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Chapter 1

Introduction

Symplectic geometry originated as a language to describe Hamiltonian sys-
tems in classical mechanics and is used as a tool in other areas of physics
such as geometrical optics and thermodynamics [AG]. The classical equa-
tions of motion of a Hamiltonian system with Hamiltonian function H can
be understood as the flow of the Hamiltonian vector field XH with respect
to a certain symplectic form.

For the reader unfamiliar with Hamiltonian systems, we want to illustrate
the concept by looking at the equations of motion of a particle of unit mass
moving in R3 under the influence of a central force field with potential V .
Newton’s law of motion implies that the position x of the particle is given
by the second-order differential equation

ẍ = F (x) := −∂V
∂x

, (1.1)

where F (x) is the force of the field at the point x. Let p = ẋ be the mo-
mentum of the particle. The total energy is the sum of kinetic and potential
energy,

H(x, p) = Ekin + V =
|p|2

2
+ V (x).

The manifold of possible positions of the particle is called configuration space,
in this case R3, the manifold of positions and momenta is phase space, in this
case R3 ×R3. Instead of the second-order differential equation (1.1), we can
consider the system of first-order differential equations on phase space:

ẋ = p, ṗ = F (x).

In the present easy example this step is trivial. However, we can formulate
this system of equations as the flow of a vector field on the phase space,
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the Hamiltonian vector field of H. Consider the non-degenerate two-form
ω0 =

∑
i dxi ∧ dpi and define the vector field XH via ιXHω = −dH. Then we

see that XH is given by p ∂
∂x

+F (x) ∂
∂y

, precisely the vector field corresponding
to the above system of equations.

In general, the phase space is a more complicated manifold M and instead
of ω0 we consider any symplectic form on M , that is, a closed non-degenerate
two-form1. A Hamiltonian system is then given by a triple (M,ω,H) of
a manifold M endowed with a symplectic form ω and a smooth function
H : M → R.

We can go one step further and consider a generalization of symplectic
manifolds, so-called Poisson manifolds. Performing a non-symplectic trans-
formation of a Hamiltonian system may yield such a structure; we will see
examples later on in this thesis (Chapter 8). A Poisson structure Π is de-
fined as a section of TM ∧ TM such that the induced bracket on functions
{f, g} := Π(df, dg) satisfies the Jacobi identity. A symplectic structure can
be viewed as a Poisson structure by using the induced isomorphism between
TM and T ∗M . However, Poisson structures are much more general than
symplectic structures; indeed they induce a (possibly singular) foliation of
the manifold into symplectic leaves.

The manifolds that will play the central role in this thesis are b-Poisson
manifolds. These manifolds are a special sub-class of Poisson manifolds which
are in many ways close to being symplectic: For Π the Poisson structure
dual to a symplectic form, the top wedge Πn never meets the zero section
of Λ2nTM (non-degeneracy of the symplectic form). We define a b-Poisson
manifold to be a Poisson manifold (M,Π) such that Πn vanishes transversally
to the zero section in Λ2nTM . In particular, the vanishing set is a hyper-
surface Z, called the critical hypersurface. Moreover, a b-Poisson structure
can be dualized to obtain a two-form which is symplectic away from Z and
has a controlled singularity on Z. The precise way to formalize this singular
behaviour is the concept of b-forms, which give rise to a differential com-
plex called the b-de Rham complex, in perfect analogy to the smooth case.
A b-Poisson structure then has a dual b-two-form, which is closed and non-
degenerate. We therefore call it a b-symplectic form. The existence of a
“b-Darboux” theorem is another parallel to the symplectic world: it states

1See [Ca] for an introduction to symplectic manifolds.
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that locally around a point m in Z, a b-symplectic form can be written as

1

t
dz ∧ dt+

n−1∑
i=1

dxi ∧ dyi

where (z, t, x1, y1, . . . , xn−1, yn−1) are coordinates centered at m and t is
a local defining function for Z. The geometry of b-symplectic manifolds
has become an active field of research and has been extensively studied in
[GMP11, GMP14, GMPS13, FMM, GL, GLPR, MO13].

Coming back to classical Hamiltonian systems, a particularly interesting
case is that of integrable Hamiltonian systems. Such a system on a
2n-dimensional symplectic manifold (M,ω) consists of n functions f1, . . . , fn
which are independent and commute with respect to the Poisson structure in-
duced by ω, i.e. ω(Xfi , Xfj) = 0. The Hamiltonian function H of the system
is assumed to be one of the integrals. A pivotal result about the dynamics of
integrable systems is the Liouville-Arnold-Mineur theorem (or action-angle
coordinate theorem), Theorem 3.1.2, which states that the compact common
level sets of the integrals fi are tori that are invariant under the motion of the
system and on which the motion is linear. The action-angle coordinates can
be computed explicitly by integration [L, K, AG]; we say that the problem
is solvable by quadratures, that is to say, using only algebraic operations,
differentiation and integration of functions.

The main goal of this thesis is to explore integrable systems in the b-
setting, including the proof of an action-angle coordinate theorem and a
KAM theorem2, which is a statement about the behaviour of such systems
under certain perturbations. We give a more detailed outline of the results
below.

1.1 Structure and results of this thesis

1.1.1 Chapter 2: Preliminaries

We review important results about Poisson and b-symplectic manifolds and
consider other types of “singular” symplectic manifolds, namely bm-symplectic
and m-folded symplectic manifolds. Moreover, we define Hamiltonian torus
actions on b-symplectic manifolds and the concept of cotangent lifts. We end
the chapter with an introduction to the classical KAM theory.

2The letters KAM come from the initials of Kolmogorov, Arnold and Moser who initi-
ated the theory in the classical symplectic case.

8



1.1.2 Chapter 3: Integrable systems on symplectic and
Poisson manifolds

A separate chapter is devoted to introducing integrable systems in a variety of
settings: Poisson, b-symplectic, commutative, non-commutative. We present
the action-angle coordinate theorem in the respective cases.

1.1.3 Chapter 4: Action-angle coordinates for b-integrable
systems

In this chapter we prove the existence of action-angle coordinates for b-
integrable systems. This result was published in [KMS] (joint work with
Eva Miranda and Geoffrey Scott).

Theorem A (Action-angle coordinates for b-integrable systems). Let (M,ω)
be a b-symplectic manifold with critical hypersurface Z. Let F be a b-integrable
system on (M,ω) and let m ∈ Z be a regular point of the system lying inside
the critical hypersurface. Assume that the integral manifold Fm containing m
is compact, i.e. a Liouville torus. Then there exists an open neighbourhood
U of the torus Fm and a diffeomorphism

(θ1, . . . , θn, t, a2, . . . , an) : U → Tn ×Bn,

where t is a defining function for Z, such that

ω|U =
c

t
dθ1 ∧ dt+

n∑
i=2

dθi ∧ dpi.

Moreover, the functions t, p2, . . . , pn depend only on F . The number c is the
modular period of the component of Z containing m.

The S1-valued functions
θ1, . . . , θr

are called angle coordinates and the R-valued functions

t, a2, . . . , ar

are called action coordinates.

1.1.4 Chapter 5: Action-angle coordinates for non-
commutative b-integrable systems

The action-angle coordinate theorem for non-commutative b-integrable sys-
tems is proved. We have published this result in [KMb] (joint work with Eva
Miranda).
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Theorem B (Action-angle coordinates for non-commutative b-integrable
systems). Let (M,ω) be a b-symplectic manifold with critical hypersurface
Z. Let F be a non-commutative b-integrable system on (M,ω) of rank r and
let m ∈ Z be a regular point of the system lying inside the critical hypersur-
face. Assume that the integral manifold Fm containing m is compact, i.e. a
Liouville torus. Then there exists an open neighbourhood U of the torus Fm
and a diffeomorphism

(θ1, . . . , θr, t, p2, . . . , pr, x1, . . . , x`, y1 . . . , y`) : U → Tr ×Bs,

where ` = n− r = s−r
2

and t is a defining function of Z, such that

ω|U =
c

t
dθ1 ∧ dt+

r∑
i=2

dθi ∧ dpi +
∑̀
k=1

dxk ∧ dyk.

Moreover, the functions f1, . . . , fs depend on t, p2, . . . , pr, x1, . . . , x`, y1 . . . , y`
only. The number c is the modular period of the component of Z containing
m.

The S1-valued functions
θ1, . . . , θr

are called angle coordinates, the R-valued functions

t, p2, . . . , pr

are called action coordinates and the remaining R-valued functions

x1, . . . , x`, y1 . . . , y`

are called transverse coordinates.

1.1.5 Chapter 6: Cotangent models and examples of
integrable systems

The action-angle coordinate theorems on symplectic and b-symplectic man-
ifolds can be formulated in the language of cotangent lifts. We define the
appropriate cotangent model for b-symplectic manifolds, which we call the
twisted b-cotangent lift. Then a b-integrable system can be viewed semilocally
as the twisted b-cotangent lift of the torus acting on itself by translations.
Using the terminology introduced in the chapter, we obtain the following
theorem:
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Theorem C. Let F = (f1, . . . , fn) be a b-integrable system on the b-symplectic
manifold (M,ω). Then semilocally around a regular Liouville torus T , which
lies inside the exceptional hypersurface Z of M , the system is equivalent to
the twisted b-cotangent lift model (T ∗Tn)tw,c restricted to a neighbourhood
of (T ∗Tn)0. Here c is the modular period of the connected component of Z
containing T .

The results of this chapter were published in [KMa] (joint work with Eva
Miranda).

1.1.6 Chapter 7: KAM Theory for b-integrable sys-
tems

We prove a KAM result for b-integrable systems, which extends the classical
KAM result known for symplectic manifolds. It tells us that tori whose fre-
quency vector satisfies a certain numerical (“Diophantine”) condition survive
under perturbations of the form specified in the theorem. This result was
published in [KMS] (joint work with Eva Miranda and Geoffrey Scott).

Theorem D (KAM Theorem for b-symplectic manifolds). Let Tn × Bn
r be

endowed with standard coordinates (ϕ, y) and the b-symplectic structure (7.2).
Consider a b-function

H = k log |y1|+ h(y)

on this manifold, where h is analytic. Let y0 be a point in Bn
r with first

component equal to zero, so that the corresponding level set Tn × {y0} lies
inside the critical hypersurface Z.

Assume that the frequency map

ω̃ : Bn
r → Rn−1, ω̃(y) :=

∂h

∂ỹ
(y)

has a Diophantine value ω̃ := ω̃(y0) at y0 ∈ Bn and that it is non-degenerate
at y0 in the sense that the Jacobian ∂ω̃

∂ỹ
(y0) is regular.

Then the torus Tn × {y0} persists under sufficiently small perturbations
of H which have the form mentioned above, i.e. they are given by εP , where
ε ∈ R and P ∈bC∞(Tn ×Bn

r ) has the form

P (ϕ, y) = k′ log |y1|+ f(ϕ, y)

f(ϕ, y) = f1(ϕ̃, y) + y1f2(ϕ, y) + f3(ϕ1, y1).

More precisely, if |ε| is sufficiently small, then the perturbed system

Hε = H + εP
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admits an invariant torus T .
Moreover, there exists a diffeomorphism Tn → T close3 to the identity

taking the flow γt of the perturbed system on T to the linear flow on Tn with
frequency vector (

k + εk′

c
, ω̃

)
.

1.1.7 Chapter 8: Examples of singular symplectic struc-
tures in physics

We discuss several examples where non-canonical transformations are typi-
cally employed to study and/or solve problems in celestial mechanics. These
are the Levi-Civita and KS transformations in the Kepler problem, the trans-
formation due to McGehee for triple collisions in the three body problem
and the McGehee coordinates in the elliptic restricted three-body problem.
An interesting feature of these examples is that the critical set of the b-
symplectic/folded symplectic structure is identified with what is known in
celestial mechanics as the collision set or “line at infinity”. These results
were published in [DKM] (joint work with Amadeu Delshams and Eva Mi-
randa).

1.2 Publications resulting from this thesis

We have published the results of this thesis in the following journals:

A. Kiesenhofer, E. Miranda, G. Scott, Action-angle variables and a KAM
theorem for b-Poisson manifolds, J. Math. Pures Appl. (9) 105 (2016), no.
1, 66–85.

A. Delshams, A. Kiesenhofer, E. Miranda, Examples of integrable and
non-integrable systems on singular symplectic manifolds, Journal of Geome-
try and Physics, 2016, DOI 10.1016/j.geomphys.2016.06.011.

A. Kiesenhofer, E. Miranda, Cotangent models for integrable systems
in symplectic and b-Poisson manifolds, Communications in Mathematical
Physics, 2016, 1-23, DOI 10.1007/s00220-016-2720-x.

3By saying that the diffeomorphism is “ε-close to the identity” we mean that, for given
H,P and r, there is a constant C such that ‖ψ − id‖ < Cε.
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A. Kiesenhofer, E. Miranda, Non-commutative integrable systems on b-
symplectic manifolds, to appear in Journal of Regular and Chaotic Dynamics,
Volume 21, Issue 6 of 2016.
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Chapter 2

Preliminaries

We begin by reviewing some basic facts about Poisson manifolds and intro-
duce the class of b-Poisson manifolds, which are the main object of study of
this thesis.

If not stated otherwise, all manifolds and functions are assumed to be
smooth.

2.1 Background on Poisson manifolds

A Poisson structure (or Poisson bracket) on a manifold M is given by a Lie
bracket { , } on the space of functions on M , which moreover is a derivation
in each argument (Leibniz identity):

{ , } : C∞(M)× C∞(M)→ C∞(M)

{f, gh} = g{f, h}+ h{f, g}.

Recall that a Lie bracket is, by definition, bilinear and antisymmetric,
and satisfies the Jacobi identity:

{{f, g}, h}+ {{g, h}, f}+ {{h, f}, g} = 0.

Poisson structures as bivector fields. We can interpret the bracket { , }
as a bivector field, i.e. a section Π of the bundle TM ∧ TM , by defining

Π : T ∗M × T ∗M → R : (df, dg) 7→ {f, g}

for exact one-forms df, dg and extending linearly to the whole cotangent
space.
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Not every bivector field defines a Poisson structure: Given Π ∈ Γ(TM ∧
TM), the induced bracket of functions { , } is obviously bilinear, antisym-
metric and satisfies the Leibniz identity. However, it does not automatically
satisfy the Jacobi identity. For the latter, he condition that has to be de-
manded for the bivector field Π is that the Schouten bracket [Π,Π] is zero1.

Anchor map. Associated to Π there is a bundle morphism

# : T ∗M → TM : ν 7→ Π(ν, ·).

called the anchor map. The rank of the anchor map at a point x ∈ M is
called the rank of Π at x. If the rank of Π is constant on M , we call Π
a regular Poisson structure on M . Note that the rank is always an even
number.

Example 2.1.1. We give some examples of Poisson structures:

• On any manifold we can define the zero Poisson structure Π = 0.

• Symplectic manifolds are regular Poisson manifolds with full rank: The
Poisson bracket can be defined via

{f, g} := ω(Xf , Xg), f, g ∈ C∞(M) (2.1)

where for a function f the vector field Xf is the Hamiltonian vector field
of f defined by ιXfω = −df . The closedness condition of the symplectic
form corresponds to the Jacobi identity of the Poisson bracket.

• The dual g∗ of any Lie algebra g carries a natural Poisson structure:

{f, g}(η) = 〈η, [dfη, dgη]〉

where f, g are functions g∗ −→ R and η ∈ g∗. Here, dfη and dgη are
naturally identified with elements of g and [, ] denotes the Lie algebra
bracket on g.

• Fix a smooth function K ∈ C∞(R3) and consider the bracket

{f, g}K = det(df, dg, dK)

for f, g ∈ C∞(R3).

1The Schouten bracket is a generalization of the Lie bracket to multivector fields, see
e.g. [DZ] for a definition.
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Hamiltonian vector fields. To a function f ∈ C∞(M) we associate a
vector field

Xf := #(df) = Π(f, ·) ∈ Γ(TM),

the Hamiltonian vector field of f . The set of Hamiltonian vector fields
defines a smooth distribution in the Stefan-Sussmann sense, i.e. for each
point p ∈M there is an assigned vector space Dp ⊂ TpM . The dimension of
these vector spaces might vary from point to point, in which case we talk of
a singular distributions.

The distribution of Hamiltonian vector fields is smooth and involutive:
the Lie bracket of two Hamiltonian vector fields is again a Hamiltonian vector
field

[Xf , Xg] = X{f,g},

and hence by Stefan-Sussmann’s theorem (see [DZ], Theorem 1.5.5) the dis-
tribution is integrable. The corresponding, possibly singular, foliation2 has
leaves which carry a natural symplectic structure: on a leaf L define the
two-form ωL by

ωL(Xf , Xg) := {f, g}.

We refer to this (usually singular) foliation as the symplectic foliation
associated to Π.

Assume that Π has full rank at some point in M . Then M must have
even dimension, dimM = 2n. We call points where Π has full rank non-
degenerate. Note that the set of non-degenerate points is the complement
of the zero set of the map ΛnΠ : M → ΛnTM and is an open symplectic
submanifold of M .

For a Poisson structure which does not have full rank everywhere, we can
distinguish the following important class of functions:

Definition 2.1.2. A function f whose Hamiltonian vector field Xf is zero is
called a Casimir function of the Poisson structure.

Poisson vector fields. Hamiltonian vector fields have the property that
they preserve the Poisson structure, LXfΠ = 0, since by the standard formula
for the Lie derivative LXf of a tensor field and the Jacobi identity for the

2We use the Stefan-Sussmann definition for singular foliations, i.e. there is a partition
of M into immersed submanifolds called leaves such that around every point x ∈M there
is a chart (x1, . . . , xn) such that the leaf through x is locally given by {x1 = . . . = xm = 0}
(m ≤ n) and every level set {x1 = c1, . . . , xm = cm} is contained in some leaf. The
foliation is called regular if all leaves have the same dimension.
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Poisson bracket we have

(LXfΠ)(g, h) = Xf (Π(g, h))− Π(Xf (g), h)− Π(g,Xf (h)) = 0.

Definition 2.1.3. A vector field v ∈ Γ(TM) satisfying

LvΠ = 0

is called a Poisson vector field.

2.1.1 Weinstein’s splitting theorem

The local study of Poisson structures is based on the following theorem [We]:

Theorem 2.1.4 (Weinstein). Let (MN ,Π) be a Poisson manifold of rank 2k
at a point p ∈M . Then on a neighborhood of p there exist coordinates

(x1, y1, . . . , xk, yk, z1, . . . , zN−2k)

centered at p such that the Poisson structure can be written as

Π =
k∑
i=1

∂

∂xi
∧ ∂

∂yi
+

N−2k∑
i,j=1

fij(z)
∂

∂zi
∧ ∂

∂zj
, (2.2)

where fij are functions which depend only on the variables (z1, . . . , zN−2k)
and which vanish at the origin.

This means that locally a Poisson manifold is the product of a symplectic
manifold and a manifold whose Poisson structure has rank zero at the point
in consideration. We also refer to the rank zero part as the transverse part
of the Poisson structure (at p).

2.2 b-Poisson manifolds

We are interested in a class of Poisson manifolds whose Poisson structure has
full rank away from a hypersurface Z ⊂ M and its failure to be regular is
“controlled” in the following way:

Definition 2.2.1. Let (M2n,Π) be an oriented Poisson manifold. If the map

p ∈M 7→ (Π(p))n ∈ Λ2n(TM)
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is transverse to the zero section, then Π is called a b-Poisson structure on
M . The hypersurface Z where the multivectorfield Πn vanishes,

Z = {p ∈M |(Π(p))n = 0}

is called the critical hypersurface of Π. The pair (M,Π) is called a b-
Poisson manifold.

Remark. Observe that the transversality condition in the definition above
is equivalent to 0 being a regular value of the map p ∈ M 7→ (Π(p))n ∈
Λ2n(TM). Moreover, note that, since M is oriented, the hypersurface Z
has a global defining function given by dividing (Π(p))n by a non-vanishining
section of Λ2n(TM).

On Z the rank of the Poisson structure is less than 2n by definition. In
view of the local splitting given by Theorem 2.1.4, the transversality condi-
tion implies that the rank on Z is exactly 2n− 2.

In the following sections we collect the most important results on b-
Poisson manifolds, which will provide the basis for the main results of this
thesis. Before this, we give some examples of b-Poisson structures:

2.2.1 Basic examples

Example 2.2.2. Let (N2n+1, π) be a regular corank-1 Poisson manifold and
let X be a Poisson vector field on N that is transverse to the symplectic
leaves of π. Let f : R→ R a smooth function. The bivector field

Π = f(x)
∂

∂x
∧X + π

is a b-Poisson structure on R×N if the function f vanishes linearly. If this
is the case, then the critical hypersurface consists of the union of as many
copies of N as zeros of f .

In this example, N2n+1 is the critical hypersurface of the b-Poisson man-
ifold and Π induces on N the corank one Poisson structure π. It is a general
fact that the critical hypersurface of a b-Poisson manifold naturally inherits
a corank-one Poisson structure.

This example is generic in the sense that it provides the semilocal model
for a b-Poisson structure in a neighbourhood of the critical hypersurface Z.
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Example 2.2.3. (Radko sphere) A simple example of a compact b-Poisson
manifold is S2 endowed with

Π = h
∂

∂h
∧ ∂

∂θ
,

where (h, θ) are the standard height and angle coordinates. The critical
hypersurface is the equator and on an neighborhood of it (i.e. semilocally)
the manifold is isomorphic to the previous example setting N = S1, π = 0,
X = ∂

∂θ
and f(h) = h.

2.2.2 Historical remarks

The initial motivation to consider b-symplectic manifolds comes from the
study of differential calculus on manifolds with boundary initiated by Melrose
[Me] and its connection to deformation quantization, which was studied by
Nest [NT]. Melrose’s b-calculus is also the origin of the term “b-symplectic”
— the letter b comes from the word “boundary”. In our definition of b-
Poisson manifolds the boundary is replaced by a distinguished hypersurface
Z ⊂M .

In the two-dimensional case, b-Poisson structures in were studied and
classified by Radko [R]. The systematic study of b-Poisson manifolds in any
dimension started with the work of Guillemin, Miranda and Pires [GMP11,
GMP14] and has attracted the attention of other mathematicians who con-
tributed important results on the geometry and topology of these manifolds,
see for instance [GLPR, FMM, MO13, GMPS13, P]. Our recent publications
[KMS, KMa, KMb, DKM] extend this development and contribute results
about the dynamics of b-symplectic manifolds as well as examples coming
from physics.

2.2.3 The b-tangent and b-cotangent bundles

Let (M2n, Z,Π) be a b-Poisson manifold. On M\Z the Poisson structure Π
induces a symplectic form, which “goes to infinity” when we approach Z.
The formal approach of defining differential forms with this type of singular-
ity is the concept of b-de Rham forms.

We start with with following definitions:

Definition 2.2.4. A b-manifold is a pair (MN , Z) of an oriented manifold
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M and an oriented hypersurface Z ⊂M . A b-map is a map

f : (M1, Z1)→ (M2, Z2)

transverse to Z2 and such that f−1(Z2) = Z1. The b-category is the category
whose objects are b-manifolds and morphisms are b-maps.

Definition 2.2.5. A b-vector field on a b-manifold (M,Z) is a vector field
which is tangent to Z at every point p ∈ Z.

