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Abstract 
 
Parallel data scarcity problem is a major challenge faced by          

Statistical Machine Translation (SMT). The aim of this thesis is to           

enrich a SMT system by adding more morphological variants and          

new translation lexicon automatically generated out of monolingual        

data. To induce bilingual lexicon, instead of taking advantages of          

comparable corpora or parallel data, we proposed a supervised         

classifier trained using monolingual features (e.g. word embedding        

vectors, plus Brown clustering or word frequency information) of         

only a small amount of translation equivalent word pairs. The          

classifier is able to predict whether a new word pair is under a             

translation relation or not.  

Our experiments of SMT phrase table expansion were conducted on          

Chinese and Spanish, since we realized that although they are two           

of the most widely spoken languages of the world, this language           

pair is suffering from a data scarcity situation. In addition to the            

problems caused by the words that are not included in the training            

corpus, the inflection differences between this language pair make         

the translation even more challenging when only limited parallel         

data are available.  

The obtained results demonstrate that, on the one hand, with the           

method of morphology expansion, the SMT system achieves an         

improvement of up to + 0.61 BLEU compared to the results of a             

low resource Chinese-Spanish phrase-based SMT baseline. On the        



other hand, our supervised classifier reaches a 0.94 F1-score and the           

SMT experiment results show an improvement of up to +0.70          

BLEU with the resulting bilingual lexicon, demonstrating that the         

errors of the classifier are ultimately controlled by the SMT system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Resumen 
 
La escasez de datos paralelos es un problema importante para la           

Traducción Automática Estadística (TAE). El objetivo de esta tesis         

es enriquecer un sistema de TAE añadiendo más variantes         

morfológicas y un nuevo léxico de traducción generado        

automáticamente desde datos monolingües. Para inducir el léxico        

bilingüe, en lugar de depender de corpus comparables o de datos           

paralelos, proponemos un clasificador supervisado entrenado con       

representaciones monolingües (por ejemplo, vectores distribuidos,      

agrupaciones de Brown e información de la frecuencia de palabras)          

de sólo una pequeña cantidad de traducciones. El clasificador es          

capaz de predecir si un nuevo par de palabras es una traducción la             

una de la otra, o no. 

Realizamos los experimentos para enriquecer el sistema de TAE         

con chino y español, porque a pesar de que estas lenguas son dos de              

las más habladas del mundo, este par de idiomas sufre de escasez de             

datos paralelos. Además de los problemas causados por las palabras          

que no están incluidas en el corpus de entrenamiento, las diferencias           

de flexión morfológica entre este par de idiomas hace que la           

traducción sea de peor calidad cuando se dispone de pocos recursos           

paralelos. 



Los resultados obtenidos demuestran que, por un lado, con el          

método de expansión morfológica, el sistema de TAE logra una          

mejora de hasta + 0,61 BLEU en comparación con los resultados           

obtenidos con un sistema básico chino-español con poco corpus.         

Por otro lado, nuestro clasificador supervisado, que alcanza una F1          

de 0,94, proporciona nuevos pares de traducción que resultan en una           

mejora de hasta +0,70 BLEU con respecto al sistema básico,          

demostrando que los errores del clasificador son, en último término,          

controlados por el sistema de TAE. 

 

 

 

 

 

 

 

 

 

 

 



 

 

Resum 
 
L'escassetat de dades paral·leles és un problem important per a la           

Traducció Automàtica Estadística (TAE). L'objectiu d'aquesta tesi       

és enriquir el sistema de TAE afegint més variants morfològiques i           

un nou lèxic de traducció generat automàticament des de dades          

monolingües. Per induir el lèxic bilingüe, en lloc de dependre de           

corpus comparables o de dades paral·leles addicionals, proposem un         

classificador supervisat entrenat amb representacions monolingües      

(per exemple, vectors distribuïts, agrupacions de Brown i        

informació de la freqüència de paraules) de només una petita          

quantitat de traduccions. El classificador és capaç de predir si un           

nou parell de paraules és un la traducció de l’altre, o no. 

Hem realitzat experiments per enriquir un sistema de TAE entre          

xinès i espanyol, perquè tot i que aquestes llengües són dues de les             

més parlades del món, aquest parell d'idiomes està patint l'escassetat          

de dades paral·leles. A més dels problemes causats per les paraules           

que no estan al corpus d’entrenament, les diferències de flexió          

morfològica entre aquest parell d'idiomes fa que la traducció sigui          

de poca qualitat quan es disposa de pocs recursos paral·lels. 



Els resultats obtinguts demostren que, per una banda amb el mètode           

d'expansió morfològica, el sistema de TAE aconsegueix una millora         

de fins a + 0,61 BLEU en comparació amb els resultats obtinguts            

per un sistema bàsic xinès-espanyol entrenat amb pocs recursos. Per          

altra banda, el nostre classificador supervisat, que assoleix una F1          

de 0,94, proporciona nous parells de traducció que resulten en una           

millora de fins a + 0,70 BLEU respecte al sistema bàsic, demostrant            

que els errors del classificador són, en últim terme, controlats pel           

sistema de TAE. 
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Chapter 1 
 

 ​1. INTRODUCTION  
 
 

Machine translation (MT) has been one of the most paradigmatic          

and valuable applications in natural language processing (NLP).        

Looking back to the seventeenth century, ​Leibniz and ​Descartes         

proposed a series of codes which would relate words between          

languages. However, all of these proposals remained theoretical,        

and none resulted in the development of actual machine translation          

systems in our time. ​From the late twentiet​h century, the availability           

of language resources and the improvement of the NLP         

technologies brought MT to a new scenario, making this research          

area inspiring and challenging​. Besides the scientific research        

interest, the profitability of MT as a business has attracted more and            

more companies and institutions to exploit MT technologies,        

because nowadays factors like budgets, staffing and time        

consumption, always make organizations shy away from translating        

even a small fraction of the information they have at hand. To help             
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with such situation, MT can offer significant improvements in         

translation efficiency and maximize the amount of information        

available to customers with different language backgrounds.  

Although MT has achieved ​significant advancements in recent        

times, it is still challenging for computers to translate our human           

languages because of the following general reasons: 

● Much of the difficulty of natural language processing in         

general, and MT in particular, arises from the ambiguity         

problem. The same word may have different meanings        

regarding different contexts. For instance, the Chinese word        

水分 means ‘water’ in the sentence ​健康的肌肤需要充足的      

水分 (‘healthy skin requires plenty of water’), but in the          

sentence ​这个报道有些​水分 (‘this report seems somewhat      

exaggerated’), it means ‘exaggeration’. Since in both cases,        

the word ​水分 is used as a noun, it is difficult to            

disambiguate them. 

● Differences of word order, morphological richness level and        

grammatical structure between languages also pose      

problems for MT. For example, translation errors due to         

inflection frequently occur when translating from Chinese to        

Spanish, since Chinese nouns and adjectives have no gender         
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and number, and adjectives typically come before the nouns         

they modify, but in Spanish it is the other way around.  

● Language is highly variable with respect to several        

dimensions: style, genre, domain and topics, etc. Even        

apparently small differences in domain might result in        

significant deviations in the underlying statistical models.       

For example, current ​technologies require large language       

samples for ​statistical machine translation (SMT), linguistic       

variability would indeed suggest to consider many       

alternative data sources as well (Bertoldi and Federico,        

2009). 

● Machine can not perform common-sense reasoning which       

involves literally millions of facts about the world. The task          

of coding up the vast amount of knowledge required is          

daunting (Arnold, 2003). In practice, most of what we         

understand by “common-sense reasoning” is far beyond the        

reach of modern algorithms. For instance, to translate the         

sentence I will bring my bike tomorrow if it looks nice in the             

morning​, one must be aware that ​it ​refers to the weather           

because people usually ride bikes when the weather is nice          

and bikes do not usually change their aspect in the mornings           

(Sánchez-Cartagena, 2015).  
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At the present stage, the main MT technologies are: rule-based          

machine translation (RBMT), which is based on explicit linguistic         

knowledge; statistical machine translation (SMT), which learns       

translation correspondences from parallel text corpora; and neural        

machine translation (NMT), a new approach to MT in which a large            

neural network is trained to maximize the translation performance.  

In this work, we mainly focussed on the statistical approach because           

it is still the most widely used technique in MT. This conclusion is             

based on two main issues: (1) in comparison with rule-based          

systems, development effort for SMT is dramatically reduced and,         

in general terms, the achieved translation quality is considered to be           

of acceptable quality; (2) NMT is still in its infancy and is            

computationally expensive both in training and in translation        

inference, thus, a lot of effort remains to be done for transforming it             

into a truly robust platform.  

1.1  Key issues in SMT from Chinese to Spanish 

Chinese has often been described as ideographic or pictographic         

language, that is, consisting of graphic symbols rather than letters          

which represent an idea or concept, and its writing system does not            

reflect pronunciation (Casas-Tost and Rovira-Esteva, 2014). It has        

its own non-alphabetic symbols, known as orthographic characters.        

Its writing system contains tens of thousands of characters. Unlike          
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letters in alphabetic writing systems of western languages, Chinese         

characters are not arranged in a linear fashion. Each character          

corresponds to a single syllable that is also the smallest          

meaning-bearing unit ​— ​morpheme. DeFrancis (1984) claimed that        

Chinese writing is morphosyllabic. However, it should be made         

clear that characters can not be equated with the concept of ‘word’            

in Chinese. In Chinese writing system, there are two relevant          

linguistic units ​—​ morpheme (词素) and word (词):  

- Morpheme 

Similar to western languages, the smallest meaningful elements are         

named as morphemes as well in Chinese, and they can be combined            

to form words. A morpheme can not be further analysed into           

smaller parts and still remain meaningful. In fact, the vast majority           

of Chinese morphemes have a lexical nature. They have certain          

semantic properties, but can also be bound in some cases. For           

instance, the character ​火 means ‘fire’ in Chinese, and it can be            

treated as a word of only one morpheme, but in other cases, it can              

also be combined with other characters to form new words, such as            

火柴​（‘matches’）, ​火焰​（‘flame’）and ​火龙果 (‘Pitaya’).    

Arcodia (2007) compared this type of Chinese morphemes to the          

“neoclassical constituents” of Standard Average European      

languages (henceforth, SAE), such as ​philo​-, -​logy or –​phobia​,         

having lexical (rather than grammatical) meaning and always bound         
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to some other constituent. The difference is that most of these           

“Chinese bound morphemes” can be used independently as well.         

Besides the morphemes with semantic properties, there is another         

type of morphemes which play an important role in syntactic          

function, but barely has semantic significance and can not be used           

independently in a sentence, such as 了, 化 and 的. For instance, in             

the two sentences shown below, the extra 了 in (2) changes the            

tense of the sentence (1): 

(1) 他 去 超市。 → He goes to the supermarket.  

(2) 他 去 超市 了。  → He went to the supermarket.  

- Word 

Packard (2000) defined word as the smallest syntactically free form          

that can stand as an independent occupant of a syntactic form class            

slot. For instance, in English, ​eat and ​for both are words since they             

normally occupy a verb slot and a preposition slot in sentence           

respectively, and they both have their own semantic and syntactic          

significance. Although some morphemes (free morphemes) can       

occur alone in a sentence, ​the morpheme units are not identical to            

word. The principal difference is that a morpheme ​may or ​may not            

stand alone, whereas a word is freestanding.  

When dealing with Chinese in natural language processing, the         

notion of word is hard to determine. In western languages, words           
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are mostly well defined since there are spaces between them in a            

sentence, whereas in Chinese there are no delimiters between         

characters to indicate word boundary (Chang, 2009). This        

characteristic brings an extra challenge for SMT systems that         

involve Chinese. The most obvious obstacle is the segmentation         

error. For instance, the Chinese phrase 最胖的和尚未吃饭的 is        

segmented in both ways by different segmenters:  

(3) 最胖/的/和尚/未/吃饭/的。 

 (The fattest monk has not eaten.)  

(4) 最胖/的/和/尚未/吃饭/的。  

 (The fattest one and the ones that have not eaten) 

However, in case (3), the Spanish translation is “El monje más           

gordo todavía no ha comido”, while in case (4), the phrase is            

translated as “los más gordos y los que no han comido”.  

Besides the segmentation problem, another important challenge of        

Chinese is that Chinese has little or no morphological complexity          

within a word or in grammatical relations (Li and Thompson, 1981).           

Specifically, it has no case, gender or number markers for nouns           

and no subject-verb agreement or tense markers for verbs. Chinese          

grammatical relationships are expressed either by word order or by          

the use of independent grammatical particles (Norman, 1988). Due         

to the non-inflectional property of Chinese, the SMT from Chinese          
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to Spanish becomes more difficult. We show several examples         

below to demonstrate the morphological differences between       

Chinese and Spanish. 

● No tense 

In Chinese, verb behaves in a unique word form for different time            

references. Normally, tense of a sentence can be determined by time           

markers such as time adverbials. Observing the Chinese example in          

(5) and (6), the verb 住 in both sentences is the same, while in              

Spanish, the verb ​vive changes from the present tense to the past            

tense (​vivió​).  

(5) CH: 她 (She) 现在 (now) 住 (lives) 在 (in) 巴塞罗那          

(Barcelona)。  

ES:  Ella ahora ​vive​ en Barcelona. 

(6) CH: 她 (She) 去年 (last year) 住 (lived) 在 (in) 巴塞罗那           

(Barcelona)。 

ES:  Ella ​vivió​ en Barcelona el año pasado. 
 

● No subject-verb agreement 

Besides tense, in Spanish, verb word forms also vary depending on           

the person of its related subject. Chinese, by contrast, has no such            

agreement. In (7) and (8), the same verb ​querer behaves conjugated           
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in different forms (​quiero and ​quieren​) according to the subject,          

while in Chinese the verb 想 does not change.  

(7) CH: ​我​(I)​ 想​ (want to) 跳舞(dance)。  

 ES: ​Yo quiero​ bailar. 

(8)  CH: 他们 (They) 想 (want to) 跳舞 (dance)。 

ES: ​Ellos quieren​ bailar. 

 
● No number and gender marking 

Chinese nouns have no distinction between singular and plural,         

while in Spanish plural nouns normally end with -​s /-​es​. Thus,           

sometimes in a Chinese sentence, number may not be clearly          

defined as shown in (9) and (10). Besides number, Chinese has no            

gender as well, whereas in Spanish, the gender of an adjective           

should be consistent with the noun that it modifies as shown in (11)             

and (12). 

(9) CH: 他 (He) 想要 (wants) ​我的​ (my) ​书​ (book/books)。 

            ES:  El quiere ​mi libro​.  

(10) CH: 他 (He) 想要 (wants) ​我的​ (my) ​书​ (book/books)。 

            ES:  El quiere ​mis libros​. 

      (11) CH: ​美味的​(delicious)意面(pasta)。 

           ES: pasta ​deliciosa​.  
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     (12) CH: ​美味的​(delicious) 佳肴 (dish)。 

           ES:  plato ​delicioso​. 

 

1.2 Problems addressed in SMT with reduced parallel        

corpora 

The performance of SMT systems depends on the size of available           

training data. The more parallel texts are used to train the models,            

the better the system can approximate the final translation         

probability among a large enough number of expressions. However,         

large enough parallel corpora are not that easy to gather and for            

some language pairs, it is not even possible. As a result of this             

challenge​, research on statistical machine translation with       

limited-size parallel corpus is receiving more and more attention. 

The most common problem of SMT is Out-of-Vocabulary (OOV)         

words, since with a reduced parallel corpus, the expressions that do           

not occur in training data will be missing causing errors when           

translating new documents. For instance, in our experiment, some         

of the source OOVs were directly output to the final translation as            

shown in (13); in other cases, our low resource SMT baseline just            

ignored the expressions that could not be translated as shown in           

(14): 
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   (13) 

   ​Source​: ​文化多样性 

   ​Reference​: ​diversidad cultural 

   ​Low resource SMT baseline​:  ​多样性. A la cultura 

 

   (14)  

   ​Source​: ​负面影响 

   ​Reference​: consecuencias negativas 

       ​Low resource SMT baseline​:  ​la negativo 

 

In addition to OOV, language pairs with inflection differences are          

more challenging when very limited parallel data are available,         

since isolating languages like Chinese and Vietnamese, never use         

inflections while synthetic languages like Greek and Spanish can be          

highly inflected. For instance, in the Chinese-Spanish case, ​我今天        

买了一本很棒的书 is translated as ​hoy compré un libro fantástico.         

In the Chinese sentence, ​买了 (​have bought​), ​一本 (​a​), ​很棒的          

(​fantastic​) and ​书 (​book​), all the words do not have inflectional           

morphology. Unlike in Spanish, the verb ​compré       

(third-person/singular/pretérito), the quantifier ​un (masculine/     

singular), the noun ​libro (singular/masculine) and the adjective        

fantástico (masculine/singular), all have an appropriate grammatical       
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form corresponding to the context. So when translating from a          

non-inflected language to a highly inflected language, if the correct          

word form is not included in the training data, the system can not             

produce the correct translation result as shown in the following          

example (15) from our experiments: 

(15) 

     ​Source​: ​当他看到我时。 

     ​Reference​: ​cuando me vio. 

     ​Low resource SMT baseline​:  ​cuando lo vi​. 

 

1.3  Objectives 

This thesis addresses the parallel data shortage problem in SMT.          

Our main goal was to devise methods to supplement available          

parallel data with new translation pairs automatically generated out         

of monolingual resources. Although these automatically generated       

resources might contain wrong translations, the SMT is expected to          

handle them successfully, that is, eventually using the good         

translation pairs and discarding the wrong ones, and therefore         

improving the quality of the output. 

Along this line, the objectives pillaring our work were the          

following: 
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- To assess the quality improvements of a SMT trained with          

limited resources when introducing morphological variants      

of target language words occurring in the translation table. 

- To enlarge the coverage of the SMT system by adding new           

translation pairs which are automatically induced from       

monolingual corpora. 

- To investigate whether a supervised classifier trained with        

features extracted from monolingual corpora can provide       

such new translation pairs. 

- And to investigate whether a SMT can handle the output of           

the classifier by eventually pruning bad translation pairs. 

Our experiments were conducted on Chinese and Spanish, since we          

realize that although they are two of the most widely spoken           

languages of the world, as far as we know, this language pair is             

currently suffering a data scarcity situation (Costa-jussa et al.,         

2012a), and there has not been much investigation done on machine           

translation for this pair.  
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1.4  Thesis Outline 

The rest of this thesis is structured as follows: 

Chapter 2: State of the art addresses the research          

frameworks that underpin our research and reviews the        

major techniques developed for phrase table expansion of        

SMT with limited parallel resources. Section Machine       

Translation approaches describes a classification of      

machine translation methods, and Section Statistical      

Machine translation (SMT) phrase table expansion      

methods focuses on the related works that aim at enriching          

the SMT phrase table by adding more morphological        

variants and monolingually-derived bilingual lexicons.  

Chapter 3: Morphology Expansion for SMT ​describes an        

experiment to enrich the SMT phrase table by adding more          

inflected forms that are derived from a lexical resource. The          

goal is to provide more word forms as translation options to           

the system. Different from the bilingual lexicon induction        

method described in Chapter 4, the morphological expansion        

is based on the entries already occurring in a baseline system           

phrase table. At the end of the section, we carry out the            
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analysis of the experiment results and discuss its advantages         

and limitations. 

