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ABSTRACT 

        Laccase belongs to multi copper oxidase enzyme family (EC 1.10.3.2). It has three different copper 

sites, type 1 (T1), type 2 (T2) and type 3 (T3). The function of the T1 site is shuttling electrons from the 

substrate to the trinuclear copper cluster. During the catalytic cycle of laccase, four electrons are removed 

from four substrate molecules, which are finally transferred to reduce oxygen to two water molecules. 

Comparison of the kinetic parameters using several laccases and several substrates has shown that the 

reaction rate of laccase correlates with the redox potential difference between the T1 copper and the 

substrate. Their capacity to oxidize a wide range of substrates makes them very attractive for the industry 

and are growing in importance for environmentally-friendly synthesis. Thus, they are used on a large scale 

for industrial purposes. 

        Due to the industrial importance of laccases an enormous interest has been put forward to improve 

their physicochemical properties using protein engineering. Today, the use of novel computational methods, 

and cutting-edge directed evolution techniques, supported by the know-how generated during the last two 

decades on laccase structure–function relationships, can aid implementation of laccases at industrial scale. 

Moreover, computational simulations can reveal targets for protein engineering to be explored by site-

directed mutagenesis (or semi-rational approaches). In this work we tried to use computational methods for 

studying interaction of different substrates with laccases and structural activity of the enzyme. 

        One of the goals of this thesis is to characterize the binding pocket of diverse laccases and describe 

the mechanism of oxidation of substrate in laccase active site. For this purpose we have used three laccase 

structures with diverse redox potential values, including a high redox potential (HRPL), a low redox 

potential (LRPL) and one bacterial laccase, to study the differences in active site of this enzyme. First we 

did geometry optimization of substrates. We found that ABTS, one of the main substrates of laccase in 

industry, with the two benzothiazoline groups in the same planar in the case of ABTS2- and ABTS1-, whereas 

the two fused rings show a 30º twist when the two nitrogens of azine group are protonated. The 

experimentally pKa measurement of ABTS also supported this finding. 
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        Then, we performed molecular docking studies and analysed the data to find which residues are 

involved in the interaction with substrates. Our results indicate that bacterial laccase (1UVW) has less 

hydrophobic and aromatic residues in the activity site in comparison to other fugal structures of this study, 

as a result, find a pose that interacts with residues needs more energy. We carried out the docking process 

with protonated Asp/Glu, conserved residue in fungal laccases. The scores were worse except in case of 

ABTS, that we obtained better score. All in all, the results of molecular docking illustrates that ligands 

bound near His. In fact, the hydrogen of Ne of His is oriented to the oxygen atom of the phenolic substrate 

which is the path for electron transfer from substrate to the enzyme. Subsequently, we evaluated the effect 

of protonation state of a conserved residue in fungal laccase, Asp/Glu, through molecular dynamics 

simulation. The results illustrate that water molecules have role in the interaction of DMP with MaL 

structure. 

        For industrial use of laccase, the current challenge is to obtain improved laccases with desirable 

physicochemical characteristics such as a higher redox potential. The present study is also aimed at applying 

a computational method that permits the calculation of the redox potential by taking into account the 

different residues in binding pocket environment in order to suggest possible mutations. We used QMMM-

2QM-MD approach for one of the fungal laccase structure (3FU8) in order to calculate redox potential 

value. The result indicates that the difference in redox potentials changes from 7-17 to 74-92 kJ/mol if the 

redox state of T1Cu and DMP in the other subunit change and we correctly predict that CuT1ox/DMPred 

state is more stable than the CuT1red/DMPox state. 

        Afterwards, we have started experimentally performing mutations on binding pocket of laccase in 

order to find if those residues effect on redox potential value. We performed mutagenesis on MtL T2 

structure that has 76% of identity to MaL which our computational studies was performed on its structure. 

We made a combinatorial library for position 192 and 296 in MtL T2.  In our screening assays the clone 

contained A192P and L296W (3H12) mutation and clone contained A192P and L296L (19G8) showed 

activity with violuric acid 1.23 and 1.33 fold higher than parental type, respectively. Moreover, the clone 
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contained A192R and L296W (15H11) and clone with mutation A192R and L296L (5B4) showed higher 

activity with molybdenum hexacyanide in comparison to parental type.  

        Thermostability of the different mutants along directed evolution did not vary significantly, so the 

final mutant showed thermostability profiles equivalent to the parental type MtLT2. Besides, the activity 

of parental type and all mutants were optimal at pH 4.0 for ABTS. The kinetic measurements indicated that 

the mutant that had substitution of A192R, 5B4, did not indicate better affinity to ABTS since Arg residue 

is more bulky than Ala. km value of 19G8 that has Pro192 in binding pocket is lower than 5B4 mutant which 

indicates that it has more affinity to phenolic substrates since the binding pocket is more hydrophobic and 

allows a better fit for phenolic structures binding site T1. 

        After characterization of mutants experimentally, we analyzed the mutants by computational study. 

First, we compared the wild type structure with P192P and A296L which is similar to 19G8 mutant and 

P192R and A296L which makes it similar to 5B4 mutant. There was a difference in case of P192R and 

A296L, the binding pocket is tighter than the wild type. In molecular docking simulation it did not show 

differences and ligands could bind there. We calculated the redox potential value of the structure similar to 

19G8 mutant. The redox potential value is 167 kJ/mol that illustrates increasing in the value.  

        Overall, by making different mutagenesis library on MtL T2 laccase, we found that combination of 

position 192 and 296 has effect on redox potential of this structure. The combination of Pro and Leu, which 

are hydrophobic residues, or Pro and Trp, which add aromatic residue to the active site lead improvement 

in activity of enzyme with molybdenum compound (Eᵒ= 780 mV vs. NHE) and violuric acid (Eᵒ= 912 mV 

vs. NHE). Since there was no improvement in kinetic constants of the interaction between ABTS and DMP 

as a ligand and enzyme, consequently, the improvement in activity refers to redox potential property. Aside 

from that, the computational prediction of redox potential of MaL in the same position with the same residue 

showed increasing in the value. 
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PREFACE 

        “Four years ago I started this project as a molecular engineering project, but it turned out to be long 

battle against a small molecule. This thesis is the report of this long process. It cannot express the long 

days spent in the lab, battling shoulder to shoulder with my fellow scientists and friends, the joy for 

screening of mutagenesis library, the hope for good results, the sadness and tiredness with each failed 

attempt.” 

 

        During my previous years of study, before starting PhD, I looked for industrial issues and tried to find 

a project that could bridge the gap between Research and Industry by developing innovative solutions, 

which I could found by present PhD thesis. 

        Among the industrial enzymes, over the years, several industrial applications demand laccases, as a 

result of their broad oxidative capabilities and it becomes very attractive candidates for protein engineering. 

Laccase belong to multi copper oxidase enzyme family. One of the remaining challenges in laccase 

engineering is the increasing of the redox potential at the T1 Cu site beyond the nature limits (above +800 

mV) without sacrificing neither the stability nor the catalysis. Moreover, despite that the mechanism for 

substrate oxidation has been studied for several years, it has not been fully elucidated and it is still 

controversial. 

        This dissertation is aimed at developing a procedure for exploitation of laccases in different industrial 

fields. It demonstrates a rational approach in order to understand structure-activity of laccase by applying 

computational methods. The project originally consisted of three parts. First, it provides information on 

laccase mechanism and approaches that have been used computationally and experimentally (literature 

overview). Then the second part it contains the computational methods to obtain goals such as, 

characterization of the binding pocket of diverse laccases, description of the substrate oxidation mechanism 

in active site, calculation of the redox potential value. Finally, in the last part, it deals with experimental 
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strategies to improve one of the important properties of laccase, redox potential value, in order to combat 

one of the restriction of using this enzyme in industry. 

        I hope this work and the achieved results be of interest to students and researchers in industrial 

biotechnology as well as to everyone interested in basic research in protein structure, molecular 

engineering, computational chemistry and enzyme biochemistry. Metalloproteins such as laccase present 

many challenges when they come to computational modeling. However, in the forthcoming years, it is 

expected that the combination of laboratory evolution with both rational and semi-rational strategies, 

including molecular dynamics and quantum mechanics/molecular mechanics simulations, will lead to the 

development of laccases with exciting biotechnological properties and produced at high titers while 

enhancing our understanding, at the molecular level, of the mechanisms that govern the behavior of this 

thrilling group of oxidoreductases.  

 

 

Azar Delavari 

 

Barcelona,  

July 2016 
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1.1. Physico-chemical properties and structure of laccases 

        Laccases are enzymes that belong to the group of the oxidoreductases, facilitating a redox reaction 

while regenerating themselves. Laccases often occur as isoenzymes or monomers that oligomerize to form 

multimeric complexes (Claus et al., 2002). Each isoenzyme has four copper atoms that enable to 

individually carry out the catalytic process of laccases. The molecular mass of the laccase monomers ranges 

from 40 to 130 kDa with a covalently linked carbohydrate. The carbohydrate moiety typically consists of 

mannose, N-acetylglucosamine and galactose, which may contribute to the high stability of the enzymes 

(Claus et al., 2002; Gianfreda et al., 1999). 

        The systematic name of laccase, benzenediol: oxygen oxidoreductases (EC 1.10.3.2), is somewhat 

misleading, as the substrate range of laccases is much wider. Laccases are able to oxidize diverse phenols: 

mono-, di-, and polyphenols, aminophenols, polyamines, as well as methoxy-substituted phenols (Thurston, 

1994) and several other compounds and aryl diamines (Rodríguez Couto and Toca Herrera, 2006; Wells et 

al., 2006).  Thus, the phenolic subunits of lignin are also natural substrates for laccases. Aminophenols and 

phenylenediamines are also good substrates for laccases, but arylamines are usually weak substrates 

(Bertrand et al., 2002). Laccase oxidizes the molecule with a simultaneous radical formation, which can 

spontaneously rearrange to cleave the aromatic rings or promote their polymerization (Fiţigău et al., 2013; 

Sun et al., 2013). 

        Their capacity to oxidize a wide range of substrates makes them very attractive for the industry and 

are growing in importance for environmentally-friendly synthesis. Thus, they are used on a large scale for 

industrial purposes such as the textile industry; removal/degradation of a number of environmental 

pollutants (Auriol et al., 2008); dye decolorization (Yang et al., 2015), synthesis of antioxidants highly 

valuable in food applications, removal of phenols in wastewaters (Sukan and Sargin, 2013); pulp and paper 

industry (Kunamneni et al., 2008; Valls et al., 2010); and in the modification of polymers such as chitosan 
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(Aljawish et al., 2012). Recently, they have applications in other field such as biofuel cells (Zheng et al., 

2015). 

          Three-dimensional structural analysis of several fungal, bacterial and plant laccases reveals a 

structure with three sequentially arranged cupredoxin-like domains; each of them exhibiting a greek key β-

barrel topology, being highly related to small copper proteins such as azurin and plastocyanin (Dwivedi et 

al., 2011; Giardina et al., 2010). The cupredoxin domain is distinctive for all blue copper-containing 

proteins, for example, azurin (one domain), nitrite reductase (two domains), laccase (three domains), and 

ceruloplasmin (six domains) (Murphy et al., 1997; Nakamura and Go, 2005). All these blue copper-

containing proteins have apparently evolved from the same ancestor protein. Although the exact 

evolutionary pathway of laccases is not yet completely understood, laccases most certainly have evolved 

through gene duplication and divergence of cupredoxin domains (Zhukhlistova et al., 2008). 

         Laccase contains four copper atoms (Figure 1.1), which have been classified into three types based 

on the absorption and Electronic Paramagnetic Resonance spectra. Specifically, they are called type 1 (T1), 

type 2 (T2) and type 3 (T3) copper. Type 1 (T1) or paramagnetic “blue” copper has an intense absorption 

at 600-610 nm, which is caused by the covalent copper-cysteine bond and confers the typical blue color to 

the multicopper proteins. The T1 copper has a trigonal coordination with two histidines and one cysteine 

(Giardina et al., 2010; Palmer et al., 1999). In bacterial laccase the axial ligand is formed by methionine 

(Gunne et al., 2014). The lack of a coordinated axial ligand to the T1 copper of fungal laccases is arguable, 

because other multicopper oxidases, such as plastocyanin, ascorbate oxidase, human ceruloplasmine, and 

tree laccases, have a methionine at this position coordinated to the T1 copper (Giardina et al., 2010). 

However, based on sequential analysis, in fungal laccases the amino acid at the axial position is leucine or 

phenylalanine and this is unable to coordinate to copper. 
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Figure 1.1. Three types of copper found in laccase (Santhanam et al., 2011). 
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        Type2 (T2) or paramagnetic “non-blue” copper has no visible absorption spectrum and is coordinated 

by two histidines and a water molecule. Finally, the two T3 coppers are antiferromagnetically coupled 

through a bridging hydroxide; thus, the resulting diamagnetic T3 site is EPR silent. Type3 (T3) is a 

diamagnetic coupled binuclear copper center, with an absorption band at 330 nm. Each of the T3 coppers 

is coordinated to three histidines in addition to the bridging hydroxide (Giardina et al., 2010). The eight 

histidines coordinating the trinuclear cluster (TNC) occur in a highly conserved pattern of four HXH motifs. 

        Based on a comparison of over 100 sequences of fungal and plant laccases, a laccase signature 

sequence has been found (Dwivedi et al., 2011; Kumar et al., 2003). This signature sequence, differentiates 

laccases from other multicopper oxidases, and comprises four amino acid sequences L1–L4, in which all 

the copper-coordinating amino acid residues are found. The stretch of 11-12 residues binding the 4 coppers 

is conserved among the laccases family. Comparison of the 3D structure of laccases of diverse species, 

suggests that all the laccases are folded in a similar manner and the distances of the 12 ligating amino acids 

are very similar in all of them (Dwivedi et al., 2011). All laccases are organized in three sequentially 

arranged cupredoxin-like domains. The cupredoxin domains are mainly formed by β-barrels (Greek-key 

motif) comprising β-sheets and β-strands arranged in sandwich conformation. The substrate is bound in the 

active site, in a cleft at the surface of the enzyme, and oxidized by the T1 site. The size and the shape of 

substrate-binding cavity varies among different laccases (Kallio et al., 2009).  

7.1. Catalytic mechanism of laccase 

         The redox process involves the oxidation of a substrates by hydrogen abstraction with the 

concomitant reduction of oxygen to water. Figure 1.2 illustrates the catalytic mechanism. Oxidation 

of the substrate produces an intermediate, the substrate reduces the T1 site, which transfers the electron 

to the trinuclear cluster T2/T3. Here, two possible mechanisms for reduction of the TNC are conceivable: 

either T1 and T2 sites together reduce T3, or each copper on the cluster is sequentially reduced by electron 

transfer starting from T1. Once the enzyme is completely reduced, one oxygen atom is bound with the T2 
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and T3 copper ions, and the other oxygen atom is bound with the other copper ion of T3, forming the 

peroxide intermediate. Subsequently, the peroxide bond (O-O) is broken to produce a native intermediate 

(fully oxidized form), which will end the catalytic cycle with the reduction of oxygen to water. Sometimes 

the native intermediate is converted to a completely oxidized cluster called the “resting” form, where the 

T2 copper is isolated from the coupled T3 coppers. In this form, the T1 can still be reduced by the substrate, 

but the electron transfer is too slow to be significant (Jones and Solomon, 2015; Solomon and Lowery, 

1993; Wherland et al., 2014). The use of molecular oxygen as the oxidant and the fact that water is the only 

by-product are very attractive catalytic features, rendering laccases as excellent ‘green’ catalysts (Riva, 

2006; Thorum et al., 2010). The function of the T1 site is long‐range intramolecular electron transfer, 

shuttling electrons from the substrate to the TNC, 13 Å away (Gasparetti, 2012). 

 

 

  

 

Figure 1.2. Catalytic mechanism of laccase. 

        During the catalytic cycle of laccase, four electrons are removed from four substrate molecules, which 

are finally transferred to reduce oxygen to two water molecules. The oxidized substrates can be also 

involved in further non-enzymatic reactions.  Electrons needed for this process are obtained through the 

oxidation of a variety of substrates, but not much is known about the mechanism of proton transfer during 

this process. Recently, site directed mutagenesis studies suggest that Asp112 of CueO (Asp 116 in CotA) 

(Kataoka et al., 2009), a conserved residue that is located in the exit channel in close proximity to the T2 

copper ion, plays an important role in the protonation process. 

         Comparison of kinetic parameters using several laccases and several substrates has shown that the 

reaction rate of laccase correlates well with the redox potential difference between the T1 copper and the 
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substrate (Xu, 1996). Based on this result, it was suggested that the electron transfer occurs through an 

outer-sphere mechanism, that is, the electron is transferred through space rather than through a chemical 

bond. Another similar study, involving velocity measurements in D2O using a phenolic substrate, confirms 

that the proton exchange is fast and the rate-determining step is indeed the electron transfer (Tadesse et al., 

2008). The electron transfer from the substrate results in a radical cation, which is then deprotonated at a 

fast rate. However, the redox potential also must be adequately low, appropriate for  reducing the substrate, 

so that the T1 copper is able to abstract the electron from the substrate (Giardina et al., 2010). 

1.3. Protein engineering of laccases  

        Due to the industrial importance of laccases an enormous interest has been put forward to improve 

their physicochemical properties including redox potential and kinetic parameters using protein 

engineering. Protein engineering is the discipline dealing with the design of new enzymes or proteins with 

new or desirable functions. The prospects for protein engineering, such as X-ray crystallography, chemical 

DNA synthesis, computer modelling of protein structure and folding were discussed and the combination 

of crystal structure and protein chemistry information with artificial gene synthesis was emphasized as a 

powerful approach to obtain proteins with desirable properties (Ulmer, 1983). The major goal of protein 

engineering is the generation of novel molecules, intended as both proteins endowed with new functions 

by mutagenesis and completely novel molecules.  

          Diverse techniques of mutagenesis/ screening have been introduced, expanding the possibility of 

modifying a protein properties. The most classical method in protein engineering is the so-called “rational 

design” approach which involves “site-directed mutagenesis” of proteins (Arnold, 1993). Site-directed 

mutagenesis allows introduction of specific amino acids into a target gene. Rational design is an effective 

approach when the structure and mechanism of the protein of interest are well-known.  

          In many cases of protein engineering, however, there is limited amount of information on the 

structure and mechanisms of the protein of interest. Thus, the use of “Directed evolution” that involve 
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“random mutagenesis and selection” for the desired protein properties was introduced as an alternative 

approach. Application of random mutagenesis could be an effective method, particularly when there is 

limited information on protein structure and mechanism. The only requirement here is the availability of a 

suitable selection scheme that favours the desired protein properties (Arnold, 1993). Directed evolution 

requires significant screening effort for the analysis of thousands of clones. The availability of reliable 

screening methods to differentiate the best mutants from the rest is one of the main bottlenecks for 

evolutionary design.  

          In recent years, the demonstrated potential of laccases in a range of applications has motivated the 

progress of laccase engineering efforts. Today, the use of novel computational methods, and cutting-edge 

directed evolution techniques, supported by the know-how generated during the last two decades on laccase 

structure–function relationships, can aid implementation of laccases at industrial scale. Moreover, 

computational simulations can reveal targets for protein engineering to be explored by site-directed 

mutagenesis (or semi-rational approaches). Some research groups applied computational studies such as 

molecular docking, molecular dynamics and quantum mechanics/molecular mechanics on multicopper 

oxidases (MCO) such as laccase. 

