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It is only now and then
in some very remote and backward agricultural district

that an antiquarian may still discover a square house.

— Edwin A. Abbott, Flatland

Als meus avis, tan diferents.





A B S T R A C T

The avalanche of data that followed the sequencing of the human genome has
revealed an overwhelming biological complexity. No simple molecular explana-
tion exists for most of the diseases and, in consequence, simple therapies have
low probability of success. The emerging field of systems pharmacology seeks
drugs of broad impact on molecular networks. To achieve so, it is necessary to
integrate heterogeneous data, at different levels of complexity, and find correla-
tions between them. This translational exercise is, perhaps, the major concern
of current biomedical research.

In this Thesis we undertake part of this challenge through cases that orbit the
drug discovery endeavor. Using computational methods in various areas of
bioinformatics and chemoinformatics, we link chemical, biomolecular and phe-
notypic data to provide a more holistic view of pharmacology.

Keywords: systems pharmacology, network biology, bioinformatics, chemoin-
formatics

R E S U M

L’allau de dades que ha seguit la seqüenciació del genoma humà està reve-
lant una increïble complexitat biològica. No existeix una explicació molecu-
lar simple per a la majoria de les malalties i, en conseqüència, les teràpies
simples tenen baixes probabilitats d’èxit. L’emergent camp de la farmacolo-
gia de sistemes busca medicaments d’ampli impacte en les xarxes molecu-
lars. Per a aconseguir-ho, és necessària la integració de dades heterogènies, a
diferents nivells de complexitat, i la capacitat de trobar correlacions entre elles.
Aquest exercici translacional és, probablement, la major preocupació de la re-
cerca biomèdica d’avui.

En aquesta Tesi assumim part d’aquest repte a través de casos que orbiten
el descobriment de fàrmacs. Mitjançant mètodes computacionals en àrees di-
verses de la bioinformàtica i la quimioinformàtica, connectem dades químiques,
biomoleculars i fenotípiques per a facilitar una visió més holística de la farma-
cologia.

Paraules clau: farmacologia de sistemes, biologia de xarxes, bioinformàtica,
quimioinformàtica
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P R E FA C E

The field of biomedicine was peaking in my hometown Barcelona by the time
I finished the chemistry degree, back in 2009. A number of research institutes
had been created in the years preceding the economic crisis, and Barcelona was
determined to be the reference spot for biomedical sciences in Southern Europe.
Relevant discoveries were day in day in the media and in glamourous scientific
journals, and one could feel a unique enthusiasm for biological innovation.

I have to admit that, at the time, I had some reservations and prejudices about
biology in general, and molecular biology in particular. My naïve perception
was that it was a merely descriptive discipline, and being a chemist initialized
in quantics I was most of all interested in fundamental laws —“all science is ei-
ther physics or stamp collecting”, said Lord Rutherford. I suspect, though, that
the mere popularity of biology was in a way attractive to me: after all, it took
me a couple of years to figure out my scientific itinerary. I remember myself
doing a lot of reading and, rather slowly, I appreciated an increasing use of
mathematics and computation in biology. It was apparent that the impressive
amount of data that was being generated required some shifts in the traditional
biological thinking. I understood that this would offer many opportunities, and
I found that, being a chemist with some programming notions and an unmet
passion for statistics, bioinformatics was the natural entry point to biomedicine.

This Thesis is the result of my first steps into computational biology, with a
marked focus on pharmacology to somehow recycle my chemical background.
The Reader will notice that this is, above all, an exploratory work, as my experi-
ence has been, composed of several questions at the edge of chemistry, biology
and medicine. I hope that the text is able to connect the very distinct concepts,
and that it does not read erratic. It is my greatest desire that some of the rough
ideas that we propose herein are continued some day, hopefully to contribute
to the development of better drugs.
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Part I

I N T R O D U C T I O N





1
G E N E R A L I N T R O D U C T I O N

1.1 the complexity of human disease

Human diseases emerge from the malfunctioning of complex biological sys-
tems [1, 2, 3]. The cellular machinery is interconnected, and the impact of a
specific genetic alteration is seldom confined to the gene that carries it, but
propagates and alters the activity of gene products that otherwise carry no
defects [4]. Even for Mendelian disorders, where genetic abnormalities can be
traced in family pedigrees, it is now recognized that focusing on a single gene
yields too simplistic pictures [2]. For more complex disorders —including can-
cer, diabetes, autism, and obesity— individual genetic factors cannot even be
pinned down, since these diseases are caused by perturbations of intracellular
and intercellular networks [5, 6]. Due to the combined effect of multiple ge-
netic determinants, the variability between individuals and the importance of
environmental factors, the phenotype of complex diseases cannot be easily de-
termined from the genotype.

“. . . the phenotype of
complex diseases
cannot be easily
determined from the
genotype.”

Unveiling the links between genotype and phenotype is at the core of biomed-
icine, a field that has been revolutionized by the application of high-throughput
technologies following the first drafts of the human genome, back in 2001 [7, 8].
The long series of biological events that associate a genetic risk variant with
the development of a disorder can be monitored through a range of biochem-
ical intermediates, including different types of RNA, proteins, and metabo-
lites [1]. Today, an overwhelming amount of transcriptomics, proteomics and
metabolomics data, among others, are being published, accompanied with anal-
yses that report lists of genes whose mutations correlate with a disease. This
mainstay approach to genetic studies, based on the independent discovery of
genes, is a critical and valuable step, yet it is fundamentally insufficient to de-
scribe the intricate architecture of disease pathogenesis [9].

1.1.1 The advent of systems biology

The emerging field of systems biology is taking over the challenge to inte-
grate and digest the available molecular data. This in-vogue field has been pro-
claimed a paradigm shift by many [10], since once for all it faces the intricate
network of interactions that exist between the constituents of the cell. It is prob-
ably an overstatement to say that systems-level, integrative reasoning is new to
molecular biology [11]. Outside the mainstream reductionist school, nonequi-
librium thermodynamics theory flourished in the 1930s to set foundations on
molecular coupling [12, 13]. Biochemical processes need to produce entropy
as a driving force, and an early noticed paradox was how to explain the or-
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4 general introduction

dering that occurs in developmental biology when entropy must be increased.
A compelling explanation was that ordering processes are concatenated with
chaotic ones, i.e. that biology requires interactions [14] —nonequilibrium ther-
modynamics constituted a prelude to modern systems biology, but in the 20th
century the seminal studies in small systems did not get much attention (Fig-
ure 1A).

Instead, reductionism has dominated research in molecular biology, providing
an enormous supply of knowledge about individual cell components. Automa-
tion and miniaturization of molecular assays triggered the expansion of the
field of bioinformatics in the late 1990s, which is also rooted in the reductionist
view [11]. Early bioinformatics, although large-scale in nature, was mostly fo-
cused on statistical models and lacked a mechanistic framework, i.e. the virtue
to integrate knowledge. Systems biology emanates from bioinformatics and
takes the whole genome, including its interactions, as the subject of study.“Systems biology

(. . . ) takes the whole
genome, including
its interactions, as

the subject of study.”

To formalize the properties of cellular processes, systems biology incorporates
principles from physics, chemistry and biology, which explains why multiple
disciplines converge in current biomedical research. To contextualize these cel-
lular processes, broad maps of macromolecular interactions are necessary. One
of the most urged tasks in current biology is to unveil these maps and under-
stand the signals that are transmitted throughout [5].

1.1.2 The human interactome

A convenient assumption in systems biology is that the many components of
the cell communicate with each other through binary interactions. At an ab-
stract level, complex systems can be seen as a network, or graph, with nodes
representing biological entities, and edges, the interactions between them (Fig-
ure 1B). A popular implementation of this network view comprises the set of
physical protein-protein interactions (PPIs). Of the varied methodologies that
can detect PPIs, two are currently in wide use for high-throughput discovery.
Binary interactions are primarily identified by ever-improving versions of the
yeast two-hybrid (Y2H) system, and identification of protein complex mem-
bership is performed by affinity- or immuno-purification to first isolate pro-
tein complexes, and then by mass spectrometry (AP/MS) to detect their con-
stituents. In the recent years, there has been an exceptional growth of PPI data,
yielding interactome maps for several organisms, including human (Figure 1B)
[15].

Network topology

The vast interactome data available in the public domain is leveraged by ad-
vances in network analysis [16, 17]. A breakthrough in network theory was
the realization that systems’ architecture is sustained by a few simple prop-
erties that are persistent across most networks of technological and scientific
interest. Much like social, computer or semantic networks, PPI networks are
characterized by a set of organizing principles that are far from random, confer-
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ring them with a series of contextual properties and patterns. For example, an
unexpected property of biological networks is the existence of a few highly con-
nected nodes, called hubs, that interact with a majority of peripheral entities.
More concisely, in these so-called ‘scale-free’ networks the degree distribution
of node connectivity approximates a power law (Figure 1B) [18]. A noticeable
consequence of the scale-free property is the existence of key genes that hold
the network together. Accordingly, hubs in PPI networks are a constant focus of
attention, and claims are made as to their tendency to correspond to essential
[19] or disease-related genes [20]. Indeed, in several model organisms protein
connectivity and other network centrality measures appear to be relevant to bi-
ology, yet suspicion persists mostly due to research biases and low coverage of
interactomes [21]. In the case of the human interactome, the current coverage is
estimated to be around the 20%, which means that analyses are conducted on
networks that miss 80% of the edges [4].

Disease-related modules and robustness

Despite their incompleteness, cumulative evidence shows that PPI networks
are globally able to capture biological features, particularly if the lack of data is
taken into account using percolation theory, that treats the current interactome
as a sample of the real one [4]. With this rationale, it has been shown that pro-
teins involved in the same or related biological processes tend to interact with
each other. This observed locality, or modularity, is a backbone of network biol-
ogy [2], and suggests that disease-related genes are placed in certain vicinities
that are tightly linked to the pathogenic process.

In general, biologically-relevant modules are found in the network by calculat-
ing functional enrichments on densely connected neighborhoods, or by locating
several disease-related genes and checking their relative distance [2]. Functional
and disease modules overlap only to a certain extent, since many complex dis-
eases comprise multiple cellular functions: modularity is thus able to account
for complex procedures and relate them. Today, a global map of human diseases
(including hundreds of conditions and their molecular proximities) is available
thanks to the network-based analysis of otherwise poorly informative gene lists
[4].

