
Probabilistically Time-Analyzable
Complex Processor Designs

Mladen Slijepcevic

Computer Architecture Department

Universitat Politècnica de Catalunya

A thesis submitted for the degree of

PhD in Computer Architecture

September, 2017

mailto:mladen.slijepcevic@bsc.es
http://www.ac.upc.edu/
http://www.upc.edu

2

Probabilistically Time-Analyzable
Complex Processor Designs

Mladen Slijepcevic

September 2017

Universitat Politècnica de Catalunya

Computer Architecture Department

Thesis submitted for the degree of
Doctor of Philosophy in Computer Architecture

Advisor: Francisco J. Cazorla, PhD, Universitat Politècnica de Catalunya
Co-advisors: Jaume Abella, PhD, Barcelona Supercomputing Center

Carles Hernández, PhD, Barcelona Supercomputing Center

i

Acknowledgements

I would like to express my deepest gratitude to my advisors, Francisco
J. Cazorla, Jaume Abella and Carles Hernandez for their support, pa-
tience, help and time. I would like to thank to all members of the CAOS
group at BSC for their help, Friday meetings and the discussions in the
office we had. Specially the ones who were developing SoCLiB simula-
tor at the same time as me. Working on the PROXIMA project was a
very good experience for me, and I would like to thank to all members
of the PROXIMA project for their collaboration. I would also like to
thank Jan Andersson from Cobham Gaisler for hosting me during the
5-months Internship and for taking part in industrial project, as well
as to all members of Cobham Gaisler hardware team.

On the personal side, I would like to thank to all my friends, ex/current
PhD students and Serbian community in Barcelona, with whom life
during my PhD studies was more enjoyable. This work and life in
Barcelona would be impossible without the support and love of my
parents and my sister.

This thesis has been financially supported by Obra Social Fundación
la Caixa under the grant Doctorado “la Caixa” - Severo Ochoa, with-
out which this PhD thesis and my life would be much different. This
thesis has also received funding from the European Community’s Sev-
enth Framework Programme [FP7/2007-2013] under the PROARTIS
project (grant agreement 249100) and the PROXIMA project (grant
agreement 611085), as well as the Spanish Ministry of Science and In-
novation (grant TIN2012-34557 and TIN2015-65316-P). Collaboration
at Cobham Gaisler was funded by HiPEAC.

Abstract

Industry developing Critical Real-Time Embedded Systems (CRTES),
such as Aerospace, Space, Automotive and Railways, faces relentless
demands for increased guaranteed processor performance to support
new advanced functionalities without increasing the verification costs
and the limited power budget. To cope with those needs, more com-
plex processor designs are required. Unfortunately, CRTES have to go
through a thorough functional and timing verification process. Func-
tional correctness verification has to ensure that despite the presence
of faults system’s safety will not be compromised while timing verifi-
cation focus on determining the worst-case execution time (WCET) of
programs running in the processor. In CRTES it is of great importance
deriving trustworthy and tight WCET estimates.

Current generation CRTES based on relatively simple single-core pro-
cessors are already extremely difficult to verify and with the advent of
multicore and manycore platforms this problem will be exacerbated.
Multicore contention in the access to shared hardware resources cre-
ates a dependence of the execution time of a task with the rest of the
tasks running simultaneously and this makes problem of deriving safe
WCET estimate worse. Therefore, timing analysis techniques need to
include a lot of pessimism when using the advanced hardware features.
Probabilistic Timing Analysis (PTA) has emerged recently as a pow-
erful method to derive WCET estimates for critical tasks on relatively
complex processors.

In this thesis we propose PTA-compliant hardware solutions to enable
the use of more powerful and complex multicore and manycore proces-
sor architectures in future CRTES. Hardware solutions include arbitra-
tion policies and techniques to manage shared hardware resources (i.e.
shared interconnection network and L2 cache), as well as approaches
to obtain trustworthy WCET estimates on top of degraded hardware.
PTA implemented on top of the proposed time-randomized designs
allows modeling the timing behaviour of applications running in the
processor in a probabilistical manner and therefore, WCET bounds
can be made tighter.

Contents

1 Introduction 1
1.1 Critical Real-Time Embedded Systems 1
1.2 Advanced hardware features and

Timing Analysis techniques . 4
1.2.1 Multicores . 7

1.3 Contributions . 8
1.4 Thesis Structure . 10
1.5 Publications . 11

2 Background 12
2.1 Timing Analysis Techniques . 12

2.1.1 Deterministic techniques . 13
2.1.2 Probabilistic techniques . 13

2.2 High-Performance CRTES Hardware Platforms 17
2.2.1 Cache memory . 18
2.2.2 Interconnection Networks 20
2.2.3 Reliability . 23

3 Methodology 25
3.1 Simulators . 25
3.2 General architecture . 26
3.3 Benchmarks . 28
3.4 MBPTA process . 29

4 Tree-based PTA-compliant NoCs 31
4.1 Introduction . 31
4.2 Reference Multicore . 32
4.3 Single-Criticality pTNoC . 33

4.3.1 Factoring in NoC contention 34
4.4 Mixed-Criticality pTNoC . 35

4.4.1 Heterogeneous Bandwidth Assignments 36

vi

CONTENTS

4.4.2 Implementation Remarks . 38
4.5 Evaluation . 38

4.5.1 Homogeneous bandwidth setups 39
4.5.2 Heterogeneous bandwidth setups 40
4.5.3 Implementation and Energy Results 45

4.6 Comparison of tree-based manycore architectures 47
4.6.1 Time-Deterministic platform 48
4.6.2 Time-Randomized platform 49
4.6.3 Evaluation . 50

4.7 Conclusions . 54

5 PTA-compliant mesh NoC 55
5.1 Introduction . 55
5.2 Problem Formulation . 57

5.2.1 Network Baseline . 57
5.2.2 Contention in the wNoC . 59

5.3 Probabilistic wNoC Designs . 61
5.3.1 MBPTA-compliant wNoC Router Design 62
5.3.2 Reducing Contention in Probabilistic wNoCs 63

5.4 Evaluation . 65
5.4.1 Methodology . 65
5.4.2 Characterizing wNoCs Performance 66
5.4.3 Performance Evaluation . 68

5.5 Related work . 70
5.6 Conclusions . 73

6 Credit-Based Arbitration 75
6.1 Introduction . 75
6.2 Background . 76
6.3 Credit-Based Arbitration . 77

6.3.1 Motivation: An Example . 78
6.3.2 CBA Design . 78
6.3.3 Arbitration Choices . 79
6.3.4 WCET Estimation . 81
6.3.5 Implementation . 81

6.4 Evaluation . 83
6.4.1 Experimental Framework . 83
6.4.2 Results . 84

6.5 Related Work . 88
6.6 Conclusions . 89

vii

CONTENTS

7 Eviction Frequency Limiting (EFL) for Shared Caches 90
7.1 Introduction . 90
7.2 Background on Controlling Cache

Inter-task Interferences . 92
7.3 Probabilistically Controlling

Eviction Frequency in a TR LLC 93
7.3.1 Inter-task Interferences in a TD LLC 93
7.3.2 TR caches . 95
7.3.3 Inter-task interferences in a TR LLC 96

7.4 Probabilistically upper-bounding inter-task interference features in
a TR LLC . 97
7.4.1 Hardware support . 99

7.5 Evaluation . 100
7.5.1 Experimental Setup . 100
7.5.2 Experimental Results . 101

7.6 Conclusions . 107

8 Reliability issues 109
8.1 Introduction . 109
8.2 Background . 111
8.3 Target Processor Architecture

and Fault Model . 113
8.3.1 Hardware Designs for MBPTA and Caches 113
8.3.2 Permanent Fault Model . 114
8.3.3 Upper-bounding the Number of Faulty Cache Lines 115

8.4 Making Timing Analysis Aware of Hardware Faults 117
8.4.1 Deterministic Hardware . 117
8.4.2 Probabilistic (Time-Randomised) Hardware 118
8.4.3 DTM: Applying MBPTA on Top of Faulty Hardware 119

8.5 Evaluation . 120
8.5.1 Evaluation Framework . 120
8.5.2 Worst-Case Execution Time 121
8.5.3 Average Performance . 125

8.6 Fault-Aware WCET Estimation: Expanding DTM 127
8.6.1 Bounding Timing Effects of DCDR 128
8.6.2 DCDR effect on WCET estimates 129
8.6.3 Degraded Operation due to Permanent Faults 131
8.6.4 Hardware Requirements . 131
8.6.5 Other Hardware Resources 132

8.7 Evaluation . 132
8.8 Related Work . 134

viii

CONTENTS

8.9 Conclusions . 136

9 Conclusion and Future Work 137
9.1 Thesis conclusions . 137
9.2 Future work . 138

References 152

Glossary 153

ix

List of Figures

1.1 Critical Embedded Real-time systems 2
1.2 Size of code in different real-time domains 3
1.3 Execution time distributions. Taken from [Cazorla et al. (2013)] . . 6

2.1 Example of the pWCET . 15
2.2 Types of upper-bounding . 17
2.3 Example of the mesh NoC . 23

3.1 Schematic of the processor architecture. 27

4.1 Nc-to-1 binary tree NoC for an 8-core setup 33
4.2 Heterogeneous guarantees in a tree NoC for an 8-core setup. 36
4.3 Example of an arbiter implementing inter- and intra-layer priorities. 37
4.4 pWCET estimates for the 16-core bus and tree-based multicores

normalized w.r.t. bus-RR. 39
4.5 Request delay in a tree for an 8-core setup. 39
4.6 WCET estimates for the tree-based 8-core normalized w.r.t. non-

priority RP case. Values on top of the columns show the guaranteed
bandwidth in each case. 41

4.7 16-core Mixed criticality setup . 42
4.8 Request delay for a 16-core tree . 42
4.9 pWCET estimates for the 16-core setup for different arbitration

policies normalized w.r.t. non-priority RP case. 43
4.10 Histogram of delay for requests for different heterogeneous groups . 45
4.11 pWCET estimates of EEMBC normalised w.r.t. homogeneous band-

width and unlimited buffer size in the arbiters. 46
4.12 Average execution times for 16 cores for different arbitration policies. 46
4.13 pWCET for RAN16 normalised w.r.t. DET16. 51
4.14 pWCET for RAN8 normalised w.r.t. DET8. 52
4.15 pWCET for RAN4 normalised w.r.t. DET4. 53
4.16 pWCET for different 16core setups normalised to RAN16 setup. . . 53

x

LIST OF FIGURES

5.1 Router stages. 58
5.2 3x3 Mesh. 60
5.3 Arbiter. 63
5.4 Contention in 3x3 and 4x4 wNoC setups with LNR and LFR. . . . 66
5.5 LNR pWCET estimates normalised w.r.t. a deterministic wNoC

(Ln means up to n requests in-flight allowed). 68
5.6 LFR pWCET estimates w.r.t a deterministic wNoC. 70
5.7 LNR and LFR for 6x6 mesh normalized w.r.t. a deterministic wNoC. 71
5.8 LNR and LFR performance comparison 72

6.1 Chronogram showing requests arbitrated with and without CBA. . 77
6.2 Slowdown with and without CBA for different synthetic examples. . 85
6.3 Slowdown with and without CBA for EEMBC on the FPGA mul-

ticore. ISO stands for isolation and CON for maximum contention. 86
6.4 Slowdown without CBA for the Railway application. 87
6.5 Slowdown with and without CBA for the Railway application. . . . 88

7.1 LLC state after the sequence of access (6 accesses of core A and 3 ac-
cesses of core X). Dotted lines represent a miss after the correspond-
ing access due to inter-task interferences. Grey boxes represent an
access hit. 94

7.2 Operation mode for each core at analysis and operation time. The
task under analysis is run in core 0 (C0) at analysis time. 98

7.3 Block Diagram of the Access Control Unit 100
7.4 probability tree for the two instruction sequence 103
7.5 pWCET of each setup normalised to CP2 105
7.6 Workload guaranteed IPC (wgIPC) and average IPC (waIPC) im-

provement of EFL over CP . 107

8.1 FIT rates of modern semiconductor technologies used for embedded
microprocessors (65nm, 90nm, 130nm and 180nm) over the chip’s
lifetime. The X and Y axes show equivalent hours of operation and
FIT rates respectively in logarithmic scale (source: Jet Propulsion
Laboratory, NASA [Guertin & White (2010)]). 113

8.2 Algorithm to obtain the number of faulty entries to consider for
each cache. 116

xi

LIST OF FIGURES

8.3 Inverse cumulative distribution function (ICDF) of pWCET curves
and actual observations for canrdr benchmark under a fully-associative
random-replacement cache. At the 1015 probability cutoff point,
from left to right, cache configurations cross in the following or-
der: p(bit)f = 10−8, p(bit)f = 10−7, p(bit)f = 10−6, fault-free,
p(bit)f = 10−5, p(bit)f = 10−4. 123

8.4 Inverse cumulative distribution function (ICDF) of pWCET curves
and actual observations for a2time benchmark under different place-
ment functions . 125

8.5 Normalised execution time for fully-associative caches with different
replacement functions, with respect to a 128-line cache. 126

8.6 Normalised execution time of random-replacement caches with re-
spect to LRU ones. 127

8.7 (a) Maximum number of faulty lines expected for a target yield of 1

faulty part per million (ppm); (b) pWCET increase with respect to the

fault-free case. 133

xii

Chapter 1

Introduction

1.1 Critical Real-Time Embedded Systems

Embedded systems are dedicated computing systems specially designed and used
embedded within a larger system (typically mechanical or electronic). They are
used in a large variety of domains such as bio-medicine, telecommunication, mobile,
control systems. Since they are embedded, they have to satisfy limiting constraints
such as size, weight, cost and power ones.

Real-time systems are a special type of embedded systems in which timing be-
haviour is as important as functional behaviour. They are deployed in cars, planes,
trains, and unlike the conventional embedded systems, the software running in
those systems demands for completing execution within specific time budgets. We
can divide them according to their criticality. Criticality is the term correlated
with the consequence of what would happen if the system fails and the notion
of criticality is different in every domain and defined in different standards. For
example, avionics DO-178B/C [RTCA and EUROCAE (2011)] standard defines
5 safety levels, from DAL-A to DAL-E, and each level imposes different certifica-
tion steps. Missing a DAL-A safety goal would have catastrophic consequences,
and may potentially cause a crash of the airplane. Missing a DAL-B one has
a hazardous impact: it has a large negative impact on safety or performance.
Conversely, missing DAL-E has no impact on safety, aircraft operation, or crew
workload.

While in the past Critical Real-Time Embedded Systems (CRTES) followed a
Federated Architecture approach [Obermaisser et al. (2009)], recently they have
shifted to the Integrated Architecture paradigm. The former uses different hard-
ware units for different functions and in that way physical separation allows timing
and functional isolation. The latter, using a modular approach in which multiple
functions are assigned to a single hardware unit, brings benefits in terms of reduced

1

1.1 Critical Real-Time Embedded Systems

Figure 1.1: Critical Embedded Real-time systems

size, power and cost but also brings other issues such as more complex verification
and certification1 of the system.

Mixed criticality systems are a special type of CRTES (see Figure 1.1) first
introduced in [Vestal (2007)]. They integrate tasks with different criticalities (from
most Critical CR1 to least critical CRN) on the same platform. A large software
system typically consists of many software sub-systems executing concurrently and
potentially cooperatively, but somehow independently from each other so that
a failure in one sub-system must not negatively impact another. In particular,
lower criticality systems must not negatively impact a higher criticality system.
Enforcing this independence across systems in different criticality levels makes
certification become more challenging.

Real-time industry has been growing across all markets [Clarke (2011)] and
some sources suggest that this trend will continue in the future. CRTES are used
not only to improve efficiency, performance, comfort and entertainment, but also to
control safety-related functions in various market segments. Even though current
systems use relatively simple hardware, every new generation deploys increasingly
complex software as well as additional functionalities, which creates demand for
more computational power. Safety-critical functions are, in many cases, complex
thus requiring high computational power. Figure 1.2 shows the increasing code
size in systems across avionics and space industries as a proxy of their increasing
complexity. Particular examples for these and other domains are as follows:

1By term verification we mean the process of determining whether a system or component
satisfies the conditions imposed at the start of the design phase. By term certification we mean
that there is a written guarantee that a system or component is compliant with the specific
(safety) standards and is acceptable for operational use.

2

1.1 Critical Real-Time Embedded Systems

(a) Space domain [D. Siewiorek (2006)] (b) Avionics code [Edelin (2009)]

Figure 1.2: Size of code in different real-time domains

• Automotive. Electronics in automobiles provide an increasing amount of
complex functionality, with features such as brake assist, active lane keeping,
adaptive cruise control, etc. As a consequence of all those functionalities, a
premium vehicle nowadays has more than 100 Million lines of code [J. Owens
(2015)]. Also, some of the already existing safety-critical systems demand
more computational power. For instance, in the early 90s the software for
an ABS system required an ECU at 16MHz and only 128KB of memory. By
2004, it required an ECU at 250MHz (a 15X increase) and around 1MB of
memory (an 8X increase) according to ARM data [Vittorelli (2004)].

• Space. Modern spacecraft have dedicated platform systems such as power
management, communication, guidance and navigation, and payload sys-
tems, which in turn comprise systems such as infrared detectors, cryogenic
systems, telescopes, etc. Space missions are becoming more autonomous and
future applications will demand increased performance to provide computation-
intensive on-board software [D. Siewiorek (2006)]. This is in-line with the
current trend shown in Figure 1.2a.

• Avionics. A modern aircraft requires millions of lines of code just for its on-
board control functions, such as guidance, navigation, anti-collision systems
and other control algorithms as shown in Figure 1.2b.

Based on those trends, we can see that future CRTES will require more pro-
cessing power and more complex hardware to accommodate the performance needs
of the different applications that will use it. However, existing high-performance
processors are known for their good average performance, but they pose a number

3

1.2 Advanced hardware features and
Timing Analysis techniques

of difficulties to quantify their guaranteed performance, i.e. the maximum perfor-
mance that can be guaranteed for a given application by the appropriate timing
analysis technique.

1.2 Advanced hardware features and

Timing Analysis techniques

In CRTES it is of great importance deriving trustworthy and tight Worst-Case
Execution Time (WCET) estimates. WCET is important for verification and it is
used for schedulability tests. For the schedulability, two properties of the WCET
are desirable - timing isolation and composability. Timing isolation means that
applications do not affect each other and timing composability means that the
their WCET does not depend on the co-runners, so that the rest of the system
does not have to be reanalyzed if we replace/modify one of the tasks in the system.
These properties are critical for incremental verification of the system. However,
those properties often lead to accounting for many pathological cases in high-
performance hardware, which produces huge pessimism in terms of high WCET
estimates. Timing analysis methods have difficulties to prove that certain high ex-
ecution times cannot occur and, therefore, those scenarios need to be accounted for
when estimating the WCET. In practice, those scenarios may not happen at all or
may not happen simultaneously, so that the real WCET is far below the estimated
one. Therefore, the complexity of the hardware platform, which delivers high av-
erage performance, is addressed with massive time over-provisioning. Hence, the
only way to attain trustworthiness – the fact that the WCET estimate is above
the real WCET – is achieved at the expense of renouncing to tightness, which is a
resource waste and may even lead to scenarios where performance guarantees are
insufficient (e.g. the braking system is guaranteed to brake in 2 seconds).

With increasingly complex CRTES, there are significant variations in execu-
tion time, and those variations are caused by the characteristics of the software in
combination with the hardware platform on top of which software runs. Obtaining
reliable (and as tight as possible) WCET estimates requires deep understanding
of which of the low-level software and hardware features affect execution time,
and how. On the software side, we can get different execution times depending
on the input sets used, which would trigger different execution paths and loop
boundaries, as well as the code and data memory layout. On the hardware side,
features intended to increase average performance and throughput based on exe-
cution history and resource sharing, such as cache memories, branch prediction,
speculation, multicores, potentially produce execution time variation.

There are many timing analysis techniques for estimating the WCET of tasks,

4

1.2 Advanced hardware features and
Timing Analysis techniques

including static and measurement-based ones (and hybrid combinations thereof)
[Wilhelm et al. (2008)]. We can classify them into two different paradigms: De-
terministic Timing Analysis (DTA) and Probabilistic Timing Analysis (PTA).

Deterministic timing analysis techniques provide a single WCET estimate, and
they are used on conventional (deterministic) hardware platforms. As mentioned
before, they can be broadly classified in two complementary strands [Wilhelm et al.
(2008)]: static timing analysis and measurement-based timing analysis. Static
timing analysis builds upon the task code and an abstract model of the hardware.
It needs to know all the details about the hardware and software and search for all
possible states of the execution time. In the absence of that detailed knowledge,
it needs to make pessimistic assumptions. These techniques find difficulties when
hardware designs have complex features, whose timing behaviour depends on the
execution history of the previous instructions in non-obvious ways, such as cache
memories (e.g. a second level, L2, cache shared for code and data).

Measurement-based timing analysis estimates the WCET based on measure-
ments obtained on the real hardware for some set of program inputs. On the
highest-observed execution time (so called high-watermark) an engineering margin
is added based on the experience of skilled users. This approach has worked well on
simple hardware and has been successfully used in industry for many years. How-
ever, this approach has obvious limitations: one of the problems is the confidence
that the user can have on whether the input data used to collect measurements
triggers the WCET of the program on that hardware or it is reasonably close to
it. Increasing input data coverage would increase the confidence, but covering all
the input data range is impossible in practice. More advanced hardware features
such as cache memories and multicores are also threats for the scalability of this
approach due to the overwhelming difficulties to control the memory placement of
data and code, and to control (at cycle level) how co-running tasks could interact
in shared resources [Abella et al. (2015)]. Therefore, engineers face the complex
challenge of having to size a reliable and tight engineering margin, which is a com-
promise between pessimistic overkill and the risk of underestimation. In general,
there is not scientific evidence about the exact value to use.

Limitations of the deterministic timing analysis motivated some authors to
propose a new timing analysis paradigm, called Probabilistic Timing Analysis
(PTA) [Cazorla et al. (2013),Cucu-Grosjean et al. (2012)]. PTA provides WCET
estimates in the form of distribution functions with an exceedance probability for
each execution time value. Those probabilities can be chosen arbitrary low, based
on the safety standards in the application domain (e.g. DO178B [RTCA and EU-
ROCAE (2011)] for avionics) so that they are lower than the acceptable probability
of failure in certified systems. PTA has also two variants, static and measurement-
based one. In this thesis we focus on measurement-based probabilistic timing anal-

5

1.2 Advanced hardware features and
Timing Analysis techniques

Figure 1.3: Execution time distributions. Taken from [Cazorla et al. (2013)]

ysis (MBPTA) since it is closer to industrial practice. MBPTA considers execution
time measurements from observing end-to-end run of the program. Extreme Value
Theory (EVT) uses those measurements as input [Cucu-Grosjean et al. (2012),Kotz
& Nadarajah (2000)] to estimate the probabilistic WCET (pWCET), aka as ex-
ceedance function. The use of EVT requires that the observed end-to-end runs
of the program are described with independent and identically distributed (i.i.d.)
random variables, which can be obtained on time-randomized platforms, either
by software or hardware means. The advantage of these platforms together with
MBPTA is that they relieve the end user from having to control many low-level
details to guarantee that WCET estimates obtained during the analysis phase are
representative of the behaviour during operation. In Section 2.1 we provide more
details on the Timing Analysis techniques and their requirements on the platform.

Figure 1.3 illustrates the relation between execution time profiles and WCET
on probabilistic and deterministic architectures. In general, in time-randomized
architectures execution time is shifted to the right (higher values) as indicated in
the figure with mark (a). Usually execution times spread across a larger range and
the distribution is smoother, with a long tail describing execution times which are
less likely to happen.

In deterministic systems, execution times can have discontinuities due to the
dependencies across events. Sometimes those dependencies can produce abrupt
discontinuities in the execution time distribution. The “true WCET” lies some-
where above the maximum observed execution time obtained with measurement-
based DTA. The difference between the maximum observed value and the true
WCET is marked with the range (b) in Figure 1.3. When setting the WCET esti-
mate, different scenarios can occur with static and measurement-based DTA. As
explained before, the result of static analysis needs to account for some pessimism
due to the (abundant) unknown information. Thus, the estimated WCET will be
typically (far) above the true WCET. In the case of measurement-based DTA, the

6

1.2 Advanced hardware features and
Timing Analysis techniques

WCET estimate is somewhere above the maximum observed execution time, but
its location cannot be guaranteed to be above the true WCET.

PTA defines worst-case bounds with stated confidence levels, which can be
chosen to match the degree of uncertainty present in the rest of the system being
analyzed. The absolute maximum execution time produced by PTA on a time-
randomized platform is many times greater than the WCET for DTA on a time-
deterministic platform (see rightmost mark with accumulated probability 1), as it
will correspond with the case where all instructions take the longest possible time
to execute. However, since we are considering the execution time at which the
cumulative probability exceeds the required level of confidence, this will allow a
tighter WCET bound to be considered (c).

1.2.1 Multicores

The transition to multicore processors must enable higher level of guaranteed per-
formance, together with reduction in energy, design complexity and procurement
costs. However, the architecture of multicore processors poses several challenges on
timing analysis. In multicores, sharing resources is necessary for efficiency reasons.
However, the interference effects arising from the contention, arbitration and state
perturbation of some resources requires much higher margins to be accounted for
in the WCET analysis. Typical shared resources are the interconnection network,
higher levels of cache memory and memory controllers.

Interference has been regarded as a key challenge [Cazorla et al. (2012)]. The
purpose is deriving time-composable WCET estimates, aka WCET estimates that
remain valid regardless of what tasks run in the other cores. From the timing
perspective, the challenge with (mixed-criticality) real-time systems is in the need
for solutions which can ensure temporal isolation between programs assigned to
different criticality levels, so that their behaviour can be composable in the time
dimension. If there is an absence of effective ways to deal with the pessimism of
WCET analysis, then one may have to rethink the idea of combining more software
on one system, which plays against resource efficiency.

The challenge of contention has been addressed from two different angles: (1)
WCET analysis-centric and (2) architecture-centric. The objective of accounting
for contention from a WCET analysis-centric approach is estimating how con-
tention affects the timing behaviour of the task under analysis and derive stall
times in the different resources against specific contenders. In general, this ap-
proach renders tight but fragile WCET bounds, since any variation in the timing
behaviour of contenders changes stalls in arbitrary ways and defeats the whole
analysis. Architecture-centric approaches, instead, focus on devising processor
features and arbitration policies that help achieving time-composable behaviour
that allows accounting easily and tightly for contention.

7

1.3 Contributions

With the increasing number of cores on the chip, power dissipation on the
chip is increasing, so the need of using smaller transistor technologies is neces-
sary. However, its use is not straightforward since there is an increased number of
permanent and transient faults. Those faults are usually not included in Timing
Analysis techniques. During the testing period most of the permanent faults can
be detected, but during operation hardware degradation can make latent errors
grow enough to cause faults. Thus, accounting for the impact of faults and the
corresponding countermeasures on WCET estimation is a need.

1.3 Contributions

This thesis proposes hardware designs to enable the use of more powerful and com-
plex multicore and manycore processor architectures in future CRTES. It builds
upon measurement-based probabilistic timing analysis (MBPTA) to deliver tight
WCET estimates while preserving high average performance, thus increasing the
level of guaranteed performance that a single system can provide.

Time composability is an important principle which is incorporated in every
proposal. In that way, the WCET estimate of the task, calculated during the
analysis phase, is not affected by any of the tasks running on the system at the
same time.

The approach followed in this thesis is that interference can be treated in a
probabilistical manner with support from time-randomized designs and therefore,
WCET bounds can be made tighter by dismissing pathological scenarios that oc-
cur with too low probabilities. State-of-the-art multicores considered for use in
CRTES, such as Infineon Aurix [Infineon (2012)], Cobham Gaisler LEON4 [Cob-
ham Gaisler (2017)] and Freescale P4080 [FreeScale (2012)], consist of 3, 4 and 8
cores respectively. With the increasing number of cores, the degree contention on
the shared hardware resources that timing analysis needs to account for in deriving
reliable WCET estimates becomes substantial. The most relevant on-chip shared
resources are (1) the interconnection network, (2) the shared L2 cache and (3) the
memory controller.

In [Jalle et al. (2014)] authors have already analysed different MBPTA-compliant
policies for shared buses and they provide solutions for small multicores (i.e. 4-
core multicore), which are large enough for a first release of multicores in CRTES
industry. Random-permutation arbitration policy proved being the most efficient
one, but that solution was only evaluated and proven fair in the simple case where
all requests have the same size. Whether such a policy is effective when requests
have heterogeneous duration have not been proven yet. However, whenever per-
formance needs are higher (i.e. future autonomous vehicles), on chip buses are
inefficient providing sufficient bandwidth with an increasing number of cores (i.e.

8

1.3 Contributions

in CRTES ≥ 8), so some other Network-On-Chip (NoC) topologies such as tree
and mesh NoCs need to be used. Different NoC topologies produce high average
performance for different needs (number of cores, types of communication, etc.),
but the distributed nature of arbitration and the fact that links are shared, makes
difficult deriving tight service time request bounds and therefore, WCET is of-
ten too pessimistic. Since MBPTA allows discarding contention scenarios that
occur with negligible probability, making NoCs MBPTA-compliant is a promising
approach.

The shared L2 cache poses significant challenge for CRTES since lines fetched
by one core can be evicted by some other cores requests. To control inter-task in-
teraction in the L2 cache, software cache partitioning [Liedtke et al. (1997),Mueller
(1995),Kim et al. (2013),Ward et al. (2013)] and hardware cache partitioning [Paolieri
et al. (2009a)] have been used so far. However, in the multicores this makes sharing
pages or libraries hard, and poses some limitations on scheduling.

Finally, the use of smaller transistors helps providing more performance while
maintaining low energy budgets; however, the use of nanoscale technology makes
hardware fault rates increase noticeably which challenges time predictability and
reliability. In particular, faults affect the temporal behaviour of the system in
general, and WCET in particular. Timing analysis techniques can obtain WCET
estimates that remains valid only under the same processor state on which mea-
surements were taken (typically a fault-free state). To be able to provide reliable
WCET estimates, it becomes mandatory for timing analysis tools to account for
degraded hardware behaviour.

In this thesis we tackle those challenges by proposing hardware mechanisms,
including arbitration policies and techniques to manage shared hardware resources
(i.e. shared interconnection network and L2 cache), as well as approaches to obtain
WCET estimates on top of degraded hardware. More concretely we propose the
following:

• Multicore designs with increased number of cores and using NoC as an in-
terconnection network:

– We analyze and compare several MBPTA-compliant arbitration poli-
cies in multicores with buses and tree NoCs, in terms of homogeneous
performance guarantees. We propose arbitration policies to meet the
requirements of mixed-criticality systems.

– We compare tree-based time-randomized and time-deterministic multi-
core designs in terms of WCET estimates.

– We adapt wormhole-based mesh NoCs to be MBPTA-compliant and
propose mechanisms for controlling the injection rate of the packets.

9

1.4 Thesis Structure

– We propose a new credit-based control-flow mechanism for shared buses
which is compatible with MBPTA and can significantly improve perfor-
mance guarantees.

• We propose a new hardware mechanism to control inter-task interferences in
shared time-randomised LLCs without the need of any hardware or software
partitioning.

• We propose a holistic approach to deal with the timing impact of permanent
and transient errors in future real-time systems implemented with smaller
technology nodes.

The hardware designs and timing analyses proposed in this thesis are not ap-
plicable on conventional (time-deterministic) systems. Instead, to be able to apply
MBPTA, end-to-end measurements needs to satisfy i.i.d. properties and processor
resources build upon that requirement. However, hardware overheads to satisfy
that requirement are affordable, and prototypes of those processors already ex-
ist [Hernández et al. (2015)].

1.4 Thesis Structure

The remaining of this Thesis is structured as follows:

• Chapter 2 covers background and state-of-the-art needed for this Thesis.

• Chapter 3 explains the methodology we use in this Thesis.

• Chapters 4, 5 and 6 cover MBPTA-compliant interconnection networks.
More concretely:

– Chapter 4 covers MBPTA-compliant tree-based multicores.

– Chapter 5 proposes two techniques to enable use of MBPTA-compliant
mesh NoC.

– Chapter 6 proposes MBPTA-compliant arbitration policy that allows a
fair sharing of hardware resources in bus-based multicores

• Chapter 7 proposes a technique to enable use of shared non-partitioned LLCs.

• Chapter 8 proposes a method which enables the use of hardware implemented
with smaller transistors.

10

1.5 Publications

1.5 Publications

List of publications is

1. M. Slijepcevic, C. Hernández, J.Abella and F. J. Cazorla. ”Boosting Guar-
anteed Performance in Wormhole NoCs with Probabilistic Timing Analysis”
(Chapter 5), 20th Euromicro Conference on Digital System Design (DSD),
August 2017

2. M. Slijepcevic, C. Hernández, J.Abella and F. J. Cazorla. ”Design and im-
plementation of a fair credit-based bandwidth sharing scheme for buses”
(Chapter 6), Design, Automation and Test in Europe Conference and Exhi-
bition (DATE), March 2017.

3. M. Slijepcevic, M. Fernandez, C. Hernández, J. Abella, E. Quiñones, F.
J. Cazorla ”pTNoC: Probabilistically Time-Analyzable Tree-Based NoC for
Mixed-Criticality Systems” (Chapter 4) 19th Euromicro Conference on Dig-
ital System Design (DSD), August 2016

4. M. Slijepcevic, L. Kosmidis, J. Abella, E. Quiñones, F. J. Cazorla ”Timing
Verification of Fault-Tolerant Chips for Safety-Critical Applications in Harsh
Environments” (Chapter 8) IEEE Micro, Special Series on Harsh Chips,
November 2014

5. M. Slijepcevic, L. Kosmidis, J. Abella, E. Quiñones, F. J. Cazorla ”Time-
Analysable Non-Partitioned Shared Caches for Real-Time Multicore Sys-
tems” (Chapter 7) Design Automation Conference (DAC), June 2014

6. M. Slijepcevic, L. Kosmidis, J. Abella, E. Quiñones, F. J. Cazorla ”DTM:
Degraded Test Mode for Fault-Aware Probabilistic Timing Analysis” (Chap-
ter 8) 25th IEEE Euromicro Conference on Real-Time Systems (ECRTS),
July 2013

Other publications:

1. F. J. Cazorla, J. Abella, J. Andersson, T. Vardanega, F. Vatrinet, I. Bate,
I. Broster, M. Azkarate-Askasua, F. Wartel, L. Cucu, F. Cros, G. Farrall,
A. Gogonel, A. Gianarro, B. Triquet, C. Hernández, C. Lo, C. Maxim,
D. Morales, E. Quiñones, E. Mezzetti, L. Kosmidis, I. Agirre, M. Fernan-
dez, M. Slijepcevic, P. Conmy, W. Talaboulma ”PROXIMA: Improving
Measurement-Based Timing Analysis through Randomisation and Proba-
bilistic Analysis” 19th Euromicro Conference on Digital System Design (DSD),
August 2016

11

Chapter 2

Background

This chapter provides the background and state-of-the-art on timing analysis tech-
niques used for WCET estimation, and on the existing hardware solutions to enable
timing analysis of multicore designs.

2.1 Timing Analysis Techniques

Execution time of programs is difficult to predict because it depends on the soft-
ware and hardware initial conditions and run-time environment. There are many
factors, such as hardware features (e.g. initial cache state, or latencies of differ-
ent hardware components depending on the input arguments), input vectors (e.g.
data inputs which will determine the execution path of the program) or software
features (RTOS interferences), which are important factors for execution time vari-
ation. The purpose of the Timing Analysis techniques in the context of real-time
systems is estimating the Worst-case Execution Time (WCET), which is a proxy of
the worst-case timing behaviour of the program under analysis. WCET estimates
are later used as an input for the task scheduler, which is in charge of doing the
schedulability analysis and, if possible, of scheduling tasks in a way that deadline
misses are avoided.

As mentioned in Chapter 1 there are two main families of Timing Analysis tech-
niques: Deterministic Timing Analysis (DTA) and Probabilistic Timing Analysis
(PTA). Both of them have their Static, Measurement-based and hybrid variants.
We note that Measurement-based variants are closer to industrial practice in many
systems [Mezzetti & Vardanega (2011),Law & Bate (2016),Natale et al. (2016)].

12

2.1 Timing Analysis Techniques

2.1.1 Deterministic techniques

Deterministic timing analysis provides a single WCET estimate. Static Determin-
istic Timing Analysis (SDTA) uses as input an abstract representation of hardware
and a structural model of the software. SDTA does not execute the code at all but,
instead, builds strictly upon abstract interpretation. SDTA considers all possible
inputs (values and states) of a program, combines control flow with the model
of the hardware architecture and provides a sound bound (which cannot fail by
definition) for this combination [Wilhelm et al. (2008)]. However, the necessary
inputs are subject to inaccuracies and errors [Abella et al. (2015)], and incomplete
and buggy documentation of hardware as well as unknown software parameters
limit SDTA usability only to simple hardware and software whose documentation
may be regarded as sufficiently reliable.

Measurement Based Deterministic timing Analysis (MBDTA) collects measure-
ments on the real hardware platform with different input sets. It does need much
less information than SDTA, which makes it more appealing for industry. How-
ever, some limitations of MBDTA make it hard to be used since the number and
magnitude of uncertainties grows in pace with hardware and software complexity,
so that using an engineering margin without scientific evidence to account for the
unknown is increasingly risky. Among the limitations to apply MBDTA we find
the following: (1) the user needs to provide inputs that lead to the actual WCET
(or an execution time close to it) since he cannot measure all possible inputs, and
(2) execution time measurements are collected on the test platform (software and
hardware), which may not be identical to the one which will be deployed in the
real system, which may produce some uncontrolled discrepancies. An example of
MBDTA can be found in [Wenzel et al. (2008)].

Hybrid Deterministic Timing Analysis approaches [Wenzel (2006),Rapita Sys-
tems (2007)] improve MBDTA with some static information from the program
control flow. For example, RapiTime [Rapita Systems (2007)] can collect mea-
surements at fine granularity (e.g. basic block) and identify potential execution
paths that have not been observed. Even though they improve MBDTA by re-
ducing pressure on the user for producing input parameters which will lead to
WCET, Hybrid approaches still lack sufficient confidence due to the unquantified
uncertainty remaining.

2.1.2 Probabilistic techniques

Probabilistic Timing Analysis has emerged recently as an alternative to deter-
ministic timing analysis techniques and it provides a distribution of WCET or
probabilistic WCET (pWCET) curve. Each value of the pWCET curve, see a
hypothetical example in Figure 2.1, has associated its residual risk – expressed as

13

2.1 Timing Analysis Techniques

a cutoff probability – which is the maximum probability with which one instance
of the program will exceed that particular pWCET value.