Chapter 4: Supervised bilingual lexicon induction for SMT        

presents and discusses several approaches to word       

representation for a supervised classifier to induce new        

translation word pairs from monolingual corpora. Section       

New translation lexicon generation with ​word embeddings       

(WE) ​describes a classifier trained with WE vectors of a          

small amount of translation equivalents. Based on the        

experimental results, we discuss the limitations and possible        

drawbacks of our WE-based approach. In Section       

Improving WE-based classifier with additional word      

frequency information​, we added word frequency      

information, which was also learned from monolingual       

corpora, to the word embedding vectors for improving the         

performance of the classifier. In Section ​Improving       

WE-based classifier with additional Brown cluster​ing​,      

instead of word frequency, we incorporated a Brown        

clustering representation to the WE vectors for alleviating        

the identified limitations of the basic classifier. The obtained         

results demonstrate that both word frequency and Brown        

cluster features positively affect the performance of       

WE-based classifier. Section ​SMT phrase table expansion       
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using induced bilingual lexicons describes the application       

of the classifier to induce translation lexicons from        

monolingual corpora for enriching the SMT phrase table.        

We carried out an error analysis based on the translation          

results produced by the classifier and also discuss the         

advantages and limitations of this method.  

Chapter 5: Conclusions and future works section draws the         

main conclusions and contributions of this dissertation and        

discusses different directions for future works. 
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Chapter 2 
 

2. STATE OF THE ART 
 
In this chapter, we explain in general the most commonly used MT 

approaches and the previous methods that related to our work.  

2.1  Machine Translation Approaches 
 
On a basic level, it can be said that MT performs simple substitution             

of words in one natural language for words in another (Albat,           

2012). There are different paradigms in MT, we visualize them in           

Figure 2.1. In the rest part of this section, we present in details the              

most commonly used ones: Rule-based MT, Statistical MT and         

Neural MT. 
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Figure 2.1:  Machine translation approaches 
 

2.1.1  Rule-based Machine Translation 

Rule-Based Machine Translation (RBMT) refers to the MT systems         

based on linguistic rules retrieved from bilingual dictionaries and         

grammars covering the main semantic, morphological, and syntactic        

regularities of source and target language. Given source input         

sentences, an RBMT system generates them to target output         

sentences on the basis of morphological, syntactic, and semantic         

analysis of both the source and the target languages involved in a            

concrete translation task (Okpor, 2014). ​The architecture of a         

rule-based machine translation system can be ​observed through the         
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Vauquois Triangle, which illustrates different levels of analysis        

(shown in Figure 2.2).  

 

Figure 2.2: Vauquois Triangle(Vauquois, 1976) 

 

So what are the advantages of RBMT? One of its main merits is that              

RBMT is totally based on linguistic theories so that systems can           

achieve high translation accuracy with reduced resources, but        

without requiring expensive computation processing. Besides,      

RBMT is better suited to post-editing and durable changes, hence          

the translation performance is predictable and can be well         

controlled. 
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However, RBMT entails a huge human effort as well as long time            

for preparing a large amount of linguistics rules. The following are           

the shortcomings that are associated with RBMT approach (Okpor,         

2014):  

• It is difficult and expensive to gather sufficient amount of          

high quality dictionaries and linguistic transfer rules.  

• It is hard to deal with rule interactions in big systems,           

ambiguity, and idiomatic expressions.  

• It is hard to adapt to new domains. Although RBMT          

systems provide mechanisms to extend and adapt new        

lexicon, changes are usually very costly and the results,         

frequently, do not pay off. 

Comparing RBMT with SMT from linguistic perspective,       

Costa-Jussa et al. (2012b) demonstrated that, orthographic and        

morphological errors tend to be lower in the rule-based machine          

translation systems, while the performance at the semantic level is          

better in the statistical systems. 

2.1.2  Neural Machine Translation 

Neural machine translation is an end-to-end approach which aims at          

building a single neural network that can be jointly tuned to           

maximize the translation performance (Bahdanau et al., 2014). Most         
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of the neural network machine translation models (Kalchbrenner        

and Blunsom, 2013; Sutskever et al., 2014; Cho et al., 2014a)           

consist of an encoder and a decoder. The encoder extracts a           

fixed-length vector representation from a variable-length input       

sentence, and from this representation the decoder generates a         

correct, variable-length target translation (Cho et al., 2014b). The         

architecture of a simplified diagram of NMT system (See et al.,           

2016) is described below in Figure 2.3. 

 

Figure 2.3: A simplified diagram of neural machine translation (See et al., 2016). 
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NMT has been popular nowadays because it sidesteps many brittle          

design limitations of traditional machine translation methods. Its        

main merits over the most widely used phrase-based SMT are (Jean           

et al., 2015):  

● NMT requires a minimal set of domain knowledge and does          

not assume any linguistic property in both source and target          

sentences except that they are sequences of words. 

● The whole NMT system is jointly trained to maximize the          

translation performance, unlike the existing phrase-based      

systems which consist of many separately trained features        

whose weights are then tuned jointly. 

● Memory footprint of the NMT model is often much smaller          

than SMT systems which rely on maintaining large tables of          

phrase pairs. 

The comparative case study with SMT and NMT carried out by           

Bentivogli et al. (2016) showed that the NMT system significantly          

reduce translation problems in some linguistic phenomena       

(morphological error, lexical errors and word order errors)        

compared to SMT systems. 

However, in practice, NMT is still in its infancy compared to SMT,            

especially when training on very large-scale datasets as used for the           

 

22



 

 

very best publicly available translation systems. The main        

weaknesses of Neural Machine Translation are (Wu et al., 2016): 

● A considerable amount of time and computational resources        

are needed for the training on a large-scale translation         

dataset. For inference they are generally much slower than         

phrase-based systems due to the large number of parameters         

used. 

● NMT lacks robustness in translating rare words. 

● NMT systems sometimes produce output sentences that do        

not translate all parts of the input sentence – in other words,            

they fail to completely “cover” the input, which can result          

in surprising translations. 

 

2.1.3  Statistical Machine Translation 

Unlike other MT approaches, instead of providing answers to         

questions of what representations to use and what steps to perform           

to translate, the goal of statistical machine translation (SMT) is to           

produce translation by constructing probabilistic models of       

adequacy and fluency, then combining these models to select the          

“highest scored” translation result. According to the first definition         

of SMT due to Brown at al. (1993), the translation process from a             
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source language sentence ​to a target language     , ..,  f 1
J = f 1 . f J      

sentence ​can be modeled by applying the Bayes   , ..,  e I
1 = e 1 . e I         

rule as: 

 

           ​(1)(e | f )P 1
 I

1
 J = P (f )1

 J

P (e ) · P (f | e ) 1
 I

1
 J

1
 I

 

 

Note that the denominator can be ignored since the intuition    (f )P 1
 J        

is to choose the best target sentence for a fixed source sentence ,            f 1
 J  

hence is a constant. So the final translation can be described (f )P 1
 J            

as: 

 
          (2) e︿1

 I 
︿

= argmaxI , e1
 I P (e ) (f | e ){ 1

 I · P 1
 J

1
 I }  

 
In regard to (2), there are three principal components in SMT: 

● A language model to compute .(e )P 1
 I  

● A translation model to compute (f | e ).P 1
 J

1
 I  

● A decoder to produce the most probable translation .e︿1
 I  

As an alternative to the classical source-channel approach (Brown         

et al. 1993) is to directly compute the posterior probability          

by using a log-linear combination of different models(e | f )P 1
 I

1
 J         
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(Papineni et al., 1998; Och and Ney, 2002). It has the advantage that             

additional features can be easily added into the overall system. In           

this framework, there are a set of feature functions ,          (e | f  )h m
I
1 1

J  

m​=1,..., ​M . For each feature function, there exists a model           

parameter , ​m​=1,..., ​M​. λ m  

                    (e | f ) (e | f )P 1
 I

1
 J = pλ1

M 1
 I

1
 J  

                   ​(3)=
exp Σ λ h (e , f )[ M

m=1 m m 1
 I

1
 J ]

Σ exp Σ λ h (e , f )
e′1

 I [ M
m=1 m m ′1

 I
1
 J ]  

Since the denominator represents a normalization factor that        

depends only on the source sentence, we can ignore it during the            

search process. Thus the result of a linear combination is computed           

as: 

 
 e︿1

 I = argmaxe1
 I P (e | f ){ 1

 I
1
 J }  

 
                                        (4) = argmaxe1

 I Σ λ h (e , f ){ M
m=1 m m 1

 I  1
 J }  

 

The architecture of a statistical machine translation system is         

described below in Figure 2.4. Beside the language model and          

translation model, two additional components can also be included         

in the process: the preprocessing step performs a pre-editing of the           
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input text, adapting it to the translation system; and the          

post-processing modifies the translation result, making it more        

acceptable for humans. For the statistical approach, the more data          

are used to train the models, the better the result will be. However,             

bilingual corpora large enough to build competitive SMT systems         

are not always easy to gather. 

 

Figure 2.4: Illustration of the generation process of a statistical machine 
translation. 
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● Main statistical machine translation approaches 

Statistical machine translation approaches are quite diverse, and can         

be roughly classified along several axes, including: word-based        

translation, phrase-based translation, syntax-based approach and      

hierarchical phrase-based approach. Word-based machine     

translation only focuses on the translation of lexical level (Brown et           

al. 1993). Simple word-based system is limited to translate         

consecutive phrases, because it could map a single word to multiple           

words, but not in reverse. Moreover, compared to the other          

approaches of SMT, word-based model does not take contextual         

information into account for the translation decisions, so        

word-based approach is not widely used today. 

While word-based SMT estimates translation probabilities by only        

considering how each individual word is translated, Phrase-based        

SMT is based on the intuition that a better way to calculate            

translation probability is by taking into account phrases. Therefore,         

the phrase-based models considers phrases as atomic units. Note         

that the phrases in phrase-based systems are not linguistic phrases          

as in constituents of parse trees, but are chunks or strings of words             

that are identified statistically from symmetrized word alignments        

in bi-texts (Och and Ney, 2003). There are mainly three steps in its             

generation procedure: 1) segmenting foreign input in phrases; 2)         

translating each source phrase into a target phrase; 3) reordering          
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each of the target phrases. Compared to the word-based models,          

memorizing larger units enables the phrase-based model to handle         

many-to-one translation pairs, and also to take into account local          

context information in translation. So it is more common nowadays.          

However, this model also has some limitations. For instance, it has           

issues handling long-distance reordering; it also has the spurious         

phrasal segmentation problem which allows multiple derivations of        

a bilingual sentence pair having different model scores for each          

segmentation (Durrani et al., 2013). 

In addition to the previously described approaches, syntax-based        

models are based on the idea of translating syntactic units, rather           

than single words or strings of words. The goal of this type of             

model is to incorporate an explicit representation of syntax into the           

statistical systems in order to improve the translation between         

language pairs with very different structure order. However, the         

problem with syntax-based model is the cost of decoding, which is           

mostly modeled as a parsing problem (Ahmed and Hanneman,         

2005). It relies on a good parser, but a good parser is not available              

in all languages, especially not in resource-poor languages.  

Hierarchical phrase-based machine translation combines     

fundamental ideas from both syntax-based and phrase-based       

approaches. This model uses phrases as basic units for translation          

and applies synchronous context-free grammars (SCFG) as rules.        
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But the weakness of this model is that although the model captures            

global reordering by SCFG, it does not explicitly introduce         

reordering model to constrain word order (Hayashi et al., 2010).  

● Phrase-based statistical machine translation 

In the present work, we focus on the phrase-based statistical          

machine translation (PBSMT) (Koehn et al. 2003), because it is one           

of the most widely used approaches in statistical machine         

translation. The performance of a PBSMT mostly depends on the          

induction of a good phrase translation table. There are different          

ways to acquire such a table. The most common methods is to            

create a word alignment between each sentence pair of the parallel           

corpus and then extract phrase pairs that are consistent with this           

word alignment as we describe below.  

- Word Alignment 

Word alignment is a mapping between the source words and the           

target words estimated from parallel corpus. A set of alignment          

algorithms are applied in the literature such as IBM Models and           

HMM Model. For training the alignment model, expectation        

maximization (EM) algorithm is applied to search for the maximum          

likelihood in the models. The intuition of EM training is that in the             

E-step, expected counts are computed for the ​t ​parameter based on           

summing over the hidden variable (the alignment), while in the          

 

29



 

 

M-step, the maximum likelihood estimate of the ​t ​probability from          

these counts is calculated. Therefore the procedure is (Jurafsky,         

2009): 

E-step 1: Compute the expected counts for all       E count (t (f  | e))[ ]    

word pairs .f , e )( j  aj
 

E-step 1a: First calculate ​P ​(​a​, ​f ​| ​e​) by multiplying all the t              

probabilities as following: 

(A, | E) ( f | e )P F = ∏
J

j=1
t j aj  

 
E-step 1b: Normalize  to get ), using:(a, f  | e )P  ( a | e, fP   

 

(a, f  | e )P  =
P (a | e, f  )

Σ P (a, f  | e )a
 

 

E-step 1c: Compute expected (fractional) counts, by weighting each         

count by .(a | e, f )P   

M-step 1: Compute the MLE probability parameters by normalizing         

the t count to sum to 1. 

E-step 2a: recalculate again by multiplying the ​t   (a, f  | e)P        

probabilities, by following: 
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(A, | E) (f | e )P F = ∏
J

j=1
t j aj  

 
This procedure shows how EM is used to learn the parameters for a             

simplified version of model1. It is also applied in the form of the             

Baum-Welch algorithm, for learning the parameters of the HMM         

model. However, these models only allow that each source word to           

be aligned with at most one target language word. To overcome this            

limitation, symmetrization is performed by applying a heuristic        

post-processing step that combines the alignments in both        

translation directions. It starts with ​the intersection of the two          

alignments and then adds neighboring alignment points from the         

union and unaligned points to the intersection. In Figure 2.5 we           

show an alignment examples of ​symmetrization heuristic (​Koehn,        

2010) 
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Figure 2.5: Alignment example of symmetrization heuristic(​Koehn, 2010​)​. 

 

- Learning phrase translation pairs 

Once all the alignments are collected, the next step is to extract            

phrase translation pairs based on the symmetrized alignment. Phrase         

pairs extracted from a parallel corpus need to be consistent with           

obtained word alignment matrix. Two phrases are considered to be          

translations of each other if the words are aligned only to each            
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other, and not to words outside. Different alignment templates were          

proposed for learning phrase translations. For instance, Marcu and          

Wong (2002) introduced a phrase-based joint probability model that         

simultaneously generates both the source and target sentences in a          

parallel corpus. Och and Ney (2003) proposed a heuristic approach          

to refine the alignments obtained from GIZA++. At a minimum, all           

alignment points of the intersection of the two alignments are          

maintained. At a maximum, the points of the union of the two            

alignments are considered. Similarly, the method of Koehn et al.          

(2003) starts with intersection of the two word alignments, but only           

new alignment points that exist in the union of two word alignments            

are added. The new alignment point is required to be connected           

with at least one previously unaligned word. Following Koehn et al.           

(2003), ​in Figure 2.6, we show all possible phrase pairs extracted           

based on the symmetrized alignment example in Figure 2.5. ​The          

phrase translation probability is estimated by the relative frequency         

of phrases pairs: 

(f  | e )  ϕ =
count(e, f  )

Σ count(e, f ) f i i
 

The inverse phrase translation probability is computed in the same          

way. Besides the direct and inverse phrase translation probabilities,         

the state-of-the-art PBSMT systems (Koehn et al., 2007b) include         

the following features as well: ​direct and inverse lexical         

 

33



 

 

weighting(estimated by using the word-based IBM Model of each         

phrase pair); word penalty(refers to target translation hypothesis        

length. With this feature, we are able to adjust the sentence length);            

phrase penalty(depends on phrase length. This feature is set by the           

user to the same value ρ for each phrase, If ρ > e, longer phrases               

will be preferred over shorter ones. Conversely, if ρ < e, shorter            

phrases will be preferred); reordering probability (computed based        

on the distance from the end position of a phrase to the start             

position of the next phrase); probability obtained from language         

model (In addition to the distortion penalty, a standard n-gram          

language model is used for ensuring the fluency of target          

sentences). 

 

michael ||| michael 

michael assumes  ||| michael geht davon aus 

michael assumes  ||| michael geht davon aus ,  

michael assumes that  ||| michael geht davon aus , dass 

michael assumes that he  ||| michael geht davon aus , dass er 

michael assumes that he will stay in the house ||| michael geht davon aus , dass er im haus bleibt 

assumes  ||| geht davon aus 

assumes  ||| geht davon aus , 

assumes that  ||| geht davon aus , dass 

assumes that he  ||| geht davon aus, dass er 
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assumes that he will stay in the house  ||| geht davon aus , dass er im haus bleibt 

that  ||| dass 

that |||  , dass 

that he  ||| dass er 

that he  ||| , dass er 

that he will stay in the house  ||| dass er im haus bleibt  

that he will stay in the house |||  , dass er im haus bleibt 

he  ||| er 

he will stay in the house ||| er im haus bleibt 

will stay  ||| bleibt 

will stay in the house  ||| im haus bleibt  

in the  ||| im 

in the house  ||| im haus 

house  ||| haus 

 

Figure 2.6: Example of phrase pairs extraction based on the symmetrized           
alignment in Figure 2.5 (​Koehn, 2010​)​. 

 
- Decoding 

Decoder is the final component of a SMT system that produces the            

best target translation for a given foreign source sentence.         

According to the State-of-the-art PBSMT systems ​(Koehn et al.,         

2007), during the decoding, ​given an input string of words, a           
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number of translation options learned from the phrase alignment         

matrix are applied for a beam search algorithm to find the best            

translation output. The search process starts from an initial state          

where no foreign input words are translated and no translation          

output words have been generated. Then new hypotheses are         

generated by extending the target translation output with a phrasal          

translation that covers some of the foreign input words not yet           

translated. ​The cost of the new hypothesis is computed by          

multiplying the cost of the original state with the translation,          

distortion and language model costs of the added phrasal         

translation. The final states in the search are hypotheses that cover           

all source words. The hypothesis with the lowest cost is selected as            

the best translation.  

Using beam algorithm to search the best translation among all          

possible translation candidates could be problematic in practical        

situation since it is computationally expensive. To speed up the          

translation process, ​pruning is applied to filter out bad hypotheses          

based on their partial score. There are generally two approaches to           

pruning (Koehn, 2010):  

1) Histogram pruning keeps a maximum number N of        

hypotheses in the stack. it is a simple way of limiting           

the beam size compared to other pruning strategies.        

The stack size N has direct relation to decoding         
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speed. According to this method, all stacks are filled         

and all translation options are applicable all the time.         

The downside is that, in some cases there is a big           

difference in score between the best and worst        

hypothesis in the stack, while in other cases they are          

close. So this method is inconsistent with regard to         

pruning out bad hypothese.  

2) Threshold pruning ​proposes a fixed threshold ​a, ​by        

which if the score of a hypothesis is ​a times worse           

than the best one, it is pruned out. An advantage of           

threshold pruning is that it adjusts itself to the         

amount of ambiguity. However, its drawback is that        

there is no upper limit on the number of hypotheses.          

If many hypotheses have similar score, all these        

hypotheses are kept in the beam. Thus, the beam         

could get arbitrarily large. In practice, today’s       

machine translation decoders use both histogram      

pruning and threshold pruning. 

So in conclusion, SMT systems work by building statistical models          

from parallel data. The translation quality heavily depends on the          

availability of parallel training corpus. the more data is used to           

estimate the parameters of the system, the better translation         

performance can be obtained. However, for many language pairs,         
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parallel corpora are difficult to obtain, hence most of the current           

researches focus on SMT in the absence of large parallel resources.  

 2.2   SMT Phrase table expansion methods 

The use of monolingual resources to enrich translation model for          

SMT in low resource condition has been proposed by many          

researches. Basically two different methods are applied in the         

literature: (1) deriving new translation options (inflected forms and         

lexical variants) based on the existing knowledge of low resource          

SMT phrase table; (2) inducing new translation entries generated         

from monolingual data. In the present work, we enriched our low           

resource SMT system in both directions: morphological variant        

integration and bilingual lexicon induction. In the rest of this          

section, we review the main works related to SMT phrase table           

expansion approaches in the literature. 