These vector fields form a Lie subalgebra of the algebra of all vector fields
on M . Moreover, if f is a local defining function for Z on some open set
U ⊂M with non-empty intersection U ∩Z, and (f, x2, . . . , xN) is a chart on
U , then the set of b-vector fields on U is a free C∞(U)-module with basis

(f
∂

∂f
,
∂

∂x2

, . . . ,
∂

∂xN
). (2.3)

Hence the sheaf of b-vector fields on M is a locally free C∞-module and
therefore it is given by the sections of a vector bundle on M . We call this
vector bundle the b-tangent bundle and denote it bTM .

b-tangent spaces. We want to understand the fibers of the vector bundle
bTM , i.e. the b-tangent spaces bTpM where p ∈M . At points p ∈M\Z, the
b-tangent space coincides with the usual tangent space bTpM = TpM . On
the other hand, restricting a b-vector field to Z yields a vector field on Z in
a natural way. The corresponding vector bundle morphism

ψZ :b TM |Z → TZ. (2.4)

is surjective, as we can see e.g. by considering the local frame given in
Equation (2.3). Its kernel is a line bundle and a nonvanishing section of it is
called a normal b-vector field of the b-manifold (M,Z). In the local frame
(2.3), the kernel of ψZ is spanned by the section (f ∂

∂f
)|Z .

b-cotangent bundle. We define the b-cotangent bundle bT ∗M of M to be
the vector bundle dual to bTM . The discussion in the previous paragraph
implies that for p ∈ M\Z, the b-cotangent space coincides with the usual
cotangent space: bT ∗pM = T ∗pM . At points p ∈ Z, the dual of the map (2.4)
yields an injective morphism

ψ∗Z : T ∗pZ → bT ∗pM (2.5)
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whose image is
{
νp ∈bT ∗pM |νp(wp) = 0, p ∈ Z

}
, where w is a normal b-vector

field of (M,Z) as defined above.

Let f be a global defining function of Z (which exists due to the remark
after Definition 2.2.1). Then µ := df

f
∈ Ω1(M\Z) defines a (smooth) one-

form on M\Z. We denote by 〈·, ·〉 the canonical pairing of forms and vector
fields. For any b-vector field v on M the pairing 〈v, µ〉 ∈ C∞(M\Z) extends
smoothly over Z and hence µ itself extends smoothly over Z as a section
of bT ∗M . It therefore defines a b-one-form on M , which we write as df

f
,

understanding the notation in the way just described. This b-one-form has
the property that its pairing with the normal b-vector field w = f ∂

∂f
is

nonzero, µp(wp) = 1 for p ∈ Z, and hence the discussion of the previous
paragraph entails the following splitting:

bT ∗pM = T ∗pZ + span

{
df

f

}
.

2.2.4 The b-de Rham complex

Having introduced b-forms, we can define forms of higher order by the usual
recipe:

Definition 2.2.6. For k > 0 we define the space of b-de Rham k-forms as
the sections of the vector bundle Λk(bT ∗M) and denote it bΩk(M).

The classical space of de Rham k-forms sits inside the space of b-de Rham
k-forms. More precisely, there is an injective sheaf morphism

φ : Ωk −→ bΩk

defined fiberwise in the following way: given a k-form µ ∈ Ωk(M), we set

φ(µ)p :=

{
µp at p ∈M\Z
(i∗µ)p ∈ Λk(T ∗pZ) ⊂ Λk(bT ∗pM) at p ∈ Z

where i : Z ↪→ M is the inclusion map and Λk(T ∗pZ) is viewed as a a subset
of Λk(bT ∗pM) by the injection ψ∗Z given in Equation (2.5).

Remark. Note that, in particular, if f is a defining function of Z, the recipe
above takes the de Rham form df to a b-de Rham form which is zero on
Z, since (i∗df)p = 0 for p ∈ Z. Hence evaluated at a point in Z the map
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which takes sections of T ∗M to sections of bT ∗M is not injective. However,
as a sheaf morphism it is injective, which is why we can say that Ω(M)
is contained in bΩ(M). The injectivity as a map of sheaves is used in the
b-Mazzeo-Melrose theorem to construct a short exact sequence (see Section
2.2.7 and in particular Theorem 2.2.17), yielding a long exact sequence which
allows the computation of the so-called b-cohomology.

With these conventions it is easy to see that, having fixed a defining
function f , every b-de Rham k-form (k > 0) can be written as

ω = α ∧ df
f

+ β, with α ∈ Ωk−1(M) and β ∈ Ωk(M). (2.6)

While α and β are not unique, it is easy to show that evaluated at a point
p ∈ Z, αp and βp are unique (Proposition 5 in [GMP11]).

The decomposition (2.6) enables us to extend the exterior d operator to
bΩ(M) by setting

dω = dα ∧ df
f

+ dβ.

The right hand side is well defined and agrees with the usual exterior d oper-
ator on M\Z and also extends smoothly over M as a section of Λk+1(bT ∗M).
Note that d2 = 0, which allows us to define the following complex of b-forms,
which is called the b-de Rham complex:

0→ R→ bΩ0(M)
d−→ bΩ1(M)

d−→ bΩ2(M)
d−→ . . .→ 0 (2.7)

Here bΩ0(M) = bC∞(M) is the set of b-functions which we will define below.

Moreover, we can define the Lie derivative of b-forms via the Cartan
formula:

Definition 2.2.7 (Lie derivative of b-forms). Let ω ∈ bΩk(M). Then we define
the Lie derivative with respect to a b-vector field X as

LXω = ιX(dω) + d(ιXω) ∈bΩk(M). (2.8)

Note that if ω = α ∧ df
f

+ β ∈ Ωk(M), then another way to write the Lie
derivative is

LXω := LXα ∧
df

f
+ α ∧ d(X(log |f |)) + LXβ,

so in particular the Lie derivative for b-forms defined above is a generalization
of , the usual Lie derivative for smooth forms (i.e. α = 0).
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b-functions. In order for the b-de Rham complex to admit a Poincaré
lemma, it is convenient to enlarge the set of smooth functions and consider
the set of b-functions bC∞(M), which consists of functions with values in
R ∪ {∞} of the form

c log|f |+ g,

where c ∈ R, f is a defining function for Z, and g is a smooth function. We
define the differential operator d on this space in the obvious way:

d(c log|f |+ g) :=
cdf

f
+ dg ∈ bΩ1(M),

where dg is the standard de Rham derivative.

2.2.5 b-symplectic manifolds

Definition 2.2.8. Let (M2n, Z) be a b-manifold and ω ∈ bΩ2(M) a closed b-
form. We say that ω is b-symplectic if ωp is of maximal rank as an element
of Λ2( bT ∗pM) for all p ∈M .

Here “maximal rank” at a point p means that the linear map

bTpM → bT ∗pM : u 7→ ωp(u, ·) (2.9)

has maximal rank 2n, i.e. it is an isomorphism.

Dual b-Poisson structure. We have already mentioned that given a Pois-
son structure Π, we can dualize it on the set of points where it has maximal
rank to obtain a symplectic structure there.

Given a b-symplectic structure ω we can apply the analogous procedure
to the isomorphism between the b-tangent and b-cotangent bundle given in
Equation (2.9). By inverting this isomorphism we obtain a map

bT ∗pM →b TpM

and since bTM sits inside TM this yields a map

bT ∗pM →b TpM ↪→ TpM.

Using this map we can associate to a b-symplectic form ω a bivector field
Π ∈ Γ(Λ2TM), which we call the dual of ω.

In [GMP11] (Proposition 20) the authors prove the following:
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Proposition 2.2.9. A two-form ω on a b-manifold (M,Z) is b-symplectic
if and only if its dual bivector field Π is a b-Poisson structure.

In short, “b-Poisson equals b-symplectic”.

b-Hamiltonian vector fields. The non-degeneracy of the b-symplectic
form allows us to define the b-Hamiltonian vector field Xf of a b-function
f ∈b C∞(M) intrinsically:

ιXfω = −df.
This is in complete analogy to the symplectic case. Note that the same vector
field is obtained if we use the dual b-Poisson structure Π and define

Xf = Π(df, ·).

Obviously, the flow of a b-Hamiltonian vector field preserves the b-symplectic
form and hence the Poisson structure, so b-Hamiltonian vector fields are in
particular Poisson vector fields.

b-Darboux theorem. We have already stated the Weinstein splitting the-
orem for general Poisson manifolds (Theorem 2.1.4). In the case of b-Poisson
manifolds, if we consider the splitting around a point p ∈ Z the transverse
part is 2-dimensional. For the dual b-symplectic structure ω this means that

ω = ωL + (ΠT )]

where ωL is the symplectic form on the symplectic leaf through the point
p ∈ Z and (ΠT )] is the dual to a b-Poisson structure on a 2-dimensional
manifold which has rank zero on Z.

More precisely, one can prove the following local normal form result that
is the analogue to the Darboux theorem for symplectic manifolds ([GMP11])
and which is therefore called the “b-Darboux theorem”:

Theorem 2.2.10 (b-Darboux theorem). Let (M,Z, ω) be a b-symplectic
manifold. Then, on a neighborhood of a point p ∈ Z, there exist coordinates
(z, t, x1, y1, . . . , xn−1, yn−1) centered at p such that

ω =
1

t
dz ∧ dt+

n−1∑
i=1

dxi ∧ dyi. (2.10)

Remark. As is clear from the proof of the b-Darboux theorem in [GMP14], we
can specify a particular local defining function t of the critical hypersurface
around m and complete it to a coordinate system (z, t, x1, y1, . . . , xn−1, yn−1)
such that the above holds.
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Note that on the chart given in the theorem, the symplectic foliation of
Π has the following form: it contains two open leaves where the Poisson
structure has full rank — the upper and lower half spaces given by t > 0 and
t < 0 — and the union of the remaining leaves is the hyperplane Z = {t = 0},
where Πn vanishes. The leaves inside Z are (2n− 2)-dimensional subspaces
given by the level sets of z. Restricting the b-Poisson structure Π to the crit-
ical hypersurface Z gives a regular corank one Poisson structure Π̃, which in
local b-Darboux coordinates has the form

∑n
i=2

∂
∂xi
∧ ∂

∂yi
.

In most parts of this thesis we will work with the b-symplectic viewpoint,
i.e. in the language of b-forms instead of Poisson structures.

2.2.6 The topology of the critical hypersurface

The modular vector field

For any Poisson manifold (M,Π) with volume form Ω we can ask inhowfar
Hamiltonian vector fields preserve Ω. The modular vector field gives infor-
mation about this:

Definition 2.2.11. The map

f 7→
LXfΩ

Ω
(2.11)

is a derivation on M , hence a vector field, called the modular vector field
of (M,Π,Ω). If Π and Ω are understood from the context we will simply
denote the modular vector field by vmod.

It can be shown that vmod is a Poisson vector field, i.e. Lvmod
Π = 0. More-

over, if we consider the class of vmod in the quotient of Poisson vector fields
modulo Hamiltonian vector fields (i.e. as a class in the Poisson cohomology
of M), then it is independent of the volume form chosen. This class is called
the modular class of (M,Π). A Poisson manifold is called unimodular if
its modular class is zero.

We now consider the case of a b-Poisson manifold with critical hypersur-
face Z. We compute the modular vector field locally on a b-Darboux chart

(z, t, x1, y1, . . . , xn−1, yn−1)

around a point in Z. On this chart the b-symplectic form takes the form given
in Equation (2.10) and we choose the volume form with local expression

Ω = dz ∧ dt ∧ dx1 ∧ dy1 ∧ . . . ∧ dxn−1 ∧ dyn−1.
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Then we can explicitly compute the map in Equation (2.11): For the coordi-
nate function f = x1 we have Xf = ∂

∂y1
and therefore the Lie derivative LXfΩ

is zero; in the same way we see that all other coordinate functions except for
t get mapped to zero. The latter has Hamiltonian vector field Xt = z ∂

∂z
and

therefore LXfΩ = Ω. Hence the modular vector field on the chart is given

by ∂
∂t

. Note that this vector field is b-Hamiltonian, ∂
∂t

= X− log |z|, and there-
fore in particular Poisson. Moreover, it is transverse to the symplectic leaves
inside Z. The last two properties are not affected if we add a Hamiltonian
vector field and therefore they do not depend on our choice of Ω on the chart.
Hence covering Z by such charts, we obtain the following global result:

Proposition 2.2.12. The modular vector field on a b-Poisson manifold is a
Poisson vector field and transverse to the symplectic foliation on the critical
hypersurface.

Remark. The above proposition implies that the critical hypersurface is cosym-
plectic, see [FMM, GMP11] for the definition and properties. An important
contribution to the study of cosymplectic manifolds is [CFL].

The symplectic foliation on Z

Let (M,Z, ω) be a b-symplectic manifold. The corank one foliation F induced
on Z has some special topological properties: It is transversely orientable;
as mentioned above a transverse vector field is given by the modular vector
field. This implies that F has a global defining one-form3, i.e. a one-form
α ∈ Ω1(Z) such that kerαp = TpLp, where Lp is the leaf of F through p.

A more elaborate discussion shows that the defining one-form can be
chosen to be closed [GMP11] (see Proposition 18 therein). Therefore, in the
case where F has a compact leaf, a version of Reeb’s stability theorem implies
that F is a fibration over a circle:

Proposition 2.2.13. Let (M,Z, ω) be a b-symplectic manifold. Assume that
Z is compact and connected and that the induced corank one foliation on Z
has a compact leaf L. Then Z is the mapping torus

Z ∼= (L× [0, 1])/(x,0)∼(φ(x),1),

of the diffeomorphism φ : L→ L given by the holonomy map of the fibration

3We can construct α by taking a family of local defining one-forms (αU )U∈U , where U
is an open cover of Z, and demanding that αU satisfies αU (v|U ) = 1 on U . To obtain α
we glue these local one-forms together by using a partition of unity.
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over S1. In particular, all the symplectic leaves inside Z are symplectomor-
phic.

In the transverse direction to the symplectic leaves, all the modular vector
fields flow with the same speed. This allows the following definition:

Definition 2.2.14 (Modular period). Taking any modular vector field uΩ
mod,

the modular period of a connected component Z ′ of Z with a compact leaf
is the number k such that Z ′ is the mapping torus

Z ′ = (L × [0, k])/(x,0)∼(φ(x),k),

and the time-t flow of uΩ
mod is translation by t in the [0, k] factor above.

2.2.7 b-Cohomology

Given a b-manifold (M,Z), we can consider the usual cohomology theories
for the underlying manifold M , such as de Rham cohomology and Poisson
cohomology, which correspond respectively to de Rham forms and to multi-
vector fields. On the other hand, we can define cohomology theories based
on the notions of b-forms and b-multivector fields.

Definition 2.2.15. The b-de Rham cohomology, or b-cohomology for short,
is the cohomology of the b-de Rham complex given by Equation (2.7).

Poisson cohomology. On the other hand, for a general Poisson manifold
(M,Π), the Poisson structure induces a differential operator

dπ = [Π, · ]

on the graded algebra of multivector fields (ΛkTM)k∈N, where [ , ] is the
Schouten bracket. The cohomology of this complex is called the Poisson
cohomology and denoted H∗Π(M).

Restricting the operator dπ to b-multivector fields, i.e. sections of the
bundle Λk(bTM), k ∈ N, we obtain another differential complex whose coho-
mology is called the b-Poisson cohomology and denoted bH∗Π(M).

For symplectic manifolds, the Poisson cohomology is isomorphic to the
de Rham cohomology. Similarly, for b-symplectic manifolds we have the
following result proved in [GMP14]:

Proposition 2.2.16. The b-Poisson cohomology is isomorphic to the b-de
Rham cohomology.
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Mazzeo-Melrose theorem. The Mazzeo-Melrose theorem allows us to
compute the b-de Rham cohomology of (M,Z) based on the ordinary de
Rham cohomology of M and Z. The theorem we present here was proved in
[GMP11]. Its original version in the setting of manifolds with boundary goes
back to [Me].

Theorem 2.2.17 (b-Mazzeo-Melrose theorem). Let (M,Z) be a b-manifold

with Z
i
↪→ M compact. Then the b-cohomology groups of M are computable

by
bH∗(M) ∼= H∗(M)⊕H∗−1(Z).

The identification is given by

[ω] 7→ [α] + [β]

where we express the closed k-form ω as ω = α ∧ df
f

+ β with closed α ∈
Ωk−1(M) and closed β ∈ Ωk(M). In more detail, the proof uses the short
exact sequence

0→ Ωk(M)→b Ωk(M)→ Ωk−1(Z)→ 0

where the first arrow is simply inclusion and the second arrow maps ω =
α ∧ df

f
+ β to i∗α. The corresponding long exact sequence

· · · → Hk(M)→b Hk(M)→ Hk−1(Z)→ Hk−1(M) · · ·

splits by an argument given in [GMP11], yielding the splitting of the b-Mazzeo
Melrose theorem above.

2.3 bm-symplectic structures and folded sym-

plectic structures

In this section we define bm-symplectic structures and (m-)folded symplectic
structures. These singular structures and the b-symplectic structures that
we have already studied in previous sections share a common feature: they
are symplectic away from a singular set, which is a hypersurface, and their
singularities on this surface are “controlled” in a certain way. Moreover,
these structures have a simple Darboux canonical form around points on the
critical set, which we will state below.

28



2.3.1 bm-symplectic structures

The idea is to consider structures similar to the b-symplectic case but where
the singularity is of “higher order”. The formal approach uses the language
of jets [Sc]:

Definition 2.3.1. Let Z ⊂M be a hypersurface and ι the inclusion of Z. Let
C∞ denote the sheaf of C∞-functions on M and let I be the ideal sheaf of
Z. Then the sheaf of m-jets at Z is defined as Jm := ι∗(C∞/Im+1)

For j an m-jet we use the notation f ∈ j to say that f represents j.

Definition 2.3.2 (bm-manifold). A bm-manifold is a triple (M,Z, j) where
M is an oriented manifold, Z ⊂M an oriented hypersurface and j is an ele-
ment of J k−1 that can be represented by a positively oriented4 local defining
function of Z.

We can now mathematically express what it means for a vector field to
be “tangent of higher order” and thus generalize the definition of b-vector
fields to higher order:

Definition 2.3.3 (bm-vector field). A bm-vector field on the bm-manifold
(M,Z, j) is a vector field v tangent to Z (i.e. vp ∈ TpZ for p ∈ Z) such that
for any f ∈ j, v(f) ∈ Im.

As in the case of b-vector fields, the sheaf of bm-vector fields is locally
free. As is explained in detail in [Sc], for (M,Z, j) a bm-manifold, p ∈ Z and
(x1, . . . , xn) a chart on a neighbourhood U of p in M with x1 ∈ j, the vector
fields {

xk1
∂

∂x1

,
∂

∂x2

, . . . ,
∂

∂xn

}
form a basis of the C∞(U)-module of bm-vector fields on U .

The corresponding vector bundle is denoted bmTM and we call it the bm-
tangent bundle. The dual is the bm-cotangent bundle bmT ∗M and taking the
wedge product we obtain forms of higher order, just as in the standard b-case
that we have already discussed (Section 2.2.4).

4We say that a local defining function f is positively oriented if for a positively oriented
volume form Ω of Z, df ∧ Ω is positively oriented for M .
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Definition 2.3.4. A symplectic bm-manifold is a pair (M2n, Z) with a
closed bm-two form ω which has maximal rank at every p ∈M .

In [GMW] a bm-Darboux theorem is proved for these structures:

Theorem 2.3.5 (bm-Darboux theorem, [GMW]). Let ω be a bm-symplectic
form on (M2n, Z) and p ∈ Z. Then we can find a coordinate chart (x1, y1, . . . , xn, yn)
centered at p such that the hypersurface Z is locally defined by y1 = 0 and

ω = dx1 ∧
dy1

ym1
+

n∑
i=2

dxi ∧ dyi.

Expressed in terms of bivector fields, the Poisson structure has the fol-
lowing bm-Darboux form:

Π = ym1
∂

∂x1

∧ ∂

∂y1

+
n∑
i=2

∂

∂xi
∧ ∂

∂yi

Remark. It is possible to make even further generalizations. The bm-Poisson
structures that we just introduced correspond to a singularity of Am-type
in Arnold’s list of simple singularities [A, AGV]. In the same spirit we may
consider other singularities in this list.

2.3.2 Folded symplectic structures

A second class of important geometrical structures that naturally arise as
a model for the phase space in some problems of celestial mechanics are
folded symplectic structures. These are closed 2-forms on even-dimensional
manifolds which are non-degenerate on a dense set and satisfy a transversality
condition around the hypersurface where they fail to be non-degenerate.

Definition 2.3.6. Let (M2n, ω) be a manifold with ω a closed 2-form such
that the map

p ∈M 7→ (ω(p))n ∈ Λ2n(T ∗M)

is transverse to the zero section, then Z = {p ∈ M |(ω(p))n = 0} is a hy-
persurface and we say that ω defines a folded symplectic structure on
(M,Z) and (M,Z, ω) is a folded symplectic manifold. The hypersurface
Z is called folding hypersurface.

The normal forms of folded symplectic structures were studied by Mar-
tinet [Mart].
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Theorem 2.3.7 (Folded-Darboux theorem, [Mart]). Let ω be a folded
symplectic form on (M2n, Z) and p ∈ Z. Then we can find a local coordinate
chart (x1, y1, . . . , xn, yn) centered at p such that the hypersurface Z is locally
defined by y1 = 0 and

ω = y1dx1 ∧ dy1 +
n∑
i=2

dxi ∧ dyi.

In analogy to the case of bm-symplectic structures we can define folded
structures of higher order, so called m-folded symplectic structures for
which ωn has singularities of Am-type in Arnold’s list of simple singularities
[A]. In this case, the top wedge ωn has a local normal form of type

ωn = ym1 dx1 ∧ · · · ∧ dyn.

2.4 Hamiltonian Tr actions on b-symplectic

manifolds

Integrable systems are in close relation with Hamiltonian torus actions. On
a neighbourhood of a Liouville torus, a non-commutative b-integrable system
induces an effective Hamiltonian Tr action (see Section 5.5.1 for details). In
the commutative case, the torus has dimension r equal to half the dimension
of the manifold.

Hamiltonian torus actions on b-symplectic manifolds were studied in [GMPS14].
We recall the definitions and results:

Definition 2.4.1. An action of Tr on a b-symplectic manifold (M2n, ω) is
Hamiltonian if for all X, Y ∈ t:

• the one-form ιX#ω is exact, i.e., has a primitive HX ∈ bC∞(M);

• ω(X#, Y #) = 0.

Here, t denotes the Lie algebra of Tr and X# is the fundamental vector
field of X. The Hamiltonian HX of a fundamental vector field X# is defined
via the moment map µ : M → t∗ by HX(p) := 〈µ(p), x〉, in other words we
have

ιX#ω|p = d〈µ(p), X〉.
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Definition 2.4.2. A toric action on a b-symplectic manifold (M2n, ω) is an
effective Hamiltonian Tn action, i.e. in addition to the conditions in Defini-
tion 2.4.1 we demand that the torus has half the dimension of M and that
the action is effective.

2.4.1 Modular weights

When a b-function f ∈ C∞(M) is expressed as c log |y|+ g locally near some
point of a component Z ′ of Z, the number cZ′(f) := c ∈ R is uniquely
determined by f , even though the functions y and g are not.

Definition 2.4.3 (Modular weight). Given a Hamiltonian Tr-action on a b-
symplectic manifold, the modular weight of a connected component Z ′ of
Z is the map

vZ′ : t→ R
given by vZ′(X) = cZ′(HX). This map is linear and therefore we can regard
it as an element of the dual of the Lie algebra vZ′ ∈ t∗. We denote the kernel
of vZ′ by tZ′ ⊂ t.

In particular, for toric actions the modular weight is always non-zero
[GMPS13].