Static Probabilistic Timing Analysis (SPTA) [Cazorla et al. (2013),Altmeyer &
Davis (2014)], derives a probability distribution of the execution time for individual
instructions or components statically from the model of the processor and software.
Then, those distributions are combined with methods such as convolution to obtain
the pWCET of the program under analysis. SPTA has been devised so far only
for simple processors and faces similar problems with the timing model of the
hardware and software inputs to those of SDTA.

In the case of Measurement-Based Probabilistic Timing Analysis (MBPTA) [Cucu-
Grosjean et al. (2012)], the pWCET curve is computed based on the collection of
end-to-end runs of the program under study on the target hardware. Given the N
end-to-end runs, we could build the pWCET curve as the empirical complemen-
tary cumulative distribution function (ECCDF). The ECCDF is computed from
the histogram of end-to-end runs. However, with N runs we could have derive
pWCET estimates for probabilities down to 1

N
. Hence, for the a target exceedance

probability of 10−12 we would need 1012 program runs, which is practically unaf-
fordable.

To get higher precision we need to apply Extreme Value Theory (EVT) [Kotz &
Nadarajah (2000)], a statistical method for approximating the tail of distributions
on the collection of execution time measurements. Then the cutoff probability
can be selected in accordance with safety standards in the application domain
(e.g., DO-178B/C [RTCA and EUROCAE (2011)] for avionics). For instance,
Figure 2.1 shows a pWCET curve in which a cutoff probability of 10−14 and the
corresponding pWCET estimate are selected. The process of obtaining pWCET
curve is explained later in Chapter 3.4. In any case, EVT provides a continuous
function so that a pWCET can be obtained for any arbitrarily low exceedance
probability.

Some prior work [Bernat et al. (2002)] introduces probabilistic hard real-time
systems and the Execution Time Profile (ETP) at the granularity of basic blocks.
Then, it applies convolution to the ETPs obtained from observations on the real
platform. The main drawback of this approach is that the execution time is mod-
eled directly by an empirical distribution function with no guarantees on whether
observations upper bound what could happen once the system is deployed. More-
over, this method requires a very large number of samples to obtain a precise
model. Later in [Hansen et al. (2009)] authors derive the WCET by applying
EVT and fitting a Gumbel distribution to the block maxima of samples. However,
it requires that the test inputs provided by the user provide sufficient coverage for
a number of sources of execution time variation, which is hard to control by the
end user.

14

2.1 Timing Analysis Techniques

Figure 2.1: Example of the pWCET

A way to lower the needs on the high coverage needed and mitigate the impact
of the sources of execution time variation by setting some constraints was proposed
in [Cucu-Grosjean et al. (2012)]. That approach uses hardware features that break
the dependence of the execution time on execution history, e.g. via randomization.
This approach was proven to be successful in reducing the coverage needs [Fran-
cisco J. Cazorla & Abella (2013)]. It does not need to know memory addresses or
value ranges for variables. Regarding path coverage, it can either be left on the
user side [Milutinovic et al. (2017)] or be obtained automatically based on appro-
priate methods that exploit the advantages of time randomization [Kosmidis et al.
(2014),Ziccardi et al. (2015)].

MBPTA has already been positively assessed for complex avionics case stud-
ies [Wartel et al. (2013),Wartel et al. (2015)] following a methodology close to
industrial practice and MBPTA-compliant bus-based multicore designs have al-
ready been included in a FPGA implementation of the NGMP processor for the
space domain [Hernández et al. (2015)].

Requirements of MBPTA

The use of EVT for WCET estimation purposes requires that its input, i.e. the
collection of end-to-end execution times, can be described with independent and
identically distributed random variables [Cucu-Grosjean et al. (2012)]. Two ran-
dom variables are said to be independent if they describe two events such that the
occurrence of one event does not have any impact on the occurrence of the other
event [Feller (1966)]. Two random variables are said to be identically distributed if
they belong to the same probability distribution [Feller (1966)]. Even though some

15

2.1 Timing Analysis Techniques

authors have proven that EVT can be applied even with less strict rules [Santinelli
et al. (2014),Coles (2001)], in this Thesis we stick to the the original requirement,
which allows an easier application of EVT.

Under MBPTA, response time of each execution component at a given gran-
ularity (e.g. an instruction) is attached with a distinct probability of occurrence.
This attribute is described by a probabilistic Execution Time Profile (ETP), which

is represented with the pair of vectors: (
→
l ,
→
p) = ({l1, l2, ..., lk}, {p1, p2, ..., pk}).

→
l

is the vector which includes all its possible latencies, and pi is the probability of
the instruction taking latency li, accomplishing that

∑k
i=1 pi = 1.

The existence of an ETP for each dynamic (executed) instruction enables the
use of MBPTA [Abella et al. (2013)]: the fact the ETPs exist ensures that dynamic
instructions behave as random variables and each potential execution time of the
program has a distinct probability of occurrence .

Instructions may have causal dependencies among them [Abella et al. (2013)],
such as data or control. Despite causal dependencies, independence and identical-
distribution (i.i.d.) properties still hold across full program runs [Abella et al.
(2013)].

In a MBPTA-compliant processor two distinct modes are defined:

• Analysis mode is used during the collection of execution time measurements
to estimate the WCET. The obtained WCET estimate must hold during
operation. For that reason, the timing behaviour of the system as a whole,
and therefore its individual resources in isolation, must be upper-bounded
or exactly match that during operation. This guarantees that execution
times experienced during operation will never exceed (probabilistically) those
observed during the analysis phase.

• Operation mode is used once the system is deployed. During this mode some
timing conditions enforced during analysis are unrestricted (or subject to
fewer restrictions) and obtained execution times are lower or equal (proba-
bilistically) than those during the analysis phase.

Since the timing of hardware resources has an impact on WCET analysis, dur-
ing the analysis mode we need to upper bound their timing behaviour. There are
two ways to perform such upper-bounding: (1) deterministically or (2) probabilis-
tically.

Hardware resources can be divided into jitterless and jittery. Jitterless re-
sources are those whose latency is constant (e.g. integer adder). Therefore, pre-
dicting their timing and accounting for their latency in any timing analysis tech-

nique is trivial. The ETP of those resources is (
→
l ,
→
p) = ({L}, {1}), where L is the

16

2.2 High-Performance CRTES Hardware Platforms

(a) Deterministic upper-
bound of a jitterless re-
source

(b) Deterministic upper-
bound of a jittery resource

(c) Probabilistic upper-
bounding

Figure 2.2: Types of upper-bounding

resource latency. In this case, at analysis mode, ETPbound experienced during anal-
ysis matches ETPresource during operation. Thus, no modification is needed and we
can upper bound its latency deterministically with its own ETP (the upper-bound
is the red dotted line matching the ETP of the resource, Figure 2.2a).

On the other hand, jittery resources have variable latency which usually de-
pends on input parameters (e.g. FP divider dividing by a power-of-2 versus by
any other value) or execution history, or their combination (e.g. caches, pipelines,
branch predictors). We could also upper bound their latency deterministically
with ETPbound = ({Lmax}, {1}) where Lmax is the highest latency, as shown on the
Figure 2.2b. However, probabilistic upper-bounding is more efficient ETPbound =(
{lbound1 , lbound2 , ..., lboundk }, {p1, p2, ..., pk}

)
where for all latencies the exceedance prob-

ability of ETPbound is higher or equal than that of ETPresource. An example can
be seen on Figure 2.2c. In general, probabilistic upper bounding allows for tighter
WCET estimates than deterministic one.

2.2 High-Performance CRTES Hardware Plat-

forms

In high-performance multicores we can find multi-level cache hierarchies as well
as interconnection networks. Moreover, the requirement of higher performance a
lower power leads to smaller technology nodes, which bring reliability issues. Next
we provide background on those hardware designs in the context of MBPTA.

17

2.2 High-Performance CRTES Hardware Platforms

2.2.1 Cache memory

Cache memory is a hardware component hidden from the programmer and its
efficient use relies on exploiting temporal and space locality of the memory accesses.
It is a key component required for bringing high performance increase in high-end
processors. From the perspective of timing analysis, there are two different types
of caches: Time-Deterministic (TD) and Time-randomized (TR).

At a high level, in TD caches, placement and replacement policies build upon
the data addresses and execution history to keep data in cache, since recently
accessed addresses are typically the most likely to be accessed again in the near
future and, therefore, they are more likely to be reused than other addresses,
thus reducing execution time. However, such a strong dependence on the actual
addresses accessed and the access patterns, as explained before, poses a problem
for WCET estimation.

In TR caches data can be mapped to any set (randomly chosen on each run) and
way (randomly chosen on every eviction) [Kosmidis et al. (2013a)], and thus, the
dependence on execution history is significantly reduced, and hit and miss events
have an associated probability for every cache access [Kosmidis et al. (2013b)].

Next we review the main placement and replacement policies used in TD and
TR caches.

Time-Deterministic Caches

In Time-Deterministic caches locality has been exploited mostly by using mod-
ulo placement, and least recently used (LRU), First In first Out (FIFO) and
Pseudo-LRU (PLRU) replacement policies. Most of the high-performance pro-
cessors come equipped with two or even three levels of cache memory. Processors
in the real-time domain have recently adopted these features. For instance, the
NXP P4080 [FreeScale (2012)] or Cobham Gaisler Leon4 [Cobham Gaisler (2017)]
have three and two cache levels respectively. For modulo placement, objects in
consecutive positions in memory cannot conflict in cache. This is very good for
performance as long as objects can be guaranteed to stay in specific (close) memory
locations. This is often the case for many objects inside programs (e.g. neighbour
variables, code inside a function), but for some others it is extremely difficult
determining their memory location during unit analysis (aka before integration),
since upon integration of different programs their relative location with respect
some memory objects can change arbitrarily (e.g. with respect to shared libraries,
RTOS services and data, etc.).

In terms of guaranteed performance, properly modeling cache behaviour is one
of the main challenges for obtaining tight WCET estimates. Cache impact on
WCET has been studied extensively in time-deterministic systems with a single

18

2.2 High-Performance CRTES Hardware Platforms

level hierarchy [Reineke et al. (2007)].
It is particularly challenging determining whether each particular cache access

will hit or miss [Mueller (1994),Lesage et al. (2009),Hardy & Puaut (2008)]. This
is affordable for the instruction cache [Mueller (1994)] and considering code strictly
belonging to the task, but difficulties arise with the data cache since it is hard to
statically determine memory addresses due to pointers, hidden array indexes, un-
known stack alignment, etc. Using multilevel cache hierarchies further exacerbates
this problem [Lesage et al. (2009),Hardy & Puaut (2008)].

In multicore systems, two approaches are often used to make cache behaviour
more predictable: cache partitioning and cache locking. The first approach divides
the cache into partitions and assigns different partitions to tasks or cores. In set-
associative caches, partitions can be assigned as a certain exclusive number of
sets [Chiou et al. (2000)] or ways [Mueller (1995)]. Both partitioning approaches
can be achieved with either hardware or software means (compiler [Mueller (1995)]
or OS support [Liedtke et al. (1997)]).

Cache locking [Campoy et al. (2001)] does not allow evicting locked lines un-
til an unlock operation is done. It can be done through atomic instruction or
defining the lock status of every cache way. While this technique is already used
in single core processors to preserve cache contents upon the access to unknown
memory addresses, it can also be used in multicore environments to limit inter-core
interferences in shared caches.

Scratchpad memories [Banakar et al. (2002),Suhendra et al. (2005)] have been
proposed as a more predictable hardware resource. Unlike cache memories, scratch-
pads are explicitly managed by the programmer and the memory blocks need to
be moved from the main memory before their use. Therefore, their use is highly
predictable. There is a similar objective between cache locking and scratchpad
memories, that is, explicit controlling what is going to be cached. However, both
mechanisms pose high responsibility on the user side, who must control what needs
to be stored in cache, thus losing the advantage of cache memories, whose man-
agement is transparent for end users.

Time-Randomized Caches

In order to remove memory address dependence and mitigate history dependence,
Time-Randomized multicore architectures rely on the use of cache memories im-
plementing random placement and replacement policies [Mezzetti et al. (2015)].
Different cache layouts cause different cache conflicts among memory addresses,
resulting in different execution times. Therefore, random policies are used to
remove the dependence of execution time on the particular addresses accessed
and to remove systematic pathological cases due to specific access interleaving.
Thus, increasingly bad execution times occur with decreasing probability, leading

19

2.2 High-Performance CRTES Hardware Platforms

to pWCET estimates close to the average performance which, in turn, is close to
that of the common case for TD caches.

Random placement [Kosmidis et al. (2013a)], which is based on a parametric
hash function, for a given memory address and a random number called random
index identifier (seed), provides a unique and constant cache set (mapping) for
the address along the execution. Hence, during the execution of the program,
the particular cache set for any given address is constant, but the placement is
randomised across executions by modifying the seed of the used hash function.
In this way, cache addresses are mapped to the same or different cache sets with
particular probabilities, so that each memory access has hit/miss probabilities.
Thus, the execution time of the program follows a distribution dictated by the
random placement distribution, which leads to i.i.d. execution times, as needed
for MBPTA.

Later, authors noticed that few lines can be (randomly) mapped to the same
cache set with non-negligible probability, which increases WCET estimates despite
the amount of data used by the program fits comfortably in cache. Hence, they
proposed a design, random modulo [Hernández et al. (2016)], that employs a new
random placement policy that retains most of the advantages of modulo placement
by avoiding conflicts across contiguous addresses, while still meeting the require-
ments of MBPTA. In particular, random modulo performs a random permutation
of the addresses within a memory page so that conflicts across lines in different
pages are still random, but conflicts across lines in the same page cannot occur.

Random replacement [Kosmidis et al. (2013a)] ensures that every time a mem-
ory request misses in cache, a way in the corresponding cache set is randomly
selected and evicted to make room for the new cache line. This ensures that (1)
there is independence across evictions and (2) the probability of a cache line to be
evicted is the same across evictions.

Moreover, in Time-randomized architectures, multi-level unified data and in-
struction caches [Kosmidis et al. (2013b)] can be efficiently analysed, including
different write, write-allocation and inclusion policies among the different levels.

2.2.2 Interconnection Networks

Bus-based interconnect are used in multicores with a small number of cores. They
have a centralized arbitration and it is easy to obtain tight bounds for their re-
sponse time.

Paolieri et al. (2009a) have shown that in general, priorities cannot be used
for arbitration if all cores need to run real-time tasks. Instead, policies such as
round-robin and TDMA can ensure that all cores will be granted access to the
shared resource eventually. If round-robin policy is used, then the delay every
request can suffer can be upper bounded, as analysed in [Paolieri et al. (2009a)].

20

2.2 High-Performance CRTES Hardware Platforms

TDMA arbitration policy [Kelter et al. (2011),Schranzhofer et al. (2010)] fulfills
the isolation property for the applications with different criticalities and there-
fore, it is suitable for CRTES. It applies time sharing between the requests of the
different contenders. Time is typically split across cores homogeneously and it is
also common using time slots whose duration matches the longest duration of any
request Jalle et al. (2013a). Assuming that the duration of a request is unknown
a priori (i.e. whether it will hit/miss in L2, whether it will produce a dirty line
eviction in L2, etc.), TDMA will typically allow requests to be issued only in the
first cycle of the corresponding slot for each core. Allowing a request whose dura-
tion is unknown to be issued at any other time could prevent requests from other
cores being issued at their expected time, which is not allowed for being able to
estimate the WCET. Among those two policies round-robin provides lower WCET
and higher average performance with little burden for the end user in the context
of SDTA and MBDTA [Jalle et al. (2013a)].

In MBPTA-compliant multicores we need to upper-bound the timing behaviour
during the analysis phase, but also end-to-end execution times need to satisfy the
i.i.d. requirement. These arbitration policies from time-deterministic bus-based
systems have been shown to meet the requirements of MBPTA:

• Round-robin (RR). In the context of MBPTA, when the time alignment of
the requests w.r.t. the round-robin can be any – which is the least restrictive
case from the user point of view – one needs to assume that each request
will experience the maximum arbitration latency [Jalle et al. (2014)], which
can be enforced at analysis time with the worst-case mode [Paolieri et al.
(2009a)]. For the case of round-robin the highest latency a request can suffer
due to the access to the bus is: (Nc−1)×L, where Nc is the number of cores
(contenders) and L the bus latency. This corresponds to the case in which a
request from one core has to wait for one request from each other contender
to complete.

• TDMA This arbitration policy cannot be directly analysed by MBPTA
because we cannot prove that the delay a request experienced during analysis
time is an upper bound of the delay during operation. However, instead of
augmenting every request delay like in the RR case, we only have to pad the
end-to-end execution time with the following number of cycles: Nc × L− 1,
and then apply MBPTA. This approach allows tighter WCET estimates than
RR [Panic et al. (2015)], although average performance is worse than for RR.

While time-deterministic policies can be used in the context of MBPTA,
some other policies have been specifically designed for MBPTA:

• Lottery (LOT). The arbiter grants access to the different contenders ran-
domly on each arbitration [Lahiri et al. (2001)]. To be MBPTA-compliant,

21

2.2 High-Performance CRTES Hardware Platforms

arbitration is always performed across all contenders (Nc) and only the one
chosen can access the bus in that slot regardless of whether it has any pend-
ing request [Jalle et al. (2014)]. Therefore, large arbitration times occur with
decreasing probabilities.

• Random permutations (RP). Lottery arbitration may lead to theoret-
ically infinite contention delays since there exists a non-null probability a
contender waits long time to get granted access to the bus. With random-
permutations [Jalle et al. (2014)] in each arbitration window, comprising one
slot per contender, the order of the slots is randomly generated. For in-
stance, with 3 contenders we could have the following arbitration windows
(random permutations of 1,2,3): <2,1,3>, <1,2,3>, <3,1,2>, etc. This pol-
icy bounds the largest number of slots a contender may wait to get the bus
(unlike lottery arbitration).

However, when the number of cores increases buses cannot provide sufficient
bandwidth and NoCs are a better choice. A NoC is built with routers (R), links and
network interfaces (NI). A Processing/Memory element (PME) is connected with
a network interface to a router, and routers are connected via links among them
and are in charge of forwarding the packets at the input ports to the appropriate
output port. The PME can be either a processor core, main memory, I/O, etc.
Connection of the routers defines the network topology. In this thesis we focus on
two of the most used NoC topologies – tree and mesh topology.

Trees are used in real processors [Benini et al. (2012),Panic et al. (2014)] and
they are suitable for N − to − 1 communication. Their routers are simple and
typically perform 2-to-1 multiplex arbitration. However, since many flows can
interfere, deriving tight WCET estimates is a challenge.

Routers for mesh topology are more complex, but the mesh is more scalable
topology. We can see an example in Figure 2.3a. Network routing defines the way
messages will traverse the NoC from the source to the destination node. The most
used routing scheme is XY routing. That means that each router will have 5 ports
(X+, X−, Y +, Y −, PME) In the network, several traffic flows may be active at the
same time and the routers and links are shared between different communication
flows (e.g. flows F1 and F2 share two routers and one link between them in the
figure) so usually timing analysis techniques need to account for very pessimistic
cases that may occur systematically. If we take a closer look to one router in
Figure 2.3b, we can see that the problem of interference arises since the flows can
be sharing Input buffer allocation, Crossbar Switch, and output arbitration stages
of the router.

22

2.2 High-Performance CRTES Hardware Platforms

(a) mesh topology

Output
arbitration

X+ X-

Y-

Y+

Routing

Virtual
channel

arbitration

Crossbar
Switch

Input buffers

(b) Closer look to the mesh router

Figure 2.3: Example of the mesh NoC

2.2.3 Reliability

The use of nanotechnologies increases both, permanent faults due to fabrication
defects as well as transient fault susceptibility due to the low charge required to
alter transistors state.

Permanent faults. Process variations [Bowman et al. (2002)] in CMOS tech-
nology affect mostly device timing and power profile, making them behave dif-
ferently from expected. The relative impact of process variations becomes more
significant for small devices, which specially jeopardizes cache memory bitcells op-
eration, since they are implemented using the smallest features allowed. Moreover,
the random component of process variations cannot compensate across delay paths
given that bitcells are typically implemented with few transistors [DeMicheli et al.
(2009)]. Hence, in general cache memories become the reliability bottleneck when
scaling CMOS technology due to process variations.

Small defects unable to produce faults when processors are deployed, become
large enough during operation due to degradation. The number of such defects and
their probability to become actual faults during operation increases with technol-
ogy scaling as shown in [Guertin & White (2010)]. This imposes serious challenges
in the use of small technology nodes in CRTES, since CRTES expected lifetime is
longer than that of its hardware components. For instance, it has been predicted
that Failures in Time (FIT)1 rates for 65nm technology nodes lead to lifetimes
below 10 years [Guertin & White (2010)], which is already too short for the space

11 FIT corresponds to 1 failure per 109 hours of operation.

23

2.2 High-Performance CRTES Hardware Platforms

and avionics domains where systems may last for more than 20 years [Guertin &
White (2010)]. Technology nodes below 65nm further reduce lifetime below 10
years, thus affecting other industries such as the automotive one.

Transient faults. Technology scaling also decreases the charge required to
alter the proper behavior of transistors, which is known as Qcrit. By decreasing
Qcrit, transient faults due to cosmic rays or alpha particles whose charge was below
Qcrit for some technology nodes, can jeopardize correct operation when scaling
technology down because their charge becomes relatively higher [Massengill et al.
(2012)]. As a result, technology scaling increases soft error rates due to transient
faults.

In order to deal with errors during operation, means for error Detection, Cor-
rection, Diagnosis and Reconfiguration (DCDR) are set up [Gizopoulos et al.
(2011)] and hardware is allowed to operate on a degraded mode due to permanent
faults. While those methods have been devised to guarantee functional correct-
ness, they may often produce an inordinate impact in performance, thus inval-
idating WCET estimates of tasks computed for a non-degraded system. Little
work has been done to attain time-predictability in the presence of degraded (non
time-randomized) caches used together with STA but still neglecting the impact
of error DCDR [Abella et al. (2011c),Hardy & Puaut (2013)]. However, methods
considering the impact in WCET of all fault-tolerance features have not been yet
devised.

24

Chapter 3

Methodology

The methodology used in this thesis consists in collecting end-to-end execution
times of the tasks running on the processor in order to obtain WCET estimates.
For that purpose, different tools and methods are used. In the following sections
we present the main components that allow to extract this information: simula-
tors and platforms we used, benchmark suite, and the process to obtain WCET
estimates.

3.1 Simulators

In this thesis, for modeling the processor setup, we have used a simulator based
on the SoCLib simulation framework [Pouillon et al. (2009)]. SoCLib is a cycle-
accurate SystemC simulator that can be used for virtual prototyping at microar-
chitecture level. The purpose of the cycle-accurate simulator is to obtain all quan-
titative metrics (i.e. execution time, cache miss rates, etc.) with fine granularity.

This simulator has separated functional and timing components, which means
that it creates two different design spaces: (1) the functional emulator and (2) the
timing simulator. The (1) functional emulator executes instructions of a particular
Instruction Set Architecture (ISA) and provides all the information about instruc-
tions like the instruction address, registers, instruction type, operation results and
memory address in case of a memory operation. The (2) timing simulator mod-
els the timing behaviour of the instructions in a particular implementation of the
ISA, e.g. it simulates the different timing behaviour in case of a cache hit or a
miss and eventually the delay introduced by the access to a higher level cache or
the memory, pipeline stalls, etc. This approach brings high flexibility since the
functional part can be easily changed to emulate different ISA. We have used an
emulator for a PowerPC 750 processor core [Freescale (1997)] due to the recent
interest of Airbus in e500 core present in the MPC85xx and the new eight-core,

25

3.2 General architecture

Table 3.1: Different configuration of shared resources

Resource Configurations

L2 cache Partitioned/non-partitioned
Interconnect (number of cores) bus (4-8) /Tree NoC (up to 16)/mesh NoC (up to 36)
Memory controller Fixed-latency/random-permutation

the P4080 [Cazorla et al. (2010)].
SoCLib simulator has integrated only a bus as interconnection network. In

order to simulate the timing behaviour of all transactions in the NoC, we decided
to model the NoC behavior using the gNoCsim [NanoC (2010)] simulator. The
gNoCsim simulator is an event cycle-accurate and flit-accurate simulator developed
in C/C++. This simulator was developed in the context of the NaNoC project
to explore different topologies and routing algorithms and has been extensively
used during the last years by both academics [Flich & Bertozzi (2010),Gorgues
et al. (2014)] and practitioners [Dubois et al. (2011)]. The gNoCsim simulator
allows two different operation modes: stand-alone with synthetic traffic patterns
and slave-mode in which the simulator is coupled with another simulation tool,
SoClib, in our case.

3.2 General architecture

The architecture of the multicore processor considered in this thesis is shown in
Figure 3.1 and different configurations of the shared hardware resources are listed
in Table 3.1.

Regarding core design, all cores are homogeneous, and we consider a design
similar to those that have been successfully analyzed with PTA techniques so far.
Its design can be seen in Figure 3.1.

The core architecture consists of a pipeline where instructions are fetched (F),
decoded (D), executed (E) and results written back (WB) in order. First level
instruction (IL1) and data (DL1) caches are private per core. The operations
occurring in each stage are as follows:

• Fetch (F) stage. The instruction translation look-aside buffer (ITLB) and
the IL1 are accessed in parallel to obtain the next instruction to be executed.
Instructions fetched will be placed in a queue between F and D stages.

• Decode (D) stage. Instructions are decoded. This stage is, in essence, an
extra delay in the pipeline.

• Execute (E) stage. Non-memory instructions are executed with a fixed la-
tency that depends solely on the type of operation. For instance, an integer

26

3.2 General architecture

Figure 3.1: Schematic of the processor architecture.

addition will take always 1 cycle. Load instructions access the DL1 and
DTLB in parallel. Indeed, they also access the write buffer to ensure data
consistency. Store operations compute its address and get the data to be
stored, but do not proceed to cache. Results are placed again in a queue
and written back to the register file or to DL1 during the WB stage, when
exceptions have been checked.

• Write-back (WB) stage. Results (if any) from all operations but stores are
written into the register file. Store operations typically write their results
in a store buffer to be transferred to cache as needed without blocking the
pipeline. Only if the store buffer is full the pipeline is blocked.

DL1 and IL1 misses are propagated to the L2 cache through the shared com-
munication network. If the DL1 is write-through all store operations are also
forwarded to the L2. Alternatively, if it is write-back, only dirty cache lines are
sent to the L2 on an eviction. Eventually, if the L2 is inclusive with DL1 it may
raise evictions to the DL1 cache on a L2 eviction. Cache coherence is provided by
software means and hardware support is only in place to guarantee L2 inclusivity
with DL1.

Whether we consider write-through or write-back caches, as well as the par-
ticular cache parameters (size, associativity and bytes/line) is described in the

27

3.3 Benchmarks

corresponding chapters since configurations stressing different components may
differ.

3.3 Benchmarks

We use the EEMBC [Poovey et al. (2009)] automotive benchmark suite, which
has been developed by the Embedded Microprocessor Benchmark Consortium.
It is designed to analyze, test, and improve multicore processors in automotive,
industrial, and general-purpose applications. All benchmarks consist of a main
loop with few function calls in its body. The input data are embedded in the
application, which emulates memory mapped input from the sensors, and in that
way each iteration of the loop will use a different set of values. The list of EEMBC
benchmarks used is detailed in Table 3.2.

Benchmarks are run without real-time operating system (RTOS) support, in
order to assess the performance of hardware designs. On the one hand, this re-
quired some software hard-coding to allow benchmarks run directly on hardware,
and on the other hand, enabled the evaluation of non-communicating tasks stati-
cally allocated to cores and running end-to-end, so not allowing any preemption,
migration or synchronisation across tasks. We regard the evaluation of those other
activities as mostly related to the RTOS, which is beyond the scope of this thesis.

Table 3.2: Benchmarks used in our simulation environment

EEMBC Autobench
a2time Angle to Time Conversion
basefp Basic Integer and Floating Point
bitmnp Bit Manipulation
cacheb Cache ”Buster”
canrdr CAN Remote Data Request
aifft Fast Fourier Transform (FFT)
aifirf Finite Impulse Response (FIR) Filter
aiifft Inverse Fast Fourier Transform (iFFT)
aiirflt Infinite Impulse Response (IIR) Filter
matrix Matrix Arithmetic
pntrch Pointer Chasing
puwmod Pulse Width Modulation (PWM)
rspeed Road Speed Calculation
tblook Table Lookup and Interpolation
ttsprk Tooth to Spark

28

3.4 MBPTA process

3.4 MBPTA process

The outcome of the MBPTA process is a pWCET curve such as the one in Fig-
ure 2.1. MBPTA consists of the following five steps [Cucu-Grosjean et al. (2012)]:

1. Collecting observations: The first step is collecting a given number of
end-to-end execution times of the program under analysis. Typically this
number is N = 1000. In case that we need more measurements (explained
in the following steps), additional Ndelta = 50 measurements are collected
and included in the sample. At every collection round we check if data
satisfy the i.i.d. properties. For that purpose we need to apply (1) the two-
sample Kolmogorov-Smirnov (KS) test [Feller (1966)], for checking identical
distribution and (2) the runs-test [Bradley (1968)] to check fulfillment of
the independence property. Both tests use a significance level of α = 0.05,
thus meaning that under normal conditions 5% of the tests will be failed.
On a test failure we increase the number of measurements until the tests
are passed. The fact that execution time is probabilistically i.i.d. in our
architectures by construction guarantees that the execution time sample will
eventually pass the statistical i.i.d. tests.

2. Grouping: In this step we use the Block Maxima method: we divide the
sample into blocks of a given size (typically 25 or 50) and pick up the max-
imum value of each blocks. While there is not a strict rule for the selection
of the block size, larger blocks allow discarding values not belonging to the
(high) tail, but they must not be too large so that the population of maxima
becomes too small. Thus, we use block sizes comparable to those in [Cucu-
Grosjean et al. (2012)].

3. Fitting: An EVT distribution needs to be fit to the (maxima) execution
times obtained in the previous step. The General Extreme Value (GEV)
distribution, denoted as F, has as general expression:

Fξ(x) =

e−(1+ξ
x−µ
σ

)
1
ξ

if ξ 6= 0

e−e
−x−µ

σ if ξ = 0

where ξ is the shape parameter, σ defines the scale and µ location parameter.
For different values of ξ we have three different EVT distribution families:
Gumbel (ξ = 0), Frechet (ξ > 0) or Weibull (ξ < 0). It has been proven
in [Cucu-Grosjean et al. (2012)] that the Gumbel distribution fits well the
problem of WCET estimation. In our process we use the exponential tail
(ET) test [Garrido & Diebolt (2000)] to validate that a Gumbel distribution
maxima execution times.

29

3.4 MBPTA process

4. Convergence: In this step we determine if collecting more execution time
measurements is needed, or whether adding more measurements would change
the obtained WCET estimate. To do so, at every round we compare it to
the previous one (except for the first) and we calculate the continuous rank
probability score (CRPS) metric, which is defined as

∑∞
i=0[fX(i) − fY (i)]2

where fX(i) and fY (i) represent distribution functions from the current and
previous round. If CRPS is below a given threshold (e.g. 0.1) we do not need
to collect more measurements. If not, we collect Ndelta additional execution
time measurements. It is worth mentioning that, since the execution times of
finite programs can be upper bounded with a Gumbel distribution (so with
an exponential tail), the ET test will be eventually passed and the distribu-
tion will converge to a Gumbel distribution by construction [Cucu-Grosjean
et al. (2012)].

5. Tail extension: The resulting Gumbel EVT distribution is used to com-
pute the pWCET estimate for the exceedence probability of interest. In our
experiments we usually take the value 10−13 per run, in line with random
hardware failure probabilities per hour allowed for the highest criticality lev-
els in CRTES.

30

Chapter 4

Tree-based PTA-compliant NoCs

The use of networks-on-chip (NoC) in real-time safety-critical multicore systems
challenges deriving tight worst-case execution time (WCET) estimates. This is
due to the complexities in tightly upper-bounding the contention in the access
to the NoC among running tasks. So far PTA has only been tested on small
multicores comprising an on-chip bus as communication means, which intrinsically
does not scale to high core counts. In this Chapter we propose pTNoC, a new tree-
based NoC design compatible with PTA requirements and delivering scalability
towards medium/large core counts, suitable for single and mixed-criticality setups.
Moreover in this Chapter we compare time-deterministic and time-randomised
multicore designs in terms of WCET estimates.

4.1 Introduction

Among multicore shared resources the network-on-chip (NoC) has prominent im-
pact on programs’ execution time and pWCET, as it connects cores to memory
and/or shared cache levels. In the context of non time-randomized multicore ar-
chitectures, also known as time-deterministic architectures, several NoC designs
have been evaluated including meshes [Schoeberl et al. (2012)], rings [Panic et al.
(2013)] and buses [Jalle et al. (2014)]. Among existing NoC designs, only buses
have been proven MBPTA-compliant [Jalle et al. (2014)] for different arbitration
policies. However, bus scalability is limited since its latency increases rapidly with
the number of cores [Roca et al. (2012)]. Further, in the context of MBPTA, pro-
posed arbitration policies offer homogeneous guarantees and performance across
cores, which do not match the heterogeneous bandwidth requirements in future
mixed-criticality multicore real-time systems [Vestal (2007)].

In this Chapter we propose pTNoC, a new tree NoC design that overcomes
the limitations of homogeneously-arbitrated buses to manage the abundant traffic

31

4.2 Reference Multicore

between cores and memory and/or shared caches. Trees are chosen since they
can scale to higher-core counts, have been shown to work with time-deterministic
architectures [Panic et al. (2014)] and are implemented in real processors such
as the P2012 [Benini et al. (2012)]. The challenge lies on making a tree NoC
MBPTA-compliant while providing high average performance and heterogeneous
– configurable – guaranteed bandwidth allocations under a low complexity and
energy envelop. In particular, this Chapter makes the following contributions:

1. We analyze several MBPTA-compliant arbitration policies for tree NoCs,
and show that trees scale better to high core counts than buses in terms of
homogeneous performance guarantees.

2. We propose arbitration policies to enable fine-grain and flexible heteroge-
neous bandwidth assignments to better match the requirements of mixed-
criticality systems. This is implemented through small changes in the router
arbitration policy.

3. We provide a complete evaluation in terms of WCET estimates, average
performance, power and area, and compare our pTNoC against the only
MBPTA-compliant NoC so far, a shared bus [Jalle et al. (2014)], showing
that our pTNoC outperforms the MBPTA-compliant bus in all metrics.

4. We compare a tree-based time-deterministic multicore and our tree-based
time-randomised multicore in terms of WCET estimates.

4.2 Reference Multicore

As explained before in Chapter 3, we consider a processor and memory architecture
in which core-to-core communication is carried out with explicit messages man-
aged by the real-time operating system (RTOS) through memory [ARINC (1997)].
When a bus is shared across a large number of cores, the bandwidth provided to
each core is reduced. In such an architecture there are two types of communica-
tions: Nc-to-1 to allow cores access L2, and 1-to-Nc to allow L2 responding core
requests. The most suitable NoC for this type of communications is a tree since it
is specifically suited to Nc-to-1 and 1-to-Nc communications. Further, a tree NoC
has been used in time-deterministic real processors [Benini et al. (2012),Panic et al.
(2014)]. Our view is that tree NoCs can also be made MBPTA compliant, so that
larger multicores can be used in the context of MBPTA.

In this Chapter we consider 8- and 16-core multicores. The benefits of the
tree NoC are less important for smaller multicores (e.g., 4 cores) for which buses
are competitive. Larger multicores (e.g., > 16 cores) may fit better a clustered

32

4.3 Single-Criticality pTNoC

Figure 4.1: Nc-to-1 binary tree NoC for an 8-core setup

architecture where each cluster has its own local memory , since clustering provides
good scalability, isolation across clusters (which is good to limit interferences) and
low power, as it has been shown in [Panic et al. (2014)]. An alternative scalable
solution would be choosing other NoC topology, such as a wormhole mesh NoC,
as shown later in Chapter 5.

4.3 Single-Criticality pTNoC

Figure 4.1 shows a tree NoC to connect 8 cores to the L2. Arbiters at the bottom
level, i.e. those closer to the cores, arbitrate requests from each of the two cores
they are connected to. The 2nd lowest level may need to buffer up to 2 requests
per link (one from each of the cores below); the 3rd level up to 4 requests per link,
and so on. As shown, the tree allows the use of small radix routers. Each router
arbitrates among the two incoming links every cycle allowing at most one request
to proceed to the next level of the tree. In the last stage, the tree can deliver
up to one request per cycle, which is the speed at which L2 can accept requests.
Typically, the L2 requires some cycles to serve a request, but does it in a pipelined
way so a new request can be accepted every cycle. Finally, requests are served
through a 1-to-Nc pipelined tree where only routing is needed (no arbitration is
required).

Symmetrical arbitration policies provide homogenous bandwidth assignments
to the tasks running in the different cores. We analyze how the policies used for
MBPTA-compliant buses [Jalle et al. (2014)] and already explained in Chapter 2
apply to the tree NoC. In the following explanation we assume that all links have
requests ready to be arbitrated. Later in this section we describe how contention
must be modeled for pWCET estimation purposes.

33

4.3 Single-Criticality pTNoC

• With Round Robin (RR) each arbiter in the tree selects each of its incoming
links alternatively in a deterministic manner. Given Nc cores, a request may
be delayed by up to Nc−1 requests from the other cores either because they
are in front of it in a queue in the same link or because they are arbitrated
first from another link in any router.

• Lottery (LOT) makes each arbiter select randomly one of the two links. As
for RR, the latency for traversing the tree includes arbitration and queueing
time. However, differently to RR, arbitration delay can be arbitrarily long
with decreasing probabilities. The probability of waiting 0 cycles due to
arbitration in one arbiter is 1/2, 1 cycle 1/4, 2 cycles 1/8, and so on and
so forth. In general, the arbitration delay in an arbiter is C cycles with
probability 1/2C+1.

• Random-permutation (RP) is implemented by making each arbiter produce
a random permutation of two elements, 0 and 1, every two cycles, where 0
(1) indicates that the left (right) link is granted access. Thus, arbitration
delay in one arbiter is 0 cycles with probability 1/2, 1 cycle 3/8 and 2 cycles
1/8 [Jalle et al. (2014)].

Overall, any arbitration policy valid for the bus can also be adapted for the
pTNoC and, as we show later, pTNoC outperforms the bus regardless of the
arbitration policy used.