1.3.1. Rational approach 

        What makes the MCOs so interesting for a computational bioinorganic chemist? We can conceive at 

least three reasons. The first is the inherent (in vacuo) instability of many plausible intermediates in the 

catalytic cycle of MCOs (i.e. the geometrical arrangements of the TNC as a consequence of the four distinct 

redox states of the three copper ions (i.e. (Cu2+)3, (Cu+)(Cu2+)2, (Cu2+)(Cu+)2 and (Cu+)3) coupled with 

the various accessible protonation states of the copper ligands originating from water or dioxygen (e.g. oxo, 

hydroxo and peroxo species) (Rulíšek and Havlas, 2003). Therefore, the TNC site (the Cu ions with their 

first-sphere ligands) possesses a high positive charge (+3 or +4 according to the suggested reaction 

mechanism), which is partly compensated for by two carboxylate residues in the second coordination sphere 
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of the TNC, which are conserved throughout the MCO family (Augustine et al., 2008). The second reason 

is the complicated electronic structure of the TNC. In the putative structure of the so-called native 

intermediate, NI, the TNC contains three unpaired spins at the vertices of a triangle, all coupled via an O2 

molecule in the centre. This leads to so-called spin-frustration, which means that the exchange coupling 

between the three pairs of Cu2+ ions cannot be satisfied. In this oxidation state, there are two doublet states 

and one quartet state close in energy (within a few hundred cm-1) (Lee et al., 2002). The third reason is the 

unique opportunity to couple the theoretical calculations directly to experimental data and provide their 

theoretical interpretation (Ryde et al., 2007). In the following sections, we review the computational 

simulations that have contributed to better understand the protein structure–function determinants. 

1.4. Theoretical studies on substrate binding 

       One of the main issues regarding the oxidation activity of laccases is the interaction between the 

substrate and the enzyme. The contribution of the residues of the substrate binding pocket to the oxidation 

capability is clearly indicated by the variety of substrate binding sites and the different kinetic behaviors of 

laccases with similar redox potentials. Understanding the determinants of substrate affinity and specificity 

of laccases should be of high priority in laccase engineering, since Km values for e.g. ABTS vary over at 

least three orders of magnitude (∼1–1000 µM) among different laccases (Dwivedi et al., 2011).  

        Interactions of some chemical compounds with the laccase was examined by Prasad and coworkers 

(2012). The docking analysis showed that the active site always cannot accommodate the dye molecules, 

due to constricted nature of the active site pocket and steric hindrance of the residues whereas some 

relatively smaller compounds easily be accommodated into the active site pocket, which, thereafter leads 

to the productive binding (Prasad et al., 2012).  

        Moreover, Zhang and coworkers (2012) used molecular docking to analyze the interactions between 

laccase and substrates. They stated that docking results showed that phenol formed hydrogen bonds and 

hydrophobic interactions with laccase, whereas Triton X-100 formed hydrophobic interactions with 
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laccase, which may increase the laccase activity and enhance phenol removal. The non-ionic surfactant 

Triton X-100 was used as additive to study its effects on the removal of phenol (Zhang et al., 2012). 

Molecular docking was also employed to explore the binding modes and interactional profiles between 

laccase and phenol or Triton X-100. Chen et al. (2010) analyzed the integration of ligninolytic enzymes 

with lignin (a lignin derivate was selected as lignin model substrate) using molecular docking (Chen et al., 

2010).  

        The binding properties of these compounds along with identification of critical active site residues can 

be used for further site directed mutagenesis experiments in order to identify their role in activity and 

substrate specificity, ultimately leading to improved mutants for degradation of some toxic compounds such 

as atrazine  (Bastos and Magan, 2009), hydroxyl PCBs (Keum and Li, 2004) and phenols (Udayasoorian 

and Prabu, 2005). 

        In a similar study on the structural features of natural laccase B (LacB) from Trametes sp. AH28-2 

was shown a new structural element, a protruding loop near the substrate-binding site, compared with the 

previously reported laccase structures. This unique structural feature may be involved in modulation of the 

substrate recognition of LacB (Ge et al., 2010). 

        Previous docking studies on laccases have emphasized on steric effects as a key determinant for 

substrate binding. Thus, using available structures, combining rational/directed evolution and molecular 

docking was able to decrease Km for ABTS binding to bacterial CotA (Gupta and Farinas, 2010). 

Specifically, saturation mutagenesis of 19 amino acids lining the CotA binding pocket produced clones 

with increased specificity for ABTS over syringaldazine. GOLD (Jones et al., 1997) was previously used 

to rigidly dock six industrial dyes and three mediators (ABTS, acetosyringone, and syringaldehyde) into a 

homology model of Pycnoporus cinnabarinus laccase (Prasad et al., 2012) based on the 82% identical 

Trametes hirsuta laccase (PDB-ID: 3FPX). In another GOLD study (Suresh et al., 2008), 180 pollutants 

and 71 known laccase substrates from BRENDA (Schomburg et al., 2002) were docked into the crystal 
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structures of the Trametes versicolor alpha laccase 1GYC  (Piontek et al., 2002) and Bacillus subtilis CotA 

(1UVW (Enguita et al., 2003)). The study reproduced the crystal structure complex in the latter case, but 

did not discuss structural features of the poses.  

        Christensen and coworkers reported the first comparative study of substrate binding into four different 

laccases from the same organism, to avoid organism-specific effects, i.e. the four isoforms of TvL, by using 

a density functional-derived description of radical character on ABTS, constructed homology models of all 

four proteins, and induced fit docking of ABTS at variable pH and oxidation state of the T1 copper 

(Christensen and Kepp, 2014). Another study has been done by other group. Their docking analyses 

revealed significantly higher binding efficiency for lignin model compounds, in proportion to their size, for 

fungal laccase as compared to that of plant laccase. Residues interacting with the model compounds at the 

respective enzyme active sites were found to be in conformity with their role in lignin biosynthesis and 

degradation. Molecular dynamics simulation analyses for the stability of docked complexes of plant and 

fungal laccases with lignin model compounds revealed that tetrameric lignin model compound remains 

attached to the active site of fungal laccase throughout the simulation period, while it protrudes outwards 

from the active site of plant laccase (Awasthi et al., 2015). 

1.5. Molecular dynamics  

        Classical MD simulations were carried out for apo-Tth-MCO and holo-Tth-MCO by Bello and 

coworkers, in order to shed more light onto compare basic features of the structure and dynamics and how 

copper coordination affects the protein matrix. Their results showed that loop (b21–b24) D2 has enhanced 

mobility for holo-Tth-MCO and undergoes a conformational change that enables exposure to the proposed 

electron-transfer site (open conformation), while for apo-Tth-MCO, this loop prevents access to the 

electron-transfer site (close conformation), revealing the importance of good coordination among the 

copper ions and the histidine residues in the regulation of substrate binding. On the other hand, extended 

MD simulation of the open conformation with the electron-donor molecule docked into the protein cavity, 
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showed that this conformation is required for the optimal electron transfer and that residues near the cavity 

play an important role in the process  (Bello et al., 2012). 

        The optimization by directed evolution, of the functional properties of Pleurotus ostreatus laccases 

expressed in yeast has been reported. The mutation results were integrated with a structural analysis of the 

generated mutants that suggest some of the reasons, at a molecular level, for their enhanced activity. In 

analysis of mutant an increased mobility of loops forming the reducing substrate binding site has been 

observed leading to higher accessibility of water molecules to the T1 copper site and possibly leading to an 

increased activity of the enzyme (Festa et al., 2008).  

1.6. Computation of the redox potential calculation 

       Many methods to calculate the redox potentials of metal sites in proteins have been developed. A first 

estimate can be obtained by simply calculating the quantum mechanical (QM) energies of the active-site 

clusters in a continuum solvent. However, to obtain information on the influence of the surrounding protein, 

more sophisticated methods are needed (Blumberger and Lamoureux, 2008; Noodleman and Han, 2006; 

Olsson and Warshel, 2004; Sulpizi et al., 2007). Many groups have estimated and rationalized the redox 

potentials of Cu-T1 proteins (Casella and Contursi, 2007; Datta et al., 2004; Si and Li, 2009). The main 

problem with the calculation of absolute redox potentials is that it involves a change of the net charge of 

the studied system. This leads to very large electrostatic energies and long-range solvation effects (Hummer 

et al., 1998). For example, the Coulombic interaction between two groups with a unit charge is 93 kJ.mol-

1 (0.96 V) at 15 Å (although it is probably screened by a dielectric constant of 4–80) and the Born solvation 

energy in water of a unit charge is 23 kJ.mol-1 (0.24 V) even for a spherical system of a 30-Å radius. This 

makes the calculation of the absolute redox potentials a formidable task. 

        For the MCOs, one can exploit the fact that the electron transfer to the TNC proceeds via the Cu-T1 

site. It is therefore sufficient to study this internal electron transfer between the Cu-T1 and the TNC, which 

involves a transport of an electron by ~13 Å but it does not change the net charge of the simulated system. 
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Therefore, the calculated energies are expected to be more stable. Moreover, the reduction potential of the 

Cu-T1 site is experimentally known for many enzymes (Hong et al., 2011) and therefore the absolute redox 

potential of the TNC can be deduced from the calculated difference in the reduction potentials of the two 

sites. 

        The general problem with atomic-scale simulations of enzyme catalysis is that thousands of atoms are 

involved and chemical bonds are modified. The description of bond breaking or forming calls for fairly 

accurate quantum mechanical (QM) methods, whereas the huge phase space calls for sampling with a 

cheaper method like molecular mechanics (MM) or semiempirical QM. The most straightforward way to 

solve the problem is by sampling phase space using a combined quantum mechanics and molecular 

mechanics (QM/MM) method where a small subset of atoms are treated by QM and the remaining atoms 

by MM. This can be pursued either by sampling directly on the Born- Oppenheimer surface or by using a 

Car-Parrinello approach. The problem is that realistic simulation times are currently limited to a few tens 

of picoseconds for this approach because of the severe computational load even for small QM systems. This 

is a rather short simulation time for systems as big as enzymes where many events, besides the reaction 

catalyzed, occur on time-scales much longer than picoseconds (Benkovic and Hammes-Schiffer, 2003).     

       Various approaches have been proposed and utilized in the literature to solve the problem of computing 

accurate QM/MM free energies for chemical reactions in solutions (Bandyopadhyay, 2005; Jorgensen, 

1989; Muller and Warshel, 1995) including enzymatic reactions (Ishida and Kato, 2004; Kollman et al., 

2001; Olsson and Warshel, 2004). A basic idea is to use a fast but less accurate method to sample phase 

space and use this sampling to estimate high-level QM/MM free energies with a modest number of QM/MM 

calculations. Below we give a summary of methods based on this idea. 

        In the quantum mechanical free energy (QM-FE) approach by Jorgensen and co-workers (1989), a 

reaction pathway for atoms in the QM region is calculated in a vacuum. Free energies for the interaction 

between the QM and MM atoms are then calculated along the reaction pathway by performing MM free 
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energy perturbation or thermodynamic integration calculations where electrostatic interactions between the 

QM and MM atoms are defined via point charge interactions. In the treatment by Jorgensen and co-workers, 

and later by Kollman and co-workers (1998), point charges to represent the QM atoms were derived from 

calculations in a vacuum, i.e., without an MM region. Jorgensen and co-workers used the method to study 

organic reactions in solution, and Kollman and co-workers extended the method to that of enzymatic 

reactions, namely amide hydrolysis in trypsin (Stanton et al., 1998) and methyl transfer by catechol O-

methyltransferase (Kuhn and Kollman, 2000). 

        Yang and co-workers applied their QM/MM free energy method (QM/MM-FE) to the enzymes 

triosephosphate isomerase (Zhang et al., 1999), enolase (Liu et al., 2000) and 4-oxalocrotonate tautomerase  

(Cisneros et al., 2003). The QM/MM-FE method is an improvement over the QMFE method in that a 

QM/MM optimized reaction pathway and QM energies and point charges derived from QM/MM 

calculations are used. In this way, polarization of the QM region by the MM region is included. Ishida and 

Kato employed the same approach to study acylation by serine proteases (Ishida and Kato, 2004). 

        An alternative approach is the ab initio QM/MM approach (QM(ai)/MM) by Warshel and co-workers 

(Olsson and Warshel, 2004; Villà et al., 2000). They sampled phase space by performing molecular 

dynamics (MD) simulations with a reference potential given by the empirical valence bond (EVB) method  

(Warshel and Weiss, 1980). Umbrella sampling ensured that the entire reaction pathway was sampled and 

made it possible to calculate the potential of mean force (PMF). Free energy changes between the system 

described by the reference potential and by density functional theory were calculated with free energy 

perturbation, and in this way a high-level QM/MM PMF can be obtained. The methodology corresponds to 

using the thermodynamic cycle in Figure 1.3. (With MM replaced by EVB) and is in principle exact with 

respect to how the free energy changes are calculated. In practice, the free energy did not converge owing 

to large fluctuations of the difference between the reference potential and the high-level QM/MM potential, 

although electrostatic interactions converged. Therefore, Warshel and co-workers used more approximate 
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methods to calculate the free energy difference between the system described by EVB and by a high-level 

QM/MM method (Olsson and Warshel, 2004; Štrajbl et al., 2002). 

 

Figure.1.3. Illustration of the QTCP method, where a thermodynamic cycle is employed to calculate QM/MM free energy changes. 

        Like Warshel and co-workers, Wood and co-workers use free energy perturbation in their ab 

initio/classical free energy perturbation (ABC-FEP) approach, which was used to compute hydration 

energies of water and the Na+ and Cl- ions at different physical conditions (Liu et al., 2003; Sakane et al., 

2000). In this approach, only solute-solvent interaction energies are perturbed to the QM level. They also 

studied solute-solvent structural properties as well as water dimer dissociation (Wood et al., 2002). 

Schofield and co-workers (2000) and Bandyopadhyay (2005) have developed a similar approach termed 

the molecular mechanics importance based function (MMBIF) method. They also use a MM reference 

potential to sample the phase space and calculate corresponding high-level QM/MM energies for a set of 

configurations (Bandyopadhyay, 2005; Iftimie et al., 2000). Based on the two sets of energies, they use a 

Metropolis-Hastings algorithm to generate a high level QM/MM canonical ensemble from which QM/MM 

free energies can be calculated. 

        Unfortunately, the calculated relative redox potentials are sensitive to details in the theoretical 

treatment (owing to the transfer of a unit charge by ~13 Å). Some researchers have calculated the same 

difference in the redox potentials with several other methods (Hu et al., 2011). For example, the redox 

potential difference decreases by 20 kJ.mol-1 if it is calculated by electrostatic embedding rather than 

mechanical embedding in the QM/MM calculations (i.e. if the electrostatic interactions between the QM 

and MM systems are calculated by QM rather than by MM). A similar change was observed if the DFT 
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method was varied, whereas the basis-set effects are ~10 kJ.mol-1. If isolated models of the two Cu sites in 

a dielectric continuum are used, energy differences of 28–154 kJ.mol-1 can be obtained depending on the 

dielectric constant of the continuum (4–80), showing that such an approach is very unreliable. Standard 

QM/MM calculations provide an energy difference of ~40 kJ.mol-1 with electrostatic embedding but 72–

106 kJ.mol-1 with mechanical embedding. When these were supplemented with a continuum solvation 

model of the solvent surrounding the protein using the QM/MM-PBSA approach (Kaukonen et al., 2008) 

(with mechanical embedding), the energy was somewhat stabilised at 111–120 kJ.mol-1. 

        Finally, Ryde and co-workers tried also QM/MM free-energy perturbations using the QTCP (QM/MM 

thermodynamic cycle perturbation) approach   . It allows for full flexibility of the protein, except that the 

two Cu sites are fixed at the QM/MM structures. Interestingly, it yielded an energy difference of ~45 kJ.mol-

1. Approximately 10 kJ.mol-1 of the difference between the QTCP and MD results comes from differences 

in the treatment of the long-range electrostatic effects (i.e. solvation outside the ~55 Å radius of the 

explicitly simulated system; the MD simulations use particle-mesh Ewald summation, whereas the QTCP 

calculations use the Onsager relation). The rest comes from differences in the geometries in the sampled 

snapshots. This may indicate that the MM force field of the Cu centres is not accurate enough to extract 

reliable QM energy differences. On the other hand, the Cu sites have fixed geometries in the QTCP 

calculations, which is also a somewhat questionable approximation. This shows that it is hard to calculate 

relative redox potentials to an accuracy better than ~25 kJ.mol-1 (0.3 V). On the other hand, it is likely that 

the differences in the reduction potentials between various states of the TNC site are more accurate (Rulíšek 

and Ryde, 2013). 

        In summary, the results show that it is hard to calculate accurate reduction potentials. Several research 

groups have tried to estimate the reduction potential of various groups in solution and in proteins, involving 

both metal sites and other redox-active cofactors (Kamerlin et al., 2009; Mehta and Datta, 2007; Olsson 

and Warshel, 2004; Sulpizi et al., 2007). Again, the active site can either be studied by QM methods (to 

obtain absolute reduction potentials), or by MM or continuum-solvation methods to study how the protein 
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modifies the potential of a bound group, or how the potential varies in different proteins or mutants. 

However, it is still a major effort to estimate acidity constants or reduction potentials in proteins by 

theoretical methods, especially for metal sites.  

1.7.  Directed evolution studies 

        For most of us, directed evolution represents an elegant shortcut to tailor enzymes with improved 

features. By mimicking the Darwinist algorithm of natural selection through iterative steps of random 

mutagenesis and/or DNA recombination, the temporal scale of evolution can be collapsed from millions of 

years into months rather than weeks of bench work (Romero and Arnold, 2009; Tracewell and Arnold, 

2009). In general, it is important to bear in mind three essential aspects when performing laboratory 

evolution experiments: 

i) It is necessary to have a reliable and sensitive screening assay to identify the small improvements obtained 

in each round of evolution, generally 2 to 10-fold improvements per evolutive cycle. In the last years, 

colorimetric high-throughput screening assays specifically designed for laccase evolution have emerged. 

All these assays are based on known natural or surrogate substrates of different chemical nature and 

complexity (from phenols to recalcitrant compounds: ABTS, 2,6 dimethoxy phenol, syringaldazine, iodide, 

anthracene, or Poly R478 have been used to screen mutant libraries (Alcalde et al., 2006; Maté et al., 2010; 

Zumárraga et al., 2007). Depending on the approach, the screening assays can be combined in an attempt 

to enhance several features at once (e.g. activity and stability (García-Ruiz et al., 2010) or to avoid the 

laccase becoming dependent of one specific substrate during evolution (Cañas and Camarero, 2010). 

ii) Diversity should be generated by random mutagenesis and in vivo or in vitro DNA recombination 

protocols (Alcalde, 2010). Other approaches such as circular permutation, combinatorial saturation 

mutagenesis and the combination of rational design with directed evolution are also frequently included in 

the evolutionary strategy, generally yielding good results (Arnold, 2006; Zumarraga et al., 2008b). 
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iii) It must be possible to functionally express the genetic products with the desired traits. Although 

Escherichia coli is the preferred host organism for directed evolution experiments, the broad differences 

between the eukaryotic expression system of fungal laccases and that of bacteria (codon usage, missing 

chaperones, post-translational modifications such as glycosylation or the formation of disulphide bridges, 

and copper uptake) are shortcomings that are not easily overcome. In fact, all attempts to functionally 

express fungal laccases in bacteria have resulted in misfolding and the formation of inclusion bodies. 

Alternatively, the secretory machinery of Saccharomyces cerevisiae permits post-translational 

modifications, and it is also an excellent host to carry out laboratory evolution experiments (Bulter et al., 

2003). 