2.4.2 Splitting of Hamiltonian torus actions

The following proposition shows that, if a component Z ′ has non-zero mod-
ular weight with respect to a given Tr-action, then the action splits into a
Tr−1-action induced by a smooth moment map on a symplectic leaf of Z ′ and
an S1-action transverse to the leaves induced by a log function:

Proposition 2.4.4. Let (M,ω) be a b-symplectic manifold endowed with
an effective Hamiltonian Tr-action such that the modular weight vZi for a
connected component Zi of the exceptional hypersurface is nonzero. Then:

(a) In a neighborhood of Zi there is a splitting

t ' tZi × 〈X〉,

which induces a splitting Tr ' Tr−1
Zi
×S1. The Tr−1

Zi
-action on Zi induces

a Hamiltonian Tr−1
Zi

-action on Li. Let

µLi : Li → t∗Zi

be its moment map.
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(b) There is a neighborhood Li × S1 × (−ε, ε) ' U ⊂ M of Zi such that the
(Tr−1

Zi
× S1)-action on U\Zi is given by

(g, θ) · (`, ρ, t) = (g · `, ρ+ θ, t)

and has moment map

µU\Zi : Li × S1 × ((−ε, ε)\{0})→ t∗ ' t∗Zi × R
(`, ρ, t) 7→ (µLi(`), c log |t|).

2.5 The cotangent lift for symplectic mani-

folds

We introduce the classical theory of cotangent lifts, which is a way of con-
structing Hamiltonian actions on T ∗M starting with any group action on the
base manifold M . We will generalize this concept in Chapter 6 to the b-case
and use it to describe integrable systems on b-symplectic manifolds.

Let G be a Lie group and let M be any smooth manifold. Given a group
action ρ : G ×M −→ M , we define its cotangent lift as the action on T ∗M
given by ρ̂g := ρ∗g−1 where g ∈ G. We then have a commuting diagram

T ∗M T ∗M

M M

//
ρ̂g

��

π

��

π

//
ρg

where π is the canonical projection from T ∗M to M .

We view the cotangent bundle T ∗M as a symplectic manifold endowed
with the canonical symplectic form ω = −dλ, where λ is the Liouville one-
form. The latter can be defined intrinsically:

〈λm, v〉 := 〈m, (πm)∗(v)〉 (2.12)

with v ∈ T (T ∗M),m ∈ T ∗M .

A straightforward argument given in [GS90] shows that the cotangent lift
ρ̂ is Hamiltonian with moment map µ : T ∗M → g∗ given by

〈µ(m), X〉 := 〈λm, X#|m〉 = 〈m,X#|π(m)〉,
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where m ∈ T ∗M , X is an element of the Lie algebra g and we use the same
symbol X# to denote the fundamental vector field of X generated by the
action on T ∗M or M .

A direct computation shows that the Liouville one-form is invariant under
the action, i.e.

ρ̂∗gλ = λ.

It is well-known that invariance of λ implies equivariance of the moment map
µ, meaning that

µ ◦ ρ̂g = Ad∗g−1 ◦ µ.

A consequence is that the moment map is Poisson, see Proposition 7.1 in
[DW].

We will refer to this Hamiltonian action of G on T ∗M as the symplectic
cotangent lift of the action on M .

2.6 KAM theory for symplectic manifolds

Chapter 7 of this thesis is devoted to presenting a KAM result for b-integrable
systems. Here we recall the background on KAM theory for symplectic man-
ifolds, see e.g. [De, Ch] for interesting surveys and Chapter 15 in [K].

The classical KAM theorem – named after Kolmogorov, Arnold and
Moser – is a statement about the stability of integrable Hamiltonian systems
on symplectic manifolds: Roughly speaking, it implies that “most” Liouville
tori of an integrable system persist under sufficiently small perturbations of
the Hamiltonian function of the system.

In physics, the Hamiltonian function H (or “Hamiltonian” for short) is a
function on a symplectic manifold M which determines the evolution of any
other function g on M via the equation

ġ = {g,H}.

The pair of a symplectic manifold and a Hamiltonian function is called a
Hamiltonian (dynamical) system.

An integrable system F = (f1, . . . , fn) on a symplectic manifold M to-
gether with a Hamiltonian function is called an integrable Hamiltonian
system if

{fi, H} = 0
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for all integrals fi. Speaking in the language of physics, the last condition
corresponds to the fact that the integrals represent constants of motion.

2.6.1 Equations of motion

From the action-angle coordinate theorem we know that the manifold is
semilocally around a Liouville torus symplectomorphic to the product Tn ×
Bn with the standard symplectic structure, with coordinates (ϕ, y), and with
the integrals {y1, . . . , yn} being the components of the projection to the Bn

component. Restricting to such a neighborhood, we can write the equations
of motion explicitly:

ϕ̇ =
∂

∂y
H(ϕ, y),

ẏ = − ∂

∂ϕ
H(ϕ, y).

Here, the expressions in both lines are maps from M to Rn.

In particular, if we consider the requirement {yi, H} = 0, this means that
H is independent of the angle coordinates ϕ. Therefore, we can write

H(ϕ, y) = h(y)

for some function h : Bn → R. This system evolves in a very simple way:

ϕ̇ =
∂

∂y
H(ϕ, y) =: ω(y)

ẏ = 0.

and has solutions of the form

y(t) = y0, ϕ(t) = ϕ0 + ω(y0)t,

i.e. the angle coordinates wrap around the torus Tn×{y0} in a linear fashion
with frequency vector ω(y0).

2.6.2 Diophantine condition

We write ω for the n-tuple ω(y0). The components of ω are rationally de-
pendent if

ω · k :=
n∑
i=1

ωiki = 0 for some k ∈ Zn\{0}.
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If all linear combinations of the form above with coefficients in Zn\{0} are
non-zero then the components of ω are rationally independent. In this case
the motion is called quasi-periodic and the resulting trajectory fills the
torus densely. In KAM theory a particular kind of rationally independent
frequency vectors are of interest — so-called strongly non-resonant or Dio-
phantine frequency vectors:

Definition 2.6.1 (Diophantine condition). An n-tuple ω ∈ Rn is called Dio-
phantine if there exist L, γ > 0 such that

|ω · k| ≥ L

|k|γ
for all k ∈ Zn\{0},

where |k| :=
∑n

i=1 |ki|.

2.6.3 KAM Theorem

Not only does rational dependence versus independence of the components
of the frequency vectors result in very different kinds of motion on the tori,
it also has deep implications on the behaviour of the corresponding torus
under perturbations of the Hamiltonian system. Indeed, it can be shown that
the tori corresponding to rationally dependent frequency vectors – so-called
resonant tori – are generically destroyed by arbitrarily small perturbations.

In contrast, strongly non-resonant tori survive under sufficiently small
perturbations. That is, there is a symplectomorphism on a neighbourhood
of the torus taking the perturbed trajectory to the linear flow on a torus
with unchanged frequency vector. The precise conditions are stated in the
following theorem:

Theorem 2.6.2 (KAM). Let H(ϕ, y) = h(y) be an analytic function on
Tn ×Bn with frequency map

ω(y) :=
∂

∂y
h(y).

If y0 ∈ Bn has Diophantine frequency vector ω := ω(y0) and if the non-
degeneracy condition holds:

det
∂

∂y
ω(y0) 6= 0,

then the torus Tn×{y0} persists under sufficiently small perturbations of H.
That is, if P is any analytic function on Tn×Bn and ε > 0 sufficiently small,
the perturbed system

Hε = H + εP
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admits an invariant torus T close to Tn × {y0}.
Moreover, the flow γt of the perturbed system on T is conjugated via a

diffeomorphism ψ : TN → T to the linear flow with frequency vector ω on
Tn, i.e.

ψ−1 ◦ γt ◦ ψ(ϕ0) = ϕ0 + ωt.

The basis is Kolmogorov’s theorem, which we state below and whose proof
is the heart of KAM theory. It tells us that we can “correct” a sufficiently
small perturbation of a certain type of Hamiltonian via a symplectomorphism
close to the identity. The KAM Theorem follows as an easy corollary by
applying Kolmogorov’s theorem to the Hamiltonian H of the system under
consideration, taking into account that the conditions for ω stated in the
KAM theorem imply that H is of non-degenerate Kolmogorov form, which
we define below:

Definition 2.6.3 (Kolmogorov normal form). Let H : Tn × Bn → R be an
analytic function. We say that H is in Kolmogorov normal form (with
frequency vector ω) if it is of the form

H(ϕ, y) = E + ω · y +Q(ϕ, y) (2.13)

for some E ∈ R, ω ∈ Rn and a function Q : Tn×Bn → R which is quadratic
in y, meaning that

Q(ϕ, 0) = 0,
∂

∂y
Q(ϕ, 0) = 0.

The Kolmogorov normal form is called non-degenerate if

1

(2π)n

∫
Tn

det ∂2
yQ(ϕ, 0)dϕ =: 〈det ∂2

yQ(·, 0)〉 6= 0.

Theorem 2.6.4 (Kolmogorov). Let H : Tn ×Bn
r → R be in non-degenerate

Kolmogorov normal form (2.13) with Diophantine frequency vector ω. Let
P : Tn × Bn

r → R be an analytic function, the “perturbation”. Then there
exists ε0 such that for all 0 < ε < ε0 there exists a symplectomorphism

ψ : Tn ×Bn
r∗ → Tn ×Bn

r

for some 0 < r∗ < r which transforms the perturbed Hamiltonian Hε :=
H + εP into Kolmogorov normal form:

(Hε ◦ ψ)(ϕ, y) = E∗ + ω · y +Q∗(ϕ, y)
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Figure 2.1: Illustration of perturbed Liouville tori using the example of the
kicked rotor: The unperturbed system is the mathematical pendulum with
Hamiltonian H(x, p) = p2/2, x ∈ S1 is the angle coordinate and p ∈ R is the
conjugated momentum. The unperturbed system has constant momentum
and the angle evolves linearly with time. If a vertical “kick” is added at every
time interval then the evolution for discrete time n ∈ N can be computed to
be pn+1 = pn − k sinxn+1, xn+1 = xn + pn, where xn, pn are the values of the
coordinates at time t = n ∈ N. The parameter k measures the size of the
perturbation. This system is illustrated above using a matlab program.
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where5 ‖ψ − id‖, |E∗ − E| and ‖Q−Q∗‖ are of order ε.

The proof of the above theorem, which dates back to Kolmogorov [K],
uses an iterative method in which the size of the perturbation is reduced
quadratically in each step. The technical obstacle that has to be overcome
is the famous problem of “small divisors”, that is, the appearance of terms
ω · k, k ∈ Z in the denominator of the Fourier series coefficients of the new
perturbation. This is why the Diophantine condition is crucial, because it
allows to control the size of these denominators and hence can be used to
obtain estimates for the size of the new perturbation. The details of the
proof are lengthy and technical and can be found e.g. in [F12].

Remark. Note that in the “new” Kolmogorov normal form Kε, the constant
and quadratic parts E∗ resp. Q∗ are slightly different from the original E
resp. Q, but the frequency vector ω is the same. A concrete choice of ε0 in
Theorem 2.6.4 can be given, but it is not important for the purpose of this
text.

5For functions on Tn × Bn the norm ‖ · ‖ denotes the supremum norm; for maps
Tn × Bn → Tn × Bn we regard the target space as a subset of R2n × Rn and use the
supremum norm with respect to the Euclidean norm.
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Chapter 3

Integrable systems on
symplectic and Poisson
manifolds

In this chapter we review some well-known results about integrable systems
on symplectic manifolds and their recently studied generalization to Poisson
manifolds [LMV]. Moreover, we introduce the respective definitions in the b-
symplectic setting [KMS, KMb]. We motivate the study of integrable systems
on symplectic manifolds with some classical examples coming from physics.

In the following chapters we will study the dynamics of b-integrable sys-
tems, both commutative and non-commutative ones, in detail and in partic-
ular prove an action-angle coordinate theorem (Chapter 4) and a KAM type
result (Chapter 7).

3.1 Integrable systems on symplectic mani-

folds

Let (M2n, ω) be a symplectic manifold. An integrable system is given by
n functions f1, . . . , fn which are

• in involution with respect to the Poisson bracket associated to the sym-
plectic form ω (Equation (2.1)):

{fi, fj} = 0

• and which are functionally independent on a dense open subset of M .
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The expression integrable has its origin in the study of Hamiltonian sys-
tems: Given a function H, the so-called Hamiltonian function, we consider
the system of differential equations associated to the flow of XH , the Hamilto-
nian vector field of H. These are the equations of motion of the Hamiltonian
system given by H. The system is called integrable if there is an integrable
system f1, . . . , fn such thatH is one of the functions fi. As already mentioned
in the Introduction, integrability of the system in the sense defined above is
related to actual integration of the equations of motion by quadratures [L].

As a motivation we present the well-known example of the two-body
problem and explain how the existence of integrals allows us to solve the
equations of motion. The details can be found in [MHO]; we will return
to this example later on and discuss some classical transformations that are
used to solve the problem explicitly (see Section 8.1).

3.1.1 The two-body problem

The two-body problem is the system consisting of two bodies with masses
m1,m2 and positions q1, q2 ∈ R3 moving under their mutual gravitational
attraction. According to Newton’s law of gravity the equations of motion
are

miq̈i = Gm1m2
qj − qi
‖q2 − q1‖3

=
∂U

∂qi
, i, j = 1, 2, i 6= j,

where G is the gravitational constant and we have introduced the negative
gravitational potential

U := m1m2
G

‖q2 − q1‖
.

We want to describe the equations of motion via the Hamiltonian formal-
ism. The Hamiltonian function corresponds to the “energy” of the system
and is obtained as the sum of kinetic and potential energy:

H(q1, q2, p1, p2) := Ekin − U =
‖p1‖2

2m1

+
‖p2‖2

2m2

− U,

where pi = miq̇i are the momenta. Then the evolution of the system is given
by the Hamiltonian system of equations

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
= Gm1m2

qj − qi
‖q2 − q1‖3

.

Here the underlying symplectic structure is the canonical one,

ω = dq1 ∧ dp1 + dq2 ∧ dp2.
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Center of mass coordinates. From the above equations of motion we
see that

ṗ1 + ṗ2 = 0,

i.e. the total linear momentum W := p1 + p2 is preserved. Therefore the
center of mass moves with constant velocity and we only have to solve the
equations of motion for the relative position w := q2 − q1 of the two bodies.
By introducing an appropriate set of coordinates we can transform the two-
body problem to the problem of one body moving in a central force field
(Kepler problem): Following [MHO] let

g = ν1q1 + ν2q2, G = p1 + p2, (3.1)

w = q2 − q1, W = −ν2p1 + ν1p2, (3.2)

where νi = mi/(m1+m2). Note that g is the center of mass and G is the total
linear momentum. The coordinate w is the relative position of the second
body with respect to the first one. The other “momentum” coordinate W
is chosen in such a way that the change of coordinates is canonical (i.e., the
symplectic form is preserved). The coordinates (g, w,G,W ) are called Jacobi
coordinates.

In these coordinates the Hamiltonian is

H(g, w,G,W ) =
‖G‖2

2ν
+
‖W‖2

2M
− Gm1m2

‖w‖
where ν = m1 +m2 and M = m1m2/(m1 +m2).

Writing down the Hamiltonian equations explicitly

ġ =
∂H

∂G
=
G

ν
, Ġ = −∂H

∂g
= 0,

ẇ =
∂H

∂W
=
W

M
, Ẇ = −∂H

∂w
= −m1m2w

‖w‖3
,

we see that total linear momentum G is preserved and that the center of mass
moves with constant velocity G

ν
. Hence the problem reduces to the second

line of equations.

Physically this means that we are viewing the system from the perspective
of one body with coordinates w under the influence of the central force field of
a body with mass M . The upshot is that we are dealing with a Hamiltonian
system on (R3\{0})× R3 with Hamiltonian function

H(w,W ) =
‖W‖2

2M
− Gm1m2

‖w‖
.

This is known as the Kepler problem.
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Planar Kepler problem. In addition to the total linear momentum, the
total angular momentum is preserved. In center of mass coordinates (w,W )
this means that

J := w ×W

is constant. Computing

d

dt

w

‖w‖
=

(w × ẇ)× w
‖w‖3

=
J × w
‖w‖3

(3.3)

we see that for J = 0 the motion is collinear. We consider the case J 6=
0: Both w and W = ẇ lie in the plane perpendicular to J . Therefore
the problem reduces to two degrees of freedom, the so-called planar Kepler
problem.

After these simplifications the problem can be solved explicitly: Integrat-
ing Equation (3.3) yields after some computations (see [MHO]) the equation
of a conic section. Therefore, depending on the eccentricity, the body moves
on a parabola, an ellipse or a hyperbola.

In summary, the 6-degree-of-freedom system given by the two-body prob-
lem has six independent integrals given by the components of total linear and
angular momentum. (The energy is an integral too, but depends on these
integrals.)

3.1.2 Other classical examples of integrable systems

We provide a list of other well-known examples of integrable systems:

Example 3.1.1 (Integrable Hamiltonian systems).

(a) Any 2-dimensional Hamiltonian system with dH 6= 0 (a.e.) is integrable.
For instance, this includes the mathematical pendulum.

(b) N bodies in a central force field: As we have seen above, the two-body
problem can be reduced to the problem of a single body in a central
force field via appropriate changes of coordinates. More generally, we can
consider the problem of N ≥ 1 bodies under the influence of a central
force, e.g. the motion of planets in the gravitational field of the sun.
If we neglect any interaction between the bodies, this is an integrable
system as well. In contrast, the classical N body problem, where mutual
interaction between all bodies is allowed, is not integrable for N ≥ 3, as
was shown in 1887 by H. Bruns.
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(c) A rigid body fixed at its centre of gravity in a constant gravitational field:
The system of a rigid body fixed at a point has configuration space SO(3).
Therefore, in addition to energy, one more constant of motion is needed
to obtain integrability. If the fixed point is the centre of gravity, then such
an integral is given by ‖M‖, the norm of the total angular momentum.
Instead of assuming that the fixed point is the centre of gravity, other
(non-trivial) conditions can be given which guarantee integrability. A
list of these cases is given in [Au].

(d) The spherical pendulum: Consider a pendulum in three-dimensional
space, where a particle of unit mass is fixed to a rod of unit length
and moves under the influence of gravity. The configuration space is S2,
in particular we have two degrees of freedom. Using spherical coordi-
nates (θ, ϕ), where θ is the polar angle and ϕ the azimuthal angle, the
Hamiltonian H, which as usual is kinetic plus potential energy, takes the
form

H(ϕ, θ, pϕ, pθ) =
1

2

(
p2
θ +

p2
ϕ

sin2 θ

)
+ cos θ.

where pϕ = sin2 θ ϕ̇ and pθ = θ̇ are the conjugate momenta. Since H is
independent of ϕ, the conjugate momentum pϕ is conserved and yields
another integral. Therefore, the system is integrable.

3.1.3 Action-angle coordinates for integrable systems
on symplectic manifolds

The existence of an integrable system has profound implications on the dy-
namics of the system. In a neighbourhood of a compact level set (“Liouville
torus”) of the integrals, the manifold is a fibration of tori and the motion
is linear on these tori. This is the content of the action-angle-coordinate
theorem:

Theorem 3.1.2. (Liouville-Mineur-Arnold Theorem)
Let (M2n, ω) be a symplectic manifold. Let F = (f1, . . . , fn) be an inte-

grable system on M . Assume that m is a regular point1 of F and that the
level set of F through m, which we denote by Fm, is compact and connected.

Then Fm is a torus and on a neighborhood U of Fm there exist R-valued
smooth functions

(p1, . . . , pn)

1i.e. the differentials dfi are independent at m
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and R/Z-valued smooth functions

(θ1, . . . , θn)

such that:

1. The functions (θ1, . . . , θn, p1, . . . , pn) define a diffeomorphism U ' Tn×
Bn.

2. The symplectic structure can be written in terms of these coordinates
as

ω =
n∑
i=1

dθi ∧ dpi.

3. The leaves of the surjective submersion F = (f1, . . . , fs) are given by
the projection onto the second component Tn × Bn, in particular, the
functions f1, . . . , fs depend only on p1, . . . , pn.

The coordinates pi are called action coordinates; the coordinates θi are called
angle coordinates.

Remark. In physics, usually one of the integrals fi of Theorem 3.1.2 is the
energy H, e.g. f1 = H, and motion is given by the flow of the Hamiltonian
vector field of H. Statement (3) in Theorem 3.1.2 implies that H is constant
along the level sets of the functions fi. Moreover, since

dfi(XH) = {H, fi} = 0,

the vector field XH is tangent to the level sets. More precisely, in the action-
angle coordinate chart, the flow of XH is linear on the invariant tori.

We refer to [F13] for a very interesting survey about the action-angle
coordinate theorem with more information about its historical development.

3.1.4 Non-commutative integrable systems

For some Hamiltonian systems the motion takes place on smaller tori, see also
[BJ]. In this case there are more independent integrals than half the dimen-
sion of the phase space. In physics such a system is called “superintegrable”,
here we use the term non-commutative:
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Definition 3.1.3 (Non-commutative integrable system). A non-commutative
integrable system of rank r on a 2n-dimensional symplectic manifold (M,ω)
is an s-tuple of functions

F = (f1, . . . , fr, fr+1, . . . , fs)

such that the following conditions are satisfied:

(1) The differentials df1, . . . , dfs are linearly independent on a dense open
subset of M ;

(2) The functions f1, . . . , fr are in involution with the functions f1, . . . , fs;

(3) r + s = 2n.

For non-commutative integrable systems an action-angle coordinate theo-
rem holds in analogy to the commutative case. We will not state the theorem
here, since it is a special case of the action-angle coordinate theorem for non-
commutative systems on Poisson manifolds, presented below.

3.2 Integrable systems on Poisson manifolds

The concept of integrable systems on Poisson manifolds was studied in [LMV],
both in the commutative and non-commutative case. Here we review the def-
initions and results for the commutative case, which we will adapt later on
(Section 3.3) to the particular case of b-Poisson manifolds. Subsequently we
will consider non-commutative systems.

Definition 3.2.1 (Integrable system on a Poisson manifold). Let (M,Π) be
a Poisson manifold of maximal rank 2r. An s-tuple of functions F =
(f1, . . . , fs) on M is called an integrable system on (M,Π) if

(1) f1, . . . , fs are in involution, i.e. {fi, fj} = 0 for all i, j = 1, . . . , s;

(2) df1 ∧ · · · ∧ dfs ∈ ΛsT ∗(M) is non-zero on a dense subset of M ;

(3) r + s = dimM .

Viewed as a map, F : M → Rs is called the momentum map of (M,Π, F ).

Remark. The second condition means that f1, . . . , fs are functionally inde-
pendent on a dense set.
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Example 3.2.2 (A generic example). Consider the manifold M = Tr × Rs

with coordinates
(θ1, . . . , θr, p1, . . . , ps)

equipped with the Poisson structure

Π =
r∑
i=1

∂

∂θi
∧ ∂

∂pi

Then the functions (p1, . . . , ps) define an integrable system on (M,Π).

As we will see in Theorem 3.2.4 below, any integrable system semilocally
takes this form, more precisely in the neighborhood of a regular compact
connected level set of its integrals (f1, . . . , fs).

Liouville tori. Let (M,Π, F ) be an integrable system where the maximal
rank of Π is 2r. We denote the non-empty open subset of M where Π has
rank 2r by Mr and the non-empty open set where the differentials df1, . . . , dfs
are independent by UF .

Proposition 3.2.3. On the intersection Mr ∩ UF of M , the Hamiltonian
vector fields Xf1 , . . . , Xfs define an involutive distribution of rank r.

Proof. The kernel of the anchor map at a point in Mr ∩ UF has dimension

dimM − 2r = s− r.

Therefore, the vector space spanned by Xf1 , . . . , Xfs must be at least r-
dimensional. On the other hand, the commutativity of f1, . . . , fs means that
dfi(Xfj) = 0 and therefore Xf1 , . . . , Xfs lie in the level set of f1, . . . , fs,
hence they can only span a vector space of dimension at most dimM − s =
r. Therefore, we conclude that the distribution defined by Xf1 , . . . , Xfs on
Mr ∩ UF is r-dimensional.

This distribution is involutive since

[Xfi , Xfj ] = X{fi,fj} = 0.