4.3.1 Factoring in NoC contention

As mentioned in Chapter 1, and in other proposals in this Thesis, pWCET esti-
mates need to be time-composable, i.e. they should hold valid regardless of the
tasks running in the other cores. Time composable pWCET estimates greatly sim-
plify incremental qualification and, by extension, help dealing with the increased
timing verification and validation costs of CRTES. This is achieved by allowing
each system component to be subject to formal timing validation in isolation and
independently from other components.

In time-deterministic architectures measurement-based techniques rely on some
hardware support, such as the worst-case mode [Paolieri et al. (2009a)]. In [Paolieri
et al. (2009a)], each task is run in isolation at analysis time and hardware makes
each request to experience the maximum, upper-bound, delay (UBD) that it may
suffer during operation due to contention. In the case of the NoC this implies
modeling the worst-case traversal time [Panic et al. (2014)].

We use the worst-case mode for time-deterministic architectures and for time-
randomized architectures when deploying round-robin arbitration since contenders
could issue requests systematically with specific time intervals that lead always to

34

4.4 Mixed-Criticality pTNoC

the worst contention. Instead, for LOT and RP arbitration we create a probabilistic
highest contention mode (phcm) where the task under analysis runs in isolation
in one core. In all other cores dummy requests are generated so that those cores
always have one request in flight in the pTNoC, matching the maximum load a
core can put on the tree. This is the worst case because, even if contenders issue
requests systematically with specific time intervals, randomized arbitration policies
produce random delays on those requests and thus, change – randomly – those time
intervals. Thus, the worst scenario is the one we consider, with maximum load. To
that end, dummy requests are simply discarded by the L2 cache, that immediately
notifies the corresponding core so that it can issue a new dummy request in the next
cycle. This creates a scenario with maximum contention where requests progress
randomly through the pTNoC. Those requests suffer contention in the L2 due to its
limited bandwidth. Overall, this produces the highest (probabilistic) contention
that the task under analysis can suffer during operation.

4.4 Mixed-Criticality pTNoC

Safety-related functions are assigned a safety (assurance) level that defines the
steps required in the design, verification and maintenance of the hardware/software
components used by those functions, which inherit functions’ safety level. Safety
levels are described by specific standards in each domain. For instance, in the
avionics domain safety standards such as DO-178B/C[RTCA and EUROCAE
(2011)] classify components into 5 different levels, from Design-Assurance Level
(DAL) DAL-A to DAL-E, where DAL-A stands for the most critical level.

In the time domain, each safety-level requires providing a set of guarantees –
which vary across levels – and sufficient evidence on the timing behavior of the
tasks. For instance, the most critical real-time tasks (e.g., DAL-A in avionics or
ASIL-D in automotive) may need strict performance guarantees provided in the
form of a reliable WCET estimate.

Orthogonal to this, in each safety level, performance requirements may be
heterogeneous depending on the type of application. While some critical real-
time applications may need little (yet guaranteed) performance to operate on the
little data read from some simple sensors, other critical real-time applications
such as 3D Path Planning [Ungerer et al. (2013)] for Unmanned Aerial Vehicles
may require high performance to process large amounts of data. Likewise, low-
criticality and non real-time applications may also have heterogeneous (average)
performance needs. These heterogeneous performance needs translate into hetero-
geneous bandwidth allocation requirements when using the NoC. In this section
we describe different approaches to deal with mixed criticalities, WCET, and av-
erage performance guarantees. Our solutions provide flexible means to satisfy the

35

4.4 Mixed-Criticality pTNoC

Figure 4.2: Heterogeneous guarantees in a tree NoC for an 8-core setup.

heterogeneous needs of mixed-criticality applications with a wide variety of per-
formance requirements. For instance, let us assume we want to consolidate one
DAL-A real-time task (T1) with commodious deadline, one DAL-B real-time task
(T2) with a tight deadline, and six DAL-E (non-critical) tasks (T3 to T8) with no
real-time constraints. In this scenario, our approach enables, for instance, allocat-
ing 20% of the guaranteed bandwidth to T1, 80% to T2, and remaining tasks are
allowed to transmit requests opportunistically, but without timing guarantees.

4.4.1 Heterogeneous Bandwidth Assignments

Heterogeneous bandwidth allocation can be implemented by assigning different
priorities to the requests of the different cores. In pTNoC we divide cores into
several priority levels (layers). Priorities across layers may change as well as inside
each layer, depending on the particular approach followed. We explore three such
approaches.

(a) Inter-layer priorities. Each core is assigned a priority level with the requests
from upper-layers prioritized over the requests of lower layers. Hence, guaranteed
bandwidth can only be provided for the cores within the top layer. The bandwidth
that the rest of the cores can enjoy is that left by higher-priority cores. For
instance, in the avionics domain, DAL-E applications, which require only best-
effort performance guarantees, are the only ones that could be assigned to a layer
other than the top one.

Priorities can be implemented in each node of the tree keeping separate buffers
for each priority level in those nodes where requests with different priorities may
be arbitrated. The arbiter selects one request in this order: first high-priority
requests from the selected link, followed by high-priority requests from the non-

36

4.4 Mixed-Criticality pTNoC

Figure 4.3: Example of an arbiter implementing inter- and intra-layer priorities.

selected link, low-priority requests from the selected link and, finally, low-priority
requests from the non-selected link.

(b) Intra-layer priorities. Cores in each priority layer can be provided het-
erogeneous bandwidth allocation, which can be implemented in different ways.
In the case of RP we create permutations with as many slots as needed with
high-priority links being assigned more slots. For instance, one could distribute
bandwidth across links as shown in Figure 4.2 in which all cores are in the top
priority layer: cores 1 and 2 (Group1 or G1) get the highest bandwidth: 0.32 (0.5
in the first arbiter and 0.8 in the second and the third). Analogously, cores 3
and 4 (G2) get 0.08 of the bandwidth each and cores 5 to 8 (G3) get 0.05 of the
bandwidth each. In the case of a bus, the same approach can be implemented by
increasing the number of slots for cores with higher bandwidth requirements.

(c) Mixed-layer priorities. The two previous approaches can be combined such
that all requests from cores in higher-layer priorities are prioritized over the cores
in lower-layers. And within each layer bandwidth can be allocated homogeneously
or heterogeneously (intra-layer priorities).

Note that intra-layer priorities, despite they can be set to allocate the band-
width in a non-homogeneous way, provide the same level of guarantees to all cores
in the layer. In that respect, while intra-layer priorities only change the bandwidth
allocation, inter-layer priorities change both bandwidth guarantees and allocation.

Overall, different degrees of bandwidth (from full bandwidth to no bandwidth)
can be guaranteed to the different cores, thus enabling a flexible scheme to config-
ure the NoC to the needs of tasks in different criticality levels.

37

4.5 Evaluation

4.4.2 Implementation Remarks

pTNoC provides special purpose control probabilistic bandwidth allocation (pba)
registers, which can be written with standard instructions in most ISAs, e.g. mfsr
(move from special register) and mtsr (move to special register). How these reg-
isters are set by the RTOS is explained with an illustrative example below.

In principle, each link of each arbiter needs as many queues as priority layers.
One can restrict this to having only 2 priority layers to reduce hardware overheads,
especially because only the highest priority layer has true guarantees and so it
makes little sense having several low priority layers.

Inter-layer priorities are implemented by prioritizing the requests in high-
priority queues over the ones in low priority queues. Intra-layer priorities are
implemented by allowing W -slot windows in the arbiters and using pba to deter-
mine which link (left (0) or right(1)) is granted access. For instance, let us assume
W = 4-slot windows, which allows managing the bandwidth in 25% steps (e.g.,
25% per slot) in each arbiter. In a 3-layer tree for an 8-core setup, this allows the
bandwidth to range from 42.2% (75% in all arbiters, so 0.753) to 1.6% (0.253). To
program the pba the arbiter creates 4-bit random permutations for each priority
layer, see Figure 4.3. If only 2 priority layers are allowed, then 2 separate sets
of pba registers are needed, one for each layer. In the example in Figure 4.3, for
the high-priority traffic the left link is assigned 75% of the bandwidth, i.e. there
are three 0’s in each permutation out of four bits. For the low-priority traffic,
bandwidth is divided evenly, i.e. the number of 0’s and 1’s is the same.

4.5 Evaluation

We model a 8/16-core processor with pipelined in-order cores. We use SoClib [Pouil-
lon et al. (2009)] and gNoCsim [NanoC (2010)] simulators as explained in Chap-
ter 3. Each core has separated first level instruction (I1) and data (D1) caches, a
partitioned-across-cores L2 cache and main memory. I1 and D1 are 4KB, 8-way
and 16B/line and implement random placement and replacement policies [Kos-
midis et al. (2013a)]. The L2 is 256KB 8-way and also implements random place-
ment and replacement policies. L2 is non-inclusive [Kosmidis et al. (2013b)]. D1
uses write-through miss policy, I1 is read-only and L2 is write-back. Hit/miss
latency is 1 cycle for I1/D1 and 3 cycles for L2. L2 is accessed either through
pTNoC where each arbitration stage takes 1 cycle, or through a non-pipelined
bus whose latency is 3 (4) cycles in the 8-core (16-core) case. The latency values
used for the tree and the bus reflect the improved scalability of the tree where
arbitration is performed on a distributed manner and the maximum link length is
decreased [Roca et al. (2012)].

38

4.5 Evaluation

Figure 4.4: pWCET estimates for the 16-core bus and tree-based multicores nor-
malized w.r.t. bus-RR.

Figure 4.5: Request delay in a tree for an 8-core setup.

We make use of the proposal in [Paolieri et al. (2009a)] to make access to main
memory be jitterless as needed for MBPTA. This further allows factoring out the
variation of memory on pWCET estimates, making that NoC results can be better
understood.

4.5.1 Homogeneous bandwidth setups

First we evaluate pTNoC under an homogeneous bandwidth setup in which all
cores are provided the same level of guarantees, i.e. all cores are in the same
priority layer.

pWCET estimates. We compare the pWCET estimates obtained with MBPTA
for the 3 arbitration policies, namely RR, LOT and RP; for both the bus and the

39

4.5 Evaluation

tree with 16 cores. Results, shown in Figure 4.4, are normalized w.r.t. the bus
implementing RR arbitration, hence, the higher the value for an arbitration policy
the worse. Due to high number of different setups, we show average results across
all benchmarks as well as results for few individual benchmarks corresponding to
cases where differences are large (idctrn), small (basefp) and close to the average
case (aifirf). As shown, the tree NoC always leads to tighter pWCET estimates
than the bus regardless of the arbitration policy used (20% for RR, 25% for LOT,
16% for RP). This occurs because the tree has much higher guaranteed through-
put due to its pipelined fashion. When comparing the pWCET across arbitration
policies for the tree, we observe that RP is the best choice because its maximum
and average latency to traverse the tree is equal or lower than that for the other
policies.

Average performance during operation. While WCET is the most im-
portant metric in CRTES, we also evaluate average performance when real NoC
traffic is experienced rather than worst-case traffic. Given that real traffic is low
in the NoC, contention occurs seldom. Thus, tree NoC average execution time is
only 3.4% lower than that for the bus. Differences across arbitration policies are
negligible (well below 0.1% for both the bus and the tree).

Per-request tree delay. Figure 4.5 shows the per-request delay histogram
to traverse the tree for the different arbitration policies at analysis time. Results
correspond to the a2time benchmark, although all benchmarks show very similar
distributions. As shown, for the RR policy its worst-case traversal time of the NoC
is 10 cycles. LOT takes around 7.8 cycles on average, however, it may take any
number of cycles with decreasing probability. For instance, a latency of 15 cycles
is experienced around 1% of the times. Finally, RP leads to the lowest average
latency (7 cycles) and it never experiences a latency higher than 10 cycles (it is
10 cycles 0.5% of the times), which is its worst case. This is the reason for RP to
outperform the other policies for the tree.

4.5.2 Heterogeneous bandwidth setups

In order to study the case of mixed-criticality systems with heterogeneous perfor-
mance requirements, we evaluate different setups:

1. Inter-layer priorities. First we evaluate a setup where only one core is in
the high-priority layer (E1-prio) and the rest of the cores are in the low-
priority layer; and also a setup in which two cores are in the high-priority
layer (E2-prio), in particular cores 1 and 2, while the rest of the cores are in
the low-priority layer.

2. Intra-layer priorities. All cores are in the high-priority layer with different
intra-layer priorities.

40

4.5 Evaluation

Figure 4.6: WCET estimates for the tree-based 8-core normalized w.r.t. non-
priority RP case. Values on top of the columns show the guaranteed bandwidth
in each case.

pWCET 8-core setup. In this case for the latter setup we consider 3 groups
of cores with priorities as shown in Figure 4.2: G1 (cores 1 and 2), G2 (cores 3 and
4) and G3 (cores 5, 6, 7 and 8), with G1 having more bandwidth than G2 and G2
more than G3. We obtained pWCET estimates for each benchmark in each group
(G1-3) during analysis time as explained in Section 4.3.1.

Figure 4.6 shows the pWCET estimates for the tree NoC for each arbitration
policy normalized w.r.t. the homogeneous bandwidth (no-prio) case averaging
values across all EEMBCs. The numbers on top of each column correspond to
the (theoretical) guaranteed bandwidth in each case. I.e., in no-prio each of the 8
cores should get 1/8 of the bandwidth and for the E1-prio and E2-prio case each
core can get full and half of the guaranteed bandwidth respectively.

In the case of E1-prio and E2-prio results correspond to the benchmark(s) run-
ning with high priority. In both cases, we observe how our proposal effectively
reduces the pWCET estimate for programs running in the core(s) in the top prior-
ity. For the case of intra-layer priority we observe that cores 1 and 2 in group G1
reduce their pWCET estimate by taking bandwidth from cores in groups G2 and
G3, whose pWCET estimates are affected, specially for cores in G3. In general, the
differences among bandwidth allocations are relatively small. The reason is that
requests quickly get to the top arbiter since buffers in each link are large enough.
Therefore, contention mostly occurs in that arbiter, thus creating relatively low
variability across cores sharing the same link in the top arbiter. Moreover, intra-
layer priorities in this top arbiter have a much larger impact than those in other
arbiters due to the same reasons: requests mostly queue in the top layer.

pWCET 16-core setup. For the 16-core intra-layer setup we used a configu-

41

4.5 Evaluation

Figure 4.7: 16-core Mixed criticality setup

Figure 4.8: Request delay for a 16-core tree

ration similar to that for 8 cores as shown in Figure 4.7, but modifying priorities in
the top arbiter to illustrate its dominant effect. The delay histogram for requests
in each priority group are shown in Figure 4.8. pWCET estimates for this setup
are shown in Figure 4.9. On top of each column we show the (theoretical) allocated
bandwidth to each group.

Trends are analogous to those in the 8-core setup. For instance, E1-prio pro-
vides the best pWCET estimate for the core with high priority, and it is followed

42

4.5 Evaluation

Figure 4.9: pWCET estimates for the 16-core setup for different arbitration policies
normalized w.r.t. non-priority RP case.

by E2-prio for the 2 cores with high priority. Also, the groups of cores with high-
est G1 and lowest G4 have higher and lower pWCET estimates than the case of
homogeneous priorities respectively. This correlates with the fact that the higher
the bandwidth, the lower the pWCET estimate. Similar trends are observed for
G2 and G3. The delay histogram in Figure 4.8 already shows that requests in G1
experience the lowest delay across groups and lower than no-prio, thus tasks in
G1 obtain lower pWCET estimates than those for other cases. G2 and G3 ob-
tain slightly worse pWCET estimates, as expected based on the delay histogram.
No-prio performs a bit worse and G4 is the worst case among those, which also
matches with the expectations based on the delay histogram.

It can also be observed that G2 and G3, despite having lower bandwidth than
no-prio, have lower pWCET estimates. As explained before, this occurs because
requests reach the top arbiter experiencing relatively low contention, but most
contention occurs in the top arbiter where requests are queued until sent to L2.
Therefore, bandwidth allocation in the top arbiter has much higher influence than
that in the other arbiters. Since cores in G2 and G3 have higher bandwidth in the
top arbiter than cores in no-prio, their pWCET is lower. Thus, pWCET differences
in the 16-core setup are lower than in the 8-core case because priorities in the top
arbiter are similar across links (0.6 vs 0.4) in the 16-core case, and unbalanced (0.8
vs 0.2) in the 8-core case.

We could have used a different bandwidth distribution in the top arbiter in the
16-core case (e.g., 0.8 vs 0.2). This would have increased the bandwidth for cores
in G1, G2 and G3 at the expense of reducing it for cores in G4. However, even if
the theoretical bandwidth for cores in G1 is much higher than that in G3 (25.6%

43

4.5 Evaluation

for G1 cores vs 4% for G3 cores) real bandwidth is very similar for cores in G1 and
G3 and performance differences are completely negligible (around 1% in terms of
pWCET estimates). As explained before, by allowing requests to proceed to the
next arbiter as long as they were granted access, made them reach the last arbiter
very quickly. The main reason is that buffers were virtually-unlimited. By varying
the bandwidth in the top arbiter this limitation could not be removed.

Thus, another direction to investigate a fine-grained control of the bandwidth
allocation in the pTNoC is the impact of the size of the buffers. For that purpose
we have obtained the histogram of delays for requests in each group (from G1
to G4) for two different buffer sizes (virtually-unlimited, so size 8, and minimal,
so size 2). Note that a buffer size of just 1 entry would not allow back-to-back
requests arriving through the same tree port to be processed immediately, thus
introducing 1-cycle bubbles in between. Thus, the minimum buffer size considered
is 2 entries. The histogram for the virtually-unlimited buffer size is shown in
Figure 4.10a. As expected, the delay histogram for cores in G1, G2 and G3 are
almost identical, where G1 is slightly better than the others and G3 slightly worse.
When reducing buffer sizes to only 2 entries, heterogeneous arbitration in lower-
level arbiters becomes more relevant and this reflects in the histogram of delays.
This is shown in Figure 4.10b. We observe that differences between G1 and G2
are still negligible. By having 2-entry buffers, requests from G1 and G2 (up to
4) reach quickly the two top-level arbiters where up to 4 requests can be stored
from their part of the tree. Hence, contention in the bottom-level arbiters is still
very low and so, heterogeneous arbitration there is still ineffective. But there is
bigger difference for requests from G3, and G4 requests obtain latencies with a
much wider spread.

The impact of the different buffer sizes on pWCET is shown in Figure 4.11.
Results have been normalised w.r.t. the case where bandwidth is allocated homo-
geneously across cores and the buffer size is 8. We observe that pWCET estimates
for G1 and G2 improve slightly when decreasing buffer size due to the improved
efficiency of the bandwidth allocation scheme with lower buffering capabilities.
This latter fact also reflects in G3, whose pWCET estimates grow since now its
effective bandwidth is lower due to having to compete against G1 and G2 requests
in the third-level arbiter, where G3 has lower bandwidth allocated. Finally, cores
in G4 get slightly higher pWCET estimates despite having lower average latency
for requests. This stems from the fact that execution time variability is higher
in some cases due to the larger latency range for requests. Still differences w.r.t.
large buffers are low.

Average performance. We have also evaluated average performance when
running under no-prio, inter- and intra-layer priority configurations. Figure 4.12
shows the average performance of all tasks in the workload for the 16-core setup.

44

4.5 Evaluation

(a) Virtually-unlimited buffer size (8)

(b) Minimal buffer size (2)

Figure 4.10: Histogram of delay for requests for different heterogeneous groups

pTNoC effectively provides both, heterogeneous bandwidth guarantees and allo-
cation, with very reduced impact on average performance. For the inter-layer
configurations the slowdown is less than 5.5%. Differences come from the case
where several programs with high memory bandwidth requirements fall in the
same workload, some of them being in the top priority cores (thus creating plenty
of high-priority traffic) and others starving systematically in the low priority cores.
For the intra-layer configuration giving higher bandwidth to some cores negligibly
improves average performance across all cores w.r.t. the no-prio setup. Average
performance is just 2% better for G1 w.r.t. no-prio, 0.5% worse for G4 w.r.t.
no-prio and 0.4% better across all groups.

4.5.3 Implementation and Energy Results

We have implemented the proposed tree design using the 45nm technology open
source Nangate library [Inc. (2014)] with Synopsys DC. We have used M1-M4
metallization layers to perform the Place&Route with Cadence Encounter of the
different arbitration nodes. To determine the placement of the different arbitration
nodes we have followed the approach proposed in [Roca et al. (2012)] to minimize
link length. Table 4.1 summarizes the implementation results for 8- and 16-core

45

4.5 Evaluation

Figure 4.11: pWCET estimates of EEMBC normalised w.r.t. homogeneous band-
width and unlimited buffer size in the arbiters.

Figure 4.12: Average execution times for 16 cores for different arbitration policies.

trees using two priority layers. Results for a bus implementation are also shown
for comparison purposes. Area and delay results in the table are normalized w.r.t.
an 8-core mesh NoC. As shown, tree NoCs require lower area than the 2D mesh
network because the tree NoC implements only the resources required to perform
all-to-one communication. However, as expected, the area required for implement-
ing the tree is larger than that required for the bus. Critical path delay results
shown in the table determine maximum achievable frequency of the different NoC
designs. Maximum achievable frequency mainly depends on two factors: network
size and arbitration inputs. For the bus and the tree, network size impacts opera-
tion frequency as it determines the maximum link length required in the floorplan.
The number of arbitration inputs or contenders is given by the number of layers
used to perform the arbitration. As shown in Table 4.1 pTNoC shows good scal-

46

4.6 Comparison of tree-based manycore architectures

Table 4.1: Results of the synthesis normalized w.r.t. 8-core mesh values. Absolute
values are also provided for completeness.

Area
8-core 16-core

mesh tree bus mesh tree bus

Relative 1 0.54 0.38 2.30 1.55 1.24

Absolute (104µm2) 18.4 10.0 7.0 42.3 28.6 22.9

Delay
8-core 16-core

mesh tree bus mesh tree bus

Relative 1 0.90 1.33 1 0.96 1.61

Absolute (ns) 0.83 0.75 1.1 0.83 0.80 1.34

ability up to 16 nodes unlike the bus that shows a delay 1.67× and 1.47× worse
than the pTNoC for 8 and 16 cores, respectively. Moreover, while the number
of arbitration layers penalizes maximum achievable frequency, its impact can be
contained if only two arbitration layers are used as proposed in this Chapter. Note
that results shown in the table are for the case of RP. However, results for RR and
LOT arbitration, also computed but not shown in the table, are roughly the same.

We have also computed energy values when executing several applications with
the proposed NoC design. In particular, we have computed values for EEMBC
benchmarks and for one synthetic benchmark. The synthetic benchmark is a corner
case where high number of misses in L1 occur to create high contention in the
NoC. Differences in energy measurements for regular benchmarks (EEMBC) are
imperceptible while RP behaves slightly better (1.5%) in the case of the synthetic
benchmark. The conclusions we extract from these measurements is that the very
low implementation overhead of RP has negligible impact in energy values even in
the least favorable scenario (low contention) while the reduction in the execution
time provided by RP provides slightly lower energy values in the most favorable
scenario (high contention).

4.6 Comparison of tree-based manycore archi-

tectures

In this Chapter we have already seen that it is possible to obtain tight WCET
estimates with the time-randomised tree-based NoCs and how those designs are
suitable for mixed-criticality CRTES. In this section we integrate these designs
in a MBPTA compliant multicore and perform an in-depth comparison of time-

47

4.6 Comparison of tree-based manycore architectures

deterministic and time-randomized tree-based setups in terms of WCET estimates.
Tightness of WCET estimates on time-deterministic and time-randomised plat-

forms has only been compared in single-core setups [Abella et al. (2014)]. Those
platforms have been chosen for the sake of allowing a fair comparison, despite tar-
geting suboptimal platforms. In this section we identify hardware setups meeting
the requirements of each approach while being comparable. This basically im-
plies using the same hardware setup varying placement and replacement policies
in caches, as well as arbitration policies in shared resources such as the NoC and
the memory controller. Next we explain hardware setups for both paradigms and
what is necessary for obtaining WCET estimates.

4.6.1 Time-Deterministic platform

Timing Analysis Technique

In the case of the Time-Deterministic architecture, we use Measurement Based
Deterministic Timing Analysis (MBDTA) to obtain WCET estimates. In this
regard, time-composable bounds to traverse shared resources have to be factored
in when deriving WCET estimates. As shown in [Paolieri et al. (2009a)], the
architecture needs to guarantee that the maximum delay a request will suffer has
an Upper-Bound-Delay (UBD). UBD is a function of the number of contenders
and access time to the shared resource. Once the UBD has been calculated, we
need to enforce the shared resource to have a fixed latency of exactly UBD cycles
on each access during the analysis phase.

Tree NoC

In the case of the tree NoC, we use round-robin arbitration. Given that it is fully
pipelined, the UBD corresponds to the zero-load latency (zll) – so the latency to
traverse the NoC with no contention – plus 1 cycle per contender, which is the
maximum delay that each other core could produce on each request of the Task
Under Analysis (TuA) in one of the arbiters. In our fully-pipelined tree, the zll
matches the number of levels of the tree, which is dlogNce. Therefore, the UBD
of the tree NoC is as follows:

UBDnoc = (Nc − 1) + dlogNce (4.1)

Memory controller

Likewise, for WCET estimation purposes, the memory controller latency is as-
sumed to match the number of contenders multiplied by their access latency, which

48

4.6 Comparison of tree-based manycore architectures

is assumed to be fixed. For instance, if the core count is Nc and the memory con-
troller latency to accept a new request is Lmc, then the UBD – the highest delay
that could be experienced due to contention – of the memory controller before
processing a new request of the TuA is as follows:

UBDmc = (Nc − 1) · Lmc (4.2)

Cache memory

Both L1 and L2 cache memories implement time-deterministic placement and re-
placement policies, i.e. modulo placement and LRU replacement. During the
analysis phase, in the time-deterministic paradigm, for cache memory we have to
either (1) provide worst case alignment of the memory objects, which is an open
problem or (2) fully control what will happen at analysis and operation time. The
first solution is expensive and not usually not doable1. Thus, we assume the second
solution, in which we guarantee that the TuA will have the same memory place-
ment at deployment and at analysis. Note that this assumption is very optimistic
and plays in favor of the time-deterministic paradigm against which we compare
our approach.

In both cases (deterministic and probabilistic setup) we use hardware way-
based cache partitioning technique (columnization) [Chiou et al. (2000)] to prevent
inter-task interference in L2 cache space.

4.6.2 Time-Randomized platform

Timing Analysis Technique

In order to derive WCET estimates, in the case of the Time-Randomized platform
we use MBPTA as described before in Chapter 3. During the analysis phase we
probabilistically upper bound the behaviour of all components.

Tree NoC

We use the tree-based NoC with random-permutation symmetrical arbitration
policy, as we already shown its superior performance compared to LOT and RR
arbitration. Moreover, as explained before, we use probabilistic highest contention
mode (phcm) during the analysis phase, as needed for obtaining WCET estimates.

1In fact controlling memory placement, and so cache placement, is one of the main difficulties
to obtain reliable WCET estimates with MBDTA.

49

4.6 Comparison of tree-based manycore architectures

Table 4.2: Processor setup

DL1, IL1 configuration 16KB 4-way 32B/line
DL1, IL1 latencies 1 cycle hit/3 cycles miss
DL1 policies write-through, write-no-allocate
IL1 policies read-only
L2 configuration (per-core) 32KB 4-way 32B/line
L2 latencies 2 cycles hit/7 cycles miss
L2 policies write-back, write-allocate, non-inclusive
DTLB, ITLB configuration 16 entries fully-associative
Tree NoC latency 1-cycle per level
Memory latency 16 cycles
Memory inter-request delay (Lmc) 27 cycles

Table 4.3: Processor configurations evaluated

Core count 4 cores 8 cores 16 cores
Time-randomised RAN4 RAN8 RAN16 RANcache16 RANnoc16 RANmc16
Time-deterministic DET4 DET8 DET16

Memory controller

The time-Randomized memory controller we use in this comparison implements
a random-permutation policy [Jalle et al. (2014)], with separate queues for each
core. During the analysis phase we need to assume that every core will have the
request ready in every arbitration round, so to guarantee that we upper bound the
behaviour at operation time.

Cache memory

For the L1 and L2 cache memory we use random placement [Hernández et al.
(2016) and random-replacement function [Kosmidis et al. (2013a)]. As mentioned
before, L2 cache memory is partitioned across cores.

4.6.3 Evaluation

Experimental Setup

We consider different setups. Time-randomised and time-deterministic ones are
referred to as RAN and DET respectively. We consider 4-core, 8-core and 16-core
setups. In the case of 16 cores, we also evaluate some setups where all compo-
nents are time-randomised except one: either caches, the tree NoC or the memory

50

4.6 Comparison of tree-based manycore architectures

Figure 4.13: pWCET for RAN16 normalised w.r.t. DET16.

controller are time-deterministic. For instance, whenever all components are ran-
domised except caches, we refer to this setup as RANDcache16. The complete list
of setups evaluated (and pairs compared) is shown in Table 4.3.

Evaluation Results

Next we compare the different time-deterministic and time-randomised setups. We
perform the analysis in two axes: (1) from the core count perspective and (2) from
the resource perspective. First we compare the two approaches with a varying
number of cores to observe how they scale. Then, we fix the 16-core setup as
the baseline and compare the time-deterministic setup against different versions
of the time-randomised one where one of the resources is made time-deterministic
to discount its effect and understand how each resource impacts WCET.

Core count scalability analysis

Results for the time-randomised setups with 16, 8 and 4 cores are shown in Fig-
ures 4.13, 4.14 and 4.15 respectively. In the case of the 16-core setup we provide
both, pWCET estimates and average execution time. As shown, pWCET esti-
mates are 13% lower for RAN16 than for DET16. If we further account for the
potential impact of other memory placements, then benefits can only grow since
RAN16 randomises cache placement, thus making memory placement irrelevant.
Instead, WCET estimates for DET16 are only valid as long as the memory place-
ment analysed is preserved during integration (and during operation). Otherwise,
the impact of other potential placements should be accounted for, further increas-

51

4.6 Comparison of tree-based manycore architectures

Figure 4.14: pWCET for RAN8 normalised w.r.t. DET8.

ing WCET estimates. Also, it can be noted that average execution time and
pWCET estimates for RAN16 are typically within a narrow 2-3% range.

When analysing other core counts (4 and 8), we observe that benefits of RAN4
and RAN8 slightly diminish w.r.t. those of RAN16, since pWCET estimates are
1-2% closer to those of their time-deterministic counterparts. One would expect
benefits being lower with lower core counts. However, with 4 cores L2 bandwidth
is highly utilised due to frequent store instructions and the use of a write-through
DL1. Therefore, by adding extra cores, increased utilisation creates delays for all
cores regardless of the arbitration policy. Hence, the relative gains cannot increase
noticeably.

Resource sensitivity analysis

In Figure 4.16 we show results for different setups, as explained in section 4.6.3.
All results are normalised to the baseline DET16 setup, in which all components
are time-deterministic. RAN16 is included for reference. We observe that making
cache deterministic makes little difference since random modulo performs almost
identically to modulo placement. Therefore, variations between RAN16 and RAN-
cache16 relate mostly to the statistical variability across samples that has some
influence on pWCET estimates. Still, RAN16 shows some (minor) benefits w.r.t.
RANcache16 since random variability introduced by the different components is
offset more easily when further sources of variability are introduced.

Instead, RANnoc16 shows that by making the NoC fully deterministic, benefits
w.r.t. DET16 disappear. This occurs because L2 accesses are very frequent and
hence, using upperbounded latencies instead of time-randomised ones increases

52

4.6 Comparison of tree-based manycore architectures

Figure 4.15: pWCET for RAN4 normalised w.r.t. DET4.

Figure 4.16: pWCET for different 16core setups normalised to RAN16 setup.

the latency for all those frequent requests. The fact that pWCET estimates for
RANnoc16 are slightly higher than WCET values for DET16 relates to the fact
that MBPTA provides necessarily pWCET estimates higher than actual measure-
ments. Since measurements in both setups are roughly identical on average, then
RANnoc16 is slightly worse than DET16 in terms of WCET estimates.

Finally, RANmc16 shows that making memory arbitration policy deterministic
has also some impact in WCET estimates. Still, such impact is not huge in general
since most programs hit in L2 and thus, memory is accessed seldom. However,
some programs access memory more often (e.g., cacheb), and thus their pWCET
estimates increase due to the higher memory latencies.

All in all, we conclude that the NoC is the most sensitive component in this
setup due to its high utilisation.

53

4.7 Conclusions

4.7 Conclusions

MBPTA has emerged recently as a powerful method to derive WCET estimates for
critical tasks in safety-related systems. Multicore designs providing the properties
needed by MBPTA have been presented in the literature, but they rely on a shared
bus to communicate cores and memory, and do not fit well mixed criticalities.

We have presented a MBPTA-compliant tree NoC, pTNoC, that outperforms
buses in the 8- and 16-core setups evaluated. pTNoC enables the realization
of mixed criticalities on multicores by managing different guarantee levels and
bandwidth assignments with minimum impact on average performance.

Our results for 16 cores show 16% to 25% average WCET reductions for our
tree w.r.t. the bus for different arbitration policies. Further WCET reductions
of up to 9% are obtained when using priorities for mixed criticalities. Also, our
results show that pTNoC incurs low area and energy costs.

Time-randomised architectures for manycores lead to reduced pWCET esti-
mates w.r.t. those obtained for time-deterministic setups. We have shown that
gains are highly independent of the core count as long as one shared resource – the
NoC in our case – is highly utilised. The impact of this high utilisation is further il-
lustrated in the per-resource analysis where we show that time-randomised caches
perform very close to time-deterministic ones, whereas using randomised access
policies for shared resources provides some significant gains in terms of WCET.

54

Chapter 5

PTA-compliant mesh NoC

Wormhole-based NoCs (wNoCs) are widely accepted in high-performance domains
as the most appropriate solution to interconnect a high number of cores1 on chip.
However, wNoCs suitability and ability to deliver low WCET estimates in the
context of critical real-time applications has not been demonstrated yet. In this
Chapter, in the context of probabilistic timing analysis (PTA), we propose a PTA-
compatible wNoC design that provides tight time-composable contention bounds.
The proposed wNoC design builds on PTA ability to reason in probabilistic terms
about hardware events impacting execution time (e.g. wNoC contention), discard-
ing those sequences of events occurring with a negligible low probability. This
allows our wNoC design to deliver improved guaranteed performance.

5.1 Introduction

Wormhole-based NoCs (wNoCs) are deployed in high-performance domains to con-
nect a high number of cores on-chip. However, wNoCs efficient use in the context
of CRTES applications has not been shown yet. Unlike buses or other existing cen-
tralized network architectures, wNoCs perform the arbitration of communication
flows in a distributed manner, which severely complicates the derivation of request
contention bounds as required in real-time domains. In this line, some works
show that, while reliable contention upper bounds can be provided for Commer-
cial off-the-shelf (COTS) wNoCs [Rahmati et al. (2013),Panic et al. (2016b),Panic
et al. (2016a)], those bounds are pessimistic, preventing an efficient use of high-
performance wNoCs for CRTES.

wNoC bounds are pessimistic because, whenever timing events can lead to the
stall of a request, they are assumed to occur systematically, and hence factored in

1Since CRTES industry has only certified single-core and few multicore systems, we assume
a high number of cores ≥ 16

55

5.1 Introduction

the derived contention bounds. At the NoC level, since many different flows with
different criticality levels might potentially be contending for different resources,
e.g. router ports, timing analysis techniques are forced to make the pessimistic
assumption that all contenders will simultaneously request the same resources. A
simple and intuitive way to reduce contention bound pessimism consists in get-
ting information about when and where communication flows in the wNoC will
occur such that the exact interference that requests experience can be reliably
and tightly factored in. Unfortunately, obtaining this low-level information is not
only out of the ability (and will) of end users, but it also breaks time compos-
ability. The lack of time composability occurs because one task’s load on the
wNoC affects the worst-case execution time (WCET) estimates of its corunners,
with devastating consequences in (incremental) system integration: any change in
a task requires reanalyzing all other tasks (i.e. performing regression tests), which
ultimately results in prohibitively high integration costs. Even worse, the WCET
of a critical task could depend on the accuracy of the information obtained for a
lower criticality task.

In this Chapter we propose several wNoC designs based on a new randomized
wormhole router design, which makes that the contention in the network has a
probabilistic behavior compatible with MBPTA requirements, thus leading to re-
duced contention bounds. The contributions of this Chapter can be summarized
as follows:

1. We integrate efficiently random permutation arbitration [Jalle et al. (2014)]
in wNoCs routers to avoid systematic bad behavior and make them amenable
for MBPTA.

2. We show that, while limiting the number of in flight requests in deterministic
wNoCs1 does not help reducing contention bounds, it helps reducing signif-
icantly those bounds in a probabilistic wNoC and thus, improves WCET
estimates.

3. We propose an alternative mechanism to control the injection of packets
in the wNoC based on controlling the frequency at which requests can be
injected in the network that outperforms regular injection limitation schemes
in high contention scenarios while requiring similar hardware complexity for
the network interfaces.

1In this Chapter we refer to a deterministic NoC as the one with a round-robin arbitration.

56

5.2 Problem Formulation

Table 5.1: Summary of the main symbols used.

Symbol Description
Zll zero load latency

WCD Time-composable upper-bound to contention delay

Fi Packet stream traversing the same source-destination route
and requiring the same grade of service along the path.

Hi Number of hops in a flow Fi

Rj
i Router (hop) j in a flow Fi (see Figure 5.2(a))

rki Packet (request) k in a flow Fi

NRj
i Number of queues that can potentially contend for an out-

put port that Fi is targeting at Rj
i

ω(i, j) Function that returns the index x of the worst possible
destination flow Fx that starts at the hop Rj+1

i and reaches
the worst possible destination in terms of indirect blocking
of packets of flow Fi

5.2 Problem Formulation

Deterministic time-composable bounds in COTS wNoCs are pessimistic since we
cannot make any assumption on the contenting flows and, therefore, we need to
assume that all flows will produce the highest interference. In this section we
describe the target setup and we show why contention bounds are pessimistic.

5.2.1 Network Baseline

We consider a mesh network topology as it is the most common topology used
in wNoCs, though the analysis presented in this section and the wNoC designs
proposed in this Chapter are also suitable for other network topologies (e.g. torus).
The symbols used in this Chapter are summarized in Table 5.1.

In our reference mesh wNoC configuration, each node comprises a PME (Pro-
cessor/Memory element) and a router that communicates with the other nodes.
The PME can be either a processor core, main memory, I/O, etc. In the network,
several traffic flows (Fi) may be active at the same time. Each node can be identi-
fied using (x,y) coordinates and the router located at coordinates (x,y) is referred
to as R(x, y).