2.2.1. Morphology and paraphrase expansion 

Recent researches have largely focused on translating from        

non-inflected or weakly inflected languages (e.g. Chinese,       

 ​Vietnamese and English etc.) to rich morphology languages (e.g.         

Spanish, Greek and Arabic). In a study of translation quality for           

languages in the Europarl corpus, Avramidis and Koehn (2005)         
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demonstrated that translating into morphologically richer languages       

is more difficult than translating from them.  

In Figure 2.7, Avramidis and Koehn (2008) reported the error          

analysis of their English to Greek baseline system, which is similar           

(from morphologically poor language to high-inflected language) to        

our Chinese to Spanish language pair. From their error analysis and           

classification, we can tell that 43.7% of the errors are translations in            

incorrect word forms. ​Regarding this challenge​, in this work, one of           

our objectives is to alleviate morphological variant translation        

problem. 

 

Figure 2.7: Error analysis on an English to Greek baseline system (Avramidis and 
Koehn, 2008). 
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There have been a number of related works done in this area. For             

instance, Habash (2008) analyzed the OOVs into lexeme and         

features. Though the morphological analysis, they matched the        

OOV word with those in-domain (phrases in the baseline phrase          

table) words which could be its possible morphological variants and          

added them into the baseline translation model. To do so, first they            

cluster all the single-word source entries in the baseline phrase table           

that (a) translate into the same target phrase and (b) have the same             

lexeme analysis. From these clusters they learned which        

morphological inflectional features in the source language word are         

irrelevant to the target language word. Then a set of morphological           

inflection rules were created to map OOV words with in-domain          

words. Phrases associated with the in-domain token in the phrase          

table are “recycled” to create new phrases in which the in-domain           

word is replaced with the OOV word. The translation weights of the            

in-domain phrase are inherited by the new phrase. In this method,           

Habash (2008) only considered the morphological expansion for        

OOV, which is limited for improving the translation performance         

on inflected variants when testing with new datasets.  

Some other approaches (e.g. Durgar El-Kahlout and Oflazer, 2006;         

Habash, 2007; Koehn and Hoang 2007a; Birch et al., 2007 and           

Almaghout et al., 2010; Toutanova et al., 2008​) applied         
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morphological and syntactic features (e.g. POS tag, morph stems         

and Combinatorial Categorial Grammar supertags) on the source or         

target language for a better performance on translation from         

morphologically poor languages to rich morphology languages. For        

instance, ​Toutanova et al. (2008) developed a Maximum Entropy         

Markov model that predicts word forms from their stems using          

lexical and syntactic information from both the source and target          

languages. More specifically, morphological resources were used to        

analyse (into stem and morphological variants) the target words of          

phrase pairs from base MT system and generate an inflection set for            

each target word based on the training data (only inflections          

covered in training corpus were included). The task was designed as           

follows: given a source sentence, its translation is formed by (1) a            

sequence of stems in the target language, and (2) their          

corresponding inflection form (selected from the generated       

inflection set) which defined by the morpho-syntactic annotations        

(POS tags and word dependency structure) derived from the source          

input sentence. To combine the inflection prediction component        

with the base MT system, three different methods were tried: 

● Method 1​: The MT baseline was trained with normal         

parallel corpora (fully inflected word form), the       

inflection model is applied to re-inflect the 1-best or         

m-best translations and to select an output       
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translation. The hypotheses in the m-best output       

from the base MT system are stemmed and the         

scores of the stemmed hypotheses are assumed to be         

equal to the scores of the original ones. 

● Method 2​: Word alignment is performed using fully        

inflected target language sentences. After the      

alignment, the target language is stemmed and the        

base MT systems’ sub-models are trained using this        

stemmed input and alignment. In addition to this        

word-aligned corpus the MT systems use another       

product of word alignment: the IBM model 1        

translation tables. Because the trained translation      

tables of IBM model 1 use fully inflected target         

words, the stemmed versions of the translation tables        

was generated by applying the rules of probability. 

● Method 3​: In this method the base MT system         

produces sequences of target stems. It is trained in         

the same way as the baseline MT system, except its          

input parallel training data are preprocessed to be        

stemmed. Then the corresponding inflection form      

was defined by the morpho-syntactic annotations      

derived from the source input sentence.  
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Another similar approach by Chahuneau et al. (2013) proposed to          

deal with the problem of lexical inflection translation was based on           

two phases: First, a discriminative model was learned to predict          

inflections of target words from rich source-side annotations; then,         

this model was used to create additional sentence-specific        

word/phrase-level translations that were further added to a standard         

translation model as “synthetic” phrases. To generate these        

synthetic phrases with new inflections, they created an additional         

phrase-based translation model using the training parallel corpus        

that was preprocessed to replace inflected surface words with their          

stems. Then, a set of non-gappy phrases for each sentence were           

extracted and the target side of each such phrase was re-inflected,           

conditioned on the source sentence, using the inflection        

discriminative model. The original features extracted for the        

stemmed phrase are conserved, and the following features are added          

to help the decoder select good synthetic phrases: (a) a binary           

feature indicating that the phrase is synthetic; (b) the log-probability          

of the inflected forms according to the model; and (c) the count of             

words that have been inflected, with a separate feature for each           

morphological category in the supervised case. A class-based        

n-gram language model was used to capture some basic agreement          

patterns. As results, with the class-based language model, they         

obtained an improvement of around 0.8 BLEU compared with the          

baseline. After adding their inflected synthetic phrases, an        
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improvement of up to 0.7 BLEU was obtained compared with the           

model enhanced by the language model.  

Reviewing the previous methods proposed by Toutanova et al.         

(2008) and Chahuneau et al. (2013), they both aimed at re-inflecting           

the existing phrase pairs of baseline phrase table based on the           

available training parallel data with the help of source and target           

linguistic resources. However, their methods do not consider those         

inflected variants for words that are not present in the training data,            

and this is the main problem for low resource SMT. 

Turchi and Ehrmann (2011) proposed to expand the existing entries          

of a phrase-based SMT system using external morphological        

resources. According to this method, a set of new pairs made out of             

possible morphological variations of source and target phrases are         

created and added to the phrase table and reordering model learnt           

during the training process. Their method is based on the          

assessment of a similarity measure between the morphosyntactic        

tags of the bilingual pair candidates to be associated. The similarity           

score is afterwards used, together with the probabilities of the          

original association, to weight the probability of new associated         

phrases. This method significantly improved the translation quality        

of their baseline system. However, this is not a solution for pairs of             

languages that involve a non-inflected language. For instance, in         
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our case, Chinese has no grammatical inflection, the similarity         

based on the morphosyntactic features can not be obtained. 

Sánchez-Cartagena et al. (2011) and Sánchez-Cartagena et al.        1

(2015) proposed to enrich the phrase table of a PBSMT system with            

bilingual phrase pairs matching dictionary entries and transfer rules         

from the Apertium shallow-transfer MT system. To generate        

translation pairs from the bilingual dictionary, all the source         

language (SL) surface forms recognised by the shallow-transfer MT         

system and their corresponding SL intermediate representations       

(IR) are listed; then, these SL IRs are translated with the bilingual            

dictionary to obtain their corresponding target language (TL) IR;         

finally, the corresponding TL word forms are obtained by means of           

the RBMT generation module. If the TL IR contains missing values           

for morphological inflection attributes, a different TL phrase for         

each possible value of the attribute is generated. To expand the           

phrase table, they joined synthetic phrase pairs and corpus-extracted         

phrase pairs and calculate the phrase translation probabilities by         

means of relative frequency as usual. The phrase translation         

probabilities of the resulting phrase table are therefore computed as          

follows (for both directions): 

 

1 svn://svn.code.sf.net/p//apertium/svn/trunk/apertium-transfer-tools 
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(t | s)  ϕ =
count  + countcorpus(s, t ) synth(s, t )

Σ (count + count )ti corpus (s, t ) i synth(s, t )i
 

 
 

Lexical translation model was obtained from the concatenation of         

the training parallel corpus and the synthetic phrase pairs generated          

from the RBMT bilingual dictionary. The lexical weighting scores         

are then computed using the word alignments obtained by statistical          

methods. However, this technique heavily relies on the available         

morphological analyzers and bilingual dictionaries from the       

Apertium shallow transfer rule-based MT platform. The data of         

some language pairs may be too limited to support the expansion of            

phrase table. For instance, the bilingual dictionary of Spanish         

–German only contains 615 words; and the pair English-Albanian         

contains even less, 581 words.  

The main differences between approaches described above and our         

methods are:  

● Morphological inflection generation​. Unlike    

previous approaches, instead of only depending on       

available morphological resource or RBMT, in our       

case, inflected variant generation involves the      

following methods: (a) A morphological resource      

(includes stem and inflected form information) on       
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the target side was used to return all possible         

inflected forms of target words based on the        

translation rules of existing phrase table. Thus a set         

of derived translation pairs that contain new       

inflections were generated. (2) Our supervised      

approach for bilingual lexicon induction described in       

Chapter 4 is also effective for introducing       

translations with inflectional variants. Combining     

both strategies, a lot of inflectional variant pairs that         

do not appear in training data can be covered during          

that training process. 

● Integration of new inflection pairs​. Unlike      

previous approaches which integrated new     

translation rules by manipulating the baseline phrase       

table or creating new phrase table with externally        

invented features, we directly appended our new       

translation rules into the parallel training data.       

Schwenk et al. (2009) claimed that quality of the         

alignments obtained can be improved when the       

words in the bilingual dictionary appear in other        

sentences of the parallel corpus. Besides, the lexical        

weighting of existing aligned word pairs can be        

re-distributed and the phrase extraction algorithm      
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may split the resulting bilingual phrase pairs into        

smaller units (Sánchez-Cartagena et al., 2015). The       

experimental results show that, within the newly       

acquired translation options, language model can      

help to select the appropriate inflection form in most         

of the cases. 

 

2.2.2  Bilingual lexicon induction 
 
Using bilingual lexicon induced from monolingual data to enrich         

translation model of SMT has been proposed by many researches.          

One approach was to explore semantically related translation        

candidates from monolingual data by applying paraphrasing       

techniques. For instance, Marton (2009) proposed augmenting the        

training data with word paraphrases generated by using        

distributional techniques on a large monolingual corpus. His system         

constructed monolingual distributional profiles of OOV words in        

the source language for the translation model. It then generated          

paraphrase candidates from phrases that co-occur in similar        

contexts, and estimated their semantic similarity to the paraphrased         

term by applying distributional semantic distance measures. An        

improvement of 0.7 BLEU score was obtained compared to their          

Spanish-English baseline. Marton et al. (2010) extended the word         

paraphrasing method by combining a distributional semantic       
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distance measure with a shallow linguistic resource to create a          

hybrid semantic distance measure for handling not only words but          

phrases too. However, one potential disadvantage of relying on         

distributional profile is that items that are distributionally similar         

may not necessarily end up being paraphrastic. For instance,         

elements of the pairs (boys-girls), (cats-dogs), (high-low) can occur         

in similar contexts but are not semantically equivalent (Madnani         

and Dorr, 2010). 

Another line of work exploited graph propagation-based methods to         

generate new translations for unknown words. For instance,        

Razmara et al. (2013) proposed to induce lexicons by constructing a           

graph on source language monolingual text. According to this         

method, nodes that have related meanings were connected together         

and nodes for which they have translations in the phrase table were            

annotated with target side translations and their feature values. A          

graph propagation algorithm was then used to propagate translations         

from labeled nodes to unlabeled nodes (OOV). Their approach         

differs from previous approaches by adopting a graph propagation         

approach that takes into account not only one-step (from OOV          

directly to a source language phrase that has a translation) but           

multi-step paraphrases from OOV source language words to other         

source language phrases and eventually to target language        
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translations. They obtained an increase of up to 0.46 BLEU          

compared to the French-English baseline.  

Saluja et al. (2014) presented a semi-supervised graph-based        

approach for generating new translation rules that leverages        

bilingual and monolingual data. The proposed technique first        

constructed phrase graphs using both source and target language         

monolingual corpora together with the baseline phrase table. Next,         

graph propagation identified translations of phrases that were not         

observed in the bilingual corpus, assuming that similar phrases have          

similar translations. This approach significantly improved the       

performance over an Arabic-English and an Urdu-English phrase        

based systems, leading to consistent improvements between 1 and 4          

BLEU points on standard evaluation sets. Unlike Razmara et al.          

(2013), they used higher order n-grams instead of restricting to          

unigrams, since this approach was expected to go beyond OOV          

mitigation and could enrich the entire translation model by using          

evidence from monolingual text. Nevertheless, this method relies on         

pairwise mutual information between any pair of phrases in the          

monolingual corpus, which is very expensive to compute, even for          

moderately sized corpora. 

Over the years, there has been a surge of interest in learning            

bilingual lexicon from monolingual data. The first work in this area           

by Rapp (1995) was based on the hypothesis that translation          
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equivalents in two languages have similar distributions or        

co-occurrence patterns. Following this idea, (Koehn and Knight,        

2002; Haghighi et al., 2008; Schafer and Yarowsky, 2002; Irvine          

and Callison-Burch, 2013) combined context information and other        

monolingual features (e.g., relative frequency and orthographic       

substrings,etc.) of source and target language words to learn         

translation pairs from monolingual corpora. For instance, Irvine and         

Callison-Burch (2013) used a log-linear classifier trained on various         

signals of translation equivalence (e.g., contextual similarity,       

temporal similarity, orthographic similarity and topic similarity) to        

induce word translation pairs from monolingual corpora. 

Besides previously described approaches, distributional semantic      

models (DSMs) have also been used as representations to induce          

translation lexicons.  

In general, DSMs can be described as follows: 

● Traditional distributional semantics models 

Within the framework of DSMs, Turney and Pantel (2010)         

suggested to classify traditional DSMs into three different        

subclasses based on the structure of the matrix in a vector           

space model:  

- Term-document matrix​. When dealing with a large       

collection of documents, term-document matrix is      
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used to describe ​the frequency of terms that occur in          

a collection of documents. The row vectors of the         

matrix correspond to terms and the column vectors        

correspond to documents. One of the most common        

usage of this matrix is ​term ​frequency—inverse       

document frequency, which is applied in information       

retrieval.  

- Word-context matrix​. ​Traditional DSMs of this      

class are based on the assumption that the meaning         

of a word can be inferred from its distribution in text           

and that words appearing in similar contexts tend to         

have similar meanings (Harris, 1954). This has given        

rise to many word representation methods in the        

NLP literature. Most of these methods can be seen as          

a matrix ​M in which each row ​i corresponds to a           

word, each column ​j to a context in which the word           

appeared, and each matrix entry ​M​ij corresponds to        

some association measure between the word and the        

context. Words are then represented as rows in ​M or          

in a dimensionality-reduced matrix based on ​M       

(Levy and Goldberg, 2014b). These strategies are       

frequently applied to measure the relatedness      

between words in many natural language processing       
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tasks, such as word sense disambiguation,      

paraphrasing techniques and thesaurus compilation     

etc.  

- Pair-pattern matrix​. In a pair–pattern matrix, row       

vectors correspond to pairs of words, and column        

vectors correspond to the patterns in which the pairs         

co-occur, such as “X cuts Y ” and “X works with Y”.            

These strategies are normally used for measuring the        

semantic similarity of patterns and the relations       

between word pairs (Turney and Pantel, 2010).  

 
● Word embedding models 

More recently, there has been a surge of work proposing a           

new generation of DSMs that frame the vector estimation         

problem directly as a supervised task, where the weights in a           

word vector are set to maximize the probability of the          

contexts in which the word occur (Bengio et al., 2003;          

Collobert and Weston, 2008; Mikolov et al., 2013a;        

Pennington et al., 2014). Compared to these new        

approaches, the traditional construction of context vectors is        

turned on its head: Instead of first collecting context vectors          

and then reweighting these vectors based on various criteria,         

the vector weights are directly set to optimally predict the          
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contexts in which the corresponding words tend to appear.         

Since similar words occur in similar contexts, the system         

naturally learns to assign similar vectors to similar words         

(Baroni et al., 2014). Thus, this new generation is described          

as “predictive models”, and the representations produced by        

these new models are normally referred as “word        

embeddings”. Baroni et al. (2014) demonstrated that, in        

most of the tasks, predictive models consistently outperform        

count-based models. 

In our experiments, we applied the word embedding strategy         

proposed by Mikolov et al. (2013a) which contains two         

model architectures for learning distributed representations: 

- Continuous Bag-of-Words Model​. ​The theory     

behind Continuous Bag-of-Words (​CBOW) model is      

similar to the feedforward neural network language       

model, where the non-linear hidden layer is removed        

and the projection layer is shared for all words; thus,          

all words get projected into the same position. Since         

the order of words in the history does not influence          

the projection, it is called bag-of-words model. The        

training objective of ​this model is to predict the ​the          
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word in the middle from a window of surrounding         

context words.  

- Continuous Skip-gram Model​. The skip-gram model      

is similar to CBOW, but instead of using the context          

to predict the middle word, the distributed       

representation of the input word is used to predict its          

context in the same sentence. More precisely, each        

input word is applied to a log-linear classifier with         

continuous projection layer to predict words within a        

certain window (words occur before and after the        

input word). Compared to Skip-gram, CBOW is       

faster and more suitable for larger datasets (Mikolov        

et al., 2013a). Therefore, in our experiments, we        

trained our word embedding model using CBOW. 

Since both CBOW and Skip-gram are trained using a simple          

neural network architecture, with these models, very       

accurate high dimensional word vectors can be obtained        

from a larger amount of data in much less time compared to            

the popular neural network models (both feedforward and        

recurrent). Their model architectures are shown in Figure        

2.8. 
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Figure 2.8: CBOW and Skip-gram model architectures (Mikolov et al., 2013a). 

 

Mikolov et al. (2013a) showed that word embeddings can project          

word semantics into a vector space from their distributional         

characteristics. More interestingly, it is claimed that the relationship         

between vector spaces that represent different language word        

semantics can be captured by a linear transformation, since same          

concepts in different languages share similar geometric arrangement        

in vector spaces as the examples ​shown in Figure 2.9. According to            

the method proposed by Mikolov et al. (2013b), ​the process of           

generating dictionaries was automated by learning a linear        

transformation between vector spaces of two particular languages        

on a 5K seed dictionary. At test time, a new word can be translated              
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by projecting its vector representation from the source language         

space to the target language space. Once the vector in the target            

language space is obtained, similar target language word vectors         

(found by cosine similarity assessment) are ranked as possible         

translations. The translation matrix is found via optimization with a          

stochastic gradient descent algorithm. Their results in the form of          

ranked lists are further refined with a confidence threshold that tries           

to balance precision and recall, i.e. coverage. Thus, the highest          

coverage achieved for the pair English-Spanish is 92.5%, but         

precision at top position is 53%. Best precision reported is 78%           

(better results are obtained when refining with edit distance) but          

with a coverage of 17%. However the limitation of the approach of            

Mikolov et al. (2013b)​, ​as well as other similar models (Faruqui and            

Dyer, 2014; Dinu et al., 2015; Lazaridou et al., 2015; Vulic and            

Korhonen, 2016) is that they all rely on readily available seed           

lexicons of highly frequent words to learn the mapping. 
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Figure 2.9: Distributed word vector representations of numbers and         

animals in English (left) and Spanish (right) (Mikolov et al., 2013b) . 

 
Besides the approaches presented above, there are also many other          

interesting bilingual word embedding (BWE) strategies. According       

to Vulic and Korhonen (2016) and Upadhyay et al. (2016), we           

cluster the rest of the BWE models into four different types based            

on bilingual signals used for training, and two properties: P1          

regarding leveraging large monolingual training sets tied together        

through a bilingual signal and P2 regarding the use of inexpensive           

bilingual signal to learn shared bilingual word embedding space         
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(SBWES) in a scalable and widely applicable manner across         

languages and domains:  

● Parallel-Only​: This group of BWE models relies on        

sentence-aligned and/or word-aligned parallel data as      

the only data source (Zou et al., 2013; Hermann and          

Blunsom, 2014a; Kociský et al., 2014; Hermann and        

Blunsom, 2014b; Chandar et al., 2014). In addition        

to an expensive bilingual signal (colliding with P2),        

these models do not leverage larger monolingual       

datasets for training (not satisfying P1). 

