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Wayfarer, the only way

is your footprints and no other.

Wayfarer, there is no way.

Make your way by going farther.

By going farther, make your way

till looking back at where you’ve wandered,
you look back on that path you may

not set foot on from now onward.

Wayfarer, there is no way;

only wake-trails on the waters.

Antonio Machado
(translated by A. Z. Foreman,)

To my family.






A mi familia.

Caminante, son tus huellas
el camino y nada mds;
caminante, no hay camino,
se hace camino al andar.
Al andar se hace camino

y al volver la vista atrds

se ve la senda que nunca
se ha de volver a pisar.
Caminante no hay camino
sino estelas en la mar...

Antonio Machado
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Abstract

The need of optimization is present in every field of engineering. Moreover, applications
requiring a multidisciplinary approach in order to make a step forward are increasing.
This leads to the need of solving complex optimization problems that exceed the capac-
ity of human brain or intuition. A standard way of proceeding is to use evolutionary
algorithms, among which genetic algorithms hold a prominent place. These are charac-
terized by their robustness and versatility, as well as their high computational cost and
low convergence speed. Such drawbacks are usually tackled by hybridizing them with
local search methods, e.g. gradient methods, in order to obtain significant speed up. The
use of multiple levels of fidelity of the objective functions is also a common practice.

Many optimization packages are available under free software licenses and are
representative of the current state of the art in optimization technology: single-objective
and multi-objective search techniques, global and local search methods, plenty of genetic
operators, mixed integer optimization capacity, fitness landscape analysis techniques,
parallelization strategies, etc. However, the ability of optimization algorithms to adapt
to massively parallel computers reaching satisfactory efficiency levels is still an open
issue. Even packages suited for multilevel parallelism encounter difficulties when
dealing with objective functions involving long and variable simulation times. This
variability is common in Computational Fluid Dynamics and Heat Transfer (CFD &
HT), nonlinear mechanics, etc. and is nowadays a dominant concern for large scale
applications.

Current research in improving the performance of evolutionary algorithms is mainly
focused on developing new search algorithms. Nevertheless, there is a vast knowledge
of sequential well-performing algorithmic suitable for being implemented in parallel
computers. The gap to be covered is efficient parallelization. Moreover, advances in the
research of both new search algorithms and efficient parallelization are additive, so that
the enhancement of current state of the art optimization software can be accelerated if

xiii



Xiv Abstract

both fronts are tackled simultaneously.

The motivation of this Doctoral Thesis is to make a step forward towards the
successful integration of Optimization and High Performance Computing capabilities,
which has the potential to boost technological development by providing better designs,
shortening product development times and minimizing the required resources. A generic
mathematical optimization tool has been developed for this aim, applicable in any field
of science and engineering. Nevertheless, being this research activity hosted by the
Heat and Mass Transfer Technological Center (CTTC), a special focus has been put on
the application of the library to the fields of expertise of the Center: Computational
Fluid Dynamics and Heat Transfer (CFD & HT), multi-physics simulation, etc.

This document is structured in four chapters. A thorough state of the art study is
conducted in the first chapter with the aim of obtaining a global scope of the mathe-
matical optimization techniques available to date, as well as their most remarkable
virtues and shortcomings. After classifying optimization problems according to their
principal characteristics, such as the number of objective functions (single-objective
vs multi-objective) or the nature of the optimization variables (real vs discrete), an
insight of constraint handling techniques, surrogate-based optimization and hybrid
optimization methods is provided. The most widespread global search algorithm is
then introduced, namely the genetic algorithm, followed by a description of the main
concepts and shortcomings of the standard parallelization strategies available for such
population-based optimization methods. Finally, an overview of the most common
test suites for optimization algorithms is given together with some remarks related to
random number generators.

The second chapter explains how the implementation of the new optimization library
Optimus has been carried out based on the research on optimization theory conducted
in the first chapter. The first step has been the definition of the design requirements of
the library, including both general code development patterns and specific requirements
for the optimization tool. A state of the art study of currently available optimization li-
braries is then included, taking into consideration open-source and proprietary software.
Once the development strategy of the new library is fixed, the main features of Optimus
are introduced. Finally, several validation tests are performed in order to demonstrate
the suitability of the new library for solving benchmark mathematical optimization
tests and real-world CFD & HT optimization problems.

The third chapter contains the main contribution of this Doctoral Thesis. It is
started with an approach to the computational load balancing problem detected in
the first chapter when the state of the art study on the parallelization of genetic
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and other population-based optimization algorithms was carried out. The core of the
problem is that processors are often unable to finish the evaluation of their queue
of individuals simultaneously and need to be synchronized before the next batch of
individuals is created. Consequently, the computational load imbalance is translated
into idle time in some processors. This fact was identified as the key point causing
the degradation of the optimization algorithm’s scalability (i.e. parallel efficiency) in
case the average makespan of the batch of individuals is greater than the average time
required by the optimizer for performing inter-processor communications. According to
the methodology defined for developing load balancing algorithms, the load balancing
problem is split into two sub-problems: the estimation of the time required to process
each individual, and the subsequent resolution of a combinatorial task scheduling
problem in order to map tasks to processors with a certain precedence relation and in
the most efficient manner with the aim of reducing the evaluation makespan of each
batch of individuals. Several load balancing algorithms are proposed and exhaustively
tested by means of 3 theoretical case studies using the genetic algorithm. Being the
latter the most widespread optimization heuristic, the impact of the research is expected
to be maximized. Note that the proposed algorithms and the reached conclusions are
extendable to any other population-based optimization method that needs to synchronize
all processors after the evaluation of each batch of individuals. Since time estimation
techniques have not been studied in detail due to lack of time, the availability of
perfect individuals’ evaluation time estimations has been assumed. However, a first
implementation of time estimation techniques together with some preliminary tests is
included towards the end of the chapter. Finally, a real-world engineering application
that consists on optimizing the refrigeration system of a power electronic device is
presented as an illustrative example in which the use of the proposed load balancing
algorithms is able to reduce the simulation time required by the optimization tool.

The fourth chapter gathers the main conclusions of the conducted research and
outlines the next steps to be followed in this approach towards the integration of
Optimization Techniques and High Performance Computing.
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State of the art of optimization
algorithms

Abstract. A thorough state of the art study is conducted in this first chapter with the
aim of obtaining a global scope of the mathematical optimization techniques available
to date, as well as of their most remarkable virtues and shortcomings. Being the
application field of interest that of Computational Fluid Dynamics & Heat Transfer
(CFD & HT), which is characterized by the simulation of computationally expensive
non-linear equation systems, special emphasis is put on the parallelizability of the
optimization algorithms.



2 §1.1 Introduction

1.1 Introduction

Every human activity is characterized by the search of Best: sport, social relations,
work. .. There are plenty of things in our daily life which we try to optimize, such as
the time spent going from home to our work place, the time spent cooking, the budget
for our holidays, our personal appearance, etc.

However, perfection is a quite philosophical concept. Although it guides human
actions, reality cannot be understood without constraints. In real life, we never have the
option of satisfying all our wishes at the same time: getting closer to perfection in some
aspect pushes us to imperfection in some other. Hence, finding a compromise solution
among all real options becomes our only feasible goal. In this sense, optimization
could be defined as the art of making the most of something rather than the search for
perfection.

Once the labyrinth formed by the objective (or objectives) and the constraints is
defined, the next question arises: how to get to the goal? We know our starting point,
we know our destination and we know the rules of what is feasible and infeasible.
Assuming an explorer’s role, we lack the map and the compass that can guide us on the
way. This orientation technique is what Optimization Theory takes care of. Optimization
is the technique that brings explorers to their destination through the shortest way,
avoiding that they ran out of resources before reaching their goal. Using a more rigorous
language, it can be said that Optimization Theory encompasses the quantitative study
of optima and methods for finding them [1].

Given life’s and world’s complexity, optimization techniques require a thorough study.
The search for the right way to the goal is not easy, and the explorer will encounter plenty
of “distractions” that may mislead him in his mission. He might think his search has
finished, just because he has found some interesting place during the journey. Usually
the goal is only one, and the explorer’s orientation technique should be sophisticated
enough to let him know the improvability of his findings, until he reaches the final Goal.

Leaving the explorer’s analogy aside, but following the same reasoning, let’s move
to the field of engineering and applied mathematics. In any design process, we have a
device, mathematical process or experiment which we want to optimize according to
some criteria. The optimality measure that will allow us to say if a solution is better
than another one is the objective function, also called cost function or fitness
function. As previously said, there may be one or multiple objective functions, and
the engineer will want to maximize or minimize them. The output of the objective
function is dependent on its inputs, which correspond to the characteristics of the
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device, experiment, etc. These inputs will be called optimization variables from now
on. Moreover, the optimization problem may be constrained, meaning this that each
optimization variable cannot be modified independently from others.

As stated in [2], several categories may be distinguished in optimization:

* Single-variable / multi-variable: Optimization becomes increasingly difficult as
the number of dimensions (number of optimization variables) increases.

e Static / dynamic: Dynamic optimization means that the output is a function of
time, while static means that the output is independent of time.

* Constrained / unconstrained: Constrained optimization incorporates variable
equalities and inequalities into the objective function, whereas unconstrained
optimization allows the variables to take any value. A constrained variable
may often be converted into an unconstrained variable through a mathematical
transformation. Consider the simple constrained example of minimizing f(x) over
the interval —1 < x < 1. The variable x may be converted into an unconstrained
variable u by letting x = sin(u) for any value of u.

* Discrete / continuous: Discrete variables (combinatorial optimization) have only a
finite number of possible values, whereas continuous variables have an infinite
number of possible values.

* Single-objective / multi-objective: Single-objective optimizations seek to improve a
unique objective, whereas multi-objective optimizations search for a compromise
optimal solution for a set of objectives.

Since usually a fitness surface has many peaks, valleys and ridges (see Fig. 1.1), a
difficulty with optimization is to determine if a given optimum (minimum or maximum)
is the global optimum or a local optimum (suboptimal value). In this sense, some
optimization methods have explorative nature, whereas other methods have exploitative
nature. Exploration refers to the ability of keeping a global view of the solutions space,
and allows distinguishing the global or local nature of an optimum. However, a drawback
of explorative methods is their low performance when converging to the optimum in the
neighborhood of a known solution. On the other hand, exploitation refers to the ability
of converging fast and accurately to a local optimum starting from some solution in the
neighborhood of that optimum. Nevertheless, the limitation of exploitative algorithms
is their incapacity to know if the solution found is a local or global optimum.
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f(x,y)

Figure 1.1: Examples of fitness surfaces extracted from [3]. Left: A surface with a single local
and global optimum. Right: A surface with two local optima, but a single global optimum.

Many optimization algorithms have been proposed so far, both with explorative and
exploitative characteristics. Unfortunately, it is impossible to affirm that one single
algorithm will outperform all others for all classes of optimization problems. This
assertion is known as the “no free lunch theory” [4]. Since the degree of success of any
optimization process depends on the structure of the optimization algorithm and the
topology of the objective function, a balance between several algorithms is to be found in
order to build a robust and well performing optimization method. Such mixed methods
are known as “hybrid optimization algorithms” and combine individual constituent
optimization algorithms in a sequential or parallel manner so that the resulting method
can utilize the advantages of each constituent algorithm. They usually incorporate at
least one explorative method and one exploitative method. All different constituent
methods are joined together by a switching algorithm.

This state of the art study is mainly focused on the resolution of continuous single-
objective optimization problems, although a rough overview on discrete and multi-
objective optimization is also provided in order to help the reader understand the
whole context encompassed by mathematical optimization. Most common optimization
algorithms are mentioned and classified next, including explorative algorithms (usually
heuristic algorithms) and exploitative algorithms (usually deterministic algorithms).
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1.2 Single-objective vs. Multi-objective optimization

1.2.1 Single-objective optimization

A rigorous definition of a single-objective optimization problem (either continuous or
discrete) is the following according to [5]:

Definition 1.1 General Single-Objective Optimization Problem: A general single-
objective optimization problem is defined as minimizing (or maximizing) f(x) subject to
gix)=<0,i={1,..,m}, and hjx)=0, j={1,...,p} x € Q. A solution minimizes (or maxi-
mizes) the scalar f(x) where x is a n-dimensional decision variable vector x = (x1,...,x)
from some universe Q.

Plenty of algorithms have been proposed for the resolution of single-objective opti-
mization problems. The following classification offers an overview of the most reputed
search techniques:

¢ Enumerative algorithms: This is the simplest search strategy, which consists
on evaluating each possible solution within some defined finite search space. The
strategy is clearly inefficient if not infeasible. The method belonging to this
category is called exhaustive search or parametric study [6]. It is the most
utilized approach, despite its brute force nature. Checking an extremely large but
finite solution space is required, composed by a certain number of combinations
of different variable values. A drawback of this method, in addition to the high
computational cost, is that the global optimum may be missed by insufficient
sampling. This method is only practical for a small number of variables in a
limited search space. A possible refinement to the exhaustive search could be
first carrying out a coarse sampling of the fitness function and then progressively
narrowing the search to promising regions. More sophisticated variations, such as
the exhaustive interpolation search [6] have also been proposed.

¢ Deterministic algorithms: These methods try to optimize the objective function
by starting from an initial set of variable values. They are fast in general, but
tend to get stuck in local optima (they have exploitative nature). A possible
classification of the historically most successful methods is presented next. Bear
in mind that the same method may belong to more than one category.

— Calculus-based algorithms (also called analytical optimization algo-
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rithms or gradient methods): These algorithms are able to quickly find a
single optimum, provided that every function is continuous and analytical
derivatives can be computed. Derivatives could also be taken numerically,
but it would result in more function evaluations and a loss of accuracy. As an
example, in the case of a single variable optimization problem an extremum
is found by setting the first derivative of the objective function to zero and
solving for the variable value. If the second derivative is greater than zero,
the extremum is a minimum, and conversely, if the second derivative is less
than zero, the extremum is a maximum. In the case of having an objective
function of two or more variables, the gradient is calculated and set to zero.
Unfortunately, real-life problems are seldom as nice as calculus problems
and do not necessarily fulfill the restrictive requirements of continuity and
derivative existence. Search spaces may be discontinuous, not smooth and
even noisy, as the less calculus-friendly function depicted in Fig. 1.2. Some
methods belonging to this category are the steepest descent method [6],
the conjugate gradient method [6] and Newton’s method [6]. The sim-
plex method [7], which has been the most popular method for solving linear
programming problems, is also included in this category.

Nelder-Mead downhill simplex method [8]: This local method does not
require the calculation of derivatives. Later, the simplex method was ex-
tended giving rise to the complex method [9], which stands for constrained
simplex method.

Successive line minimization methods: All algorithms belonging to this
family follow the same scheme (see Fig. 1.3). They begin at some random
point on the cost surface, choose a direction to move and then move in that
direction until the cost function begins to increase. Next the procedure is
repeated in another direction. The difference between algorithms lies on how
the search direction at step n is found. Three common approaches have been
the coordinate search method [10], the steepest descent algorithm [6]
and the conjugate gradient method [6]. The steepest descent algorithm
was originated by Cauchy in 1847 and has been extremely popular. It starts
at an arbitrary point on the cost surface and minimizes along the direction of
the gradient. But this method, in general, converges slowly for non-quadratic
functions. The conjugate gradient method tries to improve the convergence
rate of the steepest descent algorithm by choosing the directions of descent
that reach the minimum value of the objective function faster. More efficient



§1.2 Single-objective vs. Multi-objective optimization 7

techniques have been developed since then, most of them involving some
form of the Newton’s method. In all these methods the Hessian is needed,
but it is not usually known. If it is known, the Newton’s method is being
used. If it is not known but approximated, a quasi-Newton method is being
used. There are two main quasi-Newton methods that construct a sequence
of approximations to the Hessian: the Davidon-Fletcher-Powell (DFP)
algorithm [11] and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) al-
gorithm [12-15]. These algorithms have the advantage of being fast, but
are only able to find an optimum close to the starting point. Quadratic
programming assumes that the cost function is quadratic (variables are
squared) and the constraints linear. This technique is based on Lagrange
multipliers and requires derivatives or approximations to derivatives. Two
known powerful methods are the recursive quadratic programming [16]
and the sequential quadratic programming [17].

— Other methods: Branch & bound [18], greedy method [5], etc.

¢ Stochastic methods: These methods use probabilistic transition rules in the
optimum’s search. They are slower than deterministic algorithms, but have
greater success at finding the global optimum. These algorithms do not require
taking objective function derivatives and can thus deal with discrete variables

and non-continuous objective functions.

- Random search/walk: A random search is the simplest stochastic search
strategy, as it simply evaluates a given number of randomly selected solu-
tions. A random walk is very similar, except that the next solution evaluated
is randomly selected using the last evaluated solution as a starting point [3].
The drawback of these two methods is their low efficiency.

— Tabu search [19]: Tt is a meta-strategy developed to avoid getting stuck
on local optima. It keeps a record of both visited solutions and the “paths”
which reached them in different “memories”. This information restricts the
choice of solutions to evaluate next.

- Simulated annealing [6,20]: This method is based on the thermodynam-
ics of the cooling of a material from a liquid to a solid phase. If a liquid
material (e.g. liquid metal) is slowly cooled and left for a sufficiently long
time close to the phase change temperature, a perfect crystal will be created,
which has the lowest internal energy state. On the other hand, if the liquid
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material is not left for a sufficient long time close to the phase change tem-
perature, or if the cooling process is not sufficiently slow, the final crystal will
have several defects and a high internal energy state. The gradient-based
methods move in directions that successively lower the objective function
value when minimizing the value of a certain function or in directions that
successively raise the objective function value in the process of finding the
maximum value of a certain function. The simulated annealing method can
move in any direction at any point in the optimization process, thus escaping
from possible local minimum or local maximum values. We can say that
gradient-based methods “cool down too fast”, going rapidly to an optimum
location which, in most cases, is not the global, but a local one.

Natural optimization methods: These methods mimic nature in the
search of optimum and are based in animal behavior, evolution, social rela-
tions, etc. The two most widespread algorithms based on animal behavior are
the particle swarm optimization [21] and the ant colony optimization
[22], but other methods such as the predator-prey algorithm [2] are also
used. However, the family of stochastic algorithms that has risen to fame in
the last decades is the one of evolutionary algorithms [10], abbreviated
as EAs. From their point of view, the organisms of today’s world should be
imagined as being the results of many iterations of a gigantic optimization
algorithm, being survivability the objective function that is wanted to be
maximized. Natural selection would be the mechanism according to which
individuals evolve. According to [23], the main groups of algorithms be-
longing to this family are genetic algorithms [24], evolution strategies
[25] (to which the differential evolution [26] belongs), evolutionary pro-
gramming [27], genetic programming [28] and classifier systems [25].
Nevertheless, the advancement or optimization of the human race cannot
be totally attributed to genetics and evolution. Human interactions, societal
behaviors, and other factors play major roles in the optimization process as
well. Based on the fact that social interactions allow for faster adaptation
and improvement than genetics and evolution, a new group of optimization
methods called cultural algorithms [29] has appeared in recent years.
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Figure 1.2: Example of a noisy, not calculus-friendly fitness function extracted from [3].
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Figure 1.3: Flowchart of a standard line search algorithm.

1.2.2 Multi-objective optimization

The Multi-objective Optimization Problem (MOP) is defined according to [30] as the
problem of finding “a vector of decision variables which satisfies constraints and op-
timizes a vector function whose elements represent the objective functions. These
functions form a mathematical description of performance criteria which are usually
in conflict with each other. Hence, the term “optimize” means finding such a solution
which would give the values of all the objective functions acceptable to the decision
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maker”. Thus, the goal is to optimize (maximize or minimize) k£ objective functions
simultaneously. A global MOP problem can be formally defined as in [31]:

Definition 1.2 General Multi-Objective Optimization Problem (MOP): A general
MOP is defined as minimizing (or maximizing) F(x) = (f1(x), ..., [r(x)) subject to g;(x) <0,
i={1,..,m}, and h(x)=0, j={1,...,p} x € Q. An MOP solution minimizes (or maxi-
mizes) the components of a vector F(x) where x is a n-dimensional decision variable
vector x = (x1,...,%,) from some universe Q. It is noted that g;(x) <0 and hjx) =0
represent constraints that must be fulfilled while minimizing (or maximizing) F(x) and
Q contains all possible x that can be used to satisfy an evaluation of F(x).

The main conceptual difference between the single-objective and multi-objective
optimizations is the difficulty when comparing two possible solutions in the latter case.
A single-objective optimization seeks to maximize or minimize a unique objective, so
two objective values can be easily compared in order to decide which solution is the
best. On the other hand, and following the same logic, when more than one objective is
present a solution may beat another one according to some objectives, but not according
to others. If such a situation arises, how should a decision be made?

In order to answer this question, three important concepts of multi-objective opti-
mization are introduced next: fitness assignment, diversity preservation and elitism.

Fitness assignment
Fitness assignment schemes may be classified into four different categories [32]:

* Scalar approaches, where the MOP is reduced to a single-objective optimization
problem, for instance by means of a weighted-sum aggregation.

¢ Criterion-based approaches, where each objective function is treated sepa-
rately. In VEGA (Vector Evaluated Genetic Algorithm) [33], for instance, a
parallel selection is performed where solutions are discerned according to their
values on a single objective function, independently from the others.

* Dominance-based approaches, where a dominance relation is used to classify
solutions. The main techniques are i) dominance-rank techniques, which compute
the number of population items that dominate a given solution, ii) dominance-
count techniques, where the fitness value of a solution corresponds to the number
of individuals that are dominated by this solution, and iii) dominance-depth
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strategies, which classify a set of solutions into different classes or fronts. Hence,
a solution that belongs to a class does not dominate another one from the same
class.

¢ Indicator-based approaches, where the fitness values are computed by com-
paring individuals on the basis of a quality indicator I. The chosen indicator
represents the overall goal of the search process. Examples of indicator-based
EAs are IBEA (Indicator-Based EA) [34] or SMS-EMOA (S-Metric Selection
Evolutionary Multi-objective Optimization Algorithm) [35].

The scalar and criterion-based approaches are the most simplistic strategies, being
dominance-based and indicator-based approaches usually preferred. These two tech-
niques provide a set of optimal solutions, not just a single solution. But no matter the
selected strategy, some criterion is needed in order to select a set of solutions rather
than another one. Dominance-based approaches commonly use the so called Pareto-
dominance criterion (see [36] for more details on Pareto’s Optimality Theory), although
some new techniques appeared recently based on other dominance operators such as
e-dominance [37] or g-dominance [38].

Some definitions related to Pareto’s Optimality Theory are introduced next, assum-
ing a multi-objective minimization problem:

Definition 1.3 Pareto Optimality [31]: A solution x € Q is said to be Pareto Op-
timal with respect to (w.r.t.) Q if and only if (iff) there is no x’ € Q for which v=F(x’) =
(f1x),...,fr(x”)) dominates u = F(x) = (f1(x),..., fr(x)). The phrase Pareto Optimal is
taken to mean with respect to the entire decision variable space unless otherwise specified.

In other words, x* is Pareto optimal if there exists no feasible vector x which would
decrease some criterion without causing a simultaneous increase in at least one other
criterion.

Definition 1.4 Pareto Dominance [31]: A vector u = (u1,...,up) is said to domi-
nate another vector v = (vy,...,U;) (denoted by u < v) if and only if u is partially less than
v,ie,Vie{l,.. kL, u;<v;,Aiel{l,.. k}:u; <v;.

Definition 1.5 Pareto Optimal Set [31]: For a given MOP, F(x), the Pareto Opti-
mal Set, P*, is defined as:
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P*:={xecQ|3x’eQ Fx) = Fx)}

Summarizing, Pareto optimal solutions are those solutions within the decision space
whose corresponding objective vector components cannot be all simultaneously improved.
When plotted in the objective space, the non-dominated vectors are collectively known
as the Pareto front. Although single-objective optimization problems may have a unique
optimal solution, MOPs usually have a possibly uncountable set of solutions on a Pareto
front. Each solution associated with a point on the Pareto front is a vector whose
components represent trade-offs in the decision space. This is the reason why defining
an MOP’s global optimum is not a trivial task as the “best” compromise solution depends
on the preferences of the (human) decision maker. Thus, the Pareto front represents the
“best” solutions available and allows the definition of an MOP’s global optimum.

Diversity preservation

Approximating the Pareto optimal set is not only a question of convergence. For a good
characterization of the true optimal Pareto front, the final approximation must also be
well spread over the objective space. Therefore, a diversity preservation mechanism is
usually integrated into the algorithm to uniformly distribute the population over the
trade-off surface. Popular examples of Evolutionary Multi-objective Optimization (EMO)
diversity assignment techniques are sharing and crowding [32]. Sharing consists on
estimating the distribution density of a solution using a so-called sharing function
that is related to the sum of distances to its neighborhood solutions. Crowding allows
maintaining diversity without specifying any parameter. It consists in estimating the
density of solutions surrounding a particular point of the objective space.

Elitism

Elitism [32] consists on maintaining an external set (archive) that allows storing either
all or a subset of non-dominated solutions found during the search process. This sec-
ondary population aims at preventing the loss of these solutions during the stochastic
optimization process, and is continuously updated with new potential non-dominated
solutions. Even if an archive is usually used as an external storage only, archive mem-
bers can also be integrated during the selection phase of an EMO algorithm, leading to
elitist EMOs.

Keeping in mind the concepts introduced so far, and being a Pareto front the solution
provided by the optimization algorithm to the engineer, the main goals of a multi-
objective optimization algorithm may be established as follows [32]:
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* Convergence, i.e. the distance of the resulting non-dominated set to the true
Pareto front should be minimized.

¢ Diversity, i.e. the Pareto front must be well characterized in its whole length,
avoiding a high concentration of solutions in one area and lacking solutions in
another area.

¢ Elitism, i.e. non-dominated points in the objective space and associated solution
points in the decision space must be preserved.

Several ways have been proposed in order to achieve the goals mentioned above. The
following classification of multi-objective optimization algorithms, very similar to the
one proposed for single-objective methods, gathers the most widely spread algorithms to
date:

¢ Enumerative algorithms: This is the family of the inefficient brute-force algo-
rithms, such as the exhaustive search.

¢ Deterministic algorithms: The range of available algorithms for multi-objective
optimization is more limited than for single-objective optimization, or the use
of such methods is at least less spread [5]. Depth-first search (hill-climbing)
[39] and gradient-based search methods could be mentioned as the most usual
strategies. The latter are only applicable to MOPs consisting of continuous
variables, being the derivatives obtained based upon a specific direction from
selected non-dominated points in the known Pareto front with the aim of moving
a point towards the true Pareto front. Note however that derivatives tend to be
quite noisy in such situations.

¢ Stochastic algorithms: Natural optimization methods (mainly evolutionary
algorithms [5]) have remarkably succeeded in solving multi-objective optimiza-
tion problems. A key advantage has been that the population-based nature of EAs
allows the generation of several elements of the Pareto optimal set in a single
run. This field is now called Evolutionary Multi-objective Optimization (EMO),
which refers to the use of evolutionary algorithms of any sort. The most notorious
algorithms currently available are the following: MOGA [40], NPGA [41], VEGA
[33], NSGA [42], PAES [43], NSGA-II [44], SPEA [45], SPEA2 [46], PESA
[47], e-MOEA [37,48] and IBEA [34]. They use techniques going from a simple
linear aggregating function to the most popular Multi-Objective Evolutionary
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Algorithms (MOEAs) based on Pareto ranking. Other natural optimization al-
gorithms that are used for multi-objective optimization are the multi-objective
particle swarm optimization (MOPSO), cultural algorithms, differential
evolution, predator-prey algorithm and ant colony optimization. Some ad-
ditional strategies that do not belong to natural optimization methods are also
used, e.g. simulated annealing [6,20] and tabu search [19], but there seems
to be a clear preference for the use of evolutionary algorithms.

A brief overview of some stochastic algorithms mentioned above is provided hereafter
(based on [49]):

¢ Pareto ranking (MOGA): Fonseca and Fleming [40] proposed a variation of
Goldberg’s fitness assignment where a solution’s rank corresponds to the number
of solutions in the current population by which it is dominated.

¢ Pareto sharing: A fitness assignment like the previous one tends to produce
premature convergence, what does not guarantee a uniformly sampled final Pareto
approximation set. To avoid that, Fonseca and Fleming [40] modified the strategy
above by implementing fitness sharing in the objective space to distribute the
population over the Pareto-optimal region.

* Non-dominated Sorting Genetic Algorithm (NSGA): Srinivas and Deb [42]
introduced this algorithm which classifies the solutions into several classes (or
fronts). A solution that belongs to a class does not dominate another one from the
same class. Logically, the best fitness value is assigned to solutions of the first
class, because they are closest to the true Pareto-optimal front of the problem.
Diversity is preserved by means of a fitness sharing procedure.

* NSGA-II: This is a modified version of NSGA introduced by Deb et al. [44]. The
algorithm is computationally more efficient, uses elitism and keeps diversity by
means of a crowding technique.

¢ Strength Pareto Evolutionary Algorithm (SPEA): This elitist algorithm was
proposed by Zitzler and Thiele [45]. It maintains an external population (an
archive) that stores a fixed number of non-dominated solutions found during the
optimization process in order to define the fitness of a solution based on these
archive members.
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e SPEAZ2: It is an improved version of SPEA, introduced by Zitzler et al. [46]. In
comparison to its predecessor, SPEA2 includes an improved fitness assignment
technique, a density estimation technique and an archive truncation method.

¢ Indicator-Based Evolutionary Algorithm (IBEA): Introduced by Zitzler and
Kiinzli [34], it has the characteristic to compute fitness values by comparing
individuals on the basis of an arbitrary binary quality indicator I (also called
binary performance metric). Thereby, no particular diversification mechanism is
necessary. The indicator, determined according to the decision maker preferences,
denotes the overall goal of the optimization process. Two binary quality indicators
commonly used are the additive e-indicator [50] and the Igp-indicator [50]
that is based on the hypervolume concept [45] (see [50] for an overview about
quality indicators). IBEA is a good illustration of the new EMO trend dealing
with indicator-based search that started to become popular in recent years.

Once the goals for multi-objective optimization methods have been established, some
performance assessment method is to be developed in order to know which algorithm
works best. The existing performance metrics can be classified into three classes [51]:

¢ Convergence metrics: They evaluate how far the known Pareto front is with
respect to the true Pareto front.

¢ Diversity metrics: They evaluate how scattered the final population of the Pareto
front is.

® Metrics for both convergence and diversity: They evaluate both the distance to
the true Pareto front and the dispersion of final solutions.

Various quality indicators have been proposed in the literature for evaluating the
performance of multi-objective search methods [32,50,52-54]: entropy, contribution,
generational distance, spacing, coverage of two sets, coverage difference, S-metric, D-
metric, R-metrics, hypervolume metric (both in unary and binary form), additive and
multiplicative e-indicators, etc. However, none of the metrics can be considered the best,
being usually necessary to use more than one metric to evaluate the performance of the
multi-objective evolutionary algorithms. The reader is referred to [50] for a general
review.
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1.3 Constraint handling

Realistic engineering problems are always multidisciplinary. Consequently, constraints
of both equality and inequality type are very likely to appear. A set of design variables
that does not violate any constraints is said to be feasible, while design variables that
violate one or more constraints are infeasible. Every general purpose optimization algo-
rithm must be able to handle the existence of these equality and inequality constraints.
Based on [55], the following are the most common ways and their use makes sense
depending on the nature of the algorithm (gradient based, non-gradient based, etc.):

* Restauration method (also called feasible search): Designs that violate con-
straints are automatically restored to feasibility via the minimization of the active
global constraint functions.

* Rosen’s projection method: Provides search directions which guide the descent
direction tangent to active constraint boundaries.

¢ Penalty method: The fitness of the designs that violate constraints is artificially
worsened, with the aim of forcing the optimization algorithm to abandon that
search region of the solutions space.

* Random design generation: When an infeasible design is detected, it is dis-
carded and new random designs are generated within a (for instance, Gaussian-
shaped) probability density cloud about a desirable and feasible design until a
new design is reached.

The constraint handling techniques must be carefully chosen and implemented,
because they have a direct effect on the convergence of the optimization algorithm.

1.4 Surrogate-based optimization

One of the main concerns when running an optimization process is the computational
cost. The evaluation of real-life objective functions can be very expensive, since it might
involve solving non-linear systems, big meshes, etc. Taking into account that the opti-
mization could need hundreds or thousands of objective function evaluations, the need
for computational resources may seem scary. Therefore, for problems where objective
function evaluations are already expensive and where the number of design variables
is large (thus requiring many objective function evaluations), the only economically
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viable approach to optimization is to use an inexpensive and as accurate as possible
surrogate model (a metamodel) instead of the actual high fidelity analysis method. Such
surrogate models are known as response surfaces. They are very useful at the early
stages of optimization, although progressively more complete physical models should be
used as the global optimization process starts converging. Surrogate models are fitted
through the available (often small) set of high fidelity values of the objective function.
Once the response surface is created using an appropriate analytic formulation, it is
very easy and fast to search such a surface for its optimum given a set of values of
design variables supporting such a response surface. Some basic concepts related to the
response surface generation methodology are presented in [6].

From the viewpoint of kernel interpolation/approximation techniques, many re-
sponse surface methods are based on linear and non-linear regression and other variants
of the least square technique. This group of mesh-free methods has been successfully
applied to many practical, but difficult problems in engineering that are to be solved
by the traditional mesh-based methods. The commercial optimization software IOSO
(Indirect Optimization Based Upon Self-Organization) [56], a software known for its
extraordinary speed and robustness, partly owes its success to the appropriate use of
response surfaces.

Due to the existence of several response surface techniques, their performance is to
be evaluated according to some criterion. Here are some key aspects worth taking into
account proposed by [57]:

® Accuracy: The capability of predicting the system response over the design space
of interest.

¢ Robustness: The capability of achieving good accuracy for different problem types
and sample sizes.

¢ Efficiency: The computational effort required for constructing the metamodel and
for predicting the response for a set of new points by metamodels.

¢ Transparency: The capability of illustrating explicit relationships between input
variables and responses.

* Conceptual simplicity: Ease of implementation. Simple methods should require
minimum user input and be easily adapted to each problem.

A crucial aspect for the proper construction of a response surface by means of any
algorithm is the location of the training points. If we are given freedom to choose
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the locations of the support points of a multi-dimensional response surface, a typical
approach is to use Design of Experiments (DoE) for this purpose. For high dimensional
problems, strategies such as the Latin Hypercube Sampling [58] or a variety of random
number generators (e.g. the Sobol quasi-random sequences of numbers [59]) are used.
However, when we do not have freedom to choose the number and the locations of
the support points, all existing methods for generating response surfaces have serious
problems with accuracy and robustness. This is mainly because arbitrary data sets
provide inadequate uniformity of coverage of space of the design variables and clustering
of the support points that leads to oscillations of the response surfaces.

The most common multidimensional response surface fitting algorithms and their
hybrids have been described in [60]: polynomial regression [61], kriging [62], ra-
dial basis functions [63], neural networks [64] and self-organizing algorithms
[65]. Hybrid methods may also be constructed in order to overcome the shortfalls of sin-
gle methods. The proposed hybrid methods are the Fittest Polynomial Radial Basis
Function (FP-RBF), Kriging Approximation with Fittest Polynomial Radial
Basis Function (KRG-FP-RBF), Hybrid Self-Organizing Model With RBF and
the Genetic Algorithm Based Wavelet Neural Network (HYBWNN). The article
evaluates the performance of these algorithms on data sets containing either a scarce,
small, medium or large number of points.

1.5 Hybrid optimization methods

The “no free lunch theory” [4] has been introduced in a previous section. This theory
says it is impossible to affirm that one single algorithm will outperform all others for all
classes of optimization problems. Therefore, the usual way to proceed is the creation
of hybrid methods, also called metaoptimization or hyperheuristics. Two are the key
aspects to be discussed regarding hybridization:

¢ Constitutive algorithms of a hybrid method may be combined sequen-
tially, in parallel or in a mixed sequential/parallel way [60]. In sequen-
tial hybridization, a control algorithm performs automatic switching among the
constituent algorithms at each stage during the optimization when the rate of
convergence becomes unsatisfactory, the process tends towards a local optimum,
or some other undesirable aspect of the iterative process appears [55]. In parallel
hybridization, constitutive optimization algorithms run in parallel and contribute
a portion of each new generation’s population. The portion that each search con-
tributes to the new generation is dependent on the success of the algorithm to
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provide past useful solutions to the search. Finally, a sequential/parallel method
is a mix of the two other hybridization strategies. Nevertheless, the resulting
hybrid method is expected to be more robust and converge faster than its indi-
vidual constituent optimization algorithms no matter the selected hybridization
technique. In the context of this Doctoral Thesis, only sequential hybridization
has been considered.

¢ Combining both deterministic and stochastic methods allows achieving
aright balance between exploration and exploitation. Deterministic meth-
ods are in general computationally faster (they require fewer objective function
evaluations) than stochastic methods, although they can converge to a local min-
imum or maximum, instead of the global one. On the other hand, stochastic
algorithms can ideally converge to a global maximum or minimum, although
they are computationally slower than the deterministic ones. Indeed, stochastic
algorithms can require thousands of evaluations of the objective functions and,
in some cases, become non-practical. This is why stochastic methods are usually
employed to find the region where the global optimum is located and deterministic
methods to get the exact optimal point.

The simplest sequential hybrid optimization algorithm is composed by a global
(stochastic) search method and a local (deterministic) search method. Regarding the
stochastic method, evolutionary algorithms hold a prominent place since their appear-
ance in 1975, being well suited for both continuous and discrete optimization. Genetic
algorithms are the most extended method in the evolutionary algorithms’ family. Re-
garding the deterministic method, it differs depending on the continuous or discrete
nature of the optimization problem.

Historically, single-objective continuous optimization problems have been thoroughly
studied and gradient methods are the most widely used local search methods. However,
there is less consensus in the case of continuous multi-objective optimization problems
[5]. A survey of deterministic methods for continuous single-objective optimization is car-
ried out in [6]. According to this study, Newton’s method converges more rapidly than
the conjugate gradient method, but it has the drawback of long calculation times for
the Hessian matrix coefficients. Therefore, it is preferred to approximate the Hessian
based only on first order derivatives and avoiding the calculation of second order deriva-
tives. This is done by means of the so called quasi-Newton methods, which have a slower
convergence rate than the Newton’s method, but are overall computationally faster.
Anyway, quasi-Newton methods converge more rapidly than the conjugate gradient



20 §1.6 The genetic algorithm

method. The two most popular quasi-Newton methods are the Davidon-Fletcher-
Powell (DFP) and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) methods. The
latter is a variation of DFP, being less sensitive to the choice of the search step size. If the
possibility of transforming the original optimization problem is considered, Sequential
Quadratic Programming (SQP) offers the best performance, being the successive
quadratic problems solved by means of the BFGS algorithm.

As stated in the introduction of this chapter, continuous single-objective optimization
is the application field of most interest for this Doctoral Thesis. This is the reason
why the information provided on discrete or combinatorial optimization, either single-
objective or multi-objective, is scarcer. However, the reader is referred to [5] to get a
deeper insight on the most widespread discrete local search methods, such as the greedy
algorithm, depth-first search, hill-climbing, branch and bound, etc. A review on hybrid
single-objective optimization algorithms is available in [6,55], whereas [5,60] provide
an overview on hybrid multi-objective optimization algorithms.

1.6 The genetic algorithm

1.6.1 Basic concepts

The genetic algorithm (GA) is an optimization and search technique based on the prin-
ciples of genetics and natural selection, where a population of solutions is iteratively
improved under specified stochastic operators and selection rules to a state that maxi-
mizes the fitness (i.e. minimizes the cost function). The genetic algorithm is the most
widely used evolutionary algorithm, was first developed by John Holland [24] around
1975 and later popularized by David E. Goldberg [3]. The mathematical foundations of
genetic algorithms were established in Goldberg’s book in 1989, and it is still a reference
for current research in the field.
Genetic algorithms owe their reputation to the fact that they [2]:

* are suitable for continuous and discrete variables.

* do not require derivative information.

* search simultaneously in a wide range of the cost surface.
¢ can deal with a large number of variables.

¢ are well suited for parallel computing.
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are able to optimize variables with extremely complex cost surfaces not getting
stuck in local optima.

provide a list of optimum variable sets, not just a single solution.

work with numerically generated data, experimental data, or analytical functions.

Genetic algorithms are based on the concept of biological evolution by means of

natural selection. This is why vocabulary taken from biology’s field is employed when

referring to certain aspects of the algorithm. Some basic definitions are the following

[23]:

Genotype: The code devised to represent the parameters of the problem in the
form of a string.

Gene: The encoded version of a variable of the problem being solved, i.e. each
characteristic that the optimization algorithm is able to modify in order to search
for better solutions to the optimization problem.

Chromosome: One encoded string of optimization variables, i.e. a set of values
given to the genes (one value per gene). A chromosome represents a potential
solution to the optimization problem.

Individual: One chromosome with its associated objective value(s), i.e. a set of
values for the optimization variables together with a quality measure.

Fitness: Real value indicating the quality of an individual as a solution to the
problem.

Population: A set of individuals with their associated statistics (fitness average,
etc.).

A schematic representation of some of the above concepts is shown in Fig. 1.4.

Individual

Chromosome

| gene 1 | gene 2 | | genen | Fitness

Figure 1.4: Schematic representation of an individual belonging to a genetic algorithm.
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1.6.2 Structure of the algorithm

A flow chart of the typical structure of a genetic algorithm is represented in Fig. 1.5. A
brief explanation of each step is provided hereafter [2,32]:

Definition of the optimization problem: cost/fitness function, optimization
variables, constraints

This is a strongly problem dependent step, common to any optimization algorithm,
and consists on the correct formulation of the optimization problem. First the origi-
nal decision variables are defined. Then a representation of these variables is to be
chosen. What is meant by representation? Original variables may not be the best
choice to be used as input variables (genes) to the optimization algorithm. Therefore,
any mathematical transformation (encoding) is allowed with the aim of improving the
solvability of the solutions’ space, as long as the process is reversible and the original
decision variables may be recovered (decoding). The explanation of this phenomenon
is that representation affects the way solutions are initialized and variation operators
applied. Various encodings have been used, such as binary variables, real-coded vectors,
permutations, etc.