In a wNoC, the routing algorithm determines the path that a packet follows
within the network, and consequently, the number of routers or hops (H), a given
flow requires to move from a source to a destination node. Hence, a router can also
be identified as Rj

i , in which j represents the hop j of flow Fi, when moving towards
its destination. Therefore, routing determines the flows that potentially contend
with Fi at every router in its path. Deterministic routing has been shown to provide

57

5.2 Problem Formulation

Figure 5.1: Router stages.

time analyzability [Rahmati et al. (2013)]. We use XY routing, as it is the preferred
deterministic routing algorithm for regular NoCs due to its low implementation
cost, although a similar analysis is possible for any other deterministic routing
policy. With XY routing, packets are forced to use the X dimension first: In the
X dimension the position of the target node w.r.t. the source node determines
whether to go right (X+) or left (X-) direction. The same approach is used for
the Y dimension. Once a packet is routed using the Y dimension, it cannot be
forwarded back to the X dimension. These routing restrictions determine the
maximum number of flows contending with Fi at a given router for an output port
(NRj

i).
Communication flows comprise multiple NoC packets. A packet is the minimum

arbitration unit in the network and it can be split into one or several flits (short
of control flow units). The first flit of a packet is called header flit and contains
the information required to forward the packet to the destination. We refer to the
k-th packet generated by flow Fi as rki .

A typical wormhole router comprises several modules including input buffers
(IB), routing (RT), virtual-channel allocation (VA), switch allocation (SA), and
crossbar traversal (X) modules. Figure 5.1 shows the canonical architecture of a
wormhole-based mesh router and the different stages of the router pipeline. When
a flit of a packet has enough space in the input buffer, the go signal of the link-
based flow control allows the incoming flit to be stored in the router input buffer.

Routing modules determine the router output port based on the destination

58

5.2 Problem Formulation

bits included in the control information of the header flit. Once the destination is
known, the target port is requested in the arbitration module. Then, based on a
given arbitration policy, the router arbiter decides which packet is granted access
to the output port. The majority of COTS wNoCs use round-robin to arbitrate
amongst packets requesting access to a given output port. Arbitration only occurs
at the packet level and for the header flit. Once a connection is established between
an input and output port, it remains until the tail of the packet leaves the router.
At this moment a new arbitration can be performed in case other requests are also
requesting this output port.

5.2.2 Contention in the wNoC

The latency experienced by a packet to traverse the network in the absence of
contention is referred to as zero-load latency (zll). However, contention may cause
the header flit to get stalled. When this happens, the remaining flits of the packet
get also stalled and latency experienced by a given packet is higher than zll.

The first thing to consider when computing the contention in the network
is the number of flows that will be actually contending for the different shared
resources. In our case, as we are after time-composable contention delay bounds,
no assumptions can be made on the particular active flows in the wNoC. That
is, it is assumed that any node in the network is entitled to send and receive
packets from any other node. Similarly, when computing the contention delay for
a packet, we assume that, by the time it is injected in the network, any other
potential contending flow is also active at that moment, transmitting its packets
in a way that it produces the worst possible contention scenario. In order to
reproduce the worst possible contention scenario we need to consider the worst
direct contention and the worst indirect contention [Kim et al. (1998)].

Let us illustrate the process of measuring contention in the wNoC with an
example. Let us consider a 3x3 wNoC setup like the one shown in Figure 5.2. We
want to measure the worst contention experienced by a packet Pi of flow Fi. Fi
is the flow originated at the node attached to R(0, 0) with destination the node
attached to R(0, 2). At R1

i , first router, a request rx coming from port X− might
be potentially contending with Pi for the same output port and in the worst-case
rx will be granted access first. However, due to the backpressure flow-control it is
not guaranteed that at the time rx is granted access it will leave the router as the
input buffer of the next router (R(0, 1)) might be occupied. In the plot R(0, 1)
input buffer is occupied by r′x. In general, to measure contention it is required to
iterate from the destination node backwards to analyze the time that is required
by a packet to leave a given router. That is, to have a slot available in an R(0, 1)
input buffer, we need to consider the time that r′x requires to leave R(0, 1) that in
turns depends on the time r′′x needs to leave the input buffer at R(0, 2). Equation

59

5.2 Problem Formulation

Figure 5.2: 3x3 Mesh.

5.1 was proposed in [Panic et al. (2016b)] and provides a general formulation for
the worst contention experienced in wNoCs under the scope of time-composability.

WCDi =

Hi∑
j=1

(NRj
i − 1)×

Hω(i,j)∏
m=1

NRm
ω(i,j)

 (5.1)

In the equation above, Hω(i,j) is the number of hops required by the worst
possible destination flow (Fω(i,j)), i.e. the flow that creates the worst contention

to the flow under analysis1. The first multiplicand (NRj
i − 1) corresponds to the

contention introduced by the round robin arbitration in each of the routers that

the flow Fi traverses. The second multiplicand
∏Hω(i,j)

m=1 NRm
ω(i,j) corresponds to the

indirect contention delay in each hop due to the worst possible destination flow
Fω(i,j).

The first question that raises from the contention formulation above is whether
the assumptions on top of which this model is built are pessimistic or not. We
want to know if considering that nodes in the network are injecting packets in an
uncontrolled manner or, in other words, that the number of in-flight requests per
node in the network is unlimited, is the reason why composable contention delay
bounds are pessimistic [Panic et al. (2016b)].

Interestingly, as already shown in [Panic et al. (2016b)], limiting the injection

1The worst possible destination depends on the routing algorithm as well as on the actual
number of ports that routers have. Sometimes it matches the farthest destination but this is not
necessarily always the case.

60

5.3 Probabilistic wNoC Designs

of the flow under analysis, has no impact on WCD since this only affects intra-task
contention and not the contention due to inter-task interferences. However, from a
global perspective considering that nodes in the network are only allowed to have
a limited number of requests in flight may limit the contention. For example, if
only one packet per core is allowed, a packet Pi will only be contending with Px
once and thus, potential conflicts will be reduced.

Let us reuse the previous example to analyze the impact that reducing the
number of in-flight requests has in the computed bounds. To do so, we consider
the most favorable scenario where only one in flight request per core is allowed. In
this 3x3 network setup (Figure 5.2) Fi experiences contention at 3 different points
that correspond to the 3 input buffers that Fi traverses to reach the destination
node. At R(0, 0) two possible requests might be contending with Pi, the ones
originated at sources attached toR(1, 0) andR(2, 0). AtR(0, 1) packets potentially
contending with Pi are the ones originated at R(1, 1) and R(2, 1). As only one
packet per flow is allowed if a request is contending with Pi at R(0, 0) then the
very same request cannot be at the R(0, 1) input buffer. Still, at R(0, 1) requests
from two different nodes are allowed. Moreover, the worst possible situation is
that those packets contending with Fi get ejected from the network as soon as
they are not contending with Fi packets so a new packet can be injected in the
network and contend again with Fi.

With the previous example we have illustrated that despite limiting the num-
ber of in-flight requests reduces the potential conflicts this does not necessarily
allow reducing contention bounds in the general case. The reason is that time-
composable WCET estimates require considering the worst possible interleaving of
requests in the wNoC and this causes, in general, worst situations to be also possi-
ble when allowing only one request in flight per-flow. In Section 5.4 we corroborate
this hypothesis with contention measurements.

5.3 Probabilistic wNoC Designs

Unlike deterministic wNoCs, probabilistic network designs do not require the tim-
ing analysis to consider that all accesses systematically experience their worst pos-
sible contention. Therefore, the probabilistic analysis made by MBPTA arises as
a suitable approach to reduce the pessimism factored in the contention in wNoCs.
To enable the derivation of pWCET estimates with MBPTA, two conditions must
hold in the wNoC design: (i) conflicts in the wNoC must have a probabilistic na-
ture (i.e. should occur with a given probability); and (ii) the execution conditions
(contention) under which the timing measurements of the application are collected
at analysis are actually an upper bound of those that will occur during operation.
Condition (i) requires modifications in the arbitration unit of the router (Sec-

61

5.3 Probabilistic wNoC Designs

tion 5.3.1) and condition (ii) requires defining a contention scenario which safely
upper-bounds the worst possible one (Section 2.1.2). In this section we present
how a COTS wNoC must be adapted to enable the derivation of tight pWCET
estimates with MBPTA.

5.3.1 MBPTA-compliant wNoC Router Design

To make a wNoC design MBPTA-compliant, we have to make packet jitter to
follow a probabilistic behavior. To do so, hardware changes are required in the
arbitration unit of the NoC router. An intuitive, but inefficient, MBPTA-compliant
policy to grant access to a given output port is to simply select one of the requests
randomly. This might cause a given request to take long (in theory infinite) time
to be granted access. Instead, from the different MBPTA-friendly arbitration
policies, we choose random permutations as it delivers superior performance and
bounded contention [Jalle et al. (2014)]. Random permutations grant access to N
contenders in a round-robin fashion, but in a random order. Such order changes
every N arbitrations, so that each contender is granted access once every N slots,
but in a random order.

To implement random permutations in the wNoC router, we modify the ar-
biter to be able to generate a random permutation Pi of all four inputs for ev-
ery output port, where the four inputs and the output port belong to the group
(X+, X−, Y+, Y−, In). Whenever one or more packets request access to a given
output port, the arbiter grants access according to Pi and an arbitration pointer.
When a permutation is generated the arbitration pointer points to the first input
port in the permutation. If the first input in the permutation is not requesting the
output port then the next input port in the permutation is selected. This process
is repeated until an input port with a pending request is selected. At this point
the arbitration pointer is moved to the input port in the permutation after the
one granted access. When the pointer reaches the end of the permutation, a new
random permutation window is generated.

When a new permutation is required, we generate a probabilistic arbitration
window (paw) comprising two arbitration windows (permutations) with all inputs
(pawlow and pawhigh). In this way, the generation of a new permutation occurs
when the pointer reaches the end of pawlow so that the new permutation is available
for the next arbitration. At that point, pawhigh becomes pawlow and the new
permutation becomes pawhigh. This avoids generating an arbitration window at
the same time that one of its elements needs to be selected. Figure 5.3 shows how
the proposed random arbiter works.

Hardware implementation. Random permutations can efficiently be imple-
mented as shown in [Jalle et al. (2014)]. We implement them for each of the 5
output ports using N = 4 inputs, so that they need only N · log2N bits for the reg-

62

5.3 Probabilistic wNoC Designs

Figure 5.3: Arbiter.

ister and N−1 random bits. Those random bits are produced by a pseudo-random
number generator as the one proposed in [Agirre et al. (2015)].

This router is the basic component on top of which the two probabilistic wNoC
designs proposed later in this Chapter rely on. The random arbitration performed
in this router allows introducing delays in the measurements to probabilistically
represent the contention in the wNoC. While arbitration decisions are random,
they carry out dependences across arbiters since the actual requests contending
for a given output port in a router often depend on the (random) decisions taken
in other routers. Any state of the wNoC in terms of contention moves to any other
state with a given probability due to the purely random nature of all arbitration
choices. Therefore, each sequence of states occurring during the execution of the
task under analysis occurs with a given probability and hence, each potential
execution time has a true probability to occur, as needed to apply MBPTA.

5.3.2 Reducing Contention in Probabilistic wNoCs

By combining worst-contention scenarios with the probabilistic router architecture
proposed in section 5.3.1 we can produce execution conditions during analysis that
upper-bound those during operation. Execution time measurements collected un-
der this setup can be used reliably to apply MBPTA in order to derive WCET
estimates. However, if we do not anyhow limit the contention in the network,
the stalls experienced by the requests of the task under analysis can be very high
and thus, WCET estimates will account for high contention for all requests, sim-
ilarly to the case of time-deterministic wNoCs. In time-deterministic wNoCs the

63

5.3 Probabilistic wNoC Designs

worst-case contention with, for instance, round-robin arbitration, is accounted for
all requests regardless of the degree of contention in the network. In the case of
probabilistic wNoCs, requests experience the actual contention of the worst-case
scenario modeled at analysis, which is enforced not to be exceeded during oper-
ation. Therefore, decreasing maximum contention by design opens the door to
obtaining lower WCET estimates with probabilistic wNoCs, as already shown for
tree wNoCs in Chapter 4.

In order to decrease contention and derive tighter WCET estimates in the
wNoC, we propose two mechanisms: (1) Limiting the number of in-flight requests
or (2) limiting the injection frequency. The first approach is more suitable for
applications that are sensitive to network latency while the latter for applications
with high throughput requirements. It is important to mention that reducing
the contention by reducing the number of requests in the network is suitable for
probabilistic wNoCs because, in such designs, requests interleave probabilistically
and therefore, worst-case alignment of flows and arbitration decisions do not need
to be accounted for systematically (as opposed to the case of time-deterministic
wNoCs). In other words, already proposed techniques for reducing contention in
time-deterministic wNoCs, such as injection throttling [Thottethodi et al. (2001)],
cannot obtain tighter WCET estimates.

Limiting the number of in-flight requests (LNR)

Contention in the network can be reduced by limiting the number of requests
in-flight for all the nodes in the network. With our proposed router design, we
remove the need to know the exact alignment and we only need to ensure that,
during the analysis phase, the task under analysis can have up to n requests in-
flight and all the other cores have always exactly n requests in flight. In this case,
execution times obtained for the task under analysis are obtained under worst
possible contention conditions.

Limiting injection frequency (LFR)

In this case, to be able to derive tight contention delay bounds, we propose to
control injection frequency at wNoC nodes. Similarly to the previous proposal,
during the analysis phase the task is run in isolation. Requests of the task under
analysis are allowed to be injected if at least Minimum Inter-request Delay (MID)
cycles have elapsed since the previous request was injected. For all the other cores,
we have to generate requests at the maximum allowed frequency, i.e. once every
MID cycles to create maximum contention.

Since we do not assume any specific pattern and maximum contention is en-
forced during analysis, time-composability is preserved. During operation all cores

64

5.4 Evaluation

can inject requests with the same restrictions imposed during the analysis (at least
MID cycles after the previous injection).

Hardware support

LNR can be easily implemented at the network interfaces by having a counter
for the number of requests in the network. This counter is increased when a new
request is injected in the wNoC and it is decreased once a response from an injected
request is received back at the node the task under analysis is attached to. If
such hardware mechanism is in place, the generation of the maximum contention
scenario at analysis can be implemented in software by using microbenchmarks
that constantly send requests to the node that affects the most the flows of the
core under analysis.

For the hardware implementation of LFR we need at the network interface a
counter from 0 to up to MID-1 cycles to control the maximum frequency at which
requests (from contenders and the core under analysis) are injected in the network.
Stressing scenarios can be reproduced by software means as in the previous mech-
anism.

5.4 Evaluation

5.4.1 Methodology

Target Processor Architecture

We model a wNoC-based manycore processor with pipelined in-order cores with
a simulator based on the SoCLib simulation framework [Pouillon et al. (2009)] as
explained in Chapter 3. Each core has separated first level instruction (I1) and
write-through data (D1) caches, a partitioned-across-cores write-back L2 cache
and main memory. I1 and D1 are 16KB, 4-way and 16B/line and the L2 has
128KB 4-way per core to discount L2 cache effects from the analysis. All caches
implement random placement and replacement policies [Kosmidis et al. (2013a)].
L2 is non-inclusive [Kosmidis et al. (2013b)]. D1 uses write-through miss policy,
I1 is read-only and L2 is write-back. The processor includes a 2-entry store buffer
allowing the pipeline to progress while having available entries. Hit/miss latencies
are 1 and 3 cycles for I1/D1 and 2 and 7 cycles for L2.

wNoC

We model the wNoC with an enhanced version of the gNoCsim [NanoC (2010)]
simulator, as explained in Chapter 3. Cores and memories are connected using

65

5.4 Evaluation

(a) 1 request 3x3 (LNR) (b) 5 requests 3x3 (LNR)
(c) Contention in a 4x4 with
LFR

Figure 5.4: Contention in 3x3 and 4x4 wNoC setups with LNR and LFR.

a mesh network topology with XY routing. For a NxN mesh we index routers
from R(0,0) to R(N-1,N-1). The shared L2 cache memory and a shared memory
controller are connected at router R(N-1,N-1). The memory controller implements
random permutation policy. Two virtual networks are used to split requests and
responses. Routers are pipelined and consist of 4 stages: input buffer, routing,
switch allocation, and crossbar traversal. In line with other works [Panic et al.
(2016b),Panic et al. (2016a)] in all wNoC setups we use single-flit packets only
to improve performance guarantees. The number of VCs is 1. Additional vir-
tual channels would not provide higher guaranteed performance in our setup, as
discussed in [Panic et al. (2016b)].

We compare our probabilistic wNoC designs with [Panic et al. (2016b)], since
it is the only wNoC setup that allows the derivation of composable WCET esti-
mates. The rest of the platform features are kept identical in both setups, the
deterministic one and the probabilistic, to understand the differences in the guar-
anteed performance provided by the wNoC since both setups are compatible with
MBPTA.

Workload

For characterizing wNoC performance we use synthetic traffic. Worst-contention
scenarios are created by artificially injecting requests in the wNoC targeting worst-
possible destinations and at the maximum allowable rate. As representative real-
time workloads we use the EEMBC Autobench suite [Poovey et al. (2009)].

5.4.2 Characterizing wNoCs Performance

We have used synthetic traffic to characterize the performance of the probabilistic
wNoC. Figure 5.4 shows the measured contention when nodes have 1 (a) and

66

5.4 Evaluation

Table 5.2: Minimum guaranteed throughput w.r.t ideal case. DET refers to a
deterministic setup.

3x3 4x4 6x6
LNR 0.333 0.119 0.118
LFR 0.856 0.795 0.327
DET 0.333 0.111 0.007

up to 5 (b) requests in a 3x3 network setup for the flow that goes from R(0, 0) to
R(2, 2). As shown, contention in a probabilistic wNoC setup follows a probabilistic
distribution. This probability distribution is centered around WCD (the worst
contention in a deterministic wNoC setup). Interestingly, the shape and location
of the distribution is almost identical regardless of the number of in-flight requests,
one or five.

The conclusions we draw from this analysis are twofold. First, as shown
in [Panic et al. (2016b)], worst-contention situations in the wNoC are also possible
when allowing only one request in-flight per core. Second, probabilistic wNoCs do
not allow reducing network contention per se as in average the worst contention
experienced in the network remains the same. Note that having contention delay
following a distribution is caused by the way arbitration windows in the different
routers align. Sometimes the interleave with random arbitration windows makes
requests progress fast and sometimes makes them get stalled longer.

Figure 5.4c shows the results of an additional experiment that analyzes to what
extent the contention in the network can be reduced by controlling the frequency
at which network interfaces issue requests. As shown, average contention delay for
a 4x4 mesh decreases for our probabilistic wNoC as we decrease injection frequency
flattening when the total injection rate of the mesh leads to a non-saturated net-
work so that traffic effects decrease. Contention starts to decrease at an injection
frequency of 1 request every 16 cycles per core, so that all 16 cores inject at most
1 request per cycle in total on average, which is the maximum ejection rate of the
network when all nodes target the same destination. On the other hand, with de-
creasing injection frequency we also postpone requests of our core, so then we need
to find a good balance between low contention and large delay for our requests.

Table 5.2 shows minimum per node guaranteed throughput normalised w.r.t.
the ideal scenario in which a node in a NxN wNoC setup is able to eject flits from
each of the nodes at a 1/(NxN) rate. As shown in the table, both probabilistic
setups outperform guaranteed throughput values provided by the deterministic
wNoC setup and LFR is the one able to retrieve more bandwidth. The determin-
istic wNoC setup provides very poor bandwidth guarantees for big and medium

67

5.4 Evaluation

(a) 3x3

(b) 4x4

Figure 5.5: LNR pWCET estimates normalised w.r.t. a deterministic wNoC (Ln
means up to n requests in-flight allowed).

size wNoCs because of the distributed nature of the arbitration, which allocates
a very small fraction of the bandwidth to the farthest nodes when the network is
fully congested [Panic et al. (2016a)].

5.4.3 Performance Evaluation

For evaluating the performance guarantees of our probabilistic wNoC setups, we
use the EEMBC single-threaded workloads as the task under analysis. In these
experiments, the task under analysis is placed at the node attached to R(0, 0) and
the rest of the cores are forced to cause worst-possible contention as described
in Section 5.3. Figure 5.5 shows the pWCET estimates achieved by limiting the

68

5.4 Evaluation

number of in-flight requests (LNR) for the different benchmarks. Results are
normalized w.r.t. the case of the deterministic wNoC. All the existing task com-
munications target the shared memory controller that is attached to R(2, 2) in
the 3x3 case and to R(3, 3) and R(5, 5) in the 4x4 and 6x6 case1. Other possible
task placements provide similar comparative results. As shown in Figures 5.5 (and
5.7a), LNR wNoC setup outperforms the performance guarantees achieved by the
deterministic wNoC design.

It might not seem obvious the reason why LNR behaves better than a de-
terministic setup since, as already shown in Figure 5.4, requests in both setups
experience the same average contention. The reason lies in the way contention
is distributed. For a deterministic approach, where a particular alignment of re-
quests cannot be assumed, it needs to be considered systematically that requests
will be absorbed at a constant rate that is equal to WCD. On the contrary,
in a probabilistic approach roughly 50% of the requests will get absorbed faster
than WCD. These fast requests make possible to take advantage of the store
buffer of the pipeline more frequently than for a deterministic approach and allow
a higher overlapping between computation and communication, thus leading to
smaller execution time2. In particular, the behavior of the deterministic wNoC is
a fill-and-stall behavior of the store buffer in front of store bursts, thus stopping
pipeline progress always. Conversely, the probabilistic wNoC allows releasing store
buffer entries sometimes earlier due to lower contention delay, and for the time a
new store arrives at the store buffer, there is space available so that the pipeline
keeps progressing in parallel with the processing of stores in the wNoC.

Figure 5.6 shows pWCET estimates for the LFR approach for 4x4 network
setups. Note that the plot shows only results for three benchmarks represent-
ing the best, the average and the worst case. As we can see, the improvement
achieved by the LFR approach is very significant being 40% on average for the
case of 20 Minimum Inter-request Delay cycles. If we move to a 6x6 mesh, LFR
brings huge guaranteed performance benefits: in Figure 5.7b we see that we have
93.3% improvement on average for LFR50. This occurs because latency bounds
grow linearly with distance with LFR, whereas they grow exponentially for time-
deterministic approaches, that need to account for the worst potential behavior for
all requests, which is extremely unlikely and far above the typical case for LFR.
If we compare LNR and LFR for the 6x6 setup, we observe that LNR1 provides
pWCET estimates 75% lower than those on a deterministic network, but this is
still almost 4x higher than LFR, which is clearly the best choice as the size of the
mesh grows.

1Although our approaches scale smoothly regardless the core count, we do not consider larger
manycores due to the increasingly poor scaling of deterministic wNoCs for larger core counts.

2This holds for timing-anomaly-free processors like the one used in our experiments.

69

5.5 Related work

Figure 5.6: LFR pWCET estimates w.r.t a deterministic wNoC.

A direct comparison of results for both approaches for 3x3 and 4x4 network
setups is shown in Figure 5.8. In this plot we present results for the the best
possible configuration in each case. Note that the best configuration, the number
of in-flight requests in the case of LNR and the actual frequency of requests for
the case of LFR providing the best performance, only depends on the properties
of the task under analysis and not on the actual load that co-runners put in the
network.

Finally, we have measured how far LNR and LFR pWCET estimates are from
the ideal case. To do so, we compare the results of probabilistic wNoC setups
with the results for tasks running in isolation, so experiencing always zero-load
delay. On one hand, for small networks LNR achieves pWCET results that are
relatively close to the case without any contention, on average 9% for the 3x3 setup
and 34% for 4x4, whereas for 6x6 it is around 330%. On the other hand, when
increasing the size of the network the performance cost of the LFR mechanism
drops significantly: 35% and 32% for 3x3 and 4x4 setups respectively, and only
5% for the 6x6 setup w.r.t. no contention since requests are much less likely to
contend anywhere in the NoC when the NoC size increases. Therefore, LNR and
LFR are complementary solutions fitting small and large NoCs respectively.

5.5 Related work

We classify the existing research in NoCs for real-time applications in the following
four categories: (1) Real-time specific NoCs, (2) NoC calculus, (3) analytical worst-
case bounds, and (4) probabilistically analysable interconnects. Our work fits
in the 4th category and represents the first general realization of wNoC designs

70

5.5 Related work

(a) Limiting Number of Requests

(b) Limiting injection Frequency of Requests

Figure 5.7: LNR and LFR for 6x6 mesh normalized w.r.t. a deterministic wNoC.

for probabilistic time analysis. Main differences across the four approaches are
summarized in Table 5.3.

Real-time specific NoCs. We distinguish two main groups in this cate-
gory. (1a) NoCs using TDMA [Goossens et al. (2005)] allow an easy derivation
of composable WCET estimates but require specific designs only suitable for real-
time applications that provide poor average performance. (1b) Approaches using
flit-level virtual-channel (VC) prioritization [Shi & Burns (2008)] to bound the
contention in the NoC by forwarding first flows with higher priority. The latter
approaches require significant router modifications, abundant VC resources and
break time composability because details of all flows are needed.

Network Calculus. Works based on Network Calculus [Le Boudec & Thiran

71

5.5 Related work

(a) 3x3

(b) 4x4

Figure 5.8: LNR and LFR performance comparison

(2001)] abstract communication flows using arrival curves that upper-bound the
amount of traffic within any time interval. With the upper-bounded arrival curve
and lower-bounded service curve, delay bounds can be derived. Time composabil-
ity is lost with this approach unless worst possible traffic conditions are considered
and (2a) deterministic – rather than (2b) stochastic [Lu et al. (2014)] – delay
bounds are used [Yue Qian & Dou (2009)]. However, these assumptions defeat the
whole purpose of Network Calculus. Thus, Network Calculus is appropriate when
traffic information available during analysis is accurate, which may be for off-chip
traffic, but is generally unaffordable for on-chip traffic.

Analytical wNoCs bounds. Another set of works focuses on determining
wNoC packets worst-case traversal time (WCTT) by (3) considering worst-case
conditions, first assuming limitations on the packet-injection rate [Lee (2003)], and

72

5.6 Conclusions

Table 5.3: Approaches for achieving NoC performance guarantees. Category (4)
includes the wNoC proposed.

Bounds
Computation

Composable
WCET

HW
Changes

Performance Real-time

(1a) Analytical Yes Deep Low Hard
(1b) Analytical No Deep Moderate Hard
(2a) NoC Calculus No None High Hard
(2b) NoC Calculus No None Very High Soft
(3) Analytical Yes None Low Hard
(4) Not needed Yes Moderate High Hard

later without this limitation [Rahmati et al. (2013),Ferrandiz et al. (2012)]. Finally,
authors in [Panic et al. (2016b)] showed that measuring inter-task interferences in
a wNoC using the Worst Contention Delay (WCD) metric results in much tighter
WCET estimates than using WCTT.

MBPTA compliant interconnects. (4) MBPTA compliance has been achieved
for bus designs [Jalle et al. (2014)] either using Lottery arbitration [Lahiri et al.
(2001)] or proposing random permutations. TDMA-based buses have also been
proven amenable for MBPTA by padding execution time measurements conve-
niently [Panic et al. (2015)]. A tree NoC implementing wormhole routers with
random arbitration and intended for all-to-one communication has also been shown
to be amenable for MBPTA has been explained in Chapter 4. However, trees do
not fit well all-to-all communication.

Summary. Our work targets achieving time-composable WCET estimates on
high-performance wNoC designs for all-to-all communication. To do so, we rely
on existing MBPTA randomization techniques. Like [Lu et al. (2014), Bogdan
et al. (2010)] we exploit probabilistic analysis to avoid overdimensioning network
contention. However, we introduce modifications (randomization) in the network
that make contention to have by construction a probabilistic behavior instead of
modeling application traffic probabilistically. Thus, we enable the derivation of
WCET estimates with MBPTA by smartly limiting contention.

5.6 Conclusions

In this Chapter we show that appropriate probabilistic approaches are highly effi-
cient dealing with contention in wNoCs. Pathological worst-contention scenarios
occur with (provable) negligible probability and hence, there is no need to account
for them. We propose two different wNoC setups, LNR and LFR, that are able
to provide much better performance guarantees than deterministic approaches by
making use of a wormhole router with randomized arbitration. LNR is particu-

73

5.6 Conclusions

larly suitable for scenarios with moderate WCD values and for applications that
are very sensitive to latency, and LFR suits better large NoCs where WCD values
are expected to be huge.

74

Chapter 6

Credit-Based Arbitration

AS we have shown in previous chapters, fair arbitration in the access to hardware
shared resources is key to obtain low worst-case execution time (WCET) estimates
in the context of CRTES. A number of hardware-only mechanisms exist for man-
aging arbitration in those resources (buses, memory controllers, etc.). However,
they typically attain fairness in terms of the number of requests each contender can
issue to the shared resource. As we show in this Chapter, this may lead to unfair
bandwidth allocations when one contender issuing short requests competes with
contenders issuing long requests. Therefore, we propose Credit-Based Arbitration
(CBA), a new design of a bandwidth allocation mechanism achieving fairness at
cycle level rather than at request count level.

6.1 Introduction

As explained in Chapter 2, multicore contention has been shown to be a key per-
formance limiter for safety-related real-time functions if hardware is not designed
properly and/or timing analysis is unable to account for its impact reliably and
tightly.

Shared buses have been shown to be effective to cope with the bandwidth re-
quirements of small (up to 4) size multicores to reach shared L2 caches and mem-
ory [Salminen et al. (2007)]. A number of arbitration policies have been proposed
to choose what core is granted access to the shared bus and other resources when
contention occurs. Among those one can find round-robin, FIFO, TDMA, lottery
and random permutations [Kelter et al. (2014),Jalle et al. (2013b),Lahiri et al.
(2001),Jalle et al. (2014)]. All those policies have been shown to provide a high
degree of fairness across cores in terms of number of requests granted. However,
whenever requests from different cores have different duration, fairness is lost since
cores with larger requests hog most of the bandwidth to the detriment of cores

75

6.2 Background

with shorter requests. For instance, if two cores are granted access alternatively to
a shared resource, one of them with 5-cycle requests and the other with 45-cycle
requests, the first one only uses 10% of the bandwidth whereas the latter uses 90%
of the bandwidth.

In this Chapter we tackle this issue by proposing a credit-based arbitration
(CBA) policy that balances shared resource utilization by tracking how long each
contender has used the shared resource. CBA provides each contender with a
time budget that is decreased by the amount of time the shared resource is
used and recovered slowly later to ensure that no contender (core) overuses the
shared resource. This way those cores issuing short requests are granted access
more often than those issuing long requests, thus achieving bandwidth fairness.
We do so in the context of Measurement-Based Probabilistic Timing Analysis
(MBPTA) [Cucu-Grosjean et al. (2012)], thus proving that reliable and tight
WCET estimates can be obtained on top of a multicore implementing CBA.

6.2 Background

Arbitration policies are needed to grant access to shared resources to the differ-
ent contenders. Existing policies typically provide some form of fairness across
contenders. In the context of multicores connected to L2 and/or memory with
buses, such fairness is provided across different cores to access the bus and so the
other shared resources. Many policies exist for that purpose, but only some of
them have been shown to be amenable for safety-related real-time systems where
WCET needs to be tightly and reliably estimated for scheduling purposes.

In general, policies like FIFO, round-robin and TDMA can be regarded as
fair w.r.t. the number of requests, but not w.r.t. the duration of those requests.
For instance, let us assume a scenario where all cores issue requests constantly
to the shared bus. In the case of FIFO and round-robin, the different cores will
access the bus alternatively keeping it fully utilized. In the case of TDMA, time is
typically split across cores homogeneously and it is also common using time slots
whose duration matches the longest duration of any request [Jalle et al. (2013b)].
Assuming that the duration of a request is unknown a priori (i.e. whether it will
hit/miss in L2, whether it will produce a dirty line eviction in L2, etc.), TDMA will
typically allow requests to be issued only in the first cycle of the corresponding slot
for each core. Allowing a request whose duration is unknown to be issued at any
other time could prevent requests from other cores being issued at their expected
time, which is not allowed for being able to estimate the WCET. Therefore, in our
scenario where all cores issue requests constantly, cores will be granted access to
the bus alternatively, but leaving the bus idle whenever a request takes less than
the maximum latency.

76

6.3 Credit-Based Arbitration

Figure 6.1: Chronogram showing requests arbitrated with and without CBA.

Other MBPTA-compliant arbitration policies, such as lottery [Lahiri et al.
(2001)] and random permutations [Jalle et al. (2014)], take decisions randomly
with different constraints with the aim of making the worst case being closer to
the average case and thus, improve WCET estimates. However, in our particular
example where the bus is fully congested, in the long run they share the bandwidth
to the bus homogeneously across cores in terms of number of requests, as it is the
case for FIFO, round-robin and TDMA.

Overall, all those policies have a common characteristic: under high congestion,
they balance how many times each core is granted access to the bus, but they
neglect how long each core uses the bus. For instance, in our particular example
with a fully-congested bus and 4 cores, if cores 1, 2 and 3 issue requests whose
duration is 50 cycles and core 4 issues 5-cycles requests, cores 1, 2 and 3 will have
to wait 105 cycles on average to use the bus during 50 cycles for all those policies
(except TDMA where waiting time will be 150 cycles). Therefore, those cores will
experience a 3.1x slowdown (4x for TDMA). Instead, core 4 will have to wait 150
cycles to use the bus during 5 cycles (except for TDMA where waiting time will
be 195 cycles). Therefore, core 4 will experience a 31x slowdown (40x for TDMA).

In general, one would expect up to 4x slowdown when consolidating in a mul-
ticore 4 tasks that fully utilize a shared resource each one in isolation. However,
inappropriate design choices may lead to performance issues such as those related
to short requests competing with long request, as already shown in some proces-
sors [Fernández et al. (2012)]. Thus, specific arbitration policies that fairly share
bandwidth in terms of time rather than in terms of requests are needed. We
propose CBA to cover this gap.

6.3 Credit-Based Arbitration

In this section we introduce, first, an illustrative example of fair request arbitra-
tion leading to unfair bandwidth allocation. Then we introduce CBA design and
describe its implementation.

77

6.3 Credit-Based Arbitration

6.3.1 Motivation: An Example

We present next an example that relates to the hardware platform used later for
the actual implementation of CBA. Let us assume that we have a 4-core processor
with a bus to connect cores with a partitioned L2 cache and the memory system,
where a request holds the bus until it is fully served. This is referred to as a
non-split bus. In this context, let us assume that the task under analysis issues
frequent requests that access the L2 cache with a total turnaround latency of 6
cycles once granted access to the bus. On the other hand, tasks in the other cores
are streaming applications issuing constantly read requests to memory that take
28 cycles.

Under this setup the bus would be fully saturated by any of the tasks. When
consolidating the 4 tasks in the 4 cores so that all of them run simultaneously,
any request-fair arbitration policy will lead to a situation where roughly 25% of
the requests in the bus belong to each of the cores. Hence, each 6-cycle request of
the task under analysis will have to wait for around 28x3=84 cycles to be granted
access to the bus. If the task under analysis runs for 10,000 cycles in isolation out
of which 6,000 cycles are spent accessing the bus (1,000 requests), its execution
time with contention will be easily close to (10, 000− 6, 000) + 1, 000× (6 + 84) =
94, 000. In other words, in a 4-core processor this task can experience a 9.4x
slowdown. If a cycle-fair arbitration was used, execution time would be instead
(10, 000 − 6, 000) + 1, 000 × (6 + 18) = 28, 000, so a 2.8x slowdown. While such
slowdown is still very high, it is expected when tasks saturating a given resource
in isolation are consolidated together in the multicore. However, the expectation
would be that, given N cores, the slowdown should be at most Nx.

6.3.2 CBA Design

CBA builds upon several premises:

1. Requests will be eventually granted access regardless of their duration, as
long as a maximum duration exists and its latency is known (or can be
upperbounded). We define this maximum duration (or its upperbound) as
MaxL.

2. Requests will be eventually granted access regardless of the core they belong.

3. Bandwidth is fairly distributed across contenders in terms of cycle counts
rather than in terms of request counts.

This is practically achieved by allocating each core a given credit (budget)
matching MaxL. Then, arbitration is performed across all cores with pending
requests and an available budget of exactly MaxL cycles. When a request is

78

6.3 Credit-Based Arbitration

granted access to the bus, the budget of the corresponding core is decreased by
the bus hold time. For instance, this can be implemented by decreasing by 1 the
budget of the core using the bus. In parallel, every cycle all cores get their budget
increased in the following way:

Budgeti(t+ 1) = min(Budgeti(t) + 1/N,MaxL) (6.1)

where Budgeti(t) stands for the budget of core i in cycle t and N stands for
the number of cores. Note that budget saturates at MaxL to prevent the case
in which one core spends long time not using the bus and then it hogs the bus
during a long time period. Otherwise, the effective bandwidth enjoyed by one task
would depend on the shared resource utilization performed by previously executed
tasks in all cores, which could lead to any arbitrary budget imbalance. Instead,
with our approach we only need to collect measurements at analysis time making
the task under analysis (TuA) start with zero budget. Also note that, although
conceptually the budget is increased by a fraction, this can be implemented by
multiplying all factors in Equation 6.1 by N . In that case, when using the bus,
the budget should also be decreased by N every cycle instead of by 1.

CBA operation is illustrated in Figure 6.1 where each core has always requests
ready and they are arbitrated in the following order: A, B, C, D, B, A, D, C, D,
B, C, A, B, C, A, D, A, C, B, D, A, B, C, D. Requests from cores A, B and C
take 28 cycles and from core D, 6 cycles. We focus in the first 336 cycles (the time
needed to hypothetically send 3 28-cycles requests from each core). As shown,
without CBA only 3 requests from core D are served in 336 cycles (so it used only
5.4% of the bandwidth), but keeping the bus fully utilized. However, with CBA
in this timeframe core D gets 7 requests arbitrated instead of only 3. In the case
of CBA, whenever the arbiter indicates that the next core is i, i is granted access
if it has enough budget. If not, we move in the sequence until we find a core with
enough budget, as long as at least one core has enough budget. For instance, after
the first request of D is served (cycle 90) no core has MaxL budget yet, so the
bus remains idle until at least one core has MaxL budget. At that point, the one
recovering its budget earliest is core D (in cycle 108), so in cycle 108 D is granted
access and we skip B and A in the sequence (and also D since it is arbitrated).

Note that in the process of guaranteeing higher bandwidth to D, CBA wastes
34 cycles out of 336. On the other hand, the number of D requests arbitrated
grows by more than 2x.

