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Abstract

Over the last few years, the number of consumer computer vision applications has
increased dramatically. Today, computer vision solutions can be found in video game
consoles, smartphone applications, driving assistance—just to name a few. Ideally,
we require the performance of those applications, particularly those that are safety-
critical to remain constant under any external environment factors, such as changes
in illumination or weather conditions. However, this is not always possible or very
difficult to obtain by only using visible imagery, due to the inherent limitations of the
images from that spectral band. For that reason, the use of images from different or
multiple spectral bands is becoming more appealing.

The aforementioned possible advantages of using images from multiples spectral
bands on various vision applications make multi-spectral image processing a relevant
topic for research and development. Like in visible image processing, multi-spectral
image processing needs tools and algorithms to handle information from various spec-
tral bands. Furthermore, traditional tools such as local feature detection, which is the
basis of many vision tasks such as visual odometry, image registration, or structure
from motion, must be adjusted or reformulated to operate under new conditions. Tra-
ditional feature detection, description, and matching methods tend to underperform
in multi-spectral settings, in comparison to mono-spectral settings, due to the natural
differences between each spectral band.

The work in this thesis is focused on the local feature description problem when
cross-spectral images are considered. In this context, this dissertation has three main
contributions. Firstly, the work starts by proposing the usage of a combination of
frequency and spatial information, in a multi-scale scheme, as feature description.
Evaluations of this proposal, based on classical hand-made feature descriptors, and
comparisons with state of the art cross-spectral approaches help to find and under-
stand limitations of such strategy. Secondly, different convolutional neural network
(CNN) based architectures are evaluated when used to describe cross-spectral im-
age patches. Results showed that CNN-based methods, designed to work with visible
monocular images, could be successfully applied to the description of images from two
different spectral bands, with just minor modifications. In this framework, a novel
CNN-based network model, specifically intended to describe image patches from two
different spectral bands, is proposed. This network, referred to as Q-Net, outperforms
state of the art in the cross-spectral domain, including both previous hand-made solu-
tions as well as L2 CNN-based architectures. The third contribution of this disserta-
tion is in the cross-spectral feature description application domain. The multispectral
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odometry problem is tackled showing a real application of cross-spectral descriptors
In addition to the three main contributions mentioned above, in this dissertation, two
different multi-spectral datasets are generated and shared with the community to be
used as benchmarks for further studies.



Resumen

En los últimos años, el número de aplicaciones de consumo basadas en visión por
computadora han incrementado drásticamente. Actualmente, soluciones basadas en
visión por computadora pueden ser encontradas en video juegos, aplicaciones móviles y
en automóviles, por nombrar algunas. Idealmente, el desempeño de estas aplicaciones
debiera ser igual ante cualquier factor externo, como cambios en la iluminación o
del clima. Sin embargo, esto no es siempre posible utilizando sólo información del
espectro visible, debido a las limitaciones inherentes de las imágenes de esta banda
espectral. Razón por la cual, el uso de imágenes de diferentes bandas espectrales se
está volviendo más común.

Las posibilidades que ofrece el uso de imágenes de diferentes espectros, hacen que
su estudio sea un tema relevante de investigación y desarrollo. Al igual que, en el
caso monocular, el procesamiento de imágenes multiespectrales necesita de algoritmos
que puedan manejar su información. Herramientas tradicionales como descriptores
locales de caracteŕısticas, que son la base de varias técnicas de visión por computadora,
deben ser ajustadas para operar en estas nuevas condiciones. Métodos tradicionales
de detección, descripción y correspondencia, suelen tener un desempeño limitado en
entornos multispectrales, al compararlos con su desempeño en el caso monocular
visible. Esto se debe, principalmente a las diferencias naturales que existen entre las
diferentes bandas espectrales, no consideradas en su diseño.

En esta tesis, nos enfocamos en el problema de la descripción de caracteŕısticas
locales de imágenes provenientes de diferentes bandas espectrales. En este contexto,
el trabajo que se presenta contiene tres grandes contribuciones. En una primera
instancia, propone el uso combinado de información frecuencial y espacial para la
descripción de imágenes. Luego, realiza un estudio de diferentes técnicas basadas
en redes convolucionales para describir imágenes provenientes de diferentes bandas
espectrales. Los resultados muestran que este tipo de técnicas sobrepasan los resul-
tados obtenidos por descriptores clásicos. En esta ĺınea, presentamos una nueva red
llamada Q-Net, que mejora el estado del arte en descriptores multiespectrales basa-
dos en redes convolucionales. La tercera contribución es una propuesta para el uso de
estos nuevos descriptores en una aplicación de visión por computadora. En concreto,
enfrentamos el problema de odometria visual, utilizando imágenes de diferentes es-
pectros. Finalmente, dos conjuntos de datos fueron generados y compartidos con la
comunidad cient́ıfica en el desarrollo de esta tesis, que esperamos sean utilizados en
estudios por otros investigadores.
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Chapter 1

Introduction

The usage of images from different spectral bands opens new opportunities to devise
novel solutions to traditional vision tasks. For example, due to the inherent limita-
tions of images from the visible spectrum, the recognition of faces in low-illumination
scenarios, like night-time surveillance, becomes a challenging or almost impossible
task. In contrast, the recognition of faces using Near-Infrared (NIR) imagery is robust
against different illumination changes, making it a more suitable choice for night-time
surveillance [31]. Furthermore, solutions can involve the usage of two or more cameras
from different spectral bands at the same time to complement the limitations of each
one apart.

Images from a particular spectral band can provide several benefits and can also
have several drawbacks for a given vision task. Therefore, the decision on how many
cameras to use and from which spectral band is an application oriented task. For
example, Long-Wave infrared images (LWIR), also referred to as thermal images, are
practical to segment people from the background; especially at night when in general
the environment temperature is lower than the human body. On the contrary, thermal
images are not as practical as visual cameras to recognize people faces. Hence, the
simultaneous use of LWIR and visible cameras is almost a standard in high-end video
surveillance systems.

The aforementioned possible advantages of using images from multiples spectral
bands on various vision applications make multi-spectral image processing a relevant
topic for research and development. Consequently, many products that use cameras
from different spectral bands have starting to become more common in the last few
years. For instance, the Microsoft Kinect2 is a widely sold product that uses a visible
camera along with a NIR camera for detecting and capturing the 3D motion of players,
replacing in that way traditional game controllers. Other examples are the HeatWave
system [55], which makes use of a visible, a NIR, and a LWIR cameras to create a 3D
thermal image of a building, and the FLIR ONE system that provides an enhanced
thermal vision for mobile devices using a LWIR and a visible camera.

1



2 INTRODUCTION

Like in visible image processing, multi-spectral image processing needs tools and
algorithms to handle information from various spectral bands. Furthermore, tradi-
tional tools such as local feature detection, which is fundamental in vision tasks such
as visual odometry, image registration, and structure from motion, just to mention
a few, must be adjusted or reformulated to operate under new conditions. Tradi-
tional feature detection, description, and matching methods tend to underperform
in multi-spectral settings, in comparison to mono-spectral settings, due to the natu-
ral differences between each spectral band. Figure 1.1 shows an example of feature
matching between a visible and a LWIR image using SIFT [33], where most of the
feature matches are wrong.

Figure 1.1: The figure shows the result of performing feature matching
between a visible and an LWIR image using SIFT. Visible image at the left
and LWIR at the right.

Although several methods exist in the literature to find correspondences between
two or more images, not many are useful in multi-spectral scenarios. For that reason,
new contributions have starting to appear in the literature to tackle the multi-spectral
matching problem (e.g., [5, 32, 48]). Unfortunately, their performance is far away
from the one obtained when images from the same sensor and setup are considered.
Therefore, new lines of research are opening, not only regarding the feature matching
process but additionally in the possible applications.

1.1 Research objectives

The primary objective of this thesis is to address the problem of visible-infrared image
description, i.e., cross-spectral description, and its potential applications to computer
vision tasks. In particular, we are interested in:

• Improving the feature matching performance of current methods used to find
correspondences between images from the visible and infrared spectral bands,
through the proposal of new cross-spectral feature descriptor algorithms. The
work is mainly focused on two cross-spectral cases, namely, VIS-NIR and VIS-
LWIR.
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• Exploring different uses of cross-spectral imagery in computer vision applica-
tions, especially those that involve cross-spectral feature description in one of
their steps.

• Acquiring and sharing new multi-spectral datasets to be used as benchmarks
for further research in this field. Our intention is to help other researchers to
have access to multi-spectral datasets that in many cases are of difficult access
due to the cost of the cameras.

1.2 Contributions

The contributions of this thesis can be summarized as follows:

• We acquired and shared two different multi-spectral datasets. One to evaluate
VIS-LWIR cross-spectral descriptors and another to evaluate VIS-LWIR cross-
spectral visual odometry solutions.

• We modified an existing VIS-NIR dataset for scene category recognition, to be
used to train and evaluate CNN-based cross-spectral descriptors.

• We propose, evaluate and validate two different cross-spectral feature descriptor
algorithms. One, using classic computer vision approaches and the other using
a new convolutional neural network architecture.

• Finally, we proposed and evaluated two possible real applications that utilize
cross-spectral feature descriptors in one of their steps.

1.3 Outline

The thesis is organized as follows. In Chapter 2, we describe the most significant
similarities and differences between images from the visible and infrared spectral
bands. Additionally, we discuss previous work on cross-spectral feature description,
CNN-based description, and cross-spectral applications. In Chapter 3, we introduce
two new visible-infrared benchmarks that are used in following chapters to validate
our different proposals. In Chapter 4, we propose a cross-spectral feature descriptor
based on the use of Log-Gabor filters. In Chapter 5, we explore different CNN-
based solutions to describe visible and infrared image patches, and in Chapter 6, we
propose a new CNN-based architecture to train cross-spectral feature descriptors that
can be used as a drop-in replacement of classical feature descriptors, such as SIFT
or SURF. In Chapter 7, we explore and evaluate two applications of cross-spectral
descriptors; one for registering images as a previous step to image fusion and the
other to determine the location of a car through visual odometry. Finally, Chapter 8
summarizes the result of our work and provides insights for further research in the
area.



4 INTRODUCTION



Chapter 2

Background and related work

The goal of this chapter is twofold. Firstly, to provide a basic understanding of the
similarities and differences between images from the visible spectrum and images from
the NIR and LWIR spectral bands, which are the two cross-spectral bands used to
evaluate the different proposal in the current work. Secondly, to review the most
relevant methods proposed in the literature to describe local features in images from
two different spectral bands, and current CNN-based trends used to describe image
patches.

This chapter will help to understand the work and contributions presented in
following chapters.

2.1 Background

Modern cameras can capture electromagnetic radiations from multiple ranges of the
electromagnetic spectrum (see Figure 2.1). Typical consumer cameras are sensitive
to visible light, wavelengths between 0.3 and 0.7 µm, which is also visible to our
eyes. Others are sensitive to other ranges of wavelengths, non-visible to our eyes,
such as the infrared range between 0.7 and 14 µm, and the ultraviolet range between
10 and 400 nm; to name a few. In particular, we are interested in cameras from two
subbands of the infrared spectrum, the NIR and LWIR sub-bands described in the
next two sections. These two subbands have been selected for the following reasons.
The NIR spectral band has been selected due to the low cost of the cameras needed
to acquire images, while the LWIR spectral band has been selected for the specific
characteristics of images acquired at this spectral band—thermal radiation.

5
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Figure 2.1: The electromagnetic spectrum.

(a) (b) (c)

(d) (e) (f)

Figure 2.2: VIS-NIR image pairs; top images are from the visible spectrum
and bottom images from the near-infrared spectrum.

2.1.1 NIR imaging

The near-infrared spectral band (0.7-1.4 µm) is one of the five sub-bands of the
infrared spectrum. It is immediately adjacent to the visible portion of the electro-
magnetic spectrum, and as a consequence, camera sensors from both types of cameras
are sensitive to some piece of the other spectral band. For example, to prevent un-
natural looking images, visible cameras sensors need to include an infrared cut-off
filter to block NIR wavelengths; visible camera sensors are often sensitive up to 1 µm
approximately.

There is a wide number of uses for NIR cameras in consumer and industrial vision
applications. On the consumer side, we can list a few examples, such as baby wireless
monitors, video game consoles, and home security cameras, that use NIR cameras to
view in low-lighting scenarios. These types of camera can see in the dark through
active NIR illumination, which is not visible to human eyes, making it a perfect
solution for low-light vision tasks that require not disturbing people attention. On the
industrial side, these cameras are used to detect bruises in apple [24], to detect fatigue
in driver during long trips [19], and to classify different types of breast cancer [56];
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amongst many others.

Images from the visible and NIR spectral bands share several visual similarities.
In Figure 2.2 three pairs of VIS-NIR images are presented. It can be appreciated that
images from both spectral bands are visually similar but with notable differences. For
example, red visible regions disappear in NIR images (see Figure 2.2d), the direction
of gradients may be different as in Figure 2.2b in contrast with Figure 2.2e, and NIR
images are more likely to be robust to different illumination settings as in Figure 2.2f
in comparison with Figure 2.2c.

Therefore the challenge is in being able to develop a feature descriptor that is
robust against the above-discussed differences.

2.1.2 LWIR imaging

LWIR cameras, also called thermal cameras, are sensitive to infrared electromagnetic
radiation wavelengths between 7 and 14 µm. Historically, were developed and used for
military purposes, but now, thanks to recent technological advances and the reduction
in the manufacturing cost, are available to all type of non-military applications. For
instance, thermal cameras are used to detect and estimate wild animal populations
[11], to detect pedestrians in advanced driver-assistance systems [22], to detect gas
leaks [30], and to prevent and monitor injuries in sports [13]. For more examples,
we refer the readers to the work of Gade & Moeslund in 2014 Thermal cameras and
applications: a survey [18].

Thermal cameras capture the infrared radiation emitted by any object with a
temperature above the absolute zero. In other words, thermal cameras map the
temperature of all the objects in a scene to an image. Therefore, thermal images do
not require visible light to work, and pixels’ intensities are related to the temperature
of the objects rather than lighting conditions. As a consequence, thermal cameras
are less sensitive to illumination problems, such as pitch black and shadow areas, in
contrast to visible cameras.