        Directed molecular evolution is a powerful protein engineering tool to improve the known features of 

enzymes or to generate novel activities that are not required in natural environments (Bloom et al., 2006; 

Tao and Cornish, 2002). Through this methodology, the scientist recreates the key events of natural 

evolution in a laboratory environment (mutation, DNA-recombination and selection), thereby making it 

possible to design interesting and technologically useful enzymes. In the framework of protein engineering, 

saturation mutagenesis has long been used to carry out semirational studies (Chica et al., 2005) since this 

approach involves the mutation of any single amino acid codon to all the other codons that will generate 

the 20 naturally occurring amino acids. This technique is commonly employed to improve the 

characteristics of enzymes at “hot-spot” residues already identified by conventional random mutagenesis. 

        In addition, it can be employed to simultaneously mutate several codons (combinatorial saturation 

mutagenesis, CSM), which will enable all possible combinations of interesting residues to be evaluated in 

order to identify their optimal interactions and synergies (Zumarraga et al., 2008b). CSM is typically carried 

out by laborious in vitro protocols that are based on several consecutive PCR reactions and an additional 

ligation step with the vector in order to clone the whole mutagenized fragment (Fig. 1.4) (Alcalde et al., 

2006). The exchange of genetic material by recombination occurs in all living organisms and it is the main 

process that generates diversity in the evolution of species. The eukaryotic machinery of S. cerevisiae offers  
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Figure 1.4. Schematic of SOE and IVOE. Sequence splicing by SOE is a mutagenic method that recombines DNA sequences 

containing mutations through several consecutive PCR reactions. This method requires an additional in vitro ligation step in order 

to clone the whole fragment within the vector. As an alternative, IVOE eliminates one PCR step and the ligation in vitro with the 

linearized plasmid. Accordingly, it takes advantage of the eukaryotic apparatus of S. cerevisiae and thus, it is necessary to design 

mutagenized primers with suitable overhangs (Alcalde et al., 2006). 

an array of possibilities to construct mutant libraries or to recombine (“shuffle”) DNA fragments. Unlike 

other heterologous hosts used for directed evolution, the high frequency of homologous recombination in 

S. cerevisiae favors its use to clone eukaryotic proteins and in new in vivo protocols aimed at generating 

diversity (Zumárraga et al., 2008b). 
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        One of the first directed evolution experiments using in vivo DNA shuffling was carried out to engineer 

a low redox potential peroxidase from Coprinus cinnereus with oxidative stability (Cherry et al., 1999). 

This pioneering work opened an array of possibilities that led to many research groups beginning to develop 

new strategies of DNA recombination (Bulter et al., 2003; Cusano et al., 2009). Taking advantage of yeast 

physiology, Alcalde and his group have designed several in vivo DNA recombination methods (IVOE (In 

Vivo Overlap Extension), IvAM (In vivo Assembly of Mutant libraries)) with the aim of generating suitable 

crossover events or varying the mutational bias in the framework of in vitro laccase evolution (Figure 1.5).  

 

 

 

Figure 1.5. Different in vivo DNA recombination strategies based on the S. cerevisiae apparatus. A) IVOE; B) IvAM (Maté et al., 

2011). 

A.  

B.  
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        Sequence splicing by IVOE is a robust and reliable method through which combinatorial saturation 

mutagenesis, deletion and/or insertion mutagenesis, site-directed recombination or site directed 

mutagenesis can be accomplished straightforwardly (Alcalde, 2010; Alcalde et al., 2006). The method is 

based on the engineering of mutagenized primers that contain suitable overhangs, with homologous regions 

that anneal to each other to generate an autonomously replicating vector containing the mutant gene/s. This 

strategy mimics the classical SOE (Sequence Overlap Extension) but it removes several steps, including 

the in vitro cloning. IVOE has been employed to construct mutant libraries for directed evolution of 

ascomycete and basidiomycete laccases, as well as to carry out semi-rational studies (i.e. combinatorial 

saturation mutagenesis coupled to high-throughput screenings (Zumarraga et al., 2008b).  

IvAM is another approach that has been successfully used to engineer fungal laccases for improved organic 

co-solvent tolerance (Zumárraga et al., 2008b). Generally, error-prone PCR methods are unsatisfactory 

because they are associated with a limited and predicted mutational spectrum derived from the intrinsic bias 

of each DNA-polymerase. To overcome this problem, the mutation biases of different polymerases can be 

combined by alternating between them in successive rounds of evolution. IvAM has allowed us to explore 

the laccase sequence space through the in vivo DNA shuffling of several mutant libraries with different 

mutational spectra in a single round of evolution.  

        It is also possible to bring together strategies for in vitro and in vivo DNA recombination to evolve 

enzymes in the laboratory. For example, CLERY (Combinatorial Libraries Enhanced by Recombination in 

Yeast) combines in vitro and in vivo DNA shuffling (Abécassis et al., 2000). In a similar approach, Alcalde 

and coworkers have combined mutagenic StEP (Staggered Extension Process) with in vivo DNA shuffling 

to evolve ligninolytic peroxidases. There is also an interesting report on how to engineer chimeric fungal 

laccases from Trametes C30 by in vivo DNA shuffling (Cusano et al., 2009), where a low redox potential 

laccase gene was used in all the chimeric libraries to guarantee functional expression. This example 

constitutes a valuable point of departure for the potential application of the S. cerevisiae machinery for 

laccase chimeragenesis.  
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        The first laccase gene subjected to directed evolution was the Myceliophthora thermophila laccase 

(MtL), a low medium redox potential ascomycete laccase that is very thermostable (with T50 values 

~75.6ºC) (Bulter et al., 2003). In this work, 10 rounds of laboratory evolution were carried out to achieve 

the strongest functional expression of a laccase in S. cerevisiae yet reported (up to 18 mg/L). The basic 

tools for the generation of diversity included error prone PCR, StEP and in vivo DNA shuffling. The latter 

was modified in such a manner that error-prone PCR products were recombined in vivo to introduce new 

mutations in conjunction with recombination. 

       Furthermore, backcrossing recombination was employed to eliminate neutral mutations. In the final 

rounds of evolution, PCR and in vivo gap repair were used to recombine neighbouring mutations in a site-

directed fashion, once again taking advantage of the eukaryotic apparatus (referred to as in vivo assembly 

recombination) which proved extremely useful to eliminate some deleterious mutations. The sequence 

targeted for directed evolution included the native pre-proleader, as well as the C-terminal tail of the gene 

that encode for parts of the protein that are cleaved during maturation. The ultimate evolutionary product 

obtained after screening over 20,000 clones, the T2 mutant, harboured 14 mutations. Using combinatorial 

saturation mutagenesis through IVOE, a direct relationship between the C-terminal plug and a conserved 

tripeptide in the vicinity of the reducing substrate binding site was determined (Zumarraga et al., 2008a).         

        The past successes with MtL evolution cannot easily be translated to their high redox potential laccase 

(HRPL) counterparts, in part because MtL is an ascomycete laccase that facilitates its functional expression 

in S. cerevisiae. Several directed evolution experiments have been attempted by error prone PCR using 

HRPLs from Pleurotus ostreatus (Festa et al., 2008; Miele et al., 2010). The results confirmed a general 

improvement in the total activity but poor secretion limits their practical engineering for other purposes. 

Alcalde and his coworkers recently described for the first time how to engineer HRPLs that can be 

expressed strongly by S. cerevisiae, enhancing their activities and thermostabilities. Two different HRPLs 

were used to achieve this goal, the laccase from basidiomycete PM1 (Maté et al., 2010) and the laccase 

from Pycnoporus cinnabarinus (PcL) (Cañas and Camarero, 2010). The ultimate variant obtained through 
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this evolutionary process, the OB-1 mutant, was readily secreted by S. cerevisiae (up to 8 mg/L) in a soluble, 

very active and very stable form, particularly with respect to temperature (with a T50 value of 73ºC), pH 

and co-solvents. 

        Among the strategies engineered to evolve HRPLs, the mutational exchange and the recovery of 

beneficial mutants should be highlighted. With mutational exchange, several mutations found in both 

evolutionary programmes (for the α-PM1 and the α-PcL) were switched from one system to another, taking 

advantage of their close sequence homology (above 75 %). Interestingly, some mutations found in the 

hydrophobic core of the α-factor preleader were valuable in both systems, which opens the possibility of 

evolving the α-factor prepro-leader as a universal signal peptide for the heterologous expression of fungal 

laccases in yeast. With mutational recovery, some beneficial mutations ruled out by the yeast recombination 

apparatus could be recovered by site-directed mutagenesis of OB-1 having mapped them first in the family 

tree of the whole evolution experiment (Maté et al., 2010).  

1.8. Structure-activity studies 

        The role of the axial ligand in tuning the redox potential of the T1 Cu centers has been extensively 

discussed due to the striking differences found among the different blue copper proteins (Table 1.1). On 

one end, there is stellacyanin, a single blue copper protein with a redox potential (E0) as low as +184 mV, 

which holds a Gln residue as axial ligand. On the other end, fungal laccases, ceruloplasmins and 

ferroxidases, all holding a Leu or Phe residue, have redox potentials roughly between +500 and +800 mV. 

However, the small blue copper protein rusticyanin, with a redox potential over +600 mV, shows a Met as 

axial ligand of the T1 Cu center. When the axial Met was replaced by Leu, the redox potential of rusticyanin 

raised +100 mV, while it decreased by a similar amount if Met was replaced by Gln (Hall et al., 1999).  

        The hydrophobicity of the axial ligand seems to correlate with the redox potential of the T1 Cu site in 

laccases (Durão et al., 2006), so that it might be considered as a rough indicator of their redox potential 

(Mot and Silaghi-Dumitrescu, 2012). Laccases from plants (e.g., Rhus vernicifera) and bacteria (e.g., CotA 
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laccase from B. subtilis or SLAC), with a Met as axial ligand, show the lowest redox potentials (below 

+500 mV). Middle-potential laccases (up to +700 mV) mainly comprise ascomycete laccases and in 

general, with the exception of some basidiomycete laccases, have a Leu as non- coordinating axial ligand. 

Finally, high-redox potential laccases from basidiomycete fungi, with E0 and +790 mV, commonly have a 

Phe residue in this position. 

 

Table 1.1. Alignment of different laccase sequences. Last raw shows the axial ligand in different structure (Xu et al., 1998). 

        First site-directed mutagenesis studies on fungal laccases showed the exchangeable contribution to T1 

Cu E° of Phe and Leu as non-coordinating axial ligands. The replacement of the non-coordinating axial 

Leu ligand by Phe in Rhizoctonia solani (E° = 710 mV) and Myceliophthora thermophila laccases (E° = 

470 mV) did not produce a significant increase in their redox potentials nor in the kinetics of the reaction 

(Xu et al., 1998). Likewise, no significant alteration of Trametes villosa laccase properties was observed 

by changing the non-coordinating Phe axial ligand by Leu. By contrast, Phe replacement to Met resulted in 

100 mV redox potential decrease, distorted EPR spectrum, and modified optimum pH and kinetic constants 

during oxidation of phenolic substrates (Xu et al., 1999). These effects were attributed to a perturbation of 

the geometry of T1 site. Accordingly, the electric state of the T1 Cu center of the MCO CueO from E. coli 

became similar to those of fungal laccases by changing the Met axial ligand to Leu, obtaining also 

significant increase of the redox potential (Miura et al., 2009). Substitution of the axial Met with Leu or 

Phe in B. subtilis CotA laccase increased the redox potential by 100 mV, attributed to the weakening in the 

T1 Cu coordination (Xu et al., 1998), but at the same time, a major drop of the enzyme activity was observed 
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because the electron transfer between T1 Cu and the TNC became unfavorable (Sakurai and Kataoka, 

2007). Interestingly, the Phe mutant laccase underwent an intense drop of thermodynamic stability due to 

the loss of copper from the T1 site, indicating that copper depletion is a key event in the inactivation of the 

enzyme (Durão et al., 2006). 

        Significant perturbation of the electronic structure of M. thermophila laccase T1 Cu site was obtained 

by changing the non-coordinating axial Leu to His. The tetragonal distortion of the T1 site led to a σ overlap 

between the Cu and Cys(S) orbitals and to the green color of the His variant. The increased charge donation 

of the axial His coupled with the tetragonal distortion of the T1 site stabilized the oxidized state, hence 

lowering the redox potential (by 30 mV) and the reactivity of this site (tenfold decrease of kcat respecting 

the blue wild-type laccase) (Palmer et al., 2003). Directed mutagenesis of the axial Met ligand to His in 

another MCO, namely bilirubin oxidase, caused the loss of copper and the lack of activity. When the Met 

ligand was changed to Gln, a coordinating residue not naturally found in MCOs (Sakurai and Kataoka, 

2007), T1 Cu parameters resembled those of single-copper stellacyanin, accompanied by a remarkable drop 

in the enzymatic activity and a ~ 200 mV decrease in the redox potential (Kataoka et al., 2005). 

        Moreover, along with its redox features, steric hindrance of the substrate largely affects the oxidation 

proficiency of laccases, as recently demonstrated by Tadesse and coworkers, in T. villosa and 

Myceliophthora thermophila laccases, two enzymes markedly differing in redox potential (0.79 and 0.46 

V) (Tadesse et al., 2008). The distance between two phenylalanine residues (Phe332 and 265 in TvL1KYA) 

that mark the entrance to the active site can represent the structural threshold for oxidation of substrates 

with a compatible redox potential. 

        In the structure of the laccase from T. trogii (2HRG), Matera and coworkers (2008) have suggested 

that the occurrence of two hydrophobic residues Phe460 and Ile452 in the near surroundings of the Cu1 

contributes to the high redox potential observed. Furthermore, residue Phe460 is additionally surrounded 

by a large number of hydrophobic residues that would also contribute to increasing the redox potential of 

the Cu1 (Matera et al., 2008). 
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        In addition, the redox potential of laccases is known to be modulated by different factors associated to 

environment surrounding the T1 Cu. Other residues important for modulating the type 1 copper reduction 

potential have been identified following site directed mutagenesis and comparison of crystal structures 

(Kallio et al., 2011; Liu et al., 2011). Thus, the number of residues surrounding the copper ion affects it in 

such a way that, the lower the coordination of Cu2+, the higher its redox potential is found. Moreover, 

distortions on the geometry of the copper coordination shell can modify the redox potential, as well as the 

hydrophobicity of the residues surrounding the copper ion. Finally, the electrostatic field produced by the 

rest of residues in the protein affects the redox potential and finally, the number of hydrogen bonds of 

different residues with the sulfur atom of the Cys453 side chain has also found to modulate it (Battistuzzi 

et al., 1999; Machczynski et al., 2004). 

        Simulation studies corroborated the crucial role of the axial ligand in defining the chemistry and redox 

potential of T1 site. QM calculations of six T1 Cu sites (cucumber stellacyanin, Pseudomonas aeruginosa 

azurin, poplar plastocyanin, Coprinus cinereus laccase, Thiobacillus ferrooxidans rusticyanin, and human 

ceruloplasmin) confirmed that the low redox potential of stellacyanin was mainly due to the Gln ligand at 

the axial position, whereas the presence of a non-coordinating hydrophobic residue contributes significantly 

to the increased redox potentials in C. cinereus laccase and human ceruloplasmin (Li et al., 2004). QM/MM 

and MD simulations data from T. versicolor laccase, CueO, CotA and SLAC also correlated at least in part 

the redox potentials with the hydrophobicity of the T1Cu axial ligand  (Hong et al., 2011). 

        The redox potential of T1 Cu centers is, however, tuned by other factors. One of them, is the T1 Cu-

His ligand distance. The longation of the Cu-His (Nd) bond would account for a more electron-deficient 

copper and, consequently, for the observed higher redox potential in T. versicolor laccase as compared to 

C. cinereus laccase (Figure 1.6) (Piontek et al., 2002). Data from the crystal structure of Rigidosporus 

lignosus laccase (Garavaglia et al., 2004) and MD simulations with CotA and SLAC (Hong et al., 2011) 

were mostly consistent with this hypothesis. However, although the protein fold could, in principle, 

modulate the T1 Cu redox potential by dictating the positions and orientations of the Cu ligands and 
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adjusting the coordination bond strengths (Li et al., 2004), overall, the relative changes in the Cu-ligand 

distances within the rigid His (Nd)-Cys(S)-His(Nd) environment can be assumed small, having a minimal 

effect on the T1 Cu redox potential for laccases. Conversely, the redox potential in MCOs is also influenced 

by the solvent accessibility, dipole orientation and H-bonding outside the T1 Cu coordinating sphere. T1 

Cu redox potential would increase with N backbone (H)-Cys(S) H-bonding, whereas backbone dipoles 

would increase the redox potential and dipoles between side-chain and solvent decrease it (Hong et al., 

2011).   

 

Figure 1.6. Schematic drawing illustrating the movement of a helical segment in TvL. Upon formation of a hydrogen bond between 

Glu-460 and Ser-113, a movement of the helical segment carrying His-458 could result, which would subsequently cause an 

elongation of the Cu1-N (His-458) bond at the T1 site (Piontek et al., 2002). 

        Desolvation effects, protein constraints, metal-ligand, metal-dipole and metal-ion interactions have 

been proposed to explain the reduction potential modulations. However, the quantitative details of the 

protein modulations on metal ion reduction potentials have not been fully elucidated (Li et al., 2004). Since 

the T1 center acts as ‘‘electron gate’’ for oxygen reduction, these differences in E° strongly affect the 

catalytic properties of these enzymes. In particular, a high E° value increases the range of oxidizable 

substrates and improves the effectiveness and versatility of the enzyme. Indeed, the catalytic efficiency 

(kcat/Km) of laccases increases with the E° value of their T1 sites (Shleev et al., 2005). Despite recent 
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advancements, the understanding of the molecular determinants of the redox potential of the T1 sites in 

laccases is still not complete and requires further investigation. 

        Residues that line the substrate binding pocket outside the coordination sphere also influence the 

reduction potential (Kallio et al., 2009). A Glu-Thr mutation slightly raised the type 1 potential in the 

heterologously expressed low-potential laccase from Melanocarpus. albomyces without a significant 

change in catalytic activity as measured by ABTS (Rodgers et al., 2010). 

        Overall, the analysis of possible factors modulating the E° of T1 in different fungal laccases suggests 

that the value of the E° is actually controlled by several factors. Some of these are dependent on the nature 

of the coordination ligands of T1, but others can be ascribed to the hydrophobic residues, the nature of the 

second sphere residues influencing solvent accessibility,  hydrogen bind number, dielectric anisotropy 

around the site, stacking and electrostatic interactions not necessary directly interacting with the copper 

metal. 

 

 

 

 

 

 

 

 

 



29 

 

 

 

 

 

 

 

 

 

                                              

 

 

 

                                                                          2. OBJECTIVES 
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        According to the review described in the previous chapter, there are still some hurdles to overcome 

and some questions that should be answered: why is the functional expression of laccases in yeast so 

tremendously difficult? Would it be possible to evolve high-redox potential laccases in bacteria? Is it 

feasible to enhance the laccase redox potential beyond natural limits by directed evolution or by rational 

means without disturbing its stability?…and more significantly, would that improvement necessarily mean 

better activity? We hope that in the near future, new HRPLs engineered by directed evolution and rational 

approaches can affront the attractive challenges presented by traditional and modern biocatalysis. 

       One of the goals of this thesis is to characterize the binding pocket of diverse laccases and describe the 

mechanism of oxidation of substrate in laccase active site. For this purpose we have used three laccase 

structures with diverse redox potential values, including a high redox potential (HRPL), a low redox 

potential (LRPL) and one bacterial laccase, to study the differences in active site of this enzyme. 

