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Abstract (English)

Mobile robotics research is currently interested on exporting autonomous nav-
igation results achieved in indoor environments, to more challenging environ-
ments, such as, for instance, urban pedestrian areas. Developing mobile robots
with autonomous navigation capabilities in such urban environments supposes a
basic requirement for a upper-level service set that could be provided to an users
community. However, exporting indoor techniques to outdoor urban pedes-
trian scenarios is not evident due to the larger size of the environment, the
dynamism of the scene due to pedestrians and other moving obstacles, the sun-
light conditions, and the high presence of three dimensional elements such as
ramps, steps, curbs or holes. Moreover, GPS-based mobile robot localization
has demonstrated insufficient performance for robust long-term navigation in
urban environments.

One of the key modules within autonomous navigation is localization. If
localization supposes an a priori map, even if it is not a complete model of
the environment, localization is called map-based. This assumption is realis-
tic since current trends of city councils are on building precise maps of their
cities, specially of the most interesting places such as city downtowns. Having
robots localized within a map allows for a high-level planning and monitoring,
so that robots can achieve goal points expressed on the map, by following in a
deliberative way a previously planned route.

This thesis deals with the mobile robot map-based localization issue in ur-
ban pedestrian areas. The thesis approach uses the particle filter algorithm, a
well-known and widely used probabilistic and recursive method for data fusion
and state estimation. The main contributions of the thesis are divided on four
aspects: (1) long-term experiments of mobile robot 2D and 3D position tracking
in real urban pedestrian scenarios within a full autonomous navigation frame-
work, (2) developing a fast and accurate technique to compute on-line range
observation models in 3D environments, a basic step required by the real-time
performance of the developed particle filter, (3) formulation of a particle filter
that integrates asynchronous data streams and (4) a theoretical proposal to
solve the global localization problem in an active and cooperative way, defining
cooperation as either information sharing among the robots or planning joint
actions to solve a common goal.






Resum (Catala)

Actualment, la recerca en robotica mobil té un interés creixent en exportar els
resultats de navegacié autonoma aconseguits en entorns interiors cap a d’altres
tipus d’entorns més exigents, com, per exemple, les arees urbanes peatonals.
Desenvolupar capacitats de navegacié autonoma en aquests entorns urbans és
un requisit basic per poder proporcionar un conjunt de serveis de més alt nivell
a una comunitat d’usuaris. Malgrat tot, exportar les técniques d’interiors cap
a entorns exteriors peatonals no és evident, a causa de la major dimensié de
I’entorn, del dinamisme de 1’escena provocada pels peatons i per altres obstacles
en moviment, de la resposta de certs sensors a la il.luminacié natural, i de la
constant presencia d’elements tridimensionals tals com rampes, escales, voreres
o forats. D’altra banda, la localitzacié de robots mobils basada en GPS ha
demostrat uns resultats insuficients de cara a una navegacié robusta i de llarga
durada en entorns urbans.

Una de les peces clau en la navegacié autonoma és la localitzacié. En el cas
que la localitzacié consideri un mapa conegut a priori, encara que no sigui un
model complet de ’entorn, parlem d’una localitzacié basada en un mapa. Aque-
sta assumpcié és realista ja que la tendeéncia actual de les administracions locals
és de construir mapes precisos de les ciutats, especialment dels llocs d’interés tals
com les zones més centriques. El fet de tenir els robots localitzats en un mapa
permet una planificacié i una monitoritzacié d’alt nivell, i aix{ els robots poden
arribar a destinacions indicades sobre el mapa, tot seguint de forma deliberativa
una ruta previament planificada.

Aquesta tesi tracta el tema de la localitzacié de robots mobils, basada en
un mapa i per entorns urbans peatonals. La proposta de la tesi utilitza el fil-
tre de particules, un metode probabilistic i recursiu, ben conegut i ampliament
utilitzat per la fusié de dades i I’estimacié d’estats. Les principals contribucions
de la tesi queden dividides en quatre aspectes: (1) experimentacié de llarga du-
rada del seguiment de la posicid, tant en 2D com en 3D, d’un robot mobil en
entorns urbans reals, en el context de la navegacié autonoma, (2) desenvolupa-
ment d’una técnica rapida i precisa per calcular en temps d’execucié els models
d’observacié de distancies en entorns 3D, un requisit basic pel rendiment del fil-
tre de particules a temps real, (3) formulacié d’un filtre de particules que integra
conjunts de dades asincrones i (4) proposta teorica per solucionar la localitzacié
global d’'una manera activa i cooperativa, entenent la cooperacié com el fet de
compartir informacid, o bé com el de planificar accions conjuntes per solucionar
un objectiu comu.






Chapter 1

Introduction

This chapter introduces and motivates the reader in the subject of mobile robot
localization in urban pedestrian environments. After a general motivation sec-
tion, the chapter places localization in the process diagram of autonomous nav-
igation for mobile robots and introduces the urban pedestrian environment and
its particularities for mobile robot localization. A fourth section outlines the
thesis approach and the working context. The introduction concludes with a
thesis overview showing, chapter by chapter the associated scientific publications
issued from the research work of this thesis.
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1. Introduction

1.1 Motivation

Quality of live in urban environments is becoming a major issue for city gov-
ernments. After industrial revolution of XIX c¢. and XX c., nowadays we see
how cities are being reinvented and yet evolving, taking great attention on some
issues provoked by population density such as pollution, mobility or trash man-
agement. Moreover, economical trends are moving to a production with a key
importance of technology and knowledge, while human force work devaluates
since it rarely provides an added value. In this context, robots appear as a
good alternative to substitue humans in hard and tedious tasks. Industrial
robots were introduced in production plants since some years ago and they have
successfully replaced humans in some operations requiring high power, extreme
precision or long endurance. Today, at XXI c., mobile robots are being prepared
to arrive at city downtowns to work on cleaning, mailing, good deliverance, taxi,
guiding, surveillance, monitoring and so on.

However, current mobile robots are not yet ready to be deployed in an urban
area. Beyond some important legal issues, they are not fully operational in such
environments, mainly due to the fact that it doesn’t exist yet a solution for
a safe and reliable autonomous navigation in urban pedestrian settings. Safe
navigation stands for keeping integrity of the robot itself, pedestrians and other
static and dynamic objects around the robot. Reliable navigation refers to the
ability of the robot to reach target positions, or tracking a given path, with a
high confidence level, enough for an useful operative high-level planning. While
some robot prototypes over the world have achieved successful results in terms
of reliability and safety, technology is yet quite far from a closed product ready
to navigate in urban pedestrian areas.

1.2 Map-based autonomous navigation

So, autonomous navigation is a fundamental ability for mobile robots trying
to provide a set of services in urban pedestrian areas. High level applications
such as goods transportation, guiding, taxi or surveillance are based on a robust
navigation service. Since urban environments are usually well mapped areas,
specially interest zones of downtowns, this thesis is developed in the context of
map-based autonomous navigation framework. Map-based navigation considers
that the navigation system is provided with some previous model of the envi-
ronment, also called a map. The map-based autonomous navigation framework
considered in this thesis is shown in figure 1.1. It is organized in two control
loops, a reactive and a deliberative one.

The reactive loop is in charge of reaching goal positions expressed in terms
of the robot local frame while avoiding obstacles perceived by the on board
sensors. To this end, typically two processes are developed: a local planner and
a motion controller. The first one, the local planner, gets a local goal in terms
of robot coordinates and a set of real time data coming from sensor acquisition
and perception modules. With these inputs, the local planner should provide to
the motion controller an obstacle-free local goal point. With this obstacle-free
local goal, the motion controller computes the appropriate motion commands
to reach it, typically translational and rotational speeds, and sends them to the
platform.
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1. Introduction

The deliberative loop is in charge of guiding the robot through a series of
waypoints expressed with respect to the map coordinate frame, forming the
path computed by the path planning module after a go to request sent by some
upper-level process, or directly sent by an operator. Therefore, localization is a
fundamental capability of a mobile robot trying to navigate in a way beyond a
simple reactive behavior. Localization is the process that estimates the position
of the robot in a given reference coordinate frame. The localization estimate
is critical since it closes the deliberative navigation loop, allowing the platform
driving processes (reactive loop) to take decisions on the commands to send
to the motors with the aim of following a given path expressed in terms of
the reference coordinate frame. A mobile robot not computing a localization
estimate of its position would be able, at most, to navigate in a reactive way
to, for instance, follow a person in the robot’s field of view, go to a given
environment feature within the sensor horizons or move randomly while avoiding
obstacles.
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Figure 1.1: Process diagram of map-based autonomous navigation.

1.3 Mobile Robot Localization in Urban Pedes-
trian Environments

Previous section has explained the important role of localization in the navi-
gation deliberative loop. Localization is a high level perception process that
fuses information from a set of sensors while using the environment model, i.e.
the map, to check for the likely of those sensor readings. Localization in urban
pedestrian environments is challenging due to the following reasons: the out-
door nature of the environment, the dynamics caused by pedestrian traffic and
other moving objects and the partial availability and poor accuracy of GPS in
such areas. These issues constrain the localization problem and make research
on mobile robot localization for urban pedestrian areas an open scientific and
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1. Introduction

technological field. The following paragraphes describe how these three items
difficult the localization task.

Outdoor environments Outdoor environments impose challenging issues to
robotic systems, specially due to the fact that sensors could be out of the range
of their operative environmental conditions. This is specially critical for cam-
era sensors since variations of lighting conditions cause difficulties on computer
vision methods for localization and navigation. Laser scanner devices can be
also affected by fog conditions, humidity, dust or even by direct or reflected
incidence of sun light rays.

Besides these environment conditions, urban areas have usually elements
such as ramps, steps, vegetation, or others with curved line edges which makes
necessary to navigate and localize in 3D. This semi-structured geometry has to
be taken into account when designing environment models or when evaluating
possibilities of feature extraction from sensor readings. Moreover, a wide set of
material textures are find in such environments, from vegetation to glass surfaces
passing through feature-less walls, and common ranging or vision sensors can
experience troubles in such variety of conditions.

Dynamic environment Dynamics of an urban pedestrian area is given by
the ubiquitous presence of people, and other kind of objects such as bikes,
animals such as birds or dogs, and so on. In this context dynamics does not refers
only to all these moving objects but also to all objects that are not modelled
in the map, thus their presence is considered as temporary, so they are also
considered as part of the dynamism of the environment. Vegetation, for instance,
is only partially modelled but they geometry and appearance evolves through
the days, so that it is also part of the dynamism of the environment with respect
to a static model.

Limitations of GPS reception GPS receivers have become popular devices
due to their use in marine, mountain hiking and specially for vehicle localiza-
tion. All these applications require a localization accuracy of some meters since
there is always a human interpreting the GPS localization data provided by the
receiver. Moreover, these devices work much better in conditions where a large
part of the sky can be seen by the receiver, such as on the sea, on a highway
or crossing mountain peaks. However, map-based mobile robot autonomous
navigation in urban pedestrian areas requires a localization accuracy of some
decimeters up to few meters, since urban environment has relevant changes
in that spatial scale. A fail on the localization of two meters could cause a
navigation failure if a robot should enter to a narrow passage. Moreover, in
city pedestrian areas there are usually the so called urban canyons, passages
with buildings in each side where GPS direct signal arrives weaker that the
one reflected on the building surfaces. In the worst case this causes that GPS
localization is not available due to receiving not enough satellite signals to tri-
angulate. Otherwise this leads to a multipath signal reception resulting in a
poor localization accuracy. Therefore, localization methods in urban pedestrian
areas should consider alternative techniques to the GPS-based one.
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1. Introduction

1.4 Thesis Objectives and Approach

The main purpose of this thesis is to investigate and experiment techniques
and methods for map-based localization of a mobile robot in urban pedestrian
environments. Localization methods will be thought in the context of the au-
tonomous navigation system proposed in figure 1.1. The final goal is to have
a real platform with autonomous navigation capabilities to reach given points
within a pedestrian area. This upper-level navigation service is the base to build
up a mobile robot system that could offer a set of mobile services to a user com-
munity, such as cleaning, transportation of people and goods, surveillance and
SO on.

So this thesis addresses the map-based localization problem in urban pedes-
trian environments. The following list summarizes the main working principles
and working context of this thesis:

e Take into account the localization role in the autonomous navigation con-
text described above in section 1.2, so that integration of localization in
a full navigation system is specially considered, taking care, for instance,
of timing issues, such as real-time, latencies or time complexity.

e Use the well stablished particle filter localization approach for data fusion.

e Consider environment models that can be understandable by humans, such
as geometric representations. Therefore there is no aditional design of a
world representation adapted to a given robot / sensing requirements.

e Assume that the map is incomplete, although it models the most impor-
tant part of the environment.

e Avoid discretization of either state or observation spaces to deal with large
environments.

e In urban environments, a mobile robot is pretended to be an entity of an
upper-level system, consisting on other robots, a sensor network and a
communication network. Therefore, data coming from remote entities has
to be considered in such cooperative environment.

e Avoid complex feature extraction steps and sensor data manipulation and
give importance to data fusion algorithms.

e Perform experiments with real robots in real scenarios as far as being
possible.

e Involve the research work within the projects carried out in the Institut de
Robotica i Informatica Industrial, specially the URUS european project,
to take benefit from the international consortium environment created for

the project.

e Do not forget that the main goal of a PhD student is to learn.
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1. Introduction

1.5 Chapter overview and reading guide

This thesis is organized through nine chapters and six appendices. Next para-
graphes outline the content of each chapter and appendix, and they guide the
reader if some reading order exist. Paragraphes also list the related scientific
publications of the author’s thesis.

Chapter 1 is the introduction. It contains a motivation section, places the
localization problem into the context of a map-based autonomous navigation
system and introduces the urban pedestrian environment.

Chapter 2 reviews the state of the art on mobile robot localization, giving
special attention to map-based techniques in urban environments.

Chapter 3 defines sensor reading and real observation and lists sensor devices
used through this thesis detailing the data they provide.

Chapter 4 describes the environment models and how they are used to com-
pute expected observations. A technical report, [19], and one publication, [24],
are related to this chapter.

Chapter 5 overviews the particle filter, a well stablished probabilistic tech-
nique for data fusion. This chapter does not introduce original work but it sets
the notation and the algorithmic framework used in the following chapters.

Chapter 6 presents research and engineering work on position tracking con-
sidering both 2D and 3D cases. The chapter is based on formulation and concept
definitions previously made at chapters 3, 4 and 5. Four publications are related
to this chapter, [70, 22, 25, 111].

Chapter 7 formulates theoretical work on active and cooperative global local-
ization, based on formulation and concept definitions presented through chap-
ters 3, 4 and 5. Two publications are related to this chapter, [21, 23].

Chapter 8 documents the software framework used in this thesis for simula-
tions and real-world executions. One publication is related to this chapter, [20].

Chapter 9 concludes the work highlighting the original contributions of this
thesis. The chapter also points out future research lines identified as key trends
in the near future for mobile robot localization in urban pedestrian scenarios.

Appendix A shows the two robots used in most of the experimental ses-
sions of chapter 6, listing the on board sensors and devices and showing some
particularities of two-wheeled self-balancing platforms.

Appendix B details mathematical equations and methods of a C++ class
that implements a frame/position in a 3D environment.
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1. Introduction

Appendix C explains how to transform GPS data, referenced to a global
world frame, to be used in a given map coordinate frame.

Appendix D lists input and derived parameters of range observation models
associated to actual laser scanner devices mounted on board the mobile plat-
forms used during experimental sessions.

Appendix E outlines the main videos showing some thesis results.

Appendix F tells something about pictures placed at the start of each chapter
of this thesis, detailing the place where the pictures were taken and in which
sense they are related with the chapter content. This appendix is non-technical
and it has been written basically for the pleasure of the author.
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Chapter 2

State of the Art on Mobile
Robot Localization

Due to the key role of localization in mobile robot autonomous navigation,
the scientific community has paid great attention to this topic, resulting in
an enormous amount of work. Organizing this vast and heterogeneous mobile
robot localization library is a challenging task. Firstly, this chapter identifies
the key issues of mobile robot localization approaches. Then, a classification
of different mobile robot localization implementations is proposed, in order to
better understand them and with the aim of putting the work presented in this
thesis in the correct place within the state of the art of mobile robot localization.
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2. State of the Art on Mobile Robot Localization

2.1 Key aspects of mobile robot localization

Six key aspects have been identified to play an important role during the design
and development of a mobile robot localization method. These key points are:
(1) the nature of the environment where the robot operates, (2) how the envi-
ronment is modelled to build the so called spatial representation, environment
model or map, (3) the sensor setup on board the mobile platform, (4) the kind of
mobile platform from the point of view of its kinematics and dynamics, (5) the
representation of the uncertainty, strongly linked with the data fusion method
used, and finally, (6) the cooperation arised when a robot can share information
with other robots or sensors in the environment or when a set of robots can
plan and execute joint actions to solve a common goal.

2.1.1 Nature of the Environment

The nature of the environment where the robot navigates is a very basic start
point to design a mobile robot localization system. Although researchers want
to propose generic solutions, they need to identify main properties of this envi-
ronment as the size, the possibility to modify the environment placing artificial
landmarks, its indoor or outdoor nature, whether it is structured or not and if
there are dynamic objects moving on it.

The real size of the environment is a critical aspect to have into account.
Environment size directly defines the size of the state space, that is the algebraic
space where the estimated position is found. Moreover, large environments like
urban areas have to be represented in a way taking care about memory and
computational resources, so that the size of the environment also affects on how
the environment can be modelled.

Unmodified environments offer the most challenging field of research since
autonomous mobile robots have to navigate without aid of artificial landmarks
that could act as reference beacons. Deploying mobile robot systems on unmod-
ified areas has economical benefits since no landmark installation and mainte-
nance is required. For instance, this is of special interest for city councils plan-
ning to deploy such systems in urban areas, thus the most research efforts are
put on localization approaches that do not modify the environment.

The indoor or outdoor nature of the environment is also a key point, specially
when taking decisions about which sensors embark onto the mobile platform.
For instance, GPS availability and hard illumination changes for vision systems
are two aspects to take into account in outdoor scenarios.

Structured or unstructured environments will force to design spatial repre-
sentations adapted to them, or to design perception steps to detect some kind
of environment features. For instance, office environments can be usually de-
scribed with accuracy using only 2D straight segments, but modelling a forest, or
even a city, with only 2D straight segments can be a hard task. Semistructured
environments refer, for instance, to outdoor urban areas, where an important
presence of straight lines can be found (buildings, streets) but other elements
escaping of this ”cartesian” structure can be also found, like trees, ramps, steps,
flowerpots, monuments, open areas and so on.

Finally, the dynamic part of the environment also offers a great challenge.
In map-based implementations, dynamic environments force the assumption of
the incompletness of the map, since robot perception can detect objects that do
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2. State of the Art on Mobile Robot Localization

not exist in the model, and moreover these unmodelled objects can be occluding
other modelled regions of the map.

There exist a lot of examples in the literature proposing localization ap-
proaches in a variety of environments. Among them, it can be found methods
for indoor office or home environments [77, 104, 13, 17, 34, 43, 66, 115, 119, 54,
106, 63], for highly dynamic indoor environments like an exhibition pavilion [4],
a museum [14, 108, 35, 110], a shopping mall [39] or a robot soccer field [65],
for outdoor university campus areas [107, 52, 117, 25], for urban pedestrian
settings [38, 64, 71, 111], for urban roads [55, 95, 60], for outdoor industrial
environments [78], for forestry roads [58] and, finally, for planetary environ-
ments [81, 51, 62].

2.1.2 Environment Model

In the localization context, the environment model, also called the map, is the
representation of the real world used by the localization algorithm to compute
which observations are expected given a position in that environment or to com-
pute some physical constraints such as elevation or expected collisions. Whether
the localization is based on an already created map or a map is built while nav-
igating, localization methods have to address how the environment is modelled.

Grid models were among the first models used in mobile robotics. They
divide the physical space in a grid and label each cell following some criteria. The
most common are the occupancy grids that label each cell as being occupied or
not, or with a probability of occupancy [30, 54]. Other grids represent a terrain
by its elevation such as [51, 50], building the so called elevation maps. Other
grids register each cell with a certain sensor measurement such as [55] where
each cell is labelled according to a reflectance measurement of the surface, issued
from a LIDAR device, creating a reflectance image that models the environment.

Geometric models describe the environment reproducing its geometry either
partially or fully. Examples describing the world by 2D geometric instances
such as segments, corners or door openings are [43, 3, 117]. Also works in 2D,
but following some standard mapping format such as Geographical Information
Systems (GIS) are [70, 25]. Geometric representations in 3D can be found
in [38, 78, 24, 111].

Topological models represent the world as a graph where the nodes are
ususally places such as trajectory corners, waypoints, corridor crossings or halls,
and links are stablished when nodes have some relation in terms of metric prox-
imity or action [104, 52]. Some authors have also proposed hybrid approaches
such as [4, 48, 119], where both metric (geometric or grids) and topological
information is used to represent the environment.

Appearance maps model the environment with a set of sensor views logged
by the robot during a setup phase of development. Afterwards, during navi-
gation, the appearance map is used as a reference set to decide which is the
best matching with the current sensor readings. Such maps have been used,
basically, for visual localization as, for instance, in [66, 91, 115, 1].

Beyond the model used to represent the environment, some authors make a
very realistic consideration about the incompleteness of the model, in the sense
that the map does not model exhaustively the environment, thus some sensed
objects or parts of the environment can be missing in the map [117, 82, 25, 54,
111]. This is of special interest in dynamic environments such as offices, homes
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2. State of the Art on Mobile Robot Localization

or cities where a coarse map is usually available (up to some fidelity), but a
precise and complete map is often unavailable and hard to build.

2.1.3 Platform Type

Mechanics, kinematics and dynamics of the mobile platform are also key points
to take into account when designing localization methods for mobile robots.
Two big families can be divided following the mechanical principles of platform
motion: legged platforms and wheeled ones. Legged platforms have important
advantages in rough terrains [93]. Moreover, in other cases they can keep the
human appearance that can be interesting for some applications [101]. In the
other hand, wheeled platforms offer advantages, specially in terms of energy
and simplicity in both mechanical design and kinematic and dynamic mod-
elling. Wheeled platforms can be also classified into two groups: steered and
differential. Steered wheeled platforms refer to all car-like vehicles such as those
used in [55, 95, 78, 58], as well as automatic wheelchairs such as the used in [52].
Differential wheeled platforms are those vehicles that can turn on the spot by
commanding oposite velocities to right-side and left-side wheels. These plat-
forms are among the most used in mobile robotic research due to practical ben-
efits [13, 14, 108, 4, 38, 56, 71, 63]. However, turning with differential platforms
can cause high wheel slip, even in slow velocities, and specially in four-wheeled
platforms. Another kind of differential wheeled platform that reduces wheel
slips is the two-wheeled self-balancing one, used in [64, 75, 25, 106, 111]. It
offers high mobility and payload but causes some perception and control issues
due to its pitch-free behavior (see appendix A). Beyond classical approaches,
mechanical researchers and engineers have produced other wheeled platforms
such as, for instance, an amazing differential wheeled platform with only one
ball wheel, the Ballbot [74].

Independently to mechanical construction, speed and dynamics at which the
platform moves are also key issues to take into account. Localization process
should iterate at a rate enough to estimate all platform motion relevant for its
navigation and control. For instance, localization processes iterate at medium
rates of 1 — 10Hz in [38, 25, 111]. Other faster platforms [56, 55, 95] require
high localization rates (> 10H z) to allow navigation processes to compute next
driving actions.

2.1.4 Sensory System

A mobile robot is usually equipped with a set of sensors to solve the localization
task. The following list presents and briefly discusses the most commonly used
sensors for localization in mobile robots:

Encoders: robot motors are usually embedded with an encoder device that
counts the number of turns of the motor axis, which can be converted to wheel
turns by means of a constant given by the gear setup. With this data, and with
a model of the robot kinematics, we can make an estimate of the robot motion,
a very useful information for short-term prediction of the position. However,
model innacuracies and incremental computations do not assure bounds on the
error of this calculated motion. Works characterizing the odometry error are [45,
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69, 8], and an example of a method to global localize a robot in an idealized
geometric environment using only odometry data can be found in [80].

Accelerometer: Measuring linear accelerations can be useful for weighted
platforms or for that driving at large velocities. Accelerometer data can improve
motion estimation when is used with a kinematic and dynamic model of the
robot platform.

Gyroscope: Gyroscope device provides rotational speeds around an axis. Plat-
forms equipped with three gyroscopes, mounted following the three axis of the
local frame, can measure the rotation rates of heading, pitch and roll.

IMU: Inertial measurement unit is usually referred as an embedded device
where three accelerometers and three gyroscopes are mounted following the
three orthogonal dimensions of the space, so that the device outputs linear
accelerations within each of the three space components, and rotation rates
in each of the three axis. These devices have become popular in navigation
systems, specially for high-speed or high-precision applications such as [55, 95,
71, 58, 46, 63]. The main advantage of such devices is the fact that they provide
a set of sensor data fully synchronized by hardware means.

Inclinometer: This device measures inclination of the surface where it is
mounted on with respect to the gravity vector. It can be very useful in some
situations where three dimensional perception data is mandatory for robust
localization [111].

Compass: Electronic compass is a device that can be very useful, since its raw
data gives directly the orientation of the platform with respect to the magnetic
north vector. However, special care has to be taken when attaching a compass
near computers or robot motors that can modify the earth magnetic field sensed
by the device. Some devices offer calibration procedures to take into account the
local magnetic fields in the mounting place on board the vehicle. These devices
are capable to detect unexpected distortions of the sensed magnetic field and
to trigger an alarm when they occur. In a mobile robot, these distortions can
appear when the robot passes close to ferrous obstacle like doors, trashes and
so on. A mobile robot equipped with such device for localization is [38].

Sonar: Sonar rings are widely used in mobile robotics as a range device that
detect near obstacles around the robot. From sonar data, the robot can build
a model of its surroundings. Sonars are adequate to measure distances up to
10m, so they are used mainly in indoor environments. However the availability
of laser scanners has placed sonar rings in a second term for accurate ranging
measurements. Three cases of mobile robots using sonars for localization are [13,
35, 52].

Laser scanner: Laser scanner has become a very popular sensor in mobile
robot platforms thanks to its accuracy on range and bearing measures and their
usefulness in localization, mapping and obstacle avoidance. The most popular
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scanners provide two-dimensional data [6, 110, 3, 25, 111]. Some researchers
have equipped mobile platforms with three dimensional scanners [38, 58] or
have mounted a two dimensional scanner on a tilt unit [56, 40, 113].

