e.,

Vsi(xk) = min
µ∈∆

xT

(
r∑

i=1

µiPi

)−1

x (5.62)

is also proved and, evidently, the level sets Vγ,xk−1
= {xk : V (xk, xk−1) ≤

γ} for whichever value of µi(xk−1) will be smaller than those in the form
Vsi,γ = {x : Vsi(x) ≤ γ} for the same level. In fact, the latter level set
is the convex hull of the union of the ellipsoids Ei := {x : xTP−1

i x ≤ γ},
see (Hu & Lin, 2003).

In order for the comparison to be fair, apart from the LMIs in
(Lendek et al., 2012, Cor. 1), also appearing in (Lendek et al., 2015),
extra LMIs have been added to to force that the level set for γ = 1 of
each of the ellipsoid lies inside the constraint region X, and to account
for the control saturation. Details are omitted for brevity as they follow
standard S-procedure argumentations (and use of (Lendek et al., 2012,
Property 2)). In order to obtain a “large” domain of attraction exploit-
ing the non-quadratic and convex-hull ideas, ellipsoids Ei were forced
to contain the point γ · (cosφi, sinφi)T for φ1 = π/4 and φ2 = 3π/4,
respectively, and the scalar γ ≥ 0 was maximised. In this way, ellipsoids
were expanded in orthogonal directions.

Set-invariance settings In the λ-contractiveness approach presented
here, we set λ = 0.9999 (mere stabilisation), and we test a non-fuzzy
controller (c = 0, d = 1), and a PDC control parametrisation (c = 1)
with a Polya complexity parameter d = 6.

Results As a result, Figure 5.1 is obtained. The figure depicts the
convex hull of the two ellipsoids arising from the LMI solution(curved
line), the maximal set with the non-fuzzy controller (blue region) and
the inner approximation to the maximal controllable set with single-sum
controllers (union of blue and red region). Increasing d didn’t visually
appear to generate more stabilisable points. The set proposed by our
algorithm is larger than the proposed solution in the compared work.

Computation time The LMI solution from (Lendek et al., 2012) in
Figure 5.1, using YALMIP 3.2010.0611 and SEDUMI 1.3, took 1.56
seconds; with MPT Toolbox 2.6.3 (Kvasnica et al., 2004), obtaining the
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Figure 5.1: Comparative analysis with delayed-membership non-PDC
control (single solution).

blue robust-polytopic region with the algorithms in (Kerrigan, 2000)
took 16 iterations and 2.03 seconds; the Polya-6 red region in the above
figure took 4 iterations and 0.222 seconds; the used computer was an
Intel I5 2.56GHz computer with 6 Gb of RAM with Matlab 2010. The
more general controller parametrisation allows to prove stability with
less iterations (optimal controllers are faster): surprisingly, the more
complex setting took less time to compute.

Union of all possible LMI solutions As the solution of (Lendek et
al., 2012, Cor. 1) might be not unique4, several solutions were crafted
by forcing one of the ellipsoids Ei (i randomly chosen) to contain the
largest possible ellipsoid in the form E∗

γ = {x : 100x21 + x22 ≤ γ} rotating
E∗
γ repeated times, in order to explore whether there exists a solution of

the LMIs “stretching out” as much as possible in every direction.

Figure 5.2 presents the multitude of solutions for different runs of

4In our approach, on-line controllers might be non-unique, but the maximal set is
indeed unique (such fact can be proved by convexity argumentations).
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Figure 5.2: Comparative analysis with delayed-membership non-PDC
control (all solutions); the cyan line depicts the union of all such solu-
tions.

the LMIs5, with the union emphasised in blue color. All of the solu-
tions lie inside the converged invariant set produced by our algorithm.
So, there exists a controller with piecewise-PDC structure which outper-
forms (larger domain of attraction) those in (Lendek et al., 2012, Cor.
1), not only individually but also outperforming the union of all feasible
solutions (which might involve a different controller each, so a controller
for such union set is not found in the cited work) with a single controller.

5.8.2 Off-line piecewise controller

In this subsection, a contraction rate λ = 0.98 has been chosen as the
specification for speed of convergence, so the obtained sets are slightly
smaller. The piecewise-PDC fuzzy controller (linear in memberships
and affine in the state) in (5.38) has been computed for complexity

5Importantly, note that the LMIs in the compared work provide only one solution,
as in Figure 5.1: computing the union of all LMI solutions requires a theoretically
infinite number of LMIs with the settings in prior literature, whereas our proposal
takes 0.2 seconds to compute a set which is larger than such union.
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Figure 5.3: Piecewise state-space tesellation and trajectories for different
simulations of the piecewise-affine controller (5.38).

parameters c = 1, d = 6, searching for the fastest decay. As previously
discussed, this aims to achieve a faster on-line execution in exchange for
a larger computation time in the design phase.

The optimal control problem (5.37) in the single polytope given by
the maximal contractive set has a piecewise solution with a tessellation
of 90 polytopic regions6, depicted in Figure 5.3. In this example, the
computation of the explicit piecewise-PDC-affine optimal feedback law
took 2.35 seconds, instead of the 0.222 that took computing “only the
set in which a controller exists”.

Two trajectories are simulated with the piecewise controller. As
guaranteed by the algorithms, feasible sequences of control and states
can be obtained without violating any constraints.

6Note that the resulting regions were not known a priori, contrarily to other piece-
wise results, say (Johansson et al., 1999), in which regions are fixed at start.
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5.9 Conclusions

This chapter presents an extension of the control λ-contractive set com-
putations in robust control literature to fuzzy Takagi-Sugeno models
under state and input constraints (possibly non-symmetric). Based on
Polya’s asymptotically exact theorems, the obtained closed-loop con-
trollable sets will approach the maximal shape-independent control λ-
contractive set: if some complexity parameters are high enough, the
obtained sets and controllers improve over any conceivable (shape in-
dependent) Lyapunov-based controller design technique for TS systems.
An implementation requiring on-line one-step optimisation is proposed;
as an alternative, by using explicit multi-parametric software tools, a
shape-independent piecewise-affine-multidimensional-PDC controller ex-
ists whose explicit expression can be obtained off-line, achieving the
same worst-case performance. Comparative analysis with delayed-fuzzy
Lyapunov functions show that all their shape-independent solutions lie
inside the sets produced by the new algorithm for the same complexity
parameter values.



Chapter 6

Model Predictive Control for Discrete Fuzzy
Systems via Iterative Quadratic Programming

Note: The contribution of this chapter is based on the fol-
lowing publication:

Ariño, C., Pérez, E., Querol, A., and Sala, A. (2014). Model
predictive control for discrete fuzzy systems via iterative
quadratic programming. In Fuzzy systems (FUZZ-IEEE),
2014 IEEE international conference on (pp. 2288–2293).

Takagi-Sugeno fuzzy models are exact representations of nonlinear
systems in a compact region. Guaranteed-cost linear matrix inequalities
produce controllers which minimize a shape-independent bound on a
quadratic cost; however, the controller has a fixed structure (possibly
suboptimal), say a Parallel Distributed Compensator (PDC), and does
not allow input saturation. By posing the problem as a Model Predictive
Control one, the ideas of terminal set, terminal controller and feasible set
can be used in order to improve the performance of usual guaranteed-cost
controllers for Takagi-Sugeno systems via Quadratic Programming. A
Polya-based approach has been introduced in order to (conservatively)
transform the invariant set problem into a polytopic one, as well as
computing the controller feasibility region. The optimal controller is
computed iteratively.

6.1 Introduction

Takagi-Sugeno (TS) fuzzy models are exact representations of nonlinear
systems in a compact region (modelling region, Ω) if well-known sys-

125
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tematic sector-nonlinearity methodologies (Tanaka & Wang, 2004) are
used.

Techniques based on Linear Matrix Inequalities (LMI) have allowed
to obtain a wide range of fuzzy controllers following different speci-
fications (stability, decay, H∞, ...). Many of them result in closed-
loop expressed as multi-dimensional fuzzy summations. In particular,
guaranteed-cost ones (Wu, 2004) are those which generalize to TS mod-
els, with some conservativeness, the usual optimization of infinite-cost
quadratic indices in linear quadratic regulator (LQR) control.

However, as fuzzy models are usually valid only locally in the com-
pact region Ω, performance guarantees are usually stated only on level
sets of the obtained Lyapunov functions included in the modelling re-
gion (Pitarch, Ariño, Bedate, & Sala, 2010). So, implicitly, the actual
fuzzy control problem should incorporate state constraints arising from
the local modelling setup. Such constraints are usually enforced via Lya-
punov level sets but the actual valid initial condition region might be
quite larger than that arising from the level sets (Ariño, Pérez, Sala, &
Bedate, 2014). Also, in realistic applications, there is always control sat-
uration which is not easy to handle in LMI framework: most conditions
actually require the control action to avoid saturation in the outermost
Lyapunov level set or, if that is not the case (Cao & Lin, 2003), either
cannot prove improvement with respect to non-saturating laws or require
iteration/Bilinear Matrix Inequalities (BMI) (Ariño et al., 2010).

In a linear case, state and input constraints are handled with on-
line finite-horizon optimization in model predictive control (Goodwin
& De Doná, 2005) (MPC). Stability and infinite-horizon optimality of
receding-horizon predictive laws is ensured for all initial states in a so-
called feasible set if a so-called terminal controller can be found which
does not hit any constraint in future time for all initial states in a ter-
minal set. These are well known concepts in the linear MPC framework
(Goodwin & De Doná, 2005) which, however, are much harder to deal
with in nonlinear systems.

The objective of this chapter is adapting the above considerations
to TS fuzzy systems. As there are some causes of conservatism (in par-
ticular shape-independence and fuzzy summation issues (Sala, 2009)),
subsets of the actual invariant and feasible sets are computed for a PDC
terminal controller. Also, as future optimal trajectories are unknown,
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an iterative procedure is reported in order to converge to the optimal
one for the original nonlinear system (actually suboptimal because con-
vergence is sought only in the finite-horizon segment). The result, albeit
sub-optimal (because the terminal controller is conservative because of
shape-independence and Polya-like fuzzy summation issues), improves
over the terminal (plain PDC) controller both in achieved cost and in
the enlarged feasible zone.

The structure of the chapter is as follows: next section discusses pre-
liminary notation and the concrete problem statement above outlined.
Section 6.3 discusses the proposed setup for adapting MPC to fuzzy
systems, first considering the terminal cost, and later the terminal set,
feasible set, plus an iterative algorithm to compute the optimal transient
system trajectories (Section 6.3.4). Section 6.4 and 3.4.3 propose exam-
ples in which the main concepts are illustrated. A conclusion section
closes the chapter.

6.2 Preliminaries and Problem statement

Consider a nonlinear discrete-time system to be controlled, given by a
model:

xk+1 = fx(xk) + fu(xk)uk (6.1)

such that fx(0) = 0. This system can be expressed locally in a compact
region of interest Ω containing the origin as a TS (Takagi & Sugeno,
1985) fuzzy system with r rules or local models in the form:

xk+1 =

r∑

i=1

µi(xk)(Aixk +Biuk) (6.2)

where xk ∈ R
n represent the states, uk ∈ R

m the control actions and µi
represent membership functions such that:

r∑

i=1

µi(xk) = 1, µi(xk) ≥ 0 ∀x i : 1 . . . r (6.3)

If a fuzzy PDC state-feedback controller were used,

uk = −
r∑

i=1

µiKixk (6.4)
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the closed loop has the form:

xk+1 =

r∑

i=1

r∑

j=1

µiµj((Ai −BiKj)xk) (6.5)

Note that the dependence of the membership functions on xk has
been omitted for brevity.