It must be reminded that GAs originated with a binary representation of the vari-
ables, and the binary GA fits nicely when the nature of optimization variables is discrete.
However, the variables may be continuous and full machine precision required. In this
case, it is more logical to represent the variables by floating-point numbers, giving rise
to continuous GAs.

The problem’s definition is finished by specifying the objective function(s) and the
equality and inequality constraints.

Selection of GA parameters

Finding optimized GA parameters (also called metaoptimization) is a tough and also a
strongly problem dependent task. The success and performance of a GA depend on the
configuration of several aspects of the optimization algorithm, such as the type and rate
of crossover, type and rate of mutation, elitist strategy, etc. In the case of multi-objective
optimization the customization possibilities are even wider, including strategies for
fitness assignment, diversity preservation and archive management. This topic is not
studied in the scope of the present Doctoral Thesis, but the reader is referred to [2]
for a deeper insight. Adaptive parameter setting techniques have also been proposed,
giving rise to Adaptive Genetic Algorithms (AGAs) [66].
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Creation of an initial population

The goal is to create a well-diversified initial population, covering the whole decision
space, in order to prevent premature convergence to find the global optimum. Since no
information on the solution is a priori available in the most general case, the initial
population is randomly generated.

Evaluation of the initial population
The chromosomes of the initial population are evaluated and a fitness value is assigned
to them.

Selection of parents for mating

This selection step consists of choosing some individuals that will be used to generate
the offspring population. In general, the better (fitter) an individual is, the higher is
its chance of being selected (survival of the fittest law, according to natural selection).
Common selection strategies are deterministic or stochastic tournament, roulette-wheel
selection, random selection, etc. The parents are chosen from the last population ob-
tained, but in the case of multi-objective problems, individuals from the archive may
also be included in the parent selection process if required by an elitist scheme.

Application of variation operators: crossover and mutation
The purpose of variation operators is to modify the individuals belonging to the previ-
ous generation in order to move them in the search space. These problem-dependent
operators are stochastic and of two types: crossover and mutation.

Crossover (or recombination) operators are mostly binary, and sometimes n-ary. The
most common form involves two parents that produce two offspring, but any number of
parents could be selected and any number of offspring produced. Thus, offspring contain
portions of the genetic code of parents. Many different approaches have been tried for
crossing over, either in discrete GAs (one-point crossover, two-point crossover, etc.) or
continuous GAs (uniform crossover, blending methods, heuristic crossover, etc.) [67,68].
Since the best performing operator is not usually known a priory, many codes combine
various methods to use the strengths of each.

Mutation operators are unary random operators acting on a single individual, alter-
ing a certain percentage of genes of each offspring. Increasing the number of mutations
increases the algorithm’s freedom to search outside the current region of variables’ space.
Again several approaches exist for mutation, either in discrete GAs (bit flip mutation,
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uniform mutation, etc.) or continuous GAs (Gaussian mutation, uniform mutation, etc.).
As a consequence of the application of variation operators, an offspring population is
created. The reader is referred to [2] for a deeper insight on variation operators.

Evaluation of new individuals
Each offspring generated in the previous step is evaluated, i.e. all objective values
related to the chromosome are calculated.

Replacement strategy

Survivors are selected from both the current and the offspring populations in some
arbitrary way. In generational replacement, the offspring population systematically
replaces the parent one. In an elitist strategy, the N best solutions are selected from
both populations, where N stands for the appropriate population size.

Convergence check
Since the GA is an iterative method, stopping criteria are to be defined and checked
after each generation. The most common stopping criteria are the following: a given
maximum number of iterations (generations), a given maximum number of objective
function evaluations, a given run time, a target design, solution not improving in a
certain number of subsequent generations, etc.

If any stopping criterion is fulfilled, the optimization algorithm has finished. If
not, parents are again selected for mating and the population evolves towards a new
generation.

End of the optimization algorithm: solution found
The best individual of the last generation is considered to be the solution to the opti-
mization problem.

1.7 Parallelization of genetic and other population-based opti-
mization algorithms

1.7.1 General concepts

As explained in the previous section, genetic algorithms maintain a population of
potential solutions that evolves for a certain number of generations. For nontrivial
problems this process might require high computational resources (due to large search
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times, for example). Hence, the total time of the optimization process is to be reduced
by means of parallelization in order to make the use of genetic algorithms viable.

Genetic algorithms are naturally prone to parallelism since the operations on the
individuals are relatively independent from each other. According to [23], parallelization
techniques can be divided into software and hardware parallelization. In the case of
genetic algorithms, when both classes of parallelization techniques are applied together
an exceptional characteristic arises: the behavior of the parallel algorithm is better
than the sum of the separate behaviors of its component sub-algorithms, i.e. the new
algorithm is not just the parallel version of a sequential algorithm intended to provide
speed gains.

Software parallelization is accomplished by using a structured population, either
in the form of a set of islands or a diffusion grid, and often leads to superior numerical
performance even when the algorithms run on a single processor. Comparing with
natural evolution, software parallelization is based on the fact that species form a large
population distributed in a certain number of semi-isolated breeding subgroups. The
local selection and reproduction rules allow the species evolve locally, and diversity is
enhanced by migrations of individuals among the interconnected subgroups. Different
search techniques may be utilized in each subgroup.

Hardware parallelization is an additional way of speeding up the execution of
the algorithm and consists on running a sequential algorithm in several processors. The
results obtained in the parallel execution are the same as in the sequential execution,
but a certain speedup is achieved in run time. What acceleration could be expected?
According to [69], it is possible to have super-linear speedup for certain problems and
parameterizations by using hardware parallelization exclusively, both in homogeneous
and in heterogeneous parallel machines. The concept of super-linear speedup is under-
stood as the fact that using m processors leads to an algorithm that runs more than m
times faster than the sequential version. This assertion is compliant with [70], where
Donaldson et al. showed that there is no theoretical upper limit for the speedup in
heterogeneous systems.

Another important concept related to parallelization is heterogeneity, where two
different kinds may be distinguished again.

Heterogeneity at software level refers to the use of different search techniques
(coding, operators, parameters, etc.) in the population subgroups created by means of
software parallelization. If the same search techniques are applied in all subgroups, the
algorithm is considered homogeneous at software level.

Heterogeneity at hardware level refers to the existence of processors with dif-
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ferent characteristics (architecture, clock rate, etc.) when a genetic algorithm is run
on a network of computers or in massively parallel computers. If the characteristics of
all processors where the optimization is run are the same, the hardware is considered
homogeneous.

Finally the concept of scalability is introduced. Scalability measures the ability
of a parallel machine and a parallel algorithm to use efficiently a larger number of
processors, and depends on both the communication patterns of the algorithm and the
infrastructure provided by the machine. Several scalability measures are described in
[71].

1.7.2 Main parallelization strategies

According to [23], parallelization strategies of genetic algorithms are commonly divided
into 3 types: global parallelization (type 1), coarse grain parallelization (type 2) and fine
grain parallelization (type 3). Type 1 corresponds to hardware parallelization. In types
2 and 3, the classification coarse/fine grain relies on the computation/communication
ratio. If this ratio is high, the Parallel Genetic Algorithm (PGA) is called a coarse
grain algorithm, whereas if low it is called a fine grain PGA. Coarse grain PGAs are
the most popular techniques and are also known as distributed or island GAs (dGAs),
whereas fine grain PGAs are known as cellular (cGAs), diffusion or massively-parallel
GAs. Hybrid algorithms have also been proposed, combining different parallel GAs at
two levels in order to enhance the search in some way (see schemes d, e and f in Fig.
1.6). An interesting comparison of various parallel implementations may be found in
[72].

Type 1: Global parallelization (master-worker parallelization)

Also called explicit parallelization, this strategy implements hardware parallelization
and distributes genetic operations and/or objective functions evaluations among several
processors (a fraction of the population is assigned to each of the processors). This
type presents a viable choice only for problems with a time-consuming function evalua-
tion. Otherwise the communication overhead is higher than the benefits of the parallel
execution.

According to [73], the global parallel GA is called synchronous if it proceeds in the
same way as a sequential GA, i.e. stopping and waiting to receive the fitness values for
all the population before starting the next generation. This is the most usual strategy.
The global parallel GA is called asynchronous when there is no clear division between
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Figure 1.6: Different models of PGA (extracted from [23]): (a) global parallelization, (b) coarse
grain parallelization, (c) fine grain parallelization, (d) coarse + fine grain hybrid, (e) coarse grain
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+ global hybrid, and (f) coarse grain + coarse grain hybrid.

generations, i.e. if any worker processor that finishes evaluating an individual returns
it to the master and receives another individual. A high level of processor utilization
is achieved with this strategy, despite the workers’ heterogeneous processor speeds.
However, the obtained search results differ from those achieved by the sequential GA.

The global parallelization uses a single population. The main advantage is the
simplicity of implementation, because parallelization takes place only at the level of
objective function calculation. The disadvantage is that no software parallelization is
utilized. A schematic representation is provided in Fig. 1.6 (a).

The method can be implemented efficiently on shared- and distributed-memory
computers [73]. On a shared-memory multiprocessor, the population can be stored in
shared memory and each processor could read a fraction of the population and write
back the evaluation results without any conflicts. On a distributed-memory computer,
the population is stored in one processor. This “master” processor is the responsible for
sending the individuals to the other processors (the “workers”) for evaluation, collecting
the results, and applying the genetic operators to produce the next generation. The
difference with a shared-memory implementation is that the master has to send and
receive messages explicitly.
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Type 2: Coarse grain parallelization (island GA, distributed GA)

As it was mentioned in a previous section, this strategy is based on distributing the
whole population in a certain number of semi-isolated breeding subgroups called islands.
An independent optimization takes place in each island, where a new population of
individuals is created from the old one by applying genetic operators such as selec-
tion, crossover, mutation and replacement. From time to time some individuals are
exchanged among the interconnected subgroups (see Fig. 1.6 (b)).

Migration is the operator that guides this exchange of individuals among islands.
The main concepts related to migration, which are the object of study of most publica-
tions on the island GA field [74], are mentioned hereafter.

The migration gap is the number of steps (generations) in every sub-population
between two successive exchanges. Migration may take place in every island periodically
or by using a given probability of migration to decide in every step whether migration
will take place or not. Island GAs are usually synchronous, i.e. the phases of migration
and reception of external migrants are embedded in the same portion of the algorithm
(migration takes place when all islands achieve a fixed number of generations). However,
synchronous migration has the drawback of being slow for some problems [23]. In
asynchronous island GAs, migrants are sent whenever it is needed and migrants are
accepted whenever they arrive. This behavior is accomplished by implementing a
chromosome buffer [74].

The migration rate is the parameter determining the number of individuals that
undergo migration in every exchange. It is not clear which is the best value for the
migration rate, but best results have been obtained for low percentages (ranging from
1% to 10% of the population size).

Selection and replacement operators in the migration procedure of each island
are commonly the same as the ones used in the independent optimization process taking
place in that island.

The topology is the map of interconnections between islands, being the general
tendency to use static topologies that are set before launching the algorithm and remain
unchanged [74]. It seems that the ring and hyper-cube are two of the best topologies for
most problems, whereas full-connected and centralized topologies have shown problems
in their parallelization and scalability due to the tight connectivity. Another approach is
the use of dynamic topologies, giving rise to decentralization. In this kind of topology, all
populations can be connected to all other populations directly. The main disadvantage
of this approach is the complexity of implementation and, moreover, the efficiency and
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usefulness of dynamic topologies has not been proved [74].

The performance of distributed GAs is often better than for the sequential GAs.
The two main reasons are that subpopulations are run simultaneously using several
processors (reducing the whole processing time) and that this kind of search maintains
samples of very different promising zones of the search space, increasing the efficacy of
the algorithm.

The coarse-grain parallelization has several advantages with respect to fine-grain
parallelization. On one hand, it is possible to adapt existing sequential algorithms for
being used in each subpopulation (island). On the other hand, the number of available
processors does not affect the result of the optimization. Thus, the strategy is suitable in
the case of having limited resources. Moreover, it could be adapted more easily than the
cellular GA to grid computing [75], where the number and performance of processors
may vary during the optimization.

The main disadvantage of a multiple-population GA might be that the critical path
of a fine-grained algorithm seems to be shorter [76].

Type 3: Fine grain parallelization (cellular GA, diffusion GA, massively paral-
lel GA)

A cellular GA is implemented at large computer terminals [74] and consists of one
spatially distributed population in which overlapping subpopulations execute the same
reproductive plan. In every neighborhood the new individual computed after selection
(usually by means of a binary tournament), crossover and mutation replaces the current
one only if it is better. This process is repeated for all the neighborhoods in the grid
of the cellular GA, where there are as many neighborhoods as individuals. The most
popular algorithm uses a toroidal grid of individuals (toroidal topology) and defines a
NEWS neighborhood (North-East-West-South) in which subpopulations of 5 individuals
(4+1) execute the reproductive plan. Thus, “good” individuals are spread over the whole
distributed population by means of migrations happening between neighboring subpop-
ulations (4 subpopulations available per individual if a NEWS neighborhood is used). A
schematic representation is provided in Fig. 1.6 (c).

This strategy is very well suited for massively parallel computers, because it divides
the population into a large number of parts. One individual is usually evaluated in
each processor. Thus, the cellular GA is a completely decentralized model in which
communications are equally distributed and where each cell has to wait only to a
few other cells. Moreover, it is proven in [76] that the critical path of a fine-grained
algorithm is shorter than that of a multiple-population GA. This means that if enough
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processors were available, massively parallel GAs would need less time to finish their
execution, regardless of the population size. Note, however, that considerations such
as the communications bandwidth or memory requirements were not included in the
mentioned theoretical study.

The main disadvantage of this strategy is that the use of a small number of proces-
sors results in degeneration of the whole population, leading the genetic algorithm into
a local optimum [74]. Therefore, this model should not be utilized unless a minimum
number of processors is available. Another drawback may be that sequential algorithms
cannot be adapted to fine-grain parallelization, being necessary the development of
completely new algorithms.

Hybrid parallelization models
When two or more GA parallelization methods are combined they form a hierarchy
[76], i.e. a hybrid parallelization strategy, and a better performance than with any
of the constituent methods alone is achieved. Several distinct combinations may be
proposed, as it is shown in Fig. 1.6 (d), (e) and (f). Note that these three models use a
coarse-grained algorithm at the upper level, which is usual in hierarchical GAs [73].
A common hybrid strategy consists on combining a coarse-grained GA at the upper
level and a global GA (master-worker model) at each of the subpopulations [76]. Thus,
independent optimizations using the master-worker strategy are carried out in each
island and some individuals migrate between islands from time to time. This approach
is useful when objective functions that need a considerable amount of computation time
are evaluated.

1.7.3 Shortcomings of standard parallelization techniques

Description of shortcomings

The integration of optimization methodologies (and particularly of genetic algorithms)
with computational analyses/simulations has a profound impact on product design.
Nowadays the main challenges related to the application of such methodologies arise
from high-dimensionality of problems, computationally-expensive analysis/simulations
and unknown function properties (i.e. black-box functions). An extensive review on
these topics is available in [77]. The consequence is that the computational load of the
optimization process may be considerable. This fact makes the development of appro-
priate parallelization techniques a critical issue in order to benefit from optimization
strategies in real-world design problems.
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The goal of every parallelization strategy is to maximize CPU usage by minimizing
the communication overhead and by balancing the computational load correctly, thus
avoiding idleness of allocated processors. In the case of traditional optimization algo-
rithms (and particularly of genetic algorithms), the principal causes of computational
load imbalance are listed below.

¢ Inappropriate ratio (no. individuals / no. processor groups)

Traditionally, when several individuals may be evaluated simultaneously, each
individual is assigned to a group of processors. In standard algorithms, all groups
are formed by the same number of processors and remain unchanged during
optimization. Thus, the number of individuals assigned to a certain group of
processors is calculated as the total number of individuals in the population
divided by the number of processor groups. In case the residual of this quotient
is not zero, some processor groups will evaluate one more individual than the
other groups. Hence, the processor groups with fewer individuals to evaluate will
remain idle while the rest of the groups finish their pending evaluations. For
this explanation, all individuals are assumed to have homogeneous evaluation
times and the number of allocated processor groups to be equal or smaller than
the number of individuals in the population.

Such a problem is reported for example in [78], where the optimum shape design
of aerodynamic configurations is studied. The genetic algorithm evaluates an
objective function that calls an unstructured grid-based CFD solver. The objective
evaluation time represents between 80% and 90% of the total elapsed time. A
two-level parallelization strategy is utilized, having a master-worker model at the
upper level and a parallel evaluation of the objective function at the lower level.
Two equally sized processor groups are responsible of concurrently evaluating two
individuals. The evaluation of an odd number of airfoils may cause computational
load imbalance, influencing negatively the parallel performance of the algorithm.

* Heterogeneous parallel computer systems
A computer system is a collection of n-processors interconnected by a commu-
nication network, specified by the pairwise latency and the bandwidth between
processors. Ideally, computer systems would be homogeneous, i.e. all nodes would
have identical architecture, clock rate and latency. Unfortunately, a certain de-
gree of heterogeneity is hardly avoidable even between nodes sharing the same
architecture, because additional factors such as the hardware’s age, refrigera-
tion, etc. affect their performance. This hardware heterogeneity translates into
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non-homogeneous objective evaluation times and the consequent loss of parallel
performance in the case of optimization algorithms. In this regard, a general
model to define, measure and predict the efficiency of applications running on
heterogeneous parallel computer systems is presented in [79].

The effect of the imbalance caused by heterogeneous parallel systems is noticeable,
for instance, if the parallel genetic algorithm implemented by Canta-Paz [80]
is used. This algorithm was designed for a homogeneous parallel computer
system and distributes the same number of individuals per processor. Therefore,
a considerable loss of parallel performance can be expected in heterogeneous
environments.

The most extreme situation regarding hardware heterogeneity occurs probably in
grid computing. Grid computing consists of a geographically distributed infras-
tructure gathering computer resources around the world, and has emerged as
an effective environment for the execution of parallel applications that require
great computing power [75]. Grid computing environments provide an attractive
infrastructure for implementing parallel metaheuristics. However, the fact that
grid resources are distributed, heterogeneous and non-dedicated makes writing
parallel grid-aware applications very challenging, because one has to address the
issues of grid resource discovery and selection, grid job preparation, submission,
monitoring and termination which differ from one middleware to another.

* Heterogeneous objective function evaluation time
Heterogeneity in the computational cost of evaluating the objective functions
may cause an important load imbalance, provided that the simulation time of the
genetic algorithm is dominated by the evaluation time of the objective functions.
This phenomenon happens when the evaluation cost of individuals is dependent
on the optimization variables, i.e. the input variables of the objective functions,
and is not unusual in heat transfer and nonlinear mechanics applications.

This kind of imbalance is reported for example in [78], a publication already
mentioned in this document. As it was explained, two individuals are concurrently
evaluated in two processor groups. Computational load imbalance is observed
and caused by the fact that the required number of iterations for evaluating
the objective function depends on the shape of the airfoil, i.e. depends on its
optimization variables.
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Current research

Ongoing research regarding the previously introduced shortcomings is summarized
hereafter. The main causes of computational load imbalance are listed again, together
with some currently available solutions.

¢ Inappropriate ratio (no. individuals / no. processor groups)
The standard and simplest solution is to adjust the ratio so that the residual
of the quotient becomes zero. This may be achieved by either modifying the
number of processor groups or resizing the population managed by the genetic
algorithm. Nevertheless, the coupling between these two terms is annoying and
might involve some drawback when configuring an optimization algorithm to be
used in massively parallel computers.

As an example, a population with an even number of airfoils was created in
[78] once the load imbalance was detected due to the use of an odd number of
individuals.

* Heterogeneous parallel computer systems
Several studies have been found which try to tackle this source of imbalance.
Some of them are cited hereafter, as a sample of the solutions proposed up to date.

Genetic algorithms are discussed from an architectural perspective in [81], of-
fering a general analysis of performance of GAs on multi-core CPUs and on
many-core GPUs. As a conclusion, the authors propose the best parallel GA
scheme for multi-core, multi-socket multi-core and many-core architectures.

The use of information of processors’ heterogeneity to make the distribution of
individuals nonhomogeneous is proposed in [79]. However, the approach is said
to be highly undesirable because it requires that the program interacts with the
resource management software, which contains the speeds of the processors allo-
cated to the job. The implementation of such a strategy results in a non-portable
program, due to the lack of standard interfaces for supplying this information.

In the context of grid computing, some tools for managing hardware heterogeneity
have been recently developed. WoBinGO [75], for instance, is a framework
for solving optimization problems over heterogeneous resources, including HPC
clusters and Globus-based grids. It uses a master-worker parallelization model,
which is easily replaceable by a hierarchical parallel GA with master-worker
demes or by a parallel cellular GA.
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* Heterogeneous objective function evaluation time
A very basic (and not advisable) solution to homogenize all objective function
evaluation times is to limit their maximum allowed duration, e.g. by establishing
a maximum number of iterations to their solver (this method is used for instance
in [78]). Nonetheless, it must be borne in mind that this alternative affects the
obtained results and is not suitable for general use.

* Solutions to any kind of heterogeneity (hardware- or software-based)
Although the source of hardware- and software-based heterogeneity is different,
the consequence is common: both affect the time needed to evaluate each individ-
ual. This is the reason why some proposed solutions are valid for these two types
of heterogeneity and have been summarized in this section.

A master-worker model with a constant and homogeneous number of individuals
assigned to each processor is described in [73]. However, the need of balancing
the computational load among processors using a dynamic scheduling algorithm
like guided self-scheduling is mentioned.

The Adaptive Parallel Genetic Algorithm is proposed in [79]. This algorithm
automatically changes the number of individuals to be evaluated on each proces-
sor depending on the evaluation time of each individual. The algorithm uses a
server—client blocking message architecture, in which the server node is responsi-
ble for the distribution of work and the evolution of the genetic algorithm. The
client nodes evaluate the fitness function for the individuals and return their
values to the server node (see Fig. 1.7). Communication between processors is
necessary for distributing and/or balancing the evaluation of a population over the
nodes. Using this scheme a fast processor will request more work than a slow one
and as a result, the algorithm will send more individuals to the faster processors
adapting the algorithm to the heterogeneity of the system. The same will happen
in the case of processors that receive individuals with short evaluation times,
adapting the algorithm to heterogeneous objective function evaluation times.

A similar alternative is described in [82], where an asynchronously global parallel
genetic algorithm with 3-tournament elimination selection is introduced. The
difference between the traditional master-worker GA and this algorithm is in
the tasks performed by the master and the workers. In the traditional algorithm
workers only evaluate individuals, whereas the master distributes individuals
among workers as well as performing all genetic operations. In the new algorithm,
the master only initializes the population, whereas workers perform the whole
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evolution process including evaluation.

The use of a steady-state algorithm is proposed in [83]. Generational algorithms
have to wait for all individuals to be evaluated before going on to the next gen-
eration. In the case of having heterogeneity, this implies that some processors
might stay idle for a long time, waiting for the slowest evaluations to complete.
In the asynchronous steady-state algorithm offspring are sent out for evaluation
and inserted back in the population on a first-come first-served basis. Thus, no
processor stays idle for a long time. However, if the evaluation costs do depend
on the characteristics of the individuals, some region of the search space might
be less explored than others. A comparison of the asynchronous steady-state
and the generational algorithms is carried out in this paper, both applied to the
multi-objective optimization of a Diesel engine.

Client 1 Client 2 Clientn

Figure 1.7: Diagram of the Adaptive Parallel Genetic Algorithm.

There are other publications not directly concerned by the load balancing problem
previously described, but related to parallelization of genetic and other optimization
algorithms. For example, Rivera mentions in [71] the development of high performance
parallel genetic algorithms with the feature of choosing among several parallelization
alternatives depending on the problem and machine parameters. In [84], Nordin et al.
show their concern caused by the low utilization of available computer power in many
organizations. They propose to use partially loaded desktop computers (because they are
being used for word processing or some other task requiring low computational power)
to create a corporative grid for parallel simulation and optimization. A framework
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monitoring available computer resources and running distributed simulations is needed
for this aim.

Coming back to parallel genetic algorithms, the dominating research area is soft-
ware parallelization. There are many studies related to topologies, migration, etc.
for coarse-grain and fine-grain algorithms. No significant research on master-worker
algorithms is apparently being carried out, and scarce research has also been found re-
lated to hardware parallelization or heterogeneity in objective function evaluation times.

Future steps

The increasing computational cost of real-world problems is pushing research in the
field of supercomputing. We are entering the exascale era, in which millions of cores
will be available for each simulation [85]. Such massive parallelism makes necessary
the adaptation of existing codes in order to ensure an efficient use of computational
resources. Regarding optimization, the inherent parallel nature of evolutionary compu-
tation is a promising factor in designing robust and scalable optimization algorithms
that adapt to such extreme-scale supercomputers. However, up to now only a handful
of papers have been published to solve extremely large-scale optimization problems
with extreme-scale parallel evolutionary algorithms implemented on supercomputers.
Therefore, evolutionary computation is expected to be an active research area in the
near future.

The best publication found by the author related to optimization in massively parallel
computers is [86]. Since this document has been taken as a reference for establishing
the objectives of this Doctoral Thesis, an extensive summary is included in the following
paragraphs with the aim of easing the understanding of the upcoming chapters to the
reader.

The opportunities for exploiting parallelism in optimization may be categorized into
four main levels:

¢ Concurrent optimizations: Coarse-grained parallelism is realized through the
concurrent execution of multiple optimizations, e.g. giving rise to the island model.

¢ Concurrent evaluation of individuals within each optimization: Coarse-
grained parallelism is realized through the concurrent evaluation of multiple
individuals within each optimization.

¢ Concurrent analyses within each individual’s evaluation: Coarse-grained
parallelism is exploited when multiple separable simulations are performed as
part of evaluating the objective function(s) and constraints.
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* Multiple processors for each analysis: Fine-grained parallelism is exploited
when parallel analysis codes are available. The simulation code is responsible for
internally distributing work among the simulation processors.

Exploiting a single type of parallelism involves performance limitations that prevent
effective scaling with the thousands of processors available in massively parallel (MP)
supercomputers. Coarse-grained parallelism is suitable for MP, since it requires very
little inter-processor communication. However, it is not usual to have enough separable
computations on each optimization to utilize all available processors. Fine-grained
parallelism, on the other hand, involves much more communication among processors
and care must be taken to avoid the case of inefficient machine utilization. Thus, the way
of maximizing the overall efficiency consists on exploiting multiple levels of parallelism.

The difficult task of distributing the computational work among the various par-
allelization levels is carried out by task scheduling algorithms. Three approaches are
listed in [86]:

* Self-scheduling: The master processor manages a single processing queue and
maintains a prescribed number of jobs active on each group of workers. Once a
group of workers has completed a job and returned its results, the master assigns
the next job to this group. Thus, the workers themselves determine the schedule
through their job completion speed. Heterogeneous processor speeds and/or job
lengths are naturally handled, provided there are sufficient instances scheduled
to balance the variation.

* Static scheduling: The schedule is statically determined at start-up. If the
schedule is good, this approach will have superior performance. However, hetero-
geneity, when not known a priori, can very quickly degrade performance since
there is no mechanism to adapt.

* Distributed scheduling: In this approach each group or workers maintains a
separate queue of pending jobs. When one queue is smaller than the other queues,
it requests work from other groups (hopefully prior to idleness). In this way, it
can adapt to heterogeneous conditions, provided there are sufficient instances
to balance the variation. Each partition performs communication between com-
putations, so no processors are dedicated to scheduling. However, this approach
involves relatively complicated logic and additional communication for queue sta-
tus and job migration, and its performance is not always superior since a partition
can become idle if other groups of workers are locked in computation. This logic
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can be somewhat simplified if a separate thread can be created for communication
and migration of jobs.

Regarding the processor partitioning models, the “dedicated master” approach and
the “peer partition” approach are mentioned. In the dedicated master partitioning,
a processor is dedicated exclusively to scheduling operations. In the peer partition
approach, the loss of a processor to scheduling is avoided. This strategy is desirable
since it utilizes all processors for computation. However, it requires either the use
of sophisticated mechanisms for distributed scheduling or a problem for which static
scheduling of concurrent work performs well.

Some computational experiments were carried out in [86] in order to discover the
most efficient partitioning scheme. Under homogeneous conditions, the highest effi-
ciencies for the self-scheduling and static scheduling strategies were achieved when
coarse-grain parallelism was prioritized, i.e. when the number of simulations being run
simultaneously was maximized. Nevertheless, experiments were also carried out with a
stochastic case adding a 10% variation to the simulation duration using an exponential
distribution. The results showed a considerable negative impact at the higher paral-
lelism levels, since there are fewer opportunities to balance heterogeneity in job length
when coarse-grain parallelism is favored. The conclusion of these experiments is that
when heterogeneous simulation times are present, a compromise between coarse-grain
and fine-grain parallelism is to be found in order to make a good use of computational
resources.

1.8 Test suites for optimization algorithms

The existence of many optimization algorithms, each of them configurable with several
parameters, makes the ability of evaluating and comparing algorithms’ performance
necessary. Nevertheless, and as stated in a previous section, it is impossible to affirm
that one single algorithm will outperform all others for all classes of optimization
problems (“no free lunch theory” [4]). So how should such a performance evaluation
be carried out? Answering this question led researchers to the creation of various test
suites with the aim of checking the virtues and weaknesses of each algorithm under
different conditions.

Standard test suites are composed by several mathematical functions which try to
mislead optimization algorithms in the search of the global optimum. However, the fact
that an optimization algorithm performs well in a certain test suite guarantees neither
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its success when solving a complex real world problem nor its adequacy for solving
optimization problems belonging to a specific field of study.

As a general advice, it is suggested to assess the robustness of optimization algo-
rithms by means of generic mathematical test suites, but also adding tests with specific
characteristics from the target problem domain in order to evaluate more accurately
the algorithm’s performance in the real world problems it will have to face.

The characteristics of single-objective and multi-objective optimization algorithms
that should be addressed by a generic test suite are listed hereafter [5]:

¢ Continuous vs. discontinuous vs. discrete

¢ Differentiable vs. non-differentiable

¢ Convex vs. concave

¢ Modality (unimodal, multi-modal)

¢ Numerical vs. alphanumeric

* Quadratic vs. non-quadratic

¢ Type of constraints (equalities, inequalities, linear, nonlinear)

¢ Low vs. high dimensionality (number of optimization variables)
¢ Deceptive vs. non-deceptive

¢ Biased vs. unbiased portions of true Pareto Front

A review of most widespread test suites is carried out in [5], including single-
objective, multi-objective, continuous and discrete optimization. Popular suites are
for instance De Jong’s test suite [87] in single-objective, or Levy functions [88] in
multi-objective optimization research. Regarding this Doctoral Thesis, two observations
must be made. First, the Thesis is focused on continuous optimization and consequently
scarce research has been done related to discrete test suites. Second, the objective is the
implementation of already known optimization algorithms and no research is carried
out in the development of new methods. This means that no exhaustive check of the
optimization algorithms is required, just some validation with available benchmarks.
Thus, only a few test functions have been used.



§1.8 Test suites for optimization algorithms

1.8.1 Single-objective optimization tests
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In the case of single-objective optimization, the following four tests have been selected:

Rosenbrock, Rastrigin and Griewank functions (taken from the De Jong’s test suite [87])
and the Schwefel function (taken from [89]). The four functions are defined hereafter

and their graphical representation can be found in Fig. 1.8:
Rosenbrock
Minimize
n-1
FUx1, ) = Y (1—2)? +100(x;41 —62)°  x; € [~2.048,2.048]
i=1

where the minimum f(x) =0 is located at x =(1,1,...,1).

Rastrigin
Minimize

n
f{x1,...,x,))=10n + Z x? —10cos(2mx;) x; €[-5.12,5.12]
i=1

where the minimum f(x) = 0 is located at x =(0,0,...,0).

Griewank
Minimize

1
f((xl,.--,xn>) = 1+ VYN (

n n
2 Xi )
x51— || cos|— x; € [-600,600]
1000 | & L) El (\/; '

i=1

where the minimum f(x) =0 is located at x =(0,0,...,0).

(1.1)

(1.2)

(1.3)
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Schwefel

Minimize

n

F(x1, e xa) = Y —x; sin (\/|x,-|) +418.9829n  x; €[-512.03,511.97]  (1.4)
i=1

where the minimum f(x) = 0 is located at x = (420.9687,420.9687,...).

(@) (b) (©)

(d)

Figure 1.8: Test functions for single-objective optimization (extracted from [90]): (a) Rosenbrock,
(b) Rastrigin, (c) Schwefel, (d) Griewank, and (e) Griewank (detail).
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1.8.2 Multi-objective optimization tests
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In the case of multi-objective optimization, typical test suites are gathered in [5] under
the names of MOP, ZDT, DTLZ, OKA, WFG, etc. Two typical tests for unconstrained
optimization have been selected, namely MOP4 (see Fig. 1.9) and ZDT6 (see Fig. 1.10):

MOP4 (Kursawe’s function)

Minimize the following objective functions

[\

fix)=3 (_10”1’ (_0-2 V af+ x?+1))

i=1

3
fo@) =Y (12;1°8 +5 sin(x;)?)
i=1

where —-5<x;<5 i=1,...,3.

ZDT6 (Zitzler-Deb-Thiele’s function N. 6)
Minimize the following objective functions

f1(x) = 1— exp(—4x1) sin®(67x1)

)

Falx,8) =g<x>-(1—(
g(x)

where 0<x; <1 i=1,..,10 and

10 0.25
W oxs
gx)= 1+9(%)

(1.5)

(1.6)

1.7

(1.8)

1.9)
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-16

-20
f1(x)

Figure 1.9: True Pareto Front of Kursawe’s function (MOP4).

0.5

(9

Figure 1.10: True Pareto Front of Zitzler-Deb-Thiele’s function N. 6 (ZDT®6).
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1.9 Random number generators

It has been said that evolutionary algorithms (among others) are stochastic methods,
which means that they employ randomness to some degree. This implies that the
quality of the produced results also relies on the quality of the selected random number
generator. Consequently, it is necessary to carry out a brief state of the art research
related to this topic.

A pseudorandom number generator is an algorithm for generating a sequence of
numbers whose properties approximate the properties of sequences of random numbers.
However, the generated sequence is not truly random, being completely determined
by a relatively small set of initial values. These values are called the generator’s seed.
Distributions of most usual programming languages like C, C++ and Java include pseu-
dorandom number generators. Nevertheless, their quality has been strongly questioned,
as in [90], making the search for other alternatives highly advisable.

The renowned mathematical library Intel® Math Kernel Library (MKL) [91] pro-
vides various pseudorandom, quasi-random, and non-deterministic random number
generators: Wichmann-Hill pseudorandom number generator [92], Mersenne Twister
MT19937 pseudorandom number generator [93], SIMD-oriented Fast Mersenne Twister
SFMT19937 pseudorandom number generator [94], Sobol quasi-random number gener-
ator [59], Niederreiter quasi-random number generator [95], etc. Studies of advantages
and deficiencies of random number generators are also available, for instance in [96].
Regarding the consulted bibliography on evolutionary algorithms, references to the
choice of an appropriate random number generator have been found in [60], where
Sobol’s pseudorandom sequence generator [59] is employed, and in [97], where the
Mersenne Twister MT19937 [93] is used.

All these considerations have been taken into account in Chapter 2, where a random
number generator is selected for implementation.

1.10 Conclusions

The state of the art of optimization algorithms has been studied in this chapter. After
a brief introduction to the goals of optimization, the main concepts have been defined
and a classification of currently available search techniques for both single-objective
and multi-objective optimization has been presented. All those algorithms must be used
together with efficient constraint handling methods in order to guarantee the overall
efficiency of the search.



46 References

The evaluation of objective functions can be computationally expensive in real-life
problems, making the cost of the whole optimization process prohibitive. Surrogate-
based optimization has been introduced as an effective method of getting a lower fidelity
model of the original function which can be simulated in a reasonable time, making
possible the application of mathematical optimization techniques to such problems.

Another difficulty faced by the optimization community is the lack of a single search
technique which always outperforms all other available techniques. Thus, the best
practical solution consists on creating hybrid optimization methods, which are able to
select the best performing constituent algorithm at each moment.

Evolutionary algorithms are the most widely used global optimization methods to
date, among which genetic algorithms hold a prominent place. The main characteristics
of such algorithms have been defined and an extensive review of the current state of the
art regarding their parallelization has been carried out.

Common test suites for comparing the performance of optimization algorithms have
also been introduced and a selection of some tests has been made.

Finally, the importance of choosing a good random number generator has been
remarked in the case of using stochastic optimization algorithms. The most widespread
generators have been mentioned, together with some software packages that include
their implementation.
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Implementation of a new
optimization library: Optimus

Abstract. The aim of this second chapter is to explain how the implementation of
the new optimization library Optimus has been carried out, based on the research on
optimization theory conducted in Chapter 1. The design requirements are defined, after
which a state of the art study on currently available optimization libraries is presented.
Once the development strategy of the new library is fixed, the main features of Optimus
are introduced. The final validation tests prove the suitability of the new library for
solving real-world optimization problems.
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2.1 Introduction

2.1.1 General design requirements of a library

The aim of the work presented in this chapter is the creation of a new optimization
framework, i.e. a set of classes that embody an abstract design for solutions to a
family of related problems [1]. However, writing a new library is always a tough and
time consuming task. Therefore, it is necessary to take a while for thinking of a good
conceptual design and its appropriate implementation. This allows obtaining a well-
structured and extendable code, easing future maintenance and making the use of the
library more comfortable for other researchers. A good review of key design aspects may
be found in [1]. The main features expected from a library are summarized hereafter:

¢ Code reusability: Reusability may be defined as the ability of software compo-
nents to build many different applications. Code development is time consuming
and error-prone, what makes development of new code from scratch every time a
new problem arises highly undesirable. On the contrary, the use of thoroughly
tested and well-documented libraries can save considerable time and headaches.
It must be said that the object-oriented paradigm is particularly well-suited to
develop reusable, flexible and extendable libraries by means of a hierarchical set
of classes.

¢ Conceptual separation between the solution method and the problem:
The solution method must be abstract enough to be able to solve similar but
distinct problems.

* Code correctness and reliability: The developed code must be free of bugs,
provide detailed error messages, avoid deadlocks at run time, have well tested
algorithms, etc.

* An adequate programming language: It is essential to choose the language
that best suits the requirements of parallel and distributed programming, other
software expected to be coupled to the framework, performance, etc.

¢ Portability: The framework must be deployable on platforms with variable
architectures (networks of PCs and workstations, massively parallel machines,
etc.) and their associated operating systems. Therefore, it is important to code
using a portable language and standard libraries.
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* Performance and efficient parallelization: The good performance of the code
is a must due to the high computational cost of simulations. Moreover, an efficient
and easy-to-handle parallelization is desirable in order to take advantage of High
Performance Computing (HPC) resources.

¢ Ease-of-use: The user-friendliness of the framework must guarantee access to
full functionality with a minimum effort. This involves the implementation of a
graphical user interface, simulation monitoring, documentation, etc.

2.1.2 Specific design requirements of the new optimization library

Apart from the already mentioned general design requirements, each new development
involves additional specific characteristics. In agreement with the objectives of this
Doctoral Thesis, these specific features of the new library are listed hereafter:

* The aim of the Doctoral Thesis is the development of a generic mathematical
optimization tool, applicable in any field of science and engineering. Nevertheless,
being this research activity hosted by the Heat and Mass Transfer Technological
Center (CTTC), a special focus is to be put on the application of the library to
the fields of expertise of the Center: Computational Fluid Dynamics and Heat
Transfer (CFD & HT), multi-physics simulation, etc.

e CTTC is developing its own software called TermoFluids [2] since several years
ago. It is a must for the new library to be compatible with the software packages
belonging to TermoFluids and to provide an appropriate coupling interface. The
interaction between libraries may be motivated either because the new optimiza-
tion framework needs to access basic in-house libraries or because an optimization
problem is defined using in-house CFD & HT libraries.

e CFD & HT is a field of engineering characterized by the need of solving huge non-
linear equations systems involving a high computational cost. Consequently, the
use of High Performance Computing (HPC) infrastructures is a common practice.
The new optimization library must be designed for maximizing its performance in
such equipment, being portability a key aspect to ensure the usability of the code
in worldwide supercomputers. Moreover, the irruption of the massively parallel
computing paradigm is to be taken into account in the framework’s design.

* The new library must be subject to the coding standards at CTTC. This involves
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using C++ as object-oriented programming language and MPI (Message Passing
Interface) as the communication standard for parallel computing.

The development of a new library is always a tough task. The use of third-party
libraries is allowed in case it is considered useful in terms of shortening the
project’s duration or enhancing the quality of the final implementation. However,
the following restrictions are to be taken into account: i) only open-source libraries
protected by a GNU LGPL or a less restrictive license are accepted, i.e. CTTC
must be free to independently decide the most appropriate license for the new
optimization framework, ii) only libraries written in C or C++ are accepted, iii) the
new library must hold the core algorithms in order to allow changing any feature
of the behavior of the optimizer on demand.

2.1.3 Computing facilities at CTTC

Although portability has already been highlighted as a key feature of the new code,

its development and testing have been carried out using the supercomputing facilities

available at CTTC. The information of both available computer clusters is attached

hereafter (see also Fig. 2.1):

¢ Cluster JFF2 (dating from 2009): This Beowulf HPC cluster called Joan

Francesc Fernandez 2nd Generation (JFF2) has 128 cluster nodes, each node
counting 2 AMD Opteron Quad Core processors with 16 Gigabytes of RAM mem-
ory. The nodes are linked with an infiniband DDR 4X network interconnection
with latencies of 2.6 microseconds and a 20 Gbits/s bandwidth.

Cluster JFF3 (dating from 2011): This Beowulf HPC cluster JFF third gener-
ation has 40 cluster nodes, each node counting 2 AMD Opteron with 16 Cores for
each CPU linked with 64 Gigabytes of RAM memory and an infiniband QDR 4X
network interconnection between nodes with latencies of 1.07 microseconds and a
40 Gbits/s bandwidth.

