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Abstract

Nowadays, energy is absolutely necessary all over the world. Currently, many of
the scientific advances that society enjoys in the fields of health, technology or
entertainment, work on the basis of energy. During the last few years, the need
for energy has incremented gradually. How to obtain the energy easily, cleanly,
economically and safely is one of the aims of thousands of researchers in many parts
of the world.

Taking into account the advantages that it presents in transport and the needs
of homes and industry, energy is transformed into electricity. Electricity is used,
especially in the non-residential buildings’ sector, which has never stopped growing
since the arrival of electricity.

Bearing in mind the expansion of electricity, initiatives like Horizon 2020, pursue
the objective of a more sustainable future: reducing the emissions of carbon and
electricity consumption and increasing the use of renewable energies.

The electricity network is constantly being improved. As an answer to the short-
comings of the traditional electrical network, such as large distances to the point of
consumption, low levels of flexibility, low sustainability, low quality of energy, the
difficulties of storing electricity, etc., Smart Grids (SG), a natural evolution of the
classical network, has appeared.

The SG, based on new technologies that have arisen in the market, provides
robustness, sustainability, flexibility, quality of service and information for the user.
Furthermore, it allows for the storage of energy, as in the use of electric cars, and
the possibility of Distributed Generation (DG), incrementing the use of renewable
energy.

One of the main components that will allow the SG to improve the traditional
grid is the Energy Management System (EMS). The EMS is the element that man-
ages all parts of the system, such as its generation, as in DG power plants, or its
consumption, as in appliances. It is precisely in this framework where the electric
car will allow for storing energy with the goal of reducing consumption in the hours
of more demand and perform electrical load shaping; this is precisely one of the
main benefits of the SG.
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The current electricity system presents very high electric consumption during
peak hours and very low during the valley hours. As a result, the price of energy
varies: in some cases, there is an excess and, in others, a lack of energy. A flat
daily consumption curve is the ideal for the electrical companies. To achieve the
shaping of the consumption curve, several technologies, such as DG, energy exchange
between users, energy storage using Electrical Vehicles (EV) or the control of home
appliances by the electrical companies, can be used.

As has been said, the EMS is necessary to carry out the management of the power
network system, and one of the main needs of the EMS is a prediction system: that
is, to know in advance the electricity consumption. Besides, the utilities will also
require predictions to manage the generation, maintenance and their investments.

In short, a suitable system of load prediction will allow for daily optimum man-
agement of the electrical system. It will help to perform a suitable process of
decision-making, in order to plan the resources or decide about initial investments.
Therefore, it is necessary to dispose of the systems of prediction of the electrical con-
sumption that, based on the available data, forecast the consumption of the next
hours, days or months, in the most accurate way possible.

It is in this field where the present research is placed since, due to the proliferation
of sensor networks and more powerful computers, more precise prediction systems
have been developed. This change has been undertaken at a quantitative and quali-
tative level, since the number of publications, with regard to the subject, has spiked
and new methods, more precise and complex, have appeared. In the 1970s, most of
the techniques employed were linear and, slowly, the non-linear models have been
imposed, due to their advantages in dealing with complex problems.

Having said that, a complete study has been realized in [10], taking into account
the need to know, in depth, the state of the art, in relation to the load forecast-
ing topic. On the basis of acquired knowledge, the installation of sensor networks,
the collection of consumption data and modelling, using Autoregressive (AR) mod-
els, were performed in the second work [13]. Once this model was defined, in the
third work [12], another step was made, collecting new data, such as building occu-
pancy, meteorology and indoor ambience, testing several paradigmatic models, such
as Multiple Linear Regression (MLR), Artificial Neural Network (ANN) and Sup-
port Vector Regression (SVR), and establishing which exogenous data improves the
prediction accuracy of the models. Reaching this point, and having corroborated
that the use of occupancy data improves the prediction, there was the necessity of
generating techniques and methodologies, in order to have the occupancy data in
advance. Therefore, several attributes of artificial occupancy were designed, in order
to perform long-term hourly consumption predictions. These concepts are explained
in depth in the fourth work [14].
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Looking more closely, in the first article [10] of the present thesis, the most
relevant studies, regarding the subject of electric load prediction of the last forty
years, have been reviewed. Several publications show a clear evolution from the first
models, less powerful and less complex, to the current models, able to achieve high
accuracy, and future trends. The models can be classified, for example, according
to the area of application, the horizon of prediction or the computational cost. In
the present case, the aim was to study, in depth, the Short-term Load Forecast-
ing (STLF) in non-residential buildings; for this reason, different possibilities were
analysed, in order to focus the following articles adequately.

The second article [13], presents a description of the prediction service within the
Smart City architecture. The aim was to identify the needs of the services in this
framework, to support the prediction data-driven models or other systems for energy
efficiency monitoring. The study is based on data from the university of Girona,
where a prediction service was used to explain, in a practical manner, the insertion
of the service in the architecture of layers, based upon the knowledge acquired with
the state of the art.

From the conclusions of the second work [13], and using newly collected data,
such as weather, occupancy, calendar, indoor ambience, etc., experiments in relation
to the consumption prediction models of the buildings were realized. At this point,
we tested several configurations with the aim of discovering what generates better
results in the prediction. Moreover, data-driven models were studied to benchmark
STLF in non-residential buildings. Like the previous one, the study-case is based
on data of consumption from the University of Girona. After that, a general guide-
line about which data, methods and parametrizations are necessary to predict the
consumption in non-residential buildings in a proper manner was provided.

The third work [12] helped in identifying which methods, parameters and models
generate the best results. Despite this, one of the attributes used, the occupancy of
the building, is not available in advance, so it was then necessary for a system to gen-
erate this attribute artificially. Starting from the methods and data that generated
better results, and on the basis of the same case study of the previous publications,
an exhaustive study with regard to the possible manner of extracting information
of the building’s occupancy was performed. The ultimate aim was to obtain an
attribute of occupancy for non-residential buildings, in order to achieve a better
balance between computational cost and the accuracy obtained in the prediction.

This method, unlike other methods of the subject studied, that require weather
predictions, only requires the attribute of occupancy. Besides, the method allows
for hourly consumption predictions months in advance, a feature that places the
method above the vast majority of hourly consumption prediction methods.

The last work [14], and closing the cycle of works of STLF in non-residential
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buildings that contains the present thesis, presented different indicators or attributes
of occupancy, from the simplest, that uses general information, to the most com-
plex, based on very detailed information. For each complexity level, the accuracy
provided, using an SVR model and the cost of generating such indicator, was con-
trasted. Finally, a model that presents the best balance between the two parameters
was obtained. In the same way as the previous cases, real data from the buildings
of the University of Girona were used as a case study.

Thus, the thesis concludes, providing a complete state of the art of the topic
STLF in non-residential buildings. Furthermore, three articles that introduce ad-
vances in the field are produced, highlighting, especially the last one, that it not
only provides a new method of prediction, but a complete study of how to generate
artificial indicators of occupancy.
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A dia d’avui l’energia és un bé completament necessari arreu del món. Molts dels
avenços científics dels que gaudim enguany en els camps de la salut, la tecnologia
o l’entreteniment funcionen a base d’energia. Durant els darrers anys la neces-
sitat d’energia ha anat incrementant-se gradualment. Com obtenir aquesta ener-
gia de manera senzilla, neta, econòmica i segura és un dels objectius de milers
d’investigadors d’arreu del món.

Degut als avantatges que presenta en el transport i a les necessitats de les llars
i la indústria, l’energia és transformada en energia elèctrica. Aquesta electricitat és
utilitzada sobretot en el sector dels edificis no-residencials, un sector clau que no ha
parat de créixer des de l’aparició de l’electricitat.

Tenint en compte la total expansió i domini de l’electricitat, iniciatives com
Horitzó 2020, tenen per objectiu un futur més sostenible: reduint les emissions de
carboni i el consum i incrementant l’ús de renovables.

La xarxa elèctrica està en constant millora. Partint dels defectes de la xarxa
elèctrica clàssica, com són gran distància al punt de consum, poca flexibilitat, baixa
sostenibilitat, baixa qualitat de l’energia, dificultats per a emmagatzemar energia,
etc. apareixen les Smart Grid (SG), una evolució natural de la xarxa clàssica.

Les SG, basades en les noves tecnologies que sorgeixen al mercat, aporten solidesa,
sostenibilitat, flexibilitat, qualitat de servei, informació a disposició de l’usuari, a
més, permeten l’emmagatzematge d’energia a través dels cotxes elèctrics i la possi-
bilitat de generació desagregada, incrementant l’ús de les renovables.

Un dels principals elements que permetrà a les SG millorar les xarxes clàssiques
és l’Energy Management System (EMS). Els EMS, són els elements que permeten
la gestió de totes les parts del sistema, tant de la generació, centrals desagregades,
com del consum, electrodomèstics. És precisament dins d’aquest esquema que el
cotxe elèctric ens permetrà emmagatzemar energia a fi i efecte de reduir el consum
en les hores de més demanda i poder donar forma a la corba de consum, aquest és
precisament un dels principals beneficis que permetran les SG.

El sistema elèctric actual presenta un consum molt alt durant les hores pic i
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molt baix durant les hores vall. Això fa que el preu de l’energia variï i que en certs
moments falti energia i en d’altres en sobri. Una corba de consum diari planera seria
l’ideal per a les empreses elèctriques. Per a dur a terme el modelat de la corba de
consum utilitzarem diferents elements com ara la generació desagregada, l’intercanvi
d’energia entre usuaris, l’acumulació d’energia amb els cotxes elèctrics o el control
a distància dels electrodomèstics per part de les empreses elèctriques.

Així doncs, per a que l’EMS pugui dur a terme la gestió dels diversos elements,
una de les necessitats bàsiques dels EMS serà un sistema de predicció, o sigui, saber
per endavant quin consum hi haurà en un entorn determinat. A més, les empreses
subministradores d’electricitat també requeriran de prediccions per a gestionar la
generació, el manteniment i fins i tot les inversions a llarg termini.

En resum, un bon sistema de predicció ens permetrà una gestió diària del sistema
elèctric òptima. A més, ens ajudarà a dur a terme un procés de presa de decisions
adequat, per tal de planificar l’adquisició de recursos o decidir les inversions inicials.
Així doncs ens calen sistemes de predicció del consum elèctric que, partint de les
dades disponibles, ens subministrin el consum que hi haurà d’aquí a unes hores, uns
dies o uns mesos, de la manera més aproximada possible.

És dins d’aquest camp on s’ubica la recerca que presentem. Degut a la proliferació
de xarxes de sensors i computadors més potents, s’han pogut desenvolupar sistemes
de predicció més precisos. Aquest canvi ha estat tant a nivell quantitatiu com
qualitatiu, ja que el nombre de publicacions en relació amb el tema s’ha disparat i
han aparegut nous mètodes més precisos i complexes. Cap als anys 70 la majoria
de tècniques emprades eren lineals, poc a poc però els models no-lineals es van anar
imposant degut als seus avantatges enfront problemes complexes.

A tall de resum, en el primer treball [10], i tenint en compte que s’havia de
conèixer en profunditat l’estat de la qüestió en relació a la predicció del consum
elèctric, es va fer una anàlisi completa de l’estat de l’art. Un cop fet això, i partint
del coneixement adquirit, en el segon treball [13] es va dur a terme la instal·lació de
les xarxes de sensors, la recollida de dades de consum i el modelatge amb models
lineals d’auto-regressió (AR). En el tercer treball [12], un cop fets els models es va
anar un pas més enllà recollint dades d’ocupació, de meteorologia i ambient interior,
provant diferents models paradigmàtics com Multiple Linear Regression (MLR),
Artificial Neural Network (ANN) i Support Vector Regression (SVR) i establint
quines dades exògenes milloren la predicció dels models. Arribat a aquest punt, i
havent corroborat que l’ús de dades de presència millora la predicció, es van generar
tècniques per tal de disposar de les dades d’ocupació per endavant, o sigui a hores
vista. D’aquesta manera es van dissenyar diferents atributs d’ocupació artificials,
permetent-nos fer prediccions horàries de consum a llarg termini. Aquests conceptes
s’expliquen en profunditat al quart treball [14].
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Veient-ho en més profunditat, pel primer article [10] de la present tesi s’han re-
visat els estudis més rellevants pel que fa al tema de predicció de la demanda elèctrica
dels darrers 40 anys. Les diferents publicacions mostren una clara evolució, des dels
primers models, menys potents i complexes, passant pels models actuals, capaços
d’assolir grans precisions, fins a les futures tendències. Dins del ventall de models que
ens podem trobar, aquests es poden dividir en funció de l’àrea d’aplicació, l’horitzó
de predicció o el cost computacional, per exemple. En el nostre cas l’objectiu era
estudiar en profunditat els models de predicció del consum a curt termini en edificis
no-residencials, per això vam analitzar les diferents possibilitats, per tal d’enfocar
els següents articles de manera adequada.

En el segon article [13] es va dur a terme la descripció del servei de predicció al
si de l’arquitectura Smart City. L’objectiu era identificar les necessitats dels serveis
en aquest marc per a suportar els models de predicció de dades o altres sistemes de
monitorització d’eficiència energètica. L’estudi se sustenta en un exemple pel cas
de la universitat de Girona, on es dissenyà un servei de predicció per a explicar de
manera pràctica la inserció del servei al si de l’arquitectura de capes, partint dels
aprenentatges de l’estat de l’art.

A partir de les conclusions extretes del segon treball [13] es van dur a terme
experiments en relació als models de predicció del consum d’edificis a partir de
les noves dades recollides: dades de meteorologia, dades de presència, dades de
calendari, dades d’ambient interior, etc. En aquest punt es testejaren les diferents
configuracions amb l’objectiu d’esbrinar què és allò que genera millors resultats en
la predicció. A més, s’estudià quins models de dades subministren millors resultats
pel cas dels models de predicció del consum a curt termini en edificis no-residencials.
Com en el cas anterior els casos pràctics se sustenten en les dades de consum de la
Universitat de Girona. Un cop enllestit aquest treball disposàrem d’un seguit de
pautes generals sobre quines dades i quins mètodes i parametritzacions cal aplicar
per a predir el consum horari en edificis no-residencials de manera adequada.

El tercer treball [12] va ajudar a conèixer quins mètodes, paràmetres i models
generen els millors resultats. Malgrat això, un dels atributs que es van fer servir,
l’ocupació de l’edifici, no es disposava per endavant, calia doncs un sistema per a
crear aquest atribut de manera artificial. Partint del mètodes i dades que van generar
millors resultats, i amb el mateix cas pràctic que en les anteriors publicacions, es
va dur a terme un estudi exhaustiu sobre les possibles maneres d’extreure infor-
mació de l’ocupació de l’edifici. L’objectiu final era obtenir un atribut d’ocupació
pels edificis no-residencials de manera que presentés el millor equilibri entre el cost
computacional de crear-lo i la precisió que genera en la predicció.

Aquest mètode, a diferència d’altres mètodes del tema estudiat, que requereixen
de prediccions meteorològiques, només requereix de l’atribut d’ocupació. A més, el
mètode permet fer prediccions de consum horàries mesos per endavant, cosa que el
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situa per davant de la gran majoria de mètodes de predicció de consum horari.
Així doncs, el darrer treball [14], i tancant amb el cicle de treballs de predicció

del consum a curt termini en edificis no-residencials que engloba la present tesi, va
presentar diferents indicadors o atributs d’ocupació, del més senzill, que fa servir
informació general, fins al més complex, basat en informació molt detallada. I per
cadascun d’aquests nivells es contraposà la precisió que subministra aquest atribut
a través d’un model SVR i el cost de generar tal indicador. Finalment, es va obtenir
un model que presenta el millor equilibri entre els dos paràmetres. Com en els casos
anteriors es van emprar dades reals dels edificis de la Universitat de Girona com a
demostració.

D’aquesta manera, la tesi es conclou subministrant un estat de l’art complet
sobre la predicció de consum elèctrica, a més de tres articles que aporten avenços
dins del camp, destacant sobretot el darrer que, no només aporta un mètode nou
de predicció, sinó un estudi complet de com generar de manera artificial indicadors
d’ocupació.
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A día de hoy la energía es un bien completamente necesario en todo el mundo. Mu-
chos de los adelantos científicos de los que disfrutamos a día de hoy en los campos
de la salud, la tecnología o el entretenimiento funcionan en base a la energía. Du-
rante los últimos años la necesidad de energía ha ido incrementándose gradualmente.
Como obtener esta energía de manera sencilla, limpia, económica y segura es uno
de los objetivos de miles de investigadores de todo el mundo.

Debido a las ventajas que presenta en el transporte y a las necesidades de los
hogares y la industria, la energía es transformada en energía eléctrica. Esta electri-
cidad es utilizada sobre todo en el sector de los edificios no-residenciales, un sector
clave que no ha parado de crecer desde la aparición de la electricidad.

Teniendo en cuenta la total expansión y dominio de la electricidad, iniciativas
como Horizonte 2020, tienen por objetivo un futuro más sostenible: reduciendo las
emisiones de carbono y el consumo e incrementando el uso de renovables. La red
eléctrica está en constante mejora. Partiendo de los defectos de la red eléctrica
clásica, como son gran distancia en su punto de consumo, poca flexibilidad, baja
sostenibilidad, baja calidad de la energía, dificultades para almacenar energía, etc.
aparecen las Smart Grids (SG), una evolución natural de la red clásica.

Las SG, basadas en las nuevas tecnologías que surgen al mercado, aportan solidez,
sostenibilidad, flexibilidad, calidad de servicio, información a disposición del usuario,
además, permiten el almacenamiento de energía a través de los coches eléctricos y
la posibilidad de generación desagregada, incrementando el uso de las renovables.

Uno de los principales elementos que permitirá a las SG mejorar las redes clásicas
es el Energy Management System (EMS). Los EMS, son los elementos que permiten
la gestión de todas las partes del sistema, tanto de la generación, centrales de-
sagregadas, como del consumo, electrodomésticos. Es precisamente dentro de este
esquema que el coche eléctrico nos permitirá almacenar energía con el objetivo de
reducir el consumo en las horas de más demanda y poder dar forma a la curva de
consumo, este es precisamente uno de los principales beneficios que permitirán las
SG.

El sistema eléctrico actual presenta un consumo muy alto durante las horas pico
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y muy bajo durante las horas valle. Esto hace que el precio de la energía varíe y que
en ciertos momentos falte energía y en otros sobre. Una curva de consumo diario
llana seria el ideal para las empresas eléctricas. Para llevar a cabo el modelado de la
curva de consumo utilizaremos diferentes elementos como por ejemplo la generación
desagregada, el intercambio de energía entre usuarios, la acumulación de energía con
los coches eléctricos o el control a distancia de los electrodomésticos por parte de
las empresas eléctricas.

Así pues, para que el EMS pueda llevar a cabo la gestión de los diferentes elemen-
tos, una de las necesidades básicas de los EMS será un sistema de predicción, o sea,
saber por anticipado qué consumo habrá en un entorno determinado. Además, las
empresas suministradoras de electricidad también requerirán de predicciones para
gestionar la generación, el mantenimiento e incluso las inversiones a largo plazo.

En resumen, un buen sistema de predicción nos permitirá una gestión diaria
del sistema eléctrico óptima. Además, nos ayudará a llevar a cabo un proceso de
toma de decisiones adecuado, para planificar la adquisición de recursos o decidir las
inversiones iniciales. Así pues nos hacen falta sistemas de predicción del consumo
eléctrico que, partiendo de los datos disponibles, nos suministren el consumo que
habrá en unas horas, unos días o unos meses, de la manera más aproximada posible.

Es dentro de este campo donde se ubica la investigación que presentamos. Debido
a la proliferación de redes de sensores y computadoras más potentes, se han podido
desarrollar sistemas de predicción más precisos. Este cambio ha sido tanto a nivel
cuantitativo como cualitativo, puesto que el número de publicaciones en relación con
el tema se ha disparado y han aparecido nuevos métodos más precisos y complejos.
Hacia los años 70 la mayoría de técnicas empleadas eran lineales, poco a poco los
modelos no-lineales se fueron imponiendo debido a sus ventajas frente a problemas
complejos.

En resumen, en el primer trabajo [10], y teniendo en cuenta que había que
conocer en profundidad el estado de la cuestión en relación a la predicción del
consumo eléctrico, se hizo un análisis completo del estado del arte. Una vez hecho
esto, y partiendo del conocimiento adquirido, en el segundo trabajo [13] se llevó
a cabo la instalación de las redes de sensores, la recogida de datos de consumo
y el ajuste de modelos lineales de auto-regresión. En el tercer trabajo [13], una
vez hechos los modelos se fue un paso más allá recogiendo datos de presencia, de
meteorología y ambiente interior, probando diferentes modelos paradigmáticos como
Multiple Linear Regression (MLR), Artificial Neural Network (ANN) y Support
Vector Regression (SVR) y estableciendo qué datos exógenos mejoran la predicción
de los modelos. Llegado a este punto, y habiendo corroborado que el uso de datos de
presencia mejora la predicción, se generaron técnicas para disponer de los datos de
ocupación por adelantado, o sea a horas vista. De este modo se diseñaron diferentes
atributos de ocupación artificiales, permitiéndonos hacer predicciones horarias de
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consumo a largo plazo. Estos conceptos se explican en profundidad en el cuarto
trabajo [14].