It is thus apparent that biological processes are well organized by the interac-
tome. A close-up look into this organization has revealed a remarkable degree
of biological robustness, with scale-free, redundancy and sparseness as major
contributing network properties [22]. Indeed, biological systems sustain rela-
tively normal behavior upon e.g. most genetic mutations, regime shifts in the
physical environment, or stochastic fluctuations in molecular concentrations
[23, 24, 25]. The unique capacity of biological networks to elicit robustness,
which in turn is associated with homeostasis and evolution, suggests that the
currently available interactome is sufficient to capture the global architecture of
the cell.
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Interactomes are mostly descriptive

The current challenge in interactome analysis is to move beyond the mere delin-
eation of cell’s architecture. PPI network analysis is mostly topology-based, and
eminently statistical, providing no quantitative outcomes. To be truly predictive,
cellular networks require that both the magnitude and dynamics of the inter-
actions are considered. This is not feasible at large for PPI networks, because
high-throughput experiments only detect the presence or absence of physical
interactions, and it is challenging to derive their function and understand signal
transmission. Fortunately, once the interactomes are better annotated, systems
biology is prepared to produce quantitative tools —recent advances in smaller,
well-characterized systems such as metabolism are setting the bases of genome-
scale predictive models [26].

1.1.3 Genome-scale metabolic models

Metabolism is determined by genetics and environment. Models of human
metabolism exist that take these factors into account thanks to the reconstruc-
tion of metabolic networks and analysis of reaction flows, providing the most
mature and predictive systems biology tools available to date [26].

Metabolic reconstruction

Different to high-throughput PPI interactomes, metabolic networks are built
from the available annotation of the human genome, together with the collective
knowledge on enzymes, transporters and metabolites that have been studied for
decades. Component-by-component reconstruction of genomic and literature
data has produced curated metabolic networks for many organisms [27, 28]. In
these networks, nodes represent metabolites and edges are reactions annotated
with the corresponding metabolic genes. For human, several reconstructions
are available, containing thousands of enzymes and metabolites, and some of
them being specific to certain tissues [29, 30].

Constraint-based modeling

Reconstructed genome-scale metabolic networks may be converted to a mathe-
matically consistent format, the stoichiometric matrix (Figure 1C). This matrix
is the central component of a constraint-based model, which can be queried by
a myriad of computational techniques —flux balance analysis (FBA) is perhaps
the most prominent one [31]. FBA calculates the flow of metabolites through
the network, thereby making it possible to predict metabolic states of physio-
logical relevance. In FBA, the tabulation of stoichiometries imposes constraints
on the system, ensuring that the total amount of metabolites produced is equal
to the amount being consumed at steady state. Reactions can also be given up-
per and lower bounds to delimit their allowable fluxes. These stoichiometries
and bounds constrain the space of feasible flux distributions of the system, i.e.
the rates of consumption or production of every metabolite. More importantly,
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some reactions can be linked to phenotypic traits. Biomass production, for in-
stance, correlates with cellular growth [32] and proliferation [33]. In a metabolic
model, biomass production is just a compendium reaction that describes the
rate at which metabolites are converted into biomass constituents such as nu-
cleic acids, proteins, and lipids. Thus, genome-scale metabolic models provide
a genuinely systemic link between molecular traits and phenotype, and demon-
strate that quantitative modeling is possible on large biological networks.

1.2 the simplicity of modern drugs

Overall, the ever-growing pile of systems biology studies is moving our under-
standing of human disease towards a holistic view, where cellular components
interplay to perform biological processes. This recognized complexity does not
match the apparent simplicity of current drugs, which have long been opti-
mized under the ‘one disease, one target, one drug’ rationale [34]. This notion,
although alluring, has yielded disappointing results, and its fundamental flaws
are a matter of active debate [35].

1.2.1 The decline of productivity in the pharmaceutical industry

In the quest for single molecular targets, pharmaceutical research has experi-
enced a downturn that goes beyond demand and competition [36]. Arguably,
this decline is also due to an increasing concentration of R&D investments
in areas with high risk of failure, which correspond to pending therapeutic
needs and uncharted biological mechanisms. There is the perception that no
easy targets remain, and incremental discovery in exploited therapeutic areas
is discouraged [37]. While the cost of developing a new drug has dramatically
increased, new molecular entities are released at best at constant pace, and at-
trition rates have risen markedly, especially in late clinical phases [36].

To pursue therapeutic innovation, drug discovery has typically focused on
proteins with a known key role in disease pathogenesis. Advances in molec- “. . . drug discovery

has typically focused
on proteins with a
known key role in
disease
pathogenesis.”

ular biology are constantly flagging targets, yet most of them await validation
[38, 39, 40]. The target-centered approach is very attractive since it sets a rational
basis for the development of new medicines, with a specific biological hypoth-
esis and a starting point for the identification of ligands. Enormous technical
achievements have been made in the identification of targets and compounds
that interact with them. This notwithstanding, it is rather perplexing that, in a
time dominated by target-centered research, phenotypic screening is still yield-
ing most of the first-in-class medicines [37]. Unfortunately, phenotypic screens
are usually insufficient since they are opaque to the molecular mechanism of
action, have lower throughput, and involve a blind, erratic optimization of lead
compounds.

On the contrary, a major shortcoming of the target-centered approach is that
the known molecular mechanism may not achieve satisfactory therapeutic in-
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Figure 1: Overview of systems biology. (A) The mainstream origin of systems biol-
ogy (up) and a lesser-known effort focused on the formal analysis of func-
tional states that arise upon molecular interactions (bottom). Scientific break-
throughs are landmarked in both timelines, leading to the emergence of sys-
tems biology in the last decade (adapted from [11]). Systems biology inte-
grates biological knowledge, big data and computation. (B) Protein-protein
interaction networks. The (1) binary human interactome (2014) is shown, and
its corresponding (2) degree distribution approximates a power law. We also
show sketches of (3) node centralities (adapted from [2]), and (4) network
modules (adapted from [1]) where the disease module spans two functional
modules. (C) Flux balance analysis in genome-scale metabolic models. (1) The
metabolic network can be expressed as a set of stoichiometric reactions that
(2) can be represented in a matrix format (S), together with a flux vector (v)
to which lower and upper bounds (LB and UB) can be imposed. The steady-
state assumption dictates that S · v = 0, which yields (3) an undetermined
system of equations. (4) Biomass production can be chosen as an objective
function Z, and (5) maximized to predict the physiological fluxes of each of
the reactions.

dices due to the underlying complexity of disease pathogenesis [41]. Another
equally important factor, at the very detailed level, is the poor understanding
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of the specific molecular interactions that occur between a drug and its target.
There are many facets of these interactions that determine the therapeutic out-
come: sites of binding, affinity and kinetics, functional impact and specificity,
all add to the ultimate pharmacological response. It has been argued that a
focus on target-based drug discovery, without sufficient recognition of the fine
molecular details, could largely contribute to the high attrition rates [37]. This
is often an underappreciated challenge, being drugs almost uniquely optimized
for binding affinity [42].

1.2.2 Protein structures to facilitate drug design

Structural biology can fulfill the deficit of information between identified hits
and the many criteria that must be met to convert them into preclinical can-
didates [43]. The utility of 3D structures for drug discovery was appreciated
short after the first globins were crystallized [44, 45] —even if X-ray structures
of drug targets were usually not available, hints could be obtained through
comparative modeling of homologs [46]. Additionally, topographies of ligand-
target complementarity have been exploited to optimize potency and selectivity
ever since. Despite these applications, for years structural biology has been a
valuable yet not critical complement to pharmaceutical research [43].

Structural biology at large scale

Finally, the omics revolution has brought structural biology at the forefront of
drug discovery, beyond its classical role in lead optimization [43]. Structural
genomics aims at automating all steps in protein crystallography to keep struc-
ture determination in pace with the large amount of sequences that are being
released [47, 48, 49]. High-throughput crystallography is unveiling representa-
tive structures for many families in several genomes, and homology modeling
is reaching ideal accuracies [50, 51]. As more structures are resolved, it becomes
more important to promptly annotate them. In particular, the identification of “As more structures

are resolved, it
becomes more
important to
promptly annotate
them.”

ligand binding regions that could be involved in productive intermolecular in-
teractions is paramount, and guides both virtual screening and de novo drug
design, where small molecules are placed in the binding cleft of protein targets,
and spatial, electrostatic, van der Waals, and hydrogen bonding interactions
are evaluated [52, 53]. Related to this precise analysis, the design of specialized
chemical libraries is now feasible due to atomistic details, moving away from
the diverse but sparse libraries of synthesis produced by standard combinato-
rial chemistry [54]. Large-scale structural biology is thus permeating to the very
first steps of the drug discovery pipeline, being the initial selection of a target
heavily influenced by structural information as an indicator of the suitability of
a protein family to inhibition by small molecules.

Difficult targets

To guide target selection, retrospective analysis of successful drug campaigns
pointed out features that make some proteins ‘unligandable’, e.g. featureless
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binding sites, scarce hydrogen-bond donors and acceptors, metal ions, adap-
tive changes in conformation, and lipophilicity at the protein-ligand interface
[55]. A majority of the putative targets that are underlined in disease genetics
studies do not seem to be tractable [56]. Of notice, protein-protein interfaces
have several troublesome features, and attractive structural regions such as al-
losteric sites are many times transient and only exposed in certain protein con-
formations [55]. Nowadays, there is intense research to mitigate the belief that
most targets are unligandable, and game-changing technologies like fragment
screening are expanding our chemical toolbox [57].

1.2.3 The chemo-centric view of pharmacology

Figure 2: The protein and the small molecule structural viewpoints. Target-centric and
chemo-centric views of the Adenosine A2A receptor (ADORA2A) modula-
tion by 6-(2,6-dimethylpyridin-4-yl)-5-phenyl-1,2,4-triazin-3-amine (T4G). On
the left, the key molecular interactions in the T4G-ADORA2A binding. On
the right, T4G derivatives that also bind to ADORA2A below 10 µM.

With such an ubiquitous role of structural biology in modern drug discovery, it
is difficult to conceive an endeavour exempt of thorough knowledge on the in-
tended drug targets. However, before the molecular biology wave, pharmacolo-
gists were almost unaware of any molecular detail, and worked with a radically
different approach that has been progressively abandoned [58, 59]. Rather than“. . . before the

molecular biology
wave,

pharmacologists
were almost

unaware of any
molecular detail. . . ”

target-centric, classical pharmacology was chemo-centric (Figure 2). Even when
the molecular targets where roughly known, like in the case of G-protein cou-
pled receptors, the main goal was to classify them based on the chemistry of
the active molecules. These efforts led to rich chemical taxonomies that cor-
related well with bioactivity. Most times, molecules were directly tested in
phenotypically-relevant systems such as organs or animal models, and this trial-
and-error strategy yielded remarkable medicinal discoveries. Unfortunately, the
chemo-centric picture carried major limitations, most notably a lack of a theo-
retical background and the need for previous bioactivity data, which made it
unable to catch up with the large collection of new targets that were released
after the genomics revolution.
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The acknowledgement that the one-disease-one-gene-one-drug paradigm is also
limited in many aspects encouraged the drug discovery community to revisit
some old ideas and implement them with modern technologies. Nowadays,
cell-based phenotypic screenings are performed with high success [37], over-
looking the individual targets, and the chemo-centric classification of proteins
is broadly feasible thanks to the explosion of chemogenomics databases [59, 60,
61]. Enough bioactivity information is available to characterize thousands of
proteins in the light of their ligands. From this angle, with origin in classical
pharmacology, two proteins are similar if they have similar ligands, providing
a complementary view to evolutionary and structural classifications. This no-
tion has been applied with notable results to target and off-target detection [62],
even if it is largely dependent on the amount and quality of the assay data: the
approach is sensitive to biases in chemical libraries [63].

