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Resum 

La matèria orgànica dissolta (MOD) és una important font de carboni per als 

microorganismes aquàtics i regula molts processos biogeoquímics. Per tant, els 

canvis en la concentració i propietats de la MOD en els rius afecten notablement 

el funcionament dels ecosistemes fluvials i costaners i alteren el cicle global del 

carboni. La MOD en els rius de capçalera està modelada principalment per la 

hidrologia: durant les crescudes, els vessants de la conca són rentats i la MOD 

terrígena és transportada als rius. A la regió mediterrània, el règim de 

precipitació i evapotranspiració modula fortament la hidrologia fluvial, que 

mostra cabals baixos a l’estiu i pot arribar fins i tot a la seva desaparició.   

En aquesta tesi hem analitzat un sèrie temporal a llarg termini de cabal i MOD 

a Fuirosos, un riu de capçalera intermitent al NE de la Península Ibèrica. El 

nostre objectiu era examinar la relació entre la MOD i la hidrologia en diferents 

escales temporals. Primer, vam caracteritzar el règim hidrològic d’aquest riu 

mediterrani. Al llarg de l’estudi, es va revelar una disminució del cabal, encara 

que les tendències de la temperatura i la precipitació no van ser significatives. 

Per altra banda, no vam trobar una tendència temporal clara en la durada de la 

sequera. En canvi, el retorn del cabal en el període de transició sec–humit s’ha 

endarrerit significativament de setembre a octubre. La freqüència de les 

crescudes va disminuir en l’interval 1998–2015, tot mostrant una relació positiva 

significativa amb l’activitat solar, amb un decalatge de dos anys.   

La concentració de carboni orgànic dissolt (COD) ha patit una lleugera 

disminució durant el període d’estudi, cosa que contrasta amb el que s’ha 

observat en sistemes boreals. Aquest patró podria respondre a la minva de 

l’aportació de COD terrígen dels vessants forestats, com a conseqüència de la 

disminució dels episodis de rentat. La dinàmica temporal del COD durant el 

període de transició va ser regulada per la durada del període sec. Les 

oscil·lacions de cabal van explicar fins al 50% de la variabilitat total del COD 



durant el període humit. Cal destacar que el pes del factor cabal va augmentar 

de forma significativa al llarg dels anys.     

La qualitat de la MOD també va ser explorada, i descrita en termes de propietats 

d’absorbència i fluorescència. La majoria de les propietats de la MOD van ser 

clarament relacionades amb el cabal, i revelen una entrada de MOD al·lòctona, 

degradada, aromàtica, húmica i de mida molecular gran sota condicions de 

cabal alt. No obstant, aquestes relacions van ser alterades durant els períodes de 

fragmentació i de transició. La regressió lineal múltiple i l’anàlisi de comunitats 

van mostrar que, a més de la magnitud dels episodis de crescuda, les condicions 

hidrològiques prèvies (en concret, el cabal basal abans de l’episodi i la magnitud 

de l’episodi anterior) juguen un paper significatiu perquè regulen les tendències 

i formes de les histèresis MOD–cabal. 

Per acabar, vaig identificar les diferències i semblances en les relacions MOD–

cabal entre el riu mediterrani intermitent analitzat i un riu perenne alpí amb un 

cabal mitjà superior (Oberer Seebach). La MOD  Fuirosos va ser 

significativament més concentrada, més terrígena, més degradada, més 

aromàtica i més humificada. El signe de la resposta global MOD-cabal va ser el 

mateix en els dos rius. Ara bé, el cabal era un predictor més robust de la 

variabilitat de la MOD a Oberer Seebach. En realitat, els períodes de cabal baix 

i de transició a Fuirosos van introduir una dispersió considerable en la relació. 

Durant el desgel a Oberer Seebach, la sensibilitat al cabal també va disminuir o 

desaparèixer. Els patrons de rentat/dilució van ser associats essencialment amb 

la magnitud dels episodis de crescuda a Fuirosos. Per contra, a Oberer Seebach, 

el canvi de qualitat de la MOD estava més lligat a les condicions de cabal basal, 

mentre que les precipitacions explicaven les oscil·lacions del COD. 

Aquest estudi testifica la importància de generar i analitzar sèries 

biogeoquímiques de llarga durada i alta freqüència, que permeten explorar les 

relacions entre la MOD i la hidrologia en rius de capçalera intermitents que estan 

subjectes a règims hidrològics extrems. 



Abstract 

Dissolved organic matter (DOM) is an important source of carbon for aquatic 

microorganisms and it regulates many biogeochemical processes. Therefore, 

changes in river DOM concentration and properties could notably affect the 

functioning of fluvial and coastal ecosystems and alter the global carbon cycle. 

The DOM in headwater streams is strongly influenced by hydrology, as a 

consequence of the modification of catchment flow paths with high discharges. 

During storm events, the catchment hillsides are washed and terrigenous DOM 

is transported to rivers. In the Mediterranean region, the precipitation regime 

and evapotranspiration strongly modulate fluvial hydrology, which shows low 

discharges in summer and even flow disappearance. These dry–wet cycles of 

conditions affect many ecological and biogeochemical processes. 

In this thesis, I analyse a long time series of discharge and DOM data from 

Fuirosos, an intermittent headwater stream in NE Spain. My aim is to examine 

the relationship between DOM and hydrology at different temporal scales. First, 

I characterise the hydrological regime of this Mediterranean stream. A decrease 

in discharge was revealed, although trends in temperature and precipitation were 

not significant. In contrast, I did not find a clear temporal trend in dry period 

duration. However, rewetting has been significantly delayed, moving from 

September to October. The mean magnitude of the storm events that occurred 

in autumn was lower in the years with El Niño phases in those months. The 

frequency of storm events decreased over the interval 1998–2015, showing a 

significant positive relationship with solar activity with a 2-year lag. 

Dissolved organic carbon (DOC) concentration saw a slight decrease during the 

study period, which was opposed to that observed in boreal systems. This pattern 

might respond to a reduction of terrigenous DOC input from forest hillsides as 

a consequence of the decrease in flushing episodes. The DOC temporal 

dynamics during the rewetting was regulated by dry period duration. Discharge 



oscillations explained up to 50% of total DOC variability during the wet period. 

Notably, this weight of discharge increased significantly over the years. 

DOM quality was also explored, and described in terms of absorbance and 

fluorescence properties. Most of the DOM properties were strongly related to 

discharge, revealing the input of allochthonous, degraded, aromatic, humic and 

large-molecular DOM under high flow conditions. However, these relationships 

were altered during drying and rewetting periods. The DOM responses at the 

individual storm event scale were highly heterogeneous. Multiple linear 

regression and commonality analyses showed that, in addition to the magnitude 

of storm episodes, antecedent hydrological conditions, namely pre-event basal 

flow and the magnitude of the previous storm event, played a significant role in 

regulating the trends and shapes of DOM–discharge hysteresis.  

Finally, I identified the differences and similarities in the DOM–discharge 

relationships between the intermittent Mediterranean stream analysed herein 

and a perennial Alpine stream with higher mean discharge (Oberer Seebach). 

The DOM in Fuirosos was significantly more concentrated, more terrigenous, 

more degraded, more aromatic and more humified. The sign of the global 

DOM–discharge response was the same in both streams. However, discharge 

was a more robust predictor of DOM variability in Oberer Seebach. In fact, low 

flow and rewetting periods in Fuirosos introduced considerable dispersion into 

the relationship. During snowmelt in Oberer Seebach the sensitivity to discharge 

also decreased or disappeared. The flushing/dilution patterns were essentially 

associated with the magnitude of storm events in Fuirosos. In contrast, the DOM 

quality change was more coupled to basal flow conditions in Oberer Seebach, 

while the storms were behind the DOC oscillations. 

This study attests to the importance of generating and analysing long-term and 

high-frequency biogeochemical series, which allow relationships between DOM 

and hydrology to be explored in intermittent headwater streams that are 

subjected to extreme hydrological regimes. 
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Rivers and dissolved organic matter 

Lotic systems connect continents to oceans. Under pressure from the water 

cycle, gravity and hydraulic gradients, rivers move material from emerged land 

to the seafloor. However, rivers do not merely act as conveyor belt structures 

(Cole et al. 2007); they are active reactor systems that continuously transform 

the matter they transport. In a biogeochemical context, inland waters play an 

active role in the carbon cycle at the local, regional and global scales (Battin et 

al. 2009, Aufdenkampe et al. 2011). An important proportion of the total carbon, 

about 3.6–5.7 Pg C yr−1 that reaches fluvial networks from terrestrial 

environments (Raymond et al. 2013, Wehrli 2013) is processed in those river 

systems. It has been estimated that a total of 2.1–4.2 Pg C yr−1 is emitted in the 

form of CO2 from inland waters (Raymond et al. 2013, Wehrli 2013) and that 

carbon burial in sediments is approximately 0.6 Pg C yr−1 (Tranvik et al. 2009). 

Finally, rivers and groundwater discharge about 0.9 Pg C yr−1  into the oceans 

(Cole et al. 2007), of which half is organic carbon (Schlünz and Schneider 2000). 

The export of the dissolved fraction of organic carbon (DOC) ranges between 

0.17 and 0.33 Pg C yr−1 (Alvarez-Cobelas et al. 2012, Dai et al. 2012). 

Dissolved organic matter (DOM) is the most important source of organic carbon 

in aquatic ecosystems (Wetzel 2001): it supports the food web providing energy 

and nutrients to heterotrophic microorganisms (Findlay et al. 1992, 

Stepanauskas et al. 1999) and therefore affecting the nutrient balance (Findlay 

and Sinsabaugh 2003). Not only does DOM stimulate bacterial production, but 

it is related to higher density of zooplankton, which are key organisms for the 

transfer of carbon to higher trophic levels, and its quality can modulate their 

community structures (Mitrovic et al. 2014). Even some algae can use DOM as 

a source of carbon and nitrogen, which might enhance algal blooms (Glibert et 

al. 2001, Loureiro et al. 2009). 



 

 

3

While flowing from headwaters to the ocean, DOM influences the physical and 

biogeochemical conditions of the aquatic environment. DOM is optically active 

and contributes to the vertical attenuation of visible light and ultraviolet 

radiation through the water column (Brooks et al. 2005, Foden et al. 2008). 

Therefore, light absorption by DOM may protect aquatic organisms from 

potentially harmful radiation, but can also reduce the amount of 

photosynthetically active radiation available for autotrophs (Blough and Del 

Vecchio 2002). 

Moreover, DOM can interact with metal ions to form organometal complexes 

(Buffle 1984). Complexation with DOM decreases the ionic concentration of 

metals in water and thereby reduces its toxicity to aquatic biota. Conversely, 

such binding prevents precipitation in the form of inert particles (Maranger and 

Pullin 2003). Both the quantity and quality of DOM modulate its potential as a 

chelating agent and thus affect the transport and bioavailability of trace metals 

(Baken et al. 2011). DOM also regulates pH due to its content of different acidic 

groups, buffering against acidity or contributing to it depending on the ionic 

strength of the water (Kerekes et al. 1986, Kuliński et al. 2014). 

 

Chemical characteristics of DOM 

In aquatic systems, as well as the DOM there is also particulate organic matter 

(POM). This difference is defined operationally using a filter with a certain pore 

size through which DOM pass while POM is retained. That size is not 

standardised; the most usual is 0.45 µm but also 0.2 µm, 0.7 µm and 1.2 µm 

have been used in many studies (Filella and Rodríguez-Murillo 2014). DOM is 

usually quantified in terms of dissolved organic carbon (DOC); in natural 

waters, around half the DOM weight consists of carbon (Allan and Castillo 

2007). DOM is a heterogeneous mixture of compounds that can be divided into 

a humic fraction and a non-humic fraction (Thurman 1985).  
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Non-humic substances are well-known molecules of low molecular weight 

comprising lipids, proteins and carbohydrates (Schnitzer and Khan 1972). In 

contrast, humic substances are  molecules with complex chemical structures, 

high molecular weight and a high aromatic content (Schnitzer and Khan 1972, 

MacCarthy et al. 1990) and they are the main component of DOM, representing 

50%–75% (Aiken et al. 1985, Volk et al. 1997). Humic substances in aquatic 

systems can be partitioned based on their  differing degrees of solubility: humic 

acids are not soluble below a water pH of 2 , while fulvic acids are soluble in all 

conditions (McDonald et al. 2004). Fulvic acids account for 45%–65% of the 

DOM and they have lower apparent molecular weights than humic acids: 600–

1000 Da in contrast to 1500–5000 Da (Malcolm 1990). 

The characterisation of the exact chemical composition of DOM is extremely 

difficult due to its high heterogeneity (Hertkorn et al. 2008). Fourier transform 

infrared spectroscopy, nuclear magnetic resonance and mass spectrometry are 

analytical techniques that have been applied to this task (Nebbioso and Piccolo 

2013, Minor et al. 2014). They can provide information regarding functional 

groups, compound classes and elemental formulas of DOM. However, only a 

few compounds can be identified at the molecular level and the techniques to do 

so usually require previous isolation and concentration of samples. In contrast, 

spectroscopic techniques provide information on the chemical characteristics of 

DOM in a simpler, less expensive and faster way (Jaffé et al. 2008). For instance, 

absorbance can indicate DOM aromaticity and its relative molecular weight 

(Weishaar et al. 2003, Helms et al. 2008). However, through optical properties, 

absorbance and fluorescence, only the chromophoric DOM is analysed (the 

fraction that absorbs UV–visible light) or fluorescent DOM.  

Fluorescence occurs when a molecule has absorbed energy causing the 

excitation of an electron to a higher energy level and then the electron drops back 

down to its original energy level emitting the excess energy in the form of light. 

DOM has optimal characteristics that allow its fluorescence to be studied: it has 
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a high content of aromatic compounds, which present a structure of unpaired 

electrons sharing energy in the carbon rings that are easily excited (Hudson et 

al. 2007). The wavelength of excitation and fluorescent emission is characteristic 

of each molecule or fluorophore (Lakowicz 2006). Nevertheless, it is difficult to 

identify the individual chemical structure corresponding to each fluorophore. 

DOM fluorophores can be  divided in 2 groups: those presenting fluorescent 

properties similar to proteins, specifically tryptophan and tyrosine; and those 

similar to humic substances (Coble 1996). Fluorescence properties can be useful 

in indicating DOM source, its freshness or the degree of humification (Fellman 

et al. 2010, Coble et al. 2014). 

 

DOM sources 

Sources of aquatic DOM can be autochthonous or allochthonous, usually with 

a predominance of the latter, especially in forested headwater streams with dense 

canopy cover and low light availability (Fisher and Likens 1973). 

Autochthonous DOM is produced in-stream, mainly by aquatic primary 

producers in the form of exudates and cell lysis from algae and macrophytes 

(Bertilsson and Jones 2003). It consists in non-humic substances such as 

monomeric sugars and amino acids and therefore it is considered highly 

bioavailable (Chen and Wangersky 1996). However, autochthonous DOM 

might also include humic substances, which have lower aromatic carbon content 

than allochthonous DOM (McKnight et al. 1994).  

Allochthonous DOM is terrestrially derived: it originates in the leaching of 

degraded organic matter from the catchment: throughfall, root exudate, leaf and 

root litter, and the primary and secondary metabolites of microorganisms 

(Aitkenhead-Peterson et al. 2003). The composition of allochthonous DOM is 

dominated by humic substances derived from the humification of structural 

plant compounds such as lignin and cellulose. These aromatic structures are 
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recalcitrant and inhibit enzyme activity (Marschner and Kalbitz 2003). 

Nevertheless, allochthonous DOM may contain a highly bioavailable fraction 

(Guillemette et al. 2013). The amount of DOM in soils is related to temperature 

(Dawson et al. 2008) and land use, which could also influence its quality 

(Williams et al. 2010). The transport of DOM from the terrestrial environment 

to rivers is mainly mediated by storm events (Buffam et al. 2001, Wiegner et al. 

2009). 

 

Hydrology and DOM 

In running waters, the DOM concentration typically increases under high 

discharge conditions. This pattern has been reported in all biomes and with any 

land use (Austnes et al. 2010, Bass et al. 2011, Oeurng et al. 2011, Roig-

Planasdemunt et al. 2017). Furthermore, in headwater streams storm events are 

responsible for most DOC export (Hinton et al. 1997, Raymond and Saiers 

2010). During storm events, the catchment hillsides are washed and terrigenous 

DOM is transported to rivers by overland flow and rising groundwater leading 

to saturation of the soil horizons (Dhillon and Inamdar 2014). Riparian flushing 

is the predominant input in the rising limb of the storm hydrograph, while 

hillside runoff arrives later in the falling limb (McGlynn and McDonnell 2003). 

Storm events also influence DOM quality. Higher discharge causes the elevation 

of the water table and the flushing of terrestrial surface and subsurface soil 

horizons (Boyer et al. 1997, Hinton et al. 1998). Fresh litter leachates in shallow 

soil layers present distinguishable characteristics from organic matter in deeper 

soil layers, which has been exposed to microbial degradation and extended 

sorption to mineral surfaces (Michalzik et al. 2003). Therefore, the change in 

flow path causes higher humic-like content, aromaticity, degree of humification 

and DOM molecular weight (Li et al. 2005, Hood et al. 2006, Duan et al. 2007, 
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Vidon et al. 2008, Fellman et al. 2009, Nguyen et al. 2010, 2013, Inamdar et al. 

2011, Pellerin et al. 2012). 

Moreover, storm events have a controversial effect on heterotrophic DOM 

consumption. On one hand, high discharge reduces the retention time of water 

in sediment, thus diminishing the time when DOM is in contact with 

biologically active surfaces (Battin et al. 2008) and decreasing ecosystem 

respiration (Acuña et al. 2004). On the other hand, the extra input of 

allochthonous DOM carried by storm events can enhance DOM turnover 

(Roberts et al. 2007). 

 

Mediterranean streams and DOM 

The Mediterranean climate is characterised by a high inter-annual and intra-

annual variability in precipitation, with high levels of precipitation in autumn 

and spring and low levels in summer together with high temperatures; this 

combination causes a considerable evapotranspiration in summer (Woodward 

2009). The precipitation regime and evapotranspiration strongly modulate 

fluvial hydrology, which shows low discharges in summer and high discharges 

in autumn. In summer the flow can even cease totally. Therefore, in the 

Mediterranean region it is common for rivers to have an intermittent character 

(Gasith and Resh 1999). During drought, the hydrological connectivity is 

disrupted and transport downstream, exchange between the river and riparian 

interfaces and the influence of groundwater are all hampered (Lake 2011). These 

dry–wet cycles of conditions affects many ecological and biogeochemical 

processes in these streams. Allochthonous inputs of DOM from the catchment 

are reduced during drought (Dahm et al. 2003). Moreover, longer water 

residence times may provide more opportunities for the biophysical retention of 

DOM (Battin et al. 2008). Therefore, the quantity and quality of DOM is altered 

(von Schiller et al. 2015). Furthermore, the isolated pools caused by hydrological 
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fragmentation increase the heterogeneity of biogeochemical conditions 

(Vázquez et al. 2011). 

During the successive autumnal rewetting, discharge suddenly increases and the 

streams are reconnected to groundwater and riparian zones, restoring the solute 

exchange between them (Butturini et al. 2003, Vázquez et al. 2007). Due to the 

mobilisation of the leaf litter accumulated on the stream bed and the flushing of 

the hillsides, DOM concentration greatly increases during this rewetting, 

showing an allochthonous character (von Schiller et al. 2015). Those DOM 

inputs are bioavailable and reactivate heterotrophic microbial activity (Romaní 

et al. 2006). The rewetting period can contribute up to 20% of the total annual 

DOM export (Bernal et al. 2005). 

 

Time series and DOM 

In this thesis, I analyse a hydrological and biogeochemical time series from an 

intermittent Mediterranean stream. Recently rich and outstanding research has 

proliferated focusing on DOM quantity and quality along river networks 

(Ejarque-Gonzalez 2014, Casas-Ruiz 2017). These studies are profoundly 

connected to the river continuum concept (Vannote 1980) and the development 

of the spiralling length metric (Newbold et al. 1981). Thus, this literature strongly 

emphasises DOM transport, retention, processing and release along the 

hierarchical structure of fluvial systems and takes advantage major analytic 

advances in the description of DOM. One consequence of these advances is that 

much less effort is focused on temporal biogeochemical studies. 

In northern boreal regions there is a longstanding tradition of generating long-

term DOC studies (Filella and Rodríguez-Murillo 2014). In those regions, the 

impact of acid precipitation motivated the development of accurate long-term 

biogeochemical monitoring programmes in small and medium sized catchments 

starting in the 1970s (Likens et al. 1972). However, that tradition is almost absent 
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from Mediterranean countries. In addition, the strong pressure to publish as 

quickly as possibly reinforces the development of short-term studies and 

establishing long-term biogeochemical monitoring programmes in not seen as a 

good strategy. Therefore, it is not surprising that long-running biogeochemical 

studies are far less frequent. 

Nevertheless, long-term time series are considered essential for hydrological 

systems with high inter-annual hydrological variability, such as Mediterranean 

streams (Woodward 2009). In these systems, long-term biogeochemical series 

are fundamental to capture significant temporal trends. And last but not least, 

temporal changes associated with hydrological oscillations have been reported 

to have a greater impact on DOM variability than the spatial axis along the 

fluvial system (Mulholland 2003, Ejarque et al. 2017). Consequently, a full 

understanding of the biogeochemical functioning of lotic systems cannot be 

achieved while excluding the temporal axis.
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This thesis focuses on the temporal dynamics of DOM quantity and quality in 

Fuirosos, an intermittent Mediterranean headwater stream. Temporal DOM 

variability has been related to stream hydrology. The link between DOM and 

discharge is assessed, with special emphasis placed on the annual, seasonal and 

storm event temporal scales. Environmental and climatic drivers that modulate 

the DOM–discharge relationship are studied in depth and results are compared 

with a similar data set from an alpine stream. 

In the first chapter, entitled Hydrology of an intermittent headwater stream: results of 

a decade of high-frequency monitoring, I describe the hydrological regime of 

Fuirosos: the stream that is the object of study in this thesis. I analyse a 15-year 

high-frequency time series of stream discharge with the following specific 

objectives: 

� To describe the variability in the annual discharge regime in terms of the 

distribution of discharge values, duration of dry episodes and magnitude 

of storm events. 

� To detect temporal trends at the decadal scale in the aforementioned 

hydrological variables. 

� To relate the long-term hydrological trends to climatic drivers.  

The second chapter, entitled Long-term temporal dynamics of dissolved organic carbon 

concentration in the Fuirosos stream, analyses the temporal dynamics of stream 

DOC concentration and its relationship with discharge. The main goals when 

analysing the 13 years of stream biogeochemistry are:  

� To explore long-term trends in DOC concentration. 

� To analyse seasonal changes in DOC and their inter-annual variability. 

� To dissect the relationship between DOC and discharge during the 

distinct hydrological seasons. 

� To compare DOC dynamics with that of the nitrate concentration. 
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In the third chapter, entitled Hydrological conditions regulate dissolved organic matter 

quality in an intermittent headwater stream. From drought to storm analysis (Guarch-

Ribot and Butturini 2016), the quality of stream DOM is analysed over 32 

months. I describe the diversity of spectroscopic DOM properties and their 

relationship with hydrology at the seasonal and storm event scales. Moreover, 

the potential legacy of antecedent hydrological, climatic and biogeochemical 

conditions on the variability of DOM response to changes in discharge is 

studied. Therefore, the particular objectives of this chapter are: 

� To describe the seasonal relationship between DOM quality and 

discharge.  

� To analyse the response of DOM properties to storm events.  

� To reveal the main drivers of DOM changes during storm events. 

The fourth chapter, entitled Response of DOM dynamics in two headwater streams 

with contrasting hydrological regimes, focuses on identifying the differences and 

similarities of the relationship between DOM properties and discharge, for an 

intermittent Mediterranean and a perennial Alpine streams, which have clearly 

different hydrological regimes. The specific goals are: 

� To characterise the differences in the contrasting hydrologies.  

� To compare the slopes of the relationship between DOM and discharge. 