Cameras: Computer vision field has a vaste work concerning mobile robot
navigation [27]. Robots can carry a perspective camera, a stereo one or an
omnidirectional one. Cameras are passive devices since they sense the energy
of light without delivering energy to the environment as sonars or lasers do.
Cameras provide images that potentially cover all the mobile robotics needs for
navigation. However, two important drawbacks limit their use: first, concerning
its computationally expensive processing and second, the not yet solved problem
of robust segmentation and feature extraction in a general case, specially for
outdoor environments where illumination changes are severe. Experiments with
mobile robots using cameras for localization are: with a perspective camera [115,
78], with a stereo camera [91, 117, 41] and with an omnidirectional one[66, 65,
72, 1].

GPS: Global Positioning System devices can solve directly robot location on
a georeferenced map or coordinate frame for outdoor applications. However,
robot researchers have pointed out two important limitations regarding its ac-
curacy and availability [55, 117, 58] due to radiolectric shadowing in areas where
obstacles avoid direct vision to satellites, or caused by the multipath reception
of satellite signals, as it happens in urban canyon environments. DGPS has
appeared as an enhanced system where well located local radio stations broad-
cast corrections to DGPS receivers in order to reduce, mainly, atmospheric
errors [44]. However, GPS is very useful for rough localization in large outdoor
environments in order to reduce search space and to bound the localization error
in tracking applications. Works reported in [107, 38, 71] have equipped their
robots with GPS devices.

GSM: Global System Mobile is an ubiquitous system deployed nowadays in
all urban areas forming a dense network of well localized base stations that can
be used as beacons for GSM devices. Research efforts are done on methods to
localize mobile phones through a GSM network. In [18] an experiment demon-
strates that global localization with an error of about 100m can be achieved by
the GSM system in urban areas. GSM devices can be very useful in large urban
environments where a first coarse global localization can reduce drastically the
search space.

WiFi: Wireless local access networks (WLAN) are common infrastructures
usually deployed in office environments and also in some outdoor areas such
as university campus. A robot equipped with a wireless card can monitor the
signal strength or footprint associated with the different radio access points
forming the infrastructure, thus the access points act as radio beacons. Due to
the complexity on modelling the signal propagation in such environments, an
offline mapping step is required in order to create a radio signal map. This map
will be used to compare online signal readings with the stored ones in order to
estimate the robot position [98].
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2.1.5 Representation of Position Uncertainty

Whatever the sensory system used for the mobile robot, robust methods for
localization have to consider uncertainty coming from three main stochastic
processes: (1) the sensor readings, (2) the innacuracies of the robot kinematics
model, and (3) the failures in the data association or poor likelihoods of expected
observations due to map innacuracies or environment dynamics. While the two
firsts sources of uncertainty are well known, acotated and commonly modelled
by means of normal stochastic processes, the later has a much more complex
variability and is the source of failures that usually reduce the localization ro-
bustness. Given this intrinsic position uncertainty of the localization problem,
proposed methods have to represent it by means of some mathematical tool in
order to quantify localization error bounds. Having a realistic estimation of the
position uncertainty is an important point in order to limit the search space of
an iterative method. Moreover, for system integration purposes (see figure 1.1),
estimation of the uncertainty can be also required by other navigation processes.

Figure 2.1 shows three common representations of the uncertainty in a single
dimension space: the multi-gaussian representation, the complete discretization
and the importance sampling of the state space.

Figure 2.1: Representation of the uncertainty in a single dimension space. a)
multi-gaussian, b)complete discretization (in 2D it would be a regular grid) and
¢) importance sampling.

Closely related to the uncertainty representation, researchers have to ad-
dress the integration of the continuous data flow coming from sensor readings.
The goal is to recursively estimate the robot position and its uncertainty and,
therefore, a data fusion technique has to be implemented to integrate all these
data. Common fusion algorithms are based on the optimal state estimation
problem [109, 105], where three main approaches can be highlighted: (1) Multi-
Hypothesis Extended Kalman Filter (EKF) [43, 3, 117], parameterizing the un-
certainty as a multi-Gaussian variable, (2) Markov Localization (ML) [35, 81],
representing the uncertainty with a regular sampling of the whole state space,
and (3) Monte Carlo Localization (MCL) or particle filter, introduced in mobile
robot localization by [26, 110], where a set of weighted samples in the state
space (particles) is used to represent the uncertainty of the robot position.

Particle Filter Map-based Localization. Mobile robot localization using
particle filters are nowadays a well stablished framework [109] and has been
widely and successfully used by the mobile robotics community [66, 115, 55,
119, 78, 50, 25, 63, 54, 111]. In the basic version, called sampling, importance,
resampling (SIR), the particle filter iterates through three steps: the first one
propagates the particle set by computing a probabilistic kinematic model and
outputs a prior density estimate. The second step weights each particle ac-
cording to how likely are the current sensor observations with the expected
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observations, the later computed with an observation model considered from
the particle state point. This second step produces the posterior estimate. Fi-
nally, the third step draws a new particle set according the importance weights
of each particle.

The most research efforts are to optimize the computational charge of the
filter to keep real-time requirements of autonomous navigation, specially when
computing the expected observations. In this direction, some authors precom-
pute observation models over a grid of the state space [110, 91, 119] but others
develop fast algorithms to compute observation models on-line, thus avoiding
state-space discretization [55, 78, 25, 111]. Other authors have worked with
the auxiliary particle filter that investigates alternative sampling strategies that
better use the computational resources, avoiding to sample regions of the state
space unlikely with the current observations, [110, 114, 11]. Moreover, a set of
adaptative techniques have been developed to minimize the number of samples
following a criteria based on the probabilistic distance between the prior density
and that of the observation model [32, 49, 11], so that large distances lead to
larger particle sets. More refined methods to generate a prior density have been
proposed by [8], while other authors work on novel strategies in the resampling
step to deal with model incompleteness [54].

Therefore, it seems that uncertainty representation with a set of samples
over the state space, the so called particle representation, has advantages over
other uncertainty representation methods, specially in terms of flexibility and
robustness to cope with the stochasticity of the localization process. Therefore
the mobile robot community seems to converge to that uncertainty representa-
tion and the associated particle filter for data fusion, specially for map-based
localization approaches.

2.1.6 Cooperative Issues

Cooperation in robotics has atracted great attention from the last ten years|2,
31, 88]. In terms of localizaton, cooperation has been addressed specially in the
context of the estimation algorithms that fuse information coming from remote
observers (i.e. other robots or sensors outside the robot) [96, 33, 100, 61, 15, 22].
These works focus in cooperative issues such as uncertainty propagation or de-
layed information. However, planning joint coordinated actions to solve the
map-based global localization problem is much less investigated in the litera-
ture [9, 23, 10].

In either case, robots need to be identified and positioned between them,
so that the so called relative localization methods are key modules when some
multi-robot approach is investigated [97, 103, 68]. These methods commonly
provide range and/or bearing observations of the other detected robots that run
within the closeness of the robot.

2.2 A Classification of Localization Implemen-
tations

This section proposes a classification of different implementations of mobile
robot localization. This classification is based on considering the localization
approach from the point of view of the overall navigation system, but it is
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transversal with respect to the six key points listed in the previous section,
so that each implementation deals with these key aspects in a particular way
with independence of this classification. Figure 2.2 summarizes the proposed
classification.

— Improved Odometry

—Heuristic
) —— RF-based Localization ) .
Mobile Robot — Active Geometric
Localization — I
Implementations Global Probabilistic
[ Localization
| Map-based Passive
Localization .
Position
Tracking

Figure 2.2: Classification of mobile robot localization implementations

Improved odometry. These methods refer to those techniques that do not
use a prior map and that try to estimate as accurately as possible the metrics of
the executed path of the robot from the start of the motion. These techniques
usually extract laser scanner [57, 56] or visual features [76, 41, 62, 89, 67] to
be used as external references to correct wheel odometry drifts, so that an
improved odometry data is produced as the output of the process. In extended
versions, the goal can be also to create a map of the environment following
some world representation, so that a mapping process is in charge of registering
the extracted features with the estimated position, so that the so called SLAM
(simultaneous localization and mapping) problem arises [29].

Radio frequency based methods. These localization techniques define an
origin of the coordinate frame at which the localization output will be ref-
erenced. Thereafter, thanks to the range measurement to a set of reference
stations (i.e. RF-beacons, satellites), the receiver can be localized through tri-
angulation. Some examples of such systems used to localize mobile robots are,
by means of GPS [107], using a wireless LAN infrastructure [98] or using RF-
beacons [39, 12].

Map-based Localization. The third group of the proposed classification
places those implementations that refer the output position estimate to an ex-
ternal coordinate frame associated with a provided a priori map, thus the robot
has to be localized within that map. This group is usually divided by those
methods that solve the position tracking situation, so that a correct starting
position is provided to the system, and those approaches that deal with the
lost robot problem, where the robot has no knowledge about its initial position
on the map and tries to converge to a single position estimate by fusing sen-
sory information. Particle filter and Markov localization approaches can solve
both problems in an unified framework [35, 26, 110, 109], while Kalman filter
based approaches need an extra step to generate initial position hypotheses to
be tracked by the filter [43, 3, 117].
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From a practical point of view, map-based global localization requires much
more computation efforts than map-based position tracking, but position track-
ing has hard real-time constraints when it is used within an autonomous naviga-
tion system as that diagrammed in figure 1.1. Implementations of the map-based
position tracking process within a complete autonomous navigation system can
be found in [13, 108, 110, 4, 38, 55, 78, 25, 111]. On the other hand, global
localization approaches can be also subdivided in passive or active methods.
While passive methods do not address the action planning of the robot, active
methods select the best action to move the robot in order to solve the localiza-
tion ambiguities, while fusing all sensory information up to a single-hypothesis
convergence of the localization algorithm. Three approaches can be identified
among these active strategies according to the criteria to choose the best ac-
tion: heuristic, geometric and probabilistic. Heuristic approaches [47, 43, 37|
select the action following an heuristic criteria given by the environment char-
acteristics, such as following a wall or enter to doors. Geometric strategies such
as [94, 80] propose a pure geometric optimization to decide which is the action
that better disambiguates the multi-hypotheses situation. Finally, probabilstic
approaches are introduced by [17] and reformulated by [34] using a entropy-
based criteria. These approaches offer more flexibility and generality and are
also investigated by [91, 118, 119, 21, 9, 23].

2.3 Main Contributions of the Thesis within the
State of the Art

According section 2.1 of this chapter, the work reported in this thesis focuses ur-
ban pedestrian outdoor environments, modelling them with 2D and 3D geomet-
ric maps. The platform used for field experiments is a two-weel, self-balancing
platform. Sensors fused in these experimental sessions are wheel encoders, in-
clinometers and laser devices, but compass, GPS and camera network are also
considered in simulations. As a method to represent the position uncertainty
the thesis chooses importance sampling, so it deals with the associated particle
filter for data fusion. Finally, cooperative issues are investigated in either cases:
sharing information and planning joint actions to solve global localization.

Beyond the above mentioned items, the main contributions of the thesis
within the classification of implementations proposed in section 2.2 are placed
in both map-based position tracking and global localization techniques.

In position tracking, the thesis reports long-term experiments in real urban
pedestrian environments by using both 2D and 3D environment models [25, 111].
For the 3D case, it has been developed a fast and accurate technique for on-line
expected range data computation that allows position tracking to run under real-
time constraints [24]. In position tracking domain the thesis also investigates
the fusion of asynchronous observations in the particle filter framework [22].

Global localization is addressed from a more theoretically point of view, and
the thesis proposes a novel active, cooperative and probabilistc approach to
solve the localization ambiguities by selecting best actions according expected
remaining localization hypothesis [21, 23]. The thesis compares this approach
with current existing active and probabilistc techniques in terms of computa-
tional complexity , showing the advantages that the proposed method offers.
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Chapter 3

Sensor Readings and Real
Observations

All robot systems that have to interact with the environment have a set of
sensor devices that provide measurements of some physical variables, such as
range or light, during robot’s operation. Raw outputs of such sensor devices
are called sensor readings. However, from the point of view of a robot system,
some signal processing is required, ranging from trivial manipulation to complex
feature extraction or tracking, in order to deliver to the estimation process
only the relevant information of sensor readings. This relevant and processed
information is called observation. Robots use these observations as the input
for the localization process.
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3.1 Real Observations

The term real observation is used in this thesis for clarifying purposes, to define
the input data of the localization process. In a general approach, real observa-
tions are provided by perception processes, that can be from simple acquisition
to complex estimation processes. From this definition, an observation process
is a computer process delivering a real observation. Figure 3.1 shows the chain
from the environment up to real observations. Following this definition, the
localization process itself could be also an observation process from the point of
view of an upper-level process requiring localization data.

Sensor .
S Perception t t
Acquisition ey — {( ) ( ) 1
Modules Modules 0~ Ny,—1 J

Figure 3.1: From sensor acquisition to real observations.

The localization process studied in this thesis uses input data from Npg obser-
vation processes. The observation O} is the real observation issued from the Eth
observation process, available at the estimation processing unit at iteration ¢.
Such real observation can be defined as:

Ol = (o}, Cy, 7}, st) Vk=0.Np—1 (3.1)

where o, is the observation vector and belongs to the kth observation space Oy,
C! is the parameterization of the observation uncertainty, that can be expressed
as a O, x Oy, covariance matrix, 74, is the time stamp related to that observation,
and st is the observation status, set to st = READY for 'ready to use’, st =
USED when the observation has been already used, and set to s}, = ERROR
for possible errors in sensor acquisition or perception processes.

3.2 Sensors and Observations for Mobile Robot
Localization

This section details the sensors studied in this thesis and the real observations
issued from their readings. From the point of view of an estimation process,
such as the localization one, for each observation, special attention has to be
taken for the following features:

e Output rate: period between two consecutive observations.

e Observation latency: Delay between the sensor reading and the moment
when the observation is available at the estimation processing unit.

e Uncertainty: bounded, unbounded, fixed or measured on-line.

e Availability: some sensors only provide readings under some environ-
mental or radioelectric conditions, partially encountered during robot op-
erations.
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Please note that, for clarity purposes, sometimes in the following sections
and chapters the index k will identify each observation with a key letter instead
of with numerical indexation, so that a GPS observation, for instance, can be
labelled as O,.

3.2.1 Encoders and Odometry

Encoders are electro-mechanical devices that count the wheel turns when a
robot is runnning. In most of the wheeled robotic platforms they are embedded
with motors in the gearbox of the wheel axes. Their use is vaste since they can
provide easily the odometry (the metrics of the travel) of the platform, with a
fine accuracy in short trajectories without wheel slip, a very useful information
for mobile robot position tracking applications. Knowing the integration time
of the wheel counter, a velocity observation can also be computed but it will be
probabilistically dependent on the odometry. The main characteristics of the
odometry observation are:

e High acquisition rate (typically > 20H z).
e Very Low latency (typically < 10ms).

e Accurate precision in short displacements without wheel slipping, but un-
bounded uncertainty for long travels.

e Full availability in most platforms.

The observation vector for the odometry, of; is defined as:
of; = (Ap', AGY); Ap' € R, A0 € (—7, 7] (3.2)

where Ap? indicates the linear translation of the platform pivot point and A#?
is the angular travel of the platform heading. Ap’ and A#! are obtained by
accumulating the increments from the last odometry reset up to 7f;. Usually
odometry data is reset after integrating each odometry observation, thus the
time to accumulate encoder data is between T[tfl and 7f;. Figure 3.2 shows
these two components between two robot positions on the 2D plane.

Figure 3.2: The two components of the odomety observation vector.

The uncertainty of these observations is usually parameterized with a stan-
dard deviation of the error in translation,o’;, and a standard deviation of the
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error in rotation, oj. Both standard deviations are usually modelled as a frac-
tion of the observed translation and rotation.

Ctr = (0, 79) (3-3)

where of, = ¢,Al and oj = €Af". This uncertainty model represents the

odometry error as a normal density with linear increase of standard deviation
as odometry measure grows up.

3.2.2 Inclinometers

Inclinometers measure the angles between the gravity vector and the normal
vector of the platform, allowing to get directly the pitch and roll observations of
the platform where the device is mounted on (see figure 3.3). The observation
vector provided by an inclinometer is:

of = (67, ¥1); ¢7,¢7 € (—m,7] (3.4)
The main characteristics of the observation provided by inclinometers are:
e High acquisition rate (typically > 20Hz2)
e Very Low latency (typically < 10ms)

e Full availability while the sensor is within the operational tilt range.

Gy YG

Figure 3.3: Inclinometer data as pitch (left) and roll (right) of a vehicle with
respect to the gravity vector G. Z, is the platform’s normal vector.

The uncertainty of pitch and roll data issued from an inclinometer is rep-
resented with a time-invariant gaussian model with standard deviations, oy,
and oy, , usually provided directly by the sensor manufacturer in the device
datasheet.

3.2.3 Global Positioning System

Global Positioning System is a large infrastructure widely used around the
world. The system is formed by more than twenty satellites and the ground
stations to support their operations. GPS receivers get the satellite signals and
track their orbital positions. When a receiver gets signal from more than three
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satellites it can compute its location in terms of geographic or some other Earth
coordinates. The accuracy on computing the receiver location will be strongly
related to some measurable and unmeasurable factors. With the measurable
factors most of receivers can compute a model of the position uncertainty and
output it online, as a covariance matrix of a gaussian error model. To overcome
some of the error sources, the Differential GPS, DGPS, is also widely used for
applications requiring more accuracy. DGPS is based on ground stations that
know their geographic position thanks to precise topographic measurements.
These reference stations broadcast through some radio network the real-time
correction encountered between the measured GPS position and the known po-
sition. Since DGPS stations are in good places in terms of satellite visibility,
these GPS deviations are assumed to be provoked mainly by atmospheric fac-
tors. Since it is also assumed that atmosphere doesn’t change around small
areas, GPS receivers in proximity to a differential reference station can also
receive correction data and use it to improve the position estimate. Table 3.1
summarizes the error sources of the GPS localization, indicates if they are mea-
surable for a single receiver and specifies if DGPS can overcome their effects.

Table 3.1: GPS error sources

Source Measured at receiver | DGPS Correction
Number of visible satellites Yes No
Geometry of the triangulation | Yes No
Atmospheric conditions Modelled Yes
Multi-path reception Some receivers No
Electronic and antenna noise Modelled No

Table 3.1 highlights the mulipath reception as one of the critical error sources
since it can only be partially mitigated by dedicated signal processing imple-
mented only on some receivers. This issue is critical in urban pedestrian en-
vironments, since narrow streets act as urban canyons where reflected signals
usually arrive with greater strength to the receiver than those following the di-
rect path. This leads to errors in the position computations due to the fact that
the reflected signal has covered a longer distance than the actual range from the
satellite to the receiver. A second important issue to take into account in urban
pedestrian areas is the GPS coverage. Urban streets often have partial visibility
to satellites, leading GPS receivers to get signal from an insufficent number of
satellites to compute the triangulation.

Most GPS receivers output also the velocity from Doppler measurements of
the received signals. The velocity measurement is independent in terms of mag-
nitude from the position output but not in terms of the velocity direction [44].
With these velocity measurements, some receivers incorporate a filter that im-
proves the estimate of the position and overcomes the lose of coverage for short
periods. However if a GPS receiver is within an uncovered area for a long time
the estimated uncertainty of that filter will increase up to large unbounded
values.

The observation provided by a GPS device is

OtG = (mtg,yg,zg,vxg,vyé,vzg) (3.5)

This observation is characterized by:
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Medium acquisition rate (typically 1 — 10Hz)

Very Low latency (typically < 10ms)

e Accuracy of absolute localization depending on triangulation quality and
multi-path propagation, both related to sky visibility.

Partial availability, strongly related on environmental conditions provok-
ing occlusions of satellite line of sight.

Appendix C details how to transform the GPS data, in terms of Earth coor-
dinates, to positions with respect to the reference map coordinates used in this
thesis.

3.2.4 Electronic Compass

State of the art 3D electronic compasses are accurated sensors that measure
the three dimensional Earth magnetic field. They also measure the pitch and
roll position of the sensor with respect to the gravity by means of two internal
inclinometers. By using the magnetic and inclinometer data, they compute
the heading of the device with respect to the magnetic north. This procedure
is also known as electronic gimbaling opposite to the mechanical gimbaling of
traditional compasses.

ot = 0L; 0 € (—m, 7] (3.6)

The main characteristics of an observation provided by an electronic compass
are:

e Medium acquisition rate (typically 10 — 20H z)

Very Low latency (typically < 10ms)

e Accurate observation on the heading component of the state. They usually
output the inclinometer data too.

e Partial availability, depending on environmental conditions.

The data availability of such sensors is clearly the weakness since they are very
sensible to local variations of the Earth magnetic field. Such variations can be
provoked by ferrous objects or motors being close to the sensor. Modern elec-
tronic compasses provide an automatic calibration procedure based on taking
a set of calibration samples in different vehicle positions. With this calibra-
tion sample set, the device computes a model of the local magnetic distortions,
provoked by vehicle structure or magnetic sources. Afterwards, in acquisition
mode, the compass compensates for the local contribution in order to obtain a
more accurated reading. Since in most robot applications the compass devices
are mounted on board of the robot platform, which usually has a high presence
of metals and electrical motors, a good calibration of such devices is important
before using them. Finally, a map calibration is also required to find the angu-
lar offset of the geographic North with respect to the map axes. Figure C.2 of
appendix C shows a way to compute this offset.

36



3. Sensor Readings and Real Observations

3.2.5 Laser Scanner

Laser scanners are widely used devices in mobile robotics since they provide
directly a set of Ny ranges from the central point of the device to the closest
obstacles of the environment, sweeping in a plane an angular aperture of Aa.
In most of the cases the angular step between two consecutive ranges remains
constant, thus it is dae = Aa/Ny,. Figure 3.4 shows the basic geometry of such
devices.

AY i=1;,=Aal2

i=j;x,=Ax/2—j-Ax/N,

i=N,;a=—Ax/2

Figure 3.4: Laser scanner rays in the sensor coordinate frame.

By processing laser scanner data a wide variety of observations, such as raw
range points, corners, segments, arcs or some other predefined pattern, can be
dervied. In this thesis, range data has been directly used after applying range
limit checking operations. Therefore, the range observation data vector provided
by a laser scanner is:

of, ={rp;} | L ; € [RI"™ RP*™],Vj=1...Np (3.7)
Main characteristics of such laser scanner observations are:
e Medium acquisition rate (typically 5 — 20H z)
e Medium latency (typically ~ 40ms)

e Uncertainty expressed as an standard deviation of the range measurement,
fixed for simple models, or as a function of the range for calibrated devices.

e Full availability, exceptuating for some devices, extreme situations as
frontal incidence of sun light, dense fog, rain or dust clouds.
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Chapter 4

Environment Models and
Expected Observations

In the previous chapter, real observations have been introduced as the in-
puts to the localization module, coming from processing actual sensor readings
or from other estimating processes. Moreover, a robot can be provided with
some initial knowledge of the environment, described with some kind of spatial
representation, also called environment model or map. This model is the source
to compute two kind of data playing a key role for successful map-based localiza-
tion: model constraints and expected observations. Model constraints are used
to reduce the search space of all possible positions to those accomplishing some
physical conditions. Expected observations are synthetic observations computed
given a system state, an observation model and an environment model. Environ-
ment and observation models are important software modules in robotics and
an accurate and fast processing of them is a key aspect for succesful filtering.
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4.1 Basic Concepts and Notation

This chapter is divided into two main sections, 2D and 3D approaches, showing
the improvement of the work through the research. The work reported on this
thesis started using 2D representations [19] but, after some experience gained
analyzing the research results, the focus of the work moves to better and more
accurate 3D models [24]. The change has been done without compromising the
computational efficiency, so while the 2D approach is based on a set of ’hand-
made’ geometric primitives, 3D approach uses a standard graphics programming
library to compute the 3D model. Despite this big implementation difference,
some common concepts and notation for both sections are introduced in the
following paragraphes.

Environment models. In map-based localization approaches, the robot has
some previous knowledge of the environment, represented by an environment
model, also called spatial representation or map, M. With such models, the
localization process computes two kinds of useful data: map constraints and
expected observations. The former improves the localization performance since
it reduces the solution space to those positions that accomplish some physi-
cal constraints such as collision-free condition or gravity effects, while the later
provides expected observations from a given position to be compared with real
ones, in order to score that given position according to some likelihood func-
tion. Moreover, when the spatial representation incorporates metric data, as
geometric models do, the map also defines a coordinate frame where this data
is referenced. This map frame acts as the so called world frame and localization
is expressed with respect to that model coordinate frame.

Points and positions. A given point p expressed with respect to map co-
ordinate frame is denoted as QII)V[ , while a position (i.e. a point plus attitude
angles) is written as XI])W . In both cases the M superindex indicates that point
or position are referenced to the map frame. Next sections detail point and
position representations for 2D and 3D cases.

Physical constraints. Robot wheeled platforms running on a real environ-
ment have some constraints regarding their position caused by the presence of
obstacles in the environment or by the effect of the gravity force. If the envi-
ronment model allows the computation of such constraints, the search space of
the localization problem can be dramatically reduced and, therefore, resulting
in a better localization performance.

Observation models. An observation model is a software module that out-
puts a synthetic or expected observation given a robot state as input, as, for
instance, the robot position. They are also called sensor models through the
robotics literature. An expected observation computed from the position X;”
is denoted through this thesis as of (XI],W ). Subindex k, as used in chapter 3,
identifies to which observation process the expected observation is associated,
while s superindex indicates that these observations have a synthetic nature and
that they are not time dependent as real observations were. For sensors inter-
acting with the environment, as laser scanners do, the observation model has
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to compute in an efficient way the environment model to obtain these expected
observations. Next sections explain the approach used in this thesis to compute
the expected laser scanner observation in 2D and 3D environment models.

4.2 2D Approach

The 2D approach represents the environment by means of 2D geometry, thus a
point p referenced to the map frame, QII)V[ , is described with a pair of coordinates,
Qéw = (zéw,yé”). A position p incorporates an orientation, described as a

heading angle from the z axis of the map frame, x . Therefore, a position p is

M _ (.M , M gM
expressed as X" = (z,,",y,",0,").

4.2.1 2D environment model description

This subsection presents how spatial information is arranged to form a 2D envi-
ronment model [19]. The representation is on the 2D plane, based on geometric
entities and inspired from the Geographical Information Systems (GIS) vector
format [59, 70]. However, height information of geometric entities is added to
provide the map with some 3D information, thus allowing to model stairs and
borders since they are common obstacles in urban pedestrian areas.

The map M is represented as a list of N B obstacles and two points limiting
its borders, representing the left-up corner and the right-down one.

M:{blaabNB;QlI\/'f) 71“\/5 (41)

The k*" obstacle of the map, by, is parameterized as a list of NS}, segments, an
integer idj assigned to identify the obstacle and an integer sty describing the
type of the shape representing the obstacle.

bk:{Sk71,...,Sk7N5k,idk,Stk} Vk=1...NB (4.2)

where sty = 1 when obstacle is represented with a closed polygon, st = 2 for
an opened polygon, and st = 3 for stairs. The I** segment of the k' obstacle,
Sk,1, is defined from the point fom to the point Qé\{k,l. A value hy, is also
associated to the segment respresenting its height:

st = {QM, 1, QM 1 hi )Yk =1...NB, Vi=1...NS, (4.3)

All segments are oriented, so they are defined from left to right when they
are seen from a free space point of view. GIS format allows adding semantic
information to each element, therefore a rich map for extended purposes can be
built. Figure 4.1 shows the map representing the UPC campus area described
following this model.