Nevertheless, the current availability of chemical library bioactivities is boost-
ing small molecules in a time of big data dominated by bioinformatics. Yet,
public chemoinformatics tools and standards lag behind bioinformatics; the
main reason for this is that bioinformatics and genomics initiatives have their
roots in the academic environment, while most chemical screens are conducted
in the private sector. The crisis in the pharmaceutical industry, together with
the widespread belief that small molecules should be reincorporated into bio-
logical models, is encouraging a unification of efforts. Nowadays, chemical and
biological data are merged into databases, and sometimes linked to phenotypes
[64, 65]. Similar to the advances in the study of disease genetics, the immediate
challenge in drug discovery is to push the long lists of independent bioactivity
assays and correlations into systems biology frameworks.

1.3 bridging levels of complexity

The problematic tackling of complex diseases with selective therapies suggests
that drug discovery should move beyond the limits of reductionism. As nicely
put by H. L. Mencken: “For every complex problem there is an answer that is
clear, simple, and wrong.” Before disease complexity was broadly perceived, in
the 1990s, the Nobel Laureate Paul Ehrlich imagined an ideal therapy, a ‘magic
bullet’ exquisitely directed to an invader [66, 67]. Penicillin, perhaps the first
great drug, was a magic bullet because it was exceptionally safe and effective
for killing bacteria. The switch from mechanisms to targets in drug discovery
has adapted Ehrlich’s ideal in a strict molecular context: a magic bullet should
interact with one selected target, trigger a premeditated response, disengage
from the target, and be metabolized and excreted without further effects on the
human body (Figure 3). This reasoning has led to rational drug development
strategies, enabling the incorporation of physical and chemical cognizance into
disease biology, which is crucial to aid molecular design.

In time, omics sciences are revealing astonishing biological complexity, and it
is becoming clear that entire systems cannot be reduced to the qualities of the
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Figure 3: The reductionist approach to disease and therapy. The red half of the circle
corresponds to the disease process, and the green half to the therapy. The
arrow describes the scientific strategy that is undertaken in order to first un-
derstand the disease (red) and then revert it (green). The thickness of the
arrow is proportional to the amount of complexity that is accounted for, be-
ing inner circles more reduced models, from single proteins to animal models
through biochemical pathways and cell assays. In a classical disease genetics
study (red), one would aim at finding a causative gene (disease-gene corre-
lation) and, once the gene is identified, it will be contextualized in several
disease models of increasing complexity in order to confirm the relevance of
the gene and extract mechanistic knowledge. Potentially, this gene could be-
come a candidate drug target (green). Drug discovery is focused on finding
molecules that will bind this target, i.e. research is conducted at the inner
circle, where structure-activity relationships (SAR) are most simple and eas-
ier to optimize. In the physiological context, for the drug to reach the target,
pharmacokinetics will have to be controlled, but even if the modulation of
the target is accomplished, the complexity of the organism will determine
the therapeutic efficacy (pharmacodynamics).

individual parts. Biology has a hierarchical organization, with emergent prop-
erties, and downward and upward causation effects. The behavior of a cell, for
instance, is controlled both by the properties of its biomolecules and by the
properties of its corresponding organ [9]: it appears that a complete picture can
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only be obtained by studying the system as a whole and each of its constituents
in detail. In reductionist thinking, the natural way to account for this is by iso-
lating biological entities with progressive levels of complexity [68]. Targets, cell
cultures, or mouse models are all attempts to simplify the human body (Fig-
ure 3). However, putting the object of study in an artificial experimental setup
is not neutral and might lead to skewed results. More critically, travelling be-
tween orders of complexity is fundamentally impossible from a reductionist,
deterministic point of view [9]. In particular, predicting the propagation of a
perturbation from one level to another one is a challenging task, since com-
plex systems tend to adapt to environmental conditions while, sometimes, they
respond dramatically to small fluctuations.

1.4 the thesis into context

“Our work here has
no tool, disease,
drug, or gene of
interest.”

Modern pharmacology has attempted to translate observations from one level
of complexity to the other with moderate success. Along the process, massive
knowledge on small molecules, genes, and diseases, has been gathered in ex-
periments that range from single target binding assays to post-marketing phar-
macovigilance. By nature, these data are diverse and involve fields that are dis-
parate in the scientific mindset. It is the main goal of this Thesis to open new
methodological avenues and establish links between multiple data types. Given
the heterogeneity of the sources, we use a varied repertoire of computational
methods. Our work here has no tool, disease, drug, or gene of interest. Instead,
in a rather exploratory manner, we undertake to provide generic solutions and
answers to several case examples, with a focus on drug discovery and disease
complexity.

Accordingly, the body of the Thesis is a compendium of articles, each of them
addressing a different data integration question. In Figure 4, we contextualize “. . . the body of the

Thesis is a
compendium of
articles, each of them
addressing a
different data
integration
question.”

the articles in the disease-therapy scheme presented in Figure 3. To this very
general introduction, the Reader can add the individual introduction of each
of the articles.

In brief, the Thesis is rooted in Article 1 (Article 8 and Article 9), where we
use drug side effect information to gain mechanistic insights and identify liable
chemotypes. The chemo-centric branch of this work is continued in Article 2,
and the phenotype-based aspect brought to the cellular level in Article 3 and
Article 4, where cancer cell lines are explored. The latter work, in particular,
introduces systems biology, and the links between complex networks (Article
10 and Article 11) and protein structures are reviewed in Article 5. Here, we
highlight the importance of fine molecular details to enable systems-relevant
drug design. Towards this direction, Article 6 presents a method to systemati-
cally find functional protein conformations, and Article 7 attempts multi-target
perturbations in biological networks.
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Figure 4: Overview of the Thesis content. Articles in the main text and in the appendix
are shown. The levels of complexity that are explored in each of the studies
are highlighted in the corresponding circles (see Figure 3). Note that Article
12 and Article 13 are not put into context because they are the result of minor
collaborations, somewhat outside the scope of the global project.
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O B J E C T I V E S

The aim of the Thesis is to explore new ways to connect distinct data types in
the field of drug discovery. More specifically:

1. To quantify the clinical importance of biological and chemical traits of
drugs, i.e. to assess both the classical chemo-centric view of drug action
and the modern approach focused on molecular biology.

• Article 1 correlates drug targets and off-targets with side effects, and
looks for liable chemotypes.

• Article 2 evaluates the feasibility of the chemo-centric view of dis-
eases, given the available chemical data.

2. To reconcile classical and modern pharmacology by pushing molecular
and systems data into e.g. cell line panels.

• Article 3 evaluates the clinical relevance of drug response measure-
ments in cancer cell lines.

• Article 4 uses genome-scale metabolic models to better characterize
the cell lines.

3. To enable systems pharmacology by bringing objective (2) down to the
atomistic level, i.e. to perform structural analysis on a large scale and
exert systems-wide perturbations of biological networks.

• Article 5 extensively comments on the importance of protein struc-
tures in the systems era.

• Article 6 automatizes the identification of protein conformers.

• Article 7 uses protein structures to propose multi-target strategies.

15





Part II

A RT I C L E S





3
A N A LY S I S O F C H E M I C A L A N D B I O L O G I C A L F E AT U R E S
Y I E L D S M E C H A N I S T I C I N S I G H T S I N T O D R U G S I D E
E F F E C T S

article 1 Chemistry, biology and side effects.

authors Miquel Duran-Frigola and Patrick Aloy.

journal Chemistry & Biology.

type Research article.

stage Published.

context To establish direct links between clinical data and molecular fea-
tures, we did an exploratory, agnostic analysis of the importance of drug chem-
ical and biological traits. Drug side effects can be seen as clinical readouts of 
drug action and here we quantified the relevance of the target- and the chemo-
centric views.

citation Duran-Frigola and Aloy (2013) [69].

note Full supplementary material is not provided in this Thesis. In par-
ticular, Tables S1 and S2 can be accessed at http://dx.doi.org/10.1016/j. 
chembiol.2013.03.017.

19

Duran-Frigola M, Aloy P. Analysis of chemical and biological features yields 
mechanistic insights into drug side effects. Chem Biol. 2013 Apr 18;20(4):594-603. doi: 
10.1016/j.chembiol.2013.03.017

http://dx.doi.org/10.1016/j.chembiol.2013.03.017
http://dx.doi.org/10.1016/j.chembiol.2013.03.017
http://www.sciencedirect.com/science/article/pii/S107455211300121X?via%3Dihub
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A C H E M O - C E N T R I C V I E W O F H U M A N H E A LT H A N D
D I S E A S E

article 2 The chemo-centric view.

authors Miquel Duran-Frigola, David Rossell and Patrick Aloy.

journal Nature Communications.

type Research article.

stage Published.

context Given the remarkable predictive power of chemical features ob-
served in Article 1, we decided to get the most out of the chemo-centric view 
by expanding the chemical space with other small molecules such as environ-
mental substances.

citation Duran-Frigola et al. (2014) [125].

note Full supplementary data can be accessed at http://dx.doi.org/10. 
1038/ncomms6676.

45

Duran-Frigola M, Rossell D, Aloy P. A chemo-centric view of human health and disease. 
Nat Commun. 2014 Dec 1;5:5676. doi: 10.1038/ncomms6676. 

http://dx.doi.org/10.1038/ncomms6676
http://dx.doi.org/10.1038/ncomms6676
https://www.nature.com/articles/ncomms6676
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D R U G S E N S I T I V I T Y I N C A N C E R C E L L L I N E S I S N O T
T I S S U E - S P E C I F I C

article 3 Drug sensitivity in cancer cell lines.

authors Samira Jaeger*, Miquel Duran-Frigola* and Patrick Aloy (*equal 
contributions).

journal Molecular cancer.

type Research comment.

stage Published.

context Cell-based assays are the modern analogs of the classical pheno-
type-based approach to pharmacology. Article 2 highlighted the relevance of 
keeping chemical details, and these are the only molecular information avail-
able in standard cell line panels. In this small study, we checked whether, in 
turn, cell line measurements can be translated to phenotype.

citation Jaeger et al. (2015) [178].

note This article contains supplementary information that can be accessed 
at http://dx.doi.org/10.1186/s12943-015-0312-6.