The operating system in service is CentOS 6.5, and OpenMPI 1.8.5 is the used

implementation of the MPI-3 standard for communications.
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Figure 2.1: UPC’s JFF supercomputer consists of 168 computer nodes with 2024 cores and 4.6
TB of RAM in total.

2.14 Concluding remarks

The development of the new optimization framework has to be carried out taking into
account all requirements stated in the previous sections. Most of them are common
features expected from a library. Regarding the specific requirements, they may be
summarized by saying that the new library must perfectly fit the current optimization
needs of CTTC and be fully compatible with the TermoFluids software.

For finishing this section dedicated to design concepts, some concluding remarks are
listed below:

¢ According to the specific design requirements, the programming language to be
used is C++ and the communications standard for parallel computing is MPI
(Message Passing Interface). C++ is a widespread, portable and performant
object-oriented language. Although Java, for instance, includes a lot of interesting
concepts related to parallelism, its overall performance is worse. MPI is also a
widely used and portable communication standard, which provides a convenient
mechanism for modularizing parallelism through the use of “communicators”
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[3]. Thus, both C++ and MPI seem to be good choices for the new optimization
framework.

Fulfilling the portability requirement means that the code should run in different
computer architectures and operating systems. For the development of this
Doctoral Thesis, it has been considered enough that the code runs with the
hardware and software stated in the previous section.

The coupling between the optimization framework and the models to be optimized
has not been defined. As a first and most universal approach, it has been decided
to use a direct coupling, i.e. the model to be optimized will behave as a black
box for the optimizer, receiving values for the optimization variables from the
optimizer and returning the values of the objective functions.

The user-friendliness of the framework is an important feature. However, it is
easier to first focus on the algorithmic of the library and to take care of user-
friendliness once an acceptable development level of the library has been reached.
Thus, the creation of a graphical user interface, documentation, etc. have not been
considered in the scope of this Doctoral Thesis.

The possibility of using third-party libraries has been considered crucial due to
the limited time available for the completion of the Doctoral Thesis, the scope
of the topic and the fact that optimization theory has been studied for several
decades.

The optimization framework will include single-objective and multi-objective
capabilities for real-valued problems. In the scope of this Doctoral Thesis, a global
search method (a genetic algorithm) and a local search method (a gradient method)
will be implemented. Discrete-valued problems are considered of less importance
for the kind of CFD & HT studies carried out at CTTC, so operators for discrete
optimization will not be implemented for the moment.

State of the art of optimization libraries

2.2.1 Description of the project’s needs

The possibility to reuse already existing code is a good chance of accelerating the

development of the new optimization framework. Plenty of scientific and mathematical
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software has been released in the last years, easily accessible thanks to Internet. Part
of this development has been supported by governmental initiatives through public
research funding. However, the considerable amount of available software makes
selection a hard task unless the project’s needs are well defined.

The available software may be divided in proprietary software (usually commercial
software) and open-source software (usually free software). The advantages of propri-
etary software are that the distributor offers a guarantee and technical support to the
customer, and also that the implemented algorithms are usually a result of already
settled knowledge. The main disadvantage is that the customer is unable to see the
source code and, of course, a certain amount of money is to be paid for the license.
On the other hand, open-source software is usually distributed with no guarantee or
technical support, but the code is for free and may be accessed with no restriction.

It was explained in the previous section that only open-source software with a GNU
LGPL or equivalent license is accepted to be used in this project. Fortunately, many
open-source initiatives for developing mathematical and scientific libraries have already
been carried out and may be of great value. Proprietary software cannot be used for the
development of the new optimization framework, but it can serve as a benchmark for
validation tests and offers a good description of the interfaces and state of the art to
which the research community and industry are used to.

The needs expected to be fulfilled by means of a third-party open-source library, and
consequently the selection criteria, are the following:

¢ A reference library containing a genetic algorithm for both single-objective and
multi-objective real-valued optimization is needed.

* A reference library containing a gradient-based single-objective local search
method is needed.

¢ Additional features like other optimization algorithms or mathematical methods
will be positively evaluated, provided that the quality of the required algorithms
(a genetic algorithm and a gradient-based method) is not decreased.

e All libraries must be written in C or C++ and compile under Linux operating
system.

* A good object-oriented structure, abstraction level and readability will be appreci-
ated.
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¢ Although no guarantee may be expected from open-source software, the developer
of the selected library must be a trustworthy researcher or research institution.

2.2.2 Free open-source software

References to several interesting open-source software packages have been found in the
literature. In [4] (published in 2007) a comparison of 6 multi-objective optimization
frameworks is provided according to the following criteria: available metaheuristic(s),
framework type (black-box or white-box), available metrics, available hybrid algorithms,
programming language and parallel features. [5] (published in 1999) gives an overview
of sequential and parallel genetic algorithms that existed at the time. [1] (published in
2004) presents a list of other 6 existing optimization frameworks. Although no more
articles will be cited here, additional references to optimization software packages
may be surely found. However, the articles mentioned before were written some years
ago and may not be representative of the last advances in the field of mathematical
optimization.

A search has been carried out in the Internet seeking for more up-to-date open-
source software. A list with the most promising codes that were found, together with a
short review, is attached hereafter.

Evolving Objects (EO) [6] / Parallel and Distributed Evolving Objects (Par-
adiseo) [1,7]

EO and its further evolution Paradiseo are template-based, ANSI-C++ evolutionary
computation libraries which help write stochastic optimization algorithms very fast.
The framework is the result of a European joint work and allows finding solutions to
all kind of hard optimization problems, from continuous to combinatorial ones. Its
main characteristics are a flexible object-oriented design, portability, availability of
evolutionary (including genetic algorithms) and discrete local search methods and par-
allelization options. The framework’s development was active until 2013 and took place
at the University of Granada first and at INRIA (Institut National de Recherche en
Informatique et en Automatique) finally. Good documentation is available and the
library has a GNU LGPL like license. It can be compiled under Linux.

GAlib [8]
It is a set of C++ genetic algorithm objects developed at the Massachusetts Institute of
Technology (MIT). GAlib is known to be a mature code with very efficient operators and
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good documentation. The library may be compiled under Linux and seems to have a
nice graphical interface. The original source code copyright is owned by MIT, but allows
modification and licensing fulfilling some restrictions. The last release of the code took
place in 2007.

GAUL [9]

The Genetic Algorithm Utility Library is a flexible programming library that imple-
ments genetic algorithms, apart from other stochastic, evolutionary and local search
methods. The code has been designed for Linux, written in C language and parallelized
using several standards, including MPI. The last release of the library dates from 2009.
GAUL is a trademark of Stewart Adcock and is distributed under the GNU GPL license.

GENEVA [10]

Geneva is a software library which enables users to solve large scale optimization
problems in parallel on devices ranging from multi-processor machines over clusters to
Grids and Cloud installations. It currently supports evolutionary algorithms (including
genetic algorithms), swarm algorithms, gradient descents and a form of simulated
annealing. Performance and extensibility are at the core of Geneva’s object-oriented
design. The code is written in C++, may be compiled in Linux environments and is
distributed under a GNU Affero GPL v3 license, although there are additional licensing
options available. Good documentation is provided with the software, whose last release
dates from 2015. Geneva was developed and is maintained by Gemfony scientific, a
spin-off from Karlsruhe Institute of Technology (KIT).

DAKOTA [11]

The DAKOTA toolkit is a software framework for systems analysis, encompassing
optimization, parameter estimation, uncertainty quantification, design of computer
experiments, and sensitivity analysis. It interfaces with a variety of simulation codes
from a range of engineering disciplines, and it manages the complexities of a broad
suite of capabilities through the use of object-oriented abstraction, class hierarchies,
and polymorphism. The library includes many algorithms (also genetic algorithms),
is written in C++, implements the MPI standard and may be compiled under Linux.
The code has been developed at Sandia National Laboratories and its distribution is
restricted by the GNU LGPL license. The last available version was released in 2016.
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TRILINOS [12]

The Trilinos Project is an effort to facilitate the design, development, integration
and ongoing support of mathematical software libraries. That effort is particularly
focused on developing parallel solver algorithms and libraries within an object-oriented
software framework for the solution of large-scale, complex multi-physics engineering
and scientific applications. Among the many packages conforming Trilinos, attention has
been put on MOOCHO (Multifunctional Object-Oriented arCHitecture for Optimization).
It is designed to solve large-scale, equality and inequality nonlinearly constrained, non-
convex optimization problems (i.e. nonlinear programs) using reduced-space successive
quadratic programming (SQP) methods. The library is written in C++ and may be
compiled under Linux. The code has been developed at Sandia National Laboratories
and its distribution is restricted by the GNU LGPL license. The last available version
was released in 2016.

2.2.3 Proprietary commercial software

The search of proprietary software has been less intensive because it does not provide
a source code which may be reused for creating the new optimization framework, and
also because its use as a benchmark is not foreseen in the scope of this Doctoral Thesis.
Nevertheless, a few renowned commercial codes are introduced next.

I0SO [13]

Indirect Optimization Based Upon Self-Organization (I0SO) is a new generation multi-
dimensional nonlinear optimization software based on the response surface technology.
Its strategy differs significantly from other well-known approaches to optimization,
apparently increasing the efficiency and robustness with respect to standard algorithms.
The software has been designed for dealing with heavy tasks with up to 100 variables
and 20 objectives, and provides full-automatic optimization algorithms which do not
need to be tuned up by the user. It also provides coupling interfaces with the most
widespread CAD, CFD and FEA codes.

MATLAB [14]

This is a well-known scientific software commercialized by Mathworks which includes
plenty of mathematical tools. There are two toolboxes regarding optimization, namely
the Optimization Toolbox and the Global Optimization Toolbox. The Optimization
Toolbox provides functions for finding parameters that minimize or maximize objectives



§2.2 State of the art of optimization libraries 67

while satisfying constraints, including solvers for linear programming, mixed-integer
linear programming, quadratic programming, nonlinear optimization, and nonlinear
least squares. The Global Optimization Toolbox provides methods that search for global
solutions to problems that contain multiple maxima or minima. It includes global
search, multi-start, pattern search, genetic algorithm, and simulated annealing solvers.

LINGO [15]

This is a tool designed for building and solving linear, nonlinear (convex & nonconvex/-
global), quadratic, quadratically constrained, second order cone, semi-definite, stochastic,
and integer optimization models. LINGO provides a completely integrated package that
includes a powerful language for expressing optimization models, a full featured envi-
ronment for building and editing problems, and a set of fast built-in solvers. Apparently,
the optimization software developed by Lindo Systems Inc. is in use at over half the
Fortune 500 companies in the US, including 23 of the top 25.

2.2.4 Concluding remarks

After having reviewed the state of the art concerning optimization software, it is time
for deciding which libraries will be taken as a reference for the development of the new
framework. The main features of the 6 previously mentioned open-source libraries are
compared in the following lines.

GAUL and EO/Paradiseo are similar software packages, but GAUL has the drawback
of being protected by a GNU GPL license and of being written in C, not in C++. Its
website affirms that the code is used in several universities, although no list of such
institutions is provided. Moreover, the last release of the code took place in 2009, four
years before the last release of EO/Paradiseo. Thus, it is understood that EO/Paradiseo
outperforms GAUL’s capacities and the latter is discarded.

GAlib seems to be a robust library, is written in C++ and has a graphical user
interface. However, its copyright is owned by MIT, the last release was in 2007 and only
includes genetic algorithms. Since a wider scope is covered by other packages, which
are also subject to less restrictive licenses, GAlib is discarded.

GENEVA offers many interesting features: good documentation, several optimiza-
tion methods, software parallelization, etc. The only drawback at first glance is its
GNU GPL license. EO/Paradiseo holds many interesting characteristics as well: genetic
algorithms, local search methods, parallelization, good documentation and tutorials, etc.
It is also written in C++, seems to be well structured and is subject to the GNU LGPL
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license, which is less restrictive than GENEVA’s license. Since apparently there is no
big qualitative difference between these two libraries, EO/Paradiseo is preferred due to
lower licensing restrictions, so GENEVA is discarded.

DAKOTA is a framework composed by several software packages, among which there
is one specialized in genetic optimization. However, DAKOTA’s features for evolutionary
optimization seem scarcer than those of EO/Paradiseo. Moreover, the extension and
complex structure of the library could make its manipulation more complicated. Hence,
EO/Paradiseo is preferred instead of DAKOTA, and the latter is discarded.

The last package to be analyzed is Trilinos. It contains many mathematical algo-
rithms, but unlike previous libraries, it does not have any sub-package dedicated to
global optimization. The only sub-package for local optimization is MOOCHO (Mul-
tifunctional Object-Oriented arCHitecture for Optimization), an object oriented C++
code for solving equality and inequality constrained nonlinear programs (NLPs) using
large-scale gradient-based optimization methods. This framework seems to contain
better gradient-methods than any other library mentioned until now and is distributed
under the GNU LGPL license, so it may be a good complement for some other software
selected for its global optimization capabilities.

After these considerations, it was decided to base the development of the new opti-
mization framework on two open-source libraries: Paradiseo and Trilinos/MOOCHO.
Both of them fulfill the necessary requirements, offer an interesting variety of global
and local optimization algorithms, are well documented and are distributed under the
GNU LGPL license. Paradiseo is expected to provide the main structure of the new
optimization framework, as well as most of the code needed to implement a genetic algo-
rithm. It may also be an interesting source of parallelization concepts, since it includes 3
distributed models: the island asynchronous cooperative model, the parallel/distributed
population evaluation and the distributed evaluation of a single solution. These models
are implemented by means of the standard libraries PThreads, PVM and MPI. Par-
adiseo also offers the possibility of hybridizing the genetic algorithm with one of the
following discrete local search methods: hill-climbing, tabu search, simulated annealing,
iterated local search, variable neighborhood search or random walk. However, the new
optimization library will be focused on real-valued optimization and the lack of suitable
local search methods is the major shortfall of Paradiseo. This shortfall will be covered
by the gradient-methods in Trilinos/MOOCHO.

The main characteristics of the new optimization framework, which have been
defined by combining the most interesting features of the two selected open-source
codes, are described in the next section.
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2.3 Main features of Optimus

2.3.1 Development strategy

The effort required for the creation of a new optimization library encompassing all
known well-performing features and algorithms from literature exceeds by far the goals
of a Doctoral Thesis. Even if the development is based on already existing software
packages, each library has its particular shortcomings which are to be detected and
fixed. Moreover, familiarization with a new open-source code is a time consuming task,
strongly dependent on the quality of the available documentation and the programming
style. Consequently, the new optimization framework is considered a first step that will
help incorporate optimization technology into CTTC’s research activity.

The development strategy has consisted on selecting the minimum amount of exter-
nal libraries that enable all basic functionality of genetic algorithms and gradient-based
local search methods. The new Optimus code holds the core structure of the optimiza-
tion library and is linked to external software packages in order to incorporate certain
enhancements. The development of in-house algorithms is foreseen in case this will
significantly improve the code’s performance for its application to CTTC’s research
lines. In the long run, in-house algorithms are expected to gradually replace external
functions as CTTC gains experience in optimization.

The features available in Optimus are described in the following sections. A genetic
algorithm is the main search engine, and is able to switch to a local search method
every time stagnation of the best individual of the population is detected. The reader is
referred to the scientific literature cited in Chapter 1 for theoretical foundations and an
extended description of the implemented algorithms.

2.3.2 Definition of the optimization problem

The use of real-valued individuals has been implemented, being discrete (i.e. combi-
natorial) optimization not possible at present. Each individual may have a unique
real-valued objective (single-objective optimization) or a vector of real-valued objectives
(multi-objective optimization). It is possible to maximize or minimize each objective.
An interesting feature taken from Paradiseo, mentioned here because it affects the
structure of individuals, is the use of self-adaptive mutation parameters. Mutation is
the genetic operator that acts on a single individual altering a certain amount of genes.
In particular, normal mutation modifies a gene by substituting it by a random number
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according to a Gaussian distribution centered in the original value and shaped by a
standard deviation parameter. At the beginning of the optimization, it is advisable to
allow high standard deviation values. However, low values are more suitable as the
population evolves, enabling the exploration of small regions. This behavior is known as
self-adaptive mutation and is accomplished by storing the evolving standard deviation
values in each individual.

Three types of self-adaptive mutation have been implemented:

¢ Isotropic mutation: A single standard deviation parameter is stored in each
individual and is applied every time a normal mutation takes place on any opti-
mization variable of that individual.

* Anisotropic mutation [16]: A standard deviation parameter is stored for each
optimization variable, evolving each parameter independently from all others.

¢ Correlated mutation [17,18]: In addition to as many standard deviation
parameters as for the anisotropic mutation, this strategy assigns a full correlation
matrix to each individual. This allows taking into account the interaction between
genes regarding the objective function, and the values of the standard deviation
parameters become dependent on each other.

The penalty method has been implemented as unique constraint handling strategy.
The fitness of the designs that violate constraints is artificially worsened in this tech-
nique, with the aim of forcing the optimization algorithm to abandon that search region
of the solutions space. This was the preferred algorithm due to ease of implementation,
although the existence of better performing methods is known. Their inclusion in
Optimus will be considered in the future.

A key feature of the optimization framework is the possibility of coupling it to an
external objective functions evaluator. This capability is of major importance because it
allows fitness evaluation by means of any third-party software, provided that it can be
interfaced using C++. In the particular case of CTTC, such a coupling is necessary since
the models subject to optimization will be usually built using TermoFluids, the in-house
CFD & HT software coded in C++.

Two kinds of coupling interfaces must be distinguished: generic interfaces and
specific interfaces. The generic interface simply gives access to certain variables of
Optimus to the end user, who is responsible of getting the data contained in those
variables and transmitting them to the function evaluator. The variables are the
following:
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¢ Optimization variables: It is a vector of double type variables containing values
of the optimization variables (genes) of each individual.

¢ MPI communicator: In case the user selects to run a parallel evaluation of each
individual, Optimus assigns a group of processors to each of them, creates an MPI
communicator and makes it available to the objective function evaluator.

* Directory: It is a string variable containing the name of the directory in which
files created during the evaluation of an individual (if any) may be saved. Having
such directory names is important because it is not strange that individuals being
evaluated simultaneously create files with identical names, thus causing file
overwriting in case these are not carefully separated in different directories for
each individual.

Specific interfaces transmit the same information as generic interfaces, but may be
provided in order to ease couplings to the user or to adapt to some interface requirement
of the software in charge of evaluating the objective function. No specific coupling
interface has been developed excepting for NEST [19], a multi-physics library developed
at CTTC. More specific interfaces will be added in the future if needed.

2.3.3 Single-objective vs. Multi-objective optimization

The genetic algorithm used for solving single-objective and multi-objective optimizations
is similar regarding most characteristics: operators, stopping criteria, parallelization,
etc. The main difference lies on how the concepts of fitness assignment, diversity
preservation and elitism are handled.

Fitness assignment is a trivial task when individuals are being optimized according
to a single objective. However, it was shown in Chapter 1 that several methods have
been proposed for multi-objective optimization problems. If a scalar approach is desired
(reducing the multi-objective problem to a single-objective problem), the single-objective
optimization interface may be used. The alternative is to choose a dominance-based
approach to classify multi-objective solutions. Pareto’s criterion is the only dominance
criterion available in Optimus at present and has been used to implement 3 dominance-
based approaches: i) dominance-rank technique, ii) dominance-count technique, and iii)
dominance-depth strategy.

The concept of diversity preservation only exists in multi-objective optimization. 2
diversity assignment techniques have been implemented in Optimus, namely i) sharing,
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that consists on estimating the distribution density of a solution using a so-called
sharing function that is related to the sum of distances to its neighborhood solutions,
and ii) crowding, which consists on estimating the density of solutions surrounding a
particular point of the objective space.

A different approach is to use a quality indicator which takes into account both
fitness and diversity, denoting the overall goal of the optimization process. This option
is available in Optimus and two common binary quality indicators have been imple-
mented, namely the additive e-indicator and the Ip-indicator (which is based on the
hypervolume metric).

Elitism is present in both single-objective and multi-objective optimization. In the
single-objective case, it consists on preserving the best known individuals between
successive generations. In the multi-objective case, elitism consists on maintaining
an external set (archive) that allows storing either all or a subset of non-dominated
solutions found during the search process. An archive class (either of bounded or
unbounded size) able to store every non-dominated point of the simulation has been
implemented in Optimus. It is up to the user the decision of how often the archive is to
be updated and stored in the hard drive.

Nevertheless, an important difference between Paradiseo and Optimus is that the
user is not expected to define all these options independently in the latter framework. 3
preconfigured options packages have been included in the code, representing the 3 most
common multi-objective optimization algorithms used nowadays: NSGA-II, SPEA2 and
IBEA. The user just needs to choose one of them so that all options are automatically
set (see Table 2.1). In case of using IBEA, the binary quality indicator is to be explicitly
chosen by the user.

Options / MO algorithms | NSGA-II SPEA2 IBEA
Dominance-count

Fitness assignment Dominance-depth Binary quality indicator
and rank
Diversity assignment Crowding distance Nearest neighbor None
. Deterministic binary | Deterministic binary | Deterministic binary
Selection
tournament tournament tournament
Generational
Replacement Elitist replacement Elitist replacement
replacement
Archiving None Fixed-size archive None
. . Max. number of Max. number of Max. number of
Stopping criteria . . .
generations generations generations

Table 2.1: Most common multi-objective optimization algorithms [20].



§2.3 Main features of Optimus 73

Common archiving and stopping criteria for each multi-objective algorithm are
shown in Table 2.1, but Optimus allows them to be specified independently of the
selected algorithm, i.e. archiving may be activated for every algorithm and various
stopping criteria are available.

The use of metrics in order to compare different sets of solutions is another charac-
teristic of multi-objective optimization. Optimus is able to calculate contribution and
entropy metrics on run time. Additional metrics, if needed, are to be calculated using
the output files generated once the execution of Optimus has finished. The analysis may
be done by means of the GUIMOO software [4], for instance.

A noticeable detail in Paradiseo is that the single-objective and multi-objective codes
were developed separately, although they follow some common standards. This assertion
is based on the fact that not every feature implemented for single-objective algorithmic,
although conceptually valid no matter the number of objectives, is available for multi-
objective algorithmic and vice-versa. One of those features is the self-adaptive mutation,
already described in the previous section. In Optimus, the self-adaptive mutation has
been made available for both single-objective and multi-objective algorithms.

2.3.4 Genetic operators

The evolution engine and thus the quality of the obtained optimal solution are con-
ditioned by the selection and parametrization of genetic operators. The concept of
self-adaptive mutation has already been introduced, which is accomplished by storing
the evolving standard deviation values in the individual’s structure. Let us call in-
dividuals carrying standard deviation parameters self-adaptive individuals, whereas
individuals containing only optimization variables will be called standard individuals.
The use of self-adaptive mutation provides a superior performance to the optimizer,
so both the single-objective and multi-objective algorithms implemented in Optimus
support self-adaptive individuals. In fact, the user is expected to use the self-adaptive
method as default configuration of the optimizer. The use of standard individuals is
not foreseen for solving real-world optimization problems and is only supported by the
single-objective algorithm, mainly due to academic purposes.

The crossover, mutation, selection and replacement operators implemented in Opti-
mus are described next.
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Crossover
Crossover consists on recombining the genetic material of n parent individuals, although
no more than 2 parents are used in Optimus. Several crossover operators have been
proposed in the literature, and it is not usually known which one performs best for a
certain optimization problem. This is why the possibility of combining various methods
is offered in Optimus, with the aim of using the strengths of each method. The user
just needs to define the desired crossover operators and to assign them a probability to
be selected. Every time the genetic algorithm needs to cross over the chromosomes of
two parents, one among the available crossover operators will be called by means of a
roulette wheel selection.

3 crossover operators are implemented in Optimus for standard real-valued individ-
uals:

* Hypercube crossover: Offspring are uniformly generated on the hypercube
whose diagonal is the segment joining both parents, i.e. by doing linear combina-
tions of each variable independently. The user provides an alpha parameter at
the beginning of the optimization, and the crossover operator generates uniformly
a random number in the range [alpha,1+alpha] for each variable. This random
number is the coefficient used for defining the linear combination of the parents’
values of that variable.

* Segment crossover: Offspring are uniformly generated on the segment joining
both parents, i.e. the operator constructs two linear combinations of the parents
with a single random number uniformly generated in the range [alpha,1+alphal].
Alpha is a parameter provided by the user at the beginning of the optimization,
and the random number is the coefficient used for defining the linear combination
of the parents’ values for all variables.

* Uniform crossover: This operator simply exchanges values of variables between
the 2 parents, creating new offspring.

In the case of using self-adaptive individuals, two crossover operators are to be
selected for recombining 2 individuals: the first operator defines how to recombine the
optimization variables of the individuals, whereas the second operator defines how to
recombine the self-adaption parameters. The crossover operators available are uniform
crossover and hypercube crossover (with the alpha coefficient fixed to 0 value), being the
use of segment crossover not enabled for self-adaptive individuals. The roulette-wheel
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selection between various crossover operators is neither enabled, so a single operator is
to be chosen for each part of the individual.

Two parents are needed to apply a standard crossover operator in Optimus, either
when standard or self-adaptive individuals are used. However, an additional option
called global crossover is available for self-adaptive individuals, which consists on ran-
domly selecting two parents for each gene of the offspring that will be created.

Mutation

Mutation consists on altering a certain percentage of genes of each offspring created
by the crossover operator. Since the best performing operator is not usually known
(as it happens in the case of crossover operators), Optimus offers the possibility to
combine various methods to use the strengths of each. The user activates the desired
mutation operators and assigns to each of them a probability to be selected. Every time
the genetic algorithm needs to mutate the chromosome of an offspring, one among the
available operators is chosen by means of a roulette wheel selection.

A single mutation operator is available in Optimus for self-adaptive individuals:

¢ Self-adaptive mutation: A normal mutation is applied to each optimization
variable. Each of these mutations is defined according to a normal distribution
centered in the original variable’s value and whose standard deviation is taken
from the corresponding self-adaptation parameter carried by the individual. A
mutation is also applied to each self-adaptation parameter.

3 mutation operators are implemented in Optimus for standard real-valued individ-
uals:

¢ Uniform mutation: This operator modifies all variables by choosing new values
uniformly on an interval centered on the old value and of width 2 - epsilon, being
epsilon defined by the user for each optimization variable.

* Deterministic-uniform mutation: Exactly k variables are modified uniformly
by choosing a new value from an interval centered on the old value and of width
2 - epsilon, being epsilon defined by the user for each optimization variable.

* Normal mutation: Also called Gaussian mutation, this operator acts on every
optimization variable of an individual creating new values according to a normal
distribution centered in the original value and with a fix standard deviation
parameter defined by the user.
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Selection

The selection step consists on choosing the individuals that will be used to generate
the offspring population, being its size fixed at the beginning of the optimization. As
it was already said, the general behavior is that the better (fitter) an individual, the
higher its chance of being selected. The selection operators implemented in Optimus for
single-objective optimization (either with standard or self-adaptive individuals) are the
following:

* Deterministic tournament: This operator returns the best of T' uniformly cho-
sen individuals in the population. The number of tournaments to be carried out is
equal to the number of needed parents.

* Stochastic tournament: The operator chooses uniformly two individuals from
the population and returns the best one with probability R (tournament rate),
being the real parameter R in the range [0.5,1.0]. The number of tournaments to
be carried out is equal to the number of needed parents. Note that a stochastic
tournament with rate 1.0 is strictly identical to a deterministic tournament of size
2.

* Roulette wheel: This is the classical selection method used by Goldberg [21] in
which each parent is selected according to a probability proportional to its fitness.

* Ranking: This method starts by assigning a worth, i.e. a modified fitness value,
to each individual of the population. Then selection is carried out by means of a
roulette wheel algorithm based on the previously calculated worth values. Two
parameters are needed for the worth calculation: the pressure (ranging in (0, 1])
and the exponent (always greater than 0). Worth values are contained in [m, M],
where m = 2 — pressure/populationSize and M = pressure/populationSize.
Inside these bounds, the spacing between worth values depends on the exponent.

* Ordered sequential selection: This operator sorts the population from best
to worst and returns as many individuals as required following the list. If the
population is exhausted and more individuals are needed, it loops back to the be-
ginning of the list and continues returning individuals until the required number
of parents is satisfied. If the number of required parents is smaller than the size
of the source population, the best individuals are selected once. If the number
required parents is N times that of the source size, all individuals are selected
exactly N times.
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* Unordered sequential selection: This operator shuffles the population and
returns as many individuals as required. If the population is exhausted and more
individuals are needed, it loops back to the beginning of the list and continues
returning individuals until the required number of parents is satisfied.

The three multi-objective optimization algorithms included in Optimus (NSGA-II,
SPEA2 and IBEA) use a binary deterministic tournament selection, so other selection
methods have not been made available for multi-objective optimization to date.

Replacement

The replacement operator is applied after the birth of all offspring and consists on
selecting the survivors from the current and offspring populations in some arbitrary
way. In Optimus the population size is always kept constant from one generation to the
next one, being the possibility of having a variable population size not implemented.
The available replacement operators are valid for either standard or self-adaptive
individuals and may be classified according to the following schemes: merge-reduce
operators and reduce-merge operators. The merge-reduce scheme has two major steps,
first merging both populations of parents and offspring and then reducing that big
population to the right size. In the reduce-merge scheme parents are first reduced of
the exact number of offspring and then merged with the offspring population. In the
latter case, it is implicitly assumed that few offspring have been generated, although
this is not mandatory.

3 merge-reduce operators have been implemented:

e Comma replacement: This operator, which is common in Evolution Strategies,
selects the best offspring and discards all parents. Hence, at least as many
offspring as the size of the population must be created.

* Plus replacement: 1t first merges the offspring and the parents and finally the
best individuals among them become the next generation. This operator is also
common in Evolution Strategies.

e EP tournament: This is a classical operator in Evolutionary Programming (EP).
First the offspring and parents are merged and then a global tournament of size T'
begins. It works by assigning a score to all individuals in the population. Starting
with a score of 0, each individual I is opposed T times to a uniformly chosen
individual. I’s score is incremented by 1 every time it wins, and by 0.5 every
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time it draws. Once all tournaments are finished, the individuals for the next
generation are selected deterministically based on their scores.

3 reduce-merge operators have been implemented:

* Worst replacement: The worst parents are replaced by all offspring.

* Deterministic tournament: Each parent to be replaced is chosen by an inverse
deterministic tournament, i.e. the operator returns the worst of 7" uniformly
chosen individuals in the population.

* Stochastic tournament: Each parent to be replaced is selected by an inverse
binary stochastic tournament, i.e. each time the operator chooses uniformly two
individuals from the population and returns the worst one with probability R
(tournament rate), being the real parameter R in the range [0.5,1.0].

The possibility of activating weak elitism is also implemented for single-objective
optimization, which means that if the best fitness in the new population is worse than
the best fitness of the parent population, the worst individual of the new population is
replaced by the best parent. This strategy ensures that the overall best fitness in the
population will never decrease.

2.3.5 Hybrid methods

One single hybrid algorithm has been implemented in Optimus, only available for
single-objective optimizations. It combines two constitutive algorithms sequentially:
the genetic algorithm as global search method and the Trilinos/Moocho package as local
search method.

Two approaches to sequential hybrid algorithms have been found in the literature
[22]: 1) the best solution found by the GA is taken as the starting point for the local search
method, and ii) the gradient method can be incorporated in the GA as a new operator
and can be applied either to the best individual or to the individuals corresponding to
local optima. The first approach has been implemented in Optimus.

The control algorithm in charge of switching automatically from one method to the
other is represented in the flow diagram in Fig. 2.2. The user must define the stagnation
criterion for the GA, i.e. the maximum allowed number of generations (let us refer to it
as N) to get some improvement of the best known solution so far. If no improvement
is obtained after N generations, the control algorithm checks if the best individual so
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far has been previously used for starting a local search. If so, it means that the local
search was unable to improve it and, since it is a deterministic method, exactly the same
result would be reached again. Thus, the local search is skipped and the flow returns to
the genetic algorithm. If no local search was started in the past with that individual,
it is launched (i.e. the Trilinos/Moocho package is called) and the obtained result is
compared with the original individual. If the local search result is better, then the best
individual in the population is replaced by the newly found solution. After this step, the
flow returns to the genetic algorithm and continuation criteria area checked, as usual.

The Trilinos/Moocho package (Multifunctional Object-Oriented arCHitecture for
Optimization) has been designed to solve large-scale optimization problems using
reduced-space successive quadratic programming (SQP) methods, as it was already
explained in a previous section. Moocho transforms the original problem into an
equivalent quadratic problem, having both of them the same solution. The advantage
obtained with the transformation is a higher convergence rate. The new problem
could be solved by means of a BFGS algorithm. Nevertheless, the IBFGS algorithm is
preferred instead in order to decrease the memory requirement. This issue is of special
concern in the case of problems having many variables. The only drawback of IBFGS
with respect to BFGS is its linear convergence rate, whereas higher convergence rates
are achieved by BFGS.

No hybrid method is implemented for multi-objective optimization to date, but an
expansion of the framework in this direction will be considered in the future.

2.3.6 Continuation criteria

The continuation criteria (also called stopping criteria) are in charge of controlling if the
optimization process shall end or go on. Several criteria were implemented in Optimus,
being possible to enable more than one in the same simulation. In that case, a single
stop signal sent by any active criterion is enough to make the optimization finish.

The continuation criteria available in Optimus are described hereafter:

* Stop optimization if ...

— Resource limitation criteria

* ... maximum number of generations reached: When the genetic algo-
rithm has carried out a certain number of generations, the best solution
so far is returned as the global optimum.
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Figure 2.2: Flow chart of a sequential hybrid algorithm, composed by a genetic algorithm and a

local search method.
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* ... maximum number of evaluations reached: When the optimizer has
carried out a certain number of objective function evaluations, the best
solution so far is returned as the global optimum.

* ... maximum simulation time reached: When the optimization process
has spent a certain amount of wall clock time, the best solution so far is
returned as the global optimum.

— Solution’s stagnation criteria

# ... best individual did not improve in N generations: When the optimizer
has not been able to improve the best solution so far after a certain
number of generations, that solution is returned as the global optimum.

— Target accomplishment criteria

* ... target fitness value reached: When the optimizer has obtained a
solution with a fitness value which is equal to or better than a target
fitness value established at the beginning of the optimization, the best
solution so far is returned.

¢ Continue optimization until ...

— Minimum usage of resources criteria

* ... minimum number of generations reached: The optimization process
cannot be stopped until the genetic algorithm has carried out a certain
amount of generations, even though some stopping criterion is fulfilled.

2.3.7 Statistics

It is important to provide some information of the optimization process in run time
in order to allow the engineer to check regularly the correctness of the simulation.
Due to the high number of objective function evaluations usually needed, an early
detection of unexpected behaviors might save a considerable amount of computational
time. Moreover, the provided information must be enough to evaluate if the obtained
result is the best attainable solution for the simulation that has been run.

Thus, it was decided to calculate the following data after the genetic algorithm
completes each generation:

* Number of generations: Total amount of generations carried out so far.
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* Number of evaluations: Total amount of objective function evaluations carried
out so far.

¢ Wall clock time: Total amount of wall clock time spent so far by the optimization
process.

¢ Best fitness value: Fitness value of the best individual available in the current
population. In the case of multi-objective optimization, the best value available in
the current population for each objective is identified.

¢ Statistics of the population: Average and standard deviation of the fitness,
taking into account every individual in the current population. In the case of
multi-objective optimization, the average and standard deviation of the current
population for each objective is calculated.

Some additional metrics are available after the completion of each generation when
multi-objective optimizations are carried out. These metrics are contribution and
entropy, and are computed for both the archive and the current population.

2.3.8 Parallelization

Task management strategy

After the thorough state of the art study of parallelization techniques carried out in
Chapter 1, it was decided to first implement a two-level model (see Fig. 2.3 (a)): a
master-worker strategy for the optimization algorithm in the upper level, and a case
dependent fine-grain parallelization of individuals in the lower level. The parallel task
manager was implemented from scratch, although some interesting notes about the
parallel algorithms used by Paradiseo were found in [1].

The adopted parallelization strategy is used by both the genetic algorithm and the
local search method and relies exclusively on hardware parallelization, thus obtaining
in a shorter time identical results as sequential algorithms. This may be very beneficial
when applied to optimizations with a high computational cost, as those in the field of
CFD & HT. A similar approach is described in [22], where the problem of getting an
optimum shape design of aerodynamic configurations is studied. Once that satisfactory
results have been achieved, a 3-level parallelization model composed by an upper coarse-
grain level (island model) and an intermediate master-worker level will be implemented
for the genetic algorithm, keeping the fine-grain parallelization of individuals in the
lower level (see Fig. 2.3 (b)).
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Figure 2.3: PGA models in Optimus (extracted from [5]): (a) global parallelization (current
implementation), (b) coarse grain + global hybrid (future implementation).

The implemented 2-level strategy is similar to the self-scheduling strategy described
in [23], where the master processor manages a single processing queue and maintains
a prescribed number of jobs active on each group of workers. Once a group of workers
has completed a job and returned its results, the master assigns the next job to this
group. Thus, the workers themselves determine the schedule through their job comple-
tion speed. Heterogeneous processor speeds and/or job lengths are naturally handled,
provided there are sufficient instances scheduled to balance the variation. Individuals
belonging to the genetic algorithm’s population compose the batch of individuals to be
evaluated in parallel most of the times. Note that a synchronous genetic algorithm has
been implemented, i.e. all individuals belonging to a generation are evaluated before
the next generation starts. However, when the local search method is being run, a batch
of individuals is evaluated every time a gradient needs to be computed.

3 parameters are expected from the user of the optimization library in order to
configure the parallel task manager: the number of available processors, the number of
processors that will be used to evaluate each individual, and the processor partitioning
model [23]: “dedicated master” or “peer partition” approach. The master processor is
dedicated exclusively to task scheduling operations in the first approach, whereas it
also participates in the computation of individuals in the latter approach. Note that
the peer partition approach shall be used cautiously in order to avoid inter-processor
communication delays, as it is explained further on in this section.

Communications strategy
Hardware may use two types of memory: shared memory and distributed memory.
On a shared memory multiprocessor, information (e.g. the population) is stored in
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a common memory space and each processor is able to read and write a fraction of
that information without causing any conflict. On a distributed memory computer,
each processor has its own memory space and information is stored in one processor’s
memory. This master processor is the responsible of sending that information to the
other processors (the workers) and of receiving their updates. The difference compared
to a shared memory configuration is that the master has to send and receive messages
explicitly. The peer partition approach is suitable for shared memory configurations,
but the absence of a master dedicated exclusively to communications is prone to cause
important delays when distributed memory configurations are used. The possibility of
enabling communication threads has not been considered in the scope of this Doctoral
Thesis.

Being MPI the selected communications standard, all data exchanges have been
implemented in the form of 2-sided communications. The only exception has been the
task completion control algorithm, for which 1-sided communications (also called Re-
mote Memory Access) were preferred. The master processor creates the task completion
control vector, which contains a list of every task of the batch with its status: assigned
or pending. This vector is made visible to other processors by means of a memory
window. If the simulation is run in a shared memory environment, the peer partition
approach is preferred and thanks to the 1-sided communications style every processor
is able to access the task completion control vector, blocking the access to any other
processor until read/write operations are finished. However, the master shall not be
locked in computation when a processor tries to access the task completion control vector
in case the simulation is run in a distributed memory environment. Otherwise, the
worker processor will have to wait until the master finds a while to send or receive the
required information. This behavior may potentially cause important delays in message
passing and it is therefore discouraged to use the peer partition approach in distributed
memory machines. The only drawback of the dedicated master approach is the loss of
one processor for computation, being the 1-sided communications style valid.

Task management algorithm

A task manager has been created following the previously explained 2-level master-
worker parallelization strategy and taking into account all issues related to commu-
nications. Nevertheless, there is one last topic to be mentioned before presenting the
task management algorithm. The execution of the genetic algorithm is conditioned by
the seed provided to the random number generator, and the task scheduler also utilizes
randomness for assigning individuals to groups of processors. If the same generator
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instance is used for both purposes, results of sequential and parallel executions of the

optimizer will differ. Hence, an additional instance of the random number generator

has been included to be used exclusively by the task manager.

The implemented self-scheduling task manager is described hereafter. The main

algorithm is referred to as Algorithm A, and at certain points sub-algorithms A.1, A.2,
A.3 and A.4 are called.

Algorithm A Self-scheduling task manager

1.

The master processor sends a message to all other processors communicating that
the evaluation of a new batch of individuals (tasks) is about to start.

. Depending on the selected configuration, the master processor may be involved

in the evaluation of individuals (peer partition strategy) or will just manage
MPI communications (dedicated master strategy). Processors involved in the
evaluation of individuals will be referred to as “computing processors” and if the
master processor exclusively manages communications, it will be called “server
processor”.

. The number of tasks that may be simulated simultaneously is calculated based on

the total number of computing processors and the number of processors required
for simulating each task (defined by the user). After that, as many processor
groups as simultaneous tasks are created, all computing processors are assigned
to those groups and one processor of each group is designated as the root of the

group.

Each group of processors creates a directory in the hard drive in order to store the
files needed during the evaluation.

. MPI communicators and memory windows are created:

(a) A communicator is created in each group of processors for message passing
between the root of the group and the rest of cores, and also for the parallel
evaluation of objective functions (let us call it groupComm).

(b) A communicator and some memory windows are created for connecting all
group roots and the master (let us call it rootComm). Communications
between the master and the roots may be 1-sided or 2-sided.



86 §2.3 Main features of Optimus

6. IF (processor is the master)

(a) Information of all individuals of the batch is sent to every root processor.

(b) Active and inactive cores are set (see Algorithm A.1).

(c) The task evaluation loop is started (see Algorithm A.2).

(d) The results of every task (objective values and simulation time) are received
from root processors.

7. ELSE IF (processor is the root of a group of cores)

(a) Information of all individuals of the batch is received from the master.

(b) Active and inactive cores are set (see Algorithm A.1).