Images from thermal cameras have a significant visual difference with images taken
from visible cameras (see Figure 2.3 and Figure 2.4 ). In contrast to visible images,
thermal images do not have color and high-frequency information tend to be lost; the
former since thermal cameras captures heat radiation from bodies rather than light,
and the latter due to the homogeneity in temperature that exists in many objects,
especially in human-made structures. Moreover, thermal images often can display
ghost objects, which are objects that once were on the scene but were no longer there
when the image was taken. This effect eccurs since temperature changes in objects
happen relative slow. Therefore, the temperature of an object not only depends on
the current state of the object but additionally in the recent history.

Although, thermal and visible images may have many visual differences as ex-
plained above, also may share similarities. Studies like [38] suggest that there is a
strong correlation between object boundaries in images from both spectral bands. In
other words, even though most of the texture may be lost in thermal images, the shape



8 BACKGROUND AND RELATED WORK

of the objects is preserved. Moreover, shape similarities are more prone to occur in
environments with high-temperature variations, such as outdoor environments. On
the contrary, in indoor environments, the shape of objects is less preserved, due to the
low variations of temperature in a controlled environment. For example, Figure 2.3b
is much less detailed than Figure 2.4b.

(a) Visible image (b) Thermal image

Figure 2.3: VIS-LWIR: indoor images from the same scene taken with cam-
eras from different spectral bands.

(a) Visible image (b) Thermal image

Figure 2.4: VIS-NIR: outdoor images from the same scene taken with cam-
eras from different spectral bands.

Therefore, the challenge to find correspondences between images from the visible
spectrum and images from the LWIR spectrum lies in the capability to be able to
design a feature descriptor that gives more weight to object boundaries, visible in
both types of images, rather than color and texture, which are only available in
visible images.
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2.2 Related Work

In this section, we review the most relevant works in the literature that deal with
the problem of cross-spectral feature description. Additionally, we also review the
state-of-the-art of CNN-based descriptors that will be fundamental to understand
our proposal in Chapter 6. Lastly, we review existing applications of cross-spectral
(visible and infrared spectra) imagery.

2.2.1 Cross-spectral description

The description of image patches from two different spectral bands is a complex
and challenging task. Classical feature descriptors, such as SIFT [33], SURF [6]
and BRIEF [10], do not take into account the nonlinear intensity variations that
may exist. Moreover, the performance of those algorithms tends to decrease when
applied to images beyond the visual spectrum [44]. Early efforts to describe images
from different spectral bands focused on modifying gradient-based descriptors to work
between [0, π] instead of [0, 2π]. This adjustment, reduce the unwanted effects of
changes in gradient directions between images that can be typically found in these type
of scenarios; as discussed in Section 2.1.1. For example, Firmenichy et al. in 2011 [14],
changed the way the SIFT descriptor is computed. Originally, SIFT is computed
as in Figure 2.5. The image patch initially is divided into sixteen sub-regions, and
gradient intensities directions are computed for all pixels in the image; directions have
only eight possible values equally divided between [0, 2π]. Then, a histogram of the
gradients’ direction is computed, bins per sub-region, with a total of 128 bins (16x8).
Instead of this approach, Firmenichy et al. defined only four directions between
[0, π], eliminating complementary angles, and finally obtaining a descriptor of size 64
(4x16) (see Figure 2.5). This algorithm, named GSIFT, drastically improves SIFT
performance in multi-spectral scenarios. Another example is the work of Pinggera et
al. in 2012 [43], where the authors modified the HOG descriptor to compute gradient
directions between [0, π] instead of [0, 2π], to calculate the stereo disparity between
a visible and an LWIR camera. In their experiments, they discovered that such a
strategy performed better than traditional multi-spectral techniques such as mutual
information and local self-similarity.

Other works follow the observations of Morris et al. [38]. i.e., giving more impor-
tance to shape and contours rather than to texture. In their study, concerning the
joint statistics of visible and thermal images, the authors found a strong correlation
between object boundaries of images from both spectra, in other words, although
texture information may be lost, the shape of objects remain similar between images
from both spectral bands. In this context, Aguilera et al. [1] decided to describe multi-
spectral image patches using a local version of the global Edge-Oriented-Histogram
(EHD) descriptor [35]. The proposed approach consisted of using a histogram of con-
tours’ orientation in the surroundings of each interest point. Contours’ orientation
are obtained using five 3x3 Canny filters, where four filters are used to indicate an
orientation between [0, π], and the last filter to indicate no-direction. After the com-
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…

Image gradients Dominant gradients per region

SIFT

Descriptor: 8 bins per region

…

Image gradients Dominant gradients per region

GSIFT

Descriptor: 4 bins per region

Figure 2.5: The SIFT and GSIFT feature descriptors.

putation of the contours, the process to build the histogram is the same as SIFT.
Years later, this algorithm was extended by [41]. The authors decided to combine
the shape information from EHD with frequency information using Log-Gabor coef-
ficients (24 in total) at the center of each feature point, improving the performance
of the previously described descriptor.

In addition to the works presented above, methods not based on feature descrip-
tors have been also proposed to find correspondences between images of two different
spectral bands. For example, [34] propose a non-rigid method to register a visible and
an infrared image of a face. The proposed method consists in using edge maps from
the images to represent the faces as an initial step, and later register, in a coarse-to-
fine way, the edges using a technique based on the Gaussian field criterion. Another
example is the work from Shen et al. [48], where the authors created a dense match-
ing strategy based on variational approaches to match multi-spectral and multi-modal
images.

It is important to note that although several methods have been suggested to
describe multi-spectral images, the feature matching performance is still low in com-
parison with the performance of classical feature descriptors used to describe visible
images. Thus, improve this situation is one of the main motivation of our work that
will be considered in further Chapters.

2.2.2 CNN-Based description

For many years, carefully hand-designed feature descriptors, such as SIFT [33] and
SURF [6], have been the key component of many and diverse vision tasks. How-
ever, in the last few years, such approaches have been started to be outperformed
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by CNN-based solutions in multiple benchmarks (e.g., [4, 50, 59]). Broadly speaking,
convolutional neural networks (CNN’s) are a type of feedforward neural network that
have become extremely popular since 2012, thanks to the results achieved by Alex
Krizhevsky in the ImageNet competition of that year [28]. Krizhevsky et al. set a new
record in the object classification challenge, reducing the top minimum error rate, up
to the date, from 26% to 15%. As a consequence, from that day on, CNN’s have been
progressing at an incredible speed outperforming previous solutions in almost every
area of active research.
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Car

Input image
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Figure 2.6: AlexNet network model.

One of the first works on CNN-based descriptors is the work of Fisher et al. in
2014 [16], named Descriptor Matching with Convolutional Neural Networks: a Com-
parison to SIFT. In their work, the authors analyzed the performance of trained con-
volutional filters, from the ImageNet challenge, as a replacement of hand-engineered
feature descriptors. Essentially, they describe image patches as the output of the
fourth convolutional layer of the AlexNet network model (see Figure 2.6), overlooking
higher layers. Unexpectedly, such approach outperformed SIFT in the majority of
the categories of the benchmark made by Mikolajczyk et al. [36]; which is considered
the most popular test for this kind of evaluations. Moreover, it showed that filters
specialized to discriminate between object classes could recognize subtle structures
that are important to feature matching. The only drawback of this method was re-
garding the computational cost of computing the descriptor; SIFT was at least four
times faster.

Following the success of the above method, custom network model specifically
designed and trained to be used as feature descriptors started to appear. In this line,
Zagoruyko et at. [59] designed and evaluated several different CNN-based network
models to describe and match image patches. In contrast to [16], instead of comparing
the resulting descriptors using an L2 metric, they used a fully connected layer to
learn a custom metric. Essentially, their training method rewards small distance
difference between similar patches and huge difference between non-similar image
patches. Results showed the validity of their different proposals. However, using
a custom learned metric to compare patches is not efficient in many applications
that need to compare thousands of features per second. Additionally, classical fast
nearest neighbor strategies to improve the matching speed, such as KDTree, cannot
be used, since the custom metric does not meet the triangle inequality property.
A smart solution to this problem is presented in [23]. In their work, the authors
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propose to separate the feature descriptor networks models in two parts, one for
feature extraction and another for metric learning. Separating both functions leads
to better performance since it is possible to compute all the features just once, and
then using the metric network to match the features. Although this solution improved
the performance of the previous solutions, still could not use strategies like KDTrees
to improve the matching speed.

L
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CNN 1

CNN 2

Shared weights
Input image #1

Input image #2

D(#1)

D(#2)

L2(D(#1),D(#2))

Figure 2.7: Siamese network architecture used by [50]

Since previous network models rely on custom metric networks, it was impossible
to use them as a drop-in replacement of traditional feature descriptors. The work of
Serra et al. [50] changed this circumstance. Serra et al. followed a similar approach
to [59], but instead of using a custom metric network to measure the distance between
two image patches, it directly minimizes the L2 distance between them at training
time. Their training architecture, depicted in Figure 2.7, consists of a siamese network
with an L2 loss function, where each CNN works as a feature descriptor and the loss
function encourages small L2 distances between similar patches. At testing time it
is just necessary one of the two CNN to compute the descriptor of an image. Each
descriptor calculated in this way can be used as a drop-in replacement of traditional
feature descriptors, such as SIFT. Additionally, the authors make another significant
contribution. During the training stage, they notice that after a few training epochs,
most of the non-matching samples used to train the network were not giving new
information, making it necessary to use mining strategies to improve the performance
of the networks.

From [50], it was clear that an efficient use of the training samples leads to an
increase in the overall performance of the trained feature descriptors. Inspired by
the previous results, [4] proposes a triplet training network architecture to mine non-
matching patches within each training sample. The triplet training network consists
of three copies of the same CNN and a L2 loss function that makes use of a triplet
of input patches where two correspond to a matching example and one to a non-
matching sample to the other two patches. Essentially, what the network does is to
select at each training step one matching sample and the most difficult non-matching
sample, from the two possible options. Results showed the validity of their proposal
regarding feature matching performance and training speed. An efficient use of the
matching samples improves the overall training speed in contrast to previous CNN-
based techniques. It is important to notice that triplets have many uses in different
contexts, e.g., [47] uses a triplet network architecture to recognize faces.
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Our network proposal in Chapter 6 is strongly based on the triplet network pro-
posed by [4], but adapted to be used in cross-spectral scenarios. We use quadruplet
instead of a triplet, and we do not only mine non-matching samples but also correctly
matched samples.

CNN-based descriptors have proved to be not only valuable to find feature cor-
respondences between different images but also in additional vision tasks. For in-
stance, [7] proposes a new method to track objects in a video sequence using patch
similarity. Essentially, the authors train a network in a similar way to the above-
described methods and later track objects matching candidate regions in following
frames. Their strategy proved to have several advantages compared to the state-of-
the-art. Firstly, they accomplished to achieve a tracking speed superior to 80 frames
per second, something impossible to that date using CNN-based solutions. Secondly,
their proposal did not need labeled videos sequences to train their network. Since
the technique compares regions of interest between frames, static images can be used
to train the network, simulating movement through rotation and translation over
objects.

2.2.3 Cross-spectral applications

The number of cross-spectral applications, based on the usage of natural images from
the visible and infrared spectral band is limited; with natural images refers to non-
medical images and images not captured from satellites (remote sensing). Mostly
due to the cost of cameras from spectral bands beyond the visual spectrum, the small
number of public datasets available and the challenges related to acquiring such type of
registered data, required to validate new algorithm proposals. Typically, applications
fall into two categories: face recognition and video surveillance.

Face recognition in heterogeneous environments is one of the most attractive ap-
plication of cross-spectral imagery. It consists of matching image faces from one
spectral band to another. In [26], the author analyzes the advantages and limita-
tions of matching images of faces taken from a visible camera to faces taken from
a SWIR camera. The motivation behind their study is that information from the
visible cameras can be complemented with information from the SWIR spectral band
cameras in harsh environmental conditions, such as low-light and fog. Essentially,
the proposed system consisted in describing faces using standard feature descriptors
and then matching the faces using their vectorial representation. Their experiments
demonstrated the suitability of such approach. However, they did not try custom
cross-spectral descriptor, such as the one described in the previous section, that could
have improved the feature matching performance. Other work on the same line but
using different spectral bands is the one presented in [25]. In their work, the authors
use learning techniques to recognize images of faces from a visible camera to faces
from an NIR camera. Figure 2.8 shows image samples from a well known VIS-NIR
faces database.

Other types of applications include the recovery of depth information from cross-
spectral stereo rigs, such as the ones that can be found in high-end video surveillance
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Figure 2.8: Image samples from the CASIA NIR-VIS 2.0 database. Top
row, visible images, and bottom row, NIR images.

systems. Krotostky and Trivedi in [29] examine, develop and evaluate applications
of cross-spectral stereo for pedestrian detection and tracking, recovering depth infor-
mation from the cameras using mutual information as the matching cost function.
Results showed the potential of such applications. However, also show that mutual
information was not suitable as a matching cost function between images from the
visible and LWIR spectral bands. Later, Pinggera et al. [43] focused on the same
problem that Trivedi left open, but of using mutual information as the cost function,
the authors used a modified version of the HOG descriptor, improving all previous re-
sults. It is important to notice that, up to the date, the computation of cross-spectral
stereo disparity is still an open problem that has not been successfully tackled. How-
ever, we believe that in a few years this will change, thanks to contributions of new
cross-spectral stereo datasets, such as [53].

In Chapter 7 we present a novel application of cross-spectral imagery. We use a
visible camera and an LWIR camera mounted in a stereo-rig to localize the position
of a car at every moment using visual odometry techniques.



Chapter 3

Benchmarks

The usage of several sets of images is an essential component of every research work
in order to evaluate and compare new proposals. Unfortunately, there is a limited
number of cross-spectral benchmarks available in the literature. Therefore, the ac-
quisition of multiples sets of images from different spectral bands was an essential
component of this work. With the new benchmarks, we were able to train, test and
evaluate the proposals that we make in following chapters. Hence, the objective of
this chapter is to describe the different benchmarks that have been created during
this thesis; including from the acquisition process to the final resulting images.