� To analyse the distinct response of DOM quality in each stream to storm 

events during the rising limb and the recession limb. 
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Study site 

Fuirosos is a headwater stream that drains a 15 km2 granitic catchment in 

Catalonia, in the north-east of the Iberian Peninsula (Fig. M.1). It is located in a 

mountainous area in the Montnegre–Corredor Natural Park (41° 42’ N; 2° 34’ 

E) with an elevation of 50–700 m above sea level. This third-order stream has a 

main stem of 10 km long and it is a tributary of La Tordera river. 

The Fuirosos catchment is highly forested (90%) and mostly undisturbed, with 

the presence of some isolated agriculture fields. The predominant vegetation is 

cork oak (Quercus suber) and pine tree (Pinus halepensis). In the valley head it 

appears a deciduous woodland of chestnut (Castanea sativa), hazel (Corylus 

avellana) and oak (Quercus pubescens). The riparian vegetation is dominated by 

plane tree (Platanus hispanica) and alder (Alnus glutinosa). The closed canopy 

limits the light reaching the streambed of this oligotrophic stream (Sabater et al. 

2011). The climate is Mediterranean, with mild winters (mean of 7 °C in January 

and February) and warm summers (mean of 22 °C in August and July). Annual 

precipitation ranges between 500 mm and 900 mm, with intense storms in spring 

and autumn and a severe summer drought. The strong seasonality of the 

precipitation regime determines a severe water-deficit stress and the flow 

cessation in summer. In summary, Fuirosos represents a typical semi-pristine 

intermittent stream with dry-wet cycles. It has been intensively studied since 

1998 becoming a reference site for fluvial ecology and biogeochemistry in the 

Mediterranean area (Vázquez et al. 2013).  

The streambed is composed of riffles, dominated by boulders and cobbles, and 

pools with accumulated gravel and sand. The riparian sediments are constituted 

by a gravel–sandy soil layer of 0.8–2.8 m thickness and a weathered granite layer 

of 2–11 m thickness. The groundwater level ranges from 0.5 m depth with respect 

to the ground surface in winter to 3.4 m depth in summer. Groundwater never 

saturates the upper soil organic layer, and soil–water volumetric content ranges 
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from 8% in summer to 25% in winter (Butturini et al. 2002). The high hydraulic 

conductivity favours the stream water infiltration into the aquifer, with a 

maximum peak of specific discharge of 1.5 m−1 d−1. The mixing area of the 

infiltrating stream water and the hillside groundwater expands 3–10 m into the 

riparian area (Butturini et al. 2003). 

 

 

Fig. M.1 Location of the sampling point (red dot) in Fuirosos catchment. The hillshade 
is shown in grey colouring. 
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Monitoring and water analysis 

Stream level was recorded every 30 minutes using a water pressure transducer 

(Druck PDCR 1830). The relationship between water level and discharge was 

assessed performing weekly discharge measurements by mass balance 

calculation using the slug chloride addition method (Gordon et al. 2004). These 

potential equations (R2 > 0.95) were recalculated every time that the level sensor 

was moved for maintenance or by a high flood (Fig. M.2). 

A stage–actuated automatic 

sampler (Sigma 900 max) was used 

to collect a stream sample every 4–6 

hours. Water samples were filtered 

with precombusted GF/F 0.7-μm 

filters (Whatman), acidified (pH=2) 

and kept in precombusted vials in 

the dark at 4 °C pending analysis. 

DOC concentration was 

determined by oxidative 

combustion and infrared analysis 

using a Shimadzu total organic 

carbon analyser coupled to an 

inorganic carbon removal unit. Qualitative properties of DOM were inferred 

using spectroscopic techniques. Samples for the optical analysis were filtered just 

before their analysis with 0.22-µm-pore nylon membranes to avoid any possible 

impurities, and they were analysed at room temperature.  

Chromophoric DOM was measured by using the absorbance spectrum from 200 

to 800 nm with a UV–Visible spectrophotometer UV1700 Pharma Spec 

(Shimadzu) and a deionised water blank was subtracted from each sample. 

Specific ultraviolet absorbance (SUVA) was calculated as the absorbance at 254 

 
Fig. M.2 Example of the water 
level–discharge relationship in 
Fuirosos for 2010 (black), 2011 
(pink) and 2013 (green). 
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nm divided by DOC and by the cuvette path length. SUVA has been related to 

DOM aromaticity (Weishaar et al. 2003). Spectral slopes ratio (SR) was obtained 

dividing the spectral slope for the interval of 275–295 nm of the absorbance 

spectrum to that of 350–400 nm. High SR values indicates low apparent DOM 

molecular weight (Helms et al. 2008).   

Fluoromophoric DOM was estimated performing emission–excitation matrices 

(EEMs). To obtain the EEMs we measured 21 synchronous fluorescence 

spectrums for each sample with a fluorescence spectrophotometer RF-5301 PC 

(Shimadzu) and a 1-cm quartz cell. Excitation wavelength range was 230–390 

nm. Initial emission wavelength range was 310–540 nm and it increased in 10 

nm every scan. The bandwidths for both excitation and emission were 5 nm, 

with a wavelength increment of 1 nm.  EEMs were standardised following 

Goletz et al. 2011. We applied excitation corrections using Rhodamine 101 as 

quantum counter (Lakowicz 2006) and emission corrections measuring 

reference spectra of quinine sulphate and tryptophan provided by the National 

Institute of Standards and Technology (Gardecki and Maroncelli 1998). EEMs 

were normalized dividing by the area of Raman peak of deionised water at 350 

nm excitation wavelength and 371–428 nm emission wavelength (Lawaetz and 

Stedmon 2009). Inner filter effects were corrected using the absorbance spectrum 

at 200–800 nm (Lakowicz 2006). Finally, we subtract a blank EEM of deionised 

water measured the same day from the EEM of each sample. EEMs were 

corrected and analyzed using Mathematica (Wolfram Research) software. 

Humic fractions were obtained from EEMs (Coble et al. 1990, Mopper and 

Schultz 1993). Fluorescence peaks were identified by peak picking. Considering 

that an EEM is a bivariate matrix (f(xy)), we detected global and local maxima 

in the f(xy) with the Nelder–Mead optimisation algorithm under constrained 

conditions (Horst and Pardalos 1995, Butturini and Ejarque-Gonzalez 2013). 

We classify each found peak in one of the regions of interest: C (330–370 nm 

excitation wavelength, 430–460 nm emission wavelength) and AC (230–250 nm 
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excitation wavelength, 420–460 nm emission wavelength). These peaks have 

been the basis for fluorescence comparisons in numerous studies (Coble et al. 

1990, 2014, Fellman et al. 2010). Peak AC is related to fulvic acids —more 

soluble and slighter in molecular size (McDonald et al. 2004)—, while peak C is 

linked to humic acids (Chen et al. 2003). 

Three fluorescence indices were analysed in this thesis: the fluorescence index 

(FI), the biological index (BIX) and the humification index (HIX). FI has been 

proposed to assess DOM sources (McKnight et al. 2001). It is the ratio of 

emission intensities at 470 nm and 520 nm that characterizes the slope of the 

emission curve at an excitation of 370 nm (Cory and McKnight 2005). High 

values (≈1.8) suggest an autochthonous origin of DOM and low values (≈1.3) 

an allochthonous origin. 

BIX is based on the broadening of the emission fluorescence spectrum due to the 

presence of the β fluorophore, characteristic of autochthonous biological 

activity in water samples (Parlanti et al. 2000). This index was calculated at an 

excitation of 310 nm as the ratio of the fluorescence intensity emitted at 380 nm, 

corresponding to the maximum of intensity of the β band when it is isolated, 

and that emitted at 430 nm, which corresponds to the maximum of the humic 

fraction (Huguet et al. 2009). High values of BIX (>1) suggest a predominantly 

autochthonous origin of DOM and the presence of organic matter freshly 

released into water, whereas a lower DOM production in natural waters will 

lead to a low value of BIX (0.6–0.7). 

HIX estimates the extent of humification by quantifying the extent of shifting of 

the emission spectra towards longer wavelengths (due to lower H:C ratios) with 

increasing humification (Zsolnay et al. 1999). HIX was calculated as the sum of 

the fluorescence intensities between 300–345 nm divided by the sum of the 

intensities between 300–345 nm and 435–480 nm, for an excitation wavelength 

of 254 nm (Ohno 2002). As such, HIX values range from 0 to 1 with higher 

values indicating a greater degree of humification of DOM. 
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Introduction 

Stream discharge is a major driver of multiple biological and physical processes 

in fluvial ecosystems and it acts at all scales: from small-scale microhabitats to 

the whole Earth system scale, passing through the habitat, reach, segment and 

fluvial network scales (Table 1.1). Therefore, the analysis of discharge variability 

is an essential step to understanding the functioning of running water 

ecosystems.  

Climate change and human water consumption will exacerbate hydrological 

alteration worldwide: obviously in Mediterranean areas as well (IPCC 2013, 

Wada et al. 2013). Focusing on climate-hydrology coupling in Mediterranean 

rivers, most attention converges on two key hydrological factors: droughts and 

floods. Drought severity is expected to increase as a consequence of a reduction 

in annual precipitation, an increase of evaporative stress due to an increase of 

temperatures (Vicente-Serrano et al. 2014, Spinoni et al. 2015) and increase of 

water withdrawal (Wada et al. 2014). Thus, a scenario is plausible where the 

start of drying phases is brought forward and their duration is extended. On the 

other hand, extreme precipitations events are also expected to increase and the 

“flashiness” of hydrological regimes might increase in the near future (Giorgi 

and Lionello 2008). Nevertheless, caution is necessary in making forecasts 

because the increase int the frequency of extreme precipitations events in north-

east Iberian Peninsula is not clear (Barrera-Escoda and Llasat 2015). 

Temporal trends in stream hydrology have been analysed in Mediterranean 

basins. Most of the analysis reveals a decrease in the mean monthly or annual 

discharge (Stahl et al. 2010, Gallart et al. 2011, Lorenzo-Lacruz et al. 2012, 

Martínez-Fernández et al. 2013, Vicente-Serrano et al. 2014, Baahmed et al. 

2015). Low flows, measured as the seven-day annual minimum streamflow and 

the 10th percentile of the yearly flow duration curve, also decreased (Stahl et al. 

2010, Coch and Mediero 2016). In the central Pyrenees the contribution of low  
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Table 1.1 List of fluvial processes modulated by hydrology. Processes are ordered 
according to a hierarchical scale. The list was generated according to the references cited 
in the last column. 
 

Ecosystem scale Processes References 

Microhabitat 

Gravel–sand–mud deposits 
Organic matter deposition 
Surface–subsurface 
microbiota/macrobenthic communities 

Battin et al. 2008 

Habitat 

Surface–hyporheic hydrologic 
interactions 
Debris accumulation 
Organism colonisation–refuge 

Lowe et al. 2006 
Lake 2000 
Rolls et al. 2012 
 

Reach 

River–riparian interactions 
Surface–groundwater hydrologic 
interactions 
Pool–riffle–pond–bar structures 
Tributary confluences 
Anthropogenic inputs 
Water abstraction 

Lowe et al. 2006 
Rolls et al. 2012 
Hupp and Osterkamp 
1996 

Segment 

Meanders 
Active–abandoned channels 
Alluvial terraces 
Food web structures 

Lowe et al. 2006 
Hupp and Osterkamp 
1996 
Naiman et al. 2008 

Fluvial network 

Catchment erosion 
Fluvial continuum–discontinuum 
Fluvial order 
Aquifer recharge 
Network configuration 
Riparian corridor diversity 
Solute transport–transformation–
retention 
Organism migration 
Human settlements 
Energy for humans 
Dams–water abstraction 
Disease dispersion 

Rolls et al. 2012 
Naiman et al. 2008 
Poole 2002 
Naiman et al. 1993  
Thorp et al. 2006 
Rodriguez-Iturbe et 
al. 2011 

Planet 

Continents–Ocean link 
Global nutrient cycles 
Carbonate–Silicate cycle 
Earth climate 

Aufdenkampe et al. 
2011 
Gaillardet et al. 1999 
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flows to annual runoff increased, while the contribution of high flows decreased 

(López-Moreno et al. 2006). Trends in high flows have been studied less in the 

Iberian Peninsula and with no consensus emerging. López-Moreno et al. (2006) 

and Mediero et al. (2014) found a decrease in the magnitude and frequency of 

floods. Meanwhile, extraordinary floods increased in number in Catalonia, 

whereas the most catastrophic floods did not show any significant trend 

(Barrera-Escoda and Llasat 2015). It should be taken into account that the 

Barrera-Escoda and Llasat (2015) study covered seven centuries (1301–2012) 

and the magnitudes of floods were estimated not in terms of discharge, but in 

terms of their impact on river channels, human activities and infrastructures.    

Global climate parameters could influence local meteorological variables and 

therefore flow variability. El Niño–Southern Oscillation (ENSO) is an irregular 

periodic fluctuation in sea surface temperature and air pressure in the equatorial 

Pacific Ocean. ENSO teleconnections have been associated with precipitation 

and temperature in the Iberian Peninsula (Frías et al. 2010) and its oscillations 

partially explained the leaf input from riparian zones into the stream that is 

object of this study (Sanpera-Calbet et al. 2016). In parallel, solar radiation 

fluctuations at the century temporal scale are considered an important climatic 

force and have been related to flooding in the Tajo headwaters (Moreno et al. 

2008). At shorter temporal scales, the solar activity cycle (with an 11–year 

period) has been related to flooding frequency in rivers of central Europe 

(Czymzik et al. 2016), the Alps (Peña et al. 2015) and north-eastern Iberian 

Peninsula (Barrera-Escoda and Llasat 2015). However the top–down climatic 

link between hydrology and solar activity is controversial and under scrutiny 

(Lockwood 2012). 

This study focuses on the temporal dynamics of hydrology in a Mediterranean 

headwater stream over 18 years. From October 1998 to September 2016, 

discharge was measured at hourly intervals. Fuirosos is a near-pristine forested 

catchment that did not suffer substantial changes in land use over the study 
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period. Furthermore, water abstraction for human consumption is almost non-

existent. Therefore, its temporal hydrological patterns are mainly influenced by 

climate drivers. In this regard, the main objective of this study consisted of 

describing the hydrological regime at four different temporal scales: 

� At the storm event scale, analysing the frequency and magnitude of 

storm episodes 

� At the seasonal scale, monitoring the beginning and ending of each 

summer drought episode 

� At the annual scale, estimating the proportion of low, median and high 

flows 

� At the decadal scale, analysing the temporal pattern of the 

aforementioned hydrological parameters. 

 

Methods 

Discharge values were monitored in the Fuirosos stream from October 1998 to 

September 2016 at an hourly frequency. The data were split into hydrological 

years from the 1st October to the 30th September of the following year, which 

were used to name them. Three years’ data were discarded due to the large gaps 

in the time series of discharge (2004, 2005 and 2016). Thus, the data from 15 

hydrological years were analysed. Beside stream discharge, environmental data 

including local and more global climate parameters were registred. The local 

climate parameters were air temperature and precipitation at daily intervals; 

while the global ones were ENSO and solar activity. 

Daily precipitation and temperature data were obtained from weather stations 

within the natural park: Pla de La Tanyada (3.5 km from the sampling point), 

Hortsavinyà (5.3 km away), Collsacreu (8.5 km) and Dosrius (18.5 km). 

Precipitation data were not available for the first year of monitoring.  
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In the present study ENSO was quantified using the Southern Oscillation index 

(SOI) defined as the normalised pressure difference between Tahiti and Darwin 

(Ropelewski and Jones 1987). The monthly SOI values were downloaded from 

the Climatic Research Unit, University of East Anglia. Five-month running 

mean values of the SOI remaining below −0.5 standard deviations for 5 months 

or longer indicate El Niño phases; whereas those over +0.5 standard deviations 

for 5 months or longer indicate La Niña events (Ropelewski and Jones 1987). 

Solar activity can be estimated from solar radio flux at 10.7 cm (2800 MHz) in 

solar flux units (1 sfu = 10−22 W m−2 Hz−1). Monthly data were obtained from 

the Space Weather Prediction Center of the National Oceanic and Atmospheric 

Administration. The relationship between solar activity and hydrological 

parameters was explored at 0–4 years of delay because, if it exists, it is expected 

that this link should emerge with some delay (Czymzik et al. 2016). 

Daily mean discharge was used to analyse long-term patterns, annual runoff, 

probability distribution of discharge and peaks-over-threshold (POT). In order 

to assess the existence of a significant monotonic trend in the time series we used 

the Mann–Kendall test (Mann 1945, Kendall 1975): a rank-based test suitable 

for non-normally distributed data that is widely used in hydro-climatic studies. 

The magnitude of the trend was then calculated using Sen’s slope (Sen 1968). 

Serial correlation should be removed before applying these tests, and this was 

achieved applying the trend-free pre-whitening method (Yue et al. 2002). 

Moreover, we made a correction to avoid the underestimation of the lag-1 

autocorrelation (Serinaldi and Kilsby 2016). 

Annual runoff was calculated by integrating the area under the curve of daily 

discharge using Simpson’s rule. We analysed the frequency of extreme events 

using the POT approach (Lang et al. 1999), wich accounts for daily discharge 

values that exceed a given truncation level in each hydrological year. We set the 

threshold at an average of 3 events per year, that is, 160 L s−1.  Storm events were 

characterised by their magnitude (∆Q), the difference between the pre-event base 
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discharge and the maximum peak of the event. For some periods of time we 

calculated the cumulative magnitude of the storm events (∑∆Q), that is, the sum 

of the magnitudes of all such events that occurred during that period. The 

probability distributions of daily discharges and of the magnitude of storm events 

were obtained with logarithmic bins. The quartiles of the whole daily discharge 

time series and the storms magnitude data were calculated. We determined the 

probability of those values in each hydrological year to explore any temporal 

trend at the decadal scale. 

All the analyses were performed with R version 3.3.0 (R Core Team, 2016), 

using the packages “lubridate” (Grolemund and Wickham 2011), “plyr” 

(Wickham 2011), “Hmisc” (Harrell Jr 2015), “Bolstad2” (Curran 2013) and 

“zyp” (Bronaugh and Werner 2013). The significance level for the statistical tests 

was set at a p-value < 0.05. 

 

Results 

Environmental parameters 

Annual precipitation in Fuirosos (Fig. 1.1a) varied widely between 508 L m−2 

and 912 L m−2 (Table 1.2) and did not show a significant long-term pattern 

(Mann–Kendall test, τ = −0.01, p-value > 0.1). Nevertheless, the distribution 

of precipitation showed some tendency to change. For instance, before 2008, in 

August–September typically more than 100 L m−2 precipitation accumulated. 

After that year, the precipitation only surpassed this threshold in 2014 and 2015. 

Air temperature showed the typical seasonal pattern (Fig. 1.1b) with a summer 

maximum (21.5 °C in July and August) and a winter minimum (6.7 °C in 

January and February). At the decadal temporal scale, air temperature saw a 

slight increase, although it was not significant (Mann–Kendall test, τ  = 1.3 × 

10−3, p-value > 0.5).  
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Year 
Precipitation  

(L m−2) 
Temperature 

(°C) 
SOI 

Solar 
activity (sfu) 

Runoff  

(m3 m−2) 
Runoff 

Precipitation−1 Rewetting 
Drought start 

date 

Dry period  
duration 

(days) 

No. storm 
events 

1999 NA 14.5 0.77 144 0.02 NA 25/9/1998 NA NA 16 

2000 568 13.1 0.71 180 0.03 0.05 15/9/1999 1/7/2000 81 17 

2001 694 13.9 0.29 170 0.08 0.12 20/9/2000 14/6/2001 101 17 

2002 912 13.3 –0.57 193 0.10 0.11 23/9/2001 NA 0 21 

2003 758 14.4 –0.68 136 0.09 0.12 NA 1/7/2003 67 18 

2006 694 13.4 –0.03 81 0.11 0.16 5/9/2005 9/6/2006 77 18 

2007 567 14.4 –0.35 76 0.02 0.04 25/8/2006 12/6/2007 68 16 

2008 612 13.3 0.84 70 0.05 0.08 19/8/2007 17/7/2008 103 12 

2009 672 13.3 0.52 69 0.09 0.13 28/10/2008 5/7/2009 109 13 

2010 714 13.2 0.14 78 0.08 0.12 22/10/2009 16/7/2010 64 15 

2011 679 13.1 1.51 98 0.13 0.18 18/9/2010 10/8/2011 75 13 

2012 714 13.9 0.24 126 0.16 0.23 24/10/2011 23/6/2012 121 10 

2013 571 13.3 0.29 116 0.05 0.08 22/10/2012 25/7/2013 72 16 

2014 682 13.8 –0.15 143 0.02 0.04 5/10/2013 19/7/2014 72 15 

2015 508 14.4 −1.09 129 0.02 0.03 29/9/2014 23/6/2015 100 15 

2016 NA NA NA NA NA NA 1/10/2015 4/7/2016 100 NA 

  

Table 1.2 Annual values of the environmental and hydrological parameters during the study period. Solar activity is expressed in solar 
flux units (1 sfu = 10−22 W m−2 Hz−1). 
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Fig. 1.1 Environmental parameters during the study period: daily cumulative 
precipitation (a); daily mean temperature (b); monthly SOI with El Niño (dark grey) and 
La Niña (light grey) phases (c); and monthly solar activity in solar flux units (d). 
 

The SOI during the study period (Fig. 1.1c) showed five El Niño phases (2002–

2003, 2005, 2006–2007, 2009–2010 and 2014–2015) and three La Niña phases 

(1999–2001, 2008–2009 and 2010–2012). Solar activity showed the well–known 

11–year period cycle, with two maxima in 2000–2002 and 2013–2015 and a 

minimum in 2007–2009 (Fig. 1.1d). The two maxima were not identical, with 

the second clearly less active than the first. 
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Discharge temporal dynamics 

The mean and median of daily discharge were 35.6 and 7.8 L s−1 respectively. 

Stream annual runoff ranged from 3% (2015) to 23% (2012) of the total annual 

precipitation (Table 1.2). Stream discharge showed the typical seasonal 

oscillations with a large dry period (no flow) in summer and permanent flow 

from autumn to early summer (Fig. 1.2). The smoothing using splines located 

maxima of discharge values in 2003 and 2011, while minima were found in 

1999, 2007 and 2015. Thus, the monitoring detected two cycles of rising and 

decreasing discharges. The Mann–Kendall test found a significant decreasing 

trend in the daily discharge (τ = −0.11, p-value < 10−10). Therefore, Sen’s slope 

for the whole period was −5.5 × 10−4 L s−1 d−1 wich represents an annual 0.6% 

decrease in mean discharge. 

 
Fig. 1.2 Stream discharge during the study period. Included are the data smoothed with 
splines (blue line) and Sen’s slope (pink line). Discharge values > 103 are not shown. 
 

The probability distribution of mean daily discharge over the entire study period 

showed a clear bimodal pattern (Fig. 1.3a). The first and larger peak corresponds 

to the “no flow” condition (19% of observations). The second peak of the 

distribution was located at 8–10 L s−1 (8% of observations) and corresponds to 

the median discharge. In between the two peaks, the distribution showed a 
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threshold at 2.5 L s−1.  Discharge from 0 

to 2.5 L s−1 occurred in late spring/early 

summer, during the drying process, and 

represented 11% of total observations.  

At the annual scale, the probability 

distribution of mean daily discharges 

can exhibit drastic inter-annual changes 

(Fig. 1.3a). For instance, a modal 

distributions appeared in three years 

(2007, 2008 and 2010). Furthermore, the 

mode of discharge (obtained by 

removing discharge values lower than 

2.5 L s−1) decreased significantly during 

the study period (Fig. 1.3b, R2 = 0.40, p-

value < 0.05). In more detail, the 

detection of mean daily discharges 

larger than 21 L s−1 gradually decreased 

from 2003 and was replaced by an 

increase of observed discharges between 

2.5 L s−1 and 10 L s−1 (Fig. 1.3c). The 

annual runoff showed noticeable inter-

annual oscillation (Table 2.1).  

 

Fig. 1.3 Distribution of mean daily discharge. Probability distribution function of 
discharge values for the whole period (black line), 2002 (pink line), 2007 (orange line) 
and 2012 (green line) (a); annual mode of discharge excluding values lower than 2.5 L 
s−1 (b); and annual probability of dry period (orange), drying period (green), low 
discharge (cyan), mid discharge (blue) and high discharge (pink) (c). 
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However, it did not see a significant trend over the study period (R2 = 0.00, p-

value > 0.5). Therefore, the observed inter-annual changes of the probability 

distribution of mean daily discharge did not necessarily reflect quantitative 

changes in the annual water export. In fact, the annual runoff was related to 

peaks over a threshold of daily discharge (R2 = 0.61, p-value < 10−3), which did 

not show any consistent pattern. 

