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Abstract
Distributed Real-Time Media Processing refers to classes of highly distributed, delay no-tolerant

applications that account for the majority of the data traffic generated in the world today. Real-Time
audio/video conferencing and live content streaming are of particular research interests as technology
forecasts predict video traffic surpassing every other type of data traffic in the world in the near future.
Live streaming refers to applications in which audio/video streams from a source need to be delivered to a
set of geo-distributed destinations while maintaining low latency of stream delivery (as an example live
event coverage). Real-time conferencing platforms are application platforms that implement
many-to-many audio/video real-time communications. Both of these categories exhibit high sensitivity to
both network state (latency, jitter, packet loss, bit rate) as well as stream processing backend load profiles
(latency and jitter introduced as Cloud processing of media packets). This thesis addresses enhancing
real-time media processing both at the network level parameters as well as Cloud optimisations.

In this context we investigated whether network resources could be controlled at the service level in
order to increase network efficiency and performance, as well as quantifying the impact of the shared
Network resource to Service quality. Shared network resources can negatively impact cloud service
performance and thus by optimising or trading network resources can enhance Cloud service performance.
This potential performance degradation is due to unregulated shared Network infrastructure (bandwidth
resource allocation not aware of performance and Service Level Objectives (SLO). By mediating Network
bandwidth through predictive control, we enable better usage of the available network resources and fewer
SLO violations, achieving an increased system stability by at least a factor of 2.

The Access Networks (AN) (edge, core network) of ISPs, Carriers and Community Networks have no
general purpose cloud infrastructure, while Internet Resource Providers provide on demand Cloud
resources. We find an opportunity for the unification of the resources inside an AN and outside in order to
provide a unified cloud offer through Cloud Federation and provide service mobility toward the users in
order to optimise locality. This research work provides a novel hybrid Network and Federated Cloud
architecture which provides an extended network infrastructure with a large scale Cloud deployment,
directly incorporating it into the Network infrastructure. The novel Multi-Cloud architecture enables
services to trade between locality to user or run-time performance thus optimising for latency toward
optimal resource allocation for real-time applications.

To optimise latency in live streaming applications a novel self-managed Multi-Cloud overlay
algorithm was proposed based on gradient topology in which each cloud for a stream broadcasting
application optimises client proximity to the source. The application model is separated in a two layer
design, the multi-cloud delivery back-end and the stream clients. The self-regulated gradient back-end
minimises traffic load by creating a minimum spanning tree through the clouds that is used for the stream
routing. The proposed algorithm has very fast convergence rate on large scale Cloud deployments, and is
not effected by Cloud resource churn as well as providing increased resiliency of the live stream.

In this work we provide media quality analysis and enhancement of real-time Cloud stream
forwarders, as well as allocation strategies to enhance service level performance of Web Real-Time
Communication platforms. Media quality patterns are strongly influenced by Cloud processing
performance, thus by tweaking this aspect we can control media quality. In particular we empirically
demonstrate that as session sizes increase simulcast outperforms single-layer encoding. Additionally we
introduce a stream allocation algorithm to minimise load spikes on Cloud stream forwarders and compare
the behaviour of various stream allocation policies. With only minimal information and single server
session allocation requirement, the minimal load allocation policy performs quite better than other
Rotational, or Static Threshold based algorithms.

Keywords: Multi-Cloud, Geo-Distribution, Live Streaming, Locality optimisation, Multicast, Multi-
Cloud Overlay, Cloud Federation, Web Real-time Communications, WebRTC-RTCWEB, Media Quality



Resumen
El procesamiento de medios en tiempo real distribuido se refiere a clases de aplicaciones altamente distribuidas,

no tolerantes al retardo, que representan la mayoría del tráfico de datos generado en el mundo actual. Las conferencias
de audio y video en tiempo real y la transmisión de contenido en vivo tienen especial interés en investigación, ya que
la prospectiva tecnológica estima que el tráfico de video supere a cualquier otro tipo de tráfico de datos en el futuro
cercano. La transmisión en vivo se refiere a aplicaciones en las que flujos de audio/vídeo de una fuente se han de entregar
a un conjunto de destinos en lugares geográficos diferentes mientras se mantiene baja la latencia de entrega del flujo
(como por ejemplo la cobertura de eventos en vivo). Las plataformas de conferencia en tiempo real son plataformas
de aplicación que implementan comunicaciones de audio/video en tiempo real entre muchos participantes. Ambas
categorías presentan una alta sensibilidad tanto al estado de la red (latencia, jitter, pérdida de paquetes, velocidad de
bits) como a los perfiles de carga de la infraestructura de procesamiento de flujo (latencia y jitter introducidos durante
el procesamiento en la nube de paquetes de datos multimedia). Esta tesis trata de mejorar el procesamiento de datos
multimedia en tiempo real tanto en los parámetros de nivel de red como en las optimizaciones en la nube.

En este contexto, investigamos si los recursos de la red se podían controlar a nivel de servicio para aumentar la
eficiencia y el rendimiento de la red, así como cuantificar el impacto del recurso compartido de la red en la calidad del
servicio. Los recursos de red compartidos afectan el rendimiento del servicio en la nube y, por lo tanto, optimizando
o intercambiando recursos de red pueden mejorar el rendimiento del servicio en la nube. Esta posible degradación del
rendimiento se debe a la infraestructura de red compartida no regulada (la asignación de recursos de ancho de banda no
es consciente de los objetivos del acuerdo de nivel de servicio (SLO) y de comportamiento). Gestionando el ancho de
banda de la red a través de control predictivo, permitimos un mejor uso de los recursos de red disponibles y menores
violaciones de SLO, logrando una mayor estabilidad del sistema por al menos un factor de 2.

Las redes de acceso (AN) (extremo, red principal) de los ISP, transportistas y redes comunitarias no tienen una
infraestructura de nube de propósito general, mientras que los proveedores de recursos de Internet proporcionan bajo
demanda recursos de la nube. Encontramos una oportunidad para la unificación de los recursos dentro de un AN y fuera
con el fin de proporcionar una oferta de nube unificada a través de una federación de nubes y proporcionar movilidad del
servicio hacia los usuarios para optimizar la localidad. Este trabajo de investigación proporciona una nueva arquitectura
de red híbrida y nube federada que proporciona una infraestructura de red extendida con un despliegue en nube a gran
escala, incorporándolo directamente a la infraestructura de red. La nueva arquitectura multi-nube permite a los servicios
llegar a un compromiso entre localidad respecto al usuario o el rendimiento en tiempo de ejecución optimizando así
para latencia para conseguir la asignación óptima de recursos de aplicaciones en tiempo real.

Para optimizar la latencia en las aplicaciones de transmisión en vivo se propuso un nuevo algoritmo de
superposición de multi-nube autogestionado basado en una topología de gradiente en la que cada nube de una
aplicación de transmisión de flujos optimiza la proximidad del cliente a la fuente. El modelo de aplicación se separa en
un diseño de dos capas, el back-end de entrega multi-nube y los clientes de flujo. El backend de gradiente
autorregulado minimiza la carga de tráfico creando un árbol de expansión mínimo a través de las nubes que se utiliza
para el enrutamiento de cada flujo. El algoritmo propuesto tiene una tasa de convergencia muy rápida en los
despliegues de nube a gran escala, y no resulta afectado por la rotación de recursos de la nube, así como proporciona
una mayor estabilidad de la transmisión en vivo.

En este trabajo ofrecemos un análisis de calidad de los medios de comunicación y mejoras de los emisores de
flujo en la nube en tiempo real, así como estrategias de asignación para mejorar el rendimiento de nivel de servicio
de las plataformas de comunicación de Web en tiempo real. Los patrones de calidad de los medios están fuertemente
influenciados por el rendimiento del procesamiento en la nube, y por lo tanto, al ajustar este aspecto, podemos controlar
la calidad de los medios. En particular, demostramos empíricamente que a medida que los tamaños de sesión aumentan,
la difusión simultánea supera la codificación de capa única. Además, introducimos un algoritmo de asignación de flujo
para minimizar los picos de carga en los retransmisores de flujos en la nube y comparamos el comportamiento de
varias políticas de asignación de flujos. Con la mínima información y el requisito de asignación de sesión de un único
servidor, la política de asignación de carga mínima se comporta bastante mejor que otros algoritmos basados en un
umbral rotativo o estático.



Sammanfattning
Distribuerad realtidshantering av mediadata syftar på klasser av starkt distribuerade tillämpningar som inte

tolererar fördröjningar, och som utgör majoriteten av datatrafiken som genereras i världen idag.
Audio/video-konferenser i realtid och överföring av innehåll “live” är av speciellt intresse för forskningen eftersom
teknikprognoser förutser att videotrafiken kommer att kraftigt dominera över all annan datatrafik i den nära framtiden.
“Live streaming” syftar på tillämpningar i vilka audio/video strömmar från en källa och behöver distribueras till en
mängd av geografisk distribuerade destinationer medan överföringen bibehåller låg latens i leveransen av det
strömmade datat (som ett exempel kan nämnas “live”-täckning av händelser). Konferensplattformar för realtidsdata är
tillämpningsplattformar som implementerar realtidskommunikation av audio/video-data av typen “många-till-många”.
Båda dessa kategorier uppvisar hög känslighet för såväl nätverkets tillstånd (latens, jitter, paketförluster, bithastighet)
och lastprofiler av ström bearbetning “back-end” (latens och jitter introducerat som Cloud-hantering av
mediadatapaket). Denna avhandling adresserar förbättringar inom realtidshantering av mediainnehåll både med
avseende på nätverksnivåns parametrar och optimeraringar för molninfrastrukturen.

I detta sammanhang har vi undersökt huruvida nätverksresurserna kan kontrolleras på servicenivån i syfte att öka
nätverkets effektivitet och prestanda, och även att kvantifiera påverkan av den delade nätverksresursen på
servicekvaliteten. Delade nätverksresurser påverkar molntjänstens prestanda och dessa kan genom en optimering eller
handel med nätverksresurser förbättra molntjänstens prestanda. Denna potentiella prestandadegradering beror på en
oreglerad delad nätverksinfrastruktur (allokeringen av bandbredd är inte medveten om prestanda och mål för
servicenivån). Genom att mediera nätverkets bandbredd genom prediktiv kontroll, möjliggör vi ett bättre utnyttjande
av de tillgängliga nätverksresurserna och en lägre grad av avvikelser mot SLO, vilket leder till en ökad stabilitet med
åtminstone en faktor 2.

Accessnätverken (AN) (edge, kärnnätverk) hos ISP, bärare och lokala nätverk har ingen generell
molninfrastruktur, medan s.k. “Internet Resource Providers” erbjuder resurser för molntjänster “on demand”. Vi ser en
möjlighet till ensande av resurserna inuti ett AN och utanför i syfte att erbjuda ett samlat molntjänsterbjudande genom
s.k. “Cloud Federation” och erbjuder tjänstemobilitet för användarna för att optimera lokaliteten. Denna
forskningansats erbjuder ett nytt hybrid nätverk med Federated Cloud arkitektur vilken ger en utvidgad
nätverksinfrastruktur med en storskalig användning av molntjänster, som direkt inkorporerar denna i
nätverksinfrastrukturen. Den nyskapande “Multi-Cloud”-arkitekturen möjliggör för tjänster att balansera lokalitet för
användaren mot run-time-prestanda och därigenom optimera för latens mot optimal resursallokering för
realtidstillämpningar.

För att optimera latensen i “live streaming”-tillämpningar föreslås en nyskapande självstyrd
“multi-Cloud-overlay”-algorithm baserad på gradienttopologi i vilken varje moln för en tillämpning inom “stream
broadcasting” optimerar klientens närhet till källan. Tillämpningsmodellen separeras i en tvålagersdesign,
“multi-cloud delivery back-end” och “stream clients”. Denna självreglerande gradientbaserade “back-end” minimerar
trafiklasten genom att skapa ett minimalt spännande träd genom molnen som används för routing av strömmarna. Den
föreslagna algoritmen har en mycket snabb konvergenshastighet vid större moln, och påverkas inte av “churn” hos
molnresursen liksom att den erbjuder ökad motståndskraft hos “live”-strömmen.

I detta arbete erbjuder vi mediakvalitetsanalys och förstärkning av realtidsmolnets “forwarders”, liksom även
allokeringsstrategier för att förstärka servicenivåprestanda hos “Web Real-Time Communication”-plattformar.
Mediakvalitetsmönster påverkas kraftigt av molnets bearbetsningsprestanda, och således kan vi genom att påverka
denna aspekt kontrollera mediakvaliteten. Specifikt demonstrerar vi empiriskt att efterhand som sessionsstorlekarna
ökar, så utklassar simulcast enlagersinkodning. Dessutom introducerar vi en strömallokeringsalgoritm för att minimera
“load spikes” hos “Cloud stream forwarders” och jämför beteendet hos olika strömallokeringspolicys. Med enbart
minimal information och allokeringsbehoven hos en enskild serversession beter sig den minimala
lastbalansallokeringspolicyn tydligt bättre än andra “rotational”- eller “static threshold”-baserade algoritmer.





Acknowledgments

This work was done and partially funded by the framework of the Erasmus Mundus
Joint Doctorate in Distributed Computing (EMJD-DC) from the Education, Audiovisual
and Culture Executive Agency (EACEA) of the European Commission under FPA 2012-
0030, and Spanish government under TIN2013-47245-C2-1-R. A special mention is for
Tokbox Inc. a Telefónica company, for funding the last part of this research work, and
providing the testing environment and underlying technology to build on.

First I would like to extend my special thanks to my primary supervisors Leandro
Navarro and Vladimir Vlassov, for their patient guidance, constant feedback,
indispensable encouragement and unconditional support throughout this work.

My secondary supervisor Seif Haridi, for his constant presence and valuable insight.
My advisors at Ericsson Dura, Magnus Molin and Simona Toma for introducing me to the
complexity of Carrier Network architecture. My advisor at TokBox a Telefónica Company,
Òscar Divorra Escoda for the continuous support and for the future collaboration.

Thankful for their insight and the impact they provided to my research.
Thomas Sjöland, Sandra Gustavsson Nylén for the support throughout my PhD studies

at UPC and KTH.
To my family, the people that have seen me grow and have always been there: Saimir,

Rrema, Bukurie, Flutura, Bardha, Neta.
For the people who were there to push me past bad moments and to savor the good

ones, my brothers Alden and Ergys, my dearest friends Miki and Keti.
Special thanks to Sebastian, Rafaela and Sebastian for making Spain feel like my

second home.

At last to my dear Aurora: for the help, the support, and unconditional love! Glad to
have you in my life!

Vamis Xhagjika





Contents

1 Introduction 1
1.1. Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. General Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1. Federated and Multi Cloud . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2. Network Architectures . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3. Real-Time Streaming Applications . . . . . . . . . . . . . . . . . . 5

1.3. Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4. Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.5. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.6. Research Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.7. List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.8. Research Ethics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.9. Structure of Document . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Background 17
2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2. Cloud Computing and Inter-Clouds . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1. Deployment Models . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3. Carrier Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4. Mobile Cloud Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.5. Live Streaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.6. WebRTC Media parameters and Workloads . . . . . . . . . . . . . . . . . 24
2.7. General Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7.1. Control theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7.2. Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7.3. Time Series Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.7.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Related Work 29
3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2. BwMan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3. Structured Cloud Federations . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.4. Live Streaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



3.5. Web Real-Time Communications . . . . . . . . . . . . . . . . . . . . . . . 32
3.6. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Bandwidth Manager for Stream Processing Services in the Cloud 35
4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2. OpenStack Swift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3. Predictive Models of the Target System . . . . . . . . . . . . . . . . . . . 39

4.3.1. User-oriented Performance versus Available Bandwidth . . . . . . 40
4.3.2. Data Recovery Speed versus Available Bandwidth . . . . . . . . . 40

4.4. BwMan: Bandwidth Manager . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4.1. BwMan Control Work-flow . . . . . . . . . . . . . . . . . . . . . 42
4.4.2. Tradeoff Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.5. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.5.1. OpenStack Swift Storage . . . . . . . . . . . . . . . . . . . . . . . 43
4.5.2. Experiment Scenarios . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5.3. Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.5.4. User-centric Workload Experiment . . . . . . . . . . . . . . . . . 45
4.5.5. System-centric Workload Experiment . . . . . . . . . . . . . . . . 45
4.5.6. Policy-based Tradeoff Scenario . . . . . . . . . . . . . . . . . . . 46

4.6. Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 Structured Cloud federation for Carrier and ISP infrastructure 49
5.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.1. General Cloud Infrastructure . . . . . . . . . . . . . . . . . . . . . 52
5.2.2. Cloud Federation . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.2.3. Carrier and ISP to the Cloud . . . . . . . . . . . . . . . . . . . . . 54

5.3. Carrier and ISP System Topology . . . . . . . . . . . . . . . . . . . . . . 55
5.4. Structured Multi-Cloud Architecture . . . . . . . . . . . . . . . . . . . . . 56

5.4.1. General Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4.2. Bandwidth Control . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4.3. Service Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5. Federation Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.5.1. Federation Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.5.2. Transparent Federation Model . . . . . . . . . . . . . . . . . . . . 60
5.5.3. Non-Transparent Federation Model . . . . . . . . . . . . . . . . . 61
5.5.4. Storage and Identity . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.5.5. Final remarks on federation dynamics . . . . . . . . . . . . . . . . 62

5.6. Real Implementation on Carrier Networks . . . . . . . . . . . . . . . . . . 62
5.7. Enabled and Enhanched Applications . . . . . . . . . . . . . . . . . . . . 63

5.7.1. Internet of things . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.7.2. Mobile cloud Computing . . . . . . . . . . . . . . . . . . . . . . . 64
5.7.3. Third party applications . . . . . . . . . . . . . . . . . . . . . . . 64

5.8. Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 64



6 Enhancing Real-Time Applications by means of Multi-Tier Cloud Federations 67
6.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2. Stream computing applications . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2.1. System model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2.2. Cloud Federations . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2.3. Stream Computing (Live Streaming) . . . . . . . . . . . . . . . . . 71
6.2.4. Overlays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3. Federation model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.3.1. Federation and System Model . . . . . . . . . . . . . . . . . . . . 72
6.3.2. Federation Components . . . . . . . . . . . . . . . . . . . . . . . 73
6.3.3. Federation Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.4. General Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.4.1. Software Architecture . . . . . . . . . . . . . . . . . . . . . . . . 77
6.4.2. Overlay Construction, Maintenance and Resource Scaling . . . . . 78
6.4.3. Limited spanning depth . . . . . . . . . . . . . . . . . . . . . . . 79

6.5. Case study of enhanced streaming algorithm . . . . . . . . . . . . . . . . . 80
6.5.1. Enhanced live streaming algorithm evaluation . . . . . . . . . . . . 80

6.6. Conclusion and future work . . . . . . . . . . . . . . . . . . . . . . . . . . 82

7 Media Quality-Centric Stream Allocation and Related Patterns for a
WebRTC Cloud Architecture 85
7.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.2. Load Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.3. Load Balancing Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.4. Media Bit Rate Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.4.1. Bit Rate Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.4.2. Bit rate and Load correlation . . . . . . . . . . . . . . . . . . . . . 94

7.5. Non/Simulcast impact on quality . . . . . . . . . . . . . . . . . . . . . . . 95
7.6. Monitoring and System Architecture . . . . . . . . . . . . . . . . . . . . . 98
7.7. Load balancing evaluation and experimentation . . . . . . . . . . . . . . . 100

7.7.1. Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
7.7.2. Establishing a Baseline . . . . . . . . . . . . . . . . . . . . . . . . 101
7.7.3. The Minimum Load Algorithms . . . . . . . . . . . . . . . . . . . 102
7.7.4. Round Robin and Static Threshold . . . . . . . . . . . . . . . . . . 104

7.8. Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . 105

8 Conclusions and Future Work 109
8.1. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
8.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A Building a Cloud Simulator for WebRTC workloads 113
A.1. CloudSim Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
A.2. WebRTC Stream Simulator . . . . . . . . . . . . . . . . . . . . . . . . . . 115
A.3. Cloud Broker Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 117



Bibliography 119



List of Figures

1.1. Global Mobile traffic projection 2 015-2 021 [1] . . . . . . . . . . . . . . . . . 3
1.2. Global expected Video Traffic 2 015-2 021 [1] . . . . . . . . . . . . . . . . . . 7

2.1. Openstack Infrastructure as a Service [2] . . . . . . . . . . . . . . . . . . . . 19
2.2. Inter-Cloud Scenario [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3. 5G Network Architecture [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4. Mobile Cloud Computing Architecture [5] . . . . . . . . . . . . . . . . . . . 23
2.5. Microsoft Azure Live Streaming Architecture [6] . . . . . . . . . . . . . . . . 24
2.6. WebRTC Software Stack [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.7. Negative Feedback Loop control state . . . . . . . . . . . . . . . . . . . . . . 26

4.1. Regression Model for System Throughput vs. Available Bandwidth . . . . . . 39
4.2. Regression Model for Recovery Speed vs. Available Bandwidth . . . . . . . . 41
4.3. MAPE Control Loop of Bandwidth Manager . . . . . . . . . . . . . . . . . . 42
4.4. Control Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.5. Throughput under Dynamic Bandwidth Allocation using BwMan . . . . . . . . 45
4.6. Data Recovery under Dynamic Bandwidth Allocation using BwMan . . . . . . 46
4.7. Throughput of Swift without BwMan . . . . . . . . . . . . . . . . . . . . . . 46
4.8. Throughput of Swift with BwMan . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1. Cloud Infrastructure Manager structure . . . . . . . . . . . . . . . . . . . . . . 53
5.2. High Level Provider Network Topology . . . . . . . . . . . . . . . . . . . . . 55
5.3. Extended Infrastructure and Federation Model . . . . . . . . . . . . . . . . . . 57
5.4. Carrier Network Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.1. Extended Cloud Infrastructure and Cloud Federation Model . . . . . . . . . . . 71
6.2. Layered Federation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3. Layered Federation Model Properties . . . . . . . . . . . . . . . . . . . . . . 75
6.4. Layered Federation Model Instance . . . . . . . . . . . . . . . . . . . . . . . 77
6.5. Simulated multi-cloud infrastructure . . . . . . . . . . . . . . . . . . . . . . . 81
6.6. Case1: Convergence for Scaling Micro-Clouds . . . . . . . . . . . . . . . . . 82
6.7. Case2: Convergence for Scaling Public Cloud Fabric . . . . . . . . . . . . . . 83

7.1. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.2. Data Center/Server Load Distribution 7days period . . . . . . . . . . . . . . . 90



7.3. Data Center total load lag plot 1month period . . . . . . . . . . . . . . . . . . 91
7.4. Max Loads in test servers in 2min Interval . . . . . . . . . . . . . . . . . . . . 93
7.5. Subscribers Probability Distribution Functions . . . . . . . . . . . . . . . . . . 94
7.6. 720p Publisher Probability Distribution Functions . . . . . . . . . . . . . . . . 95
7.7. Bit rate and Respective Loads over time . . . . . . . . . . . . . . . . . . . . . 96
7.8. Average Bit rate for #Subscribers/Publisher . . . . . . . . . . . . . . . . . . . 97
7.9. Percent improvement AVG over MIN bit rate for #Subs/Pub . . . . . . . . . . 97
7.10. Session size distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.11. Comparison of Original Data with Simulation . . . . . . . . . . . . . . . . . . 102
7.12. Comparison with Minimum Load Algorithm . . . . . . . . . . . . . . . . . . . 103
7.13. Comparison with Round Robin Algorithm . . . . . . . . . . . . . . . . . . . . 105
7.14. Comparison with Static Threshold Algorithm Variants . . . . . . . . . . . . . . 106

A.1. CloudSim architectural overview [8] . . . . . . . . . . . . . . . . . . . . . . . 114



Chapter 1

Introduction

1.1. Research Questions

The finality of this work is to develop empirical methods to enhance real-time stream
processing applications with a focus on real-time media processing applications. More
specifically live streaming and real-time conferencing by means of Multi-Clouds and Cloud
Federation. In order to achieve the desired enhancements in performance metrics of real-
time applications, we have investigated various interesting research problems related to
both Cloud and Network architectures as well as real-time services. We briefly introduce
some of the research questions that were tackled in this doctoral work and the methodology
used to derive and evaluate such results.

Quality of service can degrade when multiple Cloud Services or multiple Resource
Providers share the same network infrastructure, this is due to the Network architecture not
being aware of application level objectives. In particular real-time applications have very
strict performance objectives due to their real-time nature and even the slightest service
level objective violation would impact service quality. Can we enhance service quality
by controlling the shared network infrastructure parameters? The answer to such question
is a positive one. By controlling network bandwidth at the edges of the service we can
enhanced application performance for services sharing the same Network infrastructure.
This leads to optimized service performance, and at the same time lowers service level
objective violations. We conducted an empirical study on the performance of a distributed
object store (OpenStack Swift), and exploited patterns in network bandwidth allocation to
enhance service stability. Based on the data that was gathered from our Cloud test-bed,
we provide a predictive network bandwidth manager that arbitrates network bandwidth
between the nodes of distributed services. The proposed network bandwidth manager was
evaluated on the Cloud test-bed and showed a gain in system stability of at least 2 times
higher than the uncontrolled system.

Performance of real-time media stream processing applications is much impacted by
network conditions between the clients and the Cloud service. Locality to the user is of
utmost importance as it ensures better connectivity and enhanced locality leads to lower
latency overheads. To enhance the quality and performance of such applications, the
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services need to be highly dynamic and allocated close to the end user. Can existing large
scale network deployment be modified to enhance service locality? Can Cloud services
transparently be allocated in close proximity to Cloud application users? To provide
answers to such questions we provide a unified Cloud architecture that enables a new
Cloud model where Infrastructure providers (such as Telecom, ISPs, and Community
Clouds) can become a Resource Provider for cloud services with a unified interface. This
in terms improve services by enabling them to move closer to the users and lower service
latency. Structural analysis was conducted between existing Cloud and Network
Infrastructure Providers in order to create a novel hybrid Cloud/Network model to
enhance service locality and provide a hierarchical Cloud architecture. We provide an
architectural blueprint for a novel hybrid and hierarchical Cloud-Network model which
enables large scale deployments, up to one hop away from the user.

This hybrid Cloud-Network architecture provides an interesting case toward
optimizing applications that are impacted by latency. Such applications can use enhanced
locality in order to minimize stream latency thus improve service quality. Can we improve
live streaming applications, by using such novel Cloud model? Can we support large scale
broadcasts, with clients in a multitude of geo-locations? Toward such providing such
enhancements, in this work we provide a self-organized Inter-Cloud overlay algorithm to
allocate and route live stream sessions though a large scale Cloud architecture. The
proposed solution builds a gradient topology to optimize distribution path length of the
Inter-Cloud streams and provides various benefits to known approaches. We conduct an
study through simulation in which we verify that the overlay converges very fast and is not
impacted by large scale. In fact we prove that the convergence of the overlay is not
impacted by the scale of growth of neither the clouds located at the edges of the Network
nor the clouds on the Internet outside of the Access Network.

Another case of real-time services that are hosted and run on Cloud environments are
real-time live conferencing applications. The backends of real-time conferencing systems
should handle a high number of communication streams while maintaining minimum
processing latency. This processing latency would be propagated to the media stream and
violate the real-time constraints. What is the impact of Cloud processing and stream
routing on the media quality? Can we enhance media quality by lowering backend
maximum server load? We conducted a study to discover patterns between media quality
and Cloud service load, and whether we can improve quality of service by exploiting such
patterns. The study (an empirical approach), was conducted by sampling passive client
measurements of a Web Real-Time Communication (WebRTC) platform. We discover
embedded patterns between load and media quality as well predictive patterns of backend
loads. Furthermore we constructed a Cloud simulator in order to experiment on different
stream allocation policies to minimize the impact of Cloud service load to media quality.
The proposed stream allocation algorithm provides improved service quality by lowering
the number of SLO violations.
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1.2. General Introduction

The present work on this doctoral thesis is based on the notion of multi-cloud
federations, architectural challenges and applications. According to Informa Telecom &
Media annual report of 2012 the total number of deployed macro and micro cells for
Telecom (Carrier) Providers worldwide ranges in the order of 6 million (6 069 224)
microcells and 5 925 974 of macro cells deployed. The locations of deployment for such
cells provide only network related services of connectivity but may very well be extended
to accommodate a massively distributed cloud environment. This key points is where the
cloud can be deployed to provide user proximity of up to one hop away from the End
Users. Fig. 1.1 from Ericsson Mobility Report 2016 [1], provides evidence of enormous
growth in mobile traffic as compared to other sources of traffic by a factor of 12x, thus
surpassing every other source.