3.1 Introduction

Ideally, every study published in a scientific article should be replicable by their
peers; this is essential in any experimental science. However, many published works
are not easy or even impossible to replicate due to lack of detailed explanations, data,
and even bad practices. For that reason, the computer science community is actively
encouraging the access to data and code to be able to reproduce results from scientific
articles, and even more important, to make a fair and accurate comparison between
the different proposed methods.

A major factor in the reproducibility of the results is the existence of open bench-
marks. A benchmark can be described as the combination of data with a defined
evaluation methodology that allows fair comparisons between different techniques
proposed by scientists. Even more, it helps to reduce the funding differences that can
exist between educational institutions, allowing researchers to experiment with data,
that otherwise, would be impossible to obtain using their own resources.

In this chapter, we introduce different methodologies that exist to evaluate the
performance of feature descriptors. As discussed in previous chapters, feature descrip-
tors are compact representations of images, which are core in many computer vision

15
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: Leuven (light) sequence from the Oxford dataset.

application. Hence, the validation of the performance of each proposed method is
essential to make a proper use of them later. Additionally, we introduce two bench-
marks generated in the development of this thesis in an analogous way to the bench-
marks described before. Finally, we also introduce a VIS-LWIR cross-spectral visual
odometry benchmark, that we used to test a real application of cross-spectral feature
descriptors. Broadly speaking, visual odometry consists in determining the pose, po-
sitions and orientation, of an object using images from cameras relative to their initial
reference system.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.2: Image pair samples from the phototour image patch dataset.
Two non-matching samples: (a)-(e) and (b)-(f) and two matching samples:
(c)-(g) and (d)-(h).
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3.2 Feature descriptor benchmarks

Different benchmarks have been proposed to evaluate the performance of feature
descriptors. Coarsely speaking, they can be classified into two categories: i) bench-
marks where feature descriptor performance is obtained from a local feature matching
scheme—pairwise image registration; and ii) benchmarks where feature descriptor
performance corresponds to an evaluation of similarity between image pairs.

The evaluation of a feature descriptor in a feature matching scheme occurs as
follows. First, a feature detector is applied to each image, extracting multiple interest
points as a result. The extracted feature points are defined by their position and size,
the latter described by an ellispe. Then, a feature descriptor is applied to each feature
extracted in the previous step, obtaining a compact, float or binary, representation of
each interest point. Following, resulting descriptors from both images are compared by
a distance metric, usually L2 distance for floating descriptors and Hamming distance
for binary descriptors. Finally, the matched descriptors are compared with ground
truth data, to determine the overall performance of the technique.

The dataset of Mikolajczyk et al. [36] is an example of a feature matching based
benchmark. It contains forty-eight images, divided into eight sequences of six images
each. Each sequence is intended to cover common challenging matching scenarios,
two sequences with blurred images, two sequences with changes in the viewpoint, two
sequences with scale and rotation differences, one with JPG compression, and one
with different lighting conditions (see Figure 3.1).

On the contrary to the previous approach, benchmarks based on a distance evalu-
ation are used to estimate the degree of similarity between two images.In this context,
two images are similar if the distance in the feature descriptors space is small, and
different if the distance is big; the opposite case is also valid, big distances could indi-
cate similarity and small distances could indicate dissimilarity. Data samples can be
of two types: matching and non-matching. Matching samples are pairs of similar im-
ages, showing the same scenarios from a different perspective, or scale. Non-matching
samples are randomly selected image pairs that are not visually related. The perfor-
mance is measured by generating a ROC curve, from the similarity measures of all
the test samples in the dataset. In other words, the performance metric measures
how well the descriptor discriminates similar patches from the dissimilar ones.

The dataset from Winder and Brown [57] is the most popular in this category of
evaluation. The dataset contains more than 1 million of different image patches of
64x64 divided into three categories: liberty, Notre-Dame, Yosemite. Each category
name indicates the provenance of the image samples. Figure 3.2 shows sample images
from the dataset. This dataset will be used in Chapter 6 to validate our proposal,
which not only works well on cross-spectral scenarios but also in visible to visible
cases.

In the rest of the section we will describe the benchmarks acquired and generated
during this thesis.
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3.2.1 VIS-LWIR feature matching benchmark

This section describes the dataset of VIS-LWIR cross-spectral image pairs that we
have collected to train and evaluate cross-spectral feature descriptors, in a similar
way to [36]. The process consisted in developing a cross-spectral stereo-rig and taking
outdoor images. These two steps are described next, indicating the used hardware,
the challenges of calibrating cross-spectral images and the resulting images.

Figure 3.3: Multi-spectral stereo-rig.

Hardware configuration

The platform used to collect the images consisted of two cameras, one that captured
the visible band and one that captured the thermal infrared band. The camera used
to obtain images from the visible spectrum (Basler ACE acA645-100gc) captures up
to 100 fps with a resolution of 658 × 492 pixels. The thermal camera (Xenics Gobi-
640-GigE) captures up to 50 fps with a resolution of 640× 480. The focal lengths of
the cameras were set so that pixels in both images contain almost the same amount
of information of the observed scene. An image-rig on top of a tripod was used to
mount both cameras. Additionally, an external trigger was used to synchronize the
acquisition of images from both cameras.

Data collection

The obtained dataset consists of 44 VIS/LWIR images pairs that were captured using
the multi-spectral image-rig described above (Fig 3.3 shows an illustration of the
acquisition hardware). All image pairs were captured in outdoor locations around the
Autonomous University of Barcelona’s campus; the obtained scenes mostly contain
buildings and vegetation. Figure 3.4 shows image pairs samples from the acquired
dataset. In the dataset each image pair is registered, so both images are in a common
coordinate frame. The description of the method used to register images from both
spectral bands is detailed next.
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(a) (b) (c)

(d) (e) (f)

Figure 3.4: VIS-LWIR image pairs; top images are from the visible spectrum
and bottom images from the LWIR spectrum.

(a) (b)

Figure 3.5: (a) Calibration pattern image from the visible spectrum. (b)
calibration pattern image taken with the thermal camera.

Calibration

To calibrate each camera we have constructed a chessboard calibration pattern visible
to both cameras, visible and thermal. Typical calibration patterns are not visible on
thermal cameras. Although a difference in color may exist between the squares of a
chessboard, not necessarily it also exist in temperature. To overcome this problem,
we printed a chessboard calibration pattern on top of a reflective metal plate that
in front of the sun light it becomes visible in both spectral bands. Figure 3.5 shows
two images of our calibration pattern, one from the visible spectrum camera, and one
from the thermal camera

Once we had a calibration pattern visible to both cameras, we proceeded to cal-
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ibrate the cameras using Bouguet’s calibration toolbox [9]. As a result, the intrinsic
and extrinsic parameters from both cameras were found. Later these parameters were
used to rectify all the images.

Finally, images were aligned manually, selecting corresponding points in both
images to compute the homography that relates both images. Although, in most
cases, it was not necessary, since images were taken far away from the image-rig and
after the rectification, most of the images were already aligned, i.e, the computed
homography matrix was close to the identity matrix.

3.2.2 VIS-NIR image patch benchmark

(a) (b) (c)

(d) (e) (f)

Figure 3.6: Images samples from the Oxford dataset. The six images corre-
spond to the different illumination category.

Deep learning solutions require a huge quantity of data to train their network
models. Therefore, to train, test and evaluated the proposed method in Chapter 6,
we built a cross-spectral image patch dataset using the public VIS-NIR set of images
from [15]. The later set consists of 477 VIS-NIR image pairs divided into nine different
scene categories: country, field, forest, indoor, mountain, old building, street, urban,
and water. Images are in TIFF format at 1024 × 768 resolution. Image pairs are
registered.

We generated the set of image patches as follows:

1. Interest points were detected in the original visible images using SIFT.

2. Image patches of size 64 × 64 were extracted centered in the interest points
detected in the previous step.

3. Half of the patches were selected to be positive samples (matching patches),
and half to be false samples (non-matching patches).
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4. For the matching patches, we looked for the same interest points in the original
NIR image, and subsequently extracted a patch of 64 × 64 in that location.
Since images are registered, the interest point’s location in images from both
spectral bands is the same.

5. For the non-matching patches, we selected a random patch of size 64× 64, far
from the original patch in the NIR image.

As a result, we obtained more than one million of VIS-NIR image pairs. Figure 3.7
shows image patch samples from the dataset and Table 3.1 the detailed number of
image patches per category.

Category # patches

country 277504
field 240896

forest 376832
indoor 60672

mountain 151296
oldbuilding 101376

street 164608
urban 147712
water 143104

Table 3.1: Number of cross-spectral patches per category.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.7: Samples of pairs of images from the VIS-NIR image patch
dataset. First row corresponds to grayscale images while second row shows
the corresponding NIR images—non-matching samples: (a)-(e) and (b)-(f);
matching samples: (c)-(g) and (d)-(h).
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3.3 Visual odometry Benchmarks

As stated before, visual odometry consists in estimating the pose of an agent over
time, using one or multiples cameras. It is an essential component for motion tracking,
obstacle detection and avoidance; mobile robots and autonomous cars, navigation
systems, just to mention a few. Although several methods have been proposed in the
literature to estimate the change in position and orientation over time (odometry)
without the use of cameras, such as GPS, laser, and INS systems, visual odometry
system excels in obtaining a high-accuracy localization at a low value; compared
to solutions that uses expensive hardware such as LIDARs. Additionally, visually
based methods work well on multiples scenarios like indoor and outdoor areas, even
underwater, which is not the case with some of the technologies mentioned above.

A visual odometry benchmark consists of a collection of videos, recorded from
a moving agent perspective, where the actual pose of the agent, at every instant, is
known and later presented in the form of ground-truth data. For instance, Sturm
et at. [51] proposed a RGB-D benchmark for the evaluation of visual odometry al-
gorithms on mobile robots using color and depth information. The agent, a mobile
robot Pioneer P3DX with a Microsoft Kinect camera on top, captured color and depth
information at each step, from the initial position to the final one. Video sequences
were recorded in a controlled indoor environment, under different conditions, such as
pedestrians walking close to the robot. Ground-truth pose estimation was obtained
using eight high-speed tracking cameras from a commercial motion tracking system,
delivering a high-quality pose data at each step. Another popular benchmark is the
one proposed by Geiger et al. [21]; the dataset, named, KITTI benchmark, consists
of twenty-two stereo sequences, acquired using as a platform a Volkswagen Passat B6
with multiples sensors on board. On the contrary to the previously described bench-
mark, KITTI is intended to evaluate algorithms that are useful for an autonomous
driving assistant system or, in general, autonomous cars.

The relative pose error (RPE) is used to measure the performance of visual odom-
etry systems. RPE measures the accuracy of the computed poses over a fixed period
of frames. For example, assume that P1, ..., Pn are the poses estimated by a proposed
algorithm, and Q1, ..., Qn the real poses provided by the benchmark, then the RPE
is defined as follows

RMSE(E1:n) =
1

n

n∑
δ=1

RMSE(E1:n,∆)

where E1:n indicates the relative pose error at each time step i and ∆ the selected
time-interval.

In this thesis, we acquired a VIS-LWIR benchmark to evaluate cross-spectral
stereo visual odometry methods. The benchmark is described next.
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Figure 3.8: Electric car used to capture the VIS-LWIR multi-spectral odom-
etry dataset. Cameras are mounted on the roof.

Figure 3.9: Images samples from the visual odometry dataset

3.3.1 VIS-LWIR benchmark

With the intention of evaluating real applications of cross-spectral feature descriptors,
we proposed a VIS-LWIR cross-spectral visual odometry benchmark.

Hardware configuration

The cameras and stereo-rig are the same than the one described in Section 3.2.1, with
the difference that this time the image-rig was mounted on the roof of an electric
car, instead of a tripod. The separation between the cameras was about 12 cm.
Additionally, since in visual odometry we care about the position of the moving
platform, we added a low-cost GPS tracking system to obtain the position of the car
at every movement. The GPS updated its coordinates almost two times per second,
which can be considered as a limitation of this dataset since the update speed of the
GPS is much slower than the camera’s framerate. Figure 3.8 shows an image of the
electric car with the cameras mounted on the roof.
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Data collection

Five sequences of videos were captured, split up into semi urban and rural scenarios
detailed in Table 3.2. The former are richer regarding visual characteristics than
the latter. However, at the same time, they present more probabilities of containing
nonstationary objects (i.e., vehicles, pedestrians...). All these sequences represent
real traffic conditions with strong illumination variations and lack of texture. The
texture issue applies more to thermal images and can be explained by the fact that
LWIR pixel brightness depends on heat variations. Most of the lower part of images
is composed by ground surface, where heat does not vary a lot. This means that this
part of the image would be textureless and therefore not useful for visual odometry
methods based on local features matching. Figure 3.10 shows the trajectories of each
sequence on the map.

Video # Scenario Type Traveled Distance (m) Average Speed

Vid00 Urban 240 17 Km/h

Vid01 Urban 470 23 Km/h

Vid02 Urban 450 20 Km/h

Vid03 Rural 350 30 Km/h

Vid04 Rural 260 25 Km/h

Total 1770

Table 3.2: Multispectral video sequences
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(a) Vid00 (b) Vid01

(c) Vid02 (d) Vid03

(e) Vid04

Figure 3.10: Video sequence trajectories. Yellow arrow indicates the starting
point of the car.
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Chapter 4

Log-Gabor based cross-spectral
description

In this chapter, we propose a new hand-made cross-spectral feature descriptor, which
is suitable to find correspondences between images from different spectral bands or
modalities. The descriptor, referred to as Log-Gabor Histogram Descriptor (LGHD),
describes the neighborhood of feature points combining frequency and spatial infor-
mation using multi-scale and multi-oriented Log-Gabor filters.

4.1 Introduction

As discussed in Chapter 2, finding correspondences between images from different
spectral bands or modalities is a challenging task. For that reason, in this chapter we
propose a novel hand-made feature descriptor suitable to the task of matching features
points between images with nonlinear intensity variations. This includes image pairs
with significant illuminations changes, cross-modal image pairs, and cross-spectral
image pairs. The proposed method describes the neighborhood of feature points
combining frequency and spatial information using multi-scale and multi-oriented
Log-Gabor filters.

The rest of the chapter is organized as follows. The proposed descriptor is in-
troduced in Section 4.2. The evaluation methodology together with the evaluation
results are presented in Section 4.3. Finally, conclusions are given in Section 4.4.