 

Dry period 

In June–July the stream flow ceased in Fuirosos. Only in 2002 was the water 

flow permanent. The duration of the dry period was 64–121 days (Table 1.2) and 

it was inversely related to the cumulative precipitation from July to October (R2 

= 0.48, p-value < 0.01). This relationship remained significant after removing 

the anomalous year without a drought (R2 = 0.37, p-value < 0.05). The duration 

of the drought did not follow a significant trend over the period studied (R2 = 

0.13, p-value > 0.1) and was unrelated to annual solar activity (R2 = 0.13, p-

value > 0.1) or annual mean SOI (R2 = 0.09, p-value > 0.1). However, the 

drought window was typically larger when the mean air temperature in 

September and August was higher (R2 = 0.30, p-value < 0.05). The relationship 

remained significant after excluding the years with lowest (2002) and highest 

(2003) temperature (R2 = 0.34, p-value < 0.05). 

Meanwhile, the date of rewetting was significantly delayed after 2007 with 

respect to the earlier years (Fig. 1.4a, t = −4.5147, p-value < 10−3). This change 

was rather abrupt: from 1999 to 2007 the rewetting occurred in August–

September while from 2008 to 2016 it happened generally in October and the 

mean delay was of 34 days. The day of the year (DOY) of rewetting was highly 

sensitive to the cumulative precipitation in August and September (Fig. 1.4b, R2 

= 0.67, p-value < 10−3). In contrast, air temperature did not show any 

relationship with the timing of the recovering of the stream flow. Thus, the 

rewetting delay responded to a precipitation shift from September to October.  
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Fig. 1.4 Dry period in Fuirosos. Beginning (white dot), duration (segment) and ending 
(black dot) of dry episode in each year, with the grey area representing summer days (a). 
Relationship between the date of a dry period ending and the cumulative precipitation 
in August and September with the numbers in the circles indicating the hydrological year 
(b). 

 

Storm events 

The monitoring detected 232 high flow events. Their frequency ranged from 10 

yr−1 to 21 yr−1 (Table 2) and the rate significantly decreased over the study period 

(Fig. 1.5a, R2 = 0.33, p-value < 0.05). The frequency of storm events was 

positively related to the solar cycle and the best fit was detected at a lag of 2 years 

(Fig. 1.5b, R2 = 0.59, p-value < 0.01). However, this relationships did not 

translate into a direct and significant link between annual cumulative flow and 

solar activity (R2 = 0.09, p-value > 0.05). At the seasonal scale, the decrease in 

the frequency of storm episodes was especially severe during September, October 

and November (Fig. 1.5c), coinciding with the rewetting. From 1998 to 2006, an 

average of 6 events occurred during these months; while afterwards the average 

decreased to 3 events (t-test, t = 6.3, p-value < 10−4).  

The magnitude of the events reached up to 20000 L s−1 (16/1/2001, 8/5/2002 

and 15/11/2011), but 75% of the events were below 76.5L s−1 , 50% below 17.7 

L s−1 and 25% below 8.2  L s−1 . Regarding the number of events corresponding 
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to each general quartile of 

magnitude, in the last years the 

proportion of high magnitude 

events (∆Q > 77 L s−1) tended to 

decrease. However, POT of daily 

discharge did not show any 

consistent pattern. 

The magnitude of the storm events 

was strongly related to the 

magnitude of the precipitation 

episode (Fig. 1.6a, R2 = 0.59, p-

value < 0.01). However, the slope of 

the relationship changed seasonally. 

Therefore, with the same rain 

magnitude, floods that occurred 

during drought and rewetting 

periods (summer–autumn) were 

typically lower than those that 

occurred in winter–spring. The 

magnitude of storm episodes was 

typically unrelated to air 

temperature and solar activity. 

Fig. 1.5 Annual number of storm events during the study period (a); 
relationship between the annual frequency of storm events and the solar 

activity in solar flux units with a 2-year lag (1 sfu = 10−22 W m−2 Hz−1) with 
the numbers in the circles indicating the hydrological year (b), the inset shows 
de fit of this relationship with different lags; annual number of storm events in 
September, October and November (white), December, January and February 
(light grey), March, April and June (dark grey) and June, July and August 
(black) (c).  
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However, the mean magnitude of storms that occurred during the autumnal 

months (October, November and December) was positively related to the mean 

SOI of those months (Fig. 1.6b, R2 = 0.36, p-value=0.01). Thus, during El Niño 

phases, autumn high flows were typically less intense than during La Niña 

phases. 

 

Fig. 1.6 Magnitude of the storm events. Relationship between magnitude and 

cumulative precipitation during storm events in autumn (brown), winter (blue), spring 

(green) and summer (orange) (a). Relationship between the mean magnitude of storms 

that occurred in October, November and December and the mean SOI of those months 

with the numbers in the circles indicating the hydrological year (b).  

 

Discussion 

Flow patterns 

The long-term monitoring in Fuirosos revealed some unexpected hydrological 

patterns. A decreasing trend was found in daily discharge, which implied that 

over 17 years, the flow reduced by 3.4 L s−1 on average. Given that the mean 

daily discharge of the stream was 35.6 L s−1, this signified an annual reduction 
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of 0.6%. Being conscious that a temporal window of 17 years is too short to 

extract definitive conclusions about long-term patterns, the decreasing trend 

detected in Fuirosos is in line with that detected in rivers in south–eastern 

Europe obtained with much longer time series (Stahl et al. 2010). More 

specifically, in the Iberian Peninsula the annual discharge reduction ranged from 

0.25% to 1.68% and it was typically larger than 1% (Gallart et al. 2011, Martínez-

Fernández et al. 2013, Buendia et al. 2016). Indeed, the annual reduction rate 

estimated in Fuirosos is in the lower quartile of the range of variations.  

The hydrological time series from Fuirosos showed an increasing trend in the 

occurrence of mid–low discharge (2.5 ≤Q < 10 L s−1) and a significant decrease 

of the median. Similar results have been reported in the central Pyrenees (López-

Moreno et al. 2006), in near-natural catchments in Spain (Coch and Mediero 

2016) and in the Mediterranean basin (Stahl et al. 2010). Remarkably, the lowest 

discharge interval (0 ≤ Q < 2.5 L s−1) did not suffer a clear temporal trend. At the 

other extreme of discharge distribution, the proportion of days with high flow, 

the frequency of storm events and the proportion of high magnitude storm events 

diminished throughout the study period. A decreasing temporal trend in the 

frequency of high discharge values was found in other fluvial systems in the 

Iberian Peninsula (López-Moreno et al. 2006, Mediero et al. 2014). However, 

the present study did not detect any significant change in the frequency of the 

highest daily mean flows measured as POT. This result is in line with that 

reported in a previous study wich did not find a clear trend in the frequency of 

extreme episodes in north-east Iberian Peninsula (Barrera-Escoda and Llasat 

2015). 

Meanwhile, solar activity with a 2-year delay emerged as a driver for the 

frequency of storm episodes. Nevertheless, this qualitative change did not 

translated into a change in the quantitative water fluxes. The impact of solar 

activity on climate is strongly debated and is an area of active on-going research 

(Lockwood 2012). Low solar irradiance might cause a greater ozone production 
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in the stratosphere and the subsequent warming could be transmitted to the 

troposphere and alter the North Atlantic circulation (Gray et al. 2010, Wirth et 

al. 2013, Moffa-Sánchez et al. 2014). Hence, low solar activity would make the 

arrival of perturbations in Southern Europe more difficult, while it would favour 

perturbations in central and northern Europe. In this context some authors 

attribute high flood frequencies in Mediterranean rivers to periodos of high solar 

activity (Vaquero 2004, Barrera-Escoda and Llasat 2015). Our results confirm 

these observations, but it is essential to remark that the research by Barrera-

Escoda and Llasat (2015) focuses on the frequency of extraordinary and 

catastrophic floods obtained from documentary sources and precipitation series 

registered over the last seven centuries. Consequently, that approach is totally 

different from ours. As far as we know, our study is the first to detect indications 

of a potential influence of solar activity on fluvial hydrology in the Iberian 

Peninsula using an in-situ hydrological data-set. It is interesting to remark that a 

2-year lag between solar activity and flood frequency has been detected in rivers 

in central Europe (Czymzik et al. 2016) and the Alps (Peña et al. 2015). The 

relationship observed in these two rivers is the opposite to that observed in 

Fuirosos. Notwithstanding, this opposite response is coherent with the 

theoretical explanation provided above. 

It is noticeable that the last period of high solar activity (2013–2015) saw clearly 

less activity than the previous one (2000–2002), which could be related to the 

reported decrease in the number of storm events. In fact, it was the lowest peak 

of solar activity measured in the last 100 years. Prudence is indispensable in 

connecting solar activity to hydrology. To reduce the uncertainty it is absolutely 

essential to extend hydrological monitoring to include at least another solar 

cycle. We could explore in more depth the link between solar activity and 

hydrology with the large hydrological time series obtained from gauging stations 

managed by water authorities in regulated rivers. Nevertheless, we would be 

unlikely to detect this causal relationship in regulated rivers. 
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Dry period patterns 

The duration of summer drought in Fuirosos slightly increased during the study 

period, although this trend was not significant. Very few time series have 

analysed drought patterns in intermittent streams. In a headwater stream in 

western France drought duration was monitored for 12 years and no trend was 

observed either (Humbert et al. 2015). Nevertheless, longer studies revealed that 

duration, frequency and severity of climatic drought are increasing in the 

Mediterranean basin (Spinoni et al. 2015) and in the Iberian Peninsula (Vicente-

Serrano et al. 2014). Drought severity was found to be driven partly by a decrease 

in precipitation and increase in evaporative demand due to higher temperatures. 

In fact, drought duration during the study period was significantly related to the 

mean temperature in August and September, and to cumulative precipitation 

from July to October. Taking into account these observations, together with the 

scenarios of climate change, hydrological droughts in non-perennial streams are 

expected to be prolonged (Pumo et al. 2016). 

In Fuirosos, the rewetting has been significantly delayed. Moreover, the day of 

the year of flow recovery was linked with cumulative precipitation during 

August and September. This pattern cannot be compared in other catchments 

due to the lack of summer drought monitoring data. However, in eastern Iberian 

Peninsula a delay was found in the occurrence of high storm events (Mediero et 

al. 2014), which often happened in autumn. In our case, in recent years the 

number of autumn storm events has decreased, which could explain the need for 

more time to recharge the aquifer and achieve permanent runoff. Finally, the 

mean magnitude of events occurring in autumn was related to the mean SOI in 

the same period. Thus, under low SOI the magnitude of storm events was lower 

and this might delay the rewetting. SOI during autumn has been linked to 

precipitation in the same catchment, specifically a lower mean SOI during July–

November was correlated with higher annual precipitation (Sanpera-Calbet et 

al. 2016).  
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Implications 

The Fuirosos stream drains a forested and near-undisturbed catchment. 

Moreover, water abstraction is negligible and land use changes are almost none. 

The catchment is not a remote site and its exceptionality resides in its 

geographical context, because it is a small semi-pristine island in the middle of a 

larger area altered by human activity and in the proximity of a high-density 

population zone (Barcelona metropolitan area is less than 30 km away).  

The present study revealed that a relatively short (15-year) hydrological time 

series  is long enough to estimate a decrease rate of annual mean discharge 

similar to those obtained from long-term monitorings (> 40 years) at sites that 

drain large catchments suffering severe and complex anthropogenic impacts. 

This finding shows that the study of the link of fluvial hydrology to climate might 

benefit enormously from long-term hydrological monitoring in small headwaters 

in semi-pristine catchments. It is not necessary to focus on remote and 

inaccessible sites. Therefore, the monitoring of these hydrological indicators is 

not necessarily more expensive than monitoring any other gauging station.  

The estimated mean annual discharge decrease of 0.6% suggests that daily 

discharge will drop to 50% in 80 years. This is obviously a simplistic linear 

extrapolation that assumes that runoff processes (evapotranspiration, hillside 

runoff and groundwater recharge) will not change significantly. We know little 

of how these processes react, so it is premature to extract a definitive conclusion. 

The objective is to persist with hydrological monitoring and hope that the human 

impact remains at minimum levels. In the context of basic research, to preserve 

this latter condition is the essential step to advance in the individuation of 

climatic mechanisms that drive hydrological fluctuations in Mediterranean 

streams and rivers.
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Introduction 

Dissolved organic matter (DOM) is an important source of carbon and energy 

for freshwater and marine aquatic microorganisms and it regulates many 

biogeochemical processes (Findlay and Sinsabaugh 2003). Therefore, changes in 

river DOM concentrations could notably affect the functioning of fluvial and 

coastal ecosystems and alter the global carbon cycle (Dai et al. 2012). DOM 

concentration, measured in terms of concentration of dissolved organic carbon 

(DOC), has been reported to have increased over the last few decades in many 

rivers and lakes of northern Europe and America (Andersson et al. 1991, Worrall 

et al. 2004, Evans et al. 2005, Erlandsson et al. 2008, Hruška et al. 2009, Couture 

et al. 2012). This pattern is not well understood. Analysis points to a combined 

effect of climate change, a reduction in acid precipitation and changes in sea-salt 

deposition (Evans et al. 2006), although changes in land-use and hydrological 

regimes cannot be excluded (Pagano et al. 2014, Huntington et al. 2016). In any 

case, an increase in DOC cannot be generalised worldwide because long-term 

biogeochemical monitoring programmes are not well established in other 

climate regions (Filella and Rodríguez-Murillo 2014). Additionally, where this 

information is available, in some cases the temporal trends do not show an 

increase (Rodríguez-Murillo et al. 2015). 

At the intra-annual scale, DOC has shown some degree of seasonality in 

different catchments. Higher values of DOC were found in summer and autumn 

associated with leaf fall in a temperate forested stream (Singh et al. 2013). The 

same seasonal pattern was reported in catchments with peat soils (Dawson et al. 

2008). Snowmelt also caused high DOC concentrations in mountain areas 

(Perdrial et al. 2014). Intermittent streams have two characteristic periods, the 

drying period and the subsequent rewetting, with remarkable influence on their 

biogeochemistry. More specifically, in an agricultural catchment DOC gradually 

decreased from the rewetting to the next summer drying (Humbert et al. 2015). 

High concentrations of DOC were found in a tropical rainforest river during the 
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flushing periods after drought (Spencer et al. 2010). Mediterranean ephemeral 

(Catalán et al. 2013) or intermittent streams (Vázquez et al. 2015, von Schiller 

et al. 2015) have shown clear seasonality with high DOC concentrations during 

the rewetting and varying results under drying conditions. However, the periods 

studied rarely lasted more than one hydrological year. 

More than seasonality, discharge (Q) has been signalled as the main driver of 

DOC in headwater streams (Butturini et al. 2008, Roig-Planasdemunt et al. 

2017). Many studies have reported the relationship between discharge and DOC 

at different scales, some of them including long time series (Neal et al. 2005, 

Rodríguez-Murillo et al. 2015). However, few of those studies have analysed the 

inter-annual variability of that relationship (Humbert et al. 2015).  

My purpose herein is to present an analysis of the temporal dynamics of DOC 

in a Mediterranean headwater stream at the decadal, annual and seasonal time 

scales. More specifically, my objectives are: 

� To explore long-term trends of DOC at the decadal scale. 

According to the gradual decrease of mean discharge detected (0.6%, see 

Chapter 1) and bearing in mind the pattern found in an arid stream (Jones et al. 

1996), I expected a gradual increase of DOC concentration during the entire 

study period due to the reduction of water mass. Therefore, the long-term DOC 

trend will allow me to quantify the biogeochemical resilience of the catchment 

to the gradual increase in the hydrological stress reflected in the mean decadal 

discharge decrease. 

� To analyse seasonal changes in DOC concentration at the intra-annual 

and inter-annual timescales. 

I explored the impact of the severity of dry periods on temporal DOC seasonality 

during the successive hydrological year. A gradual DOC  decrease from high 

DOC concentration during the rewetting to lower DOC concentration during 

the wet season was expected. The rate of this decrease may be related to the 
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length of the antecedent drought. A more pronounced flushing is expected 

during large drought periods. As pointed out in the first chapter, drought phases 

last from 0 to 121 days. If a link between DOC flushing and drought duration 

exists it should emerge after 13 years of monitoring. 

� To analyse the relationship between DOC and discharge during the 

drying, rewetting and wet hydrological seasons. 

A previous study in Fuirosos showed that the strength of the DOC–Q 

relationship is much less during the rewetting and it becomes stronger during the 

wet period (Butturini et al. 2008). However, the short hydro-biogeochemical 

time series used in that preliminary research precluded studying the inter-annual 

variability of the DOC–Q relationship during the wet period in more depth. If 

the gradual discharge decrease determines a parallel long-term DOC increase, 

then I expect smaller DOC oscillation. In consequence, the slope of the DOC–

Q relationship during the wet period should decrease. 

In the present study nitrate (NO3
− ) is used as a reference solute. The two solutes, 

NO3
−  and DOC, are considered to be strongly related to terrigenous 

allochthonous hillsides inputs (Mulholland and Hill 1997). Therefore, 

similitudes and differences in their temporal dynamics and solute–discharge 

relationships help to weight the extent to which the observed DOC patterns and 

responses are solute specific, or rather respond to a broader catchment-scale 

biogeochemical property. 

 

Methods 

Weekly sampling was performed in Fuirosos from September 1998 to July 2013. 

Two years (2004 and 2005) were not included in the analysis because of the 

lower frequency of the sampling. Moreover, an automatic sampler (Sigma 900 

max) took samples every 4–6 hours during storm events. Discharge was 
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calculated from the water pressure level recorded hourly. Apart from DOC, we 

analysed NO3
−  concentration with ionic chromatography (Metrohm). 

In accordance with previous studies of Fuirosos (Butturini et al. 2003, Vázquez 

et al. 2015) and results from the analysis of the long-term hydrological 

monitoring (Chapter 1), the hydrological year was split into 3 periods: 

� Rewetting: from the recovering of the stream flow until discharge 

reached 5 L s−1: it usually started in September or October.    

� Wet: from the end of the rewetting phase to the beginning of the drying, 

generally from November to May  

� Drying: starting when stream discharge is less than 2.5 L s−1, usually 

lasting from June to July or August.  

The long-term trends in DOC and NO3
−  were evaluated with the Mann–Kendall 

test (Mann 1945, Kendall 1975), and the magnitude of the trend was calculated 

as Sen’s slope (Sen 1968). DOC and NO3
−  temporal intra-annual seasonality was 

studied from the rewetting to the drying period. The average seasonal trend was 

analysed with smoothed splines after assembling all the data in one hydrological 

year. Furthermore, we obtained DOC and NO3
−  mean for each hydrological 

period of the 13 years. 

The rate at which the DOC decreased from the rewetting to the end of December 

(dDOC/dt) was calculated assuming an exponential model. It corresponds to the 

slope of the linear regression relating the logarithm of DOC to the time passed 

since the rewetting. dDOC/dt was estimated for each year and then related to 

the duration of the previous drought phase. In some years, it was not possible to 

obtain it because sampling was not sufficiently intensive (2003 and 2004) or 

because the drought length was not determined (1998, 1999 and 2005). I also 

calculated the slopes of the linear regressions relating DOC and NO3
− to the 

logarithm of discharge (dDOC/dQ and dNO3
−/dQ). This rate was estimated for 

each hydrological period every year. 
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Significance of differences between the distributions of DOC and NO3
− data 

from different hydrological periods was tested with the Kruskall–Wallis test 

(Kruskal and Wallis 1952). This test does not assume the normal distribution of 

the residuals and does not require a balanced design. As a post-hoc test, to 

specify within wich groups the differences were located, I applied Dunn’s test 

(Kruskal and Wallis 1952), which is appropriate for groups with unequal 

numbers of observations (Zas 2010). The significance level for the statistical tests 

was set at p-value < 0.05. All the analyses were performed with R version 3.3.0 

(R Core Team, 2016), using the packages “birk” (Birk 2016), ”zyp” (Bronaugh 

and Werner 2013), “dunn.test” (Dinno 2017) and “vioplot” (Adler 2005).   

 

Results 

Long-term trends 

During the 13 years of monitoring the daily mean of DOC was 4.32 ± 2.37 mg 

L−1and ranged from 1.58 mg L−1 in winter, base flow to more than 15 mg L−1 

during some storm events (Fig. 2.1a). The DOC significantly decreased over the 

entire study period (Mann–Kendall test, τ  = −0.05, p-value < 10−7) with a Sen’s 

slope of −1.7 × 10−4 mg L−1 d−1, which represented an annual 1.46% decrease of 

the mean DOC. 

The daily NO3
−  concentration averaged 0.48 ± 0.63 mg N L−1 (Fig. 2.1b). In 

some samples the amount of NO3
−  was undetectable (< 10−3 mg N L−1) while in 

others it was as much as 6.75 mg N L−1. A significant temporal trend was also 

found (Mann–Kendall test, τ  = −0.06, p-value < 10−9), but in this case it had a 

positive Sen’s slope of 1.2 × 10−5 mg N L−1 d−1, revealing an annual increase of 

0.93% in mean NO3
− . 
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Fig. 2.1 Stream DOC (a) and NO3
− (b) concentrations during the study period. The 

temporal trend is represented by Sen’s slope (pink dotted line). 
 

DOC and NO3
− seasonality 

DOC values showed a seasonal pattern consisting of the presence of high values 

at the beginning of the hydrological year (September–October), a gradual 

decrease until the end of December and a slight increase towards summer (Fig. 

2.2a). The mean DOC concentration during rewetting, the wet period and 

drying was 7.9 ± 3.9 mg L−1, 4.0 ± 1.7  mg L−1 and 4.4 ± 2.5 mg L−1 respectively. 

The distributions of the seasonal means of every year had significant differences 

(Kruskall–Wallis test,  χ 2 = 17.648, p-value < 10−3). Specifically, mean DOC 

values during rewetting are those that presented a distinct distribution from both 

the wet period (Dunn’s test, Z = 3.78, p-value < 10−3) and drying (Dunn’s test, 

Z = 3.47, p-value < 10−3). Rewetting showed the highest dispersion among years 

and the median of the annual means was higher than that of the other periods 

(Fig. 2.2b).  



Long-term temporal dynamics of DOC  

 

42

The NO3
−  seasonal pattern was clearly different from that of DOC, with the 

largest concentration during late winter-beginning of spring and the lowest 

values during the summer drying. A NO3
−  flushing signal during the rewetting 

was missing (Fig. 2.2c). The mean NO3
−  concentration during rewetting, the wet 

period and drying was 0.5 ± 0.9 mg L−1, 0.6 ± 0.7  mg L−1 and 0.2 ± 0.2 mg L−1 

respectively. Distributions of NO3
−  values (Fig. 2.2d) were significantly different 

between the three hydrological periods (Kruskall–Wallis test, χ 2 = 14.6, p-value 

< 10−3) with drying being distinguishable from the wet period (Dunn’s test, Z = 

− 3.71, p-value < 10−3) and −rewetting (Dunn’s test, Z = 2.83, p-value < 0.01). 

 
Fig. 2.2 Seasonality of DOC (a) and NO3

− (c) concentration during the study period 
with smoothed splines of concentration (green line) and air temperature (orange 
line).The distributions of the annual mean DOC (b) and NO3

− (d) concentrations are 
shown in violin plots for each hydrological period. The white dot marks the median and 
the black rectangle the interquartile range. Different letters indicate significant 
differences between distributions according to Dunn’s test. 
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The rate at which DOC decreased from 

the rewetting to the end of December 

(dDOC/dt) changed interannually and 

−ranged between 0 and  0.008 mg L−1 

d−1. Its variability was significantly 

related to the duration of drought (Fig. 

2.3, R2 = 0.69, p-value < 0.01): after a 

long and severe drought, dDOC/dt was 

more pronounced. At the other 

extreme, the year when the stream did 

not dry up during summer (2002) the 

slope was slightly positive. 

