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Gag  group specific antigen 
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HDL  high density lipoprotein 

HIV  human immunodeficiency virus 

HMG-CoA 3-hydroxy-3-methylglutaryl coenzyme A 
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NNRTI non-nucloside analogue reverse transcriptase inhibitors 
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PBMC  peripheral blood mononuclear cells 

PBS  phosphate-buffered saline 
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RT  reverse transcriptase 

SD  standard deviation 

 



 

SDF-1  stromal cell-derived factor 1 
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SIV  simian immunodeficiency virus 
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TCID  tissue culture infectious dose 

TM  transmembrane (glycoprotein gp41 or domain) 
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VL  viral load 
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SUMMARY 

Developing new anti-HIV compounds targeting different steps of the HIV cycle is a continuous 

need due to the emergence of drug-resistant strains and also to the long-term toxicity of current 

antiretrovirals used for treatment. HIV entry requires the binding of the viral particles to the 

CD4 receptor and a coreceptor through the viral envelope glycoprotein gp120, triggering 

structural changes in gp41 that promote the fusion of the viral and host cell membranes and 

viral core release into cells. HIV strains can be classified into different tropisms depending on 

which coreceptor they use: CCR5 (R5), CXCR4 (X4) or both coreceptors (R5X4). Therefore, 

HIV entry is an essential step that offers several potential new targets for antiviral agents. From 

the compounds developed, coreceptor antagonists are among the most promising agents. 

Another class of interesting compounds are statins, which are a well-established class of drugs 

prescribed for treatment of hypercholesterolemia. Recent studies suggest that statins have direct 

anti-HIV effects both in vitro and in vivo targeting HIV entry and budding. The impact on HIV 

of both classes of compounds and therefore, its consequences in long-term treatment are still 

unknown. We wanted to characterize statins as antiretroviral agents, determine the role of 

coreceptor inhibitors in the evolution of HIV tropism and characterize the novel CXCR4 

antagonist POL3026. Unfortunately, we could not detect a significant anti-HIV activity of 

statins due to a high cytotoxicity in cell culture or any effect of simvastatin in a pilot study with 

12 HIV+ patients after 8-12 weeks. Using an in vitro model to study coreceptor switch of R5 

strains to R5X4 or X4, we found that the probability to change coreceptor use was dependent on 

the clinical isolate and also on the cell-culture conditions such as availability of CCR5. We 

observed that selective pressure of an anti-HIV compound can modify the evolution of 

coreceptor use. Reverse transcriptase (RT) inhibitors and CCR5 targeting agents delayed the 

emergence of CXCR4-using variants compared to untreated cultures. However, CXCR4-using 

variants emerged faster under CCR5 drug pressure than under RT inhibitors, whereas CXCR4 

antagonists could prevent its emergence. We also characterized POL3026, which proved to be a 

potent anti-HIV agent against naïve and drug-resistant strains of X4 and R5X4 phenotype. 

Several assays and development of resistance allowed us to confirm that POL3026 blocked HIV 

replication through specific interaction with CXCR4. In conclusion, our results caution on the 

use of statins to treat HIV infection and on the risk that HIV may escape from CCR5 antagonists 

by selecting CXCR4 emerging variants. On the other hand, potent and specific CXCR4 

antagonists are interesting antiviral agents that could prevent the emergence of R5X4 or X4 

viruses. 

 



 

 



 

RESUM 

El desenvolupament de nous compostos anti-VIH és una continua necessitat degut a l’aparició 

de soques resistents i a la toxicitat a llarg terme dels fàrmacs actuals. L’entrada del VIH a les 

cèl·lules requereix la unió de les partícules virals al receptor CD4 i a un coreceptor a través de la 

glicoproteïna viral de l’embolcall gp120, induint canvis conformacionals a gp41 que promouen 

la fusió de la membrana viral i de la cèl·lula hoste. Les soques de VIH es poden classificar en 

diferents tropismes segons quin coreceptor utilitzen: CCR5 (R5), CXCR4 (X4) o ambdós 

coreceptors (R5X4). Així doncs, el procés d’entrada és un pas essencial que ofereix noves 

dianes per agents antivirals. Dels compostos desenvolupats, els antagonistes dels coreceptors 

són dels agents més prometedors. Una altra classe de compostos interessants són les estatines, 

una classe de fàrmacs ben establerts pel tractament de la hipercolesterolèmia. Estudis recents 

suggereixen que les estatines tenen efectes directes contra el VIH tant in vitro com in vivo, 

inhibint l’entrada i la gemmació de virions. L’impacte d’ambdues classes de compostos sobre el 

VIH i les seves conseqüències en els tractaments a llarg terme són encara desconeguts. Vam 

voler caracteritzar les estatines com a agents antiretrovirals, determinar el paper que juguen els 

antagonistes dels coreceptors en l’evolució del tropisme del VIH i caracteritzar el nou 

antagonista de CXCR4 POL3026. Malauradament, no vam poder detectar una activitat antiviral 

significativa amb cap de les estatines avaluades, degut a la gran citotoxicitat en els cultius 

cel·lulars. Tampoc vam poder observar cap efecte de la simvastatina en un estudi pilot en 12 

pacients VIH+ durant 8-12 setmanes. Utilitzant un model in vitro per estudiar el canvi de 

coreceptor de soques R5 a R5X4 o X4, vam observar que la probabilitat de canviar depèn de 

l’aïllat clínic i també de les condicions de cultiu, com la disponibilitat de CCR5. La pressió 

selectiva d’un compost anti-VIH podia modificar l’ús coreceptor. Agents contra CCR5 i els 

inhibidors de la transcriptasa inversa (RT) endarrerien l’emergència de variants R5X4 o X4. Tot 

i això aquestes variants apareixien més ràpid sota pressió dels agents dirigits contra CCR5 que 

dels inhibidors de la RT, mentre que antagonistes de CXCR4 podien prevenir la seva aparició. 

Hem caracteritzat POL3026, que ha demostrat ser un potent inhibidor de soques salvatges y 

resistents a fàrmacs actuals amb fenotip X4 o R5X4. Diferents assajos i el desenvolupament de 

virus resistents ens ha permès confirmar que POL3026 bloqueja la replicació del VIH 

mitjançant la interacció específica amb CXCR4. En conclusió, els nostres resultats demanen 

cautela en l’ús de les estatines per tractar la infecció del VIH i en el risc de que el VIH pot 

escapar dels antagonistes de CCR5 mitjançant la selecció de virus que utilitzin CXCR4. Per una 

altra banda, els antagonistes de CXCR4 són interessants agents antivirals que podrien prevenir 

l’aparició de virus X4 o R5X4. 

 



 

 



 

RESUMEN 

El desarrollo de nuevos compuestos anti-VIH es una continua necesidad debido a la aparición 

de cepas resistentes y a la toxicidad a largo plazo de los fármacos actuales. La entrada del VIH a 

las células requiere la unión de las partículas de VIH al receptor CD4 y a un coreceptor a través 

de la glicoproteina viral de la envuelta gp120, induciendo cambios conformacionales en gp41 

que promueven la fusión de la membrana viral y de la célula huésped. Las cepas de VIH se 

pueden clasificar en distintos tropismos dependiendo de que correceptor utilicen: CCR5 (R5), 

CXCR4 (X4) o ambos (R5X4). Por esto, el proceso de entrada es un paso esencial que ofrece 

nuevas dianas para agentes antivirales. De los compuestos desarrollados, los antagonistas de los 

correceptores son de los más prometedores. Otra clase interesante son las estatinas, fármacos 

bien establecidos para el tratamiento de la hipercolesterolemia. Estudios recientes sugieren que 

las estatinas tienen efectos anti-VIH tanto in vitro como in vivo, inhibiendo la entrada y la 

gemación de viriones. El impacto de ambas clases de compuestos sobre el VIH y sus 

consecuencias a largo plazo son aún desconocidos. Quisimos caracterizar las estatinas como 

agentes antivirales, determinar el papel de los inhibidores de los correceptores en la evolución 

del tropismo del VIH y caracterizar el nuevo antagonista de CXCR4 POL3026. 

Desgraciadamente, no pudimos detectar una actividad anti-VIH significativa con ninguna de las 

estatinas evaluadas, debido a una gran toxicidad en los cultivos celulares. Tampoco detectamos 

ningún efecto de la simvastatina en un estudio piloto con 12 pacientes VIH+ durante 8-12 

semanas. Utilizando un modelo in vitro para estudiar el cambio de correceptor de cepas R5 a 

R5X4 o X4, observamos que la probabilidad de cambio depende del aislado clínico y de las 

condiciones de cultivo, como la disponibilidad de CCR5. La presión selectiva de un compuesto 

anti-VIH puede modificar la evolución del uso de correceptor. Agentes contra CCR5 e 

inhibidores de la transcriptasa inversa (RT) retrasavan la aparición de variantes R5X4 o X4. 

Aúnque estas variantes aparecían antes bajo presión de los agentes dirigidos a CCR5 que de los 

inhibidores de la RT, mientras que antagonistas de CXCR4 podían impedir su aparición. Hemos 

caracterizado POL3026 que ha demostrado ser un potente inhibidor de cepas salvajes y 

resistentes a fármacos actuales con fenotipo X4 o R5X4. Diferentes ensayos y el desarrollo de 

resistencias nos ha permitido confirmar que POL3026 inhibe la replicación del VIH mediante la 

interacción específica con CXCR4. En conclusión, nuestros resultados advierten del uso de las 

estatinas para tratar la infección del VIH y del riesgo de que el VIH pueda escapar de los 

antagonistas de CCR5 seleccionando cepas R5X4 o X4. Por otro lado, los antagonistas de 

CXCR4 son interesantes agentes antivirales que podrían prevenir la aparición de los virus que 

utilizan CXCR4. 
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Introduction 

HIV 

The Human Immunodeficiency Virus (HIV) is the etiologic cause of the acquired 

immunodeficiency syndrome (AIDS) [1-3]. The infection with HIV results in the 

progressive qualitative and quantitative deterioration of the T lymphocyte subpopulation 

that expresses the CD4 receptor, leading to immune deficiency [4]. AIDS could be 

defined by the signs, symptoms, infections and cancers associated with the deficiency of 

the immune system from infection with HIV. 

The estimated number of persons living with HIV worldwide in 2007 was 33.2 

million, 2.5 million of people were newly infected and 2.1 million of people died from 

AIDS. Every day, over 6800 persons become infected with HIV and over 5700 persons 

die from AIDS, mostly because of inadequate access to HIV prevention and treatment 

services. The HIV pandemic remains the most serious of infectious disease challenges 

to public health (http://www.unaids.org/). 

HIV is a member of the genus Lentivirus, part of the family of Retroviridae. 

There are two types of HIV: HIV-1 and HIV-2. HIV-1 is the cause of the majority of 

HIV infections in the World, whereas HIV-2 is confined to West Africa. HIV-1 is 

subdivided in different groups (M, N and O) [5]. Group M is the main cause of the 

pandemic of HIV-1 and it has several subtypes (A-H), being subtype B the predominant 

in Europe, America, Australia and in the major part of Asia. Whereas in Africa subtypes 

A and C are the more extended (reviewed in [5,6]). 

 

Virion structure 

The HIV mature virion is a spherical particle of 145 ± 25 nm of diameter with an 

envelope that contains an inner layer and a cone-shaped protein capsid (Fig. 1A and B) 

[7]. The HIV genome has two copies of single-stranded RNA of positive polarity and is 

enclosed by the capsid, which is formed by the viral p24 protein [7] typical from 

lentivirus. The RNA is tightly bound to the p7 protein from the nucleocapsid and 

enzymes such as the reverse transcriptase (RT), the protease (P) and the integrase (IN). 

Inside the capsid there are also the accessory proteins Vif, Vpr and Nef. Enclosing the 

capsid, there is a matrix formed by the p17 protein and it is surrounded by the envelope, 

a phospholipidic bilayer coming from the plasmatic membrane of host cells. It has 
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embedded viral glycoproteins in form of spikes. Those spikes are composed by the viral 

glycoproteins gp120 (surface glycoprotein) and gp41 (transmembrane glycoprotein) [8]. 

 

 

A B 

Figure 1. Structure of HIV-1 particles. (A) Schematic structure of an HIV particle 

(http://www.pipelinedrugs.com/biotechnology_encyclopedia/hiv.htm). (B) Electro micrograph 

of HIV-1 particles (d’Otago School of Medical Sciences) 

 

Genome 

The integrated form of HIV-1, also known as the provirus, is approximately 9.8 

kilobases (kb) in length [9]. Both ends of the provirus are flanked by a repeated 

sequence known as the long terminal repeats (LTRs), which are required for the 

provirus to integrate to the cell-host DNA and they have binding sites for the 

transcription factors necessary to express the viral genes. 

The RNA genome consists of nine genes (Fig. 2)[10]. Three of these genes (gag, 

pol and env) encodes polyproteins Gag, Pol and Env that are common between all 

retroviruses. Cleavage of those polyproteins give structural proteins: Gag proteins are 

p24 (capsid), p6 and p7 (nucleocapsid) and  p17 (matrix protein); Pol cleavage results in 
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the viral enzymes necessary for replication, the RT (a dimer of P66/55), PR (p11) and 

IN (p32); and Env products are the viral envelope glycoproteins gp120 and gp41. 

 

rev 
tat 

 

Figure 2. HIV genome organization (Armand-Ugón, M.) 
 

 

The six remaining genes encode two regulatory proteins (tat and rev genes) and 

four accessory proteins (vpu or vpx for HIV-2, vpr, vif and nef genes) which affect the 

viral replication and infectivity in different ways [11]: tat encodes two proteins (p16 and 

p14) which are transcriptional transactivators for the LTR promoter binding the TAR 

RNA element [12]. Rev protein (p19) is involved in shuttling RNAs from the nucleus 

and the cytoplasm by binding to the RRE RNA element [11]. Vif protein (p23) is 

associated with viral infectivity, it prevents the action of APOBEC3G (a cell protein 

which deaminates DNA:RNA hybrids and/or interferes with the Pol protein) [13]. Vpu 

protein (p16) influences the release of new virus particles from infected cells [11]. Vpr 

(p14) arrests cell division at G2/M and facilitates the localization of the preintegration 

complex to the nucleus. And Nef protein (p27), which downregulates CD4, the major 

viral receptor and MHC class I molecules. Nef also interacts with SH3 domains [11]. 
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Life cycle 

HIV life cycle is divided in two phases: the early, regulatory phase, from virus entry to 

provirus integration in the genome, and the late, structural phase, from transcription of 

viral genes to delivery of new particles formed (Fig. 3).  

The early stage begins when the virus binds to the cell surface, fuses with the 

cell membrane and the HIV capsid is released into the cytoplasm, where uncoating and 

release of viral nucleic acid take place. Next, the HIV reverse transcriptase enzyme 

copies the single-stranded (+) RNA into double-stranded DNA. This DNA is included 

in the pre-integration complex [14] which is then transported into the cell nucleus by 

Vpr. There, the integration of the viral DNA into the host cell genome is carried out by 

the viral enzyme integrase [15]. This integrated viral DNA may then lie latent for long 

periods of time [16,17].  

 

 
Figure 3. HIV replication cycle (adapted from www.tibotec.com) 
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In the late phase of the cycle, there is the transcription of the proviral DNA using 

cellular machinery, process trans-activated by Tat. The resulting RNA is spliced into 

different transcripts: whole RNA molecules (genomic-length) and RNA molecules that 

have been spliced one or several times [18]. Rev mediates the transport of those RNAs 

to the cytoplasm where the different viral protein precursors are translated and directed 

to the plasmatic membrane. Assembly of those protein precursors together with two 

molecules of viral RNA will end with the budding of new viral particles in the regions 

of the membrane that expresses Env [19]. Finally, the protease induces the proteolysis 

of gag-pol precursor obtaining mature viral particles with the capacity of beginning new 

infectious cycles [20].  

 

The clinical course of infection 

HIV-1 infection begins with transmission either by mucosal or parenteral exposure to 

the viruses. Natural progression of HIV-1 infection in vivo is associated with a 

progressive decrease of the CD4+ T cell count and an increase in viral load (VL, copies 

of viral RNA/ml of plasma), but it can be divided in three phases. 

 

 

Figure 4. Graph showing HIV viral load and CD4+T cell levels over the course of an 

untreated infection [21] 
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Acute infec ion t

The first stage of infection, the primary or acute infection, lasts between 2 and 4 weeks. 

It is a period of rapid viral replication that immediately follows the individual's 

exposure to HIV, leading to a peak in the amount of virus in plasma that reaches a VL 

of several million copies/ml. This allows the virus to spread through the body [22], but 

is accompanied by a strong immune response [23] that partially controls virus 

expansion and induces a decrease in VL. This acute viremia is associated with the 

activation of CD8+ T cells, which kill HIV-infected cells, and subsequently with 

antibody production or seroconversion. CD4+ T cell count presents a moderate decrease 

during this phase but returns to normal levels (around 800 cells/µl, whereas the normal 

blood value is 1200 cells/µl). During this stage, the patient remains asymptomatic or 

with mild symptoms, similarly to other infection processes. 

 

Chronic asymptomatic infection 

This stage may last several years and is characterized to be an asymptomatic phase, in 

which the immune system can maintain the viral load to low levels. However, there is 

continuous viral replication. Virologic set point reached at this moment is a good 

marker of the posterior rate of disease progression [24]. There is also a sustained 

depletion of CD4+ T cells that induces the proliferation of new T cells. However this 

continuous proliferation and the activation of the immune system finally leads to a 

progressive immunodeficiency that takes to the last phase of the infection. 

 

Advanced disease and AIDS 

This phase is characterized by low numbers of CD4+ T cells and by an exhaustion of 

the immune system, so it is unable to replace the cells that are destroyed [25]. CD4 

count falls to less than 200 cells/ml, while the virus amount in plasma increases [26]. 

There is a failure of immune system that allows for the appearance of opportunistic 

infections and cancers that threaten health and even life.  

Before effective treatments were available, the average time for the progression 

to death was about 10 years for most patients [27]. However, a few of them called long-

term non-progressors (LTNP) remain asymptomatic with no signs of disease 

progression in the absence of treatment for at least 10 years. 
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HIV ENTRY 

The process of viral entry is a sequential process that requires specific interaction of the 

envelope with specific cell surface receptors and involves fusion of the viral envelope 

with the host cell membrane.  

 

 
Figure 5. Mechanism of HIV entry [28]  

 

The first event is attachment of the virus to host cell surface, which is rather 

unspecific and can be facilitated by host cell proteins present in both the viral envelope 

and target cell surface [29]. Next, trimeric gp120 on the surface of the virion binds to 

CD4 receptor on the surface of the target cell, inducing a conformational change that 

allows the binding of the gp120 through V3 to a coreceptor, mainly CCR5 or CXCR4. 

This interaction triggers structural changes in gp41. Assembled as a trimer, this coiled-

coil protein, projects three peptide fusion domains that "harpoon" the lipid bilayer of the 

target cell. The fusion domains then form hairpin-like structures that draw the virion 
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and cell membranes together to promote fusion [30], leading to the release of the viral 

nucleocapsid into the cell cytoplasm.  

Lipid rafts are membrane domains enriched in cholesterol and sphingolipids that 

are though to play a role in HIV-1 entry as well as in other stages of HIV-1 replication 

cycle [31]. For instance, lipid rafts have been suggested to aggregate CD4 and the HIV 

coreceptors, necessary for viral entry. Therefore HIV-1 entry requires adequate 

cholesterol levels in both host cell and viral membranes. Also, an actin cytoskeleton 

rearrangement seems to be necessary for the entry step [32]. 

 

HIV receptors 

In 1984, the CD4 molecule was identified as necessary for HIV-1 replication within 

host cells [33]. Later studies showed that CD4 alone was not enough for HIV-1 

infection of a host cell and then the chemokine receptor CXCR4 [34] and later, CCR5 

[35] were identified as major coreceptors. 

 

CD4 
CD4 is a transmembrane glycoprotein of the immunoglobulin superfamily. It is mainly 

expressed as a 55 kDa monomer, but CD4 dimers and tetramers (110 and 220 kDa) 

have also been found to be expressed at the cell surface of T helper cells, regulatory T 

cells, monocytes, macrophages, and dendritic cells. The CD4 receptor normally 

functions as a co-ligand and coreceptor of the major histocompatibility complex class II 

(MHC II) molecule during T cell recognition of a foreign antigen, where it stabilizes the 

MHC II-peptide-T-cell receptor complex and initiates intracellular signal transduction 

leading to T cell activation [36]. The extracellular portion of CD4 is composed of four 

immunoglobulin (Ig)-like domains, designated D1 to D4, being D4 the membrane 

proximal domain. CD4 uses its D1 domain to interact with the β2-domain of MHC class 

II molecules.  

CD4 is the primary receptor used by HIV-1 to gain entry into host T cells [33]. 

The HIV-1 particles bind to CD4 with the envelope glycoprotein gp120 through the D1 

domain [37], leading to the conformation change of the viral gp120 protein that allows 

the binding to the coreceptor. Nevertheless, CD4-independent infections have been 
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described for SIV [38], HIV-1 [39,40], HIV-2 strains [41] and also some clinical 

isolates. 

 

Coreceptors: The chemokine receptors CCR5 and CXCR4 

Chemokine receptors have a seven transmembrane structure and are coupled to G-

protein. The ligands for these receptors are chemokines, which are small molecules (8 -

10 kD) in the cytokine family that promote chemotaxis and cellular activation. 

Following interaction with their specific chemokine, an intracellular signaling cascade 

is initiated via a G-protein release from the intracellular domain of the receptor [42] and 

triggers a flux in intracellular calcium ions (Ca2+) (calcium signaling). The N-terminus 

of the receptor is extracellular and participates in binding of their ligands, whereas the 

C-terminus is intracellular and serves as the site for β-arrestin binding. β-arrestins 

facilitate a G-protein independent cell signaling through binding the chemokine receptor 

to clathrin for endocytosis and subsequent recycling [42-44]. 