Viéndolo en más profundidad, por el primer artículo [10] de la presente tesis
se han revisado los estudios más relevantes en cuanto al tema de predicción de la
demanda eléctrica de los últimos 40 años. Las diferentes publicaciones muestran una
clara evolución, desde los primeros modelos, menos potentes y complejos, pasando
por los modelos actuales, capaces de lograr grandes precisiones, hasta las futuras
tendencias. Dentro del abanico de modelos que nos podemos encontrar, estos se
pueden dividir en función del área de aplicación, el horizonte de predicción o el coste
computacional, por ejemplo. En nuestro caso el objetivo era estudiar en profundidad
los modelos de predicción de consumo a corto plazo en edificios no-residenciales,
por eso se analizaron las diferentes posibilidades, con la intención de enfocar los
siguientes artículos de manera adecuada.

En el segundo artículo [13] se llevó a cabo la descripción del servicio de predicción
en el sí de la arquitectura Smart City. El objetivo era identificar las necesidades de
los servicios en este marco para soportar los modelos de predicción de datos u otros
sistemas de monitorización de eficiencia energética. El estudio se sustenta en un
ejemplo por el caso de la universidad de Girona, donde se diseñó un servicio de
predicción para explicar de manera práctica la inserción del servicio en el sí de la
arquitectura de capas, partiendo de los aprendizajes del estado del arte.

A partir de las conclusiones extraídas del segundo trabajo [13] se llevaron a cabo
experimentos en relación a los modelos de predicción del consumo de edificios a par-
tir de los nuevos datos recogidos: datos de meteorología, datos de ocupación, datos
de calendario, datos de ambiente interior, etc. En este punto se testearon las difer-
entes configuraciones con el objetivo de averiguar qué es aquello que genera mejores
resultados en la predicción. Además, se estudió qué modelos de datos suministran
mejores resultados por el caso de los modelos de predicción del consumo a corto
plazo en edificios no-residenciales. Cómo en el caso anterior los casos prácticos se
sustentan en los datos de consumo de la Universitat de Girona. Una vez termi-
nado este trabajo dispusimos de una serie de pautas generales sobre qué datos y qué
métodos y parametrizaciones hay que aplicar para predecir el consumo horario en
edificios no-residenciales de manera óptima.

El tercer trabajo [12] nos ayudó a conocer qué métodos, parámetros y modelos
generan los mejores resultados. A pesar de esto, uno de los atributos que se usaron,
la ocupación del edificio, no se disponía por adelantado, hacía falta pues un sistema
para crear este atributo de manera artificial. Partiendo de los métodos y datos que
generaron mejores resultados, y con el mismo caso práctico que en las anteriores
publicaciones, se llevó a cabo un estudio exhaustivo sobre las posibles maneras de
extraer información de la ocupación del edificio. El objetivo final era obtener un
atributo de ocupación para los edificios no-residenciales de forma que presentara el
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mejor equilibrio entre el coste computacional de crearlo y la precisión que genera en
la predicción. Este método, a diferencia de otros métodos del tema estudiado, que
requieren de predicciones meteorológicas, sólo requiere del atributo de ocupación.
Además, el método permite hacer predicciones de consumo horarias meses por ade-
lante, cosa que lo sitúa por delante de la gran mayoría de métodos de predicción de
consumo horario.

El último trabajo [14], y cerrando con el ciclo de trabajos de predicción de con-
sumo a corto plazo en edificios no-residenciales que engloba la presente tesis, presentó
diferentes indicadores o atributos de ocupación, desde el más sencillo, que usa infor-
mación general, hasta el más complejo, basado en información muy detallada. Y por
cada uno de estos niveles se contrapuso la precisión que suministra este atributo a
través de un modelo SVR y el coste de generar tal indicador. Finalmente, se obtuvo
un modelo que presenta el mejor equilibrio entre los dos parámetros. Cómo en los
casos anteriores se emplearon datos reales de los edificios de la Universitat de Girona
como demostración.

Así pues, la tesis concluye suministrando un estado del arte completo sobre
la predicción de consumo eléctrico además de tres artículos que aportan avances
dentro del campo, destacando sobre todo el último que, no sólo aporta un método
nuevo de predicción, sino un estudio completo de como generar de manera artificial
indicadores de ocupación.



Chapter 1

Introduction

In order to maintain the ecosystem and live in a sustainable world, the present col-
lective behaviour must be changed. Nowadays, the production and transportation of
electricity imply high levels of contamination and great economic expenditure. With
the aim of reducing these negative effects, several initiatives have been proposed [15],
[8].

As is known, the current electrical grid is divided into three levels: generation,
transport and distribution. This classic design presents several shortcomings, such
as dependence on large generation plants, losses in transport, high levels of contam-
ination or centralized power generation. Control of the electricity grid is becoming
more and more complicated and it is difficult to reduce the losses in transport,
which is increasing, day by day. Besides, the needs of electricity users are grow-
ing in volume and features. The main concerns for the electricity grid are around
infrastructure, maintenance, safety, energy efficiency and sustainability.

With the aim of solving these issues, the electricity system is changing. Gen-
eration, transport and distribution are integrating intelligence into different levels
through new hardware and software being added to the electrical system. The new
concept of grid, called SG [9], enables an efficient, flexible, accessible, reliable and
robust behaviour with the aim of achieving proper operation with an optimal re-
sponse to unexpected electrical system events. One of the main purposes of the SG
is to manage the loads, in order to shape the load curve. Another main goal is to
extend the use of decentralized generation. Using intelligence and the net of sensors
to improve fault detection and the energy flow are also in the list of needs.

Following the same issue, the major elements in the load curve shaping scene are
the EV proliferation [5], the use of DG [1] and the implantation of Smart Meters
(SM) [6]. By the emergence of the EV in the electricity grid, the profile of con-
sumption will change, becoming more flat [16]. The EV consumes electricity during
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the day and can be charged in the night, as when a car is in the garage, but, if it
is necessary, it can return electricity to the system during the day. Therefore, the
valley periods will be used to charge the EV and a fraction of this electricity will be
returned during the day, in the peak periods. The DG, that has as an idea the de-
ployment of low-power electricity generation plants close to the consumption points,
provides an interesting opportunity for renewable energy sources, removing part of
the shortcomings of the transport and distribution of electricity. The features of
DG and renewable energy sources increase the difficulty of control; in this context,
the demand for forecasting methods is on the rise. In relation to SM, the inclusion
of elements that monitor and have the capacity of controlling home appliances lets
the utilities shape the consumption profile.

Before continuing, some new concepts must be introduced. These new concepts
have been appearing in the last few years, such as Smart City [3], microgrid [11]
or smart building [18]. Due to the increase of people in cities looking for jobs,
city services, such as electricity and water supply, transportation, communication,
garbage management, governance and health services, are suffering degradation. In
order to deal with this scenario, the management of these services must change,
not only to monitor it with sensors, but also to perform corrective actions. So, the
smart city is composed of a net of sensors collecting data, a process unit analysing
this data and a system to implement corrective actions, with the aim of maintaining
the quality of the city’s services. The smart city is a synergy between software and
hardware to provide city services at the highest quality levels.

A microgrid is an aggregation of multiple loads and generation technologies, with
the aim of providing power and heat, in a free market context. A microgrid can work
connected to the electricity grid or work in isolation, when there are perturbations
in the electricity system. The size of microgrid varies between a small town and
a building. Nevertheless, independent of its size, the need and the scheme are the
same: generation sources, storage and electric loads.

The Smart building is a type of microgrid with its own features. The integra-
tion of intelligence in buildings, such as sensors, intelligent devices, activators, etc.
implies energy saving and more control. This, in conjunction with the use of re-
newable microsources close to the building and the control performed with energy
management systems, helps to convert the building into a more robust, efficient and
flexible element.

Therefore, there is the shared need to forecast for each one of these concepts and
scenarios. If the EV is used to shape the profile of consumption, there is the need to
forecast. When the EMS manages the resources in a microgrid or a smart building,
there is the need to forecast the demand and the production of energy. In the
renewable energy plants, the production of energy, based on climatological sources
(solar radiation, wind, etc.), needs to be predicted, thus the weather predictions are
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needed too. When a utility controls the production of energy in the power plants,
there is the need to forecast. So, in the same way, there is a need to forecast the
consumption of electricity in buildings, due to the utility needs, such as adjusting
the generation of electricity to the consumption of users in real time. The utilities
try to minimize the waste of resources covering the additional demand at the lower
combustible price and the electric load forecast is the manner of adjusting the two
sides of the grid.

In the building sector, the classic methods to predict electric demand used past
values of consumption and calendar information, in conjunction with regression
models. Nowadays, most of the works use calendar and weather data with ANN. The
new proposals are in the direction of the use of weather, calendar and occupancy data
with support vector regression. In each generation, the models are more complex
but provide more accurate predictions. The future research line is clear; the use
of user behaviour variables enhances the forecasting performance. There is another
diaphanous idea; there is a big correlation between prediction sophistication and
disaggregation. The more disaggregated, the more difficult to predict. So, a country
is easier to predict than a city and a city is easier than a building. The aggregation
of thousands of individual loads in a city flattens the load curve profile. In the
case of buildings, one user using the elevator can, in a random moment, modify
completely the normal consumption profile of the building. Therefore, there is the
need to dispose of information to predict this kind of actuation and its effect on
consumption.

In the building forecasting domain, responsible for 40% of the emissions of CO2
[4], the consumption depends on the sector. For example, the consumption pro-
files in malls are similar and the collected variables to predict consumption are the
same. Inside the public non-residential sector there are hospitals, universities, asy-
lums, nurseries, schools, etc. Each step in the analysis and comprehension of each
sub-sector enables improvements in the prediction accuracy. Each sub-sector must
understand their own features because the knowledge of it allows the implementation
of the demand response system [2]. In summary, the building load curves imply non-
linearities, uncertainty, abrupt changes and noise. In particular, the non-residential
buildings consist of daily, weekly and seasonal patterns in their consumption pro-
files. In general, during the nights and holidays, consumption is extremely low and,
during the day, the profile of consumption is defined by the user’s behaviour. The
periods, such as time of entry, time of exit, breakfast and lunch time, define the con-
sumption. During the week, the consumption patterns are explained by the days.
Similarly, the explaining factor during the year are the seasons and, in particular,
the months.

When the type of building is defined, and the features are studied, it is the
moment to find which is the minimal information needed to be collected to achieve
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the best forecasting accuracy with the lowest investment and computational cost.
The use of appropriate models and attributes will deliver proper results.

On the search for attributes to correlate with consumption, not only the weather
and the calendar are used; the occupancy of the building seems to be useful. There
is a need to define a consistent and standard way of predicting occupancy. There
are several studies, with different approaches, proposing their load prediction, based
upon occupancy schemes and explaining the obtained results. The process is always
the same: monitoring, modelling and predicting. There is the necessity of testing
several solutions, such as calendar data, surveys, sensor data, work schedules, etc.,
to describe the occupancy. When the data is collected, the machine learning field
presents several supervised learning methods to predict numeric attributes. The
most popular and successful prediction methods are MLR [7], the ANN[19] and the
SVR [17].



Chapter 2

Objectives

The main goal of the thesis is study the topic of electrical demand forecasting, in
order to perform a short-term load forecasting system in non-residential buildings,
on the basis of real data.

2.1 State of the art

The first work [10] has the aim of reviewing the main papers on the topic of electrical
load forecasting, published during the last forty years. The works will be categorized
according to different aspects. Taking into account the presented studies, there is
the aim to demonstrate that there is a clear evolution in the field, showing that it
is an active research area. The selected classification categories of the work are the
following ones:

• According to the forecasting horizon.

• According to the aim of the forecast.

• According to the linearity of the model.

• According to the used model.

• According to the computational cost.

• According to the area of application.

• According to the used variables.

• According to the year of implementation.
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• According to the used architecture.

• According to the prediction performance.

In addition, there will be an analysis of the drawbacks and advantages to un-
derstand the singularities of the field. The main objective is to understand the
characteristics of the research area and enter into the topic and avoid future mis-
takes.

2.2 Identifying services

The objective of the second work [13] is to describe and define present efforts to
embed different services in Smart City architecture. Taking into account the current
framework, there is the aim to identify possible service integration difficulties.

In order to control and manage the distribution system, adjusting demand to the
user’s consumption, acquiring the raw materials at the best price or smoothing the
consumption curve, several electric load prediction models are used by the utilities.
With the aim of defining the requirements, characteristics, functionalities and possi-
ble interactions of the reference architecture is required to identify services, such as
energy monitoring systems and assessment applications for urban infrastructures,
based upon data-driven methods for load prediction. On the basis of the proper
Smart City architecture, a service of short-term load prediction, will be explained
layer by layer, trying to cover this gap.

In order to define the features of the selected smart service, a short-term load
forecasting system in non-residential buildings in the University of Girona will be
provided in the second work [13]. A practical explanation of the singularities of the
services embedded in the described layers’ architecture will be undertaken, searching
for potential difficulties and management improvements; the idea can be extrapo-
lated to other methods.

An analysis of several existent Smart City architectures will be performed, in
order to select the most suitable one. There is the intention of providing an example
of an implementation of how to embed services in Smart City architecture because
there is a lack of them in the literature.

In the case used, the acquisition, pre-processing, modelling, and analysis proce-
dures will be incorporated into a global service in a Smart City architecture context,
in order to exploit data for energy management purposes.
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2.3 Contrasting attributes

A well-known research interest is to generate short-term load forecasting models
with easy parametrization, cheap implementation and reduced computational time.
The current computers allow for solving some of these challenges; however, the data
mining process can solve some drawbacks, such as reducing the database size, in
order to diminish the computational time. In any case, there is no doubt that the
main objective is to increase accuracy in the prediction.

Most of the works in this topic perform a pre-processing and then applying the
models, provide the achieved performance. The first works applied linear regression
[7], then the proliferation of the ANN [19] provided new improvements to the field.
Nowadays, the introduction of support vector machine [17] models is giving the best
forecasting performance.

Collecting data with sensors is a slow and expensive process; therefore, only
crucial information must be collected. Usually, the majority of papers collect the
temperature, taking into account that this is the variable most related to consump-
tion. To a lesser extent, other weather variables, such as relative humidity, solar
radiation or wind direction, are collected. The level of occupancy of the building
is appearing only in some recent papers. The same happens with indoor ambience;
there are only a few works in which this kind of data is used.

The main goal of the third work [12] is to provide a short-term load forecast-
ing method for an office building at the University of Girona (Catalonia) with a
Mediterranean climate with the following requirements:

• High forecasting performance.

• Low computational requirements.

• Minimum data collected.

Therefore, in order to design the best possible model, several scenarios will be
proposed and the prediction accuracy will be calculated for each one. Every step of
the process will be questioned with the purpose of achieving the highest forecasting
performance. The main goal is to define a general framework of how to predict. The
two main experiments are the following ones:

• Meteorological (temperature, relative humidity or solar radiation), indoor am-
bience (indoor temperature, indoor relative humidity or indoor level of light),
occupancy and calendar data will be tested to discover which data is the most
relevant in non-residential building load forecasting.
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• Three different standard methods, such as MLR, MLP and SVR will be tested
to find which of them provides better prediction performance.

2.4 Generating artificial occupancy attributes

In the topic of short-term load forecasting in non-residential buildings, regardless
of the forecasting performance, all the analysed works present several drawbacks.
The last work [12] of the authors indicated that SVR, using temperature and occu-
pancy as attributes, resulted in the best load forecasting performance. So, on the
basis of the last paper [12] of the authors, the present paper [14] will implement
improvements. The main challenges that this paper will achieve are the following
ones:

• When the model includes weather variables, such as temperature or relative
humidity, in order to dispose of this data in advance, weather predictions are
necessary. There is no doubt that this data contains uncertainties that will
be added to the load forecasting. In addition, there is not, in every place, the
option of obtaining weather predictions and these can only be obtained for a
few days ahead. Therefore, there is the necessity of obtaining models without
weather data.

• If occupancy data is used in the model, the data is not ready to be used in
the moment of prediction. Then, techniques to artificially generate occupancy
information in advance are needed.

• In most of the studies of hourly predictions, the prediction horizon is 1-hour
ahead. The performance of the forecasting decays with the horizon. The
further in the future is the horizon, the worst is the prediction. The aim
is to perform hourly predictions, months in advance, doing hourly long-term
predictions.

• The use of expert knowledge in the model is difficult and uncertain. The
methodology must be defined, and a clear and objective scheme is key.

• The use of a large amount of collected data in the model implies a deployment
of sensors, thus leading to a high cost.

• Some papers provide good results using past values of consumption; this makes
the model dependent upon consumption measures, close to the prediction time,
forcing the user to perform continuous measures.
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With the aim of achieving these challenges, a real case study of short-term load
forecasting for several non-residential buildings in the University of Girona will be
provided. The objectives that will be accomplished in this work [14] are the following
ones:

• In order to avoid the need for weather predictions, a model without tempera-
ture will be implemented.

• With the aim of disposing of the occupancy data in advance, a complete study
of the different methods to generate artificial occupancy indicators will be cre-
ated. On the basis of various information, such as scholar schedules, sensor
data, calendar data, expert knowledge or classroom features, several occupancy
indicators will be generated. Each occupancy indicator will be more sophisti-
cated than the previous one. All the forecasting performances, achieved with
each indicator, will be compared.

• A new concept, called quality factor, will be created, to provide a tool with the
object of determining which is the best occupancy indicator. This indicator
will consider the prediction accuracy and the workload to generate it.

• With the objective of performing consumption predictions months ahead, a
model that does not depend upon non-available data in advance will be im-
plemented.

• A simple and cheap short-term load forecasting model, without the need for
continuous sensor data collection, will be provided.
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A survey on electric power
demand forecasting: future trends
in smart grids, microgrids and
smart buildings

In this chapter, a review presents the most relevant studies on electric demand pre-
diction over the last 40 years, and introduces the different models used as well as the
future trends. Additionally, it analyses the latest studies on demand forecasting in
the future environments that emerge from the usage of smart grids. This publication
has been published in the following paper:
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Chapter 4

Identifying services for short-term
load forecasting using data driven
models in a Smart City platform

In this chapter, there is a description of the ongoing work to embed several services
in a Smart City architecture with the aim of achieving a sustainable city. With
this object in mind, a use case of short-term load forecasting in non-residential
buildings in the University of Girona is provided, in order to practically explain the
services embedded in the described general layers architecture. In the work, classic
data-driven models for load forecasting in buildings are used as an example. This
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1. Introduction

The concept of Smart City appears due to the mobilization
of people to the cities. This increase of people has an impact on
city services such as transportation, utilities, communications,
waste management, health services and much other. In order to
avoid services degradation, and have an idea of the effect of such
increase of people for a particular service, it is necessary to manage
each service by constantly monitoring it. Therefore, it is needed
to provide the system with mechanisms for collecting data. This
is the first step towards getting to a Smart City. But what it really
makes the city smart is to process and analyse the data and returns
as response some kind of action to ensure the provision of services
at satisfactory levels of quality. Hence, it is necessary to integrate
these monitoring devices with the applications that perform the
analysis of this data and are able to provide an action (da Silva
et al., 2013).

The synergy of computational and physical components, specif-
ically the use of cyber-physical systems (CPSs), led to the
advancement of such integration. At different scale, neighbour-
hoods, communities or buildings can also be considered large
CPS continuously operated accordingly to demand affected by the

∗ Corresponding author.
E-mail addresses: joaquim.massana@udg.edu (J. Massana), carles.pous@udg.edu

(C. Pous), llorenc.burgas@udg.edu (L. Burgas), joaquim.melendez@udg.edu
(J. Melendez), joan.colomer@udg.edu (J. Colomer).

activities of users. As important is to know physical system con-
straints as consumer’s behaviour, and interactions between both.
Major Information and Communication Technology (ICT) vendors
have made efforts for developing Smart City transversal platforms
oriented to integrate city information and making it available to
end-users. On the other hand, the utilities (water, electricity, gas,
etc.) have their proprietary solutions specifically designed to oper-
ate and supervise these infrastructures and providing managing
and billing services. This work falls in between these two scopes
and shares the IoT (internet of Things) vision, focusing not only
in making data available but also providing the required services
to facilitate advanced data analysis, monitoring and assessment
procedures in the domain of urban energy distribution and con-
sumption. This paper aims to analyse a specific use case in order to
identify services that are required in a platform that supports the
development of energy monitoring and assessment applications for
urban infrastructures.