We denote the foliation corresponding to the integrable distribution given
by Xf1 , . . . , Xfs on Mr ∩ UF by F . Its leaves are r-dimensional.

Let Fm be the leaf passing through a point m ∈ Mr ∩ UF . We will only
deal with the case where Fm is compact. Under this assumption, Fm is a

47



compact r-dimensional manifold, equipped with r independent commuting
vector fields, hence it is diffeomorphic to an r-dimensional torus Tr. The
torus Fm is called a Liouville torus of F .

3.2.1 Action-angle coordinates for integrable systems
on Poisson manifolds

The action-angle coordinate theorem proved in [LMV] gives a semilocal de-
scription of the Poisson structure around a Liouville torus of an integrable
system:

Theorem 3.2.4. Let (M,Π) be a Poisson manifold of dimension n and let
2r be the maximal rank of Π. Let F = (f1, . . . , fs) be an integrable system
on M and suppose that Fm is a Liouville torus, where m ∈MF,r ∩UF . Then
there exist R-valued smooth functions

(p1, . . . , ps)

and R/Z-valued smooth functions

(θ1, . . . , θr),

defined in a neighbourhood U of Fm such that

1. The functions (θ1, . . . , θr, p1, . . . , ps) define a diffeomorphism U ' Tr×
Bs;

2. The Poisson structure can be written in terms of these coordinates as,

Π =
r∑
i=1

∂

∂θi
∧ ∂

∂pi
;

3. The leaves of the surjective submersion F = (f1, . . . , fs) are given by
the projection onto the second component Tr × Bs. In particular, the
functions f1, . . . , fs depend on p1, . . . , ps only.

The functions θ1, . . . , θr are called angle coordinates, the functions p1, . . . , pr
are called action coordinates and the remaining coordinates ar+1, . . . , as are
called transverse coordinates.
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3.3 b-integrable systems

For b-symplectic manifolds we introduce a new definition of “integrable sys-
tem” where we allow the integrals to be b-functions [KMS]. Such a “b-
integrable system” on a 2n-dimensional manifold consists of n integrals, just
as in the symplectic case.

Since b-symplectic (b-Poisson) manifolds are a special case of Poisson
manifolds, a first thought would be to use the standard definition of integrable
systems for Poisson manifolds (Definition 3.2.1). However, on the critical
hypersurface of the b-symplectic manifolds, such a system will only define
a distribution of rank at most 2n − 2. This is why the need to consider
b-functions arises: in this way we obtain a distribution of (b-)Hamiltonian
vector fields that has rank n on Z.2

The theorem we aim at, which is the natural generalization of the action-
angle coordinate theorem in the symplectic case, will semilocally put the
b-symplectic structure into the form

ω =
c

t
dθ1 ∧ dt+

n∑
i=2

dθi ∧ dpi, (3.4)

where θi are S1 valued coordinates and the “action coordinates” t, p2, . . . , pn
depend only on the integrals of the system. Here, t is a defining function of
Z and the number c ∈ R is the modular period of the connected component
of Z in which the Liouville torus lies (see Definition 2.2.14).

We see that the vector field ∂
∂θ1

in the expression (3.4) is actually not
a Hamiltonian vector field of the action coordinate t (which is a defining
function of Z), but it is a b-Hamiltonian vector field of log |t|. This again
motivates the need to consider b-functions as integrals:

Definition 3.3.1 (b-integrable system). A b-integrable system on a 2n-
dimensional b-symplectic manifold (M2n, ω) is a set of b-functions F = (f1, . . . , fn)
satisfying,

• the functions are pairwise commuting, {fi, fj} = 0 for all i, j;

• df1 ∧ · · · ∧ dfn is nonzero as a section of Λn(bT ∗(M)) on a dense subset
of M and on a dense subset of Z.

We call points in M where the second condition holds regular points.

2More precisely the rank is n only for regular points, see Definition 3.3.1
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Remark. Note that df1 ∧ · · · ∧ dfn is nonzero at a point as an element of
Λn(bT ∗M) if and only if the vector fields Xf1 , . . . , Xfn are linearly indepen-
dent at that point, since the map bTM → bT ∗M (Equation (2.9)) induced
by ω is bijective. Moreover the condition implies that at least one of the fi
most be non-smooth, i.e. a genuine b-function.

Liouville tori. On the set of regular points, the distribution given by
Xf1 , . . . , Xfn defines a foliation F with n-dimensional leaves. We denote
the integral manifold through a regular point m ∈ M by Fm. As before,
if the integral manifold Fm is compact, then it is an n-dimensional torus
called Liouville torus. Because the Xfi are b-vector fields and are therefore
tangent to Z, any Liouville torus that intersects Z actually lies inside Z.

3.3.1 Equivalent b-integrable systems.

We write a b-integrable system as a triple (M,ω, F ) where M is a manifold,
ω a b-symplectic form and F the set of integrals.

Definition 3.3.2 (Equivalence of b-integrable systems). We say that two b-
integrable systems (M1, ω1, F1) and (M2, ω2, F2) are equivalent if there ex-
ists a Poisson diffeomorphism ψ and a map ϕ : Rs → Rs such that the
following diagram commutes:

(M1, ω1) (M2, ω2)

Rs

//
ψ

$$

F1
��

ϕ◦F2

We will not distinguish between equivalent integrable systems, since the
action-angle coordinate theorem will automatically hold for all equivalent
systems too.

The notion of equivalent systems allows us to think about a simple “nor-
mal” form. The following proposition is a first result in this direction. It is a
consequence of Proposition 3.5.3 for non-commutative b-integrable systems,
which we will prove in Section 3.5:

Proposition 3.3.3. Near a regular point of Z, any b-integrable system on
a b-symplectic manifold is equivalent to a b-integrable system of the form
F = (f1, . . . , fn), where f1 is a b-function and f2, . . . , fn are C∞ functions.
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In fact, we may always assume that f1 = log |t|, where t is a global defining
function for Z.

3.3.2 Action-angle coordinates for b-integrable systems

We have now introduced the background to state the action-angle coordinate
theorem for b-integrable systems, which was first proved in [KMS]. The proof
will be carried out in Chapter 4 of this thesis and we will use the theorem later
on to prove a KAM-type stability result for b-integrable systems (Chapter
7).

Theorem A (Action-angle coordinates for b-integrable systems). Let (M,ω)
be a b-symplectic manifold with critical hypersurface Z. Let F be a b-integrable
system on (M,ω) and let m ∈ Z be a regular point of the system lying inside
the critical hypersurface. Assume that the integral manifold Fm containing m
is compact, i.e. a Liouville torus. Then there exists an open neighbourhood
U of the torus Fm and a diffeomorphism

(θ1, . . . , θn, t, a2, . . . , an) : U → Tn ×Bn,

where t is a defining function for Z, such that

ω|U =
c

t
dθ1 ∧ dt+

n∑
i=2

dθi ∧ dpi.

Moreover, the functions t, p2, . . . , pn depend only on F . The number c is the
modular period of the component of Z containing m.

The S1-valued functions
θ1, . . . , θr

are called angle coordinates and the R-valued functions

t, p2, . . . , pr

are called action coordinates.

3.4 Non-commutative integrable systems on

Poisson manifolds

We have already defined non-commutative integrable systems in the sym-
plectic case (Definition 3.1.3). The natural generalization of this concept to
Poisson manifolds is the following:
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Definition 3.4.1 (Non-commutative integrable system on a Poisson mani-
fold). Let (M,Π) be a Poisson manifold. A non-commutative integrable
system of rank r on M is an s-tuple of functions

F = (f1, . . . , fr, fr+1, . . . , fs)

such that

(1) f1, . . . , fs are independent (i.e. their differentials are independent on a
dense open subset of M);

(2) The functions f1, . . . , fr are in involution with the functions f1, . . . , fs;

(3) r + s = dimM ;

(4) The Hamiltonian vector fields of the functions f1, . . . , fr are linearly
independent at some point of M .

Viewed as a map, F : M → Rs is called the momentum map of (M,Π, F ).

We call the first r functions (f1, . . . , fr) the commuting part of the system
and the last s− r functions the non-commuting part.

When all the integrals commute, i.e. r = s, then we are dealing with the
case of a commutative integrable system discussed in Section 3.2.

Remark. Unlike the commutative case, we have to explicitly demand the
independence of the Hamiltonian vector fields of f1, . . . , fr (condition (4)
above). For instance, on R3r endowed with coordinates

(x1, . . . , x2r, z1, . . . , zr)

and Poisson structure

∂

∂x1

∧ ∂

∂x2

+
∂

∂x3

∧ ∂

∂x4

+ . . .+
∂

∂x2r−1
∧ ∂

∂x2r

the set of functions z1, . . . , zr, x1, . . . , xr satisfies conditions (1)-(3) but the
Hamiltonian vector fields of z1, . . . , zr are zero. In the action-angle coordinate
theorem, we explicitly restrict our attention to points where the Hamiltonian
vector fields of the commuting part of the system are independent.

An example, and at the same time the semilocal normal form of any
non-commutative integrable system on a Poisson manifold, is the following
system:
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Example 3.4.2 (Generic example). Consider the manifold Tr×Rs with stan-
dard coordinates

(θ1, . . . , θr)

on Tr and standard coordinates

(p1, . . . , pr, z1, . . . , zs−r)

on Rs. We endow Tr × Rs = Tr × Rr × Rs−r with the Poisson structure

Π =
r∑
i=1

∂

∂θi
∧ ∂

∂ai
+ π′

where π′ is any Poisson structure on Rs−r. Then the functions

(p1, . . . , pr, z1, . . . , zs−r)

define a non-commutative integrable system of rank r.

Liouville tori. Let (M,Π, F ) be a non-commutative integrable system
of rank r. We denote the non-empty subset of M where the differentials
df1, . . . , dfs (resp. the Hamiltonian vector fields Xf1 , . . . , Xfr) are indepen-
dent by UF (resp. MF,r).

On the non-empty open subset MF,r ∩ UF of M , the Hamiltonian vector
fields Xf1 , . . . , Xfr by definition generate an integrable distribution of rank
r and hence a foliation F with r-dimensional leaves, see [LMV]. As in the
commutative case, a compact leaf of this foliation is an r-dimensional torus
called Liouville torus.

3.4.1 Action-angle coordinates for non-commutative in-
tegrable systems on Poisson manifolds

The action-angle coordinate theorem proved in [LMV] (see Theorem 1.1
therein) gives a semilocal description of the Poisson structure around a Li-
ouville torus of a non-commutative integrable system:

Theorem 3.4.3. Let (M,Π, F ) be a non-commutative integrable system of
rank r, where F = (f1, . . . , fs) and suppose that Fm is a Liouville torus,
where m ∈MF,r ∩ UF . Then there exist R-valued smooth functions

(p1, . . . , pr, z1, . . . , zs−r)

53



and R/Z-valued smooth functions

(θ1, . . . , θr),

defined in a neighborhood U of Fm, and functions φkl = −φlk, which are
independent of θ1, . . . , θr, p1, . . . , pr, such that

1. The functions (θ1, . . . , θr, p1, . . . , pr, z1, . . . , zs−r) define a diffeomorphism
U ' Tr ×Bs;

2. The Poisson structure can be written in terms of these coordinates as,

Π =
r∑
i=1

∂

∂θi
∧ ∂

∂pi
+

s−r∑
k,l=1

φkl(z)
∂

∂zk
∧ ∂

∂zl
;

3. The leaves of the surjective submersion F = (f1, . . . , fs) are given by
the projection onto the second component Tr × Bs, in particular, the
functions f1, . . . , fs depend on p1, . . . , pr, z1, . . . , zs−r only.

The functions θ1, . . . , θr are called angle coordinates, the functions p1, . . . , pr
are called action coordinates and the remaining coordinates z1, . . . , zs−r are
called transverse coordinates.

3.4.2 Casimir-basic functions

In the case of non-commutative integrable systems, the target space of the
functions F = (f1, . . . , fs) : M → Rs inherits a Poisson structure which
is non-trivial. We denote the target space by V := F (M). The Poisson
structure on V is defined in the following way [LMV]:

{g, h}V ◦ F = {g ◦ F, h ◦ F}, (3.5)

where g, h are functions on V and on the right hand side the bracket { , }
is the Poisson bracket on M . We denote the bivector field associated with
{ , }V by ΠV .

Remark. The bracket {·, ·}V is completely determined by the brackets of the
integrals {fi, fj}, since this corresponds to evaluating the left-hand side of
Equation (3.5) on the coordinate functions of V . In particular, a commuting
integrable system induces the zero Poisson structure on the target space since
{fi, fj} = 0 for all i, j.
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An F -basic function on M is a function of the form h ◦ F where h is a
function on V . Equivalently, a function is F -basic if and only if it is constant
on all the level sets of F . Since these level sets are spanned by Xf1 , . . . , Xfr ,
we can characterize an F -basic functions g by the property that Xfi(g) = 0
for i = 1, . . . , r.

The Poisson bracket on V allows us to distinguish a particular class of
F -basic functions [LMV], which will play an important role in the proof of
the action-angle coordinate theorem:

Definition 3.4.4. A smooth function g on M is said to be a Casimir-basic
function, or Cas-basic function for short, if there exists a Casimir function
h on (V,ΠV ) such that g = h ◦ F .

Recall from Definition 2.1.2 that a Casimir function for a Poisson struc-
ture is one whose Hamiltonian vector field is zero, in other words a Casimir
function commutes with all other functions.

We state the following useful characterisation of Cas-basic functions proved
in [LMV]:

Proposition 3.4.5. A function is Cas-basic if and only if it commutes with
all F -basic functions.

Proof. Suppose that g ∈ C∞(M) is Cas-basic, g = h ◦ F . Then clearly for
an F -basic function k ◦ F we have

0 = {h, k}V ◦ F = {g, k ◦ F}.

To show the other direction, let g ∈ C∞(M) be in involution with all F -basic
functions. Then Xfi(g) = {g, fi} = 0 for i = 1, . . . , r, hence g is F -basic,
g = h ◦ F for some function h on Bs. If k ∈ C∞(Bs), then k ◦ F is constant
on the fibres of F , so that

{h, k}B ◦ F = {g, k ◦ F} = 0,

where we have used that F is a Poisson map. It follows that {h, k}B = 0 for
all functions k on Bs, hence that g (= h ◦ F ) is Cas-basic. This shows one
implication of (1), the other one is clear.
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3.5 Non-commutative b-integrable systems

As in the commutative case, to obtain a suitable concept of “non-commutative
integrable system” similar to the symplectic case, we have to consider b-
functions [KMb]:

Definition 3.5.1 (Non-commutative b-integrable system). A non-commutative
b-integrable system of rank r on a 2n-dimensional b-symplectic manifold
(M2n, ω) is an s-tuple of functions

F = (f1, . . . , fr, fr+1, . . . , fs)

where f1, . . . , fr are b-functions and fr+1, . . . , fs are smooth such that the
following conditions are satisfied:

(1) The differentials df1, . . . , dfs are linearly independent as b-cotangent
vectors on a dense open subset of M and on a dense open subset of Z;

(2) The functions f1, . . . , fr are in involution with the functions f1, . . . , fs;

(3) r + s = 2n;

(4) The Hamiltonian vector fields of the functions f1, . . . , fr are linearly
independent as smooth vector fields at some point of Z.

We call the first r functions (f1, . . . , fr) the commuting part of the system
and the last s− r functions the non-commuting part.

For r = s = n we are dealing with the commutative case, which we
already discussed above.

Liouville tori. We denote the non-empty subsets of M where condition
(1) resp. (4) is satisfied by UF resp. MF,r. The points of the intersection
MF,r∩UF are called regular. As in the general Poisson case, the Hamiltonian
vector Xf1 , . . . , Xfr fields define an integrable distribution of rank r on this
set and we denote the corresponding foliation by F . If the leaf through a
point m ∈M is compact, then it is an r-torus (“Liouville torus”), denoted
Fm.

Remark. In the symplectic case, if the differentials dfi (i = 1, . . . , r) are lin-
early independent at a point p, then also the corresponding Hamiltonian
vector fields Xfi are independent at p. However, the situation is more del-
icate in the b-symplectic case. The differentials dfi are b-one-forms. At
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a point p where the dfi are independent as b-cotangent vectors, the corre-
sponding Hamiltonian vector fields Xfi are independent at p as b-tangent
vectors. However, for p ∈ Z the natural map bTM |p → TZ|p is not injective
and therefore we cannot guarantee independence of the Xfi as smooth vector
fields. This is why the condition (4) is needed, which already appeared in the
general Poisson case. As an example, consider R2 with standard coordinates
(t, z) and b-symplectic structure

1

t
dt ∧ dz.

Then the function z has a differential dz which is non-zero at all points of R2,
but the Hamiltonian vector field of z is t ∂

∂t
and vanishes along Z = {t = 0} as

a smooth vector field. We do not allow this kind of systems in our definition,
since we are interested precisely in the dynamics on Z and the existence of
r-dimensional Liouville tori there.

3.5.1 The Poisson structure on the target space

Similar to the case of non-commutative integrable systems on general Poisson
manifolds, we can define a Poisson structure on the target space of a non-
commutative b-integrable system F on a b-symplectic manifold (M,ω) with
critical hypersurface Z. We denote the Poisson bracket associated to ω by
{·, ·}. Let V := F (M)∩Rs be the “finite” target space of the integrals F . (If
we want to emphasize the functions F we are referring to, we will also write
VF .)

The space V inherits a Poisson structure {·, ·}V satisfying the following
property on M\Z:

{g, h}V ◦ F = {g ◦ F, h ◦ F},
where g, h are functions on V . Note that the values of the brackets {fi, fj}
on M uniquely define the Poisson bracket {·, ·}V .

3.5.2 Equivalent non-commutative b-integrable systems.

As in the commutative case, we use the notation (M,ω, F ) for a non-commutative
b-integrable system F on the b-symplectic manifold (M,ω).

Definition 3.5.2 (Equivalence of non-commutative b-integrable systems). We
say that two non-commutative b-integrable systems (M1, ω1, F1) and (M2, ω2, F2)
are equivalent if there exists a Poisson diffeomorphism ψ and a Poisson map

µ : VF1 → VF2
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such that the following diagram commutes:

(M1, ω1) (M2, ω2)

VF1 VF2

//
ψ

��

F1

��

F2

//
µ

Here, µ is a Poisson map with respect to the Poisson structures induced on
VF1 and VF2 as defined above.

We will not distinguish between equivalent systems: if the action-angle
coordinate theorem that we will prove holds for one system then it holds for
all equivalent systems too.

We prove a first “normal form” result for non-commutative b-integrable
systems:

Proposition 3.5.3. Let (M,ω) be a b-symplectic manifold of dimension 2n
with critical hypersurface Z. Given a non-commutative b-integrable system
F = (f1, . . . , fs) of rank r there exists an equivalent non-commutative b-
integrable system of the form

(log |t|, f2, . . . , fs)

where t is a defining function of Z and the functions f2, . . . , fs are smooth.

Proof. First, assume that one of the functions f1, . . . , fr is a genuine b-
function, without loss of generality f1 = g + c log |t′| where c 6= 0 and t′

is a defining function of Z. Dividing f1 by the constant c and replacing the
defining function t′ by t := egt′, we can restrict to the case f1 = log |t|. We
subtract an appropriate multiple of f1 from the other functions f2, . . . , fr
so that they become smooth. Note that this does not affect their inde-
pendence nor the commutativity condition for f1, . . . , fr, since f1 commutes
with all the integrals. Also, since these operations do not affect the non-
commutative part of the system, the induced Poisson bracket on the target
space (cf. Section 3.4.2) remains unchanged. Hence we have obtained an
equivalent b-integrable system of the desired form.

We prove by contradiction that it is indeed not possible that all the func-
tions f1, . . . , fs are smooth. If they are, then the differentials df1, . . . , dfs are
standard de Rham forms and on a point p ∈ Z, the corresponding b-cotangent
vectors are ι∗(df1), . . . , ι∗(dfs), where we use the identification described in
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Section 2.2.4 and ι : Z ↪→ M is the inclusion. Since df1, . . . , dfs are in-
dependent as b-de Rham forms at a point p ∈ UF ∩ MF,r, we have that
ι∗(df1), . . . , ι∗(dfs) are independent at every point in Z ∩ UF ∩ MF,r. But
this means that they define a codimension s-foliation on Z ∩ UF ∩MF,r, i.e.
the leaves are 2n− 1− s-dimensional. On the other hand, the Hamiltonian
vector fields Xf1 , . . . , Xfr are tangent to the leaves of the submersion given
by F , because f1, . . . , fr commute with all fj, j = 1, . . . , s. Moreover, as
Poisson vector fields they are tangent to Z. But r = 2n − s > 2n − 1 − s,
contradiction.

Remark. Recall that the Liouville tori of a non-commutative b-integrable
system F are, by definition, the leaves of the foliation induced by Xfi , i =
1, . . . , r on UF ∩ MF,r. A Liouville torus that intersects Z lies inside Z,
since the Hamiltonian vector fields are Poisson vector fields and therefore
tangent to Z. Moreover, since at least one of the first r integrals f1, . . . , fr
has non-vanishing “log” part, the Liouville tori inside Z are transverse to the
symplectic leaves.

Remark. In the definition of a non-commutative b-integrable system, we only
allow the commuting part of the system f1, . . . , fr to contain b-functions.
This condition is used in the proof of Proposition 3.5.3. Otherwise we could
not perform the linear combinations required to obtain the desired normal
form without affecting the commutativity properties of the functions.

3.5.3 Action-angle coordinates for non-commutative b-
integrable systems

We now state the action-angle coordinate theorem for non-commutative b-
integrable systems, which we first showed in [KMb] and whose proof we will
present in Chapter 5.

Theorem B. Let (M,ω) be a b-symplectic manifold with critical hypersur-
face Z. Let F be a non-commutative b-integrable system on (M,ω) of rank
r and let m ∈ Z be a regular point of the system lying inside the critical
hypersurface, m ∈ MF,r ∩ UF ∩ Z. Assume that the integral manifold Fm
containing m is compact, i.e. a Liouville torus. Then there exists an open
neighbourhood U of the torus Fm and a diffeomorphism

(θ1, . . . , θr, t, p2, . . . , pr, x1, . . . , x`, y1 . . . , y`) : U → Tr ×Bs,

59



where ` = n− r = s−r
2

and t is a defining function of Z, such that

ω|U =
c

t
dθ1 ∧ dt+

r∑
i=2

dθi ∧ dpi +
∑̀
k=1

dxk ∧ dyk.

Moreover, the functions f1, . . . , fs depend on t, p2, . . . , pr, x1, . . . , x`, y1 . . . , y`
only. The number c is the modular period of the component of Z containing
m.

The S1-valued functions
θ1, . . . , θr

are called angle coordinates, the R-valued functions

t, p2, . . . , pr

are called action coordinates and the remaining R-valued functions

x1, . . . , x`, y1 . . . , y`

are called transverse coordinates.
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Chapter 4

Action-angle coordinates for
b-integrable systems

We have already stated the action-angle coordinate theorem for b-integrable
systems, Theorem A. The proof will be the main content of this chapter. It
borrows, on the one hand, ingredients from the proof in the general Poisson
case given in [LMV], and on the other hand uses the specific properties of
b-symplectic manifolds to achieve a stronger result in this case, which specif-
ically concerns the critical hypersurface. The resulting theorem is similar
to the symplectic case: semilocally around a Liouville torus contained in
the critical hypersurface there are action-angle coordinates such that the b-
symplectic structure is the “b-Darboux form” given in Equation (3.4) and
the foliation of the integrable system on this chart is a trivial torus fibration
Tn × Bn given by the level sets of the action coordinates. The results of
this chapter were first proved in [KMS] (joint work with Eva Miranda and
Geoffrey Scott).