Chemokine receptors are divided into different families, CXC chemokine 

receptors, CC chemokine receptors, CX3C chemokine receptors and XC chemokine 

receptors that correspond to the 4 distinct subfamilies of chemokines they bind. Several 

chemokine receptors from different types, such as CCR1, CCR3, CCR2b, CCR8, 

CX3CR1 or CCR9 [45-47] can function as HIV coreceptors in cultured cells, but only 

two are known to play a role in vivo: CCR5 and CXCR4 [45].  

CCR5 (CD195), a CCR chemokine receptor, is expressed on effector and 

memory T cells, natural killer cells, antigen presenting cells and microglia [48,49]. Its 

natural ligands include chemokines CCL3, CCL4 and CCL5, which have also the 

nomenclature MIP-1α (macrophage inflammatory protein), MIP-1β, and RANTES 

(regulated on activation normal T-cell expressed and secreted), respectively [50]. CCR5 

is involved in inflammatory responses to infection, in the initiation and the 

amplification of the immune response [51-53].  

HIV gp120  bind to the outer surface of CCR5, mainly by making contact with 

the N-terminus (Nt) and the second extracellular loop (ECL) of CCR5 [48,54,55]. 

Chemokines CCL3, CCL4 and CCL5 have been shown to be potent suppressors of HIV 

infection [56]. Also a 32 base pair deletion in the CCR5 gene, known as ∆32, was 

shown to protect against HIV infection [57] and slows disease progression. The mutant 
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allele codes for a dysfunctional truncated protein that is not expressed at the surface of 

the cell. Although homozygosis has been associated with an increased risk of 

symptomatic West Nile virus infection [58], this deletion seems not to have obvious 

effect on health. 

CXCR4 (CD184) a CXC chemokine receptor called fusin, is an α-chemokine 

receptor specific for CXCL12, previously called stromal-derived-factor-1 (SDF-1α). It 

is expressed on a multitude of tissues and cell types and it has been shown to be 

involved in the homing and trafficking of leukocytes and haematopoietic progenitor 

cells, brain development, vascularisation, neonatal development, T-cell activation and 

migration at sites of inflammation and hematopoiesis [53,59]. Moreover, CXCR4 an its 

ligand has been described to be involved in different types of cancer, in the metastasis 

and angiogenesis [60]. 

Related to HIV infection, CXCL12 has been shown to have anti-HIV activity in 

vitro [61]. Several residues on CXCR4 transmembrane (TM) and ECL2 domains are 

involved in the interaction with HIV-1 gp120. Structure-function studies of CXCR4 

have shown that there is a significant overlap between HIV-1 and chemokine CXCL12 

functional sites [62], but particular mutations at the ECL2 on the extracellular regions of 

CXCR4 could reduce HIV-1 entry without impairing CXCL12 binding and signaling 

[63]. 

 

Envelope glycoproteins 

The Env glycoprotein of HIV is composed by a surface subunit (gp120) and a 

transmembrane subunit (gp41) which form a trimeric functional unit consisting of three 

molecules of gp120 exposed on the virion surface and associated with three molecules 

of gp41 inserted into the viral lipid membrane [8,64,65]. It is synthesized from singly 

spliced mRNA as a 160 kD polyprotein precursor molecule (gp160) which is 

proteolytically processed by a host protease. First, it is synthesized in the endoplasmic 

reticulum (ER) and it is co-translationally glycosylated, then, gp160 monomers 

oligomerize, a process required for transport to the Golgi Complex. Once in the Golgi, 

Env undergoes modification of the N-glycosylation acquired at the ER. Also in the 

Golgi, gp160 undergoes proteolysis, generating the gp120 and gp41 subunits. Finally, 

the oligomeric, non-covalently associated gp120-gp41 complexes are transported to the 

cell surface, where they are incorporated into budding virions.  

 12 
 



Introduction 

gp120 
HIV gp120 is the surface subunit of Env and it is the main antigen promoting 

neutralizing antibodies [66]. It is highly variable between HIV isolates and this 

variability is not uniform within gp120. Assessment of the amino acid sequence of 

different HIV-1 strains led to the identification of five hypervariable domains (V1-V5) 

which are flanked by more conserved regions (C1-C5) [67]. Through gp120, there are 

series of highly conserved Cys residues, which are involved in nine intramolecular 

disulfide bonds crucial for the tertiary structure and function of Env [68]. The different 

regions are organized into an inner and an outer domain [37], connected by a four-

stranded antiparallel β-sheet, called the bridging sheet. The four first variable regions 

form loops that remain exposed to the surface of the glycoprotein, whereas the most 

conserved regions are organized below them. At the inner part of gp120, there are the 

gp41 binding domains, composed by C1 and C5 regions. The HIV-1 gp120 

glycoprotein is extensively glycosylated; in fact, approximately half the molecular mass 

of gp120 is composed of oligosaccharides [66,69]. These glycosylations are required for 

infectivity [70,71] and avoid the recognition of gp120 by the immune system [70].  

Interactions between HIV and the cellular receptor and coreceptors, are mediated 

through specific domains of gp120. The gp120 determinants of CD4 binding map to C3 

and C4 [64,72], whereas the V3 loop is the responsible for coreceptor interaction and it 

is an important determinant of the HIV-1 tropism [73]. To a less extent, V1/V2 and 

other regions have been described to have a role in coreceptor use.  

The V3 loop is an approximately 35 amino acids long, glycosylated structure 

with a disulfide bond at the base and its sequence presents a high diversity between 

isolates [74,75]. The structure of V3 in the context of core gp120 bound to CD4, which 

has been described through crystal structures, reveals that V3 emanates from the gp120 

outer domain and it acts as a molecular hook when it is going to interact with the 

coreceptor [76]. It can be subdivided into three structural regions (Fig. 7) [76]: a 

conserved base, which forms an integral portion of the core; a flexible stem, which 

extends away from the core; and a crown or tip, that includes the highly conserved 

GPGRAF sequence and that has a β-turn conformation [76-78]. Features of gp120 

important for coreceptor binding have been mapped to the V3 tip, and the gp120 core 

around the bridging sheet (the V3 base, and neighboring residues) [79-81]. Analysis of 

these two regions indicates that they are conserved in both sequence and structure [76]. 
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Figure 7. Crystal Structure of gp120 with the V3 . The V3 region is colored in Amber [78] 
 

 
 

 
Figure 8. Model of the conformational change in the gp120 trimer induced by CD4 
binding [65]. (A, C) gp120 unligated state, (B, D) CD4-bound state. (A, B) shown as top view 
and (C,D) shown as front view. The gp120 core, CD4, V1/V2 and V3 stems are shown in white, 
yellow, red and green, respectively.  
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Recent results using cryo-electron tomography combined with three-dimensional 

image classification and averaging, showed that upon gp120-CD4 binding, the Env 

trimer opens and makes way for exposure of the central gp41 stalk. The V3 region is 

realized from the lateral edge of the apex of the spike to directly point towards the target 

cell, while the V1/V2 regions as well as the CD4 binding sites move away from the 

centre of the spike (Fig. 8) [64,65,82]. These observations suggest that CD4 binding 

draws the spike closer to the target cell membrane. 

 
gp41 

HIV gp41 is the transmembrane subunit of Env and is critical for the fusion of the viral 

and cellular membranes. Structurally, gp41 consists of an extracellular, transmembrane 

(TM) and a cytoplasmic (CP) domain. The N-terminal fusogenic domain is at the 

external part of the virus and the C-terminal is in the inner side. Its extracellular domain 

contains four major functional regions. At the N-terminal region there is a hydrophobic, 

glycine-rich fusion peptide (FP) that will be anchored to the membrane of the host cell. 

Then, there are two regions with pseudo-repeated sequences of seven residues that form 

two α-helices: the N-terminal heptad repeat (NHR or HR1) and the C-terminal heptad 

repeat (CHR or HR2). Contiguously, there is a tryptophan-rich (TR) region. 

In early studies, several peptides derived from the proteolysis of NHR (N-

peptides) and CHR (C-peptides) were identified to have potent anti-HIV activity 

[83,84]. This led to a new class of antiretrovirals, which prevents membrane fusion, 

being the C-peptide T-20 (Fuzeon, enfuvirtide), the first anti-HIV agent targeting HIV 

entry to be approved for clinical use [85].  

The finding of these anti-HIV peptides also provided important information to 

explore the structure of the gp41 molecule [86]. Some studies identified an alpha-helical 

domain within gp41 composed of a trimer of two interacting peptides. The crystal 

structure of this complex, composed of the peptides N36 and C34, is a six-helical 

bundle. Three N36 helices form an inner, parallel coiled-coil trimer, while three C34 

helices pack in an oblique, antiparallel manner into highly conserved, hydrophobic 

grooves on the surface of this trimer [86,87]. Therefore, upon gp120 binding to CD4 

and a coreceptor (CCR5 or CXCR4), gp41 changes its conformation to a fusion-active 

state characterized by the formation of a pre-hairpin intermediate, with NHR regions of 

gp41 forming a trimeric coiled coil structure that leads to insertion of the fusion peptide 
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into the target cell membrane. This allows the rearrangement of gp41 into a hairpin 

structure containing a thermodynamically stable six-helix bundle, by folding back the 

CHR helices over the hydrophobic grooves of the NHR coiled coil, that tethers together 

viral and cellular membranes allowing them to fuse [30]. 

 

HIV TROPISM 

HIV-1 variants can be classified into those that exclusively use CCR5 (R5 or CCR5-

tropic viruses), CXCR4 (X4 or CXCR4-tropic viruses) or both coreceptors (R5X4 or 

dualtropic viruses) (Fig. 9) [88]. Due to the difficulty to distinguish between R5X4 

variants and mixtures of R5 and X4 viruses, the term dual-mixed (D/M) is commonly 

used. Previously, X4 strains were known as SI (syncytium-formation), whereas R5 

strains were denominated NSI (non-syncytium-formation) depending on their capacity 

to form syncytia in the CXCR4+ MT-2 cell cultures (MT-2 assay). 

The coreceptor use is determined by the amino acid sequence of HIV gp120, in 

particular within V3 and V1/V2 loops, and less frequently within other regions [73]. For 

example, increase of positive net charge of V3 [81], the loss of N-glycosylation site [89] 

or the mutations S306R, D320R/Q, D324N [80,81] are associated to a coreceptor switch 

from CCR5 to CXCR4 usage. Other conserved changes in envelope during coreceptor 

switch have been described [90]. 

R5 viruses are characteristic of the asymptomatic stage of infection [91] and are 

selectively transmitted between individuals [92,93]. Over the course of the infection, the 

coreceptor usage of HIV changes from CCR5 to CXCR4 in 50% of infected individuals 

[94], although a higher percentage has been suggested on the basis of studies that used 

more sensitive detection techniques. In fact, increasing data seems to support the 

observation that the majority of patients carry a mixture of R5 and X4 using HIV strains 

[95-100]. The detection of X4 viruses has been associated with accelerated CD4+ T-cell 

decline and progression to AIDS [94,101], but the mechanisms leading to the 

emergence of X4 variants are not fully understood and many questions remain 

unanswered. 
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Figure 9. HIV-1 tropism [28] 

 

The appearance of CXCR4 using viruses in vivo arises only after several years of 

infection. This is surprisingly slow given that changing only a few residues in gp120 is 

sufficient to convert an R5 virus into an R5X4 or X4 virus in vitro [80,81,102-104] and 

that such changes must be occurring constantly in vivo given the high replication rate of 

HIV and the error rate of the reverse transcription [105]. These observations imply that 

a selection pressure acts against the transition to CXCR4 usage in vivo and it is not clear 

if it has virological or immunological basis [106]. For instance, transitional R5 to X4 

mutants have a diminished replication fitness, less-efficient coreceptor use, and unique 

mutational pathways, what could explain the long delay from primary infection until the 

emergence of CXCR4-using viruses [90,107]. On the other hand, an inhibitory role of 

antiviral immunity in HIV-1 coreceptor switch has been suggested [108-110]. 
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Alternatively, CCR5 and CXCR4 are preferentially expressed in memory and naïve T 

cells, respectively, and a change in the relative abundance of memory to naïve T cells 

may favor the emergence of X4 viruses later during the course of disease [111].  

It is unclear, if the emergence of X4 strains is a cause or consequence of the 

progression to AIDS. There are descriptions of in vitro cytopathicity of X4 viruses 

[112,113]. Also recent studies show that X4 strains appear to emerge well before AIDS 

onset, and therefore, are likely to be etiologically linked to CD4+ T cell decline and 

progression to AIDS [114]. The emergence of X4 strains reflects an increased risk of 

HIV-1 disease progression. Then, it is suggested that detection of X4 strains, should be 

considered as a potential biomarker to guide clinical management throughout HIV 

infection [115]. 

 

ANTI-HIV TREATMENT 

Since 1996 antiviral therapy consisted in the so called highly active antiretroviral 

therapy (HAART) which consists in the combination of three or more anti-HIV 

compounds targeting at different levels the HIV replication cycle. For a long period of 

time the drugs employed in HAART were viral enzyme inhibitors, such as the reverse 

transcriptase (RT) inhibitors (nucleoside analogues or non-nucleoside RT inhibitors, 

NRTI and NNRTI respectively) or protease inhibitors (PI).  

The current antiretroviral treatment has reduced morbidity and mortality in HIV-

1 infected individuals. However, it is often limited by the emergence of drug-resistant 

HIV-1 strains. HIV infection is characterized by a high replication rate [105] and 

together with the extremely error-prone process of reverse transcription, numerous 

mutations may occur during this step. Such mutations generate a genetically diverse 

population within an infected person that may lead to the selection of viruses better 

replicating in a drug-containing environment. For this reason when treatment is not able 

to totally inhibit viral replication, a resistant viral population may emerge. Moreover, all 

the anti-HIV compounds present long-term toxicity and adverse effects [116], lowering 

the adherence to treatment, what leads to a suboptimal concentration of the compounds 

and subsequent viral failure with development of resistances. The drug-resistance 

emergence together with the latency of HIV [117] and the presence of viral reservoirs 
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[117] where the drugs cannot achieve the optimal concentrations, makes the current 

treatments unable to eradicate the virus from infected individuals. 

Recently a large number of inhibitors targeting different steps of HIV cycle have 

been developed, mainly targeting HIV entry (explained below). The last inhibitor to be 

approved for clinical treatment by the Food and Drug Administration (FDA) in October 

2007 was the first integrase inhibitor raltegravir [118]. 

 

Entry inhibitors 

HIV-1 entry into host cells is an essential step that offers several potential new targets 

for antiviral agents [28]. Up to the present, two entry inhibitors have been approved for 

HIV treatment, whereas some others are in clinical trials (Table 1). Enfuvirtide (T-20), a 

fusion inhibitor, was the first entry inhibitor to be approved by the FDA and in April 

2007 a CCR5 antagonist, maraviroc, was approved for treatment of drug-experienced 

patients. 

 

 

Table 1. Entry inhibitors in clinical trials. 
 

Compound Target Status (last update) Developer 

TNX-355 CD4 Phase II  Tanox 

Sifurvitide gp41 Phase I  Fusogen 

AK602 CCR5 Phase I Kumamoto University 

PRO140 CCR5 Phase II Progenics 

Vicriviroc (SCH-D) CCR5 Phase III  Schering-Plough 

INCB9471 CCR5 Phase II  Incyte Corporation 

TAK-652/TBR-552 CCR5 Phase I  Takeda 

HGS004 CCR5 Phase I  Human Genome Sciences 

SP01A cholesterol Phase II/III  Samaritan Pharma 

 
 
 

 19



Introduction 

Attachment Inhibitors 

There are several compounds inhibiting the attachment of HIV particles to the cell 

surface. Polyanions are molecules of different structures and sizes, such as dextran 

sulfate (DS) and heparan sulfate (HS), that have been shown to block HIV-1 replication 

through their capacity to block the attachment of free virions to CD4+ cells. However, 

some results suggest that HS may bind to the HIV coreceptor binding site of gp120 and 

block virus–coreceptor interactions. Thus, some polyanions may have a secondary 

mode of action at a later stage than virus–cell attachment [119]. Another well-known 

polyanion is zintevir (AR177 or T30177), which has 17 nucleotides and that first, it was 

believed to inhibit the HIV integrase enzyme, but later it was observed to inhibit at the 

gp120 level [120].  

 

Binding inhibitors 

The mechanism of action of some binding inhibitors, such PRO542, TNX355 and 

BMS488043, is the inhibition of the gp120/CD4 interaction.  

First efforts to block HIV entry implicated the use of soluble CD4 (sCD4) [121]. 

It binds to the gp120 from the HIV particles, inhibiting its binding to the cellular CD4 

receptor. However, in clinical trials it did not have good results due to the lost of anti-

HIV activity against clinical isolates compared to the laboratory adapted strains. 

Later, some mimics of CD4 receptor were developed, being CD4M33 the most 

promising candidate [122]. It is a 27-amino acid CD4 mimic that was designed using 

structural information on a CD4-gp120-17b antibody complex. CD4M33 presents 

optimal interactions with gp120 and binds to viral particles and diverse HIV-1 

envelopes with CD4-like affinity, including primary patient isolates that are generally 

resistant to inhibition by sCD4. Furthermore, CD4M33 possesses functional properties 

of CD4, including the ability to unmask conserved neutralization epitopes of gp120 that 

are cryptic on the unbound glycoprotein. CD4M33 is a prototype of inhibitors of HIV-1 

entry and, in complex with envelope proteins, it is a potential component of vaccine 

formulations, or a molecular target in phage display technology to develop broad-

spectrum neutralizing antibodies [122,123]. 

PRO542 (CD4-immunoglobulin G2) [124] from Progenics is a tetravalent CD4-

immunoglobulin fusion protein comprising human IgG2 in which the Fv portions of 
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both heavy and light chains have been replaced by the D1 and D2 domains of human 

CD4. It broadly neutralizes primary HIV-1 isolates, by binding to the viral surface 

glycoprotein gp120 and blocking attachment and entry of the HIV particles. In clinical 

trials it proved to have anti-HIV activity and to be well tolerated [125]. However, PRO-

542 is no longer under active development for the treatment of HIV infection. 

BMS-378806 (Bristol-Myers Squibb) is a small molecule HIV-1 inhibitor that 

blocks viral entrance to cells. The compound exhibits potent inhibitory activity against a 

panel of R5, X4, and R5/X4 HIV-1 laboratory and clinical isolates of the B subtype in 

culture assays [126]. The median 50% effective concentration (EC50) calculated was 

0.04 µM. Mechanism of action studies demonstrated that BMS-378806 binds to gp120 

and inhibits the interactions of the HIV-1 envelope protein with cellular CD4 receptors. 

BMS-378806 displays favorable pharmacological traits, good oral bioavailability in 

animal species, and a clean safety profile in initial animal toxicology studies [126]. 

BMS-488043 like its predecessor BMS-378806, targets the initial gp120-CD4 

interaction of viral entry and shows potent antiviral activity against R5 and X4 tropic 

laboratory and clinical isolates [126-128]. With improved pharmacokinetic properties, 

BMS-488043 demonstrated antiviral efficacy and a favorable safety profile in HIV-

infected subjects [129]. Nevertheless, in August 2004, development of this drug was 

halted by its manufacturer and they will continue studying other drugs that act very 

much like BMS-488043, in order to maximize their effectiveness. 

The monoclonal antibody (mAb) TNX-355 (formerly known as Hu5A8) is a 

humanized IgG4 mAb that inhibits HIV-1 entry by an unique mechanism [130-132]. 

This antibody, like its murine progenitor (Mu5A8), binds to extracellular domain 2 of 

rhesus and human CD4, thereby preventing postbinding entry of the virus into CD4+ 

cells. Humanized and murine mAbs inhibit the in vitro infectivity of diverse primary 

isolates of HIV-1 with EC50 values of 0.0004 - 0.152 mg/ml [130,131]. The antibody 

binding site on CD4 is distinct from the site required for the binding of HIV-1 envelope 

gp120. Also, unlike anti-CD4 antibodies that target domain D1, Mu5A8 and TNX-355 

do not interfere with immunological functions that involve antigen presentation. 

Therapeutic immunoglobulin molecules typically have long half-lifes, which permits 

relatively infrequent dosing. Results from two clinical trials demonstrate the feasibility 

of inhibiting HIV-1 in vivo by a CD4-specific mAb [132,133], however, a more 

definitive assessment of the safety and therapeutic potential of TNX-355 is needed. 
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Before the drug can move into phase III clinical trials, the FDA has requested additional 

early-stage phase II studies to determine the correct dose of the drug.  

 

CCR5 coreceptor inhibitors 

Individuals homozygous for the ∆32 mutation of CCR5 (explained in Coreceptors 

section) are almost completely resistant to HIV infection and this mutation seems not to 

have obvious health consequences. These observations suggested that small molecules 

that could prevent HIV interaction with CCR5 could form a promising class of 

antiretroviral drugs and several compounds targeting CCR5 were developed.  

After the discovery of CCR5 as an HIV coreceptor and that its natural ligands 

CCL3, CCL4 and CCL5 had an anti-HIV effect by internalizing the chemokine 

receptor, various modified chemokines were designed. (AOP)-RANTES, (NNY)-

RANTES and (PSC)-RANTES induce the internalization of CCR5 and inhibit the 

recycle to the surface of the cells [134,135]. 

The more developed CCR5 targeting compounds are the small-molecule CCR5 

antagonists. These agents have shown significant potency in cell culture across diverse 

strains and clinical isolates with nanomolar EC50  [136-140] and have shown short-term 

antiretroviral activity and efficacy in clinical trials [141-144]. Apparently they inhibit 

HIV replication by binding to a pocket within the transmembrane helices of the 

receptor, which alter extracellular CCR5 conformation [145]. The names of agents that 

have progressed to clinical trials end in the suffix-viroc (e.g., aplaviroc) to denote their 

action of viral receptor occupancy. 

Takeda Pharmaceutical Company Ltd. (Osaka, Japan) was the first one to 

describe a non-peptidic small-molecule able to inhibit R5 viruses by targeting CCR5. 