● Joint Bilingual Training​: These models jointly      

optimize two monolingual objectives, together with a       

cross-lingual objective acting as a cross-lingual      

regularizer during training (Klementiev et al., 2012;       

Gouws et al., 2015; Soyer et al., 2015; Shi et al.,           

2015; Coulmance et al., 2015). The main       

disadvantage of this approach is the costly parallel        

data needed for the bilingual signal (thus colliding        

with P2). 

● Pseudo-Bilingual Training​: This set of models      

requires document alignments as bilingual signal to       

induce a SBWES. For instance, Vulic and Moens        
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(2016) created a collection of pseudo-bilingual      

documents by merging every pair of aligned       

documents in training data. With these      

pseudo-bilingual documents, the “context” of a word       

is redefined as a mixture of neighbouring words (in         

the original language) and words that appeared in the         

same region of the document (in the ”foreign”        

language). The bilingual contexts for each word in        

each document steer the final model towards       

constructing a SBWES. Compared to the selected       

baselines models , The relative increase over the best        2

scoring baseline BLI models from comparable data       

is 19.4% for the ES-EN pair, 6.1% for IT-EN and          

65.4% for NL-EN. The advantage of these models        

lies in exploiting weaker document-level bilingual      

signals (satisfying P2), but these models are unable        

to exploit monolingual corpora during training (thus       

colliding with P1). 

● Matching Term inspired by IBM Model 1​:       

Following the spirit of IBM Model 1, this set of          

models learns bilingual lexicons/phrases from     

2 ​Baseline models: BiLDA-BLI model proposed by Vulic et al. (2011); Assoc-BLI model 
proposed by Vulic and Moens (2013a); and PPMI+cos model proposed by Bullinaria and 
Levy (2007).  
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non-parallel corpora by optimizing a matching term       

using Viterbi EM algorithm (satisfying P1) . For        

instance, Dong et al. (2015) proposed a joint model         

for iteratively learning parallel lexicons and phrases       

from non-parallel corpora. The model was trained       

using a Viterbi EM algorithm that alternates between        

constructing parallel phrases using lexicons and      

updating lexicons based on the constructed parallel       

phrases. Zhang et al. (2017) designed a similar        

matching mechanism into bilingual word     

representation learning. One crucial difference is the       

parametrization of the matching probability. Dong et       

al. (2015) used the standard IBM model 1 to define          

the phrase translation probability and their model did        

not involve continuous representation of words,      

which in turn leads to different optimization       

procedure. Since both models can iteratively      

improve bilingual lexicons learning through     

benefiting the newly acquired translation pairs      

derived from monolingual data, only small parallel       

corpora or seed dictionary are required for the        

training (satisfying P2). 
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In this dissertation, we decided to induce bilingual lexicons from          

monolingual data using the word embedding vector proposed by         

Mikolov et al. (2013a). However, instead of optimizing a         

transformation matrix across language spaces, we treat bilingual        

lexicon generation as a binary classification problem: given a         

source word, the classifier predicts whether a target language word          

is its translation or not. This method was inspired by the recent            

evidence of Necsulescu et al. (2015) that indicated that simple          

concatenation of word embeddings is effective for finding lexical         

semantic relations (i.e. hyponymy, hyperonymy, meronymy,      

attribution and properties) holding in word pairs with supervised         

methods. Our task is accordingly defined as whether the         

concatenated vector of source and target word could be useful for a            

classifier to learn the translation relation between them. 

Recently, several researches applied similar strategies of bilingual        

lexicons induction to enrich SMT phrase table. For instance, Zhao          

et al. (2015) proposed a method that uses monolingual phrase          

representations (via simple element-wise addition of word vectors)        

to generate translation rules for infrequent, or phrases that do not           

appear in the bilingual data, which are called by these authors           

‘unlabelled phrases. The general idea behind this method is to          

identify phrases for which translation rules are known to be similar           

to an unlabeled phrase, and to use them to induce translation rules            
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for the unlabeled phrase. Their approach was similar to Mikolov et           

al. (2013a), but instead of learning a single global linear projection           

matrix to capture the mapping relationship between the source and          

target spaces, they proposed to learn many local linear projections          

which are individually trained for each unlabeled source phrase.         

More specifically, for each unlabeled source phrase , they learned       f    

a mapping based on the translations of of ’s    W f ∈ R d×d       m   f  

labeled neighbors:  

.f  ,  ), (f  ,  ), .., (f  ,  ),  f  (f ), 1 , m( 1 e 1  2 e 2 .  m e m  i ∈ N  ≤ i ≤ m  ≥ d   

An additional k-NN query was required to find the labeled          

neighbors for each unlabeled source phrase. Then based on Saluja et           

al. (2014) approach, structured label propagation (SLP) was applied         

to propagate translation candidates from frequent source phrases        

that are labeled to unlabeled neighbors that are infrequent as: for a            

known translation rule , SLP propagates the target side   f ` , )( ′ e′       

phrases ), that are similar to , to the unlabeled source (ee ∈ N ′      e′      

phrases , that are similar to , as new translation rules. (f )f ∈ N ′      f ′      

To calculate the propagation probability of source and target         

phrases, costly PMI statistics (according to Saluja et al., 2014) was           

replaced by continuous phrase representations. It was computed as:         

, where is the projected point ofim(e | e)s = 1
1+|| e − e ||   e       

foreign phrase , and is the Euclidean distance between  f   | e  ||| − e       
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vectors and . Then the phrase translation probability for each e   e         

candidate  was calculated as:( e)e ∈ N  

 

(e | f  )P =
exp{sim(e, e )}

Σ exp{sim(e , e )}e ∈N ( e )′ ′  

 
 

The backward translation probability was computed using Bayes’        

Theorem. Similar to Saluja et al. (2014), forward and backward          

lexicalized weightings were obtained by using a baseline lexical         

model. Their approach improved a phrase-based baseline by up to          

1.6 BLEU on Arabic-English translation. However, the limitation is         

that the expansion is restricted by the existing translation pairs of           

the baseline phrase table. 

Irvine and Callison (2014 and 2016) enriched SMT low resource          

systems with bilingual lexicons extracted from monolingual       

corpora. Their bilingual lexicons were learned by a log-linear         

classifier (Irvine and Callison, 2013) that was trained on many          

different monolingual signals (contextual similarity, temporal      

similarity, orthographic similarity and topic similarity, frequency       

similarity and burstiness similarity). To produce new translation        

candidates, they paired and scored all source language unigrams in          

the tuning and test sets with target language unigrams that appear in            

a comparable corpora. Then, for each source language unigram, the          
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log-linear model scores were used to rerank target language         

translation candidates, only top-k (k=1, 2, 5, 25, 200) translation          

candidates were chosen for the phrase table expansion. Since much          

noise was introduced, besides the standard phrase-based MT feature         

set (phrase and lexical translation probabilities and a lexicalized         

reordering weighting), 30 monolingually-derived signals were also       

needed to be applied as further translation table features to prune           

the new phrase pairs. The experiments were conducted on seven          

different language pairs. They achieved an average of 0.8 BLEU          

improvement compared to the low resource baselines. However, in         

this approach, comparable corpus is still required for learning new          

translation pairs and the 30 new phrase table features make the           

method too complicated. Besides, extracting a large number of         

monolingual signals is computationally expensive. 
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Chapter 3 
 

3. MORPHOLOGY EXPANSION FOR SMT  
 
Parallel corpora are the key resource that supports SMT to learn           

translation correspondences at the level of words (Brown et al.,          

1993), phrases (Koehn, 2003) and treelets (Galley et al., 2006). The           

more data is used to estimate the parameters of the translation           

model, the better it can approximate translation probabilities that in          

turn will deliver better translations. 

Although nowadays large parallel corpora are easily available for         

some language pairs such as English-Spanish and English-French, it         

is still difficult to get, or even doesn’t exist, for most others. This is              

the case of the Chinese-Spanish language pair, for which to find           

more parallel corpora to train a SMT system is clearly insufficient.           

One way of approaching the lack of corpora is to provide the system             

with more inflectional translation options for alleviating the        

translation problem of morphological variants.  

According to the error analysis and error classification of a          

English-Greek SMT system (shown in Section 2.2) given by         
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Avramidis and Koehn (2008), more than 40% of the errors are due            

to the incorrect translation of word forms. This problem is          

particularly severe when translating from a morphologically poor        

language to a high-inflected language, as in our case, from Chinese           

to Spanish. As explained in Section 1.1, Chinese has no          

morphological complexity within a word, but Spanish, in contrast,         

is highly inflected. So when a system suffers from the parallel data            

scarcity problem, it is not capable of producing a translation of the            

correct word form. So in Chapter 3, based on the knowledge of our             

Chinese-Spanish SMT baseline system, we generated the missing        

morphological variants using a Spanish lexical resource and applied         

the newly acquired inflectional translation pairs to enrich the         

baseline phrase table.  

According to the Spanish morphological resource that we used for          3

the generation of morphological variants, we plot in Figure 3.1 the           

number of inflectional variants regarding each lemma of noun, verb          

and adjective . The x-axis represents each of the lemmas (noun,           4

verb and adjective) in the morphological resources and the y-axis          

indicates how many variants each lemma has. The three sparkline          

charts (of noun, verb and adjective) share the same x-axis, but with            

different y-axis.  

3 ​ I​ULA spanish lexical resource: 
https://www.upf.edu/web/iula/recursos-corpus-i-eines 
4 Our variants expansion was only based on noun, verb and adjective. 
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Figure 3.1: Number of morphological variants regarding the corresponding 
lemma in the Spanish morphological resource.  

 
In the feature above, it can be seen that the lemmas of noun and              

adjective can be inflected in up to 8 different different forms. In            

case of verb, there can be more than 100 different morphological           

variants regarding a single lemma. Therefore, the inflection        

difference could be a big problem for SMT between Chinese and           
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Spanish when there is not enough parallel corpora available for          

training the translation model.  

As referenced in Section 2.2.1, to reduce the morphological         

translation errors in SMT, many works focus on using extra          

syntactic or lexical resources on source side or target side to           

improve the mapping between the source word and its         

corresponding translation variant. However, without having all       

possible inflection variants in the translation model, these methods         

would be of no effect. So the goal of this experiment is to provide              

more inflectional translation options to the system.  

3.1. Morphology generation with lexical resource 
 
To generate new inflectional variants, first, all the unigram         

translation pairs of nouns, adjectives and verbs were collected from          

the baseline phrase table including the bad translations. We focus          

on nouns, adjectives and verbs because these are the word classes in            

which might occur morphological translation errors. Given a        

bilingual entry, the Spanish morphological resource was used for         

lexical lookup to return all the possible inflectional variants that          

share the same lemma with the target Spanish word. Since the           

Chinese source word has no inflection, all the target morphological          

variants share the same source word. Note that we only take those            

variants which could be found in the language model, since some           
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very low frequency (rarely used) variants were included in the          

morphological resource such as ​viésemos (​the first-person plural        

imperfect subjunctive form of ​ver​) and ​circunstanciadamente       

(‘according to the situation’)​. The generation process of the new          

association can be described as shown in Figure 3.2. 

 

 

Figure 3.2: Generation process of new morphological associations. 
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Before moving to the step of SMT phrase table expansion, we           

would like to clarify the following issues: 

● In the baseline phrase table, there are some translation pairs          

that contain same source word but with different translation         

inflections such as ​看_vio and ​看_ve, ​so some inflectional         

translation pairs may be repeatedly generated. To avoid such         

situation, once obtained all the new associations, the        

repeated entries were removed. Namely, only unique entries        

were kept for the phrase table expansion.  

● Our new inflection associations were generated based on all         

the unigram translation pairs (only nouns, adjectives and        

verb) of the baseline phrase table including bad translations         

without any selection threshold. Since when the parallel        

training corpora were limited, the correct translation       

candidate could rank in any position making it hard to          

properly define a specific threshold. As a result of this fact,           

for each Chinese source word, we decided to consider all the           

target candidates delivered by the baseline for the generation         

of the new translation variants. Although in this way a lot of            

noise entries were generated and delivered to the SMT         

system, the experimental results demonstrate that the       

language model can handle them to an acceptable extent. 
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3.2. Experimental setup 

This experiment was conducted on the language pair Chinese and          

Spanish. The parallel corpora used to train the SMT baseline system           

are: Chinese-Spanish OpenSubtitles 2013 (1M sentences). For       5

tuning, we randomly sampled 1K sentence pairs from the ​News          

Commentaries parallel corpora released by Tiedemann (2012). ​For        6

testing, we used TAUS translation memory (2K sentences) and a          7

subset of UN parallel corpora (2K sentences). To build the          8

language model, since we need all the newly acquired inflectional          

variants to be included, the Spanish Wikipedia corpus (150M         9

words, 2006 dump) was combined with OpenSubtitles 2013 target         

corpus for the training of the language model. We used Stanford           

PoS tagger to collect all the noun, adjective and verb unigram           10

translations from the baseline phrase table. In total, 0.89 M word           

pairs were used to generate morphological variants.  

The morphological resource used to generate new morphological        

variants includes three information: word form, morphosyntactic       

description and lemma. In total, there are 72K lemmas of noun, 17K            

lemmas of verb and 30K lemmas of adjective. For the phrase table            

5 http://opus.lingfil.uu.se/OpenSubtitles2013.php 
6 http://opus.lingfil.uu.se/News-Commentary.php 
7 http://www.tauslabs.com/ 
8 http://opus.lingfil.uu.se/UN.php 
9 http://hdl.handle.net/10230/20047 
10 ​https://nlp.stanford.edu/software/tagger.shtml 
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expansion, we only generate inflectional variants for those target         

words that are present in the baseline phrase table. Figure 3.3           

demonstrates the number of inflectional variants regarding each        

lemma in our unigram bilingual lexicon. After the filter of the           

language model, 4.4K noun lemma, 2.1K verb lemma and 1.8K          

adjective lemma were applied to enrich the SMT phrase table.  

● Phrase-based SMT setup 

To build our SMT system, we used Moses phrase-based MT          

framework (Koehn et al., 2007b) and the standard phrase-based MT          

feature set, including phrase and lexical translation probabilities        

(direct and inverse) and reordering score produced by a lexicalized          

reordering model (Koehn et al., 2005). We applied ​mgiza (Gao and           

Vogel, 2008) to align parallel corpora and ​KenLM (Heafield, 2011)          

to train a 3-gram language model. For the evaluation, we used           

BLEU (Papineni et al., 2002) and METEOR metric (Banerjee and          

Lavie, 2005).  

Note that the parameter ​Good Turing (Gale, 1995) was applied in          11

order to reduce overestimated translation probabilities. Since the        

parallel corpus contains many new unigram translation pairs, the         

translation probabilities of these new word pairs might be higher          

than other translation pairs of the baseline phrase table. ​Good          

11 ​http://www.statmt.org/moses/?n=FactoredTraining.ScorePhrases 
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Turing is a popular count smoothing technique which provides a          

principled way to adjust count. To obtain better phrase translation          

probabilities, the observed counts may be reduced by expected         

counts which takes unobserved events into account. Borrowing a         

method from language model estimation, ​Good Turing discounting        

can be used to reduce the actual counts to a more realistic number.             

The value of the adjusted count is determined by an analysis of the             

number of singleton, twice-occurring, thrice-occurring, etc. phrase       

pairs that were extracted (Koehn, 2010). ​In order to fairly measure           

the impact of the newly derived translation variants on the SMT           

system, the ​Good Turing parameter was applied to the training          

processes of both baseline and expanded phrase table.  

3.3. Experimental results 

In this section, we present the experimental results of the expanded           

SMT system (from Chinese to Spanish). Table 3.1 depicts the          

evaluations by BLEU and METEOR metric on UN and TAUS test           

sets. 
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Figure 3.3: Number of morphological variants regarding the corresponding         
lemma for inflectional variants expansion. 

 

 TAUS  UN 

BLEU METEOR BLEU METEOR 

Baseline 8.80 0.2929 10.81 0.3075 

PhT with 
morphologic
al expansion 

9.39 0.3075 11.42 0.3198 

Table 3.1: Test results of the baseline and expanded phrase table. 
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According to Table 3.1, the system with the expanded phrase table           

outperforms the baseline by an improvement of 6% BLEU score          

and 5% METEOR score on TAUS test set; and an improvement of            

5% BLEU score and 4% METEOR score on UN test set. The            

improvements are statistically significant according to the paired        

student t-test at the level of p < 0.05. Figure 3.4 and Figure 3.5              

show the METEOR score regarding each sentence pair of UN test           

set and TAUS test set, respectively. ​After incorporating new         

translation lexicons with inflections, 67% sentence pairs outperform        

the baseline in UN test set and 63% sentence pairs outperform the            

baseline in TAUS test set.  

3.4. Discussion 
 
Herein we present the observations and analysis based on the          

translation results produced by the baseline and the expanded         

system. As shown in Table 3.1, the expanded system outperforms          

the baseline, demonstrating that our new morphological variants        

indeed help the system to produce better translations. One of the           

most direct impact was that the system can produce more correct           

word form after the expansion. For instance, in the following          

example, with the baseline, the verb 决定 was translated as a noun,            

but the expanded system was capable of delivering the correct verb           

word form. 
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Figure 3.4: METEOR score regarding each sentence pair of UN test set. 
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Figure 3.5: METEOR score regarding each sentence pair of TAUS test set. 
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(1) 

Source​: 
决定 ​任命一名负有一定任务的特别报告员。 
(Decided to appoint a special rapporteur with a certain         
mandate.) 

Reference​: 
decidió​ nombrar un relator especial con un mandato 
expreso. 

Baseline: 
la decisión​ del Comité para una misión especial. 

Expanded system: 
 decidió​ nombrar un especial de la misión. 

  

We notice that both the baseline and the enriched system have the            

omission ​problem (​Vilar et al., 2006; Costa et al., 2015), according           

to which the translations of some words of the ​original source           

sentence are missing. ​Observing the translation result produced by         

the baseline, in some cases, although the source word was present           

with several translation options in the baseline phrase table, the          

system prefered not to translate it if it was not the right case.             

Compared to the baseline, the expanded system performs slightly         

better due to the addition of new infections.  
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(2) 
Source​: 
以 确保 其 ​有效​ 运作。 
(to ensure it effectively works.) 

Reference​: 
con objeto de asegurar su funcionamiento efectivo. 

Baseline: 
para asegurar . Funciona 

Expanded system: 
 para asegurar ​efectivamente​ funciona. 

(3) 

Source​: 

该 国 人民 ​清楚 地​ 决定 选择 民主。 
(The people of the country have clearly decided to prefer          
democracy.) 

 

Reference​: 
la población ha decidido ​claramente​ preferir la democracia. 

Baseline: 
el pueblo ... decidí elegir entre la democracia. 

Expanded system: 
 el país ​claramente​ decide elegir a la democracia. 
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In both examples above, instead of giving an incorrect translation          

word form, the baseline omitted translating the adverbs 有效 and 清          

楚地. The expanded system, on the contrary, delivered the correct          

translations after the phrase table expansion, hence alleviated the         

omission problem to some extent. However, observing the example         

(3), the verb 决定 was translated differently as decidí and ​decide by            

the baseline and expanded system, respectively. We realize that         

simply adding all morphological variants in the baseline system can          

not solve all the translation problem of word inflections. It is           

particularly serious in our case, since Chinese ​has no case, gender           

or number markers for nouns and no subject-verb agreement or          

tense for verbs. So when a subject or a tense is not explicitly             

expressed, it may not be translated appropriately regarding the         

Chinese source sentence in some cases. For instance, in both          

Chinese examples below, there is no subject or time marker to           

determine the person and tense of the verbs 表示. If simply judging            

from these sentences without any context, they can be interpreted          

either in present or in past tense. Therefore, in the examples above,            

we consider the “ incorrect translations” of the verb tense as an            

acceptable translation option rather than translation errors.       