Figure 1.1 – Global Mobile traffic projection 2 015-2 021 [1]

Statistics presented in this report, provide a clear opportunity to provide cloud services
close to end users, and that are optimized both for mobile clients as well as for different
Access Network topologies. At present the challenges in multi-data center clouds are
focused on autonomous resource trading, interoperability and various different
architectural aspects like vendor-lockin, etc. Previous work in cloud federations is mostly
based on such challenges namely on federation architectures and resource trading, thus for
the doctoral thesis work we selected a bit of an orthogonal direction. This thesis considers
the benefits of merged in a symbiotic relationship Multi-Cloud Architectures and the
underlying Access Network architecture to provide performance enhancements in terms of
latency and stream quality for live and real-time streaming applications.
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Optimization of such real-time conferencing/streaming applications conforms nicely
with a distributed environment having a highly decentralized, massive scale, cloud
architecture that can provide performance and cost benefits. In general real-time streaming
applications are relatively state-less applications but are subject to not having great
tolerance to stream delays. Such streaming applications are impacted by network quality,
user proximity, as well as the cloud backend performance. The fact that a relatively small
application state is needed leads to small footprint in application environment, which can
be relocated without high overhead. In this work I exploit the highly distributed nature of
today’s Access Networks in order to provide a novel Cloud and Network hybrid
environment that provides application developers trade-off opportunities between locality
and performance in order to optimize streaming applications.

1.2.1. Federated and Multi Cloud

Applications that reach a large scale both in terms of user workload and
geo-distribution have a need to scale beyond the bounds of a single data center in order to
optimize Service Level Objectives (SLO), costs, or proximity/latency toward the end
users. When an application spans multiple management domains such architecture is
considered to be a Inter-Cloud deployment, for a more concrete definition of the Cloud
model taxonomy we refer to [9]. These environments spanning multiple Cloud domains
enable applications to augment geo-distribution and provide better coverage to
applications that have a highly diverse and distributed usage pattern. In the case of live
streaming/conferencing applications, the end users using the Cloud service are sparse
allover the world and interact with each other through audio/video or augmented reality
means. In such a scenario of having a highly distributed application, resources need to be
carefully distributed in order to optimize cost and user experience (audio/video stream
latency, bit rate). A centralized solution would not cover all the application needs as users
with closer network proximity to the data center would perceive better quality than users
of further distance.

Inter-Cloud deployment provides not only benefits in terms of locality to user,
resource availability but as well as in terms of cost optimization. By having multiple
providers applications can be made to dynamically scale in or out and thus manage
run-time costs. In the contest of streaming applications not only user locality is of utmost
importance but also network usage. Such applications are mostly of the type of
CPU/Network eager applications and the operational costs are contributed in general from
CPU/Network utilization. If the applications would not be distributed between different
cloud providers the single networked backbone of the data center would be a performance
bottleneck, as well as the main cost of running the service.

In this thesis we will explore a novel hybrid architecture that merges the concept of a
Inter-Cloud into the provider networks such that networked applications can be isolated to
a certain degree of locality and thus lowering network traffic on the network backbone as
well as providing shortest routes to Cloud-based stream forwarders. The real-time nature
of streaming applications demands for better Inter-Cloud routing of application streams,
as well as in-Cloud load management of resources so that the cloud forwarder processes
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each stream in the shortest possible amount of time. The novel hybrid Cloud-Network
architecture provides applications with the ability to trade-off between performance and
user proximity as close as one hop away.

1.2.2. Network Architectures
Network architecture and the relation with Cloud architectures sharing the same

network resources is a key actor in this work. The kind of networks which were accounted
for are ISP and Carrier network. ISPs and Carriers share a lot of similarity in their
network construct and also provide a sole architectural entity over which we build a highly
distributed Cloud environment that permits to integrate Cloud and Network in one. Highly
distributed Clouds can be used to optimize applications for user locality and also at the
same time optimize backend network usage. The key benefits of a networked
infrastructure such as ISP or Carrier providers are: high geo-distribution of compute
resources, large client footprint, and large scale.

By integrating a Cloud architecture that spans in all of the points of presence of these
networks, the resulting massive-scale Cloud shows the same benefits as the underlying
network. Not only the cloud can benefit by such large scale distribution and presence, but
also applications gain much more dynamic behaviour in terms of resource distribution. In a
general high level view of a ISP and Carrier architecture we see the following components
which in our novel architecture design are enhanced with cloud enabled hardware/software:

1. Internet Facing Gateway Are point of interconnection between different providers
or the open Internet.

2. Core Network Is the main routing and accounting facility for a provider.

3. Points of Presence Are highly geo-distributed points of presence that are used for
client inter-connectivity.

By augmenting this key network points with cloud enabled environments we can have a
massive-scale cloud computing platform which presents augmented user locality as well
as resource availability. We analyse network performance not just in the context of the
presented novel architecture but as well as in the view of commonly shared resource by
multiple cloud services. By mediating network resources we can derive the impact they
have on cloud applications as well as the symmetrical case in which Cloud choices
discriminate network performance of specific networked applications. This property is
even more evident in the case of real-time media streaming applications which are very
sensitive to both Network and Cloud architectural choices.

1.2.3. Real-Time Streaming Applications
Real-time communication applications are of a specific type of highly distributed and

delay non-tolerant nature, these applications provide media communication between
clients in real-time. The delay non-tolerant aspect of such applications puts stringent
performance objectives, and do not permit the deployment of caches or other buffering
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mechanisms for enhanced media quality. In this work we consider both a generalized view
of live streaming as well as a more concrete implementation of real-time communications
by examining stream allocation policies for Web Real-Time Communication technology
stack. Network performance and stream processing time (for activities of stream
forwarding or stream transcoding) have a big impact on the quality of media of such
architectures thus novel algorithms and stream allocation policies should be introduced. In
this work we analyze a WebRTC implementation and examine media quality in relation
with load parameter, which is defined in terms of streams per server or streams per
session.

WebRTC as a technology stack is well standardized [10] and implemented by the
majority of modern browsers (Google, Mozilla, Edge etc...). This series of protocols and
technology stacks have seen a wide adoption in live conferencing as well as live streaming
services. A real-time communications enabled architecture is highly distributed by design
and can be implemented as a P2P solution but as well as cloud based. In the scenario of a
cloud backend backed WebRTC implementation cloud servers are used as media relays
with software level forwarding and with/out media transcoding. Cloud based stream
forwarding implementations provide a big improvement over P2P in terms of upload
bandwidth but introduce Inter-Cloud distribution and application level routing concerns.

Live streaming applications can benefit by highly distributed cloud architectures, as
the small overhead permits to have a better resource allocation in order to move the
services closer to the users and thus improve media quality due to better network usage
and decreased latency. The presented novel hybrid Cloud-Network architecture part of this
work, provides the possibility for the application implementers to not only move resources
closer to a specific user, but as well in geographical key locations that provide the best
network performance for all participants in a live audio/video conference.

1.3. Research Goals

We present in this section the research goals that were the focus of the work towards
this PhD thesis. For each goal we have presented results in the form of conference papers
that tackle a specific problem from the goal pool. We rephrase here in a short and contained
way the research objectives previously defined in this chapter.

Regulation of shared network infrastructure: Multiple cloud services and resources
providers transparently sharing the same network infrastructure results in potential
performance degradation due to unregulated shared network infrastructure (bandwidth
resource allocation not aware of performance and service level agreement objectives).
This work contributes a machine learning control algorithm that is used by broker agents
to arbitrate bandwidth between end nodes.

Common network resource interface: In the current state of Access Networks (ISPs,
Telecom Providers and Community Clouds) the cloud is fragmented with allocatable
resources outside of the AN. The Access Networks (edge, core network) have no general
purpose cloud infrastructure, while Internet Cloud Providers (Resource Providers) provide
on demand cloud resources. Opportunity for unification of resources inside an AN and

6



1.3. RESEARCH GOALS

outside in order to provide a unified cloud offer through cloud federation. For this
objective there is a need of cloud infrastructure in the AN with a unified interface toward
Resource Providers such as the network operator becomes a box/resource provider (with
locality in box provision and open to deployment from any service providers). The hybrid
Cloud-Network architecture introduced in this work provides a multi-tier multi-cloud
federation in which services can be moved anywhere from the Internet to the Edges of a
AN in order to enhance locality or further towards public Clouds to enhance resource
performance.

Performance Optimization for application-level multi-cast streaming: Such
architecture introduces a clear case for optimization of resource selection according to
performance objectives of locality aware services. The unified cloud infrastructure of
Resource Providers enables service providers to trade-off over locality and performance,
through box/resource allocation. To make the case for such services, we see an
opportunity in providing a latency based optimization to one-to-many multi-casting for
any stream based service in need of such abstraction. The work contributes a distributed
algorithm, building a bounded depth multi-cast tree for software-level multi-casting.
Fig. 1.2. shows why such contribution impacts present state of Network Providers where
video traffic is projected to 70% of the whole data traffic by 2021.

Figure 1.2 – Global expected Video Traffic 2 015-2 021 [1]

A novel resource allocation and discovery model is needed in order to provide better
resource selection opportunities to service providers for service optimization. The model
should incorporate detailed service and network information, like user volume for a given
area, network congestion and capacity for a given part of the network, availability of cloud
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resources for such area and in turn such usage of the model would provide better
optimization of service performance metrics like reduced cost, reduced backbone traffic,
reduced user latency etc... The matter of providing a more refined model for resource
discovery, resource allocation and re-allocation in the proposed architecture will be the
object of further inquiry towards other service optimizations. Usage of the proposed
architecture and modifications of the model based on service needs could enable further
optimizations to existing and novel services to be deployed.

Toward this goal we have examined in the form of real-time media quality parameters
and load impact for WebRTC cloud based solutions. The main parameter of focus is bit-
rate as it is a direct indicator of stream quality. Different stream quality patterns came out
of our analysis that connect both quality and server loads. The study was not conducted on
the load patterns and scale of the streams allocated to a particular server but as well on the
impact of session size towards media quality. A minimal load algorithm was proposed for
the stream allocation in a data center and through an empirical study was demonstrated to
be sufficiently good at maintaining low operational max streams per machine.

We have demonstrated though big data analysis of stream parameters monitored
passively at the client, that as scale grows single layer video encoding does not perform as
well as simulcast. From the processed data we see a difference as high as 2x between the
average bit rate of sessions and the minimal bit rate of the same session between simulcast
and single layer encoding. This results makes simulcast the preferred way to deliver video
in a multiparty conference with more than 3 connected streams.

1.4. Research Methodology

This research work follows an empiric approach to tackling problems in Inter-Cloud
deployments of real-time applications such as live streaming and live conferencing and
optimization that lead to lower management overhead/latency as well as better resource
allocation algorithms. The research work includes as well big data analysis in exploring
possible performance and quality issues on distributed real-time communication scenarios.

In exploring the state-of-art Inter-Cloud environments such as Openstack[2, 11],
Community Clouds[12, 13, 14, 15], network architectures such as 3GPP based Mobile
Carriers[16], ISP network deployments and real-time communication backends, namely
TokBox real-time communication infrastructure in the web. I proposed through structural
analysis a novel cloud architecture that embeds Cloud within the Network infrastructure
and that provides additional benefits to application developers such as the possibility to
trade-off between locality and performance, as well as deploying cloud applications as
close as 1 hop to the targeted users. Once having identified such hybrid infrastructure
design I moved into real-time stream processing application scenarios that could benefit
from such architecture and optimized various aspects of such applications.

The selected applications were real-time stream processing applications, which have
low state overhead, while having stringent real-time constrains and no-delay tolerant
nature. These applications can benefit greatly by being deployed on vast scale and in close
user proximity as that lowers the latency that such applications exhibit toward the user.
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Challenges I came across in examining such deployments were at first a best effort
management of the underlying network shared by multiple cloud services. We proposed a
network bandwidth manager that arbitrates bandwidth between different cloud services at
the endpoints and thus can trade-off among them. The proposed broker lowers the number
of service quality violations and thus increases network efficiency. We used a real
deployment of a Cloud object store service to conduct measurements of both application
performance and network usage for different patterns of workloads. We trained a
regression model as a control mechanism for our network bandwidth broker and used real
experiments to validate the approach.

Other challenges that were encountered during such analysis was the complexity in
maintaining and managing a highly distributed Cloud deployment, to tackle such problem
a Sel-Managed Inter-Cloud Overlay was proposed for live streaming applications so that the
clouds participating in a stream broadcast self-arrange in a gradient topology with metric
distance to source. To verify such design, we provided simulation results that verify overlay
convergence, and low setup time. For this part of the analysis we implemented a discrete
event simulator for a Multi-Cloud environment, and used the simulator to run multiple
experiments. The simulation environment was written in Python and does not use active
threads to simulate Cloud entities. By using environment properties of the programming
language the entities are not active and as such CPU utilization does not impact the quality
of the results. The simulated results are congruent with results observed in the state-of-the-
art.

In exploring real-time communication applications and the impact of user-load on
media quality, we analyzed user traces from a live testing framework. By running big data
analysis frameworks and analysis software written by us to analyse time series data for
streams and sessions, we provide empirical evidence that different video coding
techniques and adaptive streaming technologies behave differently as session size grows.
Additionally we provide insight into temporal patterns in user load as well as an algorithm
for stream allocation. In order to compare the performance of this algorithm with the
state-of-art, we developed a Cloud simulator based on CloudSim[17] framework, over
which we can simulate different scenarios based on real user traces. Having such powerful
simulation tools it was possible to compare the load profiles of the different algorithms in
order to provide evidence supporting the provided algorithm.

1.5. Contributions

The research conducted in the context of this doctorate work was mainly focused on
cloud federations of a massive scale with the finality the enhancement of live streaming
applications and live conferencing systems. In this aspect we can separate the work into two
main categories, namely: architectural design for large scale federated cloud architectures
and live streaming delay no-tolerant application optimizations. As such this section will at
first introduce the architectural design contributions, and then continue with introducing the
distributed real-time communication applications and various related enhancements. Live
real-time conferencing and streaming applications, are relatively stateless applications but
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with extreme demand on latency objectives. Traditional techniques used to hide latency
such as buffering, or caching is not viable as both schemes imply that the stream at the
receiver will be lagged but continuous.

When studying current state-of-the-art deployments of Multi-Clouds and possible
network architectures toward a more decentralized Cloud, we realized a gap in knowledge
or of a standardized architecture for a massively scaled geo-distributed Cloud with
enhanced service latency. To improve over this gap in knowledge, we contribute a highly
distributed Multi-Cloud novel architectural blueprint, that enables the distribution of
Cloud applications in a standard and transparent way at crucial points of the network
infrastructure. This architecture presents a stable cloud federation in which services can
choose to trade between locality or performance in order to either diminish latency to the
user or augment resource needs towards higher performance needs. By geo-distributing
the cloud from the Internet, to the core network, and down to the points of presence of the
network (as far as 1 hop away from the user) we lower requirements for data centers in
terms of maintenance, energy, cooling etc... Such Cloud also is more resilient as each
Micro-Cloud is a autonomous entity, which can run independently of the federation
authority, thus loss of connectivity between the Micro-Clouds does not break local
running services. As the hybrid Cloud-Network architecture presents a Cloud which is
embed-ed in the network infrastructure, another perceived benefit is bandwidth usage of
services, which if routed intelligently between the micro clouds can optimize bandwidth
needs of the services. The novel Cloud architecture enables service placement at any part
of both Resource Providers and Network Providers thus enabling services to move closer
to the user in order to dynamically improve service latency. By improving Cloud service
latency we can have stronger media quality levels for distributed real-time stream
processing applications.

In BwMan, the Network Bandwidth Manager, we present a algorithmic approach in
which Network Resources can be arbitrated in order to stabilize Cloud service
performance. Considering real-time media stream processing applications, bit rate
(another form of bandwidth) is of utmost importance and directly impacts media quality.
BwMan uses a predictive MAPE control cycle and arbitrates bandwidth by tweaking
endpoint bandwidth capabilities. By using such self-management techniques we can
prioritize user-centric traffic (media streams) over system-centric traffic (accounting and
data replication) in order to maintain stream performance while slowing down on
non-functional data consumption. To verify our approach we apply the bandwidth
managing techniques to a distributed data store, treating different user-centric,
system-centric streams as different services sharing the same network infrastructure. It
permits us to trade between user performance and system maintenance needs in order to
favor one or the other. Even though the machine learning model is not a on-line model, it
performs well for the intended workloads. The control system of BwMan permits a
increase in system stability, at the level of 2x increase in system stability as compared to
the uncontrolled scenario. This paper permitted me to see a much deeper correlation
between the shared network resource and Cloud services. This duality of Cloud and
network can be exploited toward lowering latency for streaming applications and
conferencing systems. The following work builds on this notion to provide optimizations
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to such applications.
In order to best optimize latency of Cloud services, a highly distributed environment

providing resources in proximity of the users is needed. The extreme large scale of the
distributed environment presents challenges in optimizing and managing a highly
distributed Cloud infrastructure, not only for the geo-distribution scale and network
fluctuations but also for the scale of the cloud management layer involved. A centralized
solution would not be the best solution as message overhead for management would lower
service time and admission times for the services running of such cloud, as well as pose a
central point of failure and potential bottleneck. In case of live streaming and real-time
communications we are dealing with a delay no-tolerant scenario, as such novel
algorithms need to be implemented with lower management overhead. We introduce a
self-managed Inter-Cloud overlay, that builds a gradient like topology, in which the source
of the stream is the center of the gradient and the stream forwarding Clouds are arranged
in orders of increasing proximity to the source. The novel Inter-Cloud overlay algorithm
shows convergence rates of 8 - 14 communication cycles, and the same rate is shown as
the Inter-Cloud overlay grows from 100 to 10 000 Clouds taking part in the federation.
The algorithm approximates very closely the optimal path from source to destinations
while keeping a very low convergence time. The experiments were conducted by having a
varying number of Clouds that is far more inflated that what real scenarios are, this
contributes to further validate the algorithm.

This work further focuses in the impact of load patterns in a distributed Cloud-based
stream forwarder back-end in media stream quality for a WebRTC framework. Web
real-time communication is a standard that enables platform-agnostic audio/video
communications. The standard framework provides implementation guidelines for both
P2P and Cloud-based relayed communications. The Cloud relayed traffic in our work is
handled though Selective Forwarding Units (SFU) which implements software based
multi-casting and are deployed in the same Cloud or multiple ones. Each SFU can handle
a determined number of streams and as load increases for such distributed forwarders,
audio and video quality are impacted. We provide an empirical study of different video
encoding techniques (simulcast and single layer encoding) and compare them in terms of
scale impact toward bit rate of streams (bit rate of a stream measures the quality for a
given resolution). We demonstrate that, given large scale sessions, simulcast outperforms
single layer encoding, in terms of average to minimal bit rate in a session, by as much as a
factor of 2x. To minimize forwarding latency all streams that go to the same session need
to be scheduled to the same SFU as such the algorithms that can be used are limited. We
propose a minimal load server allocation policy with randomized minimal set, in order to
lower probability of consequent load spikes impacting the same SFU. We implemented a
Cloud simulator in order to simulate different state-of-the-art algorithms based on real test
traces. The evaluation of the algorithms shows that the proposed algorithm outperforms
the rest with a gain in max streams reached on server at levels 20%-50% less than the
other reference algorithms.
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1.6. Research Limitations

In this section we provide a view of research limitations that come with the provided
approaches developed in this work toward better multi-cloud infrastructures and enhanced
real-time media streaming applications.

The architecture design we provide in order to augment user locality and enable
application deployment as close as 1 hop to the user provides a very promising highly
distributed Cloud architecture. Nevertheless there are some shortcomings that need to be
addressed in order for this Cloud architecture to be realised. One such challenge is a
generic resource allocation scheme, as the closer resources are deployed to the user the
less available real resources we find. This property of the system permits to trade-off
between performance and locality, but if not well managed can lead to resource starvation.
Thus a prioritization based deployment algorithm could be used based on auctioning or
efficient time sharing for low power devices. A second limitation of the proposed hybrid
Cloud-Network architectural design is that according to the actual 3GPP standard for
mobile carriers, the client and the core Network (main routing facility) are connected
though direct encapsulated channel in a point-to-point fashion. This would directly cutoff
additional cloud based software to be deployed in the Base Station. This aspect can be
overcome through the use of Software Defined Networks substituting the point-to-point
link and giving traffic visibility to the Base Station. Additional mechanisms could be
based on deep packet inspection to bypass the lower level routing of data to the Cloud
enabled hardware in the Base Stations. A further limitation to be considered is that at the
moment even though this cloud architecture presents the best deployment of cloud at such
a scale, there exists no real deployment of such cloud infrastructure.

The network bandwidth manager BwMan, arbitrates bandwidth cloud services and
more specifically in the presented work for Distributed Object Store Swift[18, 19]. The
approach predicts load distribution in terms of bandwidth needs and arbitrates bandwidth
allocation between service endpoints. This approach permits arbitrating existing
bandwidth between endpoints but does not account for possible scaling mechanisms that
in conjunction with data center SDNs could scale the bandwidth behind the actual limits
set by the network. The model of BwMan is fit to the data in a offline manner and as such
could not handle unexpected situations that may arise outside of the flexibility bounds
induced by choices in training the model. The allocated bandwidth can be scaled only at
the endpoints thus does account for variable topologies, and gives an averaged view of the
system abstracting away the network topology.

As integral part of this research work, real-time applications were regarded as
application scenarios in which to provide optimizations. A self-manged gradient based
Inter-Cloud overlay, is provided to self manage massive scale deployment of live
streaming architectures. The overlay provides routing capabilities between clouds
building a minimal path distribution path spanning from the source of a live stream to the
destinations. The algorithm performs well in managing large scale deployments, as of
experimental results it can scale easily even in the order of hundred of thousands of
Clouds. One limitation of the approach is that it does not provide a algorithm for
allocating new clouds, lowering the number of clouds in order to optimize cost, as well as
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the function that is calculated in a distributed manner takes only care of path length, thus
not about cost. As cost is an important factor in deploying software solutions, the
algorithm needs to be extended in order to not only optimize path length/latency but also
cost of deploying the application.

At last this research work focuses on real-time communications in the context of
WebRTC. The WebRTC standard describes media requirements and protocols in order to
have a standard platform-agnostic communication framework. During our research work
we discovered various temporal patterns of server/client load and audio/video quality
objectives, based on such patterns a minimal load algorithm was introduced in order to
fairly distribute load among servers and lower the impact of load spikes to media quality.
The proposed algorithm works as it is tuned to the load profile, but can’t adapt to changes
in workload profiles. Since the load patterns may vary in the future due to unexpected uses
of the system or new applications based on the studied platform. This shortcomings are
inherent by the restrictions on the system, as once allocated a stream can’t be switched to
a different server and as such the first allocation discriminates the load. Possible solutions
could be by changing the system to permit conference sessions to span multiple servers.
This change would introduce more challenges on maintaining low latency and could be
study of future work.
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1.7. List of Publications
The content of this thesis is based on material previously published or submitted in

peer reviewed conferences.

Chapter. 4 presents BwMan the bandwidth manager for cloud services sharing the
same network infrastructure and is based on:

1. BwMan: Bandwidth Manager for Elastic Services in the Cloud -Ying Liu, Vamis
Xhagjika, Vladimir Vlassov and Ahmad Al-Shishtawy, In 12th IEEE International
Symposium on Parallel and Distributed Processing with Applications (ISPA), 2014
[Rank:B Conference]

Chapter. 5 provides a novel Multi-Cloud architecture for Carrier and ISP
providers and is based on:

2. Structured Cloud federation for Carrier and ISP infrastructure - Vamis Xhagjika,
Vladimir Vlassov, Magnus Molin, Simona Toma, In Cloud Networking (CloudNet),
2014 IEEE 3rd International Conference [Acceptance Rate: 28%]

Chapter. 6 is based on:

3. Enhancing Real-Time Applications by means of Multi-Tier Cloud Federations -
Vamis Xhagjika, Leandro Navarro, Vladimir Vlassov, In 2015 IEEE 7th
International Conference on Cloud Computing Technology and Science
(CloudCom) [Rank:C Conference, Acceptance Rate: 17.8%]

Chapter. 7 is based on:

4. Media Quality-Centric Stream Allocation and Related Patterns for a WebRTC Cloud
Architecture - Vamis Xhagjika, Òscar Divorra Escoda, Leandro Navarro, Vladimir
Vlassov [UNDER REVIEW]

5. Load and Video Performance Patterns of a Cloud Based WebRTC Architecture -
Vamis Xhagjika, Òscar Divorra Escoda, Leandro Navarro, Vladimir Vlassov, Poster
Paper In IEEE/ACM CCGrid 2017 [Rank:A Conference]
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1.8. Research Ethics
This research work in no case has included human or alive organisms experimentation,

all the results are exempted from discussions over most of ethic issues. All the proposed
solutions in terms of Cloud architecture adhere to usage contracts that the clients of the
architecture would sign with the providers and as such be protected by separate legal
agreements. In no case the live streaming and real-time audio/video communications
frameworks are to be used for streaming illegal content, and it is sole responsibility of the
user of the platform if such assumption is violated.

The analytical part of this thesis which uses real user traces for simulating load
balancing algorithms in the Cloud, uses data from a test data center but only at the stream
level, with no user information. The only data used to identify the streams is a stream
identification ID. These IDS are anatomized by removing any meaningful data
substituting them with random integers so that no match can be traced back to any user.
The arrival times of the streams are as well normalized to the first inter-arrival time set to
0, so no actual identifiable information is left on the data of the streams. This anonymity
process and the lack of user information, limits the number of algorithms that can be
applied to stream allocation algorithms in the sense of using load predictors to drive
decision, but the most important prerequisite for this work was to keep away any user data
in the process, and drive the decisions just based on system information that are unrelated
to a particular user.

1.9. Structure of Document
The remaining part of this thesis is organized as follows Chapter. 2 provides an

introductions and background over the main concepts used in this thesis. This chapter
introduces various background information regarding Network Architectures,
Multi-Cloud, Cloud Federations, WebRTC Media Protocols and Cloud-based Relay of
multimedia streams. In Chapter. 4 we introduce a cloud bandwidth manager that arbitrates
cloud bandwidth between services sharing the same network infrastructure. Following, in
Chapter. 5 we propose a massively scaled, hierarchical, hybrid Cloud-Network Federation
architecture in order to optimize service locality and tradeoff performance for locality or
the other way around. Building on these previous work Chapter. 6 provides a multi-cloud
self-managed management overlay for live streaming services that can manage with low
overhead tens of thousands of clouds. At last in Chapter. 7 we exploit bit rate quality
patterns of a distributed WebRTC Cloud-based relayed framework in order to optimize
user quality. Additionally we provide a stream allocation algorithm that without any user
information, tries to fairly distributed streams across the Cloud-based SFUs.

Each one of the following Chapters [5 - 7] follows the same structure in which: a
small resume is given, then each subject follows a paper structure of introducing research
problem and solution with evaluation (when present), ending with concluding comments.
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Chapter 2

Background

2.1. Introduction

In this chapter we describe the necessary technological background needed to
understand the work described in this work. This material introduces the basic general
context of the environment in which this work operates on. We introduce the general
concepts of Cloud Computing and Inter-Clouds which are necessary to understand the
work conducted on architectural design and structural analysis. Additionally we describe
Cloud deployment models as well as different Network provider architectures, to further
continue with a description of live streaming applications which are the main focus of this
work. We end this background chapter with a description of techniques used in this thesis
to develop novel algorithms and empirically study the systems of interests. These core
concepts are the basics over which we build the work and presented in the other chapters.
Thus with that we introduce the main environment concepts without dwelling in too deep
and leave to Chapter. 3 a study of related work and a deeper loolook inside the problems
that this thesis tackles.