Theorem A (Action-angle coordinates for b-integrable systems). Let (M,ω)
be a b-symplectic manifold with critical hypersurface Z. Let F be a b-integrable
system on (M,ω) and let m ∈ Z be a regular point of the system lying inside
the critical hypersurface. Assume that the integral manifold Fm containing m
is compact, i.e. a Liouville torus. Then there exists an open neighbourhood
U of the torus Fm and a diffeomorphism

(θ1, . . . , θn, t, a2, . . . , an) : U → Tn ×Bn,

where t is a defining function for Z, such that

ω|U =
c

t
dθ1 ∧ dt+

n∑
i=2

dθi ∧ dpi.
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Moreover, the functions t, p2, . . . , pn depend only on F . The number c is the
modular period of the component of Z containing m.

The S1-valued functions
θ1, . . . , θr

are called angle coordinates and the R-valued functions

t, p2, . . . , pr

are called action coordinates.

4.1 Outline of the proof

The proof is carried out in several steps:

• we show that the foliation by Liouville tori is trivial on a neighbourhood
of a torus, i.e. a product Tn ×Bn (Section 4.4)

• we prove a “local” action-angle coordinate theorem, the Darboux-Carathéodory
theorem (Section 4.5)

• we construct a toric action using the flow of the integrals, whose mo-
ment map provides a set of “action” coordinates (Section 4.6)

• and finally we combine the previous steps to obtain the desired action-
angle coordinates on a neighbourhood of a Liouville torus (Section 4.7).

4.2 Example: Gluing integrable systems on

manifolds with boundary

Let (M,ω) be a b-symplectic manifold with critical hypersurface Z. Re-
stricting the b-symplectic form ω to a component W of M\Z, we obtain a
symplectic form

ω
∣∣
W
∈ Ω2(W ).

The closure of W is a manifold with boundary, and the asymptotics of
ω
∣∣
W

near this boundary can been described in the following way [NT]:
For each p ∈ ∂W , there is a neighborhood diffeomorphic to the halfspace
{(x1, y1, . . . , xn, yn) | x1 ≥ 0} on which

ω =
1

x1

dx1 ∧ dy1 +
∑
i>1

dxi ∧ dyi.
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This observation enables us to study manifolds with boundary equipped
with a symplectic form in its interior, as long as the symplectic form has the
kind of asymptotics described above. By taking the double of such a mani-
fold with boundary, the boundary becomes a hypersurface. The symplectic
form then extends to a b-symplectic form on the double.

As an example, consider the upper hemisphere (including the equator)
H+ of S2. The symplectic form

1

h
dh ∧ dθ

defined on the interior of H+ extends to a b-symplectic form on the double
of H+, which is S2.

This example can be generalized to H+×M , where M is any symplectic
manifold, endowed with the product symplectic structure. Moreover, any in-
tegrable system on the interior of H+×M which has asymptotics compatible
with those of ω near the boundary extends to a b-integrable system on the
double S2 ×M . For example, if (f1, . . . , fn) is an integrable system on M ,
then the integrable system

(log |h|, f1, . . . , fn)

on H+×M extends to the b-integrable system (log |h|, f1, . . . , fn) on S2×M .

4.3 Counterexample to the existence of action-

angle coordinates on a non-orientable man-

ifold

Our definition of b-Poisson manifolds (Definition 2.2.1) contains the assump-
tion that the underlying manifold M is oriented. We could define b-Poisson
manifolds in the same way for non-orientable manifolds. However, the action-
angle coordinate theorem does not hold in this case.

As a counterexample, consider the Möbius band R2/(x, y) ∼ (x + 1,−y)
with the b-Poisson structure

y
∂

∂x
∧ ∂

∂y

and the function f = −log|y|. Here, the orbits of Xf = ∂
∂x

do not define
a trivial fibration semilocally around the orbit {y = 0}, so there cannot be
action-angle coordinates for this example.
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Remark. In [KMS] where we first proved the action-angle coordinate theorem
for b-symplectic manifolds, we did not assume that the manifold is orientable,
but we did assume that the exceptional hypersurface Z has trivial normal
bundle, which is enough since it provides us with a global defining function
for Z.

4.4 A topological result

Let (M,ω) be a b-symplectic manifold with critical hypersurface Z. We have
already seen in Proposition 3.3.3 that any b-integrable system has an equiv-
alent system of the form (log |t|, f2, . . . , fn), where t is a defining function of
Z and f2, . . . , fn are smooth functions. From now on we will assume that
our system is given in this form.

The key result of this section is Proposition 4.4.2, which gives informa-
tion about the topology of the foliation F on the set of regular points of
the system, whose compact leaves are the Liouville tori (see Section 3.3). It
shows that semi-locally around a Liouville torus the foliation is trivial.

We will need the following lemma to describe the foliation F given by the
Hamiltonian vector fields Xfi as the level sets of a (smooth) submersion.

Lemma 4.4.1. Let F = (f1, . . . , fn) be a b-integrable system where f1 =
log |t| and the other functions are smooth. Then

F̃ := (t, f2, . . . , fn) : UF → Rn

is a submersion and the level sets of F̃ correspond to foliation F given by the
Hamiltonian vector fields Xfi of the integrals.

Proof. The differentials d(log |t|), df2, . . . , dfn are independent as b-form at
any regular point p ∈ UF . We show that this implies that dt, df2, . . . , dfn
are independent as classical de Rham forms at p. For p outside the critical
hypersurface Z this is clear. Let p ∈ Z ∩ UF . Recall from Section 2.2.3 that
we can identify T ∗pZ with bT ∗pM . Therefore, given a linear combination

α1dt+
n∑
i=2

αidfi = 0 ∈ T ∗pM

with some αi non-zero, we can apply i∗, where i is the inclusion of Z in M ,
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to obtain a linear combination
n∑
i=2

αidfi = 0 ∈ T ∗pZ ∼=b T ∗pM.

This contradicts the assumption that d(log |t|), df2, . . . , dfn, and in particular
df2, . . . , dfn, are independent at p as b-forms.

We conclude that the components of F̃ are independent and as a conse-
quence the level sets are n-dimensional and define a foliation.

The leaves of the foliation F of the system have dimension n as well;
their tangent spaces are spanned by Xf1 , . . . , Xfn . Since dt(Xfi) = 0 and
dfj(Xfi) = 0 for i = 1, . . . , n and j = 2, . . . , n, we see that they are contained
in the tangent spaces of the level sets of F̃ . Hence the two foliations are
equal.

Proposition 4.4.2. Let m ∈ Z be a regular point of a b-integrable system
(M,ω, F ), i.e. m ∈ UF . Let F be the foliation induced by the integrable sys-
tem on UF . Assume that the integral manifold Fm through m is compact, i.e.
a torus Tn. Then there exists a neighbourhood U of Fm and a diffeomorphism

φ : U ' Tn ×Bn,

which takes the foliation F to the trivial foliation {Tn × {b}}b∈Bn.

Proof. We follow the proof given in [LMV] (see Proposition 3.2 therein),
where the analogous result for general Poisson manifolds is shown.

Let the b-integrable system be given in the form F = (f1, . . . , fn) where
f1 = log |t| is a b-function and the other functions are smooth. By Lemma
4.4.1, the foliation F of the system can be described by the submersion
F̃ := (t, f2, . . . , fn).

Then, as in [LMV], we endow M with some Riemannian metric. Using
the exponential map we can find for every point m′ ∈ Fm a neighbourhood
Um′ of m′ in M , a neighbourhood Vm′ of m′ in Fm and a smooth map ψm′ :
Um′ → Fm′ ∩ Um′ such that ψm′ |Um′ = idFm′∩Um′ and moreover such that for
two different points m′ and m′′ with Um′ ∩ Um′′ 6= 0 the maps ψm′ and ψm′′
coincide on the intersection. Covering Fm with open neighbourhoods like
this and gluing the maps together, we obtain a smooth map

ψ : U → Fm ∼= Tn

on a neighbourhood U of Fm which restricts to the identity on Fm. We set
φ := ψ × F̃ . Making U smaller if necessary this defines a diffeomorphism

φ = ψ × F̃ : U → Tn ×Bn
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and we have a commuting diagram

U Tn ×Bn

Bn

//
φ

��

F̃

��

π (4.1)

where ψ is the canonical projection. In particular, the level sets of F̃ corre-
spond under φ to the level sets of ψ, i.e. the tori Tn × {b}, b ∈ Bn.

Corollary 4.4.3. Semilocally around a Liouville torus a b-integrable system
is isomorphic to

(Tn ×Bn, ω, F := (log |π1|, π2, . . . , πn), (4.2)

where πi are the projections onto the components of Bn and ω is some b-
symplectic structure with critical hypersurface Z = {π1 = 0}.

Here, “isomorphic” means that there is a b-symplectomorphism which
takes the integrals of the original system to F .

Proof. The result follows directly from the diagram in Equation (4.1).

We conclude that for describing a b-integrable system semilocally around
a Liouville torus, we can restrict our attention to the b-integrable system
(log |π1|, π2, . . . , πn) on the manifold Tn×Bn endowed with some b-symplectic
form ω whose critical hypersurface is Z = {π1 = 0}.

At this point we do not yet have more information about ω. The action-
angle coordinate theorem will refine the purely topological result obtained
here and in particular will put ω in b-Darboux coordinates semilocally around
the Liouville torus.

4.5 Darboux-Carathéodory Theorem

Another important result that precedes the proof of the action-angle coor-
dinate theorem is the Darboux-Carathéodory Theorem. It locally extends a
set of n Poisson commuting and functionally independent b-functions to a
“b-Darboux” coordinate system. We first proved this result in [KMS]:

Theorem 4.5.1. Let (M2n, ω) be a b-symplectic manifold, m be a point on
the exceptional hypersurface Z, and f1, . . . , fn be b-functions, defined on a
neighbourhood of m, with the following properties
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• f1, . . . , fn Poisson commute

• Xf1 ∧ · · · ∧Xfn is a nonzero section of Λn(bTM) at m.

Then there exist b-functions (g1, . . . , gn) around m such that

ω =
n∑
i=1

dfi ∧ dgi.

and the vector fields {Xfi , Xgj}i,j commute.
Moreover, if f1 is not a smooth function, i.e. f1 = c log |t| for some c 6= 0

and some local defining function t of Z, then the functions gi can be chosen
to be smooth functions for which

(t, f2, . . . , fn, g1, . . . , gn)

are local coordinates around m.

Proof. For this proof, we will adopt the notation that for a 1-form µ, the
vector field Xµ is the vector field satisfying ιXµω = −µ. We begin by in-
ductively constructing a collection {µ1, . . . , µn} of 1-forms with the property
that

µi(Xfj) = δji
µi(Xµj) = 0 for j < i.

Assume that we have successfully constructed µj for j < i, and moreover
that this construction satisfies

0 6= Xf1 ∧ . . . , Xfn ∧Xµ1 ∧ · · · ∧Xµi−1

(as a section of Λ∗(bTM)) locally near m, and consider the problem of con-
structing µi. Let Pi and Ki be the subbundles (of bTM and bT ∗M respec-
tively) defined by

Pi = span({Xfj , Xµk}j 6=i,k<i)
Ki = ker(Pi)

The bundle Ki is a codimension-(n + i − 2) subbundle of bT ∗M . By the
inductive hypothesis, Xfi is not contained in Pi, so there is a section µi of
Ki for which µi(Xfi) = 1. The fact that Pi and Xfi are in the kernel of dfi,
but Xµi is not, reveals that Xµi /∈ span(Pi ∪Xfi), so

0 6= Xf1 ∧ · · · ∧Xfn ∧Xµ1 ∧ · · · ∧Xµi ,
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completing the induction.
Because the dfi and µi are b-forms, the Xfi and Xµi are b-vector fields.

Using the fact that the fi functions Poisson commute, and the properties of
the µi constructed above,(

ω(Xfi , Xfj) ω(Xµi , Xfj)
ω(Xfi , Xµj) ω(Xµi , Xµj)

)
=

(
0 −I
I 0

)
,

so ω =
∑n

i=1 dfi∧µi. To check that the µi are closed (and therefore exact) in a
neighbourhood of m, we apply the Cartan formula for the exterior derivative
to calculate that

dµi(Xfj , Xfk) = Xfj(µi(Xfk))−Xfkµi(Xfj)− µi([Xfj , Xfk ])

= Xfjδ
k
i −Xfkδ

j
i − µi(0) = 0

dµi(Xfj , Xµk) = Xfjµi(Xµk)−Xµkµi(Xfj)− µi([Xfj , Xµk ])

= Xfj(0)−Xµkδ
j
i − µi(0) = 0

dµi(Xµj , Xµk) = Xµjµi(Xµk)−Xµkµi(Xµj)− µi([Xµj , Xµk ])

= Xµj(0)−Xµk(0)− µi(0) = 0.

Letting gi be any local primitive of µi yields the first part of the result.
In the case when f1 = c log |t| is non-smooth, we can modify our inductive

construction of the µi so that in addition to requiring that the µi be in Ki,
we also insist that they be in T ∗M ⊆ bT ∗M . To check that this restriction
is consistent with the requirement that µi(Xfi) = 1, we must check that the
kernel of Xfi is not identically equal to T ∗M , i.e. Xfi does not vanish at m
when viewed as a section of TM . But this is clear from the fact that Xfi does
not vanish atm when viewed as a section of bTM , and 0 = {f1, fi} = cdt

t
(Xfi).

This proves that the gi can be chosen to be smooth functions. The fact
that

{Xt, Xf2 , . . . , Xfn , Xg1 , . . . , Xgn}

pairwise commute follows from the fact that {Xfi , Xgj}i,j do, so

(t, f2, . . . , fn, g1, . . . , gn)

indeed are local coordinates.
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4.6 The Hamiltonian Tn-action induced by a

b-integrable system

By Corollary 4.4.3 we may assume our b-integrable system is of the form
given in Equation (4.2),

(Tn ×Bn, ω, F := (log |π1|, π2, . . . , πn),

where π1 = 0 defines the critical hypersurface Z. We want to construct a Tn
action whose orbits are the Liouville tori of F , Tn × {b}b∈Bn . For the sake
of simplicity we denote the components of F by fi as usual and we set t := π1.

Clearly, the vector fields Xf1 , . . . , Xfn define a Tn action on each of the Li-
ouville tori individually. However, it is not guaranteed that their flow defines
a torus action on all of Tn × Bn. In this section we construct an equivalent
b-integrable system whose fundamental vector fields do define a Tn action on
a neighbourhood of Tn×{0}. The argument, which we already presented in
[KMS], follows the idea of the analogous result for Poisson manifolds given
in [LMV].

4.6.1 Uniformization of periods

We denote by Φs
Xfi

the time-s-flow of the (b-)Hamiltonian vector fields Xfi .

Consider the combined flow of the (b-)Hamiltonian vector fields Xf1 , . . . , Xfn :

Φ : Rn × (Tn ×Bn)→ (Tn ×Bn)(
(s1, . . . , sn), (x, b)

)
7→ Φs1

Xf1
◦ · · · ◦ Φsn

Xfn
((x, b)).

Because the Xfi are complete and commute with one another, this defines
an Rn-action on Tn×Bn. When restricted to a single orbit Tn×{b} for some
b ∈ Bn, the kernel of this action is a discrete subgroup of Rn, hence a lattice
Λb. We call Λb the period lattice of the orbit Tn × {b}. Since the orbit is
compact, the rank of Λb is n.

The lattice Λb will in general depend on b. The process of uniformization
entails modifying the action so that Λb = Zn for all b. For any b ∈ Bn−1×{0}
and any ai ∈ R, the vector field

∑
ρiXfi on Tn × {b} is the b-Hamiltonian

vector field of the b-function

ρ1 log |t|+
n∑
i=2

ρifi,
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where we recall that fi are smooth for i = 2, . . . , n. However, by Proposition
4 of [GMPS13], if such a vector field is 1-periodic, then ρ1 = ±c, where c is
the modular period of the component of Z containing m. Therefore, for all
b ∈ Bn−1 × {0}, the lattice Λb is contained in cZ× Rn−1 ⊆ Rn. To perform
the uniformization, pick smooth functions

(λ1, λ2, . . . , λn) : Bn → Rn

such that

• (λ1(b), λ2(b), . . . , λn(b)) is a basis for the period lattice Λb for all b ∈ Bn

• λ1
i vanishes along {0} × Bn−1 for i > 1, and λ1

i equals the modular
period c along {0} ×Bn−1. Here, λji denotes the jth component of λi.

Such functions λi exist that satisfy the first condition (perhaps after shrinking
Bn) by the implicit function theorem, using the fact that the Jacobian of the
equation Φ(λ,m) = m is regular with respect to the s variables. The fact that
they can be chosen to satisfy the second condition is due to the discussion
above.

Using these functions λi we define the “uniformized” flow

Φ̃ : Rn × (Tn ×Bn)→ (Tn ×Bn)(
(s1, . . . , sn), (x, b)

)
7→ Φ

( n∑
i=1

siλi(c), (x, b)
)
.

The period lattice of this Rn action is constant now, namely Zn, and hence
the action naturally defines a Tn action.

4.6.2 Moment map of the Tn-action

Let Yi denote the fundamental vector fields of the Tn action constructed
above. Then

Yi =
n∑
j=1

λjiXfj .

We want to find b-functions p1, . . . , pn such that the corresponding b-
Hamiltonian vector fields Xpi are precisely the fundamental vector fields Yi.
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The vector fields Yi are Poisson. The first step is to show that the Yi
are Poisson vector fields. Our proof is based on the following lemma shown
in [LMV] for general Poisson manifolds (see Claim 2 therein):

Lemma 4.6.1. If Y is a complete vector field of period one and P is a
bivector field for which L2

YP = 0, then LYP = 0.

We use the Cartan formula for b-symplectic forms given in Equation (2.8)
to compute L2

Yω = 0 for i = 1, . . . , n:

LYiLYiω = LYi(d(ιYiω) + ιYidω)

= LYi(d(−
n∑
j=1

λjidfj))

= −LYi

(
n∑
j=1

dλji ∧ dfj

)
= 0

In the last equality we used the fact that λji are constant on the level sets of
F . By Lemma 4.6.1 it follows that

LYiω = 0,

so the vector fields Yi are Poisson vector fields.

The vector fields Yi are b-Hamiltonian. To show that each ιYiω has
a bC∞ primitive, it suffices to show that the smooth part of [ιYiω], i.e. the
first summand in its image under the Mazzeo-Melrose isomorphism given in
Theorem 2.2.17,

bH1(Tn ×Bn) ∼= H1(Tn ×Bn)⊕H0(Tn ×Bn),

is zero. This follows from the fact that the value of the smooth part H1(Tn×
Bn) of ιYiω is determined by integrating it along loops which are tangent to
the fibres. But the kernel of ιYiω contains the tangent space to the torus
fibres, since the latter are spanned by Xf1 , . . . , Xfn and the fi commute.
Therefore these integrals are zero.

We conclude that the fundamental vector fields Yi are b-Hamiltonian and
we denote their Hamiltonian functions by pi. Because λ1

i vanish along {0}×
Bn−1 for i > 1, the forms ιYiω = −

∑n
j=1 λ

j
idfj are smooth for i > 1, so the

functions pi are smooth for i > 1. Because λ1
1 equals c along {0} ×Bn−1, p1

has the form c log |t| for some defining function t.
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Remark. A slight alternation of this proof uses Proposition 2.4.4 about the
splitting of Hamiltonian torus actions. Then, in the uniformization step
we can choose any functions λ1, . . . , λn which pointwise provide a basis of
the period lattice. The resulting Tn action is Hamiltonian by the argument
given above, but the moment map, i.e. the set of functions p1, . . . , pn whose
Hamiltonian vector fields are the fundamental vector fields of the action,
might not “split” in the sense that only a1 is a b-functions and the others
are smooth. However, since the action is Hamiltonian and effective (because
of the independence of Xf1 , . . . , Xfn), hence toric, we can apply Proposition
2.4.4 to obtain a basis of the Lie algebra of Tn such that the moment map
expressed with respect to this basis splits into a b-function c log |t| and n− 1
smooth functions.

4.7 Proof of the action-angle coordinate the-

orem for b-integrable systems

We will combine the results of the previous sections to prove the first main
result of this thesis, the action-angle coordinate theorem, Theorem A. The
setting is the same as in the previous section. Let m be a point on a Liouville
torus Tn × {b} lying inside the critical hypersurface (i.e. b1 = 0).

Applying Darboux-Carathéodory. The construction in Section 4.6.2
yields candidates p1 = c log |t|, p2, . . . , pn for the “action coordinates”. We use
the Darboux-Carathéodory theorem to complete these “action coordinates”
locally around m to a chart

(t, p2, . . . , pn, g1, . . . , gn)

such that

ω =
c

t
dg1 ∧ dt+

n∑
i=2

dgi ∧ dpi.

Flowing along the torus. Since the vector fields Yi = Xpi = ∂
∂gi

(i =

1, . . . , n) are the fundamental vector fields of the Tn-action, in the local chart
introduced above the flow of the vector fields gives a linear action on the gi
coordinates:

(s1, . . . , sn) · (g1, . . . , gn, t, p2, . . . , pn) = (g1 + s1, . . . , gn + sn, t, p2, . . . , pn)
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Therefore, if the functions g1, . . . , gn were initially defined on a neigh-
bourhood U of m, we can extend them to the whole set U ′ := π−1(π(U))
(i.e. the union of all tori that intersect non-trivially with U). We denote the
extensions of these functions by the same symbols.

The vector fields ∂
∂gi

have period 1 on U , so we can view gi as S1 valued

coordinates (i = 1, . . . , n). We denote them by the “angle” variable θi for
this reason.

Action-angle chart. It remains to check that the extended functions

(θ1, . . . , θn, t, p2, . . . , pn)

define a coordinate system on U ′ and that ω still has the form

ω =
c

t
dθ1 ∧ dt+

n∑
i=2

dθi ∧ dpi. (4.3)

It is clear that {pi, θj} = δij on U ′. To show that {θi, θj} = 0, we note
that this relation holds on U and flowing with the vector fields Xpk we see
that it holds on the whole set U ′:

Xpk

(
{θi, θj}

)
= {{θi, θj}, pk} = {θi, δij} − {θj, δik} = 0.

This verifies that ω has the form (4.3) above and in particular, we conclude
that the derivatives of the functions t, θ1, p2, θ2, . . . , pn, θn are independent
on U , hence these functions define a coordinate system. This completes the
proof of the action-angle coordinate theorem.
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Chapter 5

Action-angle coordinates for
non-commutative b-integrable
systems

In the previous chapter we proved the action-angle coordinate theorem for
commutative b-integrable systems, Theorem A. Non-commutative integrable
systems on general Poisson manifolds were extensively studied in [LMV]. The
main result is the action-angle coordinate theorem for these systems which
we recalled in Theorem 3.4.3.

In this chapter we will prove the action-angle coordinate theorem for non-
commutative b-integrable systems using both the techniques of [LMV] and
the theory of b-symplectic manifolds. We will see that a dense subset of the
b-symplectic manifold and a dense subset of Z is foliated by r-dimensional
tori, where r is the rank of the system.

The difference to the result in the general Poisson case is that we explicitly
consider the hypersurface Z where the Poisson structure drops rank and show
the existence of action-angle coordinates for Liouville tori contained in Z.
The results of this chapter were published in [KMb] (joint work with Eva
Miranda).

Theorem B (Action-angle coordinates for non-commutative b-integrable
systems). Let (M,ω) be a b-symplectic manifold with critical hypersurface
Z. Let F be a non-commutative b-integrable system on (M,ω) of rank r and
let m ∈ Z be a regular point of the system lying inside the critical hypersur-
face. Assume that the integral manifold Fm containing m is compact, i.e. a
Liouville torus. Then there exists an open neighbourhood U of the torus Fm
and a diffeomorphism

(θ1, . . . , θr, t, p2, . . . , pr, x1, . . . , x`, y1 . . . , y`) : U → Tr ×Bs,
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where ` = n− r = s−r
2

and t is a defining function of Z, such that

ω|U =
c

t
dθ1 ∧ dt+

r∑
i=2

dθi ∧ dpi +
∑̀
k=1

dxk ∧ dyk.