6.3.3 Arbitration Choices

CBA acts as a filter to choose what pending requests are eligible to be arbitrated:
only those whose core has MaxL budget can be arbitrated. Then, any arbitration

79

6.3 Credit-Based Arbitration

policy can be applied on top. Given the particular timing analysis considered in
this Chapter, MBPTA, we could implement on top any of the arbitration policies
shown to be compatible with MBPTA: round-robin, lottery, random permuta-
tions [Jalle et al. (2014)], or TDMA [Panic et al. (2015)].

As shown in Equation 6.1, homogeneous bandwidth allocation builds upon
increasing the budget of all cores by 1/N every cycle, where N stands for the
number of cores. Hence, under maximum utilization scenarios, the budget of one
core is decreased by 1 and the budget of each of the N cores is increased by 1/N ,
so overall budget increases also by 1, thus allowing full bus utilization.

Heterogeneous arbitration across different cores, thus giving higher bandwidth
to some cores than to others, would also be possible in several ways as detailed
next.

Overbudgeting

One may let the budget of some cores grow above MaxL. For instance, we could
allow the budget of one of the cores grow to up to 2×MaxL. If this core does not
send requests for a while, it could eventually send requests back-to-back, which
is good for this core but creates some temporal starvation to the others. In this
example, this particular core could send up to two consecutive requests if they
have maximum latency, or further requests if they have lower latency so that the
remaining budget is equal or higher thanMaxL. Note, however, that this approach
provides higher bandwidth to the cores whose budget can grow above MaxL only
if they have not used the bus much in the previous cycles. Instead, if those cores
send requests sustainably, they will only reach 1/N total bus utilization since this
is the speed at which budget is recovered.

Overspeed

An alternative to have heterogeneous bandwidth consists of increasing the budget
of all cores (in total) by 1 every cycle but in a heterogeneous way. For instance,
we could make bandwidth grow by 1/2 for core 1 and by 1/6 for each of the
other 3 cores in a 4-core processor. This would allow core 1 recover budget faster,
and so having a 50% total bus utilization. Still, differently to overbudgeting, this
approach would not allow core 1 to send requests back-to-back since, after sending
a request of duration L cycles, it would have to wait for another L cycles before
its budget reaches MaxL. Note that budget is recovered also during those cycles
when the bus is used, so that budget decreases by 1 cycle and recovers by 1/2
cycles every cycle the bus is used.

80

6.3 Credit-Based Arbitration

Combined

A third alternative consists of a combination of overbudgeting and overspeed, so
that the budget of some cores grows at a faster rate than for others, and their
maximum budget is above MaxL. This would allow those cores taking a larger
fraction of the bus utilization and, at the same time, issue requests back-to-back.

6.3.4 WCET Estimation

MBPTA relies on measurements capturing the worst (probabilistic) conditions to
deliver bounds that hold under any conditions. As explained in Chapter 2, this
can be done by collecting execution times of the TuA under maximum contention.
In our case this can be done enforcing the two following conditions:

1. Contending cores always have a request ready to compete with the TuA, but
new requests are created only if the TuA has a request ready.

2. Contending requests always have maximum latency, MaxL.

The first condition creates the highest contention since the requests of the TuA
always find the maximum number of contenders ready. Note that by not creating
requests when the TuA has no pending requests, contenders are more likely to
have all their budget available by the time the TuA generates a new request. In
other words, contenders only consume their budget when their requests compete
against those of the TuA. The second condition relates to the fact that, when
competing, requests from contenders are greedy creating the highest contention as
soon as possible. This holds under the premise that the impact of contention in
execution time is the same for different requests of the TuA, which is often the
case in simple in-order processors such as those used for safety-related real-time
functions [Cobham Gaisler (2017)]. In other words, if at some point contenders do
not have enough budget to create contention for a given request of the TuA, it can
only be because that budget was used creating contention for an earlier request of
the TuA. Finally, as stated before, measurements for the TuA are collected under
worst conditions also in terms of its own budget, which is zero, thus delaying the
most the issuing of the first request of the TuA. By that time all contenders will
also have all their budget available to compete with the TuA.

6.3.5 Implementation

Since implementation complexity and overheads can make industry simply dismiss
some solutions due to their unlikely viability, we have implemented CBA in an
FPGA design of a 4-core LEON3 processor used in the Space domain [Hernández

81

6.3 Credit-Based Arbitration

Table 6.1: Summary of signals

Every cycle When using bus
BUDGi min(BUDGi + 1, 228) BUDGi − 4

WCET mode Operation mode
COMP1 —- —-
COMP2,3,4 BUDGi == 228 ∧REQ1 == 1 1
REQ1 when request ready when request ready
REQ2,3,4 1 when request ready

et al. (2015)]. In particular, we have implemented CBA together with random
permutations arbitration as it has been shown to be the MBPTA-compliant policy
with best performance [Jalle et al. (2014)]. MaxL is 56 cycles since memory
latency is 28 cycles and the longest requests may produce 2 memory accesses. For
instance, atomic operations produce a read and a write operation. Also, L2 cache
misses evicting a dirty line produce 2 operations: one to write dirty data back to
memory and one to fetch requested data.

The processor implements a non-split AMBA bus [ARM (1999)]. In general,
buses with split transactions have more homogeneous request sizes. However, even
in a system with split the worst-case situation, having very long and very short
requests, is possible since atomic operations by definition cannot be split. We
have implemented CBA as a part of the AMBA bus arbiter and connected it to
the APRANDBANK module that delivers random bits every cycle for random
choices of the random permutations arbitration [Hernández et al. (2015),Agirre
et al. (2015)].

Next we describe the signals used, which are conveniently summarized in Ta-
ble 6.1. For each core the arbiter has an 8-bit budget counter (BUDGi) that
saturates at 228 (56x4). Every cycle all BUDGi saturated counters are incre-
mented by 1. Also, every cycle the core using the bus (if any) gets its BUDGi

counter decreased by 4. Our implementation allows configuring the platform as
either WCET estimation or operation mode. During WCET estimation mode the
request (REQi) signals of cores 2, 3 and 4 are always set. Each of those cores
has also a compete (COMPi) bit. The COMPi bit is set when BUDGi is 228
(so MaxL) and REQ1 is set, thus meaning that the TuA, which runs in core 1,
has a request ready. COMPi is reset whenever core i is granted access to the bus.
Also, during WCET estimation mode cores 2, 3 and 4 keep the bus busy during
56 cycles when granted access.

During operation mode, REQi signals are only activated when the correspond-
ing core has a request ready and COMPi signals are always set, thus not making
requests wait for requests in core 1.

82

6.4 Evaluation

6.4 Evaluation

In this section we present the evaluation framework and some results compar-
ing CBA vs no-CBA in the context of a bus implementing random permutations
arbitration and using MBPTA to derive the WCET.

6.4.1 Experimental Framework

Multicore Setup. We use a 4-core processor with shared bus and shared L2
memory. It implements pipelined in-order SparcV8 LEON3 cores for the Space
domain with random-placement and random-replacement caches, as needed for
MBPTA [Hernández et al. (2015)]. Data L1 cache implements write-through pol-
icy, whereas L2 cache implements write-back policy. Cores are connected to a
shared (partitioned) L2 cache through an AMBA bus [ARM (1999)]. L2 cache is
connected to a memory controller that serves as bridge to DRAM DDR2 memory.
Therefore, bus transactions take between 5 cycles (L2 read cache hit) and 56 cy-
cles (e.g., L2 miss producing a dirty line eviction). We use random permutations
policy to take arbitration decisions [Jalle et al. (2014)]. This architecture has been
prototyped in an ALTERA TerasIC DE4 FPGA.

Multicore Model. For the sake of facilitating the understanding of the impact
of CBA, we have also built an analytical multicore model where we interleave
computation phases and bus accesses with a fixed period. For instance, we consider
a 1% LD L2 hit setup where the task under analysis executes constantly 99 1-cycle
core operations followed by a 5-cycle bus access.

Workloads. Results on the FPGA have been obtained for the EEMBC Au-
tobench suite [Poovey et al. (2009)].

Railway Case-study. The mixed-criticality railway case study is comprised
of two self-contained subsystems. (1) Simplified European Train Control System
(ETCS) railway signaling subsystem: Safety-critical application (Safety Integrity
Level (SIL) 4) that protects the train by supervising the traveled distance and
speed, activating the brakes if authorized values are exceeded. The software ar-
chitecture of this subsystem is composed of three tasks executed sequentially: a.
Odometry module (OMS): is the responsible of estimating a set of parameters
based on the information received from the train environment (e.g., estimated
trains position). b. Emergency module (ES): Controls the Emergency braking
system. c. Service module (SS): Controls the Service braking system. 2. Traction
control subsystem: It controls the speed/pair of the electric motors varying the
switching frequency of a power inverter. This subsystem is not safety related but
it involves stringent real-time requirements. This subsystem is distributed in two
different cores, the first one holds the traction control and the second one a model
of a Permanent-Magnet Synchronous Motor (PMSM) for closed-loop control.

83

6.4 Evaluation

MBPTA. The MBPTA technique is applied to a subset of the safety-critical
ETCS subsystem. In particular, it is used to estimate the pWCET of the Emer-
gency module (henceforth referred as Unit of Analysis (UoA)). This UoA is com-
posed of several data dependent paths. To conduct the measurement based analy-
sis, a set of input vectors has been defined, which exercises the UoA at basic block
level. These input vectors characterize the train environment and are sent to the
platform by an Ethernet communication channel. Each input vector triggers a dif-
ferent unique path of the UoA. There are a total of 10 input vectors (that, hence,
exercise 10 paths). By default, measurements are taken on a per-path basis, which
allows constructing a separate pWCET for each of the traversed paths.

6.4.2 Results

Synthetic. First, we have evaluated the potential gains of CBA with our analyt-
ical multicore model. For that purpose we consider that the task under analysis
executes constantly a number of 1-cycle core operations followed by 1 bus access.
We vary the number of core operations between bus accesses to represent a dif-
ferent fraction of bus accesses. Hence, 1% LD has 99 core operations between
each pair of bus accesses, 2% LD has 49, 5% LD has 19 and 10% LD has 9. For
each such fraction we consider 4 cases: either requests have a 5-cycle latency (LD
L2 hit) or 28-cycle latency (LD L2 miss without dirty eviction). Results show
the slowdown when experiencing contention in a 4-core setup against tasks issuing
constantly 28-cycle requests. Results are normalized w.r.t. the execution without
any contention.

Results are shown in Figure 6.2. We observe that, whenever requests of the
TuA are long (L2 miss), the slowdown in the 4-core processor approaches 4x as
the bus utilization increases. In particular, slowdown is 5x for no-CBA with 10%
LD due to the fact that most of the time the TuA is accessing the bus (9 core
cycles followed by 28 bus cycles) and sometimes random permutations grant access
twice consecutively to the TuA, which misses the second arbitration slot due to
the 9-cycle core latency. For instance, if the TuA is granted access last in one
arbitration window and first in the following one, it will use its slot in the first
arbitration window and its following request will arrive too late to use the first slot
in the second window. Thus, the TuA will spend the complete arbitration window
waiting. With CBA, instead, when the TuA and its contenders spend most of the
time accessing the bus, it is often the case that only one core has budget to access
the bus, thus removing the effect of the missed window.

When requests are short (L2 hit), as expected, the TuA experiences increasing
slowdowns that exceed 4x by far (up to 9.4x) without CBA since each 5-cycle
request competes against 3x28-cycle requests. Conversely, with CBA slowdown is
always lower than without CBA (and well below 4x) since contenders take longer

84

6.4 Evaluation

Figure 6.2: Slowdown with and without CBA for different synthetic examples.

to recover their budget than the TuA, which is able to issue requests with higher
frequency as illustrated in the example in Figure 6.1.

EEMBC. We have run EEMBC benchmarks on top of the FPGA for 3 differ-
ent bus configurations, all of them using random permutations to take arbitration
decisions. Those configurations include the baseline bus without CBA (RP), the
credit-based one (CBA), and a heterogeneous implementation of the CBA (H-
CBA) where the TuA gets 50% of the bandwidth. The TuA is run in those 3
configurations in isolation and with maximum contention. Since the bus perfor-
mance strongly depends on the number of accesses a given benchmark performs to
the bus we show average execution time results for 1,000 runs of each configuration.
Having a significant number of runs is important to carry out a fair quantification
of bus performance since in our platform cache behavior and bus arbitration are
randomized.

Results in Figure 6.3 are normalized for every benchmark w.r.t. the result
obtained for RP in isolation. As shown, with EEMBC slowdowns are below 4x.
This occurs because EEMBC benchmarks do not saturate the bus. Still, we can see
that when CBA is not in place, slowdowns can be very significant under maximum
contention (3.34X for matrix). On the contrary, when CBA is used, execution
times of tasks under maximum contention are much lower suffering in the worst
case a 2.34% slowdown. We have also evaluated a configuration in which the
TuA receives more bandwidth than its contenders (H-CBA). In particular, each
cycle the TuA recovers 1/2 cycles of budget and each other core only 1/6 cycles.
This virtually allocates 50% of the bandwidth to the core where the TuA runs.

85

6.4 Evaluation

0

0,5

1

1,5

2

2,5

3

3,5

cacheb canrdr matrix tblookN
o

rm
al

is
e

d
 A

ve
ra

ge
 E

xe
cu

ti
o

n
 T

im
e

RP-ISO CBA-ISO H-CBA-ISO RP-CON CBA-CON H-CBA-CON

Figure 6.3: Slowdown with and without CBA for EEMBC on the FPGA multicore.
ISO stands for isolation and CON for maximum contention.

As shown in the Figure, H-CBA reduces the maximum slowdown experienced
across benchmarks, thus showing the effectiveness of CBA also with heterogeneous
bandwidth allocation. However, this solution is not very suitable for EEMBC
workloads since they do not have significant bandwidth requirements and this
configuration would worsen the performance of any task running in the other
cores.

Another important effect we can observe is the impact that CBA arbitration
has in the execution time of tasks in isolation. Given that under CBA a core is not
granted access to the bus until it has enough budget, the execution of a task can
get stalled. However, as we can see in Figure 6.3, this effect is not very important
and its impact depends on how often a program has a request ready before having
recovered its budget. In fact, we observe that CBA increases only the execution
time by 3% on average w.r.t. the RP bus in isolation. Moreover, when H-CBA is
deployed, the impact is negligible being very close to the RP bus on average. Note
that, for tblook we observe slightly better performance with CBA in isolation than
with RP arbitration and worse performance with contention with CBA than with
RP. We have investigated these scenarios and verified that two conditions concur
in this case: (1) those benchmarks are almost insensitive to the potential delays
created by CBA since their bus requests barely occur consecutively in time; and
(2) those benchmarks are highly sensitive to the particular (random) cache place-
ments experienced in the experiments. Therefore, those cache placements influence
notably average execution times depending on whether “bad” cache placements
occur more or less often. While this may have an effect on average performance,

86

6.4 Evaluation

14,68

14,54
14,45 14,50

14,42 14,54
14,50

14,36

15,61

16,00

13,50

14,00

14,50

15,00

15,50

16,00

16,50

0

50000

100000

150000

200000

250000

Test0 Test1 Test2 Test3 Test4 Test5 Test6 Test7 Test8 Test9

Sl
o

w
d

o
w

n
 f

ac
to

r

Ex
e

cu
ti

o
n

 T
im

e
 (

cy
cl

e
s)

Execution Path

MOET HW Rand Isol. MOET HW Rand RP HW Rand Isol. / RP Ratio

Figure 6.4: Slowdown without CBA for the Railway application.

it does not affect WCET estimates since MBPTA builds upon EVT, which keeps
only the group of high execution times to predict the WCET.

Railway Case-study. Figure 6.4 shows the execution times of each path
with the random permutation bus arbitration (without CBA) and when running in
single-core mode. The green line in the figure below shows the slowdown introduced
by the random permutation policy configured with a fixed slot duration of 56 cycles
(14x-16x). This slowdown is expected as the case study performs abundant bus
accesses due to the abundant store instructions (around 30% of the instructions
across tests) and the fact that the DL1 is write-through. Therefore, the bus is
highly saturated already when running in isolation, thus making the application
highly sensitive to bus contention.

The random permutation arbitration forces each core to wait until its time slot
to be granted access to the bus. Slots are grouped in time windows where each
window has one slot per core (four in our setup) and the core to slot allocation
is done in a random way. This provides fairness in terms of number of requests
granted per core. Enforcing the slot size to 56 cycles for all co-runners ensures
time composability since the arbitration does not depend on the particular requests
raised by the contenders in other cores. However, most requests hit in L2. For
instance, Test7 performs up to 1534 L2 accesses in the measurements collected,
but only up to 256 L2 misses. Therefore, around 83 % of the bus accesses hit
in L2 and thus, experience a short latency. However, those accesses are typically
delayed by three 56- cycle requests from the other cores on average to obtain time-
composable pWCET estimates. This leads to a scenario where each short request
(e.g., 5-8 cycles) is made to wait for up to 168 cycles on average (3x56 cycles).

Figure 6.5 shows the slowdown of CBA (red bar) with respect to results in
isolation and compare it with RP (blue bar). We see that the performance has
considerably improved, with slowdowns due to multicore contention around 2x

87

6.5 Related Work

14,68x 14,54x 14,45x 14,50x 14,42x 14,54x 14,50x 14,36x
15,61x 16,00x

2,20x 2,18x 2,13x 2,15x 2,15x 2,13x 2,16x 2,17x 2,12x 2,16x

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Test0 Test1 Test2 Test3 Test4 Test5 Test6 Test7 Test8 Test9

Ex
e

cu
ti

o
n

 T
im

e
 s

lo
w

d
o

w
n

 f
ac

to
r

Execution Path

HW Rand RP HW Rand CB (analysis)

Figure 6.5: Slowdown with and without CBA for the Railway application.

(for RP it was around 15-16x). This is in line with the experiments done with the
multicore model. By achieving time-fairness rather than request-count fairness,
credit-based arbitration allows moving from a scenario where each request has to
wait for more than 100 cycles to be granted access to the bus, to a scenario where
each request can proceed experiencing much lower contention due to the much
higher availability of the bus when short requests are issued.

Overheads. Hardware overheads of CBA can be regarded as negligible. In
particular, the processor model has been synthesized at 100MHz – the maximum
operating frequency for our TerasIC board – with and without CBA. Also, the
FPGA occupancy without CBA is 73% and it has grown by far less than 0.1% to
implement CBA. Hence, our arbitration policy is simple enough to be implemented
in real designs.

6.5 Related Work

Literature on Networks-on-Chip (NoCs) for safety-related systems is abundant
and includes buses, rings, trees and meshes among others [Jalle et al. (2014),Panic
et al. (2013),Schoeberl et al. (2012)]. Some designs are specifically tied to TDMA
arbitration, such as Nostrum [Millberg et al. (2004)] and Aethereal [Goossens
et al. (2005)], and require software layers to schedule at very fine granularity
communications due to the use of contention-free packet transmissions [Bui &
Lee (2012)]. This is generally unaffordable when cache memories are used for

88

6.6 Conclusions

performance purposes due to the difficulties to schedule, for instance, cache misses.
A number of works have focused on providing tight bounds for the worst-case
traversal time in complex NoCs such as meshes [Rahmati et al. (2013),Psarras
et al. (2015),Wassel et al. (2013),Panic et al. (2016b)].

However, safety-related real-time systems have serious difficulties to deliver ev-
idence needed for certification purposes even for very small multicores. Most such
systems still focus on single-core processors and only small multicores have been
realistically considered. For instance, dual-core processors have been accepted un-
der a number of limitations in avionics [Federal Aviation Administration (FAA)
(2014),Cullmann et al. (2010)]. Analogously, microcontrollers with 2 or 3 cores
have been successfully accepted in the automotive domain [Infineon (2012),Cull-
mann et al. (2010)]. In those cases, simple interconnection networks such as buses
or crossbars have been accepted, thus being the arbitration centralized either in
the interconnection or in the target device (e.g., memory).

Arbitration policies for hardware shared resources in the context of safety-
related real-time systems are also abundant as described in Section 6.2. However,
most policies have been implemented pursuing fairness across request counts from
the different contenders. The fact that requests may have different durations makes
that request-fair policies fail to be fair in terms of actual utilization of the shared
resource across contenders. CBA tackles this issue with specific means to prevent
contenders with long requests from hogging the shared resource, thus allowing a
more balanced use of the shared resource across contenders.

6.6 Conclusions

Existing policies to arbitrate the access to hardware shared resources in multicores
focus mostly on achieving fairness in terms of request counts rather than in terms of
time. This leads to severe slowdowns for tasks issuing frequent-but-short requests
to shared resources.

In this Chapter we propose CBA, an arbitration policy that allows a fair sharing
of hardware resources by balancing the true utilization of those resources. More-
over, we show that implementation costs of CBA are affordable by implementing it
in a Space multicore prototyped in a FPGA. Our results show that the maximum
slowdown roughly matches the core count – as one would expect – when all tasks
saturate the shared resource, which compares to existing policies whose slowdown
is virtually unbounded.

89

Chapter 7

Eviction Frequency Limiting
(EFL) for Shared Caches

Shared caches in multicores challenge Worst-Case Execution Time (WCET) es-
timation due to inter-task interferences. Hardware and software cache partition-
ing address this issue although they complicate data sharing among tasks and
the Operating System (OS) task scheduling and migration. In this Chapter we
propose a new hardware mechanism to control inter-task interferences in shared
time-randomised caches without the need of any hardware or software partition-
ing. Our proposed mechanism effectively bounds inter-task interferences by lim-
iting the cache eviction frequency of each task, while providing tighter WCET
estimates than cache partitioning algorithms.

7.1 Introduction

Many existing processors in the real-time domain comprise one shared, usually last-
level, cache (LLC), like the ARM Cortex A9 and A15, the Freescale P4080 and the
Aeroflex Gaisler NGMP. While LLC offers high potential for average performance
improvement, it challenges worst-case execution time (WCET) estimation, which
has made LLC to be studied in the last years by the real-time community [Liedtke
et al. (1997),Mueller (1995),Kim et al. (2013),Ward et al. (2013),Paolieri et al.
(2009a)].

As explained in Chapter 2, two main cache design ‘paradigms’ can be found in
the literature: conventional timing analysis techniques (either static or measurement-
based) [Wilhelm et al. (2008)] usually rely on caches that are deterministic in
their temporal behaviour (e.g., caches deploying modulo placement and LRU re-
placement). Meanwhile, Probabilistic Timing Analysis (PTA) techniques [Cucu-
Grosjean et al. (2012),Cazorla et al. (2013),Altmeyer & Davis (2014)] rely on caches

90

7.1 Introduction

with a time-randomised behaviour in which hit and miss events have an associated
probability for every cache access. The main difference between time-deterministic
(TD) and time-randomised (TR) caches, is that in a TD cache each memory ad-
dress is mapped into a fixed cache set and way. That is, certain bits of the address
(called the index) determine the cache set in which the address is mapped, while
the way is determined by the replacement policy. In TR caches, however, each
address can be mapped to any set (randomly chosen on each execution) and way
(randomly chosen on every eviction), since random replacement and placement
policies are used [Kosmidis et al. (2013a)].

Software cache partitioning [Liedtke et al. (1997),Mueller (1995),Kim et al.
(2013),Ward et al. (2013)] and hardware cache partitioning [Paolieri et al. (2009a)]
have been used so far to control inter-task interaction in the LLC. The former,
which can only be used together with TD caches, maps data/code of each task in
non-consecutive memory locations so that data/code are mapped into the desired
cache sets. This solution, however, may introduce fragmentation in the use of
memory and may require significant changes in the memory management. The
latter, which can be used together with both TD and TR caches, relies on deploying
hardware support to force each task to use a subset of the ways of set-associative
caches. In this manner, tasks can be mapped to different ways preventing their
interaction. Both solutions are affected by the fact that tasks may have shared
pages or libraries, since cache partitioning poses a number of difficulties to allow
tasks share data on-chip. Task scheduling is also affected by both hardware and
software cache partitioning. In the case of hardware partitioning, partition flushing
is required to keep consistency when tasks do not always use the same partition.
In the case of software partitioning, two tasks using the same partition cannot be
run simultaneously.

In this Chapter we overcome the limitations of cache partitioning by enabling
the estimation of trustworthy and tight WCET estimates for systems equipped
with fully-shared (non-partitioned) LLCs. The principle behind our proposal is
that, while in a TD LLC interferences depend on when (time) and where (the par-
ticular cache set in which) misses occur, a TR LLC cache removes any dependence
on the particular address accessed and its assigned cache set. This makes that the
LLC interferences that a task suffers only depend on how often (frequency) its co-
runner tasks miss in cache and not the particular address generating the miss. As
a result, in a TR LLC controlling eviction frequency, by delaying when misses are
served for each task, is enough to trustworthily upper-bound the maximum effect
that such task may have on other co-running ones in the LLC. That is, the WCET
estimated for a task τi is trustworthy regardless of its particular co-runner tasks as
long as their aggregated miss frequency – and so their eviction frequency – is be-
low the predefined miss frequency threshold, MTi, for which τi’s WCET estimate is

91

7.2 Background on Controlling Cache
Inter-task Interferences

computed. Based on this analysis we propose a simple hardware mechanism that
limits the miss frequency of tasks in each core at analysis and operation time in a
manner that probabilistic upper-bounds can be obtained for the effect in the LLC
of one task on the other co-running tasks. Our approach removes cache partition-
ing constraints while making WCET estimates tighter. This increases the average
and guaranteed performance that can be obtained.

7.2 Background on Controlling Cache

Inter-task Interferences

Classifying cache accesses as hits and misses in non-shared caches has been already
deemed as a complex process subject to some degree of pessimism for those accesses
for which it is hard to determine whether they will hit or miss [Mueller (1994),Ferdi-
nand & Wilhelm (1999),Lesage et al. (2009),Hardy & Puaut (2008),Reineke et al.
(2007),Theiling et al. (2000)]. Thus, extending this process to the coordinated
analysis of several tasks simultaneously sharing a LLC is even harder [Chattopad-
hyay et al. (2010),Zhang & Yan (2012)]. This is so because any shift in the
execution time of any task (e.g., due to accesses whose outcome cannot be ac-
curately predicted) would lead quickly to highly pessimistic assumptions for the
other tasks, that must account for all potential time alignments across all tasks.
Moreover, combined WCET analysis breaks time composability since any change
in the task scheduling or the upgrade of any software component invalidates the
WCET estimates of all tasks.

Cache partitioning removes the need for multitask cache analysis by ensuring
that tasks are assigned a distinct cache portion. Software cache partitioning is
done through memory coloring [Liedtke et al. (1997),Mueller (1995),Kim et al.
(2013),Ward et al. (2013)]. By enforcing programs’ data/code to be allocated in
certain memory addresses (pages) it can be controlled the cache sets in which
they are allocated. Hardware cache partitioning assigns different cache ways or
cache banks to the different co-running tasks such in a way that contention is
prevented [Paolieri et al. (2009a)].

Cache partitioning complicates task scheduling and data sharing. For instance,
let us assume a 4-core processor deploying LLC and executing three tasks, τA, τB
and τC . Further assume that, the code and data of each task are mapped in
memory such in a way that τA and τB are mapped on the same cache sets and
τC is mapped to different cache sets. Under this scenario we observe the following
problems with software cache partitioning.

• The scheduler has to prevent τA and τB from running simultaneously because
they would interfere each other in cache.

92

7.3 Probabilistically Controlling
Eviction Frequency in a TR LLC

• It is non-obvious how to manage read-write shared data among τA and τC
since data cannot be simply replicated in cache without challenging func-
tional correctness.

Hardware cache partitioning experiences similar problems for data sharing, but
different ones for scheduling. Scheduling problems arise when a task, τA, uses a
given LLC partition, Parti. Some dirty cache lines may remain in Parti after τA
is scheduled out. Whenever τA is run again, either it is assigned Parti or it is
given a different cache partition. In the latter case Parti must be flushed before
τA is scheduled in for consistency.

7.3 Probabilistically Controlling

Eviction Frequency in a TR LLC

7.3.1 Inter-task Interferences in a TD LLC

Tasks can interfere with each other in non-obvious ways in a shared TD LLC. The
main features of two co-running tasks, τA and τX , that shape their interferences
in cache are:

1. Their memory mapping (i.e. the memory addresses where their code/data
are mapped), which determines the cache sets τA and τX use

2. The miss frequency in the data cache and the instruction cache of both
tasks. The higher the miss rate of a task in the data and instruction caches
(assuming a two-level cache hierarchy), the higher its access frequency to
LLC and the higher the chances it changes the LLC state and evicts other
tasks’ data in the LLC

3. Their accesses interleave, that is, the particular order in which accesses occur
to the LLC which affects τA and τX behaviour in cache.

Example The example in Figure 7.1 shows four scenarios illustrating the effect
of those three features of two corunning tasks τA and τX that affect their LLC cache
behavior.

Without loss of generality we focus this example on a dual-core processor de-
ploying a two-level cache hierarchy. The first-level private instruction and data
caches are deployed per core. For the purpose of this example, we disregard the
effect of the interconnection between the cores and the shared LLC (e.g., a full
crossbar is in place). The LLC is a 2-set 4-way set-associative cache that deploys
modulo placement and LRU replacement. We focus on the task running in core0,
which we call τA. In the second core we assume a cache hungry task, τX , is run.

93

7.3 Probabilistically Controlling
Eviction Frequency in a TR LLC

Figure 7.1: LLC state after the sequence of access (6 accesses of core A and 3
accesses of core X). Dotted lines represent a miss after the corresponding access
due to inter-task interferences. Grey boxes represent an access hit.

In this example, τA (or simply A) makes 6 accesses to LLC which are mapped to
set s0, see Figure 7.1.

• In scenario (a) after τA makes its 6 accesses, τX makes three accesses that are
mapped to set s1, hence not causing any eviction of τA data, which causes
no extra misses w.r.t τA’s execution in isolation

• In scenario (b), all τX ’s accesses are mapped to set s0 and occur between
the first and second τA’s accesses, causing only one extra miss due to the
eviction of A1, marked as a dotted box in Figure 7.1.

• Scenario (c) is similar to scenario (b), but with τX ’s accesses occurring be-
tween the third and fourth τA’s accesses. This results in the worst-case
situation in which τX introduces 3 extra misses in τA since A1, A2 and A3

are evicted.

• Finally, scenario (d) shows the same situation as in (c) but in this case τX
only makes 1 access to the LLC, so no eviction occurs.

94

7.3 Probabilistically Controlling
Eviction Frequency in a TR LLC

It is challenging to control, either by hardware or software means, all three fac-
tors due to the complex interactions among tasks sharing a LLC. In this example,
LLC partitioning, either software or hardware (e.g. to allow task τA exclusively
set s0), is the most feasible way to enable the use of a shared TD LLC in real-
time multicore systems. However, as explained before, partitioning challenges task
scheduling, data sharing and task migration.

This simple example shows that the particular set in which tasks’ data are
mapped, the order (interleave) of the accesses, and the number of misses experi-
enced lead to different inter-task interference scenarios, thus impacting task LLC
behaviour, average and worst execution time.

7.3.2 TR caches

As explained in Chapter 2, TR caches [Kosmidis et al. (2013a)] randomise the
behaviour of the replacement and placement policies. The placement policy selects,
based on some bits of the address, the set to access for a given address; while the
replacement policy selects, in the event of a miss in a given set, the victim to be
evicted. We use Evict-On-Miss (EoM) random replacement, which on the event
of a miss, randomly selects a victim line from the target set to be evicted, making
it analysable with MBPTA. The random placement policy described in [Kosmidis
et al. (2013a)] deploys a parametric hash function that uses as inputs the address
accessed and a random number, called random index identifier or RII. Given a
memory address and a RII, the hash function provides a unique and constant
cache set (mapping) for the address along the execution. If the RII changes, the
cache set in which the address is mapped changes as well, so cache contents must
be flushed for consistency purposes. If the RII changes across program execution
boundaries, programs can be analysed with end-to-end runs simply by assuming
that the cache is initially empty. The hash function proposed in [Kosmidis et al.
(2013a)] ensures that given a memory address and a set of RIIs, the probability of
mapping such address to any particular cache set is the same.

In a TR EoM cache with S sets and W ways, hit and miss events are proba-
bilistic. Given the sequence of accesses seq1 =< Ai, B1, ..., Bk, Aj >, starting from
an empty cache state, with Ai and Aj accessing the same cache line, with no Bl

(where 1 ≤ l ≤ k) accessing the same cache line as Ai and each Bl accessing a
different cache line, the miss probability of Aj can be approximated as [Kosmidis
et al. (2013a)]:

PmissAj(S,W)=

1−(W − 1

W

)l=k∑
l=1

PmissBl

·(1−(S − 1

S

)k)
(7.1)

The first element in Equation 7.1 is the probability of miss in a fully-associative

95

7.3 Probabilistically Controlling
Eviction Frequency in a TR LLC

cache with W ways deploying EoM random replacement. The base
(
W−1
W

)
is the

probability of Aj not to be evicted when a single eviction is performed. The
exponent is the addition of the miss probabilities of the elements in between the
two accesses to A, which gives a measure of the number of evictions. This first
element represents the exact miss probability for a fully-associative cache under the
conditions presented above. It becomes an approximation when those conditions
change, e.g. when Bl accesses repeat and/or the initial cache state is not empty.
However, this is irrelevant for MBPTA, since what really matters is that each access
has a probability of hit/miss rather than the particular value of that probability.

The second element in Equation 7.1 approximates the probability of miss in
a direct-mapped cache with S sets. Given that placement and replacement work
independently, the probability of miss in a set-associative cache with S sets and
W ways deploying both random placement and replacement can be computed as
the product of these probabilities.

Equation 7.1 provides an intuition on the fact that in a TR cache the key
factors affecting the probability of hit of an address A is the number of different
accesses carried out in between its current (Aj) and previous access (Ai), called
reuse distance of Aj, and the miss probabilities of those accesses.

7.3.3 Inter-task interferences in a TR LLC

As identified in the previous section there are several features affecting the timing
behaviour of a task in a TD LLC. Next, we present each of those features for a
TR LLC.

Data/Code memory mapping: Under MBPTA the software unit under
study is executed enough times according to MBPTA’s convergence criteria to
ensure representativity of the results. The number of runs required for different
benchmarks [Cucu-Grosjean et al. (2012),Kosmidis et al. (2013a)] and an avionics
case study [Wartel et al. (2013)] ranges between 300 and 1,000. In each run, a
new RII is generated, which makes random placement map each address to a new
randomly chosen cache set. This removes the dependence between the memory
address of an access and the cache set in which it is mapped.

Access and miss frequency: In a TD LLC hit accesses modify the LRU
stack (i.e. the bits used by LRU to determine which line is to be evicted in the
event of a miss). Interestingly, an EoM random-replacement policy is stateless and
hits do not alter the cache state. With EoM, on the event of a hit, neither cache
(data) contents nor any replacement information are changed. Only misses, which
create evictions, alter the cache state. Hence, if {Bl} accesses were generated by
the co-runners of a given task τA’s, we would observe that the larger the number
(frequency) of {Bl}, assuming that each access has a non-null probability of miss,
the lower the hit probability of τA’s following accesses (Aj in this case).

96

7.4 Probabilistically upper-bounding inter-task interference features
in a TR LLC

Interleave: the particular instant in which co-runners of a task τA access the
LLC determines which accesses of τA experience a decrease in their hit probability,
hence affecting τA’s execution time behaviour.

7.4 Probabilistically upper-bounding inter-task

interference features in a TR LLC

In order to derive trustworthy and tight pWCET estimates in the context of PTA
by upper-bounding the effect of inter-task interferences in the LLC while preserv-
ing time composability, we propose a LLC eviction frequency limiting mechanism
(EFL for short). EFL limits how often a task can evict LLC cache lines. To that
end EFL controls LLC miss frequency. Miss frequency bounds are applied in a
different manner during analysis and operation stages such that the timing be-
haviour observed for a program at analysis time upper-bounds its operation-time
behaviour.

Controlling eviction frequency at analysis time. The task under analysis (τA)
is run in isolation in one core limiting how often it can evict lines from the LLC.
EFL prevents τA from performing an eviction in the LLC until at least Minimum
Inter-eviction Delay (MID) cycles have elapsed since τA last evicted a LLC line.
However, LLC hits are allowed to proceed since they do not change LLC state in
TR Evict-on-Miss caches. Later we provide details on the hardware implemen-
tation. The other cores, by means of our proposed hardware support, generate
artificial requests that cause LLC evictions at the maximum allowed frequency,
i.e. once very MID cycles1. In this way, τA execution times are obtained under the
worst intertask interference scenario: maximum eviction rate from other cores.

Controlling eviction frequency at operation time. Each task is allowed, at op-
eration time, to generate a new eviction in the LLC as long as at least MID cycles
have elapsed since its last eviction. This is enforced by EFL hardware (described
below). In the worst case, at operation time all the co-runners of τA can sys-
tematically miss in cache. In order to preserve time composability, EFL makes no
assumption on the miss rate of co-runners. Hence, during analysis time EFL forces
all the artificial requests to produce evictions in the LLC.

Next we review how inter-task interference features are taken into account by
EFL .

Data/Code memory mapping. Random placement caches remove the de-
pendence between an addresses and the particular set in which that address is
mapped. Hence, the memory addresses in which a program maps its data and

1In reality, as explained later in this section, misses occur on average every MID cycles, but
we consider exactly MID cycles at this point for the sake of clarity in the explanations.

97

7.4 Probabilistically upper-bounding inter-task interference features
in a TR LLC

Figure 7.2: Operation mode for each core at analysis and operation time. The
task under analysis is run in core 0 (C0) at analysis time.

code affects execution time in a way that is naturally captured by MBPTA [Kos-
midis et al. (2013a)].

Miss probability. In an Evict-on-Miss TR cache, the higher the probability
of miss of the interfering accesses, the higher the probability they evict data of the
program under study, τA, because on every miss each interfering access causes a
LLC eviction. Thus, by enforcing all interfering accesses to cause a LLC eviction
at analysis time, our approach upper-bounds the miss probability of the accesses of
any co-runner at operation time. This is illustrated in Figure 7.2, where we show
how co-runners always perform evictions at analysis time, whereas they access
normally at operation time, hence not necessarily missing in every access.

Miss frequency. Our approach imposes a miss frequency at analysis time
that cannot be exceeded at operation time. This is so because misses occur exactly
every MID cycles at analysis time, whereas they occur at most every MID cycles
at operation time.