With the aim of speeding up the algorithms that process this model a bound-
ing ball for each obstacle is computed, and its center and radius are stored with
the obstacle information. Bounding ball is computed as the minimum circle
bounding all the point coordinates of the segments of a given obstacle [36]. This
allows fast discarding when computing geometric primitives with this model.
Obstacle by has its associated bounding ball 5, parameterized with a center,
ﬁ,?, and radius, ﬂff.
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Figure 4.1: 2D environment model of the UPC campus area.

4.2.2 Collisions on 2D

To compute if a point collides with any obstacle of the model, two geometric
primitives have been implemented. They are outlined in the following para-
graphes.

Segment-segment interference. This primitive evaluates if two segments,
s; and s;, intersect. The primitive returns a boolean value indicating intersec-
tion or not and, if it is the case, the interception point coordinates.

Segment-obstacle interference. Computes if a segment s; intersect with
the borders of a given obstacle b, by using the segment-segment interference
primitive over the entire list of segments for the k' obstacle. Returns a boolean
value indicating collision or not and, if it is the case, the collision point. If the
segment collides more than once with the obstacle, the collision point is set to
that closer to the Q%‘ point (i.e. the starting point of the segment s;).
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Point collisions on 2D model are computed using the segment-obstacle inter-
ference primitive. For a given point p, Qéw , the procedure starts drawing four
segments starting at QII)w up to each of the four limiting corner points of the
model. Then the segment-obstacle interference is evaluated for each of these
four segments. If all four segments collide with the same obstacle, then it is
assumed that the point lies inside an obstacle so the algorithm returns COLLI-
SION. Algorithm 1 summarizes the procedure.

Algorithm 1 Collision constraint algorithm for 2D models

INPUT: M, Q)
OUTPUT: g.
Omin = MAXDISTANCE
s1 = drawSegment(Q,)", Q});
(Q;{)w; (zrd; ylu))a
83 = drawSegment(Q;y, (Trw, Yrd));
@)

s = drawSegment
sy = drawSegment My
fori=1..4do
for j =1..NB do
QM =segmentObstaclelnterference(s;, b;) //set the collision point
if QM +# () then
0 = distance( II)”, A
if § < d,min then

¢; = j //holds the obstacle index
end if
end if
end for

end for
if ¢; = co = ¢c3 = ¢4 then
return COLLISION;
else
return FREE;
end if

This procedure is an approximation. It assures that all positions inside an
obstacle are identified as a non-free positions. However, in some cases, free
positions very close to non-convex obstacles can be also identified as non-free.
This issue has minor practical relevance on the context of this thesis.

4.2.3 Laser scanner observation model on 2D

The laser scanner observation model on 2D, is also based on computing the two
other geometric primitives described in the paragraphes below.

Ray-obstacle interference. This primitive is similar to the segment-obstacle
interference, described in subsection 4.2.2, but takes into account a height pa-
rameter for the ray and the heights of the segments forming the obstacle. The
ray collision will ignore those collisions against segments with height less than
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the ray height. If there is interference it returns directly the range from the
start point of the ray to the collision point. Otherwise it returns the ray length.

Ray-map interference. Evaluates the intersection of a given ray over all the
obstacle list building the model. In order to reduce the computational cost on
processing the model, prior to call ray-obstacle interference for the obstacle by,
this procedure checks two geometric features. First, it checks if the minimum
bounding ball of the k" obstacle,fy, is close enough to the ray. If not, the entire
obstacle is discarded. Else a second test is done, consisting on checking if the
ray is oriented towards the k' obstacle, by computing the angle between the
ray itself and the segment built from the ray origin point to the 3$ point. If
the angle is out of [-7, 7], the k" obstacle is discarded. Else the ray-obstacle
interference is called. These two geometric checks improve the computational
cost, specially for large environments where a significant amount of obstacles
are far away from the ray or at the bottom of it.

Algorithm 2 summarizes the procedure to compute the ray-map interference
on the 2D model, given a ray position XM a ray height, hs, and a maximum
range, Tmaz-

Algorithm 2 Algorithm for the ray-map interference on 2D
INPUT: M, XM = (2™ 4™ M) hy, rmax
OUTPUT: r
for j =1..Np do
62 = squareDistance(XM, BY)
if 62 > (Timas + BE)? then
return 7,4,
else
ray = drawSegment(XM, rpmaz) //ray segment
s1 = drawSegment(XM, 3¢) //from XM to bounding ball center
a = angle(ray, s1)
if « ¢ [-Z,Z] then

212
return 7,4,
else
r = rayObstaclelnter ference(b?, ray, hs)
return r
end if
end if
end for

To compute an entire expected laser scanner, the ray-map interference prim-
itive is called Ny times while incrementing the ray heading according to the
sensor angular step. Ny, is the number of rays of an entire scan.
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4.3 3D Approach

The 3D approach models the environment using 3D geometry. A point p ref-
erenced to the map frame is a triplet of coordinates, QIJ)W = (:1:1])\4, y;”, zéw) A
position p in 3D is represented as a point accompanied with three orientation
angles, XZ])” = (zy,ygf,zy,ﬂgf, gf,wé”). The definition of the three angles
with respect to the map frame follows the Z — Y — X Euler convention and is

detailed in the appendix B.

4.3.1 3D environment model description

Real urban pedestrian environments are three dimensional, so an accurate three
dimensional model gives us a richer representation of the real world than the
2D models do and, therefore, 3D models provide, potentially, better synthetic
observations and map constraints than 2D representations.

The three dimensional environment model used in this thesis is formed by
two geometric maps, built manually, edited with a 3D model editor and stored as
standard .obj files [79]. One model describes the entire environment, M, while
the other only models the floor surface, M f;50r, leaving holes where obstacles
are encountered. The use of the obj standard file format allows the map manip-
ulation through openGL [83], a widely used programming library to manipulate
3D models and create 3D scenes using the computer graphics hardware. Using
openGL for model computations in vehicle localization has been suggested, but
not detailed, by some authors [55, 78]. Thus, this section details how to effi-
ciently use the openGL library to compute collisions, ground constraints and
expected observations [24]. Figure 4.2 shows a view of the full model for the
UPC campus area.

Figure 4.2: 3D environment model of the UPC campus area.

Figure 4.3 shows real pictures of this environment and their approximate cor-
responding view in the 3D model. The reader can observe in this figure how the
3D map only models the most static part of the environment as buildings and
urban solid furniture, while vegetation, pedestrians and other light objects re-
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main an unmodelled part of the environment, thus the used model is considered
incomplete, a realistic and challenging assumption for map-based localization in
urban pedestrian environments.

Figure 4.3: Pictures of the UPC campus environment and their approximate
corresponding snapshots of the 3D map. The 3D map is static and only models
the most significative parts of the environment.

4.3.2 Collisions in 3D

To compute collisions, only the floor part of the model is used, M i0r, to detect
if a (zM,yM) pair is expected to collide according to the model. To efficiently
compute expected collisions, the openGL library is used for a fast manipulation
of the 3D model. Algorithm 3 summarizes ths procedure to find out if a given
map location (zM,yM) is expected to collide with the model. The key idea of
algorithm 3 is to bound the rendering volume to a maximum depth of zna.
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Algorithm 3 Collision constraint algorithm for 3D models

INPUT: Mfloora ($M7 yM)
OUTPUT: g,

setWindowSize(5,5); //sets a rendering window of 5x5 pixels
setProjection(1°,1, Zimin, Zmaz) //bounds rendering volume
Xop = (M, yM M . 0,7/2,0); //sets an overhead view point, pitch= 7/2
renderUpdate(M fioor, Xc); //renders the model from X,
r = readZbuf fer(3,3); //reads depth of central pixel
if r == 2,4 then
return COLLISION; //a hole is present
else
return FREE; //floor is present
end if

and an aperture view of A.. Since the floor map has holes instead of obstacles,
a renderization of the floor map from an overhead view point detects holes as
pixels with depth equal to zp44-

4.3.3 Ground constraints in 3D

Due to gravity force effects, wheeled platforms run always on the floor. More-
over, for low-speed platforms, it can be assumed that the whole platform is a
rigid body with all wheels in contact with the floor, and shock absorbers, if
present, do not modify the pitch and roll of the vehicle. With this reasonable
assumptions for low-speed platforms, three ground constraints are derived from
the gravity action and the environment: height, pitch and roll. These con-
straints can be computed only when a 3D environment model is used. Table 4.1
summarizes these ground constraints, indicating to which kind of wheeled plat-
form apply and the equation relating the constraint with other unconstrained
robot position coordinates.

Table 4.1: Ground constraints of low-speed wheeled platforms

constraint platform type equation
height all platforms M= g, (M yM)
pitch Not on self-balancing platforms | ¢ = g, (2, yM, 0M7)
roll all platforms oM = gy (M, yM 6M)

The height constraint sets a height, 2™, given a coordinate pair (z,y™).
To compute it, only the floor part of the map is used. Algorithm 4 outlines
the procedure. As for the collision constraint computation, the basic idea is to
limit the rendering volume of the model in depth and aperture, and renderize
the scene from an overhead view point and, then, read the depth data of the
central pixel computed by the graphics card.

The pitch constraint fixes the pitch variable of the platform to a given coor-
dinate triplet (acfg” , yi’,” , 9;,” ). The algorithm to compute the pitch constraint is
outlined in algorithm 5. It employs the previous height constraint algorithm to
compute the floor model’s difference in height between the platform’s frontmost
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Algorithm 4 Height constraint algorithm for 3D models

INPUT: M fio0r, (zM, y™)
OUTPUT: g,

setWindowSize(5,5); //sets rendering window size to 5x5 pixels
setProjection(1°, 1, Zmin, Zmaz) //1° of aperture, aspect ratio, depth limits
Xop = (@M, yM 22 0,7/2,0); //sets an overhead view point, pitch= /2
renderUpdate(M fioor, Xon); //renders the model from X,
r = readZbuf fer(3,3); //reads depth of central pixel

_ M _ ..
9z = Zop — T
return g;

and backmost points, g.r and g,;,. The pitch angle is then computed using triv-
ial trigonometry, while A is the distance between the above mentioned platform
points. The roll constraint can be found in a similar way but computing the

Algorithm 5 Pitch constraint algorithm for 3D models
INPUT: Mfloor; A, (l‘é\/j, yéw, Héw)
OUTPUT: g¢

et =) + 4 cosf); //compute the platform’s frontmost point

y' =y + 4 sin 0)"; //likewise
gzf = heightC’onstraint(zy, y}”); //compute height at frontmost point

oM = ac]]g” — é cos 9{,”; //compute the platform’s backmost point

yM = yé” - g sin 9]]0\4; / /likewise
gz = heightConstraint(z)?,yM); //compute height at backmost point

9o = atan2(g:f — gzb, A);
return gg;

height constraint for the leftmost and rightmost platform points.

4.3.4 Floor map discretization

The constraints presented in the previous subsections are computed massively
in the filtering loop of map-based localization. To speed up online computations
during real-time executions, a height grid is computed offline for the floor map.
Thus, Gheight is a grid containing the height value M for pairs (zM,yM), thus
being a discrete representation of the height constraint with a discretization
step 7:

oM M

v — "
Gheight(iaj) = gz(‘r;f)way;éw) | i = (’L?’Lt) £ =

, j = (int) , (4.4)
where 23! and y}! are the map origin xy coordinates. The grid is computed
offline by means of the height constraint (algorithm 4) along the grid points,
and it is stored in a file, to be load for online executions. Figure 4.4 shows the
height grid for the UPC campus environment.

Computing pitch and roll constraints requires several z computations, so
the height grid speeds up these procedures as well. However, to avoid dis-
cretization problems, specially when computing pitch and roll constraints using
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Figure 4.4: Floor map of the UPC campus environment.

Gheight, We use lineal interpolation on the grid. Algorithm 6 summarizes how
the height constraint is computed using the grid.

Algorithm 6 Height constraint using the grid
INPUT: Gheight, (zéw, y;,‘/[)
OUTPUT: ¢,

M M
Ip —Xy .

M M
i = (int)=2—=2=; j = (int) 22—
z21 = Gheight (Zaj)7
(i2, j2) = nearestDiagonal GridIndex(); //io =i+ 1; jo = j £ 1;
29 = Gheight(i2,]); //height of a neighbour cell
23 = Gheight (1, j2); //height of a neighbour cell
24 = Gheight (12, j2); //height of a neighbour cell
9. = interpolation(z1, z2, 23, 24, :Cé”, yé‘/[);
return g,;

4.3.5 Laser scanner observation model in 3D

This subsection outlines how, from a given 3D position in the environment,
expected 2D range scans or expected 3D point clouds are computed. A common
problem in either cases is the computation of range data given the sensor position
and a set of sensor parameters like angular aperture, number of points and
angular accuracy. To compute these observation models, openGL has been used
to take advantage of graphics card acceleration. The approach specially focuses
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YM

Figure 4.5: Model frame (XM Y™ ZM) and sensor frame (X°,Y* Z9), ray
angles o; and 3;, and the computed output ranges r;;.

on minimizing the computation time without violating sensor’s accuracy and
resolution. This minimization is achieved by reducing the rendering window
size and the renderig volume as much as possible, while keeping the sensor’s
accuracy.

The goal of a range observation model is to find a matrix R of ranges for a
given sensor position XM. Each element r;; of the matrix R is the range from
the XM position up to the first obstacle of the model, following the ray given by
angles o; and ;. Figure 4.5 shows these variables as well as coordinate frames
for the map, (XYZ)", and for the sensor, (XYZ)".

The range observation model has the following inputs:

e A 3D geometric model, M.

o A set of sensor parameters: horizontal and vertical angular apertures, A,
and Ag, horizontal and vertical angular accuracies, é, and dg, the size of
the range matrix, n, X ng, and range limits, pin, "maaz-

e A sensor position, XM = (M yM M M M oM

The operations to execute in order to compute ranges r;; are:
1. Set the projection to view the scene.

2. Set the rendering window size.

3. Render the scene from XM.

4. Read the depth buffer of the graphics card and compute ranges r;;.

Set the Projection. Before using the openGL rendering, the projection pa-
rameters have to be set. These parameters are the vertical aperture of the scene
view, which is directly the vertical aperture of the modelled sensor, Ag, an im-
age aspect ratio p, and two parameters limiting the viewing volume with two
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planes placed at zy (near plane) and zg (far plane)!. These two last parame-
ters coincide respectively with 7,,;, and 7,4, of the modelled sensor. The only
parameter to be computed at this step is the aspect ratio p. To do so, first the
metric dimensions of the rendering area, width, w, and height, h, have to be
found. The aspect ratio will be derived from them:

A, A w
w= 2rmmt9(7); h = 2Tmintg(7ﬁ); p= (4.5)

Figure 4.6 depicts the horizontal cross section of the projection with the associ-
ated parameters. The vertical cross section is analogous to the horizontal one.

AYS

Figure 4.6: Horizontal cross section of the projection with the involved param-
eters. Green squares represent the pixels at the image plane.

Set the rendering window size. Before rendering a 3D scene, the size of
the image has to be set. Choosing this size as small as possible is the key issue
to speed up the proposed algorithm. Since range sensors have a limited angular
accuracy, we use that to limit the size of the rendering window, in order to
avoid rendering more pixels than those required. Given a sensor with angular
accuracies d, and dg, pixel dimensions of the rendering window are set to:

tg(Aa/2)

tg(Ap/2)
tg0a)

Pa = (int)2 19(0)

5 = (int)2 (4.6)

Figure 4.6 shows an horizontal cross section of the projection and the related
variables to compute the horizontal pixel size of the rendering window (the
vertical pixel size is found analogously). Equation 4.6 presents a singulariy
when A, g = 7. In practical situations, this singularity forces to sectorize the
computation of wide aperture sensors.

lzn and zp are openGL depth values defined in the screen space.
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Render the scene. The scene is renderized from the view point situated at
sensor position XM . Beyond computing the color for each pixel of the rendering
window, the graphics card also associates to each one a depth value. Moreover,
graphics cards are optimized to discard parts of the model escaping from the
scene, thus having limited the rendering window size and volume speeds up this
step. Renderization can be executed in a hidden window.

Read the depth buffer. Depth values of each pixel are stored in the depth
buffer of the graphics card. They can be read by means of an openGL function
that returns data in a matrix B of size p, X pg which is greater in size than
the desired matrix R. Moreover, depth values of matrix B, by;, are normalized
values of the renderized depth for each pixel. To obtain the desired ranges the
procedure computes first the D matrix which holds the non-normalized depth
values, d;;, following the X* direction:

BPRE S[ ) IV SRR S 1] (:7)
k= (int)(5 2m(%))pa, I = (int)(5 th(%))pﬁ .
dij_ TminTmax

B (Tmam - bkl)(rmaz - Tmin),

The last equation undoes the normalization computed by the graphics card to
store the depth values. The D matrix has n, X ng size, since we compute d;;
only for the pixels of interest. Finally, with basic trigonometry we can calculate
the desired r;; as:

cos(av;)cos(B;)

Figure 4.7 shows the variables involved on this last step, showing the meaning
of the d;; and r;; distances in an horizontal cross section of the scene. Equa-
tion 4.8 presents numerical problems when «; or ; get close to m/2. This will
limit the aperture of our sensor model. This limitation coincides with that al-
ready commented for equation 4.6 and has been overcome dividing the aperture
in two sectors.

The overall procedure to compute expected range observations in 3D envi-
ronments is outlined in algorithm 7. Inside the for loops, variables k and [ are
directly functions of ¢ and j respectively, so expressions in equation 4.7 for k
and [ can be precomputed and stored in a vector.

Appendix D details the quantitative values of the range observation models
for two real laser scanner devices widely used through the work. Video 3 outlined
in appendix E shows the output of this range observation model for a laser
scanner and for a time of flight camera.

Tij = (48)
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Figure 4.7: Horizontal cross section of the projection, with distance d;; and
range r;; of the corresponding EIth pixel.

Algorithm 7 Range Observation Model
INPUT: M, Aa, AB, (50“ 65, Nay N3y Tmaxy Tmin, Xél\/[
OUTPUT: R
A w
W= 2 intg(5%); h = 2rmintg(52); p =
glSetProjection(Ag, p, Tmin, 'mag);//sets the rendering volume

Pa = (’L?’Lt)2tgt(gA(§a/)2)7 P = (’M’Lt)tht(gA(;ﬂ/f),
glSetWindowSize(0,0, pa, pg);
glRenderUpdate(M, XM); //renders the model from the sensor position
B = glReadZbuf fer(ALL_IM AGE); //reads normalized depth values
for i =1..n, do

o = Aa(0.5 — t),

k= (int)(0.5 — 57880 )pa;

for j =1..n5 do

Bj = 8505 — ;L);

. t9(8;
I = (int)(0.5 — #%)PB?
dij = G et =y

Tij = cos(ai)lgos(d)j);
end for
end for

return R;
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Chapter 5

Particle Filter Overview

A particle filter is a recursive algorithm that estimates a probability distribution
of the state of a system given a set of observations and, optionally, a predic-
tive model of the state of that system, as, for instance, the kinematic and/or
dynamic models. The representation of this probability distribution is made
by estimating the associated probability density function with a set of samples
as points in the state space, each one having an associated weight quantifying
the likelihood between real observations and the expected ones computed at the
sample state point. The pair formed by a sample point and its weight is called
a particle.
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5.1 Bayesian Filtering

The bayesian filter for mobile robot localization provides the theoretical frame-
work for particle filter localization [26, 110]. Let X be the state of the system,
expressing the position of the robot at iteration ¢ with respect to some reference
coordinate frame, and let QY be the set of all observations available at iteration ¢
in the computer unit that executes the estimation process:

QL = {0}, Vk|st = READY} (5.1)
Then, the belief of the system state at iteration ¢, defined as,
Bel(X") = p(X'|Q ... QY), (5.2)

expresses the probability density function of the state of the system, given the
observations from the beginning of the filter execution up to the current iter-
ation. The Q! set can be expressed separating the odometry observation and
the rest:

= {2, 0p} (5.3)

leading to the following expression of the belief:
Bel(X") = p(X*'Q, 0, Q71 ... QY) (5.4)
Applying the Bayes rule to the last equation we obtain:

p(Q X, 04, Q7. Q%) p(Xt 0L, QL ...QY)
p(QU|OE, QL ...Q0)

Bel(X") = (5.5)
The denominator term can be interpreted as a normalization constant 1/7 since
it does not depend on X*. For the numerator term, we will apply the Markov

assumption of the system evolution, implying that the current observations
depend only on the current state:

Bel(X") =1 p(Q'|X") p(X'[Op, Q' Q)) (5.6)

The last term can be computed as an integral, leading to the following expression
of the belief:

Bel(X") =n p(Q'|X") /p(Xt|0‘;J,Xt—l)p(X‘f—1|Qf;1 Q) axtt =
(5.7)
=y p(@1XY) [ pC0f, X Bel(x' ) X!

The interpretation of the equation 5.7 is that the belief of the system at a given
iteration can be computed iteratively as:
Bel(X") =n -p(Q'|X") - Bel(X'), (5.8)

where Bel(X*™) is the estimated probability density function representing the
prior distribution, p(Qf|X*) represents a likelihood of the observation set given
the system state, and Bel(X") is the target probability density function to be
estimated, associated to the posterior distribution.
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The prior distribution, also called proposal, is expressed as:
Bel(X") :/p(Xt|OtU,Xt_1)Bel(Xt_1) dxtt (5.9)

where the expression p(X*|O};, X*~1) refers to a probabilistc propagation model
of the system state.

The likelihood p(2f|X*) in equation 5.8, holding the conditional probability
of the observation set QF given the robot state X', is approximated by means
of a similarity function between real observations (chapter 3) and the expected
ones computed by observation models at the given state point (chapter 4):

p(Q X" ~ L(Q,Q°(X1)) (5.10)

Using equation 5.10 the posterior distribution at iteration ¢ can be represented
by:
Bel(X") ~n - L(QF,Q%(X")) - Bel(X'), (5.11)

This last equation summarizes the iterative principle of the particle filter intro-
duced in the next section.

5.2 Particle Filter Algorithm

The implemented solution for the particle filter is the Sampling Importance
Resampling (SIR) method, also called Bootstrap filter [28]. This implementation
aproximates the Bel(X?) density function with a set of particles, while each
particle is a pair formed by a sample in the state space, X}, and an associated
weight, w!:

Bel(X") ~ P' = {(X},w!)}, Vi=1...Np (5.12)

The algorithm starts with an initialization, drawing a particle set labelled
as P°. If some prior knowledge about the system state is available, denoted
as K°, the particles are generated satisfying that knowledge. Otherwise, the
particles are generated sampling uniformly the whole state space.

Given the initial particle set, the recursive part of the algorithm starts with
a propagation step, also called prediction or sampling, where a new particle
set, P~ is generated from the initial one, using a sampling model of the robot’s
kinematics, f(), and the current odometry reading, Of; [109]. For the general
case of the t'" iteration, at propagation step the state of the " particle is
updated but particle weights are not modified:

X7 =f(XI710)), Yi=1...Np
1 (5.13)
t— .
w; :N—P, V’Llep
This first step outputs an approximation of the prior belief: P!~ ~ Bel(X!™).
A second step, called importance updating or correction, reshapes the prior
density function by updating the weights of each particle but keeps the particle
states. Each weight w! is updated according a likelihood function computed
with the available observations, QF, given that the system is in the state X!:

Xt=X!/", Vi=1...Np
wi = L(Q, X)), Vi=1...Np

2

(5.14)
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A third step is a normalization of the particle weights, forcing the sum of
all of them to be 1:

t
w}
W~ —— (5.15)

252 W)

At this point, the particle set approximates the target posterior distribution:

P! ~ Bel(X?) (5.16)

After correction and normalization, it can be useful, for system integration
purposes or evaluation, to compute a parametrization of P? set, extrauctmg7 for
instance, a mean and a covariance matrix from the particle set, X! and C*
respectively.

Finally, the resampling is the last step in which a new particle set is drawn
keeping the mean of the old one, but reseting all particle weights to 1/Np:

P! + resampling(P") (5.17)

Figure 5.1 shows the three iterative steps of a single iteration of the particle
filter and how the particle set is labelled after each step.

Pt . P _ P!
—» propagation ———» correction >

resampling r€——

Figure 5.1: Iteration of the particle filter. P! is the output particle set that
estimates the posterior distribution of the system state.

Algorithm 8 summarizes the presented basic particle filter, also called Sam-
pling Importance Resampling or Bootstrap filter [28].
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Algorithm 8 General particle filter algorithm
INPUT: K°,Qf,
OUTPUT: P?
t =0 //iteration counter
PY = initialization(K°) //initialization
while running do
t+t+1
fori=1...Np do
X! = f(XI7',0}) //propagation
end for
fori=1...Np do
wt =p(Qf, X}) //correction

end for
fori=1...Np do
wh ZNP' — //normalization
end for o
Pt + resampling(P?) //resampling
end while

5.2.1 Resampling Algorithm

The goal of the resampling algorithm is to draw a new particle set keeping
the mean of the old one, but formed by new particles with their weights reset
to 1/Np. The resampling step is necessary to avoid particle depletion [28, 5],
an undesired phenomenon of particle filters where the particle set collapses
to a single state point provoking the filter being no longer capable to explore
new solutions for the estimation, therefore compromising the robustness of the
solution. Several methods are proposed for resampling step in particle filters [28,
5, 109]. This section overviews the used method, the regularized resampling, and
also outlines an alternative method as a suggestion that could improve results
in future works.

Regularized Resampling

The implemented resampling solution through the different filters presented
at this thesis is the regularized resampling method [5]. Being P’ the current
particle set after correction and normalization, the resampling begins creating
a sorted version of that set, labelled as, P!, where the order is stablished by the
particle weights, starting from the most important particle:

Pt = { {(X],w]), ..., (Xi, why, )Ml 2> wf & i < j, V(X wf) € P} (5.18)

Once the Pt set is built, a cumulative weight for each particle in Pt set is
assigned as:

cw! = ng (5.19)
j=1

The computation of these cumulative weights provides a cumulative distribution
function of the particle weights over the index i, as it is shown in the figure 5.2.
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5. Particle Filter Overview

With such a function, the resampling process draws a random number uniformly
distributed, r € [0, 1], and the selected particle to be resampled is:

Xp=X}¢e ﬁt|cw§-,1 <r < cwh,r ~rand(0,1) (5.20)
t
CWiA
T _
r —
l
0 ¥ >
1 j N,

Figure 5.2: Cumulative weight as a function of the particle index of the sorted
set (coincides with cumulative distribution of particle weights). r is a random
number € [0, 1] used to select the j** particle to resample.