Several general architectures for Smart Cities are proposed in the
literature, but few examples of their implementation and how to
embed services on them are given. According to the existing Smart
City architectures, the present work proposes an implementation
of a practical case, a complete short-term load forecasting system,
explaining the singularities layer by layer trying to cover this gap.

The utilities are the main users of the load prediction systems,
who, thanks to the load prediction, manage the maintenance and
the control of the distribution systems, buying fuel at the best price
or shaping the consumption curve in order to have a flat consump-
tion curve following several strategies. So, this is a tool for the

http://dx.doi.org/10.1016/j.scs.2016.09.001
2210-6707/© 2016 Elsevier Ltd. All rights reserved.
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utilities who manage the distribution systems, and in particular
to help them to forecast the electrical consumption.

2. Context and related work

In the bibliography, taking into account the existence of differ-
ent visions, several definitions of Smart City are found. In Giffinger
and Pichler-Milanović (2007) the Smart City is defined as “a city
well performing in a forward-looking way in economy, people,
governance, mobility, environment, and living, built on the smart
combination of endowments and activities of self-decisive, inde-
pendent and aware citizens”. Otherwise in Bowerman et al. (2000)
it is said that Smart City is “a city that monitors and integrates con-
ditions of all of its critical infrastructures, including roads, bridges,
tunnels, rail/subways, airports, seaports, communications, water,
power, even major buildings, can better optimize its resources, plan
its preventive maintenance activities, and monitor security aspects
while maximizing services to its citizens”. The paper (Washburn
et al., 2009) says that “the use of Smart Computing technologies
to make the critical infrastructure components and services of a
city which include city administration, education, healthcare, pub-
lic safety, real estate, transportation, and utilities more intelligent,
interconnected, and efficient”.

Some papers, like Nam and Pardo (2011), coincide that Smart
Cities are composed by three main dimensions. The first one is
the technology dimension, where several technologies are used
to monitor, control and share in the city processes. The second
one is the human dimension, where creativity, relationships, edu-
cation and knowledge are the base of the human infrastructure
to provide social benefits to the Smart City. The third one is the
institutional dimension, where the administration promotes regu-
lations, policies and community participation to grow properly and
sustainably.

On the basis of the reviewed works, the common Smart City
challenges are:

• Establish a base Smart City architecture to provide a common
framework for the sector.

• Dispose and extend standardized Smart City policies that lead
to the growth and the proliferation of Smart City services and
initiatives.

• Design a list of the essential Smart City services such as Smart
water, Smart Governance, Smart buildings, etc.

• Define the basic guidelines in order to perform operations, main-
tenance, improvements and the scalability in the Smart Cities.

Therefore, it has sense to contribute in the field with a suitable
Smart City architecture, selected for developing the services ori-
ented to consumption prediction. It provides the basis where the
smart services are going to operate. The following paragraphs sum-
marize different works done in the field of Smart Cities covering
proposed architectures and services implied and some of them par-
ticularized for short-term load forecasting (STLF). From the point
of view of services, there are some papers cited.

A complete guide for design the Smart City architectures and
all the functionalities from the data point of view is proposed in
Wenge, Zhang, Dave, Chao, and Hao (2014). A summary of the main
issues of the application systems and the difficulties and challenges
in the construction of the Smart City is presented in Su, Li, and
Fu (2011). A broad view of energy services and their usage, func-
tionality and development challenges are explained in Karnouskos,
Silva, and Ilic (2012). In order to improve operations and main-
tenance, reduce the cost of operation, provide enhanced energy
management capabilities and provide scalability in the Smart City
architecture a guidelines are highlighted in Al-Hader, Rodzi, Sharif,

and Ahmad (2009). Several Smart City architectures and their
requirements are exposed and commented in da Silva et al. (2013).
The work (Morvaj, Lugaric, & Krajcar, 2011) comes up with a model
for analysis of interactions with a Smart City, providing a larger
scale simulation among several Smart City systems. A wide survey
of technologies, protocols, and architecture for an urban internet of
things in Smart Cities is shown in Zanella, Bui, Castellani, Vangelista,
and Zorzi (2014).

So, there is no defined criteria about the number and the func-
tion of layers of the Smart City architecture. The work (Komninos,
2006) presents a three layers architecture: information storage
layer, application layer and user interface layer. The paper (Al-
Hader et al., 2009) suggests a five layers architecture: smart
infrastructure, smart database, smart building manager, smart
interface and integration layer. The publication (Anthopoulos &
Fitsilis, 2010) proposes a five layers architecture: stakeholder layer,
service layer, business layer, infrastructure layer and information
layer. In Filipponi et al. (2010) the Smart City architecture is divided
in two  layers: knowledge processors and semantic information bro-
kers. The paper (Lugaric, Krajcar, & Simic, 2010) proposes a Smart
City architecture with three parts: the physical network, the com-
munications infrastructure and the flow of information. The study
(Al-Hader & Rodzi, 2009) divides the Smart City in two layers: mon-
itoring layer and development layer. The work (Wenge et al., 2014)
proposes a five layers architecture: data acquisition, data trans-
mitting, data storage, support service, domain service and event
application.

In relation with Smart City services, a short-term load forecast-
ing model for non-residential building on the basis of occupancy
and temperature is presented in Massana, Pous, Burgas, Melendez,
and Colomer (2015). A principal component analysis is used
for monitoring the electric consumption of buildings in Burgas,
Melendez, Colomer, Massana, and Carles (2014). In order to orga-
nize the power production of distributed generation sources in
relation with energy storage system and reduce the operational
costs of microgrids a smart energy manager system is provided in
Chen, Duan, Cai, Liu, and Hu (2011). In the work Lund, Andersen,
Østergaard, Mathiesen, and Connolly (2012), the need to include
the cogeneration power generation in electricity balancing and grid
stabilization is pointed out. The benefits of a home energy con-
trol box for optimizing energy consumption from electrical vehicle
charging in residential buildings are seen in Mets, Verschueren,
Haerick, Develder, and De Turck (2010). In Krajačić et al. (2011) an
energy system planning which incorporates renewable energy ser-
vices, energy storage technologies and system regulation strategies
is provided. A smart energy distribution and management sys-
tem for monitoring power consumption and users’ situation and
controlling appliances is presented in Byun, Hong, Kang, and Park
(2011). An energy information system (real data acquisition, visu-
alization, analysis and switching) which admits the integration of
several sensors is provided in Kunold, Kuller, Bauer, and Karaoglan
(2011). The paper (Castro, Jara, & Skarmeta, 2013) describes a smart
lighting solution which allows the integration of the communica-
tions and logic on the current street lighting infrastructure. A design
and implementation of occupancy sensor platform for individual
offices is presented in Agarwal et al. (2010).

Taking into account the energy signatures, in Aoun (2013) the
importance of energy signatures which can help to improve the
energy efficiency and monitor the consumption, is pointed out.
The use of the energy signatures in order to evaluate the energy
performance of chillers using several design options and operating
strategies is seen in Yu and Chan (2005). In Rabl and Rialhe (1992)
the addition of occupancy as a variable in energy signature model
PRISM is analysed.

With regard to baseline models and measuring and verification
methods, the work (Heo, Choudhary, & Augenbroe, 2012) proposes
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a calibration methodology of the building energy models which can
deal with energy retrofit options. In Yoon, Lee, and Claridge (2003) a
calibration procedure of the energy performance model on the basis
of monthly data through a base load analysis approach is proposed.
A statistical evaluation of the performance of various commercial
building baseline models analysing the importance of the weather
and the morning adjustment factors is seen in Coughlin, Piette,
Goldman, and Kiliccote (2009). Measuring and verification guiding
principles for the assessment of energy efficiency insisting in the
need of unambiguous contractual models are highlighted in Park
et al. (2011).

In the following sections, a suitable Smart City architecture,
selected for developing the services oriented to consumption pre-
diction, is detailed. It provides the basis where the smart services
are going to operate. After that, a use case to explore the smart-x
service in line with the proposed architecture layers is provided.

3. Vision

As it can be seen in the bibliography, there is an extensive pro-
posal of architectures to face common challenges that arise in the
Smart Cities concept. But, a reference architecture that allows the
entire operation of a Smart City has not been designed yet. The
subject has been treated cautiously due to the number of technolo-
gies that involves, and mainly because it has not been established
a standard for integrating these technologies in order to generate
a coherent, flexible, scalable, repeatable and effective system. Fur-
thermore, some of the approaches deal with Smart Cities from a
theoretical viewpoint which distances itself from the real world.
The proposed architectures focus on different aspects from the
point of view of technology, human-system interaction or logic
(Wenge et al., 2014). Most of the proposals from the technologi-
cal aspect divide the architecture in layers. There could be some
slight differences, but as seen in the previous section they have
some features in common.

The proposed 5-layers architecture is composed by: data
acquisition layer, data transmission layer, data storage layer, pre-
processing layer, services layer and application layer, as shown in
Fig. 1. This architecture delivers better definition of the function of
each layer and it is oriented to the services implementation.

• Data acquisition layer is responsible for collecting and storing
external data. It can capture any kind of information including
images, video, sound, and others. In particular circumstances,
some preprocessing can be done here, in order to store the data
filtered or more elaborated.

• The data transmission layer is in charge of end-to-end com-
munications. Network technologies and protocols are taken into
account at this level.

• The data storage layer has to be able to support large-scale com-
plex data. Also, it has to guarantee that the data is reliable and
must provide for the introduction of new data from new sensors
or new available information. That is, it has to be scalable. At the
same time, the layer has to provide access methods to the data.

• Preprocessing layer. Once the data is stored, since they come
from different types of sensors or information sources, the archi-
tecture has to prevent from duplications, outliers, errors, missing
values and inconsistency. These kinds of actions are carried out
by the preprocessing layer.

• Services layer. Following with the most common layers that con-
stitute the majority of architectures proposed for a Smart City
from the technological point of view, there is the services layer.
This layer makes possible the usability of the data, usually by
means of modules of software that provide the data requested by
the user in a transparent manner.

Fig. 1. Proposed layers architecture.

• Applications layer. The last layer is the applications layer. It is
responsible for interacting directly with the user. It shows the
data to the user in a comprehensible manner such as graphical
form, table or other type of display, and facilitates the interaction
with the platform.

A use case focusing on forecasting electrical energy to improve
its management is proposed in the next section. This example is
intended to help to identify services involved, required function-
alities and possible interactions. The architecture has to consider
not only the infrastructure itself but also the interaction with con-
sumers, providing performance indicators and using forecasting
models. The use case shows that acquisition, preprocessing, anal-
ysis and modelling of data are required processes to provide a set
of goal oriented services to systematically exploit data for energy
management purposes. In this particular case, classic data-driven
methods for forecasting are proposed, but the idea behind can
easily be extrapolated to other methods.

4. A use case: short-term load forecasting

The aim of this use case is to present the implementation of a
smart-x service following the architecture reference of the Smart
Cities. The prediction of the load consumption is a need in the Smart
Cities and a well-known research domain. The consumption of the
non-residential buildings is determined by several factors such as
previous consumption, occupancy, temperature and temperature
set point. There are several ways to deal with the load forecasting
depending on the horizon, available data or used model. In gen-
eral, the main objective is to forecast with high accuracy and few
data. The process is usually composed by data selection, data pre-
processing, model selection, training process, model evaluation and
results exploitation.
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Table  1
Architectural features of the buildings.

Building Floors Year Volume (m3) Frontage area (m2) Glass area (m2)

PI 6 1983 26,150 3791 610
PII  6 1992 25,560 2326 1351
PIII  3 2003 11,346 1785 310
PIV  3 2003 12,000 1836 630
Faculty of Science 3 1997 34,810 4903 1233
Faculty of Law 6 1999 32,290 6420 1675
Faculty of Economics 5 1997 32,287 4770 1375

So, in the next sections, with the aim to generate an auto-
regressive (AR) model to predict the consumption of the buildings
a complete process of short-term load forecasting using only real
consumption data is explained, respecting the same architecture
layers explained in Section 3.

4.1. Data acquisition

4.1.1. Sensors
There are several sources of data: electrical load data, weather

data and indoor data. Different sensors, placed in distinct places are
collecting data with an hourly sampling rate.

• Electric load data: electrical load data (kW) is collected using the
Campus Infrastructure Monitoring System (CIMS). The CIMS is
composed of several Schneider power meters installed at the uni-
versity buildings. The consumption data is collected in PI, PII, PIII,
PIV, Faculty of Science, Faculty of Law and Faculty of Economics
buildings. There are three different types of power meters: Pow-
erLogic ION 7350 (power, current, voltage, frequency, power
factor, current and harmonic distortion), PowerLogic ION 6200
(power, current, voltage and frequency) and PowerLogic PM-810
(power, power factor and frequency). With the devices prop-
erly configured, the data is transferred by the log inserter from
each device to the database every 15 min. The communication
between meters and data storage is performed with the Power-
Logic ION Enterprise 5.6 software.

• Weather data: data of temperature (◦C) using a HMP-35AC sensor
of Vaisala, relative humidity (%) using a Humicap sensor of Vaisala
and solar radiation (W/m2) using a CM11 sensor of Kipp & Zonen
are collected outside the buildings by the Department of Physics.

• Indoor data: only for the case of PIV, indoor ambient and occu-
pancy data are collected inside the building. A wireless sensor
network (WSN) is collecting data of temperature (◦C) using a
MCP9700A sensor of Microchip, relative humidity (%) using a
808H5V5 sensor of Sencera, light level (lux) using a PDV-P9203
sensor of Optoelectronics and presence using a passive infra-
red sensor of Parallax. In summary, there are 6 sensors badges
capturing ambient data and 2 capturing people activity.

4.1.2. Dataset
Taking into account that in this work an AR model is imple-

mented, only consumption data is used. In the paragraphs that
follow, the used data is explained with a brief introduction of its
location.

The experiments are conducted using data from PI, PII, PIII and
PIV, Faculty of Science, Faculty of Law, Faculty of Economics build-
ings located at the University of Girona, as seen in Fig. 2. The
buildings have classrooms, offices and laboratories.

In Table 1, the architectural characteristics for each university
building are shown.

In Table 2, the specifications of the heating system for each uni-
versity building are seen.

In Table 3, the specifications of the cooling system for each uni-
versity building are explained.

Fig. 2. Location of the buildings in the campus of the University of Girona.

The number of data instances of PI is 27,375, covering a total
of 38 months, from 1st September 2011 to 15th October 2014. The
total of instances of PII is 16,589, covering a total of 24 months,
from 21st November 2012 to 15th October 2014. The number of
instances of PIII and PIV is 16,590, covering a total of 24 months,
from 23rd November 2012 to 15th October 2014. The number
of instances of Faculty of Science is 27,366, covering a total of
38 months, from 1st September 2011 to 14th October 2014. The

Table 2
Heating system features of the buildings.

Building Heating system

System Boiler brand (power)

PI

Gas boiler + Fancoil

Fer (442 kW)
PII  Robur (327 kW)
PIII Dietrich (310 kW)
PIV  Ygnis (824 kW)
Faculty of Science Dietrich (560 kW)
Faculty of Law Wiessman (575 kW)
Faculty of Economics Dietrich (310 kW)
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Fig. 3. Consumption vs. hour.
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Fig. 4. Consumption vs. hour.

number of instances of Faculty of Law is 27,379, covering a total
of 38 months, from 1st September 2011 to 15th October 2014. The
number of instances of Faculty of Economics is 27,379, covering
a total of 38 months, from 1st September 2011 to 15th October
2014.

In Fig. 3 the consumption of a week in spring and summer is
observed.

In Fig. 4 the consumption of a week in autumn and winter is
seen.

4.2. Data transmission

There are three data sources. The Department of Physics, serving
weather data, the CIMS, disposing of consumption data and the
WSN of PIV, collecting ambient and occupancy data.

The Department of Physics uses a wired sensor network to col-
lect the data from the several instruments of the weather station.
At the same time, the CIMS captures the consumption of different
buildings using a wired network too. In the case of the indoor data
a WSN  is employed.

The WSN  is composed by 8 motes of the Libelium-brand which
send the measured data to a central hub, called Meshlium, trough
XBee radio modules that communicate by means of the ZigBee pro-
tocol. The Meshilum data is accessed using an Ethernet connection.
The Libelium technology is based on Arduino and the topology of
the network is star.

In Fig. 5 the WSN  of PIV building is seen.

Table 3
Cooling system features of the buildings.

Building Cooling system

System Refrigeration brand (power)

PI

Compression
refrigeration
system + Fancoil

Mitsubishi (160 kW)
PII  Ygnis (269 kW)
PIII Carrier (255 kW)
PIV  Climaveneta (618 kW)
Faculty of Science Daikin (430 kW)
Faculty of Law Teva (1113 kW)
Faculty of Economics Carrier (255 kW)

4.3. Data storage

The data come from 3 distinct sources: meteorological data pro-
vided by the Department of Physics, consumptions data for each
buildings provided by CIMS and indoor data collected by the WSN.
Each source presents distinct configurations, and even owners, that
made impossible a direct actuation over the distinct databases
storing the information further than data access. Data presents dis-
tinct formats for each of the sources and a homogenization step is
mandatory.

The CIMS data is stored in a MSSQL database for the Schnei-
der software ION. Department of Physics data is accessed via an
SFTP server and the WSN  data is stored in a MySQL database inside

Fig. 5. Wireless sensor network of PIV building.
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Fig. 6. Block diagram of the preprocessing.

the Meshlium. The solution implemented is an homogenization
server whose tasks consist in periodically connect to the distinct
data sources, check for updates and update a local MySQL database
with an homogeneous format for all the data and provide a simple
interface for user to select and download the desired data.

4.4. Data preprocessing

In the following sections, the steps to clean and uniform the data
are explained as seen in Fig. 6.

4.4.1. Missing values
Given the mistakes in sensor readings, there is always a small

amount of lost values. The percentage of missing values needs to
be minimized. There are several methods used to filter the miss-
ing values such as removing or averaging them. In our case, the
instances with missing values are deleted.

4.4.2. Normalization
If data has different scales and units normalization is needed.

The use of the same data scale improves the forecasting. The nor-
malization range used is from 0 to 1, as seen in Eq. (1).

xin = xi√∑
i(x

2
i
)

(1)

where xin is the normalized instance. xi is the instance.

4.4.3. Outliers
The performance of the model is increased if the outliers are fil-

tered. The more restrictive the process, the greater amount of data
lost. The outliers filtering process (Ramaswamy, Rastogi, & Shim,
2000) consists in detection and substitution. In the present case, the
process of detection consists in identifying n outliers based on the
Euclidean distance to their k nearest neighbours. Then, according
to an outlier detection process, the outliers are removed.

4.4.4. Feature selection
With the aim of removing irrelevant features, redundant and

non-correlated attributes are removed. Reducing the size of the
database, the computational cost is reduced. The feature selection
process is composed by two blocks that perform linear correla-
tions. The first block, in order to eliminate the useless attributes,
removes the features with low correlation with the class attribute.
The second block, with the aim of deleting the duplicate attributes,
removes the attributes with high correlation among them.

4.4.5. Instance selection
The number of instances is reduced in order to minimize the

computational cost. The selected training data is a 30% random sub-
sample. Samples about this percentage reduce the computational
time while maintain the forecasting performance levels.

4.5. Data service

There is the intention to explore the performance limits of the
AR model. So, the experiments are realized using only consumption
data taking into account that these data models are simpler and
useful in 1-hour ahead forecasts.

Fig. 7. Block diagram of the forecasting model.

4.5.1. Methodology
A methodology for predicting the load consumption 1-h ahead

is proposed. This methodology consists of several blocks as shown
in Fig. 7. The preprocessed data is split, 1/3 to test and 2/3 to train.
Then, with the training data a grid search of the suitable training
parameters is performed over the selected model (AR). The final
step is the validation of the model using test data and the perfor-
mance indicator calculation.

4.5.2. Grid search
Grid search method performs a search through the ranks of pairs

of training parameters and chooses the best ones. The main tested
parameters of the regression model are the following ones: ridge
parameter and feature selection.

4.5.3. AR model
The AR model (Huang, 1997) specifies that the output variable

depends linearly on its own  previous values. Taking into account
that the occupancy data is only available for PIV building and the
temperature variable does not increase the accuracy of this model
due to the partial disaggregation of the heating ventilating and air
conditioning system, AR model is a proper model to apply in short-
term load forecasting (1-h ahead). So, the consumption depends on
the past values of consumption, as can be seen in Eq. (2).

Xt = C +
p∑

i=1

ϕiXt−i + �t (2)

where Xt is the output variable. Xt−1 are the previous values of the
output. ϕi, . . .,  ϕp are the parameters of the model. C is a constant.
�t is white noise.