Interleave. How accesses of different tasks interleave may impact tasks’ timing
behaviour, as explained before. Hence, imposing fixed intervals between evictions
could cause systematic effects depending on how those evictions interleave with
τA accesses. Our approach to avoid such effect consists in randomising how ac-
cesses interleave, so that the effect of interleaving can be bounded probabilistically.
Under MBPTA, by capturing in end-to-end execution time observations enough
outcomes of this randomised event, pWCET estimates capture the effect of such
event. Hence, we proceed by enforcing MID not to be a deterministic value but
instead a random value. If, for instance, the desired MID is 1,000 cycles, on every
access we set up a new MID randomly picked between 0 and 2 × MID = 2, 000
cycles. By doing so (1) actual MID values match, on average, the desired MID
value. (2) At analysis time the probability of experiencing an interfering access
in each cycle is homogeneous and random (1

2×MID+1
). Therefore, interfering ac-

cesses interleave randomly. And (3) at operation time the number of interfering
accesses between two particular accesses of τA is still probabilistically lower than

98

7.4 Probabilistically upper-bounding inter-task interference features
in a TR LLC

those experienced at analysis time.

7.4.1 Hardware support

EFL deploys a simple access control unit, see Figure 7.3, that serves as a bridge
among each core and the LLC. Through a rMID register the system software (i.e.
the Operating System) can establish the MID value for each core. By means of
a rmode register, the system software establishes the operation mode, which is
either analysis-time or operation-time mode. The Access Control Unit also has a
cache request generator (CRG) per core, that sends eviction requests to the LLC
as required. To that end cache requests (accesses) are flagged: eviction requests
created at analysis time by the CRG are flagged with a force-miss bit. Such bit is
reset at operation time, when the CRG is off 1.

In addition to the rMID, rmode and the CRG, EFL needs to limit LLC miss fre-
quency from each core, both at analysis and operation time. To that end EFL de-
ploys a count-down counter (cdc) and a pseudo-random number generator (PRNG)
per core, see Figure 7.3. The particular PRNG we have used in this Chapter is the
Multiply-With-Carry (MWC) [Marsaglia & Zaman (1991)] PRNG, since we have
tested that (i) it generates numbers with a sufficiently high level or randomness,
(ii) its period is huge, and (iii) it can be efficiently implemented in hardware2.

On a LLC miss, the PRNG produces a random value in the range [0, 2 ·
MIDdesired], which is used to initialise the counter. Such counter is decremented
by 1 in each cycle until it reaches zero. Note that other intervals and probability
functions for the latencies are allowed as long as they are kept the same at analysis
and operation phases. Keeping the probability distribution function ensures repre-
sentativeness of the collected execution times during analysis time w.r.t those that
may be exercised at operation time.

The port of the core through which the LLC is reached — either directly or
through a bus — is extended with a eviction allowed (EAB) bit per core. The EAB
is set to 1 when the cdc reaches zero. If the EAB is 0, it means that such core is
not allowed to perform any eviction. The LLC needs to be enhanced such that on
a miss of a request with the EAB set to 0 the eviction is delayed until the EAB
is set to 1 and the port for such core is set to busy to block any further access.
This allows LLC hits to proceed regardless of the count-down counter contents,
but stalls misses, which would cause an early eviction otherwise.

At analysis time, the rmode register is set such that CRGs in all cores but
the core where the task under analysis (τA) runs, issue uninterruptedly eviction

1Note that many current ISAs contain in the opcode for load operations ‘hint bits’ that could
be used for EFL purposes.

2The access control unit can use the PRNG used to implement random replacement in first
level caches as it provides up to 32 bits per cycle, largely above the bandwidth needed.

99

7.5 Evaluation

Figure 7.3: Block Diagram of the Access Control Unit

requests to the LLC. All requests, those generated by τA and the artificial ones,
are controlled by EFL, which is also used in all cores at operation time.

While different cores can update the RII of each of their local caches inde-
pendently, this is not the case for the LLC. Updating the RII of the LLC must
occur coordinately at program execution boundaries. This is doable in many do-
mains such as avionics and automotive which rely on Integrated Modular Avionics
(IMA) [ARINC (1997)] and AUTOSAR [AUTOSAR (2006)] respectively. Both
pursue temporal and spatial partitioning. Temporal partitioning is achieved by
splitting execution time into fixed-size time frames, which determine the time
budget available for task scheduling. For instance, the incarnation of those time
frames in IMA are MInor Frames (MIF) and MAjor Frames (MAF). MIF duration
is in the order of few milliseconds. Therefore, the OS can easily change the RII of
the LLC at MIF boundaries, which occur coordinately across all cores.

Overall, the hardware overhead is negligible since each core needs a small
counter (e.g., a 12-bit counter if MIDdesired is 2,048) and all cores but one need
little logic to generate eviction requests. Regarding the PRNG, since first level
caches for data (DL1) and instructions (IL1) already implement random replace-
ment in each core, those PRNG can be easily reused. For instance, the PRNG
used in [Kosmidis et al. (2013a)] is able to provide 32 random bits per cycle, which
are far more bits than needed.

7.5 Evaluation

7.5.1 Experimental Setup

We use a cycle-accurate simulator [Pouillon et al. (2009)], as explained in Section 3,
to model a 4-core processor. The memory hierarchy is composed of per-core first
level separated instruction (IL1) and data (DL1) caches, a shared cache (LLC)
across all cores (for both data and instructions) and main memory. IL1 and DL1
are as follows: 4KB, 4-way and 16B-line size implementing random placement and

100

7.5 Evaluation

random replacement (EoM) policies [Kosmidis et al. (2013a)]. The LLC is identical
to IL1 and DL1 except because its size is 64KB and its associativity is 8. The LLC
is non-inclusive. All caches are write-back1. Instruction/data accesses have 1-cycle
IL1/DL1 hit latency, 10-cycle LLC hit latency and 100-cycle memory latency. The
remaining operations have a fixed execution latency in the execution stage (e.g.
integer additions take 1 cycle). For the bus, whose access latency is 2 cycles, we
use random arbitration policies [Jalle et al. (2014)]. For the memory controller
we use the solution proposed in [Paolieri et al. (2009b)], which upper-bounds the
effect of inter-task interferences on the requests of a core to the memory controller.

We use EEMBC Autobench suite [Poovey et al. (2009)]. WCET estimation
is performed in isolation under the analysis operation mode. For the purpose of
measuring average and guaranteed performance we have run 1,024 4-benchmark
workloads composed of randomly selected Autobench benchmarks. We collected
at most 1,000 measurements (i.e. runs) for each experiment.

7.5.2 Experimental Results

MBPTA compliance
MBPTA compliance of our EFL proposal can be done by probabilistic (a priori)

means or by statistical (empirical means).
In order to derive a probabilistic argument about how EFL technique is MBPTA

compliant we analyse the latencies that a core operation (e.g. integer addition)
can take in a multicore processor when deploying EFL . Note that core operations
may miss in the instruction cache and access the LLC once. Memory operations
have similar behavior but may access twice to the LLC, one if they miss data cache
and one if they miss the instruction cache, which requires doing twice the analysis
we show next.

MBPTA, requires the hardware to guarantee that each operation has its own
ETP; however, unlike SPTA, which needs to know all ETPs, MBPTA only requires
those ETPs to exist.

We start explaining the ETP of a multicore architecture like the one described
in Section 4 when EFL is not deployed. As a second step, we will determine how
the ETP is affected when EFL is active. If EFL is not deployed, ETP of a core
operation can be derived as follows.

In our core architecture the core latency of instructions, i.e. the latency it
takes to fetch and decode is fixed, latcore. Accessing IL1 takes also a fixed latency,
latIL1. Whether it hits/misses in the IL1 is given with a probability, P IL1

hit , see

1If a write-through DL1 cache were used, LLC accesses would be much more frequent due to
store instructions. In such case, either write operations are not allowed to allocate data in the
LLC on a miss or stalls may be frequent with EFL, thus harming WCET estimates and average
performance.

101

7.5 Evaluation

Equation 7.1. In the case of a miss, the latency it takes to access to the bus is
upper-bounded by a given value latbus, since we deploy TDMA. Once the memory
request gets to the L2, it takes a fix latency to access it, latL2. The probability
it hits in L2 is given by PL2

hit [Kosmidis et al. (2013b)]. In the case it misses,
it accesses to memory through a shared memory controller in which tasks may
suffer inter-task interferences. However, the technique deployed in [Paolieri et al.
(2009b)] allows upper-bounding the effect of intertask interferences, bound that is
introduced at analysis time as latmem. With all this we have:

ETPcoreop = { {latcore + latIL1,

latcore + latIL1 + latbus + latL2,

latcore + latIL1 + latbus + latL2 + latmem},
{P IL1

hit ,

P IL1
miss × PL2

hit,

P IL1
miss × PL2

miss}
}

(7.2)

Impact of EFL on ETPs. Once we have a miss in L2 (LLC) cache, it may
be delayed by our EFL hardware depending on the time elapsed since the last
miss request was sent to the LLC. In particular, the first miss of the program is
not delayed at all (we assume rMID1 = 0 before the program starts). Similarly,
dl1 = 0.

Whether a particular miss request i is delayed or not depends on (1) the time
elapsed since the previous miss in the LLC (dli) and (2) the particular (random)
delay imposed after such request was issued, rMIDi−1.

• The probability of each particular value we get in rMID in range [0, 2·MID]
is uniform, pEFL = 1

(2·MID+1)
. It is important to notice that rMIDi has the

same probability distribution at analysis and at operation mode, and by
providing uniform distribution it is independent of the particular cycle in
which LLC access is granted (no particular systematic alignment with other
events can occur).

• The time elapsed since the last miss in the LLC, dli, depends on the num-
ber of instructions executed between miss request i and the particular miss
request i− 1. Deriving the actual probability of previous LLC cache request
is complex, in many cases it is necessary to create the probability tree of all
events [Abella et al. (2013)], as it is illustrated in the next example. How-
ever, to apply MBPTA those probabilities do not need to be known, it is only
needed that events affecting the behavior of instructions have a probabilistic

102

7.5 Evaluation

Figure 7.4: probability tree for the two instruction sequence

behavior, which is the case for dli and rMIDi (shown below), making our
EFL design compliant with MBPTA requirements.

Example: Let’s assume we have a program comprised of 3 consecutive core
operations i1, i2 and i3, and that the LLC (L2) cache has already some data.
Further we assume that all instructions miss in the IL1. Figure 7.4 shows the
probability tree for the sequence of first two instructions. Each node represents
a probabilistic state of the processor, while edges represent the outcome of the
random event access to the LLC.

We start from an initial state, in which we assume that rMID1 = 0 and it
does not affect the timing behaviour of the first instruction.

The random event ‘i1 access to L2’ generates two states, the first one with
a probability of phitL21 , called PS1, and the counter state that happens with a
probability 1− phitL21 = pmissL21 , called PS2. In the case i1 in L2 (PS1), it does
not affect the timing behaviour of i2. In the case of a miss of i1 (PS2) a random
number rMID1is stored in rMID, which can delay the i2.

If starting from PS1, i2 executes it can proceed normally (with no EFL -incured
delay) and it creates two new states – PS3 and PS4, with an associated probability
of PL2

hit1 × PL2
hit2 and PL2

hit1 × PL2
miss2 respectively. If the probabilistic state was PS2,

and further i2 misses in L2, the EFL hardware can delay this request. In this

103

7.5 Evaluation

scenario, i1 and i2 are consecutive and they are serialised in their access to L2,
so the execution time difference (dl2) in our architecture since the time the first
access to the LLC until the second accesses is fixed (5 cycles). Hence, i2 request
to the LLC will be delayed by EFL if the value in rMID1 was bigger than 5.

Same happens with the execution of i3, EFL can delay execution if processor
was in probabilistic states PS4 or PS6. Overall, after the execution of every
instruction we have a state, with an associated probability, in which processor can
be. Under this state, the time difference between two LLC misses is fixed. If the
random value stored in rMID is bigger than this fixed latency (rMIDi > dli), the
current instruction is delayed, which happens with a given probability (PrMID>dl).

Hence the delay introduced by EFL in each probabilistic state of the processor
is:

latEFL =

{
rMIDi−1 − pdi if (rMIDi−1 > dli)

0 otherwise

For the case of PS4, let’s call Pbase = PL2
hit1×PL2

miss2. In the case of L2 miss, the
ETP describing the latency EFL caused in i3 is given by:

ETPEFL = { {0,
1,

2,

3,

...,

2 ∗MID − dl3,
{Pbase × (PEFL × dl3),

Pbase × PEFL,

Pbase × PEFL,

...,

Pbase × PEFL}
}

(7.3)

Overall, the probabilistic nature of the two sources of delay introduced by
EFL enables deriving an ETP for all operation in an MBPTA-compliant architec-
ture that deploys EFL, which is enough to apply MBPTA trustworthily.

We contrast empirical results by using proper statistical i.i.d tests, as explained
in Chapter 3.

Table 7.1 shows the results of the WW and KS tests for all EEMBC benchmarks
we used when deploying EFL250. For the WW test all results are below 1.96 and
for the KS are above 0.05. Hence, for this level of significance (α = 0.05), the i.i.d
hypothesis can be accepted. WW and KS tests where also passed for all the other

104

7.5 Evaluation

Table 7.1: Results of the i.i.d. tests for the EFL250

Bench. Identical
distribution

Indepen-
dence

Both tests
passed?

II 0.53 0.44 yes
ID 0.49 0.43 yes
MA 0.18 0.47 yes
PN 0.55 0.76 yes
CN 0.34 0.51 yes
A2 0.59 0.76 yes
AI 0.62 0.59 yes
CA 0.24 0.67 yes
PU 0.25 0.49 yes
RS 0.43 0.73 yes

Figure 7.5: pWCET of each setup normalised to CP2

EFL configurations.
EFL vs. cache partitioning. We compare our technique, EFL, w.r.t. hard-

ware cache (way) partitioning [Paolieri et al. (2009a)]. For that purpose we con-
sider different configurations of both techniques. For EFL we consider MID values
250, 500 and 1,000 cycles. We refer to those configurations as EFLmid. For cache
partitioning we study cache setups with 1, 2 and 4 ways per program. We refer to
those configurations as CPways.

Figure 7.5 shows the pWCET estimates for all benchmarks normalised w.r.t.
cache partitioning with 2 ways per program, which would be the solution where
each of the 4 cores has exactly 2 out of the 8 LLC cache ways.

Some benchmarks (ID, MA, CN, AI, CA, PU, RS) are relatively insensitive to

105

7.5 Evaluation

cache space as long as they are given at least 2 ways, i.e. 1
4

of the cache space.
Still EFL outperforms CP for those benchmarks, since EFL does not impose any
constraint on the associativity available in each cache set as CP does. In particular
EFL moderately improves CP for (ID, CN, AI, PU). It is also the case that all those
benchmarks but MA show to be highly insensitive to the actual EFL . MA is a
benchmark most of whose input set does not fit in LLC. As a result, it experiences
a large number of LLC misses and hence, most LLC accesses get delayed due to
EFL, hence increasing pWCET estimates. In this case it is clear that low MID
values mitigate this effect.

Finally, II, PN and A2, which are more sensitive to cache space, are less affected
by EFL than by CP.

Overall, EFL clearly outperforms CP in terms of pWCET estimates across
benchmarks, especially for low MID values.

Guaranteed performance. The principle of both, CP and EFL, in order to
provide guarantees in the performance of tasks is to reserve resources in the LLC,
though CP does this in a static manner and EFL in a probabilistic manner. For a
given benchmark, b, by dividing the instructions committed by b and its pWCET
estimate, measured in processor cycles, obtained for EFL (or CP) for a given cutoff
probability (e.g. 10−15 per run) we obtain b’s guaranteed instructions per cycle

(gIPC) for that cutoff probability gIPC−15EFL(b) = Instructions(b)

pWCET−15
EFL(b)

. The workload total

guaranteed performance, wgIPCprob, is obtained by adding the gIPCprob of the
benchmarks in the workload.

wgIPC results can be indirectly obtained from Figure 7.5. For instance A2 with
CP4 has a normalized execution time close to 1, while for EFL250 it is 0.27. This
translates into the fact that with EFL the gIPC of A2 is almost 4 times bigger than
for CP . In order to measure the wgIPC of CP and EFL in a systematic way, we
randomly generated 1,024 workloads and measured the highest wgIPC−15 that
CP and EFL can provide under any setup. For CP this is equivalent to find
the partition of the 8 ways of the LLC across the tasks such that wgIPC−15 is
maximised. For the case of EFL we look for the MID value (identical for all tasks)
that maximises wgIPC.

Figure 7.6 shows the improvement that EFL obtains over CP in terms of
wgIPC. Workloads are sorted from higher to lower EFL improvement. As ex-
ceedance probability we have chosen 10−15, with similar results obtained for 10−17

and 10−19 .
EFL follows an S-curve and improves CP in 1,015 out of the 1,024 workloads.

For more than 25% of the workloads improvements are higher than 70%, while
for more than half it is higher than 47%. The average degradation for the 10
workloads in which EFL is worse than CP is smaller than 3.1% (with a maximum
degradation smaller than 9.8%). Overall, EFL consistently improves CP, with a

106

7.6 Conclusions

Figure 7.6: Workload guaranteed IPC (wgIPC) and average IPC (waIPC) im-
provement of EFL over CP

maximum wgIPC improvement of up to 2.89x and an average of 56%.
Average performance. Average performance is also an important metric in

real-time systems. High average performance when running critical tasks enables,
for instance, running non-critical tasks or saving power by power-gating cores or
decreasing their operating frequency. For the same workloads used in Figure 7.6 we
compute their average IPC (waIPC) observed at run time. The bottom function
in Figure 7.6 shows EFL improvement over CP in terms of average performance.
We observe that EFL improves CP in 910 out of the 1,024 workloads. For more
than 25% of the workloads improvements are higher than 37%, while for more
than half of the workloads is higher than 9%. The average degradation for the 10
workloads in which EFL is worse than CP is smaller than 6.4% (with a maximum
degradation smaller than 16.8%). As for wgIPC, EFL consistently improves CP,
with a maximum improvement of up to 64% and an average of 16%.

7.6 Conclusions

Conventional timing analysis techniques rely on cache partitioning, either hardware
or software, to obtain time-composable WCET estimates in systems equipped with
shared LLCs as they avoid inter-task interferences. However, cache partitioning
challenges data sharing and task scheduling.

In this Chapter we propose EFL, a new technique to obtain time-composable

107

7.6 Conclusions

WCET estimates on top of shared non-partitioned LLCs, thus removing parti-
tioning constraints. EFL relies on the fact that time-randomised (Evict-on-Miss)
caches used in conjunction with PTA remove the dependence of execution time
and WCET on the actual addresses accessed by the program. Thus, by control-
ling when each core is allowed to evict lines from the LLC and by appropriately
producing LLC evictions at analysis time, EFL effectively obtains trustworthy and
tight WCET estimates. EFL increases the guaranteed performance w.r.t. cache
partitioning by 56% and average performance by 16%.

108

Chapter 8

Reliability issues

Existing timing analysis techniques to derive Worst-Case Execution Time (WCET)
estimates assume that hardware in the target platform (e.g., the CPU) is fault-free.
The use of smaller transistors helps providing more performance while maintaining
low energy budgets; however, hardware fault rates increase noticeably, affecting
the temporal behaviour of the system in general, and WCET in particular.

In this Chapter, we propose the Degraded Test Mode (DTM), a method that, in
combination with fault-tolerant hardware designs and probabilistic timing analysis
techniques, enables the use of hardware implemented with smaller transistors and
still provides tight (and trustworthy) WCET estimates.

8.1 Introduction

To respond to the demand for increased computational power in future CRTES, the
use of hardware acceleration features such as caches and smaller technology nodes
(i.e. smaller transistors) is required. In particular, the higher degree of integration
provided by newer technology nodes enables (i) reducing energy consumption and
temperature, and (ii) integrating more hardware functionalities per chip, which in
turn enables running more system functionalities per chip, thus reducing overall
system size, weight and power consumption costs.

Semiconductor technology evolution (i.e. smaller technology nodes) leads,
however, to an increased number of permanent faults manifesting during oper-
ation [Abella et al. (2011a)]. While test methods can detect most permanent
faults during post-silicon testing, many rather small defects not producing actual
faults escape the test process (latent faults). Hardware degradation makes those
latent defects grow enough to cause faults during operation. Errors induced by
permanent faults can be tolerated to certain extent in some markets, but can-
not in CRTES where stringent correctness constraints call for means to prevent

109

8.1 Introduction

faults from jeopardising the safety of those systems. While this was not an issue
for old technology nodes (e.g., 180nm), it becomes critical for newer nodes (e.g.,
65nm) since Failures in Time (FIT)1 rates may grow quickly after only 10 years
of operation [Guertin & White (2010)], which is less than the lifetime required
for many CRTES (e.g., aircraft, space missions). Furthermore, smaller technol-
ogy nodes (45nm and beyond) suffer high FIT rates much earlier. Some existing
error detection and correction techniques can cope with both functional and tim-
ing correctness required in CRTES despite of permanent faults. For instance,
triple modular redundancy (TMR) [Lyons & Vanderkulk (1962)] has no effect on
the timing behaviour despite of errors, but introduces high overheads since com-
plete hardware blocks (e.g., processing cores) are replicated. Analogously, other
approaches based on setting up some degree of redundancy are expensive in the
context of CRTES if used extensively to deal with permanent faults [Chen &
Hsiao (1984),Koren & Koren (1998)]. Alternatively, hardware can be reconfig-
ured (e.g., disabling faulty components) when permanent faults arise [Abella et al.
(2009),Roberts et al. (2007),Wilkerson et al. (2008)]. However, such reconfigura-
tion provides degraded performance, which is a major concern in CRTES, since
CRTES must provide both, functional and timing correctness.

The fact that hardware characteristics degrade in an exponential number of
different ways due to faults challenges state-of-the-art timing analysis methods.
Static Timing Analysis (STA) does not take into account any information about
the permanent faults that hardware may experience. So, as soon as any of the hard-
ware components (e.g., a cache line) is detected to be faulty and disabled by the
fault-tolerance mechanisms in place, the WCET estimates previously derived are
no longer a safe upper-bound of the WCET of the application. Similarly, WCET
estimates derived with Measurement-Based Timing Analysis (MBTA) techniques
or Hybrid ones (i.e. combination of MBTA and STA) [Wilhelm et al. (2008)], re-
main only valid under the same processor degraded mode on which measurements
were taken (typically a fault-free mode).

In summary, it becomes mandatory for timing analysis tools to account for
degraded hardware behaviour. However, to the best of our knowledge no timing
analysis technique has been developed so that it can safely and tightly provide
WCET estimates on top of degraded hardware. Only few works have proposed
ad-hoc hardware solutions to keep timing characteristics of hardware despite faults
at the expense of some redundancy and extra complexity in cache memories, which
experience most hardware faults due to their large area and aggressive transistor
scaling to provide further cache space and reduced energy consumption [Abella
et al. (2011b),Abella et al. (2011c)]. Also, some work has been done to account
for degraded hardware together with STA [Hardy et al. (2016)]. However, such

11 FIT corresponds to 1 failure per 109 hours of operation.

110

8.2 Background

work needs to account for either fault maps whose number grows exponentially
with fault counts, or for very pessimistic assumptions (e.g. a fault affects all cache
sets) to limit computational cost.

This Chapter addresses the challenges of enabling tight and safe WCET esti-
mation on faulty hardware with graceful WCET degradation. The contributions
of this Chapter can be summarized as follows:

1. We propose the Degraded Test Mode (DTM) approach to provide strong tim-
ing guarantees on systems with degradated cache memories due to permanent
faults.

2. We specify how hardware must be designed and tested so that faults are
tolerated enabling the use of MBPTA on top of such hardware.

3. We propose a holistic approach to deal with the timing impact of error
detection, correction, diagnosis and reconfiguration (DCDR) on systems with
cache hierarchies.

DTM focuses on cache designs, since most faults are expected to affect caches
and caches are one of the resources affecting WCET tightness the most. DTM
determines the properties cache memories must exhibit and how they must be
configured so that they can be analysed with PTA techniques, while obtaining
WCET estimates valid in the presence of faults. DTM achieves (i) graceful average
performance degradation and (ii) WCET degradation in the presence of faults,
while still enabling (iii) trustworthy and tight WCET estimates despite of faults, by
(iv) using unmodified MBPTA tools and (v) introducing no changes in applications
so that DTM can be used even for legacy code.

When considering a holistic approach for DCDR, we also account for faults in
other processor components apart from cache memories.

8.2 Background

CMOS technology suffers from process variations [Bowman et al. (2002)]. Pro-
cess variations are deviations of device (e.g., transistor, wire) parameters from
their nominal values. The relative impact of those variations increases as device
geometry shrinks. While this is a challenge for all hardware components, it is par-
ticularly critical for cache memories because bit-cells are typically implemented
with the smallest transistors allowed (so the relative impact of variations exacer-
bates). Moreover, variations cannot compensate across devices because bit-cells
involve very few transistors (e.g., typical cells are implemented with 6 or 8 tran-
sistors only [Jain & Agarwal (2006)]). Deviations due to process variations lead to

111

8.2 Background

timing faults (signal transitions take longer than the cycle time), retention faults
(bit-cell contents eventually flip from 0 to 1 or vice versa) and read/write faults
(bit-cells cannot be properly read or written).

Test methods exist to verify that processors are fault-free when delivered. Un-
fortunately, latent defects are not large enough to cause errors and escape this test
process. After some time of operation, degradation makes latent defects to cause
actual faults. This effect exacerbates as device geometry shrinks. To illustrate this
phenomenon Figure 8.1 shows the FIT rate for technologies down to 65nm [Guertin
& White (2010)]. We can observe that until 104 hours of operation the FIT rate
decreases. This period is known as infant mortality and is elapsed before product
deployment through accelerated stress in appropriate equipment. Then, the FIT
rate remains low during some time (normal lifetime) until it raises exponentially
due to degradation. Rightmost vertical lines in the plot show how this FIT rate
ramp up occurs earlier for newer technologies, leading to a too short normal life-
time for some technologies (e.g., few thousands of hours for 65nm). Therefore, the
normal lifetime where FIT rates are low enough for safety-critical systems become
too short. For instance, while such ramp up would take hundreds of years to occur
for 180nm technology nodes, it occurs after 10 years of operation for 65nm. This
is already a challenge for avionics and space industry where aircraft and space
missions are expected to last several decades (i.e. 8 · 104 − 4 · 105 hours), and
where the FIT rate is expected to be largely below 100), as shown in the dotted
green rectangle in Figure 8.1. Further, 45nm nodes and beyond are expected to
observe a FIT rate ramp up much before 10 years of operation (8 ·104 hours), thus
challenging also other CRTES industries such as automotive and medical ones.

Several techniques exist to perform error detection, correction, diagnosis and
reconfiguration (DCDR), so functional correctness, as required in CRTES, can
be achieved. However, modifying hardware behaviour to keep operating in the
face of faults (e.g., disabling faulty cache lines or decreasing operating frequency)
degrades performance. Unfortunately, existing timing analysis methods are unable
to provide tight and trustworthy WCET estimates if hardware is expected to
become faulty during operation. The fact that tasks are executed correctly but
late (finishing after their respective deadlines) can be as catastrophic in CRTES
as producing wrong results. Therefore, methods to account for permanent faults
in WCET estimates are needed.

112

8.3 Target Processor Architecture
and Fault Model

Figure 8.1: FIT rates of modern semiconductor technologies used for embedded
microprocessors (65nm, 90nm, 130nm and 180nm) over the chip’s lifetime. The
X and Y axes show equivalent hours of operation and FIT rates respectively in
logarithmic scale (source: Jet Propulsion Laboratory, NASA [Guertin & White
(2010)]).

8.3 Target Processor Architecture

and Fault Model

This section introduces the hardware designs upon which we build our approach
as well as the fault model used.

8.3.1 Hardware Designs for MBPTA and Caches

Our processor architecture consists of a 4-stage (fetch, decode, execute and write-
back/commit) in-order processor with first level data (DL1) and instruction (IL1)
caches, as well as data (DTLB) and instruction (ITLB) translation lookaside
buffers. DL1, IL1, DTLB and ITLB can be fully-associative, set-associative or
direct-mapped as long as they implement random placement and replacement [Kos-
midis et al. (2013a)]. The only constraint DTM puts is that the processor must
be MBPTA-friendly so that MBPTA can be used to determine the pWCET.

Although any component in the processor can be faulty, we only consider faults
in cache-like components such as DL1, IL1, DTLB and ITLB since they are ex-
pected to concentrate most of the faults as explained in Section 8.2. However, the

113

8.3 Target Processor Architecture
and Fault Model

approach proposed in this Chapter can consider faults in any component as long
as those faults do not impact the functional correctness of programs being exe-
cuted —faults only impact timing once they have been detected and faulty parts
reconfigured properly.

If cache-like blocks are expected to experience soft errors, they may be parity
or Error Detection and Correction (EDC) protected. We consider that those error
detection and/or correction features are set up only to provide a given degree of
fault tolerance in front of soft errors, whose rate can be very high in segments
such as avionics and space, where systems operate in high-radiation environments
(thousands of meters above the sea level or the space) and how our proposal can
deal with them is explained later in Section 8.6.2. Permanent faults arising from
the use of nanotechnologies cannot be addressed by those means set up to deal
with soft errors because that would decrease soft error protection. For instance,
if data in cache are Single-error-correction and double-error-detection (SECDED)
protected to be able to correct up to one soft error per word, permanent faults
can rely on SECDED to detect and correct the error the first time it manifests,
but those words must be disabled because a soft error combined with the existing
permanent fault could easily lead to a non-correctable double error.

We assume that whenever a faulty bit is detected in cache, the whole cache
line is disabled. Such an approach is similar to what we can find in some existing
(non-embedded) processors such as the Itanium family, which implements Pellston
technology [McNairy & Mayfield (2005)] to disable faulty cache lines during op-
eration. A potential implementation of Pellston technology consists of extending
each cache line with a Usable Bit (UB for short). Such bit must be set for all cache
lines but faulty ones. Whenever cache tags are checked on an access, the match
signal is ANDed with the UB so that faulty lines cannot report a hit. Note that
such AND operation is also performed with the valid bit, which indicates whether
the cache line holds valid contents.

8.3.2 Permanent Fault Model

In order to model permanent faults caused by process variations and aging in
nanotechnologies, we use as input the fault probability per bit (p(bit)f), which
is the common practice in fault modeling in caches due to the random nature of
those faults [Abella et al. (2009),Roberts et al. (2007),Wilkerson et al. (2008)].
Such p(bit)f corresponds to the probability of a bit to become permanently faulty
during the target lifetime of the chip. We assume faults to be random given that
systematic (and hence, non-random) faults can be easily addressed with tech-
niques such as body biasing [Tschanz et al. (2002)]. Hence, we apply such p(bit)f
homogeneously to all DL1, IL1, DTLB and ITLB bits except the UB bits, which
must be hardened to allow faulty lines to be properly disabled. Hardening can

114

8.3 Target Processor Architecture
and Fault Model

be performed, for instance, by using larger transistors or triple modular redun-
dancy. Based on the p(bit)f and the number of bits per line (bitsline) we obtain
the probability of a line to be fault-free (p(line)ok) in each cache-like structure:

p(line)ok = (1− p(bit)f)bitsline (8.1)

Next, we obtain for each cache-like structure the probability of each faulty
cache line count: p(cache)x where x is the number of faulty cache lines and N the
total number of cache lines:

p(cache)x = (p(line)ok)
N−x · (1− p(line)ok)x ·

(
N
x

)
(8.2)

The first element in Equation 8.2 corresponds to the probability of N −x lines
not to be faulty, the second element is the probability of having x lines faulty and
the third the number of arrangements of x faulty lines in a cache with N lines.

8.3.3 Upper-bounding the Number of Faulty Cache Lines

Based on the probabilities of each faulty cache line count, we derive an upper-
bound for the number of cache lines that must be assumed to be faulty during the
timing analysis to derive safe WCET estimates. For that purpose, we derive the
probability of a cache to have up to x faulty lines. We refer to this probability as
Y ield(cache):

Y ield(cache) ≤
x∑
i=0

p(cache)i (8.3)

where x is the faulty cache line count. Note that Equation 8.2 gives the prob-
ability of an exact number of cache lines (x) to be faulty. Equation 8.3 accumu-
lates the probability for those counts up to x faulty lines. For instance if x = 3,
Y ield(cache) stands for the probability of having at most 3 faulty lines in cache
during the whole lifetime of the chip.

Finally, the yield of the chip, Y ield(chip), can be computed based on the yield
of its components (cache memories in our case study).

Y ield(chip) =

NumCaches∏
i=1

Y ield(cachei) (8.4)

NumCaches stands for the total number of cache memories in the chip. Such
yield must be high enough so that the failure rate (obtained as 1 − Y ield(chip))

115

8.3 Target Processor Architecture
and Fault Model

Inputs:
Outputs:
(1) C = set of all caches
(2) X = set of faulty entries considered for each cache
(3) for each cache cachei ∈ C do
(4) xi = 0 (where xi ∈ X)
(5) while (1− Y ield(cachei)) > TargetFailureRate(chip) do
(6) xi = xi + 1
(7) endwhile
(8) endfor

(9) while (1−
∏NumCaches

i=1 Y ield(cachei)) > TargetFailureRate(chip) do
(10) cachemax ∈ C so that ∀cachei ∈ C : Y ield(cachemax) ≤ Y ield(cachei)
(11) xmax = xmax + 1
(12) endwhile
(13) return X

Figure 8.2: Algorithm to obtain the number of faulty entries to consider for each
cache.

is below a given target threshold (TargetFailureRate(chip)) as shown in Equa-
tion 8.5.

TargetFailureRate(chip) ≥ 1− Y ield(chip) (8.5)

Note that TargetFailureRate(chip) is very stringent for CRTES (e.g., 10−6,
meaning that up to 1 chip every 1,000,000 may have more faults than allowed
during its lifetime).

When the chip comprises several cache memories, several combinations of faulty
entries per cache may meet the TargetFailureRate(chip). For instance in a
processor with DL1, IL1, DTLB and ITLB the maximum number faulty lines
that must be considered for each of those cache memories could be {3, 3, 2, 1} or
{4, 3, 1, 1}.

The number of faulty cache lines we must assume for each cache component
must be determined based on the TargetFailureRate(chip). How to do this si-
multaneously for all caches is not trivial, so we develop an algorithm to derive the
number of faulty lines per cache that must be considered for WCET estimation.
We start considering the maximum number of faulty lines per cache memory such
that each particular cache in isolation does not exceed the target failure rate for
the whole chip. If the combined yield of the different caches exceeds the target
failure rate, then we need a way to increase the number of faulty lines considered

116

8.4 Making Timing Analysis Aware of Hardware Faults

in the different caches so that Y ield(chip) is increased. For that purpose we pro-
pose a simple iterative algorithm to deal with those scenarios. The algorithm is
presented in Figure 8.2. First, the number of faulty cache lines to be considered
for each cache in isolation is computed (lines 3-8). Then, the yield of each cache
in isolation is combined. If the combined failure rate (1−Y ield(chip)) exceeds the
threshold (line 9), an extra faulty entry is assumed for the cache with the lowest
yield (lines 10-11). This process repeats until their combined failure rate is below
the target threshold (lines 9-12).

8.4 Making Timing Analysis Aware of Hardware

Faults

8.4.1 Deterministic Hardware

STA techniques require detailed knowledge of the underlying hardware. For in-
stance, in the case of cache analysis, STA must be aware of the replacement policy
(e.g., LRU) and the placement policy (e.g., modulo) used by the hardware. From
the application executable, STA needs the address of each cache access to be able
to determine whether they will hit or miss in cache.

Let us assume that, based on the model presented in Section 8.3.2, we know
that the cache deployed in a given platform is expected to have up to f faults
during its lifetime. In order to make STA tools aware of faults at hardware level
we should consider all combinations of f faults over N total lines in cache, leading
to a total of N !

f !·(N−f)! different degraded cache modes1. For instance, if up to

2 faults are expected (f = 2) in a small cache with 64 cache lines (N = 64),
STA should consider 2,016 different scenarios. Under each degraded mode, cache
analysis should be carried out deriving a WCET bound. The highest of those
WCET bounds should be taken as the final WCET bound. MBTA techniques
would suffer similar problems, since the particular lines in which faults appear
affect the analysis.

Overall, conventional caches deploying deterministic placement and replace-
ment policies such as modulo and LRU make WCET estimates provided by STA
and MBTA depend on the particular location in which faults occur. In the pres-
ence of f faults in a cache with N total cache lines, all possible N !

f !·(N−f)! degraded
modes must be considered by the timing analysis technique.

1The particular location of the faulty line matters given that its particular cache set will
have one line less than the other sets, and the replacement policy will select cache lines for
replacement regardless of their faultiness, thus leading to different scenarios depending on the
particular location of the faulty cache line in the set.

117

8.4 Making Timing Analysis Aware of Hardware Faults

8.4.2 Probabilistic (Time-Randomised) Hardware

Randomised caches (i.e. caches deploying random placement and random replace-
ment) [Kosmidis et al. (2013a)] break the dependence between the location in
memory of a piece of data and its assigned set in cache.

The main property of MBPTA-friendly (a.k.a. randomised) cache designs is
that they are insensitive to the particular location of faults. This drastically sim-
plifies capturing the effect of faulty lines with MBPTA techniques. In particu-
lar, the only information to take into account by MBPTA techniques to handle
faulty cache lines is the number of faulty lines in each cache-like structure, not
their location in cache (i.e. the particular way and set in which the fault line ap-
pears). We illustrate this phenomenon in the following subsections, starting with a
fully-associative random-replacement cache and then extending it to more generic
set-associative caches.

Fully-associative caches

Random replacement is performed by generating, on a miss, a random number of
log2N bits where N is the number of cache lines. On an eviction, the random
number obtained can correspond to the cache line number of a faulty cache line. If
this is the case, a new random number is generated until the identifier of a fault-
free cache line is generated. Note that the expected number of attempts (ATT)
required for a cache with N total cache lines and f faulty cache lines (where
f < N) to pick a fault-free cache line is as follows [Feller (1966)]:

ATT =
∞∑
i=0

(
N − f
N

)
·
(
f

N

)i
· (i+ 1) =

N

N − f
(8.6)

In the equation,
(
N−f
N

)
is the probability of picking a fault-free line, and

(
f
N

)i
the probability of picking a faulty line. Hence, the equation adds each number
of attempts (i + 1) weighted by the probability of i failed attempts followed by 1
successful attempt. This can be expressed simply as N

N−f .
For instance, in a cache with N = 64 cache lines and f = 2 faulty lines we

would need around 1.03 attempts on average. Those extra attempts are unlikely
to impact the execution time because they can occur in parallel with the memory
access. In our example where 2 out of 64 cache lines are faulty, 1 extra attempt is
needed with 0.03 probability, 2 extra attempts with 0.001, 3 extra attempts with

0.00003, and i extra attempts with
(
N−f
N

)
·
(
f
N

)i
probability.