To avoid the particle depletion phenomenon, a resampling noise, zero-mean
and gaussian distributed, is added when drawing the new particle X! from the
selected one X}. This gaussian noise should be small with respect the uncer-
tainty introduced by the probabilistic kinematic model used at the propagation
step. Resampling noise is parameterized with a covariance matrix C,. Algo-
rithm 9 summarizes the regularized resampling algorithm.

Algorithm 9 Regularized Resampling
INPUT: P',C,
OUTPUT: P! //resampled version of the posterior
P+ sortByWeight(P') //Assures w! > w! — i < j
fori=1...Np do
cwf =S !
end for
fori=1...Np do
r = rand(0,1) //random number uniformly distributed
XL =X}¢e Pt j=mink lcw! > //select particle for resampling
X!~ N (XL, C,) //draw new particle with mean X% and covariance C,

end for
Pt={X!},i=1...Np
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5. Particle Filter Overview

Low Variance Resampling

Low variance resampling is an alternative method for resampling, where only a
random number, r € [0, NLP], is drawn to choose the first particle to be resam-
pled [109]. From that random value, the rest of the particles will be choosen
adding 1/Np to that initial value in the way indicated by algorithm 10. This
method is quite more efficient in terms of complexity because of it does not need
to sort the particle set and it only uses a single random number.

Algorithm 10 Low Variance Resampling
INPUT: P*,C,
OUTPUT: P! //resampled version of the posterior
fori=1...Npdo
cwp =305, W)
end for
r = rand(0, NLP) //random number uniformly distributed
fori=1...Np do
Xp =Xl e P, j=mink |cw}, >r //select particle for resampling
X!~ N(XE,C,) //draw new particle with mean X}, and covariance C.,
r=r+ NLP
end for
Pt={X!}, i=1...Np
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Chapter 6

Position Tracking

A mobile robot needs to track its position within the navigation coordinate
frame in order to close the navigation loop and to decide next driving actions.
In map-based navigation the navigation coordinate frame is the map coordinate
frame and position tracking is the process in charge of estimate the position of
the robot, both location and orientation, by means of the on board sensors and
other remote observations available at the computer executing the process.

This chapter describes two approaches, both based on the particle filter
algorithm summarized in the previous chapter. The first approach considers
that the robot navigates on a 2D world, so that the environment model lies
on the 2D plane and the state space is that of positions on that plane. The
later approach considers a more realistic situation where the robot moves in 3D
environments, so the environment model is 3D and the state space is that of
positions in 3D. In both cases extensive field experiments are reported and some
improvements on the basic version of the filter are discussed.

63



6. Position Tracking

6.1 Goal and Requirements

The goal of the position tracking process is to output, periodically, an estimate
of the robot position in terms of the map coordinate frame. This estimate
comprises a time stamp, a point in the state space and a parameterization of
the associated uncertainty. The three main items that can measure the quality
of the position tracking are accuracy, robustness and output rate.

Accuracy stands for the precision in which the process gives the localiza-
tion estimate. To measure it, real or simulated experiments require localization
ground truth data in order to compute the error as the euclidean distance be-
tween the estimate and the ground truth. With this localization error, the
tracking process can be evaluated in absolute terms.

Robustness refers to the capacity of the filter to not loose the target, recov-
ering situations where accuracy error has grown up for any reason. Given an
estimation of the position and its associated uncertainty, a measure that indi-
cates robustness of position tracking can be the time ratio at which position
error is inside a given bound of that estimated uncertainty. This measure also
requires ground truth data to obtain position error.

Output Rate is the frequency at which the filter computes the position es-
timate. The localization output rate depends on the computational cost of the
filter iteration. Localization rate constraints the vehicle speed in autonomous
navigation since localization output is required to update the current local goal
to send to the reactive loop (see section 1.2).

6.2 2D Position Tracking

This section overviews a basic implementation of the particle filter for mobile
robot position tracking on a two dimensional world. The estimated state of
the robot is a vector in the continuous space of positions referenced to the
map coordinate frame. Let be X7 = (z7,y”,67) the robot true state at time
T, where (z],yl) refers to the location coordinates of the robot and 67 to its
heading. This true state remains always unknown and is the target state vector
to estimate. The output of the #*" iteration of the position tracking process is
the position estimate X! = (2%, 4, 07), the estimated covariance matrix C* and
the time stamp of these estimates 7¢. Please note that 7 refers to continuous
time and ¢ indicates an iteration index. Estimated and true robot positions are
always referenced to the map coordinate frame, so the superindex ™ has been
ommited to simplify notation.

6.2.1 Basic Particle Filter

Being X the state space of the continuous positions on the plane but bounded
to a working area limited by (Zmin, Tmaz), (Ymins Ymaz ),

X7, Xﬁ € X = {(Tmin> Tmaz)> Ymin, Ymaz), (=7, 7|} (6.1)

As suggested by equations 5.2 and 5.12, the approximation made by the sample
representation of the probability density function at iteration ¢ can be written
as:

Bel(X") ~p(XHQL...QY) ~ P'={(X},w})}, Vi=1..N, (6.2)
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6. Position Tracking

The above expression indicates that the probability density function is approx-
imated with the set P! formed by Np particles. Each particle is a pair formed
by a sample in the state space, X} = (z'y},6}), and a weight, 0 < wj < 1.

The output estimate takes into account all observations from the start of the
filter execution, {QJ,...,QL}. Conditional probabilities of a real observation O}

given the state X! are approximated with a likelihood function as:
p(OLIX]) ~ L1(O, Op(X])) (6.3)

where L function is a likelihood between two observations: the one made by
the k*" observation process, O%, and the exzpected one, Of(X}), resulting from
computing the k'* observation model at particle position X! (see chapter 4).
Such likelihood function should return a value in [0, 1], being close to one for
similar observations and near to zero when observations mismatch.

Algorithm 11 summarizes an iteration of the implemented basic particle filter
with the following main steps: (1) propagation, (2) correction, (3) normaliza-
tion, (4) setting and publishing the position estimate and (5) resampling the
particle set. Next paragraphes detail each of these steps.

Algorithm 11 Basic particle filter iteration for 2D position tracking
INPUT: Pt~ 1, QtA R
OUTPUT: P!, (Xt Ct 1Y)
t—t+1
for i =1..Np do
Xl = propagation(Xfﬁl, Ol €, €0)
end for
for i=1..Np do
wt = TIn%, Li(0L, 05(X1)), Vk|si = READY //correction
end for
N
Wt = ijPl w§
for i =1..Np do
wt + wi/W' //normalization
end for
(X*,C*, 7") =setEstimate(P")
publish(X?t Ct 1)
Pt + resampling(P?)

Propagation this first step moves particle states following a probabilistic
kinematic model of the platform with the current odometric observation, Apt,, A6
(see section 3.2 ). For each particle (i = 1...Np) the state propagation is
achieved by the following equations:

Apl = N(Dply,0h); of = e,Apl
AOt = N (AL, 0b); of = egAGY

. Aot
—1 —1 1

ol =27+ Aptcos(01! + T) (6.4)

- AG!

v=ul "+ A+ S0

0! =071 + Abt
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where variables Ap’é and Apf ara intermediate variables that expresses the odo-
metric values with an added noise, hence the function N (u,o) is a call to a
random generator with a normal distribution centered at the current odometric
data with standard deviation proportional to odometry increments. As de-
scribed in section 3.2, noise parameters U; and o}, are proportional to odometry
readings, so that large readings cause more uncertainty. Therefore, the user
parameters to be adjusted are €, and €y. Figure 6.1 shows the behavior of this
model for a simple robot trajectory. Probabilistic propagation causes a dis-
persion of the particle set, allowing to explore state space regions where likely
solutions can be found according the vehicle kinematics.

20

15

1.0

y [m]

histogram(#)
o
I}

0.5

oo e

D.‘O 0‘5 1‘0 1‘5 20 w4 0 m‘"j /2 3nwid

x [m] Blrad]

Figure 6.1: 2D probabilistic kinematic model. The robot moves straight ahead
at translational speed of 1m/s but turns are done at translational speed of
0.5m/s and rotational speed of 0.2rad/s and —0.2rad/s respectively. Left plot
shows the sample distribution over the xy space, coloring alternatively each
iteration in red and green. Right plot shows the probability density function
over the 0 component at the end of the trajectory. For this figure, €, = ¢g = 0.2.

Correction The correction loop integrates all available observations with-
out taking into account time stamps. Assuming that conditional probabilities
associated to each observation are independent between them, and using the
approximation presented at equation 5.14 the correction step updates particle
weights as follows:

Np
wi =[] £x(O, O3.(X))); Vi =1.Np, Vk|s|, = READY (6.5)
k=1

The likelihood function between an actual laser scanner observation (see
section 3.2) and an expected one (see section 4.2.3) has been implemented as
the mean over the entire scan of the complementary error function, erfc (), of
the difference between expected and actual ranges. Thus, given the range vectors
of a real and an expected observations of a laser scanner, denoted respectively
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as {rf} and {r}, Vj = 1... Ny, the likelihood function is:

L£1(04,05(XM)) Zerfc (%) (6.6)

where o, is the standard deviation of the range observation. This likelihood
function has the desired property that its value is limited to the [0, 1] interval,
evaluating to 1 for two identical scans and approaching 0 when the scans diverge,
while the function depends only on the standard deviation associated to laser
range measurements.

Normalization Next steps assumes that the sum of all weights will be 1, thus
a normalization is required:

P
:ij»; wi Wt’ Vi=1.Np (6.7)

Setting & Publishing the position estimate The setEstimate() function
parameterizes the particle set as a Gaussian density function. This Gaussian
estimation is computed in order to publish a close result ready to be used by
other real-time processes, monitoring or analysis. However, the particle set
remains the genuine output of the particle filter. This step also sets the time
stamp of the current estimate, 7¢. The parameters of the Gaussian density

function are:

Np Np
=Y af-wl; (61)7 =) (2} —il)? - w] (6.8)
i=1 i=1
Np Np
=Y yi-wh (6= (yf — b)) (6.9)
1=1 =1
Np t t
0t = atan iz 5inb; - v, 6.10
( Zjipl costt - w! ) ( )
Np
(64)* = _(acos(cos(0) — 61)))* - w! (6.11)
k=1
Np
ol = (al—al)- (yl — gb) - wlh; 6Ly = 6Ly =0 (6.12)
k=1

Once the Gaussian form of the position estimate is set, publish() function sends
through an output TCP port this result. Processes requiring position data
should connect to this port in order to receive it in real-time.

Resampling Finally, the resampling() step draws a new particle set resam-
pling the current one. The general resampling solution detailed in subsec-
tion 5.2.1 has been used. However, a slightly modification has been applied
with good practical results. This modification issued from the idea to resample
best particles (highest w!) with new positions close to them while resampling the
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worst particles with the aim to explore possible new solutions in the surround-
ings of the robot quite more far than when resampling best particles. This idea
is implemented by fixing a diferent resampling noise matrix, C, as a function
of the drawn value r of the algorithm 9. C, is set as a 3 x 3 diagonal matrix
with its elements being the variance parameters o2 , ¢2 and o2 . Standard

Y22 Uy Yo
deviations related to each matrix element j follow the function:

low if
%{ oy ifr<r, (6.13)

high
g ifr>r,

Therefore a set of parameters have been adjusted during experimental sessions
to achieve a robust behavior of the position tracking.

6.2.2 Field Results within the URUS project

Within the context of the european project URUS (Ubiquitous networking
Robotics in Urban Settings) [102, 112], the basic particle filter for 2D posi-
tion tracking has been extensively tested on the UPC campus area onboard
three diferent platforms belonging to three partners of the project:

e Tibi & Dabo: Segway RMP200, two-wheel, self-balancing platforms, Uni-
versitat Politecnica de Catalunya (UPC).

e Romeo: Four-wheel electrical car-like vehicle, Asociacién de Investigacién
y Cooperacién Industrial de Andalucia (AICIA).

e Ben,Ced & Dan: Pioneer P3AT, four-wheel platforms, Universidad de
Zaragoza (UniZar).

In all cases the filter required at its input at least an odometry observation and
a front laser scanner observation. Each partner provided the low-level acquisi-
tion software modules while the localization module was exactly the same for
all platforms. Further details on software integration can be found in chapter 8.
Next paragraphes detail experimental results with the three different platforms
types above mentioned. Due to working constraints of the URUS project, ex-
periments carried out with platforms belonging to AICIA and UniZar partners
are not so extensive as those performed with UPC robots. However, they are
reported here for the interest of the reader.

Table 6.1 lists the parameters used in these experimental sessions, their
associated values, a short comment and a reference to the related equation.

Results with Tibi and Dabo

Tibi and Dabo are two mobile robots, based on the Segway RMP200 two-
wheeled, self-balancing platform. For localization purposes they integrate wheel
odometry data provided by the platform, and two laser scanner data, one point-
ing frontward and a second pointing backwards, both scanning parallel planes to
a flat floor. Such platforms are contiuoulsy pitching due to their self-balancing
system, so they are challenging vehicles for perception and estimation algorithms
such as localization. Further information on Tibi and Dabo can be found in ap-
pendix A.
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Table 6.1: Parameters for 2D localization experimental sessions

Np | 50 particles Particle set size, eq. 6.2
€0 0.2 Translational noise for kinematic model, eq. 6.4
€0 0.2 Rotational noise for kinematic model, eq. 6.4
or, 5 cm Standard deviation for laser likelihood, eq. 6.6

ny‘;“’ 7.5 cm x low resampling noise, eq. 6.13

Uff;w 7.5 cm y low resampling noise, eq. 6.13

JQ‘;“’ 0.02 rad 0 low resampling noise, eq. 6.13

ghiah 15 cm z high resampling noise, eq. 6.13

Uf}jgh 15 cm y high resampling noise, eq. 6.13

ohiah 0.04 rad 6 high resampling noise, eq. 6.13
Ty 0.9 low/high resampling threshold , eq. 6.13

A set of experimental sessions to test a full autonomous navigation system
for Tibi and Dabo mobile robots were conducted during autumn 2009 at UPC
Campus Nord setting, running a total length of 3.5Km at a mean travelling
speed of 0.67m/s [25], (one of the sessions is reported in video 4, appendix E.
During the experiments, the robot executed a serie of 35 go to requests pro-
viding a map destination. After indicating this destination point on the map,
the robot started its autonomous navigation to drive itself up to the goal point.
Localization failed five times over all the sessions. Figure 6.2 shows the path
executed by the robot and indicates where failures happened. Failures took
place mainly in zones featuring environment elements poorly modelled by the
2D environment model, as for instance in ramps. At a ramp entry the robot
sees the ramp surface as a wall, but also, on the ramps, such Segway-based
platforms try to compensate the floor tilt, resulting that the front/back laser
scanner mainly perceives the ramp surface when robot goes up/down. More-
over, these experimental sessions avoided to navigate through the central part
of the UPC Campus, where there is a square (see figures 4.1 and first picture
of figure 4.3). This square features a set of four large obstacles for gardening
purposes, poorly modelled with a 2D approach due to their geometric construc-
tion. This means that in this area the 2D localization approach was not enough
robust for autonomous navigation purposes.
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0 20 40 60 80 XM [m]

Figure 6.2: Path executed during the experimental sessions of autonomous nav-
igation with Tibi and Dabo robots using 2D localization. Total travelled length
was about 3.5Km. Red circles indicate where the robot got lost.
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Results with Romeo

Romeo robot is based on a four-wheel car-like platform, propulsed by an elec-
trical motor. It belongs to AICIA. It is equipped with wheel encoders, an
inertial unit, a GPS receiver, a frontal Sick laser scanner and a set of ultrasound
beamers. For localization purposes, the AICIA colleagues provided an improved
odometry thanks to the fusion of wheel encoders, inertial unit and GPS, and
separately, they also provided raw laser scanner data. Figure 6.3 diagrams the
filtering scheme, while figure 6.4 (left) shows a picture of the platform during
an experimental session.

Wheel encoders —p ;
i ; Kalman O U (odometry)
Inertial Unit———J Filtor

GPS —

Particle St
Fitor | —p X -
2D Loc. | (2D position)

v

1t
Laser Scanner, OL

Figure 6.3: Filtering diagram for Romeo localization.

Romeo robot used the 2D position tracking for autonomous navigation. Dur-
ing an experimental session the robot executed a set of go to missions, complet-
ing a path of about 800 m. The entire path is shown in figure 6.4 (right). One
of the key issues for the successful implementation of this approach on Romeo
was the quality of the provided odometry data.
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Figure 6.4: On the left, Romeo autonomous vehicle, from AICIA. On the right,
travelled path of Romeo during an autonomous navigation session using the 2D
position tracking.

71



6. Position Tracking

Results with Ben, Ced and Dan

Ben, Ced and Dan are three Pioneer P3AT based platforms, belonging to
UniZar. They were equiped with a sick laser scanner, mounted pointing for-
ward. The platform itself also provides wheel odometry. Figure 6.5 shows a
picture of the three robots running on the UPC Campus.

Figure 6.5: Ben, Ced and Dan robots during a demonstration of navigation in
formation at UPC Campus.

In the context of the URUS project, the UniZar research team was perform-
ing a set of experiments showing cooperative issues on navigation in formation.
They used the presented 2D position tracking module for real-time localization,
fusing odometry and laser scanner data. Figure 6.6 shows a picture of the three
robots and the path travelled by them during a project demonstration.
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Figure 6.6: Path travelled by each robot during the demonstration of the navi-
gation in formation. Pioneers were using the 2D position tracking.
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6.3 Integrating asynchronous observations

This section describes an improvement of the basic 2D particle filter, consisting
on modifying it to take into account the time stamp of real observations coming
from sensor readings [22]. The approach is motivated mainly in two cases: fast
vehicles and cooperative environments. In the former case little latencies of
observation acquisition processes lead to observations related to past positions,
so observation models should be computed also at past positions for a proper
likelihood comparison. In the later case, even for slow platforms, communication
delays can cause big latencies of the observations up to their availability at the
filtering computer unit, so the same situation is found and observation models
should be also computed taking into account observation time stamps.

In order to outline the proposed algorithm, some definitions are remembered
or introduced:

e O = (o},CL, 7k, st) is an observation of, with covariance matrix C},
arriving at the computing unit at iteration ¢, coming from the k*" ob-
servation process, made at continuous time 7/ and with status si (see
section 3.1).

e (O is the set composed by the observations available at the filtering com-
puter unit at iteration ¢t with the exception of the odometry (see sec-
tion 5.1). These observations come from Np observation processes. This
set changes dynamically while filtering advances, since data acquisition
processes run concurrently and asynchronously with the filtering process.

o H! = {(Xt1=A8,CtA 7178) L (X171, 0L 7471 (X2, C 7)) is a set
keeping the filter history of the A last posterior estimates and the last
prior estimate made by the filter.

A single iteration of the proposed asynchronous particle filter integrates only
those observations available at the filtering computer unit. Iteration t** is out-
lined in algorithm 12.

For each observation process, the algorithm compares the observation time
stamp with the last filtering time stamp, set inside the call setEstimate(). As
a result of this comparison, two cases are identified whether if the observation
is delayed or advanced with respect to the filtering time stamp. Figure 6.7
depicts the first case when j < t, thus the observation Of is delayed with
respect to the last prior time stamp 7¢. This figure shows how the particle X} is
backpropagated in order to compute observation models at positions where that
particle was expected to be at the observation time 7f. a,b and « are computed
for linear interpolation between estimation points. The other case, evaluated
in the algorithm with the statement if j == ¢, appears when the observation
time stamp is advanced with respect the last prior time stamp. At this case,
the filter propagates the particle set with the current odometry increments, and
the advanced observation becomes a delayed one since the filtering time stamp
is then updated at the setEstimate() calling.

6.3.1 Comparison between basic and asynchronous filters

In order to evaluate the performance of the proposed algorithm, it has been
carried out a simulated experiment consisting on a mobile robot running on
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Algorithm 12 Asynchronous particle filter iteration
INPUT: Pt~ H*=1 QO
OUTPUT: P!, (Xt Ct,rt), HY
P'=propagate(P'"!, 0f)
(Xt C* 1) =setEstimate(P")
H* pushBackCurrentEstimate((X*, Ct, 7%))
for k=1..Np do
j=maxc€{t—A, ...t} <7}
if j ==t then
P'=propagate(P*, 06+ )
(Xt C* 1) =setEstimate(P")
H* replaceLastEstimate((X*t, Ct, 7))
j=t—1
end if
Lt
o =

o

XH = oXi 4 (1—a)Xit!

AX = X! - xH

for i =1..Np do
XM= xt - AX
p(X{""|of) = Li(o}, 0p (X))
wf = wl - p(X{"of)
end for

end for

(Xt,Ct, 7) =setEstimate( P?)

Xt" =propagate(X?, 0‘6+ )

publish(Xt", Ct, 1)

H* removeFormerEstimate()

H' replaceLastEstimate((X*, O, 7t))

resampling(P?)

an environment of 10.000m? at speed of about 2m/s, completing a path of
about 300m. The simulated robot is equipped with two laser scanners, a com-
pass and a GPS (coverage of about 60% of the path). Moreover, a camera
network is deployed on the environment, covering about the 55% of the path
and providing observations of the robot location (z,y). Table 6.2 summarizes
the rates, latencies and the standard deviation of the simulated Gaussian noise
for each observation process. These values were set taking into account real
devices and systems.

The experimental testbench was composed by two computers. Computer 1
was executing the simulator, the basic and the asynchronous particle filters.
Computer 2 executed the GUI and was saving the frames in order to produce
the video (see video 1, appendix E). This scenario allows to compare the two
filters in real-time with the same conditions since they are running on the same
simulation execution. Further details on the software can be found in chapter 8.
For both filters, the number of particles was set to Np = 100. Figure 6.8 shows
the map, the ground truth position in black, the basic filter estimate in blue,
the asynchronous filter estimate in red and the odometric position in green. In
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Table 6.2: Rates and latencies of the observation process

Observation process | Rate(Hz) | Latency(ms) Std. dev. noise
o}, odometry 20 ~0 5%(6XY),10%(00)
o} front laser 4 50 5em (range)
o}, back laser 4 50 5em (range)
o compass 5 20 1.5°(0)
o} GPS 1 20 2m (z,y)
ot CameraNet 1 500 0.4m (x,y)

this figure cameras are also drawn as small black squares.

Using this testbench three experiments are presented. Experiment A was
switching off the camera network, thus both filters were integrating only the
observations provided by onboard sensors. In experiment B we have switched
on the camera network, thus both filters integrate also remote observations
provided by these cameras. After a discussion, a third experiment demonstrates
the potentialities of this approach in the case of a robot fusing only odometry
and camera network detections.

To evaluate the performance of the filters we evaluate the following error
figures:

e;:jifx:7 eZ:yf“*y;—? eé:é;‘:f@: (614)
ehy = V(&L — 27)? + (9% — y7)?

To compute this error we linearly approximate the simulated ground truth
(7, yr,07) data at exact times where estimations are computed. This is done by
considering the ground truth sample immediately before and after the estimate
time stamp. The ground truth process was running at 20H z.
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Figure 6.8: Ground truth (black), basic (blue) and asynchronous (red) particle
filter estimates, and odometry (green) on the map. Cameras are drawn as little
black squares. Dotted lines build a 20m x 20m grid.

Experiment A: Camera Network Off

Figure 6.9 shows the error e‘;y when the camera network was switched off. In
this case the observation processes provide data with low latencies, therefore the
asynchronous filter does not take clearly advantage of its properties. However,
the proposed approach performs slightly better, since observations are integrated

properly considering their time stamps.

Experiment B: Camera Network On

When a camera network is switched on, we put in the scenario a very accurate
observation process that, however, provides observations at low rate and with
large latencies. In this scenario, the proposed asynchronous filter performs much
better than the basic one as it is shown in figure 6.10. The asynchronous filter
outperforms the basic one with the exception of a short passage, where two filters
have demonstrated a good recovery behaviour. This execution is recorded and
presented in the video 1, appendix E, where the particle sets of each filter can
be seen with the simulated ground truth position of the robot.

For this second experiment with the camera network switched on, the error
for each estimated component of the state is presented, with the respective
estimated standard deviation. Figure 6.11 shows how the filter error for each
component remains most of the time within the uncertainty bound of 1o.
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Figure 6.9: XY error, eéy, of both filters. Camera network is switched off.

Discussion

Table 6.3 summarizes the mean errors for both filters and both experiments A
& B. As expected, the proposed approach works much better, specially when an
accurate but delayed observation process plays in the scene, as the case when
the camera network is switched on. Table 6.3 also shows how the 6 estimate
does not improve its performance since it depends basically of the odometry
and the compass, and these two observation process have high rates and low
latencies.

Table 6.3: Mean errors of A & B experiments

Basic PF Asynchronous PF

CamNet | p(exy)[m] | pleo)lrad] | pesy)[m] | pleq)lrad]
OFF 0.36 0.013 0.28 0.012
ON 1.05 0.013 0.26 0.012

Table 6.3 also compares the asynchronous filter with and without the camera
network and shows that only a little improvement appears in terms of position
error, but gains in terms of robustness since another observation process is
integrated on the filter. From this consideration, the next experiment evaluates
the feasability of tracking the position of a robot fusing only the odometry and
the camera network observations, in order to consider the proposed algorithm
as a practical solution to be onboard of cheap robots running on environments
where a camera network has been deployed. Experiment C investigates this
issue.
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Figure 6.10: XY error, etzy, of both filters. Camera network is switched on.

Experiment C: Position tracking with odometry and camera network

Once the asynchronous filter has shown good properties integrating observations
with high latencies, this third experiment investigates a fusion scheme with only
odometry and camera network data. These two observations are very comple-
mentary since odometry has a high rate, a small latency and a good accuracy
in short displacements, while a camera network provides absolute and accurate
(z,y) observations with a large latency, but does not suffer from accumulated
drifts as odometry does. This experiment uses the same testbench as the pre-
vious ones, but only the asynchronous filter is executed since the basic filter
was unable to track the robot position in a robust way. Video 2, outlined in
appendix E, shows the evolution of the particle set during the experiment.