Moreover, the functions f1, . . . , fs depend on t, p2, . . . , pr, x1, . . . , x`, y1 . . . , y`
only. The number c is the modular period of the component of Z containing
m.

The S1-valued functions
θ1, . . . , θr

are called angle coordinates, the R-valued functions

t, p2, . . . , pr

are called action coordinates and the remaining R-valued functions

x1, . . . , x`, y1 . . . , y`

are called transverse coordinates.

The structure of the proof is similar to the commutative case: First,
we show a topological result about the foliation induced by the system in
the neighbourhood of a Liouville torus (Section 5.2) and a version of the
Darboux-Carathéodory theorem (Section 5.4). We perform uniformization of
periods to construct a Tr-action whose orbits are the Liouville tori (Section
5.5.1). In contrast to the commutative case, additional arguments involving
Cas-basic functions are necessary in the last step where we combine the
previous results to prove the existence of action-angle coordinates (Section
5.6).

5.1 Example: Non-commutative integrable sys-

tems on manifolds with boundary

In Section 4.2 we constructed b-integrable systems by gluing together inte-
grable systems on manifolds with boundary. We can reproduce a similar
procedure in the non-commutative case.

As a concrete example, let the manifold with boundary be M = N ×H+,
where (N,ωN) is any symplectic manifold and H+ is the upper hemisphere
including the equator. We endow the interior of H+ with the symplectic form
1
h
dh∧dθ, where (h, θ) are the standard height and angle coordinates and the
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interior of M with the corresponding product structure. Now let (f1, . . . , fs)
be a non-commutative integrable system of rank r on N . Then on the interior
of M we can, for instance, define the following (smooth) non-commutative
integrable system:

(log |h|, f1, . . . , fs)

Taking the double of M we obtain a non-commutative b-integrable system
on N × S2.

5.2 A topological result

Let (M,ω) be a b-symplectic manifold with critical hypersurface Z. We have
already seen a normal form result in Proposition 3.5.3, according to which
any non-commutative b-integrable system of rank r has an equivalent system

(f1 = log |t|, f2, . . . , fs)

where f2, . . . , fs are smooth and f1, . . . , fr commute with all the functions fi.

As in the commutative case, the following result allows us to describe the
foliation F induced by the Hamiltonian vector fields Xfi as the level sets of
a submersion:

Lemma 5.2.1. Let F = (f1, . . . , fn) be a non-commutative b-integrable sys-
tem where f1 = log |t| and the other functions are smooth. Then

F̃ = (t, f2, . . . , fs) : UF → Rs

is a submersion and the level sets of F̃ correspond to foliation F given by the
Hamiltonian vector fields Xfi of the integrals.

As a consequence, we see that around a Liouville torus, the foliation F
is semilocally trivial, i.e. a product Tr ×Bs.

Proposition 5.2.2. Let m ∈ Z be a regular point of a non-commutative
b-integrable system (M,ω, F ), i.e. m ∈ UF ∩MF,r. Let F be the foliation
induced by the integrable system on UF ∩ MF,r. Assume that the integral
manifold Fm through m is compact, i.e. a torus Tr. Then there exists a
neighbourhood U of Fm and a diffeomorphism

φ : U ' Tr ×Bs,

which takes the foliation F to the trivial foliation {Tr × {b}}b∈Bs.
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Proof. We use Lemma 5.2.1 to view the leaves of the foliation F as the level
sets of the submersion F̃ = (t, f2, . . . , fs).

As described in Proposition 4.4.2, choosing an arbitrary Riemannian met-
ric on M allows us to define a canonical projection ψ : U → Fm ∼= Tr. Setting
φ := ψ × F̃ we have a commuting diagram

U Tr ×Bs

Bs

//
φ

��

F̃

��

π (5.1)

where
π = (π1, . . . , πs) : Tr ×Bs → Bs

is the canonical projection.

As a consequence of Proposition 5.2.2, we obtain the following semilocal
normal form result for non-commutative b-integrable systems:

Corollary 5.2.3. Semilocally around a Liouville torus a non-commutative
b-integrable system is isomorphic to

(Tr ×Bs, ω,G := (log |π1|, π2, . . . , πs),

where πi are the projections onto the components of Bs and ω is some b-
symplectic structure with critical hypersurface Z = {π1 = 0}.

Here, “isomorphic” means that there is a b-symplectomorphism which
takes the integrals of the original system to a system equivalent to G.

Proof. The result follows from the diagram in Equation (5.1). In particular,
the Poisson structure on the target space V := F (U)∩Rs = G(φ(U))∩Rs is
preserved: Using the notation of the proof above, and denoting the Poisson
bracket associated with the b-symplectic form ω on Tr ×Bs by {·, ·}Tr×Bs ,
we have

{g, h}V = {g ◦ F, h ◦ F} = {g ◦G ◦ φ, h ◦G ◦ φ} = {g ◦G, h ◦G}Tr×Bs .

The right hand side is, by definition, the Poisson bracket of g and h induced
by G on the target space, which we see coincides with the one induced by F ,
i.e. {·, ·}V .
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We conclude that for describing a non-commutative b-integrable system
semilocally around a Liouville torus, we can restrict our attention to the
non-commutative b-integrable system (log |π1|, π2, . . . , πn) on the manifold
Tn×Bn endowed with some b-symplectic form ω whose critical hypersurface
is Z = {π1 = 0}.

At this point we do not yet have more information about ω. The action-
angle coordinate theorem will refine the purely topological result obtained
here and in particular will put ω in b-Darboux coordinates semilocally around
the Liouville torus.

5.3 Casimir-basic functions

We have introduced the notion of Casimir-basic functions for general Poisson
manifolds in Section 3.4.2. The notion is based on the Poisson structure
induced on the target space of the system. In the b-case, i.e. for non-
commutative b-integrable systems, we have defined this structure in a very
similar way, see Section 3.5.1. We now introduce Cas-basic functions in this
case and prove some basic properties .

Let F be a non-commutative b-integrable system on the b-symplectic
manifold (M,ω) with critical hypersurface Z and let {·, ·}V be the Poisson
bracket induced on V := F (M) ∩ Rs.

Definition 5.3.1. An F -basic function on M is a b-function which coincides
with a function of the form g ◦ F on M\Z, where g is a function on V .

We show a characterization of F -basic functions similar to the smooth
case using Lemma 5.2.1 of the previous section.

Proposition 5.3.2. A b-function g is F -basic if and only if Xfi(g) = 0 for
i = 1, . . . , r.

Proof. We can assume that F is of the form (f1 = log |t|, f2, . . . , fs) where
f2, . . . , fs are smooth. As in Lemma 5.2.1, let F̃ := (t, f2, . . . , fs). Then g is
F -basic if and only if it is F̃ -basic i.e. of the form g = h ◦ F̃ on M . This is
equivalent to g being constant on the level sets of F̃ . The latter are spanned
by Xf1 , . . . , Xfr and hence we can characterize an F -basic functions g by the
property that Xfi(g) = 0 for i = 1, . . . , r.

The Poisson structure {·, ·}V allows us to define the following important
class of functions:
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Definition 5.3.3. A b-function g on M is said to be a Casimir-basic func-
tion, or Cas-basic function for short, if there exists a Casimir function h
on (V,ΠV ) such that g coincides with h ◦ F on M\Z.

The proof of the following proposition, shown in [LMV] for the general
Poisson case, works in the same way in the b-case:

Proposition 5.3.4. A b-function is Cas-basic if and only if it commutes
with all F -basic functions.

Proof. Suppose that g ∈b C∞(M) is Cas-basic, g = h ◦ F on M\Z. Then
clearly for an F -basic function k ◦ F we have

0 = {h, k}V ◦ F = {g, k ◦ F}.

To show the other direction, let g ∈b C∞(M) be a b-function that is in
involution with all F -basic functions. Then Xfi(g) = {g, fi} = 0 for i =
1, . . . , r, hence g is F -basic, g = h ◦ F for some function h on V . Let
k ∈ C∞(V ); then k ◦ F is constant on the fibres of F , so that

{h, k}B ◦ F = {g, k ◦ F} = 0,

where we have used that F is a Poisson map. It follows that {h, k}B = 0 for
all functions k on Bs, hence that g (= h ◦ F ) is Cas-basic. This shows one
implication of (1), the other one is clear.

The following lemma, which was stated and proved in exactly the same
way in [LMV], will be used as a tool in the proof of the action-angle coordinate
theorem.

Lemma 5.3.5. Let F : M → R
s

be an s-tuple of b-functions on the b-
symplectic manifold M = Tr × Bs. If the coefficients of a vector field of the
form Z =

∑r
j=1 ψjXfj are F -basic and the vector field has period one, then

the coefficients are Cas-basic.

Proof. We follow the proof in [LMV] replacing the smooth functions fi by
b-functions. Let Z be a vector field as described in the Lemma. We define
another vector field

Z0 :=
r∑
i=1

ψi(m)Xfi ,

where m is an arbitrary point in Tr × Bs
0. Then the restriction of Z0 to

F−1(F (m)) is periodic of period 1. Let h be an F -basic function on Tr×Bs
0,
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and let us denote the (local) flow of Xh by Φt. Since

[Xh, Z0] =
r∑
i=1

ψi(m)[Xh, Xfi ] = 0,

for |t| sufficiently small, the flow of Z0 starting from Φt(m) is also periodic of
period 1. Since the coefficients of Z are the unique continuous functions such
that Z = Z0 on F−1(F (m)) and such that the flow of Z from every point has
period 1, it follows that ψi(Φt(m)) = ψi(m) for |t| sufficiently small. Taking
the limit t→ 0 yields that Xh(ψi) = 0 for every F -basic function on Tr×Bs

0.
Thus, ψi is Cas-basic, for i = 1, . . . , r.

5.4 Darboux-Carathéodory theorem

Similar to the commutative case (Theorem 4.5.1) we show that we can lo-
cally complete a set of k commuting b-functions to a b-Darboux chart. The
difference is that now we do not require k = n.

Lemma 5.4.1 (Darboux-Carathéodory theorem for b-integrable sys-
tems). Let m be a point lying inside the exceptional hypersurface Z of a
b-symplectic manifold (M2n, ω). Let t be a defining function of Z around m
and let f2, . . . , fk be C∞ functions defined on a neighbourhood of m with the
following properties

• f2, . . . , fk Poisson commute

• Xf2 ∧ · · · ∧Xfk is a nonzero section of Λk−1(bTM) at m.

Then there exist, on a neighborhood U of m, functions

g1, . . . , gk, p1, . . . , pn−k, q1, . . . , qn−k,

such that

(a) the 2n functions (t, g1, f2, g2, . . . , fk, gk, p1, q1, . . . , pn−k, qn−k) form a sys-
tem of coordinates on U centered at m;

(b) the b-symplectic form ω is given on U by

ω =
1

t
dg1 ∧ dt+

k∑
i=2

dgi ∧ dfi +
n−k∑
i=2

dpi ∧ dqi.
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Proof. Let us denote the b-Poisson structure dual to ω by Π. From the
Darboux-Carathéodory Theorem for non-commutative integrable systems on
Poisson manifolds it follows that on a neighborhood U of m we can complete
the functions f2, . . . , fk to a coordinate system

(f2, g2, . . . , fk, gk, z1, . . . , z2n−2r+2)

centred at m such that the b-Poisson structure reads

Π =
k∑
i=2

∂

∂fi
∧ ∂

∂gi
+

2n−2k∑
i,j=1

φij(z)
∂

∂zi
∧ ∂

∂zj

for some functions φij. The image of the coordinate functions is an open
subset of R2n; we can assume that it is a product U1×U2 where U2 corresponds
to the image of z1, . . . , z2n−2k. Then

Π2 =
2n−2r+2∑
i,j=1

φij(z)
∂

∂zi
∧ ∂

∂zj

is a b-Poisson structure on U2 and hence by the b-Darboux theorem (Theorem
2.2.10), there exist coordinates on U2

(t, g1, p2, q2, . . . , pn−k, qn−k),

where t is the local defining function for Z that we fixed in the beginning,
such that

Π2 = t
∂

∂g1

∧ ∂

∂t
+

n−r∑
i=2

∂

∂pi
∧ ∂

∂qi
.

The result follows immediately.

Remark. A more direct proof can be given using the techniques we used in
the commutative case, see Theorem 4.5.1.

5.5 The Hamiltonian Tr action induced by a

non-commutative b-integrable system

As in Section 4.6, we use the flow of the b-Hamiltonian vector fields Xfi to
construct a Hamiltonian Tr-action on the manifold Tr × Bs. According to
Corollary 5.2.3, for the semilocal study of a non-commutative b-integrable
system around a Liouville torus, we can assume that our system is given on
Tr×Bs with a b-symplectic form whose critical hypersurface is Z = {π1 = 0}
and that the integrals are f1 = log |π1|, f2 = π2, . . . , fs = πs. Let c be the
modular period of Z.
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5.5.1 Uniformization of periods

This step is almost identical to the commutative case. For the sake of com-
pleteness we restate the main idea of the argument.

Consider the joint flow of the vector fields Xf1 , . . . , Xfr given by

Φ : Rr × (Tr ×Bs)→ Tr ×Bs(
(s1, . . . , sr), (x, b)

)
7→ Φs1

Xf1
◦ · · · ◦ Φsn

Xfr
(x, b).

As discussed in Section 4.6.1, this defines an Rr-action on Tr × Bs and the
kernel of Φ restricted to an orbit Tr × {b}, b ∈ Bs, is a lattice Λb called the
period lattice. We can find smooth functions (after shrinking the ball Bs if
necessary)

λi : Bs → Rr, i = 1, . . . , r

such that

• (λ1(b), λ2(b), . . . , λr(b)) is a basis for the period lattice Λb for all b ∈ Bs

• λ1
i vanishes along {0} × Bs−1 for i > 1, and λ1

1 equals the modular
period c along {0} ×Bs−1. Here, λji denotes the jth component of λi.

Using these functions λi we define the “uniformized” flow

Φ̃ : Rr × (Tr ×Bs)→ (Tr ×Bs)(
(s1, . . . , sr), (x, b)

)
7→ Φ

( r∑
i=1

siλi(b), (x, b)
)
.

The period lattice of this Rr-action is constant now (namely Zr) and hence
the action naturally defines a Tr action. In the following we will interpret
the functions λi as functions on Tr × Bs (instead of Bs) which are constant
on the tori Tr × {b}.

5.5.2 Moment map of the Tr action

We denote by Y1, . . . , Yr the fundamental vector fields of the Tr action given
by Φ̃. Note that Yi =

∑r
j=1 λ

j
iXfj . As in Section 4.6.2, the Cartan formula

together with Lemma 4.6.1 shows that the Yi are Poisson vector fields.
We now show that the Yi are b-Hamiltonian and that their primitives are

Cas-basic. Consider the b-one forms

αi := ιYiω = −
r∑
j=1

λjidfj, i = 1, . . . , r. (5.2)
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We know that these forms are closed, since the Yi are Poisson vector fields.
We will show that they are exact, αi = −dpi, meaning that the Yi are b-
Hamiltonian vector fields with b-Hamiltonian functions pi ∈b C∞(Tr ×Bs).

A priori we already know that pi will be a smooth function for i > 1,
since λ1

i vanishes along Tr×{0}×Bs−1 for i > 1 and therefore the one-forms
αi defined in Equation (5.2) are smooth for i > 1. On the other hand, λ1

1

equals the modular period c along Tr×{0}×Bs−1 and therefore p1 = c log |t|
for some defining function t.

Homotopy formula. We compute the functions p2, . . . , pr explicitly by
applying a homotopy formula to the smooth one-forms α2, . . . , αr. This not
only shows that these one-forms are exact but moreover we will conclude
that p2, . . . , pr are Cas-basic. (For the b-function p1 = c log |t| this is clear.)

We state the homotopy formula in its general form as a lemma, the proof
can be found in [GS77] (p. 110):

Lemma 5.5.1. [GS77] Let Y ⊂M be an embedded submanifold and suppose
that φt is a smooth retraction of M onto Y . Then for any one-form α ∈ Ω(M)
we have

α− φ∗0(α) = I(d(αi)) + d(I(αi)), i = 2, . . . , r,

where I is the functional

I(αi) =

∫ 1

0

φ∗t (ιξt(α))

and ξt is the tangent vector field along φt.

We now apply the above homotopy formula to the smooth one-forms
α2, . . . , αn and the retraction φτ of Tr ×Bs to Tr × {0} ×Bs−r:

φτ (x1, . . . , xr, b1, . . . , br, br+1, . . . , bs) = (x, τb1, . . . τbr, br+1, . . . , bs).

Note that φ∗0(αi) is zero, i.e. for any vector field X ∈ X (Tr × {0} × Bs−r),
αi(X) = 0. This is because αi is a linear combination of dπ2, . . . , dπr and
therefore evaluates to zero for X a linear combination of

∂

∂x1

, . . . ,
∂

∂xr
,

∂

∂πr+1

, . . . ,
∂

∂πs
.

Inserting into the homotopy formula we have

αi − φ∗0(αi)︸ ︷︷ ︸
=0

= I(d(αi)︸ ︷︷ ︸
=0

) + d(I(αi)), i = 2, . . . , r.
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Therefore the homotopy formula tells us that the one-forms αi are exact
and that, moreover, the primitive of αi (i = 2, . . . , r) is explicitly given by
I(αi):

I(αi) =

∫ 1

0

φ∗τ (ιξτ (αi)).

We set pi := −I(αi), the Hamiltonian function of the fundamental vector
field Yi associated with αi. We want to show that these functions pi are
Cas-basic and therefore compute the expression in the integral. The vector
field ξτ is:

ξτ =
dφτ
dτ
◦ φ−1

τ =
1

τ

s∑
k=1

πk
∂

∂πk
.

Therefore we have

ιξτ (αi) =
1

τ

r∑
j=2

λjidπj(ξτ ) =
1

τ

r∑
j=2

s∑
k=1

λjiπkdπj

(
∂

∂πk

)
=

1

τ

r∑
j=2

λjiπj.

In the last equality we have used dπj(
∂
∂πk

) = δjk for j > 2. The projections

πj, j = 1, . . . , r, are obviously Cas-basic. The functions λji are Cas-basic by
Lemma 5.3.5. The pullback φ∗τ does not affect the Cas-basic property since
it leaves the non-commutative part of the system invariant. Therefore the
functions φ∗τ (ιξτ (αi)) and hence p2, . . . , pr are Cas-basic.

5.6 Proof of the action-angle coordinate the-

orem for non-commutative b-integrable sys-

tems

We continue in the setting of the previous section. Let m ∈ Tr × {0}. We
want to show the existence of action-angle coordinates semilocally around
the Liouville torus passing through m.

Applying Darboux-Carathéodory. As a first, local, step we apply the
Darboux-Carathéodory theorem for non-commutative b-integrable systems to
the independent commuting smooth functions p2, . . . , pn. Then on a neigh-
bourhood U of m we obtain a set of coordinates

(t, g1, p2, g2, . . . , pr, gr, x1, y1, x2, y2, . . . , x`, y`),

84



where ` = (s− 2r)/2, such that

ω|U =
c

t
dg1 ∧ dt+

k∑
i=2

dpi ∧ dgi +
∑̀
i=1

dxi ∧ dyi. (5.3)

Flowing along the torus. The idea of the next steps is to extend this local
expression to a neighbourhood of the Liouville torus using the Tr-action given
by the vector fieldsXpk . First, note that the functions (x1, y1, x2, y2, . . . , x`, y`)
do not depend on fi and therefore can be extended to the saturated neigh-
borhood W := π−1(π(U)). Note that Yi = ∂

∂gi
and therefore the flow of the

fundamental vector fields of the Yi-action corresponds to translations in the
gi-coordinates. In particular, we can naturally extend the functions gi to the
whole set W as well.

Action-angle chart. We show that the functions

t, g1, p2, g2, . . . , pr, gr, x1, y1, x2, y2, . . . , x`, y` (5.4)

which are defined on W , indeed define a chart there (i.e. they are indepen-
dent) and that ω still has the form given in Equation (5.3).

It is clear that {pi, gj} = δij on W . To show that {gi, gj} = 0, we note
that this relation holds on U and flowing with the vector fields Xpk we see
that it holds on the whole set W :

Xpk

(
{gi, gj}

)
= {{gi, gj}, pk} = {gi, δij} − {gj, δik} = 0.

This verifies that ω has the form (5.3) above and in particular, we conclude
that the derivatives of the functions (5.4) are independent on W , hence these
functions define a coordinate system.

Since the vector fields ∂
∂gi

have period one, we can view g1, . . . , gr as

R\Z-valued functions (“angles”) and therefore use the letter θi instead of gi.
This finishes the proof of the action-angle coordinate theorem in the case

of non-commutative b-integrable systems.
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Chapter 6

Cotangent models and
examples of integrable systems

The classical action-angle coordinate theorem identifies a neighbourhood of
a Liouville torus of an integrable system with the manifold Tn×Rn endowed
with the standard symplectic structure and such that the integrals are func-
tions of the canonical projections onto the components of Rn.

On the other hand, consider the action of Tn on Tn ×Rn by translations
on the Tn component. Then the canonical projections onto the Rn compo-
nent in the product are precisely the components of the moment map of this
action with respect to the canonical basis of the Lie algebra of Tn. More-
over, identifying Tn×Rn with T ∗Tn, we can understand the action of Tn on
Tn × Rn as the cotangent lift of the action of Tn on itself by translations.
In summary, an integrable system on a symplectic manifoldh can be viewed
semilocally as the moment map of the cotangent lift of the action of Tn on
itself.

In this chapter we will formalize this idea and extend it to (non-commutative)
b-integrable systems. We will first introduce the required concepts, such
as cotangent lifts, and finish the chapter with several examples of (non-
commutative) b-integrable systems that can be constructed using the view-
point of torus actions. The results of this chapter were published in [KMa]
(joint work with Eva Miranda).

6.1 Cotangent lifts and b-cotangent lifts

In this section we work towards the definition of cotangent models for in-
tegrable systems on symplectic and b-symplectic manifolds. The standard
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definition of cotangent lifts on symplectic manifolds was reviewed in the Pre-
liminaries (Section 2.5).

6.1.1 Symplectic cotangent lift of translations on the
torus

Consider the action of the torus Tn on itself by translations,

τβ : Tn → Tn : θ 7→ θ + β, β ∈ Tn.

We want to explicitly compute the moment map for the Hamiltonian action
obtained by lifting this action to the cotangent bundle T ∗Tn. Let θ1, . . . , θn
be the standard (S1-valued) coordinates on Tn and let

θ1, . . . , θn︸ ︷︷ ︸
=:θ

, p1, . . . , pn︸ ︷︷ ︸
:=p

(6.1)

be the corresponding chart on T ∗Tn, i.e. we associate to the coordinates
(6.1) the cotangent vector

∑
i pidθi ∈ T ∗θ Tn. The Liouville one-form, which

we defined intrinsically in Equation (2.12), is given in these coordinates by

λ =
n∑
i=1

pidθi

and its negative differential is the standard symplectic form on T ∗Tn:

ωcan =
n∑
i=1

dθi ∧ dpi. (6.2)

The lift of the translation τβ to T ∗Tn is given by

τ̂β : (θ, p) 7→ (θ + β, p).

The moment map µcan : T ∗Tn → t∗ of the lifted action with respect to the
canonical symplectic form is

µcan(θ, p) =
∑
i

pidθi, (6.3)

where the θi on the right hand side are understood as elements of t∗ in the
obvious way.