4.2 Proposed approach

The nonlinear intensity variations between a pair of images can be the result of dif-
ferent configuration setups, which can affect each image differently. However, de-

27
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spite these intensity differences, the global appearance and the shape of the objects
contained in the scene tends to remain constant. This fact makes us think that a
descriptor based on the distribution of high-frequency components would be robust
to different nonlinear intensity variations, which is the idea behind the proposed ap-
proach.

The current work is motivated by the progress made by the local EHD descriptor
presented by Aguilera et al. [1], in contrast to previous approaches. The EHD descrip-
tor describes the spatial edge distribution around a point computing an orientation
histogram of eighty bins. For each interest point, a region of S × S is defined and
further divided into sixteen smaller sub regions (4 × 4). Within each subregion an
orientation histogram of five bins is computed using the strongest pixel value for one
of five different oriented Sobel filters (horizontal, vertical, 35 degrees, 135 degrees and
non-oriented).

The proposed Log-Gabor Histogram Descriptor (LGHD) describes local patches
in a similar way to EHD, but instead of using multi-oriented Sobel descriptor it uses
multi-oriented and multi-scale Log-Gabor filters.

4.2.1 Log-Gabor filters

Broadly speaking, a Log-Gabor filter is an image processing tool that can be used
to obtain localized frequency information in an image. In other words, Log-Gabor
filters can decompose an image in terms of frequency responses at different scales and
orientations. Log-Gabor filters are the keystone of several computer vision algorithms
(e.g., [27, 41]).

Log-Gabor filters have several useful properties. Filters can be constructed with
any arbitrary bandwidth and, by definition, they do not have a DC component. Thus,
the response of the filter do not depend in the mean value of the signal; in this case an
image. Therefore, Log-Gabor filters are more robust to different lighting conditions
than other frequency analysis tools like Gabor filters.

Formally, a 2D Log-Gabor filter is described as Equation 4.1, where f0 is the cen-
tral frequency, σf is the frequency width, θ0 is the center orientation and σθ the width
of the orientation component. Consequently, each filter is composed by two elements;
one based on a frequency and another based on an orientation. Equation (4.2) shows
how to compute the frequency bandwidth and Equation (4.3) the angular bandwidth.
See Figure 4.1 for a visual example of a Log-Gabor descriptor.

G(f, θ) = exp

(
−(log( ff0 ))2

2(log(
σf

f0
))2

)
exp

(
−(θ − θ0)2

2σ2
θ

)
(4.1)

B = 2

√
2

log(2)
(||log(

σf
f0

)||) (4.2)
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Bθ = 2σθ
√

2log2 (4.3)

Figure 4.1: A Log-Gabor filter is the combination of a frequency component
with an orientation component.

It is important to notice that there is not a unique or ideal arrange of Log-Gabor
filters. Thus, the design of a filter arrange is application oriented and often more art
than science.

4.2.2 Histogram descriptor

The proposed histogram descriptor can be computed following the next steps:

1. Create a filter bank and convolve each Log-Gabor filter with the input image
patch. In this thesis, we use twenty-four filters at six orientations between [0, π]
in four different scales. As result, twenty-four image patches are generated,
where each one represents the frequency and orientation response to one of the
filters from the bank.

2. Divide the image patch into sixteen sub regions (4× 4).

3. Compute the dominant orientation at each pixel using the magnitude of the
filters response at the first scale in the first sub region; repeat for the other
scales and sub regions.

4. Build a histogram of oriented Log-Gabor filters in each sub region using five
bins: one per orientation. Repeat this process to all the other regions and
scales.

5. Concatenate all the histograms from the previous step. The resulting histogram
is 384 bin long (96× 4).

Figure 4.2 shows a visual illustration of the proposed approach.
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Figure 4.2: Illustration of LGHD steps.

4.3 Experimental evaluation

The proposed approach has been evaluated using four different set of image pairs:
58 RGB/NIR pairs taken from the urban sequence from the benchmark described
in Chapter 3; 44 RGB/LWIR outdoor pairs from our VIS/LWIR benchmark; 120
FLASH/NO-FLASH pairs of images from [49] and 4 RGB/DEPTH pairs from [48].
Figure 4.3 shows sample image pairs of each benchmark.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.3: Examples of pairs of images from the four data sets evalu-
ated in the current work. This figure is best viewed in color.(a)-(e)
RGB/DEPTH image pair, (b)-(f) FLASH/NO-FLASH image pair, (c)-(g)
RGB/NIR image pairs, and (d)-(h) VIS/LWIR image pairs.

In addition to the evaluation mentioned above, the proposed approach has been
compared with four state-of-art descriptors: 1) the EHD descriptor that was originally
proposed for the RGB/LWIR case [1]; 2) the gradient invariant version of SIFT
(GISIFT) [14]; 3) the PCEHD descriptor [41]; and 4) the SIFT descriptor [33] that
is used as a reference of classical descriptors.

In order to evaluate the performance of feature descriptors, avoiding bias due
to feature detector performance, we follow a similar approach to [10]. We detect
features just in one image using the FAST detector [46], and then we project them
into the corresponding pair using the homography information. This process is done
for 3 sets of the image pair; for the remaining one (RGB/DEPTH) we use 100 points
manually selected (provided by [48]), since the images cannot be represented by a
unique homography.

The performance of the different descriptors is evaluated using the resulting
matching precision:

Precision =
C

T
, (4.4)

where C is the number of correct matches and T is the total number of correspon-
dences.

In our experiments we convolve the different images with Log-Gabor banks using
the Matlab implementation of [27]. We set nscale=4, norient=6, minWaveLength=3,
mult=1.6 and sigmaOnf=0.75. Additionally, Table 4.1 shows the different patch
sizes used to evaluate the EHD, PCEHD and LGHD descriptors (these sizes were
empirically obtained in order to have a fair evaluation). The matches are found by
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using Euclidean distance (SSD).

Descriptor RGB/DEPTH Other cases

EHD 32×32 80×80
PCEHD 32×32 80×80
LGHD (Ours) 32×32 80×80

Table 4.1: Patch sizes used to evaluate the EHD, PCEHD and LGHD de-
scriptors.

RGB/DEPTH RGB/LWIR FLASH/NO-FLASH RGB/NIR Average(All)
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Figure 4.4: LGHD results in four different datasets.

Results are shown in Figure 4.4, where each bar of the graph indicates the av-
erage matching precision for the corresponding descriptor computed over the whole
data set. The proposed approach, LGHD, obtained the best performance in every
category when compared with all the other descriptors evaluated in the current work.
Regarding computational times, the proposed LGHD descriptor has a similar perfor-
mance to other approaches with respect to the feature description estimation, but its
matching cost is the most expensive one due to the size of the description vector (384
elements).

The matching precision for the FLASH/NO-FLASH and the RGB/NIR cases was
considerably higher than in the other two scenarios. This fact is mainly due to the
spectral band closeness of the image pairs: i) the NIR spectrum is the closest infrared
band to the visible spectrum; ii) while in the FLASH/NO-FLASH dataset, the pairs
of images correspond both to the same spectral band (the visible one). On the other
hand, lower precision rates were obtained for the RGB/DEPH and RGB/LWIR cases.
The LWIR band is the most distant infrared band from the visible spectrum. Image
pairs mostly share shape information, while most of the texture information is missed.
The depth case is even worse since all texture information is missed; in this case just
a limited number of visual similarities between visible and depth images is kept.

Visual matching examples, of just one image pair (RGB/LWIR), are presented
in Figure 4.5 for the three histogram based descriptors. In this pair of images, it
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can be appreciated the difficulty of finding local similarities due to the large intensity
variation between the images.

(a) EHD

(b) PCEHD

(c) LGHD

Figure 4.5: Resulting output after matching a visible image with an LWIR
image.
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4.4 Conclusions

In this chapter, a novel feature descriptor has been presented. It can be used to the
task of matching features between images with non-linear intensity variations such
as multi-spectral and multi-modal images. Results show that the proposed algorithm
outperforms state-of-art algorithms in the four data sets considered in the evaluation.
The RGB/LWIR and the RGB/Depth were the most challenging cases. Results show
that in both cases matching descriptors generate an elevated number of mismatches.
These mismatches can be reduced using a robust formulation such as RANSAC.



Chapter 5

CNN-based cross-spectral
description

Although the performance of CNN-based descriptors in monocular matching scenarios
is at the state-of-the-art, the performance and suitability of such network models
are still unknown in cross-spectral scenarios. For that reason, in this chapter, we
explore the usage of four different architectures proposed in the literature to describe
image patches. Specifically, we train and evaluate each network architecture using
images from the visible and near-infrared spectral bands, and then test against the
two visible-infrared benchmarks described in Chapter 3.

5.1 Introduction

Recently, several new CNN-based descriptors learned from data have been proposed
in the literature (e.g., [4, 50, 59]), showing improvements over traditional hand-made
feature descriptors in different benchmarks regarding discriminative power. However,
the performance in cross-spectral scenarios has been not yet tested. Thus, the objec-
tive of this chapter is to explore the suitability of CNN-based descriptors to measure
the similarity between images patches from two different spectral bands; specifically in
VIS-NIR and VIS-LWIR scenarios. Additionally, the following question is addressed:
can CNN-based descriptors generalize well to spectral configurations different from
the trained one?

The rest of the chapter is organized as follows. In Section 5.2 we describe each
network model evaluated in this work, along with the train loss function to minimize.
In Section 5.3 we describe the training procedure that was followed to train each
network using a VIS-NIR dataset and the hardware environment used. The resulting
evaluations are described in Section 5.4, and finally, conclusions are presented in
Section 5.4.

35



36 CNN-BASED CROSS-SPECTRAL DESCRIPTION

5.2 Network architectures

Four CNN-based model architectures are considered in this study (i.e., 2-channel
(2ch), siamese (siam), pseudo-siamese (psiam) and triplet models). The first three
take as input two image patches at training and testing time, and the triplet model
takes three input patches at training and two at testing time. We selected this four
models mainly for two reasons

• Trained models are publicly available, so it is possible to compare their monoc-
ular trained model with our cross-spectral trained ones. This with the objective
of answer the following two questions: i) can CNN-based descriptors trained in
the visible domain be used in cross-spectral scenarios without modifications?—
hand-made descriptors cannot. and ii) which is the difference between trained
networks with visible monocular data compared to trained networks using
multi-spectral data?.

• Secondly, these network architectures can be easily adapted for the cross-
spectral case, just setting each network input to a particular spectral band.
It is important to keep the setting at testing time

Image
Spectrum 

#2

Image
Spectrum 

#1

Input 
Patch

Input 
Patch

Feature Network
(CNN)

Metric Network
(Linear Layer)

Figure 5.1: 2-ch network architecture

5.2.1 2-channel network

The 2-channel network model is depicted in Figure 5.1. It takes as input an image
of two channels, where each channel corresponds to one of the two patches to be
compared; one spectral band per channel. The network is composed of a series of
convolution and normalization layers and a decision layer at the top that is trained
to evaluate the similarity between the input patches.
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The 2-ch network model architecture combines information of both spectral bands
at the beginning of the feed forward process, processing in the next layers the com-
bined information obtained in the previous steps. Processing the data jointly from the
first layer has proven to be the best solution regarding feature matching performance
in the visible monocular case. However, it has its drawbacks. Is one of the slowest
solutions when matching local features, since it is not possible to reuse computed
output layers, i.e., each patch pair is unique.

A margin criterion is used to train this network model. The margin criterion
optimizes the two-class classification hinge-based loss term described by the following
equation:

min
w

λ

2
||w||2 +

N∑
i=1

max(0, 1− yioneti ), (5.1)

where w corresponds to the network weights, oneti is the network output for the i -th
training sample, λ is the weight decay term and y is i-th training label. y can take
two values, +1 if the i-th training sample is a correct match or -1 if it is a wrong one.
In other words, the network is trained in such a way that we expect large positive
values at the output of the network when both patches are the same and small values
when the patches are different.

Image
Spectrum 

#2

Image
Spectrum 

#1

Feature Network
(CNN)

Feature Network
(CNN)

Metric Network (Linear Layer)
or L2 loss fuction

Figure 5.2: Siamese and pseudo-siamese network architecture.

5.2.2 Siamese network

In essence, a siamese network is quite similar to traditional feature matching ap-
proaches, i.e., the network firstly computes feature descriptors for each image patch
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and then evaluates the similarity between the descriptions using some distance mea-
sure. The network consists of two CNN feature networks, which basically imitates a
feature descriptor, with shared parameters that process each patch independently and
a final decision network that acts as a distance metric (see Figure 5.2). Each feature
network is composed of a series of convolutions, ReLU and max-pooling layers, while
the metric network is composed of dense layers. It is important to notice that the
final layer of the siamese network could be omitted at testing time, and replaced by
a p−norm measure.

Siamese networks are slower than 2ch network at training but can be faster at
prediction. This is mainly because, once trained, it is possible to divide the network
into two different stages and separately compute the feature description from the
similarity measure, i.e., it is plausible to reuse the output layers from previously
introduced patches.

Although different loss function could be used with this type of network, we used
the one described in the 2ch-network section. We did the same for the pseudo-siamese
network

5.2.3 Pseudo-siamese network

The pseudo-siamese network is essentially a siamese network but without shared pa-
rameters, i.e., each feature network is different from the other. This is important
since the pseudo-siamese network can end up learning custom convolutional filters for
each input spectrum, giving more flexibility to the network. The setting used in the
current work is the same than the ones used in the siamese network.

5.2.4 Triplet network

A triplet model is an architecture used at a training stage, since at testing stage it
is the same than a siamese network. Figure 5.3 shows the training architecture of a
triplet network. The network has three inputs, where each input corresponds to a
different image patch. Formally, the input is a tuple T = {w, x, y}, where w and x
are two matching image patches and y is a non-matching image patch to w and x.
Each one of these patches will feed one of the three CNN towers that the network
has; CNN 1, CNN 2 and CNN 3. The three CNN towers of the network share the
same parameters during the entire training stage. Finally, the output of each tower
will be a descriptor D of configurable size, that describes each input patch.