This CCR5 antagonist was TAK-779 [136] and it was a highly potent inhibitor in vitro 

at nanomolar concentrations. However, based on TAK-779, TAK-220 and TAK-652 

were developed in order to improve bioavailability. Both compounds showed a potent 

HIV inhibition at nanomolar concentrations (EC50 0.5-1.7 nM and 0.5-2.4 nM) in 

PBMC and oral bioavailability [146,147]. A phase I study was completed for TAK-652 

showing favorable pharmacokinetics and safety data [146]. Tobira Therapeutics 

(Princeton, NJ, USA) is continuing TAK-220 and TAK-652 development through phase 

I clinical trials under the names of TBR-220 and TBR-652, respectively. 
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After the description of TAK-779, Schering-Plough (Kenilworth, NJ, USA) 

developed SCH-C or SCH351125 [148]. It demonstrated a broad and potent antiviral 

activity against R5 viruses [148] and showed in vivo efficacy in clinical trials (0.5-1log 

decrease in VL in 10/12 subjects at a dose of 25 mg twice/day), providing proof of 

concept for CCR5 antagonists as valid inhibitors in vivo. Nevertheless, it caused 

prolongation of the cardiac QT interval. This resulted in an improved derivative, 

SCH417690 or SCH-D, later named vicriviroc, that continued further development. It 

had 2- to 40-fold more potency than SCH-C, inhibiting a broad panel of R5 primary 

isolates in vitro at nanomolar concentrations and it had an improved safety profile and 

an excellent oral bioavailability [139]. Vicriviroc as a monotherapy in treatment-naïve 

patients showed reductions of 1.5 and 1.6 log in VL at doses of 25 mg and 50 mg 

twice/day [149]. In a phase II study, treatment-naive patients (n=92) with R5 viruses 

received vicriviroc monotherapy at 25, 50 or 75 mg/day for 2 weeks, and then combivir 

(AZT/3TC) was added (placebo consisted in efavirenz plus combivir). Treatment with 

vicriviroc led to a 0.9-1.3 log greater decrease in VL than in patients receiving placebo 

[150]. In the ACTG A5211 study, in treatment-experienced patients (n=118) decreases 

in mean VL were greater in the vicriviroc groups compared to the placebo ones: 1.51, 

1.86 and 1.68 log (for 5 mg, 10 mg and 15 mg doses, respectively) versus 0.29 for 

placebo [142]. Vicriviroc is currently at phase III trials. 

Another CCR5 antagonist, aplaviroc (APL/AK602/ONO4128/GSK-873140), 

was initially designed by the Japanese company Ono Pharmaceuticals (Osaka, Japan) 

[151], but was further developed by GlaxoSmithKline (Brentford, Middlesex, UK). 

Aplaviroc showed high antiviral potency and very slow receptor dissociation [151,152]. 

In an early phase study, it proved to reduce the mean VL by a 1.66 log after 10 days 

with a maximum concentration of 600 mg twice/day [153]. However, later clinical trials 

were stopped at phase IIb/III because of severe hepatotoxicity [154]. 

Maraviroc (MVC/UK-427,857) [137] was developed by Pfizer Inc. (kent, UK). 

This small molecule CCR5 antagonist is currently approved for the treatment of drug-

experienced HIV+ patients. MVC demonstrated excellent antiviral activity against R5 

viruses in vitro [137] and in clinical trials it demonstrated to be a valuable treatment 

option for patients harboring R5 HIV viruses. Two phase II studies addressed the 

efficacy of short-term (10 days) MVC monotherapy in 82 R5 tropic HIV patients. With 

one exception, all patients had a decrease in VL > 1.0 log copies/ml [155]. In the phase 
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II/III MOTIVATE 1 and 2 studies (n=1049) treatment with maraviroc plus optimized 

background therapy (OBT) was associated with significantly greater virologic and 

immunologic efficacy at 48 weeks and had a similar safety profile, as compared with 

placebo plus OBT groups [156]. More patients receiving maraviroc once or twice daily 

had HIV-1 RNA levels of less than 50 copies/ml (42% and 47%, respectively, vs. 16% 

in the placebo group in MOTIVATE 1; 45% in both maraviroc groups vs. 18% in 

MOTIVATE 2). The change from baseline in CD4 counts was also greater with 

maraviroc once or twice daily than with placebo [156]. 

INCB9471 [157] of Incyte Corporation (Wilmington, Delaware, USA) is being 

developed as a once-daily treatment for HIV, it has been studied at three doses in a 

phase IIa 14-day trial in which the compound provided potent and prolonged antiviral 

effects in HIV patients with R5-tropic viruses. It was well-tolerated at all three doses 

[158]. The compound is currently being evaluated in several drug interaction trials to 

support the initiation of phase IIb six-month trials in treatment-experienced HIV 

patients. 

Several monoclonal antibodies targeting CCR5 have also been described, but 

only two have been tested in clinical studies: CCR5mAb004/HGS004 of Human 

Genome Sciences (Rockville, MD, USA) and PRO140 of Progenics Pharmaceuticals 

(Tarrytown, NY, USA). 

HGS004 is a fully human mAb that specifically binds to the ECL2 of CCR5 and 

inhibits R5 HIV-1 entry and chemokine signaling with similar efficiencies [159]. It 

demonstrated to have anti-R5 HIV effects in vivo and to be safe and well tolerated in 

phase I trials [160] . 

PRO140 is an humanized mouse-derived (PA14) mAb, which binds to an 

epitope spanning ECL2 and Nt of CCR5 [161]. The mouse mAb PA14 and PRO140 

have shown a broad and potent activity against R5 viruses in preclinical studies [161]. 

In a phase I study, PRO140 proved to have a potent, prolonged, and dose-dependent 

antiviral activity with minimal toxicity in patients harboring R5 HIV-1 viruses [162]. 

PRO140 is considered as a fast-track product by the US Food and Drug Administration.  

CCR5 mAb and small-molecule CCR5 antagonists have different binding sites 

and modes of action. PRO140 binds to the Nt and ECL2 of CCR5 and acts as a direct 

competitive inhibitor of HIV binding. Conversely, the small-molecule antagonists bind 
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in a hydrophobic pocket of CCR5 formed by transmembrane helices and seems to act 

through allosteric effects. For this reason viruses resistant to CCR5 antagonists could 

maintain sensitivity to PRO140 [163-165] and in vitro assays suggest that they have 

synergistic effects [166,167]. 

 

CXCR4 coreceptor inhibitors 

Bicyclams were the first class of CXCR4 agents described to block HIV replication 

[140,168-170], but a number of different agents including synthetic peptides, peptoids, 

arginine conjugates, polyanions or CXCL12 derived-peptides have been developed 

since then. 

The bicyclam AMD3100 (Mozobil™, plerixafor), previously called JM3100 

and SID791, was the first non-peptide, small-molecule CXCR4 inhibitor described 

[140,168-171]. It inhibited HIV-1 and HIV-2 strains with an EC50 of 1-10 nM and also 

proved to be potent against R5X4 strains in PBMC. It showed specific interaction with 

CXCR4 and blockage of calcium signaling, chemotaxis and CXCR4 down-regulation 

induced by CXCL12. Clinical studies with AMD3100 in HIV-infected patients 

provided evidence for CXCR4 antagonism to have a clinical anti-HIV effect [172]. 

Nevertheless these studies had to be stopped due to undesired cardiac effects. Further 

development of this compound gave the non-cyclam inhibitor AMD070 or AMD11070 

(AnorMED), which presented a reduction in both molecular size and charge and made 

it the first orally bioavailable small-molecule CXCR4 inhibitor. AMD070 potently 

inhibited X4 viruses with an EC50 of 1-15 nM in T cell lines and PBMC. In a phase 

Ib/IIa, it demonstrated to be active in HIV-infected patients harboring CXCR4-using 

viruses [173]. It was evaluated in a pilot monotherapy study with patients harboring X4 

or R5/X4 viruses [173], but was suspended after the observation of liver histology 

changes and liver and retinal toxicity in animal research studies. However, a greater 

than 1 log reduction of X4 was observed in 4 out of 9 patients, and 3 out of the 4 

responders switched from dual/mix virus to R5, providing proof of concept that 

CXCR4 antagonists can inhibit CXCR4-using viruses in vivo. 

Other compounds have been designed based on AMD3100. AMD3465 [174] is 

a cyclam that fully conserves all the biological properties of AMD3100, whereas it 

lacks some structural constrains such as the high positive charge that gives poor oral 

bioavailability. Compared to the bicyclam AMD3100, AMD3465 was even 10-fold 
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more effective as a CXCR4 antagonist. Recently, another group, discovered novel 

potent CXCR4 inhibitors from a library of non-cyclam polynitrogenated compounds 

that preserved the main features of AMD3100 [175]. 

Cyclam CXCR4 inhibitors, similarly to small-molecule CCR5 antagonists, are 

proposed to bind to the TM regions of the receptor, which consequently causes a 

conformational change leading to the disruption of receptor function and avoiding 

recognition by gp120 from HIV particles. However, these CXCR4 inhibitors have 

potential for multiple ionic interactions whereas the CCR5 inhibitors form mainly 

hydrophobic interactions with CCR5 [176]. 

Another of the first CXCR4 antagonists described was polyphemusin II, a 

natural 18-amino acid peptide isolated from the American horseshoe crab [177]. Based 

in this peptide, T22 was developed. It is a synthetic cationic peptide that inhibits X4 

strains by binding to the Nt and two ECL of CXCR4 [177]. Later two analogues were 

developed, T134 and T140, which showed a stronger potency in inhibiting X4 entry 

[178]. 

A polypeptide of nine Arg, ALX40-4C [169], was initially characterized as an 

inhibitor of Tat binding to the trans-activation-response-element (TAR). However, it 

was demonstrated that it inhibited entry of X4 viruses, but not R5 viruses. In particular, 

it inhibited NL4-3 at nanomolar concentrations with a mean EC50 of 3 nM. ALX40-4C 

was well tolerated in phase I/II clinical trials in humans, but no significant reductions 

in viral load were noted [179].  

Some peptoids such as CGP64222 [180] were also described as CXCR4 

inhibitors. CGP64222 is a basic peptoid oligomer of nine residues that inhibited both 

Tat/TAR binding and the gp120 binding to CXCR4, what was demonstrated by the fact 

that it had no activity against HIV-1 strains resistant to bicyclams or R5 strains and 

blocked CXCL12-induced calcium signaling. 

KRH-1636 (Kureha Chemical Industries) is another small-molecule CXCR4 

antagonist that has a potent anti-HIV activity against X4 strains, including clinical 

isolates both in vitro and in a mouse model [181]. 

Finally, after having found that many residues throughout CXCR4 TM and 

ECL2 domains were specifically involved in interaction with HIV-1 gp120, and that 

most of these sites did not play a role in either CXCL12 binding or signaling, several 
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synthetic chemokines were designed [182]. These chemokines are termed synthetically 

and modularly modified (SMM) chemokines and are derived from the native sequence 

of CXCL12. They can inhibit selectively the entry of X4 viruses without affecting the 

CXCL12 signaling [182]. 

 

Dual CCR5 and CXCR4 inhibitors 
The low-molecular weight compound AMD3451 [183] is a cyclam analog that has 

been described to be the first anti-HIV compound targeting both CCR5 and CXCR4 

coreceptors. It showed anti-HIV activity against R5, R5X4 and X4 strains (EC50 of 1.2 

to 26.5 µM) in T cell lines and in PMBC. Although it proved to act as an specific 

antagonist of CCR5 and CXCR4 receptors, the precise interaction sites with these 

receptors have not been described yet.  

 

gp41-mediated fusion inhibitors 

HIV envelope glycoprotein transmembrane subunit gp41 plays a critical role in the 

fusion between viral and target cell membranes. Gp41 organization in its fusogenic 

active conformation originated the design of HR derived peptides [83,84]. When anti-

HIV activity of the derived peptides from the N-terminal or HR1 (N-peptides) or from 

the C-terminal or HR2 (C-peptides) was analyzed, it was observed that the C-peptides 

were more potent. Within this group there are the DP178 or T-20, T1249, T649 and C34 

peptides. 

T-20 (Enfuvirtide, ENF, Fuzeon™ by Trimeris/Roche Inc) [85] comes from a 

gp41 sequence of HIV-1 subtype B. A relatively long peptide such as T-20 suffers from 

several limitations including lack of oral bioavailability and high cost of production. 

A second generation of fusion inhibitor peptides, derived from the HR2 region 

of TM gp41, (Trimeris/Roche Inc.) are being evaluated in preclinical studies [184]. 

They presented a better antiviral activity against wild-type (wt) viruses than T-20 and 

were also active against T-20-resistant strains. In addition, TR-291144 and TR-

290999 showed an improved bioavailability that allow them to be administrated once 

weekly instead of twice daily. 

Recently, other fusion inhibitors peptides have been described [185-188] 

trying to improve the potency, solubility and stability. One of them, VIRIP, is a 20 
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residue peptide extracted from human hemofiltrate. It blocked HIV by interacting 

with the gp41 fusion peptide and its optimization (VIR-353) increased its 

antiretroviral potency by two orders of magnitude [189]. Sourprisigly, the authors 

who discovered VIRIP suggested that it was not posible to develop a resistant virus to 

this class of inhibitor. Another interesting peptide is sifuvirtide [190], a 36 residue 

peptide that was designed based on the three-dimesional structure of the gp41 

fusogenic core conformation. It showed to be active against the T-20-resistant strains. 

 

Lipid rafts and actin cytoskeleton targeting agents 

Statins are effective cholesterol-lowering agents. They inhibit the 3-hydroxy-3-

methylglutaryl coenzme A (HMG-CoA) reductase, which produces mevalonic acid, a 

precursor for cholesterol biosynthesis and generation of isoprenoids [191]. The 

inhibition of this enzyme in the liver stimulates LDL receptors, resulting in an 

increased clearance of low-density lipoprotein (LDL) from the bloodstream and a 

decrease in blood cholesterol levels. The statins are divided into two groups: 

fermentation-derived (lovastatin, mevastatin, simvastatin and pravastatin) and 

synthetic (fluvastatin, atorvastatin, cerivastatin and rosuvastatin). They are used to 

treat hypercholesterolemia and they are extensively used in medical practice. In 

addition, statins are currently being used in HIV+ individuals in order to reduce the 

hyperlipidemia that is frequently induced by antiretroviral treatment [192] and that 

increases the risk of cardiovascular disease [193-195].  

Recent studies suggested that statins had direct anti-HIV effects in vitro 

[32,196]. Also, in a short short-term study, lovastatin showed to have an effect in 6 

HIV+ patients treated with this statin [197]. 

One possible mode of action of statins would be by lowering the cholesterol 

levels. Both CD4 and chemokine coreceptors for HIV are found disproportionately in 

lipid rafts and removing cholesterol from virions, producer cells, or target cells could 

decrease the infectivity of HIV. Another mechanism proposed to explain its anti-HIV 

effects is that statins, by targeting Rho GTPases, affect the actin cytoskeleton 

rearrangement [197] necessary for virus entry or budding from target cells. 

Alternatively, it has been proposed that statins suppress intercellular cell adhesion 

molecule 1 (ICAM-1)–leukocyte function antigen 1 (LFA-1) interactions that are 
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required for viral entry [198]. Statins have also been proposed as agents that modulate 

the immune system [199,200] and have anti-inflammatory properties [201], by 

inhibiting CCL3 [202] or other cytokines and chemokines, downregulating MHC II 

[200] or inhibiting CD40 expression [203]. This modulation of the immune response 

also could have a relevant role in the HIV infection.  

Another compound targeting lipid rafts is SP01A (procaine hydrochloride), from 

Samaritan Pharmaceuticals. It reduces intracellular cholesterol and corticosteroid 

biosynthesis by reducing HMG-CoA mRNA levels [204]. SP01A is an oral HIV entry 

inhibitor that has demonstrated significant efficacy in preventing HIV replication in 

vivo. Samaritan Pharmaceuticals has performed pivotal phase IIb/IIIa clinical trials for 

HIV patients failing triple therapy due to viral resistance and SP01A is continuing 

further development (http://www.samaritanpharma.com/aids_hiv_program_sp-01a.asp). 

 

HIV-1 resistance to CCR5 inhibitors 

A potential problem of this approach is that under CCR5 selective pressure it is possible 

that HIV evolves to use CXCR4, by selecting for populations with de novo ability to use 

CXCR4 or that were already present in the patient as minor populations [205]. The main 

concern about X4 or R5X4 emergence is the unknown consequences it could have in 

CD4+ T cell decline or in the course of infection. Nevertheless, in vitro resistance to 

CCR5-targeting drugs has often been associated with genotypic and phenotypic changes 

that appear not to promote the emergence of CXCR4-using strains, despite the 

requirement of few amino acid changes for R5 viruses to switch [164,165,206-208]. 

Resistance to CCR5 antagonists seems to involve the use of CCR5 in complex with the 

inhibitor, but the resistant virus still can use the inhibitor-free CCR5 [206,209]. This 

mechanism, termed noncompetitive or allosteric, confers a diminished “plateau” or 

maximum percent inhibition value at a saturating inhibitor concentration. Contrary to 

the competitive resistance, the noncompetitive one does not involve a change in the 

EC50. The resistance described in studies with the vircriviroc precursor AD101 

[164,207], maraviroc [206] and TAK-652 [208] involved 2 to 4 mutations in the V3 

loop, although development of SCH-D resistance lead to mutations within gp120 and 

not in V3 region [165]. Also, for vicriviroc resistance, mutations in gp120 were 
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described and included mutations in the V3 loop, although they were dependent on the 

HIV-1 backbone in which they were expressed [210]. 

Little information on CCR5 antagonists resistance is available from in vivo use 

of these inhibitors, but the emergence of CXCR4-using viruses appears to be the most 

common cause of treatment failure. In phase III clinical trials of maraviroc 

(MOTIVATE 1 and 2), among patients that failed treatment, the emergence of CXCR4-

using viruses was more common among maraviroc than in placebo-receiving 

individuals. In fact, X4 or D/M viruses were detected in 51% (35/68) and 63% (41/65) 

of the failed maraviroc treated patients with one or two doses of maraviroc per day 

respectively, compared to only 6 % (6/95) who failed placebo [211]. Similarly, in 

MERIT phase 3 trial in treatment-naïve individuals, X4 or D/M viruses emerged in 31% 

(10/35) of patients receiving maraviroc as a first-line regimen at the time of virologic 

failure [212]. Concerning the vicriviroc ACTG A5211 phase IIb trial, in a 35% (9/26) of 

treatment-experienced patients that failed vicriviroc therapy, the cause was the 

emergence of CXCR4-using variants [142].  

The restriction of CCR5 antagonists use to patients only with R5 viruses makes 

determination of the coreceptor tropism a requisite for initiation of a CCR5 inhibitor 

treatment. However, as explained in next section, the Trofile screening test used to 

determine the coreceptor use in these clinical trials is not very sensitive and the 

detection of CXCR4-using viruses at treatment failure seems to be mainly due to the 

selection of pre-existing X4 or R5X4 viruses [205,213]. 

 

Tropism assays 
Several methods have been developed to determine the tropism of HIV populations. 

Those methods include traditional phenotypic assays (determining replication of clinical 

isolates in MT-2 cells or U87 cells expressing one or the other coreceptor), phenotypic 

assays with env-recombinant viruses and bioinformatics-driven predictor assays based 

on the env sequence.  

Phenotypic recombinant virus assays are based on the recombination of the env 

gene amplified from patient samples into a reporter HIV-1 backbone. There are several 

available: Trofile (Monogram Biosciences), Phenoscript (VIRalliance), XtrackC/ 

PhenX-R (inPheno) and a platform developed by Virco [98,214-217]. However, 

PhenoSence HIV Coreceptor Tropism (Trofile) is currently the only tropism assay that 
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has been clinically validated for determination of coreceptor use. It has been used in the 

clinical testing of maraviroc and vicriviroc. However, minimal VL of 1000 RNA 

copies/ml is required for adequate sensitivity (94%-95% amplification success rate). 

Therefore, the limit of detection of minor HIV strains in this assay is 5-10% or 10-20% 

[218,219]. An enhanced sensitivity version of Trofile (Trofile ES) has been developed 

and it showed to have a 10-100-fold improved ability to detect low levels of CXCR4-

using variants compared with the standard Trofile [220]. 

The genotypic assays are based on the observation that most of the determinants 

for coreceptor use map to the V3 loop of gp120. Several bioinformatic tools have been 

developed by prediction algorithms, some of which are available on the internet such as 

C4.5, PART, SVM, Charge Rule, PSSMsinsi, PSSMx4r5 and geno2pheno [81,99,221-

224]. The predictive value for X4 viruses of most of these algorithms is high, but the 

problem is that there is a lack of sensitivity to detect minor species when sequencing the 

patient viral population [99]. Nevertheless, they have a great potential because they can 

be faster and cheaper than phenotypic assays for tropism routine determination, but 

good genotype-phenotype correlations are still required before they can be used. 
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Objectives 

 

HIV treatment is limited by multidrug resistance and intolerance, therefore any new 

compound is of great interest. However, their anti-HIV profile, benefits, risks and 

consequences must be carefully studied. In the studies presented herein, we tried to 

asses the anti-HIV activity of statins as antiretroviral agents, determine the role of 

coreceptor antagonists on the emergence of CXCR4-using strains and characterize a 

novel CXCR4 inhibitor. 

 

Our specific objectives were: 

 
Characterization of statins as potential antiretroviral agents: 
 

• To determine the potency, efficacy and cytotoxicity of statins as anti-HIV 

compounds and study its mechanism of action. 

• To analyse the anti-HIV effect of simvastatin on the viral load and CD4+ T 

cells counts in a pilot study conducted in the Unitat de SIDA de l’Hospital 

Universitari Germans Trias i Pujol.  
 

Determination of the role of HIV coreceptor antagonists in coreceptor switch:  

• To develop an assay that would allow the study of the R5 HIV-1 evolution in 

tropism. 