Even simpler, if we identify t∗ with Rn by choosing the standard basis
∂
∂θ1
, . . . , ∂

∂θn
of t then the moment map is just the projection onto the second

component of T ∗Tn ∼= Tn × Rn. We will adopt this viewpoint from now on
and simply write

µ = (p1, . . . , pn).

Note that the components of µ naturally define an integrable system on T ∗Tn.
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6.1.2 b-Cotangent lifts of Tn

As before, let T ∗Tn be endowed with the standard coordinates (θ, p), θ ∈ Tn,
p ∈ Rn and consider again the Tn-action on T ∗Tn induced by lifting transla-
tions of the torus Tn. We now want to view this action as a b-Hamiltonian
action with respect to a suitable b-symplectic form.

In analogy to the classical Liouville one-form we define the following non-
smooth one-form away from the hypersurface Z = {p1 = 0} :

c log |p1|dθ1 +
n∑
i=2

pidθi.

The negative differential of this form extends to a b-symplectic form on T ∗Tn,
which we call the twisted b-symplectic form on T ∗Tn (we will explain the
terminology below):

ωtw,c :=
c

p1

dθ1 ∧ dp1 +
n∑
i=2

dθi ∧ dpi. (6.4)

Here, c is the modular period of Z. The moment map of the lifted action
with respect to this b-symplectic form is then given by

µtw,c := (c log |p1|, p2, . . . , pn), (6.5)

where we identify t∗ with Rn as before.

We call this lift together with the b-symplectic form (6.4) the twisted
b-cotangent lift with modular period c. Note that, in analogy to the sym-
plectic case, the components of the moment map define a b-integrable system
on (T ∗Tn, ωtw,c).

Remark. We use the term “twisted b-symplectic form” to distinguish our
construction from the canonical b-symplectic form on bT ∗M , where M is
any smooth manifold. The latter is obtained naturally if we imitate the
symplectic approach and interpret the intrinsic definition of the Liouville
one-form (2.12) in the b-setting (see e.g. [NT]). This means that for (M,Z)
a b-manifold, we define a b-form λ on bT ∗M via

〈λm, v〉 := 〈m, (πm)∗(v)〉, (6.6)

where v ∈b T (bT ∗M), m ∈b T ∗M and

π : bT ∗M →M
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is the canonical projection. Then the negative differential

ω = −dλ

is the “canonical” b-symplectic form on bT ∗M where we view bT ∗M as a
b-manifold with hypersurface π−1(Z). To see this, consider a local set of co-
ordinates x1, . . . , xn on M , where x1 is a defining function for Z and consider
the corresponding chart

(x1, . . . , xn, p1, . . . , pn)

on T ∗M , given by identifying the 2n-tuple above with the b-cotangent vector

p1
dx1

x1

+
n∑
i=2

pidxi ∈b T ∗xM.

In these coordinates

λ = p1
dx1

x1

+
n∑
i=2

pidxi ∈bT ∗(bT ∗M).

Note that in the present case of the “canonical” b-cotangent lift, the
singularity is given by the coordinate x1 on the base manifold whereas in
our “twisted” construction it is given by a fiber coordinate, which is what
we require for the description of b-integrable systems. Therefore, only the
twisted b-cotangent lift will have applications in the rest of this thesis.

6.1.3 b-Cotangent lifts in the general setting

Above we focused on the case where the manifold M is a torus and the ac-
tion consists of rotations of the torus on itself, since this is the model that
describes (b-)integrable systems semilocally around a Liouville torus.

To obtain a wider class of examples, we now consider any manifold M
and the action of any Lie group G on M :

ρ : G×M →M : (g,m) 7→ ρg(m).

As described in Section 6.1 we can lift ρ to an action ρ̂ on T ∗M , which is
Hamiltonian with respect to the standard symplectic structure on T ∗M . We
want to investigate modifications of this construction. This will allow us to
take the reverse route and construct examples of (b-)integrable systems using
cotangent lifts of actions as a starting point (Section 6.3).
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Canonical b-cotangent lift

Connecting with Remark 6.1.2, we first want to use the canonical b-symplectic
structure on bT ∗M and study the properties of the b-cotangent lift obtained
in this setting.

Let M be an n-dimensional b-manifold with critical hypersurface Z. Con-
sider the b-cotangent bundle bT ∗M endowed with the canonical b-symplectic
structure as described in Remark 6.1.2. Moreover, assume that the action of
G on M preserves the hypersurface Z, i.e. ρg is a b-map for all g ∈ G. Then
the lift of ρ to an action on bT ∗M is well-defined:

ρ̂ : G×bT ∗M →bT ∗M : (g,m) 7→ ρ∗g−1(m).

We call this action on bT ∗M , endowed with the canonical b-symplectic struc-
ture, the canonical b-cotangent lift.

Proposition 6.1.1. The canonical b-cotangent lift is Hamiltonian with equiv-
ariant moment map given by

µ : bT ∗M → g∗, 〈µ(m), X〉 := 〈λm, X#|m〉 = 〈m,X#|π(m)〉, (6.7)

where m ∈ bT ∗M , X ∈ g, X# is the fundamental vector field of X under the
action on bT ∗M and the function 〈λ,X#〉 is smooth because X# is a b-vector
field.

Proof. The proof of Equation (6.7) for the moment map is exactly the same
as in the symplectic case: Using the implicit definition of λ, Equation (6.6),
we show that λ is invariant under the action:

〈(ρ̂∗gλ)m, v〉 = 〈λρ̂g(m), (ρ̂g)∗v〉 = 〈ρ̂g(m), (πρ̂g(m))∗((ρ̂g)∗v)〉 =

= 〈ρ∗g−1(m), (ρg−1)∗((πm)∗(v))〉 = 〈m, (πm)∗(v)〉.

In going from the first to the second line we have used the definition of ρ̂ and
applied the chain rule to πρ̂g(pm) ◦ ρ̂g = ρg−1 ◦ πm.

Hence we have LX#λ = 0 and applying the Cartan formula for b-symplectic
forms, Equation (2.8), we obtain

ιX#ωm = −ιX#dλm = d(ιX#λm),

which proves the expression for the moment map stated above.
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Equivariance of µ is a consequence of the invariance of λ:

〈(Ad∗g−1 ◦ µ)(m), X〉 = 〈µ(m), Adg−1X〉 = 〈λm, (Adg−1X)#︸ ︷︷ ︸
=(ρ̂g)∗X#

|m〉 =

= 〈ρ̂∗gλm, X#|ρ̂g−1 (m)〉 = 〈λρ̂g−1 (m), X
#|ρ̂g−1 (m)〉 = 〈µ(ρ̂g−1(m)), X〉

for all g ∈ G, X ∈ g, m ∈ T ∗M , where in the first equality of the second line
we have used that λ is invariant.

Remark. The condition that the action preserves Z means that all fundamen-
tal vector fields are tangent to Z and therefore at a point in Z the maximum
number of independent fundamental vector fields is n− 1. This means that
the moment map of such an action never defines a b-integrable system on
bT ∗M since this would require n independent functions.

Twisted b-cotangent lift

We have already defined the twisted b-cotangent lift on the cotangent space
of a torus T ∗Tn in Section 6.1.2. In particular, on T ∗S1 with standard coor-
dinates (θ, p) we have the logarithmic Liouville one-form λtw,c = log |p|dθ for
p 6= 0.

Now consider any (n − 1)-dimensional manifold N and let λN be the
standard Liouville one-form on T ∗N . We endow the product T ∗(S1 ×N) ∼=
T ∗S1 × T ∗N with the product structure λ := (λtw,c, λN) (defined for p 6= 0).
Its negative differential ω = −dλ is a b-symplectic structure with critical
hypersurface given by p = 0.

Let K be a Lie group acting on N and consider the component-wise action
of G := S1 ×K on M := S1 × N where S1 acts on itself by rotations. We
lift this action to T ∗M as described in the beginning of this section. This
construction, where T ∗M is endowed with the b-symplectic form ω, is called
the twisted b-contangent lift.

If (x1, . . . , xn−1) is a chart on N and (x1, . . . , xn−1, y1, . . . , yn−1) the cor-
responding chart on T ∗N we have the following local expression for λ

λ = log |p|dθ +
n−1∑
i=1

yidxi.

Just as in the symplectic case and in the case of the canonical b-cotangent
lift, this action is Hamiltonian with moment map given by contracting the
fundamental vector fields with λ:

91



Proposition 6.1.2. The twisted b-cotangent lift on M = S1 ×N is Hamil-
tonian with equivariant moment map µ given by

〈µ(m), X〉 := 〈λm, X#|m〉,

where X# is the fundamental vector field of X under the action on T ∗M .

Proof. As in the proof of Proposition 6.1.1, we show that the action preserves
the logarithmic Liouville one-form λ = (λtw,c, λN). Since the action splits this
amounts to showing invariance of λtw,c under S1; the invariance of λN under
K is the classical symplectic result. The former is easy to see:

(τ̂)∗ϕλtw,c = log |a ◦ τ̂ϕ|d(θ ◦ τ̂ϕ︸ ︷︷ ︸
=θ+ϕ

) = log |a|dθ,

where τ is the action of S1 on itself by rotations and ϕ ∈ S1. This shows that
LX#λ = 0 and as before we conclude the proof by using Cartan’s formula.

A consequence of the equivariance of the moment map is the following:

Corollary 6.1.3. The moment map of the twisted b-cotangent lift is a Pois-
son map.

Remark. A special case of a manifold S1 × N is a cylinder Tk × Rn−k. We
will use this construction in Section 6.3.2.

In order to compute the moment map it is convenient to observe that
the expression 〈λ,X#〉 remains unchanged when we replace the fundamental
vector field X# of the action on T ∗M by any vector field on T ∗M that
projects to the same vector field on M (namely the fundamental vector field
of the action on M). This follows immediately from the definition of λ, since
the expression only contains the differentials of the coordinates of the base
manifold M .

6.2 Cotangent models for integrable systems

In this section we give cotangent models for integrable systems on symplectic
and b-symplectic manifolds. done for Hamiltonian actions in [Marl] and
[GS84]. We keep the convention of denoting a (b-)integrable system by a
triple (M,ω, F ) where M is a manifold, ω a (b-)symplectic form and F the
set of integrals.
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With the notation introduced in the the previous sections about cotangent
lifts and their moment maps (Sections 6.1.1 and 6.1.2), we define the following
models of integrable systems:

1.
(T ∗Tn)can := (T ∗Tn, ωcan, µcan) (6.8)

where ωcan and µcan are defined in Equations (6.2) and (6.3) respec-
tively.

2.
(T ∗Tn)tw,c := (T ∗Tn, ωtw,c, µtw,c) (6.9)

where (ωtw,c and µtw,c) are defined in Equations (6.4) and (6.5) respec-
tively.

In the next sections we will see that these models can be employed to semilo-
cally describe integrable resp. b-integrable systems around a Liouville torus.

6.2.1 Symplectic case

We formulate the Liouville-Mineur-Arnold theorem (Theorem 3.1.2) in terms
of the symplectic cotangent model:

Theorem 6.2.1. Let F = (f1, . . . , fn) be an integrable system on the sym-
plectic manifold (M,ω). Then semilocally around a regular Liouville torus
the system is equivalent to the cotangent model (T ∗Tn)can restricted to a
neighbourhood of the zero section (T ∗Tn)0 of T ∗Tn.

Proof. Let T be a regular Liouville torus of the system. The action-angle co-
ordinate theorem (Theorem 3.1.2) implies that there exists a neighbourhood
U of T and a symplectomorphism

ψ : U → (Tn ×Bn, ωcan)

such that the “action coordinates”, i.e. the projections onto Bn, depend
only on the integrals f1, . . . , fn, hence their composition with ψ yields an
equivalent integrable system on U . We know that the projections onto Bn

correspond to the moment map µcan of the cotangent lifted action on T ∗Tn ∼=
Tn×Rn (restricted to Tn×Bn and understood with respect to the canonical
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basis on t∗), hence we can write

U (T ∗Tn, ωcan)

Rn

//
ψ

$$

F
��

ϕ◦µ

where ϕ is the map that establishes the dependence of the action coordinates
on f1, . . . , fn.

6.2.2 b-symplectic case

The model of the twisted b-cotangent lift, Equation (6.9), allows us to express
the action-angle coordinate theorem for b-integrable systems in the following
way:

Theorem C. Let F = (f1, . . . , fn) be a b-integrable system on the b-symplectic
manifold (M,ω). Then semilocally around a regular Liouville torus T , which
lies inside the exceptional hypersurface Z of M , the system is equivalent to
the twisted b-cotangent lift model (T ∗Tn)tw,c restricted to a neighbourhood
of (T ∗Tn)0. Here c is the modular period of the connected component of Z
containing T .

Proof. The proof is the same as above using the action-angle coordinate
theorem for b-integrable systems (Theorem A): Around the Liouville torus
T we have a Poisson diffeomorphism

ψ : U → Tn ×Bn

taking the b-symplectic form on U to

n−1∑
i=1

dθi ∧ dpi +
c

pn
dθn ∧ dpn,

where (θ1, . . . , θn, p1, . . . , pn) are the standard coordinates on Tn × Bn, and
such that p1, . . . , pn only depend on the integrals. Hence in the language of
Section 6.1.2 we have a commuting diagram

U (T ∗Tn, ωtw,c)

Rn

//
ψ

$$

F
��

ϕ◦µtw,c
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Remark. Observe that the model contains the modular period c of the Pois-
son manifold. This constant is indeed an intrinsic invariant of the Poisson
structure [GMPS13].

6.3 Constructing examples on b-symplectic man-

ifolds

We can use the viewpoint of cotangent lifts not only to describe (b-)integrable
systems but also to construct new ones via the following theorem:

Theorem 6.3.1. Let M be a smooth manifold of dimension n and let G
be an n-dimensional abelian Lie group acting on M effectively. Pick a basis
X1, . . . , Xn of the Lie algebra of G. Consider the moment map µ : T ∗M → g∗

of one of the following Hamiltonian actions:

1. the symplectic cotangent lift on T ∗M .

2. the twisted b-cotangent lift on T ∗M as described in Section 6.1.3, i.e.
we assume that M has the form M = S1 ×N where N is an (n − 1)-
dimensional manifold and that G = S1 × K where K an (n − 1)-
dimensional Lie group and that the action splits into an action of S1

on itself by rotations and an action of K on N .

Then the components of the moment map with respect to the basis Xi define
1. an integrable resp. 2. a b-integrable system on T ∗M .

Proof. Denote the components of the moment map by fi := 〈µ,Xi〉. Ef-
fectiveness of the action implies that the fi are linearly independent every-
where. Moreover, µ is a Poisson map as a consequence of being equivariant
(see Section 2.5 and Corollary 6.1.3). Now since the elements Xi commute
and µ preserves the Poisson structure, the components fi of the moment
map commute, {fi, fj} = 0. Hence we have obtained a set of n commuting
independent functions.

6.3.1 The geodesic flow

A special case of an S1-action is obtained in the case of so-called P-manifolds.
These are Riemannian manifolds which have the property that all their
geodesics are closed. For a P-manifold M it can be shown that the geodesics
admit a common period (see e.g. [Be], Lemma 7.11); hence their flow induces
an S1-action on M and we can use the twisted b-cotangent lift to obtain a b-
Hamiltonian S1-action on T ∗M . In dimension two, examples of P-manifolds
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are Zoll and Tannery surfaces (see Chapter 4 in [Be]). Given an S1-action
on such a surface, via the cotangent lift we immediately obtain examples of
(b-)integrable systems on its cotangent bundle.

6.3.2 Affine manifolds

A smooth manifold M is called flat if it admits a flat (i.e. zero curvature)
connection. It is called affine if moreover the connection is torsion-free.

It is well-known that a simply connected flat manifold is parallelizable,
i.e. it admits a basis of vector fields that are everywhere independent. Such
a basis is called parallel. The relation between flatness (in the sense that
the curvature is zero) and parallelizability was studied in [T]. We are not
assuming that the affine manifold is compact.

Bieberbach [Bi] proved in 1911 that any complete affine Riemannian man-
ifold is a finite quotient of Rk × Tn−k.

Theorem 6.3.2. Let M be a cylinder Rk × Tn−k. Then for any choice of
parallel basis X1, . . . Xn, we obtain a (b-)integrable system on T ∗M .

Proof. Let X1, . . . , Xn be a global basis of parallel vector fields. Since the
torsion of the connection is zero and the vector fields Xi are parallel, the
expression ∇XiXj −∇XjXi − [Xi, Xj] = T∇(Xi, Xj) = 0 yields [Xi, Xj] = 0.
In other words, the flows of the vector fields commute. Let us denote by Φ

sj
Xj

the sj-time flow of the vector field Xj. Since the manifold is complete, the
joint flow of the vector fields Xi then defines an Rn-action1,

Φ : Rn ×M →M(
(s1, . . . , sn), (x)

)
7→ Φs1

X1
◦ · · · ◦ Φsn

Xn
((x)).

By the construction defined in Section 6.1.3 we obtain a (b-)Hamiltonian
action on T ∗M and the components of the moment map of this action define
a (b-)integrable system (Theorem 6.3.1).

Remark. We proved the above result only for cylinders Rk × Tn−k. It would
be interesting to explore whether a similar construction is possible for finite
quotients of Rk×Tn−k, which by Bieberbach’s result would correspond to all
complete affine Riemannian manifolds.

1Depending on the topology of the fiber, this action may descend to a Tn-action or
more generally to a Rk × Tn−k-action.
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Remark. Even if this procedure yields examples of b-integrable systems on
non-compact manifolds, we may consider Marsden-Weinstein reduction to
obtain compact examples. Reduction in the b-setting is already described in
[GMPS13] for abelian groups.
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Chapter 7

KAM Theory for b-integrable
systems

We have reviewed the basics of Hamiltonian equations and the classical KAM
result in Section 2.6. For a b-function H ∈ bC∞(M) on a b-symplectic
manifold, we can define the Hamiltonian equations in a completely analogous
way: A function g ∈ C∞(M) evolves according to the equation

ġ = {g,H} = XH(g). (7.1)

Writing this equation in local coordinates, we obtain a set of equations similar
to the classical Hamiltonian equations.

In this chapter we will extend the well-known KAM theorem for symplec-
tic manifolds to the b-case, considering integrals and Hamiltonians that are
b-functions.

The results of this chapter were published in [KMS] (joint work with Eva
Miranda and Geoffrey Scott).

7.1 Equations of motion

The motion induced by any b-function H according to Equation (7.1) leaves
the hypersurface invariant, since XH is a Poisson vector field.

Assume that we are given a b-integrable system on M , which is compat-
ible with the b-function H in the sense that H only depends on the action
coordinates y,

H(ϕ, y) = k log |y1|+ h(y).

This is a natural condition, since the physical interpretation of integrals is
that of constants of motion.
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From the action-angle coordinate theorem for b-symplectic manifolds,
Theorem A, it follows that we can semilocally (around a Liouville torus)
replace the given b-integrable system by the functions y1, . . . , yn on Tn×Bn,
where the yi are the projections to the i-th component of Bn and the b-
symplectic structure is

c

y1

dϕ1 ∧ dy1 +
n−1∑
i=2

dϕi ∧ dyi. (7.2)

Observe that y1 is a local defining function for the critical hypersurface and
that the latter is foliated into (n− 2)-dimensional symplectic leaves given by
the level sets of ϕ1.

Computing the Hamiltonian vector field of H with respect to the b-
symplectic structure (7.2), we arrive at the following equations of motion:

ϕ̇1 =
k

c
+
y1

c

∂h

∂y1

(y)

ϕ̇i =
∂h

∂yi
(y) i = 2, . . . , n

ẏ1 = 0

ẏi = 0 i = 2, . . . , n.

We see that the motion is quasiperiodic. On Z the angle coordinates
(ϕ1, . . . , ϕn) evolve with frequency(

k

c
,
∂h

∂y2

(y), . . . ,
∂h

∂yn
(y)

)
=:

(
k

c
, ω̃

)
and the motion is constrained to an n-torus Tn × {const} ⊂ Z. In terms
of notation, if x ∈ Rn is any n-vector, we will write x̃ for the Rn−1 vector
obtained by omitting the first component x̃ := (x2, . . . , xn).

7.1.1 Perturbed equations

We want to study the stability of the quasi-periodic motion inside Z, i.e. the
behaviour of the system upon adding a perturbation εP ∈ bC∞(M) to the
Hamiltonian. Thus the general form of the perturbation is

P (ϕ, y) = k′ log |y1|+ f(ϕ, y) (7.3)

99



and the equations of motion of the perturbed system, given by the Hamilto-
nian H + εP , are:

ϕ̇1 =
k + εk′

c
+
y1

c

∂

∂y1

(h(y) + εf(ϕ, y))

ϕ̇i =
∂

∂yi
(g(y) + f(ϕ, y)) = ω̃i(y) + ε

∂f

∂yi
(ϕ, y), i = 2, . . . , n

ẏ1 = −εy1

c

∂f

∂ϕ1

(ϕ, y)

ẏi = −ε ∂f
∂ϕi

(ϕ, y).

(7.4)

Notice that the hypersurface Z = {y1 = 0} is preserved by the perturba-
tion.

In the following discussion about stability of the orbits we restrict our-
selves to the case where the motion starts inside Z (and necessarily remains
there); the other case is covered by the classical KAM theorem for symplectic
manifolds.

We want to consider the case where the function f in the expression (7.3)
for the perturbation P has the form

f(ϕ, y) = f1(ϕ̃, y) + y1f2(ϕ, y) + f3(ϕ1, y1), (7.5)

where f1 is an analytic function and f2, f3 are smooth functions.

Remark. In particular, f has the above form if it does not depend on ϕ1.

7.2 A KAM theorem for b-symplectic mani-

folds

We now show a stability result of KAM type for b-integrable Hamiltonian
systems under perturbations by b-functions of the form described in Equation
(7.5).

Theorem D (KAM Theorem for b-symplectic manifolds). Let Tn × Bn
r be

endowed with standard coordinates (ϕ, y) and the b-symplectic structure (7.2).
Consider a b-function

H = k log |y1|+ h(y)

on this manifold, where h is analytic. Let y0 be a point in Bn
r with first

component equal to zero, so that the corresponding level set Tn × {y0} lies
inside the critical hypersurface Z.
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Assume that the frequency map

ω̃ : Bn
r → Rn−1, ω̃(y) :=

∂h

∂ỹ
(y)

has a Diophantine value ω̃ := ω̃(y0) at y0 ∈ Bn and that it is non-degenerate
at y0 in the sense that the Jacobian ∂ω̃

∂ỹ
(y0) is regular.

Then the torus Tn × {y0} persists under sufficiently small perturbations
of H which have the form mentioned above, i.e. they are given by εP , where
ε ∈ R and P ∈bC∞(Tn ×Bn

r ) has the form

P (ϕ, y) = k′ log |y1|+ f(ϕ, y)

f(ϕ, y) = f1(ϕ̃, y) + y1f2(ϕ, y) + f3(ϕ1, y1).

More precisely, if |ε| is sufficiently small, then the perturbed system

Hε = H + εP

admits an invariant torus T .
Moreover, there exists a diffeomorphism Tn → T close1 to the identity

taking the flow γt of the perturbed system on T to the linear flow on Tn with
frequency vector (

k + εk′

c
, ω̃

)
.

Proof. First assume that y0 = 0. We will prove the general case later on.
As a purely formal step, we consider the restrictions of h and f1 to Z as
functions on Bn−1

r resp. Tn−1 ×Bn−1
r :

h(ỹ) := h(0, ỹ), f 1(ϕ̃, ỹ) := f1(ϕ̃, 0, ỹ).