The loss function is described as follows:
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Figure 5.3: CNN architectures to describe or match similarities
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Loss(Ti) = P 2
m + (Pnm − 1)2 (5.4)

where, ∆+ corresponds to the L2 distance between the descriptors of the matching
pair w and x, ||D(w), D(x)||2; ∆−

1 corresponds to the L2 distance between the de-
scriptors of the non-matching pair w and y, ||D(w), D(y)||2; and ∆−

2 corresponds to
the L2 distance between the descriptors of the second non-matching pair x and y,
||D(x), D(y)||2.

In essence, the objective of the loss function is to penalize small L2 distances
between non-matching pairs, and large L2 distances between matching pairs. Ideally,
we want Pm to be equal to zero and Pnm to be equal to one, i.e, ∆+ << min(∆−

1 ,∆
−
2 ).

Computing the minimum L2 distances between the non-matching pairs is a type
of mining strategy, where the network always performs backpropagation using the
hardest non-matching sample of each triplet T , i.e., the non-matching sample with
the smallest L2 distance. The mining strategy is used to avoid the problems described
in [50]. Finally, the mean square error is used to penalize values of Pm different of
zero and values of Pnm different of one.

One key difference between monocular and cross-spectral image pairs is that for
each cross-spectral matching pair we have two non-matching possible image patches;
one for each spectrum. So the question is, which image patch we use as y?. We
propose three simple and naive solutions: i) y is an RGB non-matching image, ii) y
is an NIR non-matching image and iii) y is randomly chosen between RGB and NIR
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images. In Section 5.4 we evaluate each alternative.

5.3 Training

All the networks described in the previous section were trained in a supervised way.
To that end, we used the VIS-NIR cross-spectral image patch dataset described in
Chapter 3.

The 2-ch, siamese and pseudo-siamese models were trained using Stochastic Gra-
dient Descent (SGD) with a learning rate of 0.05, L2 weight decay (λ) of 0.0005, a
momentum of 0.9 and batches of 256 samples. As recommended in [8], the training
data was shuffled at the beginning of each epoch, and each input patch is normalized
by its intensity mean. All the patches from the country category were used to train
the networks, where 80% of the data were used as training data and 20% of the data as
validation. Additionally, we augmented the training data flipping the cross-spectral
image pairs horizontally, vertically and rotating both images in 90 degrees—to in-
crease the training data and prevent overfitting.

The triplet network, also known as PN-Net [4], was train almost in the same
way to the previously described networks, but with the following training parameter
differences: learning rate of 1.1, weight-decay of 0.00001, batch size of 128, momentum
of 0.9 and a learning rate decay of 0.000001.

The 2ch network parameters used in the current work are listed in Table 5.1. The
siamese and pseudo-siamese feature networks have the same configuration than the
2ch network, just changing the metric network for the one described in Table 5.2.
The PN-Net layer description is shown in Table 5.3.

All the code was implemented in Lua using the scientific computing framework
Torch [12]. The hardware consisted of a 3.0 GHz Core I7 PC with a NVIDIA K40
GPU.

5.4 Experimental evaluation

Trained networks were tested with the two cross-spectral benchmarks presented in
Chapter 3. In all the experiments presented below the networks are referred to as
2ch-country (2-channel network model trained on the country sequence), siam-country
(siamese network model trained on the country sequence), psiam-country (pseudo-
siamese network model trained on the country sequence), PN-Net RGB (PN-Net net-
work trained on the country sequence using as third image a visible image), PN-Net
NIR (PN-Net network trained on the country sequence using as third image a NIR
image), and PN-Net RANDOM (PN-Net network trained on the country sequence
using as third image a random image, that could be VIS or NIR). The country se-
quence was selected for training for two main reasons: i) in a preliminary evaluation
stage the country sequence was one of the most difficult sequence in the VIS-NIR
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Layer Type Output Dim Kernel Stride

1 convolution 96 7x7 1
2 ReLU 96 - -
3 max-pooling 96 2x2 1
4 convolution 192 5x5 1
5 ReLU 192 - -
6 max-pooling 192 2x2 1
7 convolution 256 3x3 1
8 ReLU 256 - -

9 Linear 1 - -

Table 5.1: 2ch network parameters.

Layer Type Input Dim Output Dim

9 Linear 512 512
10 Linear 512 1

Table 5.2: Siamese and pseudo-siamese metric network parameters.

Layer Description Kernel Output Dim

1 Convolution 7x7 32x26x26
2 Tanh - 32x26x26
3 MaxPooling 2x2 32x13x13
4 Convolution 6x6 64x8x8
5 Tanh - 64x8x8

6 Linear - 256

Table 5.3: PN-Net layer descriptions

dataset; and ii) it is also one of the sequences with more data available. Additionally,
for comparative evaluations with the state-of-art on VIS and cross-spectral patch sim-
ilarity, we present results obtained with six of the trained networks presented in [59],
SIFT [33], GISIFT [14], EHD [1] and LGHD [2].

5.4.1 VIS-NIR image patches

We evaluate the performance of our networks using the false positive rate at 95%
Recall (FPR95) on each category of the VIS-NIR scene dataset (as in [59]). To be
fair, we do not include the country sequence, since it was the sequence used to train
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our networks

The results of our tests are presented in Table 5.4. All our networks perform
better than the ones trained just with images from the visible spectrum. This is a not
surprising result, since those networks were not trained for such a task, however it tell
us that we cannot use this trained networks without modifications (fine-tunning) on
cross-spectral applications. Moreover, the 2ch-country network outperforms all the
other networks and descriptors in all the categories by a surprising margin. Clearly,
as pointed out in [59], the key on the performance of the 2ch network is that the
information is jointly processed right from the first layer.

(a) (b)

(c) (d)

Figure 5.4: Visualization of the first layer filters of: (a) and (b) 2ch network
filters trained in the visible spectrum domain (Yosemite); (c) and (d) 2ch
network filters trained in the VIS-NIR cross-spectral domain (our best case).

A visual comparison of the first layer filters learned by the networks can be seen
on Figure 5.4. Here we can see that our best model has learned similar filters to those
presented in (a) and (b); somehow this means that the first layer features learned for
image matching in different spectra are quite similar to those from grayscale image
matching. We can also see from the filters that our trained network searches for
lines and edges rather than textures, information that can be lost by switching to a
different spectrum. This is interesting, since having similar first layer filters means
that fine-tunning techniques can be applied to VIS similarity networks to work in
cross-spectral domains. However, the success of these techniques will depend on how
similar are the base datasets [58].
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Descriptor/Network Fi Fo In Mo Ol St Ur Wa Mean

SIFT [33] 39.4 11.3 10.1 28.6 19.6 31.1 10.8 40.3 23.9
GISIFT [14] 34.7 16.6 10.6 19.5 12.5 21.8 7.2 25.7 18.6
EHD [1] 48.6 23.17 30.2 33.9 19.6 27.3 3.7 23.5 26.6
LGHD [2] 18.8 3.7 8.1 11.3 8.2 6.7 7.4 13.9 9.8

2ch liberty [59] 30.1 1.8 4.5 24.1 8.2 15.2 2.2 35.8 17.2
2ch notredame [59] 26.7 1.7 4.6 21.4 9.0 15.9 2.9 33.0 16.4
2ch yosemite [59] 36.3 1.7 5.5 30.7 12.6 17.2 4.3 38.6 20.6
siam liberty [59] 38.4 27.0 19.1 27.7 16.5 26.0 12.0 31.8 26.1

siam notredame [59] 36.2 25.6 13.3 24.4 16.7 25.2 11.6 30.0 24.2
siam yosemite [59] 33.7 20.8 20.8 22.2 18.7 21.5 17.2 27.7 23.6

2ch-country 9.9 0.1 4.4 8.8 2.3 2.1 1.5 6.4 4.4
siam-country 15.7 10.7 11.6 11.1 5.2 7.5 4.6 10.2 9.6
psiam-country 17.0 9.8 11.1 11.8 6.7 8.2 5.6 12.0 10.3

PN-Net RGB 25.3 4.3 7.0 19.4 7.3 10.2 5.0 17.8 12.05
PN-Net NIR 24.7 4.6 6.5 15.8 7.8 10.8 4.7 16.5 11.40

PN-Net RANDOM 24.6 3.9 6.6 16.0 6.8 9.5 4.4 15.6 10.9

Table 5.4: Performance on the VIS-NIR local image patches dataset. The
results correspond to the false positive rate at 95% Recall (FPR95). The
smallest the better. The remaining eight categories from the dataset presented
in [15] are referred to as: Fi=Field, Fo=Forest, In=Indoor, Mo=Mountain,
Ol=Old-building, St=Street, Ur=Urban and Wa=Water.

5.4.2 VIS-LWIR image matching

The proposed network has been also evaluated as replacement of local feature de-
scriptors, i.e., we detect local feature points in each image pair, we extract patches
of 64x64 around each feature point and then we do the matching using our trained
networks in a brute-force manner. To that purpose, we selected the public VIS-LWIR
cross-spectral dataset from Chapter 3.

The selection of the local feature detector to be used in this evaluation was not
an easy task. In general local features detected in images from different spectrum
are different—a kind of low repeatability (see Figure 5.5). Hence, to minimize this
inherent drawback of working with cross-spectral images, we end up using custom
FAST [46] settings in each image pairs to have a similar response in both spectra.
These custom FAST settings increase the number of correct correspondences in the
VIS-LWIR cross-spectral scenario; as already mentioned, cross-spectral feature point
detection is still an open problem that needs special care in the tuning of user defined
parameters.

We evaluate the performance of our networks using the mean average precision
(mAP) as in the well-known local feature descriptor benchmark from [36], where the
average precision corresponds to the area under the precision-recall curve—recall 1
correspond to the best possible result. Figure 5.6 shows the results of our evaluation.
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(a) Thermal (b) Visible

Figure 5.5: Visualization of cross-spectral feature detection using SIFT. The
left is a LWIR image and the right the corresponding VIS image. This figure
is best viewed in color.

Similar to the VIS-NIR case the 2ch-country network outperformed all the other
networks and cross-spectral descriptors. On the contrary, 2ch networks trained in the
visible spectrum did not perform better than SIFT. Moreover, the results show that
a 2ch network model trained in the VIS-NIR cross-spectral scenario can obtain a high
mAP when matching image pairs from the VIS-LWIR domain. This generalization
is mainly because in both scenarios some of the same problems persist, like: loss of
texture and differences in the gradient directions. The generalization capability is
an important fact since the number of images from the VIS-NIR spectra available is
considerably higher in comparison with those from the VIS-LWIR spectra.
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Figure 5.6: VIS-LWIR local feature descriptor performance. The results
correspond to the mean average precision over all the images in the dataset.
The bigger the better.
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5.5 Conclusions

The cross-spectral similarity measure is a challenging task. Our results show that
using CNNs to determine the similarity between two patches from different spectra
is feasible, and more important it outperforms other alternatives. As an interesting
conclusion, in our experiments, a network trained on a VIS-NIR cross-spectral dataset
has been later on used in a VIS-LWIR dataset, outperforming the state-of-art in cross-
spectral image descriptors. This is an important result since the amount of public
data available in the LWIR spectrum is smaller than in other spectra.
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Chapter 6

Learning cross-spectral feature
descriptors with a quadruplet
network

In this chapter we present a novel CNN-based architecture, named Q-Net, to learn how
to describe image patches from two different spectral bands in the same way. Given
correctly matched and non-matching training image pairs, we train a quadruplet net-
work to map input image patches to a common vectorial representation. Our method
is inspired by the triplet network presented in the previous chapter but adapted for
cross-spectral scenarios, where, for each image patch, we have at least two possible
matching samples, one per each spectrum.

6.1 Introduction

In the previous chapter we tested and evaluated different network architectures that
can be used to describe image patches. Results showed that CNN-based methods,
designed to work with visible monocular images, could be successfully applied to the
description of images from two different spectral bands, with just minor modifica-
tions. Even more, results showed that such methods improved the state-of-the-art
performance in two cross-spectral benchmarks, outperforming previous hand-made
solutions.

In this chapter we present a novel CNN-based network model that is specifically
intended to describe image patches from two different spectral bands. Figure 6.1
shows an illustration of our proposal, referred to as Q-Net. Similarly to the PN-
Net, described in the previous chapter, Q-Net is mostly a descriptor training network
that consists of four copies of the same convolutional neural network, i.e., weights
are shared between all CNN, which accepts as input two matching pairs from dif-
ferent spectral bands. Once the network is feed by with the input patches, Q-Net

47
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computes several L2 distances between the resulting outputs of each CNN, obtaining
the hardest cases of matching and non-matching pairs. In other words, the matching
pair with the biggest L2 distance, and the non-matching pair with the smallest L2

distance, which later are used during the backpropagation process; other pairs are
not backpropagated. This is a type of data mining, which at a training time always
uses the hardest matching and non-matching pairs to feed the network. At testing,
our network behaves as a classic feature descriptor, just needing one of the four CNN
to work. Thus, our model is drop-in replacement to hand-made feature descriptors.

LOSS

MP1

MP2

Figure 6.1: Q-Net consists of four copies of the same CNN that accepts as
input two different cross-spectral correctly matched image pairs (MP1 and
MP2). The network computes the loss based on multiples L2 distance com-
parisons between the output of each CNN, looking for the matching pair with
biggest L2 distance and the non-matching pair with the smallest L2 distance.
Both cases are then used for backpropagation of the network. This can be
seen as positive and negative mining.

Our work is based on the recent success of the triplet network presented in [4] but
adapted to work with cross-spectral image pairs, where for each matching pair, there
are two possible non-matching patches; one for each spectrum.

6.2 Proposed approach

The motivations behind our quadruplet network are straightforward. As stated before,
for each cross-spectral matching pair we have at least two non-matching patches from
another spatial location, each one from one of the spectra to be trained. Similar to
triplets, we propose Q-Net, a quadruplet network for learning cross-spectral feature
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descriptors.

6.2.1 Network architecture

CNN 1 CNN 2

Convolution

Tanh

Linear

Convolution

Tanh

MaxPooling

Convolution

Tanh

Linear

Convolution

Tanh

MaxPooling

Loss

Matching pair

D(w) D(x)

CNN 3 CNN 4

Convolution

Tanh

Linear

Convolution

Tanh

MaxPooling

Convolution

Tanh

Linear

Convolution

Tanh

MaxPooling

Matching pair

D(y) D(z)

w x y z

Non-matching pairs

Figure 6.2: Q-Net training quadruplet architecture.