73

Jaeger S, Duran-Frigola M, Aloy P. Drug sensitivity in cancer cell lines is not tissue-
specific. Mol Cancer. 2015 Feb 15;14:40. doi:10.1186/s12943-015-0312-6. 

http://dx.doi.org/10.1186/s12943-015-0312-6
https://molecular-cancer.biomedcentral.com/articles/10.1186/s12943-015-0312-6
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H A R N E S S I N G C A N C E R ’ S P H - V U L N E R A B I L I T Y T O
I D E N T I F Y A N O P T I M A L T W O - S T E P T H E R A P E U T I C
S T R AT E G Y

article 4 Cancer and pH.

authors Erez Persi*, Miquel Duran-Frigola*, Patrick Aloy and Eytan Rup-
pin (*equal contributions; author order to be decided).

type Research article.

stage In preparation.

context In Article 3, the difficulty to match tissue-specific data with the
corresponding cells suggested that molecular characterization is important to
profit from cell line panels. We used genome-scale metabolic models to provide
such a molecular characterization. On top of these models, to further link the
network level with the protein level, we applied pH-activity profile constraints
based on sequence data and enzymology assays.

note This article is awaiting experimental validation.

6.1 abstract

The initiation and development of cancer is associated with major metabolic
alterations. An important aspect of cancer metabolism is the acidification of its
extracellular environment and the concomitant alkalization of the cytoplasm,
generating a reverse pH-gradient. Although much effort has been devoted to
studying the consequences of extracellular acidification of cancer’s microenvi-
ronment, the role and importance of intracellular alkalization remains poorly
understood. Here we provide for the first time a systems biology compre-
hensive understanding of how changes in intracellular pH (pHi) are coupled
to network-wide cancer metabolic alterations, by integrating enzymatic pH-
dependent activity profiles into human genome-scale metabolic models of can-
cer and normal cells. We show that lowering pHi renders cancer cells vulnerable
for disruption and contributes to reversing its ‘Warburg’ nature. This vulnera-
bility is further exploited to identify optimal metabolic targets whose inhibition
selectively kills cancer at low pHi. These results unravel an unprecedented role
of pHi in cancer metabolism and put forward ground for novel combinatorial
efficient therapy.

85
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6.2 introduction

Most cancer cells demonstrate prevalent metabolic adaptations, notably the
Warburg effect [201], characterized by upregulated glycolysis and lactate pro-
duction even under aerobic conditions, and an adaptation to low-oxygen (hy-
poxic) and low-nutrients environments [202]. Another outstanding hallmark of
cancer is the acidification of its extracellular environment and the concomitant
alkalization of its cell’s plasma. This leads to a reverse cancer pH-gradient (pHi
> 7.2, pHe ∼ 6.7− 7.1) compared with normal cells (pHi ∼ 7.2, pHe ∼ 7.4) [203],
owing to altered activity of various plasma membrane transporters involved in
pH regulation and homeostasis [204]. In cancer, these notably include increased
expression and activity of acid extruders, such as monocarboxylate transporter
(MCT) and Na+-H+ exchanger 1 (NHE1), as well as carbonic anhydrases (CAs),
which maintain the higher pHi and lower pHe of tumor cells.

This notable reverse pH-gradient is significantly correlated with the spatial gra-
dient of oxygen availability in tumors [205, 206], and is of considerable func-
tional significance. It promotes tumor proliferation, invasion and metastasis
[207, 208, 209], as well as aggressiveness and resistance to treatment [203, 210,
202]. Underlying mechanistic explanations have primarily focused on various
effects of extracellular acidosis, including the induction of growth factors (e.g.
VEGF, HIF), the conversion of secreted lactate to glucose as a nutrient source,
suppression of the immune system, and the evolutionary advantage of the sur-
viving cancer cells, which are selected to cope with acidosis, over normal cells
in the tumor microenvironment [211, 212].

“. . . we investigate
the effects of

interfering with pHi
on the metabolic

state of cancer vs.
normal cells using

genome-scale
metabolic models. . . ”

Interfering with pH regulation in cancer by inhibition of membrane transporters
has been suggested as promising therapeutic potential already in early studies
[213, 214]. Some membrane transport targets are today in advanced clinical tri-
als [215]. Such strategy is intrinsically selective (i.e. does not damage healthy
cells) and is expected to counteract the effects associated with extracellular aci-
dosis, to some extent. Moreover, it was suggested that such an approach may
induce intracellular acidosis which could be toxic to cancer [206], and that the
cancer’s alkaline intracellular environment is essential to its survival [216].

However, a more comprehensive picture of how changes of intracellular pH
(pHi) are coupled to cancer metabolic adaptations and cancer proliferation over-
all is still lacking. Such an understanding may further facilitate the design of an
optimal combined strategy to target cancer vulnerabilities which are exposed
at a specific pHi. The difficulty in exploring intracellular effects is partially
because of the lack of adequate systems biology methodologies. To this end,
here we investigate the effects of interfering with pHi on the metabolic state
of cancer vs. normal cells using genome-scale metabolic models (GSMM) of a
wide array of cancer and normal cell-lines. To account for the effect of pHi we
developed a novel methodology which predicts the pH-dependent activity pro-
files of enzymes and then integrates the latter into GSMMs. We identified an
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unprecedented role of pHi regulation in cancer metabolic adaptations and sur-
vival capacity. We show that, compared to healthy cells, cancer cells are more
adapted towards alkaline high-pHi and more vulnerable in the acidic low-pHi
regime. Moreover, at high-pHi cancer develops higher glycolysis and adapts to
hypoxia. Similarly, at low-pHi these metabolic adaptations are reversed. Fur-
thermore, we identify key enzymes whose activity strongly affects cancer vul-
nerabilities at low-pHi. Building on this finding, we predict new drug targets
that are both selective (inhibit cancer cells primarily) and pH-specific (inhibit
cancer proliferation more effectively at low-pHi than at high-pHi). These find-
ings form a basis for a combined therapeutic strategy targeting cancer.

6.3 results and discussion

To investigate the effects of pH on the metabolic activity of cells we performed
a two-step computational analysis. First, we developed and validated a new
framework that predicts the activity of each metabolic enzyme at a wide pH
range. Second, we integrated these predictions to evaluate the activity of nor-
mal and cancer metabolism at the network level, using genome scale metabolic
modeling (GSMM).

pH profiles of metabolic enzymes were fetched from in vitro measurements
available in the BRENDA database, complemented with homology-based pre-
dictions (see Section 6.4 and Section 6.5, Figure 41, Figure 42, Figure 43 and
Figure 44). As shown in Figure 38A, a pH-activity profile here is defined by
the acidic and basic critical points corresponding to 0%, 50% and 100% of ac-
tivity. When no experimental value was available, we could predict it based on
homologs of the enzyme of interest, and the values of the other critical points.
Predicted vs experimental optimal pH values showed a Pearson’s correlation of
0.759 in a 10-fold cross-validation (Figure 38B); this marked correlation held for
the rest of critical points (see Section 6.5, Figure 45, Figure 46 and Figure 47).
Reassuringly, the predicted optimal pH of the enzymes were remarkably con-
sistent with the known pH range of the cellular compartments in which they
reside (Figure 38D) [217, 204]. Lysosome and, to a lesser extent, Golgi appara- “. . . the predicted

optimal pH of the
enzymes were
remarkably
consistent with the
known pH range of
the cellular
compartments in
which they reside.”

tus are at acidic physiological pH: accordingly, enzymes in these compartments
had low optimal pH values. On the contrary, we obtained basic optima for en-
zymes operating in the mitochondrion and peroxisome, in good agreement
with the characteristic pH of these organelles.

To investigate the effects of an induced pHi regime (which can be achieved
in practice by inhibition of known membrane transporters, e.g. [218]) on the
metabolic behavior of cancer and healthy cells, we integrated the pHi profiles
computed above for every metabolic enzyme into genome scale models of nor-
mal and cancer metabolism. This is achieved by modifying the bounds on the
flux of each enzyme in the network as a function of its predicted activity at a
given pH (see Section 6.4). This enables us to compute the flux range carried by
any enzyme for each cell modeled at any given pHi, and as a result, the cell’s
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Figure 38: Enzymatic pH-activity profiles. (A) For each enzyme, six critical pH points
are defined, namely ‘A0’, ‘A50’, ‘A100’, ‘B100’, ‘B50’ and ‘B0’. At each point,
the distribution of pH values is shown; including experimental as well as
predicted values. The region of interest for further GSMM analyses is dark-
shaded. (B) Predicted optimal pH vs experimentally observed optima. Op-
timal pH is defined as the average of ‘A100’ and ‘B100’. The red line corre-
sponds to the linear regression, accompanied with the Pearson’s correlation
coefficient (r). (C) Predicted pH-activity profiles in the range of 6.5− 8.0 pH
units. Each of the green lines corresponds to a pH-activity profile of a sin-
gle enzyme. The red line represents the average pH profile. (D) Optimal pH
values of metabolic enzymes in each cellular compartment. Box widths are
proportional to the number of enzymes in each category. Red dots delimit
the physiological pH-range of the compartment.

proliferation rate and various other metabolic capacities at any given pHi level.
We performed this integration and modeling in a series of cell-specific models
of the NCI-60 cell-line panel and of the HapMap healthy lymphoblastic panel
that we have just published and validated [219, 33].

The resulting effect of pHi on cellular proliferation in both normal and can-
cer cell types is shown in Figure 39. As evident, cancer cell growth rate is
lower at the acidic low-pHi regime than normal cell growth, but the situation
markedly reverses at alkaline high-pHi levels, where the growth of cancer cells
is higher and much more robust to pHi alterations than the growth of normal,
healthy cells. Notably, this effect is robust with respect to noise in the pH-profile
values, and reassuringly vanishes under random (i.e., wrong) assignment of
pH-profiles to enzymes (Figure 48). Furthermore, trying to understand which
enzymes are essential for this behavior we identified, by divide and concur



6.3 results and discussion 89

search, that in the glycolysis pathway, the moonlighting enzyme GAPDH (and
its paralogue GAPDHS), strongly affect cancer’s pH-dependent behavior. Their
inhibition arrests cancer’s proliferation at pHi levels below the physiological
range, exposing their low-pHi vulnerability and amplifying the apparent selec-
tive effect between cancer and normal cells.

Figure 39: Key metabolic characteristics of cancer (circles) and normal healthy (solid
curves) cells as a function of pHi levels. Results are displayed twice: when
GAPDH and GAPDHs carry high flux (black) and when they carry low flux
(color), as indicated by the inset of subfigure A. (A) Cellular proliferation
(biomass production yield) as function of pHi, normalized by the maximal
value obtained across all pHi levels examined. Dashed lines indicate the
physiological range of pHi in both cells types (∼ 7.2− 7.4). (B) Oxygen con-
sumption rates. (C) Glucose uptake rates. (D) Total ATP production rates (E)
Total NADPH production rates. Rates are given in mmol/mgDW/h. Note
that uptake rates (B-C) are conventionally depicted with a negative sign, so
that lower (more negative) values denote higher uptake rates. Mean values
and their corresponding standard deviations are estimated across two pop-
ulations of GSMMs representing the NCI-60 (cancer) and HapMap (normal
lymphoblastic) cell-lines panels (Methods). These results are robust with re-
spect to choice of parameters (Figure 49).