        For industrial use of laccase, the current challenge is to obtain improved laccases with desirable 

physicochemical characteristics such as a higher redox potential. The present study is also aimed at applying 

a computational method that permits the calculation of the redox potential by taking into account the 

different residues in binding pocket environment in order to suggest possible mutations. Then, we employed 

site directed mutagenesis techniques to investigate those mutations effect in biochemical characteristics of 

laccase and redox potential value.  

In order to achieve these main objectives, some activities can be followed up: 

1- To study interaction between binding site and different substrates or mediators by computational 

docking tools  

2- To compare different structures of laccase 

3- To apply a computational method for calculating redox potential value of laccase 
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4- To propose mutations that impact on redox potential value 

5- To apply site directed mutagenesis techniques to analysis the mutations 

6- To characterize biochemical features of those mutants and compare them with parental type 
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                                               3. MATERIAL AND METHODS 
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I. Simulations and computational methodology 

3.1. Molecular docking 

        Molecular docking is a method used to predict the preferred orientation of one molecule to a second 

when bound to each other to form a stable complex, in other words the protein–ligand complex. By means 

of docking it is possible to identify the residues that are directly involved in binding and to reveal the nature 

of the interface itself. Docking studies have been carried out to get insights about the molecular factors 

affecting the holding of substrate.  

      Two approaches can be used to carry out molecular docking studies. One approach uses a matching 

technique that describes the protein and the ligand as complementary surfaces. Whereas, the second 

approach simulates the actual docking process in which the ligand-protein pairwise interaction energies are 

calculated using a scoring function. 

       There are several docking programs available like GOLD, Autodock, MOE or Glide. In the present 

study we have used GOLD software [Genetic Optimization for Ligand Docking] (Jones et al., 1997, 1995) 

and the MOE docking program (MOE 2013.08, Chemical computing group lnc., 1010 Sherbooke St. West, 

Suite #910, QC, Canada.) among others.  

        In GOLD the score function was used as scoring function to rank different binding modes. This is a 

molecular mechanics–like function that includes four terms that account for the protein–ligand hydrogen-

bonds, protein-ligand van der Waals interactions, intramolecular hydrogen bonds in the ligand and 

contribution due to intramolecular strain in the ligand. In GOLD a scoring function to rank different binding 

modes; the GOLD score function is a molecular mechanics–like function with four terms 

GOLD Fitness= Shb_ext + Svdw_ext+ Shb_int + Svdw_int, Eqn(1) 
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Where Shb_ext is the protein–ligand hydrogen-bond score and Svdw_ext is the protein-ligand van der 

Waals score. Shb_int is the contribution to the Fitness due to intramolecular hydrogen bonds in the ligand; 

this term is switched off in all calculations presented in this work (this is the GOLD default, and generally 

gives the best results); Svdw_int is the contribution due to intramolecular strain in the ligand. 

        The docking process using the MOE program was performed in several steps (Figure 3.2). First, each 

ligand poses can be used to rescore and to refine poses. Additionally, the knowledge of pharmacophore was 

introduced to constrain the poses. The Alpha Triangle placement which derives poses by random 

superposition of ligand atom triplets alpha sphere dummies in the receptor site is to determine the poses. 

The London dG scoring function estimates the free energy of binding of the ligand from a given pose. The 

functional form is a sum of terms:  

∆G = c + Eƒlex + Σ CHB ƒHB + Σ CM  ƒM +  Σ ∆Pi Eqn(2) 

Where 

c = the average gain/loss of rotational and translational motion. 

Eflex = the energy due to loss of flexibility of the ligand. 

CHB = an hydrogen bond energy 

fHB = measures geometric imperfections of hydrogen bonds 

CM = a metal ligation energy 

fM = measures geometric imperfections of metal ligations 

Di = the desolvation energy of each atom i 

        Docking application in MOE program consists of several steps (Figure 3.1). Each ligand poses can be 

used to rescore and to refine poses. Additionally, the knowledge of pharmacophore was introduced to 

h-bonds m-lig atomi 
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constrain the poses. In MOE the London dG scoring function was used to rank order the different poses 

generated. 

3.2. Molecular dynamics 

        Besides of molecular docking, the state-of-the-art computational method for obtaining structural and 

dynamical information about proteins relevant for understanding these issues is molecular dynamics (MD). 

The aim of computer simulations of molecular systems is to compute macroscopic behavior from 

microscopic interactions. The main contributions a microscopic consideration can offer are (1) the 

understanding and (2) interpretation of experimental results, (3) semiquantitative estimates of experimental 

results, and (4) the capability to interpolate or extrapolate experimental data into regions that are only 

difficultly accessible in the laboratory. 

        Some of the typical applications of MD simulations include: characterization of the structural 

dynamics of proteins, protein function prediction, protein folding and unfolding studies, to study the role 

of solvents in protein dynamics, validating and improving, molecular mechanics force fields, determination 

and validation of structures from experimental methods, drug design and development, to gain insights into 

biological phenomena, occurring at molecular and supra molecular level to cellular level. The equations of 

motion can only be solved numerically for a multi-body problem. To calculate the dynamics of the system 

(i.e. the position of each atom as a function of time), Newton's classical equations of motion are solved for 

each atom given an empirical force field:  

Fi = mi ai = mi d2ri / dr2  Eqn(3) 

The force on each atom is the negative of the derivative of the potential energy with respect to the position 

of the atom: 

Fi = - 
Ә𝑉

Ә𝑟𝑖
 Eqn(4) 
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Once the coordinates of the atoms of a starting structure and their velocities are defined, the force acting on 

each atom can be calculated for each point in time t + dt and a new set of coordinates can be generated. The 

repetition of this procedure generates a molecular trajectory corresponding to the time-dependent 

fluctuations of the atomic positions. The accuracy of the simulations is directly related to the potential 

energy function that is used to describe the interactions between particles. 

 

Figure 3.1. Several steps of docking in MOE program. 

        Normally, a classical potential energy function is used that is defined as a function of the coordinates 

of each of the atoms. The potential energy function is separated into terms representing covalent interactions 

and non_covalent interactions. The covalent interactions may be described by the following terms: 

Vbond = ∑𝑁𝑏
𝑖=1  

1

2
 Ki b (ri – r0,i )2            Eqn(6) 
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Vangle = ∑𝑁𝜃
𝑖=1  

1

2
 Ki θ (θi – θ0,i )2                         Eqn(7) 

Vdihedral = ∑
𝑁𝜙
𝑖=1  

1

2
 Ki ϕ cos (ni (ϕi – ϕ0,i )2          Eqn(8) 

Vimproper = ∑
𝑁𝜉
𝑖=1  

1

2
 Ki ξ (ξi – ξ0,i )2              Eqn(9) 

The equations correspond to two, three, four and four body interactions, respectively. 

        These interactions are represented by harmonic potentials for the bond lengths ri, for the bond angles 

θi, for the improper dihedral (out of the plane) angle ξi and by a more complex potential for the dihedral 

angles Фi. The non-covalent (non-bonded) interactions, which correspond to interactions between particles 

separated by more than three covalent bonds, are usually described by Coulomb's law 

Vcoulomb = ∑𝑖<𝑗  (1/4π ε0 εr) (qi qj/rij)                Eqn(10) 

for the electrostatic interactions and by a Lennard-Jones potential: 

VLJ (r) = ∑𝑖<𝑗 Aij/rij
12 - Bij/rij

6                              Eqn(11) 

for the van der Waals (vdW) interactions, where rij is the atomic distance between particles i and j. The 

force field parameters describe the strength of the interactions. For bonded interactions parameters are 

defined for bond stretching, bond bending and torsional rotation. Another set of parameters determines the 

strength of non_bonded electrostatic and van der Waals interactions. Electrostatic interactions are generally 

represented by point charges located at the center of the atom. 

        How the system evolves through time is specified by the force field and by an integration time step 

that determines where the atoms will be positioned at time t + dt. MD requires the use of a very small time-

step (1-2 fs) to achieve accurate results, because small time-steps limit the approximations that are 
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introduced by the numerical integrator. This limits the overall scope of the simulated time and the 

computable properties. For running the simulation AMBER12 was used (Case et al., 2005).   

        This is done by simulating the system whilst monitoring important properties such as temperature, the 

different energy terms, structure etc.. At constant periods of time the velocities are rescaled to the values 

for the desired temperature. This is done until the simulation becomes stable with respect to time, which 

means till thermodynamic terms like temperature and energy are retained in a certain, small interval for a 

sufficiently long time. Only when the average temperature of the system stabilizes one can collect the 

trajectory information for analysis. 

        Then for the first time in the course of the MD procedure Newton’s equations of motion are integrated 

to propagate the system in time. This is done for a certain period of time to let the system equilibrate in the 

new thermodynamic state, giving the energy time to evenly distribute throughout the system. In the next 

step the velocities are scaled to values corresponding to a slightly higher temperature and another 

equilibration phase is carried out.  

        An important parameter to monitor the MD run is the root mean square deviation (RMSD). RMSD 

indicates how much two structures vary in terms of differences between the coordinates of the structures 

and is calculated with 

DRMS 
 = √

1

𝑁
∑𝑁
𝑖=1 (xi α – xi

β )2                           Eqn(12) 

where Xi is the coordinate of atom i, α and β correspond to the different structures. RMSD is more 

appropriate to show that simulations are performed close to experimental structures to convince scientists 

with a rather critical view on reliability of molecular dynamic simulations. Thus, combined with molecular 

graphics programs which can display molecular structures in a time dependent way, molecular dynamic 

simulations provide a powerful tool to visualize and understand conformational changes involved in ligand 
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binding, catalysis or other functions of biological macromolecules at an atomic level. To give an overview 

of the whole procedure described in this process of simulation, it is summarized in Figure 3.2. 

 

 

Figure. 3.2. An overview of the whole procedure described in the process of molecular dynamics simulation. 
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3.3.      QM/MM Calculations 

       In the QM/MM approach, a small but important part of the total system (called system1 or the QM 

system) is treated by quantum mechanics (QM), whereas the rest (called system 2 or the MM system) is 

treated by molecular mechanics (MM). The QM/MM calculations have been performed with the program 

COMQUM (Ryde and Olsson, 2001), which is a modular combination of the QM software Turbomole 6.5 

and the MM software Amber 9. The advantage with this approach is of course that the whole macromolecule 

is explicitly modelled and that free energies can be calculated. 

  In this work we used QM/MM-2QM approach. The protein and solvent are divided into three subsystems: 

the two QM systems (systems 1a and 1b) and the MM system (system 2). In the QM calculations, systems 

1a and 1b are represented by a wave function, whereas all the other atoms are represented by an array of 

partial point charges, one for each atom, taken from MM libraries. Thereby, the polarisation of the QM 

system by the surroundings is included in a self-consistent manner (electrostatic embedding, EE). 

       When there is a bond between systems 1 (system 1a or 1b) and 2 (a junction), the hydrogen link-atom 

approach is employed. The QM region is truncated by hydrogen atoms (called hydrogen link atoms, HL), 

whose positions are linearly related to the corresponding carbon atoms in the full system (called carbon link 

atoms, CL) (Ryde, 1996; Ryde and Olsson, 2001). In the point-charge model of the surroundings, all atoms 

were included, except the CL atoms. Therefore, the CB atom of all His and Met Cu ligands, and the CA 

atom of the Cys ligand were replaced by HL atoms. In order to avoid overpolarisation of the QM system, 

point charges on atoms directly bound to junction atoms (i.e. the closest neighbors of the QM system) are 

zeroed, and the resulting residual charges are equally distributed on the remaining MM atoms in that residue 

(Ryde, 1996). 

        In the QM/MM geometry optimizations, the QM/MM energy is calculated as shown in the following 

Equation: 
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EEE QM/MM-2QM = EHL QM1a+ptch1b2 - EHL
MM1a, qa=0 + EHL QM1b+ptch1a2 - EHL

MM1b, qb=0 + ECL
MM1ab2,qa=qb=0  

                                                                                                                                                                                                                              Eqn(13) 

Here, EHL QM1a+ptch1b2 is the QM energy of system 1a, truncated with HL atoms, and including a point-charge 

model of the surrounding protein in the one-electron Hamiltonian (also of system 1b). EHL QM1b+ptch1a2 is the 

corresponding QM energy for system 1b. EHL
MM1a, qa=0 is the MM energy of system 1a (still with HL atoms), 

but with all charges zeroed, and similar for EHL
MM1b, qb=0. Finally, ECL

MM1ab2,qa=qb=0 is the MM energy of the 

full system with CL atoms, but with the charges of the two QM systems zeroed (because all electrostatics 

interactions within the QM systems and between the QM and MM systems are considered in the two QM 

terms. However, the electrostatic interactions between the two QM systems is still accounted for in both 

EHL QM1a+ptch1b2 and EHL QM1b+ptch1a2. This problem was solved by scaling down the point charges of the other 

QM system by a factor of 2 in both terms. This is not completely satisfactory, because it will underestimate 

the polarisation of the QM systems by each other, but since the two systems are quite far apart, the effect 

should be quite small. 

        The point-charge model of each QM system was obtained by a fit to the electrostatic potential (ESP) 

calculated for a polarised wavefunction but without the point charges when the ESP was calculated. The 

ESP points were sampled with the Merz–Kollman approach, as implemented in Turbomole. The charges 

were updated in each step of the geometry optimisation. The same charges were used to model the QM 

systems at the MM level when the surrounding MM system was optimised. 

3.3.1. Force-Field Parameterizations 

        The bonded force-field parameters of the copper sites in the MD simulations were constructed 

according to the method developed by Norrby and Liljefors, (Norrby and Liljefors, 1998) using the recent 

implementation for Amber99. This method minimizes a penalty function consisting of the deviation of 

geometries and Hessian elements between the QM and MM calculations, giving different weights to 

different kinds of data. The geometries were described as lists of all bonds, angles, and dihedral angles, 
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rather than by absolute positions. The weight factors of the various data types were 100 Å-1 for bonds, 2 

deg-1 for angles, 1 deg-1 for torsions, and 0.01_0.1 mol Å2/kcal for Hessian elements (0.01 for elements 

involving interactions of an atom with itself, 0.02 for atoms bound to each other, 0.04 for atoms connected 

by two bonds, 0.1 for atoms connected by three bonds, and 0.01 for all other elements) (Norrby, 2000). The 

QM calculations were performed on the vacuum-optimized structures, which were started from the 

QM/MM-2QM structures in the protein. 

        The iterative force-field optimizations were started from the corresponding Hess2FF force field, 

(Nilsson et al., 2003) which is automatically extracted from the Hessian matrix. After convergence, the 

force field was checked. Typically, some bonds and angles get zero force constants in the first runs of the 

parameterizations. These were reset to reasonable values, and force constants of other angles around the 

same central atom were reduced, and then the parameterization was run again. This was repeated until all 

bonds and angles had nonzero force constants and all other parameters looked reasonable. Specific force 

fields were calculated for both the reduced and the oxidized forms of the T1 and ligand. We assigned 

separate atom types for all metals and all atoms that ligated directly to the metals. For the T1 sites, we also 

used new atom types for all atoms in the ligands, except for hydrogen atoms bound to the same atom.  

        Charges for all atoms were fitted to the ESP, sampled according to the Merz_Kollman scheme, (Besler 

et al., 1990) but with a higher-than default density of points, 2000_3000 points/atom. These charges were 

used directly in the parameterization, whereas in the MD simulations of the whole protein, the charges on 

the Cl atoms were adapted so that the total charge of the amino acid (including both QM and MM atoms) 

was the same as the sum of QM charges of the corresponding QM fragment (Ryde and Olsson, 2001). 

Thereby, we ensure that the total charge of the simulated system is an integer, but we allow for charge 

transfer within the QM system (the amino acids with QM atoms have noninteger total charges). The van 

der Waals parameters of the Cu ions were R = 1.17 Å and ε = 4.77 kJ/mol (Bartolotti et al., 1991). Neither 

the charges nor the van der Waals parameters were changed during the parameterization.  
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        The redox potentials of the two copper sites were estimated. For the minimized QM and QM/MM-

2QM structures, we used the relation: 

 

E0 = (EOX – Ered ) - ENHE                     Eqn(14) 

where the factor ENHE = 4.28 V converts the energy scale to that of the normal hydrogen electrode (NHE) 

(Kelly et al., 2007). If both copper sites are considered, the correction factor cancels, and we give the energy 

difference between the OR and RO (a negative sign indicates that the OR state is more stable). For the MD 

simulations, we instead used the relation: 

 

E0 = (〈∆Eet〉RO + 〈∆Eet〉OR)/2      Eqn(15) 

ΔEet was calculated by the QM/MM-2QM approach. The same charges of each Cu site were used in our 

calculations. The reason for this is that previous investigations of the accuracy of QM/MM have indicated 

that the ESP charge fitting often becomes unstable and may give spurious charges and energies in some 

cases (Hu et al., 2011). The calculations were performed on 1250 snapshots, sampled every 10 ps during 

the 10 ns production simulation. For the MM components, instead 5000 snapshots were used, sampled 

every 2 ps. In all calculations of ΔEet with QM/MM-2QM, no periodic boundary conditions were used. 

Instead, the MM system was centered on the two Cu sites, and an infinite cutoff was employed. 

        For the MD simulations, we calculated the vertical energy difference between the two electronic states, 

RO and OR, ΔEet = ERO _ EOR for all snapshots obtained in the MD simulations of the two states. Next, the 

reorganization energy (RE) was estimated from 

 

 λ = (〈∆Eet〉RO - 〈∆Eet〉OR)/2       Eqn(16) 
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        We run classical MD simulations of a solvated laccase, using tailored accurate MM parameterizations 

of T1 site and ligand, and then perform QM/MM calculations of the metal site and ligand for over a thousand 

snapshots from the MD simulations.  
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II. Experimental methods  

3.4. Materials 

3.4.1. Chemical Reagents 

All chemicals used were of reagent grade purity. 

1. dNTPs (Sigma, Spain). 

2. Appropriate PCR primers. 

3. Low melting point agarose (Bio-rad, Spain). 

4. DNA extraction from agarose gels: Zymoclean gel DNA recovery kit (Zymo Research, USA). 

5. Yeast transformation: yeast transformation kit (Sigma, Spain). 

6. Zymoprep kit (Zymo Research, USA). 

3.4.2. Biological Materials   

1. E. coli XL2-blue competent cells (Stratagene, USA). 

2. S. cerevisiae (e.g., protease deficient strain BJ 5465, ATCC208289). 

3. Expression shuttle vector containing the gene of interest under the appropriate promoter, a signal 

sequence for secretion (e.g., the native sequence or the alpha factor preproleader), and selection markers 

for S. cerevisiae and E. coli. For example: pJRoC30, Gal10 promoter, Myceliophthora thermophile T2 

mutant laccase with the native signal sequence, and the uracil and ampicillin selection markers (Figure 2.3). 

4. Gene variants created by site directed mutagenesis. 

5. Restriction endonucleases  

6. Proofreading polymerase, e.g., Pfu (Stratagene, USA). 
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Figure 3.3. pJRoC30 plasmid. 

 

3.4.3. Gene of parental type of laccase (MtL T2) 

        The parental gene used for the development of this Doctoral Thesis corresponds to the Myceliophthora 

thermophila laccase mutant T2 (MtLT2), which was designed by directed evolution in previous studies 

conducted at the California Institute of Technology (Caltech), for a functional expression in S. cerevisiae 

(Bulter et al., 2003). MtLT2 contains 14 mutations introduced during 10 cycles of directed evolution, which 

gives appropriate levels of engineering for laccase expression against various applications.  

