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cases this interaction can be neglected. The adaptation of this model when a far field

semi-analytical model is desired to be used as the propagation model is fully developed,

by means of the dimensioning of the near field and far field regions.
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Moltes gràcies a tots i totes per fer-ho possible.

ix

file:jordi.romeu@upc.edu
http://leam
http://leam
http://leam
http://leam
http://www.avenginyers.com
http://www.vibcon.net
http://www.sener.es




Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

Contents xi

Symbols xxxix

1 Introduction 1

1.1 Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Objectives of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 State of the Art 7

2.1 Generation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Track models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Contact force models . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Propagation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Analytical propagation models . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Homogeneous and elastic half-space . . . . . . . . . . . . . . . . . 14

2.2.3 Half-space stratified in homogeneous and elastic layers . . . . . . . 14

2.2.4 Near field and far field regions . . . . . . . . . . . . . . . . . . . . 16

2.2.5 Other models of heterogeneous half spaces . . . . . . . . . . . . . . 17

2.2.6 Viscoelastic or anelastic theory . . . . . . . . . . . . . . . . . . . . 17

2.2.7 Numerical integration of the elastodynamic integrals . . . . . . . . 18

2.2.8 Numerical propagation models . . . . . . . . . . . . . . . . . . . . 20

2.2.9 Empirical or semi-analytical propagation models . . . . . . . . . . 20

2.3 Train-induced ground vibration models . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Analytical models . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Numerical models . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

xi



Contents xii

3 Near field distance determination 25

3.1 Theoretical background and methodology . . . . . . . . . . . . . . . . . . 26

3.1.1 Infinite line source . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.2 Point source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1.3 Numerical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.4 Near field determination procedure . . . . . . . . . . . . . . . . . . 33

3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Results for an infinite line source . . . . . . . . . . . . . . . . . . . 34

3.2.2 Results for a point source . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.3 Calculation example on real grounds . . . . . . . . . . . . . . . . . 39

3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Superstructure model 45

4.1 Superstructure model definition . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.1 Subgrade model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.2 Superstructure/subgrade coupling . . . . . . . . . . . . . . . . . . 52

4.1.3 Numerical solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 Influence of the subgrade parameters on the track receptance . . . . . . . 57

4.2.1 Effects of the dampings DP and DS . . . . . . . . . . . . . . . . . 63

4.2.2 Effects of the density . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.3 Effects of the Poisson’s ratio . . . . . . . . . . . . . . . . . . . . . 67

4.2.4 Effects of the Young’s modulus . . . . . . . . . . . . . . . . . . . . 67

4.2.5 Effects of superstructure width . . . . . . . . . . . . . . . . . . . . 70

4.3 Fast method to obtain track receptance in the case of subgrade coupling . 72

4.4 Superstructure equivalent model . . . . . . . . . . . . . . . . . . . . . . . 73

4.4.1 Superstructure equivalent model with constant parameters . . . . 73

4.4.2 Superstructure equivalent model with frequency dependant pa-

rameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5 Coupling between superstructure and rolling stock . . . . . . . . . . . . . 78

4.5.1 Rolling stock model . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5.2 Contact force model . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5.3 Wheel/rail contact force evaluation . . . . . . . . . . . . . . . . . . 80

4.5.4 Indirect evaluation of the roughness time histories . . . . . . . . . 84

4.6 Influence of the subgrade parameters on the wheel/rail contact force . . . 86

4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5 Reference vibration amplitude determination 97

5.1 Generalisation of the track response to a moving force arbitrarily varying

in time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



Contents xiii

5.2 Ground response to a moving load arbitrarily varying in time . . . . . . . 99

6 Contributions and recommendations 101

6.1 Principal contributions of this work . . . . . . . . . . . . . . . . . . . . . . 102

6.2 Recommendations for future research . . . . . . . . . . . . . . . . . . . . . 103

A Static integrands and integrals 105

A.1 Static integrands and integrals for infinite line source expressions . . . . . 105

A.2 Static integrands and integrals for point source expressions . . . . . . . . 108

A.3 Static integrands and integrals for infinite strip source expressions at its

directrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

B Superstructure model without subgrade coupling 113

B.1 Governing equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

B.2 Analytical solution by contour integration . . . . . . . . . . . . . . . . . . 116

B.3 Natural frequencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

C Complete results obtained by using the superstructure model 121

C.1 Effects of the subgrade parameters on the track receptance . . . . . . . . 121

C.1.1 Effects of the ground types . . . . . . . . . . . . . . . . . . . . . . 122

C.1.2 Effects of the dampings DP and DS . . . . . . . . . . . . . . . . . 130

C.1.3 Effects of the density . . . . . . . . . . . . . . . . . . . . . . . . . . 138

C.1.4 Effects of the Poisson’s ratio . . . . . . . . . . . . . . . . . . . . . 146

C.1.5 Effects of the Young’s modulus . . . . . . . . . . . . . . . . . . . . 154

C.1.6 Effects of the superstructure width . . . . . . . . . . . . . . . . . . 162

C.2 Equivalent model parameters . . . . . . . . . . . . . . . . . . . . . . . . . 170

C.2.1 Equivalent model with constant parameters . . . . . . . . . . . . . 170

C.2.2 Equivalent model with frequency dependence parameters . . . . . 171

C.3 Subgrade influence on the response of the wheel/rail contact dynamics . . 179

C.3.1 Subgrade influence on the wheel response . . . . . . . . . . . . . . 179

C.3.2 Subgrade influence on the rail response . . . . . . . . . . . . . . . 183

C.3.3 Subgrade influence on the wheel/rail contact force . . . . . . . . . 187

D Determination of the superstructure/subgrade contact width 191

Bibliography 193





List of Figures

1.1 Parts of a global model of vibration assessment: Generation (1), Pro-

pagation (2) and Reception (3). . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Types of superstructure models. (a) Continuous support model with

two layers of support. (b) Continuous support model with three layers

of support where ballast mass and its internal friction is considered. . . 9

2.2 Types of superstructure models. (a) Discrete support model with two

layers of support. (b) Discrete support model with three layers of sup-

port where ballast mass and its internal friction is considered. . . . . . . 10

3.1 Variation of factor MLine
X with respect to adimensional distance xnorm

and Young’s modulus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Variation of factor MLine
Z with respect to adimensional distance xnorm

and Young’s modulus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3 Variation of factor MLine
X , estimated at xnorm = 1, with respect to the

dampings DP and DS and for different Poisson’s ratios. . . . . . . . . . 36

3.4 Variation of factor MLine
Z , estimated at xnorm = 1.5, with respect to the

dampings DP and DS and for different Poisson’s ratios. . . . . . . . . . 36

3.5 Variation of factor MPoint
R with respect to the adimensional distance

rnorm and frequency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.6 Variation of factor MPoint
R , estimated at rnorm = 1, with respect to the

dampings DP and DS and for different Poisson’s ratios. . . . . . . . . . 38

3.7 Variation of factor MPoint
R , from the exact and approximated Rayleigh

wave solution for quaternary and mesozoic ground types (see Table 3.1). 39

3.8 Variation in factor MLine
X with respect to the adimensional distance

xnorm for the different ground types. Line source case. . . . . . . . . . . 40

3.9 Variation in factor MLine
Z with respect to the adimensional distance

xnorm for the different ground types. Line source case. . . . . . . . . . . 41

3.10 Variation in factor MPoint
R with respect to the adimensional distance

xnorm for the different ground types. Point source case. . . . . . . . . . . 41

3.11 Variation in factor MPoint
Z with respect to the adimensional distance

xnorm for the different ground types. Point source case. . . . . . . . . . . 42

xv



List of Figures xvi

4.1 Adopted track model: 2-layer continuous support model with subgrade

coupling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Free body diagram of a beam slice, in which no body force has been

considered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Coordinate system (x, y, z) and subgrade displacements (xg, yg, zg). . . 50
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[-]
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[-]
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K Lamb’s propagation model constant [-]
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MLine
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[dB]
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placement induced by a line load

[dB]

MPoint
R Near field distance factor related to the radial displace-

ment induced by a point load

[dB]

MPoint
Z Near field distance factor related to the vertical dis-

placement induced by a point load

[dB]

Mnfd Assumed error in the determination of the near field

distance

[dB]
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Q Distributed load of a line source [N/m]
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Q′(ω) Frequency dependent constant of the superstructure [N/m]
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Re(.) Real part of a complex expression or number
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S Rail cross-sectional area [m2]

T (ω) Frequency dependent constant of the superstructure [N/m]
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in the spatial-frequency domain

Xg0, Yg0, Zg0 Ground surface vibration displacements at a {x, y, z}
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X̄g0, Ȳg0, Z̄g0 Ground surface vibration displacements at a {x, y, z}
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Zr Rail vertical vibration displacement in the spatial-

frequency domain

Zs Sleepers vertical vibration displacement in the spatial-

frequency domain

Zw Wheel vertical vibration displacement in the spatial-

frequency domain

Z ′r Rail vertical vibration displacement for the case of

no superstructure/subgrade coupling in the spatial-
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Z ′s Sleepers vertical vibration displacement for the case
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frequency domain
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1.1 Justification

In recent years there has been growing interest by the authorities to control the vibrations

induced by train infrastructures due to an increase in preoccupation by the general

population about the effects on their comfort and quality of life. The appearance of

high speed lines and/or the increase in urban and intercity networks of railways has

caused an increment in the perception of this phenomenon, to which the administrators

of infrastructures have to face in at least two different situations: in the design of new

infrastructures and when an action plan to reduce population exposure to vibrations

must be drawn up.

When designing new infrastructures, three types of ground-borne vibration prediction

model should be considered, according to the stage of system’s development [4]:

� Scoping model: to be used at the very earliest stages of development of a rail

system to identify whether ground-borne vibration is an issue.

� Environmental assessment model: to be used to quantify more accurately the

location and severity of ground-borne vibration effects for a rail system and the

generic form and extent of mitigation required to reduce the effects.

� Detailed design model: to be used to support the detailed design and specifica-

tion of the generic mitigation identified as being required by the environmental

assessment model.

When making action plans for reducing population exposure to vibrations, it is necessary

to define which areas of territory are affected and also to quantify the affected population

[5]. This could allow to define priority criteria for the application of vibration mitigation

measures, for example, as is established for environmental noise caused by railways [6].

Both in making action plans for reducing population exposure to vibrations as well as

in the first stages in the development of new infrastructures, large scale undertakings

must be faced and a wide variety of situations can be found. In these situations, the

calculation model applied should be the simplest and most adaptable possible, in order

to avoid unnecessary effort at these stages. This simple model should be divided, as

shown in Fig. 1.1, into three main parts [4]:

� Generation. This should comprise of the quasi static and dynamic excitations

induced by the train passage. Static and dynamic properties of the rolling stock,

superstructure and subgrade should be used to compute an output value that

characterises the source.



Chapter 1. Introduction 3

� Propagation. This should use the output value of the generation model as an

input and calculate, from this reference, the vibration amplitude at any point on

the ground.

� Reception. Finally, this part of the global model should compute the vibration

inside a building from the vibration amplitudes calculated by the propagation

model.

Figure 1.1: Parts of a global model of vibration assessment: Generation (1), Propa-
gation (2) and Reception (3).

Therefore, any global model of vibration assessment should yield the ground-borne vi-

bration at the required location and should be a function of the source, the propagation

path and the receiver [7–13].

Within this global model, the algorithms involved in the propagation model are the most

computationally intensive. There are many models of propagation for train infrastruc-

tures, which can be classified into three main types [4, 14]: analytical models, numerical

models and empirical models (Section 2.2).

� Analytical models are quite adaptable and require a computational effort that

depends on its complexity.

� Numerical models usually require huge computational capacities and their adap-

tation to other cases is less efficient since it usually requires rebuilding the model

of elements. However, they allow for the calculation of unusual or complex cases,

usually unattainable by using any other model type.
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� Finally, empirical models are extremely fast but, when based entirely on experi-

mental measures, are not usually very adaptable. However, they can contemplate

analytical concepts, becoming semi-analytical models and allowing for higher

adaptability [15].

Therefore, semi-analytical or fast analytical propagation models are the best choices to

ensure high computational efficiency and high adaptability at the preliminary stages

of the project, in scoping global models for example [4]. More precise analytical mo-

dels or numerical models are more appropriate in more advanced stages of the project

development.

This thesis focuses on the development of a model for the generation and propagation

parts of a global model (see Fig. 1.1) to be used in preliminary assessment studies for

the case of at-grade infrastructures. Other kinds of infrastructures, like underground

railways or viaducts, are outside the scope of this investigation. Two different ways are

followed:

� Develop a fast analytical model for both generation and propagation

parts. As this model needs high computational efficiency and high adaptabi-

lity at the preliminary stages of the project, time consumption (engineering and

computational time consuming) is the most important aspect while the accuracy

modelling the real railway system moves to the background.

� Use the previous model only as a generation model to feed adequately

semi-analytical propagation models. In semi-analytical propagation models,

the train source is usually characterized by a frequency-dependent reference vibra-

tion amplitude at a reference distance (see Section 2.2.9 for more details). If these

reference values are taken from experimental measurements the generation/prop-

agation model becomes very inflexible. In contrast, if these reference values are

obtained by using an analytical generation model, the model becomes quite adap-

table.

1.2 Objectives of this thesis

As can be inferred from the previous section, the objective of this thesis is to develop a

generation/propagation model for an at-grade train source, which would be used to eva-

luate railway-induced ground vibrations in preliminary assessment studies. To achieve

this main objective, three partial objectives are defined:
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� Bound the region of the ground surface on the surroundings of an at-grade train

source that allows for the use of typical semi-analytical propagation models.

� Implement a simple and fast analytical model of the superstructure, which would

allow for economic calculations of the track receptance and the wheel/rail con-

tact force in terms of the computational effort. This model must allow for the

computation of any particular case, composed of any combination of rolling stock,

superstructure and subgrade kinds. The influence of the subgrade on the system

response will be studied, with the aim of simplifying the model if this influence is

not significant.

� Expand the previous model to determine ground surface vibration levels in the

surroundings of the train infrastructure induced by a train passage, obtaining a

complete generation/propagation model. Again, any combination of subsystems

involved must be carried out. This model can also be used to obtain a reference

vibration amplitude at a reference distance (calculated in the first partial objective)

to use semi-analytical propagation models.

1.3 Structure of this thesis

In Chapter 2 one can find a state of the art for generation and propagation models,

Sections 2.1 and 2.2 respectively. Propagation models can be classified, as stated above,

in analytical models (2.2.1), numerical models (2.2.8) and empirical or semi-analytical

models (2.2.9)

Chapter 3 is structured as follows. In Section 3.1 the definition of Lamb’s solutions

for line (Section 3.1.1) and point (Section 3.1.2) sources are recalled and the numerical

solution approach used is also presented (Section 3.1.3) as well as a methodology to cal-

culate the near field distance (Section 3.1.4). In Section 3.2 the relationship between the

parameters of the problem and the near field distance for the case of infinite line source

(Section 3.2.1) and point source (Section 3.2.2) is explained. A calculation example of

near field distances (Section 3.2.3) is also presented. Section 3.3 contains the conclusions

of this chapter.

Chapter 4 presents a complete model of superstructure coupled with its subgrade, which

is assumed to be a viscoelastic and homogeneous half-space. The analytical formulation

of this model is developed in Section 4.1, showing the subgrade model (Section 4.1.1),

the superstructure/subgrade coupling (Section 4.1.2) and the numerical integration ap-

proach used to solve the integral solutions of the problem (Section 4.1.3). The influence

of the subgrade parameters on the track receptance is shown in Section 4.2, where the
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particular effects of damping (Section 4.2.1), density (Section 4.2.2), Poisson ratio (Sec-

tion 4.2.3), Young’s modulus (Section 4.2.4) and superstructure width (Section 4.2.5)

are investigated. In view of these results, a fast method to obtain the track receptance

is presented in Section 4.3. Additionally, an equivalent 2DOF model of the track is de-

veloped in Section 4.4 assuming frequency non-dependent (Section 4.4.1) and dependent

(Section 4.4.2) parameters.