“. . . the models
capture the more
glycolytic and
hypoxic nature of
cancer cells.

The effects of different pHi levels on oxygen and glucose consumption rates
(Figure 39B-C) and on total ATP and NADPH production rates in cancer and
normal cells are also shown (Figure 39D-E). Overall the models capture the
more glycolytic and hypoxic nature of cancer cells. Evidently, oxygen consump-
tion rate is compromised in the high-pHi regime while glucose uptake rate
increases, indicating that the alkaline intracellular pH indeed contributes to
the hypoxic and high-glucose characteristics of cancer cells. ATP production is
optimal at physiological pHi and robust at high-pHi. All of these effects are re-
versed to some extent in the acidic low-pHi regime. Hence, lowering pHi is pre-
dicted to render cancer cells to a less glycolytic and a more normoxic metabolic
state. The effect of reversing cancer’s glycolytic nature, and hampering its ATP
production capacity are further accentuated when GAPDH/S are inhibited. No-
tably, NADPH (as well as NADP production) is optimal at physiological pHi
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and sensitive to any change in pHi, affecting both cell types similarly, in a non-
selective manner.

Taken together, these results testify that the specific resilience of cancer cells
to the alkalization of their intra cellular environment is a prime driving force
that enables them to generate and maintain the acidic extracellular gradient
to which so many potential cancer-beneficial functional effects have already
been attributed to. As shown, in contrast to healthy cells, cancer proliferation is
hardly diminished at moderate alkaline pHi levels, which provide cancer cells
with specific selective proliferation advantages versus their surroundings. This
suggests that acidifying perturbations aiming at lowering the pHi will in turn
increase the vulnerability of cancer cells, and, as evident from Figure 39, overall
tend to have a larger detrimental effect on cancer than on normal cells prolifera-
tion. Such an effect can be further amplified by partial inhibition of GAPDH/S
enzymatic activity. This view thus suggests a two pronged therapeutic attack
on cancer, first by acidification agents, followed by drugs that exploit the spe-
cific vulnerabilities exposed at the latter state.

We hence turned to simulate the metabolic acidic state in cancer cells and
identify pH-specific selective targets. To identify potential post-acidification
metabolic anticancer targets we simulated the inactivation (knockout) of each
metabolic gene by constraining the flux of the reactions affected by it (see Sec-“To identify

potential
post-acidification

metabolic anticancer
targets we simulated

the inactivation
(knockout) of each
metabolic gene. . . ”

tion 6.4) in two pHi regimes: ‘physiological’ (i.e., pHi = 7.3) and ‘low’ (i.e.,
pHi = 6.7). We explored the effect of gene inactivation on cellular prolifera-
tion and on the consumption and production rates of key metabolites across
the cancer and normal cell-lines. Targets of particular interest are those that
are (i) Selective: that is, hamper proliferation of cancer cells at low-pHi selec-
tively, i.e., with a lesser inhibitory effect on the proliferation of normal cells,
and (ii) pH-specific: that is, hamper cancer’s proliferation at low-pHi more than
they do at physiological-pHi. This ensures that the selective killing of cancer
by inhibiting these targets is not exacerbated at low pHi, but rather amplified.
To identify such targets we introduce two corresponding scores: selectivity and
pH-specificity, to evaluate and compare gene knockouts (see Section 6.4). The
higher these scores are the more selective and pH-specific are the predicted tar-
gets in killing cancer cells effectively at low-pHi.

Figure 40 presents a classification of the gene targets, their gene-inhibition
scores and the impact of their inhibition on key metabolites relative to wild type
(WT). The inhibition of 12 genes was found to be both selective and pH-specific
in all cancer-normal pair comparisons. Additional 11 targets were found to be
selective with low pH-specificity scores. Moreover, some of these targets further
contribute to the increase in oxygen consumption rate and concomitantly to the
decrease in glucose consumption, in cancer at low pHi.

The predicted targets include a number of genes in the glycolysis and pentose-
phosphate-pathway. An interesting prediction is the glycolytic enzyme GPI,



6.4 methods 91

whose scores are positive and its inhibition decreases glucose consumption
and increases oxygen consumption more than other targets in cancer cells at
low pHi. Hence, GPI is predicted to significantly contributing to further killing
of cancer at low pHi and reversing cancer’s Warburg characteristics at this pHi.

Figure 40: Gene Inhibition (Knockout) Analysis. (A) Clustering of all gene knockouts
according to their selectivity and pH-specificity scores. Positive scores iden-
tify 12 selective and pH-specific targets (green). Additional 11 targets are
identified as selective but not pH-specific. These results are robust with re-
spect to level of gene inhibition, the exact choice of low pHi, and the con-
straint cell’s proliferation (Section 6.4 and Figure 50). (B) The predicted se-
lective and/or pH-specific 23 targets that recur in all cancer-normal compar-
isons, ranked by their average pH-specificity. The average selectivity score
is superimposed. (C) The effect of knockdown of the identified 23 targets on
other key metabolite consumption/secretion relative to the wild type (WT).
Average changes across all cancer cells at low pHi are shown.

Overall, reviewing our results we rigorously show that on the system level, low-
ering pHi may be combined with the inactivation of selective and pH-specific
gene targets to put forward an optimal two-step therapeutic strategy. First, low-
ering pHi to hamper cancer’s proliferation and channel it to a less glycolytic
and more normoxic metabolic state. Second, further exploit these modifications
by inactivating selective and pH-specific targets at this low-pHi to both further
decrease cancer proliferation and further reverse cancer’s Warburg nature.

6.4 methods

6.4.1 Construction of pH-activity profiles

Dependency of enzymatic activity on pH was obtained from experimental data
in BRENDA (June 2014) [brenda-enzymes.org]. As shown in Figure 38A, for
each enzyme we aimed at six critical points, corresponding to the lower and
upper limits of 0%, 50%, and 100% of activity. Experimental points of 100%
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activity were mainly obtained from the ‘pH Optimum’ field in BRENDA. 0%
and 50% points were read from the ‘pH Range’ category, after manual curation:
records reporting activities up to 25% were approximated to 0%; activities from
25 to 75% were set to 50%; and activities above 75% were set to 100%. When
more than one record was available, we extracted the median value.

The vast majority of experimental values corresponded to 100% of activity, i.e.
the optimal pH (Figure 41). We learned linear regressors based on experimen-
tal data and values of close homologs in order to impute missing critical points.
Then, we screened the enzymes in the GSMM against the pH-profile database
using JackHMMER, obtaining profiles for 1, 444 of the 1, 905 metabolic genes
(76%). A detailed description of the method is provided in Section 6.5.

Once critical pH points were obtained, the % of activity of an enzyme at any
given pH could be linearly interpolated. Metabolic genes without a predicted
profile were conservatively given a constant activity of 100%, such that no con-
straints are applied to them in the genome-scale metabolic models.

6.4.2 Genome-scale metabolic modeling and application of pH-activity profiles

We applied pH-activity profiles into a panel of genome-scale metabolic models
(GSMM), developed recently [219] based on the human GSMM [29], represent-
ing the NCI-60 cell-lines panel and the normal healthy lymphoblastic cell-lines
from the HapMap project. This panel of models capture key differences be-
tween cancer and normal cells, including Warburg characteristics. Moreover,
they have identical sizes and are modeled under identical media composition
(RPMI-1640), hence highly adequate for comparative analysis.

Constraint-based modeling of metabolic network

Constraint-based Modeling (CBM) approach imposes mass-balance, thermody-
namic and enzymatic capacities constraints to define the allowable functional
states of biochemical genome-scale model [220]. These constraints can be math-
ematically represented as linear equations:

dx

dt
= S · v = 0 (2)

vmin 6 v 6 vmax (3)

where v is the network’s flux vector and S is the m× n stoichiometric matrix,
where m and n are the number of metabolites and reactions, respectively. The
matrix specifies all biochemical reactions and metabolites in the network. Con-
straint Equation 2 assures steady state, where the production and consumption
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rate is equal for each metabolite in the network. Thermodynamic and enzy-
matic capacities are defined by imposing bounds on the reactions’ fluxes and
are embedded in constraint Equation 3. The permissible flux that a reaction cay
carry, in a given metabolic state, is estimated using flux-balance-analysis (FBA),
and flux-variability-analysis (FVA) [31], taking its maximal flux as a proxy for
its catalytic activity.

Cellular proliferation is therefore estimated as the maximal flux carried by the
biomass reaction in the GSMM, which represents the cellular growth yield.
Since the cells we model are highly proliferative, we constraint cellular pro-
liferation to be larger than X% of its maximum in order to infer the activity
of all other reactions. The results reported here are robust with respect to the
choice of X in the range X = 70% − 90% (Figure 49).

Integration of pH-activity profiles

We apply the pH-profiles of Figure 38 to adjust the bounds of each reaction in
the GSMM, at a given pH. This is done in three steps. First, in a given pH, the
activity of genes relative to their maximal activity (at their optimal pH) defines
a pH-specific activity of each gene, WG = [0, 1]. Second, taking WG of all genes,
we infer the activity of the reactions in the GSMM, based on the embedded
genes-reactions logical rules, associated with each reaction. For an ‘AND’ logic
the minimalWG is assumed, and for an ‘OR’ logic the maximalWG is assumed.
Hence, we end up with a weight factor, WR = [0, 1], for a reaction R. Third, the
upper and lower bounds of a reaction are scaled by WR. For a bi-directional
reactions (vmax > 0 and vmin 6 0) the new lower bound is LB = WR × vmin
and the new upper bound is UB = WR × vmax. To avoid invalid ranges of
bounds, for a forward reaction (vmax > vmin > 0) only the upper bound
is scaled by WR, ensuring that UB > vmin. Similarly, for a reverse reaction
(vmin < vmax 6 0) only the lower bound is scaled by WR, ensuring that LB
6 vmax. We assume that cellular organelles are well buffered and therefore
apply these modifications only to cytosolic enzymes.

Gene knockout simulation and analysis

The knockout (KO) of a gene G is simulated by setting WG to 0− 0.1, repre-
senting activity inhibition of 100% − 90% respectively. The effect of a gene KO
on cellular proliferation is estimated by nBCancerKO,pH = BKO,pH/BWT ,pH, where
BWT ,pH is the biomass of the wild-type (WT) at a given pH, and BKO,pH is the
biomass of the cell following gene KO at this pH. To assess the importance of a
gene KO, we introduce two ranking measures:

1. Selectivity score (SEL), which measure the difference in cellular prolifera-
tion between cancer and normal cells following gene KO. Hence, SEL =

nBNormalKO,pH −nBCancerKO,pH . The larger SEL the more selective is the gene KO.