3.4.4. Culture media  

        We used LB medium for cultivation of E. coli, SOB solution for transformation of E. coli, SC medium 

for cultivation of S. cerevisiae, YPD for cultivation of selected clones in rescreening step and laccase 

selective expression medium (See Appendix A).  

 

Laccase gene 
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3.4.5. Primer design 

        In order to produce mutated gene and make a library, first we designed different primers for desired 

positions of laccase gene (See Appendix B). 

3.5. Methods 

        Homologous recombination displayed by eukaryotic machinery to splice mutagenized DNA 

fragments, and of the yeast gap repair mechanisms to substitute in vitro ligation (Alcalde et al., 2006). In 

our case, two PCR reactions are carried out using mutagenized primers in order to produce two PCR 

fragments that share homologous sequences at the 3′ and 5′ ends. These products already contain the 

mutagenized codons and they are then directly shuffled by S. cerevisiae in vivo through their sites of 

recombination to give rise to a whole gene. Likewise, recombination not only splices the two fragments in 

a complete gene but it also shuffles the mutagenized codons. The whole mutagenized gene possesses large 

overhangs that recombine with the ends of the linearized vector, thereby forming an autonomously 

replicating plasmid. It is not straightforward to determine which event takes place first (the splicing of the 

PCR fragments between themselves or their linkage to the linearized plasmid) and in fact, it is even likely 

that both phenomena happen simultaneously. 

3.5.1. PCR 

       Two separate PCR reactions were carried out simultaneously to amplify the two DNA fragments that 

overlapped at specific positions corresponding to the regions targeted for site-directed mutagenesis of the 

parental sequence. The primers were designed with Fast-PCR software (University of Helsinki, Finland) 

and were as follows: RMLN, RMLC, forward and reverse primers for mutagenized region (See Appendix 

C). The PCR fragments were loaded on low-melting-point preparative agarose gels and purified using the 

Zymoclean gel DNA recovery kit.  
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3.5.2. Agarose gel electrophoresis 

        DNA was separated by gel electrophoresis in 1 % agarose gels. Agarose was boiled in TAE buffer 

and after cooling to 55 °C the gel was poured into a horizontal gel chamber with a sample comb. After 

consolidation the gel was covered with TAE buffer and the comb was removed. Gel electrophoresis was 

run at 110 Volt for 30 min. The gel was stained in GelRed for 15 min and discolored with dH2O. The 

fragment was detected under UV light. 

3.5.3. DNA isolation from agarose gels 

        The DNA band of interest was cut out with a clean scalpel and transferred into a 1.5 ml tube. 

According to the manual of Agilent Technologies DNA was isolated from agarose gel with the StrataPrep 

DNA Gel Extraction Kit. The purified DNA was eluted with 20 µl dH2O. 

3.5.4. Determination of DNA concentration 

        The DNA concentration was determined photo metrically by measuring the absorption at 260 nm 

(A260 = 1 relates 50 µg/mL). The measurement was done by using the Infinite M200 Pro NanoQuant. 

3.5.5. DNA sequencing 

        Laccase genes were sequenced by the company GATC Biotech. 5 µl (80 – 100 ng/µl) of DNA was 

mixed with 5 µl of Primer (5 µM). After sequencing the data was analyzed with the software BioEdit. 

3.5.6. Cultivation of Escherichia coli 

        LB with the appropriate antibiotics were inoculated using a toothpick or spreading 150 µl of a liquid 

culture and incubated over night at 37 °C. For a preparatory culture, a single colony was transferred into 

LB and incubated over night at 37 °C and 250 rpm. This culture was applied for plasmid mini preparations. 
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3.5.7. Cultivation of S. cerevisiae 

        SC dropout medium agar plates were inoculated using a toothpick or spreading of a liquid culture and 

incubated at 30 °C for 2 days. For a preparatory culture, a single colony was transferred into SC medium 

and incubated at 30 °C and 220 rpm for 2 days. Those cultures were applied for the inoculation of main 

cultures for the preparation of chemically competent cells, plasmid isolation and screening of mutants. 

3.5.8. Mini plasmid preparation 

        For the preparation of plasmid DNA a plasmid mini preparation kit was used. A single colony was 

inoculated in 5 ml of LB medium and incubated at 37°C over night. The cells were harvested by 

centrifugation and the Miniprep was done according to the manual of Agilent Technologies. Then, the 

pJRoC30 plasmid was linearized with XhoI and BamHI. After that, purified by agarose gel extraction using 

a low melting point agarose at 4°C and with an applied voltage of less than 5 V/cm (distance between the 

electrodes of the unit). To determine its concentration the absorption of the plasmid measured at 260 nm. 

3.5.9. S. cerevisiae chemically competent cells 

        The PCR fragments (200 ng -each) were mixed with the linearized vector (100 ng) and transformed 

into competent yeast cells. According to the Yeast Transformation Kit (Sigma Aldrich) aliquots of 10 µl of 

salmon testes DNA (10 mg/ml), 200 ng of insert and 100 ng of plasmid DNA were added to 100 µl 

competent cells and vortexed. After adding of 600 µl of PLATE buffer and vortexing, the mixture was 

incubated at 30 °C for 30 min and 700 rpm. To increase the transformation efficiency DMSO were added 

to 10 %. The heat shock was performed for 15 min in a 42 °C water bath. After briefly spinning, the 

supernatant was discarded and resuspended in 500 µl of sterile water. 25 – 100 µl were plated on SC dropout 

plates and incubated at 30 °C for 2 – 3 days. On average, around 1500 individual clones were analyzed per 

mutation. The selected plasmids were isolated and sequenced to verify the site directed-mutagenesis. 
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3.5.10. E. coli chemically competent cells 

        For the transformation in E. coli (XL1-Blue) aliquots of 10 µl of competent cells were thawn on ice 

and mixed with 0.2 µl of ß-mercaptoethanol (cE = 25 mM). The cells were incubated 10 min on ice and 5 

µl of Zymoprep were added and mixed by inversion. Afterwards the tubes were incubated on ice for 30 

min. The cells were heat shocked at 42 °C for 30 sec and incubated on ice for 2 min. Then 500 µl of SOC 

medium were added and incubated for 1 h at 300 rpm. The final volume of 100 µl was plated out on LB/amp 

plates and incubated overnight at 37 °C. 

3.5.11. Library construction and screening 

        For construction of a library 17 96-well plates have been filled with 180 µL of expression medium 

per well using an 8-channel pipette. Individual clones from the SC-drop out plates have been picked and 

transfer them into the 96-well plates. Column 6 of each plate, be inoculated with the standard (parental) and 

one well (H1) not be inoculated (control) (Figure 2.4.). The plates were wrapped in parafilm and incubated 

for 72 h at 30°C and 220 rpm in a shaker at 80–85% humidity. Then, the parafilm were removed from the 

culture plates and centrifuged (master plates) for 15 min at 3,000 rpm at 4°C.  20 mL of the supernatants 

were transferred onto activity plates using a robotic station Freedom EVO (Tecan, Männedorf, Switzerland) 

onto three replica plates. The first replica plate was filled with 180 µL of 100 mM citric phophate buffer 

(pH 4.0) containing 3 mM ABTS, the second replica was filled with 180 µL of 100 mM citric phophate 

buffer (pH 4.0) containing 2 mM Molybdenum hexacarbonyl and the third replica was filled with 180 µL 

of 100 mM citric phophate buffer (pH 4.0) containing 20 mM Violuric acid. The plates were stirred briefly 

and the absorption at 418 nm (εABTS
•+ =36,000 M-1 cm-1), at 388 nm for Molybdenum hexacarbonyl and at 

515 nm (εVA =13.9 M-1 cm-1) was recorded in the plate reader (SPECTRAMax Plus 384, Molecular Devices, 

Sunnyvale, CA). In case of Molybdenum hexacarbonyl and Violuric acid measurement the plates were 

incubated at room temperature until the color developed that was after 4 and 24 hours, respectively and the 

absorption was measured again. Relative activities were calculated from the difference between the 
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absorption after incubation and that of the initial measurement normalized against the parental type and 

used as reference in the corresponding plate. 

 

Figure 3.4. Model of a 96 well plate for preparation of HTS. Column 6 contains parental type and well H1 contains negative 

control. 

3.5.12. Re-screening 

To rule out false positives, two consecutive rescreenings were carried out.  

3.5.12.1. First re-screening 

        Aliquots of 5 µL of the best clones were removed from the master plates to inoculate 50 µL of minimal 

media in new 96-well plates. Columns 1 and 12 (rows A and H) were not used to prevent the appearance 

of false positives. After a 24 h incubation at 30ºC and 225 rpm, 5 μL was transferred to the adjacent wells 

and further incubated for 24 h. Finally, 200 μL of expression medium was added and the plates were 

incubated for 48 h. Accordingly, each mutant was grown in 4 wells. The parental types were subjected to 

the same procedure (lane D, wells 7-11) and the plates were assessed using the same protocols for the 

screenings described above.  
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3.5.12.2. Second re-screening 

        An aliquot from the wells with the best clones of the first rescreening was inoculated in 3 mL of YPD 

and incubated at 30ºC and 225 RPM for 24 h. The plasmids from these cultures were extracted (Zymoprep 

yeast plasmid miniprep kit, Zymo Research). As the product of the zymoprep was very impure and the 

concentration of DNA extracted was very low, the shuttle vectors were transformed into super-competent 

E. coli cells (XL2-Blue, Stratagene) and plated onto LBamp plates. Single clones were picked and used to 

inoculate 5 mL LBamp media and they were grown overnight at 37 ºC and 225 RPM. The plasmids were 

then extracted and S. cerevisiae was transformed with plasmids from the best mutants as well as with the 

parental type. Five clones for each mutant were picked and rescreened as described above. 

3.5.12.3. Third re-screening 

        In the third re-screening a single colony of the best mutants and the parental type as the reference from 

the second re-screening were picked from a SC selective plate and inoculated in SC medium for 2 – 3 days 

incubation at 30 °C and 220 rpm. The optical density at 600 nm of the precultures were measured and 

diluted to 0.3. After incubation of approximately 6 hours at 30 °C and 220 rpm the cells reached the OD600 

of 1. Finally 1 ml of culture was induced with 9 ml of expression medium and incubated at 30 °C and 220 

rpm. Every 24 h samples were taken to measure optical density and activity until the mutants achieved their 

highest activity (~ 36 h). After those three re-screenings a new mutant with a higher activity was 

determined. 

3.5.13. Determination of thermostability 

        The thermostability of the different laccase samples was estimated by assessing their T50 values using 

96/384 well gradient thermocyclers. Appropriate laccase dilutions were prepared. Then, 50 μL was used 

for each point in the gradient scale and a temperature gradient profile ranging from 55 to 85ºC was 

established as follows (in ºC): 55.0, 56.8, 59.9, 64.3, 70.3, 75.0, 78.1 and 80.0. After a 10 min incubation, 
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samples were chilled out on ice for 10 min and further incubated at room temperature for 5 min. Afterwards, 

20 μL of samples were subjected to the same ABTS-based colorimetric assay described above for the 

screening. The thermostability values were deduced from the ratio between the residual activities incubated 

at different temperature points and the initial activity at room temperature. 

3.5.14. Determination of optimal pH activity  

        pH activity profile of different variants were measured with 100mM Citrate-Phosphate-Borate buffer 

with different pH (2.0 – 9.0 adjust with acid acetic or NaOH). 20 µL of the supernatant were filled in 

triplicates for each variants in 96-wells plate. Afterwards, 180 µL of reaction mixure contained 3mM of 

ABTS was added and activity was measured. Activity was normalized with respect to maximum activity 

of the sample in each case of variant. 

3.5.15. Determination of stability vs. pH 

        Stability vs. pH for parental type, 3H12, 5B4, 15H11 and 19G8 were determined by incubating 

enzymes in Citrate-Phosphate-Borate buffer with pH between 2.0 to 9.0 and residual activity after different 

incubation time was measured. The supernatants of each variants concentrated 50 times with microcon 

membrane by adding KH2PO4 (20mM, pH 4.0). Then, diluted 50 µL of each variants in each pH and after 

different period of incubation (1, 4, 24, 48, 75, 144 hours) the initial and residual activity were measured. 

For measuring activity citric phosphate buffer (100mM, pH 4.0) contained 3 mM ABTS was used. Each 

experiments were performed in triplicate. 

3.5.16. Production and purification of laccase 

3.5.16.1. Production of laccase in S. cerevisiae 

        A single clone from the S. cerevisiae containing the parental or mutant laccase gene was picked from 

a SC drop-out plate, inoculated in 10 ml of minimal medium and incubated for 48 h at 30ºC and 225 rpm 
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(Micromagmix shaker, Ovan, Spain). An aliquot of cells was removed and inoculated into a final volume 

of 50 ml of minimal medium in a 500 ml flask (optical density, OD600=0.25). Incubation proceeded until 

two growth phases were completed (6 to 8 h) and then, 450 ml of expression medium contained CuSO4 (5.6 

mM) was inoculated with the 50 ml preculture in a 2 litre baffled flask (OD600=0.1). After incubating for 

38-42 h at 30ºC and 225 rpm (maximal laccase activity; OD600=28-30), the cells were separated by 

centrifugation for 30 min at 6000 rpm (4ºC) (Avantin J-E Centrifuge, Beckman Coulter, Fullerton, CA). 

3.5.16.2. Purification 

         Laccases were purified by fast protein liquid chromatography (FPLC) equipment,  ÄKTA purifier 

(GE Healthcare, UK) and high performance liquid chromatography (HPLC). The crude extract was first 

submitted to a fractional precipitation with ammonium sulphate at 60 % (first cut) and the pellet was then 

removed before the supernatant was subjected to 95 % ammonium sulphate precipitation (second cut). The 

final pellet was recovered in 20 mM tris buffer pH 7.8 and the sample was filtered and loaded onto the 

FPLC coupled with a strong anionic exchange column (HiTraP QFF, GE Healthcare) pre-equilibrated with 

tris buffer. The proteins were eluted with a linear gradient from 0 to 1 M of NaCl in two phases at a flow 

rate of 1mL/min: from 0 to 40 % over 60 min and from 40 to 100 % over 10 min. Fractions with laccase 

activity were pooled, concentrated, dialyzed against tris buffer and further purified by HPLC-PDA coupled 

with a 10μm high resolution anion exchange Biosuite Q (Waters, 10cm; Waters, Milfrod, MA, USA) 

preequilibrated with tris buffer. The proteins were eluted with a linear gradient from 0 to 1 M of NaCl at a 

flow rate of 1 mL/min in two phases: from 0 to 25 % in 300 min and from 25 to 100 % in 10 min. The 

fractions with laccase activity were pooled, dialyzed against 20 mM KH2PO4 buffer pH 4.0, concentrated 

and stored at 4ºC. 
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3.5.17. SDS-PAGE 

        Throughout the purification protocol the fractions were analyzed by SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE) on 10 % gels in which the proteins were stained with Coomassie brilliant blue 

(Protoblue Safe, National Diagnostics, GA, USA). Sodium dodecyl sulfate (SDS), an anionic detergent, is 

used to reduce proteins to their primary (linearized) structure and coat them with uniform negative charges 

so that the mobility of the proteins is solely based on molecular weight. The gel was casted with a 

composition of 10% separating gel and 6% stacking gel (See Appendix D). The protein sample to be 

analyzed was diluted with a sample buffer (0.5 M Tris, 2% SDS, 10% glycerol, 0.1% bromophenol blue, 

β-mercaptoethanol 5%). The prepared samples (5 l protein and 10 l buffer), and 8 l-sample of the 

protein molecular weight marker, were loaded onto the gel and the electrophoresis was carried out using a 

gel running buffer (25 mM Tris, 192 mM glycine, 0.1% SDS) at 60 v for 4 h. The run gel was stained for 3 

h using a staining solution (0.025% Commassie R-250, 40%methanol, 10% glacial acetic acid diluted in 

distilled water). The stained gels were destained until visualizing the bands using destaining solution (40% 

methanol, 10% glacial acetic acid diluted in distilled water). All protein concentrations were determined 

using the Bio-Rad protein reagent and bovine serum albumin as a standard.  

3.5.18. Characterization of purified enzymes  

        Oxidation of ABTS and DMP was measured at pH 4.0. Steady-state kinetic constants were calculated 

from oxidation of increasing substrate concentrations. Mean values and standard errors for apparent affinity 

constant (Michaelis constant, Km) and maximal enzyme turnover (catalytic constant, kcat) were obtained by 

nonlinear least-squares fitting of the experimental measurements to the Michaelis-Menten model. Fitting 

of these constants to the normalized equation ʋ = (kcat/Km)[S]/(1 + [S]/Km) yielded the efficiency values 

(kcat/Km) with their corresponding standard errors. 
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3.5.19. Quantification of the enzymes 

        The routine way and for estimate the factors and performance of the purification, concentration of the 

enzymes was determined with Bradford method (Bradford, 1976) by using protein assay dye reagent 

(BioRad). The test is based on maximum absorbance in 595 nm of the acidic solution of Coomasie Blue in 

combination with a protein. 159µL of water was added to 1 µL of the sample with 40 µL of the Bradford 

reagent in 96-wells plate. Then, the plate was shaken and after 5 minutes incubation in room temperature 

absorbance was measured. Data was interpolated in one calibrated curve that performed with BSA. 

 

 

 

 

 

 

 

 

 

 

 

 

 



57 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                    4. RESULTS AND DISCUSSION 
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4.1. Geometry optimizaion of the ligands 

        Table 3.1 shows the chemical structures of the fourteen ligands selected in the present study for 

docking studies. Initial coordinates of the ligands listed in were generated using GaussView and optimized 

at the Hartree-Fock level using a 6-31G* basis set by means of the Gaussian09 program (Frisch et al., 2009). 

         

 

Table 4.1. List of the ligands were used in molecular docking 
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        In case of ABTS; we carried out geometry optimization of the compound in three different protonation 

states. Results of these optimizations show ABTS with the two benzothiazoline groups in the same planar 

in the case of ABTS2- and ABTS1-, whereas the two fused rings show a 90º twist when the two nitrogens of 

azine group are protonated. Comparison the crystallographic structure of ABTS bound to the B. subtilis 

laccase (pdb ID: 1UVW), suggests that the ligand binds doubly protonated. In order to give support to this 

hypothesis we experimentally determined the pKa of ABTS. Titration curves show that ABTS exhibits two 

pKa at 1.5 and 9.5 (Figure 4.1), respectively. Consequently at the working pH of around 4 it is expected 

that the nitrogens are protonated. 

 

Figure 4.1. Titration of ABTS. 

 

 

 

 

 

Figure 4.2. Geometry optimization of ABTS. In the left the angle of ABTS2- in the azine group is 179.9 while this angle in ABTS 

is 93.1. 
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        Christensen and coworkers (2014), have described the possible binding poses of ABTS in different 

isoforms of laccase. They showed that ABTS contains delocalized radical density on the two azine N and 

the ring N═C and S in the two adjacent thiazoline moieties and the highest density belonged to two azine 

N (Christensen and Kepp, 2014). In our investigation, we reported for the first time that the protonation 

state of ABTS has effect on conformation of this ligand. Our result showed that ABTS in neutral state 

contained an azine C−N═ N−C dihedral angle of 93.1ᵒ which is closed to crystalized structure (68.4ᵒ). 

Although, the azine dihedral angel in other states was bigger (Figure 4.2). 