The architecture of Q-Net is similar to PN-Net, but using four copies of the same
network instead of three (see Figure 6.2). The input is a tuple Q, with four different
input patches Q = {w, x, y, z}, that is formed by two different cross-spectral matching
pairs: (w, x), and (y, z), allowing the network to mine not just non-matching cross-
spectral image pairs at each iteration, but also cross-spectral correctly matched pairs.

6.2.2 Loss function

Q-Net loss function extends the mining strategy from PN-Net presented in Chapter 5.
Specifically, we add two more distance comparisons to Pnm, making the loss suitable
for cross-spectral scenarios, and we extend the mining strategy from the non-matching
pairs to the correctly matched pairs. At each training step, the network uses the
matching pair with larger L2 distance and the non-matching pair with the smallest
L2 distance. The loss function is defined as follows:
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Loss(Qi) = P 2
m + (Pnm − 1)2 (6.3)

where, ∆+
1 corresponds to the L2 distance between the descriptors of the matching

pair w and x, ||D(w), D(x)||2; ∆+
2 corresponds to the L2 distance between the de-

scriptors of the matching pair y and z, ||D(y), D(z)||2; ∆−
1 corresponds to the L2

distance between the descriptors of the non-matching pair w and y, ||D(w), D(y)||2;
∆−

2 corresponds to the L2 distance between the descriptors of the non-matching pair
x and y, ||D(x), D(y)||2; ∆−

3 corresponds to the L2 distance between the descriptors
of the non-matching pair w and z, ||D(w), D(z)||2; and ∆−

4 corresponds to the L2

distance between the descriptors of the non-matching pair x and z, ||D(x), D(z)||2.

The proposed loss function takes into account all the possible non-matching com-
binations. For example, if we want to train a network to learn similarities between
the VIS and the NIR spectral bands, Pnm will compare two VIS-NIR non-matching
pairs, one VIS-VIS non-matching pair and one NIR-NIR non-matching pair; instead
of using a random function as we did with PN-Net proposed in the previous Chapter.
Moreover, since we are trying to learn a common representation between the NIR
and the VIS, comparing VIS-VIS and NIR-NIR cases helps the network to have more
training examples. Since it is necessary to have two cross-spectral matching pairs to
compute Pnm, it was natural to extend the mining strategy to Pm, obtaining at each
step the cross-spectral matching pair with the larger L2 distance.

Our method allows learning cross-spectral distances, mining positives and neg-
atives samples at the same time. This approach can also be used in mono-spectral
scenarios, providing a more efficient mining strategy than previous works. Results that
support our claim are presented in the next section. More importantly, our method
can be extended to other cross-spectral or cross-modality scenarios. Even more, it
can be extended to other applications such as heterogeneous face recognition, where
it is necessary to learn distance metrics between faces from different spectral bands.

6.2.3 Training

Q-Net was trained using Stochastic Gradient Descent (SGD) with a learning rate of
1.1, weight decay of 0.0001, batch size of 128, momentum of 0.9 and learning rate
decay of 0.000001. Trained data were shuffled at the beginning of each epoch and each
input patch was normalized to its mean intensity. The trained data was split up into
two, where 95% of the data was used as training data and 5% as validation. Training
was performed with and without data augmentation (DA), were the augmented data
were obtained by flipping the images vertically and horizontally, and rotating the
images by 90, 180 and 270 degrees. Each network was trained ten times to account
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for randomization effects in the initialization. Lastly, we used a grid search strategy
to find the best parameters.

Network layer details are described in Table 6.1. The layers and parameters are
the same from [4], which after several experimental results showed to be suitable for
describing cross-spectral patches. Notice that for feature description shallow models
are suitable, since lower layers are more general than the upper ones.

All the code was implemented using the Torch framework ( [12]). The GPU
consisted of an NVIDIA Titan X and the network was trained in between five and
ten hours when we used data augmentation.

Layer Description Kernel Output Dim

1 Convolution 7x7 32x26x26
2 Tanh - 32x26x26
3 MaxPooling 2x2 32x13x13
4 Convolution 6x6 64x8x8
5 Tanh - 64x8x8
6 Linear - 256

Table 6.1: Q-Net layer descriptions.

6.3 Experimental evaluation

6.3.1 Cross-spectral patch matching

In this section we evaluate the performance of our network on the VIS-NIR dataset
presented in Chapter 3. As in [3], we train on the country sequence and test in the
remaining eight categories.

Results are shown in Table 6.2. Firstly, we evaluated EHD ( [1]) and LGHD
( [2]), two hand-made descriptors that were used as a baseline in terms of matching
performance. The performance of LGHD is under 10% and can be considered as
state-of-art results—before the current work. Secondly, we test a siamese L2 network
based on the work of [59] that performs better than EHD, but worst than the state-
of-art. Thirdly, PN-Net and its variant were tested, not being able to surpass the
performance of LGHD without using data augmentation. On the other case, Q-Net
showed to be better than the state-of-art even without data augmentation, showing
the importance of mining on the non-matching and matching samples in cross-spectral
scenarios. Additionally, we tested our model increasing the training data using the
previously detailed data augmentation technique, improving the state-of-the-art by a
2.91%. For a more detailed comparison of the different feature descriptors evaluated
in the current work, we provide the corresponding ROC curves in Fig. 6.3.
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Figure 6.3: ROC curves for the different descriptors evaluated on the VIS-
NIR dataset. For Q-Net and PN-Net we selected the network with the best
performance. This figure is best viewed in color.
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Descriptor/Network Fi Fo In Mo Ol St Ur Wa Mean

EHD 48.62 23.17 30.25 33.94 19.62 27.29 3.72 23.46 26.26

LGHD 18.80 3.73 8.16 11.34 8.17 6.66 7.39 13.90 9.77

Siamese-L2 38.47 12.46 7.94 22.36 15.70 16.85 11.06 29.18 15.50

PN-Net RGB 25.33
(1.08)

4.41
(0.28)

7.00
(0.32)

19.37
(1.07)

7.31
(0.32)

10.21
(0.46)

5.00
(0.27)

17.79
(0.67)

12.05
(0.40)

PN-Net NIR 24.74
(0.98)

4.45
(0.14)

6.54
(0.25)

15.75
(0.44)

7.78
(0.19)

10.82
(0.25)

4.66
(0.14)

16.49
(0.34)

11.40
(0.15)

PN-Net Random 24.56
(1.00)

3.91
(0.20)

6.56
(0.43)

15.99
(0.60)

6.84
(0.31)

9.51
(0.36)

4.407
(0.34)

15.62
(0.61)

10.92
(0.34)

Q-Net 2P-4N 20.80
(0.81)

3.12
(0.20)

6.11
(0.27)

12.32
(0.49)

5.42
(0.13)

6.57
(0.40)

3.30
(0.11)

11.24
(0.50)

8.61
(0.14)

PN-Net Random DA 20.09
(0.65)

3.27
(0.27)

6.36
(0.14)

11.53
(0.57)

5.19
(0.20)

5.62
(0.20)

3.31
(0.28)

10.72
(0.36)

8.26
(0.24)

Q-Net 2P-4N DA 17.01
(0.33)

2.70
(0.17)

6.16
(0.18)

9.61
(0.38)

4.61
(0.18)

3.99
(0.09)

2.83
(0.13)

8.44
(0.14)

6.86
(0.09)

Table 6.2: FPR95 performance on the VIS-NIR scene dataset. Each net-
work, i.e., siamese-L2, PN-Net and Q-Net, were trained in the country se-
quence and tested in the other sequences as in [3]. Smaller results indicate
better performance. In brackets the standard deviation is provided. The
remaining eight categories from the dataset presented in [15] are referred
to as: Fi=Field, Fo=Forest, In=Indoor, Mo=Mountain, Ol=Old-building,
St=Street, Ur=Urban and Wa=Water.

6.3.2 Monocular patch matching

Although the proposed approach has been motivated to tackle the cross-spectral prob-
lem, in this section we evaluate the proposed architecture when just a visible spectrum
dataset is considered. This is intended to evaluate the validity of the proposed ap-
proach in classical scenarios.

For the evaluation we used the multi-view stereo correspondence dataset from [57],
which is considered a standard benchmark for testing local feature descriptors in the
visible domain (e.g., [4,23,50,59]). The dataset contains more than 1.2 million patches
of size 64x64 divided into three different sets: Liberty, Notredame and Yosemite,
where each image patch was computed from Difference of Gaussian (DOG) maxima.
We followed the standard protocol of evaluation, training our network three times,
one at each sequence, and testing the FPR95 in the remaining two sequences. In our
evaluation, we compared our model against two other learned L2 descriptors, the first
from [59] and the second from [4]; which can be considered state-of-the-art.

Quadruplets networks were trained using Stochastic Gradient Descent (SGD) with
a learning rate of 0.1, weight decay of 0.0001, batch size of 128, momentum of 0.9
and learning rate decay of 0.000001. Trained data was shuffled at the beginning of
each epoch and each input patch was normalized using zero-mean and unit variance.
We split up each training sequence into two sets, where 80% of the data were used
as training data and the 20% left as validation data. We used the same software and
hardware from the previous experiment. As in the previous experiment, Q-Net and
PN-Net networks were trained ten times to account for randomization effects in the
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Descriptor Siamese-L2 PN-Net-1 PN-Net-2 Q-Net

Training Testing

Notredame
Yosemite 15.2 8.5 8.5 7.7
Liberty 12.5 9.2 8.9 7.6

Yosemite
Notredame 18.8 4.5 4.4 4.1
Liberty 8.4 10.8 10.8 10.2

Liberty
Yosemite 20.1 9.5 8.8 9.3
Notredame 6.0 4.1 4.0 3.8

mean 13.5 7.8 7.5 7.1

Table 6.3: Matching results in the multi-view stereo correspondence dataset.
Evaluations were made on the 100K image pairs groundtruth recommended
from the authors. Results correspond to FPR95. Smallest results indicate
better performance. In brackets the standard deviation is provided. PN-Net-
1 uses 2.560.000 patches, PN-Net-2 3.840.000, and Q-Net 2.560.000.

initialization. This dataset it was firstly introduced in Chapter 3.

Table 6.3 shows the results of our experiments. Q-Net and PN-Net performed
better than the Siamese-L2 network proposed by [59], which is an expected result,
since the siamese-L2 network was not optimized for L2 comparison during training as
the other two networks were. Q-Net performed better than PN-Net by a small margin
but using much less training data. When comparing both techniques with the same
amount of data, the difference becomes bigger. Meaning that our network needs less
data to train than PN-Net, i.e., Q-Net needs less training data than PN-Net and it
converges more quickly.

Regarding training time, both networks perform similarly. In our experiments,
PN-Net was about 9% faster than Q-Net when both networks where trained with the
same amount of patches. In essence, the improved accuracy performance of Q-Net is
related to a small loss in training speed.

6.3.3 Network parameters

In addition, we tested the performance when different descriptor sizes were used.
Fig. 6.4 shows the results of our experiment. From the figure we can see that there
is a gain in increasing the descriptor size until 256. Descriptor sizes bigger than 256
did not perform better.

6.4 Conclusions

Experimental results with a VIS-NIR dataset showed the validity of the proposed
approach, improving the state-of-the-art by almost 3%. Additionally, results showed
that the proposed approach is also valid for training local feature descriptors in the
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Figure 6.4: FPR95 performance on the VIS-NIR scene dataset for Q-Net
2P-4N using different descriptor sizes ((a) 64, (b) 128, (c) 256 and (d) 512).
Shorter bars indicate better performances. On top of the bars standard devi-
ation values are represented with segments.

visible spectrum, providing a network with similar performance to the state-of-the-art,
but requiring less training data.
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Chapter 7

Application of cross-spectral
features

In this chapter we explore the application of cross-spectral feature descriptors as part
of a visual odometry system for ground vehicles based on the simultaneous utilization
of cameras from different spectral bands. It encompasses the stereo rig described
previously in Chapter 3, composed of an optical (visible) and a thermal sensors. Log-
Gabor wavelets at different orientations and scales are used to extract interest points
from both images. These are then described using a combination of frequency and
spatial information within the local neighborhood. Matches between the pairs of
multimodal images are computed using the cosine similarity function based on the
descriptors. Pyramidal Lucas–Kanade tracker is also introduced to tackle temporal
feature matching within challenging sequences of the data sets. The vehicle egomotion
is computed from the triangulated 3-D points corresponding to the matched features.
A windowed version of bundle adjustment incorporating Gauss–Newton optimization
is utilized for motion estimation. An outlier removal scheme is also included within
the framework to deal with outliers.

7.1 Introduction

During the last decade, the automotive industry witnessed the introduction of a vari-
ety of cameras to enhance vehicles’s safety (e.g., thermal and parking cameras). De-
veloping localization techniques on these grounds represents an interesting research
path for the coming years. Studies on using visual information for self-localization
have been conducted over the last decades. Visual odometry (VO) along with visual
simultaneous localization and mapping (SLAM) represent the main vision driven lo-
calization solutions. VO involves the estimation of the egomotion of an agent using
only visual information from one or multiple cameras. It has been widely investigated
in computer vision and robotics. Early attempts to recover motion from vision were
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made as far as three decades ago [37]. VO was coined as so for the first time in [42]. Its
applications span a variety of domains such as robotics, automotive, and space mis-
sions. In the context of driving assistance and autonomous systems, self-localization
represents a fundamental issue. The vehicle’s own movement (egomotion) is a prereq-
uisite for higher level tasks (e.g., scene perception). In general, this task is performed
using wheel odometry, Inertial Measurement Units (IMUs), or GPS devices. Another
way to accomplish that task is through VO, which takes advantage of information
from cameras. This information can overcome negative aspects of wheel odometry,
particularly in slippery terrain. In addition, cameras can mitigate the drawbacks of
IMUs by providing less drifty estimates of the motion. Furthermore, GPS devices,
although very costly, can suffer shortages or inaccuracies. In this case also VO comes
as a cheaper and reliable alternative.