By the Kolmogorov theorem for symplectic manifolds, Theorem 2.6.4, there
exists a constant ε0 > 0 such that for 0 < ε < ε0 there is a symplectomorphism
ψ : Tn−1 ×Bn−1

r∗ → Tn−1 ×Bn−1
r such that

(h+ εf 1) ◦ ψ = h∗

is a function in Kolmogorov normal form on Tn−1 × Bn−1
r∗ with frequency

vector ω̃. Denoting ψ(ϕ̃, ỹ) =: (ϕ̃′, ỹ′) we define a Poisson diffeomorphism

ψ : Tn ×Bn
r∗ → Tn ×Bn

r , ψ(ϕ, y) := (ϕ1, ϕ̃
′, y1, ỹ

′).

1By saying that the diffeomorphism is “ε-close to the identity” we mean that, for given
H,P and r, there is a constant C such that ‖ψ − id‖ < Cε.
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Then for (ϕ, y) ∈ Z ⊂ Tn ×Bn
r∗ :

(H+εP ) ◦ ψ(ϕ, y) = (H + εP )(ϕ1, ϕ̃
′, y1, ỹ

′) =

=(k + εk′) log |y1|+ εy1f2(ϕ1, ϕ̃
′, y1, ỹ

′) + εf3(ϕ1, y1)+

+ h(y1, ỹ
′) + εf1(ϕ̃′, y1, ỹ

′).

The first term of the above expression determines the motion of ϕ1. The
next two terms have no effect on the motion on Z. Let us consider the last
two terms. Looking at the equations of motion (7.4), we see that the motion
on Z does not depend on the partial derivative of the smooth part of the
Hamiltonian with respect to y1. In other words, we obtain the same motion
on Z if we set y1 = 0 in the smooth part of the Hamiltonian. Then the last
two terms can be written as

h(0, ỹ′) + εf1(ϕ̃′, 0, ỹ′) = h(ỹ′) + εf(ϕ̃′, ỹ′) = h∗(ϕ̃, ỹ).

Recall that h∗ is of Kolmogorov normal form with frequency vector ω̃, i.e.

h∗(ϕ̃, ỹ) = E∗ + ω̃ · ỹ +Q∗(ϕ̃, ỹ),

for some E∗ ∈ R, Q∗ = O(|y|2). Therefore, by looking at the equations of
motion (7.4), we see that the trajectories of H∗ := (H + εP ) ◦ ψ on Z are
precisely given by quasi-periodic motion with frequency (k+εk′

c
, ω̃) on the tori

Tn × {m} for m ∈ Br∗ .
Since ψ is a Poisson diffeomorphism, the flow of the Hamiltonian vector

field associated toH+εP is conjugated under ψ to the flow of the Hamiltonian
vector field associated to H∗:

γtXH+εP
= ψ ◦ γtXH∗ ◦ ψ

−1.

The flow γtXH∗ leaves the torus Tn×{0} invariant and therefore also the flow

of the perturbed system γtXH+εP
leaves T := ψ(Tn × {0}) ∼= Tn invariant.

In conclusion, the motion induced by H + εP on T is conjugated via ψ
to the quasi-periodic motion on Tn × {0} with frequency(

k + εk′

c
, ω̃

)
.

Since the diffeomorphism ψ obtained from the Kolmogorov theorem for
symplectic manifolds is ε-close to the identity, the transformation ψ we con-
struct is also ε-close to the identity.
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Now consider the case where y0 6= 0. Let τ be the translation which takes
y0 to 0. Note that τ only changes the last n−1 components since we assume
that the first component of y0 is already 0, so in particular τ is a Poisson
diffeomorphism

Tn ×Br′(y0)→ Tn ×Br′(0),

where Br′(y0) is a ball around y0 of some radius r′ > 0 contained in the
original ball Bn

r and we endow the sets with the b-symplectic structure in-
herited from Tn×Bn

r . Now we apply the argument above (case y0 = 0) to the
Hamiltonian H ◦ τ and the perturbation P ◦ τ . Denote the diffeomorphism
obtained there by ψ0,

ψ0 : Tn ×Bn
r′∗
→ Tn ×Bn

r′ .

Setting ψ := τ ◦ ψ0 ◦ τ−1 we obtain a Poisson diffeomorphism

ψ : Tn ×Br′∗(y0)→ Tn ×Bn
r′(y0)

which is ε-close to the identity and conjugates the motion on

T := ψ(Tn × {y0})

to quasi-periodic motion on Tn × {y0} with frequency vector given by(
k + εk′

c
, ω̃

)
.

Remark. Note that the first component of the frequency vector may change;
this is the one that determines the “velocity” of the motion in the direction
transverse to the symplectic leaves inside Z. Only the last n−1 components of
ω are preserved. Moreover, since we only assume the Diophantine condition
for the last n− 1 components, the orbit through p0 might not fill the whole
torus Tn×{y0} densely. However, even in these cases the torus Tn×{y0} is
invariant.

Remark. A special case is where the functions H and P are smooth, i.e. the
log-component is zero:

H = h ∈ C∞(Bn
r ), P = f ∈ C∞(Tn ×Bn

r ).

In this case we do not have to make the assumption that f has the form
given in Equation (7.5) to obtain stability of the orbits inside Z. From the
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equations of motion it is clear that the trajectory starting at a point inside a
symplectic leaf L ⊂ Z will stay inside the leaf. This is true also after adding
the perturbation. Hence the stability of the orbit follows directly from the
symplectic KAM theorem: If H is in b-Kolmogorov normal form with van-
ishing log component (i.e. a C∞ function) and with Diophantine frequency
vector ω̃ and if P is any C∞ perturbation, then there is a symplectomorphism
on a neighborhood of the orbit inside L which is close to the identity and
takes the perturbed orbit to a nearby n − 1 torus {ϕ1} × Tn−1 × {y}. The
perturbed motion is conjugated to linear motion in the ϕ̃ := (ϕ2, . . . , ϕn)
coordinates with frequency ω̃. Note that we only transform inside the leaf L
here – for showing stability this is sufficient.

Remark. In view of Example 4.2, this KAM theorem can be employed to
study perturbations of integrable systems on manifolds with boundary.
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Chapter 8

Singular symplectic structures
in celestial mechanics

We have seen how to construct examples of b-integrable systems in Section
4.2, using the recipe of gluing together smooth integrable systems on mani-
folds with boundary which have the right asymptotics near the boundary. In
this chapter we will discuss some natural examples arising in physics, where
certain common transformations do not preserve the symplectic form but
yield a singular structure which fails to be symplectic along a hypersurface.
These singularities can have different forms, we will encounter bm-symplectic
structures and m-folded symplectic structures and sophistications of these
types. We refer the reader to Section 2.3, where the definitions and main
properties of these structures were introduced. The main results of this chap-
ter were published in [DKM] (joint work with Amadeu Delshams and Eva
Miranda).

8.1 Singular transformations in the Kepler

problem

In this section we consider some classical transformations which are used to
study the n-body problem and which are not symplectic. In the case n = 2
the system is integrable and an appropriate (non-canonical) transformation
can be used to solve it. Other transformations are employed to study the
dynamics of the n-body problem close to singularities, which emerge in the
case of collisions or at the “line at infinity”.
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8.1.1 The two-body problem

We have already discussed the two-body problem in Section 3.1.1 and we
have seen how the existence of integrals - in this case linear and angular
momentum - reduces the problem to two degrees of freedom, the planar
Kepler problem. This is the system of only one body with mass m moving
on a plane under the influence of a central graviational potential. Explicitly,
the Hamiltonian of this system, which has phase space R2\{0}×R2, is given
by

H(w,W ) =
‖W‖2

2
− µ

‖w‖
, (w,W ) ∈ (R2\{0})× R2, (8.1)

where µ := Gm is the so-called gravitational parameter. The corresponding
second-order differential equation is

ẅ = − µw

‖w‖3
, w ∈ R2. (8.2)

8.1.2 Levi-Civita coordinates

We identify R2 with C and view Equation (8.2) as a differential equation
over C. In this way we can introduce a new coordinate u via

u2 = w.

This step is called the Levi-Civita regularization procedure or confor-
mal squaring. The components of u are called Levi-Civita coordinates.

Although we are interested in the geometric implications of this trans-
formation (see Section 8.1.3), we want to explain the physical motivation
behind it following [Wa]: We introduce a “fictious time” τ defined via the
following equation:

dt =
r

c
dτ, r = ‖w‖,

where c is a non-zero parameter. (For our purposes we can assume c = 1,
which is called Sundman’s choice [Wa].) This means that when r is small, i.e.
the distance between the two bodies is small, time intervals in the τ variable
become larger (“slow-motion movie”).

We denote differentiation with respect to τ by a prime. Then, expressing
the equation of the planar Kepler problem, Equation (8.2), in Levi-Civita
coordinates u and the new time τ , a straightforward computation carried
out in [Wa] yields the following equation:

2ru′′ +
(mu
c2
− 2‖u′‖2

)
u = 0. (8.3)
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We now fix a value of the energy H,

H(w,W ) = const. =: h.

Inserting W = ẇ into the Hamiltonian (8.1) we obtain

‖ẇ‖2

2
− µ

‖w‖
= h.

A short calculation, expressing the left-hand side of this equation in the new
coordinates u and new time derivatives d/dτ , and multiplying both sides by
r yields

2c2‖u′‖2 − µ = rh.

In this way we can eliminate the non-linear term ‖u′‖2 in Equation (8.3):

2c2u′′ + hu = 0.

This is the well-known equation of the harmonic oscillator.

8.1.3 Geometrical structure

We want to study how the symplectic form changes under the Levi-Civita
regularization. (The change of time is not relevant in this respect.)

Recall that the phase space coordinates are (w,W ) ∈ (R2\{0}) × R2

endowed with the canonical symplectic form. We leave the momentum co-
ordinates W unchanged and express the space coordinates w in terms of
u:

w1 + iw2 = w = u2 = (u1 + iu2)2 = u2
1 − u2

2 + 2iu1u2.

The real resp. imaginary part correspond to w1 resp. w2. Hence their
differentials are

dw1 = 2u1du1 − 2u2du2, dw2 = 2u1du2 + 2u2du1

and the symplectic form is

ω = dw1 ∧ dW1 + dw2 ∧ dW2 = 2u1du1 ∧ dW1 − 2u2du2 ∧ dW1

+ 2u1du2 ∧ dW2 + 2u2du1 ∧ dW2.

We compute the wedge

ω ∧ ω = 4(u2
1 − u2

2)du1 ∧ dW1 ∧ du2 ∧ dW2.

We see that ω∧ω does not cut the zero section of Λ2T ∗M transversally, since
0 is not a regular value of the function u2

1 − u2
2. Therefore the condition of

being a folded symplectic structure is not satisfied; instead the singularity is
non-degenerate of hyperbolic type.
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Remark. A different version of the Levi-Civita transformation described in
[Bo, Ce03] does not keep the momenta unchanged but transforms them in
such a way that the total change is symplectic. More precisely the change is
given by:

w =
u2

2
, W =

U

u
,

where (u, U) are the new coordinates. In this case the symplectic form re-
mains the standard one but the equations become more involved.

8.1.4 The Kepler problem in three dimensions - KS
transformation

We now consider the Kepler problem in three dimensions and do not perform
the step of reducing it to a planar system, i.e. we consider the second-order
differential equation that we already encountered in the planar problem in
three dimensions:

ẅ = − µw

‖w‖3
, w ∈ R3. (8.4)

This point of view is relevant e.g. for studying binary collisions in the three-
body problem, which cannot be restricted to two dimensions in general.

Instead of working with complex numbers, the regularization procedure
now employs the quaternion algebra U, see [Wa]. Recall that U consists
of objects of the form

u = u0 + iu1 + ju2 + ku3

where i, j, k are the three independent “imaginary” units and multiplication
is defined via the non-commutative laws

ij = −ji = k, jk = −kj = i, ki = −ik = j.

We identify the quaternion u with the vector u = (u0, u1, u2, u3) ∈ R4. More-
over, we introduce the star conjugation

u∗ := u0 + iu1 + ju2 − ku3

Now instead of considering the squaring of complex numbers as in the pre-
vious section, we define the mapping

u 7→ w :=
uu∗

2
. (8.5)

The image is the set of quaternions with vanishing k component and can
be identified with R3. The preimage of a number w = vv∗ is given by the
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one-parameter family of quaternions of the form v · ekθ := v · (cos θ+ k sin θ)
where θ ∈ S1.

Writing the transformation (8.5) explicitly (where we identify the image
with R3), we have

w0 =
u2

0 − u2
1 − u2

2 + u2
3

2
w1 = u0u1 − u2u3

w2 = u0u2 + u1u3.

This is known as the Kustaanheimo-Stiefel (KS) transformation. We
choose a solution with vanishing k-component, i.e. u3 = 0. Then the new
space coordinates are (u0, u1, u2).

Solving the Kepler problem in three dimensions. The KS transfor-
mation is used to simplify the equation of motion, similar to the approach
used in the two-dimensional case. A new time variable τ is introduced and
writing Equation (8.4) in terms of the new time coordinate and the space
coordinates of the KS transform, a computation carried out in [Wa] shows
that we obtain again the equation of the harmonic oscillator:

2u′′ + hu = 0

where h again is the energy of the solution.

Geometric structure. Denoting the original space coordinates by (w0, w1, w2)
with conjugate momenta (W0,W1,W2), the symplectic form becomes in the
new space coordinates (u0, u1, u2) ∈ R3 after the KS transform:

ω =dw0 ∧ dW0 + dw1 ∧ dW1 + dw2 ∧ dW2 =

=(u0du0 − u1du1 − u2du2) ∧ dW0 + (u0du1 + u1du0) ∧ dW1

+ (u0du2 + u2du0) ∧ dW2.

In order to determine which kind of geometric structure this defines, we
compute

ω ∧ ω ∧ ω = (u3
0 − u2

1u0 − u2
2u0)du0 ∧ dW0 ∧ du1 ∧ dW1 ∧ du2 ∧ dW2.

Observe that the coefficient of ω ∧ω ∧ω is 2u0w0. This is a sophistication of
m-folded symplectic structures.
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8.2 Triple collisions in the three-body prob-

lem

In this section we focus on triple collisions for the three-body problem but
the computation holds mutatis mutandis for the total collapse in the n-body
problem i.e. collision of n bodies.

Following [Mo1980], [Mo1996] and [Mc], consider the system of three
bodies with masses m1,m2,m3 and positions

q1 = (q1, q2, q3),q2 = (q4, q5, q6),q3 = (q7, q8, q9) ∈ R3.

Similarly we denote the momenta of the bodies by

p1 = (p1, p2, p3),p2 = (p4, p5, p6),p3 = (p7, p8, p9) ∈ R3.

Moreover, we set q = (q1, . . . , q9) and p = (p1, . . . , p9) ∈ R9. We define the
9× 9 matrix M := diag(m1,m1,m1,m2,m2,m2,m3,m3,m3).

Recall that the three-body problem has Hamiltonian

H(q, p) =
pTM−1p

2
− U(q)

where the potential U is given by

U(q) =
m1m2

|q1 − q2|
+

m2m3

|q2 − q3|
+

m1m3

|q1 − q3|
.

We assume that we are working in central coordinates, so the centre of
mass remains at the origin:

m1q1 +m2q2 +m3q3 = 0.

McGehee transformation. In order to study the qualitative behaviour of
orbits near the triple collision singularity, we introduce the following change
of coordinates, which was first proposed by McGehee [Mc]:

r :=
√
qTMq, s :=

q

r
, z := p

√
r. (8.6)

Essentially, these are spherical coordinates since s lies on the unit-sphere
in R9 with respect to the metric given by M ,

sTMs = 1.

Note that r = 0 corresponds to triple collisions.
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Following [Mo1980], we compute the equations of motion in the new co-
ordinates and with respect to a new time τ ,

dτ = r
2
3dt.

We denote differentiation with respect to τ by a prime. We introduce the
function

v := s · z,

where the dot denotes the standard inner product on R9.
Then the equations of motion are

r′ = vr,

s′ = M−1z − vs,

z′ = ∇U(s) +
vz

2
.

(8.7)

The energy and angular momentum are preserved quantities and we fix a
value H(q, p) = h resp. p× q = ω, resulting in the following equations:

zTM−1z

2
− U(s) = rh, z × s = r

1
2ω.

We have v′ = s′ · z+ s · z′ and inserting the equations of motion (8.7) as well
as the conservation of energy we obtain the so-called Lagrange equation:

v′ +
v2

2
=
zTM−1z

2
+ rh.

We denote by bold letters the R3 vectors s1 = (s1, s2, s3), s2 = (s4, s5, s6) etc.
Consider the inequality∑
j=1,2,3

|sj|2|zj|2 =
∑
j=1,2,3

|sj|2mjm
−1
j |zj|2 ≤

∑
j=1,2,3

|sj|2mj

∑
j=1,2,3

|zj|2m−1
j .

Since we have sTMs = 1 the right hand side of this inequality is equal to
zTM−1z. Inserting

|sj|2|zj|2 = (sj · zj)2 + |sj × zj|2

the above inequality becomes

zTM−1z ≥ (s · z︸︷︷︸
=v

)2 + | s× z︸ ︷︷ ︸
=ω

|2.
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Using Lagrange’s equation, we obtain a lower bound for v′:

v′ ≥ rh+
r−1|ω|2

2
.

This relation is called Sundman’s inequality. From the equations of mo-
tion (8.7) for r′ we know that v = (ln r)′ and therefore Sundman’s inequality
can be used to make assertions about the evolution of r, i.e. the distance
from triple collision. More precisely, in the case of non-zero angular momen-
tum |ω| 6= 0, we can deduce the following information about the qualitative

behaviour near triple collisions: Assume that r2 ≤ |ω2|
4|h| . Then

v′ ≥ |ω|
2

4r
.

Therefore, if from a certain time t0 on, r is smaller than a fixed number r0 > 0,
the derivative of v has a positive lower bound and therefore v = (ln r)′ will
eventually become positive, meaning that r is increasing. Therefore, r can
never become zero, in other words triple collisions are impossible.

Remark. The case of zero angular momentum ω = 0 is different and triple
collisions become possible. We refer to [Mo1980] for a detailed discussion.

Geometric structure. Based on Equation (8.6) we want to introduce a
well-defined chart and study the geometric structure that this change of
coordinates entails.

We restrict to the subset q9 > 0 of the phase space R9 ×R9 and consider
the coordinates

(r, s1, . . . , s8, z1, . . . , z9)

where r, s, z are defined in Equation (8.6). The inverse of this chart is

qi = rsi, i = 1, . . . , 8

q9 = r

√
1−

∑8
i=1 s

2
imi

m9

,

pi =
zi√
r
, i = 1, . . . , 9.

Computing the differentials one sees that the standard symplectic form
∑9

i=1 dqi∧
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dpi becomes

8∑
i=1

(
si√
r
dr ∧ dzi +

√
rdsi ∧ dzi −

zi
2
√
r
dsi ∧ dr

)
+

+
1

√
m9rµ

(
µdr ∧ dz9 − r

8∑
i=1

misidsi ∧ dz9 +
z9

2

8∑
i=1

misidsi ∧ dr

)
,

where we have introduced the function µ := 1−
∑8

i=1 s
2
imi to simplify nota-

tion.
We compute the top wedge of the structure:

Λ9
i=1dqi ∧ dpi =

√
µr7

m9

ds1 ∧ dz1 ∧ ds2 ∧ dz2 ∧ . . . ∧ ds8 ∧ dz8 ∧ dr ∧ dz9,

hence for r = 0 this expression vanishes to order 7
2

and is a 7
2
-folded symplectic

structure.

8.3 The elliptic restricted three-body prob-

lem: McGehee coordinates

Let us now consider a special case of the three-body problem where one of the
bodies is assumed to have negligible mass. E.g. this happens if the system
is given by Sun, Jupiter and an asteroid. Then a useful approximation is to
assume that the motion of the two heavy bodies, called primaries (here Sun
and Jupiter), is independent of the small body, hence given by Kepler’s law
for the two-body problem. This problem is known as the restricted three-
body problem. We will moreover assume that all the three bodies move in a
plane (planar restricted three-body problem).

We are interested in the resulting dynamical system for the small body
(the asteroid), which moves under the influence of the time-dependent grav-
itational potential of the primaries

U(q, t) =
1− µ
|q − q1|

+
µ

|q − q2|
,

where we assume that the masses of the primaries are normalized and given
by µ resp. 1 − µ; their time-dependent positions are q1 = q1(t) resp. q2 =
q2(t).

113



The Hamiltonian of the system is given by

H(q, p, t) =
p2

2
− U(q, t), (q, p) ∈ R2 × R2,

where p = q̇ is the momentum of the asteroid. The equations of motion are
then obtained in the usual way,

q̈(t) = p(t) = −∂H
∂q

= (1− µ)
q1 − q
|q1 − q|3

+ µ
q2 − q
|q2 − q|3

In the elliptic restricted three-body problem, the primaries are assumed to
move around their center of mass on ellipses. Following [DKRS], we introduce
polar coordinates to describe the motion of the small body. Then for q =
(X, Y ) ∈ R2\{0}, we have

X = ρ cosα, Y = ρ sinα, (ρ, α) ∈ R+ × T

The momenta p = (PX , PY ) are transformed in such a way that the total
change of coordinates

(X, Y, PX , PY ) 7→ (ρ, α, Pρ =: y, Pα =: G)

is canonical, i.e. the symplectic structure remains the same. The primaries
move according to the following relations:

q1 = µr(cos f, sin f), q2 = −(1− µ)r(cos f, sin f)

where r is the distance between the two primaries and depends on the ec-
centricity e and the true anomaly f ,

r =
1− e2

1 + e cos f

where f is given by the following differential equation

ḟ =
(1 + e cos f)2

(1− e2)3/2
.

The Hamiltonian in these polar coordinates is given by

H∗(ρ, α, y,G, t) =
y2

2
+
G2

2ρ
− U∗(ρ, α, t)

with
U∗(ρ, α, t) = U(ρ cosα, ρ sinα, t).
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McGehee coordinates. To study the behaviour at r =∞, a common pro-
cedure is to introduce the so-called McGehee coordinates (x, α, y,G), where

ρ =
2

x2
, x ∈ R+.

Then ρ =∞ corresponds to the origin x = 0.
The Hamiltonian in McGehee coordinates is given by

H∗(x, α, y,G, t) =
y2

2
+
x4G2

8
− U∗(x, α, t)

where

U∗(x, α, t) = U∗
(

2

x2
, α, t

)
.

In particular, for µ = 0, the Hamiltonian becomes quadratic and time-
independent (autonomous):

H∗(x, α, y,G, t) =
y2

2
+
x4G2

8
− x2

2
for µ = 0.

As we discuss below, the symplectic structure is not preserved under this
change and therefore, the Hamiltonian equations of motion have to be com-
puted with respect to a different structure.

The McGehee change of coordinates is employed in [DKRS] to study the
so-called infinity manifold. The case µ > 0 is viewed as a perturbation of
the limit case µ = 0, for which we have seen that the Hamiltonian has a very
simple structure. The main result in [DKRS] is the existence of diffusive
trajectories, i.e. trajectories with a “large” variation of angular momentum.

Geometric structure. The McGehee transformation is non-canonical i.e.
the symplectic structure changes. Inserting the expression for ρ into the
canonical symplectic form dρ ∧ dy + dα ∧ dG shows that it is given by

− 4

x3
dx ∧ dy + dα ∧ dG, x ∈ R+.

This extends naturally to a b3-symplectic structure on R×T×R2 in the sense
of [Sc]. In particular, we immediately see that the hypersurface {x = 0} is
invariant.

Equivalently, the Poisson bracket is

{f, g} = −x
3

4

(
∂f

∂g

∂g

∂y
− ∂f

∂y

∂g

∂x

)
+
∂f

∂α

∂g

∂G
− ∂f

∂G

∂g

∂α
.

Such a Poisson structure is used extensively in [DKRS] to describe the dy-
namics close to the infinity manifold x = y = 0.
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