Note that those cache designs considered for DTM (caches implementing ran-
dom placement and replacement with re-try support for evictions of faulty lines),
differently to existing approaches [Abella et al. (2011b),Abella et al. (2011c)], nei-
ther need any cache line redundancy nor additional structures. Moreover, as shown

118

8.4 Making Timing Analysis Aware of Hardware Faults

later, the proposed cache designs can be considered in the context of MBPTA be-
cause whether a faulty cache line is chosen for replacement depends solely on a
random event.

Set-associative caches

If the cache under consideration is set-associative, Equation 8.6 applies at the
level of cache set, with N being the associativity of the cache (a.k.a. the number
of cache lines per set). A further consideration must be done for set-associative
caches, especially if their degree of associativity is low. If the number of potential
faulty cache lines is equal or larger than the associativity of such a cache, then
exists a non-null probability of having a cache set without any fault-free cache
line. If this is the case, accesses to that cache set will be processed as misses and,
obviously, not cached. However, given that the number of faulty lines to consider
is pretty low, as shown later, and the probability of concentrating many faulty
cache lines in a single set is also very low, this scenario is extremely unlikely — if
at all possible.

As stated before, randomised caches make MBPTA and DTM insensitive to the
location of faults in a particular cache-like structure. Instead, what really matters
for MBPTA and DTM is the number of faulty lines in each cache-like structure,
not their location, so the fault model in Section 8.3 captures exactly the relevant
information for MBPTA and DTM.

8.4.3 DTM: Applying MBPTA on Top of Faulty Hardware

Once determined the number of faulty entries that must be considered in each
cache structure, see Section 8.3.3, MBPTA must be properly used to determine
the pWCET of the program in such a potentially faulty chip.

We collect execution times of the application as dictated by MBPTA [Cucu-
Grosjean et al. (2012)], but on top of the hardware with maximum degradation.
In other words, execution times must be collected on top of a processor with as
many cache entries disabled in each cache structure as determined by the process
in Section 8.3.3. For that purpose we propose enabling a Degraded Test Mode
(DTM for short) that allows disabling a number of cache entries in each cache
structure.

The DTM affects some parameters of the processor operation similar to those
set up in the BIOS or to those that can be configured dynamically in many proces-
sors such as the operating frequency. Therefore, DTM can be configured through
the BIOS at boot time or through special purpose registers modified during op-
eration. If the latter approach is used, whenever a cache line is deactivated its

119

8.5 Evaluation

contents must be written back to the corresponding level of the memory hierarchy
if they are dirty.

Given that PTA (and hence MBPTA) is insensitive to the location of faults,
simply configuring the number of disabled entries per structure suffices and any
implementation of such disabling process will produce equivalent results from a
PTA perspective. For instance, cache entries disabled in a fully-associative cache
can be either consecutive or randomly located. In a set-associative, whether several
faults occur in the same cache set may impact execution time. Thus, it is still
irrelevant in which particular cache set faults occur, but not whether they occur
in the same or different cache sets. In particular, in this work we assume that
disabled cache lines are randomly chosen. The particular lines disabled are changed
randomly before each execution of the program. This change can be performed
with a specific instruction set up in purpose.

Once the appropriate number of entries is disabled in each cache structure,
MBPTA can be used as in fault-free processors running the program under analysis
as needed. By disabling a number of entries in each of the cache memories, DTM
allows collecting execution times in a fault-free processor as if it was faulty so that
pWCET estimates are trustworthy regardless of whether hardware operation has
been degraded due to faults.

Although DTM is only described for faulty caches (our case study in this Chap-
ter), the same rationale can be used to deal with faults in other components. Some
discussion on this matter is provided later in Section 8.6.5.

8.5 Evaluation

This section describes the evaluation framework and provides results proving the
suitability of the proposed platform to be used in the context of faulty processors.

8.5.1 Evaluation Framework

Like in the previous proposals in this Thesis, execution times have been collected
with the SoCLib simulation framework [Pouillon et al. (2009)] and using EEMBC
Autobench benchmark suite [Poovey et al. (2009)]. Two different configurations
have been considered:

1. Both DL1 and IL1 caches are 2KB fully-associative random replacement
32B/line caches. Both the DTLB and ITLB are 16-entry fully-associative
random replacement TLBs for page sizes of 1KB.

2. Both DL1 and IL1 caches are 2KB 4-way set-associative random placement
and replacement 32B/line caches. Both the DTLB and ITLB are 16-entry 4-

120

8.5 Evaluation

Table 8.1: Maximum number of faulty lines expected for a target yield of 1 faulty
part per million (ppm)

p(bit)f DL1 IL1 DTLB ITLB
10−8 1 1 1 1
10−7 2 2 1 1
10−6 3 3 1 1
10−5 4 4 2 2
10−4 10 10 3 3

way set-associative random placement and replacement TLBs for page sizes
of 1KB.

Cache sizes are deliberately small so that disabling some cache lines due to
faults has some significant effect in performance given that benchmarks used have
particularly small working sets. Hit latencies of 2 cycles and memory latencies of
100 cycles have been considered for all caches.

8.5.2 Worst-Case Execution Time

Based on the fault model described in Section 8.3.2 we have obtained how many
DL1, IL1, DTLB and ITLB entries can be faulty to guarantee that at most one
out of one million chips has more failures than budgeted during its lifetime or, in
other words, the failure rate during the lifetime of the chip is below 10−6. Results
are shown in Table 8.1.

Tables 8.2 and 8.3 report pWCET relative results for fully-associative and set-
associative caches respectively. The minimum number of runs per benchmark has
been computed with the method reported in [Cucu-Grosjean et al. (2012)] and
never exceeded 1,000 runs. Note that this is the same number of runs needed for
a fault-free system, thus keeping pWCET estimation cost low. Similarly, indepen-
dence and identical distribution tests described in [Cucu-Grosjean et al. (2012)]
have been run and all data passed those tests successfully, as needed by MBPTA.

The 2nd column in tables 8.2 and 8.3 shows the pWCET of a fault-free chip
for an exceedance threshold of 10−15 per run normalised to the average execution
time for a fault-free chip1. The exceedance threshold indicates how often a run of

1Note that the exceedance probability (10−15 per run in our case) and the faulty bit rate
(p(bit)f) stand for different concepts. p(bit)f determines the number of faulty cache lines that
must be considered for each cache memory. Then, those (degraded) cache memories are used to
obtain execution times, which are the input of MBPTA. Finally, given the pWCET distribution

121

8.5 Evaluation

Table 8.2: pWCET normalised results for fully-associative caches

pWCET pWCET pWCET pWCET pWCET pWCET
fault-free p(bit)f p(bit)f p(bit)f p(bit)f p(bit)f

10−8 10−7 10−6 10−5 10−4

vs avg vs pWCET fault-free
a2time 1,086 1,060 1,120 1,185 1,250 1,614
aifirf 1,035 1,012 1,021 1,014 1,031 1,074
cacheb 1,093 1,027 1,002 1,019 1,010 1,039
canrdr 1,035 0,990 0,990 0,995 1,002 1,004
puwmod 1,014 1,002 1,004 0,999 1,000 1,005
rspeed 1,035 1,017 1,005 1,004 0,998 1,009
tblook 1,057 1,048 1,063 1,119 1,151 1,369
ttsprk 1,034 1,015 1,011 1,004 1,003 1,013

AVG 1,049 1,022 1,027 1,042 1,056 1,141

Table 8.3: pWCET normalised results for set-associative caches

pWCET pWCET pWCET pWCET pWCET pWCET
fault-free p(bit)f p(bit)f p(bit)f p(bit)f p(bit)f

10−8 10−7 10−6 10−5 10−4

vs avg vs pWCET fault-free
a2time 4,709 1,157 1,190 1,301 1,693 2,656
aifirf 4,356 1,046 1,075 1,147 1,265 1,335
cacheb 2,351 1,017 1,051 1,143 1,148 1,179
canrdr 1,160 1,007 1,033 1,060 1,065 1,101
puwmod 1,037 0,990 0,997 1,018 1,028 1,031
rspeed 1,049 1,011 1,059 1,070 1,136 1,143
tblook 2,536 1,105 1,135 1,139 1,328 1,358
ttsprk 1,159 1,029 1,032 1,040 1,047 1,069

AVG 2,295 1,045 1,071 1,115 1,214 1,359

the program will exceed the pWCET value (in our case once every 1015 runs).
We can observe in the 2nd column of Table 8.2 that the pWCET with fault-free

caches degrades only between 1% and 10% across benchmarks (5% on average)
w.r.t. the average performance for fully-associative caches in line with results
in [Cucu-Grosjean et al. (2012)]. Conversely, the pWCET for a set-associative
cache is significantly larger than the average execution time as described in [Kos-
midis et al. (2013a)] (2nd column of Table 8.3). The reason behind this behaviour

provided by MBPTA, we pick as pWCET estimate the pWCET value corresponding to the
particular exceedance probability required.

122

8.5 Evaluation

Figure 8.3: Inverse cumulative distribution function (ICDF) of pWCET curves
and actual observations for canrdr benchmark under a fully-associative random-
replacement cache. At the 1015 probability cutoff point, from left to right, cache
configurations cross in the following order: p(bit)f = 10−8, p(bit)f = 10−7,
p(bit)f = 10−6, fault-free, p(bit)f = 10−5, p(bit)f = 10−4.

is the fact that fully-associative caches perform a random eviction on every miss.
Instead, set-associative caches randomly map each address into a cache set, and
such mapping holds during the whole run. Therefore, if some addresses collide
in a particular cache set, this behaviour will hold during the whole execution,
so its impact in execution time will be larger. Such larger variation requires a
higher pWCET upper-bound than for fully-associative caches. This can be eas-
ily explained with an example. Let assume we flip 3 coins. If we flip each one
individually (random replacement), then we have 8 different sequences of events.
Instead, if we attach the 3 coins with glue (e.g., faces in one side and tails in the
other side) and then we flip them (random placement), only 2 different events can
occur. Thus, although both approaches are equally random, the potential scenar-
ios that they can generate are different (random placement can effectively generate
only a subset of those scenarios produced by random replacement) and so their
probabilities.

Columns from 3rd to 7th in Tables 8.2 and 8.3 show the pWCET degradation
w.r.t. the pWCET of a fault-free chip for different p(bit)f values. As shown most
of the benchmarks observe negligible pWCET degradation because they do not
fully exploit all cache space1 and suffer no degradation due to the deactivation of

1Some benchmarks like aifirf do not fit in cache, so they reuse few cache lines. In this case,

123

8.5 Evaluation

few cache entries. This is particularly true for fully-associative caches (Table 8.2).
In fact canrdr observes some negligible pWCET reductions in some cases. This
occurs because of the particular 1,000 execution times in the sample, but results
are still safe and tight. We show the ICDF for the different p(bit)f pWCET curves
of canrdr together with actual execution times collected for a fully-associative
random-replacement cache in Figure 8.3. At 10−15 exceedance probability, the
fault-free case, which one would expect to provide the lowest pWCET value, pro-
vides in fact the fourth lowest value. However, as already discussed in [Cucu-
Grosjean et al. (2012)], this can happen because MBPTA builds upon a finite
random sample. Therefore, although the method provides a Gumbel distribution
upper-bounding the tail of the actual execution time distribution, the tightness
of the particular distribution may vary depending on the actual observations in
the sample. In the particular case of canrdr, cache size has negligible impact in
performance and, therefore, having fewer cache lines has an effect on performance
largely below that of the actual random events occurring during the execution
(i.e. random replacement of cache lines). In the particular case of the fault-free
cache, this leads to a larger σ value for the Gumbel distribution, which increases
the overestimation as the exceedance probability decreases. Note, however, that
such overestimation is around only 1% higher than the actual overestimation1 for
p(bit)f = 10−8, p(bit)f = 10−7 and p(bit)f = 10−6 cases.

pWCET estimates increase for cache-sensitive benchmarks (a2time and tblook)
in the fully-associative configuration as shown in Table 8.2. A maximum pWCET
increase of 61% is needed for a2time despite the high p(bit)f values considered due
to the performance robustness of PTA-friendly cache designs. pWCET estimates
for set-associative caches (see Table 8.3) grow faster with faulty bit rates due to
the increased variability caused by those cache lines being disabled. This effect
is particularly noticeable for those benchmarks using efficiently the cache space
available such as a2time, aifirf and tblook. However, even for high p(bit)f values
(e.g., p(bit)f = 10−5), pWCET degrades only 21% on average with respect to the
fault-free scenario.

For the sake of illustration, we show the different ICDF curves for a2time for
both cache configurations in Figure 8.4a (fully-associative cache) and Figure 8.4b
(set-associative cache). In both cases curves appear from left to right, starting
with the lowest p(bit)f value (0 for the fault-free case) and ending with the highest
p(bit)f value (p(bit)f = 10−4). As already shown in [Cucu-Grosjean et al. (2012)],
pWCET distributions upper-bound actual execution times in the probability range

most of the cache lines become useless, as it is the case of those benchmarks needing less cache
space than available.

1Note that the actual overestimation cannot be determined because computing the exact
execution time distribution is unaffordable in general. In [Cucu-Grosjean et al. (2012)] authors
prove for a particularly simple scenario that such overestimation is rather low.

124

8.5 Evaluation

(a) Fully-associative placement (b) Set-associative placement

Figure 8.4: Inverse cumulative distribution function (ICDF) of pWCET curves and
actual observations for a2time benchmark under different placement functions

of those execution times (i.e. down to 10−3 exceedance probability per run in our
case). pWCET curves upper-bound real distributions for any exceedance proba-
bility. Their tightness depends on the actual variability existing in the execution
times collected. For instance, variability is low in the case of fully-associative
caches because each replacement occurs independently as reported in [Kosmidis
et al. (2013a)]. This leads to very tight pWCET estimates. However, if variabil-
ity is higher (e.g., the case of a random-placement cache when p(bit)f = 10−4),
MBPTA ends up deriving a Gumbel distribution accounting for such variability
in the form of a higher σ value, which translates into a gentler slope and so,
potentially less tight pWCET estimates.

In summary, MBPTA together with MBPTA-friendly cache designs are partic-
ularly suitable to obtain time-robust and time-analysable fault-tolerant hardware
designs as needed for DTM. DTM enables for the first time the computation of
WCET estimates on top of faulty hardware at very low cost.

8.5.3 Average Performance

This section analyses the average performance for fully-associative caches. While
this could be done also for set-associative caches, fully-associative ones allow vary-
ing cache size at fine granularity (e.g., removing one cache line), whereas set-
associative caches could only be studied at a coarser granularity (e.g., removing one
cache way or half of the cache sets). Nevertheless, conclusions for fully-associative
caches can be easily extrapolated to set-associative ones.

As stated before, caches implementing LRU replacement are not suitable for
PTA and, instead, random-replacement (RR for short) ones must be used. In this

125

8.5 Evaluation

(a) LRU-replacement (b) random-replacement

Figure 8.5: Normalised execution time for fully-associative caches with different
replacement functions, with respect to a 128-line cache.

section we show that RR caches provide performance comparable to LRU ones and,
on top of that, provide much better average performance degradation when cache
size is decreased. Such a feature is particularly interesting for WCET analysis on
top of faulty caches because disabling few cache lines due to faults has relatively
low impact in performance.

Figures 8.5a and 8.5b show the degradation of the execution time of several
EEMBC benchmarks when the number of cache lines for DL1 and IL1 caches de-
creases for LRU and RR caches respectively. Cache size is decreased by 8 lines in
each step from 128 (4KB) down to 16 cache lines (512B). Although such granularity
is coarser than the number of faulty cache lines one may expect in those caches,
it serves to illustrate how LRU caches experience abrupt performance degrada-
tion when the working set does not fit in cache, whereas such degradation is much
smoother for RR caches. Although not shown, we have also observed that decreas-
ing cache size by 1 line in each step still provides smooth performance degradation
for RR caches and abrupt changes for LRU ones. For instance, the epitome exam-
ple is a2time, whose execution time grows by 7X when reducing cache size from
72 to 64 caches lines. RR caches suffer the same relative performance degradation
when reducing cache size from 72 to 32 cache lines, thus smoothing the effect of
some cache lines being disabled. At a lower scale aifirf and tblook show similar
effects. By smoothing the effect of disabling few cache lines, RR caches allow DTM
to provide pWCET estimates close to those of fault-free systems despite of faults
(see Table 8.2).

Note that while results for LRU caches are deterministic, this is not the case
for RR caches, so we report the average execution time across 1,000 runs for each
benchmark and configuration for RR caches. In all cases the standard deviation
of the execution times for RR is below 0.5%.

126

8.6 Fault-Aware WCET Estimation: Expanding DTM

Figure 8.6: Normalised execution time of random-replacement caches with respect
to LRU ones.

The increase in terms of average execution time is very similar to the increase
in pWCET. For instance, average execution time increases by 28% and 14% for
a2time and tblook respectively when decreasing the number of available cache lines
from 64 down to 60. For p(bit)f = 10−5, where 4 cache lines are disabled from
both DL1 and IL1, a2time and tblook respective pWCET estimates grow by 25%
and 15%.

Figure 8.6 compares RR caches versus LRU ones showing that PTA-analysability
and graceful performance degradation do not come at the expense of a significant
performance drop. The figure depicts for each benchmark the slowdown/speedup
for each cache size (from 128 to 16 cache lines from left to right for each bench-
mark). Values higher than 1 indicate RR slowdowns (above the red line) and
speedups otherwise. For instance, a2time slowdown of RR caches versus LRU
ones grows from 16% to 41% when moving from 128 to 72 cache lines; however,
when moving to 64 cache lines there is a 60% speedup that decreases as we keep
decreasing cache size. Overall, RR execution time across benchmarks and cache
sizes is only 7% higher than that of LRU caches.

To summarise, the proposed platform allows delivering probabilistically time-
analysable fault-tolerant CRTES whose average execution time is comparable to
that of conventional systems.

8.6 Fault-Aware WCET Estimation: Expanding

DTM

In the previous Sections we presented and evaluated DTM on degraded hardware
due to permanent faults targeting caches. We considered neither the timing impact
of error detection, correction, diagnosis and reconfiguration (DCDR) actions, nor

127

8.6 Fault-Aware WCET Estimation: Expanding DTM

the timing impact of transient faults.
In this and next Sections we propose and evaluate a holistic approach to deal

with the timing impact of error DCDR as well as degraded hardware due to both,
increasingly frequent permanent and transient faults, to provide strong timing
guarantees on a more complex, 4-core multicore system.

8.6.1 Bounding Timing Effects of DCDR

Faults are assumed independent across them as they can be typically modeled as
random events. This implies that technology and operating conditions will deter-
mine the actual probabilities of bits to experience permanent (PPbitfaulty) and
transient faults (PTbitfaulty). Next we describe the timing effects of the different
actions to deal with faults.

Error Detection and Correction

As mentioned before, the most convenient error detection and correction methods
for caches consist of using coding techniques such as, for instance, single error cor-
rection double error detection (SECDED). SECDED can be implement correcting
data before they are delivered, so that cache read accesses are slower. Alternatively,
one could deliver data uncorrected and check for errors offline. If no error occurs
cache read latency is effectively decreased. Conversely, on an error, a mechanism is
needed to rollback any operation that used uncorrected data, as for instance flush-
ing the pipeline and restarting the execution from the load operation. Since error
correction is expected to occur with extremely low probability per instruction, of-
fline correction is recommended. Note that (i) flushing the pipeline is doable since,
typically, the error is detected one cycle after data have been delivered, and (ii)
during such process corrected data can be stored back in cache to remove wrong
data. This last step works correctly for transient errors, but may not solve the
problem for permanent faults, as discussed in following sections.

Overall, error detection and correction impact execution time, and that impact
is independent of whether the fault producing the error was permanent or transient.
Furthermore, the impact of such error in timing is typically constant as error
detection, correction and pipeline flushing are expected to have a fixed latency
(Costrecover).

Transient faults may affect multiple bit cells at once (multiple bit upsets or
MBU for short). If an MBU affects multiple bits protected with the same code
(e.g., SECDED code), it may be uncorrectable. By interleaving bits protected
with different codes (e.g., bits from independently protected words in a SECDED-
protected cache line), an MBU affecting b bits becomes b single-bit upsets (SBU),
which can be corrected with SECDED.

128

8.6 Fault-Aware WCET Estimation: Expanding DTM

Fault Diagnosis

Once an error has been detected, it is of prominent importance determining
whether it was caused due to a transient or a permanent fault. In the former
case, error correction suffices to get rid of the error. In the latter case, however,
one should disable the faulty cache line to avoid further errors. Re-reading data
after writing back the correct value to diagnose whether the fault was transient
or permanent is not a good option since permanent faults typically manifest as
intermittent faults whose frequency increases with degradation. Thus, likely we
would re-read a correct value despite of a permanent fault.

Instead, in order to deal with error diagnosis we use a similar approach to
that in [Abella et al. (2008)], where a small table is set up tracking the cache line
id (set and way) of the last lines experiencing an error together with a counter
tracking how many errors have occurred during a given time period. For instance,
one could set up a 2-entry table whose contents are reset every 1,000,000 cycles
(ResetInt = 1000000 × cycle time, where the cycle time is in seconds), and use
a threshold of 3 errors (ErrorTh = 3) so that if a cache line reports 3 errors
during 1,000,000 cycles it is assumed to have a permanent fault. The selection of
the particular values to be used – entries, interval duration and error threshold
– are beyond the scope of this Chapter, but this mechanism is almost insensitive
to them given that transient faults occur in random locations and infrequently, so
they never trigger the deactivation of a cache line. Since fault diagnosis occurs in
parallel to regular operation, it has no effect on timing.

Reconfiguration

As is was the case for DTM, if a cache line has been regarded as faulty, it is disabled,
using a Usable Bit (UB). When setting the UB of a cache line, its contents are
discarded or written back to memory if dirty. Therefore, it is required to consider
such timing effect at analysis time.

8.6.2 DCDR effect on WCET estimates

After determining how to upper-bound the maximum delay introduced by each
DCDR action, next we analyze how many of them need to be considered and how
this impacts WCET estimates. Time is typically ‘partitioned’ in CRTES used in
avionics, space and automotive domains. Partitions are implemented in the form
of windows, usually in the order of milliseconds, that bound the time a task is
allocated to be executed. Based on the time window assigned to a task and its
WCET in a fault-free hardware it is easy to compute the probability that the
application experiences a number of transient and permanent faults during the

129

8.6 Fault-Aware WCET Estimation: Expanding DTM

execution of a program without violating its window. Such number, even if fault
rates are high, will likely be up to 1 transient (Ntran = 1) and 1 permanent fault
(Nperm = 1). This is so because the probability of higher fault counts are typically
largely below the highest safety level thresholds (e.g. 10−9).

Once the number of transient and permanent faults is known, it is needed to
account for the number of error detection and correction actions those faults can
trigger:

• Transient faults. A transient fault can trigger up to b detection/correction
actions if MBUs of up to b bits can occur with non-negligible probability.

• Permanent faults. Based on the diagnosis mechanism described before, 3
errors in the interval will imply that the fault is diagnosed as permanent and
the cache line disabled, thus avoiding further errors. Hence, the maximum
number of errors a permanent fault can potentially trigger during the exe-
cution of a program is up to 2 errors per diagnosis interval and 3 errors in
the last interval.

Error counts and the upper-bound fixed time required per detection and cor-
rection action are then used to upper-bound the impact of detecting and correcting
errors in a program (pWCETdetect+correct) given a maximum time partition dura-
tion (TPduration).

pWCETdetect+correct= (8.7)(
Ntran · b+Nperm ·

(⌈
TPduration
ResetInt

⌉
· (ErrorTh− 1) + 1

))
· Costrecover

If a fault is permanent, the cache line is deactivated and, potentially, dirty line
contents are written back. The simplest way to do this without having to consider
the probability of a dirty line to be evicted and still obtain sound pWCET estimates
consists of performing the writeback operation when a cache line is marked as
faulty regardless of whether its contents are dirty. In this way, whether a line is
dirty or not has no effect on reconfiguration timing. Still, writeback operations
may take different latencies depending on the memory controller arbitration. As
the number of permanent faults showing up during a time partition is extremely
low, one can simply use an upper-bound to such latency (Costeviction) taking into
account the worst arbitration delay for random permutations (up to 2 times the
number of contender cores) [Jalle et al. (2014)] and the worst memory latency
to upper-bound eviction delays. This cost is incurred for each permanent fault
(pWCETeviction), and must be used to increase the pWCET estimate.

pWCETeviction = Nperm · Costrecover (8.8)

130

8.6 Fault-Aware WCET Estimation: Expanding DTM

In summary, the pWCET estimate obtained with MBPTA needs to be aug-
mented with pWCETdetect+correct and pWCETeviction to account for the instant
timing effects of DCDR actions.

8.6.3 Degraded Operation due to Permanent Faults

As described before, DTM can account for the impact of degradation due to per-
manent faults. So far we have considered only first level caches. However, DTM
can also be used for UL2 caches. Multicores using cache partitioning [Paolieri
et al. (2009a)] in the shared UL2 caches can be easily considered by assuming that
each program has a UL2 cache whose size matches its partition as faults will occur
with the same faulty bit probability across the whole shared cache1. Note that
cache partitioning removes any kind of inter-task interference, thus making exe-
cution time and WCET independent of the co-runners. Therefore, one only needs
to determine the number of faults to be considered in each cache independently,
reconfigure the hardware accordingly and collect execution time measurements, as
explained before for DTM.

It is worth nothing that those measurements already capture effects such as
the impact of inclusion (e.g., if DL1 is inclusive with UL2), as addresses and faults
location in cache is random and so the timing observed at analysis time corresponds
to that occurring at deployment once the maximum number of permanent faults
has been experienced.

Therefore, DTM can be applied in complex cache hierarchies without needing
any type of specific adaptation.

8.6.4 Hardware Requirements

Our approach towards considering the potential impact of faults at analysis time
in PTA-compliant hardware platforms requires the following hardware support.

1. Error detection and correction methods in caches. Such support generally
exists in caches in the form of, for instance, SECDED coding.

2. Per-cache diagnosis support. Each cache memory needs some support to
track error location and frequency. As explained before, very small tables
are needed (e.g., 2-entry tables with few bits per entry to track set and way
number, and error counts) and a counter to decide when to reset those tables.

3. A UB bit per cache line to disable faulty lines. Although such bits must
be hardened to prevent them from being faulty, thus increasing their size,

1Effects related to cache coherence are not considered in our analysis and left as future work.

131

8.7 Evaluation

their cost is negligible given that cache line size is typically in the order of
hundreds of bits.

4. Per-cache registers to set up how many permanent faults must be enforced
by the hardware. As such fault counts are typically small (typically 1 or 2
faults), 4 bits per counter will suffice.

5. Per-cache support to randomly disable a number of cache lines. If this sup-
port is regarded as expensive, one could devise a mechanism allowing the
software (i.e. the OS) to randomly choose the lines to be disabled and then
disable them with specific instructions that indicate in which cache set of
which cache memory a line is to be disabled.

Overall, hardware modifications required are minor and most of them already
needed for functional correctness. For instance, Intel Pellston technology (i.e. used
in Montecito processor) already implements some sort of mechanism for (1), (2)
and (3) above [McNairy & Mayfield (2005)]. Thus, we regard the cost of enabling
fault-aware MBPTA as negligibly small. Still, the low-level implementation details
are far beyond the scope of this Chapter.

8.6.5 Other Hardware Resources

In general, other hardware resources such as adders, register files, decode logic,
etc. may not be disabled without compromising the functionality of the processor.
Functional correctness can still be achieved if proper means are in place. For
instance, register files can be SECDED-protected, adders may work with residue
coding and pipeline flushing on an error, etc. Considering the effect in timing of
error DCDR for those features can be done analogously as it is proposed for cache
memories. Regarding reconfiguration, typically permanent faults can be tolerated
by decreasing operating frequency while keeping operating voltage so that those
circuits that used to operate correctly but fail to do it anymore due to degradation,
can still operate correctly with extended cycle time. In this case, considering the
effect of degraded hardware on pWCET estimates requires determining analytically
how much operating frequency may need to be decreased during processor lifetime
and obtain execution time measurements for MBPTA at such lower frequency.

8.7 Evaluation

Execution times have been collected with the already explained SoCLib simulator.
We consider a 4-core multicore, in which cores have private L1 cores and they

are connected with a bus with random permutations arbitration [Jalle et al. (2014)].

132

8.7 Evaluation

Figure 8.7: (a) Maximum number of faulty lines expected for a target yield of 1 faulty
part per million (ppm); (b) pWCET increase with respect to the fault-free case.

The shared second level cache is partitioned across cores by means of bankiza-
tion [Paolieri et al. (2009a)]. We consider a hit/miss latency of 1 cycle to DL1,
IL1, DTLB, ITLB. The bus latency is 2 cycles, once access it is granted to a core.
UL2 hit/miss latency is 3 cycles and memory latency (once access it is granted to
a request) is 28 cycles. We use the EEMBC Autobench benchmark suite [Poovey
et al. (2009)].

We consider the following fault rate scenarios:

• Low-harsh (LowH): 10−7 permanent faulty bit rate (PPbitfaulty) and 10−4

transient faults per second (PTbitfaulty) being the operating frequency 500MHz.

• Medium-harsh (MedH): PPbitfaulty = 10−6 and PTbitfaulty = 10−3.

• High-harsh (HighH): PPbitfaulty = 10−5 and PTbitfaulty = 10−2.

For instance, in the MedH scenario we expect 1 bit every 1,000,000 bits become
permanently faulty during the processor lifetime, and to experience one transient or
permanent fault every 17 minutes. Note that permanent and transient fault rates
that we use are similar or higher than actual ones for existing technology [Guertin
& White (2010),Wilkerson et al. (2008)], thus potentially increasing the negative
impact of our approach in pWCET estimates. As shown next, this impact is still
low despite of those high fault rates.

The number of cache lines to be disabled for each cache in each scenario is
shown in Figure 8.7(a). Figure 8.7(b) shows the pWCET estimate increase ob-
tained with MBPTA of the system considering DCDR impact of errors as well as

133

8.8 Related Work

degraded operation due to permanent faults with respect to those pWCET esti-
mates obtained in the fault-free system. It can be seen that pWCET estimates
increase negligibly in most of the cases as programs are little sensitive to the cache
space available, so our approach delivers pWCET estimates close to those on a
fault-free system, thus proving their tightness, which will lead to an efficient use
of the computing resources and so, low power and energy requirements. Only few
programs (e.g., aifirf) are more sensitive to the cache space available in some
of the caches. Note that, eventually, pWCET estimates may be higher even with
more cache space available. For instance, canrdr has a higher pWCET estimate
in the LowH scenario than in the MedH one. Those pWCET estimates are trust-
worthy, but random effects may make that some higher execution times with low
probability of occurrence are actually observed and so pWCET estimates become
less tight. Further, notice that our approach is not particularly sensitive to the
particular cache setup as our setup already includes tiny caches (DTLB, ITLB),
medium-size (DL1, IL1) and large caches (UL2) and pWCET estimates increase
is low despite of that.

Although not evaluated, the diagnosis mechanism to classify faults into tran-
sient or permanent has been shown to have roughly negligible power and area cost,
and has no impact on execution time (and so in pWCET estimates) [Abella et al.
(2008)].

Overall, the proposed platform allows delivering probabilistically time-analyzable
fault-tolerant CRTES whose pWCET estimates are close to those of fault-free
CRTES.

8.8 Related Work

Timing analysis of systems equipped with cache memories is a serious challenge
even for fault-free systems. The impact of caches on WCET has been extensively
studied by the research community [Ferdinand et al. (2001),Mueller (2000),Reineke
et al. (2007)], but those techniques show very limited scalability and prevent the
adoption of increasingly complex hardware and software.

Some approaches exist to detect errors and recover while keeping time pre-
dictability [Axer et al. (2011),Henkel et al. (2011)]. Those approaches consider
the impact in task scheduling of error detection and recovery, and schedule those
activities smartly to prevent deadline misses. Furthermore, how to deal with errors
at different layers and how to minimise the cost of error detection and recovery
is also considered. Unfortunately, the effect in timing of permanent faults is not
addressed, so if some hardware resources need to be disabled or reconfigured due
to permanent faults, WCET estimates are no longer valid. Hardy et al. [Hardy
et al. (2016)] have proposed means to account for degraded hardware together

134

8.8 Related Work

with STA. However, as explained before, deterministic placement and replacement
lead to a state explosion to account for all potential fault maps, and keeping the
number of states low is only doable with highly pessimistic assumptions.

There are several hardware solutions to keep time predictability despite of per-
manent faults. Some of them are based on setting up spares to physically replace
faulty entries [Koren & Koren (1998)]. Those solutions are typically expensive
due to the redundant resources and the costly fuses required to physically repro-
gram circuits. Another approach consists of using error detection and correction
(EDC) codes [Chen & Hsiao (1984)]. This family of solutions is also costly be-
cause permanent faults require using EDC logic on each access (energy overhead)
and delaying the delivery of data until EDC logic generates a safe output value.
A different approach consists of adding some assist structures to perform a soft
replacement of faulty entries [Abella et al. (2011b),Abella et al. (2011c)]. This
has been proposed for cache memories where victim caches, eviction buffers or
similar cache-assist structures are conveniently modified to replace faulty entries
while keeping time predictability as needed for WCET analysis, but some extra
redundancy and design complexity is introduced.

Alternatively to conventional timing analysis, probabilistic timing analysis
(PTA) shows promising results [Cazorla et al. (2013),Cucu-Grosjean et al. (2012)]
for complex platforms running complex applications [Wartel et al. (2013)]. Those
approaches rely on platforms providing some properties so that execution time
variations caused by the hardware itself depend solely on random events. This is
achieved, for instance, by using random-replacement caches.

Some existing embedded processors already implement random-replacement
policies [Cobham Gaisler (2017),ARM (2006)]. Randomised caches in high-performance
processors were first proposed in [Schlansker et al. (1993)] to remove pathological
cases produced by the systematic cache misses generated in bad strides. To do so,
authors used a pseudo-random hash function to randomise addresses into cache
sets, developing an analytic approach to determine cache performance. Other
cache designs have attempted to remove cache conflicts by changing the place-
ment function [González et al. (1997)] and/or combining several placement func-
tions for different cache ways [Seznec & Bodin (1993)]. However, those caches
still produce deterministic conflicts across addresses. Recently, direct-mapped
and set-associative cache designs implementing random placement have been pro-
posed [Kosmidis et al. (2013a)]. Those designs have been successfully proven to
fit PTA needs.

Unfortunately, the advent of nanotechnologies poses serious challenges to per-
form timing analysis while keeping analysis costs low and WCET estimates for
applications low, safe and tight. To the best of our knowledge this Chapter pro-
poses the first methodology, DTM, allowing CRTES to provide those low, safe and

135

8.9 Conclusions

tight WCET estimates needed in the CRTES arena despite of faults.

8.9 Conclusions

This Chapter addresses functional and timing correctness in a holistic way by
proposing the Degraded Test Mode (DTM), a method to use probabilistically-
analysable fault-tolerant hardware designs in combination with MBPTA tech-
niques. The proposed platform delivers (i) probabilistically time-analysable fault-
tolerant CRTES (ii) whose WCET is low, trustworthy and tight, and (iii) whose
average execution time is comparable to that of conventional systems. Therefore,
CRTES can be implemented on top of unreliable hardware despite of faults, thus
increasing CRTES performance and reducing their costs.

136

Chapter 9

Conclusion and Future Work

9.1 Thesis conclusions

Critical Real-Time Embedded Systems (CRTES) need to satisfy timing correct-
ness as well as functional correctness. Advanced hardware features, which used
to be a promising approach in high-end processors, are effective in providing aver-
age case performance, but in CRTES, where it is imperative deriving trustworthy
Worst-Case Execution Time estimates, they need to be carefully considered. When
considering those features, conventional timing analysis techniques either need to
make many pessimistic assumptions (static approaches) or their confidence be-
comes almost impossible to assess (measurement-based approaches), which may
easily challenge the usability of those advanced hardware features. Probabilistic
Timing Analysis (PTA), and especially its measurement-based variant (MBPTA),
has emerged recently as a promising approach to deal with increasingly complex
hardware features. However, it has been assessed only on simple single-core pro-
cessors and small multicores. In this thesis we have proved its applicability on
more complex and high-performance processors.

In this thesis we have accomplished to provide tighter WCET estimates in
complex multi- and many-core systems, by (1) reducing the contention in shared
resources and (2) exploiting the properties of time-randomised cache memories.
The main approach in reducing the contention that needs to be accounted for to
obtain trustworthy and tight WCET estimates builds upon the observation that
contention in shared resources can be handled in a probabilistic way. Therefore,
those sequences of events occurring with a negligible low probability can be dis-
carded, thus and not having to assume the worst possible case every time. The
main shared resources – the most influencing resources on time-predictability –
that we consider in this Thesis are the interconnection network and the shared
last level cache memory.

137

9.2 Future work

In particular, in this thesis we have reached the following achievements:

• We have proposed tree-based NoC designs suitable for single-criticality and
also mixed-criticality CRTES, for a moderate number of cores (up to 16).
Our proposal outperforms bus-based multicores, delivers high average per-
formance and can enable mixed criticalities by either managing different
priority levels or bandwidth guarantees.

• We have provided a meaningful comparison between two tree-based multi-
cores and showed the benefits of randomisation in deriving tighter WCET
estimates. We have done the per-resource analysis and showed which re-
sources are the ones influencing the most tightness of the WCET estimates.

• For processors with a larger number of cores (up to 36 cores, but potentially
more) we show that appropriate probabilistic approaches are highly efficient
in dealing with contention in mesh wormhole NoCs. We have proposed two
different wNoC setups that are able to provide much better performance
guarantees than deterministic approaches, which need to account for sys-
tematic pathological cases.

• We have discovered a limitation of the existing MBPTA-compliant bus ar-
bitration when requests have heterogeneous duration, and have proposed a
control-flow mechanism in order to achieve fairness across cores. In addition
to improve guaranteed performance, we show that implementation costs of
the mechanism are affordable.

• We have overcome the limitation of partitioned last level caches in CRTES
by proposing a mechanism that can be applied on top of the non-partitioned
time-randomised last level caches, thus enabling their use in CRTES. Our
evaluation showed increased guaranteed performance w.r.t. solutions based
on cache partitioning.

• We have proposed a method that allows using fault-tolerant hardware designs
to derive trustworthy and tight WCET estimates when used in conjunction
with MBPTA-compliant systems. This approach provides also high average
execution time. It builds upon the observation that time-randomized caches
make fault location irrelevant, thus reducing the problem to accounting for
the right number of faults.