Chapter 4 also presents a methodology to evaluate the wheel/rail contact force with

the aim of investigating the effects of the subgrade in this variable. First, in Section

4.5, a rolling stock model and its coupling with the superstructure model are defined

(Sections 4.5.1 and 4.5.2). An approach to evaluate the wheel/rail contact force using the

complete model and a methodology to work with roughness information are presented in

Sections 4.5.3 and 4.5.4 respectively. Finally, the influence of the subgrade parameters

on the wheel/rail contact force are investigated in Section 4.6. Section 4.7 contains the

conclusions for this chapter.

Chapter 5 presents a general model for a train passage, generalising the complete model

developed in Chapter 4 to a moving force arbitrarily varying in time which simulates

a single wheel-set pass-by (Section 5.1). A methodology to obtain the response of the

ground using the previously evaluated wheel/rail contact force as this moving source is

presented in Section 5.2.

Finally, Chapter 6 presents the conclusions of this work, summarising the principal

contributions of this thesis (Section 6.1) and proposing future research ideas that the

author considers interesting as a continuation for this research line.



Chapter 2

State of the Art

In this chapter, a review of the most relevant studies and investigations developed about

railway-induced ground vibrations is presented. This review is subdivided into genera-

tion models, which concerns about the rolling stock, the track and their contact; propa-

gation models, where the most used models of the ground are explained; and railway-

induced ground vibrations models, which contains the most renowned complete models

(only generation and propagation parts) of train infrastructures at-grade.

7
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2.1 Generation models

The generation of vibrations in railway infrastructures is due to loads generated in the

wheel-rail contact. Excitations that generate these loads can be classified into two very

distinct kinds [16]:

� The static component of the axle loads generates an excitation due to its displace-

ment along the track. It is called the quasi-static excitation. It has a “low”

frequency content in general (< 20Hz), which shifts to lower frequencies with

increasing distance from the track and to high frequencies with increasing train

speed [17].

� The dynamic component of the wheel-rail contact forces generates an excitation

basically due to the spatial variation of the support stiffness and the wheel and

track roughness. It is called the dynamic excitation. It has a “high” frequency

content in general: between 20 Hz and 250 Hz, as a loose range.

For the case of sub-Rayleigh train velocities, Lombaert, Gupta and Degrande [16, 17]

show, as well as Sheng, Jones and Thompson [18] did, that the quasi-static excitation

dominates the track response and, by contrast, the dynamic excitation dominates the

ground-borne vibration. Therefore, an inclusion of these two kinds of excitation is

mandatory for any superstructure model that will be used to quantify its attenuation

between, for example, the rail and the surrounding ground. In contrast, for ground-

borne vibration assessment the quasi-static excitation can be neglected in most cases,

with the exception of the trans-Rayleigh trains [19].

2.1.1 Track models

In 1993 Knothe and Grassie published a review of dynamic track models and contact

force models at high frequencies [20]; this work has become a reference for most of the

investigations carried out later in this topic. They considered “high” frequency as those

above 20 Hz, where track dynamics become increasingly important and vehicle dynamics

less important. With regard to the frequency range of interest, many authors show that

it lies between 0 Hz and 1500 Hz for the case of superstructure response [20–24], and

between 20 Hz and 250 Hz for the case of ground-borne vibration for mid-speed trains

[16, 25–32]. Low frequency excitations (in the frequency range below 20 Hz) do not excite

significantly the superstructure, unlike what happens with rolling stock [20]. Only for

the case of high speed trains and soft grounds, therefore, when the high speed trains

become trans-Rayleigh trains, the quasi-static excitation is sufficiently important to be
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significant in the surface response of the surrounding ground and, thus, to induce low

frequency vibrations on this response [19]. In buildings, technical standards [4, 33, 34]

set the frequency range to evaluate human exposure to vibrations between 1 Hz and

80 Hz. Therefore, any kind of vibration mitigation measure must to act mainly in the

frequency range between 20 Hz and 80 Hz.

Knothe and Grassie also state that up to 500Hz the rail can be modelled as an Euler

beam. For higher frequencies the rail must be modelled as a Timoshenko beam [35–41].

The use of an Euler beam is thus justified for models dedicated to the propagation of

vibrations on the ground.

There are two main types of track models with respect to the modelling of rail supports:

� Discrete support model. Sleepers or blocks (depending on the type of superstruc-

ture) are considered discrete supports.

� Continuous support model. Sleepers or blocks are considered a support which is

uniformly distributed along the rail.

Both model types contemplate the possibility of one, especially two, and even three

layers of support. The track model types used most frequently in the bibliography are

presented in figures 2.1 and 2.2, to which some authors have added variants such as the

use of elastic sleepers instead of rigid sleepers [42], or subgrade models which are not

entirely rigid such as elastic or viscoelastic and homogeneous or stratified media [30].

Figure 2.1: Types of superstructure models. (a) Continuous support model with two
layers of support. (b) Continuous support model with three layers of support where

ballast mass and its internal friction is considered.
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Figure 2.2: Types of superstructure models. (a) Discrete support model with two
layers of support. (b) Discrete support model with three layers of support where ballast

mass and its internal friction is considered.

Regarding the different existing possibilities of modelling the subgrade and ground sup-

porting the track, it is interesting to cite the works of Knothe and Wu in 1998 [30] in

which it was demonstrated that for frequencies below 200Hz correct modelling of the

subgrade of the track is needed, thus ruling out the assumption that it is entirely rigid

in most cases. As also demonstrated in [43], the ground must be adequately modelled

to consider the coupling between sleepers. The need of a good subgrade model has been

contrasted by other authors [44–47].

It is also important to stress the work carried out by A. V. Metrikine [48–54] in this

field, who demonstrated the possible instability of a mass circulating on a track (a quasi-

static excitation model) caused by the proximity of circulation speed to the minimum

propagation speed of the waves in the rail. Metrikine carried out this investigation for

different types of rail supports thus contributing to the improvement of the modelling

of the superstructure and subgrade supporting it, such as the concept of the equivalent

stiffness of a half-space [49, 50]. He has also recently carried out a study in which he

added the viscoelastic theory in the modelling of the half-space [54].

Many authors demonstrate the existence of 2 natural frequencies in the case of the

continuous support model and 3 for the discrete support model [20, 55]. The first two

resonances coincide exactly with both models and are found from 50 to 200 Hz and 300

to 600 Hz approximately: In first mode the sleepers and track oscillate in-phase and in

second mode oscillate in counter-phase. The third natural frequency, which appears only

in the discrete support model, corresponds to the pinned-pinned mode. This resonance,

found between 700 Hz and 1000 Hz [56], is excited when the wavelength coincides with
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the distance between sleepers and will thus never appear in a continuous parameter

model. It is therefore negligible for the frequency range mentioned above.

One of the most applied models is that proposed by Grassie, Gregory, Harrison and

Johnson in 1983 [55]. This model is lineal, it uses a point mass to model the unsprung

mass of the vehicle and it represents the wheel/rail contact by a lineal spring, contem-

plating the contact deformation according to the Hertz theory [57]. Both the point mass

and the Hertz spring move along the track, which is modelled according to the Euler

and Timoshenko theories. Using this approach, the authors are able to determine the

response of the system of both the rail and the wheel.

Another method of interest is that presented by Clark, Dean, Elkins, Newton [42]. In

this method the wheel/rail contact force is calculated on the basis of a modal analysis of

the track and integrating this force according to the displacement of the wheel along the

corrugated surface of the rail. Using this method, the solution of the problem to various

irregularities of the rail and the wheel was found in the time domain: specifically, a wheel

flat and a uniform irregularity of the rail. Wu and Thompson [58] more recently used

a similar model to those aforementioned to determine the response of multiple wheels

based on the superposition principle.

The objective of all these models is to determine the response of the track under the

passing of the train; therefore the contact force should be adequately characterized.

2.1.2 Contact force models

A good wheel/rail model is that which generates an adequate, inherently non-lineal,

response for all types of rail irregularities. The track is subjected to a wide diversity of

loads and, in consequence, the types of irregularities are thus also diverse [59]. The irre-

gularities not caused by the passing of the train, such as joints [60], factory irregularities

[61], etc..., must be also taking into account.

Regarding to the normal contact problem, the contact force model most often applied is

the Hertz theory of elliptical contact mechanics [57]. There are, however, other proce-

dures such as the Boussinesq theory and the distributed point reacting spring (DPRS)

[62, 63]. These methodologies allow a more adequate characterisation of stress distri-

bution on the contact surface. Regarding to the tangential contact problem, Kalker’s

programs (CONTACT or FASTSIM) or their subsequent simplifications are the most

used solutions [20].

The roughness of a rail or wheel is commonly modelled following to a random pro-

cess. It has been demonstrated that in a wide range of measures, in the space domain,
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roughness obeys an isotropic Gaussian distribution [64–66]. This process is transformed

into the time domain according to vehicle speed, thus converting it into a stationary

ergodic process [67]. Being a random variable, the roughness is usually described in the

wavenumber domain. Within this domain, one of the most widespread descriptors of the

roughness is its power spectral density (PSD) [64, 65, 68], which is the accepted spectral

representation for random stationary processes [67]. It is therefore usual to describe

a roughness typology (classified according to irregularity types, when previous mainte-

nance took place, type of steel, etc...) according to a PSD generally calculated based on

the large amount of measurements of the same roughness type. As the standards stay

[69, 70], the roughness PSD should be presented in the form of one-third octave bands

in the wavenumber domain [18, 41, 45, 61, 71, 72].

Nevertheless, to feed track models such as those aforementioned, the time roughness his-

tory (based on spatial roughness history and vehicle speed) must be known. Therefore,

the spectral information in one-third octave bands describing the roughness typology

applied must be transformed to the spatial domain. A commonly used approach to

solve this problem is the reconstruction of the signal, based on its power spectral den-

sity, through a combination of triangular series [16, 45, 68, 73]. The result will be one

of an infinite number of stochastic signals which have the same spectral content as the

initial spectral roughness data.

An effective approach to determine this contact force is that presented by Cardona,

Otero, de los Santos and Mart́ınez [1, 74, 75] in which a simplification into a 2DOF

system of the 2-layer continuous parameter track model (Figure 2.1(a)) is proposed by

adjusting its parameters through modal analysis requiring the receptances of the rail

to be precisely equal. The spatial dependence of the expressions is thus eliminated

and, adding the model of the rolling stock and contact force, the time history of the

contact force can be obtained based on the numerical integration of the one-dimensional

motion expressions. The same authors propose a convolution method of variable kernel

in [76, 77], for which the time evolution of the rail vertical displacement in a certain

point is calculated based on the contact force previously determined.

2.2 Propagation models

2.2.1 Analytical propagation models

The theory of elastic wave propagation in continuous media demonstrates that when an

elastic and homogeneous half-space is excited basically 4 wave types arise, which can be

classified into volumetric and surface waves [78]
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� Volumetric waves:

– Compression waves or P-waves.

– Shear waves horizontally and vertically polarized waves (SH-waves and SV-

waves respectively).

� Surface waves:

– Rayleigh waves.

Lamb, specifically, was one of the first investigators to demonstrate that the propagation

on a homogeneous elastic half-space is composed by these different wave types [79], for

the case of line and point sources. If a half-space is considered to be divided into

horizontal layers of homogeneous thickness and properties, which is a model of ground

frequently used in literature (see Section 2.2.3), two additional wave types arise: Love

waves and Stoneley waves [80, 81]. These six wave types are not the only ones but

are the most significant with respect to its contribution to the vibration levels of the

ground; other kinds of waves, such as leaky surface waves [82], have been demonstrated

to transport only a very small amount of excitation energy.

For the homogeneous elastic half-space problem and for the case any surface source,

the waves which propagate more and more energetically are Rayleigh surface waves

[79], as carefully demonstrated by the point source case in [83] and [84]. Specifically,

Lamb showed that, taking into account only the geometrical attenuation of the waves,

Rayleigh wave and volumetric waves amplitudes induced for a point source decrease

proportionally to r−1/2 and r−2 on the far field (see Section 2.2.4), respectively. In

the case of a line source, the Rayleigh wave has no geometrical attenuation and the

volumetric waves decrease proportionally to r−3/2. It is also demonstrated in [83, 84]

that energy distribution varies according to source type (point load, multi-point load,

line load, strip load, etc...) but, in any case, the Rayleigh wave is the most powered

wave.

For the layered elastic half-space problem, Rayleigh wave dominates the propagation of

vibrations induced by surface source, generally. However, there are some special cases

for those the body waves dominate the surface motion, for example when the excitation

frequency approaches to a natural frequency of the upper layer [85].

A summary of the principal ground vibration propagation models is presented below.

These range from the most theoretical, developed in the field of seismology and geome-

chanics, to the most empirical, attained typically in civil engineering and/or mechanical

engineering, through to numerical models based on finite, infinite or contour elements.
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2.2.2 Homogeneous and elastic half-space

The first author to solve the surface vibration propagation in an isotropic, homogeneous

and elastic half-space was Lamb in 1904 [79]. Lord Rayleigh [86] had previously discov-

ered the existence of surface waves, later named Rayleigh waves, which restricted their

propagation close to the half-space surface.

Lamb solves the problem of forced vibrations both by line source and point source, acting

in both cases vertically on an isotropic, homogeneous and elastic half-space. He specifica-

lly finds a solution for an impulsive source from the harmonic source solution previously

derived by him. All surface displacement expressions attained contain integrals, the

complexity of which led him to the need to use asymptotic expansions to evaluate them.

Another approach used was the steepest descent method [87]. All these approximation

approaches are valid only if the distance of study with respect to the source is sufficiently

high. They are, therefore, expressions which adequately characterise the far field [88].

Later on Holzlöhner [88] studied the applicability zone of the expressions proposed by

Lamb for Rayleigh waves in the case of an harmonic point source. He observed that

for sufficiently large distances the applicability of the Rayleigh waves term of the Lamb

expressions, named by the author as the Lamb expression for the far field, is strong.

To carry this out, he compared this expression with an exact solution of the problem

proposed by him, which is derived from the formulation for rectangular surface source

[89], transforming it to square and then making its dimension tend to zero. The results

obtained show that for sufficiently high r̄, where r̄ = rω/β (r is the distance between

the receptor and the source, ω is the angular frequency and β is the S-wave propagation

speed), the Holzlöhner model approaches exactly to Lamb’s far field model. This is

logical considering the aforementioned studies by Miller and Pursey [83, 84]: Rayleigh

waves propagate much more and more energetically than others and therefore predomi-

nate at larger distances. For shorter distances Barkan [90] had already suggested possible

interference by compression and shear waves.

Later, Jones and Petyt, as detailed in Section 2.3.1, solve the problem of rectangular

loads and strip loads acting on the surface of different half-space models. They also

observed and commented the interference of the volumetric waves in the near field (see

Section 2.2.4) in all these investigations.

2.2.3 Half-space stratified in homogeneous and elastic layers

In the section above, the ground has been assumed as an isotropic, homogeneous and

elastic half-space. This model is generally only valid in finding an initial approximation
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to the problem: the ground is in general predominantly heterogeneous and not perfectly

elastic.

The most accepted model regarding heterogeneousness is the division of the ground

into horizontal and isotropic layers, each with a certain thickness, up to a final layer

considered semi-infinite. The pioneering investigators in this field were Thomson [91] and

Haskell [92]. Thomson proposed a matrix method, later named the matrix propagator

method, which allows the relation of the boundary conditions of all interfaces of a

stratified medium from the surface down to the final layer. Haskell implemented this

method in the case of free vibrations thus obtaining dispersion curves (variation of phase

velocity with respect to the frequency and for each vibration normal mode) for Rayleigh

and Love waves through a computational algorithm. This model has been used by

several authors to find forced ground responses. [81, 93, 94] are examples.

In 1964 Professor Leon Knopoff [95] proposed a new matrix method to calculate the free

response of a stratified half-space more efficient in terms of the computational calculation

time in comparison to the Thomson-Haskell formalism. Dunkin demonstrated to [96],

almost simultaneously to the investigations of Knopoff, that low efficiency in calculation

time of this formalism also brought about a problem of precision at high frequencies.

Dunkin proposed a further new method to solve this problem, named the loss-of-precision

problem, and certified that it was also solved by the Knopoff’s method.