• To study the effect of CCR5 and CXCR4 targeting agents on the evolution of 

different HIV-1 strains with respect to their coreceptor use.  

 

Characterization of the novel CXCR4 antagonist POL3026 as an antiviral agent: 

• To assess the anti-HIV potency and specificity of POL3026 

• To determine the mechanism of action of POL3026 

• To evaluate the consequences of POL3026 as a CXCR4 antagonist on 

coreceptor switch 
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Materials and Methods 

CELLS 

 

Cell lines 

CD4+ lymphoid cell lines MT-4, THP-1, Sup-T1 and MT-2 were obtained through the 

Medical Research Council (MRC) Centre for AIDS Reagents, London, UK. The human 

astrocytoma cell line U87 expressing CD4 and either CCR5 or CXCR4, the human T-

lymphoblastoid A3.01/CCR5-A5 and F7 (CEM/CCR5) and MOLT-4/CCR5 cell lines 

were obtained from the NIH AIDS Research and Reference Reagent Program. MT-4, 

THP-1, Sup-T1 and MT-2 cells were grown in RPMI 1640 and U87 cells were grown in 

DMEM (Invitrogen, Barcelona, Spain), supplemented with 10% fetal calf serum (FCS, 

Cambrex, Barcelona, Spain) and antibiotics, 2 U/ml penicillin and 2 µg/ml of 

streptomycin (Invitrogen, Barcelona, Spain). MOLT-4/CCR5 cells chronically infected 

with an X4 isolate, NL4-3 or CI-1-SI, or the R5 isolate BaL were generated in our 

laboratory [225].  

 

Primary cells 

Peripheral blood mononuclear cells (PBMC) were purified from healthy donors; they 

were isolated by separation on Ficoll-Hypaque (Atom Reactiva, Barcelona) density 

gradient of buffy coats obtained from the Catalonia Banc de Sang i Teixits, Barcelona, 

Spain. PBMC were activated with PHA and interleukin-2 (IL-2) for 72 h. In some 

assays (HIV-1 Escape to CCR5 coreceptor Antagonism through Selection of CXCR4-

using variants in vitro and Anti-HIV Activity and Resistance Profile of the CXCR4 

antagonist POL3026 sections), PBMC from 6 different donors were mixed equally and 

resuspended at 50x106 PBMC/ml in heat-inactivated FCS containing 10% dimethyl 

sulfoxide (DMSO; Sigma-Aldrich, Madrid, Spain). 1 ml aliquots were frozen and 

conserved in liquid nitrogen until need. Monocytes and CD4+ T cells were purified 

from PBMC by negative selection (StemCell, Vancouver, Canada) as indicated by the 

manufacturer. Purity of preparations was assessed by staining with CD3-FITC/CD14-

APC for monocytes and TriTEST reagent (CD4-FITC/CD8-PE/CD3-PerCP) for CD4+ 

T cells (BD Biosciences, Madrid, Spain) and analyzed by flow cytometry (LSRII. BD 

Madrid, Spain). Purity of monocytes and CD4+ T cell preparations was >85% and 

>95%, respectively. Macrophages were obtained by culturing monocytes for 3 days 
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with M-CSF (Peprotech, London, UK) at 20 U/ml (100 ng/ml) at 50,000 cells/well in 

96-well plates for viability and acute infection. 

 
REAGENTS 
Chromatographically and spectroscopically pure atorvastatin lactone, simvastatin, their 

sodium and calcium salts and fluvastatin calcium salt were prepared at the Departament 

de Quimica Organica, Universitat de Barcelona (Barcelona, Spain). Samples of the 

natural product lovastatin (mevinolin) and of sodium fluvastatin were a gift of the 

pharmaceutical company Fyse-Ercros (Aranjuez, Spain). Additional lovastatin samples 

were purchased from Sigma-Aldrich (St. Louis, USA). The stabilities and purities of the 

stock dimethyl sulfoxide (DMSO) solutions of statins were checked for two 

representative samples, by solving 20 mg of calcium atorvastatin and of simvastatin in 

DMSO-d6 (0.6 ml) and registering the 400 MHz 1H NMR spectra once a day during one 

week; no changes (dehydration, lactonization/ring-opening equilibria, or other 

reactions) were observed.  

The synthesis, purification, and chemical characterization of the CXCR4 

antagonist POL3026 (Fig 1.) was performed as described before [226] by Polyphor 

biotech company (Allschwil, Switzerland).  

The chemokines CXCL12 (natural ligand of CXCR4) and the natural ligands of 

CCR5 CCL3, CCL4 and CCL5 were purchased from Peprotech (London, UK). The RT 

inhibitor 3-Azido-3-deoxythymidine (zidovudine, AZT) was purchased from Sigma-

Aldrich (Madrid, Spain), the oligonucleotide targeting gp120 Zintevir (AR177), the 

CXCR4 antagonists AMD3100 and ALX-40-4C and the fusion inhibitor peptide C34 

were synthesized as described elsewhere [48,140,169,177,227]. The CCR5 antagonist 

TAK-779, the RT inhibitors efavirenz, nevirapine and lamivudine (3TC) were received 

from the NIH AIDS Research and Reference Reagent Program and the monoclonal 

antibody anti-CCR5 PRO140 from Progenics Inc. The anti-CCR5 monoclonal antibody, 

clone 2D7, was purchased at Becton Dickinson (Madrid, Spain). The fusion inhibitor T-

20 (enfuvirtide) was synthesized by the Service of Peptide Synthesis, University of 

Barcelona (Barcelona, Spain). 
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VIRUSES 

The HIV-1 strains BaL, HXB2, NL4-3 and 89.6 were obtained from the MRC Centre 

for AIDS Reagents (London, UK). HIV strains from subtypes B (92BR014), A 

(92UG029), A (39RW029), D (92UG021), D (92UG024), F (93BR020) and O (BCF06) 

were obtained also from the MRC Centre for AIDS Reagents (London, UK). The X4 

strain J130.3 was kindly provided by Dr. O. T. Keppler. The HIV-1 NL4-3 strain that is 

resistant to T20/C34 has been described elsewhere [73,227]. The IRLL98 HIV-1 strain 

[228] contains the following mutations in the RT coding sequence: M41L, D67N, 

Y181C, M184V, R211K, T215Y (conferring resistance to NRTI) and mutations 

K101Q, Y181C, G190A (conferring resistance to NNRTI). HIV-1 strains K103N, 

Y181C, and Y188L, which have mutations conferring resistance to NNRTI, and HIV-2 

ROD were obtained from the MRC Centre for AIDS Reagents (London, UK). The 

AMD3100-resistant strain and the CXCL12 resistant strain  were derived after 

sequential passage of the NL4-3 virus in the presence of increasing concentrations of 

AMD3100 or CXCL12 in MT-4 cells [229].  

The X4 HIV-1 clinical isolate CI-1-SI, the R5 clinical isolates CI2, CI3 and CI4 

and the dualtropic CI6, CI7 and CI8 were obtained by coculturing PBMC from HIV-1-

infected patients with stimulated PBMC from healthy donors. CI5 correspond to the 

HIV-1 168.1, which is a R5 molecular clone virus isolate obtained from a HIV-infected 

patient [80]. 

 

ANTIVIRAL AND CYTOTOXICITY ASSAYS 

 

Anti-HIV assays in MT-4 cells 

Anti-HIV activity and cytotoxicity measurements in MT-4 cells were based on viability 

of cells that had been infected or mock-infected with HIV-1 at a multiplicity of infection 

(MOI) of 0.003 and exposed to various concentrations of the test compound. After 5 

days of infection, the number of viable infected and mock-infected cells was quantified 

by a tetrazolium-based colorimetric method (MTT method) as described [227,230]. 

Anti-HIV activities were performed three times in triplicates. 50% effective 

concentrations (EC50) were calculated as valid when the variation between replicates 
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was less than 4-fold. Cut-off value in which a virus was considered resistant was greater 

than 4-fold increase of the EC50 value as compared to the wild type HIV-1 strain. 

For anti-HIV evaluation of statins, compounds were tested for their anti-HIV 

activity and cytotoxicity in two independent laboratories (Fundació IrsiCaixa, Barcelona 

and Laboratory of Molecular Virology and Drug Discovery, Katholieke Universiteit 

Leuven, Belgium). Also, a similar assay was also repeated with MT-4 cells 

preincubated for 48 h with statins and the control compounds at 37ºC, and then washed 

twice with a phosphate-buffered saline (PBS) solution before infecting with HIV-1. 

The virus titer in the MTT assay in MT-4 cells is calculated by an endpoint 

dilution technique. The maximum dilution in which the virus gives the minimum of 

absorbance is the one used to test the anti-HIV activity of screening compounds and in 

each evaluation there is a control titration of the virus used. 

 

Anti-HIV assays in PBMC 

PBMC from single donors in statin evaluations or PBMC pools in other evaluations 

were stimulated with 6 U/ml IL-2 (Roche) and 4 µg/ml phytohemagglutinin (PHA) 

during 72 h before use. After stimulation and during the performance of assays, only IL-

2 at 10 U/ml was used. PBMC cells were incubated with each HIV-1 viral stock (200 

TCID50/106 cells) or mock-infected for 3 h at 37ºC, and thereafter were washed twice 

with phosphate buffered saline (PBS) 1x. Infected cells were seeded in 96-well plates 

(0.15x106 cells/well) and incubated 7-days at 37ºC, 5% CO2 at different concentrations 

of the test compound in triplicates. HIV-1 p24 antigen production in the supernatant 

was measured by a commercial ELISA test (InnotestTM HIV-Ag; Innogenetics, 

Barcelona, Spain). To determine cytotoxicity, the mock-infected cells were harvested 

and fixed with 1% formaldehyde PBS 1x. Cell death was quantified by flow cytometry 

in forward (FSC) versus side scatter plots (SSC). Dead cells showed increased side and 

reduced forward scatter values compared with living cells. Anti-HIV activities in 

PBMC were performed at least three times. EC50 for each compound was calculated and 

considered valid when the variation between replicates was less than 4-fold. 

Viral stocks were titrated and Tissue Culture Infectious Dose 50 (TCID50) was 

calculated as described in [231], using the same PBMC pool used in the anti-HIV 

evaluating assays. 
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Anti-HIV assay in macrophages 

The antiviral assay in monocyte-derived macrophages (MDM) was carried after 3 days 

of stimulation with M-CSF of monocytes. Cells were washed and incubated in complete 

culture medium containing different anti-HIV drugs. MDM were infected with the X4 

HIV-1 strain J130.3 or the R5 strain BaL at a final concentration of 3700 pg/ml of HIV 

p24 antigen. At day 3, 7, 10 and 14 post-infection, 20 µl of culture supernatant were 

replaced by 20 µl of fresh complete medium, with or without the corresponding drug. 

HIV production was analyzed at day 7 and 14 after infection by HIV p24 antigen 

detection in the culture supernatants (InnotestTM HIV-Ag; Innogenetics, Barcelona, 

Spain). 

 

Anti-HIV assay in ex vivo lymphoid tissue culture 

Anti-HIV activity in lymphoid tissue was evaluated as described before [232]. Tonsils 

from HIV-negative individuals from therapeutic tonsillectomy were maintained in PBS 

1x, dissected into 2–3-mm blocks and placed on top of gelatine sponge gels 

(Espongostan, Prisfar) with RPMI 1640 10% FCS  P/S. HIV-1 infection was carried out 

with 1.5 µl of the R5 HIV-1 BaL, the X4 NL4-3 and the dual tropic HIV-1 89.6 in the 

absence or presence of the test compounds (AZT, AMD3100, TAK-779 and POL3026). 

Ten days after infection, the concentration of p24 antigen in the supernatant was 

evaluated by a commercial ELISA test (InnotestTM HIV-Ag; Innogenetics, Barcelona, 

Spain). 

 

 

CHARACTERIZATION OF AN ANTI-HIV COMPOUND MODE OF ACTION 
 

Evaluation of CD4+T cell death and HIV transfer 

2x105 primary CD4+ T cells were cocultured with 2x105 MOLT-4/CCR5 cells 

chronically infected with the X4 isolates NL4-3 and CI-1-SI or the R5 strain BaL. After 

24 h of coculture, cells were washed with PBS 1x, fixed and permeabilized (Fix & 

Perm; Caltag, Burlingame, CA), and stained with KC57 anti-HIV capsid p24 antigen 

(CA p24) mAb (Coulter, Barcelona, Spain) and analyzed in a LSR II flow cytometer 

(BD, Madrid, Spain). CD4+ T cells and MOLT/CCR5 were identified by morphological 
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parameters. Also single-cell death was quantified by morphological parameters (forward 

versus side scatter plots). Quantification of HIV transfer was either assessed by the 

percentage of p24+ cells (using uninfected cells as a control) or by the mean 

fluorescence intensity. As a negative control, CD4+ T cells were also cocultured with 

MOLT/CCR5 uninfected cells. 

 

Time of addition assays 

MT-4 cells were infected with NL4-3 virus at a MOI of 0.5 and incubated for 1h at 20ºC 

in the presence or absence of test compounds (AR177, AMD3100, ALX-40-4C, 

POL3026, C34, T20 or AZT). Next, they were washed twice with cold PBS and 

compounds were added at various times post-infection or cells were cultured in the 

absence of drug. The concentration of the different compounds used was high enough to 

block completely HIV replication (roughly 100-fold its EC50). Virus production as 

quantity of p24 antigen in supernatant was determined 30 hours after infection [233]. 

 

Surface receptor staining and flow cytometry analysis  

Staining of chemokine receptor CXCR4 and CCR5, and the CD45 and CD4 receptor 

was performed in CEM-CCR5 cell line. Briefly, 0.2x106 cells were washed in PBS and 

incubated for 20 minutes at room temperature with monoclonal antibodies (mAbs) anti-

CD45 conjugated with fluorescein isothiocyanate (FITC), 12G5 (anti-CXCR4) 

phycoerythrin (PE), 2D7 (anti-CCR5) allophycocyanin (APC) and Leu3a (anti-CD4) 

peridin chlorophyll protein (PerCP) (BD, San Jose, CA) and with or without various 

drugs. The cells were then washed with PBS 1x and were fixed in PBS containing 1% 

formaldehyde and analyzed by flow cytometry in a LSR II system (BD, San Jose, CA). 

Data was acquired and percentage of positive cells and mean fluorescent intensity (MFI) 

were analyzed with FacsDiva software (BD). AMD3100, PRO140, Leu3a and POL3026 

were tested at different concentrations. The compound concentration required to inhibit 

mAb binding by 50% (IC50) was calculated. To evaluate if differences in 12G5 mAb 

binding were due to CXCR4 down regulation,  parallel experiments were done at 4ºC 

(30 min of incubation) and 37ºC (15 min of incubation). The IC50 of POL3026, 

AMD3100 and the chemokine CXCL12 was calculated for each condition. 
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Measurement of intracellular calcium concentrations 

The intracellular calcium concentrations [Ca2+] were determined as described 

previously [48]. Briefly, CEM-CCR5 cells or THP-1 cells were loaded with Fluo-4 at a 

2.5 µM  (Sigma-Aldrich, Madrid, Spain). Fluorescence was measured in a Fluoroskan 

Ascent fluorometer (Labsystems, Helsinki, Finland). 1x106 cells were first stimulated 

with dilution buffer (control) or test compound at various concentrations. As a second 

stimulus, CXCL12 (100 ng/ml), CCL3, CCL4 or CCL5 (1000 ng/ml) were used to 

induce [Ca2+] signaling. The second stimulus was added 120 seconds after the first 

stimulus.  

 

Chemotaxis assay 

The bottom chambers of HTS Transwell-96 chambers of 5-µm pore (Corning, UK) 

were filled with 150 µl of  RPMI medium containing 20 ng/ml of the chemoattractant 

CXCL12 and different concentrations of POL3026 or AMD3100 and preincubated for 

30 minutes at 37°C. Then, CEM-CCR5 cells (0.25 × 106 in 50 µl of RPMI medium) 

were loaded onto the upper microchamber and the assembled system was incubated for 

3 h at 37°C, 5% CO2. After incubation, migrating cells were recovered from the lower 

chamber, Perfect-Count Microspheres (Cytognos, Salamanca) were added and counted 

on a LSRII flow cytometer. Data was expressed as migration index (number of cells 

migrated in response to the chemoattractant plus the compound, relative to the number 

of cells that migrated randomly to medium only). 

 

DEVELOPMENT AND CHARACTERIZATION OF RESISTANT HIV-1 STRAINS 

Development of HIV-1 strains resistant to POL3026 

0.1x106 MT-4 cells were incubated with the HIV-1 HXB2 virus in 48-well plates in a 

final 0.7 ml volume of growth medium. Passages were started with a POL3026 

concentration of 0.0005 µg/ml (5-fold its EC50). After 4, 5 or 6 days, depending on the 

cytopathic effects, supernatants were used to infect new fresh MT-4 cells. The POL3026 

concentration was progressively increased, finishing the passages of two different 

cultured viruses when the concentration reached 0.034 µg/ml and 0.043 µg/ml for virus 

A (HP41resA) and virus B (HP38resB), respectively. 
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Growth kinetics of viruses 

Parallel cultures of MT-4 cells exposed to the same MOI of virus (HXB2wt, HP41resA, 

HP38resB and the AMD3100-resistant viruses) were established. Infections were 

maintained during 5 days and supernatant was collected each day for p24 quantification 

with a commercial ELISA (InnotestTM HIV-Ag; Innogenetics, Barcelona, Spain). 

Triplicate values from days 1, 2, 3, 4 and 5 were obtained.  

 

Growth competition assay 

Dual infection/competition experiments were performed with MT-4 cells on 24-well 

plates for 133 days. Uninfected cultures were used as negative control while untreated 

infected cultures (the wt HXB2.41, HP41resA and HP38resB) at a MOI of 0.003 

corresponded to positive controls (100% virus). The competition assay involved three 

separate dual infections with each resistant virus (HP41resA and HP38resB) plus the wt 

virus at different multiplicities of infection expressed by proportions (90% resistant 

virus plus 10% wt, 50% resistant plus 50% wt, 10% resistant plus 90% wt). Every 5-7 

days, the supernatant was used to infect fresh MT-4 cells and aliquots of cells were 

harvested  and stored at -80ºC for subsequent analysis. Detection of each virus 

population was assessed by sequencing the V3 loop of gp120 as explained below.  

 

Coreceptor switch assay   

1.5x105 cells were infected with 13 ng of p24 antigen from BaL, CI1, CI2, CI3 and CI4 

HIV-1. For propagation of the HIV-1 R5 CI5 (168.1 molecular clone) 5x106 Sup-T1 

were transfected with 2 µg proviral DNA using 0.4 cm cuvettes (BioRad), and 250 V 

and 950 µF.  

Parallel cultures with different inhibitory conditions were maintained for each 

HIV-1 strain. Twice a week cell cultures were diluted 1/5 in fresh media containing or 

not the specific inhibitor. Concentrations for all drugs, except AMD3100 and POL3026 

(1µg/ml), were adjusted to suboptimal concentrations to maintain a similar virus 

replication. Before passage, each culture was controlled and the detection of syncytia 

was scored. p24 in the supernatant of each culture was evaluated once a week with a 

commercial ELISA (InnotestTM HIV-Ag; Innogenetics, Barcelona, Spain).  
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  When cultures were stopped, viral stocks were generated in Sup-T1 cells in the 

absence of compound, aliquoted and stored at -80ºC. Cell pellets were used for the 

genetic analysis of proviral forms. 

 

Viral phenotype determination  

Coreceptor use was determined by evaluating the infectivity of the viruses in CCR5- or 

CXCR4- U87-CD4 cells. HIV strains to be tested are used to infect in duplicates and in 

parallel both types of U87-CD4 cells, which have been plated (5x103 cells/well, in a 96 

well plate) the day before. One day post infection the cells are washed with PBS and 

day 7 post infection, p24 antigen in supernatant is quantified. The cells are fixed with 

PBS 1% formaldehyde and stained with Hoechst, and syncytia formation is checked. 

The X4 phenotype was confirmed also by evaluating virus infectivity in MT-2 cells as 

described in [231]. 

 

Sequencing (Env and RT ) 

Genomic DNA from infected cells was extracted using the QIAamp DNA Blood Mini 

Kit (Qiagen, Barcelona, Spain). The Expand High Fidelity PCR System from Roche and 

the dNTP from Applied Biosystems (Madrid, Spain) were used for PCR amplification 

of HIV env. Before sequencing the amplified DNA was purified with the QIAquick 

PCR Purification Kit (Qiagen, Barcelona, Spain). 

The env gene (5514-8910) was amplified as previously described [233] with 

primers 5’-gataaagccacctttgcctagt-3’ and 5’-ttctaggtctcgagatactg-3’. Nested PCR for the 

amplification of V1-V3 region (6586-7171) was performed using primer pairs 5’-

aattaaccccactctgtgttagttta-3’ and 5’-gctctccctggtcccctctgg-3’. The V3-V5 region (7045-

7732) was amplified with primers 5’-ctgccaatttcacagacaatgc-3’ and 5’-

ctctttgccttggtgggtgcta-3’ and sequenced with the ABI PrismTM BIGDYE Terminator 3.1 

kit (Applied Biosystems, Madrid, Spain) in an ABI Prism 3100 Avant Genetic Analyzer. 

Sequences were analyzed with Sequencher v4.5 and edited with the BioEdit software. 

Amino acid positions were numbered according to the HXB2 strain (Los Alamos 

database). 
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CLINICAL EVALUATION  
 

Simvastatin treatment of HIV+ patients 
A pilot study was conducted in 12 HIV+ individuals attending HIV Clinical Unit of 

Hospital Universitari Germans Trias i Pujol. They were treated during 8 weeks with 

simvastatin, (Zocor®, 80 mg/day) in the absence of antiretroviral treatment. Virological 

and immunological status of patients was monitored at baseline and at weeks 4 and 8 

after simvastatin introduction. A subset of patients was followed until week 12 of 

treatment. Eligible patients for the in vivo pilot study were those chronically HIV-

infected subjects who had discontinued antiretroviral therapy at least 12 weeks before 

entry into the study and presented detectable plasma viral load (>1000 copies/ml). 