Let us also consider in our problem formulation some input and state
constraints. When these constraints are linear they can be defined by
the appropriated matrices R and S, and vectors l, s such that:

X = {x ∈ R
n | Rx+ l ≤ 0} (6.6)

U = {u ∈ R
m | Su+ s ≤ 0} (6.7)

6.2.1 Problem statement

In literature, guaranteed cost control is used to synthesize PDC con-
trollers in the form (6.4) without taking into account the state and input
constraints.

The objective of this chapter is using such controllers as terminal
controllers in predictive-control-like strategies for fuzzy TS systems in
order to (partly) overcome the conservativeness arising from:

� The worst-case (membership independent) approach.

� The limited choice of Lyapunov functions.

� Ensuring the satisfaction of the above defined constraints in the
largest possible initial condition region.

In summary, even if terminal controllers are conservative, results
(guaranteed cost bounds) will improve due to the addition of a finite-
horizon segment with less conservative assumptions.
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6.3 Fuzzy Model Predictive Control

MPC can be defined as a Constrained online optimization based on a
model prediction. The essential parts of a MPC are:

� A model that will be able to describe the behavior of the future
states.

� An objective function that represents the performance of the con-
trolled system.

� An optimizer, that minimizes the objective function subject to the
proper constraints.

� The receding horizon strategy, that implies that the optimizer has
to solve the problem at each step.

The model that will be used on the MPC formulation is the following
TS one:

xk+1 =

r∑

i=1

µi(x̃k)(Aixk +Biuk) (6.8)

Note that the main difference between (6.2) and (6.8) is that the mem-
bership functions depend on a new variable x̃k. This variable is an
estimation of the optimal states at time k, at the prior iteration in an
algorithm to be later introduced. The introduction of that variable sim-
plifies the problem significantly, because the non-linear dependence of
the TS model can be evaluated at the beginning and then it will not
be introduced into the optimization problem. The obvious drawback of
that simplification is that many times x̃k may be quite different from
the predicted optimal xk, so this motivates the mentioned iterative ap-
proach.
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6.3.1 The objective function

Ideally, the proposed objective function would be a quadratic perfor-
mance function of the states and the inputs such as:

J∞ =

∞∑

k=0

(
xTkHxk + uTk Fuk

)
(6.9)

However, the main drawback of the function (6.9) is that it is not nu-
merically tractable (except in the well-known linear time-invariant case)
because of the infinite-horizon objective. In order to avoid this problem,
a finite horizon function is usually introduced in MPC:

JN = xTNPxN +

N−1∑

k=0

(
xTkHxk + uTk Fuk

)
(6.10)

For performance and stability reasons, it will be interesting that our
proposed finite horizon performance function JN bounds the optimal
infinite-horizon one J∞ (J∞ ≤ JN ) while making the gap between both
functions as small as possible.

To do so, analogous considerations as those in (Tanaka et al., 1999)
for continuous systems have been done for the discrete TS case in this
chapter. This way, a matrix P must be found which bounds the term of
the infinite horizon JN→∞

JN→∞ =
∞∑

k=N

(
xTkHxk + uTk Fuk

)
(6.11)

such that
JN→∞ ≤ xTNPxN (6.12)

This bounding can be achieved by constraining the per-stage weight-
ing with the condition (6.13)

xTk+1Pxk+1 − xTk Pxk < −(xTkHxk + uTk Fuk) (6.13)

Indeed, if (6.13) holds, summing from k = N to k = ∞ and assuming
the resulting controller will be stabilising so x∞ = 0, the cost index
(6.11) can be bounded by xTNPxN

∞∑

k=N

(xTkHxk + uTk Fuk) < xTNPxN (6.14)
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Using the Schur complement, following well-known argumentations
(Boyd et al., 1994), a controller for which (6.13) holds can be found if
there exist matrices Mi, X > 0 such that

Γij =




X XAT
i −MT

j B
T
i X MT

j

AiX −BiMj X 0 0
X 0 H−1 0
Mj 0 0 F−1


 (6.15)

r∑

i=1

r∑

j=1

µiµjΓij > 0 (6.16)

where P = X−1 and the controller is defined as a PDC (6.4) with

Ki =MiX
−1 (6.17)

The worst-case bound of the cost function (6.11) is minimized if the
eigenvalues of X are maximized, that is

min−λ

subject to (6.16) and X > λ.

Note that (6.16) is a fuzzy summation which can be, conservatively,
expressed as an LMI following any of the relaxations in (Tanaka &Wang,
2004; Tuan et al., 2001; Sala & Ariño, 2007a), see Chapter 3.

6.3.2 Terminal Set

Many times, the PDC controller (6.17) can not be applied in the whole
state space definition X defined in (6.6), because some inputs defined
with this PDC controller will not verify the input constraints defined in
(6.7). Also, maybe even if they do in a particular instant, the future
optimal trajectory may exit Ω or even without exiting, it might violate
the input bounds.

Then it is mandatory to obtain a set from with this controller can be
applied and the system will be stable and optimal, and future states must
also belong to that set. Following predictive-control argumentations,
the invariant set of this controller has to be computed. It can be done
following the algorithm presented in (Ariño et al., 2013). This algorithm
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is based on (Gilbert & Tan, 1991), adapted to TS Fuzzy models applying
the Polya theorem and is also presented here as Algorithm 3.

Algorithm 3 Calculation of the closed-loop N -step invariant set
KN (Ω,T)

1. Make i = 0 and K0(Ω,T) = T

2. While i < N :

(a) Ki+1(Ω,T) = Q (Ki(Ω,T)) ∩ Ω

(b) If Ki+1(Ω,T) = Ki(Ω,T), end algorithm and KN (Ω,T) =
K∞(Ω,T) = Ki(Ω,T).

(c) i=i+1

Where T is a target set; Ω is a generic set in the states space; and
Ki(Ω,T) denotes the subset of Ω that steers the system to T in at most
i steps.

The algorithm needs to compute iteratively the one-step set Q(Ω) =
{x ∈ Ω|xk+1 ∈ Ω}. This set, in a general case, is a complicated one
arising from the non-linear dynamics embedded in the TS models.

In order to avoid this problem, an approximation of Q can be done
using the Polya expanded TS model

xk+1 =

(
r∑

i=1

µi(x)

)d−2 r∑

i=1

r∑

j=1

µi(x)µj(x)Gijxk (6.18)

where Gij = Ai − BiKj . Note that this model is equivalent to (6.5) as∑r
i=1 µi(x) = 1.

The Polya-expanded model in (6.18) is a d degree vector polynomial
of µi and a suitable matrix G̃i can be found such that

xk+1 =
∑

i∈I+
d

niµi(x)G̃ixk (6.19)

where each µi represents one of the possible monomials
∏
µj of degree

d; I
+
d is the set of all the different monomials of degree d; and ni is
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the number of times that this monomial appears in (6.18). For further
details, the reader is referred to (Ariño et al., 2013).

With this notation, the one-step set can be expressed as

Q(Ω) = {x ∈ R
n|
∑

i∈I+
d

niµi(x)G̃ix ∈ Ω} (6.20)

Due to µi and ni being positive, a sufficient condition for a point x to
belong to (6.20), can be given by ensuring that

Q(Ω) ⊃ Q̃d(Ω) = {x ∈ R
n|G̃ix ∈ Ω} (6.21)

Note that Q̃d(Ω) is a polytopic subset of the one-step set. Furthermore,
it can be proved that as d increases, Q̃d(Ω) asymptotically approaches
to the maximal shape-independent subset of Q(Ω) (Ariño, Pérez, Sala,
& Bedate, 2014) or chapter 5. Now, this set can be used in Algorithm
3 in order to obtain an inner approximation of the Invariant Set which
can be used as the terminal set in the MPC problem. We define this set
as Z = K∞(Ω,Ω) which is a polytope. Hence, it can be represented as

Z = {x ∈ R
n|Zx ≤ z} (6.22)

for a suitable choice of matrix Z and vector z.

6.3.3 Optimization Problem

Once the terminal cost P and the terminal set Z are obtained, given
a known initial state x0 and a first guess of the future optimal trajec-
tory x̃ = (x̃1, . . . , x̃N−1), the following Quadratic Programming (QP)
optimization problem PN (x0, x̃) can be stated:

PN (x0, x̃) : find u0,. . . , uN−1 which minimize

JOPT
N (x) =xTNPxN +

N−1∑

k=0

(
xTkHxk + uTk Fuk

)
(6.23)

subject to:

uk ∈ U for k = 0, . . . , N − 1

xk+1 =
r∑

i=1

µi(x̃k)(Aixk +Biuk) ∈ X (6.24)

for k = 0, . . . , N

xN ∈ Z ⊂ X
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Γ =




B(x̃0) 0 . . . 0
A(x̃1)B(x̃0) B(x̃1) . . . 0

...
...

. . .
...

(
∏N−1

i=1 A(x̃i))B(x̃0) (
∏N−1

i=2 A(x̃i))B(x̃1) . . . B(x̃N−1)




(6.28)

At this point it is useful to remark that x̃k for k = 1 . . . N − 1 have
to be already known in order to avoid the nonlinearities of the model’s
memberships and express this problem as a QP. In the next section, an
iterative procedure will be presented to obtain this state estimates.

Let us show that, indeed, the problem is a standard QP one. First,
note that the matrices below are known at the time of the computation

A(x̃k) =
r∑

i=1

µi(x̃k)Ai, B(x̃k) =
r∑

i=1

µi(x̃k)Bi (6.25)

With these matrices the prediction model can be expressed as:

x = Θx0 + Γu (6.26)

where x = (xT1 . . . x
T
N )T , u = (uT0 . . . u

T
N−1)

T , Θ is defined in (6.27) and
Γ in (6.28) on top of next page.

Θ =




A(x̃0)
A(x̃1)A(x̃0)

...
A(x̃N−1) . . . A(x̃0)


 (6.27)

As Θ and Γ are easily computable matrices, following standard MPC
procedures (see (Goodwin & De Doná, 2005) for details), the optimiza-
tion problem can be expressed as the following quadratic program on
the vector of future controls u:

PN (x0, x̃) : minimize
1

2
uTHu+ xT0 Fu (6.29)

subject to:

Φu ≤ ∆− Λx0 (6.30)
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where

Φ =

(
RΓ
S

)
, ∆ =

(
l
s

)
, Λ =

(
RΘ
0

)
(6.31)

R = diag(R, . . . , R, Z), l = diag(l, . . . , l, z) (6.32)

S = diag(S, . . . , S), s = diag(s, . . . , s) (6.33)

H = ΓT [diag(H, . . . ,H, P )]Γ + diag(F, . . . , F ) (6.34)

F = ΘT [diag(H, . . . ,H, P )]Γ (6.35)

6.3.4 Iterative computation of the state trajectory esti-
mate

As previously stated, in the proposed optimization problem an state
estimate x̃k is needed in intermediate steps. For a good prediction of
the trajectories, it is needed that this estimate is as close as possible
to the real future optimal state, x̃k ≈ xOPT

k . However, as these future
trajectories are unknown until the actual control action is computed, an
iterative setup is needed in order to compute the optimal control action
as well as the optimal trajectory.

To this end, Algorithm 4 below is presented. It has been imple-
mented with end conditions considering some (application dependent)
limitations on the available time ǫt for the computation and desired pre-
cision in the solution ǫx.