With their relevant improvements, both methods were compared by Schwab in [97]

concluding that the most efficient method regarding calculation time was the Knopoff’s

method [95, 98, 99]. The Dunkin method, named the δ-matrix method and then changed

to the reduced δ-matrix method thanks to contributions by subsequent investigators

about its computational efficiency [100, 101], turned out to be slightly slower.

Subsequently, in 1983, Kausel and Roësset [102] presented a new matrix formalism for

the resolution of stratified media through the stiffness matrix of each layer. These

stiffness matrices were taken from the Thomson-Haskell formulation thus it is therefore

important to stress that, as in previous cases, this new method is not more powerful. It

does, however, provide a series of advantages regarding computation and applicability.

Specifically these advantages are:

� The stiffness matrices obtained are symmetrical.

� Fewer operations are required for analysis.

� An easy adaptation to multiple excitations is allowed.

� Substructuring techniques [103] can be applied to stiffness matrices, which can be

interpreted and applied as stiffness matrices in the structural analysis.
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� Asymptotic expressions follow naturally from the expressions: problems involving

high frequencies or very thin layer can be solved without loss of precision

The structural approach of this method makes it ideal for all types of ground-structure

interaction analysis. A very similar method had already been proposed previously by

Biot, as stated in [104].

Many studies have recently appeared which introduce the concept of Green’s functions

in the calculation of a stratified half-space response. An investigation carried out by

Luco and Apsel [105, 106] is one of the most widely used and accepted. In this inves-

tigation Green’s functions are present allowing the calculation of the dynamic and 3D

response of a stratified half-space for any underground or surface source. This method

also considers certain modifications if a large number of waves are being worked with,

which in turn opens the door to other applications such as infrastructures instead of seis-

mology. In [106] the authors present a very interesting integration method to overcome

the problems related to the oscillatory behaviour of the typical integrands those appear

in elastodynamics expressions and compare its solution with some already existing ones

proving, therefore, a high credibility.

It must also finally be highlighted that the near field problem (see Section 2.2.4) is more

complicated and unpredictable than in the homogeneous case (due to reflections and

refractions of the waves in the interface between layers) [85]. Likewise, the stratified

case adds a new particularity to this problem: Love waves also appear in the surface

far-field [81].

2.2.4 Near field and far field regions

As can be seen in Sections 2.2.2 and 2.2.3, the using of Rayleigh waves expressions as a

solution of the vibration propagation problem in a half-space is not always an acceptable

assumption. To bound this applicability, the near field and far field regions are defined

as [107]:

� Near field region. Region where volumetric waves that either propagate on

or affect the surface significantly influence the levels of vibration, together with

surface waves.

� Far field region. Region where the only waves that bring movement to surface

of the ground in a significant way are the surface waves, specifically those of Love

and Rayleigh.
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Therefore, there is a distance with respect to the source that confines the border between

these two regions and is called near field distance throughout this paper.

As is mentioned above, several authors, as Lamb [79], Barkan [90], Holzlöhner [88],

Jones [108] and many more have demonstrated the existence of this interference region

but they did not quantify it. Only Holzlöhner gives indicative figures for this distance

but does not precise (r̄ ≈ 40). He finds, only for rectangular source, that the geometrical

diminishing of the near field is proportional to a r−1, as also stated in [108].

A more precise modelling of the ground, such as the well known horizontal and homoge-

neous strata model, can imply the existence of more waves [81, 91], keeping the inherent

problems of near field [85]. More complex sources which more accurately model the

superstructure/ground interaction, as will be seen in Section 2.3, are also affected for

this problem.

2.2.5 Other models of heterogeneous half spaces

There are also model types which try to contemplate the anisotropy of the real grounds.

One of the most widely studied models is transverse isotropy. A transversely isotropic

material is one with physical properties which are symmetric about an axis that is

normal to a plane of isotropy. This transverse plane has infinite planes of symmetry and

thus, within this plane, the material properties are same in all directions. It is, hence, a

particular case of anisotropy. An accurate state of the art can be found for this model

in [109], for the case of a non-layered half-space.

With regard to the heterogeneousness of the ground, a different modelling approach with

respect to the layered half-space (see Section 2.2.3) is to consider that ground properties

vary according to a continuous function with depth [104, 110, 111]. A summary of most

studies carried out with this model can be found in [112], taking both isotropic and

anisotropic media into account.

It is also important to point out studies carried out on the effect of curvature or, in

general, irregularities on the free surface of the half-space [113]. It has been demonstrated

that these irregularities (curvature or surface corrugation) generate large distortions in

the far field response of the ground.

2.2.6 Viscoelastic or anelastic theory

Up until here, the ground has been modelled as a completely elastic medium. This

hypothesis has been demonstrated non-valid in most cases for vibration propagation in
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any ground type. Only in extra low frequency range, the completely elastic assumption

can be adopted successfully.

In 1950, Read [114] studied viscoelastic (also known as anelastic) material behaviour

from also considering the derivatives of tension-deformation relationships. He thus pro-

posed a model where Lamé constants (or Young modulus and Poisson’s ratio) are con-

sidered complex which therefore leads to complex propagation speeds. Material atte-

nuation in the medium is represented by the imaginary term of these speeds. This

damping model was named the correspondence principle [115–121] and has been used

in the modelling of different kinds of materials.

This theory was also assumed in the study of vibration propagation in the ground

[122]. Haskell had already suggested the possibility of using his method considering

the correspondence principle and it was Knopoff who introduced it formally in the

expressions proposed by Thomson [91], therefore finding the formulation for a stratified

and anelastic half-space. Recent studies still use this method to model the material

attenuation in the ground [123], assuming, as in propagation speeds, a disperse character

in the attenuation linked to surface waves and a non-dispersed character (albeit variable

in depth) to that linked to compression and shear waves.

2.2.7 Numerical integration of the elastodynamic integrals

For the ground models presented in Sections 2.2.2, 2.2.3 and 2.2.5, or in most other

elastodynamics problems, the Green’s functions related to the displacements and stresses

can be obtained as a summation of the following two canonical forms [124, 125]:

I(r, ω) =

∫ b

a
Ĩ(k, ω)e−ikrdk (2.1)

I(r, ω) =

∫ b

a
Ĩ(k, ω)Jn(kr)dk (2.2)

where I are integrals, Ĩ are integrands (without taking into account the kernels), a and

b are the integration limits (in general, a = −∞ or a = 0 and b = +∞), r is some kind

of distance associated to the model type (normally the receptor-source distance) and

Jn(.) is the nth-order Bessel function of the first kind.

The numerical integration of these integrals is normally fully applicable because, if the

model assumes some kind of material attenuation of the ground, there are no poles along
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the required integration path [105, 106, 126]. In contrast, the integrands inside has a

strong oscillatory behaviour, whatever the ground model, causing two kind of problems:

� Low attenuation of the integrand with the integration variables causes low attenu-

ation of the oscillations [126]. In this cases, to ensure accuracy on the evaluation

a small truncated limit of integration can not be used, inducing the need of very

much more integration points again.

� High values of r generate dense oscillations and, therefore, too much integrations

points are required to obtain an accurate solution [124].

An approach to solve the first problem was shown by Apsel and Luco [105, 106, 126],

following an analytical procedure based on the solutions of the static integrands and

integrals. This method must be used before the numerical integration. Different versions

of this approach are used for other authors to improve the computational efficiency of

some elastodynamic problems, as for example Schevenels [127]. The Apsel’s technique

is described more extensively in Appendix A.

With regard to the numerical integration process, there are some specific methods de-

veloped to compute this kind of integrals:

� Numerical integration following a Gauss-Kronrod quadrature allows to deal with

low oscillatory integrands [128, 129]. It provides a good accuracy but its computa-

tional efficiency decreases too much significantly with the density of the oscillations.

� Filon’s method is one of most used, being its quadrature very efficient with high

oscillatory integrands [124, 125, 130–134].

� Fast Fourier and Logarithmic Fast Fourier Transform algorithms are used when

the integral can be rewritten in terms of Eq. (2.1). Logarithmic Fast Fourier

Transform algorithms have a good efficiency for solve the first problem because

they allows for a precise evaluation of the integral at very low wavenumbers also

taking into account the spectral information at very high wavenumbers [135, 136].

Another approach is the Nonuniform Fast Fourier Transform, which allows to

perform an adaptive integration, with its obvious benefits [137].

� Fast Hankel and Logarithmic Fast Hankel Transform algorithms [138–142] are used

when the integral can be rewritten in terms of Eq. (2.2). Logarithmic Fast Hankel

Transform algorithms [135, 136] have the same advantage as the Logarithmic Fast

Fourier Transform algorithms. Another approach is the Nonuniform Fast Hankel

Transform, which allows to perform an adaptive integration [143, 144] in a similar

manner as the Nonuniform Fast Fourier Transform.
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2.2.8 Numerical propagation models

Three of the most widely used methods for structural dynamics in ground modelling

are the finite element method (FEM), the infinite elements method (IFEM) and the

boundary element method (BEM). In the field of vibration propagation in railway in-

frastructures, specifically, these numerical solutions are now widely used in the case of

underground infrastructures.

One of the most successful models is the so-called coupled periodic FE/BE model [145–

150]. This discretises a periodic cell (see Section 2.3.2) of the tunnel-superstructure

system using FEM and the surrounding ground using BEM. The BEM applied for the

ground modelling allows its stratification, making each interface between strata a further

boundary element surface. This model has now been shown to be one of the most efficient

in terms of results, even though it is, as any other numerical model, extremely time-

consuming [147].

Many other authors, such as [149, 151], have created complete models of the infra-

structure in FEM which have always resulted in being extremely time-consuming in

calculation and very little generalising. In other words, they were used to characterise

specific locations.

Another current numerical ground modelling technique is the Thin-Layer Method (TLM)

[27, 152]. This is a semi-discrete numerical tool which combines the advantages of finite

elements with the rigour of analytical solutions. It consists of a partial discretisation of

the medium, only in the normal direction to the surface and interfaces of the stratified

medium.

A similar method to TLM is the Spectral Finite Element Method (SFEM) [153], which

is also able to calculate vibration propagation though a stratified medium. This method

can calculate wave propagation through waveguides, which are typically structures which

guide waves. Assuming each layer of the stratified medium behaves as a waveguide, this

method can be satisfactorily applied for stratified ground. This is a very good approach

for very high frequency excitation problems.

2.2.9 Empirical or semi-analytical propagation models

Finally, the simplest kind of propagation models, very used by the civil engineers, are

the empirical or semi-analytical models, which are based completely or partially in ex-

perimental measurements respectively.
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One of the most used semi-analytical models is Barkan’s law [15, 90]. Before Barkan,

Bornitz had already introduced a similar model in the field of vibrations induced by

infrastructures [154]. Later, several authors have proposed laws analogous to Barkan’s

in order to model the propagation of vibrations [7, 155–159].

The relationship between the function of generation and of propagation is usually a

reference amplitude calculated or measured at a determined distance from the track

[69]. From this reference, empirical models of propagation can be used to calculate

the vibration at any point on the ground, applying an attenuation law that comprises

properly the effects of geometric and material attenuations. Using these laws with

the geometric and material attenuations as a free parameters (empirical way), one can

predict the propagation of vibrations for a specific placement site. These attenuation

parameters are fitted with experimental measurements [157, 159]. Therefore, they can

not be used as predictive models, unless an exactly similar placement site is found, which

is very unlikely, or that a huge number of experimental measures are carried out.

On the other hand, if these laws are used in a completely theoretical way it is possible to

use them as predictive models [9, 160]. In this case it is necessary to know precisely the

ground’s properties and, especially, which waves predominate at the reference position

and at the prediction points, in order to be able to apply proper values of the geometric

attenuation coefficient. For a case on the surface, it is clear that the most significant

waves are the surface ones; specifically the Rayleigh waves when the ground is modelled

as an infinite and homogeneous half-space [78, 83, 84]. However, volumetric waves P and

S also appear, but they have a geometric attenuation higher than the Rayleigh waves.

One solution to these problems can be to superpose different kind of travelling waves

models [155, 161], although this procedure does not take into account constructive or

destructive interference between waves. Another option is to apply a far field model

in which the Rayleigh waves would clearly predominate. In this case the amplitude of

reference vibration which relates the generation function to the propagation function

has to be located at a sufficient distance with respect to the source, so that it assures

that the amplitude under consideration is specifically due to surface waves [9, 15, 90],

and therefore outside of the near field region.

2.3 Train-induced ground vibration models

As previously seen in Section 2.1.2, there are a large number of models able to determine

wheel/rail contact force. To find the levels reaching the ground based on this force,

many authors have presented complete superstructure/ground coupling and propagation
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models; in some a generation model has also been introduced. The most important

interaction models which have been presented until now are described in this section.

It must also be pointed out that, as in this case, the superstructure acts as an exciter.

The reverse case, such as the excitement of buildings due to vibrations propagating along

the ground (zone 3 in Fig. 1.1), is not included in the study.

2.3.1 Analytical models

Probably the best-known analytical model of train-induced ground vibrations is the

model formulated by Victor V. Krýlov [31, 162–167]. This model considers each sleeper

as a point source, as the wavelengths of the generated waves are much greater than one

sleeper dimensions. The deflection of the track is calculated assuming the circulation of

a constant mobile force along the track and taking into account the sleepers, fasteners,

ballast and subgrade [168]. Though this deflection Krýlov calculated the force acting on

each sleeper and, based on this force of each sleeper, he generates a multi-point source

model which uses the Lamb solution for Rayleigh waves as a propagation model [79, 80],

expressed in the form of Green’s function [165].

Later on, ground stratification was included in this formalism, modifying the Green’s

functions of the half-space for it to be considered [165]. Degrande and Lombaert, speci-

fically, proposed a formulation based on the dynamic reciprocity theorem, for which the

necessary computational effort is improved significantly [26].

A priori, this method was deficient for not incorporating the dynamic excitation genera-

ted in wheel/rail contact. Krýlov, however, discovered that when train speed approaches

to propagation speed of the Rayleigh waves in the ground, the vibrations induced by

quasi-static excitation increased significantly [19, 31, 162, 164–166]. This approximation

of speeds only occurs on some sections of high-speed lines where the ground is very soft

(low speed Rayleigh wave propagation) or when the train speed is sufficiently high, as

commented in section 2.1.1. For high-speed trains, it was thus demonstrated that a good

approximation of the problem is to assume only the quasi-static excitation, especially

when the track rests on a low stiffness subgrade.

Another prominent investigation was that published by C.J.C. Jones and M. Petyt,

in collaboration in some cases with other authors. It initially discusses the modelling

of a strip source acting on a half-space as a two-dimensional problem, considering the

half-space as an elastic and homogeneous medium [169], as a 1-layer stratum over a

rigid medium [170] and as a 1-layer stratum over an elastic medium [171]. Later they
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studied the case of a rectangular source also applied on a half-space, considering the half-

space as an elastic and homogeneous medium [108] as well as considering a viscoelastic

(see Section 2.2.6) stratum over a rigid foundation [172] and the source moving in the

case of an homogeneous medium [173]. In all these cases the formalism of the previously

explained dynamic stiffness matrix is used [102]. Other authors have studied this subject

in depth proposing new cases such as that of a distributed line load in movement [174]

or that of a rectangular load of a variable time width [175].

With the collaboration of X. Cheng, Jones and Petyt subsequently adapted these first

investigations for the case of a railway track. They considered a moving load acting on

a two-layer continuous support model of the superstructure, which rests on the ground

from a infinite strip contact. They used this inherent idea in the 2.5D models [176]

(see Section 2.3.2). The harmonic point load excitation were investigated, for the case

of static [29] and moving load [28, 177, 178], considering an elastic stratified half-space

in both cases. This model was more recently adapted to include dynamic excitation

[18, 45].

2.3.2 Numerical models

The aforementioned analytical models are normally efficient computationally. They

are not, however, able to tackle certain problems with complex geometries, such as

underground infrastructures.

In a recent article, written by the aforementioned Jones, Petyt and Thompson, the main

approaches carried out up to now regarding numerical models of railway infrastructures

are presented [179]. As seen earlier on, these authors have presented analytical models

(see previous section) but recognize the need to apply numerical models to adequately

resolve problems involving infrastructures of complex geometries. According to this

review, the most widely used numerical approach is the hybrid FE/BE model. As

already seen in Section 2.2.8, the BEM is widely used in ground modelling. The FEM

is used, on the other hand, to model the infrastructure and subsequently links up with

the BE ground model to reach the global system. The following alternatives or variants

exist within these hybrid FE/BE models:

� 2D FE/BE model. This is a very efficient method regarding calculation time

but does not take into account wave propagation in a longitudinal direction along

the track.
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� 3D FE/BE model. This method allows a precise characterization of the problem

but requires a great length of time to mesh the system and, above all, to carry out

the calculation at high frequencies [180, 181].