 
Overall, the NO3

−  concentration was 

positively and significantly related to 

DOC. However, in statistical terms, the 

link was very weak (R2 = 0.03, p-value 

< 10−11). From analysing the 

relationship between the distinct 

hydrological periods, some differences 

emerged (Fig. 2.4). The weakest link 

was found during the rewetting (R2 = 

0.04, p-value < 0.01), while the 

strongest occurred under drying 

conditions (R2 = 0.24, p-value < 10−7). 

During the wet period, the strength of 

the NO3
− –DOC relationship was in the 

middle (R2 = 0.06, p-value < 10−21), but 

the slope was larger. Thus, under identical DOC concentrations, the NO3
−  

Fig. 2.3 Relationship between 
dDOC/dt and the duration of the 
previous dry period. Numbers in circles 
indicate the year. Dotted line indicates 
the significant linear relationship. 

 

Fig. 2.4 Relationship between NO3
− and 

DOC concentration. The slopes of the 
linear regressions for rewetting (brown), 
wet period (blue) and drying (orange) are 
shown as dotted lines. 
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concentration during the wet period was typically larger than in the other two 

hydrological periods. 

 

dDOC/dQ and dNO3
−/dQ 

The DOC from the whole study period was significantly but slightly related to 

the logarithm of discharge (Fig. 2.5a, R2 = 0.01, p-value < 10−4). Nevertheless, if 

only the wet periods were considered, the relationship between DOC and  

discharge became much stronger (R2 = 0.52, p-value < 10−247). dDOC/dQ 

responses were estimated every year and for each hydrological period (Fig. 2.5b). 

During rewetting dDOC/dQ was higher and showed the largest inter-annual 

variability (0.5–12.1 mg s L2). In contrast, the lowest values and inter-annual 

variability occurred under drying conditions. In addition, dDOC/dQ tended to 

−be negative during that period ( 0.9–0.1 mg s L2). The distributions of 

dDOC/dQ values were significantly different for the different hydrological 

periods. (Kruskall–Wallis test, χ 2 = 25.259, p-value < 10−5), with drying showing 

−lower values than rewetting (Dunn’s test, Z = 4.88, p-value < 10−5) and the wet 

−period (Dunn’s test, Z = 3.77, p-value < 10−3). 

Similarly, NO3
−  showed a weak relationship with the logarithm of discharge 

(Fig. 2.5c, R2 = 0.09, p-value < 10−45). In contrast to DOC, NO3
−  remained only 

slightly related to discharge even if only the samples from the wet period were 

considered (R2 = 0.10, p-value < 10−39). Still, that period had the highest 

dNO3
− /dQ values (Fig. 2.5d). In contrast, during drying dNO3

− /dQ was nearly 

null. The distributions of dNO3
− /dQ values from each hydrological period 

showed significant differences (Kruskall–Wallis test, χ 2 = 17.367, p-value < 10−3) 

−between the drying and wet periods (Dunn’s test, Z = 4.17, p-value < 10−4),  

between drying and −rewetting (Dunn’s test, Z = 2.34, p-value < 0.05) and 

between the wet period and rewetting (Dunn’s test, Z = 1.75, p-value < 0.05).   
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The strongest DOC versus discharge relationship was observed during wet 

periods. Furthermore, the explanatory power of this relationship (expressed as 

R2) increased over the years (Fig. 2.6, R2 = 0.49, p-value < 0.01). 

 

Fig. 2.5 DOC–discharge (a) and NO3
−–discharge (c) scatter plots. The distributions of 

annual dDOC/dQ (b) and dNO3
−/dQ (d) are shown in violin plots for each hydrological 

period. To be comparable, dDOC/dQ and dNO3
−/dQ were estimated after rescaling 

DOC and NO3
− concentration between 0 and 1.The white dot marks the median and the 

black rectangle the interquartile range. Different letters indicate significant differences 
between distributions according to Dunn’s test. 
 

The absolute value of the dDOC/dQ slopes tended to increase during the study 

period as well, although that pattern was not statistically significant (R2 = 0.20, 

p-value = 0.12). Therefore, the link between DOC and discharge during the wet 

period strengthened over time and, additionally, DOC tended to be more 

sensitive to discharge changes. Meanwhile, the statistical significance of the 
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NO3
−  versus discharge relationship was typically lower than that estimated for 

DOC and did not show any long-term pattern (R2 < 0.03, p-value > 0.6). 

Moreover, NO3
−  appeared less responsive to discharge oscillations (dDOC/dQ 

> dNO3
− /dQ). 

   

 

Discussion 

DOC long-term trends 

In Fuirosos, DOC significantly decreased over the study period. This 

contradicted our initial hypothesis, which stated that DOC concentration might 

increase in response to the decrease of discharge. Moreover, the observed pattern 

was the opposite of what has been reported for many rivers in the temperate and 

boreal regions of the northern hemisphere (Filella and Rodríguez-Murillo 2014). 

Some interesting exceptions are found (Bieroza et al. 2016). However, as far as 

I know, there are no DOC monitoring studies in the Mediterranean region that 

cover more than a decade. The DOC increase in boreal regions has been 

attributed to climate change, specifically the increasing temperature and 

atmospheric CO2, and the diminution of atmospheric chemical deposition 

(Evans et al. 2006, Pagano et al. 2014).  

Fig. 2.6 Temporal dynamics of the 
explanatory power (expressed as R2) of the 
linear regression relating DOC (black) and 
NO3

− (grey) concentrations to discharge 
(log transformed) during the wet period. 
The area of the circles is proportional to 
dDOC/dQ (or dNO3

−/dQ). The dotted 
line shows the linear model valid for 
DOC.  
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Concerning climate change, higher CO2 concentration would increase primary 

production and its organic exudates (Fenner et al. 2007b). Furthermore, warmer 

temperatures might enhance microorganism decomposition and the leaching of 

organic matter (Freeman et al. 2001, Fenner et al. 2007a). These factors are 

relevant at the global scale and therefore should affect Mediterranean regions 

too. Nevertheless, a DOC increase is totally absent from Fuirosos. Thus, the 

supposed increase of DOC exudates as a consequence of an increase of primary 

production seems to be non existent or irrelevant in our catchment. At the same 

time, it seems that warmer temperatures did not accelerate soil organic matter 

decomposition, during the study. However, it is important to remark that air 

temperature in Fuirosos did not show a substantial increase during the study 

period (Chapter 1, Fig. 1.1a). 

As regards atmospheric chemical deposition, its reduction due to international 

air regulations has been correlated to increasing DOC concentrations (Monteith 

et al. 2007). Acid deposition, mostly in the form of sulphate (SO4
−2 ), increases 

soil acidity. In consequence, DOM solubility decreases (Kalbitz et al. 2000), 

lowering the bulk of DOM that could reach streams. Therefore, the diminishing 

of SO4
−2  deposition (Fowler et al. 2005) has reversed this trend favouring the 

long-term DOC increase. The impact of acid deposition and its successive 

mitigation has been more significant in central and north Europe than in the 

Mediterranean region. Nevertheless , in a study area very close to Fuirosos, the 

rain pH increased from 4.7 to 6.5 over the period 1985–2000 (Ávila and Rodà 

2002). Although more recent and detailed values are not available, global 

analysis corroborates that SO4
−2  wet deposition has reduced in Europe (Vet et 

al. 2014). Therefore, if acid deposition declined, it would result in an increase, 

rather than a decrease, of DOC concentration. 

Meanwhile, the long-term DOC decrease might be related to the observed long-

term discharge decrease. In an arid stream, an increase of the annual mean DOC 

concentration has been reported during years with low mean annual stream 
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discharge (Jones et al. 1996). However, in forested catchments with an organic 

soil layer, this relationship might be the opposite because hillside surface runoff 

might reduce. Therefore, under low discharge conditions the hillside terrigenous 

DOC input is expected to decrease and its concentration in streams might 

decrease too. This reasoning has been adopted, for instance, to explain an 

increase of DOC concentration in rivers in temperate regions that experience 

long-term discharge increase (Huntington et al. 2016). Nevertheless, a reduction 

of the hillside runoff should diminish the mobilisation of NO3
− : a highly soluble 

solute released by soils. However, in Fuirosos, NO3
−  increased slightly during 

the study period. Thus, its long-term trend is the opposite to that of DOC. 

Consequently, the hypothesis of a reduction in DOC concentration as a response 

of the decrease of hillside runoff seems inconsistent and would require further 

validation. However, NO3
−  concentration in precipitation increased significantly 

from 1983 to 2009 in a mountain area 20 km from Fuirosos (Izquierdo et al. 

2012). Therefore, the long-term increase of NO3
−  atmospheric deposition might 

explain the observed slight long-term NO3
−  increase in stream water, rather than 

the discharge decrease. 

Finally, a decrease of discharge implies larger water residence times in the 

stream channel. Therefore, DOC molecules have, a priori, more chances of 

being retained and processed by in-stream heterotrophic microbiota (Butturini et 

al. 2016).  Thus, long residence times might contribute to reducing DOC 

concentration. Nevertheless, this hypothesis is not supported by the data from 

the present study. In fact, at low discharge under drying conditions, DOC tends 

to increase rather to decrease. 

 

DOC and NO3
− Seasonality 

DOM and NO3
−  dynamics in Fuirosos showed clearly different temporal 

patterns. At the beginning of the hydrological year, during rewetting, DOC 
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showed the highest concentrations. This result is in consonance with that 

reported in previous short-term studies performed in Fuirosos (Vázquez et al. 

2007, von Schiller et al. 2015), in ephemeral Mediterranean washes (Catalán et 

al. 2013) and in agricultural catchments (Humbert et al. 2015). DOC flushing in 

Fuirosos has been related to the leaching of abundant leaf litter (up to 450 g dry 

mass m−2, Sabater et al. 2001) accumulated on the stream bed and edges during 

summer dry period as a consequence of leaf input from the riparian vegetation 

(Sanpera-Calbet et al. 2016). During autumn, DOC concentration gradually 

recovered its base values. The rate at which this recovery occurred was a function 

of the length of the previous summer drought. As far as we know, no study has 

quantified the impact of drought severity on DOC temporal dynamics 

immediately after drought. However, our finding is in line with that reported by 

Humbert et al. (2015)  that the length of the dry season regulates the mean annual 

DOC concentration in a small agricultural catchment in the north-west France. 

dDOC/dQ showed the highest values during rewetting. Furthermore, these 

slopes strongly varied from year to year and this variability was unrelated to the 

characteristics of the previous drought. It is important to remark that the 

sampling of rewetting is a challenging matter because it is an abrupt and short 

phenomenon and its occurrence, magnitude and “flashiness” are unpredictable. 

In consequence, it is extremely complex to acquire a precise picture of the DOC–

discharge relationship during this hydrological phase. Along these lines, the 

placing of in-situ DOM optical sensors might represent a fundamental step 

forward towards filling this methodological gap. 

At the other extreme, dDOC/dQ, showed the lowest values during drying, at the 

beginning of summer: mainly negative or near zero. Therefore, DOC dynamics 

gradually disconnected from hydrology during low flow conditions. This 

disconnection coincided in time with the moment at which the stream became 

influent and recharged the surrounding riparian groundwater (Butturini et al. 

2003). Allochthonous DOC inputs ceased and DOC in the stream water 
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stabilised or increased slightly due to the increase in water residence time, water 

temperature (Vázquez et al. 2011) and particulate organic matter input from the 

riparian strip (Sanpera-Calbet et al. 2016). 

Seasonal NO3
−  dynamics showed clear low concentrations during the growing 

season, from March to June. This NO3
−  pattern is similar to that observed in a 

small permanent Mediterranean headwater stream (Butturini and Sabater 2002) 

and in a temperate upland watershed with mixed land uses (Zhu et al. 2011). 

The reduction of NO3
−  during the growing season might respond to a reduction 

of terrestrial NO3
−  inputs and to an increase of in-stream N uptake by the 

photoautotrophic benthic community (Lupon et al. 2016). 

The strong seasonality of NO3
−  dynamics coupled with the weak NO3

− –

discharge relationship detected under wet conditions provides evidence that 

nitrogen demand by terrestrial forest and in-stream communities strongly 

regulates the NO3
−  availability in Fuirosos. This does not necessarily mean that 

NO3
−  is insensitive to discharge oscillations. In fact, previous studies that 

analysed the NO3
−  dynamics in detail in Fuirosos over the first 3 years of the 

time series reported a significant relationship between NO3
−  and discharge 

during high flow events in late autumn–early spring (Butturini and Sabater 2002, 

Bernal et al. 2005). Nevertheless, the long-term monitoring relativised the 

importance of hydrology on NO3
−  when it is compared to DOC. 

 

DOC and NO3
− coupling 

DOC and NO3
−  did not show a clear and robust relationship. Only during 

drying, when DOC was disconnected from discharge ,did a positive and more 

consistent relationship emerged. This positive relationship is the opposite to 

what has been reported in other terrestrial and aquatic environments (Taylor and 

Townsend 2010). In fact, some authors suggested that NO3
−  and DOC 

concentrations should be inversely related, arguing that under low DOC 
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availability, microbial nitrogen immobilisation and denitrification should 

decrease and thus NO3
−  increase (Goodale et al. 2005). That DOC (quantity 

and/or quality) affects NO3
−  in headwater streams has been confirmed by some 

field experiments (Rodríguez-Cardona et al. 2016). However, denitrification in 

Fuirosos is not a relevant process at the catchment scale, because there are no 

wetlands and the nitrogen content in the soil is relatively low (Bernal et al. 2003). 

Therefore, the positive link between the two solutes reinforces the idea that 

denitrification is unimportant in Fuirosos and precluded DOC availability from 

modulating NO3
−  concentration. 

 

dDOC/dQ inter-annual variability 

During the wet period, the DOC concentration showed a strong relationship 

with discharge. However, drying and rewetting periods introduced a large 

dispersion in the DOC–Q scatter plot. Therefore, Fuirosos is a highly 

chemodynamic system. This result is in line with the hypothesis proposed by 

Creed et al. (2015) that headwaters should be chemodynamic while high-order 

rivers should be more chemostatic. In this framework, this study also revealed 

that in Fuirosos, discharge increased its relevance to DOC variability over the 

years. This is a noticeable and unexpected result that revealed that 

chemodynamic (or static) degree is not a fix property but can shift over time. In 

this context, it is essential to extend the long-term monitoring as much as 

possible to shed light on the hypothetical link between the shift of DOC 

chemodynamism and the long-term discharge decline (Chapter 1).
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Introduction 

Dissolved organic matter plays a key role in freshwater ecosystems. Hydrology 

is a key driver of the DOM dynamic (Inamdar et al. 2011, von Schiller et al. 

2015, Voss et al. 2015). DOM concentration typically increases during high flow 

conditions in forested streams (Hinton et al. 1997, Wiegner et al. 2009, Bass et 

al. 2011, Dhillon and Inamdar 2014). As a result, most organic carbon export 

occurs during high flows (Raymond and Saiers 2010). However, long-term 

studies in boreal streams reported that antecedent hydrological and climatic 

conditions are also important (Raymond and Saiers 2010, Ågren et al. 2010, 

Winterdahl et al. 2011). Consequently, to improve our understanding of the 

dynamic of DOM during storm events, it would be necessary to take into 

account the influence of pre-event hydrological conditions.  

Most of the studies previously cited focused on the relationship between 

discharge (Q) and dissolved organic carbon (DOC) concentration. In contrast, 

little is known about the response of DOM qualitative properties. Spectroscopy 

techniques based on absorbance and fluorescence are a well-established tool to 

investigate DOM aromatic content (Fellman et al. 2013), composition (Cawley 

et al. 2014), origin and freshness (Kolic et al. 2014), degree of humification (He 

et al. 2013), anthropogenic inputs (Henderson et al. 2009) and potential 

bioavailability for micro biota (Guillemette and del Giorgio 2011). Some of these 

parameters are sensitive to hydrology. Thus, humic-like content, aromaticity, 

humification degree and DOM molecular weight generally tend to increase 

during storm episodes (Li et al. 2005, Hood et al. 2006, Duan et al. 2007, Vidon 

et al. 2008, Fellman et al. 2009, Nguyen et al. 2010, 2013, Inamdar et al. 2011, 

Pellerin et al. 2012), indicating a magnification of the terrigenous aromatic 

character of DOM, derived from shallow organic soils. Conversely, other 

parameters showed more unclear responses. For instance, the fluorescence index 

(FI, related to DOM sources) decreases (Vidon et al. 2008, Inamdar et al. 2011) 

or remains steady under high flows (Hood et al. 2006, Nguyen et al. 2010, 2013). 
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These studies originated from temperate and boreal streams and covered 

relatively short periods integrating a limited number of hydrological events 

(Hood et al. 2006, Vidon et al. 2008, Fellman et al. 2009, Nguyen et al. 2010, 

2013, Spencer et al. 2010, Austnes et al. 2010, Inamdar et al. 2011). In contrast, 

research is still in the initial stage in intermittent streams that drain semi-arid or 

Mediterranean regions. Most of the on-going research specifically focus on the 

impact of drying-rewetting period on stream biogeochemistry (Fellman et al., 

2011; Lake, 2011; Vázquez et al., 2011, 2007; von Schiller et al., 2015). 

However, intermittent streams are more complex than their well-known dry–wet 

cycle. Their hydrology shifts in a short time from unpredictable and intense 

storms to large, severe and predictable droughts. Consequently, it is possible to 

explore the plasticity of DOM quality under a large spectrum of hydrological 

conditions.  

The specific aims of this study were:  

� Describe the diversity of spectroscopic DOM properties under the widest 

range of hydrological conditions in an intermittent headwater stream 

and  

� Investigate the potential legacy of antecedent hydrological, climatic and 

biogeochemical conditions on the variability of DOM–Q responses. 

We hypothesised that discharge would modulate stream DOM properties and 

that this relationship would differ in contrasted hydrological periods. Moreover, 

we expected that the antecedent conditions of the storm events, such as the 

magnitude of the previous storm and the duration of the antecedent baseflow 

period, would affect the DOM–Q responses.  

Here, we describe the results from an intensive, 2.5-year-long hydro-

biogeochemical monitoring in a small, intermittent Mediterranean headwater 

stream. DOM was analysed in terms of carbon content (DOC) and spectroscopic 

properties (absorbance and fluorescence). The variability of responses of DOC 
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and DOM qualitative descriptors with respect to discharge was explored at the 

hydrological seasonal scale and at the single storm event scale. Several 

hydrological, climatic and biogeochemical parameters were calculated for each 

storm event. The contribution of each significant driver that emerged in the most 

robust multiple linear regression model was assessed with a commonality 

analysis (Ray-Mukherjee et al. 2014). 

 

Materials and Methods  

Field monitoring strategy and water analysis 

The hydrological year in Fuirosos can be split into four sub-hydrological seasons 

(Bernal et al. 2005): 

� The rewetting period. Typically in early fall (September–October), it 

describes the beginning of the hydrological year, with an abrupt and 

short hydrological transition from the total summer drought to the re-

establishing of the normal water flow. 

� The wet period. From late fall to late winter (November–February) with 

base discharge typically higher than 5 L s−1. 

� The vegetative period. From early spring to early summer (March–June) 

with base flow of approximately 5 L s−1. 

� The drying period. In early summer (June–July), runoff disappears in the 

tributaries and decreases rapidly from the main channel. During the rest 

of summer, the runoff vanishes from the entire system with the exception 

of a few disconnected pools (Vázquez et al. 2011). 

A sub-daily-frequency hydro-biogeochemical programme was performed from 

May 2009 to December 2011. A stage actuated water sampler collected a stream 

sample every 4–6 hours. Stream level was recorded every 30 minutes and 
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discharge was estimated from these values. During the study, 47 hydrological 

high flow episodes occurred. The peak hydrographs were sampled in 72% of 

cases. The sampling captured the whole solute-discharge responses in 52% of the 

hydrological episodes. The wet and vegetative periods were the most 

represented, with 13 analysed storm events in each period. On the contrary, only 

3 episodes from the drying period were captured. 

Annual DOC export from the catchment was calculated by aggregating the daily 

fluxes obtained from the daily average values of discharge and DOC. Linear 

interpolation with time as the independent variable was performed on the days 

when data were not available. DOM characterization was carried out using 

spectroscopic techniques. DOM optical properties can be related to biochemical 

characteristics and compositional changes of DOM with a minimum sample 

manipulation, high instrument sensitivity and rapid execution (Fellman et al. 

2010). Nine DOM descriptors were estimated in this study: DOC concentration; 

4 chromophoric indices —specific ultraviolet absorbance at 254 nm (SUVA), 

two intensity ratio of absorbances (E2:E3 and E4:E6) and spectral slopes ratio (SR); 

and 4 fluorophoric indices —humification index (HIX), fluorescence index (FI), 

biological index (BIX) and the intensity ratio of two humic-like fluorescence 

peaks (AC:C). These optical indices and the related biogeochemical 

interpretation are described in Table 3.1.  
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Table 3.1 Optical indices analysed in this study, including the description of their 
calculation and their biogeochemical interpretation according to the referenced 
literature. 
 

Index Calculation Interpretation 

SUVA 
The normalisation of UV 
absorbance at 254 nm by DOC 
concentration. 

It indicates the DOM aromaticity 
(Weishaar et al. 2003).  

E2:E3 
The ratio of absorbances at 250 nm 
and 365 nm. 

High values suggest a low average 
molecular size of DOM. (De Haan 
and De Boer 1987).  

E4:E6 
The ratio of absorbances at 465 nm 
to 665 nm. 

It was first found to be inversely 
related to aromaticity, but was later 
found to be more related to 
humification (Chen et al. 1977). 

SR 

The ratio of the log transformed 
absorbance spectra slope at 275–295 
nm to that estimated in the range of 
350–400 nm (Helms et al. 2008). 

High values indicate a high 
proportion of the DOM molecular 
fraction with low molecular weight. 

HIX 

The sum of the fluorescence 
intensities between 300 and 345 nm 
divided by the sum of the intensities 
between 300 and 345 nm and 
between 435 and 480 nm, for an 
excitation wavelength of 254 nm 
(Ohno 2002). 

Higher values indicate a greater 
degree of DOM humification. 
(Zsolnay et al. 1999). 

FI 

The ratio of emission intensities at 
470 nm and 520 nm emitted at an 
excitation of 370 nm (Cory and 
McKnight 2005). 

It provides information about 
DOM sources; high values (≈1.8) 
suggest the prevalence of 
autochthonous DOM, and low 
values (≈1.3) suggest the prevalence 
of allochthonous DOM. (McKnight 
et al. 2001).  

BIX 

The ratio of the fluorescence 
intensity emitted at 380 nm, 
corresponding to the maximum of 
intensity of the β fluorophore, and 
that emitted at 430 nm, which 
corresponds to the maximum of the 
humic fraction at an excitation of 
310 nm (Huguet et al. 2009). 

The β fluorophore is typical of 
autochthonous recent DOM release 
(Parlanti et al. 2000). Therefore, 
high BIX values (>1) suggest the 
presence of autochthonous and 
fresh DOM, whereas BIX values of 
0.6–0.7 indicate a low or nil DOM 
autochthonous production. 

AC:C 

The fluorescence intensity maxima 
in the area of 230−250 nm 
excitation and 420–460 nm emission 
wavelengths (peak AC) divided by 
that of the area of 330–370 nm 
excitation and 430–460 nm emission 
wavelengths (peak C) (Coble et al. 
1990, 2014) 

Peak AC is related to fulvic acids, 
more soluble and slighter in 
molecular size (McDonald et al. 
2004), while peak C is associated 
with humic acids (Chen et al. 
2003). 
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Description of DOM–Q responses 

The relationship between DOM descriptors and discharge was explored for the 

entire data set, for each hydrological season and at storm events intervals. 

During the study period, discharge changed up to six orders of magnitude. As a 

consequence, the discharge was log transformed. The slopes of the DOM–Q 

relationships (dDOM/dQ, where DOM stands for DOC, SUVA, E2:E3, E4:E6, 

SR, HIX, FI, BIX, and AC:C) were considered significant at p<0.05. 

The response of DOM during storm episodes was quantified by calculating the 

relative change of each DOM descriptor (∆C), comparing the value during the 

storm peak with that one obtained during the pre-event base discharge 

conditions. ∆C ranged between −1 and 1. A negative ∆C value (∆C < −0.1) 

indicated a decrease of the DOM parameter, whereas a positive ∆C indicated an 

increase (∆C > 0.1). Chemostasis was assumed when −0.1 < ∆C < 0.1 (Butturini 

et al. 2008). This descriptor was estimated for 34 storm episodes (72% of storms 

occurred during the study period). 