Algorithm 4 Iterative computation of the state estimate

1. Obtain initial estimate x̃ from previous sampling step.

2. Solve the program PN (x0, x̃) obtaining uk

3. x̃∗0 = x0, x̃
∗
k+1 =

∑
i=1 µi(x̃

∗
k)(Aix̃

∗
k +Biuk) for k = 0 . . . N − 2

4. If |x̃∗ − x̃| > ǫx|x̃| and t− t0 < ǫt go to step 2 with x̃ := x̃∗

In Algorithm 4, the initial state sequence estimate x̃ can be seeded
to, for instance, all elements equal to x0 (which is implicitly done in
(T. Zhang et al., 2007), by “freezing” the memberships to the initial
value µ(x0)).
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6.3.5 Feasible region

At this point, it is important to know the set of states where the pro-
posed problem PN (x0, x̃) has a solution, given an horizon N . Otherwise,
Algorithm 4 may be infeasible. This feasible set, can be computed as
the set of states that can reach the terminal set in N steps while holding
the imposed constraints in inputs and states. Of course, the larger the
horizon, the larger the resulting set would be.

A possible way to compute this feasible set is applying Algorithm
3 with horizon N and T = Z, where Z is the terminal set previously
computed in Section 6.3.2. Now, as the input is not determined by a
given “optimal” controller (only the existance of a valid input is needed),
the one-step set is redefined as

Q(Ω) =

{
x ∈ R

n|∃u ∈ U,

r∑

i=1

µi(x̃k)(Aix+Biu) ∈ Ω

}
(6.36)

As the values of x̃ are uncertain, an inner approximation of this set
is here proposed, which is shape-independent, i.e., valid for any possible
value of µi:

Q̃(Ω) = {x ∈ R
n|∃u ∈ U, Aix+Biu ∈ Ω, ∀i = 1 . . . r} (6.37)

and the standard algorithm is applied with the above set for a number
of steps equal to the finite-horizon N .

6.3.6 Receding Horizon Optimization and Stability

The optimal controller obtained by solving problem (6.29) is imple-
mented, as usual in MPC, in a receding-horizon strategy in which only
the first action u0 is applied and, then, a new state is measured and
everything is recomputed.

Given the fact that the terminal cost verifies (6.13), using the re-
sults in (Goodwin & De Doná, 2005), assuming Algorithm 4 has con-
verged to the optimal trajectory, then stability of the receding horizon
implementation can be ensured; also, some contractive-set constraints
(de Oliveira Kothare & Morari, 2000) can be additionally enforced to
ensure stability even if Algorithm 4 has not converged.
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This contractiveness restriction can be introduced in problem (6.29)
constraints using a Lyapunov condition. In our proposal, this Lyapunov
function will be a piecewise linear function, formulated in chapter 5,
equation (5.10), in the form:

V (x) = max
i
Hix (6.38)

that can be easily introduced in the quadratic programming problem
adding the following linear constraints

Hix < V (x0) (6.39)

The proposed optimization problem is implemented in a receding
horizon schema. Therefore at each step the quadratic program PN (x0, x̃)
has to be solve at least once. In order to perform this optimization a
value of x̃ has to be computed. To this end, Algorithm 5 has been pre-
sented. It has been implemented with some limitations on the available
time ǫt for the computation and precision in the solution ǫx.

Algorithm 5 Receding Horizon schema

1. read x0 and the time (t0) from sensors

2. If t0 = 0 → x̃k = x0 for k = 0 . . . N − 1 and go step 4

3. x̃0 = x0, x̃k+1 =
∑

i=1 µi(x̃k)(Aix̃k +Biuk+1) for k = 0 . . . N − 2

4. solve the program PN (x0, x̃) obtaining uk

5. x̃∗0 = x0, x̃
∗
k+1 =

∑
i=1 µi(x̃

∗
k)(Aix̃

∗
k +Biuk) for k = 0 . . . N − 2

6. If |x̃∗ − x̃| > ǫx and t− t0 < ǫt go to step 4 with x̃ := x̃∗

7. The action u0 is applied to the system.

6.4 Example

This example will illustrate the proposed MPC methodology for a TS
system

xk+1 =

r∑

i=1

µi(xk)(Aixk +Biuk) (6.40)
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with the local models and membership functions defined as (6.41)-(6.43)

A1 =

(
−0.9 0.3
0 0.4

)
A2 =

(
0.8 0.6
−0.5 0.2

)
(6.41)

B1 =

(
0.4
1.1

)
B2 =

(
0.9
0.3

)
(6.42)

µ1 =
10− x1(k)

20
µ2 = 1− µ1 (6.43)

The system will be constrained in the input and states as given by

−1 ≤ uk ≤ 1 − 10 ≤ xk ≤ 10 (6.44)

where state restrictions are understood as component-wise.

First, a terminal state weighting P and terminal PDC controller uk =∑r
i=1 µiKixk are computed as discussed in section 6.3.1 with weighting

matrices H and F being chosen as:

H =

(
1 0
0 1

)
, F = 1 (6.45)

The obtained PDC controller gains Ki are

K1 = (−0.3519 0.3136) , K2 = (0.3898 0.5664) (6.46)

and the resulting terminal weighting P matrix is:

P =

(
8.5967 −0.1159
−0.1159 5.5136

)
(6.47)

Next, the terminal set is obtained following Algorithm 3 with con-
straints (6.48) and a Polya complexity index d = 50 in the computation
of the inner approximation of the one-step set (6.21), with the state
constraints arising from the use of the terminal controller, i.e.:

(
−10
−10

)
≤ xk ≤

(
10
10

)

−1 ≤ K1xk ≤ 1 − 1 ≤ K2xk ≤ 1
(6.48)
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The obtained terminal set is illustrated in Figure 6.1.

At this point all the required elements for stating the QP fuzzy pre-
dictive control problem are already available. However, it is also inter-
esting to obtain the set of states for which the optimization problem will
we feasible, i.e. the feasible set, as described in Section 6.3.5. Choosing
an horizon of N = 6 the shape-independent feasible set presented in grey
in Figure 6.1 is found.

Finally, in order to evaluate the MPC controller performance, the
closed-loop trajectory from an arbitrarily chosen point x0 = (−1 8)T is
also shown in Figure 6.1. Algorithm 4 needs 2 iterations to find an state
estimate of relative precision of ǫx = 0.1%. In Algorithm 4, initial x̃ has
been seeded with all elements equal to x0, as previously discussed.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−10

−8

−6

−4

−2

0

2

4

6

8

10

x
1

x 2

Figure 6.1: Terminal Set (red), Feasible Set (grey), and state trajectory

Additionally, time responses of the states and the control action are
shown in figures 6.2 and 6.3 respectively, showing a fast convergence to
the equilibrium point.
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Figure 6.2: States time response.

0 2 4 6 8 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

time (s)

u

Figure 6.3: Control action time response.

The total time of a single iteration of algorithm 4 is 0.11sec. with
a non optimized implementation, the time employed by solving the
quadratic problem (6.29)-(6.30) is 0.025sec. As two iterations are needed,
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total computation time for each control action is 0.22 s1.

Comparative analysis and discussion:

The use of the MPC approach allows improving over the performance
index from the shape-independent LMI PDC controller in two ways:

First, by allowing a larger feasible zone, in which input constraints
may be hit for several time steps. The standard literature controller
would only be valid in its invariant set (and, actually, published fuzzy
guaranteed-cost literature would only consider a Lyapunov level set in-
side it).

Second, even inside the terminal set, a few steps of actual optimiza-
tion will beat in most cases the worst-case cost with a fixed PDC con-
troller structure. For instance, in the example, the state ψ = (−2, 0)
inside the terminal set yields a computed cost of 0.1411 with the ter-
minal controller (note that the cost bound proved with the LMIs is
ψTPψ = 34.387 as it is a shape-independent worst-case estimation –
almost 250 times higher than the actual cost–), whereas the actual cost
index computed with the predictive iterative controller reduces it to
0.0916 (i.e, a 35% reduction). Random trials with states in the terminal
set result in a reduction between 0% and 93% over the LMI-based PDC
controller. Note also that the larger the prediction horizon the less rele-
vant the role of the terminal cost and terminal controller is, as usual in
dynamic-programming based optimal control setups.

6.5 Conclusions

This chapter presents an application of predictive-control ideas to fuzzy
control. The MPC algorithm follows an standard structure in which a
fuzzy PDC terminal controller and terminal state weighting are calcu-
lated by LMIs. An algorithm for obtaining an inner approximation of
the terminal set for this controller with a Polya-based approach is also
introduced. As future memberships are unknown, an iterative quadratic

1Calculated by a Intel i5-7200U, RAM: 8GB, Windows 10, software: Matlab 2013
and quadprog.m function
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programming procedure is proposed. Stability guarantees are also dis-
cussed.



Chapter 7

Shape-Independent Model Predictive Control
for Takagi-Sugeno Fuzzy Systems

Note: The contribution of this chapter is based on the future
publication:

Ariño, C., Querol, A. Sala, A.. Shape-Independent Model
Predictive Control for Takagi-Sugeno Fuzzy Systems. Sub-
mitted, under review.

Predictive control of TS fuzzy systems has been addressed in prior
literature with some unclear simplifying assumptions or heuristic ap-
proaches. This chapter presents a formulation of the model predictive
control of TS systems so that results are valid for any membership value
(shape-independent) with a suitable account of causality (control can
depend on current and past memberships and state), and a family of pro-
gressively better controllers can be obtained by increasing Polya-related
complexity parameters.

7.1 Introduction

Takagi-Sugeno (TS) systems are a widely-used tool to exactly model non-
linear systems via the so-called sector-nonlinearity approach (Tanaka &
Wang, 2004); models are valid on a compact modelling region Ω. Subse-
quently, stability analysis and control design tasks can be carried out on
the TS models. Control techniques for TS fuzzy systems based on LMIs
have been deeply developed in recent years in literature, see (Guerra et
al., 2015) and references therein. Of course, the TS+LMI approach is
conservative with respect to an “ideal” nonlinear control approach (Sala,

143
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2009), but it allows solving the problems via convex optimisation tools,
derived from linear systems and related to the so-called linear parame-
ter varying (LPV) approach (Mohammadpour & Scherer, 2012). As the
model is only valid on a compact set, the results are also limited to this
modelling region, usually the largest Lyapunov level set in Ω (slightly
larger sets can be actually proven, see (Pitarch, Sala, & Ariño, 2014))
or an inescapable set in disturbance-rejection problems (Sala & Pitarch,
2016).

In realistic applications, there is always control saturation, which is
not easy to handle with LMI: most conditions conservatively require the
control action to avoid saturation in the outermost Lyapunov level set
(Tanaka & Wang, 2004), others allow saturation (Cao & Lin, 2003) but
they cannot prove improvement with respect to non-saturating laws or
require iteration/Bilinear Matrix Inequalities, see (Ariño et al., 2010).
Note also that if the operation point is not at the center of actuator
range, constraints are non-symmetric; however, in an LMI setup con-
straints must be forced to be symmetric in the vast majority of cases.

A recent alternative to the LMI approach in TS systems is the ge-
ometric polytope manipulation approach in (Ariño, Pérez, Sala, & Be-
date, 2014) (stability analysis) and (Ariño et al., 2017) (controller de-
sign, Chapter 5), extending well-known results in the robust-polytopic
control field (Kerrigan, 2000). These results are important due to two
features: first, the natural consideration of non-symmetric state and in-
put constraints and, second, the key fact that, asymptotically, no shape-
independent controller can prove a larger domain of attraction so they
close the control synthesis problem with stability and decay rate per-
formance (only in theory, as severe computational issues hinder practi-
cal implementation of Polya-based asymptotic solutions (Sala & Ariño,
2007a)).