� 2.5D FE/BE model. This type of model is based on the supposition that the

infrastructure is homogeneous in the direction of the track. From this supposition

the problem linked to the waves circulating in the direction of the track is divided

into a sequence of 2D FE/BE models, each calculating the system response of

a specific wavenumber. The total system response can be calculated from the

different components obtained from each wavenumber using the inverse Fourier

transform. What is good, therefore, about these models is that they allow the

modelling of a 3D case with 2D meshes with suitable precision. These methods, in

which calculations are made per discrete value of the longitudinal wavenumber, are

named wavenumber FEMs/BEMs or two-and-a-half dimensional methods (2.5D).

One of the first articles presenting this method is that by Aubry, Cloteau and

Bonnet in 1994 [176].

� 3D periodic FE/BE model. Unlike the previous type of (2,5D) models, this

model supposes that the infrastructure is periodic and not homogeneous in the

track direction. The method is based on the division of the infrastructure into

exactly equal 3D cells, which are equal because of the periodicity of the track.

This periodic cell, named the reference cell, is solved by a coupled FEM/BEM

and the Floquet theory [182] is later used to obtain the total response of the

system [183–185]. The model has been validated experimentally for different cases

[16, 47, 186], including certain improvements such as in the case of the doppler

effect, detected in experimental measures by A. Ditzel [187].
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Near field distance determination

This chapter presents a methodology to determine an approximation of the near field

distance at the surface of the ground, both for an infinite line source and for a point

source, with the aim of obtain a reference distance to use semi-analytical propagation

models in preliminary assessment studies. The near field distance is the distance with

respect to the source that confines the border between the far field and the near field

regions. Precise quantification of this distance will bound the applicability of Rayleigh

wave expressions as valid solutions of the problem. The ground is modelled as an ho-

mogeneous viscoelastic half-space: this model allows to evaluate a first approximation

of the near field distance with low geotechnical information and, therefore, low time/e-

conomical cost, which is the most important aspect in preliminary assessment studies.

In order to measure the near field distance, an analytical approach is followed, which

compares the exact solutions of the problem with Rayleigh waves expressions proposed

by Lamb [79]. The effects of the excitation frequency and mechanical properties of the

ground on the dimensions of this interference region, characterized here the near field

distance, are also investigated. The results show near field distances for both infinite line

and point sources and for five different real grounds, typical of the Barcelona (Spain)

metropolitan area.

25
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3.1 Theoretical background and methodology

In this section, a methodology to determine the near field distance for the case of infinite

line source and point source is presented. The analytical expressions for these two kinds

of sources are presented, together with a numerical integration procedure to solve them

and expressions that define the near field distance from analytical expressions solutions.

3.1.1 Infinite line source

The complete expressions derived by Lamb [79] in the case of infinite vertical line source,

for an elastic and homogeneous half-space, are

Xg0 =
iQ

2πµ

∫ +∞

−∞

k(2k2 − k2
β − 2υυ′)

(2k2 − k2
β)2 − 4k2υυ′

e−ikxdk (3.1)

Zg0 = − Q

2πµ

∫ +∞

−∞

k2
βυ

(2k2 − k2
β)2 − 4k2υυ′

e−ikxdk (3.2)

where Q represents load amplitude, k is the wavenumber, µ is the shear modulus, Xg0

and Zg0 are the horizontal and vertical displacements in the spatial-frequency domain

of a point on the surface separated by a distance x from the line source. The other

parameters are

υ2 = k2 − k2
α υ′2 = k2 − k2

β (3.3)

k2
α =

ω2

α2
k2
β =

ω2

β2
(3.4)

where ω is the angular frequency and α and β are the velocities of propagation of the

P-waves and S-waves respectively:

α2 =
λ+ 2µ

ρ
β2 =

µ

ρ
(3.5)

From these Eqs. (3.1) and (3.2) Lamb derived the following Eqs. (3.6) and (3.7),

assuming large distances

Xg0 = −QH
µ

e−iκx +
iQC

2πµ

e−ikαx

(kαx)
3
2

+
iQD

2πµ

e−ikβx

(kβx)
3
2

(3.6)
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Zg0 = − iQK

µ
e−iκx − QC1

2πµ

e−ikαx

(kαx)
3
2

− QD1

2πµ

e−ikβx

(kβx)
3
2

(3.7)

where the constants H, K, C, D, C1 and D1 are

H = −
κ(2κ2 − k2

β − 2
√
κ2 − k2

α

√
κ2 − k2

β)

16κ3 − 8κk2
β − 4κ3

(
υ2 + υ′2

υυ′

)
− 8κυυ′

(3.8)

K =
k2
β

√
κ2 − k2

α

16κ3 − 8κk2
β − 4κ3

(
υ2 + υ′2

υυ′

)
− 8κυυ′

(3.9)

C = −2
√

2π
k3
αk

2
β(k2

β − k2
α)

1
2

(k2
β − 2k2

α)3
e−iπ

4 (3.10)

D = −2i
√

2π

√
1− k2

α

k2
β

e−iπ
4 (3.11)

C1 = −i
√

2π
k2
αk

2
β

(k2
β − 2k2

α)2
e−iπ

4 (3.12)

D1 = −4i
√

2π

(
1− k2

α

k2
β

)
e−iπ

4 (3.13)

and where κ is the root of the Rayleigh function (Eq. (3.14)) analogous to the real root

of this function when the medium is completely elastic, i.e. the so-called Rayleigh root.

F (k) = (2k2 − k2
β)2 − 4k2υυ′ (3.14)

Lamb demonstrated that each term of the Eqs. (3.6) and (3.7) is the contribution of

each kind of wave to the displacement of the chosen point. So the first term represents

the contribution of the Rayleigh waves, the second term represents the contribution of

the P-waves and the last term represents the contribution of the S-waves.

The terms for the volumetric P-waves and S-waves are not exact because they are taken

from the approximation for large kαx or kβx respectively of the branch line integrals of

the branch cuts, generated by the Rayleigh function at the complex plane. On the other

hand, the term for Rayleigh waves derived by Lamb is exact.



Chapter 3. Near field distance determination 28

Finally, it is also demonstrated, from observation of the Eqs. (3.6) and (3.7), that the

geometric attenuation of the volumetric waves is much greater than the Rayleigh waves.

Therefore, for large distances, Lamb’s approximate expressions can be reduced to the

Rayleigh wave expressions

Xg0 = −QH
µ

e−iκx (3.15)

Zg0 = −i
QH

µ
e−iκx (3.16)

In order to convert the elastic medium assumed by Lamb into a viscoelastic medium,

the Lamé constants are transformed into complex constants, from the expressions

λ∗ + 2µ∗ = (λ+ 2µ)(1 + 2DP i) (3.17)

µ∗ = µ(1 + 2DS i) (3.18)

where DP and DS are the damping of P-waves and S-waves, respectively.

3.1.2 Point source

Lamb also formulated the expressions that govern the propagation of vibrations of a

point source in an homogeneous and elastic half-space,

Rg0 =
L

2πµ

∫ ∞

0

k2(2k2 − k2
β − 2υυ′)

(2k2 − k2
β)2 − 4k2υυ′

J1(kr)dk (3.19)

Zg0 = − L

2πµ

∫ ∞

0

kυk2
β

(2k2 − k2
β)2 − 4k2υυ′

J0(kr)dk (3.20)

and he found an approximate solution for large distances also separated into three terms:

Rayleigh waves, P-waves and S-waves (Eqs.(3.21) and (3.22))

Rg0 = − iκLH

µ

√
1

2πκr
e−i(κr+π

4
) +

LkαC

2π2µ

e−ikαr

(kαr)2
+
LkβD

2π2µ

e−ikβr

(kβr)2
(3.21)
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Zg0 =
κLK

µ

√
1

2πκr
e−i(κr+π

4
) − iLkαC1

2π2µ

e−ikαr

(kαr)2
− iLkβD1

2π2µ

e−ikβr

(kβr)2
(3.22)

where L is the amplitude of the point force and where Rg0 and Zg0 are the radial and

vertical displacement respectively from a point on the surface at a distance r to the

source.

Given the small contribution of volumetric waves at large distances also for a point

source, Lamb eventually proposed the Rayleigh wave expression as the solution to the

far field of a point source, represented by the Eqs. (3.23) and (3.24).

Rg0 = − iκLH

µ

√
1

2πκr
e−i(κr+π

4
) (3.23)

Zg0 =
κLK

µ

√
1

2πκr
e−i(κr+π

4
) (3.24)

The derivation of the Eqs. (3.21) and (3.22) come from the Eqs. (3.6) and (3.7), therefore

they accumulate the approximation errors made for a line source, and adding others,

such as that caused by steepest descent method. Here the term for Rayleigh waves is not

the exact solution because it is also obtained from an approximation process for large

r. As a conclusion:

� The Eqs. (3.21) and (3.22) are not adequate for the near field.

� The Eqs. (3.23) and (3.24) cannot be considered exact expressions of Rayleigh

waves for short distances.

The exact solution for the Rayleigh waves can be calculated from residue theorem,

obtaining

Rg0 =
iκLH

2µ
H

(2)
1 (κr) (3.25)

Zg0 = − iκLK

2µ
H

(2)
0 (κr) (3.26)

where H
(2)
1 (.), H

(2)
0 (.) are first-order and zeroth-order Hankel functions of the second

kind, respectively. Later, Holzlöhner [88] worked with the integral Eqs. (3.19) and (3.20)
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deriving some exact solutions (Eqs. (3.27) and (3.28)) that allow for an approachable

numerical calculation for small r.

Rg0 =
L

µr

[
ir̄κ′

2
HH

(2)
1 (ir̄κ′)+

+
ir̄

π

∫ 1

h
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√
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(2)
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] (3.27)
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∫ h
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√
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Φ(r̄k′)dk′+

+ 8

∫ 1

h

(k′2 − h2)k′2
√

1− k′2
(2k′2 − 1)4 + 16(k′2 − h2)(1− k′2)k′4

Φ(r̄k′)dk′+

+
2π(2κ′2 − 1)2

√
κ′2 − h2

8κ′[1− (6− 4h2)κ′2 + 6(1− h2)κ′4]
Φ(r̄k′)

]
(3.28)

where the variables k′ κ′ i r relate to the Lamb variables k, κ, r according to

k′ =
k

kβ
κ′ =

κ

kβ
r̄ = rkβ

and where h = (1− 2ν)/(2− 2ν) and Φ(rκ′) is a power series that can be found at [88]

or [89].

Both the direct numerical integration of the exact Eqs. (3.19) and (3.20) [188] and the

expressions proposed by Holzlöhner (Eqs. (3.27) and (3.28)) allow, a priori, to carry out

an exact calculation of propagation for the point source. The differences between the two

methods basically lie in the calculation time and in the range of distances numerically

approachables. Lamé’s constants are also reconverted into complex constants according

to the correspondence principle, from the Eqs. (3.17) and (3.18).

3.1.3 Numerical solution

In order to calculate all the exact solutions for both cases, line and point sources, nume-

rical integration along the real axis of the integrals appearing in Eqs. (3.1), (3.2), (3.19),

(3.20), (3.27) and (3.28) is necessary. This numerical integration is unapproachable for

the case of a completely elastic and homogeneous half-space, because the Rayleigh root

resides always in the real axis. But the incorporation of damping to Lamb’s propagation
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model means that neither of the poles of Rayleigh function, nor the branch points kα

and kβ, reside in the real axis [80]. Thus, the integrands of Lamb’s expressions, both

for a point and line sources, are not discontinuous along the real axis, since it does not

contain poles or traverse branch cuts, and therefore numerical integration can be carried

out avoiding singularities [126].

On the other hand, integrals that appear in Lamb’s exact solutions have an important

problem related with the computational evaluation cost of their numerical integration:

Their integrands have a high oscillatory behaviour which can cause huge increments in

the computational cost of their numerical integration, if more specific methods are not

used [106, 124–126]. This problem is more significant in the evaluation of the ground

response at large distances from the source, because the oscillations become more dense,

but it still remains significantly at short distances.

In this thesis, the approach presented in the work of Luco and Apsel [106, 126] is

adopted to reduce the high calculation time generated by this oscillatory behaviour

of the integrands. In Appendix A this approach is described and the static integrands

and integrals needed for its implementation are derived.

The application of this method for the case of infinite line source solutions (Eqs. (3.1),

(3.2)) results in

Xg0 =
iQ

2πµ

[
− πiβ2

2(β2 − α2)
+

+

∫ +klim

−klim

[
k(2k2 − k2

β − 2υυ′)

(2k2 − k2
β)2 − 4k2υυ′

− β2

2k(β2 − α2)

]
e−ikxdk

] (3.29)

Zg0 = − Q

2πµ

[
− πiα2

2(β2 − α2)
+

+

∫ +klim

−klim

[
k2
βυ

(2k2 − k2
β)2 − 4k2υυ′

− α2

2k(β2 − α2)

]
e−ikxdk

] (3.30)

This new integrands tends to +∞ approaching to zero from the right and to −∞ from

the left. To avoid this problem the following new expressions are proposed:
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Xg0 =
iQ

2πµ

[
− πiβ2

2(β2 − α2)
−

− 2

∫ klim

0

[
k(2k2 − k2

β − 2υυ′)

(2k2 − k2
β)2 − 4k2υυ′

− β2

2k(β2 − α2)

]
i sin(kx)dk

] (3.31)

Zg0 = − Q

2πµ

[
− πiα2

2(β2 − α2)
+

+

∫ klim

0

[
2

[
k2
βυ

(2k2 − k2
β)2 − 4k2υυ′

]
cos(kx) +

[
α2

k(β2 − α2)

]
i sin(kx)

]
dk

] (3.32)

For the case of point source (Eqs. (3.19), (3.20)) the application of this technique results

in

Rg0 =
L

2πµ

[
β2

2r(β2 − α2)
+

+

∫ klim

0

[
k2(2k2 − k2

β − 2υυ′)

(2k2 − k2
β)2 − 4k2υυ′

− β2

2(β2 − α2)

]
J1(kr)dk

] (3.33)

Zg0 = − L

2πµ

[
α2

2r(β2 − α2)
+

+

∫ klim

0

[
kυk2

β

(2k2 − k2
β)2 − 4k2υυ′

− α2

2(β2 − α2)

]
J0(kr)dk

] (3.34)

where klim is a truncated limit of integration. Since the oscillatory behaviour disappears

almost entirely in the integrands of Eqs. (3.31), (3.32), (3.33) and (3.34) the limits of

integration can be truncated at a certain value, called klim, without loss of accuracy.

This truncated limit of integration must be calculated for each integral to ensure that

∫ klim

−klim
�
∫ −klim
−∞

+

∫ ∞

klim

or

∫ klim

0
�
∫ ∞

klim

(3.35)

Finally, the Gauss-Kronrod quadrature are used to estimate the integrals by a nume-

rical integration. This quadrature minimises Gauss’s integration error with very little

additional computational cost [129]. The algorithm used to implement this numerical
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integration is quadgk, that is provided by MATLAB. This algorithm is chosen because

it provides a good accuracy but it is not the best solution with respect to the compu-

tational efficiency: fastest integration methods must be used when this model will be

implemented in a real computational algorithm (it can be seen a review of this methods

in Section 2.2.7).

For the case of a infinite line source, Eqs. (3.31), (3.32) are used in the following section

to estimate the displacements exact solution. For the case of a point source, Holzlöhner’s

solution is chosen for the radial displacement (Eq. (3.27)), and Eq. (3.34) is chosen for

the vertical displacement. In the case of radial displacement Holzlöhner’s expression

provides better computational efficiency; however, in the case of vertical displacement

Holzlöhner’s expression (Eq. (3.28)) is computationally inefficient at relatively large

distances due to the large amount of significant terms in the power series Φ(rκ′).