CD4+ T cell counts <250 cells/µl, viral load >100000 copies/ml, opportunistic 

infections, as well as creatinin values >1.5 than current values (II Degree) and liver 

enzyme levels more than 3 times above the upper normal limit (UNL), were considered 

exclusion criteria for the study.  

All patients attending the HIV clinic between September 2004 and January 2005 

that fulfilled the selection criteria were proposed to participate in this study and to start 

simvastatin 80 mg once daily. Written informed consent was obtained from all patients 

before enrollment. Quantitative analysis of HIV-1 RNA plasma levels were performed 

with the Amplicor HIV-1 Monitor, version 1.5 (Roche Molecular Systems, Branchburg, 

New Jersey, USA), at Covance Central Laboratory Services (Geneva, Switzerland). 

CD4+ and CD8+ T cell counts were assessed by standard flow cytometry and plasma 

cholesterol levels were determined.  

 

Statistical analysis 
The distribution of several variables measured during the simvastatin pilot study was 

analyzed using the Kolmorov-Smirnov test. The non-parametric Wilcoxon test for 

paired values was used to determine the statistical significant difference in these 

variables among different weeks (weeks 0, 4 and 8) of treatment with simvastatin. 

Significance was established at P < 0.05 (SPSS and Graph pad statistical software). 
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EVALUATION OF THE ANTI-HIV ACTIVITY OF STATINS IN VITRO AND 

EFFECT OF SIMVASTATIN TREATMENT IN HIV INFECTED PATIENTS 

 
Abstract 
 

Recent data suggest that statins, 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) 

reductase inhibitors, blocked HIV-1 replication in vitro and in vivo, which may have 

important implications for an alternative treatment of AIDS. We desired to delineate the 

potency, efficacy, specificity and cytotoxicity of statins in vitro and to assess their anti-

HIV activity in vivo. 

Anti-HIV activity of different statins (sodium and calcium salts of atorvastatin, 

lovastatin, simvastatin and fluvastatin and lactone forms of atorvastatin, lovastatin, 

simvastatin) was evaluated against the HIV-1 NL4-3 or BaL strains in the lymphoid 

MT-4 cell line or in PHA/IL-2 activated peripheral blood mononuclear cells (PBMC) 

purified from healthy donors. In parallel, a pilot study was conducted in 12 HIV+ 

individuals in the absence of antiretroviral treatment. Patients were treated during 8 

weeks with simvastatin (80 mg/day), and their viral load, CD4+ T cell count and 

cholesterol levels were monitored.  

We were unable to detect anti-HIV activity at subtoxic concentrations in MT-4 cells 

(CC50 range 0.8–5.6 µg/ml). Only modification of the standard anti-HIV assay allowed 

us to calculate a 50% effective concentration (EC50) for lovastatin of 3.9 µg/ml albeit a 

50 % cytotoxic concentration (CC50) of 19 µg/ml. Similarly, due to the cytotoxicity, in 

PBMC we could only calculate an EC50 for simvastatin calcium salt (EC50 of 0.04 µg/ml 

and CC50 of 0.2  µg/ml). Treatment with simvastatin did not induce a significant change 

in viral load or in mean CD4 cell count in the study patients. Conversely, a significant 

decrease in plasma cholesterol levels was noted  (mean change, – 47 mg/100 ml).  

According to standard cell culture assays, the anti-HIV activity of the statins tested may 

be easily confounded by their accrue cytotoxicity at concentrations that would be 

required to block HIV replication. We did not observe any antiviral effect in HIV+ 

individuals after 8 weeks of treatment with simvastatin. Our results caution on the use 

of statins to treat HIV infection. 
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Statins and HIV 

Statins could provide an interesting approach for the treatment of HIV-1 infection, 

therefore we decided to assess its mode of action, but first their anti-HIV activity in cell 

culture needed to be accurately measured. Preclinical drug screening is a necessary step 

that helps to delineate the potency, efficacy, cytotoxicity and specificity of a candidate 

compound and therefore allows to determine the necessary conditions for the study of 

the mechanism of action of active agents. The effect of lactone forms of atorvastatin, 

lovastatin, simvastatin and sodium and calcium salts of atorvastatin, lovastatin, 

simvastatin and fluvastatin was evaluated for their capacity to block the replication of 

HIV-1 by two independent laboratories. In this study we also evaluated the in vivo anti-

HIV activity of simvastatin (Fig. 9) in a small group of HIV+ patients with detectable 

HIV RNA in plasma and that were off antiretroviral treatment for at least 3 months prior 

to initiation of our study. 

 

 

 

 
 

Figure 9. Simvastatine structure 

 

 

Antiviral activity of statins against HIV-1 strains 

To first test the antiviral activity and cytotoxicity of statins, we used a standard 5-day 

drug-screening assay in the lymphoid MT-4 cell line that is generally used in our 

laboratory for the throughput evaluation of candidate antiviral agents, in which parallel 

cytotoxic concentrations in the absence of virus infection are tested [230,234].  
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We found that the different statins, either in their lactone forms or as their 

sodium or calcium salts, did not show anti-HIV activity at subtoxic concentrations. 

Conversely, compounds known for their anti-HIV activity, which were used as controls 

(the reverse transcriptase inhibitor AZT, the virus binding inhibitor dextran sulfate 

[235], or the CXCR4 antagonist AMD3100 [140], were clearly active  (EC50: 0.002, 

0.07 and 0.003 µg/ml, respectively) at concentrations well below their 50% cytotoxic 

concentration (CC50: > 1, > 125 and > 5, respectively). The CC50 values in MT-4 cells 

of the statins tested ranged from 0.8 to 5.6 µg/ml. The EC50 and CC50 values of all tested 

compounds are shown in Table 2. 

In order to reduce the level of toxicity described above, we shortened cell 

exposure to statins and control compounds by preincubating the cells during 48 h at 37 

ºC and washing them before infecting them with HIV-1 NL4-3. We were able to detect 

the anti-HIV activity of lovastatin (EC50 3.9 µg/ml) despite detectable cytotoxicity 

(CC50: 19 µg/ml). All other statins tested did not show anti-HIV activity at subtoxic 

concentrations. 

A similar result was found when statins were evaluated in peripheral blood 

mononuclear cells. That is, with the exception of simvastatin calcium salt, an EC50 

value could not be calculated below cytotoxic concentrations (CC50 range 0.2-15.2 

µg/ml). The EC50 for simvastatin was calculated at 0.04 µg/ml. However, we could not 

reach 100% protection and accrued cytotoxicity was found at 0.2 µg/ml. We concluded 

that the anti-HIV activity of statins may easily be confounded by their cytotoxicity at 

concentrations that would be required to block HIV replication. 

Anti-HIV evaluations of these statins were also performed by an independent 

laboratory ( Myriam Witvrouw, PhD) and similar results were obtained. 
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 Table 2. Anti-HIV NL4-3 and BaL activity and cytotoxicity of different statins and their 

sodium and calcium salts. 

Compound EC50  (µg/ml) a CC50  (µg/ml) b 

 HIV-1 NL4-3 

MT-4 cells 

HIV-1 BaL 

PBMC 

MT-4 cells PBMC 

Atorvastatin (lactone) 

Lovastatin 

Mevinolin (Sigma lovastatin) 

Simvastatin 

Atorvastatin Na 

Lovastatin Na 

Simvastatin Na 

Fluvastatin Na 

Atorvastatin Ca 

Lovastatin Ca 

Simvastatin Ca 

Fluvastatin Ca 

AMD 3100 

AZT 

Dextran sulfate 

>1,03 

>1,8 

>0,9 

>6,1 

>5,6 

>1,2 

>0,87 

>0,82 

>2,7 

>0,85 

>0,80 

>0,98 

0,003 

0,002 

0,07 

>9,6 

>6,1 

>10,5 

>9,6 

>5,5 

>15,2 

>11,9 

>8,1 

>9,6 

>12,8 

 0,04 

>11,9 

 NT 

<0,008 

14,6 

1,03 

1,8 

0,9 

6,1 

5,6 

1,2 

0,87 

0,82 

2,7 

0,85 

0,80 

0,98 

>5 

>1 

>25 

 9,6 

 6,1 

 10,5 

 9,6 

 5,5 

 15,2 

 11,9 

 8,1 

 9,6 

 12,8 

 0,2 

 11,9 

 NT 

 >1 

 >125 

 

a EC50 : 50% effective concentration, or concentration needed to inhibit 50% HIV-induced cell death, 
evaluated with the MTT method in MT-4 cells or through the production of HIV p24 antigen by acutely 
infected PBMC. 

b CC50 : 50% cytotoxic concentration or concentration required to induce 50% death of non-infected cells, 
evaluated with the MTT method in MT-4 cells or through cell morphology changes in PBMC after flow 
cytometry analysis. 

NT: not tested 
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Antiretroviral activity of simvastatin in a pilot study 

To evaluate the antiviral properties of statins in vivo, a pilot study was conducted in 12 

HIV+ individuals in the absence of other antiretroviral treatment. Participating patients 

had interrupted antiretroviral treatment for at least 12 weeks prior to initiation of 

simvastatin treatment (80 mg once daily) for up to 8 weeks. This pilot study was 

conducted in the HIV Clinical Unit of Hospital Germans Trias i Pujol. 

 It had been suggested that the anti-HIV effect of statins was not due to the 

inhibition of cholesterol biosynthesis and the consequent reduction of cholesterol levels 

in plasma [2]. However, cholesterol levels were taken as a control for the efficacy of 

treatment and thus, were used to correlate the effect of statin treatment with anti-HIV 

efficacy. Basal mean viral load (VL) was 29108 ± 34185 RNA copies/ml (4.14 ± 0.72 

log RNA copies/ml) and mean CD4 cell count 491±187 cells/µl. Mean values of 

virological and immunological conditions, total HDL- and LDL-cholesterol levels at 

weeks 0 and 4 and 8 are shown in Table 3. Viral load, CD4 T cell count and cholesterol 

plasma level of each patient at weeks 0, 4, 8 and 12 are shown in Table 4. 

There were no significant (P: 0.5771) changes in mean VL after 4 weeks of 

treatment with simvastatin. However, 2 patients reached a reduction of 0.47 log RNA 

copies/ml and a weak decrease in VL was noted in 6 patients that, however, did not 

reach statistical significance. A rise in VL was noted in 2 patients (0.82 and 0.50 log 

RNA copies/ml, respectively). Mean CD4+ T cell count increased slightly but did not 

reach statistical significance and a drop in the CD4 T cell counts observed in 5 out of 10 

patients. A change in mean plasma total cholesterol level was noted. There was a 

significant decrease (P: 0.0049) between baseline and week 4 (172 ± 45 and 128 ± 17 

mg/100 ml, respectively). More precisely, plasma cholesterol was reduced in 9 out of 11 

subjects after 4 weeks of treatment when compared to their cholesterol levels at 

initiation of simvastatin treatment. Similarly, mean LDL-cholesterol levels decreased 

significantly (P: 0.0049) at week 4, particularly in 10 out of 11 patients. Conversely, 

there was no significant change in the HDL-cholesterol levels (P: 0.1602). 

Similar results were observed at week 8. There was no significant change in 

mean viral load in comparison to the basal values (P: 0.4316) and only 1 patient out of 

11 had a relevant decrease (–0.55 log copies/ml), while 3 patients had an increase in VL 

(0.89, 1.68 and 0.52 log copies/ml, respectively). There was no significant (P: 0.250) 

change in mean CD4 cell count as compared to basal levels. On the contrary, mean 
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plasma total cholesterol levels and LDL-cholesterol levels were significantly reduced 

(P: 0.0078 and P: 0.0078, respectively) in the absence of a change in mean HDL-

cholesterol (P: 0.7422) confirming the efficacy of simvastatin as a cholesterol-reducing 

agent in HIV+ individuals.   

A subset of patients (n: 8) continued simvastatin treatment for up to 12 weeks 

(VL, CD4 T cell counts and cholesterol plasma levels are shown in Table 4). No 

significant reduction in plasma VL or CD4+ T cell count was noted despite a significant 

reduction in cholesterol levels. 

 

 

Table 3. Virological and immunological variables of HIV+ individuals treated with 

simvastatin (80 mg/day) 

Weeks 4-0 Weeks 8-0

Viral Load

    No. of subjects with data 12 12 11

    Mean copies/ml ± SD 29108 ± 34185 24013  ± 22695 35837 ± 49400

     (log copies/ml) (4.14) (4.10) (4.27)

CD4 T cell count

    No. of subjects with data 10 11 9

    Mean cells/ml ± SD 491 ± 187 520   ± 167 505 ± 182 0,734 0,25

Cholesterol

    No. of subjects with data 11 12 9

    Mean mg/100 ml ± SD 172  ± 45 128  ±  17 125 ± 8 0,005 0,008

HDL

    No. of subjects with data 11 12 9

    Mean ± SD 38  ± 9 35 ± 6 35 ± 4 0,16 0,742

LDL

    No. of subjects with data 11 12 9

    Mean ± SD 110  ± 41 70 ± 18 73 ± 12 0,005 0,008

Variable   week 0   week 4

0,577

week 8 Wilcoxon test  
P value

0,432
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Table 4. Viral load, CD4 T cell counts and cholesterol plasma level of the 12 patients HIV+ 

during the simvastatin treatment. 

Patient Variable week 0 week 4 week 8 week 12

1 Viral load (copies/ml) 24500 76900 67300 92188
CD4 T cell count (cells/ml) 544 424 430 460
Cholesterol (mg/dl) NAa NA NA NA

2 Viral load (copies/ml) 12800 11400 12800 NA
CD4 T cell count (cells/ml) 617 530 548 592
Cholesterol (mg/dl) 155 139 128 116

3 Viral load (copies/ml) 4910 7070 4250 NA
CD4 T cell count (cells/ml) NA 683 657 NA
Cholesterol (mg/dl) 93 93 NA

4 Viral load (copies/ml) 18800 8480 10400 13600
CD4 T cell count (cells/ml) 866 662 859 NA
Cholesterol (mg/dl) 135 112 112 NA

5 Viral load (copies/ml) 200 200 9580 52600
CD4 T cell count (cells/ml) 460 424 376 303
Cholesterol (mg/dl) 283 143 135 147

6 Viral load (copies/ml) 32600 15700 15700 NA
CD4 T cell count (cells/ml) 334 388 NA NA
Cholesterol (mg/dl) 101 112 NA NA

7 Viral load (copies/ml) 5050 33600 39300 39300
CD4 T cell count (cells/ml) NA 835 NA NA
Cholesterol (mg/dl) 182 128 NA NA

8 Viral load (copies/ml) 51400 32600 171000 55100
CD4 T cell count (cells/ml) 207 250 261 NA
Cholesterol (mg/dl) 170 120 124 NA

9 Viral load (copies/ml) 23100 7810 6560 5140
CD4 T cell count (cells/ml) 560 503 545 NA
Cholesterol (mg/dl) NA 128 120 NA

10 Viral load (copies/ml) 6840 6390 NA 7420
CD4 T cell count (cells/ml) 302 402 336 268
Cholesterol (mg/dl) 170 124 116 128

11 Viral load (copies/ml) 44100 45900 49900 17000
CD4 T cell count (cells/ml) 452 621 NA 462
Cholesterol (mg/dl) 155 170 NA 124

12 Viral load (copies/ml) 125000 42100 NA 46100
CD4 T cell count (cells/ml) 572 NA 569 NA
Cholesterol (mg/dl) 182 116 128 NA

 
a NA: Not available 
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HIV-1 ESCAPE OF CCR5 CORECEPTOR ANTAGONISM THROUGH 

SELECTION OF CXCR4-USING VARIANTS IN VITRO 

 

Abstract  

HIV-1 coreceptor switch from CCR5 to CXCR4 is associated with disease progression 

and AIDS. Selection of resistant HIV-1 to CCR5 agents in cell culture has often 

occurred in the absence of coreceptor switch. With CCR5 antagonists currently in 

clinical trials, their impact on coreceptor use is still in doubt. 

Six R5 HIV-1 strains were passaged in lymphoid cells expressing high CXCR4 and low 

CCR5, in the absence or presence of CCR5 inhibitors (TAK-779, mAb 2D7 and CCL5). 

AMD3100, AZT and 3TC were used as controls. Phenotype and genotype changes as 

well as virus coreceptor use were evaluated. 

In the absence of drug pressure, three out of six strains expanded their coreceptor use to 

CXCR4 at different times, suggesting that not all virus strains had the capacity to do so. 

Lowering the replication rate with a suboptimal concentration of different anti-HIV 

agents (RT inhibitors or CCR5 agents) delayed coreceptor switch. However, virus 

breakthrough was observed earlier in the presence of CCR5-targeting agents than in 

presence of RT inhibitors and was associated to a change in sensitivity to TAK-779 or 

AMD3100, virus coreceptor expansion to CXCR4 and changes in the V3 loop region of 

gp120. 

Our results suggest that HIV-1 may escape CCR5 drug pressure through coreceptor 

switch. Experimental conditions strongly determine the outcome of CCR5 drug pressure 

in cell culture. A cell culture model of the evolution of HIV-1 coreceptor use may be 

relevant to assess the propensity of clinical isolates to develop resistance through 

coreceptor change. 
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Characterization of viral strains for selection with CCR5 inhibitors 

Six HIV-1 strains (CI1-CI5 and the laboratory–adapted BaL strain) were selected by 

their R5 phenotype. Tropism was determined by assessing their growth in MT-2 cells 

and in U87-CD4 cells expressing the appropriate coreceptor (Table 5). The selected 

HIV-1 strains were titrated in PBMC and their susceptibility to CXCR4, CCR5 and 

reverse transcriptase inhibitors (AMD3100, TAK-779 and AZT, respectively) was 

evaluated (Table 5). As expected, none was sensitive to AMD3100 at the maximum 

concentration tested (1µg/ml). All strains were sensitive to TAK-779 and all but one 

(CI4) had similar sensitivity to AZT. 

 

 

Table 5. Inhibition of virus replication and coreceptor use of different HIV-1 strains 

Virus EC50 a (µg/ml) Coreceptor use b 

  

  
AZT AMD3100 TAK-779 MT-2 

U87 
CCR5+ 

U87 
CXCR4+ 

              

BaL  0,001   >1 0,004 - + - 

CI1  0,0001   >1 0,002 - + - 

CI2  0,0002   >1 0,0001 - + - 

CI3  0,0001   >1 0,0001 - + - 

CI4  >0,5   >1 0,0001 - + - 

CI5  0,0006   >1 0,0001 - + - 

              

a EC50 : 50% effective concentration, or concentration needed to inhibit 50% HIV p24 antigen 
production, evaluated in  PHA and IL2 stimulated PBMC. Maximum concentration tested was 0.5 
µg/ml for AZT and 1 µg/ml for AMD3100 and TAK-779. 

b  Coreceptor use was determined by evaluation of syncytium formation in the corresponding cell line 
and determination of p24 antigen in the cell supernatant (data not shown). 

 

 

Emergence of HIV-1 coreceptor switch variants in vitro 

Virus were passaged in SupT-1 cells which express high levels of CXCR4 and low 

levels (undetectable by flow cytometry but positive by western blot analysis, data not 

shown) of CCR5 coreceptor [236]. During successive passages viral replication was 
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reminiscent of slow replicating, non-syncytium inducing phenotype. In the absence of 

drug pressure, three out of six strains (CI3, CI4 and CI5) were able to switch from the 

R5 to R5/X4 phenotype (Fig. 10, Table 6). Change of phenotype correlated with the 

observation of syncytia in cell cultures and increased replication rate, as measured by 

p24 antigen in the supernatant (Fig. 10). After the peak of p24 production there was a 

drop in p24, probably caused by the massive cell death observed after the spread of 

R5X4/X4 variants (Fig. 10).  

The emergence of R5X4 variants from the CI5 culture took place after 4 

passages (14 days) whereas syncytia formation in CI3 and CI4 cultures could be 

detected at passage 17 (59 days) and 30 (105 days), respectively. Identical experiments 

were repeated four times with CI5 and twice with CI3 to ensure the reproducibility of 

coreceptor switch (data not shown). In all cases, the coreceptor switch variants from CI5 

and CI3 appeared within 10 to 16 days and 63 to 77 days, respectively. The two other 

clinical isolates (CI1, CI2) and BaL, did not switch coreceptor, despite being 300 days 

in culture.  
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Figure 10. Growth of R5 HIV-1 strains in Sup-T1 cells. Cells were infected with the corresponding 
strain and replication was measured as p24 antigen in the supernatant of cells. Virus replication was 
reminiscent of R5 slow replication phenotype. Three out of six strains, CI3 (■), CI4 (●) and CI5 (▲), 
showed increased replication at different times after initiation of infection, which correlated with the gain 
of CXCR4 use. Conversely, BaL (□), CI1 (◊) and CI2 (∆) maintained a slow replication phenotype.  
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CCR5 antagonists accelerated the emergence of CXCR4-using variants compared 

to RT inhibitors 

As explained above, passages of the 6 HIV-1 strains occurred at relatively slow 

replication rates due to the low availability of CCR5 coreceptor. At the same time, 

similar cultures were passaged in presence of the RT inhibitors, AZT or 3TC, and the 

CCR5 antagonist TAK-779 at suboptimal concentrations, applying similar pressure on 

the virus but on different target genes. The gain of CXCR4 use by the three isolates 

described above was delayed with AZT, 3TC and TAK-779 (Fig. 11). However, in both 

CI3 and CI5, CXCR4-using viruses emerged earlier with TAK-779 compared to the 

cultures with AZT or 3TC. (Fig. 11A, 11C and Table 6). For CI3, emergence of 

CXCR4-using variants in the presence of TAK-779 (CI3TAK-779) was delayed for 15 

passages (49 days) compared to the untreated control (CI3C), whereas AZT (CI3AZT) 

delayed it  for 21 passages (70 days). The CI5 strain cultured with TAK-779 (CI5TAK-

779) switched coreceptor 5 to 9 passages (17 to 59 days) after the CI5 without drug 

(CI5C), depending on the experiment. Coreceptor switch variants of CI5 in presence of 

AZT (CI5AZT) could not be detected even 18 or 33 passages (63 or 115 days) after their 

detection in the control cultures. 