Apart from sheer stability, optimality of a quadratic index for TS sys-
tems is a problem that has been also addressed in many works in litera-
ture in the so-called guaranteed cost setup (Tanaka &Wang, 2004; Ariño
et al., 2010; Tanaka, Ohtake, & Wang, 2009; Guan & Chen, 2004); the
“guaranteed cost” terminology stems from the fact that the controllers
in such references only prove an “upper bound” to the actual cost. The
above-referred works use a 1-step version of the Bellmann equation, i.e.,
V (xk) ≥ L(xk, uk) + V (xk+1), being L some quadratic “step cost”, to
prove that V is a cost bound via some LMIs.
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Obviously, the natural multi-step extension to the Bellmann equa-
tion is V (xk) ≥

∑N−1
j=1 L(xk, uk) + V (xk+N ); such optimisations are the

key point behind model predictive control (MPC) approaches (Cama-
cho & Bordons, 2013). Linear MPC under quadratic stage and terminal
cost are routinely solved via very efficient quadratic programming (QP,
convex) optimisation and, also, there are well-known stability and opti-
mality guarantees (Goodwin et al., 2006) emanating from classical LQR
theory. In the uncertain case, the so-called minimax predictive con-
trol is addressed in the well-known references (P. Scokaert & Mayne,
1998; Löfberg, 2003; Kerrigan, 2000); state and input constraints are
naturally handled in the resulting constrained optimisation setups (QP,
LMI). These “uncertain” MPC approaches can, of course, apply to TS
systems but, they are conservative in the same way as “robust linear”
controllers are, as they do not exploit the fact that membership func-
tions are measurable in on-line operation so control can depend on them.
On the other hand, the “ideally” least-conservative framework would be
directly applying nonlinear MPC (Grüne & Pannek, 2011; Diehl et al.,
2002) to the original nonlinear system from which the TS model was
originated; the main drawback is the fact that computational cost of
nonlinear MPC is high (convexity cannot be guaranteed) and, in many
cases, convergence of the optimisation iterations is, if they actually con-
verge, to a possibly local minimum.

So, fuzzy MPC stands in the “middle ground” between the well-
developed linear case and the elusive nonlinear one. However, quite a few
of the fuzzy MPC earlier literature works have significant shortcomings.
For instance, the widely-cited work (Sousa, Babuška, & Verbruggen,
1997) resorts to clustering but, actually, it carries out nonlinear MPC
on the resulting identified fuzzy model, via nonconvex branch-and-bound
optimisation. The work (Kavsek-Biasizzo et al., 1997) computes a linear
MPC by“freezing”the memberships at a particular instant and assuming
they will be constant in the future; this might work in practice, but it
lacks theoretical justification in fast transients. The work (Y. Lu &
Arkun, 2000) presents an interesting approach in which a sequence of
quadratic cost bounds and state-feedback gains solves (suboptimally) the
MPC problem. The great advantage is its computational tractability;
however, it is well-known that even for the linear case, under constraints,
the optimal value function is not quadratic in the state, so the approach
is conservative. Recent works such as (Q. Lu et al., 2015) discusses
networked interval type-2 systems, but their results are still based on
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the 1-step equation discussed above so they are not solving a “proper”
multi-step problem as most MPC literature understands. For brevity
in this introduction, further discussion and comparative analysis with
related results1 are presented in Section 7.6.

The objective of this chapter is adapting the linear MPC for TS fuzzy
models in a rigorous way, suitably posing the problem and proposing lin-
ear matrix inequality conditions for the resulting optimisation. The key
idea is introducing the shape-independent concept to the model predic-
tive control problem formulation on TS fuzzy systems. This concept
implies that the MPC is valid not only for the actual non-linear system
originating a TS model, but also for any other possible realization of the
membership functions. This is a source of conservatism with respect ot
pure nonlinear-MPC but, in exchange, systematic LMI conditions can be
posed. Importantly, the proposed controllers make use of the fact that
future memberships will be measurable at the moment of computing the
future control action, absent in other literature proposals.

The structure of the chapter is as follows: Section 7.2 presents prelim-
inary results, notation and problem statement; Section 7.3 presents the
main contribution on shape-independent fuzzy-MPC, prediction model
and constraints; this section is followed by a stability analysis in Sec-
tion 7.4, where terminal cost and controller are discussed in depth. Two
brief sections present a shape-dependent MPC variation and a compar-
ative analysis and discussion. Section 7.7 develops an example, and a
conclusion section closes the chapter.

7.2 Preliminaries

Consider a nonlinear discrete-time system, given by:

xk+1 = fx(xk) + g(xk)uk (7.1)

where xk ∈ R
n represents the state vector, uk ∈ R

m the control actions
and fx(0) = 0. The above system can be expressed in compact regions

1There are other related works on LMI-based suboptimal MPC for Wiener and
Hammerstein models (Khani & Haeri, 2015) or for input-output LPV systems (un-
certain impulse-response coefficients) (Abbas, Tóth, Meskin, Mohammadpour, &
Hanema, 2016) anyway, these non-TS representations are intentionally out of the
scope of the present manuscript, as well as other multi-agent/cooperative versions of
MPC (Killian, Mayer, Schirrer, & Kozek, 2016).
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X, U containing the origin as a Takagi-Sugeno fuzzy model with r rules
in the form

xk+1 = f̃(µ, xk, uk) :=
r∑

i=1

µi(xk)(Aixk +Biuk) (7.2)

In this representation µi(x) are the membership functions which, for
later manipulations, they will be grouped in the vector of memberships

µ(x) :=
(
µ1(x) µ2(x) . . . µr(x)

)T
(7.3)

which belongs to the standard simplex:

∆ :=

{
µ ∈ R

r |
r∑

i=1

µi = 1, µi ≥ 0

}
(7.4)

The regions where system (7.1) is modelled will be assumed to be
polyhedral

X = {x ∈ R
n | Rx+ r ≤ 0}, U = {u ∈ R

m | Su+ s ≤ 0} (7.5)

where inequalities in vectors are understood to hold element-wise.

As discussed in the introduction, well-known LMIs have been devel-
oped to synthesise state-feedback controllers for systems in the TS form
(7.2). In particular, this chapter will root on the so-called guaranteed-
cost results (Tanaka & Wang, 2004; Ariño et al., 2010) and will propose
predictive controllers which improve on the obtained cost bounds.

7.2.1 Fuzzy predictive control: problem statement

Generic Predictive control problems (Camacho & Bordons, 2013; Good-
win et al., 2006) are based on solving finite-horizon constrained optimi-
sation problems. Let us discuss how the predictive control problem can
be formally stated in a TS framework.

First, in a TS fuzzy system, let us define a membership-dependent
cost index:

J∞ :=

∞∑

k=0

L(µ(xk), xk, uk) (7.6)
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In this way, some non-quadratic costs can be embedded into the frame-
work of this chapter. Then, the fuzzy version of the finite-time problems
in predictive control requires defining a N -step cost as:

JN (µ,u, x0) := V (µ(xN ), xN ) +

N−1∑

k=0

L(µ(xk), xk, uk) (7.7)

where, for convenience, memberships are arranged as a matrix:

µ :=



µ1(x0) µ1(x1) . . . µ1(xN )

...
...

. . .
...

µr(x0) µr(x1) . . . µr(xN )


 ∈ R

r×(N+1) (7.8)

and µ ∈ ∆N+1 will indicate that each column belongs to ∆. The term
V (µ(xN ), xN ) will be denoted as terminal cost and the term L(µ(xk), xk, uk)
as stage cost; u denotes the set of control actions u0, . . . , uN−1.

Generic nonlinear predictive control (NMPC, (Camacho & Bordons,
2013)) would, subsequently, try to obtain a sequence of future inputs
u∗j , j = 0, . . . , N − 1 so that JN (µ,u, x0) is minimised (understanding
µ to be obtained from the simulated states under u∗ from an initial
condition x0). The basic problem of the above generic NMPC approach
is the fact that the optimisation problem is, in general, non-convex and
without guaranteed convergence or execution time bound in real-time
implementation, and also stability guarantees are missing.

Disregarding µ, system (7.2) can be considered as an uncertain poly-
topic one, so such early linear minimax results cited in the introduction
can be applied to them to design robust controllers, but in such a case
the knowledge of the membership functions in on-line operation is not
exploited.

The objective of this chapter is providing a Polya-based asymptoti-
cally exact solution to a shape-independent version of the above predic-
tive control problem:

J∗(x0) := min
U

max
µ∈∆N+1

JN (µ, g(µ, U), x0) (7.9)

under suitable constraints, where u := g(µ, U) will denote a causal con-
troller parametrisation, detailed in Section 7.3. Causality refers to the
fact that the actual shape of the membership functions is unknown at
design time but it will be known when implemented, and future mem-
berships will, too, be eventually known. The proposed solution will be
in LMI form.
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7.2.2 Homogeneous polynomial notation

In order to solve fuzzy control problems, homogeneous polynomials in
memberships are widely used (for instance, in the asymptotically exact
solutions in (Sala & Ariño, 2007a), in (Ding, 2010), etc.) Considering
a degree d ∈ N, d ≥ 1, and state x, all monomials of degree d in the
memberships can be expressed as

µα(x) := µα1
1 (x)µα2

2 (x) . . . µαr
r (x) (7.10)

being α ∈ N
r a vector of natural numbers (understood including zero)

such that |α| :=∑r
i=1 αi = d. In the sequel, the following notation will

be used to denote a degree-d homogeneous polynomial in memberships,
say Ξd

µ, which will be expressed as:

Ξd
µ(x) :=

∑

|α|=d

µα(x)nαΞα (7.11)

where nαΞα are the polynomial coefficients, factorised as Ξα and a com-
binatorial number nα, defined to be the multiset permutation of α in
the set |α| = d, i.e.:

nα :=

(
|α|
α

)
=

(α1 + · · · + αr)!

α1! . . . αr!
(7.12)

It can be proved that: ∑

|α|=d

µαnα = 1 (7.13)

The above expressions follow, with some shorthand changes, the nota-
tion in (Ding, 2010). In 7.A, some results on products of homogeneous
polynomials and Polya-theorem, later used, are recalled. State depen-
dence µα(x) will be shorthanded to µα if clear from the context.

Remark 1 In order to use this notation in TS models, we will under-
stand ∑

|ξ|=1

µξAξ :=

r∑

i=1

µiAi (7.14)

where ξ ∈ N
r is, forcedly, a vector with a single element equal to 1, being

the rest zero, and we understand Aξ to be equal to Ai, being i the unique
index such that ξi = 1. As nξ = 1, we omit writing it at the left-hand
side of (7.14).
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Homogeneous polynomials in delayed instants The appearence
of memberships of states from x0 to xN in the problem statement mo-
tivates extending the fuzzy summation notation to encompass different
instants.

This chapter will discuss homogeneous polynomials in membership
functions, evaluated at several instants of time, arranged as (7.8), so
µik := µi(xk). The degree of the homogeneous polynomial at different
time instants may differ: the homogeneous polynomial in memberships
at time k will, by assumption, have degree dk. In order to compactly
handle such situation, we will introduce a degree vector d ∈ N

1×(N+1),
conformed with said elements dk.

Considering now (7.11), as a different vector α will be needed for
different instants, the definition of α will be generalised to being a ma-
trix, using its k-th column to index a particular monomial at instant k:
considering a matrix of natural numbers α ∈ N

r×(N+1), notation αk for
k = 0, . . . , N , will denote the k-th column of a matrix α, considering the
first one to be indexed by zero, in order to be consistent with the idea
that the degrees correspond to µ(x0). Also, in this matrix case, |α| will
denote the vector of dimension 1× (N + 1) formed by the column-wise
sums, i.e., whose element at position j is |αk| =

∑r
i=1 αik.