In those cases when the entire storm episode was exhaustively sampled, the 

information regarding the nonlinearity of DOM–Q response and its rotational 

pattern (∆R) was estimated. ∆R ranged between −1 and 1. If ∆R > 0.1, the 

hysteresis showed a clockwise rotational pattern, meaning that the solute 

changes anticipated those of discharge. If ∆R < −0.1, the hysteresis showed a 

counter-clockwise rotational pattern. In this case, the solute variations delayed 

those of discharge. If −0.1 < ∆R < 0.1, this indicated that the DOM–Q loop 

showed an ambiguous or non-existent rotational pattern. In this study, this 

information was available for 25 storm episodes (52% of events occurred during 

the study period).  

The methodological aspects of the calculation of ∆C and ∆R are described by 

Butturini et al. (2008). The ∆C and ∆R pairs were plotted in the ∆R versus ∆C 

unit plane. This plane synthesized the diversity continuum across the 

geometrical forms of DOM–Q responses (Butturini et al. 2008). The 
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heterogeneity of the DOM–Q hysteresis of each DOM parameter (H) was 

defined as the proportion of area (%) of the convex envelope that contained all 

points with respect to the total area of the ∆R versus ∆C diagram (Fig. 3.1). 

 

Fig. 3.1 ∆R versus ∆C diagram for DOC (a) and BIX (b), showing the construction of 
the convex envelope that contains all the storm events. The colour of the dots indicates 
the hydrological period of each storm event. The rhombus represents the mean value of 
all the storm events. The shaded area indicates chemostasis (−0.1 < ∆C < 0.1) or no 
hysteresis loop (−0.1 < ∆R < 0.1). 

 

Data analysis and model selection 

In this study, 18 environmental, hydrological, climatic and biogeochemical 

parameters were used as potential predictors of the variability of ∆C and ∆R 

descriptors during the storm events (Table 3.2, 3.3a and 3.3.b). These parameters 

attempt to capture the seasonal hydro-climatic variability and the short and long-

term antecedent hydrological conditions.  

Multiple linear regression and commonality analysis (CA) were used to explore 

the relationship between ∆C or ∆R (the dependent variables) and the potential 

drivers. The variables that did not satisfy normality according to the Saphiro–

Wilk test (Shapiro and Wilk 1965) were log-transformed.  
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Table 3.2 Drivers included in the analysis of the variability of ∆C and ∆R descriptors. 
They are classified into three groups: storm event drivers (E), storm pre-event 
hydrological drivers (PEH) and storm pre-event biogeochemical drivers (PEB). 
 

 

All data were centred by subtracting the variable mean and scaled by dividing 

by the standard deviation.  

The data analysis consisted of the following 4 steps: 

1. We started exploring if ∆C and ∆R were significantly and linearly related 

to the magnitude of the hydrological event (∆Q). In forested catchments, 

DOC concentration is typically strongly related to discharge. Therefore, 

we expected to observe this relationship in some of the ∆C and ∆R 

descriptors. In those cases that the relationship was significant (p<0.05), 

the influence of ∆Q was removed by extracting the residuals and the 

dependent variables in the multiple regressions were these residuals 

(∆C(r) or ∆R(r)). If this relationship was not significant, the dependent 

variables were the ∆C (or ∆R) descriptors. 

Driver Description Group 

∆Q 
Magnitude of the event: the discharge difference between peak 
hydrograph and pre-event  base discharge 

E 

Lrs 
Length of the rising limb: the lag time (hrs) between peak flow and 
base discharge. It provides an idea of the flashiness of the storm 
episode 

E 

Tmin The minimal temperature of the day during the hydrological episode E 

Qb The pre-event  base discharge  PEH 

Qm The average discharge during the month prior to the storm event PEH 

∆t−1 
Inter-storm time interval: the lag time between the storm and the 
preceding one 

PEH 

∆Q−1 Magnitude of the previous storm event: calculated as ∆Q PEH 

∆t0 The time elapsed from the starting of the rewetting period PEH 

DOMb 
DOC, SUVA, SR, E2:E3, E4:E6, FI, BIX, HIX and AC:C values during 
the pre-event  base discharge 

PEB 

DOCm DOC concentration average during the month prior to the storm PEB 
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2. Multiple linear regression modelling was performed. We did an 

exhaustive search for the best subset (higher R2) of each size (from 1 to 

18 independent variables) among all of the combinations of potential 

drivers, using an efficient branch-and-bound algorithm (Lumley and 

Miller 2009). 

3. The best model (that with an optimum number of drivers) was selected 

using the Bayesian information criteria (BIC), choosing the combination 

of potential drivers with the lowest BIC value (Schwarz 1978).  

4. CA was performed to assess the contribution and relevance of each 

driver selected in the optimal model. 

CA was recently proposed to assess the predictor contribution in multiple linear 

regressions on ecological and environmental data (Ray-Mukherjee et al. 2014). 

CA decomposes regression R2 into its unique and common effects (Newton and 

Spurrell 1967, Mood 1969, 1971). Unique effects (U) indicate how much 

variance is uniquely accounted for by a single predictor, while common effects 

(C) indicate how much variance is common to a predictor set. Therefore, CA 

determines the variance contributed by each predictor by accounting for unique 

and common effects. A negative common effect, together with a large unique 

effect and a low R2, may indicate that the variable is a suppressor (Zientek and 

Thompson 2006). Therefore, it removes irrelevant variance in another predictor 

and thus increases the predictive ability of that predictor (or set of predictors) 

and R2 by its inclusion in a regression equation (Jobson 1991). We applied CA 

to the model selected by multiple linear regression for each DOM property in 

order to weight the importance and role of the predictors. 

All of the data analyses were conducted with R version 3.1.1 (R Core Team 

2014) using the “leaps” package (Lumley and Miller 2009) and the “yhat” 

package (Nimon et al. 2013). 
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Table 3.3a Values of the potential drivers for each studied storm event: base discharge 
(Qb), magnitude (∆Q), length of the rising limb (Lrs), minimal temperature of the day 
(Tmin), number of days from the annual rewetting (∆t0), time since the preceding storm 
event (∆t−1), magnitude of the preceding storm event (∆Q−1 ) and mean discharge of the 
preceding month (Qm). 

 
 
  

 

 
 

  

Date 
Qb 

(m3 s−1) 
∆Q 

(m3 s−1) 
Lrs 
(h) 

Tmin 

(ºC) 
∆t0 

(d) 
∆t−1 
(d) 

∆Q−1 
(m3 s−1) 

Qm 

(L s−1) 
23/10/2009 0 0.016 2 10.0 1 124 0.002 0 
22/12/2009 0.005 0.008 10 9.3 62 61 0.016 3 
05/01/2010 0.009 0.006 11 7.9 63 11 0.005 6 
07/01/2010 0.009 0.038 12 0.8 77 3 0.006 7 
15/01/2010 0.024 0.026 28 2.3 84 7 0.038 16 
09/02/2010 0.011 0.952 18 0.4 104 4 0.005 20 
17/02/2010 0.021 0.059 32 −1.7 115 8 0.952 42 
20/02/2010 0.052 0.456 30 5.5 120 3 0.059 44 
05/03/2010 0.016 0.060 58 6.5 132 14 0.456 76 
09/03/2010 0.051 0.258 46 1.5 137 4 0.060 82 
15/03/2010 0.148 0.149 62 0.7 143 5 0.258 89 
04/05/2010 0.007 2.756 36 13.3 188 22 0.007 16 
14/05/2010 0.075 0.646 39 9.3 203 10 2.756 116 
18/09/2010 0 0.472 6 12.6 1 50 0.005 0 
24/09/2010 0.014 0.025 5 14.7 5 6 0.472 58 
12/10/2010 0.004 3.852 59 16.3 23 18 0.025 46 
13/10/2010 0.825 3.242 7 12.2 27 1 3.852 144 
23/12/2010 0.015 0.216 59 −1.5 91 23 0.011 15 
17/02/2011 0.016 0.009 7 2.8 154 19 0.099 28 
03/03/2011 0.011 0.034 20 3.1 167 14 0.009 23 
12/03/2011 0.021 5.770 16 6.1 177 9 0.035 20 
15/03/2011 0.532 16.511 24 7.1 179 3 5.770 199 
28/04/2011 0.015 0.014 4 7.7 224 5 0.123 24 
01/06/2011 0.003 0.034 23 11.5 243 17 0.014 9 
02/06/2011 0.020 0.024 8 7.6 259 1 0.034 9 
05/06/2011 0.012 0.017 15 9.6 260 3 0.024 10 
10/06/2011 0.020 0.041 11 10.8 267 5 0.017 13 
15/07/2011 0.001 0.009 28 14.5 301 34 0.041 1 
17/07/2011 0 0.013 10 12.9 302 3 0.009 1 
26/07/2011 0.003 0.055 4 14.9 313 9 0.013 2 
24/10/2011 0 0.071 3 9.6 1 89 0.007 0 
28/10/2011 0.005 0.308 26 9.6 1 4 0.071 5 
06/11/2011 0.016 1.424 60 12.7 8 9 0.308 27 
15/11/2011 0.026 22.789 15 8.8 22 2 0.013 56 
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Table 3.3b Values of the potential drivers for each studied storm event: mean DOC of 
the preceding month (DOCm) and base values of DOM properties (DOCb, SUVAb, 
E2:E3b, E4:E6b, SRb, HIXb, FIb, BIXb and AC:Cb). 

 

 

 

 Date DOCm 

(mg L−1) 
DOCb 

(mg L−1) 
SUVAb 

(L mg  C−1 m−1) E2:E3b E4:E6b SRb HIXb FIb BIXb AC:Cb 

 23/10/2009 3.7 3.9 4.4 5.8 4.0 0.86 0.93 1.67 0.59 1.80 
 22/12/2009 2.2 2.0 6.1 5.2 0.6 0.88 0.87 1.66 0.60 1.79 
 05/01/2010 2.2 2.2 6.9 4.2 3.0 0.82 0.92 1.66 0.59 1.79 
 07/01/2010 2.2 2.0 7.5 5.1 6.0 0.88 0.91 1.63 0.61 1.87 
 15/01/2010 2.7 2.6 6.8 5.6 4.0 0.83 0.93 1.62 0.60 1.96 
 09/02/2010 2.8 2.6 5.7 5.9 4.0 0.85 0.89 1.60 0.61 1.94 
 17/02/2010 4.6 4.5 6.4 6.3 6.0 0.69 0.93 1.50 0.54 2.02 
 20/02/2010 4.9 4.3 6.4 5.6 2.5 0.77 0.93 1.49 0.54 1.97 
 05/03/2010 5.1 3.8 5.9 5.7 3.0 0.94 0.93 1.52 0.57 1.95 
 09/03/2010 5.1 3.6 6.9 5.1 2.3 0.93 0.94 1.50 0.55 1.91 
 15/03/2010 5.0 4.9 6.7 5.9 3.5 0.82 0.94 1.49 0.52 1.87 
 04/05/2010 3.0 2.8 5.5 5.9 4.0 0.88 0.86 1.54 0.57 1.98 
 14/05/2010 6.1 4.7 5.5 5.8 2.5 0.87 0.90 1.43 0.57 2.07 
 18/09/2010 4.0 3.7 7.3 6.4 3.2 0.77 0.92 1.78 0.61 1.76 
 24/09/2010 5.3 4.7 8.1 5.1 4.0 0.88 0.91 1.63 0.56 1.93 
 12/10/2010 5.9 3.7 7.4 6.0 8.0 0.81 0.91 1.68 0.58 1.80 
 13/10/2010 6.0 7.4 9.8 5.4 11.0 0.72 0.92 1.49 0.51 1.98 
 23/12/2010 2.6 2.4 5.8 6.3 4.0 0.77 0.88 1.61 0.61 1.93 
 17/02/2011 2.2 2.5 6.5 5.6 3.0 0.85 0.90 1.54 0.55 1.88 
 03/03/2011 2.4 2.0 6.8 5.6 2.0 0.85 0.91 1.53 0.59 2.02 
 12/03/2011 2.3 2.2 6.5 5.5 3.0 0.88 0.90 1.54 0.58 1.96 
 15/03/2011 3.8 5.3 7.7 5.6 6.0 0.81 0.93 1.45 0.51 1.93 
 28/04/2011 2.7 2.9 5.8 5.4 3.0 0.84 0.87 1.51 0.56 1.99 
 01/06/2011 2.7 2.6 5.5 6.0 6.0 0.79 0.90 1.57 0.57 1.96 
 02/06/2011 3.2 2.7 6.3 5.9 3.0 0.77 0.91 1.53 0.56 1.99 
 05/06/2011 3.1 2.7 6.2 5.8 2.0 0.90 0.87 1.58 0.59 2.07 
 10/06/2011 3.1 2.9 5.7 5.8 4.0 0.79 0.86 1.53 0.57 2.03 
 15/07/2011 3.3 3.2 6.6 5.1 4.0 0.98 0.92 1.69 0.58 1.80 
 17/07/2011 3.6 3.5 7.0 4.8 6.0 0.89 0.92 1.74 0.59 1.71 
 26/07/2011 3.5 3.2 5.9 6.5 4.0 0.89 0.90 1.59 0.58 1.96 
 24/10/2011 3.5 3.7 6.1 5.4 6.0 0.69 0.89 1.66 0.61 1.87 
 28/10/2011 7.7 6.6 6.8 4.8 8.0 0.72 0.90 1.92 0.57 1.35 
 06/11/2011 6.3 4.3 6.8 3.4 5.0 0.72 0.90 1.67 0.57 1.83 
 15/11/2011 6.8 5.4 6.6 5.5 6.0 0.77 0.92 1.59 0.56 1.84 
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Results 

Hydrological variability and DOC fluxes 

During the study period, Fuirosos surface flow stopped in June–July and 

recovered in September–October (Fig. 3.2). The base discharge typically 

increased to an average value of 18 L s−1 during the wet and vegetative periods. 

The magnitude of storm episodes (∆Q) ranged widely from 5 L s−1 to 22789 L 

s−1. The flashiness of the hydrographs also noticeably changed. The rising limb 

of the hydrograph (Lrs) was shorter than 12 h or 24 h in 51% and 72% of the 

events, respectively. The lag time between two consecutive rain episodes (∆t−1) 

averaged 19 days. However, in summer, there were much longer periods without 

precipitation: 124 days in summer 2009, 77 days in summer 2010 and 89 days in 

summer 2011. 

The annual DOC exports were 432 kg C km−2 yr−2 and 697 kg C km−2 yr−2 in 

2009−2010 and 2010–2011, respectively. The vegetative period contributed up 

to 63–81% of the total annual flux, followed by the wet period (18–34%), the 

rewetting period (1–3%) and finally the drying period (0.2–0.3%). The 90–91% 

of the annual DOC export was flushed during storm events. 

 

DOM–Q relationships 

Seasonal variations 

DOC and most of the DOM optical parameters were strongly related to 

discharge (Fig. 3.3 and 3.4; 10−66 < p < 10−11). The most discharge dependent 

parameters were DOC, BIX and FI (0.326 < R2 < 0.592). SUVA, HIX and E4:E6 

were also significantly related to discharge, although the explained variance 

decreased (0.138 < R2 < 0.18). Finally, SR, AC:C and E2:E3 appeared nearly 

chemostatic with respect to discharge (R2 < 0.09).  
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Fig. 3.2 Discharge (black line), DOC (dots) and water temperature (grey line) during the 
study period in Fuirosos stream. 

 

The hydrological period greatly influenced the slope and strength of the 

relationships between DOM descriptors and discharge (Fig. 3.5). The 

dDOM/dQ values of SUVA, FI, BIX and AC:C changed gradually from the 

rewetting to the drying period. The most notable shifts were those of dFI/dQ 

(which changed from a highly negative slope to a positive slope) and dAC:C /dQ 

(which changed the opposite way). The SR parameter also reversed the sign of 

its slope during the drying. During the drying period, most of the dDOM/dQ 

slopes were not significant (p > 0.1). The exception was the E2:E3 descriptor, 

with the strongest relationship with discharge (p < 10−4) during this period. 
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Storm to storm responses 

The ∆C versus ∆R unit plane synthesized the diversity of the DOM–Q loops at 

the storm event scale (Fig. 3.6 Table 3.4). The most homogenous DOM–Q loops 

were that of SUVA and DOC (H < 14%). Further, the convex envelopes of 

DOC, SUVA and E4:E6 nearly overlapped each other. Conversely, the most 

heterogeneous loops were that of E2:E3 and SR. 

 

Table 3.4 Distribution of DOM–Q loops types according the ∆C and ∆R descriptors for 
each DOM property, expressed in % of the studied cases. ∆C and ∆R were estimated for 
34 and 25 storm episodes respectively. The last column describes the heterogeneity of 
DOM–Q loops responses (H). 

 

Flushing responses during storm events predominated for DOC, SUVA, HIX 

and E4:E6. Dilution prevailed for E2:E3, SR and BIX. Chemostasis (−0.1 < ∆C < 

0.1) was the most frequent situation for AC:C. Finally, both dilution and 

chemostasis were equally frequent for FI. DOM–Q rotational patterns, ∆R, were 

highly heterogeneous. For instance, comprising all DOM descriptors, clockwise,  

 

DOM 

descriptor 
∆C ∆R H (%) 

 
Dilution Chemostasis Flushing 

Counter-
clockwise No loop Clockwise  

 ∆C < −0.1 −0.1<∆C<0.1 ∆C > 0.1 ∆R < −0.1 −0.1<∆R<0.1 ∆R > 0.1  

DOC 0 41 59 12 52 36 13.5 

SUVA 0 29 71 8 24 68 12.5 

E2:E3 59 29 12 60 28 12 20.8 

E4:E6 9 24 68 32 40 28 17.3 

SR 65 15 21 48 32 20 26.8 

FI 44 44 12 8 36 56 16.3 

HIX 12 41 47 44 48 8 16.8 

BIX 74 15 12 44 36 20 16.8 

AC:C 29 53 18 56 32 12 19.3 
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Fig. 3.3 Relationships between DOM descriptors —DOC (a), SUVA (b), SR (c), E2:E3 

(d), E4:E6 (e) and Ac:C (f)— and discharge during the study period. Dotted lines show 

the slope of the DOM descriptor versus discharge linear relationship for each 

hydrological period. Significance levels are described in Fig. 3.5. 
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no loop (−0.1 < ∆R < 0.1) and counterclockwise hysteresis were the 29%, 36% 

and 35%, respectively. Clockwise loops predominated for SUVA and FI. 

Responses without a clear rotational pattern were more frequent for DOC and 

E4:E6. Counterclockwise loops emerged for E2:E3, SR, BIX and AC:C. Finally, for 

HIX the occurrence of ambiguous and counterclockwise responses was similar. 

 

Fig. 3.4 Relationships between 
fluorescence indices —HIX (a), FI 
(b) and BIX (c)— and discharge 
during the study period. Dotted 
lines show the slope of the DOM 
descriptor versus discharge linear 
relationship for each hydrological 
period. Significance levels are 
described in Fig. 3.5. 
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Fig. 3.5 Slopes of the linear regression relating the normalized DOM descriptors —DOC 
(a), SUVA (b), SR (c), E2:E3 (d), E4:E6 (e), Ac:C (f), HIX (g), FI (h) and BIX (i)— with 
the logarithm of discharge in the different hydrological periods (dp=drying, 
rp=rewetting, wp=wet, vp=vegetative). Error bars indicate ± 1 standard error of the 
slopes. Dotted lines represent the slope of the entire data set. R2 for each regression is 
shown when p<0.05 (in parenthesis accounting for the data altogether); * indicates that 
p-value < 0.001. 



Chapter 3 
 

 

71

Clear differences in DOM–Q loops across hydrological periods were not 

observed. However, the most anomalous DOM–Q loops were typically 

monitored during rewetting (DOC, SUVA and E2:E3) and drying (SR, FI and 

AC:C) periods. BIX was the only DOM descriptor that showed a separation 

between hydrological periods, with rather clockwise loops in the wet period and 

counterclockwise loops in the vegetative period (Fig. 3.1). 

Fig. 3.6 Convex envelopes and mean (rhombus) for each DOM descriptor —DOC, 
SUVA, E4:E6 and HIX (a); E2:E3, SR, BIX, FI and Ac:C (b)— in the ∆R versus ∆C unit 
plane. 
 

Drivers of ∆C and ∆R descriptors 

∆C was significantly related (p < 0.05) to the magnitude of storm events (∆Q) for 

most DOM descriptors, namely DOC (R2 = 0.500), SUVA (R2 = 0.194), E4:E6 

(R2 = 0.153), FI (R2 = 0.296) and BIX (R2 = 0.459). In those cases, we set the 

residuals (∆C(r)) of the ∆C versus ∆Q regression as the dependent variables of the 

multiple regression. Table 3.5 summarizes the results of CA for each ∆C or ∆C(r), 

after the selection of the optimal multiple regression model. 5 models explained 

more than 75% of the variance. The drivers more frequently selected were ∆t−1 

and ∆t0 (in 5 models) and Qb (4 models). In most of the selected models, DOM 

biogeochemical status during the pre-event baseflow was a relevant driver, 

showing a negative relationship with ∆C.  
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 Indep. 
variables 

Dependent variables  

 ∆CDOC(r) ∆CSUVA(r) ∆CE4:E6(r) ∆CFI(r) ∆CBIX(r) ∆CE2:E3 ∆CSR ∆CHIX ∆CA
C

:C  

 ∆Q removed removed removed removed removed 
−0.008 
(0.036) 

−0.051 
(0.159) 

  
 

 Lrs    
−0.045 
(0.362) 

   +0.168 
(0.228) 

+0.077 
(0.284) 

 

 Tmin 
+0.051 
(0.074) 

    
−0.030 
(0.055) 

 
−0.019 
(0.031) 

 
 

 Qb  −0.308 
(0.075) 

 +0.055 
(0.362) 

+0.163 
(0.063) 

   
−0.002 
(0.310) 

 

 Qm        
−0.069 
(0.037) 

 
 

 ∆t−1    +0.006 
(0.308) 

+0.128 
(0.088) 

−0.221 
(0.037) 

 −0.018 
(0.059) 

−0.044 
(0.434) 

 

 ∆Q−1 
−0.394 
(0.136) 

  
−0.049 
(0.072) 

    
+0.001 
(0.084) 

 

 ∆t0 
−0.049 
(0.118) 

−0.067 
(0.084) 

 +0.179 

(0.432) 

+0.060 
(0.195) 

   −0.210 

(0.480) 

 

 DOCm      +0.034 
(0.061)    

 

 DOC
b
    +0.022 

(0.240) 
    −0.008 

(0.172) 

 

 SUVA
b
 −0.278 

(0.167) 

−0.251 
(0.160) 

  +0.204 
(0.028) 

    
 

 E
2:
E

3b
   −0.101   −0.467 

(0.486) 
   

 

 E
4:
E

6b
          

 

 S
Rb

     −0.016 
(0.032) 

 −0.256 

(0.364) 
  

 

 HIX
b
    +0.023 

(0.163) 
+0.166 
(0.079) 

  −0.445 

(0.646) 
 

 

 FI
b
     +0.070 

(0.072) 
   

−0.019 
(0.156) 

 

 BIX
b
    +0.085 

(0.063) 
−0.481 
(0.120) 

    
 

 AC:C
b
      +0.006 

(0.113) 
  

−0.058 
(0.127) 

 

 Statistics           
 p-value <10−5 <10−3 NS <10−5 <10−5 <10−7 <10−3 <10−8 <10−5  

 R2 0.652 0.491 0.100 0.779 0.803 0.809 0.414 0.818 0.798  

 BIC 80.7 90.2 102.4 79.4 79 67.4 91.4 62.1 79.8  

Table 3.5 Total effects and unique effects (in parenthesis) obtained in the commonality 
analysis of each ∆C descriptor. The subindex (r) indicates that the residuals from the ∆C–∆Q 
relationship are used as the dependent variable. A positive sign before a total effect value 
indicates a positive relationship between the driver and the ∆C; a negative sign indicates an 
inverse relationship.  The higher value of each ∆C descriptor is in bold. The statistics of the 
multiple linear regressions are also shown. NS are non-significant relationship (p > 0.05). 
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The model for ∆CHIX explained 81.8% of the variance with only 4 drivers, with 

HIXb as the most important. Regarding ∆CE2:E3, the most relevant drivers were 

E2:E3b and ∆t−1. BIXb explained 48.1% of the variance in ∆CBIX(r), while 7 other 

drivers explained a little fraction each one. In this model ∆t0 showed relatively 

high unique effects and high negative common effects (C = −0.136), and, 

therefore, although it had low total effects, it acted as a suppressor driver. The 

model for ∆CSR selected only 2 drivers, the most relevant was SRb explaining 41% 

of the variance. Finally, the model for ∆CE4:E6(r) had a poor performance (10% of 

the variance explained), and E2:E3b (negative relationship) was the single driver 

selected. 