CI4 in presence of AZT (CI4AZT) switched coreceptor earlier than in presence of 

TAK-779 (CI4TAK-779) (Fig. 11B and Table 6). This virus strain was shown resistant to 

AZT by phenotype (Table 5) and genotype testing (data not shown). The emergence of 

X4 viruses in the presence of AZT (CI4AZT) took place only 3 passages (11 days) after 

detection of CXCR4-using variants in the cultures without drugs (CI4C). 

A parallel culture of each strain was maintained with AMD3100 (1µg/ml). 

AMD3100 prevented the emergence of CXCR4-using viruses in the cultures of the 

three clinical isolates that switched in the absence of drug pressure. 

Selection of the R5X4 phenotype could also be induced with the mAb anti-

CCR5 2D7 and CCL5 (Fig. 12). The switch of coreceptor use was delayed if compared 

to the untreated culture, but was noticed earlier with all CCR5 agents when compared to 

cultures growing at a similar replication rate (in the presence of AZT or 3TC). 
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Figure 11. Growth of HIV-1 strains in the presence of HIV-1 inhibitors. Cells were infected with the 
corresponding strain and virus replication was measured as p24 antigen in the supernatant of cells. The 
emergence of R5X4 variants is linked to a high increase in the p24 antigen. Each parental HIV-1 isolate 
CI3 (A), CI4 (B), CI5 (C) was passaged without drug (♦), with AMD3100 (□), AZT (∆) orTAK-779 (○). 
CI3 (A) was also passaged with 3TC (◊). For CI3 (A) and CI5 (C), peak of replication was first noticed 
under TAK-779 than AZT or 3TC selective pressure and similar results were obtained for 3 independent 
experiments.  
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Figure 12. Growth of HIV-1 CI5 in the presence of different CCR5-targeting compounds. Filled 
symbols represent the variants that gained CXCR4 use, open symbols represent the variants that did not 
change tropism. Without drug (♦) or with TAK-779 (●), mAb 2D7 (■), CCL5 (▲), AMD3100 (□), AZT 
(∆) and 3TC (○). 

 

Tropism change accompanied by reduced sensitivity to TAK-779 

The sensitivity to AZT, AMD3100 and TAK-779 of each parental virus and all the 

viruses obtained after the passages was determined in PBMC. EC50 values are shown in 

Table 6. As expected, almost all the viruses that gained CXCR4 usage, were less 

sensitive to TAK-779. The control CI5 virus (CI5C), of R5X4 phenotype, was 30-fold 

less sensitive to TAK-779 compared to the parental CI5 (EC50 0.003  µg/ml and 0.0001 

µg/ml, respectively). Similarly, the EC50 of TAK-779 for CI5TAK-779 and CI5CCL5 

increased 30-fold and 100-fold for the CI52D7 strain. Comparable results were obtained 

with the CI3 virus of which switched variants were 40-fold (CI3C), 90-fold (CI3AZT) and 

60-fold (CI3TAK-779) less sensitive to TAK-779. Nevertheless, the R5X4 variant CI4AZT 

was as sensitive as the CI4 parental isolate. Concerning the AMD3100 inhibition, 

parental isolates were totally resistant, but the R5X4 variants gained some sensitivity. 

However, an EC50 value for AMD3100 could not be calculated at the concentrations 

used, except in two cases, for CI3C (0.03 µg/ml) and for CI4C (0.1 µg/ml). Drug 

sensitivity in primary cells is prone to higher variation in experimental error and 

variation in virus titre may explain the 10-fold increase in the AMD3100, AZT and 3TC 

CI5 passaged strains.  
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Table 6. Inhibition of virus replication and coreceptor use of HIV-1 stains cultured in the 

presence of different HIV entry inhibitors 

 

Virus 
Culture 

conditions 
Passage 

Nº a 
EC50 b (µg/ml) Coreceptor use c 

   
   

AZT AMD3100 TAK-779 MT-2 
U87 

CCR5+ 
U87 

CXCR4+

         

CI3parental - - 0,0001 >1 0,0001 - + - 

CI3C no drug 17 0,001 0,03 0,004 + + + 

CI3AMD3100 AMD3100 - 0,0001 >1 0,0001 - + - 

CI3AZT AZT 38 0,001 >1 0,009 + + + 

CI3TAK-779 TAK-779 32 0,0007 >1 0,006 + + + 

CI33TC 3TC - 0,001 >1 0,0004 - + - 
         

CI4parental - - >0,5 >1 0.0001 - + - 

CI4C no drug 30 0,008 0,1 0,002 + + + 

CI4AMD3100 AMD3100 - 0,09 >1 0,0004 - + - 

CI4AZT AZT 33 >0,5 >1 0,0001 + + + 

CI4TAK-779 TAK-779 - >0,5 >1 0,0001 - + - 
         

CI5parental - - 0,0006 >1 0,0001 - + - 

CI5C  no drug 3 0,002 >1 0,003 + + + 

CI5AMD3100 AMD3100 - 0,001 >1 0,001 - + - 

CI5AZT AZT - 0,001 >1 0,001 - + - 

CI5TAK-779 TAK-779 8 0,002 >1 0,003 + + + 

CI5CCL5 CCL5 8 0,001 >1 0,003 + + + 

CI52D7 2D7 7 0,0005 >1 0,01 + + + 

CI53TC 3TC - 0,002 >1 0,001 - + - 
                  

a Passage number at which the outgrow of CXCR4-using variants was first detected. Values represent the 
mean of 2 separate evaluations. 

b EC50: 50% effective concentration, or concentration needed to inhibit 50% HIV p24 antigen production, 
evaluated in stimulated PBMC. Maximum concentration tested was 0.5 µg/ml for AZT and 1 µg/ml for 
AMD3100 and TAK-779. Values represent the mean of 2 separate evaluations done in triplicate. 

c Coreceptor use was determined by evaluation of syncytia formation in the corresponding cell line and 
determination of p24 antigen in the cell supernatant (data not shown). 
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Genotypic changes in gp120 of coreceptor switch variants 

Amino acid changes associated with virus coreceptor switch are shown in Fig. 13. Most 

of the mutations occurred in the V3 loop and substitutions that generated the positively 

charged amino acids Arg (R) or Lys (K) were heavily favoured, mainly in V3 (e.g. 

CI4C, CI5C, CI5TAK-779), but also in V2 (CI4C). Changes in the V3 loop net charge have 

been previously associated with coreceptor switch [80,81,237]. We observe a potential 

glycosylation site loss in V3 at position 301 (CI5C, CI5TAK-779.2, CI52D7), that has also 

been associated with coreceptor switch [89]. No other mutations in the gp120 coding 

region were observed (data not shown). Notably, almost all viral strains that switched 

coreceptor had a glycine (G) to arginine (R) mutation at position 314 in V3 loop. 

However, two patterns of mutations were selected from CI5 passaged with TAK-779 

(CI5TAK-779.1 and CI5TAK-779.2). In one experiment CI5TAK-779.1 showed the emergence of 

an aspartic acid (D) to an asparagine (N) at position 322 in V3, increasing the V3 net 

positive charge and the loss of the N-linked glycosylation site at position 301. 

 
 
 
 
V

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 13. Comparative analysis of the consensus gp120 amino acid sequence from the parental 
and passage-derived HIV-1 strains. Amino acid positions are numbered according to HXB2 start of 
gp120. (-) represent homology with the parental strain.  
 

 

irus Amino Acid position

V4 C4
130 143 167 171 174 220 275 276 277 283 288 292 301 303 306 313 314 316 321 322 351 359 365 410 429 462 470

 PARENTAL N T D R A P E N F T L V N T S P G A G Q E I P - E N P
 C - - - - - - - - - - - - - - - - R - - - - - S - - - -
 AMD3100 - - - - - - - - - - - - - - - - - - - - - - - - - - -
 AZT - - - - - - - - L - - - - - - - R - - - - - - - - - -
 TAK-779 - - - - - - - - - - - - - - S/G - R P/T - - - - S - - - -
 3TC - - - - - - - - - - - - - - - - - - - - - - - - - - -

 PARENTAL N T G T S G E N F T L V N T G P G T N I K I S T K N P
 C - - G/R - S/R - - - - - L/V - - K - - R - - - - L - - E - -
 AMD3100 - - - - - - - - - - - - - - - - - - - - - - - - - -
 AZT - - R T/A - - - - - - - - - - - A R - - - R - - - E - -
 TAK-779 - - - - - - A - - A - I - - - - - - D - R - - - E - -

 PARENTAL C S G K A P V V F T L V N T S P G A G D E I S G K N P
 C - S/N - - - C/T - - - - - - K - - - R - - - - - - - - - -
 AMD3100 - - - - - - - - - - - - - - - - - - - - - - - - - - -
 AZT - - - - - - - - - - - - - - - - - - - - - - - - - - -
 3TC - - - - - - - - - - - - - - - - - - - - - - - - - - -
 2D7 Y/C - - - - - - - - - - - K - - - R - - - - - - R/G - Y/N -
 CCL5 Y/C - - - - - - - - - - - - - - - R - - - - - - - - - -
 TAK-779.1 - - - - - - - V - - - - - T/I - - - - - N - - - - - - -
 TAK-779.2 Y/C - - - - - - - - - - - K/N T/K - - R - - - - - - - - - P/L
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 3TC - - - - - - - - - - - - - - - - - - - - - - - - - - -
 2D7 Y/C - - - - - - - - - - - K - - - R - - - - - - R/G - Y/N -
 CCL5 Y/C - - - - - - - - - - - - - - - R - - - - - - - - - -
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ANTI-HIV ACTIVITY AND RESISTANCE PROFILE OF THE 

CXCR4 ANTAGONIST POL3026 

 

ABSTRACT 

We have studied the mechanism of action of POL3026, a novel specific ß-hairpin 

mimetic CXCR4 antagonist. POL3026 specifically blocked the binding of anti-CXCR4 

monoclonal antibody 12G5 and the intracellular Ca2+ signal induced by CXCL12. 

POL3026 consistently blocked the replication of HIV, including a wide panel of X4 and 

dualtropic strains and subtypes in several culture models, with 50% effective 

concentrations (EC50) at the sub-nanomolar range making POL3026 the most potent 

CXCR4 antagonist described to date. However, AMD3100-resistant and CXCL12-

resistant HIV-1 strains were cross-resistant to POL3026. Time of addition experiments 

and a multiparametric evaluation of HIV envelope function in the presence of test 

compounds confirmed the activity of POL3026 at an early step of virus replication, 

namely interaction with the coreceptor.  Generation of HIV-1 resistance to POL3026 led 

to the selection of viruses 12- and 25-fold less sensitive and with mutations in gp120 

including the V3 loop region. However, POL3026 prevented the emergence of CXCR4-

using variants from a R5 HIV-1 strain that may appear in the presence of anti-HIV 

agents targeting CCR5.  
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The novel CXCR4 antagonist POL3026 

Recently, highly potent and selective β-hairpin mimetic CXCR4 inhibitors with good 

pharmacokinetic profiles have been described [226]. One of them, POL3026, has 

been chosen for further characterization in CXCR4 specificity, anti-HIV activity and 

mode of action. POL3026, with a MW of 2114, was designed starting from a 

truncated analogue of the β-hairpin peptide polyphemusin II. Some residues were 

changed giving a precursor, from which a macrocyclic structure was generated by 

linking the N- and the C-terminal residues. Libraries of such peptidomimetics were 

synthesized having various amino acid combinations in the linker region. After 

several rounds of optimization, POL3026 was obtained (Fig. 14). In this study we 

wanted to determine the anti-HIV activity, specificity and mode of action of 

POL3026. 

 

 

 

 

 

 

Figure 14. Structure of  POL3026. Xa =2-Nal; Xb =Q; Xc= Cit 

 

Potent anti-HIV activity of POL3026 against a broad panel of HIV strains 

We used the standard drug-screening assay with MT4 cells based on the MTT method 

that is generally used in our laboratory for the throughput evaluation of candidate 

antiviral agents [230,234]. As shown in Table 7, POL3026 proved to be highly potent 

against several X4 HIV strains. An EC50 of 0.0001 µg/ml (0.05 nM) was calculated for 

the HIV-1 NL4-3 wild-type virus, thus at least 10-fold more potent than the well known 

CXCR4 antagonist AMD3100. POL3026 showed similar anti-HIV activity against 

viruses resistant to current antiviral agents such as the RT inhibitors nevirapine, 

efavirenz or the fusion inhibitor T-20, against the HIV-2 ROD strain or HIV-1 strains 

from different subtypes (A, B, D, F and O) (Tables 7 and 8). There was no evidence of 

synergy or antagonism when POL3026 was tested in combination with AZT, AMD3100 

or T-20. Only additive effects were observed (data not shown). 
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POL3026 was not cytotoxic at any of the concentrations tested (up to 125 µg/ml). 50% 

cytotoxic concentrations (CC50) of all compounds tested are shown in Table 7 and 8. A 

summary of mean EC50 values and SD values for all evaluations done during this study 

are shown in  the Supplementary Table 1 and 2 , respectively.  

 

Table 7. Anti-HIV activity of POL3026 against wt NL4-3 and different resistant strains  

 

 

 

 

 

 

 

 

 

Compound EC50  (µg/ml) a

NL4-3 wt K103N IRLL98DRT Y181C Y188L CI-1-SI HIV-2 RODT-20r/C34r no virus

AZT 0,0008 0,0005 0,0006 0,0002 0,0007 0,4 0,00050,0005 >1
AMD3100 0,001 0,001 0,001 0,002 0,001 0,004 0,0010,001 >5
Nevirapine 0,004 0,03 >2 0,9 >2 0,004 >2- >
Efavirenz 0,0004 0,001 >0,1 0,002 >0,1 0,0001 >0,1- >
POL3026 0,0001 0,0001 0,00001 0,0001 0,00005 0,0002 0,00010,0004 >1
DS 0,009 - - - 5,4 -0,08 >125
C34 0,005 - - - - - -0,2 >5
T-20 0,1 - - - - - -1 >
CXCL12 0,07 - - - - - -0,1 >5

-

2
0,1

5

CC 50 (µg/ml) bCompound EC50  (µg/ml) aEC50  (µg/ml) a

NL4-3 wt K103N IRLL98DRT Y181C Y188L CI-1-SI HIV-2 RODT-20r/C34r no virus

AZT 0,0008 0,0005 0,0006 0,0002 0,0007 0,4 0,00050,0005 >1
AMD3100 0,001 0,001 0,001 0,002 0,001 0,004 0,0010,001 >5
Nevirapine 0,004 0,03 >2 0,9 >2 0,004 >2- >
Efavirenz 0,0004 0,001 >0,1 0,002 >0,1 0,0001 >0,1- >
POL3026 0,0001 0,0001 0,00001 0,0001 0,00005 0,0002 0,00010,0004 >1
DS 0,009 - - - 5,4 -0,08 >125
C34 0,005 - - - - - -0,2 >5
T-20 0,1 - - - - - -1 >
CXCL12 0,07 - - - - - -0,1 >5

-

2
0,1

5

CC 50 (µg/ml) bCC 50 (µg/ml) b

a EC50: Effective concentration 50 or the concentration needed to inhibit by a 50% the MT4 cell death as 
measured by the MTT assay. Results shown are the mean of three separate experiments performed in 
triplicates. SD for all values is shown in  supplementary table 2. 

b CC50: Cytotoxic concentration 50 or the concentration needed to induce 50% cell death in mock-infected 
MT-4 cells by the MTT assay. 
 
 
Table 8. Anti-HIV activity of POL3026 against HIV-1 strains from different subtypes 

 

 

Compound

HIV Strain NL4-3 UG92029 39RW02492BR014 93BR020 BCF06 No virus
Sub-type A AB F O

 
AZ

 

 

 

T 0,001 0,001 0,0010,001 0,002 0,0005 >0,1
evirapine 0,004 0,05 0,040,01 0,09 0,09 >1

0,003 0,0001 0,00060,00003 0,01 0,0002 >1
T-20 0,3 0,007 0,00030,007 0,004 0,00004 >2

MD3100 0,001 0,008 0,0010,004 0,004 0,004 >1
CXCL12 0,07 >1 >1>1 >1 >1 >1

L3026 0,00006

92UG021 92UG024
D D

0,001 0,0009
0,08 0,1
0,005 0,002
0,002 0,003
0,002 0,008
>1 >1
0,0001 0,00020,0001 0,000020,00001 0,00003 0,00008 >0,1

a EC50: Effective concentration 50 or the concentration needed to inhibit by a 50% the MT4 cell death as 
measured by the MTT assay. Results shown are the mean of three separate experiments performed in 
triplicates. SD for all values is shown in  supplementary table 2. 

b CC50: Cytotoxic concentration 50 or the concentration needed to induce 50% cell death in mock-infected 
MT-4 cells by the MTT assay. 

N
C34

A

PO

EC50  (µg/ml) a CC 50 (µg/ml) bCompound

HIV Strain NL4-3 UG92029 39RW02492BR014 93BR020 BCF06 No virus
Sub-type A AB F O

T 0,001 0,001 0,0010,001 0,002 0,0005 >0,1
evirapine 0,004 0,05 0,040,01 0,09 0,09 >1

0,003 0,0001 0,00060,00003 0,01 0,0002 >1
T-20 0,3 0,007 0,00030,007 0,004 0,00004 >2

MD3100 0,001 0,008 0,0010,004 0,004 0,004 >1
CXCL12 0,07 >1 >1>1 >1 >1 >1

L3026 0,00006

92UG021 92UG024
D D

0,001 0,0009
0,08 0,1
0,005 0,002
0,002 0,003
0,002 0,008
>1 >1
0,0001 0,0002

92UG021 92UG024
D D

0,001 0,0009
0,08 0,1
0,005 0,002
0,002 0,003
0,002 0,008
>1 >1
0,0001 0,00020,0001 0,000020,00001 0,00003 0,00008 >0,1

AZ
N
C34

A

PO

EC50  (µg/ml) aEC50  (µg/ml) a CC 50 (µg/ml) bCC 50 (µg/ml) b
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POL3026 was active against R5X4 and X4 strains in PBMC 

Dualtropic (R5X4) HIV-1 strains preferentially use CXCR4 as entry coreceptor [238]. 

POL3026 blocked the replication of R5X4 strains (3 clinical isolates and the 89.6 HIV 

strain) with similar potency to that seen with HIV-1 strains of X4 phenotype (Table 9, 

Supplementary Table 1 and 2 for SD) with the exception of HIV-1 CI6 that was 6-fold 

less sensitive to POL3026 as compared to the NL4-3 strain PBMC. In addition, 

POL3026 seemed to be less effective against the NL4-3 strain in PBMC than in MT-4 

cells. Although this difference may be a consequence of variation in the models used 

(e.g. different cell types, incubations times and virus growth readouts) it may also 

reflect differences in coreceptor expression in stable and primary cells that affect the 

activity of the compound. 

 

 

Table 9. Anti-HIV activity of POL3026 against X4 and R5X4 strains in PBMC 

 

 

 

 

 

 

 

Compound

NL4-3 wt BaL 89.6 CI6 CI7 CI8 no virus

AZT 0,001 0,0003 0,0006 0,001 0,001 0,00003 >0,1

TAK-779 >0,2 0,006 >0,2 >0,2 >0,2 >0,2 >0,2

AMD3100 0,006 >0,5 0,008 0,05 0,04 0,05 >0,5

T-20 0,2 0,003 0,3 0,2 0,2 0,2 >0,5

POL3026 0,005 >0,1 0,007 0,03 0,002 0,0005 >0,1

EC50 (µg/ml) a CC50 (µg/ml) bCompound

NL4-3 wt BaL 89.6 CI6 CI7 CI8 no virus

AZT 0,001 0,0003 0,0006 0,001 0,001 0,00003 >0,1

TAK-779 >0,2 0,006 >0,2 >0,2 >0,2 >0,2 >0,2

AMD3100 0,006 >0,5 0,008 0,05 0,04 0,05 >0,5

T-20 0,2 0,003 0,3 0,2 0,2 0,2 >0,5

POL3026 0,005 >0,1 0,007 0,03 0,002 0,0005 >0,1

EC50 (µg/ml) aEC50 (µg/ml) a CC50 (µg/ml) bCC50 (µg/ml) b

a EC50: 50% effective concentration, or concentration needed to inhibit by a 50% the replication of HIV 
strains as measured by HIV p24 antigen production, evaluated in  PHA and IL2 stimulated PBMC. 
Results shown are the mean of three separate experiments performed in triplicates. SD for all values is 
shown in supplementary table 2. 

b CC50: 50% cytotoxic concentration or concentration required to induce 50% death of non-infected cells, 
evaluated by flow cytometry in forward versus side scatter plots. 
 