4.2. Docking studies 

       The set of fourteen ligands were used for docking studies in two fungal laccases: the one corresponding 

to the species T. versicolor (PDB entry 1KYA) and the M. albomyces (PDB entry 3FU8) as well as in the 

bacterial laccase of B. subtilis (PDB entry 1UVW). 

       In order to perform docking studies, substrates and other molecules found in the crystallographic 

structure were removed and hydrogens added. Residue protonation states were considered taking into 

account the respective working pH, i.e. pH 5.0 for the fungal laccase and pH 8.0 for the bacterial one. 

Amber charges were used for protein atoms and RESP charges were calculated for the substrates. Prior to 

docking, the protein and the ligands were fully minimized with MMFF94 force field.  

        The surface of the active site of T. versicolor is composed of Phe162, Phe265, Phe332, Phe337, 

Gly334, Gly392, Leu164, Pro391, Asp206, Asn264, His458 and His395 which are mostly hydrophobic and 

aromatic residues. The active site of M. albomyces is set out of Phe371, Phe427, Leu363, Leu429, Ile505, 

His431, His508, Glu235, Pro192, Ala191 and Trp373 which are hydrophobic but less aromatic than T. 

versicolor, whereas residues Gly417, Thr415, Thr418, Arg416, Pro226, Pro384, Leu386, His497 and 

His419 define the biding pocket in bacterial laccase, B. subtilis. As it has been observed the bacterial active 

site is not as hydrophobic as the fungal structures. Moreover, the residues are not aromatic. Another 

difference is that active site is wider than the two fungal laccases active site.  
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        The selected compounds categorized to the structures contained OH or NOH. About ABTS it cannot 

be in none of these groups. However, it is one of the most popular substrate being used in industry 

(Bourbonnais and Paice, 1990). Also, 1UVW crystalized structure contained this compound and we 

considered ABTS in our work to observe the difference binding mechanism of these compounds. Bellow it 

has been explained the docking results of each selected laccase structures and the substrates. 

4.2.1. Fungal laccase: structure of T. versicolor 

        One of the fungal laccase with high redox potential value is a structure with pdb code 1KYA. It is a 

fungal laccase that has been crystalized with 2,5-xylidine (XYD) (Bertrand et al., 2002). The binding mode 

of xylidine and 1KYA was shown in figure 4.3. XYD bound in the active site by hydrogen bind to Asp206. 

The distance between –NH of His458 and –N in xylidine is 2.61 Å. Hydrogen of His is pointed to –N of 

xylidine which make it possible for electron transfer. Docking results showed that compounds contain –OH 

and –NOH in their structure bound in the binding pocket of laccase. These compounds bound near His458 

in an orientation that oxygen atom of hydroxyl group becomes near to –NH of His. Moreover, the ring of 

these compounds have π-π interactions with Phe162, 265 and Pro 391.  

        There are some poses that have hydrogen bind between –H of hydroxyl group of substrates and 

Asp206, however, those poses there is no possibility for electron transfer to copper because the hydroxyl 

group of structure is far from His. In some cases –OH group of the compounds indicate interaction with 

His and Asp and they are in the orientation between these two residues, such as, 3,4-dihidroxy5-methoxy 

benzaldehyde and 4-(hydroxynethyl)-2-methoxyphenol. In the 1H-benzo-[1,2,3]triazol-1-ol, 2,2,6,6-

tetramethyl piperidinyloxy and 2-hydroxyisoindoline-1,3 dione the poses are similar to phenolic 

compounds. 5-(hydroxyiminolpyrimidine-2,4,6(1H,3H,5H)-trione just showed interaction with His and π-

π interactions. In case of ABTS, -SO3 in some poses indicated interaction with His458 and Asn264. As it 

is shown in figure 4.4 it contain hydrogen interaction with Asn264 and the hydrogen atom of His458 is 

perpendicular to the benzothiazoline ring of ABTS. These are the results when Asp206 was non-protonated.  
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Figure 4.3. Xylidine position in binding pocket of TvL. It bound to the binding pocket of T. versicolor laccase (pdb entry 1KYA) 

showing the side chains surrounding the ligand. 

 

Figure 4.4. Propose conformation of ABTS bound to the TvL.  
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        Molecular docking has been performed in the same way with Asp206 protonated. The results showed 

again the similar orientation in case of –OH and –NOH containing compounds. The only difference was 

that –H of protonated Asp206 points to the oxygen atom of hydroxyl group of compounds and there is no 

hydrogen bind. Also, the scores in all cases were worse except with ABTS. The score showed improvement 

and it was -8.1307 kcal/mol.  

        Recently, Christensen and his colleagues (2014) have systematically explored the possible binding 

modes of ABTS upon binding to four T. versicolor laccase isoenzymes. the best poses, represented by the 

isoform Lccα, which is also experimentally the strongest-binding protein, is that ABTS is bound in a semi-

extended conformation with one buried sulfonate group interacting with protonated Asp206 (AspH206) 

and the other sulfonate interacting with the Arg161 that is unique to the  α-isoform. The donor part of ABTS 

was close to His (Christensen and Kepp, 2014). In our work, MOE produced this pose with worse score, -

5.7555 kcal/mol in comparison to the pose that it showed interaction with Asn264.  

        Previously, it has been discussed that at pH ∼ 2, where the strongest binding isoforms Lcc α and Lcc 

β have their optimum activity (Koschorreck et al., 2008). At low pH protonated Asp206 helps to keep 

negatively charged ABTS in the binding pocket. Our result confirm this issue since we observed better 

score when molecular docking performed with protonated Asp206. 

4.2.2. Low redox potential laccase: structure of M. albomyces 

        The structure of this laccase is found in the protein data bank with 2,6-dimetoxyphenol (DMP) bound 

in binding pocket. As difference with the structure of the T. versicolor, this structure contains a glutamate 

(Glu235) in the biding pocket, instead an aspartate (Asp206). Analysis of the structure suggests that the 

hydroxyl hydrogen of the hydroxyl group interacts with Glu235 via a hydrogen bond. In addition, one of 

the hydrogen atoms of His508 interacts via a hydrogen bond with the oxygen of substrate. Furthermore, the 

substrate is stabilized by a number of π-π interactions between the ring of DMP and residues Phe427, 

Phe371 and Leu429 of the binding pocket. 
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        The molecular docking study suggests that the substrates containing a hydroxyl group exhibit similar 

interaction as DMP with the protein. Those structures with an acid function besides of the hydroxyl group, 

there are some poses in which His  interacted with acid group shows a hydrogen bonding interaction with 

Glu235.  

        About some compounds such as 2-hydroxyisoindoline-1,3-dione (HPI) in addition to the poses that 

His points to –OH, there are some poses that His was pointed to the –N and –OH had hydrogen binding 

with Glu. 

        In 1H-benzo-[1,2,3]triazol-1-ol, there is a pose that –NH shows hydrogen binding with Glu and His 

points to the –N in the ring. This is addition to the poses that His had interaction with –OH and π-π 

interactions. Also, in all structures some poses just had hydrogen binding with Glu, however, in this case it 

cannot be remarked because then how the electron may pass to copper. About ABTS that does not have –

OH in the structure, in some poses –SO3 has interaction with His508 and Asn236 besides of π-π interactions. 

There is a pose that two –SO3 group of ABTS has interaction with Asn236 and Trp373 and –NH is 

perpendicular to the ring of ABTS but the score was worse. 

        Docking was performed in the same condition with protonated Glu205. The results showed similar 

poses with substrates with similar score except in case of ABTS that the score for accepted pose was                 

-11.36 kcal/mol. 

4.2.3. Bacterial laccase: structure of B. subtilis 

        Structure of a bacterial endospore coat component was crystalized by Enguita and coworkers in 2003. 

This protein shows activity the same as multicopper oxidases. ABTS bound in the active site of the 

crystalized structure. The sulfonate group of ABTS shows hydrogen bond to Gly323 and Arg416; moreover 

hydrogen of His497 is perpendicular to the benzothiazoline ring. The results presented that Arg416, Gly417, 

Thr415, Leu386 and Pro384 participate in interaction with the ring of the compounds. Besides, ABTS 
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bound in the same mode in crystalized structure. However, it indicated other poses. For example it had 

interaction with Arg416 and Thr262, and    –NH of His497 pointed to the sulfur in benzothiazoline ring. Or 

it had interaction with Arg and Gly and His pointed to the sulfur in benzothiazoline ring. In docking of this 

structure results in contrary to fungal laccase, the interaction between His497 and –SO3 of ABTS has not 

been observed. It can be concluded that ABTS interaction is different in fungal and bacterial laccase.  

        Table 4.2 summarizes the surface of active site of laccase structures. It outlined which of them involved 

in interaction with different substrates. 

 MaL (3FU8) TvL (1KYA) BsL (1UVW) 

Residues in surface 

of active site 

Ala191, Pro192, Glu235, 

Leu363, Phe371, Trp373, 

Phe427,Leu429,  His431, 

Ile505, His508  

Phe162, Leu164, Asp206, 

Phe265, Asn264, Phe332, 

Gly334, Phe337,   Pro391, 

Gly392, His395, His458 

Thr262, Pro384, Leu386, 

Thr415, Arg416, Gly417, 

Thr418, His419, His497  

Residues participate 

in the interaction 

Glu235, Leu363,Phe371, 

Phe427, Leu429, His431, 

His508 

Phe162, Asp206, Phe265, 

Asn264, Pro391, Phe337, 

His395, His458 

Leu386, Pro384, Thr415, 

Arg416, Gly417, Thr418, 

His419, His497 

Property Hydrophobic but less 

aromatic 

More hydrophobic than 

bacteria laccase 

Wider 

Table 4.2. Comparing of residues in surface of active site and participated residues in interaction among three different laccase 

structures. 

        Generally, docking results showed that substrates bound near His. In fact, the hydrogen of Ne of His 

is oriented to the oxygen atom of the phenolic substrate which is the path for electron transfer from substrate 

to the enzyme. In previous investigations, the syringaldehyde shown in the active site of the enzyme was 

positioned on the basis of the binding orientation of 2,5-xylidine observed in the T. versicolor structure, 

assuming a similar orientation of phenolic compounds and aniline derivatives (Lahtinen, 2013). In our study 

also the orientation of the 21 phenolic compounds were similar to the arylamin compound in crystalized 

structure T. versicolor laccase. Moreover, our docking studies suggest that electron transfers to His458 in 



66 

 

 

 

 

the case T. versicolor, His508 in M. albomyces and His497 in the case of the bacterial laccase, involved in 

the coordination with copper in the T1 site.  

        Table 4.3 summarized the calculated score by MOE program for 3 different laccase structures and 

substrates. The lowest energy belongs to 3FU8 structure that means molecular docking produced more 

favorable pose for the same substrates in comparison to other two structures. The worst score resides with 

bacterial laccase. This bacterial laccase (1UVW) has less hydrophobic and aromatic residues in the activity 

site, consequently, find a pose that interacts with residues needs more energy.  

Compound  Score (kcal/mol) 

 1KYA 3FU8  1UVW 

2,4,6-trimethylphenol -4.02 -4.69 -2.16 

2,5-xylidine -3.84 -4.12 -1.22 

2,6-DMP -4.42 -4.71 -2.18 

4-hydroxybenzoic acid -4.10 -3.92 -2.54 

3,4-dihydroxy-5-methoxy 

benzaldehyde 

-4.12 -4.30 -2.37 

4-hydroxy-3,5-dimethoxy 

phenylethanon 

-3.50 -5.08 -3.29 

4-hydroxy-3-methoxy phenyl 

ethanone 

-3.80 -4.38 -3.36 

4-hydroxy-3-methoxyphenyl 

benzaldehyde 

-4.17 -4.81 -3.35 

HBT -3.77 -3.66 -1.69 

Methyl-4-hydroxy-3,5-

dimethoxybenzoat 

-4.60 -5.1 -3.65 

Methyl-4-hydroxy-3-

methoxybenzoat 

-3.83 -4.89 -3.91 

2-hydroxyisoindoline-1,3-dione 

(HPI)  

-4.07 -4.49 -3.90 

N-4-hydroxyphenylacetamid -4.36 -4.3 -3.53 

3-(4-hydroxyphenyl)acrylic acid -4.36 4.09 -2.66 

3-(4-hydroxy-3,5-dimethoxy 

phenyl)acrylic acid 

-4.66 -5.22 -4.23 

3,4-dihydroxy-5-methoxy 

benzaldehyde 

-2.61 -4.02 -2.26 

Tempo -3.59 -4.37 -2.01 

violuric acid -3.99 -3.88 -1.21 

ABTS -4.81 -7.71 -3.51 

Table 4.3. Molecular docking scores of 3 different laccase with substrates. 
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        The docking analysis of Pycnoporus cinnabarinus laccase with acetosyringone and syringaldehyde 

revealed the hydrogen binding between these substrates and Asp in active site of the enzyme (Prasad et al., 

2012).  It was mentioned by Bruyneel and coauthors (2012) that phenolic compounds had one productive 

docking with the –OH group forming hydrogen bonds with Asp (Bruyneel et al., 2012). In these studies it 

was suggested that proton may transfer to Asp or Glu conserved residues in fungal laccases.  

        According to our docking results this residue is far to make it possible except in some cases of 

substrates. Besides, Asp/Glu does not exist in all fungal laccase, such as T. hirsuta (Polyakov et al., 2009). 

However, there is a water molecule between DMP and Glu in M. albomyces crystalized structure. In the 

case of ABTS it has different mechanism and there is no proton transfer in ABTS_laccase complex 

(Fabbrini et al., 2002).  

        Our docking study displayed sulfonate group of ABTS bound to Asn of fungal laccases in the 

orientation that hydrogen of His became perpendicular to the ring of ABTS which means electron transfers 

from the ring to the His. This is similar pose to the crystalized structure of B. subtilis with ABTS (Enguita 

et al., 2003). According to the previous study (Bertrand et al., 2002) since there is no difference in Km of 

this compound in different pH that it refers to the different protonated state of Asp/Glu in the binding 

pocket, thus, in case of ABTS no hydrogen can be extracted from the reducing substrate. 

        According to the Proton-coupled electron transfer (PCET) mechanism proton and electron should 

transfer to different atoms. As it was mentioned in other articles PCET occurs in metalloenzymes 

(Fernandez et al., 2012; Hammes-Schiffer, 2001). PCET reactions involving the transfer of an electron and 

a proton may be sequential, where either the electron or the proton transfers first, or concerted, where the 

electron and proton transfer simultaneously (Hammes-Schiffer and Soudackov, 2008). In PCET, the proton 

and the electron (i) start from different orbitals and (ii) are transferred to different orbitals which is occurred 

in laccase. In case of laccase some QM studies should be performed to make it clear and demonstrate if 

proton or electron transfers first. 
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4.3. Molecular dynamics simulations 

        Structures retrieved from a protein databank that lack hydrogen atoms. So these have to be added to 

the file. Due to the fact that the methods to retrieve molecular structures are not perfect and especially in x-

ray-structures there are crystal contacts, which lead to a compaction of the molecules. Furthermore, 

hydrogen atoms are added to relatively arbitrary positions near their neighbors. Thus there are atoms lying 

too close together and the energy is raised high above natural energy levels. These high energy interactions 

lead to local distortions which result in an unstable simulation. They can be released by minimizing the 

energy of the structure before starting a simulation. 

        To raise the temperature from 0K to the desired value, 300K, first initial velocities should be assigned 

to the atoms corresponding to a Gaussian distribution for a certain temperature to provide the system with 

energy. After having heated the system so quickly, the structure might be unstable and the temperature may 

drop too low. That is why the system should be equilibrated properly before running the real dynamic 

simulation, the production run. As stated before, equilibration is the process where the kinetic energy and 

the potential energy evenly distribute themselves throughout the system. 

        Force field parameters and electrostatic charges of atoms for protein and ligand were derived from the 

AMBER libraries [parm99 version of the all-atom AMBER force field (Cornell et al., 1995)]. The 

parameter set for the copper center (see Tables 4.3-4.5) involving all Cu–L distances and L–Cu–L_ angles, 

were taken from the DFT-optimized model structure that has been done Comba and coworkers (2002) 

(Comba and Remenyi, 2002). 

 

Atom Mass(u) Van der Walss Radius 

[Å] 

Cu(I,II) 63.546 1.17 from (Bartolotti et al., 

1991) 

Table 4.3. Mass and van der Waals Parameters Introduced to the AMBER Force Field. 
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Bond    kb [kcal/(mol*Å2)] r0(Å) 

Cu1-S 5.00 2.87 (De Kerpel and Ryde, 1999) 

Cu1-SH 50.61 2.22 

Cu1-NB 21.25 2.03 

Cu1-OH 10.00 2.35 

Table 4.4. Ideal bond distances and stretching force constants introduced to the AMBER force field. 

 

 

Angle  θ0 (ᵒ) 

Cu1-S -CT             113.81    

Cu1-SH-CT            101.31    

Cu1-NB-CR           122.10    

Cu1-NB-CC           122.90    

Cu1-NB-CV           122.90    

Cu1-OH-H             120.00    

S -Cu1-SH           113.39    

S -Cu1-NB           96.50    

SH-Cu1-NB          122.50    

NB-Cu1-NB        99.07    

OH-Cu1-NB    90.00    

Table 4.5. Ideal valance angles introduced to the AMBER force field. 

 

        Three selected structures have been further characterized by means of MD simulations. We evaluated 

the effect of protonation state of a conserved residue in fungal laccase, Asp/Glu, in binding of substrates. 

In simulation of 1KYA with XYD as a substrate with protonated Asp206, after 7ns the substrate started 

going far from His458, then in 11ns it came back near to His. This ligand was unstable in binding pocket, 

it went far and came back to the binding site in molecular dynamic simulation. This simulation has been 

repeated with non-protonated Asp206. There is no difference between results. We obtained the same result. 

        It was stated in other researches, the role of 2,5-xylidine as a weak inhibitor of Rigidoporus lignosus 

laccase. The ABTS and 2,5-xylidine compete one with another, it is suggested that they combine with 

enzyme at the same locus and the inhibition is competitive (Cambria et al., 2010). Therefore, XYD may 

consider as a weak substrate that was not stable for more than 7ns of MD simulation in the active site of 

1KYA structure. In other study, it was pointed that XYD was used as a laccase inducer in the fungus culture. 

This arylamine is a very weak reducing substrate of the enzyme (Strong, 2011).  
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        Molecular dynamic simulation of 3FU8 with DMP was more stable. DMP stayed in the binding pocket 

for 20ns when Glu235 was protonated. However, it showed stability for 25ns when Glu235 was non-

protonated. As the results showed DMP stayed more stable in the binding pocket in comparison with MD 

simulation of XYD. In fact, this structure is a phenolic ligand. The phenolic structures are the main group 

of laccase substrate. 

        In addition, DMP had interaction with residues in the binding pocket longer when Glu235 was non-

protonated. However, if we remark this residue as a protonated one, how the proton may transfer? What 

about net of water in the environment? The position of water molecules were observed during the 

simulation. DMP has stayed near His508 and Glu235 until there was a water molecule between Glu and 

DMP. In the moment that the water molecule moved in the simulation and went far DMP started going far, 

too. Furthermore, this water molecule was observed in crystal structure. The mode of proton transfer was 

not the objective of this study. Although, these results illustrate that water molecules have role in the 

interaction. 