(c) The task evaluation loop is started (see Algorithm A.2).

(d) The results of every task (objective values and simulation time) evaluated by
this group of processors are sent to the master.

8. ELSE

(a) Active and inactive cores are set (see Algorithm A.1).

(b) The task evaluation loop is started (see Algorithm A.2).

9. All MPI communicators and memory windows are freed.

Algorithm A.1 Set active /inactive processors

1. All processors are set to be active by default at the beginning of the evaluation of
a new batch of individuals.

2. If a group of processors is composed by fewer cores than the number specified by
the user, all cores forming that group are set to be inactive and will not evaluate
any individual. This may happen if the total number of computing cores is not
divisible by the number of cores assigned to each group. In this case, the last
group holds fewer processors than the rest of the groups.
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3. If there are fewer individuals in the batch than available groups of computing
processors, all cores in excess groups are set to be inactive and will not evaluate
any individual. This is likely to happen when the local search method is used,
because the number of individuals in a batch of the genetic algorithm and in that
of a local search may differ considerably.

Algorithm A.2 Task evaluation loop

1. IF (active computing processor)

(a) WHILE (individuals pending to be evaluated in the batch)
i. If it is a root processor, check the list of pending tasks (see Algorithm
A.3).
ii. The root processor of the group communicates to other members if the
group is going to evaluate an individual.

iii. Ifthe group is going to evaluate an individual, all processors of the group
call Algorithm A.4.

Algorithm A.3 Check the task status list

1. Get the task status list from the master processor by means of Remote Memory
Access (RMA). This list contains the status of each task: assigned or pending.

2. If there are pending tasks, one of them is randomly selected to be evaluated by
the group of processors.

3. Then it is communicated to the master that the task has been assigned, in order
to avoid that another group of processors evaluates the same individual.

Algorithm A.4 Run task

1. The group of processors runs the assigned task (evaluates the assigned individual),
storing necessary files in the group’s directory and using the group’s internal
communicator (groupComm) for evaluating the objective function(s) in parallel.
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2. The obtained objective values and the evaluation time are stored in the memory
of the root processor.

2.3.9 User interface

The objective of the proposed interface, although its development is not finished yet, is
to offer to the user a comfortable experience by easing the definition of the optimization
problem and by enabling full control over all relevant parameters that configure the
optimization algorithm. A first basic implementation of the interface has been carried
out, but the enhancement to a Graphical User Interface (GUI) is planned for the future.

The design of the two user interface categories, namely the input interface and the
output interface, is introduced next.

Data input interface

Two kinds of input data may be distinguished: those required for defining the opti-
mization problem and those which represent values for the parameters governing the
optimization algorithm. All these data are defined by the user utilizing the following
three files:

¢ optObjEvaluator.h
The optObjEvaluator class is contained in this file and is expected to be redefined
by the user in order to create the optimization problem. The information to be
provided is the following: the number of objectives and their traits (maximize or
minimize), the objective function(s), the definition of the equality and inequality
constraints and their Jacobians (if necessary), and the definition of the penalty
method for constraints (if necessary).

* General algorithm’s parameter sheet
This file contains every parameter controlling the general behavior of the opti-
mization algorithm grouped as follows:

— General options: Some help options which may be activated by the user are
available in this group. The seed of the genetic algorithm’s random number
generator is also defined here.

— Type of individuals: In the case of single-objective optimization, it is
possible to use either standard or self-adaptive individuals (for isotropic,
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anisotropic or correlated mutations). In the case of multi-objective optimiza-
tion, however, this group of options does not exist because only self-adaptive
individuals for correlated mutations are available to date.

— Evolution engine: In the case of single-objective optimization, it is defined
by fixing the size of the population, the selection and replacement methods,
the number of offspring to be generated and by activating the weak elitism
option if desired. In the case of multi-objective optimization, the evolution
engine is set by selecting one of the predefined evolutionary algorithms
(NSGA-II, SPEA2 or IBEA) and by deciding whether to use or not an archive
which is updated after each generation.

- Genotype initialization: The parameters to be defined in this group are
the number of genes of an individual (the number of optimization variables
of the problem), the initialization bounds for the genes and, in the case of
using self-adaptive individuals, the initial value for the standard deviation
corresponding to each gene.

— Local search: The options available in this group are the stagnation cri-
terion for the genetic algorithm, the numerical differentiation method of
the local search (first order, second order, etc.), the step size for gradient
calculation and the maximum allowed violation of the optimization variables’
bounds during the gradient calculations.

— Output on screen: The user may customize the run time output information
showed on screen by tuning the parameters in this group. The available
data include the number of objective function evaluations carried out so far,
the total simulation time, and statistics of the best individual and the whole
population. In the case of multi-objective optimization, there is additional
information available including the storage and visualization of an archive
file, and the entropy and contributions metrics of both the archive and the
population. It is possible to select the frequency with which this information
is displayed on screen.

— Output in hard drive: The run time output information shown on screen
may also be saved in the hard drive. By tuning the parameters in this group,
the user may select the directory in which the output files are to be stored
and the frequency with which run time information is to be written. The
possibility of storing backups of the population from time to time is also
available.
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— Parallelization: The parameters to be defined are the processor partition-
ing model (dedicated master or peer partition strategy) and the number of
processors for solving each individual.

— Recovery information: Since optimization may be a costly process, it is
crucial to regularly store some recovery information from which the opti-
mization may be restarted in case the simulation is interrupted unexpectedly.
This recovery information consists of two files: a file containing all the pa-
rameters defining the optimization algorithm and another file containing
the simulation results obtained so far. If the optimization is interrupted, it
is possible to restart it using these two files and exactly the same result as
in the uninterrupted simulation will be obtained. The user may choose the
names of the two files, and also the frequency with which the file containing
simulation results is saved. When a simulation is wanted to be restarted
using the information of the two recovery files, the names of the files to be
used are specified inside this parameter group, as well.

— Continuation criteria: The user may activate the desired continuation
criteria among the available ones, which were enumerated in a previous
section.

- Variation operators: The parameters contained in this group are the
bounds for the optimization variables or genes, the types and application
probability of crossover operators, and finally the types and application
probability of mutation operators.

¢ Local search’s parameter sheet

This file contains every parameter controlling the behavior of the local search
algorithm. The Trilinos/Moocho package is the only available local search algo-
rithm to date, so the format of its original parameter file, called Moocho.opt by
default, is used. The parameters the user may define are the following: maximum
number of iterations, maximum run time, convergence tolerance, level of detail
of the generated outputs and some mathematical options specifying the behavior
of the local search algorithm. Additional information is available in the Trilinos
Project’s documentation [12].

Data output interface
Simulation information may be extracted either onto the screen or into the hard drive.
The purpose of this design is to allow the user to follow the execution of the optimization
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algorithm by reading the information shown on screen and, once the simulation has
finished, to have extended information saved in the hard drive for post processing and
later use. The user may customize the output information, as it was explained in section
Data input interface.

The hierarchical data structure of the output files is the following:

* Optimization case directory
— OptimuskFiles directory

— Results directory

The user is expected to create a directory (the optimization case directory) in which
every file related to the optimization case is stored. All output files created by the
Trilinos/Moocho package are stored here, together with the parameter file used for
recovery purposes. The subdirectory OptimusFiles contains as many subdirectories
as individuals that can be simulated simultaneously. The files generated for solving
the objective function(s) of each individual are saved in those subdirectories. The
subdirectory Results, although it may be renamed by the user, contains the files with
general simulation results and also the recovery files.

2.3.10 Other features

Some additional aspects of the Optimus library are mentioned in the following para-
graphs.

Regarding the random number generator, the widely used Mersenne Twister MT19937
[24] has been implemented, already mentioned in Chapter 1 and available in the Par-
adiseo package.

The use of surrogate models for reducing the evaluation time of computationally
expensive objective functions is very interesting. It has not been implemented due to
lack of time, but it is planned in a future extension of the library.

Finally, some popular mathematical functions used as benchmarks for optimiz-
ers have been implemented. On one hand, the Rosenbrock, Rastrigin, Schwefel and
Griewank functions are available for testing the single-objective optimization algorithms.
On the other hand, Kursawe’s function (MOP4) and Zitzler-Deb-Thiele’s function N.
6 (ZDT6) were included for testing multi-objective optimization algorithms. These
functions are intended to be used every time modifications are inserted into the library
in order to check the correctness of the new code.
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2.3.11 Optimus vs. Paradiseo

The Optimus library is clearly based on the structure and algorithms available in
Paradiseo. Therefore, which is the advantage of using Optimus? The summary of the
main differences between both libraries to date is the following:

* The local search methods available in Paradiseo are suitable for discrete optimiza-
tion, but no alternative is provided for real-valued optimization. A gradient-based
local search method was added in Optimus, making possible to build a hybrid
method (genetic algorithm + gradient method) for real valued optimization prob-
lems.

¢ The existence of at least two development branches is very noticeable in Paradiseo.
An important consequence is that the use of self-adaptive individuals is possible
in single-objective optimization, but not in multi-objective optimization. Since the
use of this kind of more sophisticated individuals clearly improves the obtained
results, self-adaptive individuals for multi-objective optimizations have been
implemented in Optimus.

* The parallelization strategy in Optimus and Paradiseo differs considerably. Par-
adiseo is designed focusing on combinatorics problems whose objective function
evaluation times are usually low. The master-worker parallelization algorithm in
Optimus has been designed for objective functions having long simulation times,
thus offering the possibility of evaluating each function in parallel. The parallel
code of Optimus has been created from scratch, so any potential similarity with
Paradiseo has occurred by chance.

2.4 Validation tests

Now that the first version of the optimization library has been created, it is necessary to
test the correctness of the implemented algorithms. An exhaustive check of every feature
was carried out by the author. Most of the tests were more related to programming
issues and are not shown in this Doctoral Thesis. The validation tests related to the
conceptual development of the library are presented in 2 steps: i) based on mathematical
functions contained in common optimization test suites, and ii) based on real-world
simulations belonging to the field of Computational Fluid Dynamics & Heat Transfer
(CFD & HT).



§2.4 Validation tests 93

Validation tests measure the accuracy and performance of the optimization library.
Accuracy is calculated by comparing the known optimal solution of the benchmark
case with the solution provided by the optimization algorithm. The performance may
be obtained in several ways: measuring the number of objective function evaluations,
measuring simulation time, etc. At this development stage, accuracy is considered
important and little attention is paid to performance, i.e. no comparison of different
methods and parametrizations of the optimization algorithm is carried out. The reason
is that no effort was made so far to optimize the performance of the code, so some
measurements are shown but just for information purposes. The unique goal is to
provide a few results which prove the correctness of the library’s implementation.

2.4.1 Benchmark mathematical functions

In Chapter 1 several reputed test suites were mentioned, together with a selection of
some functions for this Doctoral Thesis. On one hand, the Rosenbrock, Rastrigin, Schwe-
fel and Griewank functions were selected for testing the single-objective optimization
algorithms. On the other hand, Kursawe’s function (MOP4) and Zitzler-Deb-Thiele’s
function N. 6 (ZDT6) were the preferred functions for testing multi-objective optimiza-
tion algorithms. Since the evaluation time of these mathematical functions is extremely
short, all simulations were run sequentially in 1 processor of the supercomputer and
hence the parallel features of Optimus were not used.

Single-objective tests

The selected test functions were simulated with 2, 4 and 6 optimization variables. The
stopping criterion for the optimizer was to reach a target objective value of 1e-9, being
the real optimal value equal to O for all functions. Each function was optimized twice:
once using exclusively the genetic algorithm, and once using the hybrid algorithm
composed by the genetic algorithm and the local search method in Trilinos/Moocho
package. Results are shown in Table 2.2 and include the obtained optimal objective
value, the number of function evaluations carried out and the required wall clock time
for each optimization.

Due to the decimal precision used in the implementation of Schwefel’s function,
the optimizer was unable to reach the required accuracy. Nevertheless, the obtained
solutions are considered to be satisfactory.

Regarding the Griewank’s test function, note that the results obtained by the hybrid
optimizer are not shown. The reason is that it was unable to find the global optimum of
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the function with the required accuracy. This fact is explained by the noisy nature of
the function’s fitness landscape. Note also that the optimization variables were bounded
in the range [—50,50].

. Benchmark Genetic algorithm Hybrid algorithm
Test function R n — - -
optimum . No. function | Time . No. function | Time
Optimum . Optimum .
evaluations | (seconds) evaluations | (seconds)
Rosenbrock_2vars | 0 6.6658e-10 | 50048 6.7528 8.8794e-12 | 169 0.0172
Rosenbrock_4vars | 0 9.9656e-10 | 59920 7.1141 2.0650e-11 | 1031 0.1171
Rosenbrock_ 6vars | 0 9.8136e-10 | 95270 8.9573 2.5048e-11 | 4120 0.4481
Rastrigin_ 2vars 0 4.6314e-10 | 1400 0.2051 0 332 0.0550
Rastrigin_ 4vars 0 6.9260e-10 | 5360 0.6044 0 2254 0.2403
Rastrigin_ 6vars 0 7.8748e-10 | 11680 0.9840 0 6859 0.6079
Schwefel_ 2vars 0 2.5455e-05 | 1376 0.1951 2.5455e-05 | 215 0.0668
Schwefel_ 4vars 0 5.0910e-05 | 5450 0.6062 5.0910e-05 | 1823 0.1825
Schwefel_ 6vars 0 7.6365e-05 | 14860 1.1752 7.6365e-05 | 3519 0.3304
Griewank_ 2vars 0 2.2690e-10 | 1184 0.1669 - - -
Griewank_ 4vars 0 7.9315e-10 | 21220 1.4272 - - -
Griewank_ 6vars 0 9.0648e-10 | 31900 3.0057 - - -

Table 2.2: Results of the single-objective test functions.

Multi-objective tests

Multi-objective test functions MOP4 and ZDT6 are shown respectively in Fig. 2.4 and
Fig. 2.5. The true optimal Pareto front (named Benchmark) and the Pareto front
obtained by the optimizer (named Optimus) are represented in both figures. 50100
objective function evaluations were needed in order to build each one of the Pareto fronts
corresponding to MOP4 and ZDT6. Performing those evaluations took 94.88 seconds in
the first case and 28.45 seconds in the latter. It is considered that 1 evaluation involves
calculating Objective 1 and Objective 2 in both tests. It can be seen that the accuracy
and diversity of the Pareto front found by Optimus is acceptable, although better results
could be found by assigning either more time or computational resources.
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Figure 2.4: Pareto Front obtained by Optimus for the Kursawe’s function (MOP4).
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Figure 2.5: Pareto Front obtained by Optimus for the Zitzler-Deb-Thiele’s function N.6 (ZDT®6).
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2.4.2 CFD & HT tests

Two different real-world cases from the CFD & HT field are presented next. The first
case consists on the energy labelling of a fridge, which is based on a real industrial
problem solved at CTTC [25]. The second case is a CFD simulation of an incompressible
fluid circulating through a rectangular pipe, where the optimal geometry of the pipe is
searched.

Optimization of the energy efficiency index of a fridge
The energy efficiency index of a fridge is calculated according to 2 main characteristics:
the energy consumption of the fridge and its useful (internal) volume. The lower the
efficiency index, the fridge’s energy labelling is better and its price in the market higher.
However, the optimal relation between the energy consumption and the useful volume
is not trivial. The reason is that having thinner walls, i.e. greater internal volume,
increases the heat losses due to lack of thermal isolation. The task of the optimization
algorithm consists on finding the optimal balance between these two characteristics for
a set of 3 problems of industrial interest.

The first step has been to create a simplified mathematical model of the fridge, which
may be solved both analytically and using more advanced computational tools. In this
model, the fridge is composed by N walls. Each wall has the following characteristics:

A;: area

k;: thermal conductivity
d;: thickness

AT;: temperature gradient

The total conduction heat loss through the walls is defined by the following expres-
sion:

N
Q=) kiAAT;/d; (2.1)

=1
Two volumes are defined: the external volume of the fridge (V,) and the internal

or useful volume (V). V, has a constant fixed value, whereas the internal volume is
defined as:

N
VZVO—ZAidi (2.2)
i=1
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The energy efficiency index (E;) is defined according to the laws in force in 2013 (see
Fig. 2.6):

E;=E,E (2.3)

where the term E is related to the energy consumption of the appliance and E; is
related to the internal volume.
On one side, E, is defined as follows:

E,=100-%£1-Q (2.4)
where
365-24
kl=——— 2.5
1000-COP (2.5)

being COP the Coefficient of Performance. On the other side, E; is defined as in Eq.
2.6 for A+ and A++ energy labels and as in Eq. 2.7 otherwise:

Eq4=M-(AV)+N+CH (2.6)

Ey=M-(AV)+N (2.7)

where M and N depend on the appliance class and CH is a correction factor (see Fig.
2.6). AV is defined as in Eq. 2.8 for A+ and A++ energy labels and as in Eq. 2.9
otherwise:

(25-T.)

AV=2 Ve 55

-FF.-CC-BI (2.8)

AV =Vp +QVFp (2.9)

where T, is the compartment temperature, V., is the compartment storage volume,
FF/CC/BI are several correction factors tabulated in Fig. 2.6, Vy is the fresh food
storage compartment volume, Vr is the frozen food storage compartment value and Q is
dependent on the appliance class (see Fig. 2.6).

Two implementations of the described mathematical model were carried out. The
first one consists on just writing the formulation using C++ functions. The second
one consists on building a multi-physics model of the fridge using CTTC’s in-house
multi-physics software, called NEST [19]. The aim of the latter implementation is to
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test the coupling between Optimus and NEST, which was one of the design criteria of
Optimus.

The multi-physics model has a main system, called Fridge, at the top level. This
system is composed by 2 subsystems, namely the refrigerator compartment and the
freezer compartment. The refrigerator compartment subsystem is composed by 5 walls
(named as refrigerator right side, refrigerator left side, refrigerator rear, refrigerator
top and refrigerator door), whereas the freezer compartment subsystem is composed
by 9 walls (named as bottom, compressor zone right side, compressor zone left side,
compressor zone vertical side, compressor zone horizontal size, freezer right side, freezer
left side, freezer rear, freezer door). Thus, the overall number of walls is 14 and the total
volume and heat losses of the fridge are the sum of the volumes and heat losses of both
compartments.

ergy labelling

s Energy efficiency index E;
E; =E,/Eg
E, =Energy cor ption of the app
E,, =M * Corrected volume(AV)+ N (kWhlyear)
For A+ & A++ E,, = M * Corrected volume..(AV)+ N (kWh/year) +CH
AV = VR+ QVF Vp =Fresh food storage compart. volume
L. Le n oy i i Where: Vg =Frozen food storage comp. volume
For A+ & A++AV =X (V* (25-T,)/20*FF *CC* BI) b sk
[ Appliance class M N Q Conection Value | conaton \
v ; :':gg:lc ellar : 22:?33 22:: 0.-75 FF (frost free) (1,2 For “frost-free” (ventilated) frozen food compartments
3 fridge without stars|0.233 | 245 1.25 i Otherwise
- 4 fridge % 0.643 191 1.55 CC (Climatic 1,2 For “Tropical® appliances
++= < § lass)
A 30 5 fridge ** 0455(; 1‘;55 ;?: ol 1.1 For “subtropical” appliances
— e 6 fridge *** 0.657 2. K 4 ol
A+ 30 42 for A+ & A++ [0.777 | 303 S e Py
A - 42 4 <55 7 fridge/freezer .(...) 0.777 | 303 2.15(2’ g For built-in appliances of under 58 cm in wit
8 upright freezers 0.472| 286 2.15(2) N Otherwise
B = 55 - <75 for A+ & A++ |0.539 | 315 C"cgcw"m'mmam) {S0Kwhly |  For appliances with a chill compartment of at least 15 litres|
9 chest freezer 0.446| 181 2.15(2) \ i3 oo Otherwise
C =75-<90 for A+ & A++ (0.472 | 286
10 multi-doors & othet (4) | (4) (2) (3) Nota (2):
D =90-<100 For Frost-free V is nultiplied by 1.2
N 1 1 Note (4: M and N values are based on the temp. and the “star” i of .
E =100-<110 the coldest compartement. L
= -< Compart. Temp. qui category
F 1 1 0 1 25 >5°C f 17273 Fridge (including cellar) without freezer
= <8°C * 4 Fridge *
G >1 25 <12°C ™ 5Fridge™
<-18°C *** 6 Fridge *** -
<-18°C *(**) 7 Fridgeffreezer *(***) Tc= Compartement temperature
With freezing capacity V= Compart. storage volume

Figure 2.6: Tables for calculating fridges’ and freezers’ energy efficiency index (E;) according to
the laws in force in 2013.
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3 different optimization problems are presented next. The AT and the area of each
wall are known input parameters, as well as the coefficients tabulated in Fig. 2.6. The
aim of the optimizations is always to find a set of wall thickness values corresponding
to the optimum design according to an objective function. The objective function is
different in all 3 problems.

The benchmark results have been obtained by using the analytical method of La-
grange multipliers applied to the simplest implementation of the objective function,
i.e. the formulation written using C++ functions. On the other hand, the multi-physics
model has been the objective function evaluated by Optimus.

Since the proposed optimization problems are extracted from a real world industrial
project, real geometrical data, operation points and other confidential information is not
provided. This is why every wall thickness value of each optimization problem has been
normalized using the biggest thickness in the benchmark results of that problem.

Problem 1: Find the set of thickness values which minimizes the energy effi-
ciency index (E;) of the fridge.

min f(d)=E;(d)
sit. E;>0

and d;>0 fori=1,..,14
where d is a vector containing the 14 d; wall thickness values.

The obtained optimal sets of thickness values are shown in Table 2.3, whereas the
associated heat losses, volumes and energy efficiency indexes are shown in Table 2.4. It
took 2464 objective function evaluations to the genetic algorithm to reach those results,
whereas it took 584 evaluations to the hybrid algorithm.
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Wall Benchmark | Genetic algorithm’s | Hybrid algorithm’s
thickness thickness thickness
Bottom 0.922 0.926 0.926
Compr. zone right side 0.922 0.926 0.926
Compr. zone left side 0.922 0.926 0.926
Compr. zone vertical side | 0.972 0.976 0.976
Compr. zone horiz. side 1.000 1.005 1.005
Freezer right side 0.922 0.926 0.926
Freezer left side 0.922 0.926 0.926
Freezer rear 1.000 1.005 1.005
Freezer door 0.922 0.926 0.926
Refrigerator right side 0.615 0.617 0.617
Refrigerator left side 0.615 0.617 0.617
Refrigerator rear 0.727 0.731 0.731
Refrigerator top 0.615 0.617 0.617
Refrigerator door 0.615 0.617 0.617

Table 2.3: Optimal sets of thickness values for Problem 1.

Benchmark | Genetic algorithm | Hybrid algorithm
value Value | Rel. error | Value | Rel. error
Q[W] 32.25 32.11 0.4% 32.11 0.4%
V insulation [liters] 401.20 402.90 | 0.4% 402.90 | 0.4%
V refrigerator [liters] | 146.50 145.30 | 0.8% 145.30 | 0.8%
V freezer [liters] 58.20 57.80 0.7% 57.80 0.7%
E; 30.68 30.69 0.03% 30.69 0.03%

Table 2.4: Energy labelling parameters associated to the optimal sets of thickness values found
for Problem 1. The values found by the genetic and the hybrid algorithms are compared with the
benchmark, being the relative error measured.
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Problem 2: Find the set of thickness values which minimizes the energy effi-
ciency index (E;) of the fridge being the internal (useful) volume fixed.

min f(d)=Q(d)
s.it. dn>0

and d;>0 fori=1,...,13

where d is a vector containing 13 d; wall thickness values (all except the N-th
thickness value).

Since the internal volume of the fridge is a known parameter, the N-th thickness
has been extracted from the set of optimization variables and is calculated as a function
of the rest of geometrical data:

Vinsul_z diAi

dn = % =777° 2.10
N An ( )

where
Vinsur =Vo -V (2.11)

It was decided to define the objective function as minimizing the overall heat loss @,
since minimizing @ implies minimizing E; for a fixed internal volume of the fridge.

The obtained optimal sets of thickness values are shown in Table 2.5, whereas the
associated heat losses, volumes and energy efficiency indexes are shown in Table 2.6. It
took 9010 objective function evaluations to the genetic algorithm to reach those results,
whereas it took 988 evaluations to the hybrid algorithm. Note that the genetic algorithm
was stopped manually when stagnation of the best individual was detected.
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Wall Benchmark | Genetic algorithm’s | Hybrid algorithm’s
thickness thickness thickness
Bottom 0.921 0.905 0.921
Compr. zone right side 0.921 1.034 0.921
Compr. zone left side 0.921 0.979 0.921
Compr. zone vertical side | 0.972 0.962 0.972
Compr. zone horiz. side 1.000 0.995 1.000
Freezer right side 0.921 0.920 0.921
Freezer left side 0.921 0.912 0.921
Freezer rear 1.000 0.991 1.000
Freezer door 0.921 0.914 0.921
Refrigerator right side 0.615 0.615 0.614
Refrigerator left side 0.615 0.615 0.614
Refrigerator rear 0.727 0.723 0.727
Refrigerator top 0.615 0.621 0.614
Refrigerator door 0.615 0.615 0.614

Table 2.5: Optimal sets of thickness values for Problem 2.

Benchmark | Genetic algorithm | Hybrid algorithm
value Value | Rel. error | Value | Rel. error
Q[W] 46.59 46.62 0.06% 46.60 0.02%
V insulation [liters] 277.60 277.60 | 0% 277.60 | 0%
V refrigerator [liters] | 234.90 235.00 | 0.04% 235.00 | 0.04%
V freezer [liters] 93.40 93.40 0% 93.40 0%
E; 33.97 33.98 0.03% 33.97 0%

Table 2.6: Energy labelling parameters associated to the optimal sets of thickness values found
for Problem 2. The values found by the genetic and the hybrid algorithms are compared with the
benchmark, being the relative error measured.
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Problem 3: Find the set of thickness values which maximizes the internal (use-
ful) volume of the fridge being the energy efficiency index (E;) fixed.

min f(d) = V;,eu(d)

s.it. Vipsur <V,
E;=E;fixed

and d;>0 fori=1,..,14

where E; riyoq = 34.7, d is a vector containing the 14 d; wall thickness values and
the insulation volume is calculated as in Eq. 2.11.

The difficulty of solving this optimization problem with Optimus lies on the fact
that the implementation of equality constraint handling methods is not finished for the
genetic algorithm. As a consequence, there is no straightforward way to treat this kind
of constraints to date. Therefore, another approach to the same optimization problem is
proposed:

min f(d)=w1-Vipsu(d) + wa-(E; —E; fivea)?
s.it. Vipsui <V,

and d;>0 fori=1,..,14

where E; ¢ixeq = 34.7, w1 =1, wg = le —4, d is a vector containing the 14 d; wall
thickness values and the insulation volume is calculated as in Eq. 2.11.

It can be seen that the objective function is now composed by two weighted terms.
The first term is related to the insulation volume, whereas the second term represents
the quadratic error of E; compared to E; riy.q. This second term guarantees the
fulfillment of the equality constraint, provided that appropriate weight values are
defined. The proposed values for w; and wo were chosen because this allows calculating
both E; and the insulation volume (in liters) with at least 1 decimal precision.

The obtained optimal sets of thickness values are shown in Table 2.7, whereas the
associated heat losses, volumes and energy efficiency indexes are shown in Table 2.8.
It took 50024 objective function evaluations to the genetic algorithm to reach those
results, whereas it took 4985 evaluations to the hybrid algorithm. Note that the genetic
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algorithm was stopped manually when stagnation of the best individual was detected.

Wall Benchmark | Genetic algorithm’s | Hybrid algorithm’s
thickness thickness thickness

Bottom 0.922 0.898 0.920

Compr. zone right side 0.922 1.017 0.920

Compr. zone left side 0.922 0.890 0.920

Compr. zone vertical side | 0.972 1.037 0.971

Compr. zone horiz. side 1.000 1.011 0.999

Freezer right side 0.922 0.931 0.920

Freezer left side 0.922 0.913 0.920

Freezer rear 1.000 0.990 0.999

Freezer door 0.922 0.909 0.920

Refrigerator right side 0.614 0.612 0.613

Refrigerator left side 0.614 0.607 0.613

Refrigerator rear 0.727 0.723 0.726

Refrigerator top 0.614 0.623 0.613

Refrigerator door 0.614 0.619 0.613

Table 2.7: Optimal sets of thickness values for Problem 3.

Benchmark | Genetic algorithm | Hybrid algorithm
value Value | Rel. error | Value | Rel. error

Q[W] 48.66 48.62 0.08% 48.66 0%

V insulation [liters] 265.80 266.20 | 0.2% 265.90 | 0.04%

V refrigerator [liters] | 243.10 243.10 | 0% 243.40 | 0.1%

V freezer [liters] 96.70 96.70 0% 96.80 0.1%

E; 34.70 34.69 0.03% 34.70 0%

Table 2.8: Energy labelling parameters associated to the optimal sets of thickness values found
for Problem 3. The values found by the genetic and the hybrid algorithms are compared with the
benchmark, being the relative error measured.

Two additional studies were carried out using the multi-objective optimization
features implemented in Optimus. The first one shows the variation of the energy
efficiency index E; as a function of the insulation volume Vj,;,; (see Fig. 2.7). The
second one shows the variation of the total heat loss @;,ss as a function of the insulation
volume Vj,¢,; (see Fig. 2.8).
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Figure 2.7: Variation of the best attainable energy efficiency index (E;) as a function of the
insulation volume (V;,,5, ;). Upper graph: V;, cu1ation 1S represented in the whole range. Lower

graph: V;,sulation 18 represented in a smaller range, being every point extracted from the upper
graph.
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insulation volume (V;,,5, ;). Upper graph: V;, cu1ation 1S represented in the whole range. Lower
graph: V;,sulation 18 represented in a smaller range, being every point extracted from the upper
graph.
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Both graphs were obtained by solving 2-objective optimization problems in which
both objectives had to be minimized by assigning appropriate values to the set of
14 thicknesses. The obtained optimal Pareto fronts are shown in the graphs, which
represent the best attainable values of E; and @, for each value given to Vj,,;. Note
that a few points dominated by other points (according to Pareto’s criterion) are shown.
This happened because several simulations for different Vj,,,; ranges were first run
and the obtained results were finally assembled giving rise to the Pareto fronts in Fig.
2.7 and Fig. 2.8, being the dominated points not filtered after assembling the initial
results.

For concluding this section focused on the energy optimization of a fridge, it can be
said that the Optimus library solved successfully all presented industrial optimization
problems. Moreover, it has been proved that the coupling between Optimus and CTTC’s
multi-physics software NEST works fine and is comfortable to use.

Surface morphing optimization problem
Surface morphing is one of the applications for which an optimization algorithm may be
used. The need to find the optimal shape of a component which reduces aerodynamic
drag, for instance, is a common problem in the field of aerodynamics. Finding such
geometry is a difficult task and carrying out a parametric study may involve a large
amount of computational time. The finer the mesh used for modeling the geometry, the
more computational time is required. The most interesting aspects of facing such a
problem with Optimus are twofold: i) it needs to be coupled to the TermoFluids package,
the in-house CFD software at CTTC, and ii) the parallelization algorithm of Optimus
can be tested.

A two dimensional surface morphing problem is proposed next, based on the case
of a duct with variable indentation taken from [26]. The geometric parameters of the
mathematical model are shown in Fig. 2.9 and in the following equation,

h lx| € [0,%1]
y(x) = { 0.5k [1-tanh(a(|lx|—x2))] x| € [x1,x3] (2.12)
0 lx| > x3

where a =4.14, x1 = 4b, x3 =6.5b and x2 = 0.5(x1 + x3). & is the indentation, bounded in
[0,0.38-b]. b is a parameter representing the height of the duct, and for the present test
case it is defined to be b = 1.0. The flow at the initial state is assumed to be completely
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developed with velocity
v=(6y(1-),0,0" (2.13)

The inlet flow is set to be constant according to Eq. 2.14

b
sz 6y(1-y)dy=1 (2.14)
0

A pressure-based condition is applied at the outlet boundary. The Reynolds number is
fixed to 507 and the Prandtl number to 0.71. As the indentation is varied, the velocity
contour maps are altered as it is shown in Fig. 2.10.

Figure 2.9: Geometry of the test case based on a duct with a moving indentation, with 6 =1
(extracted from [26]).

Figure 2.10: Velocity contour maps for different indentation values (extracted from [26]).

The proposed optimization problem makes use of this mathematical model and is
stated as follows:
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Problem 4: Find the optimal indentation of the pipe which minimizes the mean
horizontal velocity of the fluid at x=0.

min f(h)=Upean(h) at x=0
where 0<h <0.38

The problem has one single optimization variable and the mean horizontal velocity
at x=0 can be calculated as follows:

1 b
Unean = m fh 6y(1—-y)dy (2.15)

Due to the simplicity of the problem, it is known that the optimal indentation value is
h=0.

The implementation has been carried out in the following way. A mesh for the
rectangular pipe with no indentation has been first done by means of ICEMCFD [27].
When a new mesh is needed for a certain indentation value, a parallel radial basis
function method for unstructured dynamic meshes [26] is used in order to displace step
by step the nodes of the base mesh until the desired indented geometry is reached. Once
the required mesh is constructed, the flow is solved by means of an explicit CFD solver
from the TermoFluids package. It is made sure that the simulation time is enough to
reach a steady turbulent state before the mean horizontal velocity at x = 0 is calculated.
The cross section of the pipe has been discretized in 100 equally sized control volumes
for Uj,eqn’s calculation.

Two optimizations have been carried out using the genetic algorithm and the hybrid
algorithm respectively. The same continuation criterion was selected in both cases, i.e.
to stop the optimization when the best individual was not improved after a certain
number of generations. On one hand, it took 925 function evaluations to the genetic
algorithm to reach an objective value of 0.99036. The indentation corresponding to
this result was 1.79338e-06. On the other hand, it took 676 function evaluations to
the hybrid algorithm to reach an objective value of 0.990356, being the indentation
corresponding to this result 2.94003e-05.

The theoretical optimal objective value is 1, which is obtained for an indentation
value of A = 0. It can be seen that the obtained results are very close, being deviations
attributed to the inaccurate discretization of the integral used for calculating Up,eqn.
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The obtained results are considered satisfactory, mainly because a successful Optimus-
TermoFluids coupling was achieved and because the correctness of the parallel task
manager’s implementation was proved. Good results were also provided for the opti-
mization problem, although this was a secondary concern due to its simplicity.

2.5 Conclusions

A new optimization library named Optimus has been implemented in this second
chapter. The first step has been the definition of general and specific requirements
of the library. The general requirements are based on common design concepts of a
framework, whereas the specific requirements are conditioned by the research field and
the infrastructure available at the research institution (CTTC). Thus, a brief description
of the available computing facilities has been included.

A state of the art study on already available optimization libraries has been con-
ducted next, considering both free open-source software and proprietary commercial
software. After comparing several packages, it has been decided to base the development
of Optimus in two of them: Paradiseo and Trilinos/Moocho, which are both free open-
source packages. Paradiseo has been chosen because of its implementation of genetic
algorithms, whereas the availability of gradient-methods suitable for local search has
been the appealing feature of Trilinos/Moocho.

The main features of Optimus are explained in the subsequent section. The devel-
opment strategy for the new library is first introduced. The implemented algorithms
are described next, grouped under the following sections: definition of the optimization
problem, single-objective vs. multi-objective optimization, genetic operators, hybrid
methods, continuation criteria, statistics, parallelization, user interface and other fea-
tures. Finally, a brief comparison between Optimus and Paradiseo is carried out with
the aim of remarking the improvements available in the new library.

The last section of this chapter contains the results obtained in two types of val-
idation tests: benchmark mathematical functions and specific tests from the field of
Computational Fluid Dynamics and Heat Transfer (CFD & HT). On one hand, the
simulated mathematical functions have been extracted from common optimization test
suites designed for both single-objective and multi-objective cases. On the other hand,
CTTC has a vast experience on CFD & HT simulations and two cases have been selected:
the optimization of the energy efficiency of a fridge, and the optimization of the geometry
of a pipe. Optimus has been able to successfully carry out all tests, which proves that
the library is ready to be used for solving real-world optimization problems.
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3

Load balancing methods for parallel
optimization algorithms

Abstract. The aim of this third chapter is to evaluate the impact of several load
balancing methods on the parallel efficiency of optimization algorithms. After carrying
out a state of the art study of the available techniques, new load balancing algorithms
are proposed and tested by means of an exhaustive theoretical case study. Finally, they
are applied to the optimization of a real-world engineering model consisting on the
refrigeration of a power electronic device.

115



116 83.1 Introduction

3.1 Introduction

A state of the art study on the parallelization of genetic and other population-based
optimization algorithms was carried out in section 1.7. Regarding hardware paralleliza-
tion, finding an appropriate balance of the computational load was identified as the key
point to avoid the degradation of the optimization algorithm’s scalability. This applies
in case the average evaluation time of the batch of individuals is greater than the
average time required by the optimizer for performing inter-processor communications.
In the case of a synchronous global parallel genetic algorithm (i.e. an algorithm that
synchronizes all processors after each generation, stopping and waiting to receive the
fitness values for all the population before starting the next generation) or any other
optimization algorithm which synchronizes all processors after the evaluation of every
batch of individuals, the main potential causes of computational load imbalance are the
following:

¢ Inappropriate ratio (no. individuals / no. processor groups): The processor groups
with fewer individuals to evaluate will remain idle while the rest of the groups fin-
ish their pending evaluations. This is likely to happen when a hybrid optimization
method is used, e.g. genetic algorithm + gradient method, because the batches of
individuals to be solved by each constituent algorithm have very dissimilar sizes.

¢ Heterogeneous parallel computer systems: Hardware heterogeneity translates
into non-homogeneous objective evaluation times and the consequent loss of
parallel performance in the case of optimization algorithms.

¢ Heterogeneous objective function evaluation time: This phenomenon happens
when the evaluation cost of individuals is dependent on the optimization variables,
i.e. the input variables of the objective functions, and is not unusual in heat
transfer and nonlinear mechanics applications.

The greater the number of processors used, the greater the degradation of the
scalability caused by computational load imbalance. Taking into account that we stand
on the threshold of the exascale era, the need of codes that ensure an efficient use of
computational resources is becoming crucial. However, and as stated in section 1.7,
scarce research has been found related to hardware parallelization in optimization
algorithms.

It may seem strange at first glance to find a Doctoral Thesis dedicated to the
parallelization of optimization algorithms hosted by a research group in the field of
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Computational Fluid Dynamics & Heat Transfer (CFD & HT). Nonetheless, the motiva-
tion of this work may be understood more easily when taking into account that CFD &
HT is a field at which physics, applied mathematics and computer science join together.
CFD simulations are characterized by their high computational cost. Consequently, an
unbalanced load distribution among processors can easily lead to a considerable waste
of computational time.

An illustrative example of a CFD simulation that requires advanced load balancing
algorithms is described in [1]. The behavior of a fluid in a certain domain is discretized
using a mesh. If higher resolution is needed at some locations during the simulation,
the mesh is dynamically altered by means of an adaptation technique. These local
mesh refinements, however, increase the number of cells. The consequent adverse
effect on the computational load balance in case an optimization is being run is twofold.
First, there is a direct relationship between the number of cells in a model and its
computational cost. As the number of cells increases, so does the evaluation time of the
individual. Therefore, a batch of individuals with meshes having a different number of
cells is heterogeneous regarding evaluation times. Second, the mesh of each individual
is partitioned among the processors in charge of its evaluation by means of domain
decomposition techniques. In the case of having a mesh with a constant number of cells,
it is enough to perform partitioning before evaluating the individuals. Nonetheless,
the use of adaptation techniques during a parallel simulation leads to computational
load change throughout the domain, making the initial load balancing ineffective. If
one wants to maintain a proper parallel efficiency, a dynamic load balancing scheme
has to be introduced. This example shows that the use of sophisticated techniques for
optimizing CFD & HT models may involve important computational load imbalance
problems.

The load balancing methods developed in this chapter have been applied to the
genetic algorithm. The reason is that this is the most widely used optimization heuristic,
so the impact of the research is expected to be maximized. Moreover, the genetic
algorithm is the only global search technique implemented in Optimus (see Chapter
2). Anyway, it must be borne in mind that the proposed algorithms and the reached
conclusions are extendable to any other optimization method evaluating batches of
individuals and synchronizing all processors after the evaluation of each batch.
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3.2 Approach to the load balancing problem

3.2.1 Definitions

Load balancing problem

The load balancing problem by means of task scheduling consists on assigning n tasks
to p resources in such a way that the total completion time of the task set (makespan)
is minimized [2]. The minimum makespan comes true when the computational load is
well balanced, i.e. when every resource is occupied and efficiently used. This balancing
process is an NP-complete problem and may be carried out statically, i.e. before the
set of tasks begins to be processed, or dynamically, i.e. as simulation progresses and
computational requirements become clearer.

Nature of tasks
Two concepts must be introduced before addressing the load balancing problem: divisible
load theory and job flexibility.

Divisible load theory is a methodology involving the linear and continuous modeling
of partitionable computation and communication loads for parallel processing [3]. This
methodology seeks to divide the total load into smaller fractions that can be processed
independently. Once every fraction has been processed, the partial solutions can be
consolidated to construct the complete solution to the problem. The partitioning depends
on the divisibility of the load, which is the property determining whether a load can be
decomposed into a set of smaller loads or not. The following classification is proposed in

[3]:

¢ Indivisible loads: Loads that cannot be subdivided and are independent from
any other job, thus not having any precedence relations. They have to be processed
in their entirety in a single processor.

¢ Divisible loads: Loads that can be subdivided into smaller fractions.

— Modularly divisible: These loads can be subdivided into smaller modules
based on some characteristic of the loads or the system in charge of pro-
cessing them. The processing of a load is complete when all its modules
are processed. Moreover, the processing of the modules may be subject to
precedence relations.



§3.2 Approach to the load balancing problem 119

— Arbitrarily divisible: These loads can be arbitrarily partitioned into any
number of load fractions, and all elements in the load demand an identical
type of processing. These load fractions may have precedence relations.