 

Multiparametric evaluation of HIV envelope function  

We have developed a simple method to evaluate the mode of action of HIV entry 

inhibitors through the evaluation of cell-to-cell interaction between HIV-infected and 

uninfected cells [225]. In this assay we measured the single-cell-death of target cells 

(CD4+ T cells) induced by effector cells that expressed different Env (chronically 
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infected MOLTCCR5+ cells) and also the p24 transfer to target cells. POL3026 

efficiently blocked single-cell-death of CD4+ T cells induced by MOLT-4/NL4-3 and 

MOLT-4/CI-1-SI cells expressing X4 HIV-1 glycoproteins (Fig. 15) but it did not 

prevent cell death induced by MOLT-4/BaL (R5) cells (data not shown). HIV transfer 

from infected to uninfected cells, as assessed by the percentage of p24+ cells (using 

uninfected cells as a control) could not be blocked by POL3026, AMD3100, the fusion 

inhibitor C34 and the RT inhibitor AZT (Fig. 15). As previously shown [225], only 

agents targeting the interaction of gp120 with CD4 (anti-CD4 antibody leu3A), blocked 

HIV cell-to-cell transfer suggesting that POL3026 works at a step later that virus 

attachment to CD4. 
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Figure 15. Single-cell-death and p24 transfer. Effect of compounds (RT inhibitor AZT, fusion inhibitor 
C34, anti-CD4 mAb Leu3A, and CXCR4 antagonists AMD3100 and POL3026) on single cell death and 
p24 transfer to CD4+ T cells, induced by coculture with two different sets of X4 HIV-1 (NL4-3 and CI-1-
SI) chronically infected MOLT-4/CCR5 cells. Single-cell-death is represented respect to control 
cocultures with uninfected MOLT-4/CCR5 cells. Results from two experiments performed in triplicates 
are represented. Error bars indicate SD. 
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POL3026 acted as a CXCR4 antagonist in a time of addition assay 

In time of drug addition experiments, an infection synchronized by temperature is 

established and compounds are added at different times post-infection. Virus production 

is measured after one cycle of replication. As shown in Fig. 16, similar to the CXCR4 

agents AMD3100 or Alellix-4C (ALC-40-4C), POL3026 began to loose its activity if 

addition was delayed for 15 min. Furthermore, kinetics of virus growth was different to 

that seen for the binding inhibitor AR177, the gp41-dependent inhibitors C34 and T-20 

or the RT inhibitor AZT, suggesting that POL3026 prevents infection by blockade HIV 

coreceptors. 
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Figure 16. Time of addition experiment. Effect of the addition of compounds (binding inhibitor AR177; 
CXCR4 antagonists AMD3100 and ALX-40-4C; POL3026; fusion inhibitors C34 and T-20; and RT 
inhibitor AZT) at different moments after initiation of infection on the p24 production by NL4-3 in MT-4 
cells 30 h after infection. The compounds were used at a blocking concentration of HIV replication 
(AR177, 50 µg/ml; AMD3100, ALX-40-4C, POL3026, C34, 1 µg/ml; T-20, 5 µg/ml; AZT, 0,5 µg/ml). 
TAS, temperature-arrested state. A representative time of addition experiment is shown. Similar results 
were obtained in four separate experiments. 
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POL3026 inhibits 12G5 mAb staining and CXCL12-induced intracellular Ca2+ 

signaling and chemotaxis 

In order to verify the specificity of POL3026 for CXCR4, its capacity to interfere with 

the staining of monoclonal antibodies against CXCR4, CCR5, CD45 or CD4 was tested. 

CEM-CCR5+ cells were stained with monoclonal antibodies alone or together with 

different compounds with known epitope specificities. POL3026 inhibited the staining 

of CXCR4+ cells with mAb 12G5 (Fig. 17A) in a dose-dependent manner (IC50 of 

0.0005 µg/ml) (Fig. 17B). Conversely, POL3026 did not interfere with the specific mAb 

staining of CCR5, CD45 or CD4 (data not shown). To determine whether the inhibition 

of the CXCR4 mAb staining was due to a down-regulation of CXCR4 or only a 

masking of the epitope recognized by the 12G5 antibody, we calculated the 50% 

inhibitory concentration (IC50) of POL3026, AMD3100 and CXCL12 at 37ºC (both 

down-regulation and epitope masking may occur) and at 4ºC (only masking of the 

epitope is evaluated). The IC50 for POL3026 (0.0067±0.005 µg/ml) and AMD3100 

(0.0061±0.0022 µg/ml) at 37ºC did not change significantly at 4ºC (6-fold and 2-fold 

difference respectively). Conversely, the IC50 of the agonist chemokine CXCL12 (1.03 

µg/ml) was different (31-fold) at 4ºC, reflecting its capacity to down-regulate and mask 

the 12G5 mAb epitope.  

To further evaluate the interaction of POL3026 with CXCR4 coreceptor, we 

tested its effect on chemokine-induced intracellular Ca2+ signaling ([Ca2+]i). POL3026 

by itself did not induce Ca2+ mobilization in CEM or THP-1 cells. POL3026 blocked 

Ca2+ signaling induced by the natural ligand of CXCR4 CXCL12 in both cell lines 

tested (Fig. 17C). The specificity of POL3026 was further demonstrated as it could not 

affect the Ca2+ mobilization induced by CCR5-specific chemokines CCL5, CCL3 and 

CCL4 (data not shown), confirming the specificity of POL3026 for CXCR4.  

Furthermore, POL3026 showed a potent inhibition of the chemotactic response 

to CXCL12 by CXCR4+ cells (Fig 17D). Taken together, these results suggest that 

POL3026 does not induce down-regulation and it is a potent antagonist of CXCR4. 
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Figure 17. CXCR4 specificity and antagonism of POL3026. A, inhibition of mAb 12G5 (anti-CXCR4) 
staining on CEM-CCR5 cells by different compounds (CXCR4 antagonist AMD3100 at 0.2 µg/ml, anti-
CCR5 mAb PRO140 at 10 µg/ml and POL3026 at 0.04 µg/ml). B, dose-response curve of the inhibition 
of staining of mAb anti-CXCR4 12G5 by POL3026 (♦) and the CXCR4 antagonist AMD3100 (■); mAb 
anti-CCR5 2D7 by the anti-CCR5 mAb PRO140 (∆) and mAb anti-CD4 Leu3a by unstained Leu3a (○).  
C, calcium mobilization induced by 100 ng/ml of CXCL12 in 0.2x106 CEM-CCR5 cells was blocked by 
1 µg/ml of POL3026. Representative experiments are presented in panels A to C. The results were 
confirmed in three separated experiments. D, CEM-CCR5 cells induced to migrate through a 5-µm pore 
membrane by the CXCR4 ligand CXCL12 (20 ng/ml) in the presence or absence of  POL3026 or the 
CXCR4 antagonist AMD3100 as a control. Cell migration was quantified by flow-cytometry and  results 
were expressed as migration index. Data shown is representative of experiments performed at least twice. 
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Anti-HIV activity in macrophages and lymphoid tissue cultures 

POL3026 blocked the replication of the macrophage-tropic, X4 HIV-1 strain J130.3 in 

monocyte–derived macrophages. As shown in Fig. 18A, POL3026 at a concentration of 

0.008 µg/ml inhibited virus replication by 90%. No activity was observed when tested 

against the R5 BaL strain (data not shown). None of the concentrations used were 

cytotoxic (data not shown). 

Tissue culture studies may be an approximation to the in vivo complex 

environment. The potency of POL3026 was tested against HIV with R5 (BaL), R5X4 

(89.6) and X4 (NL4-3) tropism in lymphoid tissue culture from tonsils ex vivo. As 

shown in Fig. 18B, POL3026 blocked the replication of X4 and R5X4 strains to the 

same extent than AZT and AMD3100. Conversely, no effect on R5 HIV-1 BaL 

replication was observed, whereas it could be blocked by the CCR5 antagonist TAK-

779. 
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Figure 18. Anti-HIV activity of POL3026 in macrophages and lymphoid tissue cultures. A, 
inhibition of HIV-1 replication of J130.3 X4 strain in MDM. Concentrations of compounds used were: 
TAK-779 (CCR5 antagonist), 1 µg/ml; AMD3100 (CXCR4 antagonist), 5 µg/ml; POL3026, 0.008 µg/ml; 
AZT (RT inhibitor), 0.2 µg/ml; and C34 (fusion inhibitor), 2 µg/ml. Graphic data are the mean of two 
experiments performed in triplicates. B, inhibition of replication of X4 HIV-1 NL4-3, R5 HIV-1 BaL, or 
R5X4 HIV-1 89.6 strains in tonsillary lymphocyte cultures. When tested, the represented concentrations 
of compounds were TAK-779, 1 µg/ml; AMD3100, 2 µg/ml; POL3026, 1 µg/ml; and AZT, 1 µg/ml. A 
representative experiment performed in triplicates is shown. Similar results were obtained in three 
separate experiments (tonsil tissues coming from different donors). A and B, values of p24 production at 
each point are represented relative to the p24 produced by the control culture without compound. Error 
bars indicate SD. NC, no compound. 
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Antiviral Activity of POL3026 against NL4-3 Resistant to CXCL12 and AMD3100 

As shown in Table 10, POL3026 was able to block the replication of the NL4-3 strains 

that were made resistant to AMD3100 virus, albeit a 200-fold loss in sensitivity. 

Likewise, the CXCL12-resistant HIV-1 strain was also cross-resistant to POL3026 and 

AMD3100 (6-fold and 8-fold increase in EC50, respectively). Compounds acting at the 

reverse transcriptase level (AZT) or at other entry step (C34 or T-20) were equally 

active against all strains tested. Thus, amino acid changes conferring resistance to 

AMD3100 and CXCL12 in the NL4-3 backbone affect the sensitivity to POL3026, 

suggestive of a similar mode of action.  

 

 

Table 10. Anti-HIV activity of POL3026 against NL4-3 and resistant strains 

 

 

 

 

 

 

 

 

 

Compound EC50 (µg/ml) a     CC50 (µg/ml) b

NL4-3 wt AMD3100res no virus

AZT 0,0006 0,0005 [0.8]

DS 0,009 0,003 [0.4]

AMD3100 0,001 0,08 [75]

C34 0,005 0,008 [2]

T-20 0,1 0,01 [0.1]

CXCL12 0,07 3 [41]

POL3026 0,0001 0,02 [173]

CXCL12res

0,0006 [1]

0,005 [0.5]

0,008 [7]

0,008 [2]

0,01 [0.1]

2 [30]

0,0006 [6]

>1

>125

>5

>5

>10

>25

>1

[Resistance]  Compound EC50 (µg/ml) a     CC50 (µg/ml) b

NL4-3 wt AMD3100res no virus

AZT 0,0006 0,0005 [0.8]

DS 0,009 0,003 [0.4]

AMD3100 0,001 0,08 [75]

C34 0,005 0,008 [2]

T-20 0,1 0,01 [0.1]

CXCL12 0,07 3 [41]

POL3026 0,0001 0,02 [173]

CXCL12res

0,0006 [1]

0,005 [0.5]

0,008 [7]

0,008 [2]

0,01 [0.1]

2 [30]

0,0006 [6]

>1

>125

>5

>5

>10

>25

>1

[Resistance]  Compound EC50 (µg/ml) a     CC50 (µg/ml) b

NL4-3 wt AMD3100res no virus

AZT 0,0006 0,0005 [0.8]

DS 0,009 0,003 [0.4]

AMD3100 0,001 0,08 [75]

C34 0,005 0,008 [2]

T-20 0,1 0,01 [0.1]

CXCL12 0,07 3 [41]

POL3026 0,0001 0,02 [173]

CXCL12res

0,0006 [1]

0,005 [0.5]

0,008 [7]

0,008 [2]

0,01 [0.1]

2 [30]

0,0006 [6]

>1

>125

>5

>5

>10

>25

>1

[Resistance]  

a EC50: Effective concentration 50 or needed concentration to inhibit 50% HIV-induced cell death, 
evaluated with the MTT method in MT-4 cells. Results shown are the mean of three separate experiments 
performed in triplicates. SD for all values is shown in  supplementary table 2. 

b CC50: Cytotoxic concentration 50 or needed concentration to induce 50% death of non-infected cells, 
evaluated with the MTT method in MT-4 cells 

c Fold Resistance: Relative loss of activity of the corresponding virus relative to the NL4-3 wt strain 
calculated as the Mean EC

50 
of the virus strain / Mean EC

50 
of the NL4-3 wt strain.  
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Development of POL3026 resistant viruses 

The selection of resistant viruses to a compound can be developed through a prolonged 

culture of the virus with increasing concentration of this compound. Here, MT-4 cells 

were infected with the X4 HIV-1 strain HXB2 in the absence (HXB2.41) or presence of 

increasing concentrations of POL3026 for up to 205 days (41 passages in cell culture, 

Fig. 19A). Two virus isolates (HP41resA and HP38resB) were recovered and retitered 

for anti-HIV evaluation. The parental HIV-1 HXB2-wt and the strain passed without 

POL3026 HXB2.41 were equally inhibited by all anti-HIV compounds tested. 

Conversely, virus strains grown in the presence of POL3026 (HP41resA and HP38resB) 

were 12-fold and 25-fold resistant to POL3026 and 10-fold and 23-fold cross-resistant 

to AMD3100, respectively but remained equally sensitive to AZT and nevirapine (Table 

11). 

 

Table 11. Anti-HIV activity of POL3026 against the wt, parental and resistant HXB2 
strains 
 
 
 C
 
 
 
 
 
 
 
 
 

ompound EC50 (µg/ml)a [fold-resistance]c

HXB2 HXB2
wild-type parental

AZT 0,001 0,001 [1] 0,001 [1] 0,001 [1] >0,1
Nevirapine 0,04 0,03 [1] 0,03 [1] 0,08 [2] >1
AMD3100 0,003 0,004 [1] 0,03 [10] 0,07 [22] >1
POL3026 0,00004 0,00004 [1] 0,0005 [12] 0,001 [35] >0,1

HXB2
POL3026-res B

HXB2 
POL3026-res A

CC50 (µg/ml)b

no virus

Compound EC50 (µg/ml)a [fold-resistance]c

HXB2 HXB2
wild-type parental

AZT 0,001 0,001 [1] 0,001 [1] 0,001 [1] >0,1
Nevirapine 0,04 0,03 [1] 0,03 [1] 0,08 [2] >1
AMD3100 0,003 0,004 [1] 0,03 [10] 0,07 [22] >1
POL3026 0,00004 0,00004 [1] 0,0005 [12] 0,001 [35] >0,1

HXB2
POL3026-res B

HXB2 
POL3026-res A

CC50 (µg/ml)b

no virus

a EC50: Effective concentration 50 or needed concentration to inhibit 50% HIV-induced cell death, 
evaluated with the MTT method in MT-4 cells. Results shown are the mean of three separate experiments 
performed in triplicates. SD for all values is shown in a supplementary table 2. 

b CC50: Cytotoxic concentration 50 or needed concentration to induce 50% death of non-infected cells, 
evaluated with the MTT method in MT-4 cells. 

c Fold Resistance: Relative loss of activity of the corresponding virus relative to the HXB2 wt strain 
calculated as the Mean EC

50 
of the virus strain / Mean EC

50 
of the HXB2 wt strain.  
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Figure 19. POL3026-resistant strains. A, development of resistance to POL3026. Two HXB2 resistant 
strains were obtained after passages with increasing concentrations of POL3026. The rate of POL3026 
concentration increase for each resistant virus during the passages is represented. B, mutations in gp120 
that confer resistance to POL3026. Residues are numbered according to the HXB2 gp120 sequence. C, 
Comparison of V3 loop mutations that emerged under different CXCR4 targeting compounds: POL3026, 
AMD3100 [229], the chemokine CXCL12 [239], and the T134 [240] CXCR4 inhibitor. 
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Results 

The analysis of the amino acid sequence of gp120 derived from proviral DNA 

from HIV infected cells revealed the presence of mutations as a result of selective 

pressure with POL3026. Mutations were detected mainly in the V3 loop of gp120, 

which is thought to interact with the HIV-1 coreceptors. HP41resA and HP38resB had 

one mutation in common, N325D, in the V3 loop region that contributes to the 

acidification of the V3. Each virus strain contained two other mutations in the V3 loop 

region (Fig. 19B). Four mutations of these resistant viruses (Q310H, I320T, N325D, 

and A329T) are shared by viruses resistant to CXCL12 [239], AMD3100 [229] and 

T134 [240] (Fig. 19C). 

Drug-resistance may affect the replication capacity of HIV-1 in the absence of 
drug. To evaluate the fitness cost of mutations conferring resistance to POL3026, 
growth competition experiments between HP41resA or HP38resB and the wild type 
HXB2.41 strain were performed. However, after 133 days in cell culture there was no 
clear indication of a better fit virus as measured by quantification of the proviral DNA 
sequence corresponding to POL3026-resistant or wild type virus, suggesting little 
differences in virus fitness. In single infection assays, we compared the growth kinetics 
of HP41resA and HP38resB to that of the HXB2.41 and the AMD3100-resistant virus, 
which has been shown to have reduced fitness [241] (Fig 20). The growth of the 
HP41resA strain seemed to be similar to that of the wild type. Conversely, the 
replication of HIV-1 HP38resB was similar to that of the AMD3100-resistant virus, 
suggesting that an increase in drug resistance to POL3026 may lead to impaired 
replication capacity. 
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Figure 20. Growth kinetics of HXB2.41, HP41resA, HP38resB, and AMD3100-resistant virus. Virus 

replication was measured as p24 antigen in the supernatant of MT-4 cultures. Similar results were 

obtained in four separate experiments performed in triplicates. 
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POL3026 prevented the emergence of X4 viruses from the R5 168.1 strain 

We have standardized an in vitro model that allows us to study coreceptor switch of a 

R5 virus to X4 or R5/X4 in cell culture (see section HIV-1 Escape to CCR5 Coreceptor 

Antagonism through Selection of CXCR4-using Variants in vitro, [242]). The model is 

based on the prolonged culture of viruses in the lymphoid cell line Sup-T1 that express 

low levels of CCR5, allowing R5 viruses to replicate at a low rate. After few passages, 

the R5 HIV-1 168.1 expanded its coreceptor use to CXCR4, followed by syncytium 

formation and a peak in p24 viral antigen detection (Fig 21). In the presence of a CCR5 

antagonist, TAK-779, coreceptor switch could be delayed, most probably due to the 

lower replicating rate compared to the control culture in the absence drug pressure. 

However, after 17 more passages, HIV-1 168.1 gained resistance to the CCR5 

antagonist through coreceptor switch i.e. increased virus replication. Conversely, in the 

presence of POL3026, the emergence of CXCR4-using viruses was prevented. The 

change of phenotype of virus recovered from TAK-779 culture and untreated cells was 

confirmed by virus growth in CXCR4+ MT-2 and U87 CD4+ CXCR4+ cells, and it was 

concomitant to the emergence of mutations in the V3 loop region of gp120 (data not 

shown). 
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Figure 21. Growth of R5 HIV-1 168.1 strain in sustained infection of Sup-T1 cells and effect of the 
CCR5 antagonist TAK-779 or POL3026 on the evolution of its phenotype. Virus replication was 
measured as p24 antigen in the supernatant of cell culture. Low virus replication was reminiscent of R5 
phenotype. Peak of p24 production reflected the gain of CXCR4 use. Representation of one of three 
separate experiments. 
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Discussion 

Current antiviral therapy has improved life quality of HIV+ infected individuals by 

reducing morbidity and mortality. However, it cannot eradicate the virus, presents long-

term toxicity and is limited by the emergence of drug-resistant strains. For these reasons 

there is a continuous effort to design and develop new antiviral compounds targeting 

different steps of the HIV cycle. One interesting approach is to inhibit the steps of HIV 

entry to the cell and here, in this work, we focused on some of these strategies. 

A study by del Real [32] in 2004 suggested that statins could inhibit HIV in vitro 

and even showed anti-HIV activity in vivo. For this reason we decided to evaluate 

statins as antiviral compounds against HIV-1. Statins are potent inhibitors of the 

conversion of HMG–CoA to mevalonate [191] and this leads to reduced synthesis of 

cholesterol and decreased prenylation of proteins [243,244]. Therefore, statins inhibit 

the biosynthesis of isoprenoids such as farnesyl pyrophosphate and geranylgeranyl 

pyrophosphate that are required for important cellular functions [245], such as the 

assembly of glycoproteins, heme groups and the GTP-binding proteins [246] and for the 

regulation of cell proliferation [247]. Previous data suggested that the anti-HIV effect of 

statins might be due to the inhibition of isoprenoid biosynthesis; consequently, Rho 

GTPase could not be prenylated at their C-terminus and remain functional. This would 

inhibit the rearrangement of actine cytoskeleton needed for HIV entry and budding. 

However, in a study of the differential inhibitory effect of lovastatin on protein 

isoprenylation and sterol synthesis, it was found that inhibition of protein prenylation by 

lovastatin could be responsible for cellular toxicity [243]. Unfortunately, we found that 

in standard cell culture testing and unlike control compounds (AZT, AMD3100 and 

DS), none of the statins had significant antiviral activity at subtoxic concentrations. We 

concluded that the anti-HIV activity of atorvastatin, lovastatin, simvastatin and 

fluvastatin may be easily confounded by their cytotoxicity in cell culture at 

concentrations that would be required to block HIV replication. Thus, our results 

suggest that concentrations required to block HIV replication in vivo could induce 

significant cytotoxicity and unwanted effects. 

Nevertheless, statins are generally well tolerated and are commonly prescribed 

for the effective control of plasma cholesterol levels. We took advantage of a well-

controlled cohort of HIV+ individuals that interrupted the antiretroviral therapy at least 

3 months to evaluate the anti-HIV activity of simvastatin at a dose (80 mg daily) that 

showed efficacy in controlling cholesterol levels. Although there was a significant 
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reduction of total cholesterol and LDL-cholesterol levels in plasma, neither the mean 

VL or CD4+ T cell count significantly changed in all but one patient. Conversely, the 

former study by del Real [32], in which 6 individuals received lovastatin (40 mg daily), 

showed in 50 % of the patients a decrease > 0.5 log in HIV RNA in plasma as well as an 

increase in CD4+ T cells. We have observed similar changes in plasma HIV RNA that 

may occur spontaneously in HIV infected individuals not receiving any antiretroviral 

therapy or a lipid-lowering agent. Although differences in activity for specific statins 

could be claimed, our cell culture data argues against any possible effect of all these 

compounds, at least with the dosage and exposition lengths used in our trial.  

At the same time of our study, several groups reported preliminary data on the 

failure of statins to control HIV replication in vivo. In one of these studies in HIV+ 

patients receiving antiretroviral treatment, pravastatin did not have any antiviral effect 

[248]. Also, in HIV+ patients receiving HAART no differences were detected on viral 

load suppression between the statin and non-statin receiving groups [249]. In another 

study they observed that long-term treatment with statins (pravastatin, atorvastatin or 

rosuvastatin) did not affect CD4+ T cell counts in HIV+ patients receiving HAART 

[250]. Finally, in another pilot study from our same center, HIV+ patients with viral 

suppression after the interruption of HAART received atorvastatin 40 or 80 mg daily, 

but statins failed to reduce viral rebound and CD4+ T cell loss after 4 and 12 weeks. In 

contradiction, basal cholesterol, but not atorvastatin influenced the viral rebound at 

week 4 [251]. It has been described that membrane cholesterol and lipid rafts have a 

role in HIV entry, budding and HIV structure and infectivity in vitro (reviewed in [31]). 