        In case of 1UVW, as it explained before, there is no Glu/Asp near the active site of enzyme. So, there 

is just one type of simulation. The results indicated the pose of ABTS in the pocket was similar to crystalized 

structure for 26ns. Meanwhile in some moments of simulation hydrogen atom of His497 pointed to sulfur 

in benzothiazoline ring, the similar pose to docking result. These two poses have been observed in docking 

results. But ABTS stayed in the first pose longer and it is similar pose in crystalized structure. As a 

conclusion the interaction between ABTS and enzyme occurs in the pose that sulfonate binds to Gly323 

and –H of His497 is perpendicular to the ring for electron transfer. 
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4.4. QMMM  

        In this study, we calculated redox potential of T1 site for low redox potential laccase structure (3FU8) 

using QMMM-2QM-MD. Laccase catalyze a substrate, received one electron at T1 site and sequentially 

reduced the substrate. Therefore, T1 site has two oxidation states, Cu+ and Cu+2. Likewise, the DMP has 

two oxidation states, DMP and DMP-•. Among three structures that we did other studies about them, we 

chose 3FU8. Because DMP just has two states in comparison to ABTS that be able to have different states. 

As well, in MD simulation this ligand was more stable in comparison to XYD in 1KYA structure. Therefore, 

it is more suitable structure for this calculation. 

4.4.1. QM calculation 

        The QM calculations were performed with the Perdew–Burke–Ernzerhof (PBE) density functional 

(Perdew et al., 1996), together with the def2-SVP basis set for H, C, N, O, S, and CU basis set (Schäfer et 

al., 1994, 1992). The calculations were sped up by expansion of the Coulomb interactions in auxiliary basis 

sets, the resolution-of-identity approximation (Eichkorn et al., 1997, 1995). The calculations were 

performed with the Turbomole 6.5 package (Case et al. 2005) (a development of University of Karlsruhe 

and Forschungszentrum Karlsruhe GmbH, 1989-2007). The structures were optimized until the change in 

energy between two iterations was below 2.6 Jmol-1 and the norm of the maximum norm of the gradients 

was below 10-3 a.u. The Cu ion was assumed to be in the high-spin state. The spin-unrestricted formalism 

was employed. The two QM systems were studied in both the oxidized and the reduced states. This means 

that the T1 site and ligand had a total charge of either zero or one, with no or one unpaired electron.  

4.4.2. MM and MD calculations 

        All MM calculations were run with the sander module in the Amber software (Case et al., 2005) using 

the Amber 1999 force field (FF99) (Cornell et al., 1995; Wang et al., 2000). The QM system was 

represented by charges fitted to the electrostatic potential, sampled according to the Merz–Kollman 



72 

 

 

 

 

scheme,(Besler et al., 1990) as implemented in Turbomole, but with a higher-than default density of points, 

2000–3000 points/atom. The charges on the CL atoms were adapted so that the total charge of the amino 

acid (including both QM and MM atoms) was the same as the sum of QM charges of the corresponding 

QM fragment (Ryde and Olsson, 2001). Thereby, we ensure that the total charge of the simulated system 

is an integer, but we still allow charge transfer within the QM system (the amino acids with QM atoms have 

non-integer total charges). 

        In the MD simulations, the bond lengths involving hydrogen atoms were constrained using the SHAKE 

algorithm (Ryckaert et al., 1977). The water solvent was described explicitly with the TIP3P model 

(Jorgensen, 1989). The electrostatics were treated with the particle-mesh Ewald method (Darden et al., 

1993; Essmann et al., 1995) with a grid size of 80, a fourth-order B-spline interpolation, a tolerance of 10-

5, and a real-space cut-off of 8 Å. The temperature was kept constant at 300 K and the pressure at 1 atm 

using the Berendsen weak-coupling algorithm (Berendsen et al., 1984) with a time constant of 1 ps. Five 

simulations were run. First, the structures were subjected to 1000 steps minimization, keeping all non-

hydrogen atoms restrained to the original crystal structure with a force constant of 418 kJ/mol/Å2. Next, a 

20 ps MD simulation with a constant volume was run, still keeping the heavy atoms restrained. Third, a 20 

+ 50 ps MD simulation with a constant pressure was run to equilibrate the box size. During the first 20 ps, 

the non-hydrogen atoms were restrained, whereas during the last 50 ps, these restraints were removed. 

Fourth, a 200 ps equilibration at a constant volume was run without any restraints. Finally, the systems 

were simulated for 10 ns in a constant volume, and coordinates were sampled every 2 ps. MD simulations 

were performed for both electronic states, RO and OR. In the QM/MM energy calculations, no periodic 

boundary conditions were used. Instead, the MM system was centered on the QM system and an infinite 

cut-off was employed.         

        The calculations on the laccase are based on the 1.8 Å crystal structure of laccase (PDB code 3FU8). 

The whole protein was included in the calculations, as well as a varying amount of solvent water molecules. 

All Glu and Asp residues were assumed to be deprotonated, and all Lys and Arg residues were assumed to 
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be protonated. The protonation state of the His residues was assigned on the basis of their solvent exposure, 

the hydrogen-bond network, and the local surroundings: His residues on the protein surface were assumed 

to be protonated on both N atoms, whereas the remaining His residues, which are ligands of the T1 and T23 

Cu ions, were assumed to be protonated on the atom not coordinating to the metal. The Cys ligand of the 

T1 Cu site was assumed to be deprotonated. 

        The crystalized structure of this enzyme is a dimer protein. Hence, there are 4 different states to study, 

each monomer is in oxidized T1site and reduced substrate state (OROR), one monomer has oxidized T1site 

with reduced substrate whereas the other one has reduced T1 site and oxidized substrate (ORRO or ROOR), 

and the last state is that each monomer is in reduced T1 site and oxidized substrate state (RORO).  

        We wanted to calculate the reorganization energy (RE) of the electron transfer between T1 site and 

the substrate using the methods developed by Warshel, Sprik, and Blumberger, as well as redox potential. 

The MD simulations were performed at the MM level. Therefore, force-field parameters of the T1 center 

and the substrate in the two oxidation states are needed.  

        Several methods exist for the treatment of metal centres by MM94 and there are already several sets 

of parameters for the T1 site (Comba and Remenyi, 2002; De Kerpel and Ryde, 1999). We have performed 

a detailed parametrisation of the two metal centres in both oxidation states using the ideal method suggested 

by Norrby and Liljefors (Hu et al., 2011). This approach uses also QM data in the form of optimised 

structures and the Hessian matrix. However, in this case it is not assumed that the QM-optimised bonds, 

angles, and dihedrals are unstrained and double-counting is avoided. Instead, all bonded parameters are 

optimised by an iterative procedure in which a target function is minimised, involving all bonds, angles, 

dihedrals, and Hessian elements of the complex, performing a full MM geometry optimisation and 

frequency calculation for each sets of parameters. Thereby, it is ensured that the final parameters reproduce 

the QM structure and Hessian as well as possible. This approach has frequently been used to obtain accurate 

structures and energies for metal sites (Nilsson Lill et al., 2010). 
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        Such a parametrisation was performed as is described in the Methods section both for the T1 and 

ligand and in both their reduced and oxidised states. The performance of the parametrisations is described 

in Table 4.6.  

 
 T1ox T1red DMP DMPox 

Bonds 0.009 0.01 0.003 0.004 

Angles 0.685 0.903 1.113 0.318 

Dihedrals 1.029 1.746 0.661 0.17 

Coordinates 0.12 0.117 0.034 0.008 

Max coord 0.211 0.21 0.074 0.017 

R2 Hessian 0.986 0.993 0.995 0.989 

Table 4.6. Performance of the various parametrizations. The quality measures are the correlation coefficient (r2) between all QM 

and MM Hessian elements, the root-mean-squared deviations (RMSD) for all bonds, angles, dihedral angles, and coordinates 

between the MM and QM optimized structures (in A or degrees), the maximum deviation (Max) for the coordinates. Results are 

shown for the parametrization of the T1 site in the oxidized and reduced state, as well as the substrate.  

        It can be seen that all four parametrizations perform excellently: They reproduce all bond lengths in 

the QM structure with a root-mean-squared deviation (RMSD) of less than 0.01 Å, the angles with an 

RMSD of 0.3-1.1 °, the dihedral angles with an RMSD of 0.1- 1.7°, and the coordinates with an RMSD 

of 0.008-0.12 Å and with a maximum difference of 0.02-0.21 Å. Moreover, the correlation coefficient 

between the QM and MM Hessian elements is above 0.98 for all four force fields.  

        Once the metal sites have been parametrized, 10 ns MD simulations (after equilibration) were run for 

the four oxidation states, RORO, ROOR, OROR and ORRO (Figure 4.5). The MD trajectories were stable. 

The reorganization energy is the energy it would take to force the reactants to have the same nuclear 

configuration as the products without permitting electron transfer. The RE was calculated by the energy 

difference between the oxidized state in its equilibrium geometry and in the geometry of the reduced state, 

and vice versa. For the MD simulations, we calculated the vertical energy difference between the two 

electronic states, ORRO and RORO, ΔEet = ERORO – EORRO for all snapshots obtained in the MD simulations 

of the two states. Then, the RE was estimated from Eqn. 1. 
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OROR                              ROOR 

 

ORRO                              RORO 

Figure 4.5. Illustration of different states of 3FU8 structure for QMMM-2QM/MD calculation. 

        Finally, we can also calculate the driving force in the RORO → ORRO reaction, i.e. the difference in 

the redox potentials of the RORO and ORRO states, using Eqn. 15. Table 4.7 indicates the reorganization 

energy and redox potential value. 

 RE (kJ/mol) SE E0  (kJ/mol) SE 

OROR to ROOR  246 1 92 1 

OROR to ORRO 227 1 74 1 

ROOR to RORO 240 1 17 1 

ORRO to RORO 203 1 7 1 

Table 4.7. Reorganization energy and redox potential value of T1 site and DMP in 3FU8 structure calculated by QMMM-

2QM/MD. 

 
        Since we used dimer structure, the four sites are quite close together. our results indicate that there is 

a large communication between the various redox states, i.e. that the difference in redox potentials changes 

from 7-17 to 74-92 kJ/mol if the redox state of T1Cu and DMP in the other subunit changes.  

        Experimentally, the redox potential of free DMP is +580 mV vs. NHE (Jovanovic et al., 1991) and 

that of the T1 site of the protein is +470 mV vs. NHE (Kiiskinen et al., 2004). That means the 

CuT1ox/DMPred state should be around 11 kJ/mol (580-470=110 mV) more stable than the 

CuT1red/DMPox state. In the experiment DMP was not used for measuring the value, therefore, we do not 

know how much of the effect comes from DMP and this makes the comparison with experimental value 

difficult. We can conclude that the sign of our calculated potential is correct, and we correctly predict that 

CuT1ox/DMPred state is more stable than the CuT1red/DMPox state. 
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        This method has been used before to calculate the RE for the internal electron transfer between the T1 

and T23 centers in the MCO enzyme CueO that was 0.94-1.38 eV.  They have also estimated the energy 

difference between the two electron-transfer states and the calculations indicate that the OR state is more 

stable (Hu et al., 2011). Our result also showed that OR state is more stable than RO state. The 

reorganization free energies for the intramolecular electron transfer in Ru-modified cytochromes has been 

calculated 1.2-1.3 eV (Tipmanee et al., 2010). We obtained T1 site RE range of 2.1-2.55 eV for MaL 

laccase. The value have been measured experimentally for PM1L, 1.93 eV (Pardo et al., 2016). The value 

that we calculated is overestimated. It has been discussed that using nonpolarizable force field may lead to 

overestimation of RE value (Blumberger and Lamoureux, 2008; Tipmanee et al., 2010). 

4.5. Starting point for directed evolution  

        Our starting point was high redox potential laccase OB-1 mutant (Maté et al., 2010). In addition to its 

high redox potential feature, it is highly thermostable and readily secreted by yeast. It has 80% similarity 

with TvL which our molecular docking and simulations has done with it.  

        Since we intended to know which residues in binding pocket has effect on redox potential we began 

with residues that were different in HRPL and LRPL species. Therefore, our starting point for LRPL was 

MtL T2 mutant (Bulter et al., 2003) which has already 11 mutations. MtL T2 has 76% of identity to MaL 

which our computational studies was performed on its structure. Table 4.8 and figure 4.6 are shown the 

comparison of residues in binding pocket of these structures. 

4.6. Making the mutagenesis library 

        The generation of diversity was emulated by taking advantage of the eukaryotic machinery of S. 

cerevisiae (Alcalde, 2010). The high level of homologous recombination of S. cerevisiae allowed us to 

repair the mutagenized products within the linear vector in vivo by engineering specifically overlapping 

regions. 
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MtL T2 MaL TvL OB-1  

G191 A191 F162 A162 

A192 P192 L164 T164 

L363 L363 F332 F331 

L296 A296 F265 S264 

W373 W373 F337 F336 

L513 L513 F463 F460 

Eᵒ~ 450 mV 

(Zumarraga et al. 2008b) 

Eᵒ~ 470 mV 

(Kiiskinen et al. 2004) 

Eᵒ~ 790 mV  

(Xu et al. 1996) 

Eᵒ~ 760 mV 

(Mate et al., 2013) 

Table 4.8. Comparison of binding pocket residues in different laccase structures. 

 

        We made saturation mutagenesis library for F331 and 336 positions in OB-1, also, we made site 

directed mutagenesis in A192L, L296F, L363F, W373F and L513F positions in MtL T2. For our screening 

we used ABTS to check laccase activity, Molybdenum hexacyanide and violuric acid to assay the 

improvement of redox potential value. The clones that we saw increasing activity with Molybdenum 

compound and violuric acid we considered them as a clone that probably it increases the redox potential 

value.  

        The results showed that in OB-1 mutagenesis library the best mutant was substitution of F331H. It 

showed increasing activity with Molybdenum compound. The activity was 2.28 fold higher than the 

parental type. In case of F336 we did not find any clone that showed improvement in screening assay.  

        Table 4.9 shows the result of screening on MtL T2 structure. We did not observe any improvement in 

residues positions 296, 363, 373 and 513. Previously, Cambria and his colleagues (2012) by computational 

study discussed that putative stacking interactions in HRPL structures such as RlL, TvL and CcL 

demonstrates the formation of pairs between the histidine imidazole rings involved in the T1-binding site  
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Figure 4.6. (a) Binding pocket of MtL T2 (red residues) and MaL (green residues), (b) binding pocket of OB-1 (red) and TvL 

(green). 

(a) 

(b) 
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and the conserved phenylalanine aromatic ring in the second coordination shell, whereas in MaL the 

equivalent residue is replaced by Trp373. Therefore, they concluded that this position could influence the 

redox properties of the T1 (Cambria et al., 2012). Our result revealed that substitution of Trp373 to 

phenylalanine did not improve the T1 redox potential value. 

        In 1998, Xu and coworkers have demonstrated that the replacement of an L513 by phenylalanine at 

the position corresponding to the T1 Cu axial ligand does not significantly affect the properties (including 

E0) of theT1 Cu (Xu et al., 1998). Our results confirmed their result. 

        In case of A192L the enzyme became inactive. We did not see activity even with ABTS. Therefore, 

we got the conclusion that this point can be important in redox activity of enzyme and we decided to make 

a combinatorial library for position 192 and 296 to test the effect on activity and redox potential value. 

      MtL T2 Activity comparison to parental 

Position  Result ABTS Molybdenum hexacyanide 

 

Violuric acid 

Ala 192 Leu inactivated - - - 

Leu 296 Phe The same as parental type 1 1 1 

Leu 363 Phe The same as parental type 1 0.5 0.3 

Trp 373 Phe Very low activity    

Table 4.9. Screening assay results of site directed mutagenesis of MtL T2. 

        To reduce codon redundancy and screening effort in combinatorial saturation mutagenesis library 

(Kille et al., 2013) around 1500 clones were explored. Among those clones, 4 of them showed improvement 

in activity with violuric acid and Molybdenum compound. The clone contained A192P and L296W (3H12) 

mutation and clone contained A192P and L296L (19G8) showed activity with violuric acid 1.23 and 1.33 

fold higher than parental type, respectively (Table 4.10). In figure 4.7, it indicated the different color of 

interaction with violuric acid between 19G8 and parental type  
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Figure 4.7. Different color in screening assay with violuric acid that related to different activity of 19G8 mutant (up) in 

comparison of wild type (bottom). 

        Moreover, the clone contained A192R and L296W (15H11) and clone with mutation A192R and 

L296L (5B4) showed higher activity with Molybdenum compound in comparison to parental type. 

However, parental type did not show any activity with Molybdenum compound and we cannot report how 

many folds of improvement those clones have in comparison to the parental type. 

        MtL T2 Activity comparison to parental  

Position of 

mutations 

Method of 

mutation 

Mutated  ABTS [Mo(CN)8]4- Violuric acid 

Ala192 + Leu296 Combinatorial 

saturation 

mutagenesis 

A192P  

 L296W 

1.34 0.75 1.23 

A192P 

L296L  

1.22 n.d. 1.33 

A192R  

 L296W 

1.17 56.03 n.d. 

 

A192R  

L296L 

1.14 52.57 n.d. 

Table 4.10. Activity of best clones. Clones that showed better activity in combinatorial saturation mutagenesis library of MtL T2 

has been slected. 
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        We also made another mutagenesis library in T2/T3 site in 433 and 500 position. We performed site 

directed saturation mutagenesis library for M433 and L500. Nonetheless, we did not detect any 

improvement in activity with 3 compounds of screening assay. 

4.7. Thermostability 

        Thermostability of the different mutants along directed evolution did not vary significantly, so the 

final mutant showed thermostability profiles equivalent to the parental type MtLT2 (Figure 4.8). Generally, 

mutations conferring stability against temperature can also have a beneficial effect against other denaturing 

factors (such as the presence of organic solvents) and vice versa. In our case, however, mutations introduced 

during artificial evolution not improved thermostability.  

        The parental type and 19G8 mutant conserved more than 60% and 70% of their residual activity, 

respectively, at pH 3.0 after 1 h, but not the rest. In contrast, all mutants were stable in the pH range 5.0-

9.0, although parental type kept less than ∼80% of its residual activity at pH range 7.0-9.0 and it showed 

more stability at pH 5.0 and 6.0 (See Figure 4.9).  Stability at high pH values can be explained by the fact 

that inhibition of the TNC by hydroxide ions reduces auto-oxidation of laccase and thereby stabilizes the 

enzyme (Alcalde, 2007).  

T50 of different mutants

Temperature (C)

55 60 65 70 75 80

R
e

si
d

u
a

l A
ct

iv
ity

 %

0

20

40

60

80

100

T2
5B4

15H11

19G8

3H12

T50 line

 

Mutant T50 (ᵒC) 

3H12 71.6 

T2 72.4 

5B4 72.3 

15H11 73.2 

19G8 73.2 



82 

 

 

 

 

Figure 4.8. Thermostability profile of parental type and mutants. The activities were measured at different times with 3 mM 

ABTS in citric phosphate buffer pH 4.0. Activities were normalized to the initial activity at room temperature before incubation. 

Each point represents the mean of three independent experiments. 

 

 

Figure 4.9. pH stability of the parental type and mutants. Enzyme samples were incubated in 100 mM Citrate-Phosphate-Borate 

buffer at different pH values, and the residual activity was measured with 3 mM ABTS. 
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4.8. Optimum activity profile and pH stability 

        The optimum pH for laccases described generally 3.0-5.0 in the range (Shleev et al., 2004). At low 

pH, the protonated residues such as Asp or Glu in the binding pocket of laccase helps to contain the 

negatively charged ABTS in the binding pocket, partly explaining why fungal laccases are most active 

toward ABTS at low pH (for many other substrates, pHopt is substantially higher) (Christensen and Kepp, 

2014).  