2. pH-specificity score (PHS), which measures for a given cell (i.e., normal or
cancer) how effective is a gene KO at ‘low’ pH (pH = 6.7) compared with
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its effect at ‘physiological’ pH (pH = 7.3). Hence, PHS = nBKO,pH=7.3 −

nBKO,pH=6.7. The larger PHS the higher is the effect of the gene KO at
low-pH compared with its effect at the higher pH.

The ranking of genes by either SEL or PHS is highly robust within the gene
inhibition range WG = [0, 0.1], and is insensitive to the exact choice of ‘low’ pH
(Figure 50).

6.5 supporting information

6.5.1 Predicting pH-activity profiles of human metabolic enzymes

Background

Tight regulation of intracellular pH is a prominent principle of living systems. Such
regulation is needed for at least two reasons. First, because cells fundamentally trans-
duce energy through proton gradients and proton-coupled electron transfer reactions.
Second, because pH determines the charge state of weak acids and bases, affecting
physical and physiological properties of biomolecules such as proteins [221].

Proteins need to be stable at the characteristic pH of the subcellular environment in
which they operate. Protein pH-stability is mainly driven by amino-acid composition
and 3D disposition of titratable groups. In the recent years, several computational meth-
ods have been developed to predict the pH of optimal stability of proteins, requiring
e.g. the calculation of residue pKas in folded and unfolded states, or the proportion of
acid and basic residues in buried regions [222].

However, before stability, pH fluctuations may directly affect protein function. En-
zymes, for instance, have evolved to perform efficient chemical reactions involving
electron transfers and proton translocations. Accordingly, there is a trade-off between
reactivity and stability in the active site [223]. Besides fold denaturation, loss of enzy-
matic activity at aberrant pHs can be thus ascribed to protonation states of catalytic
residues, slight spatial modifications that hamper substrate or cofactor binding, or dif-
ferential protonation of the substrate itself. Unlike pH-stability calculations, no physics-
based method is yet able to integrate these factors and infer the one that limits activity,
which many times depends on subtle phenomena, and predicting pH-activity profiles
(i.e. the full curve that relates enzymatic activity to pH) is a formidable task. These
curves are usually bell-shaped around an optimal pH, although they can be also asym-
metrical and, occasionally, multiple optima can be observed.

Fortunately, for decades enzymes have been the matter of thorough biochemical study.
A key parameter in enzymology is the pH of the buffer solution, which needs to be
optimized in order to identify the appropriate conditions for the assay. As a result
of this process, pH-activity curves, or at least some critical points, are reported in
many scientific publications. The BRENDA database [brenda-enzymes.org] is devoted
to compiling this and other information from the literature. Nowadays, full or partial
information on the pH sensitivity of enzymes can be found for thousands of enzymatic
functions in thousands of organisms.

The corpus of pH-activity information available in BRENDA allows us to explore the
hypothesis that homologous enzymes will respond similarly to changes in pH. Ho-
mologous proteins are similar in sequence and fold, and many times catalyze analo-
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gous reactions. Therefore, it is reasonable to postulate that pH fluctuations will affect
homologs to a comparable extent, yielding similar pH-activity curves. In this study,
based on the experimental data available in BRENDA, we embraced this hypothesis
in the context of human metabolic enzymes. Concretely, we aimed at the prediction
of pH-activity profiles of enzymes contained in the Recon1 reconstruction of human
metabolism [29].

Experimental data

raw ph-activity data In order to compile an experimental dataset, we fetched
all ‘pH Optimum’ and ‘pH Range’ records from BRENDA (July 2014). These included
a total of 54, 462 entries, 34, 493 of them having comments edited by BRENDA curators.

curation of ph records In particular, ‘pH Range’ entries had comments on
the extent of activity loss. These were the ones that required, most often, manual cu-
ration. Percentages of activity loss are not specified in BRENDA and were extracted
from these comments. Whenever no percentage value was provided, we assigned a
50% activity loss to descriptions referring to ‘half activity’, ‘marked reduction’, or sim-
ilar, and 0% activity to cases like ‘complete loss of activity’ or ‘no activity’. Curation
of the optima was less laborious, although sometimes we found disagreement between
the comments themselves and the values presented by BRENDA. We disambiguated
such cases by taking the value reported in the description.

discretization of critical phs To delineate activity profiles that were suit-
able for machine learning, we defined six critical pH points, namely ‘A0’, ‘A50’, ‘A100’,
‘B100’, ‘B50’, and ‘B0’. These correspond to the acidic (A) and basic (B) limits of 0%,
50%, and 100% of activity. Accordingly, activity values below 25% were rounded to 0%,
and values between 25% and 75% were approximated to 50%. Activities above the 75%
were set to 100% if no optima were available. Regarding the 100%-activity points, when
a single optimum was reported —as it was most commonly the case—, we assigned
the same value to ‘A100’ and ‘B100’. Often, BRENDA contained several records per
enzyme; to minimize the impact of outliers, we calculated the median in these cases. If
more than one optimum were explicitly reported, we defined a broad peak limited by
the interquartile range.

In Figure 41 we present global statistics on the database. In total, we collected 23, 658
enzyme entries, corresponding to 4, 766 functions (4th EC level) in 4, 521 organisms.
Notably, 926 records corresponded to human enzymes, and 3, 902 to mammals. As it
can be seen in Figure 41A, for the vast majority of cases we had information on optimal
pHs, while half-activity points were less frequent, and complete loss of activity points
were rare. Figure 41B shows that these experimental values spanned a wide range of
pHs.

sequence annotation Additionally, we assigned sequences to as many BREN-
DA enzymes as possible. Often, BRENDA itself provided sequence annotations and, in
other cases, this information was extracted from UniProt if the BRENDA organism
could be mapped to NCBI taxonomy. We completed most of the remaining entries by
collecting proteomes at the species level from UniProt, and running ADIOS on these
proteomes to assign EC numbers [224]. Similarly, the remaining cases were obtained
by building HMM profiles across the full EC annotation in UniProt [225], and then
running HMMSearch with default parameters on the proteomes (please note that this
annotation procedure is analogous to that in BRENDA, where sequences are often
annotated based on BLAST results). As it can be seen in Figure 41C, we could as-
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Figure 41: Information extracted from BRENDA. (A) Number of enzymes for which ex-
perimental data were available from BRENDA, at each critical point (acidic
and basic limits of 0%, 50% and 100% of activity). For most enzymes, the
100%-activity points were available. (B) Distribution of optimal pHs (aver-
age between ‘A100’ and ‘B100’) across all enzymes. (C) Sources of sequence
annotation, being BRENDA annotation priority, followed by UniProt, then
ADIOS, and finally HMM search.

sign sequences to most enzymes, coming two thirds of them from BRENDA itself or
UniProt.

Proof of principle

homologous enzymes have similar ph values As explained before, we
work on the assumption that homologous proteins will yield similar pH-activity curves.
Before proceeding, we checked whether this is actually the case. As it can be seen in
Figure 42, enzymes performing the same function (same EC number) have similar pH
optima (‘A100’, ‘B100’) and their activities decay equally as we deviate from these op-
tima (‘A50’, ‘A0’, ‘B50’, ‘B0’). Note, also, that best precision could be achieved for 100%
activity points.

In the database, as expected, we observed a very strong correlation between function
and sequence homology: setting a homology threshold of E-value 1 × 10−4, we ob-
served a strong enrichment of homologous sequences among enzymes with the same
EC number (odds ratio of a right-tailed Fisher’s exact test of 995.3, P-value ∼ 0). Overall,
this suggests that sequence, function and pH profiles are tightly related.

predicted phs of optimal stability do not correlate with ex-
perimental activity optima An alternative approach to ours would be to
use pH-stability curves to estimate pH-activity profiles. Some authors suggested that
certain degree of correlation exists between the optima of stability and activity [223].
Following this notion, we used the well-established PROPKA tool (v3.1) to calculate
the pH-stability curves based on 3D structures. In Figure 43A, we show how these sta-
bility curves, based on pKa titration of ionizable residues, are difficult to match with
experimental optima of activity. In general, we could not find a clear correlation be-
tween calculated optimal stabilities and pHs of highest activity (Figure 43B). Moreover,
in our hands, stability curves were not useful to predict 50% and 0% critical points.

Database of pH-profiles

Given that, to date, no physics-based method is able to systematically predict pH-
activity curves, we decided to only capitalize on the observation that homologous se-
quences have, in general, similar pH-profiles. The method that we developed for this
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Figure 42: Standard deviation (SD) of critical pH values within the same EC number
(only ECs with at least three instances included). The red line denotes the
background SD, i.e. the global SD across all enzymes discarding EC infor-
mation.

Figure 43: Lack of correlation between predicted pH of optimal stability and activity.
(A) Stability curves of two human enzymes for which structures were avail-
able. Dotted lines denote the experimental optima reported in BRENDA. (B)
Calculated optima of stability vs optima of activity.

means is schemed in Figure 44. In brief, we filled the gaps of the experimental database
in order to have a more complete database of profiles (‘A0’, ‘A50’, ‘A100’, ‘B100’, ‘B50’,
‘B0’) that could be later queried. To this end, we predicted missing critical pH values
mainly based on other critical points, and knowledge on homologous enzymes. The
net result of this step was a database containing full pH-activity profiles that were a
mixture of experimental and predicted values (see details below).

imputation of critical ph values As evident in Figure 41, most often
we did not have all six critical pH values experimentally available for an enzyme. In
BRENDA, optimal (100% activity) pHs are usually reported, but 50% and 0% activities
are more rare. We developed a method to predict these missing points and ultimately
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Figure 44: Scheme of the pH-profiling method. (1) We impute the missing values in
the experimental database in order to obtain full activity profiles for each
enzyme. For this, we first build a preliminary matrix based sequence homol-
ogy. Then, we use this matrix to build linear regressors, whose predictions
are used to impute the experimental matrix and yield a fully filled database
of profiles. (2) To predict pH-activity profiles for a new enzyme, we search
this database using JackHMMER. (3) This querying procedure can be easily
performed on a large scale.

have full profiles for all enzymes in the database. The predictive models were built as
follows:

1. We filled a preliminary matrix containing values based on close homologs (rows:
enzymes; columns: critical pHs). For this, we previously constructed a network of
enzymes in BRENDA where two enzymes were connected if they had sequence
relatedness (computed with JackHMMER, with default parameters, E-value cut-
off 1 × 10−4). Then, to complete each row (i.e., each enzyme) we looked for
the closest homologs in the network with available experimental data (remov-
ing itself from the search), and calculated the weighted median. Here, weights
corresponded to the − logE-value.