Figure 6.12 depicts the error of this experiment for the three estimated
position components. This figure shows how the error increments when the
robot is out of coverage of the camera network and redcuces when the robot
integrates remote observations coming from the camera network. Even if the
coverage of the camera network is partial ( 55% of the path) the proposed
approach is able to track the position of the robot with an acceptable error.
Mean errors for this experiment were p(ey,) = 0.7m and p(eg) = 0.07rad.
They can be compared with those errors of table 6.3 where the filters integrated
all observations from all sensory subsystems. Obviously, the filter integrating all
observations performs better, but the interest of this result lies in the fact that
cheap robots with only wheel encoders could track its position taking benefit of
observations coming from a deployed camera network with partial coverage of
the environment.
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Figure 6.11: ¢!, (top), e}, (middle), ef, (down) and respective estimated standard
deviations &, 67, 64 for the asynchronous filter (experiment B).
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Figure 6.12: e, (top), e, (middle), ep (down) and respective estimated standard
deviations 6,6, s for the asynchronous filter only integrating odometry and
camera network observations (experiment C).
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6.4 3D Position Tracking

This section considers the robot moving in a 3D world, thus it represents a
forward step from the previous 2D solution. The state space considered in this
approach is that of 3D positions, parameterized as a (z,y, z) location referenced
to the map frame, and three Euler angles, heading, pitch and roll, (0, ¢, ), de-
fined following the Z —Y — X Euler convention. In this section, all positions will
be referenced to the map frame if no specific superindex or comment indicates
otherwise.

At each iteration ¢, the filter produces a set of particles, P!, where each
particle is a pair formed by a sample of the state space (i.e. a position) and a
weight:

Pt={(X{,wh), .., (Xip, wiv )} XJ = {(2, 95, 21,07, 63, 9i) } i € [(27 1] )
6.15

¢ iteration.

where the pair (X}, w!

th
i t

) is the i'" particle produced by the

6.4.1 Basic Particle Filter

Kinematic Model In particle filtering, having a motion model allows to prop-
agate the particle set, thus limiting the search space to positions satisfying the
motion model constrained to given sensor inputs (see section 5.2). A probabilis-
tic kinematic model, such as that proposed at [109], computes a new sample
set called the prior, P! , based on the previous set, P~!, constrained to the
platform’s motion. As defined in section 3.2, the odometry observation available
at iteration ¢ is:

ofy = (Apky, Ad) (6.16)

where Ap! is the translational 2D increment in the local XY plane, and A#? is
the rotational increment around the local Z axis of the platform. Both incre-
ments are the accumulated odometry from iteration ¢ — 1 to iteration ¢. More-
over, for pitch-free platforms, such as the Segway RMP200 (see appendix A),
an observation about the pitch motion gives to the filter an extra and useful in-
formation that can be also integrated in the kinematic model. This observation
is provided by an inclinometer device and represents the pitch increment from
iteration ¢ — 1 to iteration t¢:

o = Agh (6.17)

With both odometry and pitch increments, and noise model parameters (eg, €g, €4),
at the beginning of each iteration the state vector of the i!" particle is moved
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according the following probabilistic kinematic model:
Apt = N(Apt, UZ); az = €,Apl;
A0t = N (AL, 0b); of = egAGY,
Ad; = N(Adh,04); 0 = epAdy

_ Ab?
zt = xz* + Apt cos(@f1 + Tl) (6.18)

v =i+ Ao + )

0f = 0,"" + Ao
i =i+ A

where the AV() stands for a call to a random generator normally distributed, with
its mean set to current observation data. Standard deviation for odometry in-
crements are set proportional to data values, so that large odometry increments
imply more uncertainty as presented in section 3.2.

The proposed kinematic model does not modify z! and 9! since these two
variables are constrained by gravity. These two coordinates will be set by using
the ground constraints presented at section 4.3.3:

zi = g=(xi, y;)

Ui = gu(},v;,07) (619
Algorithm Outline Using the above presented probabilistic kinematic model,
the procedure to compute ground constraints described in 4.3.3, the technique
to compute expected laser observations in 3D models detailed in 4.3.5) and the
likelihood function to compare laser scanner observations presented in 6.2.1, al-
gorithm 13 overviews how to combine all these elements to build a particle filter
to estimate the 3D position of the robot within the map coordinate frame. This
localization algorithm fuses data from wheel encoders, platform inclinometers,
front and back horizontal laser scanners and front vertical laser scanner. Details
on sensor setup can be found on appendix A.

The filter is initialized with a 2D position provided by the user, (zo, yo, 6o).
The first particle set is initialized within a square of 4m? around the (x¢,o)
location, within heading range 6y & 3°, and a pitch equal to zero. These initial
values are based on the fact that the localization filter is initialized with the
robot stopped in a roughly known position and on flat terrain. After propaga-
tion and correction steps, in order to output a close estimation of the filter, a
gaussian parameterization of the particle set is performed. The robot position
estimate, Xﬁ, is computed as the weighted mean of the particle positions, while
the covariance parameters, C't, are computed as the weighted sample variance,
in the same way as described in equations 6.2.1. In the last step of the filter, a
resampling function draws a new particle set keeping the mean of the current
one. Resampling is necessary to avoid particle depletion [28, 5], an undesired
phenomenon of particle filters where the particle set collapses to a single state
point rendering the filter no longer capable of exploring new solutions for the es-
timation, and therefore compromising its robustness (see subsections 5.2.1 and
6.2.1 for further details on resampling).
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As an aside, the vertical laser is integrated into the correction stage only
when appropriate. Most unmodeled obstacles, such as pedestrians or bicyclists,
have a relatively small footprint on the XY plane, so that the horizontal lasers
remain usable despite numerous occlusions. On the other hand, the vertical
scanner can be nearly fully occluded by a single pedestrian a few meters in
front of the robot. In that scenario the filter attempts to match actual and
expected observations by pitching the robot forward, lifting the floor surface
towards the part of the scan corresponding to the pedestrian, and thus increasing
the similarity between scans. This is clearly inadequate and compromises the
filter’s performance, so vertical laser data is only integrated when the similarity
between current real and expected observations, computed by the likelihood
function, is greater than a threshold, Ar, , determined experimentally.

Algorithm 13 Particle filter localization algorithm

INITIAL INPUT: (0, 0, 00 ), M
CONTINUOUS INPUT: O}, 07,0} 07,07 = //sensor observations

OUTPUT: X!, Ct, 7t //robot position, associated uncertainty and time stamp

t = 0; //iteration counter
PY = initialization(zo, yo,0o); //initialization with prior knowledge
while running do
t—t+1
fori=1...Np do
(zt,yt, 0%, ob) = f(X!71, 08, 0%); //kinematic model
2t = g.(xt,yl); //ground height constraint
Pt = gy(xt,yt,0%); //ground roll constraint
end for
7t = timeStamp(NOW);
fori=1...Np do
if EL(OtLV, iv(Xf)) < )\LV then
L(0L,,01, (X)) =1L
end if
wh = H Lr1,(ok,05(X})) //correction
k=Lp,Lp,Ly
end for
fori=1...Np do
wl + Z{Jé e / /normalization
end for
(X, CY) = gaussianParameters(P");
publish(Xt, C!, 7t); //publish produced data
Pt < resampling(P?); //redraw a new particle set by resampling
end while

6.4.2 Field results during autonomous navigation sessions

The 3D position tracking was validated in the context of a full autonomous
navigation system over the course of four experimental sessions [111], three at
the UPC Campus area and one on a public avenue situated at the Gracia district
of Barcelona, using Tibi and Dabo robots without distinction (see appendix A).
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All navigation processes run concurrently on a single laptop while an external
computer, connected to the on-board computer via wireless, was used for on-
line monitoring and to send arbitrary go-to requests (XY coordinates over the
map) to the path planning module. Localization process executed at 5H z with
Np = 50 particles. Runtime for all experiments added up to 2.3 hours, with
over 6km of autonomous navigation. We set a speed limit of 0.75m/s for the
first session, and increased it to 0.85m/s for the following three sessions, being
this a soft limit since the robot often travels faster due to its self-balancing.
One of the experimental sessions in the UPC Campus is reported in video 5,
appendix E.

Table 6.4 lists the parameters used in these experimental sessions, their
associated values, a short comment and a reference to the related equation.

Table 6.4: Parameters for 3D localization experimental sessions

Np | 50 particles Particle set size, eq. 6.2
€0 0.2 Translational noise for kinematic model, eq. 6.18
€0 0.2 Rotational noise for kinematic model, eq. 6.18
€4 0.2 Pitch noise for kinematic model, eq. 6.18
or 5cm Standard deviation for laser likelihood, eq. 6.6
ALy 0.1 Threshold to discard vertical scans, alg. 13
ny(;w 10cm x low resampling noise, eq. 6.13
nyoy“’ 10cm y low resampling noise, eq. 6.13
Jlfew 0.02rad 0 low resampling noise, eq. 6.13
ghiah 30cm x high resampling noise, eq. 6.13
nylzgh 30cm y high resampling noise, eq. 6.13
ghiah 0.06rad 0 high resampling noise, eq. 6.13
Ty 0.9 low/high resampling threshold , eq. 6.13

Results are displayed in table 6.5. For each experimental session, table 6.5
lists the number of requests sent to the robot, the navigation distance D, as
estimated by the localization module, the total navigation time ¢,,4, (understood
as that spent by the robot attending a go-to request), an estimation of the
average translational speed,d, computed using the previous values, © = D /t40,
the number of navigation errors and the success rate of these errors over the
total go-to requests queried to the robot.

Table 6.5: Experimental results

Site & Date Requests D tnav 0 Errors Success
B s s (%)
Gracia, 20-May-2010 33 7777 1108 0.71 0 100
Campus, 3-Jun-2010 23 858.5 1056 0.81 0 100
Campus, 22-Jun-2010 55 2481.8 3426 0.72 0 100
Campus, 23-Jun-2010 60 2252.5 2727 0.83 2 96.7
Accumulated 171 6370.5 8317 0.77 2 98.8

We were allowed three days (mornings only) to conduct experiments at the
Gracia site, the last of which was dedicated to a public demonstration, and
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so the scope of that session is limited, totaling less than 1K m of autonomous
navigation. Even so it must be noted that, due to time constraints, these ex-
periments were conducted with little to no prior in-site testing. Moreover, while
part of the area was fenced, many pedestrians and bicyclists disregarded in-
structions and crossed the area anyway. This fact proves the robustness of the
localization approach in new environments and under different conditions.

The four sessions are plotted in figure 6.13. For the session at the Gracia
site, the rightmost passageway was fenced while pedestrians and bicyclists were
allowed to use the one on the left. The rest of the area was left as-is, except for
four fences placed below the monument, at y = 20m (fig. 6.13, top-left plot),
as a safety measure. The second session, already at the Campus site, starts
at (90,38)m, and ends at (17,69)m when the robot encounters a large section
occupied by public works and thus unmapped. In the third session the robot
moved successfully through the passageway between C and D buildings, which
is on the verge of the experimental area and was roughly mapped, and hence
did not revisit. The robot also had the opportunity to navigate the narrow
passageway to the right of the FIB square, which is usually occupied by the
cafeteria’s terrace. Please note that areas where the localization estimate is
within a building, such as for A5, A6 and C6, are outdoor covered passages like
that shown in the bottom of picture 4.3.

Gracia, 20-May-2010 UPC Campus, 3-Jun-2010
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Figure 6.13: Localization results for the four experimental sessions. Red circles
in the bottom left figure mark failure points.

The fourth run contains the only two errors we encountered. Both are related
to the localization algorithm, and were mainly due to features of the terrain.
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Having failures gives us the chance to learn, advance and improve our system.
Therefore, the following paragraphes provide insights to the two localization
failures that occurred during the last session, at the Campus site. This analysis
was made possible by the off-line study of the logged data for that session,
automatically stored by our software. Our localization module can be executed
off-line using dummy sensors, which publish logged sensor data under the same
interfaces as during on-line executions, while keeping synchrony. This allows
us to run new real-time, off-line executions of the localization process with the
data collected during on-line executions.

The first failure happened approximately at XY point (90, 50)m. The robot
was traveling from left to right along y = 38m and turned to its left to go up the
ramp at x = 90m (fig. 6.13). After turning, the localization uncertainty grew
up, while the position estimate deviated very clearly from the true position as
perceived by the team members, finally causing a navigation error. This was
due to two causes. Firstly, the robot passed over a big terrain irregularity (a
crack on the pavement) just before starting the turning maneuver, reported
by odometry data as a period with high roll oscillations (fig. 6.14) and noisy
heading increments. This approach constrains the roll component to the 3D
model, assuming that the platform is a rigid body, so that roll oscillations
caused by surface irregularities are not tracked well by the filter, as can be
seen in figure 6.14. Secondly, this happened around the bottom-right corner
of the B6 building, which has large, floor-to-ceiling glass windows, modeled in
the 3D map as walls. Off-line inspection of the front laser data shows how in
many instances the laser beam goes through the windows before the robot turns
to face the ramp (fig. 6.14). Modeling this behavior would require a complex
observation model, since it depends on outdoor and indoor window lighting,
as well as on ray incidence, thus this being one of the main limitations for
laser devices. Figure 6.14 also shows the presence of three pedestrians (team
members) close to the robot, blocking three important sectors of the back laser
scan. The odometry issue led to noisy particle propagation, while the laser
issue led to poor filter correction. The combination of both events caused a
localization error. 20 real-time, off-line executions of the localization filter have
been performed at this point with the logged data, resulting in a failure ratio
of 45%, clearly indicating that it was a challenging situation.

The second localization failure was due to faulty odometry data, again after
passing over a big terrain irregularity. Our localization approach can filter noisy
data peaks, but this case was extreme as odometry data was clearly incorrect for
both translation and rotation for approximately 1.2 seconds, providing odome-
try increments around 0.4m and —8° while the odometry acquisition period was
Toqo = 0.1s. This data is clearly erroneous as the robot was at this time moving
straight ahead at a speed of approximately 1m/s (fig. 6.15). This was the first
time that such an error was reported on our platforms, and the localization filter
did not check the coherence of odometry data before using it for particle propa-
gation (see equation 6.18). Using faulty data for about 6 consecutive iterations
caused the localization estimate to advance and turn right with no chance for
recovery in the filter’s correction step. This can be clearly seen in figure 6.13,
where the robot jumped from (16,37) to (13,42). After acknowledging the error
we relocalized the robot manually and resumed the experiments, hence the sec-
ond jump to the correct position. The terrain irregularity that caused this error
was another crack in the pavement. These are frequent throughout the campus
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Figure 6.14: Left: pitch (top) and roll (bottom) data provided by the platform
(red) and estimated (blue) at the surroundings of the first failure. Right: four
consecutive laser scans just before the failure. Note how the front laser beams
penetrate in many instances the windows at y* ~ 6m, and also the presence of
some pedestrians blocking three large sectors of the back laser scan.

and occasionally cause the robot to take a small jump and thrash sideways.

6.4.3 Filter improvements

These two failures teach that robust navigation is still an open issue for mobile
robots operating in urban pedestrian areas. Three improvements of the filter
have been applied: (1)using velocity data from the Segway platforms, (2) in-
tegrate roll increment in the propagation step and compute a likelihood in the
correction step comparing particle roll with expected roll, the last given by the
ground constraint and (3) a new approach on the resampling method taking
into account odometric increments. These improvements have produced a new
version of the particle filter 3D localization that has been used in the following
sections of this chapter.

Integrating velocities Velocities are instantaneous observations computed
by the Segway platform embedded microprocessor, so that at each reception of
platform data by the computer running localization, a new velocity pair is also
available:

olr = (vfj,v;[) (6.20)

v

where ¢, stands for the iteration of the reception process but not of the localiza-
tion filter. This velocity pair is accompained with a time stamp 7'~ measured
by the platform acquisition process. The reception process is in charge of inte-
grating these velocities to update a pair of odometric increments, by measuring
the time ellapsed from the last reception up to the current one. After each use
of these odometric increments by the localization filter, they are reset, thus the
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Figure 6.15: Odometry increments and velocities provided by the Segway plat-
form during the second localization failure. Acquisition period is T,q, = 0.1s.
After a first peak in translation at 7 = 518.8s, odometry increments are faulty
during the time period [519.3, 520.5]s, while platform velocities remain coherent.
The robot was moving straight ahead at approximately 1m/s.

accumulation restarts. Once the odometric increments are updated using veloc-
ity data, the localization filter uses them as it used the odometric increments
provided directly from encoders (see equation 6.18).

Roll data integration Segway embedded inclinometers also provide roll data.
This leads to reformulate equation 6.17 as follows:

of = (Agy, Av)) (6.21)

This improvement consists on using platform roll increments in the same way
than the pitch increments were used in equation 6.18. Moreover, as discussed
in section 4.3.3, roll component is mainly constrained by the gravity and the
environment model. Taking benefit of this remark, in the correction step of the
filter, the i*" particle is also scored with the result of a likelihood between its
actual roll and the expected one according the ground constraint:

- ¢
Lot gu(at, ot 01)) = erfc (%) (6.22)

Adaptative resampling with odometry increments Resampling method
proposed in section 6.2.1 was also used in 3D approach. However, setting fixed
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noise parameters for resampling causes problems when the filter iterates at
higher rates, since odometry increments are smaller and resampling noise can
overpass them, leading to a divergence of the particle set. Moreover, if the fil-
ter rate is higher than acquisition rate of horizontal lasers, there are iterations
where resampling is executed with only the vertical laser correction, which is
not so informative than horizontal ones, so that particle set dispersion grows up
even more.

To overcome this effect, an alternative way to set resampling noise values
is proposed, based on using current odometry increments to set the matrix ny,
which now depends on the iteration index . Resampling noise values are set as:

N R (6.23)
al, =K, A0 ol = K,Aéf '

Following this approach, the only parameter to be adjusted is the constant K.
However, for high rate filters, or in situations where the platform is at low
speeds or stopped, increments are so small that resampling noise approaches to
zero, thus particle depletion arises, causing that a large mass of the particle set
samples the same state point. To avoid this situation minimum values are set
for each noise component: U,’Y’j”, U,’Zi", UZY’;Z'”, U,’YTZ"

Testing new filter version To check these proposed improvements in chal-
lenging situations such as ones causing failures, a new version of the filter has
been implemented incorporating the above presented improvements. Table 6.6
lists the parameters used in these experimental sessions, their associated values,
a short comment and a reference to the related equation.

Table 6.6: Parameters for 3D localization off-line experimental sessions

€0 0.2 Translational noise for kinematic model, eq. 6.18
€0 0.2 Rotational noise for kinematic model, eq. 6.18
€ 0.2 Pitch noise for kinematic model, eq. 6.18
€4 0.2 Roll noise for kinematic model, eq. 6.18 and eq. 6.21
or 5em Standard deviation for laser likelihood, eq. 6.6
Oy 0.01rad Standard deviation for roll likelihood, eq. 6.22
ALy 0.1 Threshold to discard vertical scans, alg. 13
J,’Zm dcm minimum x resampling noise, eq. 6.23
e sem minimum y resampling noise, eq. 6.23
o™ | 0.02rad minimum € resampling noise, eq. 6.23
o 0.02rad minimum ¢ resampling noise, eq. 6.23
K, 1 Constant gain for resampling noise, eq. 6.23

A set of 12 off-line executions has been performed passing through each of
both situation where failures occurred, keeping the particle set size to Np = 50.
This new version of the filter has been demonstrated successful rates of 83%
passing through the failure 1 and 100% passing through the failure 2.
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6.5 High accuracy 3D localization

Ground truth position data is useful to compare localization methods in terms
of accuracy. However, rigorous ground truth data have to be computed by alter-
native means than those used for the localization approach being investigated,
thus implementing a ground truth method in an urban outdoor scenario is not
a trivial task. Unfortunately, and due to time and working constraints, field
experiments reported in this thesis do not provide ground truth data. However,
this section describes a means to compute a high precision localization estimate
based on executing off-line the 3D localization process but using logged sensor
data instead of on-line sensor data. In order to keep synchrony of sensor data
as it was during the acquisition there is a process managing the synchrony of
the data published of each sensor, thanks to the registered time stamps of all
readings (see details on section 8.4). This process can slow down the off-line
time scale by a factor, thus the localization filter can be executed with a large
number of particles to find an accurate estimate. Figure 6.16 plots the local-
ization results computed using the sensor data of the experimental session held
during 22th June 2010 at UPC Campus, but slowing down the off-line time by a
factor of 10 and using Np = 1000 particles for the filter. This position estimate,
denoted as X n, Will be used in section 6.6 to evaluate the real-time performance
of the proposed particle filter 3D localization while modifying the particle set
size.

0 20 40 60 80 XM [m]

Figure 6.16: High accuracy localization estimate from off-line execution of the
filter with Np = 1000 particles. Filter fuses raw data from experimental session
on 22th June 2010 at UPC Campus.

90



6. Position Tracking

6.6 Performance of 3D localization filter

Due to the important role of localization in the autonomous navigation loop
(see section 1.2) it is relevant to have a way for a good high-level description of
a localization module, specially for system integration purposes. This section
provides a set of figures describing three key aspects of the localization per-
formance: output rate, localization error and quality of uncertainty estimate.
These figures result from a set of real-time, off-line executions using the first 9
minutes of the data set of the experimental session carried out on 22th June of
2010 at UPC Campus. This subset is a complete tour on the campus, starting at
position (90, 70)m. For error and uncertainty analysis, the high accuracy local-
ization data presented at section 6.5 has been used as a ground truth, not with
the aim of providing absolute error values but to compare the performance when
modifying the number of particles of the filter. All figures are given as curves
depending on the number of particles, Np, which takes the following values
60, 70, 80, 90, 100, 110, 120, 130, 150, 175, 200. The machine used to execute the
filtering process during these real-time, off-line, experiments was a desktop com-
puter with two Intel processors Core 2 Duo @ 3.16GHz equipped with a graphics
card NVIDIA GeForce 9500 GT. The operating system was Ubuntu 10.04. The
robot platform moved at speeds up to 1m/s. In the following figures, plotted
data points are the mean over five executions, and bars indicate the maximum
and minimum values over these five executions.

Output rate For a given particle filter, output rate strongly depends on the
performance of the machine that executes the filter. However, it is relevant to
provide this figure for two reasons: first, to understand the overall shape of
the curve, and, second, to have absolute values of the rate at which the filter
iterated. Knowing the filter rate will help on the analysis of the following figures.
Figure 6.17 shows the localization filter rate as a function of Np.

f[HA]

— — 77— 77—
60 80 100 120 140 160 180 200

Figure 6.17: Localization filter rate as a function of the number of particles.
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Figure 6.18: Mean xy error of the localization estimate as a function of the
number of particles.

Localization accuracy Figure 6.18 shows the mean of the xy error, pesy,
over the whole execution, while incrementing the number of particles of the real-
time localization filter. The zy error, e, is computed as the euclidean distance
between real-time filter estimate and the high accuracy localization estimate,
both projected on the zy plane.

Figure 6.19 plots the mean of heading, pitch and roll errors over the whole
execution, while incrementing the particle set size. These errors are calculated
as the angular difference between real-time filter estimate and high accuracy
estimate of either component.

Quality of uncertainty estimate In addition to evaluate the robot position
error, it is also interesting to evaluate and provide results on the uncertainty
estimate. To derive the following plots, after particle correction in the filter
loop, uncertainty is parameterized as a matrix representing the covariance values
of the particle set. At iteration ¢, the confidence level where the error e! is
encountered, taking into account the estimated covariance C?, is:

Kt = (et Clet (6.24)

After the filter execution, the idea is to show the ratio of iterations in which the
error is inside the estimated confidence level of K = 1. Figure 6.20 illustrates the
confidence level concept on the XY plane, while figure 6.21 provides results of
this ratio for zy components together and also for 8, ¢, 1) components separated.
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Figure 6.19: Mean 6, ¢, ¥ errors of the localization estimate as a function of the
number of particles.

Ay

X

>

Figure 6.20: K'" confidence level. Filter estimate in blue, high accuracy esti-
mate in black and error vector in red (all drawn on the xy plane). Estimated
covariance ellipse for a given confidence level K is drawn in blue. In the depicted
case (iteration t) the error is inside that K** confidence level.

6.6.1 Discussion

Previous figures presented in this section show how the particle filter presents
a fuzzy-defined range on Np where both zy and 6, ¢, 1 errors are minimal. For
the particular experimental conditions such as the performance of the machine
used to execute the filter, the acquisition rates of the used sensors and the
platform speeds, this range is centered approximatively at Np = 110. However,
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Figure 6.21: Ratio of iterations at which zy, heading, pitch and roll errors are
inside a confidence level of K = 1.

real-time particle filters present intrinsic characteristics that cause the presence
of optimal Np, so that the following considerations presented below are valid
for a generic particle filter localization approach.

For Np = 100, the filter runs at about 6 Hz. This rate coincides with the
acquisition rate of the two main sensors used for particle correction (front and
back horizontal leuze laser scanners), thus running at this rate implies that no
observations will be discarded, as it is done by slower filters such as those with
Np > 125 particles. Moreover, running at 6z does not cause a large error in
the kinematic model that implicitly propagates particle states following lineal
piecewise displacements. Platform speeds are limited to 1m/s and wrad/s,
therefore curve trajectories are well approximated by piecewise displacements
computed using increments accumulated during periods of about 165ms, leading
to small error on the state propagation.

The two above mentioned aspects could justify a lower number of particles.
However, filters with Np < 100 do not take benefit of their speed since they can
not integrate more sensor observations, simply because these observations are
not available at higher rates. So, these filters do not integrate more information,
and, moreover, they suffer of a less dense sampling of the state space and thus
the optimal solution can be usually skipped by the particle set.

These considerations are just presented here as preliminar results in order
to motivate further studies that should investigate relations between observa-
tion uncertainties, observation rates, vehicle maximum speeds and the optimal
number of particles. Section 9.3 dsicusses future works in this line.
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Chapter 7

Active Global localization

A fully autonomous robot should be capable not only of tracking its position
during navigation but also of solving the global localization problem, that is
estimate its position within the map frame with no previous knowledge about it.
In the particle filter framework this condition leads to an uniform initialization
of the filter through the whole state space. Once the filter iterates, a multi-
peak density can arise indicating a multi-hypothesis situation that needs to be
disambiguated. This chapter presents an approach to select the best motion
action the robot should execute to solve this ambiguous situation, based on
probabilistic measures about the expected number of remainig hypotheses after
executing the action. The approach is also extended in cooperative situations
where robots can receive information from remote observation processes, like
a sensor network or other well localized mobile robots, or also when two lost
robots select joint actions to solve cooperatively the global localization. This
chapter is mainly based on two publications of the thesis author [21, 23].
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7. Active Global localization

7.1 Basic Assumptions and Definitions

This section provides the basic assumptions as well as the definitions of concepts
that will be used all throughout the chapter to formalise the proposed active
strategy. Some of the assumptions are common to other existing global local-
ization approaches, or, may be, they have been already mentioned in previous
chapters. However all the assumptions are listed here for the completeness of
the chapter. Please note that the points listed below are further discussed in
section 7.4.

7.1.1 Basic assumptions

e A sensor network, when it is present in the environment, does not cover all
the working area. However, the robots are considered to have always com-
munication coverage, so data communication service is always available.
Position of the sensor network devices is known with enough precision
relative to the required localization accuracy.

e A sub-system for robot identification and relative localization is assumed
to be onboard the robots and also implemented by the sensor network. If a
robot is within an area covered by the sensor network or in the line of sight
of another robot, the first one can request for remote observations about
its position. Examples of such a sub-system can be found in [92, 96, 97].

e A robot can process real observations coming either from its onboard ex-
teroceptive sensor readings, from other robots, or from the sensor network
server, thanks to an implemented data communication service. Commu-
nications are considered always available.