In this Chapter, the feasibility of egomotion estimation from cameras working in
different spectral bands is explored. The aim is to extend the concepts of VO to mul-
tispectral odometry (MO). In the field of driving assistance systems, these types of
cameras are already deployed to tackle a variety of problems. Infrared (IR) cameras
are used to improve night-time driving experience as they are able to capture scene
elements in the dark. Pedestrian detection and collision avoidance mechanisms based
on day-time cameras were extended to night-time using IR technology. Our motiva-
tion is to take advantage of equipment already in place to get more functionalities.
The vehicle motion is estimated incrementally on a frame-to-frame basis using only
the acquired stereo image pairs with no prior knowledge of the environment. The sys-
tem is capable of estimating its 6 degrees of freedom (DOF) without use of filtering
techniques. These are generally used with SLAM algorithms, where the choice of the
filter influences the accuracy of the motion estimates.

7.2 Feature extraction and matching

As discussed in previous Chapters, feature extraction is a low-level image processing
task that represents a prerequisite for most computer vision applications. This is
particularly true in the case of autonomous navigation applications, where essential
information contained within an image needs to be extracted.

7.2.1 Feature extraction

Phase congruency (PC), the adopted feature detector, is derived from the work done
by Morrone and Owens [39] based on the local energy model (LEM). This model
was shown to successfully explain a number of psychophysical effects in human fea-
ture perception [40]. The LEM assumes that image features are located in the fre-
quency domain, where their Fourier components are maximally in phase. Tradition-
ally, intensity-based extractors assume them to be at points of maximal intensity
gradients. These classical operators exhibit a common behavior. The corner response
varies considerably with image contrast and changes in lighting conditions making
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the setting of appropriate thresholds a difficult task. In [27], Kovesi represented the
PC at a position x as follows:

PC2(x) =

∑
nW (x)bAn(x)∆Φ(x)− T c∑

nAn(x) + ε
(7.1)

where
∆Φ(x) = cos(Φn(x)− Φ̄(x))− |sin(Φn(x)− Φ̄(x))| (7.2)

In (7.1) and (7.2), An(x) and Φ(x) represent, respectively, the amplitude and
phase of the n-th component at position x; W (x) is a factor that weights for fre-
quency spread; ∆Φ(x) is the phase deviation; T is the estimated noise influence; and
ε is a small constant added mainly to avoid division by zero. The symbols b c denote
that the enclosed quantity is equal to itself when its value is positive and zero other-
wise. This means that only energy values that exceed the noise level T are taken into
account in the result. In (7.2), Φ̄(x) represents the weighted mean phase angle. In
practice, the PC is computed using banks of Log-Gabor filters at different frequen-
cies and orientations. Our implementation comprises a set of 24 Log-Gabor filters
corresponding to six orientations at four frequencies. They are used to obtain the PC
map of the images used to extract edges and corners by calculating the maximum
(M) and minimum (m) moments

M =
1

2
(c+ a+

√
b2 + (a− c)2) (7.3)

m =
1

2
(c− a+

√
b2 + (a− c)2) (7.4)

where
a =

∑
(PC(θ)cos(θ))2 (7.5)

b =
∑

(PC(θ)cos(θ))sin(θ)) (7.6)

c =
∑

(PC(θ)sin(θ))2 (7.7)

where PC(θ) represents the PC value determined at orientation θ and the sum oper-
ation is performed for the set of the used orientations. At this stage, a given pixel is
labeled as an edge if its maximum moment is large. It is labeled as an corner if, at
the same time, its minimum moment is also large. Figure 7.1 shows the resulting edge
map for a multispectral image pair. In order to improve the detection and match-
ing cross-spectral approach from [41], nonmaxima suppression, and feature spreading
were introduced.

1. Nonmaxima Suppression: Once corners are extracted, a common observation is
that they might be clustered. This can possibly add ambiguity when matching
those features. One solution to tackle this problem is the usage of nonmaxima
suppression. It is used in computer vision applications and more specifically
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Figure 7.1: IR and visible stereo pair with corresponding edge maps: (a)
and (b) IR and visible images; (c) and (d) corresponding edge maps. (Images
from our data set).

in feature extraction algorithms [33]. It mainly consists in keeping only cor-
ners larger than all their neighbors. Figure 7.2 illustrates the corners obtained
before and after applying the nonmaxima suppression using a three-pixel neigh-
borhood.

2. Spreading Features Across the Image: A common problem with feature de-
tectors is that some areas of the images are overloaded with interest points,
whereas other regions are left featureless (i.e., nearly empty). This is due to
the fact that the detection process is carried out at a small scale where only a
restricted area around a given pixel is considered. Fortunately, there are alter-
natives for this limitation. In our work, the considered image is subdivided into
subimages, where the detection takes place. A maximum number of features
are allowed per subimage to guarantee the spread of interest points to all image
regions if there is enough texture. Figure 7.2 illustrates an example contrasted
to the original detection scheme.

7.2.2 Feature description

The next step is matching the extracted keypoints. For this aim descriptors are
computed based on the edge histogram descriptor (EHD) [1] and combined with the
Log-Gabor coefficients (24 elements) calculated in the previous step. Although this
descriptor has lower matching performance than the descriptor proposed in Chapter 4
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Figure 7.2: Extracted features in a stereo pair (left:IR, right:visible): (a)
and (b) Raw; (c) and (d) using nonmaxima suppression; (e) and (f) using
subimage extraction.

it is much faster, and thus it fits better for this kind of applications, were the matching
speed is important1.

7.2.3 Matching

There are mainly two types of matching tackled within the scope of this work. This
is driven by the fact that at any time t, the algorithm is fed with four input images:
left and right at times t− 1 and t. Therefore, in addition to the stereo matching that
takes place every time a stereo image pair is acquired; there is a temporal (sequential)
matching that needs to be addressed. For this dual objective, the cosine similarity
function is used to compare features descriptors. Let DL be the descriptor of the

1CNN-based solutions were not evaluated, since were introduced after this work
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feature fL at position (xL, yL) in the left image. Similarly, let DR be the descriptor
of a potential match fR at position (xR, yR) in the right image within a search window
dispx×dispy centered at (xL, yL). dispx and dispy account for the maximum expected
horizontal and vertical disparities, respectively. The similarity function is given by

S(DL, DR) =

∑
dLj

dRj√∑
j d

2
Lj

∑
j d

2
Rj

(7.8)

where (DL, DR) are the descriptors of the compared features; dLj
, dRj

are, re-
spectively, the j-th coefficients of (DL, DR). The feature in the right image that
maximizes the similarity function for a given feature in the left image is selected as a
potential match. A threshold is then applied to keep only strong matches. As stated
above, the algorithm is fed with four images: previous left (imLt−1), previous right
(imRt−1), current left (imLt

), and current right (imRt
). The matching is carried out

in a loop fashion [20] to keep only features that find their correspondences across all
four images. Figure 7.3 illustrates the different steps. We first start by finding stereo
matches between (imLt−1

) and (imRt−1
) (I). Then, sequential matches are found

between (imRt−1) and (imRt) (II). Another stereo matching is performed between
(imLt) and (imRt) (III). Finally, a last sequential matching is performed between
(imLt−1

) and (imLt
) (IV). At this stage, if the starting and ending feature points are

identical, then the match is accepted. Otherwise, it is simply rejected. This process
is carried out for all the features extracted in the first image (imLt−1

).

Figure 7.3: Illustration of the loop matching steps.
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Since the multispectral image pairs are rectified, the search window (2-D) reduces
to a search line (1-D) in the stereo matching process. Correspondences are expected
to be found on the same line (i.e., epipolar constraint) of the left and right images.
However, this is not the case with the sequential matching where a 2-D search would
be still required.

7.3 Motion estimation

The proposed algorithm for egomotion estimation is based on a reduced version of the
wide variety of bundle adjustment algorithms surveyed in [54]. This version is called
WBA as it analyzes only a portion of the image set to derive the motion estimates. In
our case, only the previous and current image pairs of the sequence are used at each
time step. First, features are extracted and matched in all four images as described
in Section 7.2. Egomotion estimation is achieved using these matches by minimizing
reprojection errors using Gauss–Newton optimization within the WBA framework.
An outlier rejection scheme based on random sample consensus (RANSAC) [17] is
included prior to the final motion optimization step. Outliers that occur due to false
matches or matches detected on independently moving objects are dealt with. Each of
the aforementioned steps is detailed here along with a reminder of the camera model.

7.3.1 Camera Model

In the current work a multispectral stereo vision setup is considered. The intrinsic
and extrinsic calibration parameters of the camera are assumed to be known. Let K
be the calibration parameters matrix. Hereinafter, the left camera is considered as
the reference camera. The relationship between the homogeneous image coordinates
x̂ = (u, v, 1) and the camera coordinates XC = (XC , YC , ZC) is given by:

x̂ = K.Xc (7.9)

It is worth mentioning that the parameters matrix K is identical for both cameras
after rectification of the images. Considering the projections on the left and right
images, this yields to:

K = KL = KR =

αu 0 u0

0 αv v0

0 0 1

 (7.10)

where αu, αv correspond to the focal length u0, v0 the principal point coordinates.
Therefore, the projections x̂L = (uL, vL, 1) and x̂R = (uR, vR, 1) on the left and right
cameras, respectively, are given by:
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x̂L = K −XC (7.11)

x̂R = K.(XC − (bL, 0, 0)T ) (7.12)

where bL denotes the stereo baseline. Note that vL and vR are identical. It is then
convenient to define a vector y = (uL, vL, uR) of the projected coordinates on the
stereo images obtained by applying the projection function π to a 3-D point X (with
respect to the left camera):

y = f(X) =

uLvL
vR

 =

 αu
(
X
Z − u0

)
αv
(
Y
Z − v0

)
αu
(
X−bL
Z − u0

)
 (7.13)

We assume that the camera parameters do not change with time allowing the
bundle adjustment to not recompute them again.

7.3.2 Motion parameters

The camera/vehicle motion can be regarded as a combination of rotations and trans-
lations embodied in a motion parameters vector m = (φ, θ, ψ, tx, ty, tz). The first
three parameters correspond to the Euler rotations and form the rotation matrix
R = (φ, θ, ψ), whereas the last parameters form the translation vector t = (tx, ty, tz).
Writing the transformation matrix Mp(m) derived from the motion parameters gives:

Mp(m) = Txyz(t).Rx(φ).Ry(θ).Rz(ψ) (7.14)

This transformation matrix, in homogeneous coordinates, represents the evolution
of the motion of a given vector according to the 6 DOF parameters m. In order to
retrieve the motion parameters m, the following bundle adjustment formulation of
the reprojection error function is minimized:

S(m) =
1

2

n∑
i=1

q∑
j=1

rj(m,X
(i))2 (7.15)

where rj represents the residuals that are functions of the motion vector m. X(i) cor-
responds to the observations. By observations, it meant the 3-D coordinates obtained
from the triangulation of matched features across a stereo image pair. According
to [54], Gauss–Newton optimization postulates that the optimal solution m to (7.15)
can be computed in an iterative manner by calculating an increment δm at each it-
eration using the Jacobian matrix J ≡ dr

dm of the residuals vector with respect to the
motion parameters m as:
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(JT .J).δm = −JT .r (7.16)

where r ∈ Rn is the residual vector and (JT .J) represents an approximation of the
Hessian matrix [54]. There are typically two reprojection strategies for motion esti-
mation where either points from the previous pair are reprojected into the current
frame or the other way round. However, as stated in [45], combining both reprojec-
tions yields better estimates of the motion. Following the same strategy, the residuals
are defined as rd ∈ R6:

rd = (rTf , r
T
b )T (7.17)

where

rf = yk − ŷk = yk − f(Mk(m̂).Xk+1) (7.18)

rb = yk+1 − ŷk+1 = yk+1 − f(M−1
k (m̂).Xk) (7.19)

In (7.18), ŷk corresponds to the estimated coordinates of the feature on the pre-
vious camera frame. Similarly, in (7.19), ŷk+1 are the estimated coordinates of the
feature on the current frame.

7.3.3 Outlier rejection

In order to improve the accuracy of the motion estimation, the algorithm has to get rid
of outliers. They are generally caused by matched features belonging to nonstationary
objects or simply undetected false matches from the matching process. One way to
deal with outliers is constraining the reprojection error residuals relative to a feature
to be bound by a user-defined threshold ε. This constraint is expressed by:

 q∑
j=1

rj(m,X(i)2

 < ε (7.20)

To this end, the bundle adjustment estimation is wrapped in a RANSAC scheme.
At each iteration three matched points are randomly selected to estimate the motion
parameters. The rest of the points are tested and classified as inliers or outliers
according to (7.20). The winning solution with the largest number of inliers is then
used to refine the motion parameters m.

7.4 Experimental evaluation

We tested the methodology previously described in the multispectral VIS-LWIR visual
odometry benchmark introduced in Chapter 3.
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The following results are based on both types of sequences namely semiurban
(Vid01 & Vid02) and rural (Vid03 & Vid04). Note that the term semiurban is used
instead of urban since a good portion of the images contain vegetation. Vid01 rep-
resents the simplest scenario, where the vehicle is traveling along a straight road.
Vid02 is a more challenging data set within the same environment, which contains
speed bumps and bends. Both sequences have proven to be challenging as many non-
stationary objects and significant illumination variations were experienced. Vid03
corresponds to a straight road followed by a left bend in a rural environment, where
moving vehicles were overtaking our car and where severe lighting conditions were en-
countered at and after the bend. Vid04 represents a U-turn at a roundabout, where
MO suffered from blurred images at the level of the roundabout. The major challenge
in this type of scenario is that images lack of nearby features. It is mainly due to the
nature of thermal imagery, where thermal response of the road varies less than in the
visible spectrum. This causes the corresponding image region to be textureless. The
direct impact is an underestimation of the motion as noted in [52]. It is believed to be
due to the lack of close-by features combined to the short baseline of the stereo-rig.

Figure 7.4: Comparison of the MO estimate of the altitude against GPS
measurements for Vid01. (a) Google Earth elevation profile of the trajectory.
(b) MO estimation of the altitude against GPS measurements. (c) Errors
between GT-GPS and GT-MO.