2. The preliminary homology-based matrix above was used to avoid empty cells
in the training of linear regressors. That is, in order to have a final, refined fully
filled matrix, we built a simple linear model for each of the six critical pH points.
To predict, for instance, ‘A50’, we used ‘A0’, ‘A100’, ‘B100’, ‘B50’, and ‘B0’ as
variables from the preliminary matrix (1).

3. Finally, further fine tuning of the pH values (first or second decimals) may be
obtained by up-weighting columns such as ‘A100’ and ‘B100’, where experimen-
tal data were more abundant and therefore homology-based values more reli-
able. Concretely, we readjusted those predictions that had a homology-based
value within ±1 pH unit of the predicted one. In this readjustment, we simply
weighted by the proportion of experimental data in the column, from no influ-
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ence (no weight) of the homology-based value in absence of experimental data,
to the simple average with the predicted one in the hypothetic case of a fully
experimental column.

internal validation of the regressions We performed a 10-fold cross-
validation of each of the regressors, obtaining R-squared values of ∼ 0.6− 0.8, which
were slightly improved after the homology-based readjustment.

Querying the pH-profile database

Once the pH-profile database was completed, we screened our human enzymes of in-
terest against it (Figure 44). For this, we mapped genes in Recon1 to UniProt identifiers
using UniProt’s IdMapping tool. EC numbers were also extracted from UniProt. In
total, we could assign EC numbers to 1, 444 of the 1, 905 genes in Recon1. Using the
pH-profile database, we tried to infer the pH-profile of these enzymes.

functional matching The first step in the search was to look for records
having the same EC number than the query enzymes. Please note that, even when
we found the exact human record (which was the case for ∼ 500 enzymes), this doesn’t
mean that the full experimental profile was available. Rather, most of the times it meant
that the experimental optimum was available, but not the rest of critical points, which
were predicted in the imputation step.

homology-based weighting When several records from different species
were matched, and if sequences were available, we performed a JackHMMER search
in order to assign E-values of homology. Then, each critical point was calculated as
a weighted median; weights corresponding to the − logE-value (upper limit of 200).
Preference was given to enzymes with more abundant experimental data by exclu-
sively selecting them if they had a −logE-value above 100. After this procedure was
done, we had, for almost 1,500 enzymes in Recon1, the acidic and basic limits of none,
half, and full activity, i.e. their ‘A0’, ‘A50’, ‘A100’, ‘B100’, ‘B50’, and ‘B0’ critical pHs.

Validation

Before applying these pH-profiles to GSMM, we performed an extensive validation of
the method.

10-fold cross-validation We submitted the predictions on the Recon1 en-
zymes to a 10-fold cross-validation. In order to avoid over-fitting, we split training
and test sets from the very initial data, i.e. before the homology-based imputation. In
addition, since more than one gene in Recon1 could have the same EC number, we
removed all human records in the training set that had EC codes represented in the
test set. Results of the 10-fold cross-validation are shown in Figure 45.

removal of human enzymes In addition, we performed a stringent valida-
tion by removing all human enzymes from the initial dataset. Results are shown in
Figure 46.

removal of human enzymes and ec number information Finally,
a yet more stringent validation was done after, in addition to removing all human en-
zymes, EC information was excluded from the search. Here, in practice, all predictions
were based on the JackHMMER search, without functional (EC) supervision. Figure 47

shows that the method continues to perform well in this case.
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Figure 45: Predicted vs experimental critical pHs for the human dataset, after a 10-fold
cross-validation. The points correspond to the predictions on the test sets.
Pearson’s correlation coefficients (r) are embedded within the plots.

Figure 46: Similar to Figure 45, predicted vs experimental critical pHs, when all human
enzymes are removed from the training set.

6.5.2 Genome-scale metabolic modeling
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Figure 47: Similar to Figure 45 and Figure 46, predicted vs experimental critical pHs,
when all human enzymes are removed from the training set, and EC number
information is removed from the test set.

Figure 48: Robustness analysis performed on a single cancer-normal cell-lines pair. (A)
the effect of perturbing the enzymes’ pH-profiles by Gaussian noise (µ = 0,
σ = 0.1) on the cellular proliferation of a cancer cell (red) and healthy cell
(green) as function of pHi. Normalized biomass of 20 independent realiza-
tions of the Gaussian noise is shown in solid-thin curves. Solid-thick curves
depict the average profiles. (B) the effect of random (i.e., wrong) assignment
of pH-profile to enzymes. Differences between cancer (red) and healthy
(green) cells are lost, specifically at low-pHi. Solid-thin curves represent 20
independent realizations of random assignments. Solid-thick curves depict
the average behavior.
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Figure 49: Robustness analysis across the panel of cancer (red) and normal (green) cell-
lines examined in Figure 39 of main text, demonstrating that the behavior
of key metabolites, i.e. oxygen consumption rates (A), glucose consumption
rates (B), ATP production rates (C) and NADPH production rates (D) hold
for various choices of the constraint on the objection cellular function, i.e.,
larger than X% of the FVA biomass maximum (see Section 6.4). Shown are
the behaviors in the range X = [70% − 90%]. As depicted, this parameter
only scales the absolute values of metabolite consumption/production but
does not change the overall trends observed across the pHi and the evident
differences between cancer and normal cells.

Figure 50: Sensitivity of gene inhibition scores. Selectivity (A-C) and pH-specificity (D-
F) to choice of parameters in the genome-scale metabolic models of can-
cer and normal cells. The correlation between the score is shown for: (A,D)
different choices of the constraint on the minimal percentage of the FVA-
maximal biomass production [80% − 90%]. (B,E) different choices of the per-
centage of gene inhibition percentage [90% − 100%]. (C,F) the value of ‘low’
pHi chosen [6.7− 7]. ρ values are Pearson’s correlation coefficients.
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G E N E R A L D I S C U S S I O N

After all the high-throughput experiments conducted in the last years, perhaps
the main lesson to be learnt is that human diseases have an extraordinarily
complex molecular biology [1]. Together with this realization, it comes the ad-
mission that, in order to counteract disease complexity, sophisticated therapies
are necessary, beyond the classical magic bullet idea [36, 256]. The switch to-
wards more holistic therapies is insistently discussed in the literature, but the
truth is that systems pharmacology is only in its infancy, and little has been
achieved so far [226, 442]. To mature this field, it is key to bridge several levels
of biological complexity, i.e. to gain translational power and merge the very
detailed, abundant molecular data with the more sparse clinical outcomes.

The chemo-centric view of disease complements the more popular protein-centric view

A good source of clinical information are drug side effects, which can be viewed
as direct phenotypic readouts of drug action (Article 8). Using side effects as
de facto experimental measurements (Article 1), we performed a simple analy-
sis to detect proteins, pathways, processes, and functions that are over-targeted
among drugs causing the same adverse event. Doing this exercise for hundreds
of side effects, we found a strong biological signal that could be used to gain
mechanistic insights. In essence, our top-down study was analogous to routine
omics experiments, where differential genetic factors are sought. Accordingly,
while it was relatively easy to assign correlations between side effects and bio-
logical entities, these biological entities alone were poorly predictive of the clin-
ical outcome. The emerging picture is that independent correlations will have
to be combined with systemic knowledge in order to yield predictive models
of biology.

As a complement to the mainstay molecular biology approach, we also mined
chemical substructures that are over-represented in drugs causing a particular
side effect. This approach requires a considerable amount of small molecule
data, yet we found that, whenever applicable, it supplies remarkable predictive
power. In a more thorough analysis of the chemotype-phenotype correlation,
mainly expanded by environmental chemicals (Article 2), we confirmed that the
ever-increasing volume of publicly available chemical data enables the chemo-
centric view of health and disease. This view, while unaware of the underlying
molecular mechanisms, can bridge gaps in biological knowledge (especially for
predictive tasks) and uncovers relationships between diseases and treatments.
In this regard, the global chemo-centric map of disease and health showed a
striking coincidence with clinical data, and could accompany the more standard
disease maps that are being produced based on shared molecular biology [154,
4].

151



152 general discussion

Cell lines can be linked to biological networks to gain mechanistic insights and find
novel therapeutic targets

In the era of large-scale experiments, the natural successors of the classical
chemo-centric view are cell line screening panels. We did a retrospective anal-
ysis in the context of cancer therapy and observed that drugs approved for
certain tumor types do not necessarily perform well in the corresponding cell
lines (Article 3). Here again, it has been proposed that systems frameworks and
molecular profiles are crucial to get the most of out of phenotypic screening
[26]. Following this notion, we used genome-scale metabolic models as molec-
ular descriptions of the cancer cell lines. In general, these models correlate well
with phenotypic traits such as proliferation, and account for metabolic hall-
marks [33]. Doing an effort to bring reductionist cognizance into the models,
we developed a method to predict pH-activity profiles for every enzyme in the
metabolic network (Article 4). The method benefitted from classical enzymol-
ogy assays and sequence databases. Grouping the pH-activity profiles of all
of the enzymes, we could reproduce the response of cancer cell lines to intra-
cellular pH fluctuations. This exercise, which was continued to explore novel
therapeutic strategies, exemplifies that, in the ground of systems biology, atom-
istic knowledge can be related to phenotypes.

Large-scale structural analysis enables systems-level perturbations on biological net-
works

More generally, we reviewed the recent attempts to embed molecular details
into biological networks (Article 5). This is most relevant in the context of drug
discovery, since the drug is an entity that needs to be designed with atomistic
precision to exert, however, a systems-wide perturbation. In our opinion, this
apparent paradox can be solved through automated, large-scale structural anal-
ysis. It is now possible to structurally annotate large biological networks [124],
and it is in the agenda of drug design to profit more from the boom of struc-
tural data. In this regard, and to complement the conformational landscape of
proteins, we developed an automated protocol to predict functional conform-
ers solely based on the evolutionary history of the proteins and a structural
snapshot (Article 6). In drug development, acknowledgement of functional con-
formers is important to apprehend the molecular mechanism of action and
minimize the risk of attrition.

Particularly, it is key to mine putative binding sites across the conformational
landscape. Identifying them in important conformations, possibly in allosteric
regions, and in difficult areas like protein-protein interfaces is a timely topic
in structure-based drug design (Article 5). Today, systematic detection of struc-
tural cavities is feasible at large, and similar binding sites have been found
both between related and unrelated proteins. Binding site similarity explains
the promiscuity of many drugs [126], which is often undesired due to adverse
off-target reactions. Using systems biology tools, we have tried to turn this ap-
parent disadvantage into a virtue —a subset of the promiscuous cases seem to
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elicit compelling network perturbations (Article 7). Mining promising polyphar-
macology among the vast amount of possible multi-target combinations is a
major requirement to materialize the move towards complex therapies.