7.1.2 Definitions

e As in chapter 6, a 2D position p in the map frame coordinates is X" =
(zp'yp',05). The true state of the r*" robot is defined by its posi-
tion on the 2D plane, X/ = (2, y™,0™). The estimated state of the
rth robot is X™ = (&™,§™,0™). The state space is given by X™ =
{1 Y s Y] (=7, 7] }. Even if the approach could be scal-
able to 3D positions, the work presented in this chapter treats the space
of 2D positions.

e The approach uses the explicit observation models and likelihoods func-
tions presented in chapter 4 and 6. As it is done in the position tracking
case (see chapter 6), these models are used to compute the conditional
probability for a real observation of,, given that the robot state is Xy
p(ofL|Xz’)”). This conditional probability is approximated with a likelihood
function:

PO, IX}") ~ Ln(0},, 05, (X)) € [0,1] (7.1)

n’Yn p

e Moreover, this conditional probability can be also computed for an ex-
pected observation, instead of for a real observation, thus indicating how
distinctive is the position X" to the position X" from the point of view
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of the nt" observation model. This fact is the core of the herein proposed
active strategy and is formally defined as:

PR (XgIIXE") ~ L (07, (Xg"), 07,(X,")) € [0,1] (7.2)

o H=1{hy,...,hn,} is the set of Ny robot position hypotheses, where the

it" hypothesis is defined as a position on the map coordinate frame, X h =

(zpt ype, 03 ), a covariance matrix, Cp,, and a probability associated to
that hypothesis such that for the robot position, pp,:

Ng

i=1

Different approaches can be found in the literature providing this hypoth-
esis set explicitly [43, 3, 117], or, alternatively, clustering a particle set
such as the provided by the particle filter localization methods [110].

With all these assumptions and definitions, the problem to be solved by an
active strategy is where to move a lost robot in order to reduce the hypotheses
set. The proposed strategy exploits the map and the cooperative environment,
selecting actions that drive the robot where distinctive observations are expected
among the hypotheses. The proposed active approach is formulated in a general
way but section 7.4 discusses practical issues when implementing the above listed
requeriments in order to obtain the illustrative results of section 7.6.

7.2 Active Strategy. Non Cooperative Environ-
ment.

This section formulates the active strategy for the single robot case operating
in a non cooperative environment, therefore only observations coming from its
own sensors are available. The proposed active strategy is divided in three
steps, and only one action can be selected. The first step consists in randomly
generating a set of exploration particles in the robot coordinate frame, as robot
candidate destinations (candidate actions). The second step validates these
exploration particles if a multi-hypothesis path exists between the robot and
the given exploration particle. The third step computes, for each validated
exploration particle, the expected number of remaining hypotheses given that the
robot goes to that exploration particle. The exploration particle, as a position
in the robot coordinate frame, with minimum expected number of remaining
hypotheses is the selected one to drive the robot.

7.2.1 Generating Exploration Particles

Let’s call the k" exploration particle, €1, as a random position in the robot
coordinate frame generated within a given disk of radius R, around the robot.
R, is called the ezploration radius.

e = X, = (26,06, 00,) (7.4)
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Under the assumption that h; is the true hypothesis, €} can be expressed in the
map coordinates frame as:

Ty cos(0) —sin(0;) O] [,
i = exlhi = |yp | + [sin(07))  cos(0') O |vi, (7.5)
o 0 o 1o

Please note that €y € X™ and equation 7.5 shows that a single exploration
particle €; becomes a set of Ny positions in the map when it is translated
to the map coordinates frame, since all hypotheses should be considered and,
therefore, each €}, should be translated for each hypothesis h;,i = 1..Ng. Fig.
7.1 illustrates this observation.
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Figure 7.1: A set of 5 exploration particles in the robot coordinates frame (left)
and their transformation to map coordinates frame (right) when Ny = 2. Each
exploration particle is represented as a point with a short line indicating its
orientation.

7.2.2 Multi-hypothesis Path Planning

Even if €}, is expressed in the robot coordinate frame and, therefore, the robot
knows where the exploration particle is positioned, since €, can be beyond the
sensor horizons, the existence of a free path between the robot and €, for all
hypotheses have to be checked. This step is called multi-hypothesis path planning
(MHPP), as the planning of a path expressed in the robot coordinate frame
using all hypotheses constraints. Figure 7.2 draws the MHPP approach in an
illustrative geometric world. For this step, Ch, can be used as a clearance
factor. If a multi-hypothesis path (MHP) exists between the robot and the €},
then e, will be labelled as a valid candidate destination, e}, to drive the robot,
and this candidate will be add to the set of all valid exploration particles FE.
Summarizing, the output of the first and second steps of the active strategy will
be a set £ of Ng exploration particles E' = {ef...e}y_} that are connected to
the robot with a MHP. This set E is the action set to be evaluated, since each
e}, is considered as an action go to ej. This action set has been automatically
generated and it is adapted to the current situation of the robot. Note that
F is not a fixed action set such as most of the previous works proposed in

98



7. Active Global localization

the literature. Please, the reader should remind that an exploration particle is
expressed in the robot frame and it can be translated to the map frame if a
given hypothesis h; is assumed as being true:

»posmon hypothesis in (x,y,8)" .| B robot position in (x,y,8)"
::: = sensor horizons Y a ::‘m::: sensor horizons
y'a I map-obstacles in (x,y,0)" || | | Multi-hypotheses Path (MHP)
=3 map-obstacles in (x,y,0)"if hI
S () map-obstacles in (x,y,8)"if h,
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Figure 7.2: Multi-hypotyhesis Path (MHP) in an illustrative geometric world.
Map coordinate frame on the left and robot coordinate frame on the right.

7.2.3 Computing Hypotheses Reduction

The goal of this third step is to compute N. r(e,), as the expected number of
remaining hypotheses given that the robot goes to e, and senses the environ-
ment. Prior to compute Ng (e}), Ng(ef|h;) will be calculated as the expected
number of remaining hypotheses assuming h; as the true position hypothesis,
and given that the robot will execute the action go to ej. Using equation 7.2
and considering that only one exteroceptive observation is used (Ng = 1), it
can be formulated that:

N (eglhi) = ZP(O?(EZ})IEL’E) (7.7)

If the perception module of the robot provides Np exteroceptive observations,
and independency between them is assumed, equation 7.7 is generalized as:

Npg Np

m(ex|hi) Z H p(o ekj )lexs) (7.8)

j=1n=1

Now, it can be formalized the N (e}) as the sum of each Ny (e} |h;) weighted
by the probability of the i*” hypothesis being true, ps,:

Ny
= Nul(eplhi) - pn, (7.9)
=1

Please note that Ng(el) € [1, Npy] since p(oy,(efy)lef) € [0,1] as stated in
equation 7.2. For an exploration particle e} having similar synthetic observa-
tions Vh;, all the probabilities p(o, (€7%)]e};) will be close to 1 and, therefore,
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N (e;)|hi =~ Ny Given the assumption of equation 7.3, Ny (e}) will also result
in &~ Ng. This case implies that the position of e}, has expected observations
too similar for all position hypotheses, and, therefore, it is an exploration par-
ticle that will not disambiguate at all the situation. On the other hand, when
an exploration particle has completely different synthetic observations Vh;, the
probability p(o;, (ef:)|eyi) will be close to zero Vi # j, but it will take one

for i = j. Again, given the assumption of equation 7.3, NH(e};) ~ 1. In this
case, the exploration particle ej is expected to completely disambiguate the
situation since all synthetic observations are entirely different for each h;.
With this well delimited results, the N H(e;) can be used as the expected
number of remaining hypotheses given that the robot goes to e, so the robot
will start path execution driving itself to the position e}, with minimum N m(er).

7.3 Active Strategy. Cooperative Environment.

This section formulates the previous strategy for a cooperative context in which
different robots work in a network robot environment. A network robot en-
vironment is formed by a sensor network of N¢ sensors and a group of Ny
robots. The formulation is presented for the two ways of cooperation: sharing
information and selecting joint actions.

7.3.1 Single Lost Robot in a Sensor Network: Sharing
Information

This subsection analyses the particular case of a lost robot which is a member
of a network robot system. In this situation the active strategy selects, as in
section 7.2, one action exploiting its onboard sensors and the map, but also uses
the potentialities of integrating remote observations. Let’s define the coverage
space of the sensor network, which does not depend on time, as:

Nco
Con=|JCc, CovcCX™ (7.10)

c=1

where C, is the coverage area of the ¢ sensor of the network. The coverage
space of the robots, which is time depending, is also defined as:

Nr
Chv=JCl, ChyvcX™ (7.11)
r=1

where C! is the coverage area of the 7" robot at time ¢. For a lost robot, CL = ().

In the proposed network robot system, both Ccy and Ck  are data available
on the central server, since it knows where the sensors are deployed and where
the non lost robots are. Note that a robot can request both coverage spaces at
a given time and, therefore, a lost robot can use this data for local processing
when it is executing the active global localization strategy.

In this context, the active strategy will be the same that the one exposed in
section 7.2. Evaluation of actions will be done by equations 7.8 and 7.9, but con-
sidering that the robot can use external observations done by other observation
process such as a camera network or well localized robots. In equation 7.8, and
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in order to consider remote observations for the active strategy, the lost robot
has to evaluate if €} is in Con U C% . If this is the case, a remote observation
for that position is available and the p(oj,(e%)[ey;) can be computed where o},
is the model for that remote observation.

The effect of this is that exploration particles expected to be in the coverage
space, Con |JChy, will be attractive to move the robot since disambiguation
can be done via remote observations instead of only considering the robot ex-
teroceptive observations. Therefore, this is a situation of an active approach
considering the potentialities of a cooperative environment, taking advantage of
information sharing.

As an illustrative example, the GPS system can be considered as a particular
case of this cooperative context since the GPS satellite network acts as a sensor
network. Assuming that we have a map of the GPS coverage in our environment,
a lost robot equipped with a GPS receiver, out of satellite coverage, will be
attracted by actions driving the robot to areas where GPS is available.

7.3.2 Two Lost Robots: Selecting Joint Actions

This subsection addresses the case where two lost robots are performing the
global localization task, hence trying to locate themselves in the environment.
In this case the output of the active strategy should be two joint actions, each
one to be executed by each robot.

In this scenario two lost robots, rt* and p'*, are assumed to be in line
of sight of each other. It is also assumed that they can be detected between
them by means of an active or passive beacon system like the ones reported
in [92, 96, 97]. Therefore, they can build up a commom frame in the middle
point of this line of sight, called the cooperative robot frame and denoted by
(x7P y"P,07°)(see figure 7.3). From the observation made by the r** robot to
the p'" robot, (5;, ay, qﬁ:)), the cooperative frame is placed in terms of the 7"
robot coordinates as:

.0 % ginar: or = %

Ty, = Scosay; Yy, = —sina,; 0., = 5

TP 2 P 2 p; (712)

Initially, the robots translate their own observations to the cooperative frame
(x"P,y",0"7) and an hypotheses generation step to localize its center is executed
integrating all available observations. Once a set of position hypotheses for

P
Aym X &

Figure 7.3: Single robot frames (r and p) and the cooperative robot frame (rp).
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the cooperative frame is obtained, the active strategy could run as exposed
previously and the robots could perform the two best actions, a different action
for each robot. However, this approach is not suitable since this couple of
actions could disambiguate the same subset of hypotheses and, therefore, the
two decided actions would be redundant. Instead, it would be desirable that the
robots take complementary actions, complementary in the sense that each action
disambiguates a different subset of hypotheses. Previous strategy of estimating
Nu(e}) gave a quantitative criterion but for the multi-action problem it is also
needed a qualitative criterion to evaluate the actions.

To formulate a qualitative criterion, a Ngy-dimensional vector is defined,
V(e;), for each exploration particle in the cooperative robot frame. The ith
component of such vector is defined using the equation 7.8 as:

V(ej?)i = Nu(e}f|hi) =1, Vi=1...Ng, Vk=1...Ng (7.13)

This vector indicates at its i*" component how the k** exploration particle re-
solves the hypothesis h;. Substraction of 1 removes the contribution of i = j
of equation 7.8, which is always 1, and leads to a more sparse vector set, more
suitable for computations presented below. A vector defined by the above equa-
tion will have the following properties inherited from properties of the likelihood
function:

° V(e};p>1 S [O,NH — 1] , Vi=1..Nyg, Vk =1..Ng
e The ideal exploration particle is that e;” which fully disambiguates the
situation. It has a vector V(e;”) = [0].

e An useless exploration particle has completely ambiguous synthetic obser-
vations. It has a vector V(e}”) = [Ny — 1].

A weighted scalar product between two of these vectors is defined as:
Ny
<V(e)),Vief) >= Z Ve )i-Vieg”)i pn,, Vk,q=1...Np  (7.14)
i=1

This weighted scalar product provides a measure of the complementariness of
these two exploration particles. The scalar product will be maximized when
two particles disambiguate the same subset of hypotheses and, therefore, their
vectors will be colinear. Otherwise, when two exploration particles disambiguate
different subsets of hypotheses, V'(e;”) and V(ej?) are close to be orthogonal
and the scalar product approaches to zero.

For this case, the strategy initially selects the best exploration particle in
the sense of minimum N r(ey”), as it was done for the single robot case, which
will be called the primary one, e.;. Then, the strategy will search a support
action, that is, going to the exploration particle e,” minimizing the weighted

scalar product with elf. This support exploration particle will be labelled as

e.5. Finally, ef and €5 have to be executed by the robots so it is necessary
to compute the translation of both actions from the cooperative robot frame

(z,y,6)"" to each robot frame (z,y,0)" and (z,y, ).
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7.4 Implementation of the Active Strategy

This section details the implementation of the proposed active strategy, which
is intended to be independent from the origin of data, whether coming from a
real platform and sensors or from a simulated environment.

7.4.1 Environment Model

The environment model, M, used to implement the active strategy has been that
described in section 4.2.1. However it is noteworthy to remark that the proposed
active method only requires an environment model that expected observations
could be calculated given robot positions.

7.4.2 QObservation Models

For the active strategy we take into account a laser scanner, an electronic com-
pass and a set of omnidirectional cameras deployed on the environment. The
relative localization between robots is only considered to build the cooperative
frame for the two lost robots case. This subsection describes the observation
models used to compute the expected observation oy, (X}"). These models are
used to compute the p(oy, (e}%)|ef;) of equation 7.8.

The observation model for the laser scanner, o7 (X}"), is a vector of N, =
133 ranges over the scan aperture of (—95, 95) degrees. The maximun laser range
is limited to 7,4 = 15m. To compute this observation model, we compute
the ray tracing function from the position X}", as described in section 4.2.3.
Summarizing, the output of the observation model of the laser scanner is, given
the X" position:

03, (XI) = (054 (Xp).we0} v, (XI)); 03 1(X[") = rayTracing(X;", M, i)
(7.15)
Expected observations for the compass are much more simple to compute.
Given a position X" ,the observation model, OE(X;”), is directly the heading of
that given position:
oc(X)") =0, € (—m, 7] (7.16)

The sensor network is modelled as a set of No omnidirectional cameras
deployed at known positions of the environment. The implemented observation
model, ofV(X;"), outputs a triplet containing range, bearing and heading mea-
sures (see figure 7.4). The coverage area for the ¢! camera, C.., is modelled as
the set of positions of the state space that are in a line of sight of length less
than Rc = 7m with the position of the ¢* camera. Given a position Xy, if
X' € C. the observation model is computed as:

L T Y L e O O
O?V(X;n) = |OQcp| = atan(zz:n:zin) (717)
¢C7P 977;1 ¢
p

otherwise, when X" ¢ C., Ve = 1..N¢ the output of the model is o} (X,") =
(=1, NaN, NaN), indicating that the position is not seen by the camera net-
work.
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Figure 7.4: The observation model for the ¢! camera seeing the position X

This implementation does not integrate potential relative localization be-
tween robots in equation 7.8 as observations. This could be done in a similar
way such that implemented by the cameras since a well localized robot can be
considered as an static camera of the camera network.

7.4.3 Likelihood Functions

In order to compute the conditional probabilities of equation 7.8, and as stated
in equations 7.1 and 7.2, we need to implement likelihood functions L, (-) for
each of the above mentioned observations models (n = L,C, N). All the im-
plemented L, (+) are based on the complementary error function er fc(), already
presented and used in chapter 6. In equations presented below, these likeli-
hoods are written as functions between a real and an expected observation but,
as discussed in equation 7.2, they can be also computed for two expected obser-
vations.
The likelihood function for the laser observations, where o7, = 0.05m, is:

N t S m

1 |oL,i — 01 (X))
Lp(o%, 0% (X™ =—§ erfo(—= P 7.18
L( L L( p )) NL p f ( O‘L\/i ) ( )

For the compass observations, the Lo (-), where o = 0.08rad, is:
log — 0 (X))
ocV?2

The likelihood function for the camera network observation, where o¢,; = 0.5m,
oc2 = 0.05rad and o¢ 3 = 0.1rad, is:

Lc(otc,oé(Xz’,")) =erfc( ) (7.19)

— o (X))

UN,z'\/§

For the L, () involving two synthetic observations oj,(ey;) and o}, (e}}), pa-
rameters o, can be calculated using the matrices Cp,; and Cy,,, Vi, j, k, n.

3 Ot )
En(oly ok (X)) = 53 enpe1 20 Y (ra0)
=1
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7.4.4 Hypotheses Generation: Particle Filtering and Clus-
tering

A particle filter has been implemented to perform an initial search as previous
step of the active strategy, following the well stablished framework of [110] (see
chapter 5 for further details). The filter represents the position belief with a
set of Np particles, st = {X/™",w!},Vi = 1..Np. It initializes generating the
set of position particles sampling randomly the (z, y)™ space, but sampling the
6™ dimension with a normal law of N'(6°, ogo), being 6° the first available com-
pass observation. Weights of each particle are initialized to w; = 1/Np. A
propagation step is performed to move each particle’s state, using the odomet-
ric obervation o, and the kinematic model f(-). The above described likelihood
functions integrate real observations to correct the weights of each particle po-
sition as:

Np
wi = ] Ln(0}, 05(X™")) , ¥i=1..Np , ¥t >0 (7.21)
n=1

The resampling step generates a new particle set sampling the old one ac-
cording to the particle weights, so likely areas are successively more sampled.
Section 5.2.1 provides details on the resampling method. To perform experi-
ments, Np = 5000 particles have been used. After several iterations, particles
are concentrated in several subsets, so a clustering step is executed in order
to generate a reduced hypotheses set H. Clustering is implemented using a
recursive routine that starts with the set of position particles ordered by their
weights ws, > ws, when 7 < j. Let Ky be a cluster and ¢(K}) be the cen-
troid of it. Initially, the routine creates the first cluster using the first particle
c(K1) = X7!. The rest of the particles will join to an already created cluster
if (X", c(Kx)) < Ry or, otherwise, will create a new cluster. Ry is the pa-
rameter fixing clustering size, set to Rx = 3m. Each time that a particle joins
to an already created cluster, the centroid is updated, using all the particles in
that cluster, as a weighted mean of their positions. The fact that, in a particle
filter, the more likely particles are usually at the center of the clusters improves
the performance of this simple method. Finally, a covariance matrix is com-
puted with the particle subset of each cluster, and clusters become the position
hypotheses, so the system is ready to perform the active strategy.

7.4.5 Multi-hypothesis Path Planning

The Rapidly-Exploring Random Trees (RRT) approach [53] has been imple-
mented. In the case of the multi-hypothesis path planning, the tree is computed
in the robot coordinate frame translating the map obstacles to this frame for
each hypotheses in a similar way as equation 7.5 does. When planning paths in
the robot coordinates to reach e} goals, randomly points that build iteratively
the tree are generated in the surroundings of the robot, instead of on the whole
map in order to improve the efficiency of the RRT. Details on the implemen-
tation of RRT’s with that environment model can be found in [19]. However,
we have seen that generation and validation of the exploration particles can
be collapsed in a single step by means of building a single RRT bounded in
the exploration area. The RRT is also generated in the robot frame, taking
into account the constraints of all hypotheses. The nodes of the RRT will be
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directly the exploration particles. This computes a single but ’big’” RRT just
once, avoiding the computation of a RRT to validate each exploration particle.
Exploration radius R, is set to 20m.

7.5 Comparative Analysis on Computational Com-
plexity

This section discusses the computational cost of the proposed active approach,
both in time and memory, and compares it to that of the existing entropy-
based methods [34, 91]. In order to compare different methods, the notation
N, is introduced, indicating the number of actions to be evaluated, which in
the proposed method, [23], coincides with Ng since each exploration particle
supposes an action.

As equations 7.8 and 7.9 suggest, the time complexity to evaluate a single
action in the proposed active strategy is O(N% - Ng). Therefore, the time
complexity of evaluating a set of N4 actions results on O(NZ - N4y - Ng). In
the particular case of the implementation presented in section 7.4, and, since
the observations are computed on-line, Ng becomes Ny, + N¢, which refers to
the laser scanner number of points and the number of cameras respectively. In
terms of memory complexity, the presented implementation is extremely efficient
since the spatial representation is based on the compact GIS vector format and
no sensor-appearance data is stored in the map database, thus avoiding space
discretization and huge representations. The memory complexity of this spatial
representation has not been analyzed in this work but the real environment of
about 10.000m?2, used in this chapter as a testbench area, is represented with a
map of about 40K Bytes, supposing a very efficient map model (4Bytes/m?).

For the work in [34], based on the Markov framework, time complexity be-
haves as O(N%-N4-Ng), where Ny is the number of all possible position states,
N4 the size of the action set and Ng the number of sensings at each state. In
order to reduce the computational cost, authors precompute the sensor model
and cluster the belief distribution, forming a set of Nx, Gaussians in a runtime
step, reducing time complexity to O(Nx - Nxg4-Na), with Nx, < Nx. This
clustering step is similar to that performed by the proposed strategy in the
sense of creating a set of Gaussians instead of having a complete sampled belief
distribution. Therefore, it can be supposed that Nx, ~ Ng. However, the term
Nx remains in the time complexity expression for this approach. Due to the
complete discretization of the state space, Nx grows up with the environment
size and this approach remains too expensive in large areas.

Using the same entropy-based approach but based on the particle represen-
tation of the uncertainty, the work presented on [91] has a time complexity of
O(N3 - N4 - Nj), where Np is the number of particles representing the belief,
N4 the number of actions to be evaluated, and N; an observation model param-
eter. Authors precompute the observation model, reducing the time complexity
to O(N2% - N4) but incrementing the memory complexity since the precompu-
tations have to be stored in an appearance map. Since Np < Ny is a general
case, this work drastically reduces the time complexity in comparison with [34].
However, the complexity remains high, specially for large environments where
the amount of particles need to global localize the robot is also large. In the
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practical experimentation, authors in [91] report the requirement to reduce the
action set and the size of the environment in order to achieve acceptable com-
putation delays.

Table 7.1 summarizes this discussion. Theoretical time complexities of the
considered frameworks are of the form of (’)(N)Q(y pu Na-Ns, B). Therefore the
quadratical terms N%, N3, NZ are the critical ones to be analyzed. In large
environments, such as the one of 10.000m? used as a test bench of this experi-
ment, a complete discretization, with discretization steps of Azy = 0.5m, and
A6 = 5°, would result in Nx ~ 3 - 10 states. In the proposed implementation
described in section 7.4, the particle filter localization needs about Np ~ 5000
particles. Several executions of the particle filter with the clustering step have
resulted in a number of hypotyheses of about Ny ~ 20 in the testbench envi-
ronment, thus Ny <« Np < Nx will be generally satisfied, indicating that the
presented approach entails a significant improvement in time complexity, a key
requeriment in large environments. For the practical implementation it exists a
trade-off between pre-computation of observation models, which increases mem-
ory complexity, versus on-line computation of these models, which increases the
time complexity. In the proposed implementation we have choosen to compute
on-line the observation models. This choice was motivated by the fact that
memory resources required to store precomputed values of these models grows
up with the number of states Nx, which increases with the environment size,
therefore being critical in large evironments.

Table 7.1: Comparison of computational complexities between existing active
methods

Theoretical Practical Practical
Time Complexity Time Complexity Memory Complexity
34 | O(N% - N4 - Ng) O(Nx -Nxg-Na) O(Nx - Ng)
91] | O(N3-Na-Ny) O(Np - Na) O(Nx - Ny)
23] | O(N?% -Na-No) | O(N4 - Na-(Nps + No)) (~ 4Bytes/m?)

So, the proposed technique offers better computational performance with
respect to existing ones, specially thanks to the clustering step, thus it can be
considered more appropiate in large environments where Nx and Np become
large magnitudes. Obviously, the environment size will also influence in Ny,
but the relation Ny <« Np <« Nx will be accomplished in most common
urban environments. For illustrative purposes, some numerical results about
the real delays obtained when computing the active strategy are provided. A
run of the active stategy, with Ny = 19 position hypotheses and Np = 40
exploration particles, needs about 87 seconds in a standard 2GB RAM, 1.86-
GHz Core 2 Duo PC, running Linux Ubuntu kernel 2.6.17. Only the 1.8% of this
delay is for the generation of the F set, which involves multi-hypothesis path
planning. The 97% of this execution time has been to compute the expected
observations, oi(e};}) and of (e}}) of the laser scanner. Authors are confident
that the proposed implementation can be fairly optimized to reduce these delays,
for instance using optimized techniques to compute range observation models
such as [24], also described in section 4.3 of this thesis.
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7.6 Simulation Results

This section presents results on the action selection for both single robot and
cooperative cases. First subsection details how each real observation is obtained
in the simulated environment used to obtain the results. More details on the
simulator or on the programming can be found in chapter 8.

7.6.1 Simulated Real Observations

Robot onboard sensors and other sensors and robots of the network provide
real observations, of,, computed given a robot position, to be integrated by
the localization algorithm, in the hypotheses generation step. Even if these
observations are simulated, they are labelled as real since they play the role of
actual observation data.

Each platform is equipped with wheel encoders that provide, at iteration
t, the odometric observation of. This observation is composed by the increment
in translational motion, AR?, and the increment in rotational motion, Af*. We
add to these increments a simulated normal noise with standard deviation of

5% in translation and 10% in rotation:
oy = (AR" + N(0,0.05 * AR"), AG" + N(0,0.1 x A§")) (7.22)

where,

AR' = \/ (@t — a2yt =yt AG =0 - ot (7.23)

Each simulated robot has also a simulated laser scanner RS4 (Leuze corp.),
providing, at iteration ¢, a real observation of; computed from the simulated
robot position, X following the model described in the section 7.4. However,
to simulate a real observation, we add normal noise with 5¢m standard deviation.

o, = (071,05 N, ); 0f; = rayTracing( X", M,i) + N'(0,0.05)  (7.24)

An electronic compass TCM2 (PNI corp.) is also simulated to be onboard
of each robot and provides, at iteration ¢, a real observation otc. This observation
is directly computed as the heading of the simulated robot position with a
normal noise of standard deviation of 0.05rad:

ok = 0™ 4+ N(0,0.05) (7.25)

In the simulator, compass observations are always available. However, compass
measurements are usually corrupted by magnetic distortions. For the local
distortions, the TCM2 device provides an automatic routine to calibrate itself
in a given position on the robot. For the external distortions, this device has a
magnetic alarm to detect corrupted readings.