2.2. Cloud Computing and Inter-Clouds

Cloud Computing abstracts computing resources to a utility, on-demand, based model.
In this model computing resources are considered to be allocated on-demand with a
infinite availability. Cloud computing presents both virtualisation of network and compute
resources and cloud clients can allocate nearly infinite combination of compute resources
and network topologies, to implement their distributed applications. Physical data center
resources are sold on different pricing models and can be allocated either on a
space-shared (with queueing) or time-shared (virtualisation). Cloud users can allocate and
de-allocate resources though software interfaces and virtually consider computation as
utility resource. Following this paragraph the definition of Cloud computing from the
National Standards Institute:

Cloud computing is a model for enabling ubiquitous, convenient, on-demand
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network access to a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can be rapidly
provisioned and released with minimal management effort or service provider
interaction.[20]

With the advent of Cloud technologies new problems have risen in dealing with the
geo-ditribution of multiple resources in multiple data centers, as well as problems of scale,
reallocation and performance. In this thesis we use such large scale distribution of cloud
resources in order to enhance distributed applications. Some essential characteristics of
Cloud computing as listed in [20] are :

1. On-Demand/Self-Service The ability to allocate resources on-demand and through
self-service interfaces.

2. Broad-Band Access Network Guarantee high speed broad band network to all of the
resources.

3. Resource Pooling A common pool of resources is transparently scheduled between
multiple tenants.

4. Rapid Scale The ability of a Cloud to adapt to scale in the shortest possible time.

5. Resource Metering Cloud systems automatically control and optimize resource use
by leveraging a metering capability at some level of abstraction.

A Cloud provider is an entity that owns cloud resources and sells them at different
pricing models. Resources can be sold through various pricing models of which some are
a pay-as-you-go model based on resource usage, flat cost pre-allocation or market based.
In the context of the Cloud a client can either be considered as the User who directly buys
and uses Cloud resources in order to implement distributed applications, or the users of
such applications (End User), in this work we will differentiate between these two user
categories based on the context and will explicitly point out the user category subject of the
analysis.

Software as a Service (SaaS)
Data as a Service (DaaS)

Platform as a Service (PaaS)
Infrastructure as a Service (IaaS)

Table 2.1 – Layered Cloud service model

The service model for the Cloud is a layered model in which each layer builds
functionality based on the preceding layers. The general nomenclature is based on the
level of abstraction of the provided service and it is of the form X As A Service (where X
can be Infrastructure, Platform, Software or recently introduced Data). The composition

18



2.2. CLOUD COMPUTING AND INTER-CLOUDS

of the layered model is shown in Tab. 2.1 starting from the more concrete layer
(Infrastructure) to the most abstract (Software). Thus in the service model we can find that
Infrastructure becomes a service, Platforms is considered as a multi-tenant service, and
Software itself is a commodity resource which is allocated to tenants as a service.

Figure 2.1 – Openstack Infrastructure as a Service [2]

To concretely visualize a Cloud IaaS and render the idea of commodity infrastructure
let us look at Fig. 2.1. We observe that the base layer of the system is made of a pool
of Standard Hardware that will handle the Cloud load. The Openstack [2] Infrastructure
as a Service middle-ware abstracts these real hardware resources though virtualization in
order to provide a multi-tenant pool of on-demand virtual resources. As mentioned in this
section the resources are easily allocated through a software dashboard and devices can be
allocated on-demand. The management of scheduling policies of the virtual resources on
the real ones is made transparently to the user, by the Cloud provider. Continuing on this
section we discuss both clouds and applications that span outside one data center.

2.2.1. Deployment Models

Clouds can be classified as Private (when Cloud infrastructure is deployed on premises
for each organizations), Public (Cloud provider owns the virtual or hardware
infrastructure), Hybrid (Cloud Infrastructure is deployed both on premises and as well as
on public cloud deployments)[20, 21]. These different deployment models are justified by
different application requirements from the cloud clients, the on premise cloud
deployment or a private cloud deployment can be customized in order to get augmented
security, enhanced latency profiles, and other requirements. On the other hand a private
deployment would be more costly both in term of resource cost (electricity, cooling),
availability and related cost, and maintenance. Public Cloud deployments provide benefits
of economy of scale, but present much more exposures to security breaches, higher
latencies than the on-premise deployments and generally offer a moderately customisable
solution.

When an application (or the same Cloud virtual infrastructure) requires more capacity
or locality than what can be provided by the resources of one data center or Cloud
provider, its resources are distributed across multiple Cloud providers. In such cases the
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Cloud environment is a Inter-Cloud and spans beyond the borders of the same data center.
By moving the Cloud beyond data center boundaries, new challenges are introduced due
to multiple administrative boundaries for each data center/Cloud, increase in network
latency between data centers and multiple cloud metering. Applications that need
enhanced locality to users such as live streaming or real-time communications and have
relatively small application state can be greatly enhanced by moving the application closer
to the end users.

Crucial to this work are Inter-Cloud deployments, made of scenarios in which scale or
enhanced locality are of the utmost importance and as such can’t be accommodated in the
premises of one data center. Inter-Clouds can be either of type Multi-Cloud (where Cloud
providers do not explicitly collaborate to provide a Cloud service, but the Cloud client is
responsible for allocating resources on all the Clouds) or Cloud Federation (where multiple
Cloud providers cooperate and provide a seamless Cloud Service offer). These two Inter-
Cloud types provide different challenges both in terms of automatic management, scale,
requirements and metering. In Fig.2.2 we observe a Inter-Cloud deployment in order to
visualize the multi-tenant, multi-premise nature of such model and the difference between
Cloud Federation and Multi-Cloud.

Figure 2.2 – Inter-Cloud Scenario [3]

2.3. Carrier Architecture
Carrier and ISP Providers generally offer as core business inter-connectivity both in

the form of digital and analog communications. In this section we review the architecture
of 3GPP[16] compliant network architecture. This architecture is the main focus of a
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hybrid cloud architecture introduced in Chapter. 5 where network infrastructure and the
Cloud are intertwined in order to provide enhanced locality to applications. The
components of a traditional Carrier network are presented in Fig.2.3, where the Core
Network generally a data center or data center grade hardware enabled facility is the main
management, accounting and routing facility, while the signal reaches the end users
though Points of Presence(PoP) located in user proximity, and each PoP in term is
connected to the Core Network through broad band inter-connectivity or through data
hubs called Massive Multiple Input Multiple Ouput Network. In general for the 3GPP case
the PoP is the Radio Base Station, while for the ISP providers we generally have either
WiFi access points or Fiber/Cable routers. The inter-connectivity between the PoPs and
the Core Network is called the Communication Backbone and the bandwidth of it is shared
between the PoPs. Depending on the number of PoPs allocated to each Backbone link, the
aggregated bandwidth of End Clients that can connect to each PoP is greater than the
capacity of the link. In this architecture routing facilities are designed to arbitrate the
bandwidth in order not to saturate the Backbone which would lead to breaches of SLO and
reduced user service quality. Generally for Carrier and ISP providers we have two types of
traffics separated in their specific planes. The Control Plane is a secured communication
channel, generally implemented on dedicated VPN or Physical connections with
redundancy, is responsible for command traffic to manage and control the architecture.
Whereas the User Plane are all the connectivity channels that provide connectivity to the
End Users and is also the primary billable resource of a Carrier and ISP provider.

Figure 2.3 – 5G Network Architecture [4]

We observe in Fig. 2.3 the components of the next generation carrier networks 5G[4]
and compare this properties with the 3GPP complaint Carrier architecture introduced
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above. We see differences in what the PoPs are and as well on the Control Plane, but the
overall architecture is not different than the 3GPP specification. The PoPs in the 5G
architecture can be of different nature than just Radio Base Stations, we see an advance in
access point technology and also non homogeneous means. PoPs can be Small Cell,
Mobile Small Cells, Wifi/WiMax, Wireless Sensors etc... These new improvements to the
existing Carrier network technology provide as well increase in Backbone bandwidth as
well as extended geo-coverage through PoP diversity, thus augmenting the capacity and
the reach of the network as well as the locality towards the End Users of the system. By
enhancing such a highly distributed network architecture with Cloud enabled facilities we
perceive higher scalability of services as well as better service performance in case that
End User proximity and latency are crucial to service quality. In the work developed as
part of this theses we develop a technological blueprint toward a hybrid Cloud-Network
architecture that permits to exploit and integrate the benefits of both these architectures
and complementing each other to bypass their respective limitations. In case of a purely
Cloud environment locality to End Users is severely limited as the number of data centers
in the world is far smaller and has far smaller reach than the Carrier and ISP providers,
which reach virtually all Internet users. Whereas traditional Carrier and ISP networks
always use the Core Network as main routing facilities and to reach cloud services users
need to exit toward the Internet, thus loosing the benefits of geo-coverage provided by the
network.

2.4. Mobile Cloud Computing

Mobile Cloud computing is a discipline in which thin clients offload computational
resources to Cloud infrastructure, in order to extend the processing power of mobile
devices or to gain additional benefits such as reduced power consumption. In [5] we
observe that the access network is considered as static network and the cloud is reachable
by the mobiles bu transversing the whole access network. Part of the system provided and
displayed in Fig. 2.4 are the mobile clients and the Application service providers which
implement the server side processing for the mobile applications. Another view of mobile
cloud computing presented in [22] though Cloudlets, envisions distributing general
computation units, in which mobile devices can offload computation, each computation
unit is a Cloudlet.

In general mobile cloud computing is used to facilitate mobile device operations and
related objectives of lower mobile battery consumption, extend computational power,
lower overall energy overhead etc... Our extended Hybrid architecture provides a change
in paradigm in which a uniform cloud architecture reaches up to one hop away from the
user and thus instead of offloading computation to the Cloud, the services are the one to
move closer to the End User of the applications in order to trade between locality and
performance of the services.
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Figure 2.4 – Mobile Cloud Computing Architecture [5]

2.5. Live Streaming

With Streaming we refer to Audio and Video communications starting at a source
(producer of the stream) and terminating at the End Points (End User destinations
consuming the stream). In general the source captures Audio/Video from hardware
devices and through digitalizing it sends it over the network to the intended destinations of
the stream. When streaming is not live, means that the time of reproduction at the End
Point is not related to the time of capture of the stream at the source. Whereas in the case
of Live Streaming the stream is non-delay tolerant and need to be reproduced at the
destination with minimal latency as compared to the time of capture. The live version of
streaming makes it of utmost priority to handle both communication latency and jitter
from source to destinations as well as mechanisms to handle packet loss and available
bandwidth. Traditional caching techniques can’t be used as that would introduce higher
latencies in the system, and routing of the streams in the communication network needs to
be optimized to lower latency and inter-arrival time.

In Fig. 2.5 we show a live encoders architecture, which consumes the stream from the
source, transforms it to various output formats and streams it to the various clients
consuming the stream. In this case the processing backend does not handle just stream
routing but adds additional processing to convert the streams to different formats thus
making it easier for different clients to consume it. Even though this approach gives higher
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Figure 2.5 – Microsoft Azure Live Streaming Architecture [6]

client coverage, it impacts the overall stream quality as online transcoding is quite a heave
processing task and may introduce fatal stream delays. Additionally other architectures
can use Peer-to-Peer connections between clients instead of using a Cloud backend in
order to route or convert the stream before sending it to the intended destinations. In this
work we will discuss both architectures as well as optimized routing through cloud
forwarders (in Chapter. 6) that are allocated to optimize such system parameters.

2.6. WebRTC Media parameters and Workloads
Web Real Time Communications WebRTC/RTCWEB is the leading standard for

real-time communications in the web and standardized in [23]. The WebRTC/RTCWEB
standard defines the protocols and data structures that enable media communications over
the World Wide Web in a platform-agnostic way. All the latest versions of the major
browsers at the time of writing support the standard (Chrome, Mozilla, Edge, Safari) and
implement the WebRTC/RTCWEB software stack. The software stack implemented
already by such browsers implements a layered design in which the browser already
provide various functionalities needed to handle media communications. The
WebRTC/RTCWEB stack implementations take care of low level media source access,
video encoding at variable bit rates, audio encoding at variable bit rates, extended media
functionalities such as noise cancellation/suppression, bit rate estimator. The encoding
facilities provide various encoding protocol like VP8, VP9, h.264 and h.265 for video and
OPUS for audio. When referring to the term Media as a general term, we refer to both
audio and video, and specify in this work audio or video when context is needed. In
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general we focus on video traffic, as the volume is far bigger than audio and thus impacts
more the quality of service.

Figure 2.6 – WebRTC Software Stack [7]

In Fig. 2.6 we can observe the full software stack that need to be implemented in order
to be compatible with the WebRTC/RTCWEB standard. As mentioned most of the
browser or devices that qualify to be compatible to the standard need to implement all of
the software layers. WebRTC compliant devices are not limited to browser but can be
physical devices that implement the software stack. By implementing the standard
non-homogeneous devices can communicate seamlessly with each other. The standard
includes both P2P and Cloud based communications, as purely P2P solutions would be
limited and may not meet latency requirements as well as bandwidth needed to handle
multi-party communications. Each media interconnection between two end users is called
a Stream and each stream has a source and a destination. In case of multiple destinations
while using cloud forwarders the forwarding unit duplicates the stream for the source so
the upload bandwidth on the source is reduced.

Of particular importance is the cloud backend that supports multi-party
communications, such backend is composed of multiple clouds and constitutes a
Inter-Cloud distributed application. In order to optimize latency toward the end users (End
Point in the WebRTC/RTCWEB world) the backend needs to allocate stream forwarders
in Clouds that are close to the user. In this work we will examine the impact of stream
load of Cloud Forwarders toward stream quality. The forwarding units can both transcode
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the stream online, or just select the best quality to forward for each stream destination in
case that the source encodes multiple media qualities.

In this work we examine the correlation of stream load for cloud backend and stream
media parameter quality. The core parameter that is further explored is video media
quality, as the higher volume traffic concerning WebRTC/RTCWEB. A direct indicator of
video media quality is video bit rate, for a given encoder technology and a given target
resolution the optimal bit rate can be estimated. Deviation from the estimated optimal bit
rate mean either quality loss in case lower bit rate than the optimal, while the opposite
leads to superfluous traffic and higher costs. By using video bit rate as a indicator of
stream quality we can observe interesting patterns that may emerge and relative
correlations.

By exploiting patterns that correlate media quality and cloud backend load in terms
of streams we can ensure that the system always meets SLOs and also optimizes quality
for the end users. As previously introduced, the WebRTC Cloud backend spans multiple
servers and data centers and as such algorithms need to be provided for data center wide
stream allocation and multi-data center scenarios. This work provides some insight into
temporal patterns of media quality and stream load per server/data center, as well as some
allocation policies that exploit the patterns that were found.

2.7. General Concepts

2.7.1. Control theory

Control Theory is an engineering method that deals with the behaviour of complex
systems and modifying such behaviour based on inputs, feedback mechanisms or error
prediction. Generally we separate the control models in open loop and closed loop. When
the model is based on open loop the controller does not account for outputs to modify the
behaviour of the system. While on a closed loop control model, the feedback from the
system outputs is taken in consideration in order to modify the system behaviour. The
controller tries to modify the behaviour of the system in order to achieve a desired state
based on past/current system inputs and outputs.

Figure 2.7 – Negative Feedback Loop control state

Fig. 2.7 shows the control cycle for a Negative Feedback loop controller in which the

26



2.7. GENERAL CONCEPTS

output of the system give a negative feedback signal to the controller in order to adapt the
system behaviour toward the specified goal. A particular case of controller that we use
during this thesis work is the MAPE-K controller which separate decision making in the
following phases:

1. Monitor Monitoring the current system state as a base point.

2. Analyze Analyze the values perceived through the Monitoring phase.

3. Plan Plan actuation needed in order to reach control objectives.

4. Execute Execute the plan of actuation to modify the system behaviour.

5. Knowledge Update the view of the system so far based on the monitored values, plan
and actuation taken.

The control loop in this case updates the control model after actuating changes to the
system behaviour, as well as based on previous inputs.

2.7.2. Machine Learning
Machine learning is a sub-field of computer science in which applications learn without

explicitly being programmed to. In the context of this work, we extract data from real or
simulated systems and process them though machine learning algorithms in order to train
prediction algorithms for control systems. Machine learning algorithms are used to fit a
function or a data model to a data source. The area of interest for this work borrowing
from machine learning is called Regression, and tackles the problem of approximating a
function or a data model of multiple variables in order to predict future performance output
of a system. By using regression a model can be trained either off-line or on-line in order
to build control systems for distributed applications.

2.7.3. Time Series Analysis
A time series is composed of data sampled at regular time intervals, and the study

of such data can lead to interesting patterns that impact the analysis. For this work we
analyze time series in order to observe load distributions and also train machine learning
models to approximate and predict interesting metrics of a system. By combining analytical
techniques with time series analysis we can better understand the behaviour of a complex
dynamical system.

2.7.4. Conclusions
This chapter introduces the basic general concepts needed to understand the work

developed as part of this thesis. Thus we introduce the concepts of Cloud and Inter-Cloud
computing, Inter-Cloud deployment models including Cloud Federation and
Multi-Clouds, Network provider architectures according to the latest standard to date,
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Real-Time Media Stream processing applications (the crucial focus of this work), and
finishes with a descriptions of techniques used in building novel algorithms or to conduct
simulation studies (time series analysis, machine learning, control theory). We continue
next in Chapter. 3 with a deeper introduction on state of the art for each contribution and
further more specific descriptions of the related problems and solutions.
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Chapter 3

Related Work

3.1. Introduction

In order to understand the contributions of this work and to differentiate it from the
state-of-the-art techniques used in the field, we introduce for each contribution the relative
research environment. At first we present the relative work existing for BwMan, our
bandwidth manager, in terms of evaluating both different topologies and control system
and how the differentiate from our approach. Next we describe the necessary related
works in the field of Structured cloud federations, and how our novel architecture
introduces various benefits in terms of application non-functional concerns that are not
present in other related Cloud architectures. Continuing further on this introduction we
present various works related with the Live streaming optimization approach, that deals
with live media streaming. We compare both P2P and content delivery approaches on live
media streaming and we see how our distributed overlay provides benefits in terms of
stability, scale and low management overhead. We conclude this chapter with a study of
the related work in media quality management for WebRTC media stream processing
applications and workload management for Cloud based selective stream forwarders. In
Chapter.4 we start describing the contributions of this work in more in-depth description
per argument.

3.2. BwMan

The benefits of network bandwidth allocation and management is well understood as it
allows improving performance of distributed services, effectively and efficiently meeting
SLOs and, as consequence, improving end-users’ experience with the services. There are
different approaches to allocate and control network bandwidths, including controlling
bandwidth at the network edges (e.g., of server interfaces); controlling bandwidth
allocations in the network (e.g., of particular network flows in switches) using the
software defined networking (SDN) approach; and a combination of those. A bandwidth
manager in the SDN layer can be used to control the bandwidth allocation on a per-flow
basis directly on the topology achieving the same goal as the BwMan controlling
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bandwidth at the network edges. Extensive work and research has been done by the
community in the SDN field, such as SDN using the OpenFlow interface [24].

A typical work of controlling bandwidth allocation in the network is presented in
Seawall [25]. Seawall uses reconfigurable administrator-specified policies to share
network bandwidth among services and enforces the bandwidth allocation by tunnelling
traffic through congestion controlled, point to multipoint, edge to edge tunnels. In
contrast, we propose a simpler yet effective solution. We let the controller itself
dynamically decide the bandwidth quotas allocated to each services through a machine
learning model. Administrator-specified policies are only used for tradeoffs when the
bandwidth quota is not enough to support all the services on the same host. Using
machine learning techniques for bandwidth allocation to different services allows BwMan
to support the hosting of elastic services in the cloud, whose demand on the network
bandwidth varies depending on the incoming workload.

A recent work of controlling the bandwidth on the edge of the network is presented in
EyeQ [26]. EyeQ is implemented using virtual NICs to provide interfaces for clients to
specify dedicated network bandwidth quotas to each service in a shared Cloud
environment. Our work differs from EyeQ in a way that clients do not need to specify a
dedicated bandwidth quota, instead, BwMan will manage the bandwidth allocation
according to the desired SLO at a minimum bandwidth consumption.

The theoretical study of the trade-offs in the network bandwidth allocation is
presented in [27]. It has revealed the challenges in providing bandwidth guarantees in a
Cloud environment and identified a set of properties, including min-guarantee,
proportionality and high utilization to guide the design of bandwidth allocation policies.

Theoretical estimation of latency capability profiles for composite cloud services and
SLO oriented specifications for such profiles is proposed in [28]. The proposed theoretical
framework uses queue theory based calculus in order to estimate the overall system
latency profile. This approach is feasible and models the latencies of composite Cloud
services given extensive information from global system sensors. In our approach we
differ in the sense that the user needs not know the service topology and the architecture in
order to estimate system parameters. Also our main metric of concern is the system
throughput and not latency profile of the application. We treat the system as a black box
and introduce machine learning predictive models in order to approximate prediction of
throughput performance.

Also we are not only estimating performance measures but also controlling such
measures for the composite Cloud services. Their work describes possible QoS
parameters that can be used in order to do network resource management while we
construct a controller enabling network bandwidth run-time arbitration. We also consider
bandwidth trade-offs among the services as normal operations in the management context
and provide extensive experimental results that show the feasibility of our approach and
the performance of the management engine.
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3.3. Structured Cloud Federations

Mobile cloud computing uses the cloud in order to optimize mobile device experience,
power consumption, resource availability. In this approach a mobile device could use
computation offloading, by sending the computation to be executed into the cloud, in
order to gain more available and powerful resources but also to optimize battery
consumption [29]. Our approach enhances this discipline with a new cloud paradigm that
exploits locality in order to have better support for Mobile Cloud Computing as the cloud
is brought closer to the mobile devices providing higher access bandwidth and decreasing
traffic on the backbone as all of the interactions can happen between the mobile device
and the local cloud close to the points of presence.

Work conducted in [30] describes the development ad deployment of micro-data
centers in a wireless network in order to optimize locality to users and supply cost
effective access to cloud enabled resources to mobile users. Wireless technology
connected in a mesh, is used to provide the inter-connectivity between end users and cloud
services. This work differs from ours in deployment models as ours Cloud model does not
only provide enhanced locality but as well the possibility to trade-off between
performance and locality. This trade-off possibility is provided though the hierarchical
configuration of the micro-cloud backbone, while [30] provides a wireless mesh model
that focuses only on locality and cost. Our work additionally takes in consideration all the
federation requirements that would be needed in order to implement a highly distributed
large scale hierarchical Cloud.

Nano-DataCenter work has been conducted as well in [31] but the federation model is
a P2P model in which the geo-distributed data centers collaborate to form a cloud for a
specific application. The intended application is a video on-demand streaming application
in which energy consumption is lowered as considering the Internet Cloud scenario. This
work focuses on energy efficiency and not on latency/locality as well as limits the study of
the proposed Cloud model to one application. Our approach provides a more generic Cloud
model in which the federation permits to optimize either for locality of performance, thus
focusing more on the operational aspect of the cloud than in energy efficiency.

3.4. Live Streaming

This work is based on previous studies in the field of Peer-to-Peer (P2P) live streaming,
and enhances these approaches by creating a new hybrid architecture where the clouds
build a self-regulated structure to enhance latency. Other preceding systems [32] [33] [34]
based on P2P overlays try to minimize mostly bandwidth as in general peers have a limited
bandwidth to dedicate to the stream. Differently in case of cloud federations such restrain
remains valid but the available bandwidth is in orders of magnitudes higher and does not
pose a limiting factor. In general the bandwidth of the backbone is build to match the access
network bandwidth for the clients, as such by construct the limiting factor remains latency.

Gradient based approaches to P2P live streaming like Sepidar [32], GradientTv [33]
and GLive [34] are used to build a gradient overlay between peers in order to optimize
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bandwidth and also provide incentive mechanisms in order to deal with free-riders. Such
approaches do not include the notion of cloud and also do not minimize the traffic on the
communication backbone. By depending only on the existing resources of the peers, no
new resources can be allocated to meet load changes. Our approach uses the same overlay
type for the clouds in order to build a locality aware federation that can scale to meet
load requirements and is not influenced by churn or startup delay. Effectively the cloud
federation overlay is not coupled to user churn.

In our architecture cloud resources for different streams can be reused as in
AnySee [35], in order to efficiently distribute the load. Cliquestream[36] and Climber[37]
try to promote peers to a set of peers and to super peers respectively. This approach is still
limited to bandwidth optimization, is unable to scale beyond the resources of the
participating peers, and give no guarantees on latency SLAs.

The approach introduced in this work is also based on previous work in high
performance Content Delivery Networks (CDNs). The approach described in the
workings of Akamai CDNs [38] presents a tree based delivery system with statically
pre-allocated nodes. In this work, apart from envisioning dynamically allocated resources,
we also organize the servers in a self-organized hierarchy with no central point of failure.
By using the overlay, the naming scheme does not need to be centralized as the resources
can use distributed discovery in the overlay. In Akamai’s case DNS is used as a naming
scheme but this introduces a lot of overhead to manage such scheme and also modifies
DNS to serve as real-time consensus.

Other approaches [39] [40] [41] try to organize super peers on top of CDN server, but
they still focus on a Tree like or DHT base architecture in order to build a overlay of the
CDNs, and also deploy only statically pre-allocated resources. Our approach permits to
scale-up the system both vertically and horizontally in order to meet clients QoS and lower
costs by providing a dynamic cloud federation. The self regulating overlay mechanism
provides a more dynamic and locality aware environment that both Tree and DHT based
routing.

3.5. Web Real-Time Communications

Previous work conducted in [42] deals with both performance aspects and bit-rate
estimation algorithms, but the study is limited to a small controlled environment. The
study concerns a modified receiver side rate control algorithm while in our case we
provide insight on the behaviour of the rate control algorithm implemented by Google
(Google Congestion Control (GCC) [43]) for Chrome operating both sender (packet loss
based) and receiver side (delay based). We conduct empirical analysis on both rate
controlled traffic with single layer encoding as well as with simulcast streams. In our work
additional empirical evidence is provided, which proves that as the scale of a session
increases simulcast outperforms single layer video encoding.

Work conducted in [43] [44] explore the behaviour of multiple rate-control algorithms
and streaming properties, as well as introducing novel rate-control algorithms.
Specifically [43] provides a modified GCC congestion control algorithm that optimizes
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coexistance of TCP streams with UDP WebRTC streams, thus not taking in account the
case of having Cloud forwarded traffic. Our empirical analysis shows the impact of rate
control and Video encoding techniques on stream quality as well as correlations of Cloud
based stream forwarder load and video media quality. Another difference worth
mentioning is the size of the clients involved in the study, we sample data passively from
our test data center and range in hundred of thousands of stream while the previous
mentioned work focuses on active measurements of up to three clients.

Resource allocation for WebRTC in [45] leads to a Network Virtual Functions based
cloud architecture to interconnect IP Media Subsystems and WebRTC. While in [46] there
is a focus on providing generic APIs of multi-purpose components that use HTML
technologies for web communications. The study does not include resource allocation nor
does it include any reference to the impact of application scale towards media quality in
real-time communications. In this work we don’t just examine the impact of scale toward
video media quality, but we devise allocation policies for stream Cloud Forwarders that
try to minimize server load.

3.6. Conclusions

To conclude the state-of-the-art we provide a high level summary of the main
differences between previous work and the work presented in this thesis. In doing this we
present just a highlight of the novelty introduced and leave to the following chapters an
in-depth description of the contributions.