9.2 Future work

Every new generation of processors brings more complex processors accounting for
larger core counts. Hence, the future research lines emanating from this thesis are

138

9.2 Future work

as follows:

• Clustered manycore processor designs with local memories (local for the clus-
ter). Solutions from this thesis (tree-based NoCs) could be applied locally,
within clusters, but new challenges would arise for the cluster-to-cluster com-
munication. Such a hierarchical design is interesting in many domains since
each cluster provides some form of spatial isolation that may help hypervisors
preserving safety, security and availability.

• In this thesis we have focused on symmetrical cores, but more complex
CRTES, e.g. multi-sensor, multi-actuator, there can be heterogeneous per-
formance needs, and therefore heterogeneous bandwidth allocation, arbitra-
tion, cores and resources. For instance, a mixture of different core types, such
as that of ARM big.LITTLE architecture, may be needed in some systems.
Also, using GPUs, cryptographic units or other accelerators may be needed
in future CRTES. Thus, heterogeneous systems need also to be studied in
the future.

• Advanced NoCs features, such as dynamic virtual channel allocation and
adaptive routing, despite being extensively used in the high-performance
domain, have been traditionally discarded for hard real-time systems due to
the difficulties and/or pessimism they introduce when analyzing their timing
behavior. Since we showed great performance improvements for wNoCs, we
believe that the probabilistic approach may also be very helpful in enabling
those features.

139

References

Abella, J., Chaparro, P., Vera, X., Carretero, J. & Gonzalez, A.
(2008). On-line failure detection and confinement in caches. In On-Line Testing
Symposium, 2008. IOLTS ’08. 14th IEEE International . 129, 134

Abella, J., Carretero, J., Chaparro, P., Vera, X. & Gonzalez, A.
(2009). Low vccmin fault-tolerant cache with highly predictable performance.
In MICRO . 110, 114

Abella, J., Cazorla, F., Quiñones, E., Gizopoulos, D., Grasset, A.,
Yehia, S., Bonnot, P., Mariani, R. & Bernat, G. (2011a). Towards im-
proved survivability in safety-critical systems. In International On-Line Testing
Symposium (IOLTS). 109

Abella, J., Quiñones, E., Cazorla, F., Sazeides, Y. & M.Valero
(2011b). RVC-Based time-predictable faulty caches for safety-critical systems.
In IOLTS . 110, 118, 135

Abella, J., Quinones, E., Cazorla, F., Sazeides, Y. & Valero, M.
(2011c). RVC: A mechanism for time-analyzable real-time processors with faulty
caches. In HiPEAC Conference. 24, 110, 118, 135

Abella, J., Quiñones, E., Vardanega, T. & Cazorla, F. (2013).
Measurement-based probabilistic timing analysis and i.i.d property. White Pa-
per. http://www.proartis-project.eu/publications/MBPTA-white-paper.
16, 102

Abella, J., Hardy, D., Puaut, I., Quiñones, E. & Cazorla, F.J. (2014).
On the comparison of deterministic and probabilistic WCET estimation tech-
niques. In 26th Euromicro Conference on Real-Time Systems, ECRTS 2014,
Madrid, Spain, July 8-11, 2014 , 266–275. 48

Abella, J., Hernández, C., Quiñones, E., Cazorla, F.J., Conmy, P.R.,
Azkarate-askasua, M., Perez, J., Mezzetti, E. & Vardanega, T.

140

http://www.proartis-project.eu/publications/MBPTA-white-paper

REFERENCES

(2015). Wcet analysis methods: Pitfalls and challenges on their trustworthiness.
In SIES , 39–48, IEEE. 5, 13

Agirre, I., Azkarate-askasua, M., Hernández, C., Abella, J., Perez,
J., Vardanega, T. & Cazorla, F.J. (2015). IEC-61508 SIL 3 compliant
pseudo-random number generators for probabilistic timing analysis. In 2015 Eu-
romicro Conference on Digital System Design, DSD 2015, Madeira, Portugal,
August 26-28, 2015 , 677–684. 63, 82

Altmeyer, S. & Davis, R.I. (2014). On the correctness, optimality and preci-
sion of static probabilistic timing analysis. In DATE . 14, 90

ARINC (1997). Specification 651: Design Guide for Integrated Modular Avionics .
Aeronautical Radio, Inc. 32, 100

ARM (1999). AMBA Bus Specification. http://www.arm.com/products/system-
ip/amba/amba-open-specifications.php. 82, 83

ARM (2006). Cortex-R4 and Cortex-R4F Technical Reference Manual . 135

AUTOSAR (2006). Technical Overview V2.0.1 . 100

Axer, P., Sebastian, M. & Ernst, R. (2011). Reliability analysis for MPSoCs
with mixed-critical, hard real-time constraints. In CODES+ISSS . 134

Banakar, R., Steinke, S., Lee, B.S., Balakrishnan, M. & Marwedel,
P. (2002). Scratchpad memory: design alternative for cache on-chip memory in
embedded systems. In CODES . 19

Benini, L., Flamand, E., Fuin, D. & Melpignano, D. (2012). P2012: Build-
ing an ecosystem for a scalable, modular and high-efficiency embedded comput-
ing accelerator. In Proceedings of the Conference on Design, Automation and
Test in Europe, DATE ’12. 22, 32

Bernat, G., Colin, A. & Petters, S.M. (2002). Wcet analysis of probabilistic
hard real-time system. In RTSS , 279–288, IEEE Computer Society. 14

Bogdan, P., Kas, M., Marculescu, R. & Mutlu, O. (2010). Quale:
A quantum-leap inspired model for non-stationary analysis of noc traffic in
chip multi-processors. In 2010 Fourth ACM/IEEE International Symposium on
Networks-on-Chip, 241–248. 73

Bowman, K., Duvall, S. & Meindl, J. (2002). Impact of die-to-die and
within-die parameter fluctuations on the maximum clock frequency distribution
for gigascale integration. IEEE Journal of Solid-State Circuits , 2. 23, 111

141

REFERENCES

Bradley, J. (1968). Distribution-Free Statistical Tests . Prentice-Hall. 29

Bui, D. & Lee, E.A. (2012). Composable flexible real-time packet scheduling
for networks on-chip. Tech. rep., University of Berkeley. 88

Campoy, M., Ivars, A.P. & Mataix, J.V.B. (2001). Static use of lock-
ing caches in multitask preemptive real-time systems. In In Proceedings of
IEEE/IEE Real-Time Embedded Systems Workshop (Satellite of the IEEE Real-
Time Systems Symposium. 19

Cazorla, F.J., Quiones, E., Vardanega, T., Cucu, L., Abella, J.,
Bernat, G. & Triquet, B. (2010). PROARTIS EU-FP7 project deliverables,
http://www.proartis-project.eu/deliverables. 26

Cazorla, F.J., Gioiosa, R., Fernandez, M. & Quiñones, E. (2012). Mul-
ticore os benchmarks. Tech. Rep. 4000102623, European Space Agency. 7

Cazorla, F.J., Quiñones, E., Vardanega, T., Cucu, L., Triquet, B.,
Bernat, G., Berger, E., Abella, J., Wartel, F., Houston, M., San-
tinelli, L., Kosmidis, L., Lo, C. & Maxim, D. (2013). Proartis: Proba-
bilistically analysable real-time systems. ACM Transactions on Embedded Com-
puting Systems . x, 5, 6, 14, 90, 135

Chattopadhyay, S., Roychoudhury, A. & Mitra, T. (2010). Modeling
shared cache and bus in multi-cores for timing analysis. In 13th International
Workshop on Software and Compilers for Embedded Systems (SCOPES 2010),
St. Goar, Germany. 92

Chen, C. & Hsiao, M. (1984). Error-correcting codes for semiconductor memory
applications: A state of the art review. IBM Journal of Research and Develop-
ment , 28, 124–134. 110, 135

Chiou, D., Jain, P., Devadas, S. & Rudolph, L. (2000). Dynamic cache
partitioning via columnization. In DAC , Los Angeles, CA, USA. 19, 49

Clarke, P. (2011). Automotive chip content growing fast, says gart-
ner. In http://www.eetimes.com/electronics-news/4207377/Automotive-chip-
content-growing-fast . 2

Cobham Gaisler (2017). LEON 4 Processor . http://www.gaisler.com/

index.php/products/processors/leon4. 8, 18, 81, 135

Coles, S. (2001). An Introduction to Statistical Modeling of Extreme Values .
Springer. 16

142

http://www.gaisler.com/index.php/products/processors/leon4
http://www.gaisler.com/index.php/products/processors/leon4

REFERENCES

Cucu-Grosjean, L., Santinelli, L., Houston, M., Lo, C., Vardanega,
T., Kosmidis, L., Abella, J., Mezzetti, E., Quiñones, E. & Cazorla,
F.J. (2012). Measurement-based probabilistic timing analysis for multi-path
programs. In 24th Euromicro Conference on Real-Time Systems, ECRTS . 5, 6,
14, 15, 29, 30, 76, 90, 96, 119, 121, 122, 124, 135

Cullmann, C., Ferdinand1, C., Gebhard, G., Grund, D., Maiza, C.,
Reineke, J., Triquet, B. & Wilhelm, R. (2010). Predictability considera-
tions in the design of multi-core embedded systems. In ERTS . 89

D. Siewiorek, P.N. (2006). Fault tolerant architectures for space and avionics.
In joint IARP/IEEE-RAS/EURON and IFIP 10.4 Workshop on Dependability
in Robotics and Autonomous Systems . 3

DeMicheli, G., Leblebici, Y., Gijs, M. & Voros, J. (2009). Nanosystems
Design and Technology . Springer. 23

Dubois, F., Cano, J., Coppola, M., Flich, J. & Petrot, F. (2011). Spi-
dergon stnoc design flow. In Proceedings of the Fifth ACM/IEEE International
Symposium on Networks-on-Chip, NOCS ’11, 267–268, ACM. 26

Edelin, G. (2009). Embedded systems at THALES: the artemis challenges for
an industrial group. In presentation at the ARTIST Summer School in Europe.
3

Federal Aviation Administration (FAA) (2014). Airborne electronic hard-
ware. CAST-32 position paper. multi-core processors. 89

Feller, W. (1966). An introduction to Probability Theory and Its Applications .
John Willer and Sons. 15, 29, 118

Ferdinand, C. & Wilhelm, R. (1999). Fast and Efficient Cache Behavior Pre-
diction for Real-Time Systems. Real-Time System, XVII, 131–181. 92

Ferdinand, C., Heckmann, R., Langenbach, M., Martin, F., Schmidt,
M., Theiling, H., Thesing, S. & Wilhelm, R. (2001). Reliable and precise
wcet determination for a real-life processor. 134

Fernández, M., Gioiosa, R., Quiñones, E., Fossati, L., Zulianello,
M. & Cazorla, F.J. (2012). Assessing the suitability of the ngmp multi-core
processor in the space domain. In Proceedings of the Tenth ACM International
Conference on Embedded Software, EMSOFT ’12. 77

143

REFERENCES

Ferrandiz, T., Frances, F. & Fraboul, C. (2012). A sensitivity analysis of
two worst-case delay computation methods for spacewire networks. In Euromicro
Conference on Real-Time Systems (ECRTS), Pise, 11/07/2012-13/07/2012 . 73

Flich, J. & Bertozzi, D. (2010). Designing Network On-Chip Architectures in
the Nanoscale Era. Chapman & Hall/CRC. 26

Francisco J. Cazorla, E.Q., Tulio Vardanega & Abella, J. (2013).
Upper-bounding program execution time with extreme value theory. In WCET
Workshop. 15

Freescale (1997). PowerPC 750 Microprocessor . Freescale. 25

FreeScale (2012). P4080 QorIQ Integrated Multicore Communication Processor
Family Reference Manual. Rev 1 . 8, 18

Garrido, M. & Diebolt, J. (2000). The ET test, a goodness-of-fit test for the
distribution tail. In MMR. 29

Gizopoulos, D., Psarakis, M., Adve, S., Ramachandran, P., Hari, S.,
Sorin, D., A.Meixner, A.Biswas & X.Vera (2011). Architectures for on-
line error detection and recovery in multicore processors. In DATE . 24

González, A., Valero, M., Topham, N. & Parcerisa, J.M. (1997). Elim-
inating cache conflict misses through XOR-based placement functions. In Pro-
ceedings of the 11th International Conference on Supercomputing , ICS ’97, 76–
83. 135

Goossens, K., Dielissen, J. & Radulescu, A. (2005). Æthereal network on
chip: Concepts, architectures, and implementations. IEEE Design & Test of
Computers , 22, 414–421. 71, 88

Gorgues, M., Xiang, D., Flich, J., Yu, Z. & Duato, J. (2014). Achieving
balanced buffer utilization with a proper co-design of flow control and routing al-
gorithm. In Eighth IEEE/ACM International Symposium on Networks-on-Chip,
NoCS 2014, Ferrara, Italy, September 17-19, 2014 , 25–32. 26

Guertin, S. & White, M. (2010). CMOS reliability challenges the future
of commercial digital electronics and NASA. In NEPP Electronic Technology
Workshop. xi, 23, 24, 110, 112, 113, 133

Hansen, J., Hissam, S. & Moreno, G.A. (2009). Statistical-based wcet esti-
mation and validation. In WCET Workshop. 14

144

REFERENCES

Hardy, D. & Puaut, I. (2008). WCET analysis of multi-level non-inclusive
set-associative instruction caches. In Proceedings of the 29th IEEE Real-Time
Systems Symposium, RTSS 2008, Barcelona, Spain, 30 November - 3 December
2008 , 456–466. 19, 92

Hardy, D. & Puaut, I. (2013). Static probabilistic worst case execution time
estimation for architectures with faulty instruction caches. In RTNS . 24

Hardy, D., Puaut, I. & Sazeides, Y. (2016). Probabilistic wcet estimation
in presence of hardware for mitigating the impact of permanent faults. In 2016
Design, Automation Test in Europe Conference Exhibition (DATE), 91–96. 110,
134

Henkel, J., Bauer, L., Becker, J., Bringmann, O., Brinkschulte,
U., Chakraborty, S., Engel, M., Ernst, R., Härtig, H., Hedrich,
L., Herkersdorf, A., Kapitza, R., Lohmann, D., Marwedel, P.,
Platzner, M., Rosenstiel, W., Schlichtmann, U., Spinczyk, O.,
Tahoori, M.B., Teich, J., Wehn, N. & Wunderlich, H. (2011). Design
and architectures for dependable embedded systems. In Proceedings of the 9th
International Conference on Hardware/Software Codesign and System Synthe-
sis, CODES+ISSS 2011, part of ESWeek ’11 Seventh Embedded Systems Week,
Taipei, Taiwan, 9-14 October, 2011 . 134

Hernández, C., Abella, J., Cazorla, F., Andersson, J. & Gianarro,
A. (2015). Towards making a LEON3 multicore compatible with probabilistic
timing analysis. In DASIA. 10, 15, 81, 82, 83

Hernández, C., Abella, J., Gianarro, A., Andersson, J. & Cazorla,
F.J. (2016). Random modulo: a new processor cache design for real-time critical
systems. In Proceedings of the 53rd Annual Design Automation Conference, DAC
2016, Austin, TX, USA, June 5-9, 2016 , 29:1–29:6. 20, 50

Inc., N. (2014). The NanGate 45nm Open Cell Library . 45

Infineon (2012). AURIX - TriCore datasheet. highly integrated and performance
optimized 32-bit microcontrollers for automotive and industrial applications. 8,
89

J. Owens (2015). Delphi automotive, the design of innovation that drives tomor-
row. Keynote talk. In Design Automation Conference (DAC). 3

Jain, S.K. & Agarwal, P. (2006). A low leakage and snm free sram cell design
in deep sub micron cmos technology. In VLSID . 111

145

REFERENCES

Jalle, J., Abella, J., Quiñones, E., Fossati, L., Zulianello, M. &
Cazorla, F.J. (2013a). Deconstructing bus access control policies for real-
time multicores. In 8th IEEE International Symposium on Industrial Embedded
Systems, SIES 2013, Porto, Portugal, June 19-21, 2013 , 31–38. 21

Jalle, J., Abella, J., Quiñones, E., Fossati, L., Zulianello, M. &
Cazorla, F.J. (2013b). Deconstructing bus access control policies for real-
time multicores. In 8th IEEE International Symposium on Industrial Embedded
Systems, SIES 2013, Porto, Portugal, June 19-21, 2013 , 31–38. 75, 76

Jalle, J., Kosmidis, L., Abella, J., Quiñones, E. & Cazorla, F.J. (2014).
Bus designs for time-probabilistic multicore processors. In Design, Automation
& Test in Europe Conference & Exhibition, DATE 2014, Dresden, Germany,
March 24-28, 2014 , 1–6. 8, 21, 22, 31, 32, 33, 34, 50, 56, 62, 73, 75, 77, 80, 82,
83, 88, 101, 130, 132

Kelter, T., Falk, H., Marwedel, P., Chattopadhyay, S. & Roy-
choudhury, A. (2011). Bus-aware multicore wcet analysis through tdma offset
bounds. In Proceedings of the 2011 23rd Euromicro Conference on Real-Time
Systems , ECRTS ’11, 3–12. 21

Kelter, T., Falk, H., Marwedel, P., Chattopadhyay, S. & Roychoud-
hury, A. (2014). Static analysis of multi-core TDMA resource arbitration de-
lays. Real-Time Systems , 50, 185–229. 75

Kim, B., Kim, J., Hong, S.J. & Lee, S. (1998). A real-time communication
method for wormhole switching networks. In 1998 International Conference on
Parallel Processing (ICPP ’98), 10-14 August 1998, Minneapolis, Minnesota,
USA, Proceedings . 59

Kim, H., Kandhalu, A. & Rajkumar, R. (2013). A coordinated approach
for practical os-level cache management in multi-core real-time systems. In 25th
Euromicro Conference on Real-Time Systems, (ECRTS 2013), Paris, France. 9,
90, 91, 92

Koren, I. & Koren, Z. (1998). Defect tolerance in vlsi circuits: techniques and
yield analysis. Proceedings of the IEEE , 86, 1819–1838. 110, 135

Kosmidis, L., Abella, J., Quiñones, E. & Cazorla, F.J. (2013a). A cache
design for probabilistically analysable real-time systems. In Design, Automation
and Test in Europe, DATE 13, Grenoble, France, March 18-22, 2013 , 513–518.
18, 20, 38, 50, 65, 91, 95, 96, 98, 100, 101, 113, 118, 122, 125, 135

146

REFERENCES

Kosmidis, L., Abella, J., Quiñones, E. & Cazorla, F.J. (2013b). Multi-
level unified caches for probabilistically time analysable real-time systems. In
Proceedings of the IEEE 34th Real-Time Systems Symposium, RTSS 2013, Van-
couver, BC, Canada, December 3-6, 2013 , 360–371. 18, 20, 38, 65, 102

Kosmidis, L., Abella, J., Wartel, F., Quiñones, E., Colin, A. & Ca-
zorla, F.J. (2014). PUB: path upper-bounding for measurement-based prob-
abilistic timing analysis. In 26th Euromicro Conference on Real-Time Systems,
ECRTS 2014, Madrid, Spain, July 8-11, 2014 , 276–287. 15

Kotz, S. & Nadarajah, S. (2000). Extreme value distributions: theory and
applications . World Scientific. 6, 14

Lahiri, K., Raghunathan, A. & Lakshminarayana, G. (2001). Lotterybus:
a new high-performance communication architecture for system-on-chip designs.
In Proceedings of the 38th Design Automation Conference, DAC 2001,. 21, 73,
75, 77

Law, S. & Bate, I. (2016). Achieving appropriate test coverage for reliable
measurement-based timing analysis. In ECRTS . 12

Le Boudec, J.Y. & Thiran, P. (2001). Network calculus: a theory of deter-
ministic queuing systems for the internet . Springer-Verlag. 71

Lee, S. (2003). Real-time wormhole channels. Journal Of Parallel And Distributed
Computing , 63, 299–311. 72

Lesage, B., Hardy, D. & Puaut, I. (2009). WCET analysis of multi-level
set-associative data caches. WCET Workshop. 19, 92

Liedtke, J., Hartig, H. & Hohmuth, M. (1997). OS-controlled cache pre-
dictability for real-time systems. In Real-Time and Embedded Technology and
Applications Symp. (RTAS). 9, 19, 90, 91, 92

Lu, Z., Yao, Y. & Jiang, Y. (2014). Towards stochastic delay bound analysis for
network-on-chip. In Eighth IEEE/ACM International Symposium on Networks-
on-Chip (NoCS), 64–71. 72, 73

Lyons, R. & Vanderkulk, W. (1962). The use of triple modular redundancy
to improve computer reliability. IBM Journal of Research and Development , 6,
200–209. 110

Marsaglia, G. & Zaman, A. (1991). A new class of random number generators.
Annals of Applied Probability , 1, 462–480. 99

147

REFERENCES

Massengill, L., Bhuva, B., Holman, W., Alles, M. & Loveless, T.
(2012). Technology scaling and soft error reliability. In IEEE International Re-
liability Physics Symposium (IRPS). 24

McNairy, C. & Mayfield, J. (2005). Montecito error protection and mitiga-
tion. In HPCRI . 114, 132

Mezzetti, E. & Vardanega, T. (2011). On the industrial fitness of wcet anal-
ysis. In WCET Workshop. 12

Mezzetti, E., Ziccardi, M., Vardanega, T., Abella, J., Quiñones, E.
& Cazorla, F.J. (2015). Randomized caches can be pretty useful to hard
real-time systems. LITES , 2, 01:1–01:10. 19

Millberg, M., Nilsson, E., Thid, R., Kumar, S. & Jantsch, A. (2004).
The nostrum backbone-a communication protocol stack for networks on chip.
In IEEE VLSI Design, 693–696. 88

Milutinovic, S., Mezzetti, E., Abella, J., Vardanega, T. & Cazorla,
F. (2017). On uses of extreme value theory fit for industrial-quality WCET
analysis. In 2017 12th IEEE International Symposium on Industrial Embedded
Systems (SIES). 15

Mueller, F. (1994). Predicting instruction cache behavior. Language, Compilers
and Tools for Real-Time Systems . 19, 92

Mueller, F. (1995). Compiler support for software-based cache partitioning. In
ACM SIGPLAN Conference on Languages, Compilers and Tools for Embedded
Systems (LCTES). 9, 19, 90, 91, 92

Mueller, F. (2000). Timing analysis for instruction caches. Real-Time Systems
- Special issue on worst-case execution-time analysis . 134

NanoC (2010). Nanoc design platform. http://www.nanoc-project.eu. 26, 38, 65

Natale, M.D., Abella, J., Reineke, J., Hamann, A. & Farrall, G.
(2016). Predictable system timing – probab(ilistical)ly? In DAC (panel in au-
tomotive track). 12

Obermaisser, R., El-Salloum, C., Huber, B. & Kopetz, H. (2009). From
a federated to an integrated automotive architecture. In IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems . 1

148

REFERENCES

Panic, M., Rodŕıguez, G., Quiñones, E., Abella, J. & Cazorla, F.J.
(2013). On-chip ring network designs for hard-real time systems. In 21st Inter-
national Conference on Real-Time Networks and Systems, RTNS 2013, Sophia
Antipolis, France, October 17-18, 2013 , 23–32. 31, 88

Panic, M., Quiñones, E., Zaykov, P.G., Hernández, C., Abella, J. &
Cazorla, F.J. (2014). Parallel many-core avionics systems. In 2014 Interna-
tional Conference on Embedded Software, EMSOFT 2014, New Delhi, India,
October 12-17, 2014 , 26:1–26:10. 22, 32, 33, 34

Panic, M., Abella, J., Hernández, C., Quiñones, E., Ungerer, T. &
Cazorla, F.J. (2015). Enabling TDMA arbitration in the context of MBPTA.
In 2015 Euromicro Conference on Digital System Design, DSD 2015, Madeira,
Portugal, August 26-28, 2015 , 462–469. 21, 73, 80

Panic, M., Hernández, C., Abella, J., Roca, A., Quiñones, E. & Ca-
zorla, F.J. (2016a). Improving performance guarantees in wormhole mesh noc
designs. In 2016 Design, Automation & Test in Europe Conference & Exhibition,
DATE 2016, Dresden, Germany, March 14-18, 2016 , 1485–1488. 55, 66, 68

Panic, M., Hernández, C., Quiñones, E., Abella, J. & Cazorla, F.J.
(2016b). Modeling high-performance wormhole nocs for critical real-time em-
bedded systems. In 2016 IEEE Real-Time and Embedded Technology and Appli-
cations Symposium (RTAS), Vienna, Austria, April 11-14, 2016 , 267–278. 55,
60, 66, 67, 73, 89

Paolieri, M., Quiñones, E., Cazorla, F.J., Bernat, G. & Valero, M.
(2009a). Hardware support for WCET analysis of hard real-time multicore sys-
tems. In Proceedings of the 36th Annual International Symposium on Computer
Architecture (ISCA). 9, 20, 21, 34, 39, 48, 90, 91, 92, 105, 131, 133

Paolieri, M., Quiñones, E., Cazorla, F.J. & Valero, M. (2009b). An
Analyzable Memory Controller for Hard Real-Time CMPs . IEEE Embedded
Systems Letters. 101, 102

Poovey, J.A., Conte, T.M., Levy, M. & Gal-On, S. (2009). A benchmark
characterization of the EEMBC benchmark suite. IEEE Micro, 29, 18–29. 28,
66, 83, 101, 120, 133

Pouillon, N., Becoulet, A., de Mello, A., Pecheux, F. & Greiner, A.
(2009). A generic instruction set simulator api for timed and untimed simulation
and debug of mp2-socs. In Rapid System Prototyping, 2009. RSP ’09. IEEE/I-
FIP International Symposium on, 116–122, http://www.soclib.fr/trac/dev.
25, 38, 65, 100, 120

149

http://www.soclib.fr/trac/dev

REFERENCES

Psarras, A., Seitanidis, I., Nicopoulos, C. & Dimitrakopoulos, G.
(2015). Phase-NoC: TDM scheduling at the virtual-channel level for efficient
network traffic isolation. In Proceedings of the 2015 Design, Automation & Test
in Europe Conference & Exhibition, DATE . 89

Rahmati, D., Murali, S., Benini, L., Angiolini, F., Micheli, G.D. &
Sarbazi-Azad, H. (2013). Computing accurate performance bounds for best
effort networks-on-chip. IEEE Transactions on Computers . 55, 58, 73, 89

Rapita Systems, L. (2007). RapiTime: Worst-case execution time analysis.
User Guide. 13

Reineke, J., Grund, D., Berg, C. & Wilhelm, R. (2007). Timing pre-
dictability of cache replacement policies. Real-Time Systems , 37, 99–122. 19,
92, 134

Roberts, D., Kim, N. & Mudge, T. (2007). On-chip cache device scaling
limits and effective fault repair techniques in future nanoscale technology. In
DSD Euromicro Conference. 110, 114

Roca, A., Hernández, C., Flich, J., Silla, F. & Duato, J. (2012). En-
abling high-performance crossbars through a floorplan-aware design. In ICPP .
31, 38, 45

RTCA and EUROCAE (2011). DO-178C / ED-12C, Software Considerations
in Airborne Systems and Equipment Certification. 1, 5, 14, 35

Salminen, E., Kangas, T., Lahtinen, V., Riihimäki, J., Kuusilinna,
K. & Hämäläinen, T.D. (2007). Benchmarking mesh and hierarchical bus
networks in system-on-chip context. J. Syst. Archit., 53. 75

Santinelli, L., Morio, J., Dufour, G. & Jacquemart, D. (2014). On
the Sustainability of the Extreme Value Theory for WCET Estimation. In 14th
International Workshop on Worst-Case Execution Time Analysis , vol. 39 of
OpenAccess Series in Informatics (OASIcs), 21–30. 16

Schlansker, M., Shaw, R. & Sivaramakrishnan, S. (1993). Randomization
and associativity in the design of placement-insensitive caches. HP Tech Report
HPL-93-41 . 135

Schoeberl, M., Brandner, F., Sparsø, J. & Kasapaki, E. (2012). A stati-
cally scheduled time-division-multiplexed network-on-chip for real-time systems.
In NOCS . 31, 88

150

REFERENCES

Schranzhofer, A., Chen, J. & Thiele, L. (2010). Timing analysis for TDMA
arbitration in resource sharing systems. In 16th IEEE Real-Time and Embedded
Technology and Applications Symposium, RTAS 2010, Stockholm, Sweden, April
12-15, 2010 , 215–224. 21

Seznec, A. & Bodin, F. (1993). Skewed-associative caches. In PARLE . 135

Shi, Z. & Burns, A. (2008). Real-time communication analysis for on-chip net-
works with wormhole switching. In NoCS . 71

Suhendra, V., Mitra, T., Roychoudhury, A. & Chen, T. (2005). WCET
centric data allocation to scratchpad memory. In Proceedings of the 26th IEEE
Real-Time Systems Symposium (RTSS . 19

Theiling, H., Ferdinand, C. & Wilhelm, R. (2000). Fast and precise WCET
prediction by separated cache and path analyses. Real-Time Systems , 18, 157–
179. 92

Thottethodi, M., Lebeck, A.R. & Mukherjee, S.S. (2001). Self-Tuned
Congestion Control for Multiprocessor Networks. In HPCA. 64

Tschanz, J., Kao, J., Narendra, S., Nair, R., Antoniadis, D., Chan-
drakasan, A. & De, V. (2002). Adaptive body bias for reducing impacts of
die-to-die and within-die parameter variations on microprocessor frequency and
leakage. IEEE Journal of Solid-State Circuits , 37. 114

Ungerer, T., Bradatsch, C., Gerdes, M., Kluge, F., Jahr, R., Mis-
che, J., Fernandes, J., Zaykov, P.G., Petrov, Z., Böddeker, B.,
Kehr, S., Regler, H., Hugl, A., Rochange, C., Ozaktas, H., Cassé,
H., Bonenfant, A., Sainrat, P., Broster, I., Lay, N., George, D.,
Quiñones, E., Panic, M., Abella, J., Cazorla, F.J., Uhrig, S., Ro-
hde, M. & Pyka, A. (2013). parmerasa – multi-core execution of parallelised
hard real-time applications supporting analysability. In DSD . 35

Vestal, S. (2007). Preemptive scheduling of multi-criticality systems with vary-
ing degrees of execution time assurance. In RTSS , 239–243. 2, 31

Vittorelli, B. (2004). Automotive systems. where silicon meets the road. 3,
information Quarterly Building Blocks for Embedded Applications. 3

Ward, B., Herman, J., Kenna, C. & Anderson, J. (2013). Making shared
caches more predictable on multicore platforms. In 25th Euromicro Conf. on
Real-Time Systems, (ECRTS). 9, 90, 91, 92

151

REFERENCES

Wartel, F., Kosmidis, L., Lo, C., Triquet, B., Quiñones, E., Abella,
J., Gogonel, A., Baldovin, A., Mezzetti, E., Cucu, L., Vardanega,
T. & Cazorla, F.J. (2013). Measurement-based probabilistic timing analysis:
Lessons from an integrated-modular avionics case study. In 8th IEEE Interna-
tional Symposium on Industrial Embedded Systems,SIES . 15, 96, 135

Wartel et al., F. (2015). Timing analysis of an avionics case study on complex
hardware/software platforms. In 18th Design, Automation and Test in Europe
Conference (DATE). 15

Wassel, H.M.G., Gao, Y., Oberg, J., Huffmire, T., Kastner, R.,
Chong, F.T. & Sherwood, T. (2013). SurfNoC: A low latency and prov-
ably non-interfering approach to secure networks-on-chip. In The 40th Annual
International Symposium on Computer Architecture ISCA, 583–594. 89

Wenzel, I. (2006). Measurement-Based Timing Analysis of Superscalar Proces-
sors . Ph.D. thesis, Technische Universität Wien, Institut für Technische Infor-
matik, Treitlstr. 3/3/182-1, 1040 Vienna, Austria. 13

Wenzel, I., Kirner, R., Rieder, B. & Puschner, P.P. (2008).
Measurement-based timing analysis. In Leveraging Applications of Formal Meth-
ods, Verification and Validation, Third International Symposium, ISoLA 2008,
Porto Sani, Greece, October 13-15, 2008. Proceedings , 430–444. 13

Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S.,
Whalley, D., Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T.,
Mueller, F., Puaut, I., Puschner, P., Staschulat, J. & Stenström,
P. (2008). The worst-case execution-time problem—overview of methods
and survey of tools. ACM Trans. Embed. Comput. Syst., 7, 36:1–36:53. 5, 13,
90, 110

Wilkerson, C., Gao, H., Alameldeen, A., Chishti, Z., Khellah, M. &
Lu, S.L. (2008). Trading off cache capacity for reliability to enable low voltage
operation. In ISCA. 110, 114, 133

Yue Qian, Z.L. & Dou, W. (2009). Analysis of worst-case delay bounds for
best-effort communication in wormhole networks on chip. In NoCS , 44–53. 72

Zhang, W. & Yan, J. (2012). Static timing analysis of shared caches for multi-
core processors. Journal of Computing Science and Engineering , 6. 92

Ziccardi, M., Mezzetti, E., Vardanega, T., Abella, J. & Cazorla, F.J.
(2015). EPC: Extended Path Coverage for Measurement-Based Probabilistic
Timing Analysis. In Real-Time Systems Symposium, 2015 IEEE , 338–349. 15

152

Glossary

CRTES Critical Real-Time Embedded Systems

DTM Degraded Test Mode

DCDR Detection, Correction, Diagnosis and Reconfiguration

DTA Deterministic Timing Analysis

EFL Eviction Frequency Limiting

ETP Execution Time Profile

EVT Extreme Value Theory

FIT Failure In Time

FIFO First-In First-Out

IPC Instructions Per Cycle

LLC Last Level Cache

LRU Least Recently Used

LNR Limiting Number of Requests

LFR Limiting Frequency of Requests

MiD Minimum Inter-request Delay

MBPTA Measurement-Based Probabilistic Timing Analysis

NoC Network-On-Chip

PTA Probabilistic Timing Analysis

pWCET Probabilistic Worst-Case Execution Time

153

REFERENCES

RTOS Real-Time Operating System

RR Round-Robin

SECDED Single-error-correction and double-error-detection

SPTA Static Probabilistic Timing Analysis

TDMA Time-Division Multiple Access

TuA Task under Analysis

UBD Upper-Bound Delay

wNoC Wormhole Network-On-Chip

WCD Worst Contention Delay

WCET Worst-case execution time

154

	1 Introduction
	1.1 Critical Real-Time Embedded Systems
	1.2 Advanced hardware features and Timing Analysis techniques
	1.2.1 Multicores

	1.3 Contributions
	1.4 Thesis Structure
	1.5 Publications

	2 Background
	2.1 Timing Analysis Techniques
	2.1.1 Deterministic techniques
	2.1.2 Probabilistic techniques

	2.2 High-Performance CRTES Hardware Platforms
	2.2.1 Cache memory
	2.2.2 Interconnection Networks
	2.2.3 Reliability

	3 Methodology
	3.1 Simulators
	3.2 General architecture
	3.3 Benchmarks
	3.4 MBPTA process

	4 Tree-based PTA-compliant NoCs
	4.1 Introduction
	4.2 Reference Multicore
	4.3 Single-Criticality pTNoC
	4.3.1 Factoring in NoC contention

	4.4 Mixed-Criticality pTNoC
	4.4.1 Heterogeneous Bandwidth Assignments
	4.4.2 Implementation Remarks

	4.5 Evaluation
	4.5.1 Homogeneous bandwidth setups
	4.5.2 Heterogeneous bandwidth setups
	4.5.3 Implementation and Energy Results

	4.6 Comparison of tree-based manycore architectures
	4.6.1 Time-Deterministic platform
	4.6.2 Time-Randomized platform
	4.6.3 Evaluation

	4.7 Conclusions

	5 PTA-compliant mesh NoC
	5.1 Introduction
	5.2 Problem Formulation
	5.2.1 Network Baseline
	5.2.2 Contention in the wNoC

	5.3 Probabilistic wNoC Designs
	5.3.1 MBPTA-compliant wNoC Router Design
	5.3.2 Reducing Contention in Probabilistic wNoCs

	5.4 Evaluation
	5.4.1 Methodology
	5.4.2 Characterizing wNoCs Performance
	5.4.3 Performance Evaluation

	5.5 Related work
	5.6 Conclusions

	6 Credit-Based Arbitration
	6.1 Introduction
	6.2 Background
	6.3 Credit-Based Arbitration
	6.3.1 Motivation: An Example
	6.3.2 CBA Design
	6.3.3 Arbitration Choices
	6.3.4 WCET Estimation
	6.3.5 Implementation

	6.4 Evaluation
	6.4.1 Experimental Framework
	6.4.2 Results

	6.5 Related Work
	6.6 Conclusions

	7 Eviction Frequency Limiting (EFL) for Shared Caches
	7.1 Introduction
	7.2 Background on Controlling Cache Inter-task Interferences
	7.3 Probabilistically Controlling Eviction Frequency in a TR LLC
	7.3.1 Inter-task Interferences in a TD LLC
	7.3.2 TR caches
	7.3.3 Inter-task interferences in a TR LLC

	7.4 Probabilistically upper-bounding inter-task interference features in a TR LLC
	7.4.1 Hardware support

	7.5 Evaluation
	7.5.1 Experimental Setup
	7.5.2 Experimental Results

	7.6 Conclusions

	8 Reliability issues
	8.1 Introduction
	8.2 Background
	8.3 Target Processor Architecture and Fault Model
	8.3.1 Hardware Designs for MBPTA and Caches
	8.3.2 Permanent Fault Model
	8.3.3 Upper-bounding the Number of Faulty Cache Lines

	8.4 Making Timing Analysis Aware of Hardware Faults
	8.4.1 Deterministic Hardware
	8.4.2 Probabilistic (Time-Randomised) Hardware
	8.4.3 DTM: Applying MBPTA on Top of Faulty Hardware

	8.5 Evaluation
	8.5.1 Evaluation Framework
	8.5.2 Worst-Case Execution Time
	8.5.3 Average Performance

	8.6 Fault-Aware WCET Estimation: Expanding DTM
	8.6.1 Bounding Timing Effects of DCDR
	8.6.2 DCDR effect on WCET estimates
	8.6.3 Degraded Operation due to Permanent Faults
	8.6.4 Hardware Requirements
	8.6.5 Other Hardware Resources

	8.7 Evaluation
	8.8 Related Work
	8.9 Conclusions

	9 Conclusion and Future Work
	9.1 Thesis conclusions
	9.2 Future work

	References
	Glossary