4.5.4. Validation
The validation process contrasts the model generated with

training data (65%) against the test data (35%). The mean absolute
percentage error (MAPE) indicator is used to validate the model due
to its popularity in the forecasting field. The first period of time is
used to predict the last period of time.

The MAPE performance indicator, shown in Eq. (3), does not
depend on the magnitude of the unit of measurement, and is used
to compare models. If the MAPE is small, the model is accurate. In
the topic, a range between 1% and 20% is considered acceptable.

MAPE = 1
N

N∑

i=1

∣∣∣∣
ym(i) − yp(i)

ym(i)

∣∣∣∣× 100 (3)
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where N is the number of observations. ym is the measured output.
yp is the predicted output.

4.6. Smart application

On the basis of the outputs of the model, the smart applica-
tion can offer several services such as prediction charts, energy
saving information or corrective actions effectiveness. The users
can access to the application interfaces to increase the expert
knowledge in order to reduce the consumption or to monitor the
forecasting accuracy. In the present paper analytic and graphic
results are explained.

4.6.1. Analytical results
Table 4 shows the MAPE indicator for all the buildings, where CC

is the correlation coefficient and the computation time is the time
to perform the experiment.

The Faculty of Law and The Faculty of Economics present inter-
mediate level of accuracy due to the variability in the consumption
profile. PIII has low level of accuracy as a result of inconsistent data.

Table 4
AR model results for all buildings.

Building Computing time (ms) C.C MAPE (%)

Faculty of Science 3672 0.986 5.21
Faculty of Law 4031 0.968 16.75
Faculty of Economics 3734 0.972 15.58
PI  4109 0.981 6.06
PII  2797 0.943 7.84
PIII  3235 0.876 30.11
PIV  2250 0.967 6.83

4.6.2. Graphic results
In this section several charts are presented. First three MAPE

charts are presented. Then, seven prediction consumption charts
are showed.

• MAPE vs. hour:

As can be seen in Fig. 8, there are three time slots which present
poor quality prediction, some night hours (4:00 to 6:00) due to the
cleaning and security services and at the beginning (7;00 to 10:00)
and the end (20:00 to 22:00) of the school day given the variability
in the human behaviour.

• MAPE vs. weekday:

As is shown in Fig. 9, Saturday presents low accuracy in the
forecasting due to random activities realized in the buildings. In
addition, the beginning and the end of the week, that is Mon-
days and Fridays, taking into account the high dispersion of human
behaviours, present lower forecasting precision.

• MAPE vs. month:

As presented in Fig. 10, there is no clear conclusions about
which months are better predicted but in general, months with high
variability and unclear profiles such as December, June or March
present worse prediction.

The following charts show the consumption prediction for each
building.

• Faculty of Science, Faculty of Law and Faculty of Economics pre-
diction:
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As is seen in Fig. 11, the worst prediction level is found in Sat-
urdays due to the random after-school activities in some buildings.
Besides, in the early hours of Mondays, due to the irregularity of
some services, the prediction accuracy decays.

• PI,PII, PIII and PIV prediction:

As shows in Fig. 12, PIII presents the poorest forecasting qual-
ity due to the inconsistency of the data. As in the previous figure,
Saturdays are the worst predicted days.

5. Discussion

Following the smart-x architecture layers a use case is per-
formed:

• In the acquisition layer the robustness is key, in the present case
some misbehaviours of the sensors comported data loss and out-
liers.

• In relation with the transmission layer, some ZigBee reception
problems entailed data loss, so a previous study of the sensor
distribution is needed.
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• The storage layer must be safe, standard and scalable, the load
consumption database presented integration difficulties.

• With reference to the preprocessing layer, outliers or missing
values in the sensor measures lead to a low accuracy in the fore-
casting. Using a software with suitable preprocessing tools is
completely necessary to obtain fine results.

• In reference to the service layer, although occupancy and weather
data are variables that partially explain consumption in buildings,
the AR models are simple and quick. In summary, the presented
model depends only on the consumption, so weather data is not
needed, making it more economic and compact. In this case, the
prediction is performed 1-h ahead, that means better perfor-
mance results than 24-h ahead models, where exogenous data
is usually needed. From the results, it is obvious that some build-
ings present better forecasting accuracy than others. In order
to provide fine predictions using AR models, the building must
has clean and consistent data. Cyclic and well-defined consump-
tion patterns deliver proper AR model predictions. If there are
some random or undefined activities in the buildings, the auto-
correlation is low. The buildings with big amount of classrooms
or offices with concrete schedule are easy to predict, in the other
hand, buildings with rooms with non-defined activities are hard
to predict. Similarly, there are some time-slots with high variabil-
ity in the human behaviour in the nights or at the beginning and
the end of the school day that present difficulties to be predicted.

• Taking into account the appliance layer, there is the need to make
it accessible and upgradeable. In the present case some efforts
have been employed to present the results (charts, tables, etc.)
through web services.

In relation with the case study, some actions to take for possi-
ble energy saving improvements can be derived from the system
analysis:

• Compress work schedules, reducing the hours flexibility. Specify
the entering and leaving work, the mealtime and the lunchtime
periods.

• Suppression of the HVAC system during weekends and holidays.
Adjust the HVAC operation time downwards.

• Move the cleaning service to day hours.
• Control the HVAC in order to have temperature, relative humidity

and light level inside the proper range, proposed by the authori-
ties, taking into account the homogeneity along the building.

6. Conclusions

Urban development involves the use of intelligent services
taking advantage of monitored data and providing an action to
improve or maintain the quality of these city services. This paper
focuses on the particular case of the electricity, identifying services
that can help in increasing the energy efficiency in urban infras-
tructures.

The work proposes a use case of short-term load forecasting
in non-residential buildings with real data in order to practically
explain the services embedded in the described Smart City general
layers architecture. These layers are responsible of collecting the
data from the sensors, transmitting the data to the central hub, stor-
ing, cleaning and standardizing this data, applying the forecasting
methodology and finally provide an application to show the results.
The use case provided as a demonstration consists of predicting the
consumption in 7 university buildings. The load forecasting is per-
formed using AR models showing that the results differ according
to the profile of the building and the quality of the data. When the
data is complete and the consumption pattern is cyclic and clear,
the results are fine. Also, the service allows to test the prediction

accuracy from different points of view, such as analysing which is
the best month predicted or the same for the days of the week.

As a future work, more services have to be defined to help pro-
viding more information to the users in order to improve the energy
efficiency of the buildings. For example, defining an index related
to the efficiency of the building can be a good contribution to the
subject.
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a  b  s  t  r  a  c  t

The  electric  grid  is  evolving.  Smart  grids  and demand  response  systems  will increase  the  performance  of
the grid  in terms  of cost  efficiency,  resilience  and  safety.  Accurate  load  forecasting  is an  important  issue
in  the  daily  operation  and  control  of a power  system.  A  suitable  short  term  load  forecasting  will enable  a
utility  provider  to plan  the  resources  and  also  to take  control  measures  to  balance  the  supply  and  demand
of electricity.

The aim  of this  paper  is  to create  a method  to  forecast  the  electric  load  in a non-residential  building.
Another  goal  is  to analyse  what kind  of  data,  as  weather,  indoor  ambient,  calendar  and  building  occupancy,
is  the  most  relevant  in building  load  forecasting.  A simple  method,  tested  with  three  different  models,
such  as  MLR,  MLP  and  SVR,  is  proposed.  The  results,  from  a real case  study  in  the  University  of  Girona,
show  that  the proposed  forecast  method  has  high  accuracy  and  low  computational  cost.

©  2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Electricity is the most important resource in the world econ-
omy. But, as can be seen in the Lisbon Treaty [20], electricity needs
to be more economic and environmentally clean. The classic elec-
tric grid has several disadvantages: losses in transport, centralized
power generation, high dependence on large generation plants, etc.
The purpose of the new electrical power grid, the smart grid, is to
manage loads to shape the load curve and use decentralized gen-
eration. Thanks to smart grids, the network will be robust, reliable,
efficient and dynamic.

Considering these new concepts, one of the most important
challenges of the utilities is to adjust power generation to a user’s
consumption in real time. An overestimation leads to a waste of
resources, whilst an underestimation means an increase in the price
to cover additional demand. Now, unlike earlier, this adjustment
will be made in smaller environments like microgrids. The electric
load forecast is, today, the best way to adjust the two  sides of the
grid.

Almost 40% of the emissions of CO2 [2] comes from the build-
ing sector, therefore, STLF in the building field is fundamental to

∗ Corresponding author. Tel.: +34 646074566.
E-mail addresses: joaquim.massana@udg.edu (J. Massana), carles.pous@udg.edu

(C. Pous), joaquim.melendez@udg.edu (J. Melendez), joan.colomer@udg.edu
(J. Colomer).

reduce energy consumption. The load curves of the electric power
consumption of cities are different from the building ones. Building
load curves present more variability, noise and non-linearity. Thus,
the more disaggregated, the more difficult to predict.

Besides, there are many kinds of buildings, like residential or
non-residential buildings. The non-residential buildings, as the
university administration sector, has daily, weekly and seasonal
patterns in their consumption profile. At nights, holidays and week-
ends, the consumption is extremely low. During the day there are
regular patterns based on the user’s activities. Within the week
there are regular patterns of consumption. During the year there
are regular patterns associated with the seasons. Also, at the begin-
ning and at the end of the working day and in the lunch and
breakfast times there are transition areas in the consumption.
Like most buildings over 10 years old, HVAC is controlled man-
ually with subjective criteria. In addition, the occupancy of the
building and the calendar data can be significant in determining
consumption.

Another important issue in the electricity forecast is to know
which is the key information to be measured and collected. The
goal is to obtain the maximum accuracy with the minimum data
attributes and instances.

In this paper, meteorological, indoor environment, occupancy,
calendar and electric consumption data have been collected in the
University of Girona. Then, three different models have been tested
to find which of them gives better performance. MLR, MLP and
SVR models have been chosen because they are standards with

http://dx.doi.org/10.1016/j.enbuild.2015.02.007
0378-7788/© 2015 Elsevier B.V. All rights reserved.
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Nomenclature

b computed parameter
C complexity parameter
H1–6 6 indoor relative humidity measure points
He outdoor relative humidity measure point
k(xi, x) kernel function
L1–6 6 indoor luminosity measure points
Le solar radiation measure point
N number of observations
n norm of the normalized instances
p grade of the norm
P1–2 2 occupancy measure points
Q1 first quartile
Q3 third quartile
T1–6 6 indoor temperature measure points
Te outdoor temperature measure point
xin normalized instance∣∣xp

∣∣ vector norm
x1(t), . . .,  xn(t) independent variables of the regression func-

tion
ym measured output
yp predicted output
y(t) dependent variable of the regression function

 ̨ interquartile range
˛i and ˛∗

i
Lagrangian multipliers

 ̌ random variable of the regression function
ˇ0, ˇ1, . . .,  ˇn regression coefficients
� outlier factor
� epsilon insensitive loss function
� bandwidth of the Pearson width
ω tailing factor of the curve fitting peak
ANFI adaptive neural fuzzy inference
ANN artificial neural network
AR autoregressive
ARMA autoregressive moving average
ARX autoregressive exogeneous
CC correlation coefficient
CO2 carbon dioxide
DW day of the week
EBP error back propagation
GA genetic algorithm
GS grid search
HD hour of day
HVAC heating, ventilation, and air conditioning
M month of the year
MAPE mean absolute percentage error
MLP  multilayer perceptron
MLR  multiple linear regression
PCA principal component analysis
PIR passive infrared receiver
PM polynomial model
PUK Pearson VII universal kernel
STLF short term load forecasting
SVM support vector machines
SVR support vector regression
WD working day
WSN  wireless sensor network

suitable results. The experiment has been carried out using real
data collected with a WSN.

Although, in smart building management it is necessary to fore-
cast the load in the future, this paper focuses only on what is

essential for the prediction of consumption, thus avoiding possible
errors due to the prediction of the variables.

With the advance of computers, drawbacks like difficult
parametrization, selection of variables and over-fitting have been
solved. Furthermore, the parallel processing and the performance
of the present computers will help to decrease the computational
time. However, reducing the size of the database will diminish the
computational cost. The features of the presented STLF method for
non-residential buildings are: high accuracy, low computational
requirements, low over-fitting and, minimum data collected and
use as simple a model as possible.

The paper starts with related works and follows with back-
ground material. Then, the dataset is explained. This is followed by
a presentation of the methodology. Next, the results are presented
and the method is discussed. Finally, conclusions are shown.

2. Related works

The present state-of-the-art knowledge focuses on STLF in non-
residential buildings. The analysis of the papers that follow is
organized according to the following aspects: model type (MLR,
ANN, etc.), used variables (load, weather, etc.), building type (malls,
offices, university campus, simulated buildings, etc.) and climate
type (Mediterranean, Oceanic, Continental, etc.). The works are
organized in two major blocks: the works with only one tested
model and the works with multiple tested models.

In the first major block, there is the case of [14], where PCA
is used, through climate data, to create a new climate index Z.
Then, this index, with MLR, is used to estimate electricity consump-
tion. Concerning ANN, study [11] proposes to use consumption and
weather data to predict load consumption in offices. This study says
that variables such as temperature and solar radiation are impor-
tant while the wind speed or humidity can be omitted. Ref. [7],
with synthetic data of consumption and weather, states that the
main virtue of ANN is simplicity. In Ref. [16], with the same data
type as two  previous cases but for a hotel, a type of ANN called
ANFI, optimized via GA, is used. This improves ANN performance.
In case [4], where the temperature and load are used to predict the
consumption of a set of university buildings, a small set of simi-
lar days is selected to train a ANN based on the work activity and
temperature. Both, in [25] and [18] cases, in addition to consump-
tion and weather data, calendar related data are used to forecast
consumption in offices and university buildings, respectively. The
work [25] highlights the differences that can be seen in the results
between real data and synthetic data, while [18] indicates that the
effect of humidity and solar radiation in the prediction is smaller
than the effect of the outside temperature. In [17,13], weather, con-
sumption and a variable related to the occupancy of the building
are used. Case [17], a library located in China, also presents an ANFI
model optimized through GA. On the other hand [13], discusses the
difficulty of obtaining data of the real occupancy of a building and
which alternatives there are to collect such data in a mall in Hong
Kong. Besides, Kwok et al. [13] mention that the data related to the
occupancy of a building significantly improves the prediction accu-
racy of the MLP  case presented. Related to SVR papers, the example
[28] uses synthetic data of consumption, weather and occupancy
and provides a new method of feature selection. Another example
is [27] that with the same type of synthetic data as in the previous
case, proposes a new SVR model that improves performance.

With regard to papers that contrast several methods, there are
three works by the same authors. In the first paper [19], they com-
pare mainly ANN, SVR, AR and PM for the case of a campus by using
consumption, weather and calendar data. The conclusion is that
the AR with daily work schedules gives the best results. In addi-
tion, they conclude that the methods should be simple and not
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require a difficult process of trial and error. The following work [5],
compares ANN, SVR, AR and a PM for the same Campus as in the
previous case, using consumption and weather data. The interpre-
tation is that climatic variables have low influence on the variation
of the load. In this case, they have used a variable sliding window
to reduce the computation time. As in the two previous cases, the
model that gives the best result is the AR, which is also the easiest
and fastest. In the fourth study by the same authors [1], the same
models as above are compared, using consumption and calendar
data, but in this case selection and combination models have been
applied. The conclusion is that the combination, in short increasing
the complexity of the model, is only necessary if there is a model
that clearly exceeds another in performance. In Ref. [10], they use
consumption and weather data, for a mall, to make a comparison
between the following models: ARMA, ANN and MLR. They suggest
that the ANN has better accuracy but cannot be interpreted, while
the MLR  has lower performance but allows some interpretation.

In summary most of the papers are based on a set of instances
and attributes, more or less extensive, on which they apply filters.
Then one or several models are used in order to obtain the best
performance. With regard to the type of model, most modern works
use ANN. Related to the kind of variables, there is a widespread
use of the temperature variable. Most of the studied buildings are
campuses and the Oceanic climate is the most common among the
analysed papers. Concerning the building occupancy, there are not
many studies with real data and this also happens with the indoor
ambient data.

Thus, our work forecasts the electric load of an office building at
the University of Girona (Catalonia) with a Mediterranean climate.
Three types of models have been contrasted: MLR, MLP  and SVR.
Unlike other studies, such as [17], that use opening schedules of
each classroom of the library, [27,28], that use synthetic occupancy
data, or [13], that calculates occupancy through the consumption
of the primary air units, our proposal calculates the occupancy
through real measures of the volume of entries and exits of people
in the building. In addition, unlike other papers, our model adds
six measurement points to reflect the atmosphere inside the build-
ing. We  have installed temperature, humidity and light sensors to
analyse if this kind of data can improve consumption forecasting.
In contrast with other works, that use complex methods and large
databases, our model has low computational requirements and a
minimal database. In addition, to solve common deficiencies, the
method contains weather data to react to sudden weather changes
and occupancy data, to respond to unexpected human events.

3. Background

Some concepts related to the tested models are introduced
before the next sections.

3.1. Models

Three paradigmatic models (MLR, MLP  and SVR) are explored in
order to find the best one.

3.1.1. Multiple linear regression
In the MLR  case [3] the system is described as a linear equation

with several independent variables and one dependent variable.
The dependent variable in a given time is explained as a set of
independent variables. The model is expressed with the form of
Eq. (1):

y(t) = ˇ0x0(t) + ˇ1x1(t) + · · · + ˇnxn(t) + ˇ(t) (1)

Although MLR  is not the most suited method to deal with auto-
correlated data (as could be ARMA or ARX), it has been chosen as a

well-known and simple regression method as a basis for compari-
son. Also, MLR  is according to the chosen methodology, unlike the
time series.

3.1.2. Multilayer perceptron
The MLP  is an ANN [26] formed by highly interconnected nodes

and organized in layers. The structure of an MLP  is: input layer, one
or more hidden layers and output layer.

The input layer is where the attributes are connected. The hid-
den layers make non-linear mapping of the inputs. The output layer
serves the output values of the MLP. The inputs pass through the
different layers to the exit. Each neuron receives all the weighted
inputs of the preceding layer and transforms the linear combination
of it with the activity function.

The learning process is made with the aim of adjusting the
weights value of each node. Among the different methods of learn-
ing, the most widely used due to its efficiency, is the EBP.

3.1.3. Support vector regression
The aim of SVM, Vapnik’s idea [24] created in 1996, is to find a

hyper-plane to classify data. In order to separate two classes which
are not linearly separable, data is transformed using kernels func-
tions and moved to a high dimensional feature space where data
are linearly separable.

So, in the same way, SVR makes a non-linear mapping of the data
with kernel functions and then proceeds to the linear regression
in this new high dimensional feature space. The SVR function is
detailed in Eq. (2):

f (x) =
m∑

i=1

(˛∗
i − ˛i)k(xi, x) + b (2)

There are different kernel functions with different features. The
PUK [23] function has the form of Eq. (3):

K(xi, xj) = 1[
1 +
(

2
√∥∥xi − xj

∥∥2
√

2(1/ω) − 1/�

)2
]ω (3)

3.2. Parameter optimization

In order to obtain accurate models, the parameters of the mod-
els must be set carefully. There are several optimization methods,
such as evolutionary algorithm, GA or particle swarm optimization.
Given the number of attributes and instances of the case, we chose
a simple and fast method: GS. If the volume of data was larger, we
would use more sophisticated methods.

4. Dataset

The university office building has three floors, a volume of
4000 m3 per floor. It was  built in 2003. The front has an area of
1836 m2, of which 630 m2 are glass surface.

In relation with HVAC, the heating system (824 kW)  consists
in gas boilers (Ygnis) and fancoils. The cooling system (618 kW)
is composed by a compression refrigeration system (Climaveneta)
and fancoils. The temperature set point is adjusted manually. The
setting temperature of winter is 20◦C and the summer’s one is 26◦C.
The HVAC control system detects the temperature of the offices
and classrooms and modifies the fan speed to achieve the set point
temperature.

We  have four different sources of information: electrical load
data, weather data, indoor data and calendar data. The sampling
rate is hourly. The total number of instances is 7616, covering a
total of 11 months, from 13th May, 2013 to 26th March, 2014.



J. Massana et al. / Energy and Buildings 92 (2015) 322–330 325

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160In
d

o
o

r
am

b
ie

n
t

&
 c

o
n

su
m

p
ti

o
n

Time  (h)

SUMMER  WEEK

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140 160

Time  (h)

WINTER  WEEK

Ti  (ºC)

Li (V)

Hi (%)

P

C 

(kWh)

ATTRIBUTES  VS TIME

Fig. 1. Indoor ambient and consumption data for summer and winter weeks.
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Fig. 2. Weather and consumption data for summer and winter weeks.

• Electric load data: we have collected electrical load data of the
building with a power meter (PM810 Power Logics of Schneider)
from the campus infrastructure monitoring system.