The sensor network is modelled as a set of No omnidirectional cameras
deployed at known positions. This camera network provides to the robot, at
iteration ¢, the observation of;. The model to compute real observations of the
camera network is the same than the one exposed in section 7.4, but adding
normal noise to the measurements. If a robot is in the coverage area of the c**
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camera, X" € C,, a real observation of the camera network is available as:

3. r \/(z?” —2)? + (Y — ye)2 + N(0,0.5))
% = |%r| = atan(L=2) + N (0,0.02 % 6%, ,) (7.26)
67t + N(0,0.2)

When the p'" robot sees the r*" one in a line of sight of length less than
Rp = 10m, the observation made by p at time ¢, in terms of the pt* frame, is:

5ot [V = - g 4+ N(0,0.05)
t m,t__, m,t
03 = zf: = atan(Lm=) + N(0,0.01 % 6p) (7.27)

o7t — 0t 4 N(0,0.1)

7.6.2 Single Lost Robot. Non Cooperative vs Cooperative
Environments

In this section we present the results of the active strategy for the single lost
robot case, comparing the non cooperative environment of section 7.2 with the
cooperative environment of subsection 7.3.1. The methodology has been as fol-
lows: the robot is placed in a given position and the particle filter run using only
robot onboard sensors. For the presented run, the clustering step has generated
a set H of Ny = 19 position hypotheses showed in figure 7.5. Afterwards, an ex-
ploration particle set, F, is generated for both cases, obtaining a common set of
Npg = 40 exploration particles, {e7...e},}. The evaluation of each exploration
particle is performed separately, that is, in the non cooperative case, only the
onboard sensors are considered in equation 7.8, while in the cooperative case
also the camera network has been considered to evaluate the actions.

Figure 7.6 shows the E set of Ng = 40 exploration particles in the robot
frame. It can be noted how the exploration set has been adapted to the multi-
hypotheses constraints, thanks to the multi-hypotheses path planning step. The
figure also shows, marked with a blue cross, the six best actions for the non
cooperative case, and, with a red square, the six best actions for the cooperative
case. The reader can overlap the robot frame of this figure with the depicted
robot frame on figure 7.5 in order to imagine where the robot will arrive if it goes
to a given exploration particle. For the non cooperative case, the best actions
are going to places which are distinctive from the laser scanner observation
point of view. These six best actions are mainly related in going down of the
corridor (see figure 7.5), since laser scanner is expected to take less ambiguous
observations. On the other hand, for the cooperative case, the six best actions
are going up of the corridor, since this is the area where more camera detections
are expected taking into account all the hypotheses.

Figure 7.7 shows the value of each ]\Af(e};), Vk = 1...40, for both, non
cooperative and cooperative cases. This figure shows how the expected number
of hypotheses is always bounded to [1, Ngy|. It can be observed that, for the
cooperative case, the expected reduction of hypotheses is more significant that
the obtained for the non cooperative environment. Therefore, some particles
have the same N (€}), indicating that no camera detection was expected even
though considering all hypotheses, thus the onboard sensors remain the only
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Figure 7.5: The set H of Ny = 19 position hypotheses on the map. Each
hypothesis is marked as a blue ellipse. Please note also the red dot marking the
true robot position X7, the robot frame (2", y") and the position of the No = 5
cameras.

means to disambiguate the situation. However, some other actions take benefit
from the potential remote observations of the camera network and reduce clearly
their evaluation index.

7.6.3 Cooperative Environment. Two Lost Robots

This section presents the results for the two lost robots case studied in sub-
section 7.3.2. In order to better evaluate this case, only the laser scanners of
the robots are considered in the active strategy, but there are no limitations
on integrating remote observations of a camera network. We have proceeded
placing two robots in the environment in positions within a line of sight. Robots
first have performed a relative localization observation between them and, then,
they have built the cooperative frame. Afterwards, the hypotheses generation
step is performed with the particle filter, using the observations provided by the
compasses and the laser scanners of each robot. For this case the particles s;
represent positions of the cooperative frame and this fact implies that each par-
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Figure 7.6: The set E of Ng = 40 exploration particles that has been evaluated
for both cases. The six best actions for the non cooperative case are marked
with a blue cross and the six best ones for the cooperative case with a red
square.

ticle should satisfy a line of sight constraint imposed by the relative localization.
Moreover, when position particles have to be corrected with real observations
(see equation 7.21), they have to be translated to the relative positions of each
observation process given the observed line of sight. Thanks to this line of sight
constraint and to the integration of more observations taken from two diferent
points of view, the hypotheses generation step is improved and a few number
of hypotheses generated. In the experiment presented in figure 7.8, where the
two robots are placed at the same corridor as the one in figure 7.5, the number
of generated hypotheses has been Ny = 11. The two lost robots case entails,
at this initial step, an improvement in the hypotheses generation which implies
less computational efforts to perform the active strategy, since time complexity
depends on N.

Once the set H has been cooperatively generated, the active strategy is
executed and outputs two joint actions, one to be performed by each robot.
Figure 7.9 shows the F set generated in the presented execution and marks the
selected primary action with a green square, the five best support actions con-
sidering the quantitative criterion with red diamonds and the five best support
actions considering the qualitative criterion with green crosses. The quanti-
tative criterion would select redundant actions in most of the cases while the
qualitative one clearly selects complementary actions.
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Figure 7.7: The N(e}) values of the exploration set E for both the non cooper-
ative (blue dots) and the cooperative (red squares) cases. Particles are sort by
its 2" coordinate in order to be related with figure 7.6.
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Figure 7.9: The set E of Ng = 40 exploration particles that has been evaluated,
in the cooperative frame. The green square marks the primary action, e.f. Five
best secondary actions following the quantitative criteria (red diamonds). Five
best secondary actions following the qualitative criteria (green crosses).
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Chapter 8

Software Integration

R,
TV,

This chapter presents the software infrastructure used through this thesis to
perform experimentation and obtain both real-world (on-line and off-line) and
simulated results. Software infrastructure plays a key role in robotic research,
specially in areas such as autonomous navigation where experimentaion is re-
quired and a large set of algorithms, sensors and devices are involved in a single
real-time experiment.
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8.1 Overview

The design principle is to decouple algorithm executions from their inputs and
outputs. Processes comunicate between them through a TCP network, thus
the overall application can be executed in a set of connected machines that
run separately processes involved in the final application. This approach is not
original of this thesis and it is also the main design principle of all robotic soft-
ware available nowadays, such as CARMEN [16], openRTM [84], OPRoS [85]
ORCA [86], OROCOS [87], Player [90], ROS [99] or YARP [116]. Given these
large set of already existing approaches, the question that arises is, why an-
other infrastructure? There are two main answers. Firstly, because the main
research and engineering work of this thesis was done in the context of URUS
European project [102, 112] and this project used the YARP library as the
inter-process communication tool to integrate software pieces among different
partners. Secondly, because when the project starts, at year 2006, some pro-
gramming work was already done, so that the decision was to adapt the already
done programming work to the project requirements. As it will be discussed
in the conclusions of this thesis (chapter 9), nowadays, at year 2011, a more
suitable solution should be to fully adopt an existing solution such as ROS [99]
to take benefit of an easy-to-use, stable and open source software integration
tool, with a large users community in robotics.

However this chapter is motivated with the aim to report all the program-
ming work done during the thesis development. The chapter first describes how
the software is organized through a hierarchy of classes. Afterwards a section
details some aspects of the simulator used. Finally a section explains how off-
line executions are performed, keeping the synchrony of all data, thanks to the
logged timestamps. These off-line executions can be also run scaling the off-line
time line by a factor, while keeping synchrony, with the aim of executing real-
time processes in a relaxed time conditions. This has been used in section 6.5
to extract high accuracy localization data. A first version of the software archi-
tecture reported in this chapter can be found in [20].

8.2 Software architecture

The software is divided between processes and interfaces, so an execution can be
viewed as a graph of processes that communicate between them through TCP
messages. The design is done through a set of C++ classes organized in two
hierarchies, one for the processes and another for the interfaces.

8.2.1 Process hierarchy

The process hierarchy is organized through three levels. The first layer defines
the basic process class, a class that will be inherited by all the processes. The
second layer defines generic processes such as ’localization’ or ’laser scanner’.
This layer mainly defines the input and outputs required for these generic mod-
ules. For instance, the generic laser scanner process defines that is a process
with no input and providing an output with a laser scanner data message. The
third layer is the implementation level and holds the final particular classes for
each algorithm, where all details and particularities of each solution have to be
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implemented. Figure 8.1 shows the process class hierarchy and unfolds, for il-
lustrative purposes, the third layer of this hierarchy for the cases of the platform
acquisition and laser scanner devices.

Cl RS4

—‘ CgroundTruth \ = ‘

| G ChokuyoUTM30LX |

_' Cgps ‘ ClaserSim2D ‘

_‘ Ccompass ‘ ClaserSim3D ‘

—‘ CpanTilt \

_{ Ccamera ‘ CpioneerP3ATAq ‘
. _‘ CplatformAq CsegwayRMP200Aq ‘

CbasicProcess |+

— CplatformCmnd | CpIatformAqSimZD‘

— CcameraNetwork| CplatformAqSim3D |

— CrobotDetection |

L | localization |

—{ pathPlanning \

_‘ pathExecution \

LI obstacleAvoid |

" L1: Basic 'L2: Generic 'L3: Implementation
Process Class Process Classes Classes

Figure 8.1: The process class hierarchy is divided in three layers.

Layer 1: Basic process class. This class defines the basic loop that all
processes will execute as an independent thread, as well as some basic func-
tionalities such as time logging data and events with an associated timestamp.
The basic loop, outlined in algorithm 14, consists on three function calls and
a time management to execute the loop in a fixed constant rate determined by
the process period T),. The three functions calls, process(), publish() and log-
Data(), are pure virtual functions that will be implemented in layers 2 and 3 of
the hierarchy. The function process() will implement the data transformation
and computations, publish() will implement the publication of the output data
through the process network and the function logData() will be in charge of
defining how the relevant data of each process iteration is saved in a log file.
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Algorithm 14 Basic process loop
INPUT: T,, //process period (user defined)

while run do
Ty = getTime();
process();
publish();
logData();
T, = getTime();
Ap =T, — (Ty = Th);
if A, >0 then

sleep(A,);

end if

end while

Layer 2: Generic process classes. This layer defines a set of classes, each
one encapsulating a generic high-level functionality. However this level does not
yet implement details of a given solution for that functionality, so that generic
process classes only define inputs and outputs, and some other common utilities,
such as the function publish() and logData(). Definition of these two functions
in this layer allows to all processes that inherit from a given generic class to do
not differentiate from the point of view of the process execution graph, since
their inputs and outputs will be the same, as well as the way in which they
save the data in a log file. For instance, for the localization generic class, all
inherited localization implementations will behave exactly in a same way from
the point of view of the integration with other processes. Figure 8.2 shows how
the localization generic class defines inputs and outputs (grey part), but leaves
the implementation of a particular solution to the third layer of the hierarchy
(white box).

laser data pckt

laserReceiverPort

platformAq data platformAqgReceiverPort

compass data compassReceiverPort |0§§|ei§;ftli%n Z)CEB Ilzalt;lf n
ata pc
gps data pckt gpsReceiverPort algorithm P

cameralNet data :
cameraNetReceiverPort

localizationSenderPort

relativeLoc data pckt y .
relativeLocReceiverPort

Figure 8.2: Generic class concept for localization. Grey box is defined in the
generic localization class (layer 2). White box will be defined for each specific
implementation (layer 3).

Layer 3: Implementation classes. This level of the hierarchy is in charge of
implementing the process() virtual function and all the algorithms and functions
that are particular for a given solution of a given functionality defined in layer 2.
For instance, for this thesis four particular laser scanner software modules have
been implemented: the leuzeRS4, the hokuyoURGX, a simulated laser scanner
in 2D environments and a simulated laser scanner in 3D environments (see
figure 8.1).
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8.2.2 Communication interfaces

Interfaces implement TCP/IP ports used for interprocess communication. A
two layered hierarchy is used to this end. The first layer is a basic interface
class, while the second consists on the specific interfaces for each data packet.

Basic Interface. This class inherits the BufferedPort class provided by the
YARP library, thus it implements a TCP/IP port. However, this layer does not
define the content of the data to be sent or received, this will be implemented
in the second layer of the interfaces. Therefore, this layer has the main role of
implementing the naming protocol followed to label each comunication port [7].
This naming protocol was designed in the context of the URUS project [112] to
label all TCP/IP ports available in a network robot system, involving several
robots, while each robot provides several services. This labelling was set follow-
ing the protocol rules, so that port names were deducible from its functionality
and robot entity providing it.

Specific Interfaces. FEach data packet required in the application requires
a specific interface that mainly defines the data content that will be sent and
received through the port, thus each port. i.e. each interface, only manages a
given type of data packet. For illustrative purposes, figure 8.3 details the fields
of the localization data packet defined in the localization interface.

int double double double double double double double
status timeStamp X y z 0 ¢ v

double | double | double | double dOL5b|e don.kble double | double | double | double
2 o 7 2 2 2 2
y z

v X % y v z (0 o, 0'(1> U(I/ ny

Figure 8.3: The localization data packet defined in the localization specific
interface.

8.3 Mobile robot simulator

In the context of this thesis simulation has been used for three main purposes:
(1) to execute and debug the software infrastructure before its utilization in
real experiments, (2) to compare position tracking methods as it is done in
section 6.3 and (3) to validate some theoretical aspects of global localization
and obtain preliminary results presented in chapter 7. To this aim two simple
simulators have been developed, both consisting on single point mobile platforms
but one on 2D environments and the other in 3D worlds. In both cases only
platform kinematics are considered and simulated sensors are mainly simple
models where Gaussian noise is added to get more realistic noisy data.

The implemented simulator deals with a group of Nz robots. For the rt"
robot, a platform process holds the position ground truth, X!, updates it when
velocity commands are received and publishes this ground truth position. On-
board simulated sensors receive the ground truth position of the associated robot
and from this position computes the sensor models to output simulated observa-
tions, of,. Moreover, other processes such as the camera network, use all ground
truth positions to compute robot detections. Next paragraphes overview, for
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8. Software Integration

the 2D simulator, the kinematic model used for the platform motion and the
sensor models used to compute observations. The 3D simulator has been only
partially implemented following the same design principles that the 2D one, but
using the algorithm described in 4.3.5 for laser scanner simulation in 3D, instead
of the one reported in 4.2.3 that it is used for ranging on 2D.

Please note that each process is an independent thread and has its own loop
rate, so that iteration index ¢ does not necessarily coincides, since it is a private
variable of each process.

Kinematic Model. We simulate a generic holonomic wheeled mobile plat-
form, that, at iteration ¢, receive translational and rotational velocities, v¢ and

P
v, to propagate its position with the kinematic model f(X}™", v}, vf):
x” o R AT cos(071 + AT v)
X=\y"| = |y + |AT ", sin(07" + AT vj) (8.1)
0, 0, ATtvé

where AT? is the measured elapsed time between iteration t — 1 and .

Wheel Odometry. Each platform is equipped with wheel encoders that
provide, at iteration ¢, the odometry observation of;. This observation is com-
posed by the increment in translational motion, Ap?, and the increment in
rotational motion, Af%. To these increments, simulated Gaussian noise with
standard deviation of 5% of Ap® in translation and 10% of A#! in rotation is
added:

ot = (Apt + N(0,0.05 % Apt), A8t + N(0,0.1 x AG?)) (8.2)

where,

Apt = /(e — a2 4 (g -yt A0t =6 ot (8.3)

Laser Scanner. Laser scanners onboard each robot provide, at iteration t,
the real observation o} . Laser scanner observations in 2D environments are
computed with the algorithm presented in section 4.2.3, providing as inputs the
ground truth robot position and the environment model used by the simulator,
M. Moreover, to simulate a real observation, a normal noise with 5¢m of

standard deviation is added, so that an entire scan of Ny, rays will be:

0f = (0% 1,01 n,s); 01, =rayMapInter ference(X]"", M,i) + N(0,0.05)
(8.4)
To simulate the LeuzeRS4 device, 133 points are used with a loop rate of 6H z.

Electronic Compass. Onboard electronic compass is also simulated to pro-
vide, at iteration t, the heading observation otc. This observation is directly the
heading of the simulated ground truth position with an added Gaussian noise
of 0.057ad of standard deviation, thus for the r** robot:

ot = 0 + N(0,0.05) (8.5)

In the simulator, compass observations are always available, even if in real de-
vices compass measurements are sometimes corrupted by magnetic distortions.
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However state of the art devices, such as TCM3 from PNI corporation, provide
autocalibration procedures to detect external distortions of the magnetic field
and signal corrupted readings with an alarm (see section 3.2).

GPS. GPS receiver is also simulated to be onboard the robots. The imple-
mented simulation model addresses, in a simple way, two main characteristics
of the GPS observations: partial availability and short-term biased noise (not
centered to the true position during short time periods). To follow this require-
ment, the model is also computed from the simulated ground truth position and
adds two noise components: a zero-mean Gaussian noise updated at each itera-
tion and a biased Gaussian noise updated after a period of 20 seconds. Moreover
a set of coverage circles are defined on the map representing the GPS coverage
area on the environment. When the robot is on the coverage area for at least
three consecutive iterations, the GPS observation is available and is computed
as:

o = (2, yl) + (Acpse, Aapsy) + (N(0,0.5)) (8.6)

where Agps, and Agpsy are the bias noise component and are updated each
20 seconds as:
Agpse = N(0,2); Acgpsy = N(0,2); (8.7)

Sensor Network. A network of cameras deployed on the environment is mod-
elled as a set of No omnidirectional cameras fixed at known positions. This
camera network provides, at iteration ¢, the observation of;. The model to com-
pute real observations of the camera network is the same than the one exposed
in section 7.4, but adding normal noise to the measurements. If at iteration
t, the 7" robot is in the coverage area of the c¢® camera, X! € C,., a real
observation of the camera network is available as:

O \/(z?” —xe)2 4 (U = ye)? + N(0,0.5))
oy = Oé;r = atcm(%) +N(0,0.02% 8 ,.) (8.8)
67t + N(0,0.2)

Robot to Robot Detection. When the p*" robot sees the 7" one within a
line of sight of length less than Rr = 10m, the observation made by the p
robot at iteration ¢ is a relative localization, so it is expressed in terms of the
pt" frame. The detection model is the same described in subsection 7.3.2 but
adding some Gaussian noise to the data.

soe] [k —ah)? + gk — h)? + N (0,0.05))
op = O‘;’j: = atan(ijf:z;}) + N(0,0.01 % 62°) (8.9)
» ” P
o 0r — 0%, + N(0,0.1)

8.4 Off-line executions

Off-line executions are useful to compare different localization approaches (or
other estimation processes) using exactly the same set of real sensory data.
The proposed software infrastructure has implemented a 'logReader’ process
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that gets data from a set of log files and publishes this data through diferent
interfaces in the same way as sensor acquisition processes do. Publication of data
keeps the synchrony given by the logged timestamps so that off-line executions
provides a data flow very similar as that obtained during the on-line acquisition.
Moreover, the logReader process can slow down the off-line time by a factor.
Slowing down the off-line time is equivalent to multiply the off-line time line by
a factor, @ > 1, thus the data flow will be published more slowly but keeping
synchrony. This procedure allows to execute localization with real data but
relaxing the real-time constraints, as it has been done in section 6.5 to extract
high accuracy localization data with a particle filter using a large particle set.
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Chapter 9

Contributions, Conclusions
and Future Works

Ending a thesis gives the opportunity to look backwards and write a valuable set
of conclusions about the work, with the aim of sharing them with the community.
Moreover, a thesis work also opens even more questions that it answers, and it
is also important to clearly define which are these new questions to be adressed
by future works.
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9. Contributions, Conclusions and Future Works

9.1 Main Contributions.

Next paragraphes discuss the main contributions that have been resulted from
this thesis.

Fast and Online Computation of Expected Observations. To extend
the particle filter to the use of 3D models while keeping real-time performance,
it has been necessary to develop and implement new observation models accom-
plishing these real-time requirements. With this aim, a new range observation
model has been developed [24]. It uses the openGL computer graphics library
to renderize the 3D environment model in a proper way that minimize the com-
putational time while it keeps the required angular and ranging accuracy of
laser scanner devices. This range observation model has been successfully and
massively used in the long-term experiments carried out in two scenarios: the
campus of the Universitat Politecnica de Catalunya and in an urban scenario in
the city of Barcelona.

Integration of Delayed Observations in a Particle Filter. In coopera-
tive environments, observations made by remote observation processes arrive to
the computer that executes the localization filter with a non negligible delay rel-
ative to the platform speeds. This fact has forced to redesign how such delayed
observations are integrated in the particle filter framework, to keep real-time
requirements in the sense of outputing an accurate estimation with minimal
latency, ready to be used for other navigation control processes [22]. The thesis
presents simulation results comparing a basic particle filter with the modified
one that shows improvements, in terms of localization accuracy, when the time
stamp of each observation is properly considered, so that each observation is
integrated in the correct time moment.

Long-term localization in autonomous navigation sessions. Several au-
tonomous navigation sessions have been performed in real outdoor pedestrian
environments to test a whole navigation system, but in particular to test also
the proposed localization approach. About a 3Km execution using the 2D ap-
proach [25] and more than 6 Km using the 3D one [111] have been navigated by
an experimental two-wheel self-balancing Segway platform. Localization results
shown the robustness of the approach while they point out weakness and future
reserach directions to cope with them.

Active and Cooperative Global Localization. This thesis presents theo-
retically a general probabilistic approach to solve the map-based global localiza-
tion problem in large environments. This has been done by proposing an active
strategy based on estimating the reduction of position hypotheses [21, 23]. The
method is general since it is neither sensor dependent nor spatial representation
dependent and it uses the same observation models used by the position track-
ing. The presented algorithm is computationally efficient, both in time and
memory, when compared to other existing approaches. Moreoever, the most
important contribution of this new active approach is the possibility to use it in
cooperative environments, both for a single robot using a sensor network and
for multiple robots within a sensor network context. In the former case the
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cooperation arises in terms of information sharing since the robot uses observa-
tions coming from remote sensors, while in the later case cooperation is further
developed as an strategy that plans coordinated joint actions where two lost
robots are in a line of sight.

9.2 Secondary Conclusions.

Next paragraphes outline some secondary conclusions derived from the gained
author’s experience through the thesis work.

Map-based Particle Filter Localization. From the study of the state of
the art as well as from the practical experience gained through the work in this
thesis, the particle filter approach have shown adequate properties to address
the data fusion issue required to solve the map-based localization problem. Par-
ticle filters are flexible and robust to deal with the stochasticity of map-based
localization, that is often more critical in terms of model innacuracies than in
terms of gaussian noise of sensor readings. In this thesis, the filters have been
adapted to cope different situations such as the model incompleteness and the
integration of asynchronous and delayed data.

2D vs 3D Environment Models. Map-based position tracking in urban
pedestrian areas have been addressed using both 2D and 3D geometric environ-
ment models. In both cases, experimental results are obtained from long-term
autonomous navigation sessions in an outdoor campus area. The filter using
the 3D model, that extends the position state to a 6DOF space, outperformed
the 2D approach, specially in situations with high presence of 3D environment
elements, commonly found in urban pedestrian scenarios, such as ramps, steps
or holes.

Segway Platforms in Urban Environments. Two-wheel, self-balancing
platforms such as that used for experimentation in this thesis offer practical
benefits, specially in terms of mobility in urban pedestrian settings, and also in
terms of payload to carry the sensors, computers and batteries required for long-
term autonomous navigation in such environments. However, these platforms
present also some drawbacks, specially in terms of perception since modelling the
self-balancing behavior is not evident when the platform has variable payloads
and runs on tilted surfaces. The extension of the localization to 3D maps with a
6DOF state space seems to be mandatory to cope with the self-balancing of the
platform. This extension to 3D has dramatically improved the likelihood scores
between real observations and the expected ones during the filter execution.

Software Infrastructure. In robotics, specially in that fields where long-
term experiments have a key role in the research loop, having a solid software
infrastructure is a key factor for a successful research. In this sense, during the
thesis development a software infrastructure has been developed based on the
YARP middleware and it has allowed to perform experimental sessions involv-
ing several processes and machines. Besides many technical limitations, this
software infrastructure had only a local community of non-full-time developers,
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so the software maintenance and improvement of this infrastructure has been
collapsed, leading to a logical (and ecological) situation of abandon. The con-
clusion is that spending time in software design and development is one of the
best investments that a reserach center can do in order to succeed in future
projects and drastically improve its productivity. In that line, it is strategic to
develop low level software independently from a given framework but to encap-
sulate it with some of the currently existing robot software frameworks. This
leads to participate to international software projects and to benefit of code
reusability and user debugging. In this line, the robotics laboratory services
at the Institut de Robotica i Informatica Industrial (IRI) has started, from the
mids of 2010, to build a solid software infrastructure that is encapsulated with
ROS for multi-process executions [42].

9.3 Future Works.

From the conclusions reported in the previous section, a set of future research
lines and development works are outlined in the following paragraphes. This
helps to arrange ideas and organize future tasks.

Extensive Evaluation of Position Tracking Robustness. Developing
methodologies to evaluate the robustness of the position tracking approach,
beyond the particular conditions encountered in the experimental sessions, is
a major issue. Robustness should be mainly evaluated in terms of position
recovery, showing how the filter is capable to deal with the main causes of lo-
calization fails: the environment dynamics and model innacuracies encountered
in practical implementations.

Dynamic model of the Segway platform. Using only kinematics for state
propagation of a mobile platforms has limitations in terms of accuracy, specially
for long-term predictions or high-speed platforms. In the case of two-wheel self-
balancing platforms, integration of inclinometer and torque data in a dynamical
model would lead to obtain a more accurate probabilistic transition model to
compute better proposal densities in the particle filter, and so improve the
estimation performance.