Regarding the lexical choice, the expanded system performs better         

than the baseline as shown in the following examples. 
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(4) 

Source​: 
表示关切​ ​在宣言通过四十年之后竟然仍存在一些非自治
领土。 
(Expressing its concern that, after forty years of the adoption          
of the Declaration, there are still some Non-Self-Governing        
Territories.) 

Reference​: 
expresando su preocupación ​por que cuarenta años después 
de la aprobación de la Declaración, aún siga habiendo 
territorios no autónomos.  

Baseline: 
significa que​ su en el manifiesto de 40 años después de que 
todavía existe algo que 自治 territorio. 

Expanded system: 
expresó preocupación ​en la Declaración de cuarenta años        

después de que todavía existen algunos territorios 自治. 

 

(5) 

Source​: 

回顾 ​ ​其关于援助巴勒斯坦难民的 1948年 11月 19日 第
212 ( III ) 号 决议。 
(Recalling its resolution 212 (III) of 19 November 1948 on          
assistance to Palestine refugees.) 

Reference​: 
recordando​ su resolución 212 ( III ), de 19 de noviembre de 
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1948, relativa a la ayuda a los refugiados de Palestina.  

Baseline: 
en su ayuda a los refugiados de Palestina, el 19 de 
noviembre de 1948年 第212 lll, el Estado. 

Expanded system: 
recuerda la ayuda de los refugiados de Palestina 19 de          

noviembre de 1948年 第212 lll ; . el asunto. 

 

3.5. Summary 

In this section we described an approach to enrich our          

Chinese-Spanish SMT phrase table by adding new translation pairs         

with morphological variants that derived from a Spanish lexical         

resource. The experimental results showed improvements of the        

translation quality in different aspects as demonstrated in Section         

3.4. However, we notice that simply adding all the inflectional          

variants into the parallel training corpora is not sufficient to handle           

some translation problem of verb conjugation due to the unclearness          

property of Chinese. To enhance this situation, as future work,          

combine our method with the approach that incorporates syntax         

information of morphologically poor language (Avramidis and       

Koehn, 2008) may enable a further improvement, as they claimed          

that their method could be limited by the data sparsity problem.  
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Chapter 4 
 

4. BILINGUAL LEXICON INDUCTION FOR 
SMT  
In the experiments described in the previous chapter, the         

morphology expansion was based on the existing knowledge of the          

baseline phrase table. In this chapter, we induce new translation          

lexicons from monolingual corpora with the intention of alleviating         

OOV problem. ​Different researches have been done on the topic of           

automatic construction of bilingual lexicons. As reported in Section         

2.2, (Tanaka and Umemura, 1994; Bond et al., 2001; Nerima and           

Wehrli, 2008) learned new translation pairs by combining existing         

bilingual dictionaries that share a common language. Some other         

approaches (Fung, 1995; Chiao and Zweigenbaum, 2002; Yu and         

Tsujii, 2009) consist in extracting translation equivalents from        

comparable corpora rather than parallel corpora. More recently,        

(Mikolov et al.,2013a; Vulic and Moens, 2015; Chandar et al.,          

2014;Wang et al., 2016) proposed cross-lingual word embedding        

strategies to map words from a source language vector space to a            
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target language vector space, and also demonstrated its application         

to bilingual lexicon induction.  

The methods presented in this section are similar to the end-to-end           

experiments of Irvine and Callison-Burch (2014) and Irvine and         

Callison-Burch (2016), which generated bilingual lexica by training        

a classifier using a large variety of monolingual signals. In the           

present experiments, we trained classifiers using only word        

embedding vectors and two other monolingual features, but the         

classifier is also capable of learning translation lexicons from         

monolingual data. The first classifier described in Section 4.1 was          

trained only with word embedding vector. Then to improve the          

performance of word embedding-based model, in Section 4.2 and         

Section 4.3, we proposed two enhanced models trained with         

additional word frequency information and Brown clustering,       

respectively.  

4.1  New translation lexicon generation with word 
embeddings  

In the experiments described in this chapter, we built a Support           

Vector Machine (SVM) to induce bilingual lexicon from        

monolingual corpora for SMT phrase table expansion. ​The goal of          

SVM model is to find ​the best hyperplane that maximizes the           

margin between data points of one class from those of the other            
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class as shown in Figure 4.1 (Cortes and Vapnik, 1995). The basic            

idea behind SVM is: the input vectors of training examples are           

mapped into a higher dimensional feature space through some         

nonlinear mapping chosen a priori. In this space a linear decision           

hyperplane is constructed with the maximal margin. To determine         

the margin, only a small amount of the training data, the so called             

support vectors, are taken into account.  

 

Figure 4.1: An example of a separable problem in a 2 dimensional space. The              
support vectors, marked with grey squares, define the margin of largest separation            
between the two classes ​(Cortes and Vapnik, 1995)​. 
 

However, training a SVM requires the solution of a very large           

quadratic programming (QP) optimization problem, which means       
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training algorithms for SVM can be very slow, especially for large           

data. To alleviate such problem, Platt (1998) proposed the         

Sequential Minimal Optimization (SMO) algorithm that can break        

this large QP problem into a series of smallest possible QP           

problems. These small QP problems are solved analytically, which         

avoids using a time-consuming numerical QP optimization as an         

inner loop. In general, SMO is faster, and has better scaling           

properties for difficult SVM problems than the standard SVM         

training algorithm (Platt, 1998). Therefore, in this work, we trained          

our SVM classifier using SMO. 

4.1.1. Approach 
 
The task of this experiment was to train a SVM-SMO binary           

classifier with vectors made of concatenated word embeddings of         

translation equivalents. In testing mode, new word pairs were         

classified as being one the translation of the other or not. The            

classifier is trained to recognize a translation relation. 

Our intuition was that although the word embedding models were          

trained on unrelated monolingual corpora, the concatenated word        

embedding vector of source and target word does encode useful          

information for the classifier to decide whether a word pair is under            

a translation relation or not. In Figure 4.2 we visualize the           

geometric arrangement of our 6K training word pairs (​right         
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translation and ​no translation​) represented by word embedding        

vector in a 3-dimensional space. 

 

Figure 4.2: Distributed representations of 6K word pairs (1K ​right translation and            

5K no translation​) with WE of 400 dimensions. We used PCA to project high              

dimensional vector representations down into a 3-dimensional space. 

For the training and testing set, each translation pair was          

represented by concatenating the word embedding vector of the         

source word and of its corresponding translation for positive         

examples. For negative examples, we randomly combined a number         

of source word with target words. Formally, given a translation          

word pair , ​x being a source and ​y a target word, whose vector  x, y)(              
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features are and  (x) x , x , ..., x )v = ( 1  2   n   (y) y , y , ..., y ) v = ( 1  2   m

respectively, then ​v​(​x, y​) is defined as the concatenation of ​v​(​x​) and            

v​(​y​): . This experiment was (x, y) x , x , ..., x , y , y , ..., y )v  = ( 1  2   n  1  2   m     

only conducted with unigrams of three word classes: noun, verb and           

adjective.  

The classifier was evaluated in two different scenarios: 

● Proof-of-Concept​. For the ​proof-of-concept evaluation, the      

test set was prepared in the same way as the training set.            

Each source word embedding was paired with one target         

word embedding. Given a set of testing word pairs, the          

trained model was used to classify whether these testing         

word pairs are translation equivalents or not.  

● SMT simulation​. This evaluation scenario was similar to        

how SMT system produce a phrase table where pairs of          

words are extracted from all possible combinations of words         

occurring in a given set of aligned sentences and the          

probability of a particular word being the translation of other          

is estimated. In this evaluation scenario, each of the source          

word representation from the test set was concatenated with         

all target word (of same POS) representations from the         

target monolingual corpus. Then all translation pair       
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candidates were ranked by the confidence score produced by         

our classifier. 

4.1.2   Experimental setup 

In this section we describe the experimental settings of our          

SVM-SMO classifier trained using gaussian kernel that was        

intended to learn the translation relation. The classifier is binary: it           

learns whether a word pair is ​right translation or ​no translation​.           

The general outline of the experiments is: (i) Generation of the right            

and wrong translation lists. (ii) Obtaining the corresponding word         

vector representation from monolingual word embedding models.       

(iii) Concatenation of the vector representations of the source word          

and its translation equivalent (or random word for negative         

instances). (iv)Training a SVM-SMO classifier using the previous        1

concatenated representation. (v) Evaluation of the classifier. 

● Data sets 

The word embedding-based classifier was evaluated on two quite         

distinct language pairs: Chinese and Spanish (ZH-ES) and English         

and Spanish (EN-ES). The monolingual corpora used for the         

Proof-of-Concept evaluation scenario were: Chinese Wikipedia      

Dump corpus (149M words); Spanish Wikipedia corpus (150M,        2 3

1 SMO algorithm （Platt, 1998) as implemented  in WEKA (Hall et al., 2009). 
2 ​https://archive.org/details/zhwiki_20100610 
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2006 dump); and for English, the BNC (100M). For the ​SMT           4

simulation ​evaluation task, the corpora that we used were: WMT          

11  text data of English (59M) and Spanish (59M).  5

To obtain the positive training set (​right translation​), a translation          

list was produced by, first randomly extracting a list of about 1K            

nouns, verbs and adjectives (word frequency rank plot in Figure          6

4.3 and Figure 4.4) from the ZH monolingual corpus and EN           

monolingual corpus. Then these randomly selected words were        

translated to ES using on-line Google Translator and all the          

translation outputs delivered by Google Translator were manually        

evaluated. Since not all the produced translations could be found in           

the target monolingual corpus, we removed from our datasets those          

words whose corresponding translation was not in the target corpus.          

To build the negative training set (​no translation​), as mentioned          

before, we randomly selected non-related words from the        

monolingual corpus of each language and randomly combined        

them.  

Since ​Zhao et al. (2015) pointed out that the frequency of the            

positive training examples has great impact on the performance of          

3 ​http://hdl.handle.net/10230/20047 
4 ​http://www.natcorp.ox.ac.uk/ 
5 ​http://www.statmt.org/wmt11/training-monolingual.tgz 
6 ​For PoS tagging of all corpora, we used Stanford PoS Tagger (Toutanova et al., 
2003) 
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bilingual lexicon induction. ​Figure 4.3 and Figure 4.4 show the zipf           

plot for word counts in our monolingual corpora, where we          

highlight the word frequency distribution of our positive training         

examples in red color.  

This dataset was divided into training and testing sets. Final figures           

of the datasets are provided in Table 4.1. 

 ZH-ES EN-ES 

Training Testing Training Testing 

YES NO YES NO YES NO YES NO 

Noun 451 2390 99 449 449 2379 94 469 

Adj. 302 1492 71 398 300 1500 99 500 

Verb 400 1999 113 599 300 1500 99 500 

Total 1153 5881 283 1446 1049 5379 292 1469 

Table 4.1: Translation pair datasets for ZH-ES and EN-ES. 
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(1) 

(2) 
Figure 4.3: Zipf plot for word counts in monolingual corpora (blue dot) in             
ZH-ES experiment: ZH Wikipedia corpus (1) and ES Wikipedia corpus (2), and            
their corresponding word frequency distribution of positive training examples         
(red cross) . 
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(1) 

(2) 

Figure 4.4: Zipf plot for word counts in monolingual corpora (blue dot) in             
EN-ES experiment: EN BNC corpus (1) and ES Wikipedia corpus (2), and their             
corresponding word frequency distribution of positive training examples (red         
cross) . 
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● Word Embeddings 

We obtained word embeddings from the monolingual corpora        

described above for our Spanish, English and Chinese words in the           

right translation and ​no translation lists using the Continuous         

Bag-of-words (CBOW) method as implemented in word2vec tool,        7

because it is faster and more suitable for larger datasets (Mikolov et            

al., 2013a). To train the CBOW models we used the parameters           

with window size 8, minimum word frequency 5 and 200          

dimensions for both source and target vectors. For the ranking          

experiment, we used 300 dimensions for all vectors.  

4.1.3  ​Proof-of-Concept​ evaluation scenario 
 
For the ​proof-of-concept ​evaluation, we experimented with different        

options: using WE obtained from raw corpora and from lemmatized          

corpora, and training the classifier with different ratios of positive          

and negative training sets.  

We first experimented with the ratio of 5 negative training samples           

to each positive sample. We chose this imbalanced ratio to approach           

the actual distribution of the data ​when inducing bilingual lexicons          

from monolingual corpora, ​since there will be many more no          

translation than ​right translation pairs. ​However, it should be made          

7 https://code.google.com/archive/p/word2vec/ 
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clear that our classifier also performs well on the balanced data as            

demonstrated in Table 4.6 and Table 4.7.  

We trained and tested SVM-SMO classifiers on EN-ES and ZH-ES          

for three word categories: noun (N), adjective (Adj) and verb (V),           

and another for the three categories together. ​Note that this thesis           

focuses on the phrase table expansion techniques for ZH-ES SMT          

system. The word embedding-based classifiers described in this        

section were also evaluated on EN-ES because the ​SMT simulation          

evaluation scenario is similar to the EN-ES ranking experiment         

proposed by Mikolov et al.(2013b). We conducted the experiments         

on the same EN-ES dataset as used by Mikolov et al. (2013b) with             

the intention to compare their ranking task with our method.  

The evaluation was double, as we performed a 10 fold          

cross-validation with the training set and we tested again the model           

with the held-out test set. The results are presented in terms of            

precision (P), recall (R) and F1-measure (F1). The tables below          

show the P, R and F1-score of both classes (​right translation and ​no             

translation​) separately of the experiments. 

For the first experiment, we learned our ZH, EN and ES word            

embedding models using lemmatized monolingual corpora, thus all        

the word pairs were represented by lemmas. The ratio was 5           
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negatives to each positive. Table 4.2 and Table 4.3 show the test            

results on the language pairs ZH-ES and EN-ES respectively. 

 10 cross-validation Held-out test set 

P R F1 P R F1 

YES 0.845 0.796 0.82 0.83 0.809 0.819 

NO 0.948 0.962 0.955 0.963 0.967 0.965 

Table 4.2: ​Proof-of-Concept​ test results on lemmatized corpora for ZH-ES with 

the ratio 5:1. 

 

 10 cross-validation Held-out test set 

P R F1 P R F1 

YES 0.804  0.708 0.753 0.782 0.736 0.758 

NO 0.944 0.966 0.955 0.948 0.959 0.954 

Table 4.3: ​Proof-of-Concept ​test result on lemmatized corpora for EN-ES with 

the ratio 5:1. 

 
As shown in Table 4.2 and Table 4.3, for ZH-ES we achieved a             

F1-score of around 0.82 for ​right translation​, and 0.96 for ​no           

translation​; for EN-ES, results are slightly worse with a F1-score of           

around 0.75 for right translation ​and 0.95 for ​no translation​. In           
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terms of accuracy, we obtained 92.8% for ZH-ES and 92.4% for           

EN-ES. 

To evaluate whether the classifier performs better on lemmatized         

corpora or on corpora in word form, we also conducted an           

experiment on the same datasets and experimental settings that used          

for the previous experiment, but with word embedding models         

trained on the monolingual corpora in word form. The results are           

demonstrated in Table 4.4 and Table 4.5. 

 10 cross-validation Held-out test set 

P R F1 P R F1 

YES 0.937 0.919 0.928 0.926 0.871 0.898 

NO 0.984 0.988 0.986 0.976 0.987 0.981 

Table 4.4: ​Proof-of-Concept ​test result on corpora in word form for ZH-ES with 

the ratio 5:1. 

 

 10 cross-validation Held-out test set 

P R F1 P R F1 

YES 0.926 0.888 0.907 0.97 0.883 0.924 

NO 0.974 0.983 0.979 0.932 0.983 0.957 

Table 4.5: ​Proof-of-Concept ​test result on corpora in word form for EN-ES with 

the ratio 5:1. 
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Compared to the results of lemma-based experiment given in Table          

4.2 and Table 4.3, the classifier trained on corpora in word form            

delivers better P, R and F1-score as shown in Table 4.4 and Table             

4.5 for both language pairs. The accuracy increased to 96.8% for           

ZH-ES and 96.5% for EN-ES, demonstrating that our word         

embedding based classifier performs better on corpora in word form          

than in lemmatized corpora.  

To explore the relation between the performance of the classifier          

and the number of training instances, Figure 4.5 plots the learning           

curves (F1-score and kappa value) over different percentage of         

positive training instances from 100 (10%) to 900 (90%), with          

negative instances from 500 to 4500, for the language pair Chinese           

and Spanish. It shows that the classifier achieved stable and good           

results with around 50% of training instances, and it could benefit           

from using more training samples.  
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Figure 4.5: Learning curve over different percentage of training data for Chinese            

and Spanish. 

To evaluate whether our classifier can maintain similar perform         

with balanced training data, we also conducted an experiment on          

the corpora in word form using the same datasets but with balanced            

training dataset. The experimental results are demonstrated in Table         

4.6 and Table 4.7. 

 10 cross-validation Held-out test set 

P R F1 P R F1 

YES 0.973 0.96 0.966 0.844 0.934 0.887 

NO 0.961 0.973 0.967 0.987 0.967 0.977 

Table 4.6: Test results on corpora in word form with balanced dataset for Chinese 
and Spanish. 
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 10 cross-validation Held-out test set 

P R F1 P R F1 

YES 0.959 0.924 0.941 0.927 0.91 0.918 

NO 0.927 0.961 0.943 0.946 0.956 0.951 

Table 4.7: Test results on corpora in word form with balanced dataset for English 
and Spanish. 

Compared to results of the experiment of ratio 1:5 given in Table            

4.4 and Table 4.5, the classifier trained with balanced positive and           

negative instances performs similarly on the ​right translation class,         

but worse on the ​no translation class in all evaluation scenarios for            

both language pairs as shown in Table 4.6 and Table 4.7. We show             

several examples of translation equivalents that are correctly        

classified by our classifier in Table 4.8 

CH-ES EN-ES 

友好 (friendly) - amistoso  economic - económico  

古老 (old) -  antiguo  efficient - eficiente  

头 (head) - cabeza  attractive - atractivo  

 特征 (characteristic) - 
característica  

activity - actividad  

烧伤 (burn) - quemar  bed - cama  

导致 (provoke) - provocar  language - idioma 

Table 4.8: Examples of translation pairs correctly classified by the classifiers. 
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● Discussion 

The evaluation results of the ​proof-of-concept experiments showed        

that a classifier as the proposed one was able to generalize to a large              

extent. We carry out an error analysis to assess whether the results            

could be considered an upper bound limit for the task or there was             

room for improvements. Note that error analysis, however, is         

hindered by the nature of the used vectors: being word embeddings           

a projection, no special feature selection study can be easily          

performed (Levy et al. 2014a). Thus, we mainly looked at the false            

negative (FN) cases produced by the ZH-ES noun classifier.  

After manual inspection, we show the following issues that might          

have negative impacts on our classifier: 

❖ Word embedding representation obtained with low      

frequency words is insufficient for the classifier to learn         

translation relationship between words, since Schnabel et al.        

(2015) demonstrated word frequency plays a significant role        

on the quality of word embedding. In line with this          

reasoning, the following low frequency candidates seem       

engaged with this problem: 

- Foreign words were normally misclassified, for      

example: "number" (an English word in the Spanish        

 

103



 

 

corpus) was present in the test set with the         

corresponding translation " 号 " ('number') in       

Chinese; 

- Words that have a wrong, or very unusual PoS tag          

could only learn its distribution from just few        

occurrences. This is the case for pairs such as         

"católica" ('catholic', normally an adjective but was       

tagged as a noun in our corpus) and "天主教         

"('catholicism', a noun in Chinese). 