Now, notation µ
α will represent a monomial in the membership func-

tions (at different instants of time), given by:

µ
α := ΠN

k=0µ
αk(xk) = Πr

i=1Π
N
k=0µ

αik

i (xk) (7.15)

and nα is

nα :=

N∏

j=0

nαk
=

N∏

j=0

|αk|!∏r
i=1 αik!

(7.16)

It can be proved in a straightforward way that
∑
nαµ

α = 1.

The generalisation of (7.11) to the multiple-instant setting will be
denoted by:

Ξd
µ
:=

∑

|α|=d

µ
αnαΞα (7.17)

where d will now be a degree vector, d ∈ N
N+1 indicating the degree at

each instant of time of the overall fuzzy summation.
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Example 7.1 Consider a prediction horizon N = 3 and two rules, r =
2. Example membership monomials for some degree matrices α are, say:

α =

(
3 0 0
4 0 0

)
⇒ µ

α = (µ1(x0))
3(µ2(x0))

4, nα = 7!
3!4!

0!
0!0!

0!
0!0! = 35

|α| = (7, 0, 0), |α1| = 7, |α2| = |α3| = 0

α =

(
2 1 0
0 0 4

)
⇒ µ

α = (µ1(x0))
2µ1(x1)(µ2(x2))

4, nα = 1

|α| = (2, 1, 4), |α1| = 2, |α2| = 1, |α3| = 4

7.3 Shape-independent predictive control

Let us now completely state the shape-independent problem (7.9) root-
ing from (7.7) and its associated constraints.

At the moment of computing uk in (7.7), memberships µ(x0), . . .µ(xk)
will be known; hence, we will search over controller depending on these
memberships, i.e., uk := gk(µ(x0), . . . , µ(xk), Uk), where Uk is a vector of
numeric parameters. Juxtaposing all controls, defining the set of control
laws u = {u1, u2, . . . , uN−1}, and the set of numeric decision variables
U := {U0, . . . , UN−1}, where Uk are those associated to control uk at
instant k, we will express them with the shorthand u := g(µ, U). A
homogeneous polynomial structure for g and U will be detailed shortly
below.

Under the above causality constraints, then, the shape-independent
fuzzy MPC problem would amount to computing:

J∗(x0) := min
U

max
µ∈∆N+1

JN (µ, g(µ, U), x0) (7.18)

subject to, for k = 0, . . . N − 1,

xk+1 = f̃(µ, xk, gk(µ(x0), . . . , µ(xk), Uk)) (7.19)

gk(µ(x0), . . . , µ(xk), Uk) ∈ U (7.20)

xk ∈ X (7.21)

xN ∈ T (7.22)

where T is a so-called terminal set (see Section 7.4 for details on how to
obtain it to guarantee stability).
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Causal fuzzy controller parametrisation As future values of mem-
bership functions are unknown, the control action cannot depend on
them, as discussed in earlier sections. So, u0 will be chosen to be an
homogeneous polynomial in µ(x0) with, say, degree c00, u1 will be a
polynomial in µ(x0) and µ(x1), with degrees c10 and c11 in µ(x0) and
µ(x1), respectively, and so on with u2, . . . , uN−1.

We will introduce notacion c[0] = (c00, 0, 0, 0), c
[1] = (c10, c11, 0, 0),

. . . so ckl indicates the degree of uk in µ(xl), for l ≤ k, 0 ≤ k ≤ N . Based
on the above discussion, we will consider a control action to be applied
to the TS system (7.2) to be given by:

uk =
∑

|α|=c[k]

µ
αnαuα,k (7.23)

where uα,k are control decision variables conforming Uk, and c
[k] ∈ N

N

is a user-defined degree vector, with the above-discussed causality con-
straints (i.e., elements k + 1 to N equal to zero).

7.3.1 Prediction model

1-step closed-loop model With the above control law (7.23), at time
k, the closed-loop successor state would be:

xk+1 =
r∑

i=1

∑

|α|=c[k]

µ
α · µi · nα(Aixk +Biuα,k) (7.24)

We will vectorise all decision variables in uα,k, i.e., stacking them in a
column vector Uk defined as:

Uk := vec|α|=c[k](uα,k) (7.25)

using any arbitrary enumeration ordering for α, for instance lexico-
graphic. Conversely, we will invert the vectorisation using notation
uα,k = Eα,kUk being Eα,k the matrix that selects the suitable vector
elements, according to the chosen order in the vectorisation operation.
With this notation, the input at instant k can be written as:

uk =
∑

|α|=c[k]

nαµ
αEα,kUk (7.26)

Hence,
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xk+1 =

r∑

i=1

∑

|α|=c[k]

µ
αµi(xk)nα(Aixk +BiEα,kUk) (7.27)

With suitable manipulations, using Corollary 7.1 and, if so wished
Polya expansion (Corollary 7.2), we can express the closed-loop model
(details omitted for brevity) as:

xk+1 =
∑

|γ|=q[k]

µ
γnγGγ,k

(
xk
Uk

)
(7.28)

where, q[k] ≥ c[k] + ek, and

Gγ,k :=
1

nγ

∑

α,ξ∈S
c[k]ek
γ

nαnγ−α−ξ

(
Aξ BξEα,k

)
(7.29)

with Sc[k]ek
γ defined according to (7.82) as

Sc[k]ek
γ = {α, ξ ∈ N

r×(N+1) | |α| = c[k], |ξ| = ek, γ − α− ξ ≥ 0} (7.30)

and ek denotes the vector whose elements are all zero except the k-th
one, equal to 1. Abusing the notation introduced in Remark 1, Aξ, when
indexed by a matrix ξ such that |ξ| = ek, should be understood as the
consequent matrix Ai, being i the row number at k-th column of the
single element of ξ equal to 1.

Note also that, if we choose q[k] = c[k]+ek then no Polya expansion is
carried out; for any other larger choice of elements of q[k] the expression
of the Polya expansion in Corollary 7.2 is implicitly considered in (7.28).

Example 7.2 For instance, in a TS model with r = 2, N = 3, let
us consider predicting x2 from x1 with c[1] = (2, 2, 0), which respects
causality ( u1 cannot depend on µ(x2)). As e1 = (0, 1, 0), the above
expression (7.28) with no Polya expansion would entail q[1] = (2, 3, 0).
Let us, for instance, show the element

G(
1 2 0
1 1 0

)
,1
=

1

6

(
4

[
A1 B1E(

1 1 0
1 1 0

)
,1

]
+ 2

[
A2 B2E(

1 2 0
1 0 0

)
,1

])

being E suitable selection matrices (0, . . . , 0, I, 0, . . . , 0).
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Prediction along the full horizon In MPC, from an initial state x0,
predictions of x1, x2, . . .xN must be made. So, the above 1-step ahead
prediction must be nested, and expression (7.28) generalised.

For instance, given x0, we could predict x2 with an homogeneous
controller of degree vector c[0] := (c00 0 . . . 0) at instant 0, and a con-
troller which, at instant 1, can depend on memberships at instants 0 and
1, with degrees c[1] := (c10 c11 0 . . . 0), the prediction of x2, without any
Polya expansion, would be:

x2 =

r∑

i=1

µi(x1)


Aix1 +Bi



∑

|β|=c[1]

µ
βnβEβ,1U1






=

r∑

i=1

µi(x1)


Ai




r∑

j=1

µj(x0)


Ajx0 +Bj


 ∑

|α|=c[0]

µ
αnαEα,0U0








+ Bi


 ∑

|β|=c[1]

µ
βnβEβ,1U1




 (7.31)

Following similar steps, predictions of x3, . . .xN can be crafted as
follows:

In expression (7.31) and in those of larger horizon, products of model
matrices at different instants appear in convolution-like formulae. In
order to set a compact notation for such products, let us consider the
product of matrices from instant j to k. The auxiliary degree vector
1jk, used in (7.34) and (7.35) below, will be defined as the vector whose
components j to k are equal to 1, being the rest equal to zero. Thus,
matrices ξ such that |ξ| = 1jk are those in which a single element is
equal to one in each of the columns from j to k. Now, for such ξ, we
will define:

Aξ :=

k∏

l=j

Aξl (7.32)

Example 7.3 Considering an index matrix |ξ| = 123, in a 2-rule model,
we would have, say:

A(
0 0 1 0 0
0 0 0 1 0

) = A2A1, A(
0 0 0 0 0
0 0 1 1 0

) = A2
2
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Note that in the model predictions, the above matrix would be multiplied
by µ2(x3)µ1(x2) (left) and µ2(x3)µ2(x2) (right).

With the above notations, the classical convolution formula in linear
MPC xk = Akx0 +

∑k−1
j=0 A

k−(j+1)Buj is extended to the TS case as
follows:

Theorem 7.1 For any degree vector q ∈ N
N+1, for qj ≥ maxi(cjj +

1, cij), j = 0, . . . , N − 1, the prediction of xk+1 as a function of x0 and
future controls in the form (7.26) can be expressed as:

xk+1 =
∑

|γ|=q

µ
γnγΞγ (7.33)

being

Ξγ :=
1

nγ



∑

ξ∈S
10k
γ

nγ−ξAξx0 +

k∑

j=0

∑

α,ξ∈Dj,k
γ

nγ−α−ξnαAξBβEα,jUj




(7.34)

where S10k
γ is built as defined in (7.79), and:

Dj,k
γ := {α, ξ, β ∈ N

r×(N+1), | |α| = c[j], |ξ| = 1(j+1)k, |β| = ej,

γ − α− ξ − β ≥ 0} (7.35)

Proof: Carried out by exhaustively repeating the analogous oper-
ations to (7.31) for x3, etc., omitted for brevity because of the tedious
nature of the developments.

Finally, the k-step prediction can be written as

xk+1 =
∑

|γ|=q

µ
γnγGγ,k

(
x0
U

)
(7.36)

been U = (UT
0 , . . . , U

T
N−1)

T and Gγ,k is formulated by extracting out
x0 and U from Ξγ in (7.34), in order to express (7.33) in matrix form
(7.36).
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Hence, juxtaposing Gγ,k in column form, resulting in a matrix to
be denoted as Gγ , the full prediction from k = 1 up to k = N can be
expressed as follows:

x =




x1
x2
...
xN


 =

∑

|γ|=q

µ
γnγGγ

(
x0
U

)
(7.37)

7.3.2 Constraints on decision variables

This section discusses how to enforce the constraints on states and in-
puts. Indeed, from prediction model (7.37), future states depend on x0
and U ; thus, constraints (7.20)–(7.22) must be formulated as constraints
on decision variables U .