3.1.4 Near field determination procedure

Having defined the expressions that characterise the near field (exact solutions) and the

far field (Rayleigh wave solutions), it is necessary to apply a methodology to relate them,

in order to determine the near field distance.

Specifically in the case of a line source, the near field region is extracted from the

comparison of the solution of Rayleigh waves Xg0 Rayleigh and Zg0 Rayleigh (Eqs. (3.15)

and (3.16)) and the exact solution Xg0 Exact and Zg0 Exact (Eqs. (3.31) and (3.32)), using

the factors MLine
X and MLine

Z described as

MLine
X = 20 log

(
Xg0 Rayleigh

Xg0 Exact

)
MLine
Z = 20 log

(
Zg0 Rayleigh

Zg0 Exact

)
(3.36)

which give the difference in dB between Rayleigh’s solution and the exact one for every

distance. Thus, it is simple to find the distance from which both
∣∣MLine

X

∣∣ and
∣∣MLine

Z

∣∣
remain under a limit Mnfd, which defines the bearable error (e.g. 2 dB). This distance

will be directly the near field distance, because for higher distances the only use of

Rayleigh waves will produce an error under Mnfd.

In the case of a point source the following factors are defined

MPoint
R = 20 log

(
Rg0 Rayleigh

Rg0 Exact

)
MPoint
Z = 20 log

(
Zg0 Rayleigh

Zg0 Exact

)
(3.37)

which define the difference in dB between the exact Rayleigh solutions (Eqs. (3.25) and

(3.26)) and the exact solutions (Eqs. (3.27) and (3.33)).
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3.2 Results

In this section the results of the determination of near field distance are shown for the two

types of source presented. Results are shown as a function of normalised adimensional

distances Eq. (3.38); xnorm for a line source and rnorm for a point source

xnorm =
x

λRayleigh
rnorm =

r

λRayleigh
(3.38)

where λRayleigh is the wavelength of the Rayleigh waves.

3.2.1 Results for an infinite line source

The factors MLine
X and MLine

Z , which allow to quantify the near field, depend a priori

on the mechanical properties of the ground (Young’s modulus E, density ρ, Poisson’s

ratio ν, damping of P-waves DP and damping of S-waves DS) and on the source (force

amplitude Q and excitation’s angular frequency ω). With regard to the load Q, both

the Rayleigh wave expressions Eqs. (3.15) and (3.16) and the exact ones Eqs. (3.1) and

(3.2) depend linearly on Q. Therefore this variable does not affect factors MLine
X and

MLine
Z .

The use of the adimensional distance xnorm eliminates the dependence of factors MLine
X

and MLine
Z with respect to frequency, Young’s modulus and density, as is exemplified in

Figs. 3.1 and 3.2 for the case of Young’s modulus. The plots of the factors MLine
X and

MLine
Z as a function of the adimensional distance and the frequency or the density are

omitted since they are practically equal to these.

Figs. 3.1 and 3.2 are obtained using mechanical properties of a quaternary ground type

of the Table 3.1 and ranging the Young’s modulus between 10 and 5000 MPa. In this case

the near field adimensional distances are 5.71 and 0.27, for the horizontal and vertical

displacement respectively, for any Young’s modulus in this range and for Mnfd = 2 dB.

On the other hand, there does exist a dependence of factorsMLine
X (xnorm) andMLine

Z (xnorm)

with respect to the other variables: ν, DP , DS . Figs. 3.3 and 3.4 show how they mo-

dify factors MLine
X and MLine

Z , estimated at xnorm = 1 and xnorm = 1.5, with respect to

damping DP and DS and for different ν values. These distances xnorm are chosen for the

calculation of these planes because they coincide approximately with the first relative

maximum, in the case of vertical displacement, and with the first relative minimum, in

the case of horizontal displacement, of the functions MLine
X (xnorm) and MLine

Z (xnorm).
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Figure 3.1: Variation of factor MLine
X with respect to adimensional distance xnorm

and Young’s modulus.

Figure 3.2: Variation of factor MLine
Z with respect to adimensional distance xnorm

and Young’s modulus.
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Figure 3.3: Variation of factor MLine
X , estimated at xnorm = 1, with respect to the

dampings DP and DS and for different Poisson’s ratios.

Figure 3.4: Variation of factor MLine
Z , estimated at xnorm = 1.5, with respect to the

dampings DP and DS and for different Poisson’s ratios.
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Figs. 3.3 and 3.4 are also obtained using mechanical properties of a quaternary ground

type of the Table 3.1, ranging dampings DP and DS between 0.01 and 0.05, and between

0.01 and 0.06 respectively, and for three different Poisson’s ratios: 0.2, 0.3 and 0.4. In

these cases the near field adimensional distances range, in general, between 0-7.76 and

0.22-5.3 for the horizontal and vertical displacement respectively and for Mnfd = 2 dB.

However, for some particular DP and DS combinations, factors MLine
X and MLine

Z do not

clearly decrease with the adimensional distance. So, it is mandatory to calculate any

particular case.

As can be seen in Figs. 3.3 and 3.4, for the same Poisson’s ratio the dependence of factors

MLine
X and MLine

Z with respect to the damping can be represented approximately, for

both displacements, with very horizontal planes, which tilt slightly as the Poisson’s ratio

increases. When carrying out this procedure for other adimensionals xnorm distances,

qualitatively similar results are obtained. Therefore it is deduced that, in general, the

effect of damping is not very significant.

With regard to the Poisson’s ratio, a much higher incidence of this variable on factors

MLine
X and MLine

Z is observed. Specifically it is seen that the increase of the value of this

property causes an increment of these factors and this means that the near field distance

increases significantly.

3.2.2 Results for a point source

Following the same procedure as in the previous section, it is also demonstrated that

the use of an adimensional distance, in this case rnorm, entails the non-dependence on

the results with respect to Young’s modulus, density and frequency. This is exemplified

in Fig. 3.5 for the specific case of frequency, radial displacement and point source.

The Fig. 3.5 is obtained using mechanical properties of a quaternary ground type of the

Table 3.1 and ranging the frequency between 10 Hz and 100 Hz. In this case the near field

adimensional distances are 4.14 and 0.33, for the horizontal and vertical displacement

respectively and for Mnfd = 2 dB. As can be inferred from Eq. (3.38), the near field

distance have a linear dependence with frequency for a specific ground kind.

In reference to the effect of the Poisson’s ratio and the two dampings, Fig. 3.6 shows

how the tendency is approximately the same as observed with an infinite line source.

The variable with the most significant incidence is once again the Poisson’s ratio.

The Fig. 3.6 is also obtained using mechanical properties of a quaternary ground type

of the Table 3.1, ranging dampings DP and DS between 0.01 and 0.05, and between

0.01 and 0.06 respectively, and for three different Poisson’s ratios: 0.2, 0.3 and 0.4. In
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Figure 3.5: Variation of factor MPoint
R with respect to the adimensional distance rnorm

and frequency.

Figure 3.6: Variation of factor MPoint
R , estimated at rnorm = 1, with respect to the

dampings DP and DS and for different Poisson’s ratios.
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these cases the near field adimensional distances range, in general, between 0-6.26 and

0.28-3.81, for the horizontal and vertical displacement respectively and for Mnfd = 2 dB.

If the factors MPoint
R and MPoint

Z are calculated with the approximate expressions of

Rayleigh waves (Eqs. (3.23) and (3.24)) for different coefficients of significant ground

properties (ν, DP , DS), practically identical results are obtained for rnorm > 1. This

fact is shown in Fig. 3.7, where only the case of radial displacement is shown, since it

is better to observe the differences between the two solutions. Therefore, the differences

between the complete solution and the exact Rayleigh wave solution decrease much more

slowly than the differences between the approximate solution and the exact one for these

waves. So, the near field distance is not affected in general (values of Mnfd ≤ 2 dB) by

the use of either the exact or the approximate solutions.
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Figure 3.7: Variation of factor MPoint
R , from the exact and approximated Rayleigh

wave solution for quaternary and mesozoic ground types (see Table 3.1).

3.2.3 Calculation example on real grounds

The method for calculating the near field distance is applied to five significantly different

ground types, typical of the Barcelona (Spain) metropolitan area. The properties of these

ground types can be found in Table 3.1. They have been determined by geotechnical

tests carried out by GISA (Department of public works of Generalitat de Catalunya).

The results obtained, in the form of factors MLine
X (xnorm), MLine

Z (xnorm), MPoint
R (rnorm)

and MPoint
Z (rnorm), are shown in Figs. 3.8, 3.9, 3.10 and 3.11. They show the small
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Ground ρ
[
kg/m3

]
E[MPa] ν[−] DP [−] DS [−]

Quaternary 1950 20 0.3 0.04 0.03
Tertiary 2100 90 0.3 0.028 0.02
Paleozoic 2500 1500 0.2 0.017 0.01
Mesozoic 2500 350 0.3 0.025 0.015

Igneous Rocks 2500 4000 0.3 0.017 0.01

Table 3.1: Mechanical properties of five ground types in the Barcelona (Spain)
metropolitan area. Source: GISA (Department of public works of Generalitat de

Catalunya).

incidence of the variations in damping of P-waves or S-waves. They also show how the

reduction in Poisson’s ratio has a significant lowering effect in factors MLine
X , MLine

Z ,

MPoint
R and MPoint

Z .
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Figure 3.8: Variation in factor MLine
X with respect to the adimensional distance xnorm

for the different ground types. Line source case.

In order to calculate the near field distance for these five ground types a Mnfd factor of

2 dB is fixed. It is also assumed in all cases that the harmonic excitation load oscillates

at a frequency of 30 Hz: many authors have found from large amount of experimental

measurements, that the significant frequency range excited by train infrastructures is

between 30 and 250 Hz [16, 25–32]. Therefore, if the near field distance is calculated at

the minimum frequency of the range it ensures that this distance will always be above

the one calculated at any other frequency within the range.
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Figure 3.9: Variation in factor MLine
Z with respect to the adimensional distance xnorm

for the different ground types. Line source case.
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Figure 3.10: Variation in factor MPoint
R with respect to the adimensional distance

xnorm for the different ground types. Point source case.
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Figure 3.11: Variation in factor MPoint
Z with respect to the adimensional distance

xnorm for the different ground types. Point source case.

The results of near field distances for the grounds in Table 3.1 are shown in Tables 3.2

and 3.3. These results are calculated by upper-bounding the relative maximums of the

factors
∣∣MLine

X

∣∣,
∣∣MLine

Z

∣∣,
∣∣MPoint

R

∣∣ and
∣∣MPoint

Z

∣∣ with exponential curves.

Near field distance [m]

Ground Respect to Xg0 Respect to Zg0

Quaternary 11.1 0.52
Tertiary 19.8 1.07
Mesozoic 29.7 3.4
Paleozoic 33.2 1.94

Igneous Rocks 107.9 6.58

Table 3.2: Near field distances for the five ground types and for the line source case.

It can be observed how the horizontal component is the most restrictive with respect to

near field distance, for a line source as well as for a point source. It can also be observed

that when the soils under study are harder and/or have higher Poisson’s ratios this

distance increase as well. In fact there is a proportional relation between the wavelength

of the Rayleigh waves and factors MLine
X and MLine

Z or MPoint
R and MPoint

Z , as has been

previously demonstrated.
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Near field distance [m]

Ground Respect to Rg0 Respect to Zg0

Quaternary 8.05 0.65
Tertiary 14.6 1.31
Mesozoic 22.8 4.21
Paleozoic 24.9 2.29

Igneous Rocks 80.8 7.69

Table 3.3: Near field distances for the five ground types and for the point source case.

The comparison of results between line source and point source leads to assert that the

similarities between them are more than noteworthy. Figs. 3.8, 3.9, 3.10 and 3.11 show

an absolute similarity between the results of the two source types, since the wavelengths

are exactly the same for a specific ground. The differences are only in the amplitudes of

the oscillations, which vary slightly from one case to another due to the different values

of geometric attenuation of the waves for the two source types. A infinite line source

always has a higher near field distance than a point source,

In order to estimate the near field distance for a train source, it is proposed to use the

results of an infinite line source and point source calculated according to the methodology

explained in this study and taking the worst case, i.e., the maximum distance. As can be

seen in Tables 3.2 and 3.3, the near field distance linked to the horizontal displacement

and to the infinite line source is this maximum distance. Only the choice of very small

Mnfd factors can distort this trend.

In view of the results obtained, it is feasible to take measurements of Rayleigh waves

that are not significantly polluted by volumetric waves when the ground under study is

soft enough. The near field distance obtained in this case is close enough the source to

ensure significant wave amplitude with respect to the background noise. Therefore, far

field propagation models based on Rayleigh wave propagation have a great applicability

in soft grounds.

On the other hand, for grounds with high stiffness and/or with high Poisson’s ratios

great dimensions of the near field region are expected. Thus, for this kind of grounds,

it is necessary to take into account the volumetric waves in the ground-borne model.

3.3 Conclusions

The methodology presented in this chapter allows for the determination of the dimen-

sions of the interference region between surface waves and volumetric waves; the so-called

near field region. This is calculated for a point source as well as an infinite line source. It
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is proposed to use these results for the determination of the near field distance of a train

source. The ground has been modelled as an homogeneous and viscoelastic half-space.

The results show that the near field distance grows basically with the wavelength of the

Rayleigh waves and with the Poisson’s ratio, with the effect of other ground parameters

not being very significant. Therefore, for grounds that are not excessively consolidated

or grounds with low Poisson’s ratios, the near field distances are small, a fact that makes

viable the use an amplitude of reference not contaminated by volumetric waves with the

objective to feed semi-analytical propagation models. For example, for 30 Hz and for the

specific quaternary and tertiary grounds taken in this study, the near field distances do

not exceed 20 m, taking the solution as the worst case between line and point sources.

Otherwise, for very stiff grounds the near field distances can exceed 100 m, forcing to

take into account the volumetric waves in any propagation model.

This work is summarised in a recently published article in Soil Dynamics and Earthquake

Engineering journal [189].



Chapter 4

Superstructure model

This chapter presents a model of railway superstructure coupled with its subgrade and

with the rolling stock, assuming the track to be a 2-layer continuous support model, the

subgrade as a viscoelastic and homogeneous half-space and the rolling stock as a 1DOF

model. As in the previous chapter, the homogeneous ground model is selected in order

to reduce the time/economical costs of the model application. This vehicle/superstruc-

ture/subgrade model allows for the determination of the wheel/rail dynamical contact

force, which is the first step in a complete generation/propagation model for preliminary

assessment studies. Using this model, the effects of the subgrade on the response of the

superstructure and on the dynamics of the wheel/rail contact during the passage of one

wheel are investigated with the aim of simplifying the model if this influence is not signif-

icant. Specifically, the effects of the subgrade are observed on track receptances, on the

wheel/rail contact force and on the vertical accelerations of the wheel and the rail. The

model focuses in at-grade mid-speed trains (metropolitan and regional rail network) and

for a ballasted superstructure, but it may be used in other cases by introducing small

modifications.

45
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4.1 Superstructure model definition

The superstructure is modelled as a 2-layer continuous support model, with the following

hypothesis:

� Throughout superstructure system, with the exception of the subgrade, only ver-

tical motion is considered.

� The rail is modelled as a Bernoulli-Euler beam, since this is a good model for

frequencies below 500 Hz [20]. As can be seen in Section 2.1.1, with regard to the

evaluation of vibrations generated by a train pass-by a significant frequency range

can be 20 to 80 Hz. Therefore, this beam model of the rail is adequate in this case.

� The dynamic coupling between rails through the sleepers is not considered, as

proposed by Thompson [38, 39].

� The normal stress between sleepers and the ground is considered as a continuous

function along the rail longitudinal direction and as a rectangular step function

along the rail transverse direction [49].

� Shear stresses between sleepers and the ground are not considered, as was demons-

trated by Metrikine and Dieterman [50].

� Stiffnesses, viscous dampings and sleeper mass are uniformly distributed parame-

ters along the track.

In Fig. 4.1 a representation of the adopted superstructure model can be observed,

where zr, zs, z
(0)
g0 represent the rail, sleepers and subgrade surface vertical displacements

(at y = 0 and z = 0: see Fig. 4.3) respectively. On the other hand kF , kB, cF ,

cB, are fasteners and ballast stiffnesses and viscous dampings, respectively. Given the

complexity of ballast and fasteners dampings, it has been decided to include in the

model both structural damping and viscous damping, in order to allow for better system

modeling.