- Word pairs that contained low frequency words (e.g.        

frequency lower than 100 occurrences), such as       

autonómico- 区域性 ('regional' in a geopolitical      

sense in Spanish) and ​carnívoro- 肉食性      

('carnivorous') were also misclassified. We checked      

whether among the correctly classified pairs there       

were similar low frequent words, and indeed it was         

not the case.  

❖ For some other errors the explanation is less obvious. We           

found that, although the translation provided by Google        

translate could be correct in very particular contexts, there is          

a semantic difference between the members of the pair: the          

Chinese word is more general than the Spanish one, or the           

 

104



 

 

other way around: "pueblo" (inhabited place or group of         

people) was paired with "村" (only inhabited place, i.e.         

village), "reflexivo" ('thoughtful' or 'reflective') was paired       

with " 反光" ('light reflective'), or "enlace" ('link' but also          

'wedding') with "链接" (only 'link' in Chinese). In these         

cases, the classifier did not find the pair to hold the           

translation relation. 

4.1.4. ​SMT simulation​ evaluation scenario 
 
In the ​SMT simulation evaluation scenario, instead of giving a          

relatively controlled set of word pairs for testing, each of the source            

word representation from the test set was concatenated with all          

target word representations from the corpus following the way that          

SMT systems produce phrase tables. Each member of the source          

language test set was paired with all the target language words as            

possible translation pairs. Then all the concatenated candidates were         

tested and all the ​right translation pairs delivered by the classifier           

for each source word were ranked based on the confidence score           

provided by the classifier, since it is the reliability on the           

classification decision that ranges from 0 to 1, for a particular           

instance to belong to a particular class. This scenario is similar to            

Mikolov et al. (2013b) (described in Section 2.2.2) which evaluated          
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their transformation matrix by finding the top-k nearest candidates         

for the projected vector from the target corpus.  

To validate whether our method can locate the correct translation at           

the top ranking position, we trained a new classifier with EN-ES           

WMT 11 datasets as used by Mikolov et al. (2013b) following the            

outline of our previous experiments. The classifier was evaluated in          

two different ways: the precision, recall and F1-score results of the           

binary classification task and top-10 ranking task according to its          

corresponding confidence score. For the binary classification, we        

again experimented with two different ratios of positive and         

negative training samples: balanced dataset of positive and negative         

examples, and five negative instances for each positive example.         

The experiment was conducted only with nouns. The datasets for          

training and testing are shown in Table 4.9. To show the frequency            

range of our positive training examples, Figure 4.6 shows the Zipf           

plot of word count distribution of the positive training examples          

(represented in red colour)  in the monolingual corpora. 

 Training Testing  

YES NO YES NO 

1:1 990 990 434 832 

1:5 990 4950 434 832 

Table 4.9: Translation pair datasets for EN-ES on ​SMT simulation​ evaluation 
scenario. 
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(1) 

(2) 

Figure 4.6: Zipf plot for word counts in monolingual corpora (blue dot) in WMT              
EN-ES experiment: EN WMT11 corpus (1) and ES WMT11 corpus (2), and their             
corresponding word frequency distribution of positive training examples (red         
cross) . 
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Our experimental results of the binary classification testing using         

two different ratios are provided in Tables 4.10 and 4.11. Compared           

to the results of previous classification experiments on the language          

pair ES-EN (described in Section 4.1.3), we obtained similar         

performance on 10-cross validation with the same ratio 1:5.         

However, for the held-out test set, results of both classes decreased           

unexpectedly due to some low frequent test data, such as ​soy​,           

signaling​, ​underuse and ​skepticism​, whose frequency are only 6, 10,          

5 and 78, respectively.  

 10 cross-validation Held-out test set 

P R F1 P R F1 

YES 0.878 0.895 0.886 0.794 0.71 0.75 

NO 0.893 0.876 0.884 0.857 0.904 0.88 

Table 4.10: Binary classification results on ​SMT simulation​ evaluation scenario 
with balanced dataset for English-Spanish. 

 10 cross-validation Held-out test set 

P R F1 P R F1 

YES 0.825 0.835 0.83 0.963 0.533 0.686 

NO 0.967 0.964 0.966 0.802 0.989 0.886 

Table 4.11: Binary classification results  on ​SMT simulation​ evaluation scenario 
with the ratio 1:5 for English-Spanish. 
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For the ranking task, our intention was to compare our method with            

the results of the transformation matrix proposed by Mikolov et al.           

(2013b). To do so, we created a new test set, in which each source              

word was paired with all the target language words. We used only            

nouns, both the source and target side, in order to reduce the            

computational load, resulting in 24,706 pairs for each source noun.          

The trained model was used to classify the test set and the            

confidence score was used to rank all translation pairs classified as           

right translation​, expecting to find the correct translation pair         

ranked in top positions. However, we realized that many word pairs           

obtained the same confidence score making it impossible to         

properly set up the ranking list in our case. To better understand the             

results of our ranking experiment, we give some examples of our           

test result in Table 4.12. Note that the reported ranking position is            

with respect to the candidate translations for each source word. 

● Discussion 

Observing the results of ​right translation predicted by our classifier,          

we noticed that the classifier trained using WE was not efficient in            

the following cases: 
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Translation pairs Ranking position Confidence score 

sugar_azúcar 6 0.978 

shipyard_astillero 163 1 

square_plaza 197 0.922 

tribune_tribuna 362 1 

sphere_esfera 512 1 

sir_señor 694 0.99 

Table 4.12: Examples of the ranking experiment. 

 

(i)  ​Semantically related candidates. 

Words that always occur in similar contexts or nearby         

tended to be confusing for the classifier to make the right           

decision. For instance, the classifier assigned both ​turista        

(‘tourist’) and ​turismo ​(‘tourism’) as possible translations       

for the source word ​旅游业​ (‘tourism’). 

(ii)​  Candidates affected by ​hubness​ problem. 

After the error analysis, we realized that a small group of           

target words were repeatedly assigned as possible       

translations to many different source words, such as ​parte         

(‘part’), ​nombre (‘name’) and ​tiempo (‘time’). This could be         
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a consequence of the ‘​hubness problem​’. (Radovanovic et        

al., 2010a; Radovanovic et al., 2010b) demonstrated that        

high-dimensional spaces contain certain elements – ​hubs –        

that are near many other points in space without being          

similar to the latter in any meaningful way. The mechanisms          

behind the ​hubness is that points that are located closer to           

the mean of the data distribution are, on average, closer to           

all other points. As dimensionality increases, stronger       

correlation emerges, implying that points closer to the mean         

tend to become ​hubs​. As recently noted by Dinu et al.           

(2015), the ​hubness problem is greatly exacerbated when        

one looks at the nearest neighbours of vectors that have been           

mapped across spaces with ridge. Lazaridou et al. (2015)         

also addressed this problem in cross-space (cross-modal and        

cross linguistic) mapping function learning, and they       

proposed to improve the performance by replacing the ridge         

estimation by max-margin. In our method, instead of        

looking for the nearest neighbours of projected vectors in         

the target language spaces, we treated the translation process         

as a simple binary classification problem. Radovanovic et al.         

(2010a) examined the influence of bad ​hubs on        8

8 ​Radovanovic et al. (2010a) defined bad ​hubs as points with high ​BNk (x)​, which               
is the number of ​“bad” k-occurrences of x. Namely, ​the number of points from              
the data set for which ​x is among the first ​k NNs, but the labels of ​x and the points                    
in question do not match. 
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classification algorithm as well, such as SVMs (the same         

algorithm as we used). They claimed that for        

high-dimensional data, points with high ​BN​k can comprise        

good support vectors since their experimental results show        

that the accuracy significantly drops with removal by ​BN​k​,         

indicating that bad ​hubs​ are important for SVMs. 

4.1.5. Summary 

In this section, we have proposed a novel method to learn bilingual            

lexicon from monolingual corpora by training a supervised        

classifier. On average, we obtained quite good results on         

Proof-of-Concept evaluation scenario. However, we could not       

compare the results of the ranking task as proposed by Mikolov et            

al. (2013b), since many word pairs obtained the same confidence          

score making it impossible to properly set up the ranking list.           

Besides, due to the ​hubness ​problem, a number of particular target           

words were repeatedly classified as possible translation of many         

different source words with high confidence score.  

Despite the fact that the confidence score supplied by the classifier           

is insufficient to tackle the ranking task, judging from its          

outstanding performance of the classification experiment, it was        

expected to be useful for being applied to expand phrase tables of            
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SMT systems when no parallel or comparable corpora is available.          

In the next section, we report on two experiments adding further           

additional monolingual information to the word embedding-based       

classifier for improving the classification performance before       

applying this method to enrich our baseline phrase table. 

4.2  Improving Word Embedding-based classifier with 
additional word frequency information 
 
In Section 4.1 we proposed a word embedding-based supervised         

classifier to induce a bilingual lexicon from monolingual corpora.         

According to the errors delivered by the model trained with word           

embedding, ​hubs were found to be one of the problems that affect            

the classifier performance. According to (Newman et al., 1983;         

Newman and Rinott, 1985 and Radovanovic et al., 2010b), the          

hubness phenomenon is an inherent property of data distributions in          

high-dimensional space under widely used assumptions, and not an         

artefact of a finite sample or specific properties of a particular data            

set. Radovanovic et al. (2010a) also claimed that for SVM          

classifiers, those bad ​hubs with high ​BN​k (described in section          

4.1.4) could be good support vectors. As decreasing ​BN​k can not           

promise a better performance for our classifier, we decided to          

alleviate the situation by adding additional monolingual features to         

the word embedding vectors. In the experiment described in this          
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section, we report on how we incorporated word frequency         

information to our word embedding vectors during the training         

process and explored the impact of word frequency feature on          

bilingual lexicon induction.  

Observing the results delivered by the classifier described in         

Section 4.1, we realized that the source and target word of many            

bad translation pairs are quite different in their frequencies . These          9

results give rise to a question: within non-parallel corpora, is the           

source word frequency related to the frequency of its relative          

translation? One of the interesting facts about human language is          

that given a natural language text corpus, the frequency of any word            

is inversely proportional to its rank position and the distribution of           

the word frequency (WC) roughly follows the mechanisms of Zipf’s          

law. From the point of view of our human languages, words are            

used to convey an intended meaning. Therefore, the word frequency          

distribution can be seen as “need distribution” for how often we           

need to communicate each meaning (Piantadosi, 2014), hence it is a           

general property of word distribution across different languages.        

Calude and Pagel (2011) examined Swadesh lists of 17 languages          10

9 ​Note that we are not trying to prove that word frequency is one of the crucial                 
factors that cause the hubness problem​. Instead, we just give the reason why we              
decided to incorporate word frequency information. 
10 Swadesh lists provides translations of simple, frequent words like “mother”,           
“happy” across many languages; they are often used to do historical           
reconstruction​. 
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from six language families and compared frequencies of words on          

the list. They reported an average inter-language correlation in log          

frequency of for these common words,   .53 (p .0001)R 2 = 0 < 0      11

indicating that word frequencies are surprisingly robust across        

languages and predictable from their meanings. Smith (2008) also         

showed that word distributions are observed universally in        

languages, even in extinct and yet-untranslated languages like        

Meroitic. To verify the frequency-rank relationship across       

languages, Figure 4.7 gives the frequency-rank plot of several         

translation pair examples in our source and target monolingual         

corpora. 

 

11 Note that Swadesh words will tend to be high-frequency, so the estimated R2 is               
almost certain to be lower for less frequent words(​Calude and Pagel, 2011)​. 
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Figure 4.7: word frequency-ranking plot of translation examples in our source and 
target monolingual corpora. 

 
As these examples reveal, the frequency distribution is similar         

across languages. We are inclined to believe that even with          

monolingual data, the frequency of words in the source monolingual          

corpus is somehow correlated to the frequency of their relative          

translations in the target corpus. In this section, we explored how           

monolingual word frequency can be used to improve the         

performance of word embedding-based classifier.  

There have been several works that suggested to use word          

frequency information for learning translations from non-parallel       

data. For instance, Koehn and Knight (2002) combined word         
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frequency together with various other clues, such as cognate,         

similar context and preservation of word similarity, to induce a          

word-level translation lexicon from monolingual corpora. They       

assumed that for most words, especially occurring in comparable         

corpora, there is a considerable correlation between the frequencies         

of a word and its translation. The frequency measurement was          

defined as a ratio of both word frequencies, normalized by the           

corpus size. Koehn and Knight (2002) used a greedy search to look            

for the best translation for a given source word. First they searched            

for the highest score for any word pair. This word pair was added to              

the lexicon, and not included in future searches. Then they repeated           

the first step, searched for the highest score and added the           

corresponding word pair, dropped these words from further search,         

and so on. This was done iteratively, until all words were used up.             

The experimental results reveal that only using word frequency clue          

was too imprecise to pinpoint the search to the correct translations,           

but when combining the word frequency to some other feature, such           

as spelling, it indeed provided valuable information for learning         

bilingual lexicons out of monolingual data.  

Schafer and Yarowsky (2002) also explored the usage of word          

frequency together with other features to induce a translation         

lexicon from non-parallel corpora. They worked with the hypothesis         

that a word and its translation are likely to have a similar relative             
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frequency in the corpora of their respective languages. For their          

experiment, instead of using directly the word count or the relative           

frequency, they used a word frequency similarity score. It was          

found that a simple ratio of logs of frequencies correlate well with            

translational compatibility and was proved to be an improvement         

for the ranking task when searching for the correct translation          

among candidates for a given source word.  

As mentioned in section 2.2.2, Irvine and Callison-Burch (2013)         

applied a supervised classifier to induce translation pairs by using          

monolingual word frequency together with other signals such as         

orthography, topic, temporal signature (from time-stamped web       

crawl data) and context information. They also assumed that words          

that are translations of one another are likely to have similar relative            

frequencies in their respective monolingual corpora. To include        

word frequency information, they calculated the frequency       

similarity of two words as the absolute value of the difference           

between the logs of their relative monolingual corpus frequencies.         

The experimental result demonstrates that word frequency feature        

indeed has positive impact on bilingual lexicon induction.  

The experiment presented in this section was inspired by these          

previous researches. In our case, instead of using word relative          

frequency and frequency similarity between word pairs to enhance         

our classifier, we explored using word frequency standard deviation         
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of the source and target monolingual corpus to define our frequency           

feature. 

4.2.1. Approach 
 
Standard Deviation is a measure that is used to quantify the           

dispersion of a set of data values (Bland and Altman, 1996). Since it             

has been proved that ​word frequency distribution is similar across          

languages, we assumed that the frequency dispersion degree of the          

same concept in different languages should be similar as well.          

Figure 4.8 shows the word frequency distribution of several         

translation examples based on the standard deviation of word         

frequencies of our source and target monolingual corpora. 

According to the word frequencies shown in the Figure 4.8,          

translations of the words that classified into the same sigma in the            

source corpus, are also classified into a corresponding sigma in the           

target corpus. Therefore, our hypothesis was that word frequency         

can help the classifier to improve the classification performance on          

the basis that if a target candidate is not the translation equivalent it             

might have a very different frequency distribution compared to the          

paired source word. 
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(1) 

(2) 

Figure 4.8: Word frequency distribution of several translation examples in the 
Chinese (1) and  Spanish (2) monolingual corpus.  
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In this experiment, we used standard deviation (sigma) to define the           

grouping of each source and target word based on their word           

frequency distribution. The calculation of the word frequency        

standard deviation of monolingual corpus can be described by         

Equation (1): 

  σ = √ (x  ) 1
N ∑

N

i=1
i − x 2 

  

Where, is the standard deviation and ​N is the number of words in  σ              

the monolingual corpus, and refer to the raw frequency of   xi   x        

each word and the mean of all frequencies, respectively.  

We assigned each word to its corresponding frequency group         

according to the sigma from left to right as .         , g , g ... gg = g1  2  3 j  

Then the definition of  can be described as  the Equation (2):gj  

 ⌈ ⌉ , if                                                      ①σ
xi  g1 = σ  

gj =   

 ⌈ ⌉ + 1, if   and    ②σ
( x  − g )i 1  g1 < σ xi > g1   

As shown in the equation, the grouping process was divided into           

two different situations: (a) when the frequency range of the first           
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group is equal to the sigma , to calculate to which group a g1        σ        

given word belongs, we simply divided its raw frequency by the         xi    

sigma (as shown in ①). If the obtained result was not divisible by  σ             

the sigma, we rounded it up to get an integer; (b) when the range of               

the first group is smaller than the sigma and , we   g1        σ   xi > g1   

defined the word grouping as calculated in ②. For instance, given a            

word frequency , if the range of the first group , sigma  xi = 8         g1 = 1   

, then the corresponding grouping of the given word should σ = 3           

be: = ⌈ (8 - 1) / 3⌉ +1 = 4. Note that if a word frequency , gj                 xi < g1  

it directly belongs to the the first group .g1   

To visualize the impact of word frequency on translation         

classification, in Figure 4.9, we compare the geometric arrangement         

of 6K word pairs (​right translation and ​no translation​) represented          

by only WE vectors (demonstrated in Section 4.1) and with          

additional WC information in a 3-dimensional space. It        

demonstrates that the joint representation indeed encodes relevant        

information for the classification. 
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(1) 

(2) 
Figure 4.9 Distributed representations of 6K word pairs (1K ​right translation and            
5K ​no translation​) with WE of 400 dimensions (1) and with combination of WE              
and WC of 2048 dimensions (2). We used PCA to project high dimensional             
vector representations down into a 3-dimensional space. 
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4.2.2  Experimental setup 
 
This experiment was conducted on the language pair Chinese and          

Spanish. The outline can be described as following: (i) Calculating          

the word frequency Standard Deviation of source and target         

monolingual corpora; (ii) Obtaining the corresponding word       

frequency feature (as described in Section 4.2.1) and word         

embedding vector for the positive and negative training word pairs          

(the examples used in Section 4.1) from the monolingual corpora;          

(iii) Training a SVM classifier using the concatenated features         

(WE+WC and WC) of source word and its translation equivalent (or           

random word for negative instances); (iv)   Evaluating the classifier. 

● Classifier datasets 

We used the same ZH-ES training and testing sets as used for the             

word embedding based experiment described in Section 4.1 so that          

the impact of word frequency feature can be fairly compared and           

evaluated. We chose the imbalanced ratio (5 negative instances for          

each positive one) to train the classifier, since in Section 4.1, it has             

been proved that the average performance (on both ​right translation          

and ​no translation) of imbalanced datasets was better than the          

results produced with balanced datasets.  
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Following the previous translation induction experiment conducted       

in Section 4.1, we built the new classifier applying SVM-SMO with           

gaussian kernel using the joint representation of word embedding         

and word frequency information as features. The model was         

evaluated by both 10 fold cross-validation and a held-out test set. 

● Word frequency feature and word embedding 

To train word embedding models, we used the monolingual corpora          

that used in the experiments in Section 4.1: Chinese Wikipedia          

Dump corpus (149M words) and Spanish Wikipedia corpus (150M         

words, 2006 dump). Same parameter settings were applied: window         

size 8, minimum word frequency 5 and 200 dimensions for both           

source and target vectors. 

The word frequency features were induced from the same         

monolingual corpora that used for learning word embedding vector.         

The mean and standard deviation of the Chinese monolingual         

corpus are 38.89 and 6832.95, respectively. Regarding the Spanish         

monolingual corpus, the mean and standard deviation are 58.43 and          

9519.84, respectively. 

In order to include word frequency distribution feature in word pair           

representations, we used one-hot encoding to represent each        

standard deviation. In concrete, each word embedding concatenated        

vectors were added 2048 binary features: 1289 for the source word           

 

125



 

 

and 759 for the target word. Each component represents one of the            

1289 sigmas for each source word and one of the 759 sigmas for             

each target word. 