Network bandwidth in [24], [25] conducts trade-off and allocation on a quota based
system and focuses on controlling this parameters at the topology level, while our work
with BwMan provides a machine learning model that performs such activity at the end
nodes, lowering the complexity of the system with comparable results. Work conducted in
[25] enforces network bandwidths though tunneling and thus increases the latency of the
network stream which is exactly what we want to optimize as a log lasting objective of this
work. In [26] bandwidth is not allocated in SLO and thus is fairly distributed, while our
approach tries to maintain some specific SLO giving enhanced guarantees on the system.
At last we build on top of work conducted in [27] in network guarantees and properties in
order to operate bandwidth management in a shared network environment.

Regarding cloud architectures, the access networks in general are build with a clear
separation of concerns in which the main objective is to guarantee connectivity to clients.
In this network architectures the Cloud is not part of the architecture but is seen as a
service provided by other mediums. In this study we see an opportunity in providing a
common cloud interface for both an enhanced cloud enabled Network infrastructure and
Resource Providers outside of the network infrastructure. This common interface permits
to easily go beyond the scale of multiple data center, and deploy services up to one hop
away from the user with minimal impact on infrastructure. Work in both [30][31] focus
more in energy efficiency rather than performance or locality. Our work differs both in
deployment model and in performance guarantees. In or hierarchical Cloud-Network
model the services can have predictable performance as well as predictable system
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guarantees. While the mentioned work does not provide a common interface and neither
multi-service guarantees.

Work related to enhancement of live streaming more exactly in [32] [33] [34] [36] and
Climber[37] use P2P systems in order to directly build a streaming backend between the
peers participating in a live stream session. The limitations of these architectures are that
there is low control over the backend resources and that the span of a streaming chain can’t
be predicted. Another drawback of these approaches is that by being P2P the resources
they can provide to the live stream are not optimized and are of limited availability. On
the contrary in [39] [40] [41] the backend is enhanced with servers of Super Peers but the
arrangements of the streaming backbone does not capture locality. In our work we provide
a self-managed system which has predictable performance and uses a gradient topology to
organize the Cloud based backend. As we use a Cloud based backend the resources can be
scaled to fit the overall size of the streaming session, contrary to the P2P cases where the
system can’t scale to fit requirements.

In dealing with real-time web communications or WebRTC/RTCWEB we have that
previous work has been conducted in introducing congestion control mechanism for live
media streaming [42], [43]) and study the impact of these protocol at small scale. Our
Work focuses on the impact of large scale toward the quality perceived by the user, and at
scale we discover with empirical proof that single layer encoding is outperformed by
simulcast. Additionally we introduce a new Cloud simulator and load balancing algorithm
tailored specifically for the WebRTC case. The proposed algorithm is based on load
temporal patterns discovered by an analysis of real passive user measurements at scale.
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4.1. Introduction

This work is based on a paper [47] produced in collaboration with other coauthors
and my specific contributions were in developing part of the workload generator used to
run the experiments, in analytic work to derive the control and regression models and in
interpreting the results of the work. It is reported in this thesis as it is the first step taken
toward exploring Cloud and Network architectures correlations and motivates the followup
work towards a complete big picture of the entire work. After this introductory note the rest
of this section introduces the work toward network bandwidth actuation in order to enhance
Cloud applications sharing the same network infrastructure.

The flexibility of Cloud computing allows elastic services to adapt to changes in
workload patterns in order to achieve desired Service Level Objectives (SLOs) at a
reduced cost. Typically, the service adapts to changes in workload by adding or removing
service instances (VMs), which for stateful services will require moving data among
instances. The SLOs of a distributed Cloud-based service are sensitive to the available
network bandwidth, which is usually shared by multiple activities in a single service
without being explicitly allocated and managed as a resource. We present the design and
evaluation of BwMan, a network bandwidth manager for elastic services in the Cloud.

BwMan predicts and performs the bandwidth allocation and tradeoffs between
multiple service activities in order to meet service specific SLOs and policies. To make
management decisions, BwMan uses statistical machine learning (SML) to build
predictive models. This allows BwMan to arbitrate and allocate bandwidth dynamically
among different activities to satisfy specified SLOs. We have implemented and evaluated
BwMan for the OpenStack Swift store. Our evaluation shows the feasibility and
effectiveness of our approach to bandwidth management in an elastic service. The
experiments show that network bandwidth management by BwMan can reduce SLO
violations in Swift by a factor of two or more.

This first part of the work is a cornerstone in which the idea of the duality between the
Network and Cloud is shown to be substantial and convertible in tangible performance
metrics. We observe that network, latency and the Cloud services that share the same
underlying network infrastructure correlate to give the overall system performance. When
network is not optimized Cloud services would suffer from the reduced connectivity while
at the same time if Cloud services are not properly deployed for a given network
infrastructure, the performance of the service is impacted. Cloud computing with its
pay-as-you-go pricing model and illusion of the infinite amount of resources drives our
vision on the Internet industry, in part because it allows providing elastic services where
resources are dynamically provisioned and reclaimed in response to fluctuations in
workload while satisfying SLO requirements at a reduced cost. When the scale and
complexity of Cloud-based applications and services increase, it is essential and
challenging to automate the resource provisioning in order to handle dynamic workload
without violating SLOs. Issues to be considered when building systems to be
automatically scalable in terms of server capabilities, CPU and memory, are fairly well
understood by the research community and discussed in literature, e.g., [48, 49, 50]. There
are open issues to be solved, such as efficient and effective network resource management.
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In Cloud-based systems, services, and applications, network bandwidth is usually not
explicitly allocated and managed as a shared resource. Sharing bandwidth by multiple
physical servers, virtual machines (VMs), or service threads communicating over the same
network, may lead to SLO violations. Furthermore, network bandwidth can also be
presented as a first class managed resource in the context of Internet Service Provider
(ISP), inter-ISP communication, Clouds as well as community networks [51], where the
network bandwidth is the major resource.

In our work, we demonstrate the necessity of managing the network bandwidth shared
by services running on the same platform, especially when the services are bandwidth
intensive. The sharing of network bandwidth can happen among multiple individual
applications or within one application of multiple services deployed in the same platform.
In essence, both cases can be solved using the same bandwidth management approach.
The difference is in the granularity in which bandwidth allocation is conducted, for
example, on VMs, applications or threads. In our work, we have implemented the finest
bandwidth control granularity, i.e., network port level, which can be easily adapted in the
usage scenario of VMs, applications, or services. Specifically, our approach is able to
distinguish bandwidth allocations to different ports used by different services within the
same application. In fact, this fine-grained control is needed in many distributed
applications, where there are multiple concurrent threads creating workloads competing
for bandwidth resources. A widely used application in such scenario is distributed storage
service.

A distributed storage system provides a service that integrates physically separated and
distributed storages into one logical storage unit, with which the client can interoperate as
if it is one entity. There are two kinds of workload in a storage service. First, the system
handles dynamic workload generated by the clients, that we call user-centric workload.
Second, the system tackles with the workload related to system maintenance including load
rebalancing, data migration, failure recovery, and dynamic reconfiguration (e.g., elasticity).
We call this workload system-centric workload.

In a distributed storage service, the user-centric workload includes access requests
issued by clients; whereas the system-centric workload includes the data replication,
recovery, and rebalance activities performed to achieve and to ensure system availability
and consistency. Typically the system-centric workload is triggered in the following
situations. At runtime, when the system scales up, the number of servers and the storage
capacity is increased, that leads to data transfer to the newly added servers. Similarly,
when the system scales down, data need to be migrated before the servers are removed. In
another situation, the system-centric workload is triggered in response to server failures or
data corruptions. In this case, the failure recovery process replicates the under-replicated
data or recover corrupted data. Rebalance and failure recovery workloads consume system
resources including network bandwidth, thus may interfere with user-centric workload and
affect SLOs.

From our experimental observations, in a distributed storage system, both user-centric
and system-centric workloads are network bandwidth intensive. To arbitrate the allocation
of bandwidth between these two kinds of workload is challenging. On the one hand,
insufficient bandwidth allocation to user-centric workload might lead to the violation of
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SLOs. On the other hand, the system may fail when insufficient bandwidth is allocated for
data rebalance and failure recovery [48]. To tackle this problem, we arbitrate network
bandwidth between user-centric workload and system-centric workload in a way to
minimize SLO violations and keep the system operational.

We propose the design of BwMan, a network bandwidth manager for elastic Cloud
services. BwMan arbitrates the bandwidth allocation among individual services and
different service activities sharing the same Cloud infrastructure. Our control model is
built using machine learning techniques [52]. A control loop is designed to continuously
monitor the system status and dynamically allocate different bandwidth quotas to services
depending on changing workloads. The bandwidth allocation is fine-grained to ports used
by different services. Thus, each service can have a demanded and dedicated amount of
bandwidth allocation without interfering among each other, when the total bandwidth in
the shared platform is sufficient. Dynamic and dedicated bandwidth allocation to services
supports their elasticity properties with reduced resource consumption and better
performance guarantees. From our evaluation, we show that more than half of the SLO
violations is prevented by using BwMan for an elastic distributed storage deployed in the
Cloud. Furthermore, since BwMan controls bandwidth in port granularity, it can be easily
extended to adapt to other usage scenarios where network bandwidth is a sharing resource
and creates potential bottlenecks.

In this work, we build and evaluate BwMan for the case of a data center LAN topology
deployment. BwMan assumes that bandwidth quotas for each application is given by data
center policies. Within a limited bandwidth quota, BwMan tries to utilize it in the best
way, by dividing it to workloads inside the applications. Specifically, BwMan arbitrates
the available inbound and outbound bandwidth of servers , i.e., bandwidth at the network
edges, to multiple hosted services; whereas the bandwidth allocation of particular network
flows in switches is not under the BwMan control. In most of the deployments, control of
the bandwidth allocation in the network by services might not be supported.

The contributions of this work are as follows.

First, we propose a bandwidth manager for distributed Cloud-based services using
predictive models to better guarantee SLOs.

Second, we describe the BwMan design including the techniques and metrics of
building predictive models for system performance under user-centric and system-
centric workloads as a function of allocated bandwidth.

Finally, we evaluate the effectiveness of BwMan using the OpenStack Swift Object
Storage.

The rest of the chapter is organized as follows. In Section 4.2, we describe the
background for this work. Section 4.3 presents the control model built for BwMan. In
Section 4.4, we describe the design, architecture, and work-flow of BwMan. Section 4.5
shows the performance evaluation of the bandwidth manager. We conclude in Section 4.6.
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Figure 4.1 – Regression Model for System Throughput vs. Available Bandwidth

4.2. OpenStack Swift
A distributed storage service provides an illusion of a storage with infinite capacity

by aggregating and managing a large number of storage servers. Storage solutions [53,
54, 55, 56] include relational databases, NoSQL databases, distributed file systems, array
storages, and key-value stores. In this work, we consider an object store, namely OpenStack
Swift, as a use case for our bandwidth management mechanism. Swift follows a key-
value storage style, which offers a simple interface that allows to put, get, and delete data
identified by keys. Such simple interface enables efficient partitioning and distribution of
data among multiple servers and thus scaling well to a large number of servers. Examples of
key-value storages are Amazon S3, OpenStack Swift, Cassandra [53] and Voldemort [54].
OpenStack Swift, considered in this work, is one of the storage services of OpenStack
Cloud platform [55]. In Swift, there are one or many Name Nodes (representing a data
entry point to the distributed storage) that are responsible for the management of the Data
Nodes. Name Nodes may store the metadata describing the system or just be used as access
hubs to the distributed storage. The Name Nodes may also be responsible for managing data
replication, but leave actual data transfer to the Data Nodes themselves. Clients access the
distributed storage through the Name Nodes using a mutually agreed upon protocol and the
result of the operation is also returned by the same Name Node. Despite Name Nodes and
Data Nodes, Swift consists of a number of other components, including Auditors, Updators
and Replicators, together providing functionalities such as highly available storage, lookup
service, and failure recovery. In our evaluation, we consider bandwidth allocation tradeoffs
among these components.

4.3. Predictive Models of the Target System
BwMan bandwidth manager uses easily-computable predictive models to foresee

system performance under a given workload in correlation to bandwidth allocation. As
there are two types of workloads in the system, namely user-centric and system-centric,
we show how to build two predictive models. The first model defines correlation between
the user-oriented performance metrics under user-centric workload and the available
bandwidth. The second model defines correlation between system-oriented performance
metrics under system-centric workload and the available bandwidth.

We define user-oriented performance metrics as the system throughput measured in
read/write operations per second (op/s). As a use case, we consider the system-centric
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workload associated with failure recovery, that is triggered in response to server failures or
data corruptions. The failure recovery process is responsible to replicate the
under-replicated data or recover corrupted data. Thus, we define the system-oriented
performance metrics as the recovery speed of the corrupted data in megabyte per second
(MB/s). Due to the fine-grained control of network traffic on different service ports, the
bandwidth arbitration by BwMan will not interfere with other background services in the
application, such as services for failure detection and garbage collection.

The mathematical models we have used are regression models. The simplest case of
such an approach is a one variable approximation, but for more complex scenarios, the
number of features of the model can be extended to provide also higher order
approximations. In the following subsections, we show the two derived models.

4.3.1. User-oriented Performance versus Available Bandwidth
First, we analyze the read/write (user-centric) performance of the system under a

given network bandwidth allocation. In order to conduct decisions on bandwidth
allocation against read/write performance, BwMan uses a regression model [49, 50, 57] of
performance as a function of available bandwidth. The model can be built either off-line
by conducting experiments on a rather wide (if not complete) operational region; or
on-line by measuring performance at runtime. In this work, we present the model trained
off-line for the OpenStack Swift store by varying the bandwidth allocation and measuring
system throughput as shown in Fig. 4.1. The model is set up in each individual storage
node. Based on the incoming workload monitoring, each storage node is assigned with
demanded bandwidth accordingly by BwMan in one control loop. The simplest
computable model that fits the gathered data is a linear regression of the following form:

Throughput[op/s] = α1 ∗Bandwidth+ α2 (4.1)

For example, in our experiments, we have identified the weights of the model for read
throughput to be α1 = 4.388 and α2 = 14.38. As shown in Fig. 4.1, this model
approximates with a relatively good precision the predictive control function. Note that
the second half of the plot for write operations is not taken into consideration, since the
write throughput in this region does not depend on the available bandwidth since there are
other factors, which might become the bottlenecks, such as disk write access.

4.3.2. Data Recovery Speed versus Available Bandwidth
Next, we analyse the correlation between system-centric performance and available

bandwidth, namely, data recovery speed under a given network bandwidth allocation. By
analogy to the first model, the second model was trained off-line by varying the bandwidth
allocation and measuring the recovery speed under a fixed failure rate. The difference is
that the model predictive process is centrally conducted based on the monitored system
data integrity and bandwidth are allocated homogeneously to all storage servers. For the
moment, we do not consider the fine-grained monitor of data integrity on each storage node.
We treat data integrity at the system level.
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Figure 4.2 – Regression Model for Recovery Speed vs. Available Bandwidth

The model that fits the collected data and correlates the recovery speed with the
available bandwidth is a regression model where the main feature is of logarithmic nature
as shown in Fig. 4.2. The concise mathematical model is

RecoverySpeed[MB/s] = α1 ∗ ln(Bandwidth) + α2 (4.2)

Fig. 4.2 shows the collected data and the model that fits the data. Specifically, in our case,
the weights in the logarithmic regression model are α1 = 441.6 and α2 = −2609.

4.4. BwMan: Bandwidth Manager
In this section, we describe the architecture of BwMan, a bandwidth manager which

arbitrates bandwidth between user-centric workload and system-centric workload of the
target distributed system. BwMan operates according to the MAPE-K loop [58] (Fig. 4.3)
passing the following phases:

Monitor: monitor user-defined SLOs, incoming workloads to each storage server and
system data integrity;

Analyze: feed monitored data to the regression models;

Plan: use the predictive regression model of the target system to plan the bandwidth
allocation including tradeoffs. In the case when the total network bandwidth has
been exhausted and cannot satisfy all the workloads, the allocation decisions are
made based on specified tradeoff policies (explained in Section 4.4.2);

Execute: allocate bandwidth to sub-services (storage server performance and system
failure recovery) according to the plan.

Control decisions are made by finding correlations through data using two regression
models (Section 4.3). Each model defines correlations between a specific workload (user-
centric or system-centric) and bandwidth.
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4.4.1. BwMan Control Work-flow

The flowchart of BwMan is shown in Fig. 4.4. BwMan monitors three signals, namely,
user-centric throughput (defined in SLO), the workload to each storage server and data
integrity in the system. At given time intervals, the gathered data are averaged and fed
to analysis modules. Then the results of the analysis based on our regression model are
passed to the planning phase to decide on actions based on SLOs and potentially make
tradeoff decision. The results from the planning phase are executed by the actuators in
the execution phase. Fig. 4.4 depicts the MAPE phases as designed for BwMan. For the
Monitor phase, we have two separate monitor ports, one for user-centric throughput (M1)
and the other one for data failure rates (M2). The outputs of these stages are passed to the
Analysis phase represented by two calculation units, namely A1 and A2, that aggregate and
calculate new bandwidth availability, allocation and metrics to be used during the Planning
phase according to the trained models (Section 4.3). The best course of action to take during
the Execution phase is chosen based on the calculated bandwidth necessary for user-centric
workload (SLO) and the current data failure rate, estimated from system data integrity in
the Planning phase. The execution plan may include also the tradeoff decision in the case
of bandwidth saturation. Finally, during the Execution phase, the actuators are employed to
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modify the current state of the system, which is the new bandwidth allocations for the user-
centric workload and for the system-centric (failure recovery) workload to each storage
server.

4.4.2. Tradeoff Scenario

BwMan is designed to manage a finite resource (bandwidth), so the resource may not
always be available. We describe a tradeoff scenario where the bandwidth is shared among
user-centric and system-centric workloads.

In order to meet specified SLOs, BwMan needs to tune the allocation of system
resources in the distributed storage. In our case, we observe that the network bandwidth
available for user-centric workload directly impact user-centric performance (request
throughput). Thus, enough bandwidth allocation to the user-centric workload is essential
to meet SLOs. On the other hand, system-centric workload, such as failure recovery and
data rebalance, are executed in order to provide better reliability for data in a distributed
storage. The rebalance and replication process moves copies of the data to other nodes in
order to have more copies for availability and self-healing purposes. This activity
indirectly limits user-centric performance by impacting the internal bandwidth of the
storage system. While moving the data, the available bandwidth for user-centric workload
is lowered as system-centric workload competes for the network bandwidth with
user-centric workload.

By arbitrating the bandwidth allocated to user-centric and system-centric workloads,
we can enforce more user-centric performance while penalizing system-centric
functionalities or vice versa. This tradeoff decision is based on policies specified in the
controller design.

The system can limit the bandwidth usage of an application by selecting the requests to
process and those to ignore. This method is usually referred as admission control, which
we do not consider here. Instead we employ actuators to arbitrate the bandwidth between
user-centric workload and system-centric workload.

4.5. Evaluation

In this section, we present the evaluation of BwMan in OpenStack Swift. The storage
service was deployed in an OpenStack Cloud in order to ensure complete isolation and
sufficiently enough computational, memory, and storage resources.

4.5.1. OpenStack Swift Storage

As a case study, we evaluate our control system in OpenStack Swift, which is a widely
used open source distributed object storage started from Rackspace [18]. We identify that,
in Swift, user-centric workload (system throughput) and system-centric workload (data
rebalance and recovery) are not explicitly managed. We observe that data rebalance and
failure recovery mechanisms in Swift are essentially the same. These two services adopt a
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set of replicator processes using the "rsync" Linux utility. In particular, we decide to focus
on one of these two services: failure recovery.

4.5.2. Experiment Scenarios
The evaluation of BwMan in OpenStack Swift has been conducted under two

scenarios. First, we evaluate the effectiveness of BwMan in Swift with specified
throughput SLO for the user-centric workload, and failure rates that correspond to
system-centric workload (failure recovery), under the condition that there is enough
bandwidth to handle both workloads. These experiments demonstrate the ability of
BwMan to manage bandwidth in a way that ensures user-centric and system-centric
workloads with maximum fidelity.

Second, a policy-based decision making is performed by BwMan to tradeoff in the
case of insufficient network bandwidth to handle both user-centric and system-centric
workloads. In our experiments, we give higher priority to the user-centric workload
compared to system-centric workload. We show that BwMan adapts Swift effectively by
satisfying the user-defined SLO (desired throughput) with relatively stable performance.

4.5.3. Experiment Setup
Swift Setup

We have deployed a Swift cluster with a ratio of 1 proxy server to 8 storage servers
as recommended in the OpenStack Swift documentation [19]. Under the assumption of
uniform workload, the storage servers are equally loaded. This implies that the Swift cluster
can scale linearly by adding more proxy servers and storage servers following the ratio of
1 to 8.

Workload Setup

We modified the Yahoo! Cloud Service Benchmark (YCSB) [59] to be able to
generate workloads for a Swift cluster. Specifically, our modification allows YCSB to
issue read, write, and delete operations to a Swift cluster with best effort or a specified
steady throughput. The steady throughput is generated in a queue-based fashion, where
the request incoming rate can be specified and generated on demand. If the rate cannot be
met by the system, requests are queued for later execution. The Swift cluster is populated
using randomly generated files with predefined sizes. The file sizes in our experiments are
chosen based on one of the largest production Swift cluster configured by Wikipedia [60]
to store static images, texts, and links. YCSB generates requests with file sizes of 100KB
as like an average size in the Wikipedia scenario. YCSB is given 16 concurrent client
threads and generates uniformly random read and write operations to the Swift cluster.

Failure Generator and Monitor

The injected file loss in the system is used to trigger the Swift’s failure recovery process.
We have developed a failure generator script that uniformly at random chooses a data node,
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Figure 4.5 – Throughput under Dynamic Bandwidth Allocation using BwMan

in which it deletes a specific number of files within a defined period of time. This procedure
is repeated until the requested failure rate is reached.

To conduct failure recovery experiments, we customized the swift-dispersion tool in
order to populate and monitor the integrity of the whole data space. This customized tool
functions also as our failure recovery monitor in BwMan by providing real-time metrics on
data integrity.

The Actuator: Network Bandwidth Control

We apply NetEm’s tc tools [61] in the token buffer mode to control the inbound and
outbound network bandwidth associated with the network interfaces and service ports. In
this way, we are able to manage the bandwidth quotas for different activities in the
controlled system. In our deployment, all the services run on different ports, and thus, we
can apply different network management policies to each of the services.

4.5.4. User-centric Workload Experiment
Fig. 4.5 presents the effectiveness of using BwMan in Swift with dynamic user-centric

SLOs. The x-axis of the plot shows the experiment timeline, whereas the left y-axis
corresponds to throughput in op/s, and the right y-axis corresponds to allocated bandwidth
in MB/s.

In these experiments, the user-centric workload is a mix of 80% read requests and
20% write requests, that, in our view, represents a typical workload in a read-dominant
application.

Fig. 4.5 shows the desired throughput specified as SLO, the bandwidth allocation
calculated using the linear regression model of the user-centric workload (Section 4.3),
and achieved throughput. Results demonstrate that BwMan is able to reconfigure the
bandwidth allocated to dynamic user-centric workloads in order to achieve the requested
SLOs.

4.5.5. System-centric Workload Experiment
Fig. 4.6 presents the results of the data recovery process, the system-centric workloads,

conducted by Swift background process when there are data corruption and data loss in the
system. The dotted curve sums up the monitoring results, which constitute the 1% random
sample of the whole data space. The sample represents data integrity in the system with
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Figure 4.6 – Data Recovery under Dynamic Bandwidth Allocation using BwMan
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Figure 4.8 – Throughput of Swift with BwMan

max value at 100%. The control cycle activation is illustrated as triangles. The solid curve
stands for the bandwidth allocation by BwMan after each control cycle. The calculation of
bandwidth allocation is based on a logarithmic regression model obtained from Fig. 4.2 in
Section 4.3.

4.5.6. Policy-based Tradeoff Scenario
In this section, we demonstrate that BwMan allows meeting the SLO according to

specified policies in tradeoff decisions when the total available bandwidth is saturated by
user-centric and system-centric workloads. In our experiments, we have chosen to give
preference to user-centric workload, namely system throughput, instead of system-centric
workload, namely data recovery. Thus, bandwidth allocation to data recovery may be
sacrificed to ensure conformance to system throughput in case of tradeoffs.

In order to simulate the tradeoff scenario, the workload generator is configured to
generate 80 op/s, 90 op/s, and 100 op/s. The generator applies a queue-based model,
where requests that are not served are queued for later execution. The bandwidth is
dynamically allocated to meet the throughput SLO for user-centric workload.

Fig. 4.7 and Fig. 4.8 depict the results of our experiments conducted simultaneously in
the same time frame; the x-axis shares the same timeline. The failure scenario introduced
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Table 4.1 – Percentage of SLO Violations in Swift with/out BwMan

SLO confidence Percentage of SLO violation
interval With BwMan Without BwMan

5% 19.5% 43.2%
10% 13.6% 40.6%
15% 8.5% 37.1%

by our failure simulator is the same as in the first series of experiments (see data integrity
experiment in Fig. 4.6).

Fig. 4.7 presents the achieved throughput executing user-centric workload without
bandwidth management, i.e., without BwMan. In these experiments, the desired
throughput starts at 80 op/s, then increases to 90 op/s at about 70 min, and then to 100 op/s
at about 140 min. Results indicate high presence of SLO violations (about 37.1%) with
relatively high fluctuations of achieved throughput.

Fig. 4.8 shows the achieved throughput in Swift with BwMan. In contrast to Swift
without bandwidth management, the use of BwMan in Swift allows the service to achieve
required throughput (meet SLO) most of the time (about 8.5% of violation) with relatively
low fluctuations of achieved throughput.

Table 4.1 summarizes the percentage of SLO violations within three given confidence
intervals (5%, 10%, and 15%) in Swift with/out bandwidth management, i.e., with/out
BwMan. The results demonstrate the benefits of BwMan in reducing the SLO violations
with at least a factor of 2 given a 5% interval and a factor of 4 given a 15% interval.

4.6. Conclusion and Future Work

We have presented the design and evaluation of BwMan, a network bandwidth manager
providing model-predictive policy-based bandwidth allocation for elastic services in the
Cloud. For dynamic bandwidth allocation, BwMan uses predictive models, built from
statistical machine learning, to decide bandwidth quotas for each service with respect to
specified SLOs and policies. Tradeoffs need to be handled among services sharing the
same network resource. Specific tradeoff policies can be easily integrated in BwMan.

We have implemented and evaluated BwMan for the OpenStack Swift store. Our
evaluation has shown that by controlling the bandwidth in Swift, we can assure that the
network bandwidth is effectively arbitrated and allocated for user-centric and
system-centric workloads according to specified SLOs and policies. Our experiments
show that network bandwidth management by BwMan can reduce SLO violations in Swift
by a factor of two or more.

Finally, we demonstrate that the control of bandwidth allocation in a Cloud
environment can be useful in managing and ensuring the performance of elastic services
that share the same network infrastructure. This SLO-based control allows us to consider
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network bandwidth as a first-class controllable resource for services in Cloud
environment.

In our future work, we will focus on possible alternative control models and
methodology of controller designs for multiple Cloud-based services sharing the network
infrastructure in Clouds and Cloud federations. In addition, we will investigate impact of
network topology and link capacities on the network bottlenecks within or between data
centers, and how to integrate controlling bandwidth on edges of the network with
bandwidth allocation and with allocation in the network topology using SDN approach.