As can be seen, for example, in [78], the expression that governs the rail vertical dis-

placement zr, for this adopted model, due to the propagation of bending waves on it

is

EI
∂4zr
∂x4

+ ρS
∂2zr
∂t2

+ f(x, t) = q(x, t) (4.1)

where E is the Young’s modulus of the rail, I is the second moment of area, ρ is the rail

density and S is the cross-sectional area. As can be seen in Fig. 4.2, f(x, t) represents
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Rail
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Sleepers
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(0)
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Figure 4.1: Adopted track model: 2-layer continuous support model with subgrade
coupling.

the distributed force due to sleepers and q(x, t) represents the distributed force due to

wheel/rail contact dynamic excitation.

Figure 4.2: Free body diagram of a beam slice, in which no body force has been
considered.

As can be inferred from Fig. 4.1, the distributed force due to sleepers is

f(x, t) = kF (zr − zs) + cF (żr − żs) (4.2)

The equation of the motion of sleepers is

kF (zr − zs) + cF (żr − żs)− kB(zs − z(0)
g0 )− cB(żs − ż(0)

g0 ) = msz̈s (4.3)

where ms is the sleepers mass. They exert a force on the ground, called the superstruc-

ture/subgrade coupling force, given by
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fg(x, t) = kB(zs − z(0)
g0 ) + cB(żs − ż(0)

g0 ) (4.4)

The structural damping is defined with the loss coefficients ηr, ηF and ηB, which are

linked to the rail, the fasteners, and the ballast respectively. This is introduced into the

previous governing equations (Eqs. (4.1), (4.2), (4.3) and (4.4)) by the expressions

E = Ẽ(1 + iηr); kF = k̃F (1 + iηF ); kB = k̃B(1 + iηB); (4.5)

where Ẽ, k̃F and k̃B are real parameters, without structural damping.

In order to derive the Green function of the system, a harmonic, unitary and vertical

point load is applied at x = ζ on the running surface of the rail. The Eq. (4.1) becomes

EI
∂4zr
∂x4

+ ρS
∂2zr
∂t2

+ f(x, t) = δ(x− ζ)eiωt (4.6)

where ω is the angular frequency of the excitation. The displacements induced by this

excitation are also harmonic, and they have the form z = Zeiωt. Applying this solution

to Eqs. (4.2), (4.3), (4.4) and (4.6), changing the unitary force by the wheel/rail dynamic

contact force Fw/r(ω) and operating gives

F (x, ω) = Q(ω)Zr −G(ω)Z
(0)
g0 (4.7)

Fg(x, ω) = Q′(ω)Zr −G′(ω)Z
(0)
g0 (4.8)

EI
∂4Zr
∂x4

− ρSω2Zr + F (x, ω) = Fw/r(ω) δ(x− ζ) (4.9)

where

Q(ω) = (kF + iωcF )

(
1− kF + iωcF

kF + iωcF + kB + iωcB −msω2

)
(4.10)

G(ω) = Q′(ω) =
(kF + iωcF )(kB + iωcB)

kF + iωcF + kB + iωcB −msω2
(4.11)
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G′(ω) = (kB + iωcB)

(
kB + iωcB

kF + iωcF + kB + iωcB −msω2
− 1

)
(4.12)

4.1.1 Subgrade model

The subgrade is modelled as a viscoelastic and homogeneous half-space, which is defined

by the following properties: Lamé’s constants λ and µ, density ρ, damping of P-waves

DP and damping of S-waves DS . Following the same procedure as in Chap. 3, the

viscoelasticity of the medium is modelled according to the correspondence principle [114,

115]. Therefore Lamé’s constants have become complex by using Eqs. (3.17) and (3.18).

As Metrikine and Dieterman showed [50], the expression that governs displacements of

this half-space, when these are assumed to be harmonic, in the wavenumber-frequency

domain is

X̄g = −ikxAe−υxyz − kxky
υ′xy

Be−υ
′
xyz −

k2
β − kx2

υ′xy
Ce−υ

′
xyz (4.13)

Ȳg = −ikyAe−υxyz +
k2
β − ky2

υ′xy
Be−υ

′
xyz +

kxky
υ′xy

Ce−υ
′
xyz (4.14)

Z̄g = −υxyAe−υxyz + ikyBe−υ
′
xyz − ikxCe−υ

′
xyz (4.15)

for the coordinate system that appears in Fig. 4.3, where A, B and C are integration

constants which can be calculated from boundary conditions imposed by the superstruc-

ture excitation and kx and ky are wavenumbers in x and y directions respectively. The

parameters υxy and υ′xy are

υxy =
√
kx

2 + ky
2 − kα2 υ′xy =

√
kx

2 + ky
2 − kβ2 (4.16)

and kα and kβ are already defined in Chap. 3 (Eq. (3.4)).

The boundary conditions to evaluate the integration constants A, B and C follow from

the stresses at the free surface. Expressions of these stresses, which can be found in [87],

are

τxz|z=0 = µ

(
∂zg
∂x

+
∂xg
∂z

)∣∣∣∣
z=0

(4.17)
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Figure 4.3: Coordinate system (x, y, z) and subgrade displacements (xg, yg, zg).

τyz|z=0 = µ

(
∂yg
∂z

+
∂zg
∂y

)∣∣∣∣
z=0

(4.18)

τzz|z=0 = λ

(
∂xg
∂x

+
∂yg
∂y

+
∂zg
∂z

)
+ 2µ

∂zg
∂z

∣∣∣∣
z=0

(4.19)

The transformation of these expressions to the frequency domain is direct: only the

displacements xg, yg and zg are time-dependant and, therefore, they become Xg, Yg and

Zg. As Eqs. (4.13), (4.14) and (4.15) are obtained from the spatial domain by using the

Fourier transform of the form

Z̄(kx, ky, z) =

∫ +∞

−∞

∫ +∞

−∞
Z(x, y, z)ei(kxx+kyy)dxdy (4.20)

it is necessary to use this expression to transform Eqs. (4.17), (4.18) and (4.19) to the

wavenumber domain, thus obtaining

τ̄xz|z=0 = µ

(
−ikxZ̄g +

∂X̄g

∂z

)∣∣∣∣
z=0

(4.21)

τ̄yz|z=0 = µ

(
−ikyZ̄g +

∂Ȳg
∂z

)∣∣∣∣
z=0

(4.22)

τ̄zz|z=0 =

[
(λ+ 2µ)

Z̄g
z
− iλ(kxX̄g + kyȲg)

]∣∣∣∣
z=0

(4.23)

Having considered the superstructure excitation acting only in the vertical direction, the

boundary conditions are [49]
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τxz|z=0 = τyz|z=0 = 0 (4.24)

τzz|z=0 =
fg(x, t)

2c
H(c− |y|) (4.25)

where H(.) is the Heaviside step function and c is half the width of the superstruc-

ture/subgrade contact area (2c is called superstructure width throughout this thesis).

Transforming these boundary conditions to the wavenumber-frequency domain by fol-

lowing the same procedure as before and equating the resulting expressions with Eqs.

(4.21), (4.22) and (4.23) gives

τ̄xz|z=0 = µ

(
−ikxZ̄g +

∂X̄g

∂z

)∣∣∣∣
z=0

= 0 (4.26)

τ̄yz|z=0 = µ

(
−ikyZ̄g +

∂Ȳg
∂z

)∣∣∣∣
z=0

= 0 (4.27)

τ̄zz|z=0 =

[
(λ+ 2µ)

∂Z̄g
∂z
− iλ(kxX̄g + kyȲg)

]∣∣∣∣
z=0

= F̄g(kx, ω)
sin(cky)

cky
(4.28)

Substituting Eqs. (4.13), (4.14) and (4.15) into the boundary conditions yields

A = F̄g(kx, ω)
sin(cky)

µcky

[
2(k2

x + k2
y)− k2

β

FR(kx, ky)

]
(4.29)

B = −F̄g(kx, ω)
sin(cky)

µcky

[
2iυxyky
FR(kx, ky)

]
(4.30)

C = F̄g(kx, ω)
sin(cky)

µcky

[
2iυxykx
FR(kx, ky)

]
(4.31)

where

FR(kx, ky) =
[
2(k2

x + k2
y)− k2

β

]2 − 4υxyυ
′
xy(k

2
x + k2

y) (4.32)

Substituting the integration constants A, B, and C defined by Eqs. (4.29), (4.30) and

(4.31) into Eqs. (4.13), (4.14) and (4.15) and evaluating resulting expressions at the

surface of the half-space gives
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X̄g|z=0 =
F̄g(kx, ω) sin(cky)

µcky

ikx
FR(kx, ky)

(
2υxyυ

′
xy − υ′xy

2 − kx2 − ky2
)

(4.33)

Ȳg|z=0 =
F̄g(kx, ω) sin(cky)

µcky

iky
FR(kx, ky)

(
2υxyυ

′
xy − υ′xy

2 − kx2 − ky2
)

(4.34)

Z̄g|z=0 =
F̄g(kx, ω) sin(cky)

µcky

[
υxyk

2
β

FR(kx, ky)

]
(4.35)

which are the expressions that represent the motion of the subgrade surface.

4.1.2 Superstructure/subgrade coupling

General subgrade displacements (X̄g, Ȳg and Z̄g) are related to subgrade surface dis-

placements under the superstructure (X̄
(0)
g0 , Ȳ

(0)
g0 and Z̄

(0)
g0 ) according to

(X̄
(0)
g0 , Ȳ

(0)
g0 , Z̄

(0)
g0 ) = (X̄g, Ȳg, Z̄g)|y=0,z=0 (4.36)

Therefore, the vertical subgrade surface displacement under the superstructure can be

calculated from Eq. (4.35) by using Eq. (4.36), obtaining:

Z̄
(0)
g0 = F̄g(kx, ω)

[
1

2π

∫ +∞

−∞

sin (cky)

µcky

υxyk
2
β

FR(kx, ky)
e−ikyydky

]∣∣∣∣∣
y=0

(4.37)

where the Fourier antitransform used is in accordance to the Fourier transform defined

in Eq. (4.20). Operating the y = 0 evaluation into the integral yields

Z̄
(0)
g0 = F̄g(kx, ω)

[
1

2π

∫ +∞

−∞

sin (cky)

µcky

υxyk
2
β

FR(kx, ky)
dky

]
(4.38)

To couple the superstructure with its subgrade is required to operate at same domain: in

this work the wavenumber-frequency domain has been chosen to achieve this coupling.

Transforming Eqs. (4.7), (4.8) and (4.9) to the wavenumber-frequency domain by using

a 1D Fourier transform (Eq. (B.7), as reduction of Eq. (4.20)) and inserting F̄ (kx, ω)

into the transformed Bernoulli-Euler beam equation gives

F̄g(kx, ω) = Q′(ω)Z̄r −G′(ω)Z̄
(0)
g0 (4.39)
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EIk4
xZ̄r − ρSω2Z̄r +Q(ω)Z̄r −G(ω)Z̄

(0)
g0 = Fw/r(ω) eikxζ (4.40)

Combining Eqs. (4.38) and (4.39) yields

Z̄
(0)
g0 =

Q′(ω)Iky(kx, ω)

G′(ω)Iky(kx, ω) + 1
Z̄r (4.41)

where

Iky(kx, ω) =
1

2π

∫ +∞

−∞

sin (cky)

µcky

υxyk
2
β

FR(kx, ky)
dky (4.42)

The integrand of the integral defined in Eq. (4.42) is symmetric with respect to ky = 0

because

sin (cky)

ky
=

sin (−cky)
−ky

and k2
y = (−ky)2

Therefore, Eq. (4.42) becomes

Iky(kx, ω) =
1

π

∫ ∞

0

sin (cky)

µcky

υxyk
2
β

FR(kx, ky)
dky (4.43)

Inserting Eq. (4.41) in Eq. (4.40) results in

Z̄r =
Fw/r(ω) eikxζ

EIk4
x − ω2ρS +Q(ω)− G(ω)Q′(ω)Iky (kx,ω)

G′(ω)Iky (kx,ω)+1

(4.44)

and, finally, the application of the Fourier antitransform on Eq. (4.44) gives the recep-

tance of the system

Zr
Fw/r

=
1

2π

∫ +∞

−∞

eikxζ e−ikxx

EIk4
x − ω2ρS +Q(ω)− G(ω)Q′(ω)Iky (kx,ω)

G′(ω)Iky (kx,ω)+1

dkx (4.45)

4.1.3 Numerical solution

In order to compute the integral represented by Eq. (4.45) a numerical integration is

performed. The algorithm used to do it is the quadgk routine provided by MATLAB,
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which is also used in the previous chapter. Again, this algorithm is chosen because it

provides good accuracy but it is not the best solution with respect to computational

efficiency: faster integration methods must be used when this model is implemented

in a real computational algorithm (a review of these methods can be seen in Section

2.2.7). First, it is necessary to compute the integral defined by the Eq. (4.43) for any

integration point, which are the values of kx used in the evaluation of the Eq. (4.45).

The examination of the Eq. (4.43) integrand, which is called Ĩky(kx, ky, ω), shows that

there are no problems with the integration along the required integration path, which is

the positive side of the real axis. In more detail:

� The first part of Ĩky(kx, ky, ω), the fraction
sin (cky)
µcky

, has one pole at the origin. This

singularity resides in the left limit of the integration interval. As Shampine has

shown [128], quadgk routine can handle singularities at the endpoints. Therefore,

there are no numerical problems with this part.

� The second part of Ĩky(kx, ky, ω), the fraction
υxyk2β

FR(kx,ky) , is very similar to the Eq.

(3.2) integrand. As shown in Section 3.1.3, when the half-space is modelled as a

viscoelastic medium, its poles and branch cuts do not affect an integration along

the real axis, since they are located in other regions of the complex plane [126].

Continuing with the examination of this integrand, it is observed that it has also an

important oscillatory behaviour, like the integrals presented in Chapter 3. In this case

this behaviour appears only with respect to the ky wavenumber because it is produced

by the term sin (cky). Following the approach presented in Appendix A as well as in the

previous chapter, Eq. (4.43) can be transformed to avoid problems in the calculation

time due to the oscillatory behaviour:

Iky(kx, ω) =
α2

4πµ(β2 − α2)


 π

c|kx|
− 2

∫ ∞

|kx|

e−ck
′
y

ck′y

√
k′2y − k2

x

dk′y




+
1

π

∫ +klim

0


 υxyk

2
β

FR(kx, ky)
− α2

2
√
k2
x + k2

y (β2 − α2)


 sin (cky)

µcky
dky

(4.46)

The new integrand, which is called Ĩ ′ky(kx, ky, ω), has an extremely reduced oscillatory

behaviour with respect to the original integrand Ĩky(kx, ky, ω). This fact can be observed

in Figs. 4.4, 4.5, 4.6 and 4.7.
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Figure 4.4: Module of Ĩky
(kx, ky, ω) for quaternary ground type (see Table 3.1).

Figure 4.5: Module of Ĩky
(kx, ky, ω) for igneous rocks ground type (see Table 3.1).
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Figure 4.6: Module of Ĩ ′ky
(kx, ky, ω) for quaternary ground type (see Table 3.1).

Figure 4.7: Module of Ĩ ′ky
(kx, ky, ω) for igneous rocks ground type (see Table 3.1).
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In these figures one can also note that the oscillations of the integrands are more dense

(in the adimensional wavenumber domain
ky
κ ) in soft grounds than in hard grounds.

Dense oscillations in integrands imply a higher computational cost of their numerical

integration because too many integration points are required. Therefore, the application

of a technique to lower the oscillatory behaviour of the integrand, such as that presented

here, is much more important for soft grounds than for hard grounds.

The final integral, with respect to kx, presented in Eq. (4.45) does not present problems

with singularities. The poles generated by the denominator are not located at the real

axis, because

−ω2ρS +Q(ω)− G(ω)Q′(ω)Iky (kx,ω)

G′(ω)Iky (kx,ω)+1

EI

is complex-valued. Moreover, there is no oscillatory behaviour in the integrand, since

Ĩky(kx, ky, ω) does not contain oscillations with respect to kx (see Figs. 4.4 and 4.5),

and the other terms do not either, as long as the rail receptance is calculated at x = ζ.