• Weather data: the Department of Physics has collected data of
temperature (Vaisala), relative humidity (Humicap) and solar
radiation (Kipp & Zonen) outside the building.

• Indoor data: in addition, with the aim of studying how the indoor
ambient and the occupancy of the building influences the model,
we have also installed a wireless sensor network. Among the pos-
sible solutions, we have chosen the most flexible and easiest to
install with the longest battery life. The set consists of several
Waspmotes (sensor and emitter) and one Meshlium (receiver
and database) of the Libelium trademark. The network is config-
ured as a star topology. Due to the characteristics of consumption,
safety, cost and communication distance we  have chosen ZigBee
technology [12].

In short, we have installed six electronic badges of sensors
(Waspmotes) inside the building, placing them uniformly,
that measure temperature (MCP9700A), relative humidity
(808H5V5) and light level (PDV-P9203). There are two more
electronic badges with a PIR sensors located on the two
entrances of the building. We  calculate the building occupancy
measuring the volume of entries and exits into the building.

• Calendar data: we have also nominal attributes to predict con-
sumption such as: hour of the day, day of the week, month and
working days.

In summary, we have a total of 28 attributes, 24 of them numer-
ical and 4 nominal. Among 24 of these attributes there are 6 indoor
temperatures, 6 indoor relative humidities, 6 indoor luminosities,
1 outdoor temperature, 1 outdoor relative humidity, 1 solar radia-
tion and 2 occupancies. The 4 calendar nominal attributes are: hour
of day, working day, day of the week (contains information about

the user behaviour that operates like a schedule) and month of the
year (give us information related to the seasons).

For a week in summer and one in winter, Fig. 1 shows the average
values of the inner measured data and Fig. 2 shows weather data.

5. Methodology

The proposed methodology is summarized in Fig. 3. First, we
make a feature selection by removing insignificant attributes. In
the next block, we  filter missing values and outliers. At this point,
we normalize and then separate training (66%) and test data (33%).
The set of training data is randomly re-sampled to 30% of the data.
With this 30% we perform a GS to find the parameters and the per-
formance of the models. Then, we  execute a sub-sample validation

Fig. 3. Block diagram of the process.
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Table 1
Feature selection configuration.

Starting point Search organization Evaluation strategy

Forward Genetic search Correlation-based feature selection

test for each model in order to ensure that it is a representative
sub-sample. If we pass the sub-sample validation test we select the
candidate that gives the best performance for each model (MLR,
MLP  and SVR). Finally, we validate it with the test data.

5.1. Attribute selection

Removing the redundant attributes, which contain irrelevant
or noisy data, we achieve a faster learning process and an accurate
and more compact forecasting model. The feature selection process,
explained in [15], consists of a search through the space of feature
sub-sets. The following aspects must be taken into account:

• The starting point is the point in the features’ sub-set space from
which the search starts: forward (adding attributes), backward
(removing attributes) or bidirectional (starting from one point).

• The heuristic search strategies provide proper results, not the
optimal one, as does the prohibitive exhaustive search. There
are different search strategies: greedy hill climbing, best search,
genetic algorithms, etc. Genetic algorithms, described in [6], are
based on the principles of natural selection.

• The evaluation strategy, as can be seen in [9], is how feature
sub-sets are evaluated. In our case the value of a feature sub-set
will be considered, taking into account the maximum individual
predictive capacity and minimal redundancy among them.

After testing empirically with several configurations, the values
that have given best results are shown in Table 1.

5.2. Missing values

Due to errors in sensor readings or external troubles there is
always a small percentage of lost samples. We  must try to min-
imize the percentage of missing values as much as possible. The
missing values can be treated in different manners such as avoid-
ing instances that include them, making the average of close values
or other more sophisticated methods based on PCA. In our case,
after testing several configurations, we have found that removing
instances that include missing values gives the best result. The total
number of instances containing missing values is 1690 out of a total
of 7604, which represents 21.16%.

5.3. Outliers

We  can delete or substitute outliers by a certain value. Elim-
inating these values improves the performance of the model
significantly. However, the more restrictive, the more amounts of
data lost. It is a trade-off between the range of values considered
outliers and the goodness of the model. We  have used the filter of
Eq. (4) to detect outliers:

Q3 + � ·  ̨ < x < Q1 − � ·  ̨ (4)

The total number of deleted instances with outliers is 113 of a
total of 7604, this represents 1.49%. After testing empirically with
a range of values, � = 3 has given the best results.

5.4. Normalization

Normalization is an important step when we have parameters
of different units and scales. Usually, all parameters should have

Table 2
Values of the parameters of the MLR.

Ridge Attribute selection method

1.0E−8 M5

the same scale for a suitable comparison, enhancing the model
performance. We  have normalized using Eqs. (5) and (6):

xin = n
xi∣∣xp

∣∣ (5)

∣∣xp

∣∣ =
(∑

i

(xi)
p

)1/p

(6)

After testing empirically with several ranges of parameters, n = 1
and p = 2 have given the best results

5.5. Instance selection

Because the training process of the model requires high compu-
tational cost, we have employed a sample of the complete dataset.
It helps us to quickly find the optimal parameters of the model. The
sample is selected randomly, therefore it is necessary to validate it.
After testing empirically with several percentages of re-sampling, a
sample of 30% led us to achieve a balance between reducing compu-
tational cost and maintaining the level of accuracy of the resulting
models.

5.6. Grid search

GS method performs a search through the ranks of pairs of
parameters and chooses the best. In the first grid search it uses
only 2-fold cross validation to determine the best pair of param-
eters. Then, it takes the best point in the grid with the adjacent
parameter pairs and makes a 10-fold cross validation. If there is no
better pair the search stops here. But, if a better parameter pair is
found, this pair is the next centre of the search. The process contin-
ues until there is no better pair or the pair is on the border of the
grid.

The main parameters that we  have analysed with the GS are the
following ones: ridge parameter for MLR, hidden layers, learning
rate, momentum and training time for MLP  and complexity param-
eter, different types of kernel and the parameters for each kernel
for SVR.

5.7. Models

In the next three sections we explain the questions related to
the tested models.

5.7.1. Multiple linear regression
In the MLR  case there is a set of parameters to specify as ridge

or attribute selection method. The ridge helps to regularize the
model and to avoid over-fitting problems. We  need a generalized
model with high accuracy with the test data. In relation to attribute
selection methods, we have tested two widely used methods. The
M5 method removes the attributes with the smallest standardized
coefficient until no improvement is observed and the greedy selec-
tion method uses the Akaike criterion metric. The Akaike criterion
handles a tradeoff between the performance and the complexity of
the model.

After testing empirically with several ranges of parameters,
using GS, the values that have given best results are shown in
Table 2.
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Table  3
Values of the parameters of the MLP.

Learning rate Training time Hidden layers Momentum Nodes

0.3 5000 1 0 15

5.7.2. Multilayer perceptron
In the MLP  case there is a set of parameters to specify as learning

rate, training time, hidden layers, momentum or number of nodes.
The number of hidden layers of the network depends on the dataset.
There is a hard relation between the complexity of the network
and the computational cost to calculate it. The network has several
nodes in the hidden layer besides the node of the output layer. All
the nodes in this network are sigmoid. We  chose the EBP method to
train the ANN because is a widely used successful method. A suit-
able learning rate lets the weights converge quickly to the solution.
A too large learning rate does not allow the network to converge
but if it is too small it will take a great deal of time. The learning rate
typically ranges from 0.2 to 0.8. The training time is the number of
epochs to train the network. A long training time will enhance the
performance but will increase the computational cost. Momentum
helps to control the instabilities and local minimums and increases
the rate of convergence.

After testing empirically with several ranges of parameters, with
GS, the values that have given best results are shown in Table 3.

5.7.3. Support vector regression
In the SVR case there are several parameters [22] to specify such

as the C parameter, kind of kernel and kernel parameters. To allow
flexibility, the SVM handles the C parameter that controls the trade-
off between training errors and rigid margins, creating a soft margin
that allows, but penalizes, some mis-classification. With a large
value of C the hyperplane has a small margin that will classify all the
training points correctly. On the other hand, with a small value of
C the hyperplane has a large margin that will perhaps mis-classify
more points. There is no clear theory about setting C. Although, a
reasonable proposal is to select a C parameter around the range of
output values.

Before choosing the PUK function we have tested the most com-
mon  kernel functions, such as linear, polykernel and radial basis
function. PUK has a high mapping and generalization capacity and
robustness. It is one of the most suitable kernels with which to face
a variety of mapping problems. PUK has two adjustable parameters:
� and ω. Varying the parameter � the kernel turns from a Gauss-
ian shape to a Lorentzian shape. The internal parameters of the
SVR model can be obtained using various algorithms. Among them,
RegSMOImproved [21], due to its short implementation time, is the
chosen one. The main parameter of the RegSMOImproved learning
algorithm is �. � is related to accuracy of the approximated function.
A too large � will generate poor results and too small will generate
over-fitting.

After testing empirically with several ranges of parameters, with
GS, the values that have given the best results are shown in Table 4.

5.8. Sub-sample validation test

To avoid training the model with 100% of the data, given
that that has a high computational cost, we have used random
sub-samples. In order to determine that these samples maintain
the internal distribution of the initial population we carry out a

Table 4
Values of the parameters of the SVR.

C Kernel ω � �

400 PUK 0.2 10 0.001

Table 5
All attributes and all instances.

Model CC MAPE Computation time

MLR  0.1755 24.3% 3 s
MLP  0.2463 23.72% 1843 s
SVR  0.964 14.32% 7546 s

simple test with the performances of each sub-sample. Once we
have the three best results for the sub-sample, we use the param-
eters that provide these results to calculate the models and their
performances for the initial dataset. Then, we create two rankings
of three positions depending on the performances of each dataset.
Once done, we check that the position of the ranking for each set
of parameters is the same for the sample as for the initial dataset.
If so, the sample is valid and these are the selected parameters.
Otherwise, we  take another sub-sample and repeat the process.

6. Experimental results

We have realized the experiments with Weka software [8] and
using a computer with Intel Core i7-4500U processor and 8 GB
of DDR3 RAM. The next sections describe the indicators used to
measure the performance, the scenarios considered and the results
obtained.

6.1. Error indicator

There are several procedures to calculate the quality of the
model; MAPE and CC are two  of the most common indicators in
the actual literature. The MAPE, shown in Eq. (7), does not depend
on the magnitude of the unit of measurement and is usually used
for comparing models:

MAPE = 1
N

N∑

i=1

∣∣∣∣
ym(i) − yp(i)

ym(i)

∣∣∣∣× 100 (7)

The CC is a measure of the linear relation between two variables;
in this case between real output and forecasted output.

6.2. Results

We first analyse the results of several scenarios and then we  plot
the results of the best scenarios.

6.2.1. Scenarios
In this section we  analyse the results given by MLR, MLP  and

SVR models in different scenarios. For each scenario we provide
four parameters: the performance of the model (MAPE and CC),
the computation time and the attributes used. The chosen model is
the one that presents the best trade-off between several indicators.
The forecasting accuracy, the computation time and the number of
used attributes are the most important indicators, although another
interesting issue is the intelligibility of the model; that is, the infor-
mation provided by the model by the naked eye. The MLR  has a
high level of intelligibility, while the MLP  and the SVR have not.

Scenario 1. We  begin with all the attributes: T1–6, H1–6, L1–6, Te,
He, Le, P1–2, M,  WD,  HD and W and all the instances, as shown in
Table 5.

In the first experiment, due to noise and redundant data, results
have shown low performance indicators and large computation
times. Although an SVR model achieves a high forecasting level,
the unfiltered data somewhat increase the computational cost.

Scenario 2. Now we analyse, in Table 6, the effect of feature selec-
tion. In this experiment we  have the following attributes: Te, P1–2,
WD,  HD and all the instances:
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Table 6
Filtered attributes and all instances.

Model CC MAPE Computation time

MLR  0.9138 4.68% 2 s
MLP  0.9992 0.97% 694 s
SVR  0.9978 0.35% 4983 s

Table 7
Filtered attributes with filtered instances.

Model CC MAPE Computation time

MLR  0.9156 4.83% 1 s
MLP  0.9996 0.45% 600 s
SVR  0.9998 0.36% 4255 s

Table 8
Outdoor temperature and calendar attributes with filtered instances.

Model CC MAPE Computation time

MLR  0.7335 6.26% 2 s
MLP  0.8009 8.24% 744 s
SVR  0.8716 3.43% 4628 s

Table 9
Outdoor temperature and occupancy attributes with filtered instances.

Model CC MAPE Computation time

MLR  0.913 5.21% 1 s
MLP  0.9866 1% 41 s
SVR 1 0.06% 250 s

Results have indicated that the consequence of the attribute
selection is an accuracy enhancement and a significant reduction
of the computation time for all the models.

Scenario 3. In Table 7, with the same attributes as in the previous
case, we observe the effect of instance filtering:

By treating the instances, the performance does not change
much but the computation time is improved slightly. SVR and MLR
are the models most positively affected by the instance filtering.

Scenario 4. From now on, we test several sets of attributes,
always with filtered instances, to analyse which set produces bet-
ter results and to discover how much information is contained in
each set. In Table 8, we have tested the model with the follow-
ing attributes: outdoor temperature and calendar indicators (Te, M,
WD,  HD and W).

From the previous experiment, we can see that removing the
occupancy attribute the performance is reduced significantly. The
calendar attributes have less information than the occupancy
attribute.

Scenario 5. In the Table 9 we have performed the experiment
only with outdoor temperature and occupancy attributes (Te and
P1–2) in order to confirm the previous experiment.

Taking into account the results, removing calendar attributes,
MLR  and MLP  models have slightly worsened the performance but
have improved the calculation time. However, the SVR model has an
excellent forecasting accuracy and a really low computation time
with only two attributes.

Table 10
Indoor ambient attributes with filtered instances.

Model CC MAPE Computation time

MLR  0.6742 5.37% 1 s
MLP  0.799 3.95% 197 s
SVR  0.7291 4.9% 1218 s

Table 11
Temperature attribute with filtered instances.

Model CC MAPE Computation time

MLR  0.1152 11.23% 1 s
MLP  0.0875 16.24% 22 s
SVR 0.1604 13.95% 216 s
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Fig. 4. MAPE for the months of the year.

Scenario 6. In Table 10 we analyse the forecasting capacity of the
indoor ambient variables (T1–6, H1–6 and L1–6) when they are used
alone:

Using indoor ambient variables, without calendar, occupancy
or weather attributes, the performance and the computation time
absolutely deteriorate.

Scenario 7. As shown in Table 11, we have tested the outdoor
temperature (Te) attribute by itself, to analyse its ability to forecast:

The temperature attribute alone, without the occupancy
attribute, has given deficient accuracy indicators. So, finally, we
chose the SVR model with only outdoor temperature and occu-
pancy attributes (Te and P1–2) because it has given the best results;
a trade-off between high forecast accuracy, low computation time
and a low number of attributes.

6.2.2. Graphic results
In the present section we plot the average of MAPE vs months,

days and hours for each model in its best scenario.
Graphic 1. In Fig. 4, we can see a MAPE vs month graphic for the

three models.
The MLP  and SVR models, unlike the MLR  model, not only predict

better but also suffer less MAPE variation in terms of the months.
Heterogeneous months, as December, are hard to predict.

Graphic 2. In Fig. 5, we  can observe a MAPE vs day graphic for
the three kind of models.

Given that we  are analysing a non-residential building and there
is no consumption on the weekends, the performance on Saturday
and Sunday is higher. In addition, the days with the worst forecast-
ing level, because of their variability, are Mondays and Fridays.

Graphic 3. In Fig. 6, we can analyse a MAPE vs hour graphic for
the three selected models.
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Fig. 5. MAPE for the days of the week.
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In the MLR  case and, to a lesser extent, in MLP  and SVR cases, we
observe that night forecasting has the worst accuracy because of the
hourly variability of the security and cleaning services. During the
day we have three low accuracy prediction zones: the beginning
and ending of the working day and lunchtime.

7. Discussion

We  have contrasted three models, considering various param-
eters, for different sets of attributes. MLR  and MLP  models provide
their best results using temperature, calendar and occupancy
attributes. On the other hand, SVR provides its greatest results using
only temperature and occupancy data. The MLR  model, unlike the
others, is intelligible, serving information about the relevance of
every attribute. However, MLR  has a lower level of goodness than
MLP and SVR, which perform better against non-linear systems. The
SVR model provides the highest accuracy with an acceptable com-
putational cost but has a bad response using nominal attributes.

All the models with real occupancy data enhance the forecasting
accuracy above the other with calendar data. The indoor ambient
data, because of fixed HVAC operating conditions, does not provide
a prediction performance improvement.

The working days of the week that have a heterogeneous profile,
as does Friday, have a lower level of forecasting precision. How-
ever, weekends provide better results because they are flat and
homogeneous.

Models with few attributes, thanks to the feature selection, have
a lower computation time with a similar level of prediction accu-
racy. Filtering the instances means that the computation time is
reduced and the accuracy of the model is improved.

8. Conclusions

One of the most important challenges of the utilities is to equil-
ibrate the power generation and the consumption in the building
sector, for this reason we need to predict both. So, with the aim of
generating an STLF model for a non-residential building at the Uni-
versity of Girona we have installed a WSN  to collect data. We  have
analysed weather, indoor ambient, calendar and real building occu-
pancy attributes to determine which are the most relevant. Then,
we have tested MLR, MLP  and SVR models with different sets of
attributes. So, the SVR model, with only temperature and real occu-
pancy data, is the one that has given the best balance of accuracy
and computational cost. By reducing the number of attributes, the
price of the WSN  installation, the size of the database and the com-
putational cost are reduced. Therefore, the system requirements to
perform the data mining process will be less demanding.

Our research leads us to discover that the ambient data, col-
lected inside the building, do not improve the level of performance
of the model because of the fixed HVAC operation condition. In

the case of changes in the HVAC operation condition it would be
interesting to add an internal temperature variable in the model.

The simple and economic system of measuring the occupancy,
using PIR sensors on the entries of the building, provides real infor-
mation of building occupancy and improves the performance of the
resulting models. Furthermore, it allows maintaining an acceptable
forecasting level in front of unexpected events. Other methods for
detecting occupancy of buildings, like the use of cameras or the
determination of CO2 levels, are much more expensive and sophis-
ticated.

The proposed methodology is simple, fast and, using a small
number of attributes, provides a satisfactory forecasting accuracy
with a low computational cost. In addition, the implemented WSN
installation is economical, minimal and effortless.

In future works, several types of non-residential buildings will
be tested and a method for generating simple occupancy indexes
from work schedules will be proposed, having all the model data
in advance.
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Chapter 6

Short-term load forecasting for
non-residential buildings
contrasting artificial occupancy
attributes

In this chapter, a simple, low-computational requirements and economical hourly
consumption prediction method, based on SVR model and only the calculated oc-
cupancy indicator as attribute, is proposed. In addition, and due to the relevance
of the occupancy indicator in the model, this paper provides a complete study of
the methods and data sources employed in the creation of the artificial occupancy
attributes. Thus, several occupancy indicators are defined, from the simplest one,
using general information, to the most complex one, based on very detailed infor-
mation. This work has been published in the following paper:
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a  b  s  t  r  a  c  t

An  accurate  short-term  load  forecasting  system  allows  an  optimum  daily  operation  of  the  power  system
and a suitable  process  of  decision-making,  such  as  with  regard  to  control  measures,  resource  planning
or  initial  investment,  to be achieved.  In a previous  work,  the authors  demonstrated  that  an  SVR model  to
forecast  the  electric  load  in a non-residential  building  using  only  the  temperature  and  occupancy  of  the
building  as attributes  is the  one  that gives  the  best  balance  of  accuracy  and  computational  cost  for  the  cases
under study.  Starting  from  this  conclusion,  a simple,  low-computational  requirements  and  economical
hourly  consumption  prediction  method,  based  on  SVR  model  and  only  the  calculated  occupancy  indicator
as  attribute,  is  proposed.  The  method,  unlike  the  others,  is  able  to perform  hourly  predictions  months  in
advance  using  only  the  occupancy  indicator.

Due  to the  relevance  of the  occupancy  indicator  in  the model,  this  paper provides  a complete  study
of  the methods  and  data  sources  employed  in the  creation  of  the  artificial  occupancy  attributes.  Several
occupancy  indicators  are defined,  from the  simplest  one,  using  general  information,  to  the  most  complex
one,  based  on  very  detailed  information.  Then,  a  load forecasting  performance  discrimination  between  the
artificial  occupancy  attributes  is  realized  demonstrating  that  using  the most  complex  indicator  increases
the  workload  and  complexity  while  not  improving  the load  prediction  significantly.  A real  case study,
applying  the  forecasting  method  to  several  non-residential  buildings  in the  University  of Girona,  serve
as  a demonstration.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

In order to build a fair and more sustainable society, new
approaches and initiatives have appeared in all areas. Energy
resources are limited, and there is the need to generate new
technologies and legislation that allows to achieve a certain envi-
ronmental balance. The Lisbon Treaty [30] and the Kyoto Protocol
[10] are examples of legal initiatives that have the aim of reduc-
ing consumption and emissions. To reduce the consumption, it is
necessary to improve the existing electricity grid making it more
efficient and robust. The smart grid, in conjunction with decentral-
ized power generation, could avoid many of the shortcomings of
the classical electrical grid.