Input constraints Carrying out a Polya expansion, if so wished of
(7.26), the input at instant k can expressed, taking any degree vector
h ∈ R

N , so that hj ≥ maxi(cjj , cij), j = 0, . . . , N − 1, as:

uk =
∑

|α|=c[k]

nαµ
αEα,kUk =

∑

|γ|=h

nγµ
γWγ,kU (7.38)

where Wγ,k, from (7.84), is defined as:

Wγ,k :=
1

nγ

∑

α ∈ Sc[k]

γ

nγ−αnα (0 . . . 0 Eα,k 0 . . . 0) (7.39)

At this point, as (7.38) is an homogeneous polynomial, in order to en-
force uk ∈ U k = 0 . . . N , as required by constraint (7.20), we formulate
the constraint on the polynomial coefficients, in terms of the decision
variables U , using matrix S and vector s in (7.5) as:

S ·Wγ,k · U + s ≤ 0 ∀ |γ| = h, k = 0, . . . , N − 1 (7.40)

indeed, if the above holds, as
∑
nαµ

α = 1, we have

Suk + s =
∑

|γ|=h

nγµ
γ(SWγ,kU + s) ≤ 0
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Finally, juxtaposing Wγ,k in column form, as a matrix to be denoted as
Wγ , the full prediction inputs from k = 1 to k = N −1 can be expressed
as follows:

u =




u0
u1
...

uN−1


 =

∑

|γ|=h

nγµ
γWγU (7.41)

Future state constraints In a similar way (details omitted for brevity),
the condition xk ∈ X, for k = 1 . . . N −1, required in (7.21), is expressed
in term of the decision variables U and the current state values x0, for
any Polya expansion of degree h such that hj ≥ maxi(cjj + 1, cij), j =
0, . . . , N − 1, as the sufficient condition

R · 1

nγ

∑

α ∈ Sq
γ

nγ−αnαGα,k

(
x0
U

)
+ r ≤ 0 ∀ |γ| = h, k = 0, . . . , N − 2

(7.42)
Finally, for stability reasons to be later discussed, the terminal set must
be defined as:

T := {x : xTN
(
P c
µ

)−1
xN ≤ λ−1 ∀µ ∈ ∆} (7.43)

being P c
µ a homogeneous polynomial of degree c, following notation

(7.17). Taking the prediction model (7.28) for xN :

xN =
∑

|α|=q

µ
αnαGα,N−1

(
x0
U

)
(7.44)

and applying well-kwown Schur-complement manipulations, we have
that xN ∈ T, required in (7.22), is equivalent to the matrix inequal-
ity:




λ−1
∑

|α|=q µ
αnα

(
Gα,N−1

(
x0
U

))T

∑
|α|=q µ

αnαGα,N−1

(
x0
U

) ∑
|σ|=l µ

σnσPσN


 ≥ 0

l = (0, 0, . . . , 0, c) (7.45)

If a Polya expansion of the polynomials above is done up to degree vector
h ≥ q, h ≥ l, the following (asymptotically exact) sufficient conditions



158 Shape-independent predictive control

for xN ∈ T in LMI form are obtained, requiring the coefficients of the
referred expansion to be positive semidefinite:

∑

α ∈ Sq
γ

σ ∈ Sl
γ




nγλ
−1 nγ−αnα

(
Gα,N−1

(
x0
U

))T

nγ−αnαGα,N−1

(
x0
U

)
nγ−σnσPσN


 ≥ 0

∀ |γ| = h, l = (0, 0, . . . , 0, c), h ≥ q, h ≥ l (7.46)

7.3.3 LMI formulation of the model predictive control
problem

Considering the cost index in (7.7), in order to cast the MPC problem
as LMI, the k-step cost L(µ(xk), xk, uk) is defined as the following ex-
pression, quadratic in the state and inputs, but involving homogeneous
polynomials of degree d in the involved matrices:

L(µ(xk), xk, uk) = xTk

(
Hd

µ(xk)

)−1
xk + uTk

(
F d
µ(xk)

)−1
uk (7.47)

and the terminal cost V (µ(xN ), xN ) is defined as:

V (µ(xN ), xN ) = xTN

(
P c
µ(xN )

)−1
xN (7.48)

We are now in conditions of presenting the main result of this chap-
ter:

Theorem 7.2 Given x0 and the degree-q prediction model (7.37), the
cost index J∗ in (7.9) fulfills J∗(x0) ≤ δ∗ if, for a degree vector h ∈
N
N+1, h ≥ q, h ≥ f , h ≥ l –see (7.54) below for definitions of f and l–,

the following LMI optimisation is feasible:
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δ∗ := min
U

δ (7.49)

subject to:

∑

α ∈ Sq
γ

σ ∈ Sf
γ



nγδ

(
xT0 UT

)
nγ−αnαG

T
α UTnγ−αnαW

T
α

∗ nγ−σnσdiag(Hσ1 , . . . ,HσN−1
, PσN

) 0

∗ 0 nγ−σnσdiag(Fσ0 , . . . , FσN−1
)


 > 0

(7.50)

R
1

nγ

∑

α ∈ Sq
γ

nγ−αnαGα,k

(
x0
U

)
+ r ≤ 0 k = 0, . . . , N − 2 (7.51)

∑

α ∈ Sq
γ

σ ∈ Sl
γ




nγλ
−1 nγ−αnα

(
Gα,N−1

(
x0
U

))T

nγ−αnαGα,N−1

(
x0
U

)
nγ−σnσPσN


 ≥ 0

(7.52)

S
1

nγ

∑

α ∈ Sq
γ

nγ−αnαWα,kU + s ≤ 0 k = 0, . . . , N − 1 (7.53)

∀ |γ| = h, f = (d, d, . . . , d, c), l = (0, 0, . . . , 0, c) (7.54)

Proof: Considering the index JN in (7.7) and (7.9), let us prove
that

δ − JN (µ,u, x0) > 0, ∀µ ∈ ∆N+1 (7.55)

if the LMI conditions in the theorem hold, once u is parametrised as
(7.26). Indeed, replacing in JN the prediction model (linear in x0 and
U), a quadratic expression in control decision variables U arises. In
order to remove the quadratic dependence on the decision variables U
in (7.55), the Schur complement is applied, resulting in the condition:




δ
(
xT0 UT

) ∑

|α|=q

µ
αnαG

T
α UT

∑

|α|=q

µ
αnαW

T
α

∗
∑

|σ|=f

µ
σnσdiag(Hσ1 , . . . , HσN−1 , PσN

) 0

∗ 0
∑

|σ|=f

µ
σnσdiag(Fσ0 , . . . , FσN−1)



> 0

(7.56)

According to Definition 7.1 and Proposition 7.2, the degree of the
polynomial (7.56) can be extended to any complexity parameter h, being
h ≥ f and h ≥ q. Thus, the Polya expansion of (7.56) yields:
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∑

|γ|=h

µ
γ




nγδ
(
xT0 UT

) ∑

α∈Sq
γ

nγ−αnαG
T
α UT

∑

α∈Sq
γ

nγ−αnαW
T
α

∗
∑

σ∈Sf
γ

nγ−σnσdiag(Hσ1 , . . . , HσN−1 , PσN
) 0

∗ 0
∑

σ∈Sf
γ

nγ−σnσdiag(Fσ0 , . . . , FσN−1)



> 0

(7.57)

As all µk are positive, the inequality (7.57) will hold if the inequalities
(7.50) hold; henceforth, δ will be an upper bound of the cost index JN .
Note that it is also needed that future states belong to X, future control
actions must lie in U and the state at instant N must be driven inside
the terminal set. In order to ensure that, the constraints (7.51)–(7.53)
have been added to the problem as sufficient conditions to constraints
(7.20)–(7.22) in Section 7.3.2. Note that (7.51) and (7.53) are element-
wise (scalar) constraints instead of full matrix inequalities.

Feasible set of initial conditions For fixed horizon, terminal cost
and terminal sets, the set of x0 yielding feasible LMIs (7.50)–(7.54) in
Theorem 7.2 (if x0 were now considered to be a decision variable) is a
convex LMI set. Such a set will be denoted as shape-independent feasible
set.

Note that, as the terminal set is an intersection of ellipsoids, the
feasible set will not be polytopic, so considerations in Section 6.3.5 do
not apply. Also, the terminal controller (see next section) is neither the
PDC one in (Ariño, Pérez, Sala, & Bedate, 2014), (used in Section 6.3.2
of this thesis) nor the one achieving contraction in the largest possible
set in Section 5.5.4. Thus, these earlier polyhedral approaches do not
apply to the setting under study now.

7.4 Stability

As in classical predictive control, in order to prove stability, the termi-
nal set and terminal costs must be computed assuming there is a so-
called terminal controller which guarantees that the infinite cost (7.6) is
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bounded by the terminal cost. Let us discuss the details.

7.4.1 Terminal Controller

Theorem 7.3 The system (7.2) is stabilizable and the cost index J∞ in

(7.6), with step cost (7.47), is bounded by V (µ(x0), x0) = xT0

(
P c
µ(x0)

)−1
x0,

being c ∈ N a degree parameter, if there exist matrices Pα, and Kα, for
all |α| = c, such that the following LMIs are feasible:

∑

α,ξ∈Sc1
γ

σ∈Sd
γ




nαnγ−αPα nαnγ−α−ξ(AξPα −BξKα)
T nαnγ−αK

T
α nαnγ−αPα

∗ nγPθ 0 0
∗ 0 nσnγ−σFσ 0
∗ 0 0 nσnγ−σHσ


 > 0

(7.58)

for all γ ∈ N
r such that |γ| = q, with any arbitrarily chosen q ≥

max(c + 1, d), and all θ ∈ N
r such that |θ| = c, being Sc

γ , S
d
γ and Sc1

γ

defined in (7.79) and (7.82), and the control action is:

u(x) = Kc
µ(x)(P

c
µ(x))

−1x (7.59)

Optimal controller It is straightforward to check that adding the
condition

δI <
1

nγ

∑

α ∈ Sc
γ

nγ−αnαPα (7.60)

and minimising δ would guarantee that J∞ ≤ δ∗xT0 x0, being δ∗ the
optimal solution.

Proof: Let us prove that J∞ ≤ V (x0), when using controller
uk = Kc

µ(P
c
µ)

−1xk.

As widely known, the theorem will be proved if the one-step Bell-
mann equation below holds:

xTk (P
c
µ(xk)

)−1xk − xTk+1(P
c
µ(xk+1)

)−1xk+1

−
(
xTk (H

d
µ(xk)

)−1xk + uTk (F
d
µ(xk)

)−1uk

)
> 0 (7.61)
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Considering that xk+1 =
∑r

i=1 µi

(
Ai +BiK

c
µ(xk)

(
P c
µ(xk)

)−1
)
xk,

the previous inequality is positive, for any xk, if the next matrix is
positive definite:

(
P c
µ(xk)

)−1

−
(

r∑

i=1

µi

(
Ai +BiK

c
µ(xk)

(
P c
µ(xk)

)−1
))T (

P c
µ(xk+1)

)−1
(

r∑

i=1

µi

(
Ai +BiK

c
µ(xk)

(
P c
µ(xk)

)−1
))

−
(
Hd

µ(xk)

)−1
−
(
Kc

µ(xk)

(
P c
µ(xk)

)−1
)T (

F d
µ(xk)

)−1
Kc

µ(xk)

(
P c
µ(xk)

)−1
> 0

(7.62)

In order to remove the dependence on (P c
µ(xk)

)−1, we need to multiply
the expression by a congruence with matrix P c

µ(xk)

P c
µ(xk)

−
(

r∑

i=1

µi

(
AiP

c
µ(xk)

+BiK
c
µ(xk)

))T (
P c
µ(xk+1)

)−1
(

r∑

i=1

µi

(
AiP

c
µ(xk)

+BiK
c
µ(xk)

))

−
(
P c
µ(xk)

)T (
Hd

µ(xk)

)−1 (
P c
µ(xk)

)
−
(
Kc

µ(xk)

)T (
F d
µ(xk)

)−1 (
Kc

µ(xk)

)
> 0

(7.63)

and by applying the Schur complement,




∑

|α|=c

nαµ
αPα

∑

|α|=c

r∑

i=1

nαµ
αµi(AiPα −BiKα)

T
∑

|α|=c

nαµ
αKT

α

∑

|α|=c

nαµ
αPα

∗
∑

|θ|=c

nθµ
θ(xk+1)Pθ 0 0

∗ 0
∑

|σ|=d

nσµ
σFσ 0

∗ 0 0
∑

|σ|=d

nσµ
σHσ




> 0

(7.64)

being µα = µα(xk). Subsequently, A degree q Polya expansion (7.84) to
(7.64) can be done. The coefficients of resulting expanded polynomial
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are Lγ,θ which correspond to powers µγ(xk) and µ
θ(xk+1). As condition

(7.58) states that all coefficients are positive definite, then the polyno-
mial

∑
γ,θ µ(xk)

γµ(xk+1)
θnθLγ,θ is positive (Theorem 7.6).