In the case of arbitrarily divisible parallel applications (or jobs), the internal design
of the job may ease or constrain the partitioning into smaller jobs. This concept is known
as flexibility. Assuming that a job has a running time ¢ if simulated in a certain number
of processors p, Feitelson and Rudolph [4] propose the following classification regarding
the flexibility of jobs (also adopted by [5,6]):

* Rigid jobs: They are compiled to be run in a fixed number of processors specified
by the user. These applications cannot resize themselves during runtime and is
impossible for them to efficiently utilize otherwise idle resources.

* Moldable jobs: They can be executed on multiple CPU partition sizes, but once
the execution starts, these sizes cannot be modified. A task scheduler is in charge
of choosing a specific number of processors p from a range of choices given by the
user. The decision is made at start time and the number of processors assigned to
the job will not change until the end of the execution.

* Malleable jobs: The number of processors assigned to these jobs can be modified
during their execution. A malleable application can grow whenever resources are
available and can shrink when resources need to be freed. These changes are
requested by the task scheduler depending on the availability of resources and
the scheduling decisions.

¢ Evolving jobs: The number of processors assigned to these jobs can be modified
during their execution, but the changes are requested by the job itself. The
task scheduler may accept or deny these adaptation requests depending on the
available resources.

Therefore, malleability is able to improve both resource utilization and response
time in spite of involving a more complex design of the jobs.

Let us introduce an example belonging to the field of CFD & HT for the sake of a
better understanding of the aforementioned concepts. A common optimization problem
in wind energy production consists on designing an aerodynamic profile subject to
certain structural constraints in order to maximize the power generation in a 3-blade
turbine. The design chain involves 3 main steps (see Fig. 3.1):
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1. The creation of a two-dimensional airfoil geometry based on a few design variables.

2. Evaluation of the drag and lift coefficients of the airfoil for different angles of
attack, checking that the obtained geometries are compliant with structural
constraints.

3. Calculation of the output power of a 3-blade wind turbine constructed using the
aerodynamic profile obtained in step 1.

Regarding load divisibility, an indivisible task would have to compute all calculations
in a single processor and would be independent of any other job (see Fig. 3.2 (a) and
Fig. 3.3 (a)). Nevertheless, this design procedure has 3 clearly differentiated steps or
modules, which makes more reasonable to consider the task as modularly divisible. The
three subtasks may be computed in different processors and are subject to a precedence
relation, being necessary to finish subtask 1 before starting subtask 2, and to finish
subtask 2 before starting subtask 3. The completion of the original task involves
processing all three subtasks or modules (see Figs. 3.2 (b) and 3.3 (b)). Similarly,
each of the subtasks could be further subdivided. Unlike steps 1 and 3, step 2 can be
computationally demanding since it may contain CFD and structural finite element
simulations based on meshed models. Thus, module 2 is an arbitrarily divisible task
which can be divided into any number of load fractions with an upper limit equal to the
size of the meshes. This is achieved by partitioning the meshes into several subdomains,
which are then assigned to different processors (see Figs. 3.2 (c) and 3.3 (¢)).

However, strong precedence relations arise when working with meshes. In the
example of Fig. 3.4, a mesh composed by 6 cells is depicted and it is assumed that a CFD
simulation taking 3 time steps is carried out. If there are enough available processors
and each processor is in charge of processing 1 cell, there will be a total amount of 18
tasks or jobs. The 6 tasks belonging to time step ¢ can be solved independently from
one another. But the tasks belonging to the same time step ¢ are dependent on those
belonging to time step ¢t —1, i.e. a cell is dependent on the results obtained for itself and
for its adjacent cells in the previous time step. This establishes a strong precedence
relation between tasks.
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(2)

(b)

(©

Figure 3.1: Steps for the optimization of the output power of a wind turbine [7]: (a) Design of a
two-dimensional aerodynamic profile (b) Evaluation of lift and drag coefficients, check structural
constraints (c) Calculation of the output power provided by the 3-blade turbine.
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Figure 3.2: Examples of load divisibility: (a) Indivisible load (b) Modularly divisible load (c)
Modularly divisible load where the second module is also arbitrarily divisible.
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Figure 3.3: Interaction graphs of the tasks represented in Figure 3.2.
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Figure 3.4: Example of the task interaction graph of a mesh with 6 cells simulated in 6 processors
during 3 time steps.
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Processing a mesh is an arbitrarily divisible job whose flexibility is constrained by
the solver. A rigid job would be that which can only be run using a fixed number of
processors, 6 for instance. This is comfortable for the designer of the solver in charge of
processing the mesh, because it is enough to partition the domain only once and this
can be done before beginning any simulation. Nonetheless, the task scheduler of the
optimizer would not be able to modify the amount of resources assigned to the task
and a degradation of the parallel efficiency could happen when evaluating a batch of
individuals. If a moldable job was provided, the task scheduler would be able to decide
the amount of processors assigned to each task at the beginning of the evaluation of
the batch of individuals. The decision could also be changed at any time before the
execution of the task started. This would involve the task to have the ability to call a
mesh partitioning module in order to fit the mesh topology to the number of processors
assigned dynamically by the task scheduler. A malleable job owns the preferred and
most complex degree of flexibility, thanks to the ability of being expanded or shrunk by
the task manager in order to adapt to the available resources in run time. This degree
of flexibility maximizes the overall parallel efficiency, but also requires a more complex
implementation. Finally, an evolving job would be similar to the malleable one with the
only difference that the job itself would be able to ask for resources to the task scheduler.

3.2.2 Factors affecting parallel performance

The importance of maintaining a balanced load among the processors in order to achieve
high parallel performance in large-scale multiprocessor systems has been already men-
tioned. The reason is that the total execution time of a set of tasks is determined by
the last processor to finish its assigned work. The main factors affecting the parallel
performance of applications, i.e. the crucial factors when designing a task schedule,
have been identified and are listed hereafter.

Factors related to the hardware:

* Hardware heterogeneity: The same task has different completion times for dif-
ferent resources when considering a heterogeneous system [2]. Thus, information
on the processors’ speed is to be taken into account by the scheduler in order to
obtain a good balance of the computational load. A potential solution, similarly to
that proposed in [8], consists on testing the hardware before the execution of the
real set of tasks is started so that the scheduler owns benchmark results of all
participating processor nodes indicating their performance.
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* Network topology: A supercomputer is composed by several multiprocessor
nodes connected to each other creating a network. Each node’s processors have a
common memory space called shared-memory, and all the interconnected shared-
memory islands give rise to a distributed-memory network. On one hand, each
processor is able to access almost instantaneously the shared-memory owned by
its node. On the other hand, communication delays are considerably higher in a
distributed-memory environment due to the fact that communications are carried
out by message passing [3]. Indeed, communication on the network is becoming
the bottleneck for the scaling of parallel applications [6]. Two conclusions may be
extracted from these considerations. First, tasks using OpenMP, MPI or hybrid
models (OpenMP+MPI) have to be carefully placed upon the machines so that
hardware affinities are efficiently handled for optimal performance (processor-to-
processor affinity). Second, if the data needed by a task are distributed among the
local memories of a distributed-memory network, that parallel task will have an
affinity for a subset of the processors based on the locality of its memory references
(task-to-processor affinity) [9]. Hence, the task scheduler should provide topology
aware task placement techniques based on the mentioned processor-to-processor
and task-to-processor affinities in order to improve the parallel performance. This
feature is even more important in highly parallel applications like mesh-based
CFD & HT simulations.

* Amount of system’s memory: As it is mentioned in [9], the amount of memory
available in the system can have an indirect impact on the total execution time by
allowing the scheduler to modify and expand task-to-processor affinities and to
reduce memory conflicts. For example, in a distributed-memory machine, heavily-
shared data objects can be replicated in the memories of several processors. This
replication expands the number of processors for which a particular task may
have an affinity. Disadvantages of this replication are the cost of the additional
memory, and perhaps more importantly, the time required to maintain coherence.

* Processor partitioning model: In the “dedicated master” partitioning, a proces-
sor can be dedicated exclusively to scheduling operations. In the “peer partition”
approach, the loss of a processor to scheduling is avoided and any processor can
run the scheduler when necessary. Obviously, the dedicated master approach
seems to be the most suitable model for performing sophisticated scheduling
techniques since it exploits the full processing power of the designated processor
for this aim [9].
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Factors related to the nature of tasks:

¢ Load divisibility: A divisible computational load may be split into several tasks,
what allows reaching a better load balance but inserts a scheduling overhead
caused by the increase in the overall number of tasks. The ability of the scheduler
for stopping and restarting a task is also useful as a load division technique.
Nonetheless, [10] warns about the overhead of starting a task, which may be due
to i) the time to transfer application input/output data to/from each computing
resource, and ii) the potential latencies involved when initiating a computation or
a communication.

¢ Flexibility of jobs: As it has been previously explained, the internal design of
arbitrarily divisible parallel jobs can ease or constrain their partitioning into
smaller jobs, and this is the concept known as flexibility. The higher the flexibility
of the jobs, the easier will be for the task scheduler to balance the overall compu-
tational load. Moreover, the use of malleable or evolving jobs allows implementing
sophisticated dynamic scheduling algorithms able to adapt the load balance in
run time.

¢ Interdependencies between tasks: The precedence between tasks is another
factor to be taken into account by the scheduler. Although tasks in the batches
handled by optimization algorithms are independent and do not need any synchro-
nization or inter-task communications, the use of load division techniques may
generate precedence relationships between some of the newly generated tasks.

* Heterogeneity in task run times depending on its input variables: The
tasks contained in each batch handled by an optimization algorithm are of the
same type, but their processing time may vary depending on the input variables
(the optimization variables). Thus, the task scheduler should be aware of the
processing time required by each job. [8] proposes to insert the parallel appli-
cation into a class having a standardized interface (an enhancement of the FMI
interface [11], for instance) that contains information of its performance and
parallelizability and with which the task scheduler should be able to interact.

Factors related to the scheduler’s configuration:

¢ Limited scheduling time: As mentioned in [9], the time required to schedule
the tasks can be in direct conflict with the desire to balance the computational
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load. For instance, using small task sizes can lead to good load balancing since
these small tasks can be used to fill in processor idle times. However, if some of
the scheduling operations are performed at run time, the time required to perform
the scheduling will be added directly to the execution time of each task. Since
this scheduling time is generally independent of the execution time of the parallel
tasks, the use of small task sizes can produce very high scheduling overheads,
which can negate the advantages of using small tasks for load balancing. Hence,
it is useful to limit the scheduling time in such a way that equilibrium between
the computational load balance and the scheduling overhead is achieved.

¢ Distributed scheduling: The scheduling operation can also be parallelized and
distributed among several processors so as to get better task-to-processor maps
by assigning greater computational power to the scheduler. However, it must
be taken into account that the information required by the scheduler should be
available in the memory of the processors in charge of running it, what may
involve additional communication overhead [9].

3.2.3 Applications using task schedulers

The need of task scheduling algorithms is shared by several fields in the information
technology. Operation of High Performance Computing (HPC) platforms may be one of
the best known applications, but other emerging fields like cloud computing and grid
computing have shown similar necessities.

There is vast literature analyzing the algorithmic and last advances of Resource
and Job Management Systems (RJMS), the software controlling the behavior of HPC
platforms. Such system managers take into consideration several features for scheduling
[6], like hierarchical resources, topology aware placement, energy consumption efficiency,
quality of services, fairness between users or projects, etc. An important metric to
evaluate the work of a RJMS on a platform is the observed system utilization. However,
studies and logs of production platforms show that HPC systems generally suffer of
significant underutilization rates. According to [6], less than 65% of the overall capacity
of clusters is utilized throughout the year.

Task scheduling is also a critical problem in cloud computing [2]. A cloud system
could have plenty of users that may come from all over the world. Therefore, large-scale
task scheduling happens frequently, seeking the cloud providers to reduce the total
completion time of the tasks sent by the users.

Grid computing shares computational power and data storage capacity over the
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Internet and the goal of grid task schedulers is to achieve high system throughput and to
match the applications’ needs with the available computing resources [12]. Scheduling
on a grid is characterized by three main phases. Phase one is resource discovery, which
generates a list of potential resources. Phase two involves gathering information about
those resources and choosing the best set to match the applications’ requirements. In
phase three the task is executed, which includes file staging and cleanup.

Being the characteristics of these three applications (HPC platforms, cloud com-
puting and grid computing) similar to those owned by the process of scheduling the
evaluation of individuals from a batch created by an optimization algorithm, literature
related to the mentioned fields has been considered a good starting point for knowing
the state of the art of scheduling algorithms.

3.2.4 Methodology for developing load balancing algorithms

An overview of the methodology that has been followed for developing and testing load
balancing algorithms is explained in this section and can be summarized in four main
points:

1. Some assumptions have been made regarding the parallel performance factors
considered by the task scheduler in order to simplify the scheduling problem.
Complexity will be increased by adding more factors gradually.

2. The load balancing problem has been split in 2 subproblems: tasks’ time estima-
tion problem and task scheduling problem.

3. Metrics to evaluate the goodness of the results provided by the load balancing
algorithm have been defined.

4. The way of modeling the execution of real tasks in a real High Performance Com-
puting (HPC) system has been decided with the aim of ensuring the reproducibility
of experiments as well as reducing their computational cost.

Assumptions on the parallel performance factors

Some assumptions on the parallel performance factors have been made with the aim of
simplifying the scheduling problem. As scheduling algorithms that achieve satisfactory
results are provided, the maximal complexity of the scheduling problem can be reached
by modifying these assumptions gradually.
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Assumptions related to the hardware:

¢ Hardware heterogeneity: The hardware is considered to be homogeneous and
scheduling tests are carried out in a single multiprocessor node composed by 32
processors. Thus, it is not necessary to provide any benchmark case for testing
the performance of hardware components.

* Network topology: Using a single multiprocessor node implies that all processor-
to-processor and task-to-processor affinities are equal. Since all processors have
access to a common memory space (shared-memory), communications are quasi-
instantaneous between any two of them without the need of message passing.

¢ Amount of system’s memory: The memory of the utilized multiprocessor node is
the only system’s memory available and may be accessed by any processor. Hence,
it is not possible to increase any task-to-processor affinity by adding memory
management algorithms.

* Processor partitioning model: The “peer-partition” approach is used. Since a
unique node of 32 processors will be available and initial scheduling algorithms
are not expected to reach any considerable level of sophistication, it has been
thought that sacrificing 1 processor for full-time scheduling is a greater waste of
effective computational time than slowing down slightly the completion of some
tasks in case a scheduler is run before their computation is started.

Assumptions related to the nature of tasks:

* Load divisibility: Every task is considered to be arbitrarily divisible by the sched-
uler, which can assign to the task a number of processors ranging between a
minimum and a maximum defined by the user. The possibility of stopping and
later restarting a task is not allowed, because the restart feature is not that
common and/or it may involve a noticeable computational time overhead. Hence,
the only way of dividing a task that has been considered is its parallel execution.

¢ Flexibility of jobs: Every task is considered to be moldable, i.e. the scheduler
assigns a number of processors to the task before its execution starts and this
number remains constant until the completion of the task.

¢ Interdependencies between tasks: All tasks belonging to a batch of individuals
created by the optimizer are independent from each other, existing no precedence
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relations among them. Since it has been assumed that tasks cannot be stopped
and restarted, precedence relations will be neither generated in run time.

¢ Heterogeneity in task run times depending on its input variables: It is possible
to have tasks whose processing times vary according to the values of the input
variables.

Assumptions related to the scheduler’s configuration:

¢ Limited scheduling time: It is necessary to limit the scheduling time in order to
avoid an overall performance degradation caused by excessively long scheduling
periods.

¢ Distributed scheduling: The implementation of sequential task schedulers is
foreseen. When satisfactory results are obtained, the possibility of parallelizing
those schedulers will be considered.

Splitting the load balancing problem in 2 subproblems

Two steps are clearly differentiated in the resolution of the load balancing problem of a
batch of individuals created by an optimizer and solved in a High Performance Comput-
ing (HPC) system: the estimation of the tasks’ evaluation times and the resolution of a
combinatorial problem.

The estimation of the tasks’ evaluation times consists on obtaining guess values of
the amount of time required by each task if it is simulated in any subset of the available
processors. As a result, a map of times is obtained for each task.

The resolution of the combinatorial problem consists on designing a task schedule
such that the makespan of the batch of individuals is minimized. The task scheduler
uses the time maps calculated for every task in the previous step to estimate the overall
simulation time of successive schedules and to try to optimize them by deciding where
(in which processors) and when each task is to be processed.

Definition of metrics for evaluating the goodness of a task schedule

The definition of adequate metrics is important in order to evaluate the goodness of a
method. In the case of Resource and Job Management Systems (RJMS) used in comput-
ing clusters, a typical metric to evaluate the performance of the scheduling algorithm
is the observed system utilization. Nevertheless, there is a major difference between
the queue of tasks managed by a RJMS and that managed by the task scheduler of an
optimizer: the latter has a finite number of similar tasks, whereas the RJMS receives a
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continuous flow of heterogeneous tasks coming from different users. Consequently, the
makespan of the batch of tasks (i.e. the overall execution time taking place between the
start time of the first processed task and the end time of the last task) is found to be a
more representative metric than the observed system utilization in order to measure
the quality of the obtained schedules for the batches of tasks to be evaluated by the
optimizer.

Modeling real tasks in an HPC system
During the development of task schedulers, there are several reasons to avoid testing
them by processing real tasks in a production HPC platform: considerable computational
load of real tasks, long queues due to tasks sent by other users, variable environmental
conditions in the HPC platform affecting negatively the reproducibility of the tests,
the fact that specific experiments may need specialized software which is often hard
to install on production platforms, etc. Thus, it is advisable to model the tasks to be
processed as well as the aspects of the HPC platform to be taken into consideration.
On one hand, and according to [6], tasks can be modeled with up to 3 fidelity degrees
depending on the specific features under evaluation:

¢ Sleep applications: They consist on using the Unix command “sleep” followed
by a number which defines the amount of time in seconds that a processor will
stay idle. The main advantage of sleep jobs is that they represent the simplest
type of application with a predefined steady duration that can be performed in
any number of processors. However, this kind of jobs is not influenced by CPU;,
bandwidth, or memory stress.

e Synthetic applications: They are defined based on profiles of real applications
and are commonly used with the goal of testing specific parts of the system like
CPU, memory, network or I/O. They implicate real computation but do not capture
the whole complexity of real applications. Some typical synthetic applications
are the following: NAS NPB3.3 benchmarks, Linpack-HPL, pchksum benchmark,
Mandelbrot set, etc.

* Real applications: They hold real-life’s complexity and are therefore the most
representative way of testing the designed algorithms.
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On the other hand, [6] also proposes 3 ways of studying the behavior of an HPC
platform:

* Emulation of an HPC platform: This method consists on utilizing a tool able
to execute the actual software of the distributed system in its whole complexity
using only a model of the environment. Reproducibility and other external factors
are very easily controlled, and it is possible to obtain fast results for the validation
of prototype schedulers.

¢ Experimental HPC platform: Experimental platforms have been designed and
developed to provide better control and reproducibility for real experimentation.
This method allows capturing entirely the complex behavior and interaction be-
tween the different hardware and software modules and is suitable for validating
the observations extracted from the HPC emulator.

* Production HPC platform: The full complexity of task scheduling is taken
into account by means of real-life experimentation without the possibility of
manipulating any characteristic of the HPC platform. Conclusions about the
quality of the scheduling algorithms are finally extracted.

The ideal experimentation methodology consists on going step by step through
all 3 stages: emulator, experimental HPC platform and production HPC platform.
Progressively, the control over external factors is lost and the overall computational
cost is increased. Once satisfactory results have been obtained, final validation tests
can be performed in a production HPC platform. The fidelity degree of the tasks is also
expected to be increased gradually.

In the scope of this Doctoral Thesis, no more than two task fidelity degrees have been
used: sleep applications and real applications. Regarding the HPC platform, tests have
been run in experimental and production systems. The availability of an emulator would
have been interesting, but this option was left aside because CTTC had no previous
experience with this kind of software.

3.2.5 State of the art of algorithms for solving the combinatorial scheduling
problem

Classical combinatorial problems
The study of combinatorial optimization started more than a century ago and gave rise
to a set of well-known classical problems: flow shop scheduling, optimization of resource
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allocation and leveling, classical knapsack problem, assignment problem, quadratic
assignment problem, traveling salesman problem, bin packing problem, etc. Although
none of them is directly concerned with scheduling a batch of individuals created by an
optimizer, the following three show a certain degree of similarity: the classical knapsack
problem, the assignment problem and the bin packing problem.

A set of items, each with a weight and a value, is given in the classical knapsack
problem. The objective is to determine the number of each item to include in a collection
so that the total weight is less than or equal to a given limit and the total value is as
large as possible. Indeed, the combinatorial task scheduling problem to be solved is
quite similar to the multidimensional knapsack problem and the multiple-choice
knapsack problem (the reader is referred to [13] for further information).

In its most general form, the assignment problem has a number of agents and a
number of tasks and any agent can be assigned to perform any task, incurring some
cost that may vary depending on the agent-task assignment. It is required to perform
all tasks by assigning exactly one agent to each task and exactly one task to each agent
in such a way that the total cost of the assignment is minimized.

In the bin packing problem, objects of different volumes must be packed into a
finite number of bins or containers, each of volume V, in a way that minimizes the
number of bins used. In the two-dimensional bin packing problem we are given a
set of n rectangular items j € J ={1,...,n}, each having width w; and height %, and
an unlimited number of finite identical rectangular bins, having width W and height
H. The problem is to allocate all the items to the minimum number of bins without
overlapping, with their edges parallel to those of the bins. It is assumed that the items
have fixed orientation, i.e. they cannot be rotated. The reader is referred to [14,15] for
a review on approximation algorithms proposed for bin packing problems.

However, the heuristic algorithms proposed for solving the above problems are
either little robust or the problem for which they were designed is too different from
the task scheduler studied in this Doctoral Thesis. Consequently, it was decided to
focus the search on more sophisticated algorithms used in the field of High Performance
Computing (HPC).

Scheduling policies for RJMS in HPC systems

The Resource and Job Management System (RJMS) is a critical part of any High Per-
formance Computing (HPC) system and is in charge of scheduling the tasks sent by
different users. Software development for the RJMS is a major research topic among
computers scientists and a large amount of literature is available. The aim of this
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section is to collect the most interesting concepts and algorithms of production task
schedulers, as well as the newest proposals from research institutions.

Parallel performance factors that should be considered by task schedulers were
enumerated in a previous section, together with some assumptions for the particular
problem faced in the scope of this Doctoral Thesis. However, many scheduling algorithms
in the literature consider only a few of these factors simultaneously. Depending on
which factors they take into account, it is possible to group them in categories [9]:

* Static vs. Dynamic scheduling

If the characteristics of all tasks were known prior to run time, static scheduling
could use a complex algorithm to perfectly balance the computational load by
appropriately assigning tasks to processors. However, this hypothesis is quite
unusual and static algorithms are outperformed by dynamic algorithms, which
allow performing the scheduling process at run time when a large amount of
useful information about the tasks and their interaction with the underlying
architecture becomes available. The only drawback of dynamic schedulers lies on
the fact that the overhead associated with the task of scheduling can affect the
overall parallel performance.

¢ Centralized vs. Distributed scheduling

Centralized techniques store global information at a centralized location and
use this information to make more comprehensive scheduling decisions using
the computing and storage resources of one or more dedicated processors. A
possible drawback is the communication overhead when accessing the shared
information and requesting tasks for execution. The alternative consists on
having the scheduling task and/or the scheduling information distributed among
the processors and their memories, although maintaining a single shared global
queue. To prevent more than one processor from executing the same tasks, access
to this queue must be limited to one processor at a time using an appropriate
synchronization mechanism. A drawback is that the time required to access
the queue introduces some run time overhead, but the improved load balancing
compared to static scheduling may compensate for this additional delay.

¢ Sequential vs. Overlapped scheduling/execution
A system composed by a scheduling algorithm and a set of processors executing the
parallel tasks operates in two phases, namely the scheduling phase and the execu-
tion phase. In the scheduling phase, tasks are assigned to the processors. During
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the execution phase, the working processors execute the tasks that were assigned
to them. The scheduling and execution phases may be i) sequential, in which case
a schedule of all tasks is planned before executing a single task, ii) interleaved,
in which case some processors remain idle while partial task assignments are
computed by the scheduling algorithm and being placed on processor queues for
execution, and iii) overlapped, which differs from the interleaved configuration in
that the overhead of the scheduling effort is completely masked by the execution
of previously scheduled tasks.

Regarding the RJMS software, both proprietary and open-source solutions are
available. On one hand, and according to [6], the most utilized commercial RIMS
systems seem to be Loadleveler, LSF, Moab and PBSPro. On the other hand, the
open-source solutions CONDOR, SGE, Torque, Maui, SLURM and OAR own a good
reputation. A review of the task scheduling policies implemented in the aforementioned
RJIMS software together with the last advances in this research field are presented in
the following paragraphs. The objective is to obtain a well-defined state of the art, based
on which it is possible to design a task scheduler in charge of balancing the parallel
evaluation of the individuals created by an optimizer.

Most of the scheduling algorithms used until now in production HPC systems do not
involve the use of any complex method. The most widespread solutions are: Max-Min
[12], a common heuristic method whose rationale consists on scheduling the largest
tasks at the earliest possible time in order to minimize the overall completion time; Min-
Min [16], in which the task that can be completed the earliest is scheduled each time;
Min-Max [16], which first runs a min-min heuristic for selecting a task and then places
that task in the slowest available machine; First come first served (Fcfs) or First In
First Out (FIFO) [5,6], in which jobs are processed according to their arrival order;
Easy-backfilling [5,6], which fills up empty holes in the scheduling tables without
modifying the order or the execution of previously submitted jobs; Gang Scheduling
[6], under which multiple jobs may be allocated to the same resources and are alternately
suspended/resumed letting only one of them at a time have dedicated use of those
resources for a predefined duration; Gang scheduling with easy-backfilling [5], a
hybrid of both constituent methods; First come first served-malleable (Fefs-VM) [5],
which schedules virtually malleable tasks according to the Fcfs policy; Backfilling-
Malleable (Backf-VM) [5], which schedules virtually malleable tasks according to
the backfilling policy; Time sharing [6], which permits to allocate multiple jobs to
the same resources allowing the sharing of computational resources; Fairshare [6],
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which takes into account past executed jobs of each user and gives priority to users
that have been less using the cluster; Preemption [6], which allows suspending one or
more “low-priority” jobs to let a "high-priority” job run uninterrupted until it completes;
Advanced reservation of resources [6], which allows reserving certain processors
for a certain job to which a precise starting time is assigned; Longest Job to Fastest
Resource — Shortest Job to Fastest Resource (LJFR-SJFR) [16], which assigns
the longest task to the fastest resource and the shortest task to the fastest resource
alternately; Sufferage [16], which is based on the idea that better mappings can be
generated by assigning a machine to a task that would “suffer” most in terms of expected
completion time if that particular machine was not assigned to it; and WorkQueue
[16], which selects a task randomly and assigns it to a machine as soon as it becomes
available.

However, research in the field is progressing and has already provided some inter-
esting alternatives to the traditional scheduling methods stated above. A handful of
interesting studies is mentioned hereafter.

The Self-Adjusting Dynamic Scheduling (SADS) class of dynamic scheduling
algorithms for distributed memory architectures is introduced in [9], which simul-
taneously addresses load balancing and memory locality while the duration of each
scheduling period is self-adjusted based on the loads in the working processors. Its
search engine is based on the branch-and-bound algorithm, it allows both centralized
and distributed scheduling strategies, and the scheduling process can be overlapped
with the execution of tasks. The scheduler may also be interrupted at any time and is
able to provide a valid partial schedule of tasks.

While most load balancing methods assume that each CPU can execute a single
parallel process, a different approach that makes load balancing less problem-dependent
is used in [17]. It is assumed that each CPU can execute many processes, and load
balancing is achieved by moving processes among CPUs. A load balancer has been
assigned to each parallel job and is in charge of balancing its corresponding single
parallel job independently. It is noted that load balancers may interfere with each other
causing conflicts of interests. Hence, the dynamic load balancing problem to be solved is
how to map the parallel jobs to processors in such a way that each newly added parallel
job is balanced but without affecting negatively the balance of the previously scheduled
jobs. The round robin load balancing algorithm for multiple parallel jobs is used for
solving the problem.

In [18] genetic algorithms are presented as useful meta-heuristics for obtaining high
quality solutions for a broad range of combinatorial optimization problems including the
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task scheduling problem. Two hybrid genetic algorithms are proposed for solving the
problem of scheduling and mapping a precedence-constrained task graph to processors:
the Critical Path Genetic Algorithm (CPGA) and the Task Duplication Genetic
Algorithm (TDGA). However, the possibility of executing each task in parallel is not
considered in the scope of this article.

In [19] Work Stealing is proposed as a dynamic load balancing method to be used
in shared-memory clusters. The algorithm has been designed for simulating batches
composed by many short sequential jobs (unlike in the scope of this Doctoral Thesis,
where time consuming parallel jobs are considered) and communications are carried
out by means of Remote Memory Access (RMA), also called one-sided communications.
When a processor runs out of jobs, it accesses the shared memory space and steals a
task to the processor with the biggest workload. If none of the tasks can be stolen, the
processor exits the simulation of the batch. It must be noted that the number of stolen
tasks decreases when the master distributes data on the basis of correct information,
whereas it increases if tasks are inappropriately scheduled.

Other interesting publications have also been found and are mentioned next. Uni-
form Multi-Round (UMR) is introduced in [10], which is a new multi-round algorithm
for scheduling divisible loads and applicable to heterogeneous platforms. LAGA [2] is a
load balance aware genetic algorithm with Min-Min and Max-Min methods to solve the
task scheduling problem in cloud computing. An Adaptive Genetic Algorithm (AGA)
is used in [12] to solve the grid scheduling problem and said to outperform the Max-Min
algorithm. An approach to static task scheduling based on reinforcement learning and
a genetic algorithm is proposed in [20]. Article [16] provides a comparison of heuristics
for scheduling independent tasks on heterogeneous distributed environments, including
a hybrid ant colony optimization, simulated annealing and genetic algorithms. Finally,
greedy scheduling algorithms for massively parallel processing systems are mentioned
in [21].

After concluding the review of the literature, some aspects regarding scheduling
policies for RIMS systems will be highlighted.

In general, and in agreement to what was observed in [9], little research has been
done on employing optimization techniques for dynamic task scheduling. The reason
might be the perception that the prohibitive computational cost of these techniques will
render them ineffective for dynamic scheduling.

A RJMS system has usually scarce information about the jobs waiting in the queue
[5]: job identifier, user who sent the job, job’s arrival time to the queue, number of
requested processors and an estimation of the required execution time. This time
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estimation is usually provided by the user and utilized to abort a job in case it is
exceeded. If the queuing algorithm makes use of backfilling policies, load balancing
decisions are also based on the mentioned time estimate.

Algorithms able to provide execution time estimates for parallel jobs are being
tested, although it is not common to find them in production platforms. The cause
is the difficulty of estimating the real duration of tasks. The main shortcomings of
user provided time estimates are two, namely i) the completion time of the task when
computed in parallel using different numbers of processors is not available, and ii) users
usually overestimate times to prevent their jobs from being cancelled by the RJMS. In
the particular load balancing problem analyzed in this Doctoral Thesis, there is a single
task being run many times with changing input variables. Thus, a considerable amount
of information could be extracted and later used for balancing upcoming batches of
tasks.

Finally, a crucial scheduling constraint in many RJMS systems is the tasks’ arrival
order: if a user sent a task at time ¢; and another user sent another task later at time
to, the start in the execution of the second task cannot delay the start in the execution
of the first task. In the particular case of scheduling a batch of tasks created by an
optimizer, no priority criteria need to be applied and tasks can be processed in any order.
The task scheduler has more freedom in this way and a better load balance may be
achieved.

3.2.6 State of the art of time estimation techniques

Approach to the time estimation problem

The use of an accurate time estimation technique is the second requisite for balancing
the computational load of a batch of tasks. Otherwise severe errors could be introduced
in task time estimates, spoiling the work of even the best scheduling algorithm and
leading to serious load imbalance. However, no rigorous study of time estimation
techniques was carried out in the scope of this Doctoral Thesis due to lack of time. Some
preliminary considerations have been included with the aim of outlining the whole load
balancing algorithm, but a thorough development remains as an open issue.

Any method in charge of estimating the completion time of a task when it is run in a
certain group of processors needs to carry out two operations: i) store historical data of
previous executions of that task, and ii) create a map of the task’s completion time based
on the stored data by means of an appropriate modeling technique. Optionally, the user
could provide a function able to estimate the task’s duration. Nonetheless, that function



§3.2 Approach to the load balancing problem 139

would not be aware of the way the task’s completion time is influenced by the system
in which the task is being simulated (due to heterogeneous processors, etc.). Hence, it
is concluded that having a time estimation method integrated in the load balancing
algorithm is necessary if it is intended to use sophisticated scheduling methods.

In the particular load balancing problem analyzed in this chapter, i.e. a batch of
tasks created by an optimizer, a single task is processed several times by changing
its input variables and generates a considerable amount of information that can be
stored for constructing a good map of the task’s completion time estimates. The factors
affecting the completion time of a task were previously studied in this chapter and are
the following: hardware heterogeneity, network topology and the task’s input variables.
Consequently, after each execution of the task the load balancing algorithm has to store
the input variables of the task, the processors in which the task was executed and the
task’s completion time. Once a sufficient amount of information regarding the task’s
execution has been stored, an appropriate modeling technique must be used in order to
construct a map of the task’s completion time estimates. These modeling techniques
may belong to the following categories: deterministic or probabilistic, and global or local.

On one hand, deterministic models assign a precise prediction of for how long
a task will run by means of a single real value. These are the simplest and most
comfortable models, but they ignore much of the available information. On the other
hand, probabilistic models are able to characterize the completion time of a task
according to the distribution function of historical data, and can provide the probability
for each time to happen. These models make use of the whole information available
but are more complex to handle, because the schedule turns to be a probabilistic plan
instead of a concrete plan [22]. For instance, it may be found that there is an 87%
chance for certain processors to be free at a required time. However, this more accurate
representation has the potential to lead to better decisions.

Predicting the distribution of a task’s run time is also based on the locality of sam-
pling. On one hand, a local model encompasses only a region of the overall map of
times and is constructed based on samples collected in that reduced neighborhood. On
the other hand, all available samples are used for building a global model. Local
models outperform the accuracy of global ones in their particular region, but are only
valid in that reduced space.

Data fitting methodology
The data fitting method used for modeling the task’s completion time involves the
construction of an approximation or surrogate model (also called response surface)
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using data generated from the original truth model [23]. Any surface fitting process
consists of four main steps: i) selection of a set of design points, ii) evaluation of the true
response quantities at these design points, iii) calculation of the unknown coefficients
in the surface fit model using the response data, and iv) diagnosis of the quality of the
constructed response surface.

The selection of design points is a crucial decision as it defines the information that
the data fitting method will have available. The use of an inadequate sampling method
may lead to insufficient accuracy of the obtained response surface, diagnosed in the
fourth step. It could even be decided to reject the response surface unless a certain level
of accuracy is reached, because the load balancing algorithm would be unable to design
any feasible schedule due to excessive time estimation errors.

Several surrogate diagnostic metrics are presented in [23]: i) simple prediction
error with respect to the training data, ii) prediction error estimated by cross-validation
(iteratively omitting subsets of the training data), and iii) prediction error with respect
to user-supplied hold-out or challenge data. All diagnostics are based on differences
between the real value at a point x; and the surrogate model’s prediction at the same
point. In the simple error metric case, the points x; are those used to train the model;
for cross validation they are points selectively omitted from the build; and for challenge
data, they are supplementary points provided by the user.

Several global data fitting methods which could be applicable in the present case
are proposed in [23]:

¢ Polynomial regression [24]: First-order (linear), second-order (quadratic) and
third-order (cubic) polynomial response surfaces computed using linear least
squares regression methods.

* Kriging interpolation [25]: This class of interpolation model has the flexibility
to model response data with multiple local extrema. However, this flexibility is
obtained at an increase in computational expense and a decrease in ease of use.

* Artificial Neural Networks (ANN) [26]: This surface fitting method employs
a stochastic layered perceptron (SLP) artificial neural network based on the direct
training approach of Zimmerman and is designed to have a lower training (fitting)
cost than traditional back-propagation neural networks.

* Multivariate Adaptive Regression Splines (MARS) [27]: This method parti-
tions the parameter space into subregions, and then applies forward and backward
regression methods to create a local surface model in each subregion. The result
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is that each subregion contains its own basis functions and coefficients, and the
subregions are joined together to produce a smooth, C2-continuous surface model.
The generated surface model is not guaranteed to pass through all of the response
data values.

* Radial Basis Functions (RBF) [28]: Radial basis functions are functions
whose value typically depends on the distance from a center point, called the
centroid. The surrogate model approximation is constructed as the weighted sum
of individual radial basis functions.

* Moving Least Squares (MLS) [29]: Moving Least Squares can be considered a
more specialized version of linear regression models. It is a further generalization
of weighted least squares where the weighting is “moved” or recalculated for every
new point where a prediction is desired. It works well in trust region methods
where the surrogate model is constructed in a constrained region over a few points,
but it does not seem to be working as well globally.

Although the aforementioned techniques typically use all available sample points to
approximate the underlying function anywhere in the domain, piecewise decomposition
may be used to build local response surfaces using a few sample points from each
neighborhood. It must be noted as well that kriging, MARS and ANN can be used
to model data trends that have slope discontinuities and also multiple maxima and
minima.

A similar approach to modeling task completion times is done in [22], but with the
particularity of being applied to the queuing system of an HPC platform. In this case,
the authors propose to use a Hidden Markov Model (HMM) for modeling the statistical
distribution of task times.

Before finishing this state of the art study on time estimation techniques, a few
recommendations are extracted from [23]. First, surface fitting methods are practical
apparently for problems having a small number of design parameters (with the maxi-
mum in the range of 30-50 parameters). Second, kriging seems to be the best alternative
from the aforementioned data fitting algorithms provided that there are fewer than two
or three thousand data points. In case of interpolating among more points, a Radial
Basis Function Network or the Moving Least Squares methods are suggested. The
reason why using the kriging model is discouraged is that its construction can take
a considerable amount of time when the number of data points is very large. Third
and last, the use of MARS is generally discouraged when compared to other available
methods.
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3.3 Load balancing strategies

3.3.1 Overview

The main steps in the execution of a generic optimization algorithm are represented in
Fig. 3.5. The one prone to computational load imbalance is the evaluation of a batch of
new individuals, and it is at this point where the proposed load balancing strategies are
expected to provide a substantial increase in parallel efficiency.
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Figure 3.5: Flow chart of a generic optimization algorithm. The evaluation of new individuals is

carried out by the task management algorithm (see Figure 3.6).

In the present approach, the load balancing method is considered to be composed by
three sub-methods, denominated as: i) task management algorithm, ii) task scheduling
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algorithm, and iii) task assignment algorithm. An overview of the three sub-methods,
which have been designed to suit the assumptions and requirements stated in section
3.2, is provided hereafter.

Task management algorithm
The task management algorithm (task manager from now on) is the only algorithm
interfacing with the optimizer and is represented as a flow chart in Fig. 3.6.

®

v

Encode original individuals into tasks

v

Task scheduling algorithm

(%)
i

Decode the task schedule

y

Send original individuals to processors’ queues

v

Execute tasks

'

Update the prediction model of task times

Figure 3.6: Flow chart of a generic task management algorithm. The optimal task schedule is
provided by the task scheduling algorithm (see Figure 3.8).

This first sub-method of the load balancing algorithm is called by the optimizer
whenever it needs to evaluate a batch of new individuals, and is expected to manage
their execution with the aim of minimizing the completion time of the batch. In a first
step the individuals to be evaluated (see Fig. 3.7 (a)) are encoded into tasks (see Fig. 3.7
(b)), being a task defined by the following characteristics:
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e Task id: It is the task’s identifier, necessary to keep the correspondence between
the original individuals to be executed and the tasks used for carrying out the
load balancing calculations.

* Number of assigned processors: Number of processors in which the task is to be
run.

¢ Ranks of assigned processors: A vector with the ranks (identifiers) of the proces-
sors in which the task is to be run.

® Priority: This variable determines the position in the queue of tasks waiting to be
mapped to free processors by the task assignment algorithm. See Fig. 3.10 and
section 3.3.4 for additional details.

¢ Run time: Expected completion time of the task.

e Start time: Time at which the execution of the task has been scheduled to start.
The reference time ¢ = 0 is assigned to the first task of the batch that is executed.

* End time: Time at which the execution of the task is expected to finish.

Individual; (X113, X12, .., X1m) - T1 (P2, O2)
Individualy (Xa1, X2, ..., Xam) -> T, (P2, 02) -> Pr | P2 | o | Po Q1| Q2] .| 0Gn
- 2n
Individual, (Xn1, Xn2, -++» Xam) - Tr (Pn, Ghn)
(@) (b) (c)

Figure 3.7: Encoding of individuals carried out by the load balancing algorithm: (a) original
individuals, (b) batch of tasks, (c) an individual representing the batch of tasks. Variables x; ;
are the original optimization variables, whereas each task 7T'; is characterized by the number of
processors (p;) and the priority (q;) assigned to it.

The only characteristic defined by the task manager is the task id, being the remain-
ing characteristics defined by other sub-methods of the load balancing algorithm.

The next step after creating all the necessary tasks is to schedule them in such
a way that they are executed in the right resources and at the right time in order to
minimize the completion time of the batch. This step is performed by the task scheduling
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algorithm as is explained further on in this section, and the best schedule found is
returned to the task manager.

After that, the task manager decodes the received information and has enough data
to start executing the real tasks (evaluation of new individuals created by the optimizer),
so individuals are sent to wait in the processors’ queues until they are called for being
computed.

Finally, the task manager gathers information on the processing time of each task in
order to feed the task times’ prediction model. This step involves a permanent learning
process and improvement of task time estimates. When it is finished, the optimizer
can continue with the search of optimum until the need of evaluating a new batch of
individuals arises, in which case the load balancing algorithm is called again.