Thus, to increase the efficiency of the electricity grid, a balance
of power generation is required such that there is no waste or

∗ Corresponding author.
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lack of resources. Due to the apparition of micro-grids, there is a
balance between the generation of power and the users’ consump-
tion. Given that buildings are responsible for a large part of the
electricity consumption, having tools to predict their consumption
is key in the adjustment process. Predicting the consumption of a
city is different from predicting the consumption of a building, in
that in the case of buildings there is much variability. Disaggre-
gated environments are more difficult to predict. Thus, short-term
load forecasting (STLF) methodology is used to reduce the building’s
consumption since it must deal with non-linearities and noise.

Recent research on energy efficiency in buildings include opti-
mal  decisions and an overall improvement in human behaviour,
not just technology. The International Energy Agency’s Energy in
Buildings and Communities Programme (IEA-EBC) has recently
completed a project related to strengthening the robust prediction
of energy usage in buildings, with the goal of enabling the proper
assessment of short and long-term energy measures, policies and
technologies. The results of this project are collected in Annex 53
[15]. The analysis methods, developed models and results of Annex
53 were taken as the starting point for other several working areas.
In particular, and due to the important effect of occupancy in energy

http://dx.doi.org/10.1016/j.enbuild.2016.08.081
0378-7788/© 2016 Elsevier B.V. All rights reserved.
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Fig. 1. Technical framework used in occupancy behaviour.

prediction, the IEA-EBC is working on Annex 66 [16]. On this annex
they are trying to define and simulate occupant behaviour in a
consistent and standard way. Based on these works, some new pro-
posals have arisen, as is shown in [13]. The ontology represents
energy-related occupant behaviour outlined as a DNAS (drivers,
needs, actions and systems) framework, providing a systematic
representation of energy-related occupant behaviour in buildings.
Generally, researchers working on this topic follow a methodol-
ogy that consists of monitoring, modelling and simulating, such as
[13,14], as seen in Fig. 1.

These models are built after monitoring and collecting enough
data about occupancy of the building. As stated in [14], this
data is obtained from observational studies, occupant surveys and
interviews, laboratory studies and unresolved issues in occupant
monitoring, such as contextual factors. The occupancy models take
into account the actions that occupant can do on the building, such
as open the light, close the window, track or predict the occupant
movements, and so on. It can be seen that the building must be
sensorized to some extent to have this information available, a fact
that is not always possible.

Although computing technology continues to develop, some
forecasting models training on databases with dozens of attributes
and millions of instances, may  lead to high computational cost.
Therefore, reducing the database is still necessary, always taking
care to ensure that performance does not deteriorate. Most of the
papers that propose the use of STLF methods in non-residential
buildings often use weather data and, in some cases, occupancy
information. Other works, such as [17,19,22], conduct comparison
studies using similar models and arrive to a different conclusion,
selecting other model as a best approach. The type of building and
the test and training conditions can greatly affect the results. So, it
is important to study different type of models in order to choose
the best option in each case. According to [24], a model predicting
consumption with minimal instances using support vector regres-
sion (SVR) with temperature and occupancy attributes provides
excellent results for our buildings under study.

Obtaining predictions of temperature, in order to know the
temperature of a particular place, is normally possible, although
acquiring information of future occupancy remains difficult. In
[24], occupancy information collected from passive infra-red (PIR)
sensors was used. However, this information is not available in
advance. The non-residential buildings usually dispose of work
or scholar schedules, or other information about their occupancy.
A technique designed to generate this information beforehand is
needed. The goal is to obtain a model that is not dependent of
any information unavailable months ago, such as previous con-
sumption or temperature. This model can perform consumption
predictions months ahead. Perhaps resulting accuracy level of the
model may  not be as good as the other works in this topic, but this
is only a first step in this new direction.

Table 1
Occupancy related methods.

Method Sources Works

Calendar Day types, months,
etc.

[2,5,7,17,28,29,31,37]

Schedule Work, student or
use schedules.

[6,20,21]

Sensors Motion, CO2, noise,
light, etc.

[8,18,23,24,26,27,33]

Expert knowledge Surveys, interviews
or inspections.

[19,25,35]

The aim of the work is to test the load forecasting accuracy
using several occupancy indicators. It is not centred on occupant
behaviour modelling, but estimating the occupancy is necessary,
as it is one of the main factors that contributes to the accuracy
of the SFTL. Concerning the occupancy estimation, we deal with
buildings that are poorly sensed. That means there is not infor-
mation about occupant actions, such as open/close the window,
switch on/off the lights or plug a device, even if the actions are
taken. There is information about scholar and working schedules,
classrooms dimensions, expert knowledge, etc. Furthermore, there
is only one of the buildings under study having sensors to estimate
the amount of occupants inside the building by means of PIR sen-
sors. Due to this limitation, several occupancy indexes have been
defined using the available information.

In the first part of the paper, artificial occupancy indicators for
the buildings are generated using different techniques and infor-
mation available in advance such as academic calendars and work
schedules. Then, SVR model is trained to forecast the consumption
of the respective buildings, using these indicators of occupancy.
Subsequently, an analysis of the relationship between the forecast-
ing performance and the workload based on occupancy indicators,
is performed. The idea is to show that there is a balance point in
the artificial occupancy indicators, between forecast accuracy and
workload. From a certain point on, increasing the complexity of the
indicator does not improve significantly the prediction.

The paper starts with related works and follows with back-
ground material. Then, the dataset is explained. This is followed by
a presentation of the methodology, where the several occupancy
indicators are defined, and the test process explained. Next, the
results are presented and the method is discussed. Finally, conclu-
sions are shown.

2. Related works

There have been a large number of papers on the topic of
STLF with regard to residential and non-residential buildings. The
non-residential buildings are basically malls, schools, universities,
hospitals and offices. Assuming that the use of information con-
cerning the occupancy of buildings is key for improving prediction,
the present state of the art focuses on the following topic: STLF in
non-residential buildings based on occupancy data.

In the present state of the art, the advantages and disadvan-
tages of the several methods associated with using the building’s
occupancy information in a prediction model are evaluated. The
methods can be grouped into 4 blocks, as seen in Table 1.

In the first block, there are eight works that use calendar
information. The first [2], is the case of a campus in Los Ange-
les that uses temperature and occupancy information, based on
calendar data such as day of the week and holidays, with a regres-
sion tree model. In the paper [17], based on synthetic data and a
non-residential building located in Athens (Greece), using meteo-
rological data including temperature, solar flux, relative humidity
and wind speed and the profile of the days of the week, the con-
sumption is predicted using an ANN model. The work [28,29], in
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the campus of the University of Deusto (Spain), use weather data
such as relative humidity, precipitation, temperature, wind speed
and wind direction in conjunction with the use of types of day
comprising Saturdays, working and non-working days using AR,
ANN and SVR principally. The work [37], with regard to an office
building in Hong Kong, uses weather data including temperature,
solar radiation and relative humidity and also takes into account
if it is a weekday or a weekend using an ANN. In [5], an ANN is
trained to predict the consumption of a commercial office building
in Iowa (USA) using weather data such as precipitation provabil-
ity, rain indicator, outdoor dry-bulb temperature, outdoor relative
humidity, wind speed and sky condition in conjunction with the
use of day type indicator. The work [31] proposes a non-linear
autoregressive model with exogenous inputs to forecast the load
in a college campus in Texas (USA) employing weather variables
including temperature, relative humidity and calendar information
such as hour, day of the week or month. The paper [7] presents
an ANN based on indoor and outdoor temperature and relative
humidity and occupancy data including day type in a supermarket
in UK.

In the second block, where schedules are used, the work [20]
predicts the consumption of the university library in Zhejiang
(China) using temperature data and an index of occupancy based
on the opening schedule of each of the rooms of the library using
a fuzzy inference system. The paper [6], a commercial building
in Iowa (USA), uses SVR and ANN based on weather data such
as outdoor air dry bulb temperature, outdoor air relative humid-
ity, outdoor air flow rate, diffuse solar radiation rate, direct solar
radiation rate, zone air temperature, zone air relative humidity
and zone thermostat cooling set point temperature and occupancy
data including schedules of building equipment, building light and
HVAC operation. The work [21] proposes a model predictive control
to forecast the consumption in a simulated commercial building
(Energy plus) using meteorological data such as outdoor air tem-
perature, indoor temperature and solar radiation and an equipment
schedule ratio.

In the third block, there are works that employ occupancy infor-
mation through the collection of sensor data. The work [8], in the
case of the Research Centre in Rome (Italy), involves meteoro-
logical data such as temperature and solar radiation, and creates
occupancy indicator counting the number of people who check-in
using a card, and then models using an autoregressive integrated
moving average, ANN and Naive Bayes. The paper [18], deals with
an office building in Hong Kong involving weather data such as
outdoor temperature, relative humidity, rainfall, wind speed and
global solar radiation and an occupancy attribute created using
the hourly total power consumption of the primary air unit, and
uses an ANN to create the model. The work [24], in the Univer-
sity of Girona, uses temperature and occupancy data collected
with PIR sensors, using MLR, ANN and SVR models. In [27], an
ANN is used in conjunction with sensor data such as parking
and building occupancy in the campus of the university of Lis-
bon (Portugal). In [33], the consumption of an office building in
Sweden is forecasted based on weather data such as indoor tem-
perature, outdoor temperature, daylight level, solar radiation and
wind speed and PIR sensor data using an MLR. The case [23], the
electrical load of an sports hall in Finland is predicted using autore-
gressive models based on meteorological data comprising indoor
and outdoor air temperatures and sensor data such as CO2 mea-
surements. The work [26] presents an autoregressive integrated
moving average model that uses outdoor temperature and sensor
data such as contact closure, PIR, CO2 and network activity sen-
sors to predict the consumption in an office building in Ontario
(Canada).

In the fourth block, there are works that use expert knowledge
such as inspections or surveys to collect information related to

occupancy. The case [25], the Administration building of the Uni-
versity of Sao Paulo (Brazil), uses weather data and an attribute
related to occupancy, generated performing expert inspections in
order to describe the use and the features or the internal loads such
as lighting and computers, with an ANN model. In [35], a fast-food
restaurant in Cyprus, an autoregressive model based on represen-
tative indicators per energy end use of the building such as lighting,
kitchen, and refrigerators is used to predict the consumption. The
paper [19] proposes an ANN to predict the consumption of 19 sub-
way stations in Hong Kong using outdoor temperature and relative
humidity and expert information such as area of concourse, area
of platform, shops area, plant room area, staff accommodation area
and weekly amount of passengers.

All these methods provide proper results but present short-
comings. There is a demand for methods based on data available in
advance which has the ability to perform hourly long-term predic-
tions, predict with few attributes which means low computational
cost and do not require continuous sensor data which is economic.
In short, there is a need for simple, economic and fast systems
that predict the load accurately. The main shortcomings of these
methods are as follows:

• The works that employ meteorological data including tempera-
ture and solar radiation need weather forecasts which are not
always available. In addition, weather forecasts can only be
obtained for few days ahead and contain uncertainties. A method
without weather data is needed.

• In the case of methods that use occupancy sensor data, there is no
data available in advance, so there is no data to predict. Artificial
occupancy data is needed.

• Most of these methods are able to forecast consumption just a
few days ahead, but cannot do so months in advance. Therefore
a method to predict consumption several months in advance is
needed.

• The expert knowledge is not always available and contains uncer-
tainties. A repeatable and objective method is needed.

Therefore, all the occupancy methods are employed to artifi-
cially create an index of occupancy using previously available data
such as calendar, old PIR sensor data, school schedules and other
information. These different artificial indicators of occupancy are
then tested in order to know which gives the best consumption
forecasting results. From the simplest to the more sophisticated
method, an explanation of the generation process, an analysis of
the load forecasting performance and a contrast of the workload of
each one needs to be performed.

In short, on the basis of the existing literature, all paradigmatic
data sources and different techniques are used to generate several
occupancy indicators. Then, a compendium of STLF performances
and the pertinent workloads for each occupancy indicator is pro-
vided. The presented methods solve the previously commented
shortcomings.

3. Background

Taking into account that a large amount of instances is avail-
able, covering a broad range of weather and building conditions,
three paradigmatic black box models such as an MLR  [9] model, an
ANN [38] model and an SVR model were tested in [24]. The results
showed that the SVR model provides the most accurate prediction
for this kind of data and models. In that case, a grid search algo-
rithm was used to adjust the training parameters of the models, in
this case an evolutionary algorithm is used to adjust them. This sec-
tion gives a brief explanation of the SVR model and the parameter
optimization method.
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3.1. Support vector regression

The support vector machine [36] model consists of separate
classes, that are not linearly separable, transforming them using
kernel functions and moving them to a high-dimensional feature
space where the data is classified through a hyperplane. On the
other hand, the SVR performs a linear regression on this new high-
dimensional feature space. The SVR function is seen on Eq. (1):

f (x) =
m∑

i=1

(˛∗
i − ˛i)k(xi, x) + b (1)

where:
˛i and ˛∗

i
are Lagrangian multipliers.

k(xi, x) is a kernel function.
b is a computed parameter.
There are several kernel functions [3] with different features,

proper for each case. However, the most common are linear, radial
basis function and polynomial kernel. There is no clear rule about
which is better.

3.2. Parameter optimization

There are two main reasons for using a parameter optimization
method. The first one is because all the occupancy indicators in the
experiments must have equal conditions. The second is because
the manually search of the suitable training parameters is a slow
process and the grid search is computationally expensive.

The evolutionary computation approach executes a sub-process
a multiple number of times to find the optimal values for the speci-
fied parameters. The evolutionary strategies, based on the theory of
Rechenberg created in 1970 [32], help us to solve an optimization
problem without falling into local optimum and premature closure.

Evolutionary search [4] is based on a parental and offspring can-
didate solution. These solutions, called individuals, are subject to
random changes and selection of best solutions iteratively. Based
on the principle of biological evolution, the concepts of recombina-
tion, mutation and selection are used to solve the problem. First, a
recombination selects x parents and combines their parts to create
new solutions. Then, the mutation adds random changes to the pre-
liminary solutions. Finally, n individuals are selected and constitute
the parental population of the following cycle. Until the termination
condition is not achieved, the process continues.

4. Dataset

In this study the experiments are performed using data from
four buildings (PI, PII, PIV and Faculty of Science) located at the
University of Girona. The buildings are composed mainly by class-
rooms, offices and laboratories. The buildings PI and PII are used
in all the experiments and the buildings PIV and Faculty of Science
are only used for contrasting purposes. Regarding HVAC, the heat-
ing systems consist of gas boilers and fancoils. The cooling systems
are composed of compression refrigeration systems and fancoils.

Building PI, built in 1983, has 6 floors and a volume of 26,150 m3.
The frontage has an area of 3791 m2, of which 610 m2 are glass sur-
face. Building PII has 6 floors, a volume of 25,560 m3 and was built
in 1992. The frontage has an area of 2326 m2, of which 1351 m2 are
glass surface. Building PIV has 3 floors, a volume of 12,000 m3 and
was built in 2003. The frontage has an area of 1836 m2, of which
630 m2 is glass. The Faculty of Science building has 5 floors, a vol-
ume  of 34,810 m3 and was built in 1997. The frontage has an area
of 4903 m2, of which 1233 m2 is glass.

The set-point temperature is manually adjusted in the summer
to 26 ◦C, and in the winter to 20 ◦C. The HVAC control system detects
the temperature of the offices and classrooms, and modifies the

fan speed to achieve the set point temperature. The profile of these
buildings in relation to the HVAC is similar, in that the four buildings
have systems where most of the consumption is produced with gas
boilers.

As previously stated, temperature and occupancy are the main
attributes used in the non-residential buildings forecasting. The
data used in this work is as follows:

• Electric load data: electrical load data of the buildings PI, PII
and PIV and Faculty of Science is collected using a power meter
(PM810 Power Logics of Schneider) linked to the campus infra-
structure monitoring system.

• Temperature data: temperature data using a sensor (Vaisala)
from the Department of Physics outside the buildings.

• Calendar data: information about working and non-working
days, holidays, exams, etc.

• School schedule: the hourly schedule of each classroom.
• Working schedule: the work schedule of the teachers and

employees.
• Classroom size: the number of student places for each classroom.
• Classroom devices: the list of electrical devices and their features

with regard to each classroom.
• Expert knowledge information: information about the building

occupancy based on interviews with experts with experience.
• Occupancy sensor data: the data of occupancy collected in PIV

using PIR sensors from previous work.

Based on this information, several artificial occupancy attributes
with different levels of complexity are artificially created. The main
objective is to analyse which one provides the best forecast. In
the search of the proper occupancy indicator, there is probably a
balance point between workload and forecasting performance.

The number of data instances of PI is 27,375, covering a total of
38 months, from 1st September, 2011 to 15th October, 2014. The
total of instances of PII is 16,589, covering a total of 24 months,
from 21st November, 2012 to 15th October, 2014. The number of
instances of PIV is 16,590, covering a total of 24 months, from 23rd
November, 2012 to 15th October, 2014. The number of instances of
Faculty of Science is 27,366, covering a total of 38 months, from 1st
September, 2011 to 14th October, 2014.

The patterns of consumption and temperature for a summer
(August 5th, 2013) and a winter (February 18th, 2013) week for the
PI and PII buildings are shown in Fig. 2.

5. Methodology

This section contains the description of the artificial occupancy
indicators and the forecasting method used.

5.1. Occupancy indicators

The main target is to create an artificial occupancy indicator to
determine the occupancy in advance. Using some available infor-
mation, there is the option of creating occupancy indicators to
predict consumption some months ahead.

In this section, 43 occupancy indicators, with different levels of
complexity, are created in order to find the best one. There are 7
methods used to create the indicators, ranging from low to high
complexity. These 7 methods comprehend the main used tech-
niques in the literature and some new lines are proposed, trying
to cover all the possible data sources. The different indicators are
tested in several experiments and finally a method is selected. The
occupancy indicator is an attribute that varies from 0% to 100%. In
summary, 43 short-term load forecasting models are trained and
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Fig. 2. Temperature and consumption data for summer and winter weeks.

tested using only one occupancy indicator set as attribute each time
with the aim of finding which performs better.

The first number of the indicator is referred to as the set, while
the other ones are the data sources. For example, the indicator 4.32
is generated with the method of set 4 on the basis of indicators 2.3
and 3.2. The indicators, organized in sets, are as follows:

1. Indicator set 1.
• Binary occupancy. The simplest indicator. If the university is

open, there is a 100% occupancy. If the university is closed,
there is 0% occupancy.

2. Indicator set 2 (2.1–2.3). Daily profile. These 3 indicators are
based on daily profiles. There are 7 different daily profiles: school
day, non-school day, examination day, school-leaving exami-
nation day, August day, holiday and weekend day and, finally,
Easter and Christmas holiday. Each daily profile has its own  level
of occupancy. Each one of the 3 indicators of this set is created
using only one of the 3 data sources. The data sources to describe
each daily profile are:
• Expert knowledge. Based on the experience of the employees

of the university, a level of occupancy of the building for each
day type is created.

• Sensor data. Based on the PIR sensor data collected for the pre-
vious work in the PIV building, a level of occupancy for each
day type is created. The average of the level of occupancy for
several days of each type of day is used.

• Teacher scheduling. Based on the schedules of certain employ-
ees of the university, a level of occupancy for each day type is
created.

3. Indicator set 3 (3.1–3.3). Hourly profile. These 3 indicators are
based on hourly profiles. There are 24 different hourly profiles.
Each hour has its own level of occupancy. As in the previous case,
each one of the 3 indicators of this set is created using only one
of the 3 data sources. The data sources to describe each hourly
profile are:
• Expert knowledge. Based on the experience of the employees

of the university, a level of occupancy of the building for each
hour of the day is created.

• Sensor data. Based on the PIR sensor data collected for the pre-
vious work in the PIV building, a level of occupancy for each
hour type is created. The average of the level of occupancy for
several hours of each type of hour is used.

• Teacher scheduling. Based on the schedules of certain employ-
ees of the university, a level of occupancy for each hour type is
created.