∆t0 was the main driver for ∆CAC:C and ∆CFI(r) and showed a positive relationship 

with them. The model for ∆CAC:C included 8 drivers, and ∆t−1 acted as a 

suppressor (C = −0.390). The model selected for ∆CFI(r) integrated also 8 drivers 

and Qb (C = −0.307) and Lrs (C = −0.317) acted as suppressors. 

Short time antecedent hydrological conditions were important drivers for some 

DOM descriptors. For ∆CDOC(r) the selected model explained 65% of its variance 

and ∆Q−1 was the most relevant driver. With respect to ∆CSUVA(r), the selected 

model included three drivers and explained 49% of the total variance. Qb showed 

the higher total effects in this case. Both parameters were inversely related to the 

respective ∆C. 

The models selected to explain the variability of ∆RDOM descriptors (Table 3.6) 

were less robust than those selected for ∆CDOM. The ∆RBIX model was not 

significant (p > 0.05). The models with the highest explained variance were those 

selected for ∆RFI and ∆RSUVA. In the former, the most important predictor was 

∆Q (52.3% of the variance explained), while in the latter it was SRb (15.8%). The 

drivers more frequently selected among the 9 models were ∆t0 and BIXb (in 5 

models) and DOCb (4 models). 
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Indep. 
variables 

Dependent variables 

∆RDOC ∆RSUVA ∆RE2:E3 ∆RE4:E6 ∆RSR ∆RHIX ∆RFI ∆RBIX ∆RAC:C 

∆Q 
−0.099 
(0.087) 

  
−0.016 
(0.071) 

  
−0.523 

(0.456) 
  

Lrs   
+0.014 
(0.125) 

+0.065 
(0.225) 

     

Tmin   
+0.079 
(0.177) 

+0.007 
(0.154) 

  
+0.025 
(0.041) 

  

Qb  
+0.014 
(0.167) 

 
+0.009 
(0.313) 

    
+0.010 

(0.085) 

Qm  
−0.009 
(0.123) 

 
−0.038 
(0.346) 

     

∆t−1  
+0.017 
(0.122) 

       

∆Q−1       
−0.140 
(0.056) 

 
−0.009 

(0.250) 

∆t0 
+0.273 

(0.444) 

+0.144 
(0.056) 

−0.243 

(0.242) 
   

−0.022 
(0.057) 

 
−0.099 

(0.069) 

DOCm  
+0.022 
(0.096) 

−0.010 
(0.276) 

 
−0.026 
(0.064) 

    

DOC
b
  

−0.025 
(0.134) 

+0.017 
(0.297) 

 
+0.024 
(0.166) 

   
+0.170 

(0.274) 

SUVA
b
      

−0.168 

(0.287) 
   

E
2:
E

3b
    

+0.024 
(0.073) 

   −0.125  

E
4:
E

6b
  

+0.002 
(0.224) 

       

S
Rb

 −0.011 
(0.243) 

+0.158 

(0.113) 
  

+0.155 
(0.188) 

    

HIX
b
     

+0.177 

(0.117) 
   

+0.191 

(0.089) 

FI
b
          

BIX
b
   

+0.086 
(0.222) 

+0.094 

(0.061) 
+0.019 
(0.272) 

−0.047 
(0.166) 

+0.208 
(0.038) 

  

AC:C
b
 −0.011 

(0.066) 
−0.035 
(0.228) 

      
+0.025 

(0.236) 

Statistics          

p-value <10−3 <10−2 <10−3 <10−2 10−2 <0.05 <10−5 NS 10−2 

R2 0.632 0.792 0.726 0.638 0.625 0.334 0.836 0.125 0.667 

BIC 64 69 66 74 71 73 50 76 68 

Table 3.6 Total effects and unique effects (in parenthesis) obtained in the commonality 
analysis of each ∆R descriptor. The higher value of each ∆R descriptor is in bold. A positive 
sign before a total effect value indicates a positive relationship between the driver and the 
∆R; a negative sign indicates an inverse relationship. The statistics of the multiple linear 
regressions are also shown.  NS indicates a non-significant relationship (p > 0.05). 
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Discussion 

DOM–Q relationships 

This study revealed how a complex coupling of hydrological, climatic and 

biogeochemical factors modulated the variability of the DOM concentration and 

quality in a headwater intermittent stream. These factors interacted with each 

other and interfered with the DOM dynamic at annual, seasonal and storm event 

scales. 

To date, hysteresis approach focuses on sediment transport (Ziegler et al. 2014), 

nutrients (Bowes et al. 2015, Darwiche-Criado et al. 2015) and DOC (Butturini 

et al. 2006, 2008). The present study is, as far as we know, the first attempt to 

describe shifts of DOM quality under a large spectrum of hydrological 

conditions in a Mediterranean headwater stream, and to relate these shifts to 

environmental drivers. A previous study performed in Fuirosos during four years 

did not identify any predictable pattern of DOC–Q responses (Butturini et al. 

2008). Consequently, the analysis of predictability of DOM–Q hysteresis is a 

challenging task. Moreover, the hydro-climatic characteristics in the 

Mediterranean region are being altered (Vicente-Serrano et al. 2014, Barrera-

Escoda and Llasat 2015). Therefore, it is crucial to assess how magnitude and 

frequency of storm events and severity of drought episodes influence on DOM 

quantity and quality in headwater streams. 

Most of the DOM was flushed downstream under high flow conditions. This 

circumstance had enormous biogeochemical implications because over an entire 

year, a large proportion of DOM moved rapidly downstream with little chance 

to be processed by the system. However, these DOM pulses would be essential 

carbon and energy input sources for heterotrophic microbiota in downriver 

alluvial floodplains or even in the coastal system (McLaughlin and Kaplan 2013, 

Palmer et al. 2015). 
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DOM in Fuirosos is commonly terrigenous, aromatic, degraded, humic and 

with high molecular weight, but it strongly exacerbates these properties at high 

flows. These changes reflected modifications in flow paths during rain episodes 

(Hinton et al. 1998), with subsequent DOM mobilization from near surface 

organic rich soil, via overland flow or preferential flow through soil macropores 

(Vidon et al. 2008). Thus, DOM concentration and properties were greatly 

chemodynamic with respect to discharge. These results coincided with that 

reported in most of the forested headwaters located in boreal, temperate and 

alpine systems (Buffam et al. 2001; Li et al. 2005; Hood, Gooseff, and Johnson 

2006; Vidon, Wagner, and Soyeux 2008; Fellman et al. 2009; Saraceno et al. 

2009; Nguyen, Hur, and Shin 2010; Spencer et al. 2010; Inamdar et al. 2011; 

Nguyen et al. 2013; Fasching et al. 2015; Singh, Inamdar, and Mitchell 2015). 

These consistencies in the DOM–discharge relationship worldwide marked the 

bond between discharge and DOM concentration and quality. 

  

Seasonal patterns: drying and rewetting 

Sensitivity to discharge strongly varied across hydrological seasons. Thus, for 

most of the DOM descriptors, the connection with discharge vanished or 

reversed during the drying phase. In Fuirosos, this period implicated a rapid 

reduction of water flow, large water residence times and the fragmentation of 

the river continuum (Vázquez et al. 2011). The slight increase of FI and BIX 

might reflect a moderate increase of the contribution of autochthonous DOM 

during this phase. E2:E3 also increased as drying advanced, a pattern that 

revealed the decrease of the average DOM molecular weight. Von Schiller et al. 

(2015) attributed this trend to the decline in the proportion of large sized 

polysaccharides, probably due to their bioavailability as a source of DOM for 

microbial heterotrophs (Ylla et al. 2010). 
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The rewetting period represented a drastic change in the hydro-biogeochemical 

conditions. In few hours, the riparian groundwater was recharged by stream 

water, and the solute exchange across the stream–riparian interface was restored 

(Butturini et al. 2003, Vázquez et al. 2007). The abrupt hydrological 

reconnection between forest hillsides and stream channel, and the water–solute 

exchange across the stream–riparian interface, reactivated the DOM versus 

discharge relationship for most of the DOM descriptors and promoted the largest 

dDOM/dQ slope values for SUVA, AC:C, BIX and FI. Therefore, high 

discharges during the rewetting period leaded to a disproportionate input of 

allochthonous, degraded and aromatic DOM. Among these parameters, the 

most remarkable response was that of the AC:C. High values of AC:C have been 

associated with photobleaching or microbial degradation of terrestrially derived 

DOM (Zhang et al. 2011, Hur and Cho 2012). The Fuirosos fluvial channel is 

mostly shadowed by a dense riparian strip. Consequently, the anomalous fulvic-

like substances peak might reflect the accumulation of these substances in the 

stream bed during the drought period. 

 

DOM–Q hysteresis heterogeneity 

Although the analysis of hysteresis loops in fluvial hydro-biogeochemistry was 

proposed in the 1970s and 1980s (Walling and Foster 1975, Johnson and East 

1982, Williams 1989), this approach is becoming a growing research topic after 

Evans and Davies (1998) and House and Warwick (1998) and is providing new 

advances into hydrological and biogeochemical functioning in rivers (Butturini 

et al. 2008, Fovet et al. 2015, Zuecco et al. 2015, Lloyd et al. 2016). Overall, 

DOM–Q hysteresis in Fuirosos were highly heterogeneous. However, within 

this high variability, some patterns emerged. Thus, the predominance of 

clockwise loops of SUVA and FI and the predominance of counterclockwise 

loops of E2:E3, SR and AC:C suggested a rapid mobilization of poorly degraded, 

large size and aromatic DOM pool from a near-stream source (Lloyd et al. 2016), 
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such as a river bed, hyporheic or riparian zones (Butturini et al. 2006). 

Conversely, the input of more allochthonous and highly degraded DOM 

appeared more linked to a slower input from shallow soil and groundwater 

(Inamdar et al. 2013). 

DOM–Q did not show a typical response in the ∆R versus ∆C plane . Their 

variability, with the exception of BIX variability, did not exhibit any seasonal 

pattern. Strohmeier et al. (2013) reported a clear counterclockwise response of 

DOC concentration in a forested catchment, with larger hysteresis in summer 

and fall. Our study covered 2.5 years, probably a temporal interval too short to 

discern consistent seasonal patterns. Storm events that occurred during the most 

short and abrupt periods (drying and rewetting periods) represent a relatively 

small fraction of the total sampled events (9% and 15%, respectively). Therefore, 

to have a more consistent opportunity to discern seasonality of DOM–Q loops, 

it is essential to incorporate more cases of these critical periods. This implicates 

to generate longer hydro-biogeochemical time series. 

 

Drivers of ΔC and ΔR variability 

Storm magnitude (∆Q) emerged as an essential driver for ∆C variability. This is 

an expected result because the strong link between DOM and discharge is well 

known in headwater streams (Nguyen et al. 2013). However, ∆Q, with the 

exception of FI, did not emerge as a significant driver of DOM–Q hysteresis 

shape and rotational patterns (∆R). 

More interestingly, several pre-event drivers significantly influenced both the 

magnitude of DOM responses and the timing of the flushing/dilution responses. 

Thus, ∆t0 significantly explained the variability of ∆C and ∆R in many models. 

This result showed that the impact of a drought period on DOM properties 

variability could extend up to the successive drying phase. Base discharge (Qb) 

significantly drove the variability of some models and resulted to be the most 
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relevant driver for ∆CSUVA(r), suggesting that Qb shaped the flushing of DOM 

aromatic substances, with larger SUVA changes during storms preceded by low 

Qb values. The magnitude of the antecedent storm episode (∆Q−1) was selected 

only in few models. However, it was the stronger driver for ∆CDOC(r). 

Consequently, DOC flushing was amplified by the magnitude of the storm (∆Q) 

but, at the same time, partially neutralized by the magnitude of the antecedent 

storm episode (∆Q−1). This flushing “memory” was similar to that reported in a 

boreal catchment, where the effect of a high export during the previous summer 

and autumn was still detectable during the following snowmelt (Ågren et al. 

2010). However, the flushing memory reported in our study acted at storm-to-

storm interval rather than at seasonal interval. The inter-storm time interval 

(∆t−1) was selected in some models for ∆C. Larger ∆t−1 intervals should promote 

a larger DOM flushing. However, this potential driver never emerged as the 

most relevant one, indicating that ∆t−1 played a more subtle and diffuse role. 

Thus, a synergistic effect on DOC flushing between ∆t−1 and ∆Q−1 did not appear, 

but it emerged between ∆Q−1 and ∆t0.  

Pre-event base biogeochemical conditions were frequently selected in the 

models, and they were the most significant drivers in several of them. 

Consequently, the pre-storm biogeochemical status needs to be considered when 

studying the variability of ∆C and ∆R descriptors during storm episodes. On the 

contrary, more seasonal climatic related drivers, such as temperature during 

storms (Tmin) and average discharge during the month prior to the storm event 

(Qm), were selected sporadically, suggesting that climatic seasonality appeared 

unimportant. 

It is necessary to note that most of the models that fitted ∆R variability were 

weaker than those selected for ∆C. As a consequence, some care is necessary in 

their interpretation. The estimation of ∆R is by far much more exigent than that 

of the ∆C because it depends on an exhaustive biogeochemical sampling during 

a whole storm episode. In this study, ∆R was estimated in only 52% of the 
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observed storm episodes. Therefore, to advance in this direction, it is essential 

to minimise the gaps in the biogeochemical sampling programme and to increase 

the sampling frequency. 

In the next future, the progressive improvement of large and high frequency 

DOM time series would stimulate the cross comparison of DOM time series 

worldwide. This step will be essential to have a full perspective of DOM 

quantitative and qualitative flushing responses and, at the same time, to capture 

the most relevant drivers for DOM dynamic under different climate types, flow 

regimes, groundwater contributions and land cover.  
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Introduction 

Headwater streams link terrestrial and aquatic ecosystems, thereby providing 

energy and nutrients to the ecosystem downstream (Battin et al. 2008, Kaplan et 

al. 2008). The flux of DOM greatly regulates ecosystem functioning 

(Aitkenhead-Peterson et al. 2003). The quantity and quality of the DOM 

delivered from the upper part of the catchment determines its ability to support 

heterotrophic metabolism (Guillemette and del Giorgio 2011, Kaartokallio et al. 

2016). 

The DOM concentration and properties in headwater streams are strongly 

influenced by hydrology as a consequence of  changes in catchment flow paths 

(Boyer et al. 1997, Inamdar et al. 2011).. Therefore, storm events can influence 

streamwater DOM biogeochemistry through increase in DOM concentration 

and by imprinting a terrestrial signature on it (Hood et al. 2006, Nguyen et al. 

2013, Guarch-Ribot and Butturini 2016). In consequence, most of the annual 

DOM export from forested catchments occurs during storm events (Raymond 

and Saiers 2010, Raymond et al. 2016). Thus, quantification and 

characterization of DOM during such events is crucial to understand its export 

patterns. This is particularly important to improve biogeochemical catchment 

models (Lauerwald et al. 2012). The predicted increase in frequency and 

intensity of extreme precipitation events and drought episodes (IPCC 2013) 

makes it even more relevant to understand event-driven DOM dynamics. 

 Besides the direct impact of storms and high flows on DOM, seasonal variability 

of baseflow also influences DOM concentration and hence its relationship with 

discharge. For instance, no flow during summer droughts and high baseflow 

during snowmelts are key hydrological phases in intermittent Mediterranean 

and alpine streams, respectively. Not surprisingly, several studies emphasized 

the importance of these hydrological conditions on DOM quantitative and 

qualitative properties (Vázquez et al. 2011, Fellman et al. 2011, Pellerin et al. 
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2012, von Schiller et al. 2015). Therefore, the analysis of DOM–discharge 

responses among streams with contrasting hydrological regimes is an essential 

step to further improve our knowledge on DOM export dynamics.   

The aim of our study was to focus on identifying the singularities and similarities 

of DOM–discharge relationships between an intermittent Mediterranean 

(Fuirosos) and a perennial Alpine stream (Oberer Seebach, OSB). Both streams 

had clearly differing hydrological regimes (Butturini et al. 2008, Peter et al. 

2014). We analysed the variability of DOM–discharge responses based on 3–

year time series. The large temporal window and the high frequency sampling 

allowed exploring the DOM–discharge relationships at annual scale, at seasonal 

scale and at the scale of individual storm events.  

DOM was described in terms of its fluorescence and absorbance properties and 

of dissolved organic carbon (DOC) concentration. We postulated that DOM 

properties in the Alpine stream should be more related to gradual seasonal 

discharge variability than to abrupt storms. In the Mediterranean stream, 

pronounced oscillations in discharge (with zero-day flows) should strengthen the 

relationship DOM–discharge. 

 

Methods 

The Oberer Seebach stream 

OSB is a perennial headwater stream that drains a pristine catchment (25 km2) 

in the eastern Alps (47° 51’ N, 15° 04’ E) with an elevation of 600−1900 m above 

sea level. Several studies have been carried out in this long-term monitoring site 

(Battin 1999, Peter et al. 2014, Fasching et al. 2016). Long-term annual air 

temperature averages 6.7°C and annual precipitation averages 1608 mm. The 

forested catchment is seasonally snow-covered (December–April), which results 

in a marked snowmelt in spring. The study reach is located in a glacial alluvial 
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deposit underlain by a layer of fine, ancient lake sediments and calcareous rock. 

Catchment vegetation is dominated by Fagus sylvatica, Picea abies, Fraxinus 

excelsior, Acer pseudoplatanus, Abies alba, Larix decidua and Salix caprea. 

 

Monitoring programme 

We performed intensive hydrochemical monitoring during three years in each 

catchment. Stream discharge was inferred from the water level obtained every 

30 min. We divided each catchment in 4 hydrological conditions. We considered 

as high discharge the values higher than 90% of the days based on a flow-

duration curve of average daily discharge, excluding the days of no flow in the 

case of Fuirosos. Low discharge was defined as the values lower than 75% of the 

time. Therefore, intermediate discharge was set between these thresholds. In 

OSB snowmelt was delimited as the period of high day–night discharge 

oscillations, usually during March through May. In Fuirosos, rewetting was 

defined as the period from the first storm event after summer drought until when 

the stream flow regularly achieved 5 L s−1. 

Autosamplers (ISCO in OSB, Sigma 900max in Fuirosos) took samples in 

prewashed bottles every 6 hours in OSB, and in Fuirosos every 6 hours too 

during storm events and weekly during baseflow. DOC concentration was 

estimated with a total organic carbon analyser (GE–Sievers 900 in OSB, 

Shimadzu in Fuirosos) coupled to an inorganic carbon removal unit. 

Absorbance spectra from 200 to 700 nm were measured with a UV-visible 

spectrophotometer (Shimadzu UV 17000) using deionised water (MilliQ) as a 

blank. Fluorescence spectra were measured with a fluorescence 

spectrophotometer (Hitachi F-7000 for OSB, Shimadzu RF-5301 PC for 

Fuirosos). Inner filter effects were corrected, the fluorescence intensity was 

normalized dividing by the area of Raman peak of deionised water and a blank 

of deionised water was subtracted. 
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Five optical indices were analysed in this study: the specific ultraviolet 

absorbance at 254 nm (SUVA), the spectral slopes ratio (SR), the fluorescence 

index (FI), the biological index (BIX) and the humification index (HIX). Details 

of their calculation and interpretation can be found in General methods and in 

Table 3.1. 

 

Data analysis    

We performed linear regressions relating each DOM parameter to the logarithm 

of discharge for the two streams. We computed the regression slope 

(dDOM/dQ) for each hydrological condition and for each month. Previously, 

we normalised the values of each parameter (from 0 to 1 accounting for both 

streams) to be able to compare the dependence of discharge among parameters. 

The slopes were compared by including in the regressions the interaction of the 

location or hydrological condition (categorical factor) with discharge. The slopes 

were considered statistically different when the interaction was significant, since 

it meant that the effect of the continuous covariate (discharge) on DOM response 

depended on the level of the categorical factor (Townend 2002).  

For each sampled storm event, we estimated the change of every DOM property 

during the rising limb of the hydrograph (∆DOM) as the difference between the 

value during the storm peak and that one obtained during the pre-event base 

discharge conditions. We also analysed the recession limb of each storm event, 

which follows an exponential decay with time. Thus, we calculated the slope of 

the lineal regression linking the logarithm of normalised DOM properties to time 

(dDOM/dt). In this way we obtained an estimation of the rate of recuperation 

of base conditions. Moreover, we investigated whether there was a relationship 

between ∆DOM or dDOM/dt and the magnitude of the storm events (∆Q), 

calculated as the difference between the discharge peak and the pre-event base 

value. 
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All analyses were performed with R version 3.2.1 (R Code Team 2015), using 

the packages “chron” (James and Hornik 2014) and “phia” (de Rosario-

Martinez 2015). The significance level for the statistical tests was set at p < 0.01. 

 

Results 

Hydrology 

Differences in the hydrological regimes were evident in the two streams during 

the study period (Fig. 4.1a). In OSB, discharge varied by three orders of 

magnitude, from 102 to 104 L s−1, with highest values in April–May owing to 

snowmelt. The lowest values were observed in summer (typically < 600 L s−1) 

and November–December (typically < 450 L s−1). Thus, the lowest base 

discharge occurred during the periods of maximum and minimum air 

temperature, respectively. In contrast, in Fuirosos, discharge typically ranged 

between <10−1 to 103 L s−1 with two exceptional episodes larger than 104 L s−1. 

Further, zero flow in Fuirosos occurred in summer and it recovered in autumn, 

after 77−124 days of drought. Largest base discharge values were typically 

observed in late winter (March). Overall, base discharge was significantly 

inversely related to air temperature (r = −0.390, p < 0.001) 

The distributions of daily discharge values were significantly different between 

both streams (Fig. 4.1b), even after normalisation (that is, 0 to 1) to take into 

account the “shape” of these distributions (two samples Kolmogorov Smirnov 

test, p < 0.001). Mean daily discharge was higher in OSB, and the coefficient of 

variation suggests highest flow variability in Fuirosos (Table 4.1). High 

discharge was defined as > 2980 L s−1 in OSB and > 72 L s−1 in Fuirosos; 

intermediate discharge was defined as 315–2980 L s−1 in OSB and 7–72 L s−1 in 

Fuirosos ; and low discharge was defined as < 315 L s−1 in OSB and < 7 L s−1 in 

Fuirosos. In OSB, we identified on average 26 storm events per year with 12-d 
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inter-event time; less such events were identified in Fuirosos, where inter-event 

time averaged 19 d (Table 4.1). The inter-event time in Fuirosos was more erratic 

ranging from less than 1 day to 124 days without rain episodes. The magnitude 

of the events was higher in OSB, but it was more variable in Fuirosos. Finally, 

storm hydrographs showed similar rising limb times. However, discharge 

recession limbs were typically longer in OSB than in Fuirosos. 

 

 

Fig. 4.1 Fuirosos (black line) and OSB (grey line) discharge during the study period (a) 
and distributions of daily discharge (b).     
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Table 4.1. Hydrological characteristics of the studied catchments. Significance of the t-
test indicated for p-values * < 0.01, ** < 0.001, and *** < 0.0001 and not significant 
indicated as ns. 
 