4.2.3. Evaluation 
 
Table 4.13 shows the results delivered by the classifier trained with           

the joint representation of word frequency (WC) and word         

embedding (WE) in terms of precision (P), recall (R) and F1-score           

(F). Besides, for a better observation and comparison, we also give           

the results delivered by the classifier trained only with WC and WE            

(results given in Table 4.4) separately. 

 10 cross-cross 
validation 

Held-out testset 

P R F1 P R F1 

WE YES 0.937 0.919 0.928 0.926 0.871 0.898 

NO 0.984 0.988 0.986 0.976 0.987 0.981 

WC YES 0.707 0.932 0.804 0.745 0.92 0.823 

NO 0.989 0.939 0.963 0.984 0.939 0.961 

WE+WC YES 0.96 0.94 0.95 0.958 0.92 0.939 

NO 0.988 0.992 0.99 0.983 0.991 0.987 

Table 4.13: Test results of the Chinese-Spanish classifier trained with WE, WC            

and the combination of WE and WC. 
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As shown in Table 4.13, the model trained with the joint           

representation of WE and WC outperforms the WE-based classifier         

and WC-based classifier. After adding WC to WE, both precision          

and recall were improved. We achieved F1-score of 0.939 for ​right           

translation​, and 0.987 for ​no translation​. In terms of accuracy, the           

performance was increased from 96.8 to 98.3 compared to the          

model trained with WE, demonstrating that adding word frequency         

information indeed encode useful information for discarding those        

word pairs with large difference in their frequencies.  

 

4.2.4  Discussion 

Before moving to the result analysis, we would like to clarify the            

following questions that people might have regarding this        

experiment:  

1. Challenge of high dimensional feature space. 

In this experiment, we used in total 2449 dimensional         

features to train our WE+WC classifier. According to        

Koppen (2000) and Duda et al. (2001), the accuracy of          

classification algorithms tends to deteriorate in high       

dimensions due a phenomenon called the ​curse of        

dimensionality​. Besides, a reduced number of training       

samples in high dimensional data settings cause the        
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classification model to overfit to the training data, thereby         

having poor generalization ability for the model, especially        

for those conventional classifiers such as logistic regression,        

maximum likelihood classification etc. (​Pappu and Pardalos,       

2014)​.  

However, in our method, the classifier was trained using         

SVM. It has been proved by many researches (Pal and          

Mather, 2005; Joachims, 1998; Vapnik and Chapelle, 2000)        

that SVM is more effective in high dimensional data space          

compared to other traditional classifiers. To explain why        

SVM can overcome the overfitting problem and the curse of          

dimensionality, Vapnik et al.(2000) proposed the concept of        

error bonds, according to which the generation ability of a          

SVM classifier does not depend on the dimensionality of the          

input space, instead, it is inversely dependent on the sample          

size and the margin between the parallel planes. So we          

believe that our high dimensional features do not have a          

negative impact on our model.  

2.   Negative impacts of high dimensional one-hot encoding? 

In the previous point we have clarified the capacity of SVM           

to handle high dimensional feature space. Another possible        

concern might be that a large number of zeros might render           
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ineffective the class membership decision of the classifier.        

However, in our case, kernel-based SVM does not operate         

on the source feature space directly, instead, the data are          

mapped into a higher dimensional feature space through a         

particular nonlinear transformation, then the hyperplane is       

achieved by using the inner products in the transformed         

space. So we are inclined to believe that high dimensional          

one-hot encoding feature does not have a negative impact         

and it indeed encode relevant information into our word         

embedding-based classifier since our obtained results shown       

in Section 4.2.2 confirm this assumption as well.  

Looking back to the obtained results, the classifier enhanced with          

the additional word frequency information achieved better recall,        

especially for the ​right translation class. For instance, with word          

embedding-based classifier, the translation pairs ​番木瓜_papaya,      

降水量_precipitación and ​发音_pronunciación ​were classified as      

no translation​, but after adding word frequency feature, they were          

correctly classified since according to their frequency feature, the         

source word is distributed very similarly to its corresponding         

translation. Regarding the performance of the enhanced model on         

no translation class, although the recall was increased as well, and           

most of the false positives delivered by the word embedding-based          

classifier were correctly classified, a few new false positives were          
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produced by the WE+WC classifier, and most of them were low           

frequency words. So the word frequency feature might not be          

efficient to handle very low frequency candidates.  

4.2.5. Summary 

 
In this section, we proposed to improve the performance of the           

word embedding-based classifier by adding frequency features of        

word pair. This assumption is based on large source and target           

monolingual corpus of general domain. ​The experimental results        

reveal that after adding word frequency information to word         

embedding vectors, ​both the precision and recall were improved,         

especially in terms of recall of ​right translation which was          

increased from 0.871 to 0.92. The obtained results confirmed the          

hypothesis that the distribution of word frequencies extracted from         

monolingual corpora is useful for the classifier to learn the          

translation relationship between words, as well as to filter out those           

word pairs with large difference in their frequencies.  

4.3 Improving Word embedding-based classifier with 
additional Brown cluster features 
 
In Section 4.2 we proposed to add word frequency feature to the            

word embedding vector to improve the classification performance.        

In this experiment, we incorporated Brown clustering information        
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to our word embedding vectors and evaluated its impacts compared          

to the word embedding-based classifier. 

Brown clustering is a representation of word semantics learned         

from monolingual corpus (​Turian ​et al., 2010) in an unsupervised          

way​. It uses mutual information to determine distributional        

similarity, placing similar words in the same cluster and similar          

clusters are located ​in a hierarchical binary tree​. To obtain a Brown            

cluster model, the input is a text and the output is a binary tree, in               

which the leaves of the tree correspond to the words in the            

vocabulary, and the roots correspond to the clusters. Intermediate         

nodes of the tree can be interpreted as groups containing the words            

in the subtrees. Figure 4.10 shows some of the substructures in the            

binary tree given by Brown et al. (1992). Initially, the algorithm           

starts with each word in its own cluster. As long as there are at least               

two clusters left, the algorithm merges the two clusters that          

maximizes the quality of the resulting clustering. Note that each          

word belongs to only one cluster.  
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Figure 4.10: Sample subtrees given by Brown et al.(1992). 

 
There have been several works (Zhao et al. 2005; Täckström and           

McDonald, 2012) to demonstrate that word clustering provides        

relevant information for cross-lingual tasks. For instance, Och        

(1999) developed an optimization criterion based on a maximum         

likelihood approach and described a clustering algorithm to        

determine bilingual word clustering suitable for statistical machine        

translation. Birch et al. (2013) explored using source and target          
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Brown clusters in factored-based phrase translation model and the         

operation sequence model. Their experimental results showed that        

the integration of Brown clustering information consistently       

enhanced the baseline system giving significant improvements in        

most cases. Therefore, in this section, we evaluated the impact of           

the additional Brown clustering information on our word        

embedding-based classifier. 

Observing our data, semantically related words in the source         

monolingual corpus are grouped into the same class, while their          

translations belong to a corresponding class in the target         

monolingual corpus as well. Table 4.14 lists several example         

translation pairs from our monolingual datasets, with their        

respective word clustering (c=200) information. According to the        

examples, similar Chinese source words are grouped into same         

classes, as well as their Spanish translations. 

01011001 英格兰  (England)            10111100 inglaterra 
01011001 巴塞罗那 (Barcelona)           10111100 barcelona 
01011001 日本 (Japan)                         10111100 japón 

011111110110 演员 (actor)            11010100 actor 
011111110110 记者 (journalist)             11010100 periodista 

01010100 开心 (happy)            1010010101 agradable  
01010100 悲伤 (sad)                           1010010101 triste 

Table 4.14: Brown clusters of several translation pair examples. 
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To visualize the impact of using BC, in Figure 4.11, we compare            

the geometric arrangement of 6K word pairs (​right translation and          

no translation​) represented by only WE vectors (demonstrated in         

Section 4.1) and with additional Brown cluster (BC) information in          

a 3-dimensional space. It demonstrates that the joint representation         

indeed encodes relevant information for the classification. 
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Figure 4.11: Distributed representations of 6K word pairs (1K ​right          
translation and 5K ​no translation​) with WE of 400 dimensions (1) and            
with combination of WE and BC of 800 dimensions (2). We used PCA to              
project high dimensional vector representations down into a        
3-dimensional space. 

4.3.1  Experimental Setup 

The outline of this experiment can be described as: (i) Obtaining the            

corresponding word embedding vector and (ii) Brown clusters for         

the positive and negative training examples from monolingual        

corpora. (iii) Concatenating the representation features of the source         

word and its translation equivalent (or random word for negative          

instances). (iv) Training a SVM-SMO classifier using the        
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previously concatenated representation. (v) Evaluating the      

classifier.  

● Classifier datasets 

This experiment was conducted on the language pair        

Chinese-Spanish. We used the same ZH-ES training and testing sets          

as used for the word embedding-based experiments described in         

Section 4.1 so that the impact of Brown cluster feature can be fairly             

evaluated. We chose the imbalanced ratio (5 negative instances for          

each positive one) to train the classifier, since based on the results            

shown in Section 4.1, the average performance (on both ​right          

translation and ​no translation) of imbalanced dataset were better         

than the results produced with balanced dataset. 

 
● Word embedding vectors and Brown clusters 

To train word embedding model, we adopted the monolingual         

corpora that were used in word embedding based experiment:         

Chinese Wikipedia Dump corpus (149M words) and Spanish        

Wikipedia corpus (150M words, 2006 dump). Same parameter        

settings were applied: window size 8, minimum word frequency 5          

and 200 dimensions for both source and target vectors. Our Brown           

clustering representation were induced from the same monolingual        

corpora that used for learning word embedding vector. We set          
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c=200 for computational cost savings, although with larger number         

of clusters it might perform better. In order to include Brown           

clustering in word pair representations, instead of using directly the          

bit path, we used one-hot encoding. More specifically, 400 binary          

features were added to the word embedding concatenated vectors:         

200 for each word. Each component represents one of the 200 word            

clusters for each source and target word. 

● SVM Classifier 

We built and tested a SVM classifier on the language pair           

Chinese-Spanish using the joint representation of word embedding        

and Brown clustering. Our SVM classifier was trained with the          

gaussian kernel using SMO following ​the same experimental        

settings as applied in word embedding-based experiment described        

in Section 4.1​. The model was evaluated by both 10 fold           

cross-validation and a held-out test set. 

4.3.2. Evaluation  
 
In this section, we present the evaluation results of the classifier           

trained with word embedding vector plus Brown clustering feature.         

For a better observation, Table 4.15 shows the comparison of          

evaluation results delivered by our classifier trained with WE (given          
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in Section 4.1.3, Table 4.4), BC and with the combination of WE            

and BC in terms of precision (P), recall (R) and F1-score (F). 

 10 cross-cross validation Held-out test set 

P R F1 P R F1 

WE YES 0.937 0.919 0.928 0.926 0.871 0.898 

NO 0.984 0.988 0.986 0.976 0.987 0.981 

BC YES 0.781 0.792 0.787 0.742 0.821 0.779 

NO 0.957 0.955 0.956 0.965 0.945 0.955 

WE+BC YES 0.955 0.935 0.945 0.955 0.92 0.937 

NO 0.987 0.991 0.989 0.985 0.992 0.988 

Table 4.15: Test results of the Chinese-Spanish classifier trained with WE, BC 

and the combination of WE and BC. 

 
As shown in the table, compared to the classifier trained only with            

WE and only with BC, the classifier trained with the joint           

representation of WE and BC improved both the precision and          

recall. In terms of accuracy, the performance improved from 96.8 to           

97.6. 

In order to verify whether the classifier was learning that particular           

BCs were associated to right or wrong translation categories, we          

checked clusters' distribution in our datasets. Table 4.16        
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demonstrates the distribution of Brown clusters in ​right translation         

(Yes), ​no translation​ (No) and in both classes)Yes​∩No). 

 Training Testing 

Yes No Yes∩No Yes No Yes∩No 

ZH 60 176 57 26 140 23 

ES 53 152 52 39 113 31 

Table 4.16: Brown clusters distribution in datasets. 

 

4.3.3.  Discussion 
 
Analysing the results delivered by the WE+BC classifier, many         

false negatives delivered by the word embedding-based classifier        

were correctly classified by the enhanced model resulting in a          

considerable improvement of the recall of ​right translation class.         

For instance, with only WE, the translation pairs ​诗人_poeta, 王子         

_príncipe, 心理学家_psicólogo and 扩张_expandir ​were classified      

as ​no translation​, while the WE+BC model was capable of          

delivering the correct classification results. Regarding the       

performance of ​no translation class, the situation is similar to the           

WE+WC classifier: ​although the recall was increased and most of          

the false positives delivered by the WE classifier were correctly          

classified, the WE+BC classifier also generated several new false         
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positives which are mostly different from the false positives         

delivered by the WE classifier and WE+WC classifier. Such         

situation might be caused by the irregular result of Brown clustering           

model, since according to Derczynski et al. (2015), normally Brown          

clustering with classes of more than 1K obtain relatively stable and           

good performance on different NLP tasks, but in our case, we only            

used BC with 200 classes. 

Comparing the classification performance of WE+WC classifier       

and WE+BC classifier, for the ​right translation class, the recall          

increased from 0.871 to 0.92 in both cases. For the ​no translation            

class, WE+BC classifier increased the recall from 0.987 to 0.992,          

while the WE+WC classifier delivered an improvement from 0.987         

to 0.991. Considering that two enhanced models performed        

similarly, and there is no obvious evidence to explain how those           

new false positives arose in each case, we chose the WE+BC model            

to enrich our SMT baseline phrase table .  12

4.3.4. Summary 

In this section, we proposed to improve the performance of the           

word embedding-based classifier by adding Brown clustering       

12 Our goal here is to evaluate whether the wrong translation candidates delivered 
by the classifier can be well handled by the SMT system. Since two improved 
models (one trained with WE and BC and one trained with WE and WC) 
performed similarly,  we chose one of them to expand the baseline phrase table 
simply for time saving reason. 
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information of word pairs. In general, both the precision and recall           

were improved, especially in term of recall which was increased          

from 0.871 to 0.92. The obtained results addressed the positive          

impact of using monolingual Brown clustering of source and target          

word on the task of bilingual lexicon induction. The better recall           

ensures that more reliable right translations can be delivered to          

expand SMT phrase table.  

4.4. SMT phrase table expansion using induced       
bilingual lexicon 
 
In this section, we report on how we applied the translation lexicon            

delivered by the WE+BC classifier to expand the SMT baseline          

phrase table. As described in Section 2.2, there have been many           

researches that aim at enriching SMT phrase table using         

monolingual resources, most of which add new translation pairs         

directly into the phrase table by creating pairwise probabilities         

depending on related translation pairs of the baseline system.         

However, in the present work, our bilingual lexicon was delivered          

by the classifier from extra monolingual corpora, there is no          

bilingually estimated translation probability available for our new        

translation pairs. Therefore, we decided to append the new         

translation lexicon directly to the training corpus so that the          
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translation probabilities of new translation pairs can be generated by          

the SMT system itself. 

4.4.1. Experimental setup 
 
This experiment was conducted on the language pair        

Chinese-Spanish. The model trained with WE and BC (described in          

Section 4.3) was used to produce the new translation lexicon from           

monolingual corpora following the ​SMT simulation evaluation       

scenario described in Section 4.1.4: the representation of each given          

source word was concatenated with all target word representations         

(with same PoS) from the corpus. Then all the concatenated          

candidates were tested and the ​right translation delivered by the          

classifier were finally added to the parallel training data for the           

phrase tale expansion.  

● Phrase-based SMT setup  

Our SMT system was built using Moses phrase-based MT         

framework (Koehn et al., 2007b). We used ​mgiza (Gao and Vogel,           

2008) to align parallel corpora and ​KenLM (Heafield, 2011) to train           

a 3-gram language model. We applied standard phrase-based MT         

feature sets, including direct and inverse phrase and lexical         

translation probabilities. Reordering score was produced by a        

lexicalized reordering model (Koehn et al., 2005). Similar to the          
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morphology expansion experiment described in Section 3, the        

parameter ​Good Turing ​was applied in order to reduce         

overestimated translation probabilities. For the evaluation, we used        

BLEU metric (Papineni et al., 2002).  

The parallel corpora used were: Chinese-Spanish      

OpenSubtitles2013 (1M sentences) for training; TAUS translation       13

memory (2K sentences) and UN corpus (2K sentences) for         14 15

testing. ​For tuning, we randomly sampled 1K sentence pairs from          

the ​News Commentaries parallel corpora released by Tiedemann        

(2012) . To train the language model, we combined Spanish         16

Wikipedia corpus with OpenSubtitles2013 target corpus. 

The classifier was used to deliver, for each of about 3K selected            

source words (the most frequent words that were not present in the            

baseline phrase table), all the possible translation candidates as         

found in the combination with the 30K target language vocabulary          

of the same PoS (for computational savings). All word pairs          

classified as ​right translation were then appended to the existing          

parallel corpora for training a new SMT system. Algorithm 4.1          

shows the generation and integration of the new induced bilingual          

lexicon. 

13 ​http://opus.lingfil.uu.se/OpenSubtitles2013.php 
14 ​http://www.tauslabs.com/ 
15 ​http://opus.lingfil.uu.se/UN.php 
16 ​http://opus.lingfil.uu.se/News-Commentary.php 
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Input​: Vector representations of 3K source  words ​S1​;  
             Vector representation of all target words ​T1​;  
             Supervised classifier model ​M​;  
             Parallel corpora for SMT baseline ​L1 
Output​: Expanded parallel corpora ​L2 
for​ each source word vector ​V​(​x​) in ​S1​ ​do 
    ​for​ each target word vector ​V​(​y​) in ​T1​ ​do 
        ​if​ PoS of source word ​x​ and target word ​y​ are the same ​then 
            concatenate ​V​(​x​) with ​V​(​y​); 
            append concatenation ​V​(​x​,​y​) to ​C​; 
        ​end 
    ​end 
end 

for ​each concatenation ​V​(​x​, ​y​) in ​C​ do 
    ​test ​V​(​x​, ​y​) using ​M​; 
    if ​V​(​x​, ​y​) is classified as ​right translation ​then 
       ​ append the word pair (​x​, ​y​) to ​L1​; 
    end 
 end 

 
Algorithm 4.1: Algorithm for generation and integration of supervised bilingual 

lexicon. 

4.4.2  Experimental results and discussion 

Table 4.17 shows experimental results of the SMT system trained          

using the enriched parallel corpora. The system was tested on two           

different test sets (described in Section 4.4.1) and measured by          

BLEU metric ​(Papineni et al., 2002) ​and Out of Vocabulary rate           

(OOV). 
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Setup TAUS UN 

BLEU OOV BLEU OOV 

Baseline PhT 8.8 9.6% 10.81 6.8% 

PhT + 3K SBL 9.58 8.7% 11.42 5.9% 

Table 4.17: Test results of the baseline system and the expanded SMT system. 

 
According to the results shown in the table, with the new translation            

candidates given by our classifier, the performance of the SMT          

system improved with respect to the baseline by up to +0.70 and            

+0.61 BLEU scores, and the OOV rate of the baseline system was            17

reduced around 0.9% for both test sets. ​The improvements are          

statistically significant according to the paired student t-test at the          

level of p < 0.05. 

As demonstrated in the error analysis of the ​SMT simulation          

evaluation scenario (described in Section 4.1.4), when this method         

was applied to search the correct translation for a given source word            

among all target word candidates, a small group of target words           

were repeatedly assigned as possible translation to many different         

source words. Compared to the bilingual lexicon delivered by the          

word embedding-based classifier, the incorporation of BC feature        

resulted in a considerable reduction of word pairs classified as ​right           

17 The OOV words were generated as shown in 
http://www.statmt.org/moses/?n=Advanced.OOVs 
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translation​. Note that 88.65 M word pairs were presented to the           

classifier from 2955 source words combined with 30K target words.          