4. Indicator set 4 (4.1.1–4.3.3). Aggregation function profile. These
9 occupancy indicators are created by aggregating the indicators
of sets 2 and 3. The main idea is to merge the hourly information
with that of the days. Up to 5 aggregation functions are tested

in order to discover which provides the best results. Then, the
aggregation function which provides the best performance in
terms of forecasting, is selected. The aggregation functions are
the following ones:

Aggregation function A is presented in Eq. (2):

IA = I2 + I3
k

(2)

Aggregation function B is presented in Eq. (3):

IB = I2 × I3
k

(3)

Aggregation function C is presented in Eq. (4):

IC =
√

I2
2 + I2

3

k
(4)

Aggregation function D is presented in Eq. (5):

ID = (I2 + I3)2

k
(5)

Aggregation function E is presented in Eq. (6):

IE = I2 × I3
k × (I2 + I3)

(6)

where:
I2 and I3 are the aggregated indicators of sets 2 and 3.
k is the value to scale the output to the proper range, from 0

to 100.
5. Indicator set 5 (5.1.1–5.3.3). Summation of classes. These 9 indi-

cators are based on the data of the previous indicator. The school,
examination and school-leaving examination days instances are
substituted for new values of occupancy. These new values are
calculated taking into account the summation of the active class-
rooms for each hour. Therefore, the hour with more active classes
is the hour with the maximum level of occupancy. Then, an
adjustment is needed to equilibrate the instances of the previ-
ous indicator (holidays, non-school days and night hours) and
the instances of the summation of classes.

The occupancy of the building for a determined active hour is
shown in Eq. (7):

Ohi =
∑m

i=1Aci

Mac
× Eaf × 100 (7)

where:
Ohi is the level of occupancy of one building for a determined

hour.
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Aci is the number of active classrooms for a determined hour.
Mac  is the maximum number of active classrooms.
Eaf is the adjustment factor. Varies from 0 to 1.

6. Indicator set 6 (6.1.1–6.3.3). Summation of weighted classes. On
the basis of the previous indicator, a weighting that considers the
electrical devices used in the classroom is added to the method.
Each classroom is analysed and then the total electrical power
of the devices is calculated. The weighting considers all types of
rooms, from the laboratories which contain big electric motors,
to theory classrooms which only have lights.

The occupancy of the building for a determined active hour is
shown in Eq. (8):

Ohi =
∑m

i=1Aci

Mac
×

m∑

i=1

Edpi

Mep
×  Eaf × 100 (8)

where:
Ohi is the level of occupancy of one building for a determined

hour.
Aci is the number of active classrooms for a determined hour.
Mac  is the maximum number of active classrooms.
Edpi is the summation of the power of the electric devices for

a determined classroom.
Mep  is the power of the classroom with more electric power.
Eaf is the adjustment factor. Varies from 0 to 1.

7. Indicator set 7. (7.1.1–7.3.3). Summation of weighted classes
with events. Using the data of indicator set 6, some variations
in the occupancy are added at the beginning and at the end of
certain events. The events are: the summer, the Christmas hol-
idays, the examination period, the Easter week holidays, local
festivities and university parties. In these events the occupancy
is very slightly reduced.

In Fig. 3 the several occupancy indicators for a week during
school term are shown. The figure shows that the complexity of
the profiles increases between the occupancy indicators.

5.2. Procedure block diagram

The proposed methodology consists of several blocks as shown
in Fig. 4. In the first block, the missing values are filtered. Then, the
instances are normalized. In the following block, the outliers are
filtered. In the next block, a feature selection is performed. Then,
the data is split with 1/3 of the data to testing and 2/3 to training.
In the case of PI, the training data goes from September 1st, 2011 to
September 13th, 2013 and the test data goes from September 13th,
2013 to October 15th, 2014. In the case of PII, the training data goes
from November 23rd, 2012 to February 23rd, 2014 and the test
data goes from February 23rd, 2013 to October 15th, 2014. At that
point, an instance selection (20%) is performed with the training
data, and an evolutionary search of the suitable training parameters
is performed over the selected model. Finally, the validation of the
model is done using test data.

5.2.1. Missing values filter
Due to mistakes in sensor readings, there is always a small

amount of lost values. The percentage of missing values needs to be
minimized as much as possible. There are several methods used to
filter the missing values such as filling or deleting. In this case, the
method that provides best performance in terms of forecasting, is
the deletion of the instances with missing values.

In the case of PI, the instances with missing values are 691 out of
a total of 27,375, which represents 2.5%. For PII, the instances with
missing values are 592 out of a total of 16,589, which represents
3.6%. In the case of PIV, the instances with missing values are 579

out of a total of 16,590, which represents 3.5%. In the case of the
Science Faculty the instances with missing values are 683 out of a
total of 27,366, which represents 2.5%.

5.2.2. Normalization
Normalization is needed to work with different scales and units.

The use of the same data scale improves the forecasting. The nor-
malization range used is from 0 to 1.

5.2.3. Outliers filter
By filtering the outliers the performance of the model is

increased. The outliers need to be detected and can then be deleted
or filled. In the filtering, the more restrictive the process, the greater
the amount of data lost. In the present case, the method used to
detect outliers is the local outlier factor, that consists of calculating
the anomaly score according to the local outlier factor algorithm
proposed by Breunig [11]. The instances with high scores are then
removed.

In the case of PI, the instances with outliers are 227 out of a
total of 26,684, which represents 0.85%. For PII, the instances with
outliers are 119 out of a total of 15,997, which represents 0.74%. In
the case of PIV, the instances with outliers are 118 out of a total of
16,011, which represents 0.74%. In the case of the Science Faculty
the instances with outliers are 227 out of a total of 26,683, which
represents 0.85%.

5.2.4. Feature selection
In order to remove irrelevant and duplicate data, the redundant

and non-correlated attributes are removed. Reducing the size of the
database, the computational cost of the training process is reduced.
The feature selection consists in two  blocks. In the first block the
correlation with the class of each attribute is calculated and the
features with low correlation are removed. In the second block the
correlation between attributes is calculated and the attributes with
high correlation with other attribute are removed.

That block is only for the experiments in which calendar nom-
inal attributes are used, not for regular experiments, where only
occupancy and temperature are used.

5.2.5. Instance selection
In order to reduce the computational cost of the training pro-

cess, the number of instances is reduced. A random sub-sample of
about 20% of the training data is selected. Some previous valida-
tions demonstrate that samples about this percentage reduce the
computational time while maintain the forecasting performance
levels.

5.2.6. Evolutionary search
The evolutionary search [4] is used to search the training param-

eters of the model. The objective of this is to deliver the same
opportunities to each experiment in which all the models are
trained using the same scenario. Each occupancy indicator has
equal possibilities of providing the best forecasting results.

The main parameters of the evolutionary search are: maximum
generations that specifies the number of generations after which
the algorithm should be terminated; population size that stipu-
lates the population size; mutation type that determines the type of
the mutation operator; tournament fraction that specifies the frac-
tion of the current population which should be used as tournament
members and crossover probability that stipulates the probability
of an individual being selected. The parameters of the evolutionary
search method are given in Table 2.

5.2.7. Support vector machine
The main training parameters of SVR [34] are the C parame-

ter, the type of kernel and the kernel parameters [3]. The tested
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Fig. 3. Example of occupancy indicators of sets 4, 5 and 6.

Fig. 4. Block diagram of the process.

Table 2
Parameters of the evolutionary search.

Parameter Value

Max  generations 35
Population size 5
Mutation type Gaussian
Tournament fraction 0.25
Crossover probability 0.9

kernels and their parameters, are linear (C), Polynomial (C and
degree) and Radial Basis function (C and gamma). The C parameter
is the complexity constant and adjusts the misclassification toler-
ance. If C is too large there is an over-fitting, but if it is too small
there is an over-generalization. The polynomial kernel is defined by
k(x, y) = (x × y + 1)d where d is the degree of polynomial. The radial
kernel is defined by k(x, y) = exp(−g||x − y||2) where g is gamma.

The optimization of the training parameters of SVR for each
experiment, is performed using the evolutionary search method.

A range for each parameter is defined before undertaking each
experiment. Then, when the training process is finished, the proper
parameters are found.

5.2.8. Validation
In the validation process, the model generated with training data

(65%), is used to calculate the class attribute of the test data (35%).
This data is then validated with a MAPE (mean absolute percentage
error) indicator in front of the real values. The MAPE performance
indicator is chosen due to its popularity in the forecasting field. The
data is chronologically selected, so that the first period of time is
used to predict the last period of time.

6. Experimental results

The experiments have been realized using Rapid Miner [12] and
a computer with an Intel Core i7-4500U processor and 8 GB of
DDR3 RAM. In the next section the indicator used to measure the
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performance is described. Then, several scenarios and the results
obtained are described.

6.1. Error indicator

Among the different methods used to calculate the quality of
the model, mean absolute percentage error (MAPE) is the most
common indicator found in the forecasting literature. The MAPE
performance indicator, shown in Eq. (9), does not depend on the
magnitude of the unit of measurement, and is used to compare
models. The smaller the MAPE, the more accurate is the model.

MAPE = 1
N

N∑

i=1

∣∣∣∣
ym(i) − yp(i)

ym(i)

∣∣∣∣× 100 (9)

where:
N is the number of observations.
ym is the measured output.
yp is the predicted output.

6.2. Quality factor

The quality factor is a parameter calculated performing the
weighted average of the MAPE and the workload, and then scal-
ing it between 0 and 100, as seen in the Eq. (10). The workload
is created calculating the hours invested in the generation of each
indicator set and then translating it in a 0 to 100 range.

Qualityfactor = MAPE + ×0.1 ∗ WL

2 × MQF
× 100 (10)

where:
MAPE is the mean absolute percentage error in a 0–100 range.
WL is the workload.
MM  is the maximum value of MAPE.
MQF  is the maximum value of quality factor.

6.3. Analytical results

In this section the results of several scenarios are analysed, and
then the results of the best model are plotted. In each scenario
a comparison is performed with the aim of resolving doubts and
reaching a conclusion. The main purpose of the experiments is to
discover which method generates the best occupancy indicator, a
trade-off between workload and forecasting accuracy. The perfor-
mance of the model (MAPE) is the main output in each experiment.

In the first scenario, the average performance of each indica-
tor set is calculated. In the second scenario, the influence of the
temperature attribute is analysed. In the third scenario, the predic-
tion accuracy of each data driven-model is studied. In the fourth
scenario, the performance of each data source is examined. In the
fifth scenario, the several aggregation functions are assessed. In the
sixth scenario, the performances of the SVR kernel functions are
contrasted. In the seventh scenario, the proposed model is com-
pared to a model based on several calendar nominal attributes. In
the eighth scenario, the presented model is compared to an autore-
gressive model. In the ninth scenario, the performance of the model
for several buildings is presented. In the tenth scenario, the fore-
casting accuracy for each sensor data treatment is evaluated. In the
eleventh scenario, the workload for each indicator set is provided.

The several experiments, unless otherwise indicated, have been
performed with PI and PII data, using occupancy and temperature
attributes, with an SVR model, linear kernel, aggregation function E,
65% of the training data, 35% of the test data and 20% of the training
sub-sample.

Table 3
Performance for indicator set.

Indicator set PI PII
Avg. MAPE (%) Avg. MAPE (%)

Set 1 49.81 48.34
Set 2 24.34 22.90
Set 3 30.08 23.91
Set 4 18.11 18.05
Set 5 17.05 18.01
Set 6 17.03 17.96
Set 7 16.99 17.93

Table 4
Performance for temperature attribute.

Indicator set PI PII

Without Temp. Temp. Without Temp. Temp.

Avg. MAPE (%) Avg. MAPE (%)

Set 1 49.16 49.81 52.40 48.34
Set  2 23.21 24.34 27.01 22.90
Set  3 30.52 30.08 25.27 23.91
Set  4 17.13 18.11 18.67 18.05
Set  5 16.29 17.05 18.65 18.01
Set  6 16.28 17.03 18.53 17.96
Set  7 16.25 16.99 18.51 17.93

6.3.1. Scenario 1. Performance according to the indicator set
The first experiment is performed with temperature and each

of the artificial occupancy attributes. For each building, a total of
43 of training and test processes are realized, one for each occu-
pancy indicator. Then, the MAPE average is calculated for each
occupancy indicator set. The main idea is to discover which is the
best occupancy indicator set, that is the method that provides the
best predictive accuracy, as seen in Table 3.

Table 3 indicates that most sophisticated indicator set, set 7,
presents the best results. However, the improvement between sets
4, 5, 6 and 7 is very slight. So, there is a relationship between the
complexity of the indicator and the MAPE, but it is not linear.

6.3.2. Scenario 2. Performance according to the temperature
attribute

The objective of the second experiment is to determine if the
temperature attribute improves the forecasting quality. The second
experiment is implemented first with the temperature and then
without the temperature attribute. The same steps as in the first
experiment are undertaken, and the outcome is shown in Table 4.

As seen in Table 4, the outcomes do not show an improvement
based on the use of the temperature attribute. The forecasting per-
formance variation is minimal and in opposite directions.

6.3.3. Scenario 3. Performance according to the model
The third experiment has the aim of evaluating which is the

most appropriate model. An MLR  [9] and an ANN [38] models are
compared with the SVR model. The adjustable training parameters
are as follows: for the MLR  the ridge factor and the feature selection
method, and for the MLP  the learning rate, the momentum and the
training cycles. The experiment is conducted for indicator set 4, as
seen in Table 5.

According to Table 5, the SVR model provides the most suit-
able results, but there are no clear evidences as to whether the
MLR  or the MLP  model is better. As seen in [24], the SVR model is
the correct model for dealing with load consumption forecasting in
non-residential buildings.

6.3.4. Scenario 4. Performance according to the data source
Experiment 4 consists of assessing the several data sources in

order to know which is the most suitable: expert knowledge, sensor
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Table  5
Performance for model (set 4).

Model Avg. MAPE (%)

PI PII

MLR  23.69 21.13
MLP  21.31 34.96
SVR 18.11 18.05

Table 6
Performance for data source (set 4).

Data source Avg. MAPE (%)

PI PII

Expert knowledge 17.67 17.91
Sensor data 17.63 18.35
Teacher schedule 19.55 19.17

Table 7
Performance for aggregation function (indicator 4.2.2).

Aggregation function Avg. MAPE (%)

PI PII

A 27.22 27.14
B  14.60 18.01
C  28.01 29.47
D  19.36 20.62
E  14.42 16.99

data or teacher schedule. The results for indicator set 4 are depicted
in Table 6.

The conclusion is that expert knowledge and sensor data sources
enhance the forecasting accuracy of the teachers’ schedule data
source. The use of the sensor data source is preferable because is an
impartial and repeatable method compared with the expert knowl-
edge data source. The fact that the sensor data were collected in
PIV indicates that there is room for improvement. Therefore, the
differences in the results between the three data sources are slight,
as seen in Table 6.

6.3.5. Scenario 5. Performance according to the aggregation
function

Experiment 5 analyses the effect of the aggregation function as
described in 5.1. In the generation of the occupancy indicator 4, a
process of aggregation between indicators 2 and 3, is carried out.
To find out how to perform the aggregation process properly, five
aggregation functions are tested. The results for indicator 4.2.2 are
shown in Table 7.

As shown in Table 7, the aggregation function is absolutely cru-
cial. The aggregation functions B and E far exceed the results of the
rest. The multiplicative aggregation functions improve the forecast-
ing performance of the additive ones. The aggregation function E
slightly exceeds performance method B.

6.3.6. Scenario 6. Performance according to the kernel
In experiment 6, the performance of each SVR kernel is tested.

Linear, radial basis function (RBF) and polynomial kernels are ana-
lysed with the aim of comparing their forecasting accuracy. The
parameters for the RBF kernel are C and gamma, for the polynomial
kernel are C and the polynomial degree and for the linear kernel is
C. The outcomes for indicator set 4 are listed in Table 8.

The experiments presented in Table 8, show that the linear ker-
nel is the most efficient of all three kernels. In addition, the linear
kernel involves a lower computational cost than the RBF and the
polynomial.

Table 8
Performance for kernel type (set 4).

Kernel Avg. MAPE (%)

PI PII

Linear 18.11 18.05
Polynomial 25.47 22.55
RBF  20.59 19.45

Table 9
Performance for attribute type (indicator 4.2.2).

Attribute type Avg. MAPE (%)

PI PII

Calendar nominal attributes 26.67 21.63
Indicator 4.2.2 14.42 16.99

Table 10
Performance for model (indicator 4.2.2).

Model Avg. MAPE (%)

PI PII

ARMA-X 26.84 19.87
SVR  (indicator 4.2.2) 14.42 16.99

6.3.7. Scenario 7. Performance for nominal attributes
The principal purpose of the experiment 7 is to prove that the

utilization of one single occupancy attribute in the load forecasting
model is more appropriate than the use of several calendar nominal
attributes, such as year, month, week day, holiday, type of day and
hour of the day.

In the experiment, all the nominal attributes are converted into
numeric class to deal with the SVR. A comparison is performed
between the nominal attributes model and the 4.2.2 occupancy
indicator model. The results are shown in Table 9.

As seen in Table 9, the presented model provides better predic-
tion results than the model with the calendar nominal attributes.
The presented model outperforms the models with a large set
of attributes if the data used in the occupancy attribute creation
is processed correctly. Significant differences can also be seen in
terms of computational time, in favour of one single attribute
model.

6.3.8. Scenario 8. Performance for auto-regression model
In the experiment 8 the main issue is to show that the pre-

sented model increases the forecasting accuracy compared with
the auto-regressive models [1]. So, a 24-hour ahead ARMA model
with exogenous variables including temperature, is contrasted with
the SVR model with the 4.2.2 occupancy indicator. The results are
presented in Table 10.

This experiment contrasts with an ARMA-X model where the
past values of consumption and temperature are used as attributes,
with the presented model. Usually, the auto-regressive models
provide suitable results in this field. However, the presented results
show that the ARMA model does not improve the occupancy indi-
cator SVR model, as seen in Table 10. Moreover, due to the amount
of attributes used in the ARMA-X, the difference in computational
time, in favour of the single occupancy attribute, is remarkable.

6.3.9. Scenario 9. Performance according to the building
Experiment 9 is done to test the method in other buildings of the

university. PI and PII buildings are compared to PIV and the Faculty
of Science buildings. The results of the comparison for indicator set
4 are presented in Table 11.

The results of PIV and the Faculty of Science buildings are similar
to the results of the buildings used in the experiments. The PI, PII
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Table  11
Performance for building (set 4).

Building Avg. MAPE (%)

PI 18.11
PII 18.05
PIV 16.35
Science 18.75

Table 12
Performance for sensor data treatment (indicator 4.2.2).

Sensor data treatment Avg. MAPE (%)

PI PII

Hour per day 14.76 17.19
Aggregation function (indicator 4.2.2) 14.42 16.99

Table 13
Workload for each indicator set.

Indicator set Workload units

1 10
2 20
3 20
4 25
5 80
6 90
7 100

and Faculty of Science buildings have the same profile in terms of
offices, laboratories and classrooms. However, the profile of PIV is
different as it consists mainly of offices. Due to the fact that the
sensor data collection was realized in PIV, the prediction accuracy
for PIV is higher.

6.3.10. Scenario 10. Performance according to the sensor data
treatment

The experiment 10 analyses which is the most suitable method
for processing the sensor data. The performance comparison is
between the presented model, the 4.2.2 indicator, and an occu-
pancy indicator generated by calculating for each of the 7 day
profiles the 24 hourly occupancy levels, based on the average of
the available sensor data, for an each hour of each day profile.

The results show that the presented method is slightly better
than the hour per day method, as Table 12 shows.

6.3.11. Scenario 11. Workload according to the indicator
Experiment 11 clarifies the workload product of the creation of

each occupancy indicator.
The aim of the experiment 11 is to show the great difference

in the generation of indicators 1, 2, 3 and 4, that involve a small
amount of work, and indicators 5, 6 and 7, the production of which
requires more labour hours, as shown in Table 13.

6.4. Graphic results

In the present section some of the previous experiments are
plotted. The following figures show the output of the model based
on the indicators, with the best ratio between accuracy in terms of
forecasting and the workload needed to produce it, appearing with
regard to indicator 4.2.2.

6.4.1. Chart 1. MAPE vs. hour
In Fig. 5, a chart of MAPE vs. hour for both buildings is shown.
Fig. 5 shows that the prediction in the class hours presents good

results. There are 4 hourly zones where the prediction is of poor
quality. These time-slots are at the beginning and the end of the
school day, at lunch time and during some night time hours.
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Fig. 7. MAPE vs. day type.

6.4.2. Chart 2. MAPE vs. day of the week
In Fig. 6, a MAPE vs. day plot for both buildings is presented,

where the numbers 1–7 represent Monday to Sunday respectively.
As seen in Fig. 6, the forecasting of the midweek days is suitable.

The prediction performance decays principally at the beginning and
at the end of the working week and on Saturdays.