4.2 Influence of the subgrade parameters on the track re-

ceptance

In this section, the analytical solution of track receptance presented in the previous

section is applied for different subgrade mechanical parameters. The receptance is always

calculated at the load application point, therefore at x = ζ. The numerical integration

is always performed by setting the relative tolerance to 10−4. The parameters of the

track used are shown in Tables 4.1, 4.2 and 4.3. As can be seen in these tables, four sets

of superstructure parameters are studied: two with structural damping and two with

viscous damping. These four sets of superstructure parameters have been taken from

the following sources:

� Case 1: Otero [1].

� Case 2: Sheng et al. [190].

� Case 3: Grassie et al. [55], taking the set of parameters with low stiffnesses.

� Case 4: Grassie et al. [55], taking the set of parameters with high stiffnesses.
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Rail mechanical parameters

Parameters Case 1 Case 2 Case 3 Case 4

S [m2] 6.93 · 10−3 7.69 · 10−3 7.13 · 10−3 7.13 · 10−3

I [m4] 23.5 · 10−6 30.55 · 10−6 23.48 · 10−6 23.48 · 10−6

E [GPa] 207 210 207 207
ρ [kg/m3] 7850 7850 7850 7850
ηr [−] 0.02 0.01 − −

Table 4.1: Mechanical properties of a ballasted railway track. Rail mechanical pa-
rameters.

Fasteners and sleepers mechanical parameters

Parameters Case 1 Case 2 Case 3 Case 4

kF [(N/m)/m] 192 · 106 583.3 · 106 322.3 · 106 401.1 · 106

ηF [−] 0.196 0.25 − −
cF [(Ns/m)/m] − − 40.11 · 103 98.26 · 103

ms [kg/m] 120 270 157.6 157.6

Table 4.2: Mechanical properties of a ballasted railway track. Fasteners and sleepers
mechanical parameters.

Ballast mechanical parameters

Parameters Case 1 Case 2 Case 3 Case 4

kB [(N/m)/m] 22.89 · 106 83.3 · 106 100.3 · 106 257.9 · 106

ηB [−] 0.204 1 − −
cB [(Ns/m)/m] − − 42.98 206

Table 4.3: Mechanical properties of a ballasted railway track. Ballast mechanical
parameters.

With regard to superstructure width, for single railways this parameter ranges between

2.5 m and 4.5 m, as is demonstrated in Appendix D. An average value, 3.5 m, is taken

as a typical solution.

Using these superstructure parameters combined with subgrade properties given in Table

3.1 and with a superstructure width of 3.5 m (c = 1.75 m), different track receptances

are obtained, which are shown in the Figs. 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, 4.14 and 4.15.

The receptance of the track without subgrade coupling shown in these figures is obtained

from the analytical solution presented in Appendix B. In these cases the resonant fre-

quency for the case of no subgrade coupling are 57.26 Hz, 76.69 Hz, 105.09 Hz, 158.19

Hz for the four sets of parameters in Tables 4.1, 4.2 and 4.3 respectively. As can be seen

in all figures mentioned (Figs. 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, 4.14 and 4.15), for high
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Figure 4.8: Module of the rail receptance for superstructure parameters in Case 1
(see Tables 4.1, 4.2 and 4.3) and for five different subgrade parameters of the Table 3.1.
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Figure 4.9: Phase of the rail receptance for superstructure parameters in Case 1 (see
Tables 4.1, 4.2 and 4.3) and for five different subgrade parameters of the Table 3.1.
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Figure 4.10: Module of the rail receptance for superstructure parameters in Case 2
(see Tables 4.1, 4.2 and 4.3) and for five different subgrade parameters of the Table 3.1.
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Figure 4.11: Phase of the rail receptance for superstructure parameters in Case 2 (see
Tables 4.1, 4.2 and 4.3) and for five different subgrade parameters of the Table 3.1.
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Figure 4.12: Module of the rail receptance for superstructure parameters in Case 3
(see Tables 4.1, 4.2 and 4.3) and for five different subgrade parameters of the Table 3.1.
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Figure 4.13: Phase of the rail receptance for superstructure parameters in Case 3 (see
Tables 4.1, 4.2 and 4.3) and for five different subgrade parameters of the Table 3.1.



Chapter 4. Superstructure model 62

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4
x 10

−8

Frequency [Hz]

∣ ∣ ∣
Z

r

F
w

/
r

∣ ∣ ∣[
m
/
N
]

 

 
Quaternary
Tertiary
Mesozoic
Paleozoic
Igneous Rocks
Without ground coupling

Figure 4.14: Module of the rail receptance for superstructure parameters in Case 4
(see Tables 4.1, 4.2 and 4.3) and for five different subgrade parameters of the Table 3.1.
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Figure 4.15: Phase of the rail receptance for superstructure parameters in Case 4 (see
Tables 4.1, 4.2 and 4.3) and for five different subgrade parameters of the Table 3.1.
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frequencies the receptance of the non-coupled case is a good approximation of the recep-

tance of the coupled case. The limit frequency above which this simplification can be

applied is directly proportional to the stiffness of the track or its first resonant frequency.

Section 4.2.5 shows that this assumption can be extended to other superstructure widths.

From these figures, it is clear that the effect of superstructure/subgrade coupling on rail

receptance is low but significant in the frequency range of interest (it ranges, as previ-

ously mentioned in Section 2.1.1, between 20 Hz and 80 Hz), above all when the super-

structure has a high global stiffness, and, therefore, at high natural frequencies of the

in-phase mode of the superstructure. These figures are presented in a non-dimensional

form in Section C.1.1.

In subsequent sections the effect of any subgrade parameter is investigated in order to

find what parameters are significant on the superstructure response. This research will

also be useful to show the possible values that the resonant frequency of the in-phase

mode of the receptance can take. For oscillatory receptances the resonant peak of the

in-phase mode of the track is also taken as maximum value near the natural frequency of

this mode. Variations of quaternary ground type are used to perform this investigation

(see Table 3.1) since this is the kind of ground that most modifies track receptance with

respect to the case which does not include superstructure/subgrade coupling. For the

same reason, the parameters of Case 4 (see Tables 4.1, 4.2 and 4.3) are used.

The prime nomenclature is used throughout Section 4.2, in Section 4.3, in Appendix

B and in Section C.1 of Appendix C to indicate that the vertical displacements of

the rail and the sleepers (z′r and z′s) and the natural frequencies of the track (ω̄′n) are

related to the non-coupled case. In contrast, the prime nomenclature used on stiffnesses,

viscous/structural dampings and masses in Sections 4.4, 4.5 and C.2 denotes that these

parameters are from the 2DOF equivalent model.

4.2.1 Effects of the dampings DP and DS

Figs. 4.16 and 4.17 represent the module and the phase of the adimensional receptance

with various realistic combinations of dampings. Complete results for the four Cases of

study are presented in Section C.1.2.

For these different combinations, the results show that the resonant frequency of the in-

phase mode ranges between 181.66 Hz and 181.73 Hz and the resonant amplitude ranges

between 1.391· 10−8 m/N and 1.665· 10−8 m/N. Complete results about the resonance

are shown in Table 4.4, where f̄1r and f̄ ′1r are the resonant frequencies of the in-phase

mode for the case with and without subgrade coupling, respectively, and max|Zr| and
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max|Z ′r| are the resonant amplitude of the same mode, also for the case with and without

subgrade coupling, respectively.

Dampings
f̄1r [Hz] f̄1r

f̄ ′1r
[-] max|Zr| [m/N] max|Zr|

max|Z′r|
[-]

DP [-] DS [-]

0.04 0.03 181.73 1.149 1.391· 10−8 1.593
0.035 0.025 181.69 1.149 1.432· 10−8 1.64
0.028 0.02 181.68 1.149 1.487· 10−8 1.703
0.025 0.015 181.66 1.148 1.56· 10−8 1.787
0.017 0.01 181.68 1.149 1.665· 10−8 1.907

Table 4.4: Results of the resonant frequency and amplitude of track receptance ob-
tained with different combination of subgrade dampings.
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Figure 4.16: Adimensional module of the rail receptance for five different combina-
tions of subgrade damping coefficients DP and DS and for the superstructure param-
eters in Case 4 (see Tables 4.1, 4.2 and 4.3). The other mechanical parameters of the

subgrade are equal to the Quaternary ground type (see Table 3.1).

In this case, these results are obtained by setting the other mechanical parameters of

the subgrade (Young’s modulus E, Poisson’s ratio ν and the density ρ) equal to the

quaternary ground type. It is assumed to have a superstructure width of 3.5 m (c = 1.75

m). The observation of these results leads to the assumption that DS and DP do not

affect the receptance significantly in the frequency range of interest.
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Figure 4.17: Adimensional phase of the rail receptance for five different combinations
of subgrade damping coefficients DP and DS and for the superstructure parameters in
Case 4 (see Tables 4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade

are equal to the Quaternary ground type (see Table 3.1).

4.2.2 Effects of the density

With respect to the density of the subgrade, Figs. 4.18 and 4.19 represent the module

and the phase of receptance with various realistic values for it. Complete results for the

four Cases of study are presented in Section C.1.3.

For these different values, the results show that the resonant frequency of the in-phase

mode ranges between 171.8 Hz and 189.3 Hz and the resonant amplitude ranges between

1.228· 10−8 m/N and 1.417· 10−8 m/N. Complete results for the resonance are shown in

Table 4.5.

ρ [kg/m3] f̄1r [Hz] f̄1r
f̄ ′1r

[-] max|Zr| [m/N] max|Zr|
max|Z′r|

[-]

1800 187.2 1.184 1.417· 10−8 1.622
1950 181.7 1.149 1.391· 10−8 1.593
2100 176.6 1.116 1.329· 10−8 1.521
2250 171.8 1.086 1.254· 10−8 1.436
2400 189.3 1.197 1.228· 10−8 1.407

Table 4.5: Results of the resonant frequency and amplitude of track receptance ob-
tained with different subgrade densities.
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Figure 4.18: Adimensional module of the rail receptance for five different subgrade
densities and for the superstructure parameters in Case 4 (see Tables 4.1, 4.2 and 4.3).
The other mechanical parameters of the subgrade are equal to the Quaternary ground

type (see Table 3.1).
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Figure 4.19: Adimensional phase of the rail receptance for five different subgrade
densities and for the superstructure parameters in Case 4 (see Tables 4.1, 4.2 and 4.3).
The other mechanical parameters of the subgrade are equal to the Quaternary ground

type (see Table 3.1).
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In this case, these results are obtained by setting the other mechanical parameters of the

subgrade (Young’s modulus E, Poisson’s ratio ν and the dampings DP and DS) equal

to the quarternary ground type. It is assumed to have a superstructure width of 3.5 m

(c = 1.75 m). They show that the density of the subgrade only modifies the phase of the

receptance oscillations, therefore it can be assumed to be a low significant parameter.

4.2.3 Effects of the Poisson’s ratio

With regard to the Poisson’s ratio of the subgrade, Figs. 4.20 and 4.21 represent the

module and the phase of receptance with various realistic values for it. Complete results

for the four Cases of study are presented in Section C.1.4.

For these different values, the results show that the resonant frequency of the in-phase

mode ranges between 176.86 Hz and 185.2 Hz and the resonant amplitude ranges between

1.263· 10−8 m/N and 1.515· 10−8 m/N. Complete results about the resonance are shown

in Table 4.6.

ν [-] f̄1r [Hz] f̄1r
f̄ ′1r

[-] max|Zr| [m/N] max|Zr|
max|Z′r|

[-]

0.2 185.2 1.17 1.515· 10−8 1.735
0.25 183.5 1.16 1.465· 10−8 1.678
0.3 181.7 1.149 1.391· 10−8 1.592
0.35 179.5 1.135 1.307· 10−8 1.497
0.4 176.86 1.118 1.263· 10−8 1.447

Table 4.6: Results of the resonant frequency and amplitude of track receptance ob-
tained with different subgrade Poisson’s ratios.

In this case, these results are obtained by setting the other mechanical parameters of the

subgrade (the Young’s modulus E, the density ρ and the dampings DP and DS) equal

to the quarternary ground type. It is assumed to have a superstructure width of 3.5 m

(c = 1.75 m). They show that the Poisson’s ratio of the subgrade is not a very significant

parameter with regard to track receptance in this frequency range in comparison to the

other subgrade parameters.

4.2.4 Effects of the Young’s modulus

Figs. 4.22 and 4.23 represent the module and the phase of the receptance with various

realistic values of Young’s modulus. Complete results for the four Cases of study are

presented in Section C.1.5.
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Figure 4.20: Adimensional module of the rail receptance for five different Poisson’s
ratios of the subgrade and for the superstructure parameters in Case 4 (see Tables
4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade are equal to the

Quaternary ground type (see Table 3.1).
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Figure 4.21: Adimensional phase of the rail receptance for five different Poisson’s
ratios of the subgrade and for the superstructure parameters in Case 4 (see Tables
4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade are equal to the

Quaternary ground type (see Table 3.1).
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For these different values, the results show that the resonant frequency of the in-phase

mode ranges between 161 Hz and 181.73 Hz and the resonant amplitude ranges between

8.863· 10−9 m/N and 1.593· 10−8 m/N. Complete results are shown in Table 4.7.

E [MPa] f̄1r [Hz] f̄1r
f̄ ′1r

[-] max|Zr| [m/N] max|Zr|
max|Z′r|

[-]

20 181.73 1.159 1.391· 10−8 1.593
90 170.84 1.08 1.126· 10−8 1.29
300 169.61 1.072 9.695· 10−9 1.11
1500 161 1.018 9.253· 10−9 1.06
4000 161.83 1.023 8.863· 10−9 1.015

Table 4.7: Results of the resonant frequency and amplitude of the track receptance
obtained with different subgrade Young’s modulus.
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Figure 4.22: Adimensional module of the rail receptance for five different Young’s
modulus of the subgrade and for the superstructure parameters in Case 4 (see Tables
4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade are equal to the

Quaternary ground type (see Table 3.1).

In this case, these results are obtained by setting the other mechanical parameters of

the subgrade (the Poisson’s ratio ν, the density ρ and the dampings DP and DS) equal

to the quaternary ground type. It is assumed to have a superstructure width of 3.5

m (c = 1.75 m). They show that the Young’s modulus of the subgrade is a significant

subgrade mechanical parameter with regard to track receptance. In fact, this is the most

significant parameter in view of the results of the other parameters, as can be seen in

Sections 4.2.1, 4.2.2, 4.2.3, 4.2.4 and 4.2.5.
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Figure 4.23: Adimensional phase of the rail receptance for five different Young’s
modulus of the subgrade and for the superstructure parameters in Case 4 (see Tables
4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade are equal to the

Quaternary ground type (see Table 3.1).

4.2.5 Effects of superstructure width

Finally, Figs. 4.24 and 4.25 represent the module and the phase of receptance with

various values for superstructure width. Complete results for the four studied Cases are

presented in Section C.1.6.

For these different values, the results show that the resonant frequency of the in-phase

mode ranges between 168.83 Hz and 200.67 Hz and the resonant amplitude ranges bet-

ween 1.343· 10−8 m/N and 2.048· 10−8 m/N. Complete results are shown in Table 4.8.

2c [m] f̄1r [Hz] f̄1r
f̄ ′1r

[-] max|Zr| [m/N] max|Zr|
max|Z′r|

[-]

2.5 200.67 1.264 1.788· 10−8 2.048
3 176.1 1.113 1.491· 10−8 1.707

3.5 181.73 1.149 1.391· 10−8 1.593
4 185.22 1.171 1.259· 10−8 1.442

4.5 168.83 1.067 1.172· 10−8 1.343

Table 4.8: Results of the resonant frequency and amplitude of track receptance ob-
tained with different superstructure widths.
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Figure 4.24: Adimensional module of the rail receptance for five different widths of the
contact area between the superstructure and the subgrade and for the superstructure
parameters in Case 4 (see Tables 4.1, 4.2 and 4.3). The other mechanical parameters

of the subgrade are equal to the Quaternary ground type (see Table 3.1).
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Figure 4.25: Adimensional phase of the rail receptance for five different widths of the
contact area between the superstructure and the subgrade and for the superstructure
parameters in Case 4 (see Tables 4.1, 4.2 and 4.3). The other mechanical parameters

of the subgrade are equal to the Quaternary ground type (see Table 3.1).
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These results are obtained by setting the mechanical parameters of the subgrade equal

to the quaternary ground type. They show that the superstructure width is also a

significant parameter with regard to track receptance, but not as much as the effect of

Young’s modulus.