7.4.2 Computation of terminal sets.

Consider the terminal set defined in (7.43). The developments below will
discuss how to obtain a bound on λ such that T ⊂ X and the control
action (7.59) is admissible, i.e., u ∈ U, for all x ∈ T. Note that, as T

is a subset of every Lyapunov level set2, once T is entered, the state
trajectory will never leave T in the future under the terminal control
law computed with LMIs in Theorem 7.3.

Theorem 7.4 For a TS fuzzy system (7.2), with input (7.59), the ter-
minal set T verifies T ⊂ X and u(x) ∈ U for all x ∈ T, if λ is the
minimum positive scalar such that, for all |γ| = q, being q ≥ c,

λ ≥ 1

nγ

1

r2i
Ri


 ∑

α ∈ Sc
γ

nγ−αnαPα


RT

i (7.65)

∑

α ∈ Sc
γ

nγ−αnα

(
Pα KT

αS
T
j

SjKα λs2j

)
≥ 0 (7.66)

where Ri denotes the i-th row in matrix R and Sj the j-th row of S, and
i ranges from one to up to the number of rows of R, j ufrom one to the
number of rows of S.

Proof: As the shape-independent levels sets of the Lyapunov func-
tion from Theorem 7.3 are symmetric, because V (µ, x) = V (µ,−x),
in order for such a level set to lie inside the (possibly non-symmetric
X), the referred level set must belong to the symmetric set Xsym :=

2Basically, as µ is unknown at design time, only the shape-independent level set
{maxµ∈∆ V (µ, x) ≤ λ} can be proven to belong to any “true” shape-dependent level
set {V (µ(x), x) ≤ λ}, motivating the definition (7.43), see the discussion in (Ariño et
al., 2017, Section 7).
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{x | |Ri
1

−ri
x| ≤ 1 ∀i} ⊂ X. According to (Boyd et al., 1994), it is well

known that the set xT
(
P c
µ

)−1
x ≤ λ−1 is contained in X if

1

r2i
Ri

(
P c
µ

)
RT

i ≤ λ ∀i (7.67)

Substituting P c
µ =

∑
|γ|=c µ

γPγ by an arbitrary Polya expansion
P c
µ = E(P c

µ, q) where q ≥ c

λ ≥ 1

r2i
Ri


∑

|γ|=h

µγ
∑

α ∈ Sc
γ

nγ−αnαPα


RT

i =

=
∑

|γ|=q

nγµ
γ 1

nγr2i
Ri


∑

α∈Sc
γ

nγ−αnαPα


RT

i ∀i (7.68)

So, from Theorem 7.6, a sufficient condition for the above is that each
of the homogeneous polynomial coefficients fulfills the inequality, which
is what (7.65) states.

On the other hand, the control action must belong to set U for all
states inside the sought level set. Again, as done with the state con-
straints, symmetry of the level set and linearity in the state of the ter-
minal controller needs to enforce u ∈ Usym, where:

Usym :=
{
u|
∣∣∣ Sj

−sj
u
∣∣∣ ≤ 1 ∀j

}
⊂ U.

If xT (P c
µ)

−1x ≤ (λ)−1, and the condition below holds,

1

s2j
uTST

j Sju =
1

s2j
xT (P c

µ)
−T (Kc

µ)
TST

j SjK
c
µ(P

c
µ)

−1x ≤ xT (P c
µ)

−1xλ

︸ ︷︷ ︸
≤ 1

then the control action will be admissible for all x in T. Concentrating
on the inequality over the braces, if congruence with matrix P c

µ is applied
and, later on, a Schur complement, we get the equivalent condition:

(
P c
µ (Kc

µ)
TST

j

SjK
c
µ λs2j

)
≥ 0 ∀ j (7.69)

Finally, an arbitrary Polya expansion can be done
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∑

|γ|=q

µγ

( ∑
α∈Sc

γ
nγ−αnαPα

∑
α∈Sc

γ
nγ−αnαK

T
αS

T
j∑

α∈Sc
γ
nγ−αnαSjKα nγλs

2
j

)
≥ 0 ∀ j

(7.70)
This inequality will hold if all the coefficients of the polynomial are pos-
itive, which amounts to (7.66).

7.4.3 Stability: main result

The second main result of the chapter is the following:

Theorem 7.5 Given x0, if F d
µ ≥ 0 and Hd

µ > 0 for any µ ∈ ∆, and
control actions (7.26) are applied once the solution to the optimisation
in Theorem 7.2 is obtained, from instant k = 0 to k = N − 1, and the
terminal controller is applied from instants N onwards, then, the system
will reach the origin asymptotically and the cost (7.6) will be bounded by
δ∗.

Proof: Note that, the theorem 7.2 includes the condition (7.52),
which forces that control actions (7.26) steer the system to terminal set
(7.43) within N steps. If once the system is inside the terminal set the
terminal controller is applied, the system will reach the origin asymptot-
ically with it. With regard to a bound on cost (7.6), the terminal cost
bounds the infinite cost (Theorem 7.3) once xN ∈ T and the total cost
(including the transient until T is reached) is bounded by δ∗ discussed
in the statement and proof of Theorem 7.2.

7.5 Shape-dependent solution (known µ(x0)).

Note that the MPC problem stated in Section 7.3 is fully shape indepen-
dent. Thus, any x0 in the shape-independent feasible set discussed on
page 160 would be guaranteed feasible for any TS system, whatever the
value of µ(x0) happened to be. However, in actual implementation this
would be suboptimal, given the fact that µ(x0) would be known so the
solution needs not to be valid for “all” possible µ(x0) but only for the
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currently measured value. So, if matrix µ contained only the unknown
memberships from instants 1 to N , the shape-dependent MPC problem
would be stated as:

J∗(x0) := min
U

max
µ∈∆N

JN (µ, g(µ, U), µ(x0), x0) (7.71)

subject to the same constraints as in the original problem. This entails
some minor modifications to the previously-presented setting in Theorem
7.2: the part of the prediction model Gα computing x1 from x0 is a
single linear model x1 = A(µ(x0))x0 + B(µ(x0))u0, thus, the degree of
all polynomials involving µ(x0) can be set to zero, because all “vertices”
are the same. For brevity, details on these modifications are left to the
reader.

Note that the feasible set of x0 in problem (7.71) (and the associ-
ated constraints) would not be a convex LMI set as µ(x0) may be any
arbitrarily complex nonlinearity, see the example on Section 7.7. This
set will be denoted as shape-dependent feasible set.

7.6 Discussion and comparative analysis

As discussed in the introduction, other references have dealt with pre-
dictive control in a fuzzy context. Some comparative discussion with
a few references appears in the introduction. We deferred to this sec-
tion a comparison with other more recent LMI-based results on similar
problems.

Regarding comparison with (Yang, Feng, & Zhang, 2014), their ap-
proach pursues similar goals to ours. However, their determination of
the terminal set and controller is conservative, in the sense that, first,
their proposed controller is a PDC one (see their equation 4) and, second,
they pose conditions for all i, j, l in their Theorems 1 and 2, where i af-
fects the current process and Lyapunov function vertex model, j affects
the controller vertex and l is the next-instant Lyapunov function vertex.
In that way, say, controller vertex 1 proves stability and cost bounds
for every i and k so their results cannot be better than those from a
robust linear controller. Our terminal controller even for the same level
of Polya complexity parameter will, hence, prove a better cost bound.
Note, however, that they consider uncertainty in the TS vertex models
as well as persistent disturbances so such conservative steps are clearly
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justified and needed to synthesise the terminal controller; on the other
hand, our approach purposely does not consider uncertain models.

Some of the literature uses the name “model predictive control” to
discuss strategies in which an optimisation problem is solved once xk is
measured, see (Xia et al., 2010), (Zhao, Gao, & Chen, 2010), (T. Zhang
et al., 2007). However, what we understand as “predictive control” in-
cludes a multi-step prediction model, whereas one-step optimisation is
more akin to the so-called “guaranteed-cost” literature: thus, our objec-
tive is not comparing to these “one-step MPC” setups, in principle.

In (Xia et al., 2010), a state-dependent guaranteed-cost control is
proposed so that, once xk is measured, a cost bound γ can be guaran-
teed solving some LMIs ensuring that control action does not saturate.
As states get closer to the origin, better cost bounds can be found by
increasing the controller gain. In fact, when our terminal set is eventu-
ally reached, the same bound would be obtained as LMIs are equivalent.
Our improvement lies in the fact that we allow full saturation until the
terminal set is reached.

7.7 Example

Consider a 2-rule TS system (7.2) with the local models and membership
functions defined as:

A1 =

(
−0.9 0.3
0 0.4

)
A2 =

(
0.8 0.6
−0.5 0.2

)

B1 =

(
0.4
1.1

)
B2 =

(
0.9
0.3

) (7.72)

µ1(xk) =
sin(0.5πxk(2)) + 1

2
µ2(xk) = 1− µ1(xk) (7.73)

Input and state constraints are defined as:

−1 ≤ uk ≤ 1

(
−5
−5

)
≤ xk ≤

(
5
5

)
(7.74)

For simplicity, non-fuzzy weighing matrices H and F will be em-
ployed, with d = 0:

H =

(
2 0
0 2

)
F = 2 (7.75)
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Terminal set and controller The terminal controller has been com-
puted with degree c = 1, with LMIs (7.58), (7.65) and (7.66) expanded
to degree q = 20.

The terminal set T (shape-independent) is drawn with black line on
Figure 7.1; it is an intersection of ellipsoids. For curiosity, the shape-
dependent set that the terminal controller would actually guarantee as
valid is plotted in red (for the chosen memberships); however, such red
set cannot be used in the optimisation as µ(xN ) is not yet known at
t = 0. The shape-dependent outline has been obtained by the contour
function in Matlab, using the actual Lyapunov function replacing the
memberships by its explicit expressions (7.73).

Feasible sets The shape-independent predictive control problem (i.e.,
valid for any µ(x0)) has been solved with horizon N = 4, and the chosen
controller degree parameters are:

c[0] = (1, 0, 0, 0, 0), c[1] = (1, 1, 0, 0, 0), c[2] = (1, 1, 1, 0, 0), c[3] = (1, 1, 1, 1, 0)

Furthermore, homogeneous polynomials have been expanded, to exploit
Polya’s theorem, to degree h = (4, 4, 4, 4, 1). The feasible set of this
shape-independent MPC problem has also been computed; it is a convex
LMI set, presented in Figure 7.1 with a purple3 line.

Additionally, the shape-dependent solution outlined in Section 7.5
has, too, been computed, with controller complexities:

c[0] = (0, 0, 0, 0, 0), c[1] = (0, 1, 0, 0, 0), c[2] = (0, 1, 1, 0, 0), c[3] = (0, 1, 1, 1, 0)

and Polya expansion to degree vector h = (0, 4, 4, 4, 1). Note that the
initial zero in c[j] indicates that polynomials in the shape-dependent so-
lution do not depend on µ(x0) as it is directly replaced in the model ma-
trices, as discussed in the above-referred section. The shape-dependent
feasible set was computed and presented in green in Figure 7.1. As it de-
pends on the actual values of the membership functions it is clearly non-
convex (for the chosen memberships) and has been approximately com-
puted determining feasibility of the MPC optimization problem point
by point in a dense grid.