Building on top of the idea presented in this work to use the network in order to
influence overall behaviour of multiple services sharing the same network infrastructure,
we try to push the idea further and create a new model to merge both the Network and the
Cloud. The Two Tier Federate Cloud model presented in Chapter.5 presents exactly this
notion, with a massively scaled Cloud architectural blueprint. The network providers are
converted through a massively geo-distributed Cloud deployment in both connectivity
provider and Cloud provider.
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5.1. Introduction

Previously in Chapter. 4 we provide a network bandwidth manager, that arbitrates
bandwidth between end-points. Such approach shows that there is a strong correlation
between services sharing the same network infrastructure and their performance. We
continue to build on this work in order to provide a novel Cloud model in which
applications can be deployed anywhere from traditional Internet Public Clouds to up to 1
hop away from the user, as such providing a generalized view of a highly distributed
Cloud environment. The structured cloud application provided in this chapter, enables
trade-offs between locality and performance and as well tries to minimize federation
backbone traffic. The importance of providing federation requirements and a federation
model is presented not only to provide a generalized Cloud model but also to provide
additional guarantees of minimal management overhead and operations in times of
network partitions. This work further builds toward a merged hybrid Cloud-Network
model and respective structured federation providing incremental contributions toward a
massively scaled and geo-distributed hierarchical Cloud.

Cloud Computing in recent years has seen enhanced growth and extensive support by
the research community and industry. The advent of cloud computing realized the concept
of commodity computing, in which infrastructure (resources) can be allocated on demand
giving the illusion of infinite resource availability. The state-of-art Carrier and ISP
infrastructure technology is composed of tightly coupled software services with the
underlying customized hardware architecture. The fast growth of cloud computing as a
vastly consolidated and stabilized technology is appealing to Carrier Providers in order to
reduce Carrier deployment costs and enable a future of Carrier Clouds with easily
accessible virtual carriers. For such migration to happen software services need to be
generalized, to decouple hardware and software, and prepared to move into the Cloud.

The network backbone is centrally managed and only provides network connectivity;
we believe this presents an opportunity. The edges of such networks and the core are
interconnected with high performance links. If services could be deployed in these edges
they would benefit from enhanced locality to the user. In this position work we propose a
distributed cloud architecture (precisely a structured multi-cloud federated infrastructure),
with minimal impact on existing infrastructure, as a first step to incorporate the Cloud into
the network infrastructure of such providers, enabling and enhancing novel and existing
applications.

Moreover the architecture of Carrier and ISP providers infrastructure is constructed in
such a way that interconnections from the central data centers to the last-mile from the
client is high speed and network bandwidth is then partitioned among the costumers in the
last-mile. The whole backbone of these networks is managed in a centralized way and
provides only network connectivity. In this work we propose a distributed cloud
architecture (precisely a structured multi-cloud federated infrastructure), with minimal
impact on existing technology, as a first step to incorporate the Cloud into the network
infrastructure of such providers, enabling and enhancing novel and existing applications.

In both the cases of Mobile and ISP providers specialized high performance hardware
can be deployed to this last-mile routing facility, which in case of mobile providers we
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can consider the Base Stations as routing facilities and in case of ISP we can consider the
quarter or building Routers. The deployment of cloud hardware so close to the user enables
new possibilities for distributed services with the data centers being at the same time close
to the user and highly inter-connected.

This work focuses on providing an architectural blueprint for structured multi-cloud
federated infrastructure to enable and enhance novel and existing applications in the
present Carrier and ISP architecture. A first architecture design and possible
implementation blueprint is given. In the remaining of this work we will show also a
series of use-cases that would benefit from such architecture design and properties that
this architecture exposes toward service providers and client satisfaction. Cloud
computing is a general term referring to the successor of GRID computing and is
generally known as commodity computing. The concept of the Cloud [62] enables
infrastructure to be allocated on demand and to be managed by software services.
Virtualization techniques are used to give the impression of possibly infinite resource
allocation, with virtual resources sharing the same real resource by use of time sharing or
computation alternation in multi-core architectures.

The Cloud is generally seen as a stack model composed of the IaaS layer
(Infrastructure as a Service) providing to the user virtual machines allocatable on demand,
PaaS layer(Platform as a Service) providing abstractions of components and a language to
manage the infrastructure and SaaS layer (Software as a Service) providing software
capable of providing services to multiple organizations at the same time. Recently a new
term is being used to provide the entire real resource as a commodity resource, Machine as
a Service. This permits real specialized hardware to be allocated on-demand when needed.
The users of these services optimize costs by only paying for the resources they need.
Some of the most well known open source cloud management software at the time of
writing are Openstack [2], OpenNebula [63], CloudStack [64].

Generally modern datacenters provide the users the ability to allocate virtual resources
and real resources on demand, providing additional platforms to facilitate the development
of new services. Some datacenters offer also the possibility to have storage as a platform,
where the user can have scalable key-value stores, SQL-like databases etc. The whole
system infrastructure is designed and deployed software wise, with no or limited knowledge
of the real hardware that supports the virtual environment.

A multi-cloud federation system enables resource provisioning and life-cycle
monitoring among different cloud providers. Users may need to access and create
resources on multiple clouds for locality or economical advantages without penalizing
their Quality of Services (QoS). A federated system handles cross-cloud interactions and
integration in order to achieve higher levels of usability and locality. By combining
together multiple cloud the quality of service can be augmented by diminishing the cost of
resources since multiple providers means multiple choices and also by augmenting
locality, since different parts of the service can be deployed in multiple data centers close
to users of the service.

Infrastructure Providers (IP) are the organizations providing the hardware and
software that make possible the operation of a Carrier System and Internet Provider
system. Compared to the IP we will classify into Service Providers(SP), ISPs and Carrier
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Providers as the organizations that use the infrastructure to provide network services. The
architecture of the network backbone, maintained by these providers, is based on
specialized hardware and follows a strictly centralized architecture, where the edges of the
network provide access and the centralized Core Network provides services such as
accounting, routing, etc. In this work we propose enriching these core and edge networks
with our novel cloud architecture, enabling them to host cloud services. The proposed
structured multi-cloud federation infrastructure is a first step in moving these providers
into the cloud, and introduces a minimum technology impact on the existing
infrastructure.

The rest of the chapter is organized as follows. Section 5.2 provides the necessary
background information for both Cloud Infrastructure and Network Topologies. In
Section 5.3, we describe a unified network model for Carrier and ISP networks.
Section 5.4 presents the system design for both cloud deployment and federation model
and properties. In Section 5.5, we describe different federation models and the model
selected for our architecture. Section 5.7 shows possible applications based on this
infrastructure. We conclude in Section 5.8.

5.2. Background

5.2.1. General Cloud Infrastructure

Cloud infrastructure management software are of various types and natures, at the time
of writing of this work the mainstream open-source softwares are OpenStack, OpenNebula,
Cloudstack. Companies providing cloud infrastructure mostly use open-source ranging
from the enlisted open-source solutions or proprietary software. Some of the companies
and big names in the cloud market are Amazon, Microsoft, VMware, etc.

Cloud management software are referred to as Virtual Infrastructure Manager (VIM)
but this term is more adequate to describe local virtual management control components
used for the local machine hypervisor. Yet another denomination found in the sites of cloud
management open source software [2] refers to such components as a Cloud Operating
System, which is easily confused with recent approaches to having the actual Operating
System(OS) in the cloud. For the sake of this work we will refer to such management
systems as the Cloud Infrastructure Manager (CIM).

The general architecture of a Cloud Infrastructure Manager is shown in Fig. 5.1. The
main entities present in most of the CIM are the Cloud Controller, Virtual Infrastructure
Manager (per node basis, or compute engine), Data Store Provider(DS) and Network
Controller(NC). These components appear in different CIMs as a single component or as a
family of components providing specialized behaviors, as an example Openstack has an
Image Repository (Glance), a key-value store (Swift) and a block storage (Cinder)
implementing different types of data stores.

Cloud Controller (CC) is the main orchestration entity, governing cloud orchestration
for an entire cloud. Apart from cloud orchestration the CC handles also user management,
security policies, resource scheduling, resource deployment, monitoring and billing. The
CC is the core of the cloud managing infrastructure from a centralized point of view.
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Figure 5.1 – Cloud Infrastructure Manager structure

Virtual Infrastructure Manager (VIM) is the component that manages local resources to a
physical node in a cloud, by handling tasks such as VM scheduling, creation and
monitoring. The virtual networking infrastructure is managed by the Networking
Controller (NC) and defines software defined networks between various VMs in a
datacenter. The whole setup is managed through the CC interface and the user need only
take care of specifying a logical architecture which is then actuated by the Cloud
Controller. The Data Store (DS) generally provides various abstractions of distributed
storage for the cloud. All these components together provide a full cloud experience ready
for service deployment.

The Data Store (DS) generally provides various abstractions of distributed storage for
the cloud.The main type of data store implemented is the Image Repository (takes care
of saving the images needed by the virtual machines to start operations). Other types of
storage that some CIM software provide are also key-value store (for key-value databases)
and block storage (virtual hardrives that can be plug-ed into VMs). All these components
together provide a full cloud experience ready for service deployment.

5.2.2. Cloud Federation

Defining the term Cloud Federation is a difficult task, as in different cloud contexts
it is used to represented different concepts. In general we have a federation when two or
more administrative domains collaborate in order to achieve a common goal. In case of
Cloud Federation, there are multiple types of federation possible depending on the type
and the layer in the cloud stack in which federation is provided. The federation model we
assume in this work is non transparent federation in which different sites have different
Cloud Controllers and all of them know of each other, and collaborate through a Federation

53



CHAPTER 5. STRUCTURED CLOUD FEDERATION FOR CARRIER AND ISP
INFRASTRUCTURE

Middleware.
Extrapolating on the above definition of federation model, a cloud is a self-sustained

cloud entity with a whole cloud software stack deployment. This means that every entity
has its own cloud controller, VIM, network controller and data store. The Federation of
such a conglomerate of clouds is conducted through a central federation software that has
the ability to access the clouds APIs transparently and orchestrates the different clouds in
order to provide resources.

The clouds comprising such federation can be heterogeneous in nature as long as
images are provided for every type of cloud or conversion utilities can be produced to
translate the virtual images from one format to another. In the following sections we will
discuss the nature and design choices for the cloud federation to be used on Carrier and
ISP provider networks.

5.2.3. Carrier and ISP to the Cloud

Carrier and ISP providers generally follow a close market with software and hardware
tightly coupled in order to get the best performance from both sides of the environment.
Providing a generalized enough software stack for all the services of a provider in order
to be allocated on demand may prove to be not feasible without rewriting most of the
subsystems. There are also other limitations on Cloud adoption for the core system of such
providers and these limitations are generally related to QoS concerns that can be only met
by specialized hardware and software.

The possibility to integrate Machine as a Service(MaaS) into the cloud stack, cloud
provide the means to allocate on demand specialized hardware as needed by the
infrastructure. This in conjunction with generalized components allocated in the Cloud
could provide a solution also to QoS concerns and generate a general enough architecture
to deploy the whole Provider services on a cloud infrastructure. This possible solution
requires a vast amount of work and modifications to the subsystems in order to migrate the
services to the cloud. If the infrastructure providers would move their product to the cloud
they would incur into vast amount of benefits, their data centers could accommodate and
provide resources for multiple virtual Mobile Providers and ISP service providers and
enable economy of scale but also energy benefits as resources would be managed
dynamically following demand without necessity of over-provisioning to maintain SLA
contracts. The current state-of-the art Carrier and ISP network services are not general
enough to be moved to the cloud, and cloud technologies are not yet adopted in their
infrastructure.

In this work we propose a different approach to integrate cloud services inside the
existing network environment in use by these providers, in order to achieve better and novel
services and also permit SPs and third parties to easily deploy services in the IP networks.
The Cloud Federation that will be described in the next sections will use the nature and
topology of the existing IP based Carrier and ISP networks.

54



5.3. CARRIER AND ISP SYSTEM TOPOLOGY

5.3. Carrier and ISP System Topology

Carriers for Mobile and WiFi networks have a pretty close theoretical system topology
to the ISP providers infrastructure. Some of the differences are in the protocols and the
mediums of the last mile and the routing, else these two topologies are very affine to each
other. In Fig. 5.2 we find a high level simplified star topology that unifies the different
topologies and assumes IP as network transport protocol. The high level topology view
simplifies dealing with different protocols at different stage of the carrier network and
gives a much simpler framework to work with by decoupling the architecture from the
actual communication protocols in the real topology. However there may be some
protocol restrictions to the real topologies as some protocols may not include IP in all of
the points of presence. This point will be a focus of further discussion when dealing with
real deployments of such technology.

The subsystems of a normal Carrier and ISP provider are introduced in Fig. 5.2, where
we have a main access to the internet protected by a firewall then we have the Core Network
(CN), which compromises the main routing activities for data and voice traffic. The CN
takes also care of the main activities like monitoring, provisioning of resources, accounting
and also intra provider connectivity and handover. We assume we have one CN for each
country which constitutes the main backbone of the infrastructure.

Core Network

PoP

Cross-PoP
Link

 Core Link 

Internet

PoP

PoP

Figure 5.2 – High Level Provider Network Topology

In this generalized view of the architecture we have geo-distributed points of presence
which provide network access to the clients. These points of presence are the edges of the
access network and the one responsible to give connectivity to the clients. In case of the
Carrier Network we have the Radio Base Stations providing local points of presence, while
in the case of the ISP we have the Point of Presence (POP) which offer routing facilities
and access and are connected with fiber to the CN.
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The clients then connect to one of the POP with a different or same media but the
bandwidth of the POP is subdivided between the clients that connect to the POP. In the
case of Carrier networks, the transmission medium from POP to client is radio while in the
case of ISP, it can either be radio (WiFi access points), cable or fiber. The total bandwidth
toward the internet of the clients is less or equal to the bandwidth from the POP to the
backbone. In general, different deployments are setup so that the total client bandwidth
does not saturate the backbone link in order to permit also control signal bandwidth for
inbound control. In the Carrier cases neighboring base stations have cross-connections that
are used for traffic handover on user mobility. These links provide also a major way to
optimize locality and present additional bandwidth that normally is used only in particular
cases.

In general the topology (Fig. 5.2) is a star topology at the core, with core connections
build up by high performance mediums (like fiber) and have lower bandwidth connections
at the edges toward the client. In this work a multi-cloud distributed environment will be
discussed in order to use the strong points of the topology and enable novel application and
services to be deployed on the providers networks.

5.4. Structured Multi-Cloud Architecture
Section 5.3 introduces the abstract network topology for normal deployments of Carrier

and ISP provider networks. The Star topology described previously as the main topology
has the benefits of high speed links at the core and separate local bandwidth at the edges
of the network (the clients). Let us discuss a small user-case to show potential benefits and
give a realistic view on benefits brought by the new multi-cloud architecture.

In an ISP provider, if some services could be moved at the POP, the clients would
have a full 100Mbs connection to such service, under the assumption of having cable as
the last mile medium, but only a 2-10Mbs connection to the internet from the backbone.
Assuming the required service from the user could be elastic enough to be moved at the
POP the user could interact with the service at a far higher bandwidth than that of a cloud
service positioned somewhere in a centralized datacenter reachable via the backbone. Thus
we effectively augment the available bandwidth toward services from the user and also
generate new bandwidth by using previously not usable bandwidth.

The simple case described in the previous paragraph introduces hints to a more
optimized cloud environment in which the whole Carrier and ISP provider network could
be transformed into a service enabled multi-cloud federation. Let us discuss in details the
architecture design of such cloud and also various aspects of performance, control,
usability, applications and stability of such architecture.

5.4.1. General Architecture
The proposed cloud architecture is constructed in order to take advantage of the network

topology in order to achieve better services but also the possibility for both Carriers and ISP
to enable in-house and third-party application and protocols to be deployed in a most secure
and isolated manner. The deployment of such applications and protocols would not impact
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the existing architecture and their deployment would be as easy as requesting the cloud
manager to deploy some service images.

In the current state of the art such deployment would require provisioning of new
hardware to the POPs or even software modifications to the POPs operating system which
may lead to down-times if not done correctly and may require downtime in order to do the
necessary system reconfiguration.

Core Network

Cross-PoP
Link

 Core Link 

Internet

PoP

Federation ManagerFederation Manager

T2 micro-cloud CIM

PoP

PoP
T2 micro-cloud CIM

T1 Cloud CIM

Cross-PoP
Link  Core Link 

 Core Link 

T2 micro-cloud CIM

Figure 5.3 – Extended Infrastructure and Federation Model

The structured multi-cloud federated deployment architecture is shown in Fig. 5.3.
The main aspects of this architecture are Tier-1 Cloud (T1, a datacenter grade cloud) and
POP Tier2 (T2, POP local cloud). The combination of this two clouds permits a
hierarchical cloud architecture that exploits locality and also the network topology for
optimized bandwidth usage and sometimes also augmented bandwidth usage. This novel
cloud architecture, could use local cross-POP links if present, that at the moment are used
only for particular cases, in order to have full link usage and much more bandwidth than
the normal POP bandwidth. This links in Carrier networks at the moment are used only
for handover procedures.

The T1 cloud is a datacenter cloud deployment located, inside or highly connected to,
the core network. For all intent and purposes, connection wise, it is an integral part of the
core network and has high performance links to the internet. This core datacenter provides
the necessary strong backbone in order to have a hybrid architecture. Data and application
if deemed necessary can be moved around from the T2 cloud to the T1 cloud in order to
have stronger Service Level Agreement (SLA) guarantees.

The T2 clouds are geographically distributed close to the POP or part of the POP OS
itself, in which a VM acts as a routing facility, giving the possibility to allocate resources
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on demand very close to the users of the service. In some cases bringing the user as close
as one-hop distance from the desired service. Each POP has its own T2 micro-cloud and
the conglomeration of all the micro-clouds builds the T2 distributed cloud layer. T2 micro
clouds are self-managed full cloud deployments in order to have full support for application
deployment.

The micro-clouds fabric is federated or managed by a centralized federation controller
(CIM) installed in the T1 cloud. The federation type that is used is non-transparent
federation which will be explained in describing possible control mechanisms of such a
cloud concept.

Clients connecting to the WAN topology have generally higher bandwidth to the POP
than the total client bandwidth toward the internet backbone which is limited by the
backbone link from the POP to the CN. By having the T2 micro-clouds to the edges of the
network the clients can interact with services with higher bandwidth and the total
available bandwidth is increased as compared to the case in which the services are
deployed on an internet cloud.

Since resources in the T2 cloud are limited we have the T1 cloud acting as a cloud
helper in which load could be redirected in order to handle high traffic services which would
saturate the resources in the T2 micro-clouds. In this case performance of the service in
terms of locality and connectivity are limited as compared to the local micro-clouds, but
still better than an internet cloud, since we are still inside the same WAN.

This architecture can further increase apparent total bandwidth if cross-POP links exist.
This links can be used to shortcut application data between services running on neighbor
POPs so that the backbone is left free for user internet access. In this case we have new
data paths that normally are not used for user access becoming available to service data and
thus increasing the efficiency of the network usage.

5.4.2. Bandwidth Control

The proposed structured multi-cloud architecture optimizes locality and efficiency of
network links and also enables novel applications to be deployed on the described network
topologies. The efficiency of the network is increased by rendering available to service and
user traffic unused network bandwidth, that is normally not usable as limited by the network
backbone and also new data paths that normally are used only for control or exceptional
operations.

The efficiency comes with some restrictions as now data paths that were used for system
specific tasks handle also user and cloud service traffic. The two types of traffic would be
contending the same network resource and without some kind of management this may
compromise system integrity.

We propose a solution based on previous work done in [65] a network bandwidth
manager for cloud services. The principle following this network manager is in having
bandwidth managed so that user-centric workloads and system-centric workloads could be
managed and allocated at the endpoints independent of the network topology. This model
permits to have SLA guarantees independent of the topology of the underlying physical
network. In case this bandwidth management is still not enough to have system stability,
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services could be migrated from the T2 micro-clouds to the T1 micro-cloud. The system
in that case would revert to a Carrier Cloud infrastructure where the providers enabled
connectivity and services are on the CN cloud.

5.4.3. Service Migration

In case of availability of cross-POP links, as previously mentioned we have new data
paths on neighbor POPs that can be used to deliver data and build new out-of-band services.
This links can be used as newly available data paths but also for a more advanced usage of
cross-POP service migration. In case a micro-cloud being saturated the federation manager
could migrate some of the services to a neighbor POP and the clients can exclusively use
the cross-POP links.

In this scenario we have multiple possibilities for service migration, we can either
migrate the service from the micro-cloud to a neighbor micro-cloud or to the centralized
T1 datacenter cloud. This migration process could be implemented on a policy based
approach so that it can be possible to be modified on a per deployment basis depending on
the system administrator priorities. Further study of such scheduling policies is delegated
to future work.

Service migration can serve also as a mean to deal with mobility of devices in terms
of geographical sparsity. Frequent movement of clients between different POPs can be
accounted by moving the data slowly between POPs, but such model works only if the
speed with which the client is moving between POPs is lower than the cost in terms of
speed of moving the data between POPs. When clients have POP switching speed of a
highly sporadic nature or of high frequency the data can be moved higher in the hierarchy
to the T1 cloud so the services migrate but the data is static in T1.

5.5. Federation Manager

The proposed cloud infrastructure leads to multiple control possibilities for the cloud
federation, the Federation management infrastructure, the entity coordinating multiple
clouds together to produce a usable service. The control system for the federation leads
also to design choices concerning the cloud infrastructure. In the Star topology we have
assumed for this work, clouds are distributed in two variants; a micro-cloud fabric
composed of multiple T2 local clouds on the edges of the network and T1 cloud a
datacenter level cloud part of the WAN. By considering the Star topology and the
placement of the clouds, control can either be centralized thus having transparent
federation or decentralized by having a non transparent federation. Both of the federation
models are viable alternatives for the proposed federation architecture. The chosen
federation model for this architecture will be centralized and non transparent. They will be
discussed separately with cons and pros for each choice and then one of the model will be
chosen to be the main federation model. The federation model will be assumed to be
centralized and non transparent, more details will be shown when talking about the
positive side of such choice in the following subsections.
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5.5.1. Federation Layer

In a multi-cloud federation, federation could happen on any layer of the cloud system.
Some system may implement federation on the IaaS layer by rendering invisible to the users
of the PaaS or IaaS that the federation exists. The IaaS layers of all the clouds would handle
resource provisioning between multiple IaaS providers and hide to the upper layers the fact
that a federation exists at all. Or by exporting federation specific functions though the IaaS
interface, but normally the upper layers PaaS, SaaS and client don’t need to necessarily
know that the IaaS is actually a multi-cloud federation [66].

Another way a multi-cloud federation could be implemented is by federating at the PaaS
layer in which the IaaS-es of different clouds don’t have any idea of each others existence.
The federation is executed on the upper layer, the PaaS. In such federation scenario it is the
platform or the client, in case a platform is not present, who is responsible for the federation
mechanisms. It needs to implement metadata and multi-cloud resource provisioning to
interact with each of the clouds in the federation. When resources are requested from a
client application, the PaaS or the client contacts and interacts with each cloud in order
to satisfy this requests. This approach has a low footprint on existing IaaS because of no
need of actual modification, but elevates the complexity level on the PaaS side. For each
cloud a driver would need to be implemented for accessing the clouds homogeneously and
problems may arise as different IaaS providers may use different cloud technologies and
may be unable to hide the heterogeneous nature of the multi-cloud.

Other ways to implement federation are by implementing it on the PaaS or SaaS layer,
the problem with implementing federation on this layers is that generally different PaaS
provide different programming models, run-time environments and tools to manage
execution of programs. These languages and programming models are not standardized
and differ from each other greatly thus are not compatible. The complexity of achieving
such federation is fairly high and without standardization may prove to be infeasible.

5.5.2. Transparent Federation Model

With transparent federation we describe physically separated clouds on the same or
different WANs (T2 micro-clouds) in which only one CIM (T1 Cloud CIM) exists for the
whole cloud federation. In this approach no separate federation controller is needed as the
CIM manages resources in the federation as if it was one big cloud.

The multiple micro-clouds (T2 micro-clouds), composed of at least a server grade
machine, are distributed in different LANs. Of these clouds there exists one, which
provides also the CIM (T1 Cloud CIM). The other clouds are connected to the CIM
enabled cloud, using virtual LAN or tunneling technologies to build a unique LAN overlay
and give the impression that all of these clouds exist on the same physical network.

This approach provides an easy implementation of a federation system as no additional
changes to the existing CIMs would be needed. However problems arise from such a
configuration as there is no actual distinctions between VMs on different clouds, or this
distinction needs to be added to the CIM, maybe by separating different clouds in different
IP ranges and use latency as metric.
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Another drawback of this technique is that the added complexity of having a network
overlay deteriorates performance of the network between different clouds but also
between the VMs on the same machine as traffic would always need to pass through the
VLAN or LAN tunnels. Performance deterioration is due to the overhead of the tunneling
technologies as packets need to be encapsulated/decapsulated in order to reach the
machines and VMs on different LANs.

Apart from performance concerns this model assumes that the connection between the
clouds and the CIM is always persistent, if such connection breaks then the distributed
partitioned micro-clouds would be left without any control system and thus rendered for all
intent and purposes unusable.

5.5.3. Non-Transparent Federation Model

Non-transparent federation model is a model in which the distributed multi-clouds (T2
micro-clouds) are full cloud deployments with each having its own CIM (T2 micro-clouds)
management system, in this case a third party software is needed to perform the federation.
The Federation Controller (FC) would run in a centralized fashion on one of the datacenters
(T1 Cloud) or a distributed software running on each one of the federated clouds.

The FC would be the entry point to all the resource provisioning system and also
would need to care about scheduling, error recovery and multi-cloud monitoring and
authentication mechanisms. Also the federation controller would need to have a universal
interface to access heterogeneous clouds uniformly.

The network topology of the VMs from such federation would be by using public IPs
thus flat networking or a reserved private network in case of private multi-cloud. In this
scenario the networking is not penalized in performance as no amount of tunneling or
virtual networking is involved. All the machines reach each other through the WANs or
LANs by using the flat network IP addresses.

This model also accounts for topology partitioning as each cloud is a self-sustained
entity. Each cloud has its own CIM manager so even in case that the main federation
controller is offline operation of the cloud can still continue in an unsupervised fashion.
When the main federation controller is returned to full functionality then the only data who
needs to be updated would be the federation metadata. By having such behavior this model
provides network partition stability for the cloud management and the cloud can still be
operated locally, even in the absence of the federation controller.

This approach also minimizes traffic needed between the federation manager and the
distributed clouds as monitoring and normal operation commands are delivered locally by
the local CIM (T2 micro-cloud CIM), only resource provisioning and resource scheduling
are done non-locally by iterating with the federation controller. Thus the majority of the
external traffic would be functional traffic inherent to the application running on the
machines and few federation management and monitoring traffic.
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5.5.4. Storage and Identity

Identity management and distributed storage are two aspects crucial to the
implementation of any such cloud federation. Depending on the infrastructure in place for
such topologies there are different approaches to implementing these aspects.

The area of federated identity manager is still a hot research topic on cloud federation
technologies, approaches to achieve such identity federation include modification to single
cloud proprietary protocols to include multi-cloud identity management and third party
authentication authorities. A work conducted on OpenStack [11] uses both approaches by
modifying the local cloud identity management protocols to include third party
authentication servers.

As for the distributed storage the model that best fits the topology in our opinion would
be local storage for each T2 micro-cloud and Peer-to-Peer deployment of images in local
repositories. This solution provides also a reliable system as in presence of partitions micro
clouds can continue operations without central supervision.

5.5.5. Final remarks on federation dynamics

The federation model chosen for the multi-clouds infrastructure described in this work
is the non-transparent federation with centralized controller. In our opinion this model
provides the best stability of operations and also minimizes clouds management overhead
on the links that in the Carrier and ISP case is a primary resource.

The Federation Controller is placed in the Core Network T1 datacenter while each one
of the micro-dataclouds if treated as a full cloud deployment on at least a server grade
machine. The FC provides the main activities for resource scheduling and resource
provisioning, and delegates to the local CIMs the management of the lifecycle of the
provisioned resources, monitoring and local resource scheduling.