Task scheduling algorithm

The task scheduling algorithm (see the flow chart in Fig. 3.8) is called by the task
manager and its aim is to decide the resources and the time in which tasks are to be
executed in order to minimize the makespan of the batch. This involves the resolution
of a combinatorial optimization problem introduced in the following paragraphs but
studied with detail in section 3.3.3.

First the batch of n tasks is encoded in such a way that it can be represented
by means of a single vector with size 2n (see Fig. 3.7 (¢)). This is accomplished by
representing each task with two variables, namely the number of processors in which
the task will be simulated (p;) and the priority of the task (g;). These variables have
been chosen because they represent unambiguously how the tasks should be scheduled
by the task assignment algorithm proposed in section 3.3.4. Thus, the search for the
optimal schedule consists on finding the optimal values for the 2n variables contained
in the vector. The task assignment algorithm is in charge of evaluating the quality (i.e.
the makespan) of the schedules successively created by the task scheduling algorithm.
Once the optimal task schedule has been found, it is sent to the task manager.
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Figure 3.8: Flow chart of a generic task scheduling algorithm. Schedules are successively
proposed by the search algorithm and the makespan of each schedule is calculated by the task
assignment algorithm (see Figure 3.9).
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Task assignment algorithm

The task assignment algorithm is in charge of mapping (assigning) the tasks to the
processors based on the schedule it receives from the task scheduling algorithm. This
schedule is encoded as it is shown in Fig. 3.7 (¢).

According to the flow chart depicted in Fig. 3.9, the first step performed by the
algorithm consists on decoding the received task schedule into the task representation
shown in Fig. 3.7 (b). Then, the completion time (¢;;) of every task (T;) in the proposed
schedule is estimated as explained in section 3.2.6. After that, all the tasks are mapped
to the processors based on the number of CPUs and priority which characterize each
task, giving as a result the makespan of the batch of tasks. Finally, the makespan of the
schedule is sent to the task scheduling algorithm. An illustrative example of the task
assignment procedure is provided in Fig. 3.10.

®

v

Decode the individual representing
a schedule into a batch of tasks

v

Estimate the completion time (t;;)
of every task (T;)

!

Assign every task (Ti) of the batch
to available processors

v

Calculate the makespan

Figure 3.9: Flow chart of a generic task assignment algorithm.

The three sections hereafter are focused on task management, scheduling and
assignment algorithms designed to achieve an efficient use of computational resources.
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Figure 3.10: Illustrative example of the task assignment procedure by means of which an

individual representing a task schedule is decoded, tasks are assigned to processors and the
makespan of the batch of tasks is calculated.
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3.3.2 Task management algorithms

General aspects

These algorithms are in charge of processing tasks (individuals) in a computationally
efficient way every time the optimizer needs to evaluate a batch of individuals. 3 task
managers have been implemented: the self-scheduling task manager, the static task
manager and the dynamic task manager.

The self-scheduling task manager is the simplest approach and was already pre-
sented in section 2.3.8. Every task is executed in the same number of processors, which
is defined by the user at the beginning of the optimization. Groups of processors keep
on executing tasks from the batch one after the other until it is exhausted. From then
on, each group of processors that completes the execution of a task remains idle until all
tasks are completed and the optimization algorithm is able to move an iteration forward.
At this point, a new population is created by the optimizer and the task manager is
called again for its evaluation.

The static and dynamic task managers involve 2 main steps: i) the most suitable
processors and time span are found for executing each task (task scheduling), and ii)
the batch of tasks is executed. These algorithms are expected to improve the parallel
performance of the self-scheduling task manager thanks to a better planning of the
tasks’ execution and differ from each other in the capacity for adapting to the unexpected
behavior of tasks in run time. The static task manager obtains a task schedule at the
beginning of the generation’s evaluation and cannot be later modified, i.e. the schedule
cannot be readjusted in case of unexpected behavior of the tasks. The dynamic task
manager obtains the initial schedule in the same way as the static task manager, but
tasks are monitored in run time and the task schedule is continuously readjusted until
every task in the batch has been completed. Nevertheless, attention must be paid
to the following two aspects to make sure that the expected improvement in parallel
performance is obtained.

On one hand, the task scheduling operation involves a run time overhead which
can negatively affect the overall execution time of the optimizer unless some limitation
is introduced. The user can define the maximum allowed time for task scheduling by
means of a percentage in both task managers, being the maximum time in generation n
calculated as the makespan of generation n — 1 multiplied by that percentage. Thanks
to this strategy, the time for task scheduling is adapted to each generation’s execution
time.

On the other hand, one of the following two situations may arise: i) a database
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with previously simulated task times is already available or the user provided some
function able to accurately predict task completion times, or ii) there is insufficient or
no information on task times. In the first case, task completion times may be accurately
predicted and a good performance of the static and dynamic task schedulers is expected.
In the second case, however, a certain amount of individuals needs to be executed
in order to be able to obtain accurate time estimations. The early use of either the
static or the dynamic task manager is highly discouraged in this case because task
schedules based on bad time predictions may have a severe negative impact on the
parallel performance of the optimizer.

A sampling method is proposed to generate the database required for time estimation.
The method consists on running some initial generations with the self-scheduling task
manager until sufficient information has been gathered and then switching to the
static or dynamic task manager. It is up to the user to decide the number of sampling
generations and the number of processors to be assigned per task in each of those
generations. For example, a sampling program defined by the vector (1,2,3) means that
3 generations are to be dedicated to sampling, assigning 2! = 2 processors per task in
the first generation, 22 = 4 processors per task in the second generation and finally
23 = 8 processors per task in the third and last generation. From the fourth generation
on, the static or dynamic task manager will be activated.

The implemented task management algorithms are described in the following sec-
tions.

Coordination of task managers

The main algorithm is referred to as Algorithm B and is in charge of the coordination
of the 3 available task managers: the self-scheduling task manager (Algorithm A, see
section 2.3.8), the static task manager (Algorithm C) and the dynamic task manager
(Algorithm D).

Algorithm B Coordinator of task managers

1. IF (it is the first execution of the coordinator of task managers)

(a) The master processor reads the user-defined vector samplingDefinition which
contains the sampling program.

2. The master processor sends a message to all other processors communicating the
selected task manager.
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3. IF (processor is the master)

(a) IF (self-scheduling task manager selected)
i. Send a message to all other processor communicating that no sampling
is to be carried out.
ii. Run the self-scheduling task manager (see Algorithm A).
(b) ELSE IF (static task manager selected)
i. IF (there are still sampling generations programmed in samplingDefini-
tion)

A. Send a message to all other processors communicating that a sam-
pling generation is about to start.

B. Execute the sampling generation (see Algorithm B.1).
ii. ELSE
A. Send a message to all other processors communicating that no sam-
pling is to be carried out.
B. Run the static task manager (see Algorithm C).
(c) ELSE IF (dynamic task manager selected)
i. IF (there are still sampling generations programmed in samplingDefini-
tion)

A. Send a message to all other processors communicating that a sam-
pling generation is about to start.

B. Execute the sampling generation (see Algorithm B.1).
ii. ELSE
A. Send a message to all other processors communicating that no sam-
pling is to be carried out.

B. Run the dynamic task manager (see Algorithm D).
(d) ELSE

i. Error: an unknown task manager has been selected and Optimus will
be stopped.

4. ELSE

(a) A message containing the selected task manager is received from the master.
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(b) A message communicating if a sampling generation is to be executed is
received from the master.

(c) IF (sampling generation is to be executed)

i. The number of processors to be assigned per task is received from the
master.

ii. Run the self-scheduling task manager (see Algorithm A).
(d) ELSE

i. Depending on the task manager selected by the user, run the self-
scheduling task manager (see Algorithm A), the static task manager
(see Algorithm C) or the dynamic task manager (see Algorithm D).

Algorithm B.1 Execute sampling generation

1. Send a message to all other processors communicating the number of processors
to be assigned per task.

2. Run the self-scheduling task manager (see Algorithm A).
3. FOR (each task in the sampling generation)

(a) Store in the database (an ASCII text file has been used) the optimization
variables, the number of assigned processors and the completion time of the
task.

4. Delete the first element of the vector samplingDefinition, which corresponds to
the sampling generation that has been completed.
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Static task manager
The static task manager is described hereafter, being its main algorithm referred to as
Algorithm C.

Algorithm C Static task manager

1. The master processor sends a message to all other processors communicating the
number of tasks in the batch.

2. All processors create a communicator for the ranks in which the task scheduler
is to be executed. To date, only the master (rank = 0) is in charge of running the
task scheduler.

3. IF (processor is the master)

(a) Set the maximum allowed time for task scheduling as (a percentage defined
by the user) - (the previous generation’s makespan). In case it is the first gen-
eration, the maximum time is left unbounded (note that it is later modified
in Algorithm F.2).

(b) Run the task scheduling algorithm (see Algorithm E) in order to get the
optimal schedule and its estimated makespan.

4. Execute the tasks (see Algorithm C.1).

Algorithm C.1 Execute tasks

1. The master processor sends a message to all other processors communicating
which processors (ranks) will be involved in executing each task. Note that every
processor owns the whole information so that communicators can be created with
any MPI function.

2. All processors create a communicator for each task which will be later used by the
processors involved in the execution of that task. Thus, as many communicators
as tasks in the batch are created. Among the processors in charge of simulating
each task, one is designated as the root of the group (usually the processor with
the lowest rank).
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3. The master sends a sequence of task identifiers to every processor. Each sequence
represents the ordered list of tasks to be executed in a certain processor according
to the optimal schedule found.

4. For each task to be executed, the master sends to the root of the correspond-
ing group of processors the optimization variables which characterize that task
(individual).

5. Every processor evaluates the sequence of tasks assigned to it by executing the
task evaluation loop (see Algorithm C.2).

6. The results of every task (objective values and simulation time) are sent from the
root processors to the master.

7. The master updates the database of task times, adding the optimization variables,
the number of assigned processors and the completion time of each task.

8. All MPI communicators are freed.

Algorithm C.2 Task evaluation loop

1. FOR (each task identifier belonging to the sequence)

(a) The root of the group of processors in charge of executing the task creates
a directory in the hard drive in order to store the files needed during the
evaluation of the task.

(b) The group of processors runs the assigned task (evaluates the assigned
individual) using the communicator associated to the task for evaluating the
objective function(s) in parallel.

(c) The obtained objective values and the evaluation time are stored in the
memory of the root processor.
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Dynamic task manager

In comparison to the static task manager, the advantage offered by the dynamic task
manager is the adaptation capacity to unexpected task completion times. The behavior
of the dynamic algorithm is summarized in the following points:

1. The scheduling and inter-processor coordination are accomplished using 8 vectors
stored in shared-memory, which are accessible for any processor by means of
one-sided communications.

2. The user decides the number of scheduler runs to be carried out per generation.
The first scheduler run always takes place before the evaluation of any individual
is started, whereas the remaining runs are uniformly distributed throughout the
execution of the batch of tasks. For example, if 15 individuals are to be evaluated
and the scheduler is to be run 3 times, it will be run for the second time if at
least 5 individuals have been evaluated and for the third time if at least 10
individuals have been evaluated. Note that carrying out one single scheduler run
per generation is equivalent to selecting the static task manager.

3. The scheduler is run for the first time by the master and every processor gets a
task. Then, the processors assigned to each task create a communicator and start
executing the task.

4. When a group of processors completes a task, the root processor checks if the
scheduler is to be run. If it is not the case, the root accesses the last schedule and
assigns the next task to all processors in the group (each processor may obtain a
different task). Then, each processor in the group waits until the other processors
necessary for starting the execution of the newly assigned task are free. When
this happens, the evaluation of the task is started.

5. In case the scheduler is to be run, the root locks the access to the task schedule to
every other processor and it runs the scheduler for mapping the remaining tasks
to processors using updated information, i.e. the estimated times at which the
already assigned tasks will have been completed in every processor. Once the
vectors in shared-memory containing scheduling information have been updated,
the root unlocks the access to them. From this point on, the roots of the completed
tasks can access the schedule again in order to assign new tasks to idle processors.

6. When the batch of tasks is exhausted, the master processor gathers the objective(s)
values, the completion time and the number of utilized processors of each task
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and the main optimization process is resumed.

The 8 vectors stored in shared-memory that were mentioned in the first point are
listed hereafter, together with an explanation of the information they contain.

e completedTasks (vector of Boolean variables): Its size is equal to the number of
tasks in the batch and is used for controlling which tasks have been completed and
which are still pending. Each position of the vector may hold a 1 (task completed)
or a 0 (task pending).

e pendingTasks (vector of real variables): It stores scheduling information of all
pending tasks, i.e. tasks that have been scheduled but have not been put in
the queues of the involved processors, so they could be rescheduled. The size of
the vector is calculated as I + (number of tasks in the batch) - (total amount of
processors + 5). The first position of the vector stores the number of pending tasks.
From the second position on, each pending task is defined by a block of positions
which contains the following information:

— The identifier of the task (1 position).
— Number of processors required for executing the task (1 position).

— Ranks of the processors in charge of executing the task (the number of
positions is equal to the number of processors required for executing the task
and a rank is stored per position).

- Estimated completion time of the task (1 position).

— Identifier of the scheduler run in which the task was scheduled (1 position).
It is calculated as (total number of programmed scheduler runs) - (number of
scheduler runs missing when the task was scheduled).

- Task’s start time (1 position), i.e. the estimated time at which the task is
expected to start its execution.

¢ acceptedTasks (vector of real variables): It stores scheduling information of all
accepted tasks, i.e. tasks that have been scheduled and put in the queues of
the involved processors but have not been completed. The size of the vector is
calculated as 1 + (number of tasks in the batch) - (total amount of processors + 5),
being information structured in the same way as in the pendingTasks vector.
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* unemployedCores (vector of Boolean variables): Its size is equal to the number
of processors and is used for controlling which of them are idle (unemployed),
i.e. they do not have any assigned task and will remain in this state unless the
scheduler is run again. Each position of the vector may hold a 1 (unemployed
processor) or a 0 (busy processor).

o estimatedTaskTimes (vector of real variables): Its size is equal to the number of
tasks in the batch and is used for storing the estimated completion time of each
task. The position of a task in the vector corresponds to its identifier. Every time
the scheduler is run, the time estimations of the involved tasks are updated.

* executionEndtimePrevisionPerCore (vector of real variables): Its size is twice the
number of available processors and is used for storing the estimated time at
which each processor will have completed the tasks that has accepted so far. Each
processor is referred to in two positions of the vector, e.g. there is information
concerning the first processor in the first position of the vector and also in the
position (first position + total number of processors). The position in the first half
contains the estimated time at which all tasks accepted by the processor will have
been completed, assuming they are executed with no idle time spans among them.
The position in the second half contains the total execution time of the accepted
tasks which have not been started yet, assuming they are executed with no idle
time spans between them. The reason for this representation is to be able to
recalculate the end time of non-started accepted tasks every time a task has been
completed by adding the time in the second half to the current time.

® schedulerInfo (vector of integer variables): This vector has 4 positions and is used
by the master processor (the processor with rank = 0) to share the information
regarding the scheduler with all other processors. The content of each position is
the following:

— Position 1: Time estimation method selected by the user and represented by
an integer (the methods available in Optimus are explained in section 3.5).

— Position 2: Variable controlling if the task time prediction model has to be
updated or not. At the beginning of the evaluation of a batch of tasks, a
task time prediction model is built provided that there is enough information
available. This model is kept until the batch of tasks has been completed
and the evaluation of the next batch begins. Value 1 means that the task
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time prediction model is to be built, whereas value 0 means that the last
calculated model may be loaded.

— Position 3: Variable controlling if there is enough information for building a
task time prediction model. Value 1 represents there is enough information,
whereas value 0 means the available information is insufficient.

— Position 4: Maximum time available for scheduling, calculated based on the
last generation’s makespan.

® schedulerRunsMissing (integer variable): This variable contains the number of
scheduler runs that are left before the execution of the batch of tasks finishes in
order to reach the number of scheduler calls defined by the user.

Moreover, the explanation of some additional variables has been added so as to ease
the understanding of the dynamic task manager (Algorithm D) that is later introduced.

* nRemainingTasks (integer variable): Number of tasks to be completed in order to
finish the execution of the batch of tasks.

¢ taskQueuePerCore (two-dimensional vector of tasks): The size of the first dimen-
sion is equal to the number of processors. The second dimension contains a vector
of tasks assigned by the scheduler to each processor, thus varying the size of the
second dimension among different processors.

* nextAssignedTask (vector of real variables): Every processor stores in this vector
the next task it has to execute. The size of the vector is equal to (total amount of
processors + 5) and the task’s information is structured in the same way as in a
block of positions belonging to the pendingTasks vector.

¢ lastTaskRanks (vector of integer variables): Every processor stores in this vector
the ranks of the n cores involved in the execution of the last task carried out by
that processor, being the vector’s size equal to n.

¢ taskWorld (MPI communicator): Every processor creates a new communicator for
each task it has to execute, and it is stored here until the completion of the task.

* stopSolvingTasks (Boolean variable): This variable controls if a processor can exit
the execution of the batch of tasks (true) or if it has to continue evaluating tasks
(false).
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e schedulerLaunchTime (real value): The current time is stored in this variable
before each call to the task scheduling algorithm, being the reference time ¢t =0
taken at the beginning of the execution of the batch of tasks.

Finally, a description of the proposed dynamic task manager is presented.

Algorithm D Dynamic task manager

1. Preliminary actions (see Algorithm D.1).
2. IF (processor is the master)

(a) The information contained in the vector schedulerInfo is obtained and stored
in shared-memory so that it is available for every processor.

3. The batch of tasks is executed (see Algorithm D.2).

4. The following information is sent to the master from the root of each task: objec-
tive(s) values, number of involved processors and the task’s completion time.

5. IF (processor is the master)

(a) The following information related to each task is stored in the database of
task times: optimization variables, number of cores involved in the execution
and the completion time.

6. The memory allocated for variables pendingTasks and acceptedTasks is freed.

Algorithm D.1 Preliminary actions

1. IF (the first generation of the optimization is being evaluated)

(a) The following 6 variables are created in shared-memory: schedulerInfo, com-
pletedTasks, unemployedCores, estimatedTaskTimes, executionEndtimePre-
visionPerCore and schedulerRunsMissing. They remain allocated until the
main optimization process is finished.

2. A communicator including every processor is created in the variable taskWorld.
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3. Every processor rank is stored in the vector lastTaskRanks.
4. Set every processor to evaluate the next task (stopSolvingTasks = false).

5. The master reads the total number of scheduler runs to be performed during the
batch (defined by the user) and sends this information to every processor, where
the information is stored in the variable schedulerRunsMissing.

6. The master communicates the number of tasks in the batch (nTasks) to every
processor, where it is also assigned to the variable representing the number of
remaining tasks (nRemainingTasks).

7. The following 2 variables are created in shared-memory: pendingTasks and
acceptedTasks. They remain allocated until the execution of the batch of tasks is
finished.

8. The master communicates to all other processors the optimization variables of
every individual (task) to be evaluated, as well as the bounds of the optimization
variables.

9. Vectors completedTasks, pendingTasks, acceptedTasks, unemployedCores and
executionEndtimePrevisionPerCore are initialized to zero values.

Algorithm D.2 Execute the batch of tasks

1. WHILE (stopSolvingTasks is false)

(a) IF (processor is the root of taskWorld)

i. Lock access to shared-memory to every other processor.
ii. Check the activation of the scheduler (see Algorithm D.3).
iii. IF (schedulerActive is true)
A. Carry out some actions before running the scheduler (see Algorithm
D.4).
B. IF (nRemainingTasks is not 0)
Run the task scheduler (see Algorithm D.5).

(b) Wait until every processor sharing the communicator task World reaches this
point in the code (equivalent to MPI_Barrier(task World)).
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(c) The root of taskWorld communicates to all other processors sharing that
communicator the value of nRemainingTasks.

(d) Get the next task to be executed (see Algorithm D.6).

(e) IF (there is a task contained in the vector nextAssignedTask)
i. Execute the next task (see Algorithm D.7).

() ELSE
i. Check the stopping criterion (see Algorithm D.8).

Algorithm D.3 Check the activation of the scheduler

1. Read the variables schedulerRunsMissing and completedTasks in shared-memory.

2. A variable named border is calculated to decide if the scheduler should be called:
border = [nTasks - schedulerRunsMissing / total number of scheduler runs].

3. IF (schedulerRunsMissing > 0 AND nRemainingTasks < border)

(a) The scheduler is to be run (schedulerActive = true).

(b) The value of schedulerRunsMissing is reduced by 1 unit and is updated in
the shared-memory.

Algorithm D.4 Actions before running the scheduler

1. Read the vector unemployedCores from shared-memory.

2. Send the unemployed processors’ ranks list to every unemployed processor.
3. Clear the vector unemployedCores in the shared-memory.

4. IF (nRemainingTasks is not 0)

(a) Save the current time in the variable currentTime.
(b) Read the vector executionEndtimePrevisionPerCore from shared-memory.

(c) FOR (every rank contained in lastTaskRanks)
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i. executionEndtimePrevisionPerCore[rank] = currentTime + executionEnd-
timePrevisionPerCore[rank + total number of processors].

Algorithm D.5 Run the task scheduler

1. IF (first time that the scheduler is run in this batch of tasks)

(a) The maximum allowed scheduling time is calculated based on the last gener-
ation’s makespan and a percentage introduced by the user: maxScheduling-
Time = userDefinedPercentage - lastGenTime. The result is saved in the 4th
position of the vector schedulingInfo, which is stored in shared-memory.

2. Save the current time in the variable schedulerLaunchTime.
3. Read the vector schedulerInfo from the shared-memory.

4. Calculate a balanced schedule (see Algorithm E). As a result, a vector of tasks and
an estimated makespan for the batch of tasks are obtained.

5. Update the taskQueuePerCore variable, writing the tasks assigned by the sched-
uler to every processor.

6. Update positions 2 and 3 of the schedulerInfo vector, which store respectively the
variable controlling if the task time prediction model has to be updated and the
variable controlling if there is enough information available for building a task
time prediction model. The updated vector is stored in shared-memory.

7. Copy the scheduled tasks to the pendingTasks vector ascendingly according to
their start time, and update the vector in the shared-memory.

8. Update the vector estimatedTaskTimes in the shared-memory with the new time
estimations provided by the scheduler.

Algorithm D.6 Get the next task

1. IF (processor is root of task World)

(a) Read the vectors pendingTasks and acceptedTasks from shared-memory.
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(b) Assign tasks from the vector acceptedTasks to processors. For this aim, call
to Algorithm D.9 giving acceptedTasks as input variable.

(c) Assign tasks from the vector pendingTasks to processors. For this aim, call
to Algorithm D.9 giving pendingTasks as input variable.

(d) Move to the vector acceptedTasks the tasks contained in pendingTasks which
have been assigned to processors (see Algorithm D.10).

(e) Communicate to all processors in lastTaskRanks the next task they have to
execute. Then, store in nextAssignedTask the next task to be executed in the
current processor.

(f) FOR (every processor contained in lastTaskRanks)

i. Ifno task has been assigned to the processor, store value 1 in the position
of the vector unemployedCores (in the shared-memory) corresponding to
that processor.

(g) IF (there are no more tasks for being scheduled)

i. Avoid the execution of additional schedulers in the current batch of tasks
by setting schedulerRunsMissing = 0 in the shared-memory and sending
it to every unemployed processor.

(h) FOR (every unemployed processor)

i. Save the current time in the position corresponding to the processor in
the first half of the vector executionEndtimePrevisionPerCore (stored in
shared-memory).

(i) Update vectors acceptedTasks and pendingTasks in shared-memory.

2. ELSE

(a) Receive from the root of taskWorld the next task to be executed. In case
no task has been assigned to the processor, receive the updated value of
schedulerRunsMissing.




164 §3.3 Load balancing strategies

Algorithm D.7 Execute next task

1. Read in nextAssignedTask the details of the next task to be executed.

2. Clear lastTaskRanks and save the ranks of the processors involved in the execution
of the next task.

3. IF (processor is the one which locked the access to shared-memory)
(a) Unlock the access to shared-memory.

4. Free the taskWorld communicator and create a new one for the ranks contained
in the vector lastTaskRanks.

5. IF (processor is the root of taskWorld)

(a) FOR (every rank contained in lastTaskRanks)

i. executionEndtimePrevisionPerCore[rank] = current time + executionEnd-
timePrevisionPerCore[rank + total number of processors].

ii. executionEndtimePrevisionPerCore[rank + total number of processors] =
previously stored time - estimatedTaskTimes[next task’s identifier].

(b) Delete the information concerning the task in nextAssignedTask from accept-
edTasks, keeping the remaining tasks in the same order.

(c) Create a directory in which the task can write its execution files.

6. Execute the task (evaluate the objective function(s) of the individual). Store the
objective value(s) and the task’s completion time in the root of taskWorld.

7. Clear the vector nextAssignedTask.

Algorithm D.8 Check the stopping criterion

1. IF (processor is the one which locked the access to shared-memory)
(a) Unlock the access to shared-memory.

2. Free the communicator taskWorld.
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3. IF (schedulerRunsMissing > 0)
Before the task scheduler is called again, all unemployed processors create a
communicator (taskWorld) as if they had simulated a task together. They received
a list of unemployed processors for this aim in a previous instruction.

(a) Copy the list of ranks of unemployed processors into lastTaskRanks.

(b) All ranks contained in lastTaskRanks create a communicator in taskWorld.
4. ELSE

(a) When a processor reaches this point, it is impossible that it gets assigned
any other task of the batch. Thus, the variable stopSolvingTasks is set to
true so that the processor can exit the generation’s evaluation.

Algorithm D.9 Assign tasks to processors

1. An input vector is received with the tasks that are to be assigned to processors
(taskVector).

2. FOR (every task in taskVector)

(a) FOR (every processor involved in the task)

i. IF (there is no task assigned to that processor)
A. Assign the current task in taskVector to the processor.
ii. ELSE
A. If the task proposed from taskVector has a smaller start time than
the task already assigned to the processor, replace the existing task
by the new task. Note that if the already existing task was assigned
before the last run of the scheduler, it will not be replaced.

Algorithm D.10 Move pending tasks to accepted tasks

1. FOR (every task in the vector pendingTasks)

(a) IF (the task was assigned to processors)
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i. Delete the task from pendingTasks and write it after the last existing

task in acceptedTasks.

ii. Store the task as completed in the vector completedTasks. Otherwise,
the task may be scheduled again.

iii. Update in the shared-memory the execution end time previsions of the
processors to which the new task was assigned.
FOR (every processor to which the new task was assigned)
A. executionEndtimePrevisionPerCore[rank] = previously stored time +

estimatedTaskTimes[new task’s identifier].

B. executionEndtimePrevisionPerCore[rank + total number of proces-

sors] = previously stored time + estimatedTaskTimes[new task’s

identifier].

3.3.3 Task scheduling algorithm

This algorithm is in charge of solving the task scheduling problem, which is defined as
follows:

Definition 3.1 Task scheduling problem: Given a set of n independent tasks T =
{T1,Ts,...,Ty} and being t;; the time required by task T; to be run in j processors, where
1<i<nand jmin <J < Jmax> find the task schedule that minimizes the makespan of T
if a total number of p processors is available. jn,in and jmax, bounded as 1 < jp,in <p
s 1< Jmax < p and jmin < Jmax, represent respectively the minimum and maximum
number of processors that can be assigned to a task and are user defined.

Based on the state of the art study carried out in section 3.2, it has been decided to
use a genetic algorithm in order to solve the task scheduling combinatorial problem.
The main reason is that results provided by optimization algorithms outperform those
achieved by previously used heuristic methods. Other stochastic methods are also
suitable for this kind of problems, but the genetic algorithm has been selected because
it is already implemented in the Optimus library.
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Encoding

The individuals handled by the task scheduling algorithm are encoded as shown in
Figure 3.7 (c). Thus, if the schedule of a batch of n tasks is being optimized, each
individual is represented by 2n optimization variables. Each one of the first n variables
(let us say they belong to half A) represents the number of processors assigned to each
task, whereas the remaining n variables (let us say they belong to half B) represent the
priority of each task to be assigned by the task assignment algorithm.

The size of a combinatorial optimization problem depends on the number of op-
timization variables and on the number of different values each variable may take.
Taking this aspect into account has led to represent the variables in half A (the number
of processors assigned to each task) as powers of 2, i.e. 2% processors are assigned to
each task, being x the value for each task contained in half A of the individual. If the
user defines the bounds for x to be [0,5], the scheduler may decide to run each task in
1,2,4,8,16 or 32 processors. Variables in half B (the priority of each task) are always
natural numbers bounded in [1,7], having value 1 the task that will be first assigned
and value n the task to be assigned in the end.

Enhancement of Optimus for combinatorial optimization

The optimization library Optimus implemented in Chapter 2 was only suited for con-
tinuous optimization. Therefore, additional features have been included for solving
discrete optimization problems (particularly the present scheduling problem) and are
listed hereafter.

* The possibility of choosing the nature (real, integer or boolean) of each optimiza-
tion variable independently has been included, giving rise to the possibility of

solving mixed integer optimization problems.
¢ New crossover operators

— Order crossover
This permutation operator can be executed in 5 steps (see example in Fig.
3.11): 1) select randomly two cutting points, ii) copy the substring from parent
1 that falls between the two cutting points to the beginning of offspring 1,
iii) copy the remaining genes (avoiding duplication) from parent 2 beginning
at the position following the second cutting point and respecting their order,
coming back to the beginning of the chromosome when the end of the string
is reached, iv) copy the substring from parent 2 that falls between the two
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cutting points to the beginning of offspring 2, and v) copy the remaining genes
(avoiding duplication) from parent 1 beginning at the position following the
second cutting point and respecting their order, coming back to the beginning
of the chromosome when the end of the string is reached.

Task crossover

The encoding of a task schedule was already explained, being the number
of processors assigned to each task contained in half A and the priority of
each task contained in half B (see Fig. 3.7 (c)). Hence, each task is scheduled
according to the pair (p;,q;). The task crossover is carried out by applying the
order crossover permutation operator to half B, which causes the reordering
of the n pairs (p;,q;), i.e. a different pair (p;,q;) is assigned to each task (see
example in Fig. 3.12). Note that the number of processors p; associated to
priority g; is kept.

¢ New mutation operators

- Swap mutation

A swap consists on interchanging the values of 2 uniformly selected positions
in the chromosome, and the user decides how many swaps shall be carried
out. This is a common permutation operator.

Task mutation

This operator has been specifically designed for mutating task schedules and
applies a deterministic-uniform mutation (see section 2.3.4) on half A of the
chromosome and a swap mutation on half B, being both halves independently
manipulated. Regarding the mutation on half A, it changes % values in a
range of size 2 - epsilon and the obtained new real values are rounded to the
closest integer, being both % and epsilon user defined parameters. Regarding
the mutation of half B, the number of swaps to be carried out is decided by
the user. The application of the task mutation operator depends on a single
probability parameter, so either both or none of the constituent mutation
operators are applied.
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Figure 3.11: Example of the order crossover permutation operator, which recombines 2 parent
strings based on 2 randomly chosen cutting points.
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Figure 3.12: Example of the task crossover permutation operator, which recombines 2 parent
strings representing task schedules (see Figure 3.7 (c)) based on 2 randomly chosen cutting points.
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No exhaustive study has been carried out in order to find the optimal values for the
genetic algorithm’s parameters, but the following values have led to acceptable results
when scheduling batches composed of 20-60 tasks in 32 processors:

¢ Population: 40 individuals.

¢ Available processors per task: between 1 and 32.
* Selection algorithm: ordered sequential selection.
¢ Replacement algorithm: plus replacement.

* Number of offspring: 60% of the population.

¢ Continuation criterion: stop if the best individual of the population is not improved
in 400 generations.

* Probability of crossover: 100%

* Probability of mutation: 100%

* % (number of genes to mutate in half A): 1

* epsilon (defines the range of mutations in half A): 5

¢ Number of swaps (in half B): 1

Description of the algorithm
A description of the proposed task scheduling algorithm is introduced hereafter.

Algorithm E Task scheduling algorithm

1. Encode the batch of tasks into a single individual (schedule).

2. Run the search engine in charge of minimizing the makespan of the batch of tasks.
WHILE (none of the stopping criteria is fulfilled)
(a) Use the search engine to create a new population of potential schedules.

(b) Calculate the makespan of all potential schedules by means of the task
assignment algorithm (see Algorithm F).
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3. The optimal task schedule has been found.

Observations

It is proved in section 3.4 that the aforementioned genetic algorithm for task scheduling
is able to balance computational load satisfactorily. Nevertheless, several shortfalls
have been detected and are listed hereafter in order to lead upcoming research:

¢ Enabling the use of self-adaptive mutation with discrete chromosomes (currently
it is only suited for real-valued chromosomes in Optimus) could improve the
performance of the genetic algorithm used for task scheduling.

* A thorough study on discrete crossover and mutation operators is needed in order
to select the best performing algorithms.

* The size of the scheduling combinatorial problem increases dramatically in case
there is a considerable amount of tasks in the batch. Keeping in mind that the risk
of load imbalance arises at the end of the batch, a good strategy could be to balance
randomly created sub-batches of tasks. These sub-batches would be successively
created until the execution of all tasks finished, and the computational cost of
optimizing each sub-batch is considerably lower than the cost involved by the
whole batch.

* The size of the population should be in agreement with the size of the combinato-
rial problem to be solved. Thus, some study in this direction is required.

¢ Since the gradient-based local search method currently available in Optimus
(Trilinos/Moocho) is not suited for discrete optimization, the addition of some
other discrete local search method could improve the performance of the task
scheduling algorithm.

3.3.4 Task assignment algorithm

The task assignment algorithm receives a schedule from the task scheduling algorithm
(see Fig. 3.7 (c)) and is in charge of determining the most suitable processors for
executing each task, as well as of establishing a precedence order between the tasks to
be run in each processor. The tasks are mapped on a one-by-one basis according to their
priorities seeking to assign them the earliest possible start time. A graphical example
of the task assignment procedure is shown in Fig. 3.10.
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The implemented task assignment algorithm is described hereafter. The main
algorithm is referred to as Algorithm F, and at certain points other sub-algorithms
are called. But let us first introduce 2 variables in which the task-to-processors map

proposed by the assignment algorithm is stored:

* batchOfTasks: 1t is a vector that includes all tasks in the batch, being each task

defined by the characteristics mentioned in section 3.3.1: task id, number of
assigned processors, ranks of assigned processors, priority, run time, start time
and end time. The notation batchOfTasks[taskID] is used for referring to a task
with a certain id contained in the batch, being the index taskID in the range [1,n].

taskQueuePerCore: It is a matrix of tasks that stores the queue of each available
processor. The notation taskQueuePerCore[rank][i] refers to the i-th task waiting
in the queue belonging to the processor with the identifier rank. This matrix
contains the information used by the task manager for executing the tasks in the
batch.

Algorithm F Task assignment algorithm

1.

The task schedule proposed by the task scheduling algorithm (see Fig. 3.7 (c)) is
decoded into a vector of tasks (batchOfTasks).

. The completion time of each task is estimated (see Algorithm F.1).

. The tasks contained in batchOfTasks are ordered ascendingly according to their
priority.

. If the dynamic task manager is being used, fictitious tasks are created (see
Algorithm F.5).

. FOR (each task T'; contained in batchOfTasks)

(a) Call Algorithm F.6 giving as an input the task T'; in order to map that task
to the processors.

. At this point, every task in batchOfTasks has a defined start time, end time and

a list of ranks of the processors assigned for its execution. But the assignment
procedure is finished when every task is put in the queue of its corresponding
processors in taskQueuePerCore:
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FOR (each task T; contained in batchOfTasks)

(a) FOR (each rank assigned to task T';)
i. Add the task T'; to the queue taskQueuePerCore[rank].

ii. Order the tasks in the queue taskQueuePerCore[rank] ascendingly ac-
cording to the start time of the tasks.

7. The makespan of the task schedule is calculated by comparing with each other
the end times of the last task belonging to the queue of each processor and taking
the greatest of them, i.e. the makespan is defined by the end time of the last task
being processed.

Algorithm F.1 Task time estimation manager

1. IF (the time estimation method is a function provided by the user)

(a) Estimate the completion time of all tasks.

(b) Check the scheduler’s run time limitation (see Algorithm F.2).

2. ELSE

(a) Check if there is enough information available in the task times’ database
in order to build a task time prediction model using the generic method
selected by the user (for further details on generic time estimation methods
implemented in Optimus, the reader is referred to section 3.5).

(b) IF (enough information available in the database)
i. Estimate the completion time of every task (see Algorithm F.3).
(c) ELSE

i. It is not possible to provide any task time estimation. The optimiza-
tion is stopped and the user is requested to modify the parallelization
parameters.
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Algorithm F.2 Check the scheduler’s time limitation

1. If the first generation is being evaluated, the task scheduler does not have any run
time limitation, as it is calculated based on the previous generation’s makespan.
In this case, the time limitation may be introduced as follows:

IF (the first generation is being evaluated)

(a) The completion time of all tasks in the batch is estimated assuming that
each of them is executed using every processor.

(b) The generation’s makespan is estimated assuming that all tasks are executed
one after the other.

(c) The run time limitation for the task scheduler is calculated by applying the
percentage defined by the user to the generation’s makespan estimated in
the previous step.

Algorithm F.3 Estimate task times with a generic method

1. Check position 2 of the vector schedulerInfo stored in shared-memory to know if a
task time prediction model is to be built.

2. IF (task time prediction model is to be built)

(a) Build a new task time prediction model using the generic method selected
by the user and store it in the hard drive so that it can be loaded by any
processor.

3. Load the task time prediction model stored in the hard drive.

4. Estimate the completion time of every task using the loaded task time prediction
model.

5. Check the scheduler’s time limitation (see Algorithm F.2).

6. Check the existence of negative task times (see Algorithm F.4).
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Algorithm F.4 Check the existence of negative task times

1. Depending on the quality of the task time model, it might happen that the time
estimates of some tasks get a negative value. In order to avoid the detrimental
effect of such estimates in the task assignment algorithm, this algorithm is an
alternative for turning negative times into positive times.

2. IF (at least one task got a positive completion time estimate)
(a) Calculate the average completion time of the tasks that got a positive time

estimate (¢,,4) assuming they are executed in a single processor.

(b) Take each task which got a negative completion time estimate and replace
its time estimate by the value obtained when dividing ¢,,¢ by the number of
processors assigned to the task.

3. ELSE IF (all task completion time estimates are negative)

(a) Take the task with the smallest time estimate (the most negative estimate)
and calculate a constant K such that if it is added to the task’s time estimate,
the value 1.0 is obtained.

(b) Add the same constant K to the completion time estimate of every task, so
that all of them obtain a positive value.

Algorithm F.5 Create fictitious tasks

1. A fictitious task is created per processor, representing the remaining time for
finishing the task being executed in each of them.
FOR (every processor)

(a) Create a fictitious task with the following characteristics, being each proces-
sor represented by its rank:
Task id = —1 (this value is assigned to every fictitious task)
Number of assigned processors = 1
Ranks of assigned processors = rank
Run time = executionEndtimePrevisionPerCore[rank] - schedulerLaunchTime
Start time = schedulerLaunchTime
End time = start time + run time
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(b) Add the created fictitious task to the vector taskQueuePerCore[rank].

Algorithm F.6 Map task to processors

1. The input received by this algorithm is a task 7';, which is expected to be mapped
to the processors at the earliest possible start time.

2. A gap, represented as gap(tszars,tend), 1S defined as an idle time span beginning at
a start time and finishing at an end time. In order to map the task T'; to processors,
the suitable gaps in each processor (i.e. the gaps involving a sufficient time span
so that task T'; can be completed) are identified and stored in a matrix of gaps (let
us call it matrixOfGaps), where each row contains the gaps of a processor ordered
ascendingly according to their start time #g4,:. The following loop obtains one by
one each row of matrixOfGaps:

FOR (each processor)

(a) Call Algorithm F.7 providing 2 inputs: the task T; and the rank of the
Processor.

3. Next, an empty vector of gaps (vectorOfGaps) is created and every gap found for
every processor is copied there. Then all gaps are ascendingly ordered according
to their start time tgzq,¢.

4. FOR (each gap; contained in vectorOfGaps)

(a) Let us represent the start time of gap;(¢start,tend) as gapi.tsiart and its
end time as gap;.t.,q. Being k the number of processors required by task
T;, search for £ — 1 additional gaps (generically represented as gapgqq,
where index add is greater than index i which fulfill that gap,qq.tstar: <
gapi-tstart and apadd-tend = 8aPi-tend)-
(b) IF (k —1 additional gaps are found)
i. Task T'; can be executed in the processors containing those gaps, so the

ranks of the processors are stored in the vector processorsWithSuitable-
Gaps.
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ii. The following information is assigned to task T'; contained in batchOf-
Tasks:
Ti.tstart = 8ap; tstart
T;.tong =T;.tstars + Ti.runtime
T;.ranksOfAssignedProcessors = processorsWithSuitableGaps

The loop always finds a suitable set of gaps, because each processor can always
accept a new task at the end of its queue.

Algorithm F.7 Search for gaps in a given processor

1.

The inputs received by this algorithm are 2: a task T'; and the rank of the processor
in which gaps are to be searched.

. An empty vector of gaps (gapsInRank) is created, which is in charge of storing the

gaps that will be found in subsequent steps.

. FOR (each task T}, contained in taskQueuePerCore[rank], excepting the last task

Tlast)

(@) IF (Thi1-tstart — Th.teng = Ti.runtime)
i. Create gap(Ty.tend, Thi1-tstars) and add it to gapsinRank.

. Create gap(Tj4st-tend,too) and add it to gapsInRank. The meaning of this last

gap is that there is no time limitation to include any new task after the last task
scheduled in a processor. Note that ., represents a very high value.

. Finally the algorithm returns the vector gapsInRank as an output.