 Oberer Seebach Fuirosos 

mean daily discharge ± SD (L s
−1

)  1181.4 ± 1739.5   61.6 ± 463.7  ***

median daily discharge (L s
−1

) 553.3 8.2 

coefficient of variation 1.5 7.5 

baseflow < 75% time (L s
−1

) 314.8 6.6 

high flow > 90% time (L s
−1

) 2979.8 71.6 

number of storm events (year−1) 26 21 

magnitude events  ± SD (L s
−1

) 5930.1 ± 5587.8 1290.9 ± 4128.1  **

inter event time ± SD (days) 12.1 ± 9.9  18.6 ± 25.0  ns

duration rising limb ± SD (days) 0.77 ± 0.65   1.0 ± 1.2  ns

duration recession limb ± SD (days) 4.9 ± 4.1 2.9 ± 2.4  ns

 
 
 

DOM–Q relationship 

Most of the DOM properties showed a clear relationship with discharge in 

Fuirosos and OSB (Fig. 4.2). Moreover, the sign of the global response was 

identical in both streams and statistically significant: DOC, SUVA and HIX 

were positively related to discharge (that is, flushing pattern), while SR, FI and 

BIX were negatively related to discharge (that is, dilution pattern). However, all 

normalised slopes of the linear regressions relating DOM properties and 

discharge were statistically different between the two streams (interaction effect, 

p < 0.001). 
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Fig. 4.2 Relationships between DOM properties and discharge in Fuirosos and OSB 
differentiating for hydrological conditions. 

 

DOC was significantly higher in Fuirosos than in OSB (t-test, p < 0.001) and 

data dispersion in Fuirosos was also clearly larger than in OSB (Fig. 4.2a, 4.3). 

Discharge globally explained 39% and 29% of DOC variability in OSB and 

Fuirosos respectively, and dDOC/dQ was higher (interaction effect, p < 0.001) 
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in Fuirosos than in OSB (Table 4.2a and 4.2b). In both streams the lowest DOC 

values typically occurred at baseflow conditions and at lower flows DOC 

stabilized or increased. Focusing on the hydrological periods, the variability of 

DOC–Q response was smaller in OSB (0.11 < dDOC/dQ < 0.42) than in 

Fuirosos (−0.03 < dDOC/dQ < 1.18). The largest DOC flushing was observed 

during high flow in Fuirosos. In contrast, dDOC/dQ values under low flow and 

rewetting conditions in Fuirosos were statistically insignificant. In OSB, 

dDOC/dQ values under high and intermediate flow were similar to those 

estimated in Fuirosos during intermediate flow (interaction effect, p > 0.05). 

Finally, in OSB dDOC/dQ values during low flow and snowmelt were lower 

than during intermediate and high flows (interaction effect, p < 0.01). 

 

 

Fig. 4.3 DOC during the study period in Fuirosos (black) and OSB (grey) (a) and 
distributions of daily DOC (b). 

 

SUVA was also higher (t-test, p < 0.001) and more dispersed in Fuirosos than in 

OSB (Fig. 4.2b). The variance explained by discharge was higher in OSB (45%) 

than in Fuirosos (21%) and the global flushing of aromatic substances 

(dSUVA/dQ) was larger in OSB too (interaction effect, p < 0.001). Analysing 
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the distinct hydrological conditions, however, this difference occurred only 

under low flow in Fuirosos (interaction effect, p < 0.002), when SUVA was 

unrelated to discharge (Table 4.2a and 4.2b). In OSB there was no significant 

difference in dSUVA/dQ values between hydrological conditions (interaction 

effect, p > 0.05). SR values were identical in both streams (t-test, p = 0.05) and 

discharge explained less than 12% of the variance (Fig. 4.2c). 

 

Table 4.2a Linear regressions relating DOM parameters to the logarithm of Q for each 
stream and hydrological condition. Significance indicated for p-values * <0.01, ** 
<0.001, and *** <0.0001 and not significant indicated as ns. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

parameter system dDOM/dQ ± SE R2  

DOC 

Fuirosos all 0.50 ± 0.04 0.29 *** 
F rewetting 0.10 ± 0.29 0.00 ns 

F low −0.03 ± 0.06 0.00 ns 
F intermediate 0.51 ± 0.10 0.11 *** 

F high 1.18 ± 0.09 0.62 *** 
OSB all 0.24 ± 0.00 0.39 *** 

OSB snowmelt 0.14 ± 0.01 0.24 *** 
OSB low 0.11 ± 0.02 0.03 *** 

OSB 
intermediate 

0.37 ± 0.01 0.35 *** 

OSB high 0.42 ± 0.07 0.18 *** 

SUVA 

Fuirosos all 0.31 ± 0.03 0.21 *** 
F rewetting 0.74 ± 0.16 0.34 *** 

F low 0.19 ± 0.12 0.04 ns 
F intermediate 0.80 ± 0.10 0.24 *** 

F high 0.70 ± 0.11 0.28 *** 
OSB all 0.58 ± 0.01 0.45 *** 

OSB snowmelt 0.66 ± 0.03 0.51 *** 
OSB low 0.46 ± 0.08 0.04 *** 

OSB 
intermediate 

0.69 ± 0.04 0.21 *** 

OSB high 0.78 ± 0.15 0.17 *** 

SR 

Fuirosos all −0.14 ± 0.03 0.05 *** 
F rewetting 0.09 ± 0.16 0.01 ns 

F low 0.27 ± 0.10 0.12 * 
F intermediate −0.13 ± 0.16 0.00 ns 

F high −0.43 ± 0.08 0.20 *** 
OSB all −0.49 ± 0.03 0.12 *** 

OSB snowmelt −0.14 ± 0.06 0.01 ns 
OSB low −2.18 ± 0.15 0.21 *** 

OSB 
intermediate 

−0.21 ± 0.08 0.01 ns 

OSB high −0.34 ± 0.11 0.07 * 
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Table 4.2b Linear regressions relating DOM parameters to the logarithm of Q for each 
stream and hydrological condition. Significance indicated for p-values * <0.01, ** 
<0.001, and *** <0.0001 and not significant indicated as ns. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The most negative dSR/dQ values occurred in OSB under low flow (Table 4.2a 

and 4.2b), showing significant differences with all other hydrological conditions 

(interaction effect, p < 0.001). In contrast, during low flow in Fuirosos an 

increase of SR with discharge was detected. 

FI was significantly higher (t-test, p < 0.001) in OSB than in Fuirosos (Fig. 4.2d). 

The variance explained by discharge was much higher in Fuirosos (43%) than in 

OSB (15%). Furthermore, dFI/dQ in Fuirosos ranged widely between −1 

(rewetting and intermediate flow) and 0.48 (low flow). In OSB, dFI/dQ values 

parameter system dDOM/dQ ± SE R2  

FI 

Fuirosos all −0.54 ± 0.03 0.43 *** 
F rewetting −1.00 ± 0.28 0.32 * 

F low 0.48 ± 0.14 0.17 * 
F intermediate −1.02 ± 0.16 0.24 *** 

F high −0.30 ± 0.05 0.27 *** 
OSB all −0.37 ± 0.02 0.15 *** 

OSB snowmelt −0.13 ± 0.05 0.01 ns 
OSB low −0.93 ± 0.11 0.08 *** 

OSB 
intermediate 

−0.42 ± 0.05 0.06 *** 

OSB high 0.12 ± 0.13 0.01 ns 

BIX 

Fuirosos all −0.37 ± 0.02 0.66 *** 
F rewetting −0.62 ± 0.09 0.67 *** 

F low −0.03 ± 0.04 0.01 ns 
F intermediate −0.59 ± 0.08 0.30 *** 

F high −0.49 ± 0.04 0.62 *** 
OSB all −0.59 ± 0.01 0.40 *** 

OSB snowmelt −0.28 ± 0.04 0.10 *** 
OSB low −1.43 ± 0.09 0.24 *** 

OSB 
intermediate 

−0.53 ± 0.04 0.11 *** 

OSB high −0.63 ± 0.09 0.24 *** 

HIX 

Fuirosos all 0.19 ± 0.02 0.16 *** 
F rewetting 0.16 ± 0.13 0.06 ns 

F low −0.02 ± 0.06 0.00 ns 
F intermediate 0.71 ± 0.15 0.14 *** 

F high 0.16 ± 0.07 0.05 ns 
OSB all 0.79 ± 0.03 0.26 *** 

OSB snowmelt −0.16 ± 0.08 0.01 ns 
OSB low 2.6 ± 0.16 0.25 *** 

OSB intermedite 0.82 ± 0.08 0.09 *** 
OSB high 0.43 ± 0.14 0.06 * 
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were statistically significant during low an intermediate flow, but not during 

snowmelt and high flow (Table 4.2a and 4.2b).  

BIX was also higher (t-test, p < 0.001) in OSB than in Fuirosos (Fig. 4.2e). 

Discharge explained up to 66% and 40% of its variance in Fuirosos and OSB 

respectively. In Fuirosos dBIX/dQ values were similar among hydrological 

conditions (Table 4.2a and 4.2b ). However, during low flow BIX was unrelated 

to discharge (interaction effect, p < 0.001). Similarly, in OSB low flow showed 

a significantly distinct slope (interaction effect, p < 0.001), but in that case the 

slope was more negative and had a closer relationship with discharge. High and 

intermediate flow in both streams had similar slopes (interaction effect, p > 

0.05). 

HIX showed higher values in Fuirosos (t-test, p < 0.001), while its variability 

was higher in OSB (Fig. 4.2f). Discharge appeared more relevant in OSB (26% 

of explained variance) than in Fuirosos (16% of explained variance) and the 

global dHIX/dQ value was also higher in OSB (interaction effect, p < 0.001). In 

Fuirosos, HIX was related to discharge only under intermediate flow (Table 4.2a 

and 4.2b ). In OSB, HIX was extremely sensitive to discharge during low flow 

conditions. Conversely, during snowmelt dHIX/dQ was not significant.  
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Fig. 4.4 Slopes of the linear regressions relating DOC (a), SR (b), FI (c) and HIX (d) to 
the logarithm of Q for each month in Fuirosos (black) and OSB (grey). Error bars 
indicate ± 1 standard error of the slopes. 

 

Some dDOM/dQ values showed a seasonal trend when samples were grouped 

at monthly intervals. However, the patterns differed among both streams. For 

instance, dDOC/dQ in Fuirosos decreased during summer months, while in 

OSB a seasonal dynamic did not emerged (Fig. 4.4a). dSR/dQ values showed an 

opposite pattern in the two streams. Thus, in summer dSR/dQ values were close 

to zero (positive) in Fuirosos and the lowest (negative) in OSB (Fig. 4.4b). A 

similar trend was observed in dBIX/dQ values. dFI/dQ was nearly steady in 

OSB with values close to zero during winter. Conversely, drought in Fuirosos 

caused a clear discontinuity in summer, with a gradual shift toward negative 

values from January to June and an abrupt positive dFI/dQ value in July (Fig. 

4.4c). Finally, dHIX/dQ values were nearly steady throughout the year in 
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Fuirosos, with a peak in April (Fig. 4.4d). In contrast, in OSB slopes were lowest 

during snowmelt (April–May). 

 

 

Storm events 

DOM changes (∆DOM) during the rising limb for each single sampled storm 

were related to the magnitude of the storm (Fig. 4.5). ∆Q significantly drove 

∆DOC (R2 = 0.49, p < 0.001), ∆FI (R2 = 0.23, p < 0.01), ∆BIX (R2 = 0.46, p < 

0.001) and, partially, ∆SUVA (R2 = 0.16, p < 0.05) in Fuirosos. This finding 

reinforces the notion that the flushing/dilution patterns observed in the scatter 

plots for DOC, FI, BIX and SUVA (Fig. 4.2) were essentially associated to the 

occurrence of storm episodes in Fuirosos.  

In contrast, and unexpectedly, in OSB ∆Q significantly explained only ∆DOC 

(R2 = 0.58, p < 0.001). All DOM qualitative properties were unrelated to ∆Q (R2 

< 0.1; p > 0.05). Storms in OSB were behind the DOC oscillations, but did not 

explain the magnitude of oscillations of DOM quality. This was especially 

surprising for SUVA, BIX and HIX, which were related to discharge (R2 > 0.25, 

Fig. 4.2). Therefore, the observed pattern of ∆DOM versus ∆Q suggests that, in 

OSB, seasonal changes of base discharges were equally or more important for 

DOM qualitative changes than storms. Thus, when storm events were removed 

from the data set, the relationship between discharge and qualitative parameters 

kept their significance in OSB (p < 0.001). In contrast, in Fuirosos dSUVA/dQ, 

dSR/dQ and dHIX/dQ were not significant when the storm event samples were 

removed (p > 0.1) and slopes remained significant for DOC, BIX and FI (p < 

0.001). Moreover, dDOC/dQ followed a dilution pattern thus reversing its sign. 
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Fig. 4.5 Relationships between DOM changes during the rising limb of each storm event 
—∆DOC (a), ∆SUVA (b), ∆SR (c), ∆FI (d), ∆BIX (e) and ∆HIX (f)— and its magnitude 
in Fuirosos (black) and OSB (grey). The area of the circles is proportional to the length 
of the rising limb (Lrs). Dashed lines show the significant slopes and the grey areas 
represent the 0.99 confidence interval of those linear regressions.  
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The flashness of the storms, estimated by the duration of the rising limb, did not 

appear as a relevant driver for ∆DOM values. However, some abrupt and small 

storm event during rewetting in Fuirosos caused extreme ∆DOC, ∆SUVA and 

∆FI values. These outliers were especially relevant for the ∆DOC versus ∆Q 

relationship, which was, as mentioned before, statistically significant 

(∆DOM/∆Q=1.57). Fig. 4.5a visualises two outliers located outside the 95% of 

prediction range. These two events coincided with two rewetting periods after 

prolonged droughts. Removing the two outliers, the ∆DOC versus ∆Q 

relationship improved (R2 = 0.70, p < 0.001) and the slope (∆DOM/∆Q = 1.74) 

was larger than that estimated for OSB (∆DOM/∆Q = 0.89; interaction effect, p 

<0.02). Therefore, although in both streams the ∆DOC versus ∆Q relationship fit 

significantly a linear model, DOC sensitivity to storms was larger in Fuirosos 

than in OSB. 

During the recession limb of the storm events, DOM properties tended to 

recover the values measured during the pre-storm baseflow. Therefore, the sign 

of the slope of the regression relating DOM properties to time was opposite to 

that of the change in the rising limb: negative slope in the case of DOC, SUVA 

and HIX, and positive in SR, FI and BIX. DOC concentration typically 

recovered faster than the other DOM parameters in both streams (Fig. 4.6). The 

most inertial parameter was HIX, with slope values around 0. The slopes of 

DOM properties were not significantly related to the magnitude of the storm 

event. The exception was observed in OSB, where larger storm events prompted 

faster DOC recovery to its pre-storm concentration (p < 0.05).  
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Fig. 4.6 Boxplots of the slopes of the recession limbs of storm events in Fuirosos 

(black) and OSB (grey). The slopes come from the linear regressions relating the 

logarithm of normalised DOM properties to time. dQ/dt, dDOC/dt and 

dSUVA/dt, which had originally mainly negative slopes, were multiplied by −1 

to allow for the comparison of values. 

 

Discussion 

Numerous studies have shown the influence of variation in discharge on DOM 

quantity and quality in headwater forested streams (Buffam et al. 2001, Inamdar 

et al. 2011, Wilson et al. 2016). Fewer studies have highlighted how the 

hydrological regime over longer time may shape the response of DOM to 

discharge. Our study reveals that hydrology can modulate DOC concentration 

and DOM composition because of abrupt shifts from low to high flow and by 

modulating the intensity and timing of base discharge. 
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DOM–discharge response variability 

DOC concentrations in the Mediterranean Fuirosos stream were significantly 

higher than in the Alpine OSB stream. Both streams drain forested catchments 

of comparable size, and the mass of DOM entering the streams was therefore 

expected to be similar. However, climate caused higher discharge in OSB than 

in Fuirosos and the hillside groundwater reservoir in OSB might contribute to 

dilute DOC concentration (Battin 1999). DOM also differed between both 

streams. DOM in Fuirosos was more terrigenous (lower FI), more degraded 

(lower BIX), more aromatic (higher SUVA) and more strongly humified (higher 

HIX) than in OSB.   

Generally, our analyses also revealed that DOM variability in OSB was to a 

larger extent controlled by discharge than in Fuirosos. For instance, low flow, 

including zero-flow, and rewetting in Fuirosos induced large scattering in these 

plots at the low discharge interval and debilitated the explanatory power of 

discharge. This result suggests that in Fuirosos a) factors other than discharge 

affect DOM variability and/or b) DOM sensitivity to discharge greatly varied 

across hydrological conditions. The high DOM variability across values of low 

discharge is a relevant property of intermittent and ephemeral streams, and of 

small tropical streams (Bass et al. 2011). However, it is missing in permanent 

Mediterranean (Butturini et al. 2005), continental (Wilson et al. 2013) and alpine 

(Fasching et al. 2016) headwater streams. 

Drying and rewetting in Fuirosos did not alter DOM characteristics in the same 

direction. During drying, for most of DOM parameters the relationship with 

discharge disappeared or even reversed. Remarkably, under low flow conditions 

in OSB, the inverse pattern emerged with DOM optical properties being 

significantly related to discharge. Summer drying in Fuirosos is a seasonal and 

well predictable period that reflects the vanishing of the stream-catchment 

connectivity with water constrained in few isolated, small and disconnected 

pools (Vázquez et al. 2011). Typically, this period lasts over one to three months 
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and can be easily monitored, which facilitates the study of biogeochemistry and 

hydrology in these ecosystems (Vázquez et al. 2007, Fellman et al. 2011, von 

Schiller et al. 2015). In line with our findings, most of these studies evidenced 

the enhancement of in-stream DOM production that may explain the rupture of 

DOM–discharge relationship. 

In contrast, DOM responses during rewetting were usually in the same direction 

to that observed under intermediate and high flows. However, these responses 

were highly variable and strongly depended on the exact timing and magnitude 

of the first flushing episode after the drought period. The clearest example was 

that of DOC concentration. During two rewetting episodes, the first flushing 

determined a disproportionate ∆DOC. Thereafter, ∆DOC strongly decreased 

during the immediate subsequent storms.  Hydro-biogeochemical modelling 

adapted to intermittent streams (Butturini et al. 2005), demonstrated that the 

instantaneous and abrupt DOC peak concentration can be attributed to the 

leaching of abundant particulate organic matter accumulated during the drought 

in the stream channel or its adjacent riparian strip (typically larger than 0.45 kg 

dry mass m−2 in Fuirosos according to Sabater et al. 2001). This result shows the 

importance of rewetting for triggering a biogeochemical change in intermittent 

streams. In contrast to what occurred with the drying period, it is key to remark 

that a biogeochemical characterization of the rewetting period is challenging 

because of its unpredictable nature and short duration. Therefore, a full picture 

of DOM response during rewetting is largely missing. Inexorably, high-

resolution biogeochemical sampling using automated sensor networks are 

required to fill this gap (Kirchner et al. 2004). 

Snowmelt usually initiates DOC flushing in alpine streams (Hornberger et al. 

1994, Boyer et al. 1997, Burns et al. 2016). However, we could not observe this 

typical response in OSB and it fitted better the pattern reported by Pellerin et al. 

(2012). Thus snowmelt did not add a clear noise to the DOM–discharge scatter 

plot and did not enhance the input of a different DOM quality with respect to 



Chapter 4 

 

103

high flows in summer, fall or winter. On the contrary, during snowmelt the 

sensitivity to discharge decreased for DOC concentration and BIX, for instance, 

or disappeared for SR, FI and HIX. This finding is similar to that reported by 

Burns et al. (2016) for FI, HIX and BIX and by Pellerin et al. (2012) for SUVA. 

It suggests a partial biogeochemical disconnection between stream flow and 

hillsides during this period, suggesting that water from snowmelt flows rapidly 

downslopes with small interaction with soil.  

 

Similarities and differences between Mediterranean 

and Alpine streams 

When rewetting restarted and normal flow conditions resumed, DOM–

discharge relationships in Fuirosos become stronger and converged to those 

observed in OSB and other catchments (Spencer et al. 2010, Wilson et al. 2016). 

These similarities in DOM–discharge plots suggest that analogous large-

catchment-scale hydrological-hillsides processes modulate DOM flushing 

independently of the hydrological regime. Thus, under normal hydrological 

conditions, DOM transport from hillsides to stream channel is not limited. 

However, these similarities were apparent. The analysis of DOM–discharge 

relationships at storm-event scale showed a subtle but relevant divergence 

among the two streams: abrupt floods impacted severely DOM in Fuirosos, 

whereas base flow oscillations were more significant in OSB. These results are 

in line with our initial hypothesis that the larger hydrological oscillations in 

Fuirosos magnify DOM changes and make more likely to fix the strength of the 

DOM–discharge relationships.  

Moreover, an unexpected and important dichotomy emerged in OSB. While 

DOM quality change was more coupled to base flow conditions, DOC flushing 

was significantly related to storm magnitude. This linear relationship illustrates 

an important similarity between the two streams. However, DOC responses 
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were significantly less sensitive to storm magnitude in OSB than Fuirosos. This 

result points out that the hillside-stream connection is stronger in Fuirosos than 

in OSB and that DOM quantity and quality in Fuirosos is strictly bound to 

allochthonous terrigenous inputs. In-stream processes are unimportant for most 

of the time, except during the low flow period. The observed dichotomy between 

DOC and DOM quality in OSB evidenced that terrestrial DOM deliveries 

during storms are a fundamental source to the DOM pool but that in-stream 

processes gain relevance under base flow. Previous studies point out that benthic 

primary producers and hyporheic heterotrophic community imprint more 

autochthons DOM properties under base flow in OSB (Fasching et al. 2016). 

Such in-stream processes at base flow amplify the qualitative differences on 

DOM between the two streams, attenuating the DOM terrigenous signature in 

OSB by reducing its aromaticity and humification degree concomitantly 

increasing the signature from fresh autochthonous DOM (Fasching et al. 2014). 

The present study is a first attempt to compare pluri-annual time series of DOM 

concentration and DOM characteristics with an appropriate sampling design to 

capture hydrological extremes. It highlights the importance of comparative 

studies among ecosystems with contrasting climate and hydrological regimes to 

advance our understanding of DOM biogeochemistry in headwater streams.  
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This thesis explores the influence of hydrology on DOM quantity and quality in 

an intermittent headwater stream. Its hydrological regime is described in 

Chapter 1. Analysis of long-term DOC dynamics appears in Chapter 2; while 

Chapter 3 describes a further step detailing the relationships between DOM 

quality and hydro-biogeochemical drivers. Finally, the DOM–discharge 

relationships detected in the Mediterranean stream are compared with those in 

an Alpine stream (Chapter 4). In the present section results from this thesis are 

discussed in a wider hydro-biogeochemical context. 

 

Discharge patterns  

The long-term hydrological monitoring revealed a decreasing trend of daily 

discharge in the Mediterranean stream that is subject of this thesis (Chapter 1). 

Lower flows might have some ecological impacts: reduction of the density and 

diversity of biota;  mediation of the diversity and distribution of biota by species-

specific patterns in water quality tolerances; and decreases in the rate of energy 

transport within food webs, resulting in limited ecosystem production (Rolls et 

al. 2012).  

The annual reduction of 0.6% in daily discharge is similar to reports of other 

rivers of the Iberian Peninsula (Table D.1). Those studies based their conclusions 

on long-term hydrological series from gauging stations managed by water 

authorities. Obviously, the monitoring stations are located in rivers that drain 

large catchments (typically more than 100 km2) with heterogeneous land uses 

and significant human pressure. In most of the studies the observed hydrological 

alteration was attributed to an increment of evapotranspiration due to higher 

temperatures  or an increase of forest cover as a consequence of the 

abandonment of agriculture (García-Ruiz and Lana-Renault 2011). Some other 

studies also detected climatic divers such as a decrease of precipitation or shorter 

snowmelt.  
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Study area Monitorin
g period 

Catchment area 
(km2) 

Annual decrease 
(%) Explanation Reference 

Ter (Roda de Ter) 1950−1996 1386 0.25 

Forest cover increase Gallart et al. 2011 Cardener (Olius) 1954−1996 256 0.82 

Llobregat (La 
Baells) 

1976−1999 504 1.1 

187 large sub-
basins 

1945−2000 Large basins Not quantified Water management strategies 
(dams) 

Lorenzo-Lacruz et al. 
2012 

Duero (56 gauging 
stations) 

1961−2006 35–45 Not quantified 
Decrease in winter precipitation 
and reduction of  snowmelt 

Morán-Tejeda et al. 
2011 

287 gauging 
stations 

1961−2009 Large basins Not quantified 
Higher evapotranspiration and 
decrease in precipitation 

Vicente-Serrano et al. 
2014 

Duero (17 sub-
basins) 

1966−2005 14–2384 

1.11 

Forest cover increase and higher 
temperature 

Martínez-Fernández et 
al. 2013 

Tajo (4 sub-basins) 1.49 

Júcar (5 sub-basins) 1.68 

Ebro (35 sub-
basins) 1.41 

Noguera Pallaresa 
(Ebro sub-basin) 

1965−2009 2807 0.5–1.3 
Higher temperature and potential 
evapotranspiration and forest 
cover increase 

Buendia et al. 2016 

Turia (Júcar sub-
basin) 

1973−2008 3936 Not quantified 
Higher temperature (forest cover 
decrease) Salmoral et al. 2015 

Table D.1 Hydrological time series in the Iberian Peninsula. 
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Meanwhile, water management as a cause or driver is mentioned only timidly 

in one study. This is rather surprising because the monitored periods covered a 

time lapse characterised by a dramatic increment in the population of Spain 

(from 26 million in 1940 to 47 million in 2010) that prompted an increase in 

water demand for irrigation, industry and domestic uses (Wada et al. 2013). 