5.6. Real Implementation on Carrier Networks

In this section, a possible deployment for the cloud infrastructure is described in the
context of the Carrier Network infrastructure. Fig. 5.4 shows a generalized view of the
architecture and the placement of the T1 and T2 cloud enabled hardware. This deployment
is one possible way to deploy the clouds, each provider could customize it to fit production
and deployment needs.

As shown in Fig. 5.4 the T1 datacenter cloud is an integral part of the Core Network.
We can suppose for the sake of 3GPP standard that this data center, connection wise, is
placed between the Core Network and the firewall connecting it to the internet. This way
Core Network functionality is not compromised and routing can be done easily while
maintaining good connectivity.

As for the T2 micro-cloud fabric, it can be either an external cloud enabled hardware
plugged into the base station or dedicated cloud enabled hardware inside the base station
hardware. We have a separate control network connecting the T2 clouds with the T1 cloud.
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Figure 5.4 – Carrier Network Implementation

The base station is considered to have routing capabilities, forwarding data either to the T2
cloud or to the Core Network.

In the current 3GPP standard it is not possible for the base station to have such routing
facilities, but such functionality could be provided through different techniques outside of
such standard. The VMs started on both of the T1 and T2 clouds could be part of a private
network IP allocation range or be provided with public IPs and provide network isolation
through VLAN an Network Overlays.

5.7. Enabled and Enhanched Applications

In this section we discuss some potential novel applications in this context, that would
benefit from this cloud infrastructure and cloud provide hints on how to develop this
technology further.

5.7.1. Internet of things

Recent developments have seen a lot of attention shifting to the so called "Internet
of Things", or the idea of having all of the electronics present in our environment to be
connected to the internet [67]. By having a cloud infrastructure close to the clients and
thus close to the devices a client uses, these devices could use the micro-clouds in order to
achieve better performance or even as a helper for their tasks.
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5.7.2. Mobile cloud Computing

As previously stated, Mobile Cloud Computing is to be understood as taking
computation and data away from mobile devices into the cloud [29], enabling reduced
power consumption and availability of additional resources. Drawbacks of this approach
are introduced by the sporadic nature of network latency and that of network partitioning.
Both these drawbacks can be addressed by having the T2 micro-cloud close to the user, so
that the user can offload computation to the local T2 cloud. In case of user mobility as
mentioned, the data of the service could be moved either to the next local T2 cloud or
higher up in the hierarchy to the T1 cloud.

5.7.3. Third party applications

Third parties will be able to deploy their own services on top of the Carrier or ISP
networks, and the Carrier and ISP would be able to charge for such services as they provide
the infrastructure. These applications could be deployed easily through a appstore approach
and different business model may be applicable. At the moment the network providers are
unable to charge service providers for the network utilization. This approach would be
acceptable by both parties as the service provider is assured to have better connectivity to
the clients and stability of execution environment, while the network provider is able to
charge the service for network and execution environment costs. This model may lead to
new streams of income for all the involved providers.

As a real life example, Akamai a well known CDN provider at the time of writing of
this work, provides its own boxes to network providers in order to deploy it’s cache-ing
services. If the proposed architecture on this work would be in place then the network
providers may provide such infrastructure and charge for it, while Akamai would have
better scalability for their distributed caches and better locality to the users.

5.8. Conclusions and Future Work
To summarize the contributions, this work devises a cloud enabled architecture for

Carrier and ISP Networks in which the topology is augmented with cloud infrastructure in
order to provide cloud services. The proposed cloud architecture is based on a structured
multi-cloud federation, in which micro-clouds are distributed in the PoPs of the network
topology (namely T2 micro-clouds) and a central datacenter cloud, namely the T1 cloud.
As a control mechanism for such distributed architecture we chose non transparent
federation, managed by a centralized cloud federation manager running on the T1 cloud.
The T2 clouds provide locality augmentation for services and the T1 cloud provides
augmented performance for more performance oriented services.

In order to give a complete view of the architecture, various aspects were discussed
including mobility, cloud properties and service migration policies, etc. To conclude the
discussion of the cloud architecture, possible applications benefiting such technology are
presented. Future work will focus on further study of such cloud federation middle-ware
and on possible services running on such a distributed architecture. In details we will
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conduct followup work into resource management for such distributed environment in
order to optimize not only service latency but a multi-factor optimization of both service
latency and deployment/run-time costs. Latency is a very impacting factor in real-time
media stream processing applications but lowering operational costs is also of primary
concern, thus a trade-off needs to be made.

Having provided both a network bandwidth allocation broker (or bandwidth manager)
and a generalized Cloud architecture and related structured model, there is a need to
identify and optimized applications that would benefit from such architecture. One type of
applications that can be enhanced through the use of these two previous works is live
streaming of audio and video. In Chapter. 6 we provide a new self-managed overlay that
optimizes live streaming backend paths. The proposed Management Overlay is developed
to use the hierarchical structured Cloud Federation (proposed in this chapter) to enhance
live streaming applications and lower the impact of scaling number of micro clouds
involved in a video stream.
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Enhancing Real-Time Applications by
means of Multi-Tier Cloud Federations

67



CHAPTER 6. ENHANCING REAL-TIME APPLICATIONS BY MEANS OF MULTI-TIER
CLOUD FEDERATIONS

6.1. Introduction

In the previous Chapters. 4-5 we develop respectively a network bandwidth manager
(managing network bandwidth allocation on the end-points of different Cloud services
sharing the same network infrastructure) and a Cloud model based on Structured Cloud
Federation for Carrier and ISP infrastructures. We complete such work in this chapter by
presenting an application that is enhanced through the use of both these techniques. The
selected type of application is live streaming, which is relatively stateless application but
with hard SLOs on real-time and no-deal tolerance. The proposed application uses the
proposed Cloud architecture in order to exploit the benefits of locality and uses a
self-managed federation management overlay that is reconfigures itself with low overhead.

The evolution of Cloud Computing beyond the frontier of a single datacenter is
justified as a mean to enhance various system architecture aspects like: cost, geo-locality,
energy efficiency and structural properties. These multi-cloud federations represent the
ability to orchestrate different cloud providers in order to provide better. Orchestration of
different cloud providers in order to ensure better Quality of Service (QoS) is refered to as
Multi-Cloud. One such multi-cloud federation model is Community clouds, a federation
concept composed of various micro-clouds owned by the community or various
management authorities.

One such multi-cloud federation model is Community Clouds, a federation concept in
which various micro-clouds are owned by different communities of individuals
contributing cloud resources. Community Clouds provide high locality to services towards
the user by bringing the Cloud in the edges of the network, and in some cases as an
integral part of the access network. Another such type of multi-cloud federation is
Structured Cloud Federation for Internet Service Providers and Telephony Providers,
composed of geo-distributed micro-clouds placed on the edges of the network and a
centralized datacenter cloud on the core network. Services deployed in the micro-clouds
have augmented locality, while services on the datacenter cloud enhanced performance. In
this work we identify how these approaches to multi-cloud, through the ability to deploy
services close to the final user, can be exploited to enhance existing real-time streaming
applications. Furthermore a novel multi-cloud overlay algorithm is introduced that
provides both latency and backbone traffic optimization for latency critical existing and
novel services (concretely focusing on stream computation, live streaming). The advent
and advance of Cloud technology led to a growth in service complexity. Commodity
computing, through dynamic resource allocation, enables services to modify their
structure at runtime in order to comply with QoS agreements between provider and cloud
user. Such software governed growth, in service complexity, encompasses and dictates
substantial growth in all the layers of the Cloud stack from Infrastructure as a Service
(IaaS) to Platform as a Service (PaaS) and Software as a Service (SaaS).

Service complexity and the need to overcome cloud computing limitations
(vendor-lockin, performance, geo-locality, resource availability) [62] [68] [69] has
contributed to the move of such services into Cloud Federations or Multi-Clouds. In this
work we analyze and provide new mechanism for multi-cloud federations, that we call
Structured Cloud Federation for Telephony and ISP providers and federations of
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Community Clouds, that improve existing Live Streaming services through augmented
service locality leading to better and more predictable overall application performance.
This work focuses particularly on how such distributed architecture can optimize live
streaming applications. Such applications provide a hot topic on present access networks,
with examples like WhatssApp [70] (live messaging) reaching millions of active
connections, and live video streaming with global consumer Internet video traffic rising to
80 percent of all consumer Internet traffic by 2019 [71].

Cloud federations of highly distributed nature like the one considered in this work,
provide good candidates to cloud enhancements of existing live streaming application
techniques. The contributions of this work are as follows.

1. First, we define a Multi-Tier Cloud Federation Model that allows to enhance
existing Cloud-based application as well as enables new classes of applications,
such as latency-sensitive real-time edge services that need to be located in
geographic proximity of mobile devices in order to provide required QoS and
improve end-user experience with the services.

2. Second, we propose a novel algorithm for Cloud Federation Construction and
Maintenance that self-organizes the clouds in a minimum latency configuration,
from source to destinations, including also a fallback and high scalability
mechanism.

3. Finally, we evaluate and demonstrate the benefits that can be achieved from
deploying real-time applications and services on a multi-tier cloud federation,
by considering an enhanced live streaming application as a use-case.

This chapter is organized as follows. Section 6.2 provides an introduction to the basic
concepts needed to understand the various entities of the system model. In Section 6.3, we
describe an overlay based cloud federation model that codifies the augmented locality
approach. Section 6.4 presents overlay construction and maintenance algorithms. In
Section 6.5, we describe enhanced applications, that benefit by the use of this architecture.
We conclude and discuss future work in Section 6.6.

6.2. Stream computing applications
The targeted services for optimization, are general stream computing applications,

where a stream of data needs to be processed in a distributed fashion. Live streaming
applications, like WhatsApp [70] live messaging, live video with message interaction
Periscope [72] or live multi-party interactive communications like Skype [73], should
provide a service and communication time lower than the human perception time in order
to provide a, as close as possible, natural communication medium. The human reaction
time can be accounted at the order of 150ms [74], and anything more than that would
create highly unnatural interactions. Live Streaming services could be subject to other
Service Level Agreement (SLA) related concerns in order to support third party
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application orchestration, thus not only human reaction time. One such example could be
live feedback from the viewers of the live stream, in other words live interaction of the
viewers with the content being streamed.

6.2.1. System model

The system model is composed of access networks providing highly geo-distributed
clouds, backbone and public internet clouds. A high level view of such model is shown
in Fig. 6.1 with all the related components. Each access network provider enables service
deployment in any of the distributed clouds and the backbone cloud. The clouds inside
the same provider are interconnected with high performance links and the providers have
high performance links to the internet clouds or direct high performance links to a limited
set of neighbouring providers. In this work we provide a way to build a self-organized
structure between such clouds, in order for the clients to fetch the live stream directly from
the local clouds, the closest cloud, minimizing both backbone traffic and stream latency.
The introduction of a self-organized structure between the clouds eliminates the possibility
of central management becoming a central point of load and failure.

A relevant research question in this case is using the architecture to have a distributed
multi-cloud algorithm that produces a good enough approximation of the shortest path
between the source of the stream and the receivers, and at the same time minimizing
payload duplication along the backbone. In developing such algorithm we discovered
other properties that benefit the application model of live streaming. Such properties are
client churn decoupling, enhanced support for client mobility and on-the-fly scaling of the
resources to meet load demand.

6.2.2. Cloud Federations

Cloud federations as introduced in [75], [76] define a collection of cooperating Clouds,
managed by the same or different administrative authorities, in order to provide a set of
common services or applications. The nature of interaction between the clouds defines
the federation type, thus differentiating between Cross-Cloud, Cloud Federation (providers
cooperate in the federation) and Multi-Cloud (provider has no idea of the federation, based
on client middleware) [76]. The rest of the work will use the term cloud federation, but no
limits are imposed on the federated entities, as such the terms can be used interchangeably.
In this work we consider highly distributed cloud federations like those described in [15]
and [77]. To generalize, a fabric of highly distributed Micro-Clouds are used in conjunction
with datacenter grade Internet Clouds in order to provide distributed services. The key
idea of such cloud federations is the ability to have augmented service locality through the
micro-cloud fabric (ability to deploy services on the edges of the network) and a stable
backbone through private or public cloud to provide performance oriented resources. Such
federation provides to the services the possibility to trade-off between performance and
locality and in some cases the best of both worlds, when services are composed of locality
components and performance components. Thus these cloud federations are needed in
order to have a highly scalable and highly distributed architecture, with augmented locality.
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Figure 6.1 – Extended Cloud Infrastructure and Cloud Federation Model

In some cases due to the scale of the distributed environment having a one cloud solution
may not even be an option, as the system traffic would greatly influence the client traffic,
with which it shares the access network. In such cases self-managed micro-clouds are the
only option in order to have a distributed cloud infrastructure.

6.2.3. Stream Computing (Live Streaming)

Crucial use cases are enhancements to real-time applications achieved through the use
of highly distributed cloud federations as previously described. The applications that will
be discussed, namely Live Video Streaming, are to be treated as a case study for such
technology and as a small sample of application types that can be enhanced through these
architectures and techniques. Live Streaming refers to streaming of live video channels
by means of HTTP communication, where not only the quality of the stream is the issue
(network bandwidth) but also the latency of the stream. Real life examples of such case
are Web TV or IPTV and live event multicasting where the latency profile of the stream
should be restrained by a minimum QoS. Virtual Reality dictates a bi-directional stream
of information, as such latency is of utmost importance considering that the cloud is not
a mere repeater of the stream but also a manipulator and all should be restrained within
the human action perceptible time. Such limitation ensures a flawless user experience and
good QoS parameters.
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6.2.4. Overlays

The concept of overlay is that of creating a structure on top of an existing physical
interconnection between resources. Overlay structures may be constructed in such a way
to encapsulate system properties that enhance applications. Such overlays are common in
publish/subscribe systems and in P2P systems where peers are organized through a
distributed overlay. The presented system design makes use of an overlay construct in
order to build a locality enhanced, cloud enabled, environment in order to optimize service
latencies. In Section 6.3 a federation overlay is constructed in order to optimize latency of
real time applications such as Live video Streaming.

6.3. Federation model
The federation model developed in this section is a self-organized cross-cloud service

overlay, that enables enhanced locality cloud-based services. The cloud federation
mechanism embeds in the federation structure the concept of locality. A software level
overlay is built and maintained between the clouds in order to provide minimized stream
latency. In order to give a clear picture of the proposed solution, we define some
requirements that the federation should conform to. Following such federation
requirements the remaining subsection of this chapter presents an architecture blue print.

6.3.1. Federation and System Model

The system model presented in this section clearly defines the cloud federation nature
and system components. A high-level view of the considered federation and system
components is shown in Fig. 6.2. As previously described we assume the presence of
Micro-Clouds (PoP Clouds) in the access networks of various providers and also a
datacenter grade Core Cloud, in such AS backbone. PoP Clouds are physically
interconnected to a small number of physically close micro-clouds and also to the Core
Clouds with a high performance link backbone. The Core Clouds posses
high-performance links to a small number of neighboring Core Clouds, to all the PoP
Clouds of the AS and also to the various Internet Clouds.

As for the FM introduced in the following subsection, it is placed in the Public Clouds in
order to have ease of visibility to the other components of the proposed federation model.
The proposed self-organized algorithm builds a locality aware overlay based on distance
from the source PoP Cloud toward all the members of the live streaming multicast. The
assumption regarding the source of the stream, is that the source client, uploads the stream
to the local PoP Cloud which effectively becomes the source cloud toward which the other
clouds try to build a proximity aware overlay.

In this first version of the system design we assume the setup is being used for a single
stream, in order to focus more on the overlay construction mechanism and leaving to
future work additional concerns such as resource allocation within the clouds and multiple
streams. The overlay is build on top of the physical setup shown in Fig. 6.2, and all the
resources inside the clouds use the overlay setup for communication. This simplifications
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Figure 6.2 – Layered Federation Model

of the system view enable the study of the system as a graph of which the edges are Wheel
graphs with the Core Clouds as center and in turn the Core Clouds and the Internet Clouds
form a random interconnected graph (Fig. 6.5).

6.3.2. Federation Components

Enhanced locality is a crucial part of the system design as such will form the base of
the system design. The architecture is composed of a geo-distributed decentralized cloud
infrastructure built of fully functional cloud deployments. In case of Community Clouds,
such micro clouds are provided by the community and provide resources on a cooperative
basis or on pay-as-you-go plan. In case of ISP and Telephony clouds, the decentralized
infrastructure is managed by one provider or collaborating providers as a paid service.

In the design of cross-cloud connectivity we provide a structureless interconnection
and leave freedom to the architecture implementer to build specialized inter-connectivity
as dictated by the actual service being implemented. The underlying cross-cloud network
infrastructure should provide a uniform network access to the micro clouds such as public
IP addressing or VPN access for cross-cloud communications. The clouds should be
accessible to all other clouds and clients of the service. IP is chosen as the best
inter-connectivity protocol as it is the de facto standard for internet applications, and if is
fairly supported by any live streaming application.
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Hence forth the decentralized cloud infrastructure will be referred to as micro-cloud
fabric or micro-clouds. Such denomination does not imply anything about the
performance of the clouds. The micro-cloud can be anything between a single machine
cloud deployment to a highly geo-distributed datacenter. The name implies only that the
resources available are quantitatively less then that of a public or private backbone cloud.

In order to enhance this cloud infrastructure with a more stable backbone and the ability
to cross connect clouds in different regions a private or public cloud datacenter is introduced
in the design. At worst on geo-distributed resource exhaustion, the system falls back to an
Internet model by using the private or public cloud, until new local resources are available.
A central entity manages resource allocation and hosts the Federation Manager (FM). Such
manager is in charge of monitoring and de/allocating resources in the federation in order
to scale the services. The FM manager is going to be used solely for resource de/allocation
for the clouds taking part in the federation, while the overlay structure implements the
discovery algorithm for the clients of the service. By doing so the FM does not become
a bottleneck for the system and client resource discovery, distributing such service to the
clouds.

A naming scheme or cloud transaction provider is needed in order for dynamic resource
discovery in the cloud federations. The scheme defines also reachability of the resource,
as through the naming aliases different providers can take over service deployment on run-
time with minimal impact to the existing infrastructure. Such provider could be a P2P
gossiping algorithm, where the clouds periodically update resource availability, or on the
other hand such service could be provided by a third party resource market place.

In our solution the cloud overlay will use the gossip based protocol for resource
discovery or control statements from client toward the service or for cloud-to-cloud
service data. As for cloud resource allocation, the centralized FM entity will allocate
resources based on maintenance cost. The FM in our case will be the source datacenter
cloud or a cloud in the public domain. We choose a gossip based algorithm as it alleviates
the load of managing mobility of clients through a central entity and also it provides a
good distributed approximation to the optimal shortest path from the source to the clients.

More properties of such tiered cloud federation are shown in Fig. 6.3, as we see the
more we distribute the clouds the more we gain in locality but loose in resource availability.
The federation overhead is higher in the lower tiers, as higher decentralization implies
greater complexity in managing the cloud services.

Having discussed the main system and federation components we move on to the
description of the federation dynamics as a factor of service implementation.

6.3.3. Federation Dynamics

In this work we provide a dynamic federation overlay between the clouds in order to
have a loosely coupled federation. The federation model mimics the application restraints
in order to provide the best available resource locality for live stream computing. Providing
a common interface and a tightly coupled federation between the service and the resources,
the application enhancements are encapsulated in the structure of the federation and as such
management overhead is minimized.
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Figure 6.3 – Layered Federation Model Properties

The discovery service provides the clouds with the available resources that can be
scheduled and the federation can allocate. Each application then builds its own federation
overlay on top of the federated resources in order to optimize the runtime. As such for the
live streaming scenario we developed a hybrid federation where the federation is built as
an "Gradient" variant overlay.

The system as shown in Fig. 6.3 is composed of three service layers, in a multi-tier
federation model. The upper layers of the federation model provide service stability, more
centralization, enhanced performance. By moving from the upper layers to the lower
layers we make compromises while gaining on important factors. The lower layers of the
federation provide enhanced locality for services, and are more geo-distributed and sparse,
but provide lower service performance and higher coordination cost. Fig. 6.3 shows more
properties and trade-offs of having the service in a specific layer.

A similar architecture of structured federation architecture is introduced in our previous
work [77], where services can move between the various layers of the cloud federation in
order to trade between cost, stability and locality. We continue building on the concepts
introduced in that work in order to optimize real time streaming applications.

6.4. General Architecture
This section provides an architecture of the proposed solution for live streaming by

use of a cloud federation overlay. The solution decouples user churn from the architecture,
enhancing stream latencies and also decreasing backbone traffic for the different AS-s
involved in a stream session.
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The cloud architecture is based on a self-regulated "Gradient" structure between the
clouds built by using a distance metrics from the source of the stream. In our experiments
such distance metric is path length from the source. Fig. 6.4 shows a possible evolution of
the system and the organization of the clouds back-end in the gradient configuration.

We chose a Gradient topology as it provides several benefits in the live streaming
scenario. As a first benefit, the distance from the source cloud is cumulatively calculated
as the algorithm proceeds and at the same time the gradient is consolidated. On every
cloud executing the algorithm in rounds, the best neighbors in terms of distance to source
and distance from the node to such neighbor clouds are selected. Each round of the
algorithm, creates a better distance approximation and every round neighbors are
guaranteed never to give a worst distance metric than the previous round.

Another benefit is that the similarity set of the gradient for each node, provides also a
fallback mechanism for the cloud backbones, when the closest cloud fails then the stream
can be fetched by the second next closest cloud and so on. A third benefit provided by
such approach is that mobility of the clients is taken care of locally to all the entities of the
system. The management of the locality is achieved by gossiping to neighbors and updating
the proximity view metrics fetching the stream from the similarity view.

A Gradient overlay structures the clouds in layers based on the distance that the
proximity function calculates from the source of the stream. In our case the proximity
metric can be latency or number of hops, as an approximation of the end-to-end latency
parameter. In this work the latency is considered as seen by the end-to-end propagation
latency from the micro-clouds, clouds, or clients, and the forwarding latency is included in
the end-to-end measurement. This is justified by the fact that the inter-connectivity
between the micro-clouds and backbone clouds are optimized by construction of the
access network, and as such the end-to-end latency is a more adequate measure.

The clouds from different AS-s which are closer to the source receive directly the
stream from the source while the other clouds further down the hierarchy use these clouds
as forwarders. By doing so we lower packet duplication that would result from having
each cloud fetch the content from the source cloud, or across peers in a P2P system
without topology information codified in the system design. Effectively implementing a
multi-cast protocol across different AS-s.

The cloud federation back-end is constructed in self-organized tiers, while the clients
can use such back-end as a multiple source to receive the stream, and as far as mobility
goes in the contest of this application, when the user moves the metrics of proximity get
updated and the user fetches the stream from the newly discovered close-by cloud. In order
to allocate the resources needed between the different clouds, as mentioned previously, a
centralized FM is used. Such federation manager will be introduced in the remainder of
this section, and is responsible for scaling the application by allocating/releasing resources
in a dynamic fashion. This manager is necessary for accounting reasons, but also as a cost
allocation entity for the federation. The manager is not concerned with functional concerns
of the actual streaming.
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6.4.1. Software Architecture

The key component of the system design is the Federation Manager. Such component
de/allocates cross-cloud resources in order to scale the system to meet client demand.
Accounting for costs and resources is attributed to the FM. If such task would be
distributed, the decision making would over complicate management of the system and
tracking of costs. When any of the clouds is exhausting their resources they notify the FM
to scale the system either horizontally (scale vm parameters for that particular instance) or
vertically (allocate more vm-s in the AS in order to handle the load).

The FM and each cloud in the federation can map hosts to AS-s by means of prefix
matching and also by querying the involved AS clouds. Since the federation is built by
paying for resources, such information is crucial and should be provided by the clouds on
which resources can be allocated. The routing information can be also derived by matching
prefixes to a known IP block allocation. More precise info can be given by the specific AS
cloud provider with the finality of selling the resources.

Clouds participating in the live streaming overlay are bootstrapped by the FM. When
new cloud resources are allocated the FM provides a initial seed list of other clouds part of
the system, from which the cloud can start integrating itself in the gradient overlay. The
virtual servers reorganize themselves on a proximity based gradient in order to provide a
locality aware spanning architecture. A high level view of the system is shown in Fig. 6.4,
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and as shown the cloud resources are organized in a gradient. The clients connect to the
architecture gradient back-end transparently and update their proximity measure to ensure
that they are getting the stream from the closest source.

For scaling purposes the clouds simply monitor the rate of incoming clients and if such
rate is equal or higher than the setup speed of new resources, notifies the FM to allocate new
resources and starts admission control on resource exhaustion. The clients keep an updated
list of servers ordered by cloud proximity to itself. As such when admission control is
operating the clients simply try different clouds until a cloud with available resources is
found. More advanced and efficient allocation and scheduling policies will be considered
in future related work.

6.4.2. Overlay Construction, Maintenance and Resource Scaling

Algorithm. 1 presents the overlay construction and maintenance operation for the
cloud federation service oriented architecture. Each cloud runs a cloud virtual
infrastructure manager (VIM) which in turns execute the following algorithm to maintain
a local view of the neighboring clouds closest to the source cloud and to itself. Constantly
the clouds exchange their views in order to derive a stable gradient topology, where the
center of the gradient is the source and the farthest from the source a cloud is, the furthest
it is placed in the gradient.

The Virtual Cloud Managers of each cloud periodically executes Algorithm. 1, a
gossip based algorithm, in order to build the cross-cloud communication network for the
live streaming model described in this work. The VIM at every moment in time maintains
a local view of the whole system that is based on the clouds that enhance the locality
measure compared to the distance from the source that the current cloud has. Based on the
"Gradient" gossip algorithm, the view consist of a set of clouds (similarity set) that have a
better utility function then the actual cloud running the algorithm and the criteria for new
clouds to join the similarity set is as follows: the candidate cloud to enter the similarity
set, needs to improve or at least not deteriorate the utility function over all the other clouds
in the set. This is translated into the fact of having better triangular distance between the
actual cloud and the source (not worst proximity to either the source and the actual cloud
running the algorithm).

Line 1-3 respectively pick a random cloud VIM partner to exchange views with, sends
the local view to the partner with a request to exchange views, and create a copy of the
view to process during the algorithm. Proceeding on lines 4-6 the cloud receives the best
representatives of the view of the partner, and measure the distance between itself and the
clouds in such view. The following lines 7-10 check if any of the new clouds takes us closer
to the source and updates the similarity set, the view of the system. Finally terminating the
algorithm in lines 11-13 the new view of the neighboring clouds is sorted and trimmed
to match the k parameter dictated by the system, and updates the proximity measure for
the cloud executing the algorithm toward the source by using the best candidate, the first
element of the sorted view. The order of the elements in the similarity set is generated by
calculating for each element a tuple composed of: Triangular distance to source through this
neighbor, distance to this neighbor and last the cloud ID. This order shows the preferences
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Algorithm 1 Overlay Construction

Require: Lk View ordered by tuple (proximity to source cloud, proximity to cloud
executing algorithm, cloud ID)

Require: k view length
Require: tr_window transmission window length
Ensure: Dk New view of neighbors
Ensure: dist_to_src Cloud distance to source cloud

Initialisation :
round_partner = random_sample(Lk, 1)
S = push_to_query(round_partner, L1−trwindow)
D = L
Measure neighbor sample distances
for i = 1 to k do

Si.distance_to = measure_distance(i)
end for

Update View
for cloud in S do

if closer_to_source(cloud, D)
D.append(S)

end for
#Sort View by Tuple(proximity to source cloud, proximity to cloud executing algorithm,

cloud ID)
D=trim(sort(D), k)
dist_to_src = measure_distance(D0) +D0.dist_to_src return D, dist_to_src

the algorithm implements toward the forwarding cloud.
The initial view of the system is obtained by the clouds running the algorithm directly

by the central FM, which acts as a bootstrap server. In the basic implementation of the
system, the FM allocates resources in a greedy fashion in order to satisfy all clients with
local connection. A problem of the P2P live streaming gossip based algorithms is the
inability to limit or foresee the depth of the spanning tree or of the formed graph in
general and as such no strict guarantees can be made on latency. The following subsection
introduces some observations to show that for this system model, such limits do exist.