When the task assignment algorithm has finished, the queue of tasks of each

available processor is stored in taskQueuePerCore ordered ascendingly according to

the tasks’ start time. The only information that will be used by the task manager

for running the tasks is the processors’ ranks to which they have been assigned and

the precedence order of the tasks that have been mapped to each processor. The real

execution of each task will be started as soon as possible and it will last until the task

is completed. The start time, end time and run time of each task that have been used

by the assignment algorithm are just estimations which do not directly affect the real

execution of the batch of tasks.
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3.4 Theoretical case study of load balancing strategies

3.4.1 Design of the experiments

Modeling tasks

Before starting to design an appropriate theoretical case study in order to prove the
validity of the proposed load balancing strategies, let us remember the key hypotheses
that were formulated in section 3.2.4 of this chapter.

* Every task involves an arbitrarily divisible computational load.

¢ Every task is moldable, i.e. the number of processors assigned to the task cannot
be modified after the execution of the task has started.

* The computational load imbalance that may arise when executing a batch of tasks
in a parallel system can have 2 causes:

— The heterogeneity in tasks’ run times depending on their input variables.

— The inappropriate selection of the ratio (no. individuals / no. processor
groups).

The first step for designing the case study consists on identifying which features of
the tasks have to be modeled. Since the goal of the experiments is to test the goodness
of the load balance achieved by the proposed algorithms, the only relevant feature of
the tasks is their completion time, which depends on 1) the input variables of the task,
and ii) the number of processors assigned for the execution of the task. Other tasks’
characteristics like their internal computation/communication ratio or scalability have
an effect on the load balance through the task’s completion time, being this the only
interface with the main optimizer.

Consequently, the simplest way of modeling a task is the use of a sleep application.
Such a task does nothing but waiting until a specified amount of time has gone by and
may be built by means of 2 methods: 1) using the Linux sleep command and ii) manually
using 2 variables for storing the system’s time. The latter option involves creating 2
time variables, storing in one of them the task’s start time (wall clock time), storing in
the other one the wall clock time at every instant after the execution of the task started
and comparing successively both time readings. When the difference between them
reaches the specified value, the execution of the task is stopped. The second option has
been chosen due to portability reasons so as to avoid the need of the sleep command
provided by the operating system.
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A single node holding 32 processors and which belongs to an experimental HPC
platform has been used for executing the whole theoretical case study. Measurements
are not affected by different processor speeds in this way and all processors have access
to a common shared-memory space. Moreover, the fact of reserving the whole node for a
single user guarantees there is no interference with other users’ jobs.

An additional issue is the modeling of errors in the tasks’ completion time estima-
tions. Provided that the database of task times contains enough information for the time
the load balancing algorithms are applied, small time estimation errors are expected
for most of the tasks even if bigger errors may occasionally take place. This behavior
is modeled by means of a normal distribution centered in the task’s real completion
time and characterized by a certain standard deviation. The notation utilized for rep-
resenting an error is (Uerror, Terror), Where the average u is always equal to zero and
the standard deviation o is a relative error with respect to the true value given as a
fraction of one. In this theoretical case study, it is assumed that the true completion
time of every task is always known without the need of carrying out any sampling, and
it is possible to insert a bounded estimation error when desired.

The implementation of the mentioned task characteristics has been done as follows.
The utilized sleep application (let us call it performanceCase) calculates a completion
time depending on the value of the optimization variable and on the number of processors
assigned to it. When the task is run, its real completion time matches exactly this
time. However, when the task is asked to provide a run time prediction for scheduling
purposes, the real completion time is modified by applying the normal error distribution
and the result is sent to the task scheduling algorithm. The main variables and the
algorithm are detailed hereafter:

* One optimization variable (optVar): It is a real variable ranging in [0,1].

* A communicator (taskWorld): It is an MPI communicator shared by the processors
in charge of executing the task.

¢ Number of assigned processors (nProc): Number of processors assigned for the
task’s execution.

¢ A time range [¢in,tmax]: The lower and upper bounds for the task’s completion
time if it is executed in a single processor. If the value of the optimization variable
is 0, it will take ¢,,;, seconds to run the task in 1 processor. If the value of the
optimization variable is 1, the task’s simulation will take ¢,,,, seconds. For any
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other value in the interval [¢,,i, max], the task’s completion time is calculated by
means of linear interpolation.

* Time estimation error (Uerror,Terror): Average and standard deviation of the
normal distribution which models the user defined time estimation error.

Algorithm G Execution of performanceCase

1. IF (processor is the root of the task)

(a) Calculate the task time (see Algorithm G.1).
(b) Sleep during the time calculated in the previous step.

(c) Set the value of the objective function to be equal to optVar. Note that the
fitness value is irrelevant for the case study to be carried out.

(d) Send the fitness value to all other processors.

2. ELSE

(a) Receive the fitness value from the root.

Algorithm G.1 Calculate the task time

(tmax - tmin)

1. Base time = ¢,,;, + 1-0)

(optVar-0)

2. Calculate the parallel speedup, which is obtained using a function provided by
the user and depends on the number of processors assigned to the task.

3. Real task time = base time / speedup.

4. IF (a task time prediction is wanted)
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(a) The time estimation error (Uerror,Terror) is applied to the real task time in
order to get the task time prediction. This is done by first calculating an
average and a standard deviation (upreq,0 preq) for the predicted task time,
i.e. lpreq = (real task time + perror - real task time) and opreq = (Oerror
real task time), and finally by requesting to the random number generator
of performanceCase to create a task time prediction according to a normal
distribution defined by (tpred, 0 pred)-

Metrics

Another requirement for performing a case study is to find an appropriate set of metrics

able to evaluate the quality of the results provided by the proposed load balancing

algorithms. A list containing 6 metrics which measure several aspects of the execution

of a batch of tasks is presented hereafter:

¢ Evaluation time: It is the average fraction of the makespan of the batch of tasks

spent by the processors executing tasks.

Scheduling time: 1t is the average fraction of the makespan of the batch of tasks
spent by the processors running the task scheduling algorithm. Note that when
the first task scheduler is run at the beginning of the batch, the time spent for
obtaining the schedule is counted as scheduling time in every processor.

¢ Idle time: It is the average fraction of the makespan of the batch of tasks spent

by the processors performing neither evaluation nor scheduling operations and is
caused mainly by the following 3 synchronization delays: i) a processor finished
all its assigned tasks and the batch of tasks is exhausted, so it has to wait until
every other processor completes its assigned tasks; ii) a processor is ready to start
its next task, but it has to wait because the task requires parallel execution and
some other processors are not available yet; iii) a processor needs to access the
task schedule in order to get its next task, but the access to shared-memory has
been locked by some other processor and the first processor has to wait until it
is unlocked (note that this synchronization delay can only take place when the
dynamic task manager is used).

* Makespan of the batch of tasks: 1t is the wall clock time required for complet-

ing the execution of the batch of tasks. This is the most important metric when
evaluating the parallel efficiency of any application [30] as it accounts not only for



§3.4 Theoretical case study of load balancing strategies 183

the computational work, but also for any contributions arising from synchroniza-
tion, communication and I/O. Thus, the makespan is used as the reference metric
for evaluating the overall quality of the proposed task management algorithms.

* Nondimensionalized makespan of the batch of tasks: 1t is calculated as the
makespan of the batch of tasks nondimensionalized by the average computational
time required for the completion of a task. This metric is only representative for
tasks with linear parallel scalability and can be useful for evaluating the overall
quality of the proposed task management algorithms when batches with the same
number of tasks but different average task completion times are compared.

e Idle Time Coefficient (ITC): It measures the quality of the computational load
balance achieved by the task scheduling algorithm, but it is not suitable for being
used with the dynamic task manager and is only representative for tasks with
linear parallel scalability. The ITC is calculated as the overall idle computational
time when executing a batch of tasks nondimensionalized by the average compu-
tational time required for the completion of a task. It represents how staggered
the profile of a task schedule is (see Fig. 3.13) independently from the number of
tasks in the batch or their average completion time. On one hand, the use of this
metric together with the dynamic task manager is discouraged, because in that
case not every idle time span is due to an improvable task schedule. On the other
hand, reduction of idle time does not necessarily involve that a good task schedule
has been obtained in case tasks do not scale linearly.

Simulated sets of experiments
The parametrization options differ depending on the selected task manager and are
shown in the list hereafter:

¢ Self-scheduling task manager: the number of processors assigned per task.

¢ Static task manager: the lower and upper bounds defining the allowed number of
processors per task, and the limitation of the scheduling time.

* Dynamic task manager: the lower and upper bounds defining the allowed number
of processors per task, the limitation of the scheduling time, and the number of
runs of the scheduling algorithm per batch of tasks.

Taking into account all the above considerations and the characteristics of the
implemented load balancing strategies, 3 sets of experiments have been carried out so
as to test the performance of the proposed load balancing strategies:
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1. Short cases with linear parallel scalability: This set involves the execution of
tasks requiring an average computational time of 300 seconds.

2. Long cases with linear parallel scalability: This set involves the execution of tasks
requiring an average computational time of 1500 seconds and is aimed at proving
that for sufficiently large makespans, the scheduling time can be enlarged and
the load balance of the batch of tasks improved.

3. Long cases with non-linear parallel scalability: This set involves the execution of
tasks requiring an average computational time of 1500 seconds and is aimed at
testing the effect of non-linear cases on the task scheduling algorithm.

Processor 1D Processor ID

23] 4]5 0]1]2]3]4]5

Time Time
v

Figure 3.13: Representation of the idle time (dotted space) in two different task schedules
proposed for the same batch of tasks. It can be seen that the task schedule on the right has
lower idle time and makespan values than the one on the left. Every task scales linearly and the
scheduling time required by the utilized static task manager has not been represented.
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Every set of experiments has been run using the genetic algorithm implemented in
Chapter 2 of this Doctoral Thesis and keeping the local search method inactive. But
before analyzing the obtained results, let us have a look at the common characteristics
of these three case studies:

* Size of the batch of tasks: Batches with 20, 24, 32, 34 and 60 tasks have been
simulated, because they represent a sufficient number for being run in 32 proces-
sors and allow evaluating the effect of inappropriate ratios (no. individuals / no.
processor groups).

* Scalability of the tasks: The use of tasks with linear parallel performance simpli-
fies the evaluation of the quality of the implemented load balancing strategies,
because the only loss of parallel efficiency may be caused by the optimizer. This
means that the optimal task schedule is known to be the one which achieves 100%
of CPU utilization (0% idle time) or an ITC equal to zero. In case of having tasks
with non-linear scalability, an additional loss of parallel efficiency occurs when
the task is executed in multiple processors and it is impossible to know a priori
which the optimal task schedule is.

¢ Computational time of the tasks: Depending on the optimization variable provided
by a uniform random number generator and defined in [0,1], each task is assigned
a computational time in the bounded interval [¢,,;,¢max]. This interval is tuned
so that the extremes account for a 0%, 20% and 50% variation over the desired
average computational time, i.e. 300 seconds for short cases and 1500 seconds
for long cases. For example, a case with an average computational time of 300
seconds and a maximum variation of 50% is bounded in the interval [150, 450] (in
seconds).

¢ Number of generations: Each test involves the simulation of 10 batches of tasks
(i.e. 10 generations) and averaging the aforementioned metrics.

* Random number generators: On one hand, the same seed has always been used
for the random number generator in charge of creating and modifying the tasks,
what means that if tests with the same size of the batch of tasks are compared,
the optimization variables of the tasks of each generation will correspond exactly
with each other. On the other hand, the results obtained by the task scheduling
algorithm and the algorithm in charge of introducing time estimation errors are
not repeatable. Nevertheless, this is not necessary as they are studied by means
of averaged metrics.
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* Genetic operators: Only the random mutation operator has been utilized for
creating values for the optimization variable in the range [0,1] and with an
application probability of 100%. The result is that a completely new batch of
tasks is obtained in each generation, keeping no relationship with the previous
generation. The reason of using this operator is that the usual tendency of
optimizers is to destroy the population’s diversity, being easier to balance a batch
of similar individuals. However, keeping the diversity level is necessary so that
averaging the metrics obtained in different generations makes sense.

3.4.2 Short cases with linear scalability

The first step has been the simulation of short cases in order to prove the existence of
the aforementioned load balancing problem when the self-scheduling task manager is
used. The obtained results are shown in Figs. 3.14, 3.15 and 3.16.

Task time [300,300] Task time [240,360] Task time [150,450]
500 20 tasks/batch —&— 500 20 tasks/batch —8— 500 20 tasks/batch —8—
24 tasks/batch —e— 24 tasks/batch —e— 24 tasks/batch —e—
32 tasks/batch 32 tasks/batch 32 tasks/batch
400 34 tasks/batch 400 34 tasks/batch 400 34 tasks/batch
Z 300 Z 300 Z 300
§ § ]
a a a
a 2 8
3 3 3
S 200 S 200 S 200
100 100 100
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0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
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c = c
k= k=] k<]
El E E
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60 20 tasks/batch —5— 60 20 tasks/baich —5— 60 20 tasks/batch —5—
24 tasks/batch —e— 24 tasks/batch —e— 24 tasks/batch —e—
32 tasks/batch 32 tasks/batch 32 tasks/batch
50 34 tasks/batch 50 34 tasks/batch 50 34 tasks/batch
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Processors/task (2%) Processors/task (2*) Processors/task (2*)

Figure 3.14: Comparison of the average makespan (in seconds) and evaluation time (percentage
of the overall makespan) for batches of short tasks with linear scalability balanced by the self-
scheduling task manager.



§3.4 Theoretical case study of load balancing strategies

ITC

40

35

30

25

20

Idle time [%]

Task time [240,360]

20 tasks/batch —&—
24 tasks/batch —e—
32 tasks/batch
34 tasks/batch
60 tasks/batch

Processors/task (2)

20 tasks/batch —&—
24 tasks/batch —e—
32 tasks/batch
34 tasks/batch
60 tasks/batch

1 2 3

Processors/task (2)

Idle time [%]

40

35

30

25

20

187

Task time [150,450]

20 tasks/batch —=—
24 tasks/batch —e—
32 tasks/batch
34 tasks/batch
60 tasks/batch

2

28

<L

Processors/task (2)

20 tasks/batch —&—
24 tasks/batch —e—
32 tasks/batch
34 tasks/batch
60 tasks/batch

1 2 3 4 5
Processors/task (2¥)

Figure 3.15: Comparison of the average Idle Time Coefficient (ITC) and idle time (percentage
of the overall makespan) of batches of short tasks with linear scalability balanced by the self-

scheduling task manager.
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Figure 3.16: Comparison of the average nondimensional makespan, evaluation time (percentage
of the overall makespan) and Idle Time Coefficient (ITC) of batches of short tasks with linear
scalability balanced by the self-scheduling task manager.
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It can be seen in Fig. 3.14 that 100% parallel efficiency (evaluation time percentage)
is always achieved provided that every task is run using the 32 available processors,
reaching the minimum value for the makespan. But let us observe the results obtained
when every task requires a constant computational time of 300 seconds. If several tasks
are executed simultaneously and the ratio (no. individuals / no. processor groups) is
inappropriately selected, loss of parallel efficiency takes place leading to an increase of
the average makespan. Note, for instance, that the same makespan was obtained when
simulating 20 and 24 tasks assigning 4 processors per task. The heterogeneity in tasks’
run times has a similar effect although the (no. individuals / no. processor groups) ratio
is properly selected by the user, being impossible to avoid the loss of parallel efficiency
caused by the computational load imbalance.

This load imbalance can also be measured by means of the idle time percentage
and the Idle Time Coefficient (ITC), as it is shown in Fig. 3.15. The fewer the tasks
contained in the batch are, the greater the idle time percentage is but no meaningful
change arises regarding the ITC. This behavior is emphasized as the heterogeneity in
tasks’ run times increases, e.g. run times in the range [150,450]. The reason is that for
a given number of processors assigned per task and the greater the size of the batch of
tasks is, the idle computational time accounts for a lower percentage over the overall
makespan of the batch. Thus, the ITC is the preferred metric for evaluating the quality
of schedules as it only takes the staggering at the end of the execution of the batch into
account.

Batches of 20, 24, 32, 34 and 60 tasks have been used so far in order to evaluate the
negative impact of the computational load imbalance in a general case. However, the
user is expected to configure the self-scheduling task manager so that an appropriate
ratio (no. individuals / no. processor groups) is used in order to try to avoid this load
imbalance. A batch composed by 32 tasks has the minimum size that fulfills this
condition for any number of processors that can be assigned per task (i.e. 1,2,4,8,16 or
32) as it was proved by obtaining parallel efficiencies (i.e. evaluation time percentages)
of 100% in case of having constant tasks’ computational times. Hence, the batch of 32
tasks is taken as the main reference for further comparisons.

It is clearly depicted in Fig. 3.16 that the greater the heterogeneity in tasks’
run times, the greater the loss of parallel efficiency. Consequently, both the aver-
age makespan of the batch of tasks and the ITC have higher values. Although the
average computational task time is theoretically independent from the task times’
heterogeneity in the batch, the reality is that this cannot be guaranteed averaging the
results obtained in just 10 generations. Hence, this distorting factor is eliminated by
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nondimensionalizing the makespan with the average computational task time.

The load balancing problem that arises when the self-scheduling task manager is
used has been described up to this point. The static task manager was introduced as
an improved load balancing algorithm, provided that it was possible to perform perfect
task time estimations. The results obtained by this algorithm for the same short cases
are presented hereafter. The method was configured to allow assigning 2* processors
per task, being x in the range [0,5], and the scheduling time was limited to 1%, 5% and
10% of the previous generation’s makespan.

Several observations can be made regarding the results shown in Fig. 3.17. In first
place, they prove that the greater the scheduling time is, the lower the obtained ITC
and makespan without considering the scheduling time are, i.e. a better load balance is
achieved. However, the best overall solutions (smallest makespan taking into account
the scheduling time) were obtained when the scheduling time was limited to a 1% value
of the previous generation’s makespan most of the times. This fact indicates that the
scheduling overhead was too high in comparison to one generation’s makespan when 5%
and 10% scheduling time limitations were used. In second place, note that the smaller
the size of the batch of tasks is, the better the obtained ITC values are most of the times.
The reason is that the size of the combinatorial problem to be solved by the scheduling
algorithm is smaller in these cases, being the convergence speed to the optimal solution
faster. Finally, it can be seen that the scheduling algorithm was able to find the optimal
solution (ITC equal to zero) many times when the tasks’ computational times were
constant. However, finding the optimal solution (obtained by assigning 32 processors
per task) for heterogeneous tasks’ run times seems to be more difficult.

The results obtained for the reference batch size of 32 tasks are represented in
Fig. 3.18. Just for mentioning a detail, note that for the scheduling time limitation
of 5% a similar nondimensional makespan without considering the scheduling time
was obtained for task times in the ranges [240,360] and [150,450]. However, the
nondimensional makespan of the latter case is lower, which means that less scheduling
time than in the first case was required.

The results provided by the self-scheduling and the static task managers for the
batch size of 32 tasks are overlapped in Fig. 3.19. On one hand, results corresponding to
the best makespan including the scheduling time obtained by the static task manager
are represented. On the other hand, results corresponding to the best makespan without
considering the scheduling overhead are included. Note that they are independent from
each other (i.e. in a certain graph, the makespan with and without the scheduling time
do not correspond to the same load distribution), as achieving the best load balance
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Figure 3.17: Comparison of the average makespan (in seconds), makespan without considering
the scheduling time (in seconds) and Idle Time Coefficient (ITC) for batches of short tasks with
linear scalability balanced by the static task manager.
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may involve an important scheduling overhead which does not lead to the best overall
makespan. The results provided by the static task manager have been represented
as horizontal lines, even if each line corresponds to a single run of the optimizer (i.e.
the evaluation of 10 batches of tasks). The aim is to ease the comparison with the
results obtained by the self-scheduling task manager by making visible the intersection
between both lines.
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Figure 3.19: Comparison of the average makespan (in seconds) and Idle Time Coefficient (ITC)
for batches of 32 short tasks with linear scalability obtained by the self-scheduling and static task
managers.

Although an optimal solution for the load balancing problem involving a 100%
parallel efficiency existed in every case, the scheduling algorithm was able to find
it only when the tasks’ computational time was constant. This means that either
the allowed scheduling time or the scheduling algorithm’s convergence speed should
be increased so as to be able to find the optimal task distribution for batches with
heterogeneous tasks’ times. Regarding this kind of tasks and if the scheduling overhead
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is not taken into account, it can be seen that the results provided by the static task
manager outperform those obtained by the self-scheduling algorithm when 4 tasks were
executed simultaneously, i.e. 23 = 8 processors were assigned per task. In case the
scheduling overhead is considered, results provided by the static task manager get close
to those obtained by the self-scheduling task manager when 8 individuals were executed
simultaneously.

The trend observed in the results provided by the self-scheduling task manager
is that the more tasks are executed simultaneously, the lower the parallel efficiency
is. Moreover, this task manager is unable to handle heterogeneity in tasks’ run times
properly. The static task manager has demonstrated to be clearly beneficial in such
situations, being able to handle satisfactorily tasks with variable run times (see Fig.
3.19).

Although the ability of estimating task times accurately has been assumed so far,
the presence of estimation errors may be common. The negative impact of such errors
on the static task manager is studied in Fig. 3.20. The average makespan of a batch
of tasks without considering the scheduling time is the metric that has been chosen to
quantify the degradation of the load balance. As it can be seen, the common trend is
that the makespan and the ITC increase as the tasks’ completion time estimation errors
increase. In case of having estimation errors characterized by a standard deviation
between 0-10%, the degradation of the load balance is noticeable but the obtained results
are considered acceptable. However, the results provided by the static task manager
in case of having errors with a standard deviation of up to 30% are worse than those
achieved by the self-scheduling algorithm.

The dynamic task manager is better suited for handling task time estimation errors
than the static task manager, and it has been configured as follows:

* The scheduling algorithm has been run twice per batch of tasks.
¢ It was allowed to assign 2* processors per task, being x in the range [0,5].

¢ The scheduling time was limited to 1%, 5% and 10% of the previous generation’s
makespan.

The results provided by the self-scheduling, static and dynamic task managers for
the batch size of 32 tasks are overlapped in Fig. 3.21. In the case of the static and
dynamic algorithms, the results corresponding to the best obtained makespan including
the scheduling time are represented. Note that this is the only suitable metric in
order to compare both task managers, because the scheduling overhead must be taken
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Figure 3.20: Comparison of the average makespan without considering the scheduling time
(in seconds) and Idle Time Coefficient (ITC) for batches of 32 short tasks with linear scalability
obtained by the self-scheduling and static task managers and subject to task time estimation
errors.
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into account. The results provided by the static and dynamic algorithms have been
represented as horizontal lines, even if each line corresponds to a single run of the
optimizer (i.e. the evaluation of 10 batches of tasks). The aim is to ease the comparison
with the results obtained by the self-scheduling task manager by making visible the
intersection between the lines.

On one hand, in the simulations carried out with tasks requiring a computational
time in the range [240,360] the static task manager outperformed the dynamic one
in case of having task time estimation errors characterized by standard deviations
of 0% and 10%. Nevertheless, the dynamic task manager performed better than the
static one in case of having 5% and 30% errors. On the other hand, in simulations with
tasks requiring a computational time in the range [150,450] the dynamic task manager
always outperformed the static one. These results suggest that the use of the dynamic
algorithm is more beneficial the higher the heterogeneity in tasks’ run times is and the
greater the task time estimation errors are.

Several conclusions may be extracted from the presented case study. First, the task
management and scheduling algorithms have proved to be able to successfully balance
the computational load of batches of tasks with heterogeneous completion times. The
main drawbacks of the proposed algorithms are the scheduling overhead and handling
the task time estimation errors. Regardless of the utilized task manager, the best
makespans have been obtained for scheduling time limitations of 1% and 5%, what
suggests that even better makespans might had been obtained by allowing lower time
limitations.

Note also that the same scheduling algorithm is utilized by both the static and
dynamic task managers, although it is called more often and with updated informa-
tion by the latter. This allows getting a better balanced task schedule at the cost of a
higher scheduling time. The positive impact caused by an improvement in the conver-
gence speed of the scheduling algorithm would be more noticeable in the dynamic task
manager, whose results might be improved with respect to the static task manager.

Finally, it is observed that if tasks with a greater average completion time were simu-
lated, a certain scheduling time would represent a lower percentage over the makespan
of the batch of tasks compared to the results obtained for short cases. Hence, increasing
the scheduling time in order to get better task distributions would be affordable. This
has been the motivation for studying cases which involve a longer computational time
in the following sections.
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Figure 3.21: Comparison of the average makespan (in seconds) for batches of 32 short tasks with

linear scalability obtained by the self-scheduling, static and dynamic task managers and subject

to task time estimation errors.
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3.4.3 Long cases with linear scalability

The simulation of short sleep tasks involving an average computational time of 300 sec-
onds is not representative of the real target application of the load balancing algorithms
proposed so far, i.e. the optimization of CFD & HT models. Therefore, a second case
study using long sleep jobs requiring an average computational time of 1500 seconds
has been carried out. The increase in the average computational task time is beneficial
for the task management algorithm, because a certain scheduling time represents a
lower percentage over the average makespan of the batch of tasks if compared to the
results obtained for short cases. Simulations with task times in the ranges [1200,1800]
and [750,2250] have been carried out, keeping the same heterogeneity that was used for
short cases. Additionally the range [300,2700] has been considered, which involves a
maximum variation of 80% with respect to the tasks’ average computational time. With
the aim of reducing the number of cases to be simulated, only the reference batch size of
32 tasks has been analyzed.

Three changes have been introduced in the configuration of the static and dynamic
task managers:

¢ The use of 2* processors per task was allowed, being x in the range [0,4] instead
of in the range [0,5]. The aim of this modification is to reduce the size of the
scheduling combinatorial problem in the hope of obtaining better results. It was
decided to suppress the possibility of assigning every processor to a single task
because this is unlikely to happen in a real application, making the use of a
scheduling algorithm no sense in such a situation.

® The scheduling time is limited to 1%, 2% and 3% of the previous generation’s
makespan.

¢ The dynamic task manager may run the scheduling algorithm 2 or 3 times per
batch of tasks (both possibilities have been tested for every case).

First, the cases were simulated using the static task manager assuming perfect
task time estimations. The obtained results are shown in Fig. 3.22. Although the
average computational task time is theoretically independent from the task times’
heterogeneity in the batch, the reality is that this cannot be guaranteed averaging
the results obtained in 10 generations. Hence, this distorting factor is eliminated by
nondimensionalizing the makespan with the average computational task time. The
trend of the nondimensionalized makespan is that the greater the scheduling time, the
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greater the makespan. However, the opposite behavior of the nondimensional makespan
is observed if the scheduling time is not taken into consideration, being the obtained
results better the greater the scheduling time is. This trend is shown by the ITC, as
well.

It is concluded that the static task manager is able to properly balance the compu-
tational load and can provide a reduction of the makespan provided that an excessive
scheduling overhead is avoided. A couple of time references are given next. On one
hand, the best makespans (taking into account the scheduling time) for every task time
heterogeneity were obtained in approximately 16 seconds. On the other hand, the best
makespans without considering the scheduling time were obtained in approximately 46
seconds. Finally, and as it happened for short cases, it was noticed that the difficulty of
balancing the computational load of the batch of tasks increases with the heterogeneity
of tasks’ computational times.

The results provided by the self-scheduling and the static task managers are over-
lapped in Fig. 3.23. On one hand, results corresponding to the best makespan including
the scheduling time obtained by the static task manager are represented. On the other
hand, results corresponding to the best makespan without considering the scheduling
overhead are included. Note that they are independent from each other (i.e. in a certain
graph, the makespan with and without the scheduling time do not correspond to the
same load distribution), as achieving the best load balance may involve an important
scheduling overhead which does not lead to the best overall makespan. The results
provided by the static task manager have been represented as horizontal lines, even
if each line corresponds to a single run of the optimizer (i.e. the evaluation of 10
batches of tasks). The aim is to ease the comparison with the results obtained by the
self-scheduling task manager by making visible the intersection between both lines.

It can be seen that the makespans without considering the scheduling time achieved
by the static task manager are very similar to those obtained by the self-scheduling
algorithm when 16 processors were assigned for executing each task. Hence, the best
known solution when 16 processors/task are used is being fairly well approached. Good
results are also obtained if the scheduling time is included in the makespan, being the
ones provided by the static task manager similar to those obtained by the self-scheduling
algorithm when 8 processors were assigned per task. Note the increase in the makespans
obtained by the self-scheduling task manager caused by the heterogeneity increase in
tasks’ run times. Using the static task manager would clearly help avoid such behaviors.

Although the ability of performing accurate task time estimations has been assumed
so far, errors will unavoidably arise when handling batches of real tasks. The negative
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without considering the scheduling time and Idle Time Coefficient (ITC) for batches of 32 long
tasks with linear scalability balanced by the static task manager.
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Figure 3.23: Comparison of the average makespan (in seconds) and Idle Time Coefficient (ITC)
for batches of 32 long tasks with linear scalability obtained by the self-scheduling and static task
managers.

impact of such errors on the results provided by the static task manager is studied in
Fig. 3.24. The average makespan of a batch of tasks without considering the scheduling
time has been the selected metric in order to quantify the degradation of the load
balance. It is observed that an increase in the task time estimation errors always causes
the degradation of the computational load balance. Nonetheless, the ITC has similar
values for a given task time estimation error independently from the tasks’ run time
heterogeneity. Moreover, the makespans obtained by the self-scheduling task manager
when 1 or 2 processors are assigned per task show a considerable load imbalance,
especially for high levels of heterogeneity in tasks’ run times. The static task manager
proved its capacity to outperform these results even when estimation errors modeled by
a standard deviation of 30% over the average task time were applied.
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Figure 3.24: Comparison of the average makespan without considering the scheduling time
(in seconds) and Idle Time Coefficient (ITC) for batches of 32 long tasks with linear scalability
obtained by the self-scheduling and static task managers and subject to task time estimation
errors.

Simulations of batches composed by short and long cases are compared in Fig. 3.25
with the aim of showing the static task manager’s performance improvement as the
tasks’ average computational time is increased. Results obtained from simulating short
tasks are placed on the left column, whereas the results coming from the simulation
of long tasks are on the right column. These two kinds of tasks are characterized
by requiring different average computational times, but the same heterogeneity with
respect to the average time has been considered in both case studies, i.e. maximum
variabilities of 20% (upper row) and 50% (lower row) with respect to the average
computational time. Note that perfect task time estimations were assumed for every
case.
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Figure 3.25: Comparison of the average nondimensional makespan for batches of 32 short and
long tasks with linear scalability obtained by the self-scheduling and static task managers.
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It can be seen that the quality of the results provided by the static task manager in
relation to those obtained by the self-scheduling algorithm was better when long tasks
were simulated (right column). The reason is that having tasks with a longer average
computational time allows the scheduling algorithm to take more time for distributing
the computational load properly, as well as reducing the relative scheduling overhead
with respect to the average makespan of the batch of tasks. This effect is clearly visible
in Fig. 3.25, where the same scale is used for representing the two graphs in each row.
Note that the horizontal lines (average makespans obtained by the static task manager)
on the right column are at a lower height than their analogous on the left column.

The dynamic task manager is better suited for handling task time estimation errors
than the static task manager and for these experiments it has been configured so that the
scheduling algorithm is run either twice or three times per batch of tasks. The results
provided by the self-scheduling, static and dynamic task managers are overlapped in
Fig. 3.26. In the case of the static and dynamic algorithms, the results corresponding
to the best obtained makespan including the scheduling time are represented. Note
that this is the only suitable metric in order to compare both task managers, because
the scheduling overhead must be taken into account. The results provided by the static
and dynamic algorithms have been represented as horizontal lines, even if each line
corresponds to a single run of the optimizer (i.e. the evaluation of 10 batches of tasks).
The aim is to ease the comparison with the results obtained by the self-scheduling task
manager by making visible the intersection between the lines.

9 different cases were simulated, arising as combinations of 3 heterogeneity degrees
in tasks’ computational times and 3 task time estimation errors, trying several task
manager configurations. The obtained results show that the dynamic task manager
outperformed the static one in 7 of those 9 cases, proving the superiority of the dynamic
algorithm with respect to the static algorithm.

Some observations regarding the dynamic task manager’s configuration are intro-
duced hereafter. On one hand, the best results in case of having perfect task time
estimations were always provided by the configuration running the scheduling algo-
rithm twice per batch of tasks with a scheduling time limitation of 1% over the previous
generation’s makespan. On the other hand, running the scheduling algorithm 3 times
allowed obtaining the minimum makespan in case of having task time estimation errors.
These errors were present in 6 of the 9 cases and a 2% scheduling time limitation
provided the best results in 3 of them, a 1% limitation in 2 of them and a 3% limitation
in one of them.
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Figure 3.26: Comparison of the average makespan (in seconds) for batches of 32 long tasks with

linear scalability obtained by the self-scheduling, static and dynamic task managers and subject

to task time estimation errors.
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These facts lead us to the following conclusions. First, it is advantageous to run the
scheduling algorithm more than once per batch of tasks (twice according to the obtained
results) in case of having perfect task time estimations. The reason is that the size
of the second scheduling combinatorial problem is smaller than the first one, as some
tasks have already been completed, what allows obtaining a better computational load
distribution in a relatively short time. Second, it is advantageous to increase the number
of executions of the scheduling algorithm per batch of tasks in the presence of task
time estimation errors, because the chances for balancing the tasks’ computational load
using additional run time information are increased. Finally, note that the best results
were often obtained when a 1% scheduling time limitation was used, what suggests that
better makespans could have been reached by decreasing the scheduling time limitation
even more.

According to the presented results, the proposed load balancing methods showed a
good behavior when the standard deviation modeling task time estimation errors was
bounded between 0% and 10%. However, higher errors had a considerable negative
impact on the load balancing capacity of the task managers. It is reminded that the
results for each case executed with a certain task manager’s configuration were obtained
by averaging 10 generations. This amount was considered sufficient for a preliminary
study, but increasing the number of generations is necessary in order to increase the
reliability of the reached conclusions.

3.4.4 Long cases with non-linear scalability

In this last case study the non-linear scalability of real tasks is taken into account by
modeling the degradation of parallel performance taking place as they are assigned an in-
creasing number of processors. The main problem when configuring the self-scheduling
task manager consists on the impossibility of determining the optimal number of proces-
sors that should be assigned per task in order to minimize the makespan of the whole
batch of tasks. On one hand, assigning few processors per task involves the execution of
many tasks simultaneously, which is prone to generate computational load imbalance
and the consequent loss of parallel performance. On the other hand, assigning many
processors per task involves the execution of few tasks simultaneously, but it may lead
to the degradation of the tasks’ parallel efficiency. With the aim of simulating such
a behavior, a sleep job with a fictitious parallel speedup described by the following
function has been implemented: speedup = —0.0005x —0.0025x2 +x +0.003. Note that x
is a natural number referring to the number of processors in which the task is executed.
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Fig. 3.27 shows the speedup graph corresponding to the aforementioned mathematical
expression.

Speedup test
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Figure 3.27: Graphical representation of a task’s parallel speedup (speedup = —0.0005x3 —
0.0025x2 + x + 0.003) compared to linear speedup.

Nondimensionalized metrics, i.e. nondimensionalized makespan and Idle Time
Coefficient (ITC), have not been used in this case study. The reason is that measuring
a real-world non-linearly scalable task’s computational time is not usually possible.
Hence, the average makespan (in seconds) of a batch of tasks has been the only metric
used for comparing the results obtained by the different task managers.

Simulations with task computational times in the ranges [1500,1500], [1200,1800],
[750,2250] and [300,2700] have been carried out using the reference batch size of 32
tasks. The static and dynamic task managers have been configured as follows:

* The use of 2* processors per task was allowed, being x in the range [0,5].

* The scheduling time is limited to 1%, 2% and 3% of the previous generation’s
makespan.

¢ The dynamic task manager may run the scheduling algorithm 2 or 3 times per
batch of tasks (both possibilities have been tested for every case).
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The results provided by the self-scheduling and the static task managers are over-
lapped in Fig. 3.28. On one hand, results corresponding to the best makespan including
the scheduling time obtained by the static task manager are represented. On the other
hand, results corresponding to the best makespan without considering the scheduling
overhead are included. Note that they are independent from each other (i.e. in a certain
graph, the makespan with and without the scheduling time do not correspond to the
same load distribution), as achieving the best load balance may involve an important
scheduling overhead which does not lead to the best overall makespan. The results
provided by the static task manager have been represented as horizontal lines, even
if each line corresponds to a single run of the optimizer (i.e. the evaluation of 10
batches of tasks). The aim is to ease the comparison with the results obtained by the
self-scheduling task manager by making visible the intersection between both lines.

When tasks requiring a constant computational time of 1500 seconds were executed,
the optimal makespan was achieved assigning a single processor per task. It is also
observed that the highest loss of parallel efficiency took place as each task was executed
in 32 processors, leading to a makespan which at least doubles the one obtained when 1
processor was assigned per task. Although the static task manager was unable to find
the optimal task distribution, better results are expected when a more powerful task
scheduling algorithm is implemented.

In the case of simulations run with heterogeneous tasks’ computational times, the
best results provided by the self-scheduling task manager have always been outper-
formed by the static task manager either the scheduling time was taken into consid-
eration or not. Rigidity due to the fact that the same number of processors has to be
assigned per task is the main drawback of the self-scheduling algorithm. Note also that
the best parallel performance was reached in every case by assigning 8 processors per
task. Makespan reductions for different configurations of the self-scheduling algorithm
achieved by the static task manager are shown in Table 3.1, where only the best results
obtained by the static task manager have been included.

Let us compare the average makespan of the batches of tasks taking into account
the scheduling overhead. The parallel speedup of tasks (see Fig. 3.27) is the only
information available when configuring the self-scheduling task manager. According
to this, the user can decide between two options. The first one consists on maximizing
the parallel efficiency of tasks (i.e. reducing the number of processors assigned per
task) in the hope that this strategy will lead to minimize the makespan of the batches
of tasks. However, if the results obtained by the self-scheduling task manager with a
single processor assigned per task are compared to those provided by the static task
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Figure 3.28: Comparison of the average makespan (in seconds) both considering and without

considering the scheduling time for batches of 32 long tasks with non-linear scalability obtained

by the self-scheduling and static task managers. Same results are represented in the two columns

of each row, but a different scale is used.
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Self-scheduling with 8 processors/task vs. Static task manager
C tati 1
. Self-scheduling | Static makespan | Makespan Makespan ‘ompu a 1o.na .
Task time . . time reduction in
makespan [s] w/o scheduler [s] | reduction [s] | reduction [%]
100 gen. [hours]
[1200,1800] | 1624.15 1576.39 47.76 2.94 42.45
[750,22501] 1643.20 1565.62 77.58 4.72 68.96
[300,27001] 1632.36 1565.96 66.40 4.07 59.02
Self-scheduling with 1 processor/task vs. Static task manager
C tati 1
. Self-scheduling | Static makespan | Makespan Makespan ‘ompu a 1o‘na .
Task time . . time reduction in
makespan [s] w/o scheduler [s] | reduction [s] | reduction [%]
100 gen. [hours]
[1200,1800] | 1787.05 1576.39 210.66 11.79 187.25
[750,2250] 2217.58 1565.62 651.96 29.40 579.52
[300,27001] 2648.12 1565.96 1082.16 40.87 961.92
Self-scheduling with 16 processors/task vs. Static task manager
C tational
. Self-scheduling | Static makespan | Makespan Makespan 'ompu a 1o.n .
Task time . . time reduction in
makespan [s] w/o scheduler [s] | reduction [s] | reduction [%]
100 gen. [hours]
[1200,1800] | 1813 1576.39 236.61 13.05 210.32
[750,2250] 1801.75 1565.62 236.13 13.11 209.89
[300,2700] 1786.03 1565.96 220.07 12.32 195.62

Table 3.1: Makespan reductions achieved by the static task manager compared to different
configurations of the self-scheduling algorithm when simulating batches of 32 long tasks with
non-linear scalability. The column on the right contains the computational time reductions
achieved after running 100 generations.

manager, it can be seen that the latter achieved a reduction of the makespan in the
range 10-40%, which involves computational time savings between 180 and 960 hours
every 100 generations. The reason is that even if the parallel efficiency of the tasks
was maximized, the computational load balance of the batch suffered a degradation
caused by the simultaneous execution of many tasks. The second option consists on
minimizing the number of tasks being executed simultaneously, i.e. increasing the
number of processors assigned per task. However, care must be taken so as to avoid
excessive decrease of the parallel efficiency of each task. A common practice is to fix
a minimum acceptable value for a task’s parallel efficiency, e.g. 80%. In the example
shown in Fig. 3.27, it can be calculated that tasks have a parallel efficiency of 83%
when executed in 16 processors, what means that 16 would be the maximum number



§3.4 Theoretical case study of load balancing strategies 211

of processors allowed per task. If the results obtained with this configuration of the
self-scheduling task manager are compared with those provided by the static task
manager, it can be seen that the latter achieved a reduction of the makespan in the
range 12-13%, which involves computational time savings of around 200 hours every
100 generations. Choosing this second option works better in the proposed case study,
although the results obtained by the self-scheduling algorithm were outperformed by
those of the static task manager.

Having similar information to that shown in Figure 3.28 would have allowed opti-
mizing the configuration of the self-scheduling task manager by assigning 8 processors
per task. The static task manager would have achieved a reduction of the makespan in
the range 3-5% in this case, which involves computational time savings between 40 and
70 hours every 100 generations. Nevertheless, it is very uncommon that the user has
access to such information.

Although the ability of performing accurate task time estimations has been assumed
so far, errors will unavoidably arise when handling batches of real tasks. The negative
impact of such errors on the results provided by the static task manager is studied in Fig.
3.29. The average makespan of a batch of tasks without considering the scheduling time
has been the selected metric in order to quantify the degradation of the load balance. If
the results obtained by the static task manager are compared with those provided by
the self-scheduling algorithm no matter 1 or 16 processors were assigned per task, it
can be seen that the static method outperformed the self-scheduling method even when
task time estimation errors with a standard deviation of 10% took place. Moreover, in
simulations with task computational times in the ranges [750,2250] and [300,2700],
the static task manager obtained better results in spite of time estimation errors with
Oerror=30% than the self-scheduling algorithm configured for assigning 1 processor per
task.