Thus, all large Iberian rivers suffered severe hydrological alterations due to the 

building of dams and water abstraction. For example, in Spain, the total annual 

gross surface and groundwater abstraction increased from 25 × 1012 m3 in 1970 

to 45 × 1012 m3 in 2000 (http://appsso.eurostat.ec.europa.eu).  

In any case, the combination of a growing population, increased water 

abstraction, land use changes and the intrinsic large inter-annual climate 

variability in Mediterranean areas, make it extremely difficult to identify 

hydrological trends that can be attributed to climate change. In this complex 

framework, divergences in the interpretation of data are of no surprise (Table 

D.1). For instance, in the Duero catchment some authors attributed the decadal 

discharge decrease to climate (Morán-Tejeda et al. 2011) while others also 

pointed to land use changes (Martínez-Fernández et al. 2013). In this 

framework, it is evident that long-term and high frequency hydrological 

monitoring in small semi-natural headwater catchments may be the solution to 

explore the link between hydrology and climate without the interference of 

additional overlapping factors. Unfortunately, there is not tradition of 

establishing large hydrological monitoring programmes in small Mediterranean  

headwater stream. Pioneering exceptions are those of Vallcebre, a 

Mediterranean mountain catchment monitored since 1991 (Gallart et al. 2005, 

Latron et al. 2010) and the Torrent de la Mina stream in Montseny, studied since 

1977 (Hereter and Sanchez 1999). Headwaters streams are not of interested to 

water management, and even less so intermittent ones, and water authorities do 

not establish long-term monitoring programmes. Thus, if monitoring of some 

has been established, it started much later.  
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The duration of the summer dry period in Fuirosos did not show a significant 

trend during the study period (Chapter 1). However, the frequency and severity 

of climatic droughts are increasing in the Mediterranean basin (Vicente-Serrano 

et al. 2014, Spinoni et al. 2015) and hydrological droughts in non-perennial 

streams are expected to be prolonged (Pumo et al. 2016). Therefore, it is probable 

that drought duration will increase in the near future. A longer dry period would 

cause changes in the quality of the DOC in remaining pools (Vázquez et al. 

2011);  decrease the release of inorganic N during rewetting (Gómez et al. 2012); 

increase vertical riparian inputs (Sanpera-Calbet et al. 2016);  decrease leaf litter 

breakdown (Datry et al. 2011); and decrease the abundance and richness of some 

taxa of macroinvertebrates as well as those of seedbank (Storey 2016, 

Stubbington et al. 2016).  

The frequency of storm events decreased in Fuirosos and revealed an intriguing 

link with the 11–year solar activity cycle. Especially if the number of the most 

severe storm events is reduced, this might imply lower sediment transport, a 

decrease of nutrient export from the hillsides, a decrease in woody debris input 

and a reduction of floodplain inundation (Poff et al. 1997).  

 

DOC patterns 

The analysis of the temporal pattern of DOC concentration in Fuirosos showed 

a slight decreasing trend over the study period (Chapter 2). This trend is opposite 

to the increase detected in boreal regions (Filella and Rodríguez-Murillo 2014), 

which has been attributed to climate change, specifically to the increase of air 

temperature and atmospheric CO2 pressure, and to the diminution of 

atmospheric chemical deposition (Evans et al. 2006, Pagano et al. 2014). 

Therefore, these factors cannot explain the DOC decline in Fuirosos. However, 

this might be related to the observed decreasing discharge trend (Chapter 1): a 

flow decrease could imply a reduction of terrigenous DOC inputs and thus lower 
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in-stream DOC concentrations. Notably, nitrate showed a subtle long-term 

increase. In forested catchments, NO3
−  availability is typically related to 

catchment hillside inputs. Consequently, the long-term NO3
−  dynamics does not 

support the hypothesis of a reduction of allochthonous DOC input. However, 

an increase of atmospheric NO3
−  deposition has been reported in the study area 

over the last years (Izquierdo et al. 2012). Therefore, the observed NO3
−  increase 

in Fuirosos might be related to atmospheric deposition and not to the hillside 

stream hydrological connection. Consequently, the possibility of a causal 

relationship between lower DOC and lower flows cannot be excluded. 

The DOC concentration showed notable seasonality in Fuirosos (Chapter 2, 3 

and 4). The highest values were observed during rewetting, due to the leaching 

of leaf litter that had accumulated on the streambed during the summer drought. 

Moreover, the slopes of the relationship with discharge (dDOC/dQ) were also 

the highest in this period. Meanwhile, the drying period saw a disconnection of 

DOC concentration from discharge.  

During wet periods, dDOC/dQ averaged 1.8 ± 0.6 mg s L−2 ( range: 0.6 − 2.8 

mg s L−2). These values are in the lower range of the flushing values reported in 

other pristine/semi-pristine streams (Fig. D.1). All the streams included in the 

Figure D.1 drain relatively small catchments (< 16 km2) and are permanent, 

except Fuirosos. Under normal hydrological conditions such as the wet period, 

DOC flushing in Fuirosos was typically half as high as that estimated in boreal, 

Pyrenean and humid Mediterranean streams and it was between that from 

Alpine and pre-Pyrenean streams. In contrast, during rewetting the picture 

changed totally and the DOC flushing rate increased up to 12 mg s L−2. This 

range of oscillation of dDOC/dQ is much higher than that reported in the 

literature. Unfortunately, Figure D.1 includes a reduced set of streams 

evidencing the lack of information. The study of DOC in freshwater ecosystems 

has greatly expanded during the last two decades. Nevertheless, few studies 

analyse time series and only a small subset of these studies focus on DOC–
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discharge relationships. Being conscious of this gap, the present research reports 

one of the highest DOC flushing systems studied to date and it emphasises that 

little is still known about the DOC–discharge relationship in headwaters around 

the world. 

 

Fig. D.1 dDOC/dQ of different headwater 

streams. The violin plot shows the distribution 

of the values for Fuirosos; the white dot marks 

the median and the black rectangle the 

interquartile range. Dashed lines show 

dDOC/dQ of Riera Major in orange (Butturini 

et al. 2006), Västrabäcken in black (Ågren et al. 

2010), Contraix in pink (unpublished data from 

Lluís Camarero), Can Vila in green (Roig-

Planasdemunt et al. 2017) and Oberer Seebach 

in blue (Fasching et al. 2016). All models were 

converted to linear-log models. 

 

DOM quality patterns 

Beside DOC concentration, DOM quality has also been studied in many fluvial 

systems and the influence of hydrology on DOM properties has been reported 

in depth in several studies (Table D.2). Storms are the hydrological episodes that 

have been analysed most worldwide. High flows imply rises in aromaticity, the 

degree of humification, molecular weight and the allochthonous character in 

Fuirosos (Chapter 3) and also in an Alpine stream (Chapter 4).  In most of 

climates, storm events increase the terrigenous character of DOM. This is the 

case in temperate, Mediterranean and subtropical catchments.  
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Catchment Hydrological 
episode 

Aromaticity Humification Molecular weight Humic/Proteic 
components 

Allochthonous 
Source 

Potential 
bioavailability 

References 

Temperate Storm ↑ ↑ ↑ ↑ ↑≈ ↑ 

(Buffam et al. 2001, Li et al. 
2005, Hood et al. 2006, Vidon 
et al. 2008, Nguyen et al. 
2010, 2013, Inamdar et al. 
2011, Wilson et al. 2016) 

Mediterranean Storm ↑ ↑ ↑ NA ↑ NA 
(Saraceno et al. 2009, 
Guarch-Ribot and Butturini 
2016) 

Subtropical Storm ↑ NA ↑ ↑ ↑ NA 
(Johnson et al. 2011, Yang et 
al. 2013) 

Wetland/ 
Peatland Storm ↓ NA ↓ ↓ NA ↑ (Fellman et al. 2009, Austnes 

et al. 2010) 

Mediterranean, 
subtropical, 
tropical, boreal 

Drying ↓ ≈ ↓ ↓ ↓ ↑ 

(Wu et al. 2007, Spencer et al. 
2010, Vázquez et al. 2011, 
2015, Hong et al. 2012, von 
Schiller et al. 2015) 

Mediterranean, 
tropical Rewetting ↑ ↑ ↑ ↑ ↑ ↑ 

(Vázquez et al. 2007, 2015, 
Spencer et al. 2010, von 
Schiller et al. 2015) 

Boreal Snowmelt ↑ NA ↑ NA ↑ NA 
(Walker et al. 2013, Voss et 
al. 2015) 

Temperate Snowmelt ↓ ↑ NA ↑ ↓ ↑↓ NA (Pellerin et al. 2012, Perdrial 
et al. 2014, Burns et al. 2016) 

Table D.2. Patterns of DOM quality under hydrological episodes worldwide 
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The relationship between DOM quality and storms has especially been reported 

for forested headwater forested streams, but the same pattern was also found in 

large rivers and agricultural areas (Vidon et al. 2008, Nguyen et al. 2010, Yang 

et al. 2013). The exceptions were wetlands (Fellman et al. 2009) and peatlands 

(Austnes et al. 2010), where high flows reduce DOM aromaticity and molecular 

weight while increasing protein-like fluorescence. During storm events, runoff 

follows surface flowpaths, flushing DOM with a highly allochthonous character 

(Inamdar et al. 2013, Yang et al. 2015). Nevertheless, in peatlands, stream DOM 

is highly degraded when the water table is low (Fraser et al. 2001) and thus more 

aromatic than the allochthonous input, which in fact dilutes its humic character. 

The DOM response to flow recession is similar in different biogeographical 

regions and opposite to that during most storm events. DOM aromaticity and 

molecular weight decrease, while the protein fraction and its autochthonous 

character increase. All this agrees with the increase of in-stream production 

enhanced by the higher water residence time (Battin et al. 2008). Rewetting 

implies a sudden input of allochthonous DOM that has accumulated during the 

drought on the streambed and further on surrounding hillsides. Therefore, the 

pattern is reversed and the DOM character becomes terrigenous again. It should 

be highlighted that all these hydrological episodes —storm events, the drying 

period and rewetting— have been reported to increase the bioavailability of 

DOM (Romaní et al. 2006, Vázquez et al. 2011, Wilson et al. 2016).  

A more ambiguous case is that of snowmelt. It seems that this has a distinct 

impact on DOM depending on the location. In boreal catchments the spring 

freshet implies an increase of DOM aromaticity, molecular weight and 

allochthonous sources. Those fresh inputs are microbially processed later, so 

under base flow conditions the DOM terrigenous character decreases. In 

mountain watersheds in temperate regions, the DOM response is more diverse. 

DOM aromaticity is lower during snowmelt, which has been related to microbial 

processing under the snow-pack (Brooks et al. 2011). At the same time, 
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humification increases and the protein-like fraction and allochthonous character 

show different patterns. Therefore, a local characterisation of the DOM response 

to snowmelt is crucial. These controversial results point to the need to remember 

that not all the DOM pool is fluorescent (Fellman et al. 2010). Thus, it is 

important to consider analysis that is not based only on fluorescence properties. 

 

Drivers of DOM 

In this thesis, I have revealed the role of hydrological and biogeochemical 

antecedent conditions as drivers of DOM. In contrast with other studies, climatic 

parameters such as temperature did not have a significant influence. Previous 

drought duration in Fuirosos increased the rate at which DOC decreased from 

the rewetting to the beginning of the wet period (Chapter 2). However, the 

flushing/dilution patterns (∆C) during storm events had some memory effects as 

well (Chapter 3). The DOM biogeochemical status during the pre-event base 

flow influences the change in humification, molecular weight and freshness; the 

magnitude of the antecedent storm event was inversely related to ∆DOC; and a 

high base discharge before the storm event prevented a major increase in 

aromaticity. 

In other catchments, the antecedent conditions were also found to be important 

for DOM dynamics. In the short term, the discharge of the previous 3 days 

regulated stream DOC concentration during storm events in small forested 

catchments. In the longer term, DOC was influenced by discharge conditions 

over the previous 5 months in boreal streams. Furthermore, the inter-annual 

variability of DOC concentration during snowmelt was related to the duration 

of the preceding winter and to the export of DOC during summer and autumn. 

The depth of the water table during the 30 days prior to the storm event also 

modulated DOC concentration in peatlands. In an intermittent stream, mean 

annual DOC was linked to the length and severity of the drought. All these 
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studies focused on DOC concentration. Conversely, my study expanded on this 

knowledge since for the first time, qualitative DOM properties were connected 

to the antecedent hydro-climatic descriptors.  

These findings outline the importance of the memory effect on DOM. Therefore, 

under the threat of a change in frequency and magnitude of storm and drought 

episodes in Mediterranean catchments (Vicente-Serrano et al. 2014, Barrera-

Escoda and Llasat 2015), it will be necessary to generate larger pluri-annual 

high-frequency DOM time series to determine the possibility of an impact of an 

accumulative effect of concatenation of severe drought episodes on long-term 

DOM flux and fate. 

 

Comparison of a Mediterranean and an 
Alpine stream 

The biogeochemical analysis of two hydrologically different headwater streams 

that experience relatively reduced human activity (Chapter 4) motivates me to 

speculate on the impact of hydrological regime alteration forced by atmospheric 

drivers (Botter et al. 2013, Hall et al. 2014) on DOM quantity and properties. 

Fuirosos and Oberer Seebach are located in geographical areas that are 

experiencing severe changes in their hydrological cycles (Chapter 1, Martínez-

Fernández et al. 2013, Bocchiola 2014). The trend in the flood frequency in 

north-east Iberian Peninsula is unclear and largely debated (Mediero et al. 2014, 

Barrera-Escoda and Llasat 2015). However, little uncertainty exists about the 

evidence that drought severity is increasing in response to lower annual 

precipitations and higher evaporative demand (Vicente-Serrano et al. 2014, 

Spinoni et al. 2015). Thus, a scenario in which drying phases start prematurely 

and last longer is plausible with a hydrological shift from an intermittent regime 
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to an ephemeral one. Therefore, the relevance of the drying and rewetting phases 

should increase, and the importance of base flow conditions should decrease. 

Similarly, severe changes in the fluvial hydrological regime are expected in 

Alpine areas as a consequence of a warmer climate. The frequency of floods and 

severity of drought are expected to increase and snow cover is expected to 

decrease (Gobiet et al. 2014). Furthermore, evapotranspiration driven by 

temperature should increase (Bocchiola 2014). All together, these alterations are 

expected to provoke a notable decrease of discharge in spring and summer. 

These hydrological scenarios might be combined with results from my study to 

produce two biogeochemical scenarios that describe how DOM concentration 

and quality are expected to shift under: 1) a rise of ephemerality in 

Mediterranean streams: and 2) a rise of intermittency in Alpine headwaters (Fig. 

D.2). 

Under the perspective of more frequent droughts in Mediterranean areas, the 

highest DOC concentrations should coincide during storm episodes and the 

drying phase. Nevertheless, the DOM signal should clearly differ between the 

two hydrological extremes: an allochthonous character during floods and of 

autochthonous origin during drying (Fig. D.2.l). In the context of the DOM–

discharge relationship, the scattering of data should greatly increase (Fig. D.2.i) 

as a consequence of: a) higher variability in the ∆DOM responses related to more 

frequent rewetting episodes; and b) DOM changes modulated by in-stream 

processes and unrelated to discharge during longer drying periods. 



 

 

119

 

Fig. D.2 Probability distribution of daily mean discharge (a–c), probability distribution 
of daily mean DOC (d–f), DOC–discharge scatter plot (g–i) and HIX–FI Kernel density 
plot (j–l) for a perennial stream (a, d, g, j), an intermittent stream (b, e, h, k) and an 
ephemeral stream (c, f, i, l). Low flow, intermediate flow and high flow conditions are 
marked in a–c. The figures for the perennial and intermittent streams were obtained with 
Oberer Seebach and Fuirosos data, respectively. The figures for the ephemeral stream 
are hypothetical, considering larger periods of low flow than currently in Fuirosos.   
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Meanwhile, the hydrological adjustment in Alpine areas might involve 

modifications in the hillside flowpaths and flushing of terrigenous DOM. 

Assuming, for sake of simplicity, no changes in the terrestrial environment, 

apparently less relevant snowmelt and more frequent storms should strengthen 

the DOM–discharge relationship. So, the ∆DOM/∆Q ratio should increase 

during moderate–high flows and approach similar values to those observed in 

Fuirosos. At the same time, more severe droughts together with higher summer 

temperatures might reinforce the in-stream metabolism and the related 

autochthonous DOM production. Therefore, the significant link between DOM 

parameters and discharge detected at low flow at Oberer Seebach could vanish 

in the near future.  

It is interesting to consider that, in Oberer Seebach and Fuirosos, the lowest 

DOC concentrations did not coincided with the lowest discharge values (Fig. 

4.2a). In both streams, the DOC tended to be higher at the lowest discharge 

values. DOC increase is outstanding in Fuirosos and much more subtle in 

Oberer Seebach. Is this similitude between the two streams in their DOC 

patterns at low discharges a clue that DOC concentration could increase more 

markedly at low flow in Oberer Seebach under a scenario of more severe summer 

droughts? Then, does the DOC–discharge scatter plot reported for Fuirosos (Fig. 

D.2.h) shed light on the DOC–discharge plot expected for Oberer Seebach under 

a warmer climate scenario?  

In this thesis I examine the relationship between DOM and hydrology in a 

Mediterranean stream. The thesis is structured along three main axes: an 

undisturbed headwater stream, hydrological intermittency, and long-term and 

high-frequency biogeochemical monitoring. To further advance in these fields it 

is necessary: i) to promote comparison of DOM responses between sites across 

the world and between the largest possible spectrum of hydrological regimes; 

and ii) to establish long-term and high-frequency sampling hydro-

biogeochemical programmes that take advantage of expanding use of in-situ 
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DOM optical sensors (Lee et al. 2015). In Fuirosos, we are working in this 

direction (Fig. D.3), with preliminary results showing detailed patterns of the 

DOM response to hydrological episodes. 

 

Fig. D.3 Preliminary results from the submergible humic-like fluorescence sensor 
Cyclop 7 Turner (grey dots) installed in the Fuirosos stream, together with discharge 
(black lines) and absorbance at 254 nm measured in the laboratory from manually 
obtained water samples (black dots). The grey area indicates the dry period (Butturini, 
unpublished data).  
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Chapter 1: Hydrology of an intermittent headwater stream: results 

of a decade of high-frequency monitoring 

� Long-term monitoring in the Fuirosos stream revealed a decrease in 

discharge from 1998 to 2015, although the trends in temperature and 

precipitation were not significant. A decadal discharge decrease has been 

detected in many Mediterranean rivers, especially in response to 

increasing temperatures. Despite the high inter-annual variability, the 

mode of discharge has clearly decreased in Fuirosos.  

� Dry period duration was highly variable and it did not show a significant 

trend during the study period.. However, rewetting has been significantly 

delayed, moving from September to October. The mean magnitude of 

autumnal storm events was lower in the years with El Niño phases.  

� The frequency of storm events decreased during the study period, 

showing a significant positive relationship with solar activity with a 2–

year lag. 

Chapter 2: Long-term temporal dynamics of dissolved organic 

carbon concentration in the Fuirosos stream 

� The DOC concentration experienced a slight decrease over the interval 

1998–2013 in Fuirosos. This decrease is the opposite to that expected, in 

accordance with the observed long-term decrease of discharge and to 

that observed in boreal systems. 

� This reduction cannot be predicted by the reported long-term decrease 

of acid precipitation. In fact, the decrease of acid deposition should drive 

an increase of DOC rather than a decrease. The causes of this decrease 

are, to date, unclear. However, this pattern might respond to a reduction 

of terrigenous DOC input from forest hillside as a response to a reduction 

of flushing episodes. 
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� DOC concentration and dynamics in Fuirosos is strongly related to 

discharge and to the length of dry episodes. Firstly, drought duration 

regulates DOC temporal dynamics (expressed as dDOC/dt) during 

rewetting and the beginning of wet periods (October–December). 

Secondly, discharge oscillations explain up to 50% of total DOC 

variability during the wet period. Noticeably, the weight of discharge 

increased significantly over the years.  

� Finally, very few small streams are the subject of long-term and high-

frequency biogeochemical monitoring. Therefore, little is known about 

the DOC–discharge response in small streams. However, the DOC 

flushing rate (expressed as dDOC/dQ) in Fuirosos is one of the highest 

recorded in small semi-pristine streams worldwide. 

Chapter 3: Hydrological conditions regulate dissolved organic 

matter quality in an intermittent headwater stream. From drought 

to storm analysis. 

� Most DOM properties were strongly related to discharge, revealing the 

input of allochthonous, degraded, aromatic, humic and large-molecular 

DOM under high flow conditions. However, these relationships 

disappeared or were reversed during drying and had extreme values in 

rewetting periods. 

� At the storm event scale, DOM–Q hysteresis was highly heterogeneous, 

especially in their rotational pattern, but storm magnitude appeared to 

be an important driver for ∆C, coupled to antecedent hydrological and 

biogeochemical conditions.  

� For a short time, DOC flushing was partially inhibited by the magnitude 

of the previous storm episode, and aromatic DOM flushing was more 

marked under low pre-event base flow conditions.  
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� With regards to a longer time interval, the time elapsed since the 

previous summer drought modulated the origin of the DOM flushed 

during storms, from an accentuated allochthonous source during 

rewetting to slightly more autochthonous sources during the successive 

drying. 

� DOM–Q responses during storm events did not show a clear seasonal 

pattern. Longer and higher-frequency temporal monitoring is needed to 

capture sufficient events from each hydrological period. 

Chapter 4: Response of DOM dynamics in two headwater streams 

with contrasting hydrological regimes 

� The DOM in the intermittent Mediterranean stream studied here 

(Fuirosos) was significantly more concentrated than in the perennial 

Alpine stream (Oberer Seebach), and also more terrigenous (lower 

FI), more degraded (lower BIX), more aromatic (higher SUVA) and 

more humified (higher HIX). 

� Most of the DOM properties showed a clear relationship with 

discharge and the sign of the global response was identical in both 

streams. However, discharge was a more robust predictor of DOM 

variability in Oberer Seebach than in Fuirosos. In fact, low flow and 

rewetting periods in Fuirosos introduced considerable dispersion 

into the relationship. During snowmelt in Oberer Seebach, the 

sensitivity to discharge also decreased or disappeared. 

� The magnitude of the storm events (∆Q) in Fuirosos significantly 

drove the changes in DOC, FI, BIX and SUVA. This suggests that 

DOM patterns were essentially associated with the occurrence of 

storm episodes in Fuirosos. In contrast, in Oberer Seebach, all the 

qualitative DOM properties were unrelated to ∆Q which only 

significantly explained the change in DOC. While storms were 
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behind the DOC oscillations, DOM quality change in Oberer 

Seebach was more closely coupled to base flow conditions. 

� Finally, the biogeochemical analysis of two hydrologically different 

headwater streams motivated me to speculate concerning the impact 

of hydrological regime alteration forced by atmospheric drivers on 

DOM quantity and properties. A higher frequency of floods would 

reinforce the link between DOM quality and discharge in the Alpine 

stream. In contrast, DOM in the Mediterranean stream would have 

a bimodal flood–drought character, due to the diminution of base 

conditions. 
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