The resources of a multi-cloud federation have predictable availability based on SLA-s
contracted with the cloud providers. In case of cloud failure the algorithm can be modified
to simply remove such cloud from the proximity list of neighbors and run with the reduced
neighbor view.

6.4.3. Limited spanning depth

The key idea in order to enhance latency in the gradient overlay is not only the "Greedy"
approach used on building the overlay by means of locality, the other idea is a limited height
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of the overlay levels. In order to prove that the latency growth is limited we present the
following observations. By construction Access Networks interchange data through special
point of presents (different from the clients points of presence described in this work), that
provide high bandwidth low-latency cross-AS connectivity. This network topology enables
simplified network control, accounting and management. Thus the shortest and fastest path
between two hosts in different AS-s is to pass through the Core Networks. If the edges
of the two AS-s could be able to exchange data between client PoP-s the data path would
be significantly slower and bandwidth limited.This reasoning leads to the observation that
Core Network Clouds, by construction, can only be interconnected directly through each
other or through a Public Cloud.

A second observation is based on the fact that at worst case, overlay latency and depth
spread, is bounded by the largest pair-wise distance between Core Clouds. Such pair wise
distance between core clouds at most can be of the same dimension of the Internet Clouds
and Core Clouds. The worst case is shown when such interconnecting clouds are arranges
in a chain, thus the two edges of the chain are O(n) hops away from each-other. We make
this observation by considering the possibilities of the paths connecting two random hosts
in the overlay. Considering any two hosts Ha and Hb and a possible path connecting the
two in the overlay p(a,b). Such path is of the form p(a,x)...p(xn,b). Let us consider the types
of possible intermediary paths, elementsHxi andHxi+1 can be of types Core-to-Core, PoP-
to-PoP or PoP-to-Cloud. As per our first observation in this section, on crossing towards a
core network intermediary, by construction of the system, we are guaranteed that the chosen
path can be a candidate best proximity based possible path. Cross-AS crossings of the type
Core-to-Core, and PoP-to-Core, comply with system design and could be accepted as part
of a best path between two different AS hosts. In case of PoP-to-PoP intermediary links,
let us suppose by absurd that the shortest path constructed between two AS-es is eventually
only made of PoP-to-PoP links. By means of this assumption we have a best proximity
wise path between Cross-AS hosts that is made of only PoP-to-PoP links. This implies
that there exists a path between two AS not crossing their Core Clouds, that is the best
possible path between such hosts, which contradicts our assumptions from the structural
properties of the system, and proves that a chain of forwarders based on proximity can’t
grow more than the best alternative path that crosses a Core Cloud link. As such in a worst
case scenario, the maximum pairwise distance of Core Clouds is the maximum possible
chain length of inter-PoP chaining. But the number of Core Clouds and Internet public
Clouds is far smaller than the number of PoP clouds as such we can expect a clear limit on
the spread of the inter-PoP links.

Having discussed in details the overlay algorithm and the implications of such system
design we move on to the evaluation of a simulation of the proposed design.

6.5. Case study of enhanced streaming algorithm

6.5.1. Enhanced live streaming algorithm evaluation

In this section we provide some results based on simulation to support the usage of
such novel cloud technology. The provided results validate the system construction as
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described in this work, by constructing a solid cross-cloud overlay that minimizes latency
and has limited overlay diameter or depth, as such providing enhanced service locality for
live streaming. For these experiments we implemented a simulation of the cross-cloud

Figure 6.5 – Simulated multi-cloud infrastructure

distributed algorithm. In order to have more meaningful results the proximity measure
used in this evaluation is number of hops. Such metric can be easily translated to real
latency estimation based on latency measurements on these specific networks (Community
Networks and ISP and Telephony access network) introduced in Section. 6.2.

A generalized view of the real access network infrastructure and used in these
simulations is shown in Fig. 6.5. Based on the described model, we have a number of
geo-distributed clouds that are grouped and interconnected in a "Wheel" graph with the
respective Core Clouds as the center of the graph. Internet clouds are simulated by a
connected random graph. The Core Clouds are then randomly connected in between
themselves and the Internet Clouds graph. The composed graph as shown and previously
discussed in the system model has at the core the Internet Clouds and Core Clouds and at
the edges the PoP Clouds. In Fig. 6.5 the clusters represent the access networks while the
random graph in the center represent the Internet Clouds. This simulation model provides
a good approximation of the system model introduced in this work.

The first experiment is conducted by fixing the random graph representing the Internet
Clouds and uniformly increasing the number of local micro-clouds. As we can see from
Figure. 6.6 the growth of the micro-cloud fabric does not influence much both the
conversion rate and the average distance to the source, further more the error between the
overlay estimation and the optimal proximity based paths is minimal.

In this second experiment the dimension of the micro-cloud fabric is kept unchanged
and the dimension of the public cloud back-end is increased. With this experiment we study
the impact of the overhead of such growth in the overlay algorithm. As predicted the growth
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Figure 6.6 – Case1: Convergence for Scaling Micro-Clouds

of the Internet back-end impacts lightly the convergence rate and the distance to the source.
In Fig.6.7 we can see that an addition of 400 public clouds impacts lightly the conversion
rate and the distance to source. Nevertheless this number would be far smaller in reality
as the global cloud providers are in a far smaller numbers. In general by having a small
number of public providers and a large number of local clouds as in the first case Fig.6.6 the
system can scale without performance penalty. This in itself provides also a good property
of the system, as local growth provides better performance and very little management or
performance penalty. In this second case as well the errors are really negligible and for this
architecture the distributed algorithm produces a pretty good approximation of the optimal
proximity aware path.

6.6. Conclusion and future work

To summarize in this work we presented a multi-cloud self-organized algorithm to
optimize stream latency for live streaming on massive scale. The proposed algorithm
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Figure 6.7 – Case2: Convergence for Scaling Public Cloud Fabric

builds an overlay that approximates the optimal proximity based solution up to 0.02 of
standard error.

The clients actively request the stream from the closest cloud transparently and are
insured persistent presence of the stream either through local or internet clouds. This
architecture enables better support for client mobility and scales both vertically and
horizontally providing a decoupling of the streaming backend from the client churn and
providing a more stable backend for the service.

Future work will be focused on open problems toward the finalization of the proposed
architecture, such as resource allocation in the clouds involved in the system, resource
provisioning and price vs performance trade-offs toward a complete scalable solution.
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CHAPTER 7. MEDIA QUALITY-CENTRIC STREAM ALLOCATION AND RELATED
PATTERNS FOR A WEBRTC CLOUD ARCHITECTURE

7.1. Introduction

Previous work conducted in the scope of this thesis produced a network bandwidth
allocation broker (arbitrating network bandwidth between endpoints of services sharing
the same Network [Chapter.4]), a novel Cloud architecture that permits trade-offs between
locality and service performance (Chapter.5) and a massively distributed self-managed
gradient overlay for live video streaming (Chapter.6). Towards completition of these
works we present in this chapter a real user-case scenario, of using real passively
monitored user data are used to empirically analyze video bit rate and Cloud Forwarder.
By monitoring the performance of video media streams we not only show that video
simulcast always outperforms single layer video encoding, but also that minimum-based
allocation strategy for streams into the Cloud Forwarder outperforms the other techniques
given that no stream can be reallocated after the initial allocation.

Web Real-Time Communication (WebRTC) as the leading standard for real-time
communications in the web, is seeing a rapid rise in adoption footprint. This standard
provides an audio/video platform-agnostic communications framework for the Web,
build-in right in the browser, and makes it a very interesting research scenario. The
complex technology stack of a full implementation of the standard is vast and includes
elements of various computational disciplines like: content delivery, audio/video
processing, media transport and quality of experience control, for both P2P and Cloud
relayed communications.

To the best of our knowledge, a study of the joint factors of Multi-Cloud distribution,
media bit rate, as well as Cloud relayed resource loads is necessary. The contribution of
this work is the analysis and exploitation of periodic patterns on server workloads and
media bit rate derived from real test traffic and Cloud-based media back-end
measurements, over an extended period of time and at scale. Additionally, a simple and
effective load balancing scheme is discussed to fairly distribute big sessions over multiple
servers by exploiting the discovered load patterns. A Cloud simulation environment was
built to compare the performance of the proposed algorithm with other load allocation
policies. Such work is crucial in designing resource allocation algorithms and media
Service Level Objectives (SLO) spanning multiple Cloud entities. Based on our analysis,
we discover strong periodical load patterns even though the nature of user interaction with
the system is mostly not predetermined, with a variable rate of user churn.
WebRTC[23, 10] is the html5 extension for real-time communications, enabling live
media communications between two or more parties using standardised web technologies.
WebRTC/RTCWEB is currently specified through three main aspects:

WebRTC W3C standard API specification for use in web browsers [23].

RTCWEB IETF standard recommendation for the set of protocols necessary for
media communications for every connection [10].

Webrtc reference software media stack (open source component of Chrome browser),
implementing previous specifications [7].
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WebRTC/RTCWEB are a set of standard recommendations conceived for delay
non-tolerant applications where interactive real-time communication is necessary. One
application of WebRTC/RTCWEB is multiparty audio/video conferences. A conference is
a session where each participant, publishes his audio/video sources while simultaneously
receiving audio and video streams from other participants. The API nature of WebRTC in
web browsers makes it possible to easily go beyond basic conferencing use cases and
allow applications to blend with media communications in ways that had not been
possible before.

WebRTC clients are general purpose Web Browsers or devices that implement
WebRTC/RTCWEB compatible standards. Common nomenclature for both is WebRTC
Endpoint1 (hence, both referred as such in the remainder of this work). To coordinate
among them and/or with the cloud, WebRTC/RTCWEB endpoits require a messaging
infrastructure as well. WebRTC/RTCWEB, though, specifically leaves messaging out of
its definition, allowing freedom of choice, and focuses on the range of communication
protocols and technology stacks that take care of real time communications for media
(audio and video) and data signaling. WebRTC/RTCWEB stack intended for both: P2P
and cloud-relayed communications. This work focuses on real-time media transmission
leveraging WebRTC/RTCWEB and cloud-relayed architectures. An analysis of quality of
such media architecture operation is of utmost importance for user experience and the
overall performance of the system.

The protocol in charge to deliver media is the Real-Time Transport Protocol (RTP)
and uses Real-Time Transport Control Protocol (RTCP) for quality control.
RTP/RTCP[78] is a general purpose transport protocol that provides support for
multi-homing. It is standardized to run over both lower level UDP and TCP protocols
(although UDP is usually the rule for timeliness performance). RTP/RTCP, among other,
adds support for media source identification, media mixers, media track synchronization
facilities, quality of service feedback or media bundling and multiplexing. RTP is agnostic
to specific codecs and can function as a transport for both video and audio stream formats.
For example, in the framework of WebRTC we can encounter VP8, H.264 and VP9 video
codecs, while for audio OPUS, ISAC, G.722 or G.711 are common as well.

Live Audio/Video Conferencing in WebRTC/RTCWEB is implemented to use RTP to
deliver media to endpoints and servers. In middlebox/server based topologies[79], each
endpoint publishes one or more RTP streams for each media stream, and subscribes to each
of the RTP streams of the other participants in the session. Other typical mechanisms are
also implemented as well by means of a backend, like STUN and TURN for Nat-Trasversal.

WebRTC/RTCWEB is supported natively by major web browsers (e.g. Chrome,
Firefox and Edge) and provides a free real-time communication medium. A pure P2P
implementation of the standard has many limitations. Some of these limitations are: i) The
upload bandwidth (and CPU usage) a client needs when sending the stream grows
proportionally with the number of clients receiving such stream. ii) users behind firewalls
or NATs may be subject to severe network restrictions and as such P2P direct
communication may be not possible. iii) the rate of connectivity failure grows with the

1Standardized in: https://tools.ietf.org/html/draft-ietf-rtcweb-overview-12
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number of clients joining the session. iv) Additional operations like archiving (saving to a
permanent storage) a session may be a challenge. These and other issues constitute a big
problem for applications that need reliability, quality and cost effectiveness in common
fixed or mobile networks with higher download and far lower upload bandwidths.
Common middlebox/server topologies include using Multipoint Control Units (MCU) or

Figure 7.1 – System Overview

Selective Forwarding Unit (SFU). MCUs typically implement both software assisted
multicast as well as media translation as needed, while SFUs selectively forward to each
participant media (and control) packets in more or less sophisticate ways without
transcoding operations. One of the most evolved forms of selective forwarding is the
capacity to adapt media quality individually for every endpoint without conducting media
translation when scalable/simulcast media encodings are used [80, 81]. In such a case, a
sending endpoint (publisher) produce media streams composed of multiple qualities that
can then be intelligently selected and forwarded by SFUs for each receiving endpoint
(subscriber). Fig.7.1 shows the high level design of such an architecture.

In this work we will focus on examining media parameters and load profiles in the
scenario where media operations use a Selective Forwarding Unit (SFU) as media relay
(Fig. 7.1).

Network Quality of Service (QoS) is of utmost importance for these communication
architectures. Also, one of the most important properties directly related to video quality
is video bit-rate. For resilient real-time communications, bit-rate needs to adapt at every
moment to the available resources in clients and network, and avoid dropping the
communication. End-to-end rate-control in combination with RTP/RTCP takes care of it.
In this work, we will focus on studying the impact of machine load in terms of
streams/server towards rate-control and bit-rate received at the clients, as well as on the
impact of rate-control with single layer encoded video if compared to simulcast[81].

In order to satisfy resource needs, enough SFU units need to be provisioned for all
sessions in a communications cloud platform. This work assumes the definition of server
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load to be the number of streams managed by each SFU, and since the servers are cloud
machines within defined categories we can benchmark maximum allowed streams per
server for each category. This metric appears to be more reliable than other resource
metrics and can be easily sampled for each server. The allocation of streams directly
impacts load factors as well as it can translate into media quality (such as bit-rate).

The motivation of this work is thus the study and definition of stream load patterns
(per SFU), bit-rate and other system parameters. With these, one can devise automatic
algorithms to predict resource needs and enforce Service Level Objective (SLO) limits.
This can lead to improved user experience and service cost management. The observed
patterns concern both: periodic repetitive server loads and the influence they have on media
parameters (e.g. bitrate). Additionally, we present a comparative study between the use of
simulcast (senders producing multiple qualities) and single stream adaptive approach where
senders adapt bitrate to the worst bandwidth available to a receiver, all using Google’s
Congestion Control [43][42]).

7.2. Load Characterization
Load characterization is an impacting factor in devising resource allocation strategies

for a distributed service. The scenario we are investigating is composed of a distributed
software media multicast, real-time, delay non-tolerant in a subscribers/publishers cloud
delivery system. The SFU is the multicast backend while the subscribers and publishers
are the consumer and producer clients. Table. 7.1 shows the distribution of the load
measurements taken on our test cloud as number of streams per server over 2min
intervals. Publisher Streams have a mean of 37.31 streams/server while having a
25% − 75% percentile range of 32 − 51 streams/server. The number of Subscriber
streams, on the other hand, are centered at 85.52 streams/server and have a 25% − 75%
percentile range of 24 − 125. The number of streams/server without discriminating
subscribers and publishers is centered around 122.83 and has a 25% − 75% percentile
range range of 44− 177.

Table 7.1 – Data Distribution Load Test Cloud 2Min Interval

Property Publisher Streams Subscriber Streams Streams
Count 190279 190279 190279
Mean 37.31 85.52 122.83
25% 32 24 44
75% 51 125 177
Max 159 868 980

A very interesting trait of such distribution is that the maximum number of streams
reached per machine is orders of magnitude higher than the respective mean or 75% range.
This aspect is very important as once the first stream is allocated to a server, the following
streams associated to the same session need to be allocated on the same server. This study
is built with the assumption that a session does not span multiple servers in order to gain
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simplicity, while different sessions can be allocated in different server or clouds. In turn,
big sessions are not allowed to be migrated to different servers, which makes resource
scheduling a critical task for a cloud back-end. If multiple big sessions would be allocated
on the same machine, that could cause such sessions to hit the machine stream capacity
limit. Once such limit is reached, it would cause problems for streams joining the session
as the SFU would not be able to handle the load.

Figure 7.2 – Data Center/Server Load Distribution 7days period

We visualize in Fig. 7.2 the average count of streams/server as measured for one week
worth of data (a subset of the dataset used for this resource allocation part). Visualization
of the entire dataset would be tedious for longer periods. The load presented in Fig. 7.2
is sampled in 2min intervals as measured from server logs over our test data-center. In
general we make the observation from the data that the there is a strong periodic load
pattern. Further exploring such pattern, we examine the load distribution in the form of a
lag plot (Fig. 7.3) where each lag unit represents a duration of 2min.

The lag plot exposes a strongly auto-correlated sequence. Clustering of values around
the diagonal represents a strong positive auto-correlation. Data-center centric load as such
can be well approximated by an auto-regressive (or running-averages) model. The linear
regression equation covering the lag observations is written in Eq. 7.1 with parameters
slope = 0.9974 and intercept = 2.8282. Even though we are able to predict the total load
going to a defined data-center, a resource allocation algorithm can still get into problems
under the restrictions that once the first stream of a session is assigned to one server all
other streams of that session will be assigned to the same server. As such, extra care needs
to be taken in allocating sessions to servers, so that the load is spread fairly. This is also the
purpose of Alg. 2 which tries to balance load on servers by allocating new streams of new
sessions to underutilized servers.

Yt+1 = 0.9974 ∗ Yt + 2.8282 (7.1)

90



7.3. LOAD BALANCING ALGORITHM

Figure 7.3 – Data Center total load lag plot 1month period

7.3. Load Balancing Algorithm

In this section we present a stream allocation algorithm that distributes as much as
possible peak sessions without previous knowledge of session sizes. In a Platform as a
Service deployment architecture, knowledge of individual users connecting to the
platform is restricted and user anonymity must be guaranteed. Such restrictions in
information handling introduce limitations in the stream allocation algorithms. In practice
each stream gets a unique identification string chosen at random on creation, and as such
no historical data can be aggregated for a defined end user of the platform. Predicting
session size may be difficult given that minimal individual user information is available.
The allocation policy for each stream should try to offload peaks to different servers as
much as possible with only server load-centric historical information.

The server selection policy, part of the Minimal Load selection algorithms, presented
in Alg. 2 allocates incoming streams to the machines with current minimal load in a
determined time window. Load statistics normally lay within a time window that can be
deduced from the data in order to take into account subsequent big sessions arrival time.
Lines 2 − 4 initialize the state of the selection algorithm, then in the following lines
(5 − 12) a subset of the currently allocated servers with minimal load are selected. The
minimal set entries do not differ more than radius stream utilization from the absolute
minimal server load in the system. To conclude, lines 13 − 17 select either one of the
target subset servers at random with min load cardinality, or allocates a new server to
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Algorithm 2 Min Load Server Allocation Policy

1: procedure SERVER_SELECTION(SLoads, radius, max)
// SLoads[i], array of structures [(srv_id, load)...]
// radius, Minimum set selection radius
// max, Maximum allowed streams per server

2: SLoads ← sort_ascending(SLoads)
3: SMinSet ← [ ]
4: srv_selected← Nil
5: for (srv_id, load) in SLoads do
6: if load < max &&
7: ((load− SLoads[0].load) < radius) then
8: SMinSet.add(SLoads[i])
9: else

10: break;
11: end if
12: end for
13: if len(SMinSet) == 0 then
14: srv_selected← allocate_new_server()
15: else
16: index← rand_int(0, len(SMinSet)− 1)
17: srv_selected← SMinSet[index].srv_id
18: end if
19: return srv_selected
20: end procedure

expand the system. We will observe in Sec. 7.7 that the family of Minimal Server load
algorithms performs better in terms of maximum server load during operations, through a
series of simulation based on real usage trace data from our test data center.

Fig. 7.4 shows the distribution of the peak sessions for the servers of the test data center
over a period of 2 days, we can observe that by applying the min load policy, we manage
to distribute the big sessions over the different servers and thus protect the system from
allocating consecutive big sessions on the same machines. This property is seen as a result
of big sessions being rare and their inter-arrival time being sporadic.

The algorithm presented is a simple but efficient way to handle and distribute the load
between servers in a fair way. Alas other parameters need to be taken into account before
this algorithm is production ready. The decision to either start new servers when existing
resources are not available could be changed to a mixed solution between admission
control and resource allocation to keep resource cost at bay. Another limiting aspect of the
algorithm is that if the rate of incoming subsequent big sessions is lower that the rate at
which users join the session, multiple big sessions would end up on the same server.
Those sessions on the same server would exhaust the resources available on the server and
provide quality issues. The randomization part of Alg.2 (lines 16 − 17) tries to tackle
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Figure 7.4 – Max Loads in test servers in 2min Interval

exactly this problem by allocating streams on different servers randomly within the subset
of servers with minimal load. In practice, one can assume that the rate of incoming big
sessions is far lower than the rate at which users join existing sessions. Under these
assumptions, the algorithm even though simple, performs quite well. Later in this work
(Sec. 7.7) we will further examine other allocation algorithms and compare their
performance with Alg.2 through a simulated environment based on real session traces.

7.4. Media Bit Rate Analysis

7.4.1. Bit Rate Distribution

Given a media codec, bit rate is a key quality metric as it has a direct relation to
resolution, quality and frequency of video frames being encoded at the endpoints. As
such, we separate our analysis into the following video resolutions QVGA(320x240),
VGA(640x480) and 720p(1280x720), all at 30 frames/second. The codec used for the
analysis is VP8 (MtI2 in WebRTC/RTCWEB endpoints). From previous measurements
and also domain knowledge, we can consider that for each of these resolutions, and a
wanted frame rate of 30 frames/second, a good enough average video bit rate for single
layer streaming (only one video resolution encoded at the source), in a conferencing use
case environment, can be, respectively: QVGA (300kbs), VGA (500kbs), 720p (1.2Mbps).

The first thing we examine is the distribution of bit rate values for both publishers and
subscribers. As shown in Fig. 7.5 VGA and QVGA comply with the expected behaviour
and exhibit normal distributions centered around 317.9Kbps and 492Kbps respectively.
These two distribution are well centered and have an acceptable standard deviation of 90.7
and 130.8 respectively. In the case of the 720p resolution, a different behaviour is exhibited
in which the bit rate profile is distributed over a longer range of values and only a portion of
the values is within the upper acceptable range of bit rates. Based on the data gathered, we
conclude that such behaviour is mostly due to still commonly limited upload bandwidths

2Mandatory to Implement
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Figure 7.5 – Subscribers Probability Distribution Functions

of clients access networks (i.e. ADSL, 3G), together with it’s effect on WebRTC software
rate-control behavior[7]. That restricts the subscribers’ statistically received bit rate and
quality of experience.

The distribution of outgoing bit rates for Publishers in the 720p resolution shows the
same distribution seen for Subscribers. If we compare the distributions for 720p
Subscribers in Fig. 7.5, and Publishers in Fig. 7.6 it is clear that the limiting factor that
causes low level bit rates is actually upload bandwidth. The publishers cannot keep up
with the needed bit rate to stream 720p video, congestion is generated limited by the
underlying network infrastructure, and rate-control algorithms keep bit rate lower than
desired in order to avoid congestion.

7.4.2. Bit rate and Load correlation

From data, we can discern a clear pattern of decreasing bit rate with the increase in
number of streams allocated in a data center. Such pattern provides a good limiting factor
for QoS specific optimizations. Knowing this behaviour in advance, for a given bandwidth
and server CPU capacities, we can limit the number of streams per machine in order to
guarantee a minimum bit rate range based on resources. This can effectively lead to
allocation algorithms that are QoS aware and try to optimize video quality on the platform.

We present in Fig. 7.7 temporal samples of average bit rates sampled over the
machines of our test data center for a period of 9 Days in 2min client samples, in order to
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Figure 7.6 – 720p Publisher Probability Distribution Functions

try and find a correlation between load and impact on bit rate quality. We calculate the
Pearson correlation coefficient and p-values in order to see if there is some linear
correlation between load and bit rate quality. On these measurements, servers nerver hit
their limit capacity, and as such, machine overload does not impact the results. Pearson
coefficients in case of QVGA and 720p are both 0 and show no correlation, although in
the case of VGA we have a coefficient of −0.48 with p-values 0 which mean that there is
a correlation between the two. Dwelling deeper into such correlation potential, we expand
our study of bit rate in order to account for session sizes and also number of
subscribers/publisher. The following section will introduce data for simulcast streaming,
explaining better the drop in bit rates we have seen in correlation with the number of
streams/server.

7.5. Non/Simulcast impact on quality

In case of non-simulcast video streams, given that only a single layer encoded stream
is available, the publisher shall adapt bit rate to match an estimate of the worst subscriber
bandwidth or some lower limit called Minimal Bit rate. On the other hand, simulcast
publishers send all the available video qualities directly without limiting or adapting bit
rates (as long as upload bandwidth allows). In the case of simulcast, the SFU chooses for
every subscriber which quality it shall receive, matching at best, the available bandwidth.
From such definitions, we can see that as more clients are subscribing to the same stream
simulcast provides more flexibility, and permits to keep average bit rate more stable,
avoiding the worst subscriber effect of pure packet relaying topologies, as bad subscribers
typically are few.

The results of this section are derived from client side measurement using our test SFU-
based cloud over a period of 14Days. We sample data for different distributed test machines
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Figure 7.7 – Bit rate and Respective Loads over time

in order to avoid bias on data due to geolocation. Bit rate estimations should not be affected
by physical allocation of cloud resources as they are sampled on all connections at the same
time. We focus here on VGA quality for simplicity.

Inspecting the impact of topology on the average bit rate, we see that with an increase
of #subscribers/publisher non-simulcast adapts the bit rate to match either the minimum
bit rate limit of the system or to the lowest performing subscriber; thus, all subscribers
being penalized. This behaviour is not optimal for sessions with a high number of
subscribers. In Fig. 7.8, we observe that in general bit rates for simulcast (on the same
platform) are equal or better than non-simulcast. They are, at most, comparable just for
low number of subscribers/streams (at around 2 subscribers). As commented, the more the
number of subscribers, the more the bit rate profile falls for non-simulcast, giving rise to
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Figure 7.8 – Average Bit rate for #Subscribers/Publisher

the the patterns shown in Section. 7.4. This newly discovered pattern justifies the Pearson
correlation seen in the decrease of VGA bit rate as load on the machine increases. With
the increase of load we have higher number of sessions per machine and as the number of
#subscribers/#publishers increases on those sessions the average bit rate falls further to
accommodate the lower performing subscribers up to a minimum bit rate threshold. As
such it is not only the load in itself that leads to a lower bit rate but the topology of the
sessions as the presence of sessions with more than 3 #subscribers/#publisher already start
impacting bit rate in a non-simulcast session.

Figure 7.9 – Percent improvement AVG over MIN bit rate for #Subs/Pub

A good factor to further examine the impact of simulcast and non-simulcast publishers
on the quality of the streams, is the relative difference of average set of bit rates to the
minimum bit rate perceived by the worst of the subscribers from the same publisher. This
parameter would present the relative perceptual improvement of the average bit rate over
the minimum. In general simulcast outperforms non-simulcast by 2 times and also provide
more stable bit rates as the number of subscribers increases. This behaviour is captured in
Fig. 7.9, where we have the percent improvement over the number of #subscriber/publisher.
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Simulcast performance can be tempting as a way to increase stability and scalability,
but for low number of subscribers, like the case of One-to-One sessions, encoding and
transmitting all video qualities may be a waste of client and network resources. In the case
of mobile devices, simulcast may be beyond the possibilities of some hardware models, as
it can easily take a 30% more CPU resources than the non-simulcast scenario for the same
nominal resolution. This is only a small limitation at the moment of writing, as with the
projected growth of mobile device CPUs, and with the inclusion of video encoder/decoder
in the hardware architecture it will lead to more efficient encoding/decoding.