The WE classifier delivered a 7% word pairs classified as ​right           

translation​, while the WE+BC classifier delivered only a 2.7%.         

Observing the results delivered by the WE+BC classifier for the          

phrase table expansion, some of the highly repeated bad ​hubs          

produced by the WE classifier such as ​parte (‘part’), ​nombre          

(‘name’) and ​tiempo (‘time’) were successfully discarded after        

adding the BC feature. The obtained results demonstrated that         

hubness problem can be alleviated to some extent by adding BC           

information.  

● Discussion  

Different from the morphology expansion experiment described in        

Chapter 3, the phrase table expansion with induced bilingual         

lexicon was not dependent on the knowledge of the baseline phrase           

table. To evaluate the impact of these new translations generated          

from extra monolingual corpora on the baseline system, we         

performed a systematic analysis of the translation results produced         

by the enriched SMT system and compared it with the translation           

output delivered by the baseline system. Inspired by the work of           

(Vilar et al., 2006; Costa et al., 2016), we applied the following            

taxonomy for the analysis: 

 

146



 

 

- Lexical level 

This category includes all errors related to the way each word, as a             

whole, is translated. The following types of lexical errors are taken           

into account: ​omission ​(described in Section 3.4), ​untranslated item        

and ​wrong lexical choice . Among all the errors of this level,            18 19

omission and ​wrong lexical choice ​were found to be the most           

dominant for both systems (baseline and the expanded SMT         

system). For instance, in the example (1), the source word ​建议 ​was            

ignored by both systems. But compared to the baseline, the          

expanded system performed relatively better in some cases. For         

instance, in the example (2), the source phrase 继续审查 was well           

translated as ​sigue la revisión de ​by the expanded system, and the            

baseline, by contrast, omitted to translate the word 继续. This result           

reveals that although a certain amount of bad entries were induced           

by the classifier, the alignment of the original training corpus was           

improved by the new bilingual lexicon to some extent since the           

phrase pairs were splitted into smaller units.  

 

 

18 ​Untranslated item​ refers to Out-of-vocabulary word.  
19 ​Wrong lexical choice ​errors​ are found when the system is unable to find the 
correct translation of a given word. Note that in this case, we only take into 
account the incorrect word that has no semantic relation with the source word.  
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(1) 

Source​:  
2000年12月4日第81次全体会议根据委员会​的建议​（
A/55/602/ Add.3，第49段）经记录表决，以67票赞成，   
54票反对，46票弃权通过.  
(Approved in the 81st plenary meeting, on 4 December         
2000, by a recorded vote of 67 to 54, with 46 abstentions, on             
the recommendation of the Committee (A / 55/602 / Add.3,          
para. 49. ) 
 
Reference​:  
Aprobada en la 81a. sesión plenaria , celebrada el 4 de           
diciembre de 2000 , ​por recomendación de la Comisión ( A           
/ 55 / 602 / Add.3 , párr . 49 ) , en votación registrada de 67                 
votos contra 54 y 46 abstenciones. 

Baseline: 
el 4 de diciembre de 2000 , 81 veces a la reunión de comité              
de ( A / 55 / 602 / Add.3 , 第49 ) , con un récord de votación                  
, 67 , 54 votos contra 46 abstenciones. 

Expanded system: 
el 4 de diciembre de 2000 a la reunión del Comité de 81             
veces ( A / 55 / , / Add.3 第49 602 ) con un récord de                
votación , con 67 entradas, 54 votos contra , 46          
abstenciones. 
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(2) 
Source​: 
继续 审查 
(continue reviewing) 

Reference​: 
continúe examinando 

Baseline: 
revisión 

Expanded system: 
 sigue la revisión de 

 

Compared to the ​omission error, the problem of ​untranslated items          

and ​wrong lexical choice​, in many cases, were improved to some           

extent after the introduction of the bilingual lexicon. As shown in           

the examples (3), 强烈谴责 was translated to a semantically         

unrelated phrase in target language by the baseline, while the          

expanded system delivered a reasonable translation. In the example         

(4) and (5), 多样性 and 支助 are OOV words for the baseline, but             

after inducing the new translation lexicon, the expanded system         

provided quite acceptable translations.  
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(3) 

Source​: 
强烈谴责. 
(Strongly condemned.) 

Reference​:  
Condena enérgicamente. 

Baseline: 
recomiendo aprobar.  

Expanded system: 
una fuerte condena.  

(4) 

Source​: 
文化多样性 
(cultural diversity) 

Reference​:  
diversidad cultural 

Baseline: 
多样性 . a la cultura  

Expanded system: 
diversidad cultural 

 
(5) 

Source​: 
继续支助 
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(continue supporting) 

Reference​: 
continúen apoyando 

Baseline: 
seguir 支助 

Expanded system: 
 estado manteniendo 

 

- Grammatical level 

Vilar et al. (2006) and Costa et al. (2016) described grammar errors             

as deviations in the morphological and syntactical aspects of         

language. They are distinguished between ​misselection and       

misordering​. ​Misselection ​problem occurs when the system is not         

able to produce the correct form of a word, although the translation            

of the base form was correct. ​Misordering ​problem refers to the           

error that the system fails to generate the correct order of output            

sentence, and this problem can be distinguished between local and          

long range reorderings. In this experiment, ​misselection errors were         

found to be frequent with both systems, especially when translating          

verbs. For instance, in our test set, the word 认为 was constantly            

translated as ​creo que (first-person singular) by the systems, while          

the correct translation according to the contexts should be ​cree que           

or ​considera que​ (third-person singular).  
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Regarding ​misordering problem, after the induction of our new         

unigram translation pairs, translation results were more literal and         

the system was found to prioritize local reordering than long range           

reordering. For instance, in the following example, ​经济，社会和       

文化发展 was translated as ​la economía de desarrollo cultural y          

social ​by the expanded system, while the baseline delivered a          

correct translation. 

 

 (6) 
Source​: 

有助于实现讨论​经济 、 社会和文化发展 ​各方面问题的

联合国全球会议的目标。 
(Contribute to the achievement of the objectives of the         
global conferences of United Nations on economic, social        
and cultural development in all aspects) 

Reference​:  
contribuye al logro de los objetivos de las conferencias         
mundiales de las Naciones Unidas relativos a diversos        
aspectos del ​desarrollo económico , social y cultural​. 

Baseline: 
 y de​ desarrollo económico, social y cultural​ de la ONU en 
cada aspecto de la reunión.  

Expanded system: 
ayudar a realizar la ​economía de desarrollo cultural y         
social​, los aspectos de las Naciones Unidas en la reunión del           
objetivo. 
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- Semantic level 

Semantic errors address problems that regard the wrong selection of          

word meaning. Different from the ​wrong lexical choice​, semantic         

errors focus on confusion of senses. As in many cases, a source can             

be translated into different target words. In the example (7), our           

expanded system performs better than the baseline, since ​表示 can          

be translated as ​expresar and ​significar in Spanish, but according to           

this context, it should be translated as expresar ​(as delivered by the            

expanded system) instead of ​significar ​(translation by the baseline).         

Besides, the expanded system also provided acceptable translation        

pobreza and ​analfabeto ​for the baseline OOVs 赤贫 and 文盲,          

respectively.  

 

(7) 
Source​: 
表示关切​ 在《 世界人权宣言 》 通过五十多年后 ，​赤贫 
、饥饿 、疾病 、没有 适当住房 、 ​文盲​ ​和无望等不可

接受的境况仍是十几亿人的命运。  

(Expressing concern that the unacceptable situation of       
extreme poverty, hunger, disease, lack of adequate shelter,        
illiteracy and despair is still the fate of more than a billion            
people after more than 50 years of the adoption of the           
Universal Declaration of Human Rights.) 
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Reference​:  
Observando con preocupación que​, más de cincuenta años        
después de la aprobación de la Declaración Universal de         
Derechos Humanos, una situación inaceptable de pobreza       
absoluta, hambre, enfermedades, falta de viviendas      
adecuadas, analfabetismo y desesperanza siga siendo la       
suerte de más de 1.000 millones de personas.  

Baseline: 
significa que​ su en el mundo de la Declaración &amp; 五十

多 años después , ​赤贫​ , hambre , las enfermedades , - no 
viajara ni se relacionara ​文盲​ viviendas , y no de 十几亿 境
况 es el destino .  

Expanded system: 
ha expresado su interés en el mundo a través de la           
Declaración de derechos humanos &amp; 五十多, años       
después, la ​pobreza​, el hambre y enfermedades, y que no,          
espera. prácticamente ​analfabeto​. no había esperanza de 境       
况 十几亿 es el destino.  

 

4.4.3. Summary 

This section described how we applied a machine learning         

supervised method to induce new translation lexicon from        

monolingual corpora for enriching the phrase table of our         

Chinese-Spanish SMT baseline. The experiment shows an       

improvement of +0.7 BLEU score was achieved even though an          
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average of 800 translation pairs per source word were added to the            

existing parallel corpus. The high recall of our classifier ensures          

that more reliable translation candidates can be introduced to the          

SMT system and the language model component is able to handle           

the selection of the correct one, hence delivering a better translation           

output.  

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

155



 

 

 

 

 

 

 

 

 

 

 

 

 

156



 

 

Chapter 5 
 

5. CONCLUSIONS AND FUTURE WORKS  
5.1. Conclusions 

 
The main research directions of this dissertation were addressed on          

alleviating the OOV problem and inappropriate translation of        

lexical inflections to reduce the inflectional translation errors that         

frequently occur with low resource SMT. Along this line, we          

conducted a series of experiments to enhance ​a ZH-ES PBSMT          

system trained with the available corpora, which was of a reduced           

size compared with others​. The phrase table expansion was based          

on ​two different methods: ​(1) deriving more morphological variant         

translations based on the knowledge of the baseline phrase table as           

described in Chapter 3, and (2) inducing new bilingual lexicon from           

extra monolingual corpora as described in Chapter 4.  

The experimental results showed improvements of translation       

quality in different aspects. In the following we give a brief           

summary of our approaches, as well as the obtained conclusions.  
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● Morphology expansion for SMT 

For our first objective which was to enrich a baseline system with            

inflected variants obtained in a lexical resource​, we conducted an          

experiment to expand the translation model by adding inflected         

word forms based on the translation rules of a baseline phrase table            

as described in Chapter 3​. To do so, a Spanish lexical resource was             

used to return all possible morphological variants for the Spanish          

target word of given translation rules from the baseline phrase table.           

Once obtained all the new inflected translation pairs, ​we directly          

appended our new translation rules, including noise, into the         

parallel training data. ​The expanded system obtained an        

improvement of 0.59 BLEU score compared to the baseline system,          

demonstrating that these new translation pairs can effectively enrich         

the phrase table since the system can produce more inflected          

translations after the phrase table expansion. However, after        

analyzing the translation outputs, we realized that the enriched         

system is still not sufficient to handle the translation problem of           

Spanish verb conjugation when a subject or a time marker is not            

explicitly expressed in Chinese source sentence. 

● Supervised bilingual lexicon induction for SMT 

To achieve our second objective that focuses on learning new          

translation lexicon from monolingual data for alleviating OOV        
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problem of the baseline system, in Chapter 4, a supervision method           

which only needs monolingual features was used to induce new          

translation lexicon for enriching the SMT phrase table. The model          

was first trained with word embedding vectors of a small amount of            

translation equivalents as described in Section 4.1 and then was          

improved by adding other monolingual features such as word         

frequency information and Brown clustering as described in Section         

4.2 and 4.3, respectively.  

- Word embedding-based classification experiment 

To generate new translations, in the first experiment, a         

bilingual lexicon was induced with a SVM classifier trained         

using word embedding vectors of 1K translation equivalents        

and 5K randomly paired word pairs. We evaluated this         

method on two quite distinct language pairs       

Chinese-Spanish and English-Spanish in two different      

scenarios: ​Proof-of-Concept evaluation and ​SMT simulation      

scenario​.  

a) In ​Proof-of-Concept evaluation, ​the classifiers      

achieved around 0.90 F1-score for the ​right       

translation class for both language pairs, and       

obtained an accuracy of up to 96%. According to our          

experimental results, a small seed lexicon of about        
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500 translation pairs has proved to be sufficient for         

our classifier to obtain a relatively stable       

performance (F1-score 0.80 +) on predicting      

whether a new word pair is in a translation relation          

or not. Besides, we also evaluated the model with         

different types of corpora (lemmatized corpora and       

corpora in word form) and different ratio of positive         

and negative examples. The empirical results showed       

that the model trained using corpora in word form         

with the imbalanced ratio of 5 negatives to each         

positive obtained the best performance.  

b) In what we called the ​SMT simulation scenario​,         

we applied the trained model to rank for every         

particular source test word the obtained right       

translations among all target vocabulary words using       

the obtained confidence score expecting to find the        

correct translation pair ranked in top positions.       

However, the results showed that many word pairs        

obtained same confidence score making it impossible       

to properly set up the ranking list.  

The experimental results demonstrated that word embedding       

vectors obtained in the source and target monolingual        

corpora are sufficient to train the binary classifier for         
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determining the translation relationship between words      

without depending on extra parallel or comparable data.        

However, the performance of the word embedding-based       

classifier suffered from the ​hubness problem which leads to         

a certain number of bad words that were repeatedly         

classified as the ​right translation for many different source         

words.  

- Improving word embedding-based classifier using word      

frequency information 

To enhance the word embedding-based classifier, in Section        

4.2, we added the information of word frequency        

distribution to word embedding vectors. The hypothesis       

behind this experiment was that the additional word        

frequency features can be useful for the classifier to learn          

the translation relationship between words, as well as to         

filter out those word pairs with large difference in their          

frequencies. Unlike most of other approaches, instead of        

using raw frequency or relative frequency, we computed the         

standard deviation of word frequencies of the monolingual        

corpus, and used it to divide the word frequency range into ​n            

different subranges. One-hot encoding was used to encode        

the corresponding subrange of each source word and target         

word. Our hypothesis was confirmed by the results shown         
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in Section 4.2.3: after integrating word frequency feature,        

our classifier obtained a F1-score improved, from 0.91 to         

0.94, for the ​right translation class, demonstrating that the         

encoded word frequency representations indeed provided      

useful information for improving the performance of the        

word embedding-based classifier.  

- Improving word embedding-based classifier using     

Brown clustering 

Besides the word frequency feature, we also tried to         

combined word embedding vector with Brown clustering       

information to improve the classification performance. Our       

assumption was that adding Brown clustering feature to the         

word embedding vector can be useful for filtering out those          

candidates that are not semantically related to the        

corresponding source word. So in the experiment presented        

in Section 4.3, we trained the classifier using the joint          

representation of WE and BC of translation equivalents. The         

results show that, after adding BC, the classifiers achieved         

the F1-score of around 0.94 for the ​right translation class,          

demonstrating that although the word clustering information       

was learned from the source and target monolingual corpora,         

it had positive impact on the word embedding-based        
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classifier. Besides, the ​hubness problem of WE classifier        

was alleviated by the additional BC feature to some extent.  

- SMT phrase table expansion with an induced bilingual        

lexicon  

Since the model trained with WE and BC and the model           

trained with WE and WC obtained similar performances, in         

Section 4.4 we applied the model trained with WE and BC           

to generate new translations from monolingual corpora for        

phrase table expansion. The classifier was used to deliver,         

for each given source word, all the possible translation         

candidates as found in the combination with all the target          

words of the same PoS. As results, the WE-based classifier          

delivered a 7% word pairs classified as ​right translation​,         

while the classifier trained using WE and BC delivered only          

a 2.7%, confirming again the assumption proposed in        

Section 4.3 that the monolingual word clustering       

information is useful for discarding the candidates that are         

not semantically related to the given source word.  

After the expansion with new translation lexicons, an        

improvement of up to 0.7 BLEU score was achieved even          

though an average of 800 translation pairs per source word          

were added. The high recall of our classifier ensures that          
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more reliable translation candidates can be introduced to the         

SMT system and the language model component is able to          

handle the selection of the correct one, hence delivering a          

better translation output. At the end of the section, we also           

carried out a series of result analysis regarding the possible          

impacts of the new translation lexicon on the baseline         

system. 

5.2. Contributions 
 
The main contribution of this dissertation is that we have designed a            

number of approaches to enrich a low resource SMT phrase table by            

only exploiting monolingual resources. The following are some        

detailed achievements resulting from the work: 

● A word embedding-based classifier to automatically induce       

bilingual lexicon from unrelated monolingual corpora.      

Instead of learning complicated transformation matrix to       

project source language word to target language space, Our         

method treats the translation relation as a simple binary         

classification problem. To train the classifier we only need a          

small dictionary of 500 translation pairs instead of parallel         

corpus which is not available for many language pairs. With          
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only word embedding features, the classifier is able to         

achieve an accuracy of up to 96.8%.  

● An enhanced classification approach in which the classifier        

was trained using the joint representation of word        

embedding and word frequency feature. After adding word        

frequency information, the accuracy of the classifier       

increased from ​96.8% to 98.3% compared to word        

embedding-based classifier.  

● An improved classification solution in which the classifier        

was trained on the joint representation of word embedding         

and Brown clusters of translation equivalents. With       

additional Brown clustering information, ​the obtained      

accuracy improved from 96.8% to 97.6%, resulting in a         

considerable reduction of word pairs classified as ​right        

translation​.  

● A systematic analysis regarding the translation results       

delivered by the expanded systems compared to the        

performance of the baseline. We classified the errors into         

lexical level, grammatical level and semantic level and        

explained the advantages and limitations of our methods.  
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The experiments presented in Chapter 4 have been accepted and          

published in the following conferences: 

● Han, Jingyi; Bel, Núria (2017). "​Enriching low resource        
SMT using induced bilingual lexicons​". In Proceedings of        
the 33th Conference of Spanish Society for Natural        
Language Processing ‘17. Murcia: SEPLN (accepted). 

 
● Han, Jingyi; Bel, Núria. (2016). "​Towards producing       

bilingual lexica from monolingual corpora​". In Proceedings       
of the Tenth International Conference on Language       
Resources and Evaluation​ ​(LREC 2016). 

 
● Han, Jingyi; Bel, Núria (2015). "​Towards phrase table        

expansion using automatically induced bilingual lexica​". In       
Proceedings of the International Workshop on Embeddings       
and Semantics SEPLN ‘15. Alacant: SEPLN. 

 

5.3  Future works 

In the light of the results and conclusions obtained in the previous            

experiments, some future research lines are identified: 

● Although in Section 4.2 and Section 4.3, the incorporation         

of Brown Cluster and Word frequency information       

improved the performance of the word embedding-based       

classifier to some extents, there are still a certain amount of           

wrongly classified ​right translations which remain to be        
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filtered out. To reduce those false positives delivered by the          

classifier, another avenue for future work is using ensemble         

learning to combine our model with models separately        

trained with other monolingual features. Set up ranking list         

with ensemble modeling may lead to a higher accuracy,         

since our classifiers has been capable of reducing more than          

95% of no translation. 

● It has been proved that the binary classifier trained using the           

joint representation of WE and additional monolingual       

features (BC and WC) can alleviate the ​hubness problem to          

some extent. It would be interesting to evaluate the impact          

of the Brown cluster and word frequency distribution feature         

on the linear mapping function between language vector        

spaces, since according to ​Dinu et al. (2015), the ​hubness          

problem is one of the main obstacles when one looks at the            

nearest neighbours of vectors that have been mapped across         

spaces with ridge. 

● Neural machine translation has recently achieved impressive       

results while learning from raw, sentence-aligned parallel       

text. Sennrich and Haddow (2016) proposed to improve        

NMT by exploiting monolingual linguistic features such as        

subword tags, morphological information, POS tags and       

dependency labels. They obtained an improvement of up to         
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1.5 BLEU scores. In our experiments, it has been proved          

adding Brown cluster and word frequency feature can        

improve the performance of our binary classifier. It would         

be interesting to incorporate these features into neural        

machine translation and evaluate their impact on the        

translation performance.  
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