Also SP01A (http://www.samaritanpharma.com/aids_hiv_program_sp-01a.asp), a 

compound that reduces intracellular cholesterol levels and corticosteroid biosynthesis, 

showed anti-HIV activity in clinical trials. Nevertheless, the relevance of cholesterol in 

vivo and the role of lowering it by statins remains uncertain.  

The failure of statins may be explained by the multiple potential effects of these 

compounds that are not always in an inhibitory way. The antiviral effects of statins 

could be compensated by an increase of HIV transcription that has been observed in 

vitro [1] or by an inhibition of the immune response [199,200]. Also, a low systemic 

bioavailability of statins [252], but not in the liver, could explain why a notable effect 

(whether favorable or not) was not observed during the 8 weeks of treatment, whereas a 

decrease in plasma cholesterol levels was detected. The liver is the target organ for the 
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statins, since it is the major site of cholesterol biosynthesis, lipoprotein production and 

LDL catabolism. However, extrahepatic synthesis of cholesterol is necessary for normal 

cell function [253]. Taken together, our results suggest that significantly higher doses 

may be required and this, in turn, could induce a cytotoxic, unwanted effects in HIV+ 

patients. Nevertheless, we cannot exclude that higher doses of simvastatin or any other 

statins would be effective in controlling HIV replication in humans. 

Despite the fact that statins are widely used as a treatment for hyperlipidemia, 

their prolonged use has well-known secondary effects [254], such as myopathy [255], 

procarcinogenesis potential, hepatotoxicity, nerve damage [256], short temper [257], 

cognitive decline, memory loss [258] and teratogenic potential [259]. Moreover, there is 

a risk of rhabdomyolysis [260] with the concomitant use of statins in patients receiving 

highly active antiretroviral therapy.  

In conclusion, statins represent a well-established class of drugs that effectively 

lower serum cholesterol levels and are widely prescribed for the treatment of 

hypercholesterolemia. The fact that its basic pharmacology is well-known, the study of 

those compounds offers perspectives at short-term in HIV treatment. However, in spite 

of recent studies suggesting that statins could be appropriate drugs for the treatment of 

HIV infection, our results, together with other in vivo studies, caution on the use of 

statins as antiretroviral agents. Further in vivo studies taking into account other clinical 

settings to try to clarify statins pleiotropic effects and determine the role of cholesterol 

in HIV replication in vivo are still needed.  

Another interesting approach that has been recently developed are coreceptor 

inhibitors, being CCR5 antagonists the most advanced. They have shown high potency 

in vitro against R5 viruses [136-140] and proved to be effective in short-term clinical 

trials [141-144]. The most successful candidate was maraviroc that was recently 

approved by the FDA for treatment-experienced HIV+ individuals. One intriguing 

question is if resistance to these compounds may be developed through coreceptor 

switch. Emergence and selection of CXCR4 using viruses is a major concern. 

Nevertheless, a number of publications have suggested that CCR5 drug resistance may 

emerge in the absence of coreceptor switch [164,165,206-208]. HIV-1 may become 

resistant to vicriviroc (another CCR5 antagonist) [164,209] or maraviroc [206] in vitro 

by utilizing an inhibitor-bound form of the receptor and this has been shown as a 

preferential mode to circumvent the anti-HIV activity of CCR5 drugs in the absence of 

 87



Discussion 

coreceptor switch. Coreceptor phenotype testing from the phase II maraviroc trial 

showed that circulating virus remained CCR5 tropic in 60/62 patients, indicating that 

X4 variants were not rapidly selected despite CCR5-specific drug pressure [205]. 

Conversely, we showed that in cell culture, HIV-1 strains may switch faster to CXCR4 

use with selective pressure on CCR5 use (TAK-779, CCL5 or 2D7 mAb) than with 

AZT, suggesting a preferential selection of R5X4 or X4 virus as a mode of drug 

resistance in some of the HIV strains tested.  

 The use of CCR5-targeting drugs requires the prior knowledge of the viral 

tropism in a given patient. Determination for HIV-1 coreceptor usage is complex and 

only few methods exist [215,219] that may not be sensitive enough to detect minor X4 

or R5/X4 populations [95,205,215,219,261,262], which selection would be favored by a 

CCR5 antagonist. For instance, X4 variants in two patients on treatment with maraviroc 

appeared to emerge by outgrowth of a pre-treatment CXCR4-using reservoir [205]. 

 Our observation that a clonal R5 virus may gain CXCR4 use, which also 

occurred in the presence of CCR5 compounds, shows that minor X4 populations may 

evolve from the mutants generated within the first two weeks from a purely R5 virus. 

Furthermore, if a minor X4 population is present at the initiation of the cell culture, it is 

intuitive to think that X4 emergence will occur at a similar time/rate in the absence or 

presence of CCR5 drugs and this did not occur. It is also relevant to bear in mind that 

for any given compound, the selection of a resistant virus applies for a pre-existing 

minor mutant population with a selective advantage in the presence of the drug. 

Generation of the mutant virus depends on the intrinsic mutation rate and the replicative 

capacity of the virus. Therefore, whether the drug-resistant virus (i.e. a CXCR4-using 

strain) was present at day zero or was generated during cell culture, the emergence of 

the mutant is independent of the drug that, if present, selects for the drug-resistant virus.  

Our results are in line with a recent report of the maraviroc phase III trial 

concluding that more patients on maraviroc had a change in tropism to D/M or X4 at 

time of failure than in the placebo control group [211], underscoring the propensity of 

CXCR4-using virus to emerge under CCR5 drug pressure. Upon discontinuation of 

treatment, R5 virus may repopulate and conform the dominating phenotype, suggesting 

that X4 variants may only have an increased viral fitness in the presence of CCR5 drug  

pressure. Interestingly, in this study there was no evidence of  a detrimental effect on 

the VL or CD4+ T cell counts due to the emergence of CXCR4-using viruses. 
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The X4 variants that emerged in our cultures gained sensitivity to AMD3100 

and lost it to TAK-779. However, changes in susceptibility to both compounds were 

partial, reflecting the retained capacity of the virus to use CCR5. Notably, one virus 

strain expanded coreceptor capacity while retaining total sensitivity to TAK-779 in 

PBMC. Coreceptor switch intermediates with lower affinity to CCR5 and higher 

sensitivity to CCR5 inhibitors have been recently described [90]. These results were 

generated in U87-CD4 cells that exclusively express CCR5, allowing to evaluate 

changes in sensitivity due to changes in the affinity of the virus for the receptor. 

Reduced or loss of sensitivity to TAK-779 of HIV-1 stains in PBMC cultures, that are 

expressing both CCR5 and CXCR4, likely reflects increased representation of CXCR4-

using variants within the virus population that outgrow in the presence of drug, and not 

a correlative measurement of CCR5 binding. Dualtropic viruses exhibit considerable 

variations in their efficiency to use CXCR4 and CCR5 as coreceptor [263], and 

consequently, in their susceptibility to CXCR4 and CCR5 entry inhibitors. HIV-1 

strains such as 89.6, defined as dualtropic through coreceptor assays, may be completely 

blocked by AMD3100 in PBMC and ex vivo lymphoid tissue [238]. Tests for coreceptor 

use and drug sensitivity in cells expressing both coreceptors [263] may not always be in 

agreement, highlighting the necessity of multiple determinations to clearly assess 

coreceptor preference by HIV-1.  

Evolution towards CXCR4 usage in vivo and in vitro seems to go along multiple 

pathways and most R5X4/X4 variants have diverse mutation patterns, although some 

common features (i.e. charged amino acids at position 11/25 of the V3 loop) have been 

detected [221,264]. We observed that the R5 isolates gained CXCR4 use via multiple 

mutations in gp120. With the exception of CI5 in the presence of TAK-779, which 

showed two different patterns of mutations, a common mutation (G314R) was observed 

in independent switch variants. This mutation is uncommon in CI but some cases have 

been reported [74,265-267] and it has been associated with gain of CXCR4 use in vitro 

[90,237,268]. In a previous study, we showed that HIV-1 CI5 may expand its coreceptor 

use in cell culture and this may be prevented by CXCR4 antagonists [236]. The 

emergence of CXCR4 variants required 100 days rather than 10-16 days as shown 

herein and did not involve the G-to-R mutation at position 314 but the canonical 

changes at positions 11 and 25 of the V3 loop. A faster coreceptor switch may occur by 

passaging both infected cells and supernatant and not virus-containing supernatant 
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alone. It is also possible that cell to cell transmission may favor virus coreceptor switch 

and allow for a different pattern of mutations. 

 In this cell culture model not all strains were able to switch coreceptor 

preference, which may reflect an intrinsic capacity of some isolates to switch to X4 or 

retain the R5 phenotype. It is enticing to suggest the importance of evaluating a 

significant number of isolates in order to validate if cell culture assays as our model 

could be used to measure the propensity of a clinical isolate to switch or expand 

coreceptor preference prior to or after the initiation of a CCR5 drug-containing regimen. 

It will also be important to determine by clonal analysis if the emerging X4 phenotype 

is generated by a mixture of R5 and emerging X4 variants, or are dualtropic (R5X4) 

viruses. 

 It becomes clear that cell culture conditions and choice of virus isolate are of 

utmost importance to induce a coreceptor change in cell culture. The relevance of our 

study could be questioned, but this observation can be extended to the development of 

resistance to CCR5 inhibitors in the absence of coreceptor switch. The virus strains that 

did not switch coreceptor preference did not become resistant to TAK-779 at the time 

that cell cultures were stopped (CI1, CI2 and BaL, data not shown). Resistance is 

commonly developed in cells expressing detectable CCR5 levels and by gradually 

increasing the compound concentration until relatively high levels are reached 

[165,207,208]. The cell type, time in culture and the concentration of HIV inhibitors 

together with the specific HIV-1 strain that is being selected are factors that affect the 

outcome of in vitro resistance development. Although some studies suggest that target 

availability is not the driving force for the coreceptor switch, determined by coreceptor 

expression on T cell of PBMC [269], our results also suggest that the lack of CCR5 

(very low availability) and not the CXCR4 abundance could be relevant in the 

emergence of CXCR4-using viruses during the course of infection. Of course, studies 

determining coreceptor expression and occupancy by antagonists should be performed 

and it is obvious that other selective pressures in vivo could be affecting the viral 

populations. 

The possibility of R5X4 and X4 emergence due to CCR5 antagonism and a 

possible role of CXCR4 antagonists to prevent it, suggest that these compounds could 

be useful alone or in combination with CCR5-targeting agents. Although CXCR4 

antagonists have shown anti-HIV activity in clinical trials, at present there are not any 
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CXCR4 antagonist candidates under clinical development (see introduction), therefore  

there is a need for CXCR4 targeting compounds with a safety profile suitable for human 

clinical use. For this reason we decided to collaborate with Polyphor biotech company 

who designed several CXCR4 antagonists. Previous work selected POL3026 by its 

plasma stability, high selectivity for CXCR4 and favorable pharmacokinetic properties 

in dogs [226]. In our study, we characterized the mode of action of POL3026 as an anti-

HIV agent. We confirmed that POL3026 binds to CXCR4 and interferes with the 

staining of the mAb directed against this chemokine receptor. Moreover, POL3026 did 

not induce an intracellular Ca2+ flux or chemotaxis, but it interfered with the calcium 

signaling and chemotaxis induced by CXCL12, suggesting that POL3026 acts as an 

antagonist of CXCR4. Furthermore, multiparametric evaluation of HIV envelope 

function and time of addition experiments suggested that POL3026 blocks HIV 

replication at the level that corresponds with the virus interaction with the coreceptor. 

POL3026 was active against X4 and R5X4 HIV strains including clinical 

isolates and virus strains that are resistant to other drug classes, but lost activity against 

HIV-1 strains with the same genetic background (i.e. NL4-3) that are resistant to other 

CXCR4 ligands. From the above results it was not surprising the emergence and 

location of mutations developed under selective pressure with this compound, which 

appeared mainly in the V3 loop of gp120. Four mutations (Q310H, I320T, N325D, and 

A329T) are shared by viruses resistant to CXCL12 [239], AMD3100 [229] and T134 

[240], what could explain the cross-resistance observed between AMD3100 and 

POL3026. Cross-resistance may not be obligatory as ligands such as AMD3100, 

CXCL12 and POL3026 may interact differently with CXCR4 and may be “seen” 

differently by HIV-1 strains with distinct HIV envelopes. However, when comparing 

three virus isolates with a similar genetic backbone i.e. NL4-3 or HXB2, cross-

resistance suggests a similar mode of action. Of note, development of POL3026 

resistance did not select viral strains that switched to CCR5 usage, but as disscussed 

before, culture circumstances during passages and the viral strain can be conditioners 

for viral escape through coreceptor switch. The mutations of POL3026 resistant viruses 

did not have a clear fitness cost as measured by virus competition assays. However, 

growth kinetics indicated that HP38resB, which is 25-fold resistant to POL3026, may 

have an impaired replication capacity. These results contrast with the marked reduced 

fitness of the AMD3100-resistant virus [241]. However, the number of mutations of the 
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AMD3100-resistant virus (up to 11 mutations after selection of resistance) and the 

degree of resistance (up to 100-fold) could explain the fitness differences between 

POL3026 and AMD3100-resistant strains.  

POL3026 inhibited the replication of a broad panel of HIV strains including 

HIV-2 ROD and different HIV-1 subtypes (A, B, D, F and O). Moreover, POL3026 was 

highly potent against a panel of drug-resistant viruses including the RT inhibitors AZT, 

Nevirapine or Efavirenz and the fusion inhibitor T-20. The EC50 of POL3026 for all 

these viruses was in the nanomolar and subnanomolar range, making POL3026 one of 

the most active anti-CXCR4 agents known to date. POL3026 blocked the replication of 

macrophage tropic HIV-1 J130.3 strain that has X4 phenotype. POL3026 showed potent 

anti-HIV activity in primary cells and in lymphoid tissue culture ex vivo, confirming its 

potential as a selective agent against HIV strains that use CXCR4. It did not inhibit the 

replication of R5 tropic virus, but it was effective in a nanomolar range of 

concentrations against dualtropic strains (89.6 and three clinical HIV-1 isolates) when 

tested in PBMC or in lymphoid tissue cultures. Its anti-HIV activity against dualtropic 

viruses could be expected because R5X4 strains may preferentially use CXCR4 [238]. 

However, some of clinical isolates showed a loss of sensitivity to POL3026 and 

AMD3100 in PBMC compared to the NL4-3 strain, probably due to their capacity to 

use both coreceptors. Unfortunately, in a recent study where AMD3100 was evaluated 

against a panel of R5X4 and X4 strains [270], a basal resistance to this compound could 

be measured in several viruses as a decreased maximum inhibition of HIV replication 

(plateau effect). The magnitude of the plateau varied also depending on the cell-donor, 

although the mechanisms were unknown. This baseline resistance could affect the 

clinical use of this class of compounds and although more results are necessary to 

corroborate that, it would be interesting to test POL3026 against a broader panel of CI 

in PBMC from different donors. Data of anti-HIV activity in PBMC showed here was 

evaluated in a pool of PBMC from six different donors, thus avoiding this possible host 

factor effect. 

We also showed that POL3026 prevents the emergence of CXCR4-using strains 

under conditions that are restricting for CCR5, a result that may have an important 

implication in the treatment of HIV+ individuals. Early work showing the reversion of 

X4 to R5 phenotype by a CXCR4 antagonist led us to suggest that virus coreceptor 

switch could be induced by selective drug pressure [236] and recent studies have shown 
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that roughly 20% of drug-naïve (untreated) individuals may harbor X4 viruses 

[271,272], a percentage that increases up to 58% among drug-experienced individuals 

[273]. X4 viruses are not favorably selected during the natural evolution of HIV-1 

infection until later stages of disease but may coexist as a minor subpopulation that may 

be unnoticed by available methods of detection [274], leading to coreceptor switch 

under CCR5 antagonist treatment [211]. Therefore, our results further support the 

hypothesis that CCR5 and CXCR4 drug combinations may be used to prevent the 

emergence of CXCR4-using viruses or the selection of minor X4 populations already 

present that may go undetected.  

The optimization of POL3026 may lead to prototype compounds with excellent 

pharmacokinetics and the potential to become candidates for clinical evaluation. 

Nevertheless, antagonism to CXCR4 in long-term therapy, in contrast to CCR5 

antagonism, is questioned because of the unknown consequences of inhibiting a 

receptor involved in important biological functions [53,59] such as hematopoietic stem 

cell mobilization, homing and trafficking of leukocytes, brain development, 

vascularization and T cell activation and migration to sites of inflammation. However, 

in the halted clinical trials i.e. AMD070 [173], the toxicity observed seems not to be 

target-related. In terms of CXCR4 coreceptor inhibitors, the ultimate strategy would be 

inhibiting HIV binding to CXCR4 while retaining the receptor functionality through 

CXCL12. In the lack of a non-agonistic non-antagonistic CXCR4 inhibitor, the option 

would be a compound with the highest possible anti-HIV activity / CXCR4 antagonism 

rate.  

 

Concluding remarks 

Can translational research truly provide a fast or immediate response about potential 

new therapeutic agents in order to make informed decisions on, for example, relevant 

treatment options in HIV infection? May we provide laboratory-based evidence that 

parallels what it is observed in patients? This thesis has been a practical attempt to 

confirm and demonstrate that we are able to do it. In a relatively short time from the 

first description of the potential use of statins to treat HIV infection, we provided strong 

support that argued against the efficacy of statins as antiretrovirals. In an attempt to 

model virus evolution we showed that drugs against CCR5 may curve the natural 
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history of HIV towards apparently more pathogenic variants. In HIV research, 

laboratory based evidence seems to be, as never before, closer to the clinic. 

Nevertheless, results generated during this research thesis, regardless of the 

controversial aspects of some of them (e.g. do X4 viruses truly emerge from the R5 

after CCR5 drug pressure or are they the simple consequence of selecting for X4 minor 

species that were already there?) leave more questions open than answered and call for 

basic research as the means to resolve them. Our results suggest that effective blockage 

of CCR5 may prompt the evolution of HIV towards CXCR4 usage; conversely, 

allowing CCR5 use may prompt CCR5-drug resistance while maintaining the R5  

phenotype. Our results may pose a paradox: it is the drug efficacy, that is CCR5 

occupancy, that leads to the unwanted coreceptor switch. On the other hand, suboptimal 

(<100% receptor occupancy) concentrations of drug may be the cause of drug-resistance 

without switch. A current paradigm of antiretroviral therapy tells that complete drug 

efficacy is the way to avoid resistance. We may have laboratory evidence to prove that 

for coreceptor-based drugs this may be too simplistic. Again, would it be posible to 

show in the patients what we observed in the lab? We will require a firm hypothesis to 

convince that coreceptor occupancy in vivo may be the key to unraveling when and how 

CCR5 drug resistance occurs. While we may simply measure drug and coreceptor levels 

in blood and possible in secondary lymphoid tissue, virus compartments such as the gut 

or the CNS may not be readily available for testing and evaluation. 

Another question that was only superficially looked at during the years of this 

thesis research was CXCR4 and its role in HIV infection. Much has said and we only 

provided evidence of how more potent anti-HIV agents can be generated. But CXCR4 

represents a tremendous obstacle. Can we develope a strategy to target X4 variants 

without unwanted CXCR4-dependent effects? It will be up to other to continue these 

lines of research and provide evidence-based answers. I hope our work may have 

contributed to find them and to better understand the role of coreceptors in HIV therapy 

and infection, opening new avenues for future research. 
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Conclusions 

• According to standard cell culture testing, statins do not have significant anti-

HIV activity and in previous observations it may have been confounded by their 

accrued cytotoxicity at concentrations that would be required to block HIV 

activity. Simvastatin showed no effect on viral load or CD4+ T cell counts in 12 

HIV+ patients, supporting the in vitro data. Our results caution on the use of 

statins as antiretroviral agents.  

 

• An in vitro model that we used to study coreceptor switch of R5 HIV-1 strains to 

R5X4 or X4 permitted us to conclude that the probability to change coreceptor 

use depends on the R5 isolate and the cell-culture conditions, being the CCR5 

expression of utmost relevance. Therefore, this model could be interesting to 

asses the tendency of HIV clinical isolates to develop resistance to CCR5 agents 

through a switch in  coreceptor usage.  

 

• The selective pressure of an anti-HIV compound can modify the evolution of 

coreceptor usage. Reverse transcriptase inhibitors and CCR5 targeting agents 

delayed the emergence of CXCR4-using variants compared to untreated 

cultures. However, CXCR4-using variants emerged faster under CCR5 drug 

pressure than under reverse transcriptase inhibitors, whereas CXCR4 antagonists 

could prevent the emergence of CXCR4-using variants. Our results suggest that 

HIV-1 strains that are prone to switch coreceptor may escape CCR5 drug 

pressure through selecting CXCR4-using variants, whereas compounds targeting 

CXCR4 prevent the emergence of R5X4 or X4 strains. 

 

• POL3026 is a potent anti-HIV agent against naïve and drug resistant clinical 

isolates with X4 and R5X4 phenotype. POL3026 blocks HIV replication through 

specific interaction with CXCR4 and it acts as an antagonist of this chemokine 

receptor. Study of pattern mutations selected in the resistant viruses proved to be 

a useful tool to confirm its mode of action. Development of resistance to 

POL3026 slightly affect the replication of the viruses respect to the wild-type 

and it did not induce a coreceptor switch in the conditions used. POL3026 with 

its high potency and specificity may represent an step forward in the design of a 

prototype CXCR4 inhibitor that will continue further development. 
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