Visual Odometry and Multi-loop Localization. Visual odometry has re-
ceived great attention in recent years, and the state of the art report impressive
results. A visual odometry module provides valuable data to a map-based par-
ticle filter localization process, in the sense that the proposal density can be
more accurately estimated, thus reducing the particle set required to represent
it, so computational efforts could decrease, or could be focused on growing the
accuracy and robustness. Multi-loop approaches stands for localization systems
that combine multiple techniques at different rates, in order to estimate a robust
position of the platform dealing with particularities of each layer. A first pro-
posal for map-based multi-layer localization could consist on having at the lower
layer a visual odometry module, fusing data from camera, wheel encoders, incli-
nometers, torque sensors and, if it was present, an inertial measurement unit. A
second layer would execute a local SLAM, so that robust localization would be
achieved thanks to the correction with the concurrently created map, but not
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with the static one. Finally, a third layer, running at slower rate, would match
this locally created maps with the a piori provided model of the environment,
so poducing global correction of the estimated position.

Optimal Particle Filter. Results of real-time particle filter for position
tracking has demonstrate the possible presence of an optimal number of parti-
cles (Np) in terms of localization accuracy. The presence of an optimal number
of particles is derived by the fact that having a filter with very few particles
will lead clearly to a big accuracy error, but having larger number of particles
implies larger latency on the estimation output, that could be only overcome by
outputing a prediction (a prior), so the error increases as the prediction covers
larger latencies. In the experiments reported in the thesis it has been observed
that the most accurate filter has resulted as that iterating at a rate close to
the horizontal laser scanners acquisition rate, the most important sensors. This
leads to investigate theoretical evidences from information theory, specially on
quantifying the information gain rate of the filter as a function of Np, to check
if the most informative filter coincides with the most accurate one.

Relative Localization. A key module to continue the research on multi-
robot localization is the relative localization among robots. For a robust solu-
tion, this could be implemented with a fusion of visual and laser data to detect
and track other robots within the local surroundings of the given robot. Having
such a module, cooperative position tracking or active global localization could
be implemented and tested in real platforms.

Camera Network. In order to integrate absolute position information pro-
vided by a camera network deployed on the environment, the camera network
has to be metrically calibrated with the map, so the fusion of information would
be metrically consistent. This implies to develop calibration procedures that
produce the set of 6DOF positions of the cameras with respect to the map
frame. Such techniques are not evident to implement and they have to be ex-
ecuted periodically since cameras placed in outdoor environments move due to
environmental conditions such as wind and others. Due to these issues, localiza-
tion methods that avoid this global calibration should be investigated, exploiting
relative localization data that can be provided by fixed cameras not necessarily
calibrated with the map.

Active Global Localization from Information Theory. The approach
presented in chapter 7 to solve actively the global localization problem could be
formalized by means of some information theory tool such as information gain.
A novel formulation of such approach should allow to investigate information
gain of a given trajectory candidate instead of only consider the information
gain of the final target point.
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Appendix A

Tibi1 and Dabo Mobile

Robots

Two mobile service robots, designed to operate in urban, pedestrian areas, were
bought and properly modified and equipped for the URUS project. These are
Tibi and Dabo, pictured in figure A.1. They are based on two-wheeled, self-
balancing Segway RMP200 platforms, and as such are highly mobile, with a
small footprint, a nominal speed up to 4.4m/s, and the ability to rotate on the

spot (while stationary).

Figure A.1: On the left, Tibi (left) facing Dabo. On the right, on-board devices

Touchscreen

Vertical Hokuyo
Laser Scanner

Laptop
Emergency Stop
Sensor Batteries
Horizontal

back/front Leuze
Laser Scanners

Segway RMP200
platform

used in this work, and the robot coordinate frame.

They are equipped with the following sensors:

e Two Leuze RS4 2D laser range finders, scanning over the XY plane,
pointing forward and backward respectively, at a height of 40cm from
the ground. These scanners provide 133 points over 190° at the fastest
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setting, running at approximately 6 Hz. This device has a range of 64m,
but in practice we limit it to 15m. Front and back laser observations are
notated as o, and of  respectively.

e A third 2D laser scanner, a Hokuyo UTM-30LX, mounted at a height of
90cm., pointing forward and rotated 90° over its side, scanning over the
X Z plane. This scanner provides 1081 points over 270° at 40H z, and has
a range of 30m, again capped to 15m. Aperture is limited to 60° to ignore
points interfering with the robot’s frame or aiming too high for our needs.
This observation is notated as of, .

e Wheel encoders, providing odometry readings o}, from the Segway plat-
form.

e Inclinometers from the Segway platform, providing pitch and roll data,
t
o5.

The robot also features two stereo camera pairs and a GPS receiver, which
are not used in this work. The user can interact with the robot through a
touchscreen, entering go-to requests manually. Two off-the-shelf laptop com-
puters running Ubuntu Linux are on-board the robot, one for navigation and
the other for communications and human-robot interaction. Experiments were
performed using only one robot at time, Tibi or Dabo.

The Segway RMP200 is in many ways an ideal platform to build an urban
robot. Humanoid robots are not yet ready for outdoor environments, and four-
wheeled vehicles have a much larger footprint and are more restricted in their
mobility. Moreover, Segway robots can carry heavy payloads, up to 45 kg
for this model. On the downside, two-wheeled platforms are statically (and
dynamically) unstable, keeping their balance using gyroscopic sensors to track
and correct their tilt. The robot will pitch forward or backward to accelerate
or decelerate, or simply to keep its balance while stationary. This behavior
presents two issues for their use in robotics.

On one hand, it creates a perception issue for on-board 2D laser scanners.
A 2D laser range finder scanning over the XY plane, a very common solution
in robotics for navigation or SLAM, may point higher towards the sky/roof or,
more critically, lower towards the ground. Using this configuration may result in
spurious features or obstacles, unless some kind of filtering is used. Figure A.2
displays a sequence of 2D range data over time, starting with the robot in a
stationary, upright position, which is then instructed to move forward and later
to stop. The front laser visibility is reduced significantly due to the platform’s
tilt, up to 2m on a flat surface and less on a ramp. The figure also shows velocity
commands and the estimation for velocity and pitch from the Segway platform,
for the same sequence. This data was taken under laboratory conditions, on
a flat, regular surface. On outdoor environments this behavior is much more
pronounced, specially in slopes and changes in slope.

The second issue in using Segway platforms is control: the platform’s own
control algorithm takes precedence over the user’s instructions, as its first pri-
ority is to stay upright. This problem, present in all Segway platforms, is
compounded by the fact that our robots weigh about 120K g, which slows them
down. In practice, the platform typically takes one to two seconds to react to
the user’s commands, or even more in extreme situations such as when moving

130



15-1y" [m] 154y [m] 154y [m]

. : ' ' . . , Ximl . N X [m]
is -0 5 is -0 -5 lo 1s -1s 1o o 15
10 -10 10
-15 -15 -15
Dabo response under lab conditions (speed) Dabo response under lab conditions (pitch)
12 10
1 8
0.8 6
0.6 4
E‘ 0. g 2
.4 =
B §
& &
0.2 0
0 -2
-0.2 -4
-0.4 -6
14 16 18 20 22 24 26 28 30 32 14 16 18 20 22 24 26 28 30 32
Time [s] Time [s]

Figure A.2: On top, left to right, sequence of horizontal laser scans with the
robot accelerating forward on a flat surface. Time between scans is about 0.6s.
On the bottom left, commands for translational velocity (v) in red, and its esti-
mation from the Segway platform in blue. On the bottom right, pitch estimation
from the Segway platform.

from a flat surface to a slope or vice-versa. This ultimately means it is not pos-
sible to execute previously planned trajectories with a high degree of accuracy.
An example can be seen in figure A.2.
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Appendix B

Cposition3d class

Purpose

This appendix details the mathemathics used to code a C++ class that imple-
ments a position in the three dimensional space, that is a vector representing a
location and an orientation in the space. Such a position can be also interpreted
as a coordinate frame and therefore a set of functions allowing rotations around
arbitrary axis and displacements along arbitrary directions are programmed.
Therefore, this appendix acts as a mathematical guide of the Cposition3d class
but not as a programming guide. For programming issues the reader can directly
explore the code, its comments and the associated example programs.

Mathematical Definitions

Given a reference coordinate frame, F, in the three dimensional space, a position
p, or frame P, is defined by means of three location coordinates (xf , ypf , zjf )
and some mathematical representation of the orientation as a set of three Euler
angles, a direct cosine matrix (rotation matrix) or a quaternion. In this im-
plementation the Euler angles representation is used while keeping a rotation
matrix updated when necessary, since it provides advantages in some computa-
tions. The three Euler angles, (95 , qbf , wpf ) , are defined following the conven-
tion z — y — x. For notation simplicity, no frame superindex will be indicated,
meaning that the formulation is general for any given frame or that the position
is expressed in the world fixed frame, WW. When multiple frames are involved in
the scene, the superindex will be indicated when necessary to avoid confusion.
Summarizing, a position in the 3D space is defined as:

e Location, (zp,yp, 2p), as a 3D point indicating the location of p in terms
of the reference frame.

e Heading, 0, is the first angle, a rotation around the Z axis of the reference
frame, 0, € (—7, 7).

e Pitch, ¢, is the second angle, a rotation around the current (once rotated)
y axis, ¢p € (—7/2,7/2].
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e Roll, 1, is the third angle, a rotation around the current (twice rotated)
x axis, Yp € (—m, 7).

Figure B.1 shows the order of the rotations of each euler angle to get the final
orientation of the position.

Z Z

Figure B.1: Definition of the three euler angles heading (6,), pitch (¢,) and roll
(1p). Reference frame drawn in black. Intermediate frames drawn in red and
blue. Final orientation frame shown in green.

updateRmatrix():
Rotation Matrix from Euler Angles

Since rotations are performed always around the current axis instead of around
the fixed world axis, the whole rotation matrix is computed as:

R(0p, ¢p,¥p) = Ry = R (0p) Ry (dp) Ra(¥p) (B.1)
where,
cosf, —sinf, 0
R.(6p) = | sinf, cosh, O0];
0 0 1
cos¢p, 0 —sing,
Re)=| 0o 1 0 | (B.2)
sing, 0 cosgy
1 0 0

Ry(¢p) =10 costpp —sinty, |;
0 siny, cosiy
Rotation Matrix Interpretation

The rotation matrix R, has an important meaning, since its columns hold the
three vectors building the orthogonal basis oriented as the positon p, also called
the frame p. Let (X,,Y),, Z,) be the three vectors of the frame p expressed in
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terms of the reference frame, thus their coordinates will be:

Rpoo RPOl RPOQ
Xp=|FBpo |:Yo=|Bpi, | :Zp= | Bprx | ; (B.3)
RP20 RP21 RP22

where the subindex after p indicates the row and column index of the matrix.
This indicates that the orientation part of a position can be also uniquely defined
by its rotation matrix instead of the three Euler angles.

updateEuler Angles():
Euler Angles from Rotation Matrix

Since some functions as rotateUaxis() update the rotation matrix without set-
ting the Euler angles explicitly, sometimes we need to compute those angles
from the R, matrix in order to keep consistency between the matrix and the
angles.

The heading is directly computed as the angle from the X reference axis to
the projection of the X, axis with the plane formed by X and Y:

Op = atan2(Rp,,, Rpoo) (B.4)

P10

To compute the pitch we have to compute first the axis XI/J (see figure B.1).

Xz; can be seen as the normalized projection of the axis Xp to the plane formed
by the vectors X and Y or as the axis X after a single rotation of 6,. For both
cases, the expression is as follows:

, 1 R;Doo COS 9p

X, = ————— (R, | = [sing, (B.5)

VB T B2, \ 0O 0

The pitch angle is defined as the angle of the vector X, with the vector X, in
the plane built by X; and Z:

R+ R
¢p = —atan2(Xp-Z , Xp-X,') = —atan2(Ry,, , M) (B.6)
R2 + R?

Poo P10

The roll angle is computed in a similar way as that used to find the pitch, but
the roll angle is defined as that from the Y,’ axis to the Yp axis (see figure B.1).
First we find the Y}," and the Z,” axis as:

, 1 7RP10 —sin 92’
Y, =7 x X,=——=——1| Rp,, | =| cos 0, |;
R%UU + R}%IO O 0
) (B.7)
) 1 —Rpoo Rpso cos 0p sin ¢y,
Zy" = Xp xY, = —————— | —Ry, Ry, | = |sinb,sing,
RI2700 + R:gm RI2)00 + R;2)10 COS ¢P
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The roll angle will be:

¥y, =atan2(Y, - Z," |, Y, Y, ) =
= atan2(R;D21 (R}’%oo + R;2710) - RP20 (Rpoo Rpm + Rplo an )a R;DUUR;DM - R;DloR;Dm)
(B.8)

Equations B.4, B.6 and B.8 explicit how to compute the Euler angles given

the rotation matrix. This will be useful to keep consistency between angles and
matrix when some functions manipulate the matrix.

moveForward(): Forward displacement

This function displaces the position a distance A along its X, axis. This is
computed as:

.Z';_ =z, + ARy,
y;)r =Yp+ AR:Dm (B.Q)
z; =zp + ARy,

rotateUaxis(): Rotation around an arbitrary axis

Sometimes we want to rotate the position around an arbitrary axis defined in
reference coordinates as the vector u = (x4, yu, 2.)”. To perform this operation
the class implements the Rodrigues formula [73]. Given the matix U and Q
defined as:

0 Ry Yu
U=u-u'; Q=1 z 0 -z, (B.10)
“Yu  Tu 0

The Rodrigues Formula computes the rotation matrix associated to a rota-
tion of o around the u axis as:

R(a,u) =U+ (I —U)cosa+ @sina (B.11)
And finally we have to update the whole rotation matrix as:

R} = R(a,u)R, (B.12)

P

Where superindex * indicates the updated version of the matrix.

turnZaxis(): vehicle turn

This function implements the turning of a ground vehicle oriented in some posi-
tion. Tt is summarized as a call to the previously defined rotateUaxis() function,
passing as the axis parameter the Z, vector since the turning is around the ve-
hicle vertical axis.
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coordTr(): Coordinate transformation

Point Transformation

A vector in the 3D space is always referred to some frame. Let be a® the point
a in terms of some reference frame as the world one, W. Let be P another frame
expressed also in terms of the VW, with its location coordinates l;) = (z},, 4y, 2;,)
and the rotation matrix Rj’. Then the transfromation between a* and a” is as
follows:

a¥ = Ryja’ + 1 (B.13)
The above equation can be reformulated using homogeneeous coordinates as:
a“ = Hya? (B.14)

where @' = («%,y,25,1)" and the matrix H” encapsulates the whole transfor-
mation (rotation and translation) as follows:

|
v RY v
HY = P } P (B.15)
0 0 0] 1

Alternatively, given the point a expressed in terms of W, a¥, we can find its
expression in terms of the frame P as:

a* = (HY)'a" = Hba" (B.16)

Position or Frame Transformation

Given a frame P expressed in terms of the world frame W by the homogeneous
matrix H;’ and another frame Q expressed in terms of the P-frame by the
homogeneous matrix HY, the expression of the Q-frame in terms of W is:

HY = HY H? (B.17)

This last equation can be used when a concatenation of frames are involved as
a robotic arm or a sensor-platform-world system.
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Appendix C

GPS Coordinate
Transformation

Purpose

This appendix deals with the GPS coordinates issue. First, it summarizes the
equations to convert geographic coordinates latitude, longitude and altitude,
(A, ¢, h) to the Earth-Fixed Earth-Centered (ECEF) coordinates. Second, it
details the computation of the homogeneous transformtion matrix that converts
a point expressed in ECEF coordinates to a local coordinate frame, as the map
coordinate frame used in this thesis to fuse all observations. Figure C.1 shows
the three coordinate frames involved.

ALZ

equator

(a) Geo and ECEF frames (b) ECEF and Map frames

Figure C.1: Geographic, ECEF and map coordinates.
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From Geodetic to ECEF

Even if nowadays most of the GPS receivers provide directly ECEF data in their
output, for the completeness of the appendix, the equations to convert the geo-
graphic coordinates of a point, (A, ¢p, hp) to its ECEF coordinates (mf, yf, zf)
are summarized below.

Given, the constants R. and FE., that are respectively the Earth radius
and the Earth excentricity, and have the values R. = 6378137m and E, =
0.081819190842622, the conversion from geographic coordinates to ECEF for

the point (A, ¢p, hp) is:

_ R.
Ke= V1= (Ecsin()p))?

xf = (K¢ + hy)cos(Ap)cos(dp) (C.1)

yf = (K¢ + hp)cos(Ap)sin(¢p)

z) = ((1 = EZ)Ke + hy)sin()p)

From ECEF to Map Coordinates

This coordinate transformation can be expressed with an homogeneous matrix
integrating three rotations, a coordinate change and a translation from the
center of the earth, (zZ yZ 2F) | to the origin of the map, (z%;, v, ).

To find this transformation it is required to know accurately the geographic
coordinates of the map origin, (Aps, dar, har). This step can be resolved using
Google Maps as shown in figure C.2, to find the origin of the map frame in
terms of geographic coordinates A\p; and ¢pr. To find altitude, hps, we use
a topographic map. The image from Google Maps is also used to find the
orientation of the x4 axis with respect to n,, the local geographic north vector.
This orientation is the value of o, and is computed as:

o = arctg(p—h) (C.2)
Pw

where pp, and p,, are the number of pixels of each segment of the Google Maps
image, shown in figure C.2. Figure C.2 depicts the Google Maps snapshot with
the two segments used to compute a,, the origin of the map frame and the 2
and yM axis.

The first rotation matrix, Ry, is a rotation on the z¥ axis of ¢;:

cosprr  singpyr 0

Ry = 7Sin¢1w COng)M 0 (03)
0 0 1

A second matrix, Rg, describes a rotation on the current y axis of —Ajp;:
cosh\y 0 sinAy
Ry = 0 1 0 (C4)

—sinAy 0 cosAy
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Figure C.2: Google Maps image with the map coordinate frame (z™*,y™, z
the geographic north vector n,, and the segments to compute the orientation
angle a,.

A third matrix, Rg3, is a change of the coordinates to force the new z axis to
point up to the sky, instead of x:

010
Rs=(0 0 1 (C.5)
100

Applying R;, Rs and R3 the so called ENU (east, north, up) coordinates
are obtained. However, the map frame of this work needs an additional rotation
since the map frame is not aligned with respect to the north vector n,. There-
fore, a last transformation, Ry, is required on the current z axis, rotating the
frame «,.

cosa, Ssinoa, 0
Ry = | —sina, cosa, 0 (C.6)
0 0 1

o The complete transformation matrix is:
RY = RyR3Rs R, (C.7)

Summarizing, a point X = (27, yf, 2F,)" described in terms of the ECEF
coordinates can be expressed in terms of the map coordinates, Xé‘/f , applying
the following:

XM =Ry - (XF-XF) (C.8)

In order to express the whole transformation in a more compact way, an
homogeneous matrix can be found as:

M Ry |- RE-XE



Therefore a point expressed in terms of the ECEF coordinates, Xf can
be expressed in terms of map coordinates applying the whole homogeneous
transformation:

X)) =Hy - X} (C.10)

To convert a velocity vector expressed in terms of ECEF coordinates, Uf , the
transformation consists in just applying the rotation part of the homogeneous

matrix, that is:
M M E
v," = Rp v, (C.11)

Finnally, the numeric values used in this thesis are provided:

Anr = 41.388595°
én = 2.113133°

(C.12)
h]\/[ =90m
o, = 44.2°
that lead to the following homogeneous transformation:
—0.4870605 0.6994270  0.5230430  14787.21
oY - —0.4479657 —0.7141685 0.5378569  15206.022 (C.13)

0.7497325  0.0276635 0.6611625 —6368887.8
0. 0. 0. 1
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Appendix D

Leuze RS4 and Hokuyo
UTM30-LX Observation
Models

Two kind of laser scanner models have been used, using the same software.
Table D.1 summarizes the input parameters of these laser scanner models. Our
implementation sets angular accuracies equal to angular resolutions. Please
note also that, due to application requirements, we only model part of the scan
provided by the Hokuyo laser.

Table D.1: Input device parameters for laser scanner models

Input Parameter Leuze RS4 | Hokuyo UTM 30-LX (partial)
Ao, Ag 190°, 1° 60°, 1°
Na, NG 133, 5 points 241, 5 points
00 = Mo /Na, 05 = Dg/ng | 1.43°, 0.2° 0.25°, 0.2°
Tmins Tmaz 0.3, 20m 0.3, 20m

Table D.2 outlines the derived parameters of the models. Leuze device has
an horizontal aperture greater than 180° and that poses numerical problems on
computing equation 4.8. This issue is overcome by dividing the computation
in two scanning sectors, each one with the half of sensor’s aperture, so the
parameters given in table D.2 in the Leuze column are for a single scanning
sector.

Table D.2: Derived model parameters for laser scanner models

Derived Parameter Leuze RS4 Hokuyo UTM 30-LX
(per scanning sector) (partial)
w [m] 0.655 0.346
h [m] 0.005 0.005
0[] 125 66
Do [pizels] 88 265
pg [pizels] 5 5
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Time computing LeuzeRS4 laser model {133 points, 190 degrees)

Time [ms]
7

T T T T T T T
[ 20 a0 &0 80 100 120 140 160

m (scene complexity = m?)

Figure D.1: Time performance versus scene complexity for the Leuze RS4 laser
scanner. The sphere object has m? elements.

To evaluate the computational perfomance of the proposed implementation
while increasing the scene complexity, we have done a set of experiments consist-
ing on computing 100 times the Leuze model against a testbench environment
composed of a single sphere, while increasing the number of sectors and slices
of that shape. The results are shown in figure D.1. For a given m, the sphere is
formed by m sectors and m slices, and thus the scene has m? elements.

Please note that using the same software implementation, other range models
of devices providing point clouds such as time-of-flight cameras or 3D laser
scanners can be easily configured and computed.
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Appendix E

Videos

The content of the videos referenced through the thesis is detailed in this ap-
pendix. All videos can be found on internet, at the gallery page of the author’s
website: www.iri.upc.edu/people/acoromin/gallery.

Video 1. Comparison of Basic/Asynchronous Particle Filters Sec-
tion 6.3 of this thesis proposes an improved version of a basic particle filter to
deal with integration of delayed data. This video compares the output position
estimate of the proposed approach (blue) with the basic one (red). All sensor
data is simulated and integrated by the filters in real-time. Provided sensor data
is: wheel odometry (green path on the map), front and back laser scanners (up-
right window), compass, gps (small green points on the map), and detections
from a fixed camera network (green segments on the map).

Video 2. Localization with odometry and delayed camera network
detections This video shows how the asynchronous particle filter successfully
tracks the position of a robot fusing only wheel odometry and delayed detections
coming from a camera network (see section 6.3). The video shows a zoom of the
environment centered on the robot position estimate and plots all the particle
set as small red points with a heading mark. Camera network detections are
plotted as green lines from the camera point to the observation point.

Video 3. Range observation model This video demonstrates in a qualita-
tive way the resulting data from computing range observation models by using
the method proposed in chapter 4, section 4.3. On the top, a visualization of a
3D geometric world model from senor’s viewpoint. At bottom-left, ranges com-
puted by a model of the LeuzeRS4 laser scanner. At the bottom-right, depth
image computed with a model of the time-of-flight camera SR4000.

Video 4. Autonomous navigation with 2D localization in the UPC
Campus A full autonomous navigation experiment is reported in this video.
Map-based position tracking used a 2D representation of the environment and
the robot state was a pose in 2D, i.e. (z,y,6). The particle filter was fusing
wheel odometry (green path on the map) and front and back laser scanner data
(up-right window). A zoom on the map shows the evolution of the particle set.
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Other windows are related to navigation processes such as local planner and
motion control.

Video 5. Autonomous navigation with 3D localization in the UPC
Campus This video also reports a full autonomous navigation experiment,
but in this case the map-based position tracking used a 3D representation of
the environment and the state space was that of poses in 3D, i.e. (z,y, 2,0, ¢, ).
From the up-left, and clockwise: 3D map view from the estimated position of
the robot, hand-held camera view of the session, front and back laser ranges
on the robot local coordinate plane, institutional logos, local planner (RRT) on
the robot plane where red dots are front laser points and grey ones are back
laser hits, particle set on the zoomed area of interest of the global map, and
finally the whole global map with the odometry path in green and the estimated
localization in blue.
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Appendix F

About Pictures

This appendix provides details about the pictures placed at the cover page of
each chapter, and discuss in a non-rigorous way their relation with each related
chapter content.

Chapter 1. This picture is taken in a small village of the Baix Emporda
region, called Sant Julia de Boada. The image is while opening the wooden
door of the church, which is usually closed. However, a neighbor of the village
holds the big old key that opens that door, so that interested travellers can ask
him for it. The scene of opening a door suggested me the concept of introduction
as an invitation to enter to a place.

Chapter 2. Each saturday morning, in the Place Saint Etienne in the city of
Toulouse, old book sellers met to put their stands in a relaxed and familiar way.
The image of a stack of old books, that however still have a great value leads
to a good visual representation for the state of the art.

Chapter 3. This chapter talks about sensors, and these hands placed on
the water surface of the little river Riera de Fontscalentes, near the village of
Castelltercol, were providing a lot of sensory information about the tempera-
ture, velocity or density of that clean water going down after some nice spring
rainings.

Chapter 4. May be, the most certain observation model that humans have is
that of seeing how each morning the day wakes up, and if there are no clouds,
the sun is expected to be seen at a given point. If some day in the future we
don’t observe the sunlight raising in the morning, either we are in a polar region
or we must revise our observation model! The picture was taken in the top of a
peak called Puigsacalm, after passing a cold night there, so that the sunrising
was widely expected.

Chapter 5. The city of Toulouse celebrated the first flight of the A380 airplane
in 2005. Thousdands of people met in the city downtown to see the big engine
flying over the city. A set of colorful balloons were raised, and they evoluted
in the air shaping a distribution that some physical model could explain. This
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set of balloons forming a draw of some probabilistic distribution had a lot of
relation with a set of particles in the particle filter algorithm.

Chapter 6. On a snowed surface, the footprints after a passage of a person
leave a visualization of the ground truth position tracking data. The picture was
taken in March, on the surroundings of the peak Tossa Plana de Lles, located
in the Pirineus.

Chapter 7. Hikers climbing mountains need global localization, even in ter-
rains where local planning is also highly required. Global localization helps to
solve the lost situation, seeing to the map and accumulating as most evidences
as possible to converge to a single hypothesis. The picture was taken close to
the mountain refuge of the Mulleres peak, also located in the Pirineus.

Chapter 8. This enormous and flowering tree is a nice exemplification on
how thousands of small parts can build an upper level entity with such won-
derful appeal. The marvel was at the begining of May in a park of the city of
Copenhaguen.

Chapter 9. When old people are sit down regarding the horizon, they can
have a moment to look to the past and think some conclusions about their life
and their works. Probably, they have also future plans, issued from their con-
clusions, plans that will be performed by themselves, passed to next generations
or simply kept in their minds. The picture was taken in an autumn day, close
to the village of L’Estany (El Bages), and the old man was relaxing after having
picked from the forest a full basket of mushrooms.

Last Picture. The author of the thesis was catched working hard during a
demonstration where the robot didn’t behave as expected ...
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