        The activity of parental type and all mutants were optimal at pH 4.0 for ABTS and conserved 70% of 

relative activity at pH 5.0. It retained around 30% of relative activity of MtL T2, 5B4 and 15H11 at pH 6.0 

for ABTS. The results showed that the activity of parental type, 3H12 and 19G8 were optimal at pH 3.0 for 

DMP while it was optimal at pH 4.0 for 5B4 and 15H11. Also, all mutants and parental type hold upto over 

60% of relative activity at pH 6.0 for DMP (Figure 4.10). 
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Figure 4.10. Activity profiles at different pHs of MtLT2 parental type and mutants. The activity was measured with (a) ABTS 3 

mM and (b) DMP 3 mM. Laccase activity is normalized to activity of its optimum value. Each point represents the average of 

three independent experiments. Mutants included 3H12, 5B4, 15H11 and 19G8. 

        Most laccases from fungi such as Coltricia perennis (Kalyani et al., 2012), Paraconiothyrium 

variabile (Forootanfar et al., 2011) and Scytalidium thermophilum (Ben Younes and Sayadi, 2011) have 

good stability in near neutral conditions. Laccases from Trametes pubescens and Podospora anserine were 

found to have good stability under alkaline conditions (Si et al., 2013), similar to the mutants that have been 

produced in this project. 

4.9. Production and purification of mutants 

4.9.1. Expression in S. cerevisiae 

        The different libraries laccases obtained throughout the process of artificial evolution were created 

using the full laccase gene. S. cerevisiae expression of native and mutant laccases cloned into the vector 

pJRoC30 developed under appropriate conditions of temperature, aeration and agitation (see Section 
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3.6.19.1 Materials and Methods). Approximately after 36h our cultures reached to maximum OD (OD~36) 

and activity (0.33 U/mL). 

4.9.2. Purification of laccase 

        The different variants were purified to homogeneity with 4 consecutive steps (see section 3.6.19.2 

Materials and Methods). The crude extract (900 mL) was centrifuged. The sample was subjected to two 

steps of fractional precipitation with (NH4)2SO4 60% to 95% (w/v) (Table 4.11). After treatment, fractions 

with laccase activity were subjected to two consecutive purification steps on anion exchange columns: first 

on a DEAE-Sepharose column weak anion exchange and subsequently in a heavy exchange MonoQ 

column. The average final yield was ~ 80%. All purification steps were carried out at room temperature, 

given the high stability MtLT2 and its variants. Table 4.12 summarizes the concentration, total and specific 

activity of MtL T2 and 2 mutants after the purification protocol used in this thesis. 

 

Table 4.11. Fractional precipitation steps. 
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Total 

activity 

concentration specific 

activity 

supernatant Secretion level 

Enzyme(Laccase) U/mL mg/mL U/mg U/L mg/L 

T2 115 2.02 57.02 223 3.91 

5B4 1475 14.46 102.01 531 5.21 

19G8 146 2.28 64.15 208 3.25 

Table 4.12. Activity of MtL T2 and mutants after purification. 

        Electrophoresis under denaturing conditions (in the presence of SDS) showed a major band of pure 

laccase around ~130 kDa (Figure 4.11). 

  

  

Figure 4.11. SDS-PAGE electrophoresis of laccase after purification. Line 1, molecular weight marker of proteins; line2, MtL 

T2; line3, 5B4; line4, 19G8.  

4.10. Kinetic characterization of purified laccases 

        Once purified laccase parental MtLT2 and the best mutants directed molecular evolution process, the 

biochemical characterization of each mutants was carried out. To measure the kinetic properties of a specific 

enzyme reacting with a particular substrate, several constants are commonly used. From the Michaelis–

Menten equation, Km represents the substrate concentration at which the velocity rate is half maximal; kcat 

is the number of substrate molecules turned over per enzyme molecule per second. As a result, the 

~130kDa 

1          2         3        4 
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ratio kcat/Km, so-called specificity constant, is used to compare enzyme efficiency in catalyzing the 

transformation of their substrate under a given set of conditions.  

                 Kinetic constants against ABTS      Kinetic constants against DMP 

 kcat  (S-1) Km(µM) kcat /Km  kcat  (S-1) Km(µM) kcat /Km 

T2 156 ± 11 14 ± 4 11  105 ± 5 26 ± 6 4 

5B4 113 ± 10 20 ± 1 5.6  67 ± 5 147 ± 46 0.5 

19G8 171 ± 9 18 ± 5 9.5  86 ± 3 36 ± 7 2.4 

Table 4.13. Kinetic constants were measured against ABTS and DMP. 

        Table 4.13 shows the kinetic constants of the purified laccases with ABTS and DMP as substrate. The 

lowest Km values for MtL T2 and mutants were found with ABTS, which indicated higher affinity for this 

substrate (Table 4.10). This substrate has 2 sulfonate group that negatively charged. Also, it is a substrate 

with source of electron to donate to T1 site (Christensen and Kepp, 2014). Consequently, it showed better 

affinity than phenolic substrate such as DMP that does not contain negatively charged group or chain.  

        Formerly, researchers discussed that optimal proficiency of laccases for ABTS relates to positively 

charged residues in the binding pocket. Whereas charge interactions appear crucial for tight binding of 

substrate contained negatively charge group such as ABTS (Christensen and Kepp, 2014). Nevertheless, 

our result did not confirm that. The mutant that had substitution of A192R, 5B4, did not indicate better 

affinity to ABTS. We should consider that less bulky Ala sidechains allow increased oxidation of larger 

substrates. This issue has been investigated in TvL(Galli et al., 2011) and TviL (Tadesse et al., 2008).  

        The specificity constants, kcat/Km values, varied from 11 µM-1 S-1 (MtL T2) for ABTS up to 0.5 µM-

1 S-1 (5B4) for DMP (Table 4). For MtL T2, the kcat/Km value was double the 5B4 mutant for ABTS and it 

was a more efficient catalyst for that substrate. In addition, Km value of 19G8 that has Pro192 in binding 

pocket is lower than 5B4 mutant which indicates that it has more affinity to phenolic substrates since the 

binding pocket is more hydrophobic and allows a better fit for phenolic structures binding site T1. 
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        Zumarraga and colleagues (2008) measured the kinetic constants of MtL T2 against ABTS at pH 4.5. 

The values for kcat and Km were 28.3 S-1 and 120 µM-1, respectively. Also, the values against DMP were 

25.8 S-1 and 175 µM-1 (Zumarraga et al., 2008a). In our investigation, we measured kinetic values at pH 4.0 

and the results showed more efficiency at this pH. There is a Glu in activity site and close to T1 site. The 

pka value for this residue is 4.07. At pH 4.0 it is protonated, therefore, the binding pocket of this structure 

is less negatively charged. This means that substrate can bind to the activity site easier and consequently 

less negative charge facilitate that T1 site receive electron easier. However, at pH > 4.0 Glu is non 

protonated and negatively charged which cause binding and receiving electron with lower efficiency. 

4.11. Computational studies of mutants 

        After characterization of mutants experimentally, we analyzed the mutants by computational study. 

First, we compared the binding pocket of wild type (3FU8) with the structure that has mutation in position 

192 and 296. We compared the wild type structure with P192P and A296L which is similar to 19G8 mutant 

and P192R and A296L which makes it similar to 5B4 mutant. There was a difference in case of P192R and 

A296L, the binding pocket is tighter than the wild type (Figure 4.12). In molecular docking simulation it 

did not show differences and ligands could bind there.  

        In order to check the redox potential value, we tried the same process for calculation of redox potential 

(See material and methods 3.4) for the same structure with one mutation in A296L position. In this case we 

made the structure similar to 19G8 mutant. We calculated the difference in the redox potentials of the 

RORO and ORRO states. The redox potential value is 167 kJ/mol that illustrates increasing in the value. 

Our experimental activity assays showed that this mutant has increased the activity with Molybdenum 

compound that most likely it has higher redox potential value in comparison with parental type. However, 

it is necessary to measure the redox potential value experimentally. Also, our result indicated that 

combination of Pro and Leu has effect on redox potential.  
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Figure 4.12. 3FU8 structure (upper structure) and 3FU8 contained two mutation, P192R and A296L (down). 
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        Overall, by making different mutagenesis library on MtL T2 laccase, we found that combination of 

position 192 and 296 has effect on redox potential of this structure. The combination of Pro and Leu, which 

are hydrophobic residues, or Pro and Trp, which add aromatic residue to the active site lead improvement 

in activity of enzyme with molybdenum compound (Eᵒ= 780 mV vs. NHE) and violuric acid (Eᵒ= 912 mV 

vs. NHE). Since there was no improvement in kinetic constant of the interaction between these ligands and 

enzyme, consequently, the improvement in activity refers to redox potential property. Besides, the 

computational prediction of redox potential of MaL in the same position with the same residue showed 

increasing in the value. 
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                                                                          5. CONCLUSIONS 
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        Laccases can be used in a great variety of process and are the most interesting from a biotechnological 

point of view due to their higher oxidative capabilities. Yet, some aspects of the reactivity of laccases 

remain as subjects of debate, such as how the range of redox potentials or the diverse substrate affinities is 

tuned among laccases, thus hindering their rational design. Besides, one of the remaining challenges in 

laccase engineering is the increasing of the redox potential at the T1 Cu site beyond the nature limits (above 

+800 mV) without sacrificing neither the stability nor the catalysis. 

        Computational studies using protein structure prediction algorithms, molecular dynamics (MD) and 

hybrid quantum mechanics/molecular mechanics (QM/MM) calculations might aid the design of new 

laccase variants by reducing the experimental effort required to get the desired properties. Computational 

simulations and directed evolution will interact to reveal targets for protein engineering to be explored by 

site-directed mutagenesis (or semi-rational approaches) or for designing smart libraries to reduce the 

screening efforts in evolutionary strategies.  Although, metalloproteins, such as laccase, present many 

challenges when it comes to computational modeling. 

        In this work, we tried to characterize structure-activity of laccase by applying computational methods. 

Then, we proposed the positions for performing mutations to check the effect on redox potential value. 

Finally, we produced the libraries of mutants experimentally and characterized the best mutant. 

The main findings of the present study are: 

1. Analysis of the binding site of the diverse laccases studied in this work suggests a differential amino 

acid composition. Thus, the high redox potential laccase T. versicolor exhibits only hydrophobic 

and aromatic residues. The number of aromatic residues decreases in M. albomyces laccase (a low 

redox potential laccase), whereas this number is even smaller in case of B. subtilis laccase, being 

its binding pocket considerable wider. This results are corroborated by the smaller binding score 

found in present docking studies. 
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2. Docking studies performed in this project reveal the importance of residues Asp (D206 in TvL), 

Glu (E235 in MaL) and His coordinated to copper atom (See Appendix F). Specifically, the acidic 

moiety of the ligand sits close to Asp/Glu and the oxygen atom of the phenolic substrate is bound 

at a hydrogen bond distance to the imidazole hydrogen attached to the Nε. Hydrogen abstraction 

likely occurs by proton donation to the acidic residue and electron transfer to the histidine residue. 

 

3. In the case of ABTS we found a better docking score when Asp/Glu residues were protonated, in 

contrast with the results found for the rest of the ligands. This finding agrees with experimental 

results that shows better physicochemical parameters at pH< 4. This suggests that hydrogen 

abstraction is performed by a different mechanism of the rest of the ligands. 

 

4. The computed value of the redox potential in case of M. albomyces laccase, using the dimer 

structure, ranges between 7-17 when T1 site is oxidized and DMP is reduced in one monomer to 

74-92 kJ/mol when T1 site is oxidized and DMP is reduced in both monomers. The subsequent 

value for reorganization energy ranges between 2.1-2.5 eV. This represent an overestimation in 

comparison to the experimental value. 

 

5. Saturation mutagenesis studies on position 192 and 296 in MtL T2 structure, shows that A192P, 

L296L and A192P, L296W produce and increased redox potential mutant in the violuric acid assay. 

On the other hand, A192R, L296L and A192R, L296W produce an increased redox potential in the 

Molybdenum hexacyanide assay. This differential behavior can be attributed to the different 

affinity of the ligands to the enzymes. 

 

6. To further support the improved enzyme performance of redox potential, we measured the 

physicochemical parameters of the enzymes A192P, L296L and A192R, L296L showing no 

difference to the parental type. 
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7. The calculated redox potential of the model of the MaL mutants (P192P, A296L) yields an increase 

value in regards to the wild type. This suggest that the method can be used as a predictor approach 

for further studies. 
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APPENDIX A 

 LB medium 

LB / Amp medium (Sambrook et al., 1990) used for selective growth of E. coli transformants containing 

the vector pJRoC30. 

Bacto Tripton 10 g 

Yeasr Extract 5 g 

NaCl 10 g 

Ampicilin esteril (100 mg/mL)1 1 mL 

Water upto  1 L 

 

1 Sterilize by filtration. 

Adjust to pH 7.0 with NaOH. Autoclave for 15 min at 121 ° C. Add ampicillin when the medium is at ~ 50 

° C. 

For solid medium, add 20 g agar / L before sterilization. 

 Solution SOB (Sambrook et al., 1990), Stock solution for transformation into E. coli. 

Bacto Tripton 2 g 

Yeast Extract 0.5 g 

NaCl 0.05 g 

KCl (250 mM)  1 mL 

Water upto 100 mL 
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 SC-medium 

Yeast nitrogen base(YNB) 6.7 g/L 

Yeast synthetic drop out medium 1.92 g/L 

Glucose 2 g/L 

Chloramphenicol1 25 g/L 

  

1 Sterilize by filtration. 25 mg chloramphenicol in 1 mL of ethanol 

After mixing the materials, autoclave for 15 min at 121 ° C. Then glucose and chloramphenicol were 

added., 

 YPD-medium 

 

Pepton 20 g/L 

Yeast extract 10 g/L 

Glucose 200 g/L 

  

 Laccase selective expression medium 

Compound 1 L Final concentration 

YNB 100 mL 6.7 g/L 

Yeast synthetic drop out medium aminoacids 

supplement  

100 mL 1.92 g/L 

Galactose (200g/L) 100 mL 20 g/L 

Buffer KH2PO4 (pH6.0, 1M) 67 mL 67 mM 

Ethanol 100% 31.6 mL 25  g/L 

CuSO4 (25 g/L) 1 ml 1mM 

Chloramphenicol 1 mL 25 mg/L 

H2O 600 mL   
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APPENDIX B 

 Synthetic oligonucleotides 

Primer Sequence 

L363F  Forward CGACAACACGCTCGACGTCACCTTTGACACCATGGGCACGCCC

CTG 

 

L363F Reverse 

 

CAGGGGCGTGCCCATGGTGTCAAAGGTGACGTCGAGCGTGTTG

TCG 

 

W373F forward 

 

GGGCACGCCCCTGTTCGTCTTTAAGGTCAACGGCAGCGCCATCA

AC 

 

W373F reverse 

 

GTTGATGGCGCTGCCGTTGACCTTAAAGACGAACAGGGGCGTG

CCC 

 

A192L Forward 

 

GGTGGAACTCACCAAGAACTCGGGCTAACCCTTCAGCGACAAC

GTCC 

 

A192L Reverse 

 

GGACGTTGTCGCTGAAGGGTTAGCCCGAGTTCTTGGTGAGTTCC

ACC 

 

L296F Forward 

 

CGTCACATTTGGCGGCGGCTTTCTCTGCGGCGGCTCCAGGAGTC

C 

 

L296F Reverse 

 

GGACTCCTGGAGCCGCCGCAGAGAAAGCCGCCGCCAAATGTGA

CG 

 

M433 Forward 

 

CTTTCACCCTACCGCATCCGNNSCACCTGCACGGCCACGACTTT

TAC 

M433 Reverse 

 

GTAAAAGTCGTGGCCGTGCAGGTGSNNCGGATGCGGTAGGGTG

AAAG 

L500 Forward 

 

CCGACAACCCGGGCGCCTGGNNSTTCCACTGCCACATCGCCTGG

C 

L500 Reverse 

 

GCCAGGCGATGTGGCAGTGGAASNNCCAGGCGCCCGGGTTGTC

GG 

Primers for combinatorial library  

L296 Forward  GCCGAACGCCCGGGAACTACTGGTTTAACGTCACATTTGGCGG

CGGCVHGCTCTGCGGCGG 

            

GCCGAACGCCCGGGAACTACTGGTTTAACGTCACATTTGGCGG

CGGCNTDCTCTGCGGCGG 

                 

GCCGAACGCCCGGGAACTACTGGTTTAACGTCACATTTGGCGG

CGGCTGGCTCTGCGGCGG 

 

A192   Reverse 

 

CCGGGTGCTTGGCCGTGCCGTTGAACAGGACGTTGTCGCTGAA

GGGCHVGCCCGAGTTCTTGG 

    

CCGGGTGCTTGGCCGTGCCGTTGAACAGGACGTTGTCGCTGAA

GGGADNGCCCGAGTTCTTGG 
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CCGGGTGCTTGGCCGTGCCGTTGAACAGGACGTTGTCGCTGAA

GGGCCAGCCCGAGTTCTTGG                 

Central Zone Forward 

 

CGACAACGTCCTGTTCAACGGCACGGCCAAGCACCCGG 

Central Zone Reverse 

 

CCAAATGTGACGTTAAACCAGTAGTTCCCGGGCGTTCGGC 

RMLN CCTCTATCTTTAACGTCAAGG 

 

RMLC GGGAGGGCGTGAATGTAAGC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



114 

 

 

 

 

APPENDIX C 

 V / µl Final concentration 

Buffer Taq 10 x 

DMSO 50 % 

dNTPs mix (40mM) 

DNA template (100 ng/µl) 

Primer RMLN (10mM) 

Primer RMLC (10mM) 

Pfu-Ultra DNA polymerase (2.5 U/µl) 

dH2O 

Final volume 

5 

3 

0.375 

1 

1.15 

1.15 

1 

36.25 

50 

1x 

3 % 

0.3 mM 

2 ng/µl 

0.23 mM 

0.23 mM 

0.05 U/µl 

  

 Pipetting scheme for error prone PCR 

 T / °C t Cycles 

Denaturation 95 2 min 1 

Denaturation 94 45 sec  

Annealing* 50 45 sec 30 

Extension 72 1.30 min  

Final Extension 72 10 min 1 

Storage 4 ∞  

* Annealing temperature with RMLN primer was 50 and with RMLC is 54°C. 

 Conditions for error prone PCR 
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APPENDIX D 

 Kits 

Kit Company 

StrataPrep Plasmid Miniprep Kit 

StrataPrep DNA Gel Extraction Kit 

Zymoprep yeast plasmid miniprep Kit 

Yeast Transformation Kit 

Agilent Technologies 

Agilent Technologies 

Orange, California 

Sigma Aldrich 
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APPENDIX E 

Reagents Volume 

Acrylamid/Bis 30:1 0.66 mL 

Tris-HCl 0.5 M pH 6.8 1.25 mL 

SDS 10% (p/v) 0.05 mL 

Ammonium persulphate 10% 0.025mL 

TEMED 0.01 mL 

Water 2.9 mL 

Stacking gel condition for SDS_PAGE 

Reagents Volume 

Acrylamid/Bis 30:1 4 mL 

Tris-HCl 1.5 M pH 8.8 2.5 mL 

SDS 10% (p/v) 0.1 mL 

Ammonium persulphate 10% 0.05mL 

TEMED 0.01 mL 

Water 3.3 mL 

Separating gel condition for SDS-PAGE 
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APPENDIX F 

Alignment of TvL and MaL sequences 
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