Future outlook

During this latter work on polypharmacology (Article 7), where we integrated
chemogenomics, sequence, structure, and network data, we understood that
no blueprint exists to push atomistic information into biological networks, and
that perturbations of these networks are difficult to translate to a phenotypic
response. With the remarkable exception of genome-scale metabolic models
[26], biological networks still lack a clear connection to phenotypes. It is fea-
sible to have broad descriptions of disease complexity (Article 10 and Article
11), and differential data like gene expression can be incorporated into the net-
works, but to truly enable systems pharmacology solid quantitative methods
are urged. Medicine is moving towards personalized treatments [443], molecu-
lar profiles are becoming cheaper, and new technologies don’t cease to appear.
More and more data will be produced, and systems pharmacology needs ro-
bust, validated protocols to undertake the challenge to digest them.





11
C O N C L U S I O N S

In this Thesis, we have performed several analyses at the intersection between
chemoinformatics and bioinformatics, with a focus on systems biology and
with the aim to address the translational problem of drug discovery. In a series
of articles, we have reached the following conclusions:

• Using drug side effects as phenotypic readouts of drug action, many cor-
relations between drug (off)targets and the eventual clinical outcome can
be learnt. However, this mechanistic information has limited predictive
power (Article 1).

• Chemical information, on the other hand, is much more difficult to extract,
but it provides considerable predictive power (Article 1 and Article 2).

• In general, a chemo-centric view of health and disease is today feasi-
ble with the available small molecule data. This view uncovers clinically-
relevant connections between diseases and therapies (Article 2).

• The modern realization of the chemo-centric approach to pharmacology
are cell-based assays. We observed that response in cancer cell lines is not
tissue-specific, suggesting that these panels need to be characterized with
biological profiles (Article 3).

• By using genome-scale metabolic models to pursue this characterization,
we could predict cell-line response to intracellular pH fluctuations. The
dependence on pH was incorporated into the metabolic models using
reductionist enzymology information and sequence data (Article 4).

• The results in the pH-sensitive metabolic models show that systems bi-
ology frameworks can be informed with detailed molecular data. This is
particularly important in drug discovery, where structural information on
protein targets is crucial to enable drug design (Article 5).

• To contribute to a richer characterization of the structural landscape, we
developed a protocol to predict alternative functional conformers of pro-
teins. This method greatly benefitted from sequence data to learn evolu-
tionary histories (Article 6).

• Within the available structural landscape, thousands of putative binding
cavities could be identified. Similar binding sites were found between
both related and unrelated proteins, enabling the polypharmacology idea
by means of network-based simulations (Article 7).
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S U P P L E M E N TA RY A RT I C L E S

a.1 recycling side effects into clinical markers for drug repo-
sitioning

article 8 Recycling side effects.

authors Miquel Duran-Frigola and Patrick Aloy.

journal Genome Medicine.

type Short comment.

stage Published.

citation Duran-Frigola et al. (2012) [160].

note This article is a short perspective comment, available at http://dx.doi.
org/10.1186/gm302.

abstract

Side-effects are the unintended consequence of therapeutic treatments, but they
can also be seen as valuable read-outs of drug effects in humans; these effects
are difficult to infer or predict from pre-clinical models. Indeed, some studies
suggest that drugs with similar side-effect profiles may also share therapeutic
properties through related mechanisms of action. A recent publication exploits
this concept to systematically investigate new indications for already marketed
drugs, and presents a strategy to get the most out of the tiny portion of chemi-
cals that have proved to be effective and safe.

a.2 intside : a web server for the chemical and biological ex-
amination of drug side effects

article 9 IntSide webserver.

authors Teresa Juan-Blanco, Miquel Duran-Frigola and Patrick Aloy.

journal Bioinformatics.

type Research article.
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stage Published.

citation Juan-Blanco et al. (2015) [444].

availablility IntSide is available at intside.irbbarcelona.org.

note This is a resource based on Article 1. The article is available at http:
//dx.doi.org/10.1093/bioinformatics/btu688.

abstract

Drug side effects are one of the main health threats worldwide, and an impor-
tant obstacle in drug development. Understanding how adverse reactions occur
requires knowledge on drug mechanisms at the molecular level. Despite recent
advances, the need for tools and methods that facilitate side effect anticipation
still remains. Here, we present IntSide, a web server that integrates chemical
and biological information to elucidate the molecular mechanisms underlying
drug side effects. IntSide currently catalogs 1, 175 side effects caused by 996
drugs, associated with drug features divided into eight categories, belonging to
either biology or chemistry. On the biological side, IntSide reports drug targets
and off-targets, pathways, molecular functions and biological processes. From
a chemical viewpoint, it includes molecular fingerprints, scaffolds and chemi-
cal entities. Finally, we also integrate additional biological data, such as protein
interactions and disease-related genes, to facilitate mechanistic interpretations.

a.3 charting the molecular links between driver and suscep-
tibility genes in colorectal cancer

article 10 Colorectal cancer intractome.

authors Rodrigo Arroyo, Miquel Duran-Frigola, Clara Berenguer, Montse
Soler-López and Patrick Aloy.

journal Biochemical and Biophysical Research Communications.

type Research article.

stage Published.

citation Arroyo et al. (2014) [445].

note The article and the supplementary information are available at http:
//dx.doi.org/10.1016/j.bbrc.2013.12.012.

intside.irbbarcelona.org
http://dx.doi.org/10.1093/bioinformatics/btu688
http://dx.doi.org/10.1093/bioinformatics/btu688
http://dx.doi.org/10.1016/j.bbrc.2013.12.012
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abstract

Despite significant advances in the identification of specific genes and path-
ways important in the onset and progression of colorectal cancer (CRC), mech-
anistic insight into the relationship between driver and susceptibility genes is
needed. In this paper, we systematically explore physical interactions between
causative and putative CRC susceptibility genes to reveal the molecular mech-
anisms involved in tumor biology. In total, we identify 622 high-confidence
protein-protein interactions between 42 CRC causative and 65 candidate sus-
ceptibility genes. Among the latter, 28 are located in the CRCS9 loci, related
to the etiology of CRC, and 17 are co-expressed with well-established CRC
drivers, which makes them excellent candidates for further functional studies.
Moreover, we find a high degree of functional coherence between connected
driver and susceptibility genes, which indicates that our network-based strat-
egy is useful to gain insight into the underlying mechanisms of those proteins
with unknown roles in CRC.

a.4 systematic identification of molecular links between core

and candidate genes in breast cancer

article 11 Breast cancer interactome.

authors Rodrigo Arroyo, Guillermo Suñé, Andreas Zanzoni, Miquel Duran-
Frigola, Víctor Alcalde, Travis H. Stracker, Montse Soler-López and Patrick
Aloy.

journal Journal of Molecular Biology.

type Research article.

stage Published.

citation Arroyo et al. (2015) [446].

note The article and the supplementary information are available at http:
//dx.doi.org/10.1016/j.jmb.2015.01.014.

abstract

Despite the remarkable progress achieved in the identification of specific genes
involved in breast cancer (BC), our understanding of their complex function-
ing is still limited. In this manuscript, we systematically explore the existence
of direct physical interactions between the products of BC core and associated
genes. Our aim is to generate a protein interaction network of BC-associated
gene products and suggest potential molecular mechanisms to unveil their role

http://dx.doi.org/10.1016/j.jmb.2015.01.014
http://dx.doi.org/10.1016/j.jmb.2015.01.014
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in the disease. In total, we report 599 novel high-confidence interactions among
44 BC core, 54 BC candidate/associated and 96 newly identified proteins. Our
findings indicate that this network-based approach is indeed a robust infer-
ence tool to pinpoint new potential players and gain insight into the underly-
ing mechanisms of those proteins with previously unknown roles in BC. To
illustrate the power of our approach, we provide initial validation of two BC-
associated proteins on the alteration of DNA damage response as a result of
specific re-wiring interactions. Overall, our BC-related network may serve as
a framework to integrate clinical and molecular data and foster novel global
therapeutic strategies.

a.5 isolation of human colon stem cells using surface expres-
sion of protein tyrosine kinase receptor 7 (ptk7)

article 12 Isolation of human colon stem cells.

authors Peter Jung, Christian Sommer, Francisco Barriga, Miquel Duran-
Frigola, Patrick Aloy, Matthias Selbach, Doug Winton and Eduard Batlle.

stage Submitted.

our contribution We did an enrichment analysis of membrane proteins.
This article is outside the focus of the Thesis.

abstract

Long-term growth and multi-lineage differentiation in the intestinal tract is
sustained by a population of actively dividing stem cells. Here we identify
Protein Kinase 7 (PTK7) as a highly specific marker for human colonic stem
cells (hCoSCs). PTK7 surface abundance readily enables purification of hCoSCs
from organoid cultures and patient-derived mucosa samples. PTK7+ hCoSCs
display combined features of the Lgr5+ Intestinal Stem Cells and crypt Label
Retaining Cells (LRCs).

a.6 systems-wide prediction of gene promiscuity reveals a new

underground alternative route for pyridoxal 5’-phosphate

production in e . coli

article 13 Systems-wide prediction of gene promiscuity.

authors Matthew A. Oberhardt, Raphy Zarecki, Leah Reshef, Miquel Duran-
Frigola, Rachel Schreiber, Cristopher S. Henry, Nir Ben-Tal, Daniel J. Dwyer, Uri
Gophna, Eytan Ruppin.
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stage Submitted.

our contribution We did an structural analysis to characterize a promis-
cuous enzymatic function. This article is outside the focus of the Thesis.

abstract

Recent insights suggest that non-specific and/or promiscuous enzymes are
common and active across life. Understanding the role of such enzymes is an
important open question in biology. Here we develop a genome-wide method,
PROPER, that uses a permissive PSI-BLAST approach to predict promiscuous
activities of metabolic genes. Gene promiscuity is typically studied experimen-
tally using multicopy suppression, in which over-expression of a promiscuous
’replacer’ gene rescues lethality caused by inactivation of a ’target’ gene. We use
PROPER to predict multicopy suppression in Escherichia coli, achieving highly
significant overlap with published cases (hypergeometric P = 4.4× 10−13). We
then validate three novel predicted target-replacer gene pairs in new multi-
copy expression experiments. An analysis of overexpression lethality and co-
evolution trends in predicted target-replacer pairs suggests that promiscuity
plays a functional backup role in cells. We next go beyond PROPER and de-
velop a network-based approach, GEM-PROPER, that integrates PROPER with
genome-scale metabolic modeling to predict promiscuous replacements via al-
ternative metabolic pathways. GEM-PROPER predicts a new indirect replacer
(thiG) for an essential enzyme (pdxB) in production of pyridoxal 5’-phosphate
(the active form of Vitamin B6), which we validate experimentally via multicopy
suppression. We perform a structural analysis of thiG to determine its potential
promiscuous active site, which we validate experimentally by inactivating the
pertaining residues and showing a loss of replacer activity. Thus, this study is
a successful example where a computational investigation leads to a network-
based identification of an indirect promiscuous replacement of a key metabolic
enzyme, which would have been extremely difficult to identify directly.
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