The dynamic task manager is better suited for handling task time estimation errors
than the static task manager and for these experiments it has been configured so
that the scheduling algorithm is run either twice or three times per batch of tasks.
The results provided by the self-scheduling, static and dynamic task managers are
overlapped in Figs. 3.30 and 3.31. In the case of the static and dynamic algorithms,
the results corresponding to the best obtained makespan including the scheduling time
are represented. The results provided by the static and dynamic algorithms have been
represented as horizontal lines, even if each line corresponds to a single run of the
optimizer (i.e. the evaluation of 10 batches of tasks). The aim is to ease the comparison
with the results obtained by the self-scheduling task manager by making visible the
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intersection between the lines.

The obtained results show that the dynamic task manager outperformed the static
one in every case, proving its superiority. Regarding the optimal number of times the
scheduling algorithm should be run, the answer is not clear. The trend observed in Figs.
3.30 and 3.31 is that the higher the heterogeneity in tasks’ computational times, the
greater the makespan reduction caused by increasing the number of scheduler runs. For
tasks’ computational times in the range [1200,1800], all depicted results were obtained
carrying out 2 scheduler runs per batch. For tasks in the range [750,2250], two results
were obtained running 2 schedulers per batch and one running 3 schedulers per batch.
Finally, all results were obtained carrying out 3 scheduler runs per batch for tasks’
computational times in the range [300,2700]. According to these results, the optimal
number of scheduler runs is not related to the quality of the tasks’ run time estimations
but to the heterogeneity in tasks’ computational times, although using the dynamic task
manager is more advantageous as the tasks’ time estimation error increases.

Makespan reductions achieved by the dynamic task manager when compared to
different configurations of the self-scheduling algorithm are shown in Table 3.2. Note
that only the best results obtained by the dynamic task manager have been included.
Let us compare the average makespan of the batch of tasks taking into account the
scheduling overhead. Assuming that the user configured the self-scheduling algorithm
as expected, i.e. assigning either 1 or 16 processors per task, the static task manager
achieved a makespan reduction in the range 10-40%, which involves computational time
savings between 170 and 940 hours every 100 generations. The best results provided
by the self-scheduling algorithm were also outperformed by the dynamic task manager.
It achieved a makespan reduction of around 2%, which involves computational time
savings between 25 and 40 hours every 100 generations.
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Figure 3.29: Comparison of the average makespan without considering the scheduling time (in

seconds) for batches of 32 long tasks with non-linear scalability obtained by the self-scheduling

and static task managers and subject to task time estimation errors.
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Figure 3.30: Comparison of the average makespan (in seconds) for batches of 32 long tasks with
non-linear scalability obtained by the self-scheduling, static and dynamic task managers and
subject to task time estimation errors. Results for task times in [750,2250] and [300,2700] may be
found in Figure 3.31.
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Figure 3.31: Comparison of the average makespan (in seconds) for batches of 32 long tasks with
non-linear scalability obtained by the self-scheduling, static and dynamic task managers and
subject to task time estimation errors. Results for task times in [1500,1500] and [1200,1800] may
be found in Figure 3.30.
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Self-scheduling with 8 processors/task vs. Dynamic task manager
C tati 1
. Self-scheduling | Dynamic Makespan Makespan .ompu a 1o.na .
Task time . . time reduction in
makespan [s] makespan [s] | reduction [s] | reduction [%]
100 gen. [hours]
[1200,1800] | 1624.15 1595.20 28.95 1.78 25.73
[750,2250] 1643.20 1606.04 37.16 2.26 33.03
[300,2700] 1632.36 1587.13 45.23 2.77 40.20
Self-scheduling with 1 processor/task vs. Dynamic task manager
C tati 1
. Self-scheduling | Dynamic Makespan Makespan .ompu @ lo.na .
Task time . . time reduction in
makespan [s] makespan [s] | reduction [s] | reduction [%]
100 gen. [hours]
[1200,1800] | 1787.05 1595.20 191.85 10.74 170.53
[750,2250] 2217.58 1606.04 611.54 217.58 543.59
[300,2700] 2648.12 1587.13 1060.99 40.07 943.10
Self-scheduling with 16 processors/task vs. Dynamic task manager
C tati 1
. Self-scheduling | Dynamic Makespan Makespan .ompu 2 1o.na .
Task time . . time reduction in
makespan [s] makespan [s] | reduction [s] | reduction [%]
100 gen. [hours]
[1200,1800] | 1813.00 1595.20 217.80 12.01 193.60
[750,2250] 1801.75 1606.04 195.71 10.86 173.96
[300,2700] 1786.03 1587.13 198.90 11.14 176.80

Table 3.2: Makespan reductions achieved by the dynamic task manager compared to different
configurations of the self-scheduling algorithm when simulating batches of 32 long tasks with
non-linear scalability. The column on the right contains the computational time reductions
achieved after running 100 generations.

3.4.5 Concluding remarks

The purpose of this theoretical case study was the performance evaluation of the 3
proposed load balancing strategies, i.e. the self-scheduling, static and dynamic task
managers. A first approach was obtained by carrying out simulations of short sleep
jobs with linear scalability. The next step was the simulation of long sleep jobs with
linear scalability, as their average computational time is more representative of the real
target application of the developed load balancing algorithms, i.e. the optimization of
CFD & HT models. Finally, long sleep jobs with non-linear scalability were simulated
by modeling the degradation of parallel performance taking place as they are assigned
an increasing number of processors.
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The starting point consisted on proving the existence of the loss of parallel efficiency
caused by the computational load imbalance when the self-scheduling task manager is
used. This is unavoidable in case of having tasks with heterogeneous computational
times, even if the (no. individuals / no. processor groups) ratio is properly selected by
the user. Indeed, the main problem when configuring the self-scheduling task manager
consists on the impossibility of determining the optimal number of processors that
should be assigned per task in order to minimize the makespan of the whole batch of
tasks.

The static and dynamic task managers clearly proved their ability to successfully
balance the computational load of batches of tasks with heterogeneous completion
times, being the main drawbacks the scheduling overhead and handling the task time
estimation errors. Some observations can be made regarding the scheduling overhead.
On one hand, the longer the scheduling time is, the better task distributions may be
obtained. On the other hand, the greater the average completion time of the simulated
tasks, the lower the relative scheduling overhead with respect to the average makespan
of the batch of tasks. Hence, the static and dynamic task managers maximize their
performance the greater the average computational time of the tasks is. Moreover,
increasing the convergence speed of the scheduling algorithm will contribute to achieve
greater makespan reductions than the ones shown in this theoretical study. Regarding
the task time estimation errors, their presence is unfortunately unavoidable and has a
negative impact on the load balance achieved by the task managers. According to the
obtained results, an acceptable upper bound for estimation errors could be 0 oror=10%.

The dynamic task manager was the load balancing strategy that achieved the lowest
makespans in most cases, being the computational time savings maximized as the
heterogeneity in tasks’ run time increases. However, the main drawback of the dynamic
algorithm consists on the difficulty for determining its optimal configuration in each
case.

Note as well that an optimization may comprise the execution of numerous batches of
tasks. Consequently, the benefits of reducing the makespan of a batch are multiplied and
a significant global impact may be achieved. Moreover, the computational time savings
are maximized as an increasing number of processors is used for the optimization. Such
a behavior makes the dynamic task manager highly advisable for exascale computing
applications.

Finally, it is reminded that the results for each case were obtained by averaging 10
generations. This amount is considered sufficient for this initial study, but should be
increased in order to reach more reliable conclusions.



218 §3.5 Implementation and testing of time estimation techniques

3.5 Implementation and testing of time estimation techniques

After having carried out the state of the art study on time estimation techniques
contained in section 3.2.6, it was decided to implement three global data fitting methods
in Optimus: kriging interpolation [25], radial basis functions (RBF) [28] and artificial
neural networks (ANN) [26]. All of them are available in the Dakota toolkit [23],
which was linked to the Optimus library. The user is able to choose among these three
methods, as well as a fourth additional option included in Optimus combining kriging
interpolation and RBF. In this latter option, compliant with the guidelines provided by
Dakota’s documentation and configured to be the default option in Optimus, kriging is
activated in case the surrogate model is to be built with fewer than 2000 sample points,
whereas RBF is preferred in case of having more points.

Some preliminary tests have been performed in order to evaluate the accuracy and
computational cost of the aforementioned data fitting methods. Rosenbrock’s function
(see section 1.8.1), characterized by having a very low evaluation cost and which supports
a variable number of dimensions, has been used for this aim. The followed procedure
consists of three steps:

1. Two, three and four dimensional Rosenbrock’s function has been evaluated several
times with the aim of generating samples of size 40, 80, 160, 320, 640 and 1280
points for each case. These samples are later used to feed the surrogate models.

2. With each sample generated in the previous step, 3 surrogate models have been
built using the 3 available data fitting methods: kriging interpolation, RBF and
ANN. The same processor has always been used so as to be able to compare the
computational time required in each case.

3. Finally, Rosenbrock function’s values have been estimated using the surrogate
models built in step 2. Each test case is characterized by the number of dimensions
(2, 3 or 4), the size of the sample and the selected data fitting method, and the
obtained surrogate model has been evaluated in 1000 points in order to extract
the average estimation error with respect to the values provided by the real
Rosenbrock’s function.

The obtained results are contained in Table 3.3 and Table 3.4.
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Rosenbrock 2 dimensions

Computational time [s] Average error [%]
No. sample points | Kriging | RBF | ANN Kriging | RBF ANN
40 0.20 0.22 | 0.11 8.36 4.39 147.17
80 0.56 049 | 0.14 0.53 0.47 106.07
160 2.86 1.08 | 0.23 0.38 0.47 44.85
320 13.83 2.73 0.50 0.12 0.07 12.82
640 88.00 3.75 | 1.54 0.04 0.01 17.94
1280 1114.85 | 7.41 | 5.20 0.02 0.01 11.96

Rosenbrock 3 dimensions

Computational time [s] Average error [%]

No. sample points | Kriging | RBF | ANN Kriging | RBF ANN
40 0.23 0.23 | 0.11 9.72 33.96 | 105.16
80 0.38 049 | 0.14 0.90 3.16 70.19
160 1.03 1.08 | 0.57 1.92 0.05 19.73
320 4.90 1.96 | 1.69 0.05 0.06 10.01
640 32.31 3.77 | 7.25 0.04 0.06 4.68
1280 173.38 7.43 | 28.36 | 0.02 0.08 18.64

Rosenbrock 4 dimensions

Computational time [s] Average error [%]

No. sample points | Kriging | RBF | ANN Kriging | RBF ANN
40 0.26 0.24 | 0.12 35.08 143.27 | 154.91
80 0.25 0.51 | 0.16 6.52 14.08 | 47.43
160 0.62 1.10 0.40 1.49 1.44 37.18
320 3.72 191 | 241 0.26 1.21 13.19
640 23.52 3.82 | 16.07 | 0.08 1.15 4.11
1280 209.49 7.54 | 105.68 | 0.05 0.83 4.45

Table 3.3: Preliminary study of the accuracy and computational cost of the data fitting methods
implemented in Optimus obtained by evaluating Rosenbrock’s function for a variable number of
dimensions and sample sizes.
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Kriging

No. dimensions
No. sample points 2 3 4
40 0.20 0.23 0.26
80 0.56 0.38 0.25
160 2.86 1.03 0.62
320 13.83 4.90 3.72
640 88.00 32.31 23.52
1280 1114.85 | 173.38 | 209.49

RBF

No. dimensions
No. sample points 2 3 4
40 0.22 0.23 0.24
80 0.49 0.49 0.51
160 1.08 1.08 1.10
320 2.73 1.96 191
640 3.75 3.77 3.82
1280 741 7.43 7.54

ANN

No. dimensions
No. sample points 2 3 4
40 0.11 0.11 0.12
80 0.14 0.14 0.16
160 0.23 0.57 0.40
320 0.51 1.69 2.41
640 1.54 7.25 16.07
1280 5.20 28.36 105.68

Table 3.4: Study of the effect caused by an increasing number of dimensions of the Rosenbrock’s
function on the computational cost of the data fitting methods implemented in Optimus. The
results have been extracted from Table 3.3 and reorganized.
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According to Table 3.3, the data fitting method which showed the poorest accuracy
was ANN in every case. Kriging interpolation obtained the best results for 3 and
4 dimensional Rosenbrock’s functions, whereas it was outperformed by RBF in case
of having 2 dimensions. Regarding the computational cost, it can be seen that it
increases the larger the amount of sample points used for building the surrogate model,
independently of the selected data fitting method. If the three data fitting methods are
compared to each other, kriging is usually the one requiring the greatest computational
time. This is compliant with the recommendations provided by Dakota’s documentation,
where the use of this method is discouraged in case of having large samples. For small
samples, as well as for every test using the 2-dimensional Rosenbrock’s function, ANN
was the method involving the lowest computational cost. However, RBF demonstrated
to be computationally more efficient as the sample size grows.

The effect caused by an increasing number of dimensions of the Rosenbrock’s function
on the computational cost of the data fitting methods is studied in Table 3.4 and proves
that the three methods behave very dissimilarly. On one hand, kriging interpolation
showed great sensitivity, especially as the number of sample points is increased. The
trend is that the greater the number of dimensions, the lower the computational cost
of building the surrogate model. On the other hand, the sensitivity showed by RBF
is negligible. Finally, ANN behaves with the opposite trend as kriging, increasing its
computational cost together with the number of dimensions of the Rosenbrock’s function.

The performed tests confirm that a method combining both kriging interpolation and
RBF seems to be a reasonable initial approach to the task times’ estimation problem.

3.6 Illustrative example

New load balancing strategies for population-based optimization algorithms have been
proposed in this chapter and a theoretical case study has been performed in order
to prove their validity. This section provides an illustrative engineering example
consisting on the design of the refrigeration system of a power electronic device. A
simple parallelizable thermal model has been created and is wanted to be optimized.
Simulations have been run using the task management algorithms proposed in section
3.3.2 and the obtained generations’ average makespans have been compared.

The thermal model is composed by a certain amount of pipes (micro-channels) and
a fluid circulating through them (see Fig. 3.32). The heat generated by the power
electronic device is transferred to the fluid and evacuated, making possible for the
device to maintain an acceptable temperature. All pipes have the same diameter, which
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conditions the number of pipes that may be placed on the device, and this diameter is
the only optimization variable. The objective is to maximize the heat extraction from
the power electronic device by deciding if it is better to have a few pipes with a large
diameter or many pipes with a small diameter.

23 mm
- >

Figure 3.32: Simplified model of a power electronic device (grey rectangle) refrigerated by a fluid

circulating through a certain number of micro-channels (white circles).

The simplified steady-state thermal model is based on the following assumptions:

* The heat transfer taking place from the power electronic device to the pipes is
modeled by fixing the wall temperature (T',4;;) of every pipe to a constant value.
The same T',4;; is used for all pipes and does not vary throughout the whole
length of the pipes.

¢ A 1-dimensional convection model is used for calculating the heat transfer from
the pipes’ walls to the fluid circulating through them, being every pipe discretized
using 300 control volumes. All control volumes are initialized to a common
temperature and the maximum number of iterations for solving each pipe has
been limited to 2000.

¢ The boundary conditions shared by every pipe are the pressure gradient between
the inlet and the outlet, and the inlet temperature of the fluid.

¢ All pipes are equally long and their walls have the same roughness. In addition,
the correlations used for calculating the friction factor and the heat transfer
coefficient are the same in all of them.

* The resolution of the pipes is decoupled and no interference exists between them.
The overall heat transfer from the power electronic device to the pipes is calculated
as the sum of the heats transferred independently to each pipe.
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The above simplifications involve that exactly the same pipe will be solved several
times in order to obtain the overall heat transfer. The purpose has been the creation of
an easily parallelizable thermal model, whose simulation times could also be estimated
with a high accuracy. The presented thermal model fulfills both requirements, being
the distribution of pipes among different processors easy to handle (each pipe can
be assigned to any single processor) and the simulation time dependent only on two
variables: the diameter of the pipes and the number of assigned processors. The
diameter of the pipes can range in the interval [0.0003, 0.002875] meters and the width
of the power electronic device has been fixed to 0.023m. Thus, the minimum number of
required micro-channels is 8 and the maximum number 76.

The provided information does not guarantee at all the reproducibility of the simu-
lations that have been carried out. Nevertheless, the aim of this illustrative example
is just to emulate the computational load imbalance happening in population-based
optimization algorithms by studying a case which involves real data processing. The
theoretical case study included in section 3.4, which makes use of sleep jobs and is
easy to reproduce, should be enough for the sake of understanding the behavior of the
proposed load balancing algorithms.

The parallel performance of the thermal model is a key aspect taken into account
by the task management algorithms. Moreover, the scalability of the model varies
depending on the number of pipes that is utilized. Some speedup tests have been carried
out with models composed by 8, 42 and 76 pipes so as to have a graphical representation
of this variation. The study was carried out assigning 1, 2, 4, 8, 16 and 32 processors for
the resolution of each model and results obtained from 16 simulations were averaged for
each number of processors. This accounts for a total amount of 96 simulations in order
to obtain the speedup graph of each one of the 3 cases, which are shown in Fig. 3.33.

It can be seen that the parallel speedup of the model is close to linear up to 8
processors. From this point on, the degradation of parallel efficiency begins to be
noticeable in every case. The most remarkable behavior is that of the model composed by
8 pipes, for which it is impossible to increase the speedup when more than 8 processors
are assigned. The reason is that a single pipe cannot be simulated in parallel and this
model has no more than 8 pipes. Even if additional processors are assigned to it, there
is no workload that can be placed in those processors and they remain idle.

No real optimization is carried out in this illustrative example, being the reasons
twofold. First, because the only relevant result is the generations’ average makespan
and not obtaining the optimal pipe diameter. Second, because the heterogeneity of the
individuals in the population is wanted to be preserved and optimization processes tend
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Figure 3.33: Comparison of the parallel speedup of the simplified thermal model in case it is

composed by 8, 42 and 76 pipes.

to make populations more homogeneous. It is reminded that the higher the homogeneity
level, the easier to balance the computational load of the generations. Therefore, the
evolution engine of the optimization algorithm has been deactivated and the individuals
contained in every generation have been created randomly according to a uniform
distribution of the diameter values in the range [0.0003, 0.002875] meters.

Using the load balancing strategies proposed in Chapter 3 requires the availability
of a database containing information of past evaluations of individuals so that the
new methods are able to estimate as accurately as possible the evaluation times of the
new individuals to be processed. Hence, several sampling simulations were executed
so as to create the aforementioned database. In a first step, a sample composed by
320 individuals was created and evaluated. The pipes’ diameters and the number of
processors assigned to each individual were uniformly generated in [0.0003, 0.002875]
and {1,2,4,8,16,32} respectively. In a second step, and with the aim of ensuring the
availability of a minimum amount of information for every number of processors, 6 addi-
tional generations composed by 32 individuals uniformly created in the interval [0.0003,
0.002875] were evaluated. However, the number of processors assigned per individual
was not random and was progressively increased: 1 processor/individual in the first
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generation, 2 processors/individual in the second generation, 4 processors/individual in
the fourth generation, etc. These 6 generations gave rise to a total amount of 192 new
samples.

At this point, a particularity of the present optimization problem must be noted.
Being the optimization variable the diameter of the pipes, the number of pipes that can
be installed in the refrigeration device is represented in Fig. 3.34. It can be seen that
the smaller the diameter of the pipes, the greater the sensitivity of the number of pipes
to diameter variations. The consequence is that a uniform sample in the interval of
allowed diameters does not involve having uniform data regarding the number of pipes.
Since the computational cost of solving the thermal model depends on the latter, it is
crucial to sample this variable appropriately. Thus, 3 additional sampling simulations
were carried out using diameters belonging to 3 sub-intervals contained in the original
bounds: i) [0.0003, 0.000418] meters, leading to [55, 76] pipes; ii) [0.000418, 0.00076]
meters, leading to [30, 55] pipes; and iii) [0.00076, 0.002875] meters, leading to [8, 30]
pipes. Each sampling simulation gave rise to a total amount of 192 new samples and was
composed by 6 generations of 32 individuals, being diameter values uniformly created in
the previously mentioned intervals. The number of processors assigned per individual
was not random and was progressively increased: 1 processor/individual in the first
generation, 2 processors/individual in the second generation, 4 processors/individual in
the fourth generation, etc.

The execution of all the aforementioned sampling simulations generated a total
amount of 1088 sample points. Note also that further development of time estimation
techniques is required in order to optimize the design of sampling simulations.

After having generated the necessary samples, an appropriate configuration for
the optimization algorithm was decided prior to testing the behavior of the available
task managers. The genetic algorithm implemented in Optimus was parametrized in a
similar way to that used in the theoretical case study in section 3.4, utilizing the peer
partition approach (see section 1.7.2) and fixing a population size of 32 individuals to be
run in 32 processors. The individuals are randomly created in each generation, being
the diameter of the pipes defined according to a uniform probability distribution in the
interval [0.0003, 0.002875] meters in order to preserve the population’s heterogeneity
regarding the computational load.

The computational time required for solving an individual depends on the number
of pipes in the thermal model. 3 preliminary tests have been performed with the aim of
obtaining some references of this cost and the obtained results are shown in Table 3.5.
Every individual was run in 1 processor and the computational time needed for a given
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number of pipes was calculated by averaging the behavior of 16 individuals. Note that
a standard deviation of around 2.5% was always obtained in spite of using the same
processors node for every simulation. This fact might be suggesting the impossibility of
estimating evaluation times of individuals with a higher accuracy in cases involving

real data processing.

Number of pipes

Figure 3.34: Graph showing the number of pipes that can be installed in the refrigeration device
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0.0005 0.001

for the whole range of diameter values.

0.0015 0.002 0.0025 0.003

Pipes diameter

No. pipes | Avg. comp. time [s] | Avg. comp. time [min] | Std. Dev. [%]
8 325 5.4 2.40%
42 1837 30.0 2.50%
76 4727 78.8 2.70%

Table 3.5: Results of the preliminary tests for measuring the computational time required for

solving the thermal model when it is composed by a variable number of pipes.
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A case study has been designed in order to compare the performance of different
configurations of the 3 available task managers:

¢ Self-scheduling task manager: 6 simulations were carried out assigning 1, 2, 4, 8,
16 and 32 processors per individual.

¢ Static task manager: 3 simulations were carried out, being the time limitation
for the scheduling algorithm equal to 1%, 2% and 3% of the previous generation’s
makespan. The task manager was able to assign 2* processors per individual,
being x in the range [0,5]. The evaluation time of new individuals was estimated
by means of kriging interpolation (see section 3.2.6).

* Dynamic task manager: A total amount of 6 simulations was carried out, being
the scheduling algorithm run twice in half of them and 3 times in the other half of
simulations. In the 3 simulations contained in each half, the time limitation for
the scheduling algorithm was equal to 1%, 2% and 3% of the previous generation’s
makespan. The task manager was able to assign 2* processors per individual,
being x in the range [0,5]. The evaluation time of new individuals was estimated
by means of kriging interpolation.

Each simulation was composed of 10 generations, which have been averaged to
obtain the makespans achieved by the different task managers. Note that even if the
same database of sample points was used in the first generation of every simulation
carried out by the static and dynamic load balancing algorithms, additional information
regarding the evaluation time of new individuals is stored in run time. Hence, the
surrogate models used in subsequent generations of every simulation differ from each
other.

The results provided by the simulations run using the static and dynamic task
managers are shown in Fig. 3.35. On one hand, the static task manager was tested in
cases 1-3, being the scheduling time limited to 1% (case 1), 2% (case 2) and 3% (case 3).
On the other hand, the dynamic task manager was tested in cases 4-9. The scheduling
algorithm was run twice per generation in cases 4-6 and 3 times per generation in cases
7-9, being the scheduling time limited to 1% in cases 4 and 7, to 2% in cases 5 and 8,
and to 3% in cases 6 and 9.

The average generations’ makespan for all tested configurations is depicted in the
upper graph of Fig. 3.35. In case of using the static task manager (cases 1-3), it can be
seen that the makespan increases as the time limitation for the scheduling algorithm
is increased. Consequently, the lowest makespan was achieved for a scheduling time
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Figure 3.35: Average generations’ makespans and time estimation errors obtained in cases 1-9.
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limitation of 1% (case 1). In case of using the dynamic task manager (cases 4-9), the
makespans obtained when the scheduling algorithm was called 3 times per generation
are greater than those obtained when it was called only twice. For the latter configu-
ration the lowest makespan was achieved in case 5 (scheduling time limitation of 2%),
whereas case 9 (scheduling time limitation of 3%) achieved the best results when the
scheduling algorithm was run 3 times per generation.

Nevertheless, different values for the average and standard deviation of the time
estimation errors were obtained in the performed simulations, as it is shown in the
lower graph of Fig. 3.35. Consequently, it is difficult to carry out a fair comparison of
the different configurations utilized for the static and dynamic task managers. Making
the time estimation errors more homogeneous would require either increasing the
number of sample points in order to increase the predictions’ accuracy, or calculating
averages based on more than the currently used 10 generations. But since the aim
of this illustrative example consists on proving that the new load balancing methods
are able to outperform the self-scheduling task manager when individuals involving
real data processing are evaluated, the quality of the obtained results is considered
satisfactory. The reader is referred to the theoretical case study carried out in section 3.4
in order to compare different configurations of the static and dynamic task managers.

Taking the previous considerations into account, the best results provided by the
static task manager (case 1) and the dynamic task manager running the scheduling
algorithm twice (case 5) and 3 times (case 9) have been compared with the results
obtained by the self-scheduling task manager in Fig. 3.36. It can be seen that the 3
cases in which the new load balancing algorithms were used outperformed the best
makespan obtained by the self-scheduling task manager. This fact is very meaningful of
the superior capacity of the new task managers for optimizing the computational load
distribution, and even more if it is taken into account that the average time estimation
errors were above 7% in every case.

The best average makespan (963.8 seconds) was achieved by the dynamic task
manager running the scheduling algorithm twice per generation and with a scheduling
time limitation of 2% (case 5). The self-scheduling task manager was unable to obtain
a makespan lower than 1079.44 seconds, what involves that a time saving of 115.64
seconds (10.71%) was achieved by the dynamic task manager. Further information of
the makespan reductions obtained in case 5 in comparison to different configurations of
the self-scheduling algorithm is shown in Table 3.6).



230 §3.6 Illustrative example

4000

Self-scheduling —&—
Static ——

Dynamic 2 sch.

Dynamic 3 sch.

3500

3000

2500

Makespan [s]

2000

1500

1000 ra % x % s &

500

0 1 2 3 4 5
Processors/task (2¥)

1200

Self-scheduling —8—
Static —e—

1175 Dynamic 2 sch.

Dynamic 3 sch.

1150

1125

1100

1075

1050

Makespan [s]

1025

1000

975

950

925

900

0 1 2 3 4 5
Processors/task (2¥)

Figure 3.36: Comparison of the average generations’ makespans (in seconds) obtained by the
self-scheduling task manager and the new load balancing strategies. Same results are represented
in both graphs, but a different scale is used.
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Self-scheduling vs. Best result (case 5)
Self-scheduling | Self-scheduling Case 5 Makespan Makespan Comp.' tlm.e
processors/task makespan [s] makespan [s] | reduction [s] | reduction [%] reduction in
100 gen. [h]
1 3885.92 963.80 2922.12 75.20 2597.44
8 1079.44 963.80 115.64 10.71 102.79
16 1116.27 963.80 152.47 13.66 135.53

Table 3.6: Makespan reductions achieved in case 5 compared to different configurations of the
self-scheduling algorithm. The column on the right contains the computational time reductions
achieved after running 100 generations.

If it is taken into account that the parallel speedup of the thermal model (see
Fig. 3.33) is the only information available when configuring the self-scheduling task
manager, the user can decide between two options.

The first one consists on maximizing the parallel efficiency of individuals (i.e. re-
ducing the number of processors assigned per individual) in the hope that this strategy
will lead to minimize the generations’ makespans. However, if the results obtained
by the self-scheduling task manager with a single processor assigned per individual
are compared to those obtained in case 5, it can be seen that the latter achieved a
reduction of the average makespan of 75%, which involves computational time saving of
around 2600 hours every 100 generations. The reason is that even if the efficiency of
the individuals was maximized, the computational load balance of the entire generation
suffered a degradation caused by the simultaneous execution of many individuals.

The second option consists on minimizing the number of individuals being executed
simultaneously, i.e. increasing the number of processors assigned per individual. How-
ever, care must be taken so as to avoid excessive decrease of the parallel efficiency
of each individual. A common practice is to fix a minimum acceptable value for an
individual’s parallel efficiency, e.g. 80%. In this particular example, the parallel per-
formance graph varies depending on the number of pipes of the thermal model. The
maximum number of pipes is 76 and the minimum number 8, having the model 42 pipes
in average. In this latter case, the parallel efficiency of the model if 16 processors are
assigned is of 83%, being consequently 16 the maximum number of processors allowed
per individual. If the results obtained with this configuration of the self-scheduling
task manager are compared with those provided by case 5, it can be seen that the latter
achieved a reduction of the makespan of 13.66%, which involves computational time
savings of around 135 hours every 100 generations.
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The obtained results show the difficulty of balancing the computational load of even
the simplest engineering model during its optimization, but the strategies developed in
the scope of this Doctoral Thesis proved to be a potential solution to this problem.

3.7 Conclusions

Load balancing methods for parallel optimization algorithms have been studied and
developed in this third chapter. The approach to the load balancing problem was started
by introducing the divisible load theory and the concept of job flexibility. After that,
the main factors affecting the parallel performance of optimization algorithms were
identified and divided into three groups: factors related to the hardware, factors related
to the nature of tasks and factors related to the scheduler’s configuration.

The next step consisted on defining the methodology for developing and testing new
load balancing algorithms, and it was decided to split the load balancing problem into
2 subproblems: a tasks’ time estimation problem and a task scheduling combinatorial
problem. Regarding the task scheduling problem, a state of the art study was carried out
including the review of classical combinatorial problems and of other applications using
similar scheduling algorithms, such as the Resource and Job Management Systems
(RIMS) installed in High Performance Computing (HPC) platforms. A second state of
the art study was carried out in order to tackle the subproblem consisting on estimating
the tasks’ computational time. Several data fitting methods were analyzed, as well as
some suggestions made by other authors.

Then, a task scheduling algorithm was designed and included in two different task
managers: the static task manager and the dynamic task manager. At this point, 3
task managers (self-scheduling, static and dynamic) were available but there was no
information regarding their performance. Therefore, some theoretical case studies were
carried out, which consisted in simulating short cases with linear scalability, long cases
with linear scalability and long cases with non-linear scalability. The tests confirmed
the superiority of the dynamic task manager subject to an appropriate configuration
and to the availability of accurate enough tasks’ time estimations.

Although the tasks’ time estimation subproblem was not properly tackled due to lack
of time, 3 global data fitting methods were implemented for this aim: kriging interpola-
tion, radial basis functions (RBF) and artificial neural networks (ANN). Moreover, some
preliminary tests were performed using the Rosenbrock’s function in order to evaluate
their accuracy and computational cost.
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Finally, an illustrative example consisting on the optimization of a power electronic
device was presented in order to extrapolate the conclusions obtained in the theoretical
case study to engineering cases involving real data processing. Despite the apparent
simplicity of the studied thermal model, the load balancing strategies developed in this
chapter outperformed the results obtained by the self-scheduling task manager.
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4.1 Conclusions

The objective of this Doctoral Thesis was the development of parallel optimization
algorithms to be deployed in massively parallel computers. A generic mathematical
optimization tool applicable in any field of science and engineering has been developed
for this aim, although a special focus has been put on the application of the library to the
fields of expertise of the institution hosting this research activity, i.e. the Heat and Mass
Transfer Technological Center (CTTC). The main contribution has been the development
and implementation of several load balancing strategies which have demonstrated to
be able to reduce the simulation time required by the optimization tool. This was
proved by an exhaustive theoretical case study. Finally, the time reduction attained in a
real-world engineering application that consists on optimizing the refrigeration system
of a power electronic device was presented as an illustrative example. A summary
of the conclusions extracted in the previous chapters is provided in the subsequent
paragraphs.

A thorough state of the art study was conducted in the first chapter with the aim
of obtaining a global scope of the mathematical optimization techniques available to
date. Special emphasis was laid on the genetic algorithm. Then a description of the
main concepts and shortcomings of the standard parallelization strategies available for
such population-based optimization methods was included.

Since the computational cost of a real-world design problem may be considerable,
the development of appropriate parallelization techniques is a critical issue in order
to benefit from optimization strategies. The goal of every parallelization strategy is to
maximize the CPU usage by minimizing the communication overhead and by balancing
the computational load correctly, thus avoiding idleness of allocated processors. In the
case of traditional optimization algorithms, and particularly of genetic algorithms, the
principal causes of computational load imbalance are the following:

¢ Inappropriate ratio (no. individuals / no. processor groups): Usually, when several
individuals may be evaluated simultaneously, each individual is assigned to a
group of processors. In standard algorithms, all groups are formed by the same
number of processors and remain unchanged during optimization. However, if the
ratio (no. individuals / no. processor groups) is not well set, some processors may
remain idle while others are immersed in computation.
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* Heterogeneous parallel computer systems: Hardware heterogeneity translates
into non-homogeneous objective evaluation times and the consequent loss of
parallel performance of optimization algorithms.

* Heterogeneous objective function evaluation time: Heterogeneity in the compu-
tational cost of evaluating the objective functions may cause an important load
imbalance provided that the simulation time of the genetic algorithm is dominated
by the evaluation time of the objective functions. This phenomenon happens when
the evaluation cost of individuals is dependent on the optimization variables and
is not unusual in heat transfer and nonlinear mechanics applications.

The new optimization library named Optimus was implemented in the second
chapter. After carrying out a state of the art study on available optimization libraries, it
was decided to base the development of Optimus in two open-source packages: Paradiseo
and Trilinos/Moocho. Paradiseo was chosen because of its implementation of genetic
algorithms, whereas the availability of gradient-based local search methods was the
appealing feature of Trilinos/Moocho. Optimus makes use of the best performing
characteristics of both libraries, but additional functionality was also added. Finally,
validation tests of the new library were carried out at the end of the chapter. They
include the optimization of benchmark mathematical functions and two specific tests
from the field of Computational Fluid Dynamics and Heat Transfer (CFD & HT), namely
the optimization of the energy efficiency of a fridge and the optimization of the geometry
of a pipe. Optimus succeeded in every test, proving the suitability of the library for
solving real-world optimization problems.

In the third chapter load balancing methods for parallel optimization algorithms
were developed and studied. The approach to the load balancing problem was started
by introducing the divisible load theory and the concept of job flexibility. After that,
the main factors affecting the parallel performance of optimization algorithms were
identified and divided into three groups: factors related to the hardware, factors related
to the nature of tasks and factors related to the scheduler’s configuration.

The next step consisted on defining the methodology for developing and testing new
load balancing algorithms, and it was decided to split the load balancing problem into
2 subproblems: a tasks’ time estimation problem and a task scheduling combinatorial
problem. Regarding the task scheduling problem, a state of the art study was carried out
including the review of classical combinatorial problems and of other applications using
similar scheduling algorithms, such as the Resource and Job Management Systems
(RIMS) installed in High Performance Computing (HPC) platforms. A second state of
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the art study was carried out in order to tackle the subproblem consisting on estimating
the tasks’ evaluation time. Several data fitting methods were analyzed, as well as some
suggestions made by other authors.

Two different task managers were then proposed, namely the static task manager
and the dynamic task manager, and three theoretical case studies were carried out
in order to evaluate their parallel performance with respect to the traditional self-
scheduling task manager. A first approach was obtained by carrying out simulations of
short sleep jobs with linear scalability. The next step was the simulation of long sleep
jobs with linear scalability, as their average computational time is more representative
of the real target application of the developed load balancing algorithms, i.e. the
optimization of CFD & HT models. Finally, long sleep jobs with non-linear scalability
were simulated by modeling the degradation of parallel performance taking place as
they are assigned an increasing number of processors.

The starting point of the tests consisted on proving the existence of the loss of
parallel efficiency caused by the computational load imbalance when the self-scheduling
task manager is used. This is unavoidable in case of having tasks with heterogeneous
computational times, even if the (no. individuals / no. processor groups) ratio is properly
selected by the user. Indeed, the main problem when configuring the self-scheduling task
manager consists on the impossibility of determining the optimal number of processors
that should be assigned per task in order to minimize the makespan of the whole
batch of tasks. The static and dynamic task managers clearly proved their ability to
successfully balance the computational load of batches of tasks with heterogeneous
completion times, being the main drawbacks the scheduling overhead and handling
the task time estimation errors. Moreover, the tests confirmed the superiority of the
dynamic task manager subject to an appropriate configuration and to the availability of
accurate enough tasks’ time estimations.

Some observations can be made regarding the scheduling overhead. On one hand,
the longer the scheduling time is, the better task distributions may be obtained. On the
other hand, the greater the average completion time of the simulated tasks, the lower
the relative scheduling overhead with respect to the average makespan of the batch
of tasks. Hence, the static and dynamic task managers maximize their performance
the greater the average computational time of the tasks is. Regarding the task time
estimation errors, their presence is unfortunately unavoidable and has a negative
impact on the load balance achieved by the task managers. An acceptable upper bound
for estimation errors was provided according to the obtained results.
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Note as well that an optimization may comprise the execution of numerous batches of
tasks. Consequently, the benefits of reducing the makespan of a batch are multiplied and
a significant global impact may be achieved. Moreover, the computational time savings
are maximized as an increasing number of processors is used for the optimization. Such
a behavior makes the dynamic task manager highly advisable for exascale computing
applications.

Although the tasks’ time estimation subproblem was not properly tackled due to lack
of time, 3 global data fitting methods were implemented for this aim: kriging interpola-
tion, radial basis functions (RBF) and artificial neural networks (ANN). Moreover, some
preliminary tests were performed using the Rosenbrock’s function in order to evaluate
their accuracy and computational cost.

Finally, an illustrative example consisting on the optimization of a power electronic
device was presented in order to extrapolate the conclusions obtained in the theoretical
case study to engineering cases involving real data processing. Despite the apparent
simplicity of the studied thermal model, the load balancing strategies developed in this
chapter outperformed the results obtained by the self-scheduling task manager.

4.2 Future work

The inherent parallel nature of evolutionary computation is a promising factor in
developing robust and scalable optimization algorithms which can help reach the goal of
a successful integration of Optimization and High Performance Computing capabilities.
Therefore, parallel evolutionary computation is expected to be an active research area in
the near future. The contribution of this Doctoral Thesis has consisted on the proposal
of some load balancing algorithms that can be integrated in evolutionary computation
software packages to improve their parallel efficiency. Some suggestions to further
develop the proposed algorithms are included hereafter.

The tasks’ time estimation subproblem is a key aspect of the load balancing algo-
rithms, but it was not studied in detail due to lack of time. Thus, it is crucial to carry
out research in this direction so that the proposed load balancing algorithms can be
comfortably used for solving production optimization problems. The research should
include two aspects: i) selection or development of appropriate data fitting techniques,
and ii) definition of a robust sampling method. In this sense, some criterion able to
measure the accuracy of the subsequently created tasks’ time maps and to activate
the load balancing algorithms provided that a certain accuracy level has been reached
is to be implemented. The author’s experience shows that it is preferable to use the
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self-scheduling task manager unless a minimal accuracy level has been reached. The
reason behind is that too great time estimation errors are prone to create severe load
imbalance, causing the inefficient use of computational resources and serious simulation
delays. Note that the parallel execution of data fitting methods may be necessary as the
number of points used for modeling time maps increases.

Regarding the task scheduling combinatorial subproblem solved by both the static
and dynamic task managers, a rigorous study of the task scheduling algorithm is needed
in order to improve its robustness and convergence speed. The performance of different
genetic operators could be compared, for instance, or even the use of an optimization
method other than the genetic algorithm could be considered in case it is better suited
to solve such combinatorial problems. As a result of this study, the scheduling algorithm
may be able to achieve greater generations’ makespan reductions at a lower cost.

The static and dynamic versions of the task management algorithm in which the
aforementioned scheduler is contained have also some improvement possibilities and
are outlined in the next three paragraphs.

The first aspect to be improved is the method used for calculating the time limitation
for the task scheduling algorithm. According to the author’s mind, a good approach
could be the simultaneous use of 2 criteria, being the scheduling time limited in each
case by the most restrictive criterion: i) a limitation depending on the previous genera-
tion’s makespan (as it was implemented for this Doctoral Thesis), and ii) a limitation
depending on the size of the combinatorial problem to be solved, as it is thought that
having the combinatorial optimization problems a finite solutions space, the time re-
quired by a certain search method to find a good solution could be standardized for
different problem sizes. Such a combined criterion may also be useful for balancing
hybrid optimizations, in which the size of the batches of individuals created by the
global and the local methods may differ significantly. Moreover, it could also be used
when the scheduler is run several times per generation by the dynamic task manager,
as the number of individuals to be scheduled is progressively decreased.

A second aspect to be improved is the CPU usage during the scheduling process. In
the proposed algorithms the scheduler is always run in a single processor while other
processors remain idle waiting for the scheduler to finish. Some alternatives to avoid
wasting computational time in this manner could be to either parallelize the execution
of the scheduler or to run several schedulers simultaneously and use the best among the
obtained task distributions. In case a “dedicated master” processor partitioning model
was used, the scheduler could be uninterruptedly run in the master processor with the
most updated information and provide the best available schedule when required by
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any other processor.

A third aspect would consist on finding an automated method able to set the optimal
configuration of the task management algorithm regarding the number of schedulers to
be run per generation and the percentage defining the maximal time limitation for each
scheduler run based on the previous generation’s makespan.

Finally, note that hardware homogeneity was assumed in every case studied in
the scope of this Doctoral Thesis. Nevertheless, hardware heterogeneity cannot be
avoided in massively parallel applications and it involves variable inter-processor
communication delays and different data processing speeds. These factors need to be
taken into consideration by the task management algorithm to optimally map tasks to
processors, being the complexity of the optimization problem to be solved substantially
increased.
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