3Fixing any arbitrary direction and determining the point in the feasible set at
a largest distance from the origin in such direction is an LMI problem; this enables
a reasonably easy “ray-tracing” computation of the boundary (details omitted for
brevity).
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Figure 7.1: Terminal and feasible sets, plus three simulated trajectories
of the MPC controller (in blue).

Simulation For illustration, trajectories (using the less-conservative
shape-dependent solution) from x0 = (0, 4) (solid blue), x0 = (0.8,−4.9)
(dashed blue) and x0 = (4.8,−4.8) (dash-dot blue) are shown in the
phase plane in Figure 7.1 and in the time-domain, jointly with the control
action, in Figure 7.2. Note that the last initial conditions lie outside the
guaranteed shape-independent feasible set but are, anyway, feasible for
the particular membership values at this point.
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Figure 7.2: Time response of the trajectories on figure 7.1.
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Comparative analysis Let us compare our feasible set with that ob-
tained in (Yang et al., 2014, Theorem 3) with the same horizon N = 4,
depicted in orange, in the above figure. Importantly, the cited work tries
to maximise the volume of an ellipsoidal feasible set via logdet convex
optimisation subject to LMI constraints. Conservatism of the proposed
conditions there makes our approach to yield significantly larger feasi-
ble sets both in the shape-independent case (purple) and in the shape-
dependent one (green).

Table 7.1: Cost comparison with other literature for x0 = (0, 4).
Cost bound:

Theorem 7.2 10.89
(Xia et al., 2010, Thm 3.1) 13.63

(Yang et al., 2014, Theorem 3) 45.72

Considering x0 = (0, 4), the comparison of the guaranteed cost bounds
with different approaches is summarised on Table 7.1. Note that the
main goal of the paper (Yang et al., 2014) is not to minimize the cost,
but to maximise the feasible area; hence, a large penalty with respect
to (Xia et al., 2010) is incurred. Nevertheless, our approach beats both
(Xia et al., 2010) in cost and (Yang et al., 2014) in size of the feasible
set. In fact, a suboptimal lower-gain terminal controller in (Xia et al.,
2010) was needed to ensure feasibility of x0 with N = 4 (enlarging the
terminal set) and an horizon of N = 7 was needed in the implementation
of (Yang et al., 2014) for x0 to be feasible.

7.8 Conclusions

This chapter has presented a generalisation of the predictive control ap-
proach to Takagi-Sugeno systems. The approach obtains better results
than prior literature both in achieved cost and in the feasible region,
due to a suitable control action parametrisation as a function of fu-
ture memberships and the use of Polya relaxations. Of course, many
guaranteed-cost results in prior literature are particular cases consider-
ing an horizon of a single sample; in fact, such results are used to build
the terminal controller and terminal cost needed in the developments.
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7.A Appendix

Proposition 7.1 Consider the summations

Md
µ =

∑

|α|=d

µ
αnαMα, Lc

µ =
∑

|β|=c

µ
βnβLβ (7.76)

then the expression

Md
µL

c
µ =


∑

|α|=d

µ
αnαMα




∑

|β|=c

µ
βnβLβ


 (7.77)

can be expressed as an homogeneous polynomial of degree d+ c,

Ξd+c
µ =

∑

|γ|=d+c

µ
γ


 ∑

α ∈ Sd
γ

nαnγ−αMαLγ−α


 (7.78)

where
Sd
γ := {α ∈ N

r×(N+1)| |α| = d, α ≤ γ} (7.79)

Proof: See paper (Ding, 2010).

Corollary 7.1 the previous proposition can be used recursively for the
product of three or more summations. With three polynomials, we would
have:

Md
µ =

∑

|α|=d

µ
αnαMα, Lc

µ =
∑

|β|=c

µ
βnβLβ, P l

µ =
∑

|ξ|=l

µ
ξnαPξ,

(7.80)
the product of the three polynomials can be expressed as an homogeneous
polynomial of degree d+ c+ l,

Md
µL

c
µP

l
µ =

∑

|γ|=d+c+l

µ
γ


 ∑

α,ξ∈Sdl
γ

nαnγ−α−ξnξMαLγ−α−ξPξ


 (7.81)

where the set Sdl
γ is defined as:

Sdl
γ := {α, ξ ∈ N

r×(N+1)||α| = d, , |ξ| = l, γ − α− ξ ≥ 0} (7.82)

Obviously, if any of d, c, l were equal to 1, the corresponding combina-
torial number nα, nβ, nξ would be omitted, as in Remark 1.
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Definition 7.1 (Polya expansion) The degree q expansion of an ho-
mogeneous polynomial Md

µ
, denoted by E(q,Md

µ
), with degree q ≥ d, is

defined as the degree-q homogeneous polynomial:

E(q,Md
µ
) :=


 ∑

|β|=(q−d)

µ
βnβ


 ·Md

µ
(7.83)

Evidently from (7.13), E(q,Md
µ) =Md

µ.

Corollary 7.2 Using Corollary 7.1, we can assert that

E(q,Md
µ) =

∑

|γ|=q

µ
γ
∑

α ∈ Sd
γ

nαnγ−αMα (7.84)

where Sd
γ was defined in (7.79).

Theorem 7.6 (Polya theorem (Sala & Ariño, 2007a)) The sum-
mation Md

µ is positive for all µ ∈ ∆ if there exists q such that all

coefficients of the expanded degree-q polynomial E(q,Md
µ) are positive.

Furthermore, if Md
µ
> ǫ > 0 for all µ ∈ ∆ there exists a finite q such

that E(q,Md
µ
) has all its coefficients positive.

Proposition 7.2 The summation over a single instant k, Hq
µ(xk)

in

(7.11), can be represented as:

Hq
µ(xk)

=
∑

|α|=d

µ
αnαHαk

where dk = q and the other values of the vector d are non-negative.

Proof: From the fact that
∑

|α|=di
nαµ(xi)

α = 1 for all i and
non-negative natural di, we have

Hdk
µ(xk)

=




N∏

i = 0
i 6= k

∑

|α|=di

nαµ(xi)
α




∑

|α|=dk

µ(xk)
αnαHα =

∑

|α|=d

µ
αnαHαk
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Chapter 8

Conclusions

The main issues dealt with in the current thesis are stability and predic-
tive control for non linear systems, all these ones employing copositive
programming, as well as preliminary results needed in order to pursue
the mentioned main goal.

Let us discuss the developments, chapter by chapter:

In Chapter 3, a methodology to relax stability conditions in fuzzy
systems has been developed, it lies in the fact that the antecedents are
usually known, especially in the modeling step and they have tensor-
product structure.

In Chapter 4, LMI methods were presented, but now, for a system
with stochastic modes as well as fuzzy models, in order to obtain guar-
anteed cost control for them.

Furthermore, these methodologies allows guaranteeing a specific cost
index with quadratic constraints on the inputs and the states.

The above chapters are preliminary ideas developed in the early
stages of the thesis, so they are grouped in the same part as the state of
the art. The main contributions now follow.

In Chapter 5 a new approach for the stability was presented for
nonlinear discrete-time TS systems, based on invariant set theory instead
of LMIs, i.e. usual LMI conditions are replaced by other ones according
to set theory. So, outcomes are more relaxed. The obtained Lyapunov
function is polyhedral.

The chapter 6 discussed an iterative methodology to approach pre-
dictive control for TS systems, rooting on sequential quadratic program-
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ming ideas from mainstream nonlinear predictive control.

Last, chapter 7 presented a minimax predictive control approach for
TS systems, developed by means of a generic copositive programming,
and suitable prediction models. The basic idea is dealing with suitable
Polya relaxation with the different values of the membership at different
times, and how to incorporate onto the prediction models the knowledge
that such memberships will be known at the moment of computing the
control law.

Perspectives and future work

The notion of copositiveness is central to current fuzzy control develop-
ments, not only in the predictive control. Nevertheless, it usually exac-
erbates computing requirements, and this is even more exaggerated if it
must be applied at several time instants. Thus, even if the theoretical
solution to fuzzy MPC in a shape-independent setup is asymptotically
closed in Chapter 7 with an elegant Polya-based setup, we reckon that
the iterative approaches in Chapter 6 might be more suited to appli-
cations. Indeed, if converged, the shape-dependent iterative solution
might provide better cost figures; however, the iterative approach might
not converge in complex cases, whereas, if computational resources suf-
fice, theoretical guarantees and cost bounds can be achieved with the
developments in Chapter 7.

From this thesis, future lines of research can be focused on:

� The stability problem such as is formulated in the paper (Kruszewski
et al., 2008), can be adapted to the prediction model presented in
the thesis. In this paper the stability is proven by a function that
decreases in a period of time, and not for every step of time. So the
prediction model and Polya relaxations can improve the results in
this line of research.

� Programming a Matlab Copositive-Predictive Toolbox, so that the
contributions presented in the present work can be employed by
other researchers.

� From a theoretical point of view, the extension of the fuzzy predic-
tive control to the fuzzy+Markov approach would be of interest,
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generalising the preliminary exploration of the non-predictive se-
tups on Chapter 4.

� Also, incorporation of sum-of-squares argumentations to some re-
sults would, perhaps, allow some further improvements; the most
direct approach would be improving the terminal controllers as us-
ing SOS in the finite-horizon optimisation seems to bring severe
difficulties.

� Convergence issues in the iterative approach might be also worth
studying, as well as devising strategies to diminish the computa-
tional cost of the proposals, even if heuristic or approximate.
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Ariño, C., Pérez, E., Querol, A., & Sala, A. (2014). Model predictive
control for discrete fuzzy systems via iterative quadratic program-
ming. In Fuzzy systems (FUZZ-IEEE), 2014 IEEE international
conference on (pp. 2288–2293).
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Kvasnica, M., Grieder, P., Baotić, M., & Morari, M. (2004). Multi-
parametric toolbox (MPT). In Hybrid systems: computation and
control (pp. 448–462). Springer.

Labiod, S., Boucherit, M. S., & Guerra, T. M. (2005). Adaptive fuzzy



186 References

control of a class of MIMO nonlinear systems. Fuzzy sets and
systems, 151 (1), 59–77.

Lee, J. H. (2011). Model predictive control: review of the three decades
of development. International Journal of Control, Automation and
Systems, 9 (3), 415–424.

Lendek, Z., Guerra, T. M., Babuska, R., & De Schutter, B. (2011). Sta-
bility analysis and nonlinear observer design using Takagi-Sugeno
fuzzy models. Springer.

Lendek, Z., Guerra, T. M., & Lauber, J. (2012). Construction of ex-
tended Lyapunov functions and control laws for discrete-time TS
systems. In Fuzzy systems (FUZZ-IEEE), 2012 IEEE international
conference on (pp. 1–6).

Lendek, Z., Guerra, T.-M., & Lauber, J. (2015). Controller design
for TS models using delayed nonquadratic Lyapunov functions.
Cybernetics, IEEE Transactions on, 45 (3), 453–464.

Li, N., Li, S.-Y., & Xi, Y.-G. (2004). Multi-model predictive control
based on the Takagi–Sugeno fuzzy models: a case study. Informa-
tion Sciences, 165 (3), 247–263.

Löfberg, J. (2003). Minimax approaches to robust model predictive con-
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