6.4.3. Chart 3. MAPE vs. day type
In Fig. 7, a MAPE vs. day type chart for both buildings is plotted.
Among the several profiles of days: school (1), exam (3), school-

leaving examination (4), holiday and weekend (6) days are well
predicted by the model. At a lower level of prediction performance
there are: non-school (2), Easter week and Christmas (7) and August
days (5).
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6.4.4. Chart 4. MAPE vs. month
In Fig. 8, a MAPE vs. month chart for both buildings is shown.
Overall, both models offer a poor level of prediction in April

and August. Equally, the following months are better in terms of
prediction: January, February, March, June, September, October,
November and December.

6.4.5. Chart 5. Quality factor vs. indicator set
In Fig. 9, a plot of the quality factor vs. the occupancy indicator

set is presented.
The smaller the quality factor, the better it is. Fig. 9 shows that

indicator set 4 presents a balance between prediction accuracy and
workload.

7. Discussion

Taking into account the experiments, there is a non-linear rela-
tionship between occupancy indicator complexity and forecasting
accuracy. The computational cost is not the main issue in this work
because most of the experiments use few attributes. In this work,
the workload to generate the artificial attributes is a major concern.
The more sophisticated indicators (5, 6 and 7) predict better than
the simple ones (1, 2 and 3) but require a large amount of work-
load. There is a balance point situated on indicator set 4, where
forecasting precision and workload are suitable, as the quality fac-
tor indicates in Fig. 9. In addition, the occupancy indicators created
using expert knowledge and sensor data sources provide a superior
prediction than the teacher schedule ones, although the method
based on collected sensor data is more expensive, delivers more
impartiality and repeatability. In relation to the aggregation func-
tions, it is shown that multiplicative aggregation functions such
as aggregation function E, are much better than the additive ones.

In addition, the experiments show that the temperature attribute,
in this work, is not necessary, so it does not improve the load fore-
casting. This is due to the partial disaggregation of the HVAC system
from the electric consumption, since it is composed by gas boilers
and fancoils, and a portion of the energy consumption is not elec-
tricity. Furthermore, the proposed sensor data treatment, based on
the aggregation functions, enhances the hour per day treatment.

As in [24], SVR model outperforms the other tested models
(MLR, ARMA-X and MLP), however the computational cost slightly
increases due the low number of attributes, though it is entirely
acceptable. Moreover, among the several tested SVR kernels, the
linear kernel not only provides more accurate predictions, but also
involves a short computational training time. Furthermore, the
utilization of a single attribute of occupation in comparison with
several calendar nominal attributes such as hour, day of the week,
day type and month has resulted in a more compact and precise
model. Additionally, the method has proved to work satisfacto-
rily with other university buildings such as the PIV and Faculty of
Science ones, as shown in Table 11.

Analysing the charts, can be seen that the worst consumption
prediction periods are in the non-well defined human conduct
intervals, and in the high variability intervals. In Fig. 5, referring
to MAPE vs. hour chart, the load forecast is less efficient in the noc-
turnal hours, at the beginning and the end of the school-day and
at lunch time. In the nocturnal hours, this is due to the uncertain-
ties generated by the cleaning and security services. At lunch time
and at the beginning and the end of the school-day it is due to the
variability in the individual behaviours of the users.

Comparing Fig. 6, which refers to the MAPE vs. day chart, the
prediction performance decreases principally with regard to the
beginning and the end of the working week and Saturdays. Mon-
days and Fridays contain a large variability, especially Fridays,
because there are no classes in the afternoon, but some teacher’s
offices are occupied. Saturdays are complicated with regard to pre-
diction due to random activities in the university installations,
which is not the case on Sundays.

In relation to Fig. 7, referring to MAPE vs. day type chart, the
accuracy of the model is reduced in non-school, Easter week, Christ-
mas and August days. The profile of days that are adequately
predicted are uniform days. For example, in school, examination
and school-leaving examination days, the university is open and
there are students. In the same way, in holidays and weekend
days the university is closed and there are neither students nor
teachers. On the other hand, non-school, Easter week and Christ-
mas  days are not accurately predicted. Given the dispersion of
human behaviours, there are no students in the building, but some
employees tend to work during these periods. In relation to August,
the HVAC system is not running, so the consumption pattern is
slightly different, and there are some employees who work with
non-defined schedules in some laboratories.

As shown in Fig. 8, referring to the MAPE vs. month chart, the
prediction presents the lowest forecasting levels during April and
August. The month of April mainly contains Easter week, therefore
is hard to predict, as explained previously. The month of August
has been explained previously. In general, months with classes,
where consumption patterns are mainly defined by the students’
behaviour, the low-dispersion human behaviour periods, are the
months that present the highest accuracy level with regard to pre-
diction.

Among the improvements for future work, there is no doubt
that enhancing the descriptive level of human behaviour in terms
of the worst-defined time periods would improve forecasting accu-
racy. Furthermore, the chosen model that appears in the charts is
based on the sensor data (indicator 4.2.2). For this reason the largest
deviations in terms of prediction are located in specific hourly or
daily periods. If another data source has been used, the forecasting
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divergences would be located in other intervals. So, the data sources
could be analysed to know which are better for each time-slot, and
then apply them selectively or mixed in order to achieve optimal
performance. Finally, a revision and an improvement in terms of
the occupancy levels of special days including Easter week, Christ-
mas  and non-school days, is necessary. Perhaps, the model could
be improved by incrementing the number of captured special days
in the sensors’ database. Besides, although the results are not poor,
the sensor data source uses general data from the PIV building. Per-
forming a short data collection procedure in the other buildings to
obtain specific data could improve the accuracy of the predictions.
It is important to note that by improving the adjustment between
indicator sets 3 and 4, some additional prediction accuracy could
be obtained.

8. Conclusions

One of the most prevailing needs in terms of utilities is to adjust
electricity generation to consumption. For this reason, consump-
tion forecasting is a well understood domain. Also, 40% of electricity
consumption is in the building sector. In a previous paper [24], the
authors presented an STLF model for non-residential buildings for
the University of Girona. The main results obtained showed that
using occupancy and temperature as attributes, and as a model the
SVR model provides the best load forecasting. However, that model
used continuous occupancy sensor data, unavailable in advance. In
fact, the main purpose of the paper was to determine the appro-
priate attributes and models. Now, a fully operational STLF model
for the non-residential buildings of the University of Girona is pre-
sented.

This paper aims to dispose of the occupancy data in advance.
Therefore, several artificial occupancy attributes from different
data sources have been created. Then, to find which is the best
artificial occupancy indicator, several methods and data sources
including sensor data, expert knowledge, class schedules and
school calendar, are tested and analysed through the SVR model.
Furthermore, this information is compared in terms of the work-
load resulting from the creation process associated with each
occupancy attribute, searching for the most balanced occupancy
indicator between performance and workload. Finally, some exper-
iments are conducted to compare the proposed model to other
classic models and attributes.

Although the prediction accuracy is lower with respect to pre-
vious work [24], the main objective of the presented work is to
generate a model based only on artificial attributes, tracing a new
path towards artificial occupancy attributes generation methods.
The results show that the model which has the best ratio between
forecasting precision and workload is an SVR model with a linear
kernel trained only with one occupancy attribute generated from
the aggregation of the hourly and daily profiles, based on sensor
data. So, the SVR model provides the best results in comparison
with other data-driven models (ARMA-X, MLR  or ANN). Moreover,
taking into account the partial disaggregation of the HVAC system,
the model does not depend on temperature, converting it in a more
compact and simple model and reducing the computational cost.
Unlike the other models, this new model can perform hourly con-
sumption predictions months in advance, using only occupancy
data. In addition, the proposed method could interpolate the new
consumption levels if new classrooms would be constructed, which
differs from other works.

In summary, an STLF method for non-residential buildings is
provided. This simple and compact model predicts the hourly con-
sumption, months in advance, and is based only on occupancy.
Other methods are based on auto-regression or on the need for pre-
viously unavailable exogenous variables, and thus require weather

forecasts or consumption data to perform the prediction, mak-
ing a long-term hourly forecast impossible. Moreover, this paper
explains the methods for the generation of these occupancy indi-
cators. Every occupancy attribute is assessed in order to determine
which method and data source provide the best results in terms of
prediction. In future work, departing from the presented methods,
some indicator adjustments and revisions of the data sources will
be performed in order to improve the forecasting precision of the
method.
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Chapter 7

Main results and discussion

Taking into account the first publication [10], the survey, some interesting informa-
tion has been extracted:

• The use of complex models implies a disconnection from the problem knowl-
edge base and these kinds of models do not provide extra information about
the correlations.

• The increase of the frequency of the data update allows to enhance the per-
formance of the model.

• Most of the papers published in the last 5 years are based on non-linear models.

• Only a few works are addressed to perform forecasting models in disaggregated
environments such as buildings or small towns, concretely the last ones.

• Almost 60% of the works are focussed on short-term load forecasting.

• Almost 50% of the works use only load values; 32% use load and weather.

• There is an average of two years for the data collected in the non-linear models.

• There is a clear correlation between average error and the volume of data
collected. The more data collected means a better prediction.

• There is a clear relationship between the aggregation level and the prediction
performance. The more disaggregated, the more difficult it is to predict.

Concerning the second publication [13], the main factors to consider at the time
of implementing a service according to the smart city architecture are the following
ones:
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Figure 7.1: The MAPE indicator according to several conditions for the AR model.

• The process of acquisition and the transmission of data must be robust to avoid
data loss and outliers. In the same way, the safety, scalability, anonymity and
redundancy of the storage system are key. To dispose of a versatile prepro-
cessing layer is absolutely necessary, in order to filter the raw data and achieve
proper results in the data mining process.

• The service layer receives clean data, applies the algorithms and returns the
desired data to the appliance layer. The time, consistency and robustness of
the process are vital.

• The appliance layer must be accessible, visually pleasing and provide all the
required information in a comprehensive manner such as tables, charts, etc.

In relation to this case study, some appreciations must be performed:

• The AR model is simple and quick and depends only upon the load data
reducing the economic and the computational cost.

• AR models perform better in the 1-hour ahead scenarios than in the 24-hour
ahead ones.

• Taking into account the PIII building data, it is obvious that the particular-
ities of the building and the quality of the data allow for providing accurate
forecasting results, as seen in Figure 7.1.
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• AR models deliver proper results in front of cyclic and well-defined consump-
tion data patterns.

• Some time-slots, due to some variabilities, are more difficult to predict as seen
in Figure 7.1.

As a result of the study, some advices, such as to compress the work schedule,
rearrange the HVAC operation schedule, move some services or reduce the HVAC
power are introduced.

Regarding the third work [12], and in order to obtain the best forecasting perfor-
mance, the main paradigmatic black box models have been compared, taking into
account various parameters, such as the set of attributes or training parameters.

While SVR provides its greatest accuracy in the forecasting, using only temper-
ature and occupancy, other methods, such as MLR and MLP, also need calendar
information. The MLR model, focused on linear systems, performs worse than MLP
and SVR but provides information about the significance of each attribute. As seen
in Figure 7.2, the highest performance is achieved by the SVR model, produced with
a medium computational cost.

With regard to all the models:

• Real occupancy data increases the prediction accuracy in comparison with
calendar data.

• Indoor ambience data, due to the HVAC operating conditions, does not im-
prove the performance of the models.

• Instance and feature selection reduces the computational time, whilst main-
taining the performance of the model.

• The days with heterogeneous profiles, such as Friday, present lower prediction
accuracy; otherwise, weekends, due to a homogeneous profile, provide a higher
forecasting performance, as shown in Figure 7.2.

With respect to the fourth work [14] and on the basis of the experiments and
the experience, there are some evident conclusions:

• There is a non-linear relationship between forecasting performance and the
occupancy indicator complexity.

• The computational cost issues are solved using few attributes.
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Figure 7.2: The MAPE indicator according to several conditions for the SVR model.

• The workload invested in generating the occupancy attributes is the main
point of the paper.

• The model used worked for several buildings.

After testing all the occupancy attributes in several scenarios and conditions,
these are the main considerations:

• The more complex indicators perform better than the simple ones, but require
more workload.

• The quality factor indicator explains the relationship between prediction ac-
curacy and workload. The quality factor indicator suggests that the balance
point is found in the indicator set 4, as seen in Figure 7.3.

• Some data sources, such as sensor data or expert knowledge, perform better
than other ones. Although sensor data source is more expensive, it is impartial
and repeatable.

• The attribute of temperature does not improve the performance of the predic-
tion, due to the singularities of the HVAC system.

• The SVR model outperforms the other models tested, such as neural networks,
regressions and auto-regressions.
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Figure 7.3: Quality factor and the MAPE indicator according to several conditions
for the SVR model.

• The linear kernel provides better accuracy and speed in the prediction.

Looking at the charts, it seems obvious that the non-defined intervals, mainly
due to human behaviour, contain the worst prediction ranges. So, on the basis of
the best model, the main notes are the following ones:

• In the Mean Absolute Percentage Error (MAPE) vs. hour chart, in Figure
7.3, the main unpredictable periods are focussed on the beginning and the end
of the school-day and at lunch time, due to the variability in services and in
human behaviour.

• Referring to the MAPE vs. day chart, in Figure 7.3, the major deficiencies in
the prediction are located at the beginning and the end of the working week,
as a result of the variability in human conduct and random activities.
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• With regard to MAPE vs. day type chart, as seen in Figure 7.3, the main pre-
diction difficulties are placed in the heterogeneous days, such as non-school,
Easter week, Christmas and August days, mainly due to the dispersion of hu-
man behaviour and HVAC conditions. On the other hand, when the university
is working in regular mode, the prediction is better.

• From the last chart, the MAPE vs. month one, seen in Figure 7.3, the months
of April and August are hard to forecast because of Easter week and HVAC
issues.



Chapter 8

Conclusions

From the first paper [10], the survey, the main conclusions are the following:

• The introduction of the EMS in several levels of the Smart City services in-
creases the need for energy predictions. Smart buildings, disaggregated en-
vironments or microgrids are the main users of minute-by-minute, hourly or
daily forecasts.

• With the deployment of Wireless Sensor Networks (WSN), the forecasting
models are improving in performance, due to the continuous actualization of
the data. In addition, the proliferation of new types of sensor data provides
explanations about economic and social changes.

• The EMS is able to perform energy balancing and resource planning by means
of suitable predictions.

• Usually, load and weather predictions are the main information that EMS
needs, in order to manage and operate the loads in a proper schedule, with
the aim of balancing grid consumption, ensuring stability and reliability.

The main challenges in relation to Smart City services are to design a framework
and to define common elements. At a low level, to enhance the quality, increase the
efficiency and the robustness of the grid are the shared objectives of the utilities.
The main conclusions at the end of the second work [13] are the following ones:

• The paper identified intelligent city services in the smart city context. The
work explained and described the singularities and difficulties of the integration
of these city services, resulting from the monitoring, the management or the
operation of the electricity grid.
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• The paper is based upon a particular case; a STLF system for seven non-
residential buildings located at the university of Girona.

• According to the smart city layers’ architecture, the paper depicted the features
of each layer of the embedded service.

• The function of the layers consists of: collection of data, transmission of data,
storage of data, cleaning and standardization of data, forecasting process and,
finally, to display the results to the user.

• The selected model is an autoregressive model and was chosen due to its
simplicity and notoriety, taking into account that only the class attribute is
needed in this model.

• In the case of the AR models, the integrity and quality of the data, and the
presence of well-defined and cyclic patterns in consumption, are the key factors
to obtain the higher accuracy in the prediction.

• Several tests have been performed, taking into account diverse scenarios and
analysing the forecasting process for months or the days of the week.

As has been said, the purpose of STLF models is to feed the EMS, with the aim
of managing, operating and balancing the electricity grid. There is a lot of scientific
literature around this issue and the main interest of the utilities is to perform the
process in a more accurate, economical, quick and simple manner. On completion,
the third work [12], the main conclusions are the following:

• The goal of the paper was to perform an STLF model for a non-residential
building at the University of Girona. For this reason, data of weather, indoor
ambience, calendar and real building occupancy have been collected, in order
to explore which are the most meaningful.

• Several models, such as MLR, MLP and SVR, and diverse groups of attributes,
have been tested with the aim of finding the optimal combination. At the
end of the tests, the combination that has provided the highest forecasting
performance is the SVR model with occupancy and temperature data.

• The main advantages of a small number of attributes in the database are a
reduction of the computational cost and the price of the WSN.

• Another finding is that temperature, relative humidity and light level data
collected inside the building are not useful in increasing the accuracy of the
model. This is the result of the HVAC operation conditions.
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• The main advantages of collecting information about the occupancy of the
building using PIR sensors are: a reduced price, in face of other occupancy
detector methods, such as cameras, CO2 sensors or batch readers; simplicity
in the installation and an acceptable level of accuracy.

The authors presented an STLF model for non-residential buildings for the Uni-
versity of Girona in the last paper [13], using temperature and occupancy informa-
tion to perform the prediction. Although the accuracy achieved in the prediction
was extremely high, the model is based on unavailable data in advance, due that to
the fact that real occupancy data is not available, at the moment of prediction. In
order to complete the last work [13] and dispose of a completely functional STLF
model for the non-residential buildings of the University of Girona, the fourth paper
[14] proposed a solution generating occupancy attributes in advance. These are the
main conclusions from [14]:

• The quality factor, a compromise between workload and accuracy, provided a
general idea of the most balanced occupancy indicator.

• The multiple experiments, in order to compare the proposed model in rela-
tion to the other models, using in each case different attributes, have been
descriptive and useful in determining the best one.

• Finally, the paper not only provides a model to obtain the highest accuracy
but also to create a model based only upon artificial attributes, presenting a
guide of the artificial occupancy attributes’ generation methods.

• Observing the results, it was clear that the combination that performed better
was the SVR model, using a linear kernel and one occupancy attribute, created
using sensor data combined from the hourly and daily profiles. The model
delivered better results than any other data-driven model, such as AR, ANN
or MLR.

• One of the major advantages of the present proposal is that the resulting model
does not depend on weather attributes; that makes the model simpler and less
demanding, computationally.

• Another important virtue is that the presented model, based only upon occu-
pancy, can predict the consumption, hour by hour, months in advance.

• It is also interesting to note that one of the presented models allows us to
perform electricity consumption predictions, taking into account modifications
in the university, such as variations in the number of classrooms.
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• In short, in the present work, an STLF model for non-residential buildings,
based upon occupancy data, has been developed, which can perform hourly
predictions, months in advance. In order to perform long-term hourly fore-
casts, the model is not dependent upon exogenous variables that need to be
predicted or measured, such as weather or consumption.

• Besides this, a complete analysis of the occupancy indicators and their relative
accuracy is provided in conjunction with the guidelines to generate them. The
major objective of the paper was to determine which methods, techniques and
information produces the best STLF models.

On the basis of the last work [14], these are the proposed improvements for future
works:

• Create a method to adjust the models in relation to the occupancy indexes.

• Review and test new data sources, in order to increase the accuracy of the
predictions.

• Increase the level of description or definition of the occupancy attributes during
the daily time-slots, where the prediction accuracy is low. Select the best
occupancy data source for each time-slot, mixing them if it is necessary, in
order to increase the performance of the model.

• Increase the collected sensor data of special days, such as Easter week, Christ-
mas and non-school days, with the aim of increasing the performance during
these days.

• Obtain occupancy sensor data of other buildings, realizing short campaigns,
with the objective of enhancing the forecasting performance in these buildings.

• In addition, in a general manner, these services can be complemented with
other functionalities, such as energy efficiency building rating or building
benchmarking. An energy saving recommendation system will be helpful in
this area too.



Chapter 9

Erratum

On page 76, the Eq. 7 should be:

Ohj =
∑m

i=1 Acij

Mac
× Eaf × 100 ∀j = 1..24 ∀i = 1..m (9.1)

Where:
Acij is the number of active classrooms for a determined classroom i and hour j.
Eaf is the adjustment factor. Varies from 0 to 1.
Mac is the maximum number of active classrooms.
m is the total number of classrooms.
Ohj is the level of occupancy of one building for a determined hour j in %.

On page 77, the Eq. 8 should be:

Ohj =
∑m

i=1 Acij

Mac
×

∑m
i=1 Edpij

Mep
× Eaf × 100 ∀j = 1..24 ∀i = 1..m (9.2)

Where:
Acij is the number of active classrooms for a determined classroom i and hour j.
Eaf is the adjustment factor. Varies from 0 to 1.
Edpij is the summation of the power of the electric devices for a determined class-
room i and hour j.
Mac is the maximum number of active classrooms.
Mep is the power of the classroom with more electric power.
m is the total number of classrooms.
Ohj is the level of occupancy of one building for a determined hour j in %.



96 Chapter 9. Erratum

On page 79, the Eq. 10 should be:

QF =
(MAP E

MM
× 100 + 0.1×WL)

(100 + 0.1×WLm) × 100 (9.3)

Where:
MAPE is the mean absolute percentage error in a 0 to 100 range.
MM is the maximum value of MAPE.
QF is the quality factor in %.
WL is the workload.
WLm is the minimum value of workload.
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