On a One-to-One user session the non-simulcast would not only need lower CPU
usage but also would use the available bandwidth between the two users more efficiently
as only one resolution layer is sent from the publisher. In WebRTC / RTCWEB, by means
of Session Description Protocol (SDP) renegotiation, it is specified that it should be
possible for endpoints to switch between simulcast and non-simulcast. However, some
platforms may not support switching video transmission mode, thus knowing when to
enable or disable simulcast becomes a very important decision or trade-off point. This
further motivates our study of bit rate patterns and the results provided in this section can
be used exactly to tackle this problem and drive trade-off decisions.

7.6. Monitoring and System Architecture

The testbed used to gather the data used in this work, is built in a Cloud environment
that was constructed from a micro deployment of a full Cloud relayed WebRTC
infrastructure. We allocate a number of bare-metal machines instances in a Cloud provider
on which we deploy Service API, Control & Signaling Services and Media Selective
Forwarding Units infrastructure. The data is sampled from both the server-side and the
clients sides. WebRTC endpoints are software based components running a Javascript
compatible client. All servers were allocated in the same data center and provided
seamless access to the machines while each one of the sessions is allocated by a load
balancer based on the actual load of servers. In our experimental setup, sessions are not
permitted to span multiple servers in order to limit the spread of stream latency as well as
increase system stability. The components of our monitoring systems and the testbed
setup are shown in Fig. 7.1 where the relationship between the various components are
presented. Our testbed incorporates the following components supporting a full WebRTC
production level deployment:

1. Service API is the entry point to the infrastructure and is a HTTPS based application
that functions as a resource selection service and authentication.

2. Control & Signaling Services Is a software component implementing HTTP
message communication and is used to exchange messages based on Session
Description Protocol (SDP) protocol specification, which is used to negotiate stream
parameters between WebRTC endpoints. Each server is configured to have one
Signaling service instance.
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3. Media Selective Forwarding Units This software component is present in all of
the servers allocated and handles media stream forwarding for the sessions that are
allocated in each of the machines.

The Service API is a HTTPS based server which is in charge of allocating sessions and
streams based on machine loads. In our test bed, there is only one centralized instance of
the allocator service api as this is only used to decide where to allocate streams the first
time that the request for a stream is made. In having such one time only usage nature, it is
guaranteed that this system component is not a bottleneck for the use-case analyzed in this
work. Service API is only responsible to direct client to the Signaling and SFU servers,
and does not transport media traffic, or is subject to high load in any case.

Service API Units Service x1

Signaling Units Service x9

Selective Forwarding Units Service x9

Total Servers x9

Table 7.2 – Testbed Service Count

In order to setup endpoint capabilities a Signaling Service is needed that takes care of
configuring endpoints with compatible features. In general in WebRTC the signaling
component is not a media transport protocol, and as such is used only to setup the stream
parameters and does not transport any kind of media. For this work, endpoints implement
a websocket-based signaling protocol that is used to exchange SDP compliant messages
and to setup the media protocols and capabilities for the actual audio/video
communication. WebRTC as a standard does not define specific protocols for signaling on
purpose. The choice for signaling is a non-functional API of the architecture which can
depend on the application and/or use-case. The application nature of endpoints make a
standard for signalling the less and less necessary now-a-days. Through using this
signaling service, the endpoints negotiate a common set of features that are supported by
them all and enables direct or relayed media inter-communications, and keep the status of
the call updated.

At last the Selective Forwarding Service component is loaded in each of the servers
of our setup and is responsible for implementing audio/video communication relay units.
Media communications are implemented using the RTP/RTCP protocol and can accept
streams of custom video resolutions based on VP8 video codec. Supported audio codec is
Opus which is the Mandatory to Implement choice for production ready WebRTC
environments.

The exact number of resources used in conducting this study are listed in Tab. 7.2. We
have a total number of 9 bare-metal machines hosted into a Cloud resource providers, on
each one of the machines we have deployed both a Signaling Service component as well
as a Selective Forwarding media component. On one of the allocated machines we have
allocated one instance of the Service API responsible for allocating sessions to servers.
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7.7. Load balancing evaluation and experimentation

Further experimentation has been conducted by comparing the performance of various
allocation algorithms, and in turn verify the efficiency of the proposed algorithm (Alg. 2).
To drive the comparative analysis of such stream allocation policies, a dataset of traces of
real WebRTC sessions was extracted from our test cloud. These traces were used as
simulation events for the resource allocation algorithm of a simulated cloud environment.
The various load allocation techniques are built so that no user information outside of
stream parameters provided in the WebRTC[78] standard are used.

7.7.1. Experiment Setup

Experiments on the performance of the various stream allocation policies were
conducted in a simulated cloud environment, using task parameters to mimic the real Test
Cloud environment. The simulation environment was implemented by extending the
CloudSim [17][82] platform with a custom package to handle WebRTC streams. Normal
operations of the CloudSim framework support batch processing tasks, we have coded in
our extension package the ability to process WebRTC streams defined by the following
parameters: Stream Identifier, Session Identifier, Stream Start Time, Stream Duration,
Allocated Server Identifier. The extended simulation environment supports the creation of
multiple data centers, each one with an arbitrary number of Hosts, on which a single
Virtual Machine (VM) is allocated. The package permits the configuration of the number
of Hosts/VMs and also an upper limit on the number of streams that can be processed
without SLO violations. During simulation run-time each VM can process in parallel as
much streams as configured by the maximum streams parameter. Once the simulation is
running if the number of streams surpasses the maximum configured number per VM, the
additional streams will be executed in a time-share manner with the existing streams on
the machine. In case that such streams are running in a time-shared fashion, the
completion time of these streams would be delayed causing a violation of the SLOs. This
aspect of the simulation permits to directly detect the performance of the stream allocation
strategies, not only in terms of number of streams processed by the server, but also as
reduced quality streams that would not meet real-time requirements.

As CloudSim is a Java based simulation environment in which the simulation entities
are costructed in active Java Threads, extra care need to be given to the choice of active
components allocated for each real processing unit in the evaluation machine. The server
in which the simulation is executed has 8 CPU cores which are used to execute 9 Data
Center/Vms thus the number of active components is not much larger than the number of
cores. To further verify that the simulation of the sessions is not impacted by the specs of
the server we provide a comparison of scheduling the original data on simulation and verify
each tasks start/finish times. In Section.7.7.2 we compare such data in order to establish a
baseline for the simulated environment.

For our experiments we have sampled one week of real system traces from our Test
Data Center. We have selected a period with data concerning both normal operational
loads and a particular day with a sudden spike in load behaviour. This data ensures that
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we have a general view of the implemented algorithms for both spiked data and normal
operations. Our simulation environment is made up of: 1 Data Center, 9 hosts, 9 VMs
and 196 325 WebRTC Streams. First we examine an algorithm that mimics the same
stream allocation algorithm as the original data, which is also our baseline for testing the
simulated environment. By comparing this algorithm to the original data we prove that
the simulation is valid and calculates the same load profiles as the real Test Data Center.
Other algorithms were implemented based on: Static Threshold, Minimal Load, and as
well as Rotational algorithms such as Round Robin variants. Each one of the implemented
algorithms is compared to the others and the baseline. As previously seen and observed in

Figure 7.10 – Session size distribution

Fig. 7.10, the distribution of session sizes follows a tail distribution in which the majority of
the sessions have a small compact size while there is a long tail of big sessions which needs
to be handled. The distribution shows that high spikes in session sizes or sessions with
very high number of streams are rare and exceptional events. This makes it very unlikely
for such sessions to have similar inter-arrival times and lower the impact of concurrent big
sessions to the system. Such distribution explains the choice of algorithms we use in the
comparative analysis. The fact that the majority of the sessions are limited in size up to
10 streams per session leads make a clear case for Round Robin algorithms as the session
sizes are mostly homogeneous with only a small part of the sessions having sizes of up to
300-400 streams. These observations are also verified by the evaluation of the algorithms,
where the RR algorithm performs quite close to the min-load algorithm which gives the
best results in terms of maximum load reached on the servers.

7.7.2. Establishing a Baseline

Verification of the simulated environment was provided through the implementation
of the Preset Allocation algorithm. The algorithm reads the input data and schedules the
tasks to be processed at the same machine as the real system, with the same defined upper
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limit of 1 100 streams/machine and same Stream Start Time. The implemented baseline
algorithm mimics the same configuration of the original system data sampled from the Test
Data Center. We define in the context of this work the concept of SLO violation as streams
which duration, or completion time is higher than the original duration of the stream.

Figure 7.11 – Comparison of Original Data with Simulation

The simulation finished with no violations of SLO and both Stream Start Time as
well as Stream Duration are identical to that of the original data. The load profiles for
both the original data and the simulation are presented in Fig.7.11, these profiles are totally
identical. This data verifies our simulation environment and provides strong evidence of a
stable and repeatable way for conducting further experiments.

7.7.3. The Minimum Load Algorithms

In order to try and minimize the maximum utilization in terms of streams in our servers,
and lower the impact of peaks in form of big sessions, we experimented with minimum
stream load algorithms. All the experiments were conducted by using the same parameters
of our Test Data Center environment as the setup previously described when establishing
our baseline (Sec. 7.7.2).
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Figure 7.12 – Comparison with Minimum Load Algorithm

The first experiment provided is though Alg. 2 with a threshold of 30 streams resource
occupation difference for the minimal load set. Within the minimal load set, the selection
of server where to allocate the next streams is done through randomly selecting one server
candidate. We observe from our experiments that this algorithm already lowers the
maximum observed utilization seen on all servers by 15%. This policy implements a
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minimal load algorithm with randomized selection windows and the results are presented
in Fig. 7.12. Although this algorithm performs quite good, we can still improve over it by
using a purely Minimal load selection algorithm. The algorithm plainly chooses for each
new stream the server with minimal load without randomizing a set of minimal load
servers. The results presented in Fig. 7.12 last subplot shows an additional improvement
over the maximum load reached for all servers in the baseline, scored at 19% lower than
the max utilization of the original data. Both algorithms provide a noticeable improvement
over the other algorithms and thus were selected to tackle the problem of stream
allocation.

7.7.4. Round Robin and Static Threshold

One other family of algorithms that were implemented and evaluated were rotation
based algorithms implemented both as a per stream rotation and a threshold based
rotation. The stream based rotational algorithm performs better than the original data and
that the threshold rotation algorithms, but under-performs as compared to the minimal
load algorithms. We observed that the maximum peak reached for all servers on the
Round Robin stream allocation algorithm scores a maximum peak value of 925 and as
such doesn’t generate any SLO violations (Fig. 7.13). In these experiment results peak
utilization do not reach the maximum number of streams per machine. Such numbers hold
also due to the fact that in general a low number of #subs/#pubs dominates session sizes.
The incoming rate of big sessions (more than 50 streams) is very rare but still impacts the
overall performance. Clearly the impact of these rare big sessions is seen in the class of
algorithms based on Static Threshold.

The class of Static Threshold algorithms exhibits very big spikes in streams that do not
only surpass the thresholds but as well the maximum number of streams that the machine
can handle, creating SLO violations. We implemented a Round Robin variant, in which
servers are not rotated until the resource occupation matches a given threshold. This
technique has benefits as the servers needed to handle the load are in average less than the
allocated number of machines. Even though we have a clear benefit in number of
machines being used, the peaks reached during operations show an unacceptable side
effect by producing a high number of SLO violations in terms of server overbooking. We
show the result of such experiments in Fig. 7.14, where peak utilization of the servers
reaches a values of 1 484.

The other implemented algorithm of the threshold family is the static threshold with
minimal load utilization policy selection. After the threshold utilization for a server is
reached the next stream is allocated to the server with minimal load. Both these algorithm
are fragile and prospect to be impacted by big sessions assigned to a server that has
reached near threshold utilization. As previously discussed in this case the peak utilization
of such server reaches utilization factors of 134,9%, which is unacceptable for real
production scenarios.
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Figure 7.13 – Comparison with Round Robin Algorithm

7.8. Conclusions and Future Work
Building on these previous state-of-the-art, we provide insight into load patterns on

real large scale WebRTC production systems. Media performance is characterized through
video bit-rate profiles for a SFU-based cloud supporting both simulcast and single source
rate controlled video streams. Furthermore, we provide an extended study of how session
topology load in the form of subscribers/publisher influence media bit-rates. We have
shown from real client measurements that video simulcast provides benefits as big as 2
times higher than the minimum perceived bit-rate in the non-simulcast case. Constructing
on the discovered load and media patterns, we have provided a session allocation
algorithm to fairly distribute big sessions among machines.

Different algorithms were evaluated in order to verify that the selected Minimal Load
algorithm really behaves better in terms of peak utilization reached as compared to Round
Robin and Static Threshold algorithms. All the algorithms that were discussed need
minimal information on distributing the load and guarantee user anonymity toward the
platform. This is an important aspect of running a Platform as a Service, and also in terms
of insurances that can be given to both the users and the software implementers. We
observe that the minimal load algorithms perform better than the rest of the observed
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Figure 7.14 – Comparison with Static Threshold Algorithm Variants

algorithms and optimize peak utilization by exhibiting peaks of 19% lower than the real
allocation and up to 50% lower than the static threshold algorithms.

Future work includes providing load allocation algorithms for multi-cloud deployment
SFUs to optimize either cloud resources or user latencies. Further work can be conducted
to investigate the alternate model in which sessions can span multiple SFUs and servers.
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This new system bypasses restrictions of single server session allocation treated here, but
introduces new challenges on trunking and added latency to the stream. The introduced
challenges are in the form of system stability, as each failure in bridging inter-connectivity
can lead to heavy network partitioning.
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Chapter 8

Conclusions and Future Work

8.1. Conclusions

This work provides results in both managing and optimizing distributed media stream
processing applications through Hybrid Cloud and Network architectures. We tackle
various problems related to these kind of delay no-tolerant applications in terms of
Network based limitations such as latency/locality, bit rate/bandwidth, Cloud stream
forwarding load. Each one of the contributions of the work were peer reviewed in
conference publications and the derived implementations were evaluated in real world
deployments.

A core problem addressed in this work is related with whether network bandwidth can
be management at the Cloud service endpoints to impact system stability in terms of bit
rate/bandwidth, toward optimizing service performance. Bit rate is an important factor in
real-time media streaming applications as it directly dictates quality on both audio and
video. To tackle such issue we provide a Network Bandwidth Manager for Cloud services
that share the same network infrastructure. The provided controller operates on the
end-points of Cloud services and uses a off-line calculated predictive model for the
planing phase of a MAPE controller. Our evaluation of the proposed controller was
conducted by analysing the operations of a Cloud Object storage system with arbitrating
between two types of traffic the user-centric workload and system-centric workload. The
proposed model leads to a gain of at least a factor of 2 in system stability as
compared to the un-controlled system and provides a good way to trade-off
bandwidth between Cloud services. This model ensures that network becomes a first
class resource of the Cloud model, and provides stronger performance SLOs. During
operations using this technique bandwidth can be mediated between client real-time
streams and system non-functional concerns, such as accounting etc... Thus by slowing
down ingestion of non-function data we can enhance the performance of the functional
part of a real-time media stream processing service.

The Access Networks (edge, core network) of ISP, Carriers and Community Networks
have no general purpose cloud infrastructure, while Internet Resource Providers provide on
demand Cloud resources. We find an opportunity for the unification of the resources inside
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an AN and outside in order to provide a unified cloud offer through Cloud Federation and
provide service mobility toward the users in order to optimize locality. Our proposal is
a Multi-Cloud novel Cloud architecture merged inside the Network infrastructure,
that enables services to be placed as close as 1 hop away from the user. This novel
architecture permits to optimize locality and to scale the applications by trading-off with
service performance. Compared to previous work done in the field, our approach provides
a hierarchical federation model, which permits to trade between locality (the further closer
to the edges, you deploy cloud services in the hierarchy, the closer you get to the users)
and service performance (the further away services move from the edges, the number and
performance of available resources is increased). We conduct a structural comparison of
the proposed architecture to existing cloud architectures of comparable scale.

Further building upon the presented hybrid Cloud and Network architecture with the
objective to demonstrate further latency improvements to known real-time media stream
processing applications. We present a self-organized large scale Cloud live streaming
service which with minimal management overhead closely approximates the optimal
solution up to a error of order 0,02 and provides structural improvements as compared to
previous state-of-the-art. Such self-organised overlay makes is resilient to cloud failures
and shows a quick convergence toward a stable state. The algorithm builds a
Inter-Cloud stream forwarders communication backbone through a distributed
overlay, which is proven through simulation results to converge in range of 6-15
communication rounds. These results were calculated by varying the size of both edge
clouds and Internet Public Clouds in ranges of thousands of Cloud providers, which is
orders of magnitudes higher than the number of real cloud providers in real world
scenarios.

Quality of media in a real-time media stream processing applications is an important
factor in evaluating the performance of the system. In this work we focus on whether
Cloud based stream forwarders load does impact media stream quality. Additionally we
focus on investigating if Cloud based stream forwarders load can be balanced in order to
enhance stream media quality. We conduct an analysis of a production grade
WebRTC/RTCWEB system in order to find patterns correlating Cloud backend workloads
and stream quality. We present empirical results that show an improvement in video
media bit rate when using simulcast video encoding (all desired video qualities
encoded in parallel on the same stream) over congestion controlled single layer
encoding (with a dynamic bit rate and one single quality encoded at any given time)
as session size increases. We observe further load patterns and devise a stream allocation
scheme for sessions not spanning multiple servers. Our approach provides
improvements of maximum peak utilization per machine from 19% to 50% in
comparison with the other algorithms that were analyzed. The limitation of having
one server only restricts the number of viable algorithms, but future work will be focused
on trunking and multi-server sessions in order to overcome such restriction.
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8.2. Future Work

Future work can be focused on further improving micro-cloud based, Cloud
architectures in various ways as well as shift the focus on WebRTC/RTCWEB cloud
backed SFUs and MCUs. As more of the Cloud market is further concentrating into a
number of big players such as Google, Microsoft, and Amazon but no limited to them.
Also community cloud is emerging as a highly distributed Cloud architecture based on
voluntary donating or micro-economy based Cloud deployment. Almost all of these
providers insure distributed Cloud environments with locality areas spanning all over the
world. The reach of data center coverage increases and gets closer and closer to the user,
there is still a need for more efficient Inter-Cloud federation algorithms both for Hybrid
Cloud, Cloud Federations as well as Multi-Clouds.

As this work is focused on Inter-Cloud architectures and application improvements, the
continuation of it can be directed on further analysing WebRTC/RTCWEB applications for
real-time audio/video conferencing backed by Cloud backbones. This type of applications
provides a good research area in which the Cloud feature should adapt itself to the ever
changing network conditions and topologies in order to ensure stream delivery in a delay
non-tolerant manner. Continuing with these kind of real-time applications of particular
interest is the ability to continuously and dynamically scale the Cloud backbone in order
to minimize cost and optimize stream quality metrics. The impact of Cloud resources in
terms of VM costs and Bandwidth allocated, starts getting prohibitory with large increase
in client workload. Managing such growth in an optimize manner lowers by much the cost
of running a Platform as a service based on web real-time communications.

Further contributions can be given to improve stream resource allocation algorithms
introduced in Chapter. 7. The work done so far considers monolithic allocation algorithm
in which the first stream of the session dictates which machine the following streams
should end to. Such limitation can be overcome by using trunking between SFUs, which
means that a virtual sender and receiver are built to forward the streams between servers.
Trunking permits to offload the needed work to handle a session between SFUs but
introduces limitation in the aspect of increased latency and system resiliency. An
increasing the number of hops for the signal to reach the desired destinations leads to
increased latency, that can influence stream quality. Since for each server there would be a
trunk from the original server and a number of clients producing and consuming content,
we have a potential case of network partitioning in which if the Inter-Server link breaks,
the clients associated with that server would be isolated from the rest of the servers.
Further research into minimizing latency and increasing the level of fault resiliency of the
system would help improve such load balancing schemes.

Another road ahead into increasing stream quality for WebRTC/RTCWEB sessions
based on Cloud backends is the discovery of novel congestion control algorithms. The
congestion control algorithm helps estimating network bandwidth and keeps the network
from being overflowed thus ruining stream quality. The GCC congestion control algorithm
works well and is resilient to TCP connections sharing the network with UDP WebRTC
traffic. Even though this is a good feature it is sometimes too aggressive and as such on low
bandwidth sources could lead to congestion due to continuously trying to probe network
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for more bandwidth. New algorithms need to be discovered that perform well in all cases
including Mobile, Web or Hardware clients.
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Appendix A

Building a Cloud Simulator for
WebRTC workloads

A.1. CloudSim Introduction
CloudSim is a simulation framework which implements the basic components of a

Cloud environment in a discrete event simulator model. The components we are intersted
in and presented in CloudSim are the following:

1. Cloudlet a Cloud task to be executed in the cloud environment.

2. VM an abstraction representing a virtual machine, which executes Cloudlets.

3. Host a model which represents a physical host in a data center in which VMs are
executed.

4. Data Center the abstraction of a data center which contains multiple Hosts.

5. Data Center Broker is the main scheduling entity which receives a series of
Cloudlets as input and schedules their execution in different datacenters.

CloudSim is modeled in a layered design as shown in Fig. A.1 with code divided into
User Code and CloudSim Code. Users of the framework usually need to extend the
components in the User Code in order to implement novel Cloud models and Scenarios.
The code implementing such scenarios can be directly evaluated through the run-time of
the framework. Each software component implemented in CloudSim is called a
Simulation Entity and implements a message passing model. Simulation Entities have a
main cycle that is executed each time the event scheduler wakes the component up to
process events waiting to be processed. Each message is queued and delivered at the
appropriated component to be processed at the required simulation time.

The simulation engine, implements a discrete event simulator model which uses the
common Simulation Entity interface to run the simulation. On top of the run-time
components of the framework we find a Network Layer that implements network
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Figure A.1 – CloudSim architectural overview [8]

properties in which the simulation scenarios can model various topologies and delay
profiles. Applications targeting network studies can thus model the desired properties of
the underlying inter-connectivity in details.

Cloud Resources layer implements tha basic resource level reppresantation of real
hardware resources such as Cloud Coordinator, Data Center etc... In order to permit
experimentation with various Cloud models and scheduling the Cloud Services layer
exposes configurable and extend-able allocation and provisioning policies of resources.
User Interface Structures and VM Services, implement the cloud tasks that would
executed during the simulation (Cloudlet) as well as VMs that execute such tasks. All the
processing resources in the framework use a measure of Millions Instructions Per Second
(MIPS) in order to simulate CPU micro-instructions execution length or capabilities. Thus
each component when active calculates how many MIPS can be allocated and how many
resources can be executed in a time or space shared fashion.

The main entity that users needs to extend in order to run simulations of dynamically
allocating and scheduling Cloud resources is the Data Center Broker which takes care of
allocating VMs to datacenters as well as scheduling Cloudlets into such VMs. The
scheduling of such resources during the execution of the simulation can either use
predefined CPU, Host and VM scheduling policies based on space and time sharing, or
custom allocation policies that the user can provide.
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The default Data Center Broker policy receives a set of CloudLets and schedules them
at the different available Cloud resources independent of the task inter-arrival time. This
model does not suit our intended WebRTC environment because the inter-arrival time of
each WebRTC stream is important at dictating resource allocation. The framework is not
able to schedule the streams at different inter-arrival times as the Data Center Broker is not
an active component as such it is only able to schedule once all the tasks and patiently wait
for all responses.

A.2. WebRTC Stream Simulator
In this section we describe in general lines the extensions conducted to the framework

in order to simulate the execution of WebRTC streams and Cloud Forwarders that forward
the streams between end-points. We implement streams and VMs based on WebRTC
dynamics by using CloudSim primitives and extending them with the necessary
properties. We represent each stream with a model in which each stream has the following
run-time properties:

1. Stream Arrival Time The time in which the stream started to send data.

2. Session Identifier The identifier of a session to which the stream belongs to.

3. Stream Identifier The identification of the stream, a combination of the stream
origin and destination identifiers.

4. Stream Duration The duration of the stream.

5. Original Host The original host on which the stream was allocated.

For such simulation environment to be able to conform with the requirements of a
stream based Cloud forwarder, we implement a WebRrtcCloudlet which extends the
Cloudlet and includes the additional properties listed above. This extended Cloudlet needs
to transform the stream based model into a batch processing one, that can be executed by
the CloudSim simulation engine. The extended WebRrtcCloudLet has a stream arrival
time, a session identifier a duration in terms of MI, and a original destination VM. Every
host created for the WebRTC simulation admits only 1 VM as described by the limits
presented in Equations A.1 to A.6.

As we need a way to simulate the duration of the stream in the existing MIPS based
VM, CPU and Host execution unit. We represent the duration of the stream in multiples of
the length of units of MIPS that one virtual CPU can execute as MI per second. As such the
resulting time is exactly the same as the duration of the stream. Each VM in turn is created
with the same number of CPUs as the limit of streams that a VM can execute without
contention in each time frame, thus if contention is present multiple streams would need to
share the same CPU and thus the two streams would have longer duration that the original
data. The longer duration of the stream is a violation of the Service Level Objective as it
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would mean that the users in that stream were not satisfying the delay limits for a stream to
be real-time.

Equations. A.1 to A.6 represent exactly the described configuration of resource
capabilities. In our evaluations we selected a base MIPS value is 1 MIPS and as such it
means that each VM has nstreams CPUS, each of them can execute 1MIPS, while a task
with duration t has a length in the order of t ∗ 1MIPS.

u = Base unit of MIPS (A.1)

nstreams = Limit of Streams per machine (A.2)

WebRTCstream_duration = durationseconds ∗ u (A.3)

VMcpus = nstreams (A.4)

CPUmips = u (A.5)

Hostmips = nstreams ∗ u (A.6)
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A.3. Cloud Broker Algorithm
The Cloud Broker algorithm is based on an active component, which aligns itself with

each arrival time boundary of tasks to be processed and schedules the Cloudlets that
coincide in that inter-arrival boundary. After scheduling the necessary streams the broker
waits for tasks terminations and as well schedules itself to be executed in the next time
boundry that has at least one task to schedule.

Algorithm 3 Datacenter Scheduler
1: procedure SCHEDULER(allocator, Cloudletsleft, Cloudletssubmitted)

// allocator is a allocation policy wich given a broker and a cloudlet decides the
destination VM

2: Clsubmitted ← [ ]
3: for cloudlet in cloudLetsInNextBoundry() do
4: vm← allocator.getV m(this, cloudlet)
5: send(vm, tag.CLOUDLET_SUBMIT, cloudlet)
6: Cloudletssubmitted.add(cloudlet)
7: Clsubmitted.add(cloudlet)
8: end for
9: Cloudletsleft.removeAll(Clsubmitted)

10: if cloudletList.size()! = 0 then
11: schedule(this, getNextArrivalT ime()− lastArrivalT ime, scheduler)
12: end if
13: end procedure

Algorithm. 3 presents a time based discrete event scheduler, in which Line.3 selects
all the CloudLets arriving in the next inter-arrival time boundary. The next time boundary
is selected in cloudLetsInNextBoundry() method by first ordering in ascending order of
inter-arrival time all streams left to be scheduled and selecting the head of the list that share
the sime inter-arrival time. In Lines.4-7 an allocator algorithm is used to decide which vm
to use in executing the CloudLet. Line.9 removes the submitted streams from the queue
of streams that are still to be scheduled. To terminate the algorithm, Lines.10-12 check if
more streams exist that need to be scheduled and schedules the execution of the scheduler
at the next inter-arrival time boundary.

The allocators that were implemented for this work to evaluate the execution of stream
forwarding by Cloud SFUs in WebRTC range from host selection as in the original data,
Static Threshold, Minimal Load, Round Robin to Randomized models. Each one of the
allocation algorithms implements checks based on session identifier for the stream.
Allocation of successive streams that belong to the same session are directed to the same
host where the first stream of the session was allocated and bypasses any allocation policy.
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