A fixed number of features (1500) is used. This guarantees a reasonable amount
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of matches for odometry. In addition, an outlier rejection threshold ε = 1.5 is selected.
As stated in Chapter 3, the geopositional information is provided by a low-cost GPS
considered as ’drifty’ ground truth. For this reason, a more precise Google Earth-
based ground truth (GT) was manually generated. It was created by introducing
control points (based on the images) every 100 frames in Google Earth. This allowed
us to obtain a more precise ground truth for comparison with MO estimated trajecto-
ries. Figure 7.4(b) illustrates the altitudes estimated by our MO compared with the
GPS readings for Vid01. Figure 7.4(a) represents the elevation profile extracted from
Google Earth corresponding to the same sequence. It shows that our MO estimates
are far more accurate than the GPS measurements. The same observation applies for
the estimated trajectory (of the same sequence) as it can be noted in Figure 7.4(c). It
illustrates errors between Google Earth-based GT and GPS measurements as well as
between GT and MO. Note that errors between GT-GPS are larger than between GT-
MO. Following these findings, the same strategy was adopted for all the sequences,
where two error graphs are always plotted along with the estimated trajectory. The
first error is computed for every frame between MO and the GPS readings that are
linearly interpolated due to their low update rate. The second error is the one com-
puted every 100 frames between GT and MO. The errors that are adopted to evaluate
the MO performance are based on the GT-MO graphs. Therefore, hereinafter, errors
are always expressed from the GT-MO graphs.

Figure 7.5 illustrates the trajectories computed by the GPS and MO for the
semiurban sequences (Vid01, Vid02). The peaks in errors (MO-GPS) are due to the
imprecision of the GPS and are given as indication only. From Figure 7.5(b) and (d),
it can be seen that the achieved results are successful reaching errors as low as 2%
and 3% for Vid01 and Vid02, respectively, and defined as:

error(%) =
100.mean(errors)

traveled distance
(7.21)

These errors do not correspond to the ones commonly provided in the literature
and defined as the ratio of the last offset (endpoint) to the traveled distance. The
latter errors do not provide information on the behavior of the system along the whole
trajectory on the contrary to the errors provided here. The estimated trajectories
from the rural sequences are shown in Figure 7.6. Errors obtained in this scenario
(rural environment) are slightly higher than in urban sequences for the aforementioned
reasons. These errors are shown in Figure 7.6(b) and (d). They correspond to 5% and
4% for Vid03 and Vid04, respectively. In general, the system is able to temporally
track 40–50 features due to the textureless nature of thermal imagery. However, in the
case of rural scenarios, most of them correspond to far features therefore increasing
the errors in the estimation process. In severe lighting conditions, the number of
tracked features falls considerably (6–10), making the motion estimation even noisier.
Restrictions imposed by the RANSAC-based outlier rejection deal with the wrong
matches and allow more robust estimations.
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Figure 7.5: MO trajectories and traveled errors for semiurban sequences:
(a) and (c) MO trajectories for Vid01 and Vid02 respectively (yellow line:
GPS; red line: MO; yellow circle: starting point); (b) and (d) corresponding
traveled errors.

7.5 Conclusions

A multispectral stereo odometry solution, that uses cross-spectral matching as a core
component, has been introduced To the best of our knowledge, it represents the first
attempt in the literature. Features are extracted using a frequency-based detector,
namely, PC, and described using a combination of spatial and frequency information.
Motion is retrieved using a sliding WBA incorporating Gauss-Newton optimization
and RANSAC for outlier removal. Tests were performed under real traffic conditions.
Shown results validate our approach and more importantly demonstrate the possibility
to achieve MO.
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Figure 7.6: MO trajectories and traveled errors for rural sequences: (a) and
(c) MO trajectories for Vid03 and Vid04 respectively (yellow line: GPS; red
line: MO; blue circle: starting point); (b) and (d) corresponding traveled
errors.
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Chapter 8

Summary and future work

In this thesis, we review and contribute to the local feature description problem
when cross-spectral images are considered. The work starts by proposing a novel
approach based on the combination of frequency and spatial information, in a multi-
scale scheme, as feature description. Then, we contribute by proposing a CNN based
architecture, specifically intended to describe image patches from two different spec-
tral bands. Finally, an application based on the usage of local feature description in
cross-spectral domains is presented showing the advantages of working with hetero-
geneous information. In addition to the three main contributions mentioned above,
in this dissertation, two different multi-spectral datasets are generated and shared
with the community to be used as benchmarks for further studies. In this chapter, a
summary of the thesis and future work are presented.

8.1 Summary

This thesis reviews the state of the art in local feature descriptors and evaluates their
performance when they are used in the cross-spectral domain. Coarsely speaking, the
thesis contains three sections. The first section includes Chapters 2 and 3, which helps
to understand the problem and define the evaluation framework. In Chapter 2 the
most relevant work in local feature descriptors, including both classical hand-made
and novel CNN based approaches, and cross-spectral applications are reviewed. After
this initial study, in Chapter 3 the manuscript presents the benchmarks proposed to
evaluate the research work as well as to share with the community working in the
multi-spectral domain. It should be mentioned that the algorithms proposed in the
whole thesis have been validated with large data sets. In other words, a large amount
of work has been devoted to the generation of cross-spectral datasets, which includes
the setup of the acquisition systems (acquisition software, external triggers, camera
calibration, etc.) and the corresponding image rectification and registration. All the
data sets collected during these years in the context of the thesis are now available

71



72 CONCLUSIONS

for the research community.

The second section includes Chapters 4, 5 and 6. In Chapter 4 the first contri-
bution to the local feature descriptor is given. It consists of a Log-Gabor Histogram
Descriptor (LGHD) based on the combined usage of frequency and spatial infor-
mation. The approach is implemented in a multi-scale and multi-oriented scheme,
obtaining better performance than classical hand-made contributions when used in
cross-spectral domains. In spite of the obtained results, it should be mentioned that
the performance is not as good as in the mono-spectral domain. Hence, to overcome
the challenge of working with information from different spectral bands, in Chapters 5
four different CNN based architectures are evaluated to describe image patches. This
study helps us to obtain interesting conclusions, such as the possibility to train a net-
work on a VIS-NIR cross-spectral dataset and later on use it in a VIS-LWIR dataset.
Additionally, this study inspires the Q-Net architecture proposed in Chapter 6. This
novel architecture is specially devoted to tackle the cross-spectral problem. The re-
sults obtained with the architecture presented in Chapter 6 overpass the state of the
art regarding L2 CNN-based descriptors; additionally, it shows that this architecture
is also useful in mono-spectral domains.

Finally, the last section includes Chapter 7. In this chapter, an application of
local feature description using cross-spectral images is presented. It tackles the visual
odometry problem showing one useful application of cross-spectral image descriptors.

8.2 Future work

Through the research work during these years different problems have been tackled,
and their relationship has been studied. We identified several possibilities to be
explored to extend and improve the work presented in this dissertation. The future
work comprises short-term challenges and long-term goals as detailed below:

Cross-spectral data set generation: as mentioned in Chapter 3, an essential
component of any research work are the evaluation data sets. In the cross-spectral
domain there is a limited amount of data sets available to the community. Recently,
under the framework of IEEE Workshop on Perception Beyond the Visible Spectrum,
which is held every year in conjunction with the CVPR conference, a repository
collecting public data set is being created. We are working by collecting new cross-
spectral data sets (RGB-NIR with new single sensor cameras), which will be ready
in the short-term. In the long term we expect to include other spectral bands and
generate more elaborated data set by: i) segmenting objects in the scene at each
spectral band; and ii) adding image meta-data (e.g., annotating materials of each
object, temperature, etc.).

CNN architectures: One of the biggest challenges in using deep learning so-
lutions in the cross-spectral domain is the low amount of available data. For that
reason, an interesting idea to explore in the future is the learning of cross-spectral
feature layers, which could be used to train CNN-based solutions in a particular spec-
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tral band, and later be used on another, without any modifications. In other words,
a network that is trained, knowing the limitation of the other network where is going
to be used in the future.

Cross-spectral image based applications: the contributions of this thesis
can be applied to other cross-spectral domains. At the moment we are exploring the
combined usage of the visible spectrum with ultraviolet, obtaining appealing results
in the wood inspection. In the long-term, we expect to do some contribution in
the heterogeneous face recognition field using single sensor cross-spectral cameras.
Thermal inspection of buildings and applications of NIR imaging in the biological
domain will be also explored.



74 CONCLUSIONS



List of Publications

This dissertation has led to the following communications:

Journal Papers

• Cristhian A. Aguilera, Angel D. Sappa, Cristhian Aguilera & Ricardo Toledo.
(2017). Cross-spectral local descriptors via quadruplet network. SENSORS

• Angel D. Sappa, Cristhian A. Aguilera, Juan A. Carvajal Ayala, Miguel Oliveira,
Denis Romero, Boris Vintimilla & Ricardo Toledo. (2016). Monocular visual
odometry: A cross-spectral image fusion based approach. Robotics and Au-
tonomous Systems.

• Angel D. Sappa, Juan A. Carvajal, Cristhian A. Aguilera, Miguel Oliveira, Den-
nis Romero & Boris X. Vintimilla. (2016). Wavelet-based visible and infrared
image fusion: A comparative study. SENSORS

• Tarek Mouats, Nabil Aouf, Angel D. Sappa, Cristhian A. Aguilera & Ricardo
Toledo. (2015). Multispectral stereo odometry. Transactions on Intelligent
Transportation Systems

• Pablo Ricaurte, Carmen Chillán, Cristhian A. Aguilera, Boris X. Vintimilla
& Angel D. Sappa. (2014). Feature point descriptors: infrared and visible
spectra. SENSORS

Conference Contributions

• Cristhian A. Aguilera, Xavier Soria, Angel D. Sappa & Ricardo Toledo. (2017).
RGBN multispectral images: a novel color restoration approach. PAAMS.

• Cristhian A. Aguilera, Francisco J. Aguilera, Angel D. Sappa, Cristhian Aguil-
era & Ricardo Toledo. (2016). Learning cross-spectral similarity measures with
deep convolutional neural networks. PBVS, CVPRW

75



76 LIST OF PUBLICATIONS

• Julien Poujol, Cristhian A. Aguilera, Etienne Danos, Boris X. Vintimilla, Ri-
cardo Toledo & Angel D. Sappa. (2016). A visible-thermal fusion based monoc-
ular visual odometry. IBC

• Mildred Cruz, Boris Vintimilla, Cristhian A. Aguilera, Ricardo Toledo & Angel
D. Sappa. (2015). Cross-spectral image registration and fusion: An evaluation
study. EECSS

• Cristhian A. Aguilera, Angel D. Sappa & Ricardo Toledo. (2015). LGHD: A
feature descriptor for matching across non-linear intensity variations. ICIP

• Naveen Onkarappa, Cristhian A. Aguilera, Boris X. Vintimilla & Angel D.
Sappa. (2014). Cross-spectral correspondences using dense flow fields. VISSAP

• Pablo Ricaurte, Carmen Chillán, Cristhian A. Aguilera, Boris X. Vintimilla &
Angel D. Sappa. (2014). Performance evaluation of feature point descriptors
in the infrared domain. VISSAP

• Cristian Duran-Faundez, Cristhian A. Aguilera & Arnoldo S. Norambuena.
(2010). Experimenting with RSSI for the perception of moving units in intelli-
gent flexible manufacturing systems. ICIT



Bibliography

[1] C. Aguilera, F. Barrera, F. Lumbreras, A. Sappa, and R. Toledo. Multispectral
image feature points. Sensors, 12(9):12661–72, January 2012.

[2] C. A. Aguilera, A. D. Sappa, and R. Toledo. Lghd: A feature descriptor for
matching across non-linear intensity variations. In Image Processing (ICIP),
2015 IEEE International Conference on, pages 178–181, Sept 2015.

[3] Cristhian A. Aguilera, Francisco J. Aguilera, Angel D. Sappa, Cristhian Aguil-
era, and Ricardo Toledo. Learning cross-spectral similarity measures with deep
convolutional neural networks. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) Workshops, page 9. IEEE, Jun 2016.

[4] Vassileios Balntas, Edward Johns, Lilian Tang, and Krystian Mikolajczyk. Pn-
net: Conjoined triple deep network for learning local image descriptors. CoRR,
abs/1601.05030, 2016.

[5] F. Barrera, F. Lumbreras, and A. Sappa. Multispectral piecewise planar stereo
using manhattan-world assumption. PRL, 34(1):52–61, January 2013.

[6] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust
features. In European conference on computer vision, pages 404–417. Springer,
2006.

[7] Luca Bertinetto, Jack Valmadre, João F Henriques, Andrea Vedaldi, and Philip
H S Torr. Fully-convolutional siamese networks for object tracking. In ECCV
2016 Workshops, pages 850–865, 2016.
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Jiaolong Xu, and Antonio M. López. Pedestrian detection at day/night time with
visible and fir cameras: A comparison. Sensors, 16(6), 2016.

[23] Xufeng Han, Thomas Leung, Yangqing Jia, Rahul Sukthankar, and Alexander. C.
Berg. Matchnet: Unifying feature and metric learning for patch-based matching.
In CVPR, 2015.

[24] Wenqian Huang, Baihai Zhang, Jiangbo Li, and Chi Zhang. Early detection of
bruises on apples using near-infrared hyperspectral image, 2013.

[25] F. Juefei-Xu, D. K. Pal, and M. Savvides. Nir-vis heterogeneous face recognition
via cross-spectral joint dictionary learning and reconstruction. In 2015 IEEE
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW),
pages 141–150, June 2015.



BIBLIOGRAPHY 79

[26] N. D. Kalka, T. Bourlai, B. Cukic, and L. Hornak. Cross-spectral face recognition
in heterogeneous environments: A case study on matching visible to short-wave
infrared imagery. In 2011 International Joint Conference on Biometrics (IJCB),
pages 1–8, Oct 2011.

[27] P. Kovesi. Phase congruency detects corners and edges. In DICTA, pages 309–
318, Sydney, Australia, December 2003.

[28] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification
with deep convolutional neural networks. In Proceedings of the 25th International
Conference on Neural Information Processing Systems, NIPS’12, pages 1097–
1105, USA, 2012. Curran Associates Inc.

[29] Stephen J. Krotosky and Mohan M. Trivedi. Mutual information based regis-
tration of multimodal stereo videos for person tracking. Comput. Vis. Image
Underst., 106(2-3):270–287, May 2007.

[30] Amanda W. Lewis, Sam T.S. Yuen, and Alan J.R. Smith. Detection of gas leakage
from landfills using infrared thermography - applicability and limitations. Waste
Management & Research, 21(5):436–447, 2003. PMID: 14661891.
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