4.3 Fast method to obtain track receptance in the case of

subgrade coupling

All the receptances presented in the previous section are calculated using a methodology

to reduce the computational effort in the numerical integration, as presented in Section

4.1.3. But the calculation time for these receptances can be reduced further by taking

advantage of three particularities, which can be observed in the results: figures and

tables presented in Section 4.2:

� The resonant frequency of any case with subgrade coupling does not differ signifi-

cantly, in general, from the non-coupled case. This advantage is more pronounced

when the stiffnesses of the superstructure are low, but for high stiffnesses it is also a

good approximation. Furthermore, since the superstructure does not demonstrate

very strong viscous damping behaviour, the resonant frequency can be assumed

to be similar to the natural frequency of the non-coupled case f̄ ′1, which is defined

in Eq. (B.24). However, some models of superstructure are designed with viscous

damping, in Cases 3 and 4 (see Tables 4.2 and 4.3) and as shown by other refer-

ences [2, 30, 56, 71, 191]. In these cases it is better to use the resonant frequency

of the uncoupled case, instead of the natural frequency.

� The receptance solutions are smooth functions of frequency.

� For frequencies above 1.5 times the resonant frequency, the receptance of the non-

coupled case can be taken as a good approximation of the receptance of the coupled

case.

With these advantages, the exact frequency and amplitude of resonance can be easily

evaluated with low computational cost: calculating the receptance at frequencies near

the natural frequency of the non-coupled case. These parameters can be calculated with

high accuracy by evaluating very few points and by using interpolation methods, as

receptance is always a smooth function. The author suggests the use of a cubic spline

interpolation in order to achieve more accurate results.
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The same method can be used in the evaluation of complete receptance, setting that the

most significant frequencies (zero and the resonant frequencies of the in-phase and anti-

phase modes) are within the vector calculation points, and considering the maximum

of this vector at 1.5 times the natural frequency of the non-coupled case. Above this

maximum, the non-coupled solution can be used.

Only for cases with highly stiff superstructures and, at the same time, with soft grounds,

the receptance solution differs very significantly from the non-coupled case. In these

cases, a more dense vector of calculation points is mandatory to achieve accurate results.

4.4 Superstructure equivalent model

As seen in the previous section, the track model coupled with the subgrade have basi-

cally two modes which are closely related to the in-phase and anti-phase modes of the

non-coupled track model (see Appendix B). Following a non-linear least squares modal

analysis method [192] modified to obtain the spatial model instead of the modal model,

one can obtain an equivalent 2DOF model, represented in Fig. 4.26, with equivalent

masses (m′r and m′s), stiffnesses (k′F and k′B) and viscous and/or structural dampings

(c′F , c′B and/or h′F , h′B), by matching the receptances of the two models.

Rail

Fasteners

Sleepers

m'r

m's

k'F , c'F , h'F

k'B , c'B , h'B

z r

z s

Ballast

Figure 4.26: Equivalent 2DOF model.

4.4.1 Superstructure equivalent model with constant parameters

The simplest form of this model assumes that the parameters are constant with respect

to the frequency and real-valued. In this case a very accurate adjustment is usually

unapproachable. For example, for the parameters in Case 1 (see Tables 4.1, 4.2 and

4.3), the parameters of a quaternary ground (see Table 3.1) and using a least squares

curve fitting approach [192], an adjustment is obtained as shown in Figs. 4.27 and 4.28.
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The least squares curve fitting approach is implemented using a non-linear least squares

algorithm provided by MATLAB, which is called lsqnonlin. In this example, only

viscous damping is used. Structural damping can be used instead or besides of viscous

damping, but no more accurate results are obtained.

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

−7

Frequency [Hz]

∣ ∣ ∣
Z

r

F
w

/
r

∣ ∣ ∣[
m
/N

]

 

 
Exact Model
Equivalent Model

Figure 4.27: Exact and adjusted receptances for Case 1 (see Tables 4.1, 4.2 and 4.3)
and for a quaternary subgrade (see Table 3.1). Constant parameters. Module.

The parameters of the equivalent model obtained for this case are

Equivalent model

parameters

m′r [kg] 80.45

m′s [kg] 288.57

k′F [N/m] 3.447· 108

k′B [N/m] 5.081· 107

c′F [N s/m] 2.716· 104

c′B [N s/m] 3.012· 104

Table 4.9: Equivalent model parameters obtained for Case 1 (see Tables 4.1, 4.2 and
4.3) and for a quaternary subgrade (see Table 3.1). Constant parameters.

In Section C.2.1, the results of this fitting for the four cases of superstructure parameters

(see Tables 4.1, 4.2 and 4.3) are presented by showing the parameters m′r, m
′
s, k

′
F , k′B,
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Figure 4.28: Exact and adjusted receptances for Case 1 (see Tables 4.1, 4.2 and 4.3)
and for a quaternary subgrade (see Table 3.1). Constant parameters. Phase.

c′F and c′B, only for the case of the quaternary ground type (see Table 3.1).

4.4.2 Superstructure equivalent model with frequency dependant pa-

rameters

A more sophisticated equivalent model could be that which incorporates a frequency

dependant stiffnesses and dampings. Viscous damping models do not allow the achieve-

ment of precise adjustments at very low frequencies, because the phase of their response

at zero frequency is always null. Therefore, structural damping is used instead. Taking

into account these improvements, the fitting can be done with high accuracy.

To achieve this adjustment an algorithm which calculates the equivalent parameters

for each frequency is designed. This algorithm calculates analytically these equivalent

parameters at zero frequency and uses the lsqnonlin algorithm to fit the other frequen-

cies, using the parameters obtained for the previous frequency as starting point values

needed by this least squares algorithm. An example of this precise fitting is presented

in Figs. 4.29 and 4.30. These equivalent frequency dependant parameters are presented

in Figs. 4.31 and 4.32. The masses used in this equivalent model are those obtained for

the case of frequency non-dependant parameters (see Table C.1).
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Figure 4.29: Exact and adjusted receptances for Case 1 (see Tables 4.1, 4.2 and
4.3) and for a different subgrade parameters (see Table 3.1). Frequency dependant

parameters. Module.
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Figure 4.30: Exact and adjusted receptances for Case 1 (see Tables 4.1, 4.2 and
4.3) and for a quaternary subgrade (see Table 3.1). Frequency dependant parameters.
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Figure 4.31: Fasteners equivalent stiffness as a function of the frequency for Case 1
(see Tables 4.1, 4.2 and 4.3) and for a quaternary subgrade (see Table 3.1).
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Figure 4.32: Fasteners equivalent structural damping as a function of the frequency
for Case 1 (see Tables 4.1, 4.2 and 4.3) and for a quaternary subgrade (see Table 3.1).
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In Section C.2.2, inside the Appendix C, the results of this fitting for any combination of

superstructure and subgrade parameters are presented by showing the parameters k′F ,

k′B, h′F and h′B as a function of the frequency in each case.

4.5 Coupling between superstructure and rolling stock

To obtain the wheel/rail dynamic contact force the superstructure model must be cou-

pled with a rolling stock model. A contact force model must be also defined in order to

relate the deformation of the solids with the force generated in the contact.

4.5.1 Rolling stock model

With regard to the rolling stock, it is modelled as a single DOF model, where the

oscillating mass is the unsprung mass. This is linked to the sprung mass with the

primary suspension. The sprung mass msprung is considered as a non-oscillating body,

since its natural frequencies are far below the excitation frequencies generated by the

dynamic phenomena of the wheel/rail contact [20]. The sprung mass considered in this

model msprung is an eighth of the total sprung mass, since it is the mass associated to one

wheel. The secondary suspension is not taken into account because primary suspension

isolates it for frequencies above 20 Hz [20, 32, 44].

Sprung mass

Unsprung mass

 ! "!

Rail

Primary

suspension

z

kPS

w

,cPS

z r

Figure 4.33: Rolling stock model

The equation of motion of the wheel is

mwz̈w + cPS żw + kPSzw = −fw/r(t) (4.47)
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where mw is the unsprung mass associated to a single wheel, zw is the vertical displace-

ment of this unsprung mass, fw/r(t) is the wheel/rail dynamic contact force and kPS

and cPS are the primary suspension stiffness and viscous damping respectively.

4.5.2 Contact force model

The contact between the wheel and the rail is modelled, taking into account only the

normal contact between the wheel and the rail, as an elliptical Hertz contact [62], for

which the dynamic contact force, based on the non-lineal Hertz contact theory, is

fw/r(t) = kHertz h(t)3/2 − (mw +msprung)g (4.48)

where (mw +msprung)g is the static contact force and msprung is the sprung mass, both

associated only with a single wheel, and where kHertz is the non-lineal elasticity constant

and h(t) is the joint deformation of the solids in contact; the wheel and the rail in this

case. kHertz can be calculated from the geometric characteristics of the contact and from

the static contact force [1].

 ! "!h(t)
z

r

z
w

Unsprung mass

Rail

Figure 4.34: Joint deformation of the wheel and the rail

Observing the Fig. 4.34 it can be deduced that the Hertz dynamic contact force can be

defined as a function of the wheel and rail vertical displacements as follows

fw/r(t) = kHertz [zw − zr + ε(t) + h0]3/2 − (mw +msprung)g (4.49)

where ε(t) is the sum of wheel and rail irregularities (whenever they are considered

positive when they generate solid dimensions enlargements) ε(t) = εw(t) + εr(t), and

where h0 is the static deformation defined by

h0 =

[
(mw +msprung)g

kHertz

]2/3

(4.50)
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Eq. (4.49) is valid only when h(t) > 0; in the opposite case the bodies would be separated

and, therefore, the contact force would be null.

As is demonstrated by Otero [1], the contact force model can be assumed to only con-

template one wheel, since the effect of the other wheel of the bogie on the contact point

of the first is not excessively significant.

A simpler model is that which considers dynamic contact force as a linear function of

deformation. As this model is linear, it can be solved in the frequency domain instead

of the non-lineal model, which must be solved in the time domain. For this linear model

fw/r(t) = klin
Hertz [zw − zr + ε(t)] (4.51)

where

klin
Hertz =

dfw/r

dh

∣∣∣∣
h=h0

=
3

2
kHertz

√
h0 (4.52)

As Otero [1] has demonstrated, the linearised model do not works properly for impor-

tant singularities of the rail or the wheel, as for example wheel flats or rail transverse

fissures. But, as demonstrated in the next section, this model gives good results when

the irregularities of the rail and the wheel are smooth and stationary.

With regard to the equivalent models presented in Section 4.4, the first one (constant

parameters) can be used with both contact force models presented. The model with

frequency dependant parameters can also be used with both contact models but, as the

non-linear model must be solved in the time domain, the frequency dependance of the

stiffnesses and structural damping entails some difficulties. Some approaches have been

developed to solve this problems, allowing to work with frequency dependant parameters

in the time domain [193–195]. Obviously, the implementation of these methods means

more computational time used for the contact force evaluation procedure.

4.5.3 Wheel/rail contact force evaluation

Once the rolling stock model and the contact force model have been defined, a complete

model can be constructed by coupling them with one of the 2DOF equivalent models of

the superstructure presented in Section 4.4. Fig. 4.35 represents this complete model.

For the case of the non-linear contact force model, the governing equations of the com-

plete model can be written in a compacted form as
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Figure 4.35: Complete model: Rolling stock model + Contact force model + 2DOF
superstructure equivalent model
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żw

żr
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Introducing Eq. (4.48) in Eq. (4.53) results in a system consisting of three ordinary

differential equations. To solve this system an algorithm provided by MATLAB is used

(ode23) which is the implementation of an explicit Runge-Kutta formulae.

On the other hand, the governing differential equations of the linearised model can be

written as
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Transforming to the frequency domain and performing trivial operations one can obtain

the following transfer functions:

Zr
ε(ω)

=
klin

Hertz − T (ω)

klin
Hertz + k′F + iωcPS − ω2mw

(4.55)

Zw
ε(ω)

=
T (ω)

klin
Hertz

[
Zr
ε(ω)

− 1

]
(4.56)

Zs
ε(ω)

=
Q(ω)

k′F + iωc′F

Zr
ε(ω)

(4.57)

where

T (ω) =
klin

Hertz
2

klin
Hertz + kPS + iωcPS − ω2mw

(4.58)

and where Q(ω) must be calculated, in this case, substituting the equivalent 2DOF

model parameters (k′F , h′F , c′F , m′s, k
′
B, h′B, c′B) into Eq. (4.10).

Finally, using Eq. (4.51), the transfer function between the wheel/rail dynamic contact

force and the roughness excitation is

Fw/r

ε(ω)
= klin

Hertz

[
Zw
ε(ω)

+
Zr
ε(ω)

+ 1

]
(4.59)

For this linearised model, the response of the system can be easily and quickly eval-

uated by applying Fourier transform (on the excitation: TF [ε(t)] = ε(ω)) and anti-

transforms (on the responses: TF−1
[
Zw
ε(ω)ε(ω), Zr

ε(ω)ε(ω),
Fw/r
ε(ω) ε(ω)

]
= zw, zr, fw/r) using

a Fast Fourier Transform algorithm. If the structural dampings h′F or h′B are no set null,

the transfer functions Zw
ε(ω) , Zr

ε(ω) and
Fw/r
ε(ω) are complex at ω = 0. Thus, the responses in



Chapter 4. Superstructure model 83

the time domain will be also complex. The imaginary part of these responses must be

removed to obtain a physical time signal [194].

Having defined their formulation, a comparison between these non-linear and linear

contact force models is performed. The roughness profiles of the wheel and the rail

used to obtain these results are presented in Fig. 4.36. These profiles are taken from

measurements done in different placements of the Catalonia rail network, in the frame

of the CATdBTren project (www.catdbtren.cat). These measurements are performed

using a rough meter developed and constructed by Ødegaard & Danneskiold-Samsøe

(Rail recording frame type TRM 02 and wheel recording frame type RRM 02) based on

the standards [69, 70]. The contact filter proposed by Remington [196] is used to treat

these roughness signals adequately.
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Figure 4.36: Roughness profiles used in the comparison of the non-linear and linear
contact models.

To transform the roughness spatial profile into a time history, a train velocity of 25 m/s is

assumed. The other rolling stock parameters used in this calculation are shown in Table

4.10. Using the 2DOF equivalent model of the superstructure with constant parameters

for Case 1 and for a quaternary ground (see Table 4.9) the responses to its excitation are

obtained for both procedures. The results are shown in Figs. 4.37, 4.38 and 4.39, where

it is observed that the differences between the two models are negligible for times when

the transient initial behaviour of the Runge-Kutta numerical integration procedure have

already vanished. This has been checked for any combination of superstructure and

subgrade parameters, and for other roughness excitations. Therefore, the linearised

http://www.catdbtren.cat/index.php?id=38&idioma=3
http://www.lr-ods.com/Home/
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contact force model are adopted since it gives sufficiently accurate results and involves

very low computational time.

Rolling stock parameters

msprung [kg] 6000

mw [kg] 500

kHertz [N/m3/2] 8.937· 1010

kPS [N/m] 2.2· 107

cPS [N s/m] 4.9· 103

Table 4.10: Rolling stock parameters. Source: [1] and [2] for the viscous damping.
These are typical bibliography values.
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Figure 4.37: Comparison between the non-linear and linearised contact models.
Wheel vertical accelerations.

4.5.4 Indirect evaluation of the roughness time histories

The rail or wheel roughness are random stationary ergodic processes [64–67]. They can

be described in the wavenumber or wavelength domain by the module of their Power

Spectral Density (PSD) or by standard octave bands [61]. These descriptions do not

take into account the phase information of the transform, making an exact inversion

process impossible. However, Lu Sun [68] and other authors [16, 45] propose a method
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Figure 4.38: Comparison between the non-linear and linearised contact models. Rail
vertical accelerations.
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Figure 4.39: Comparison between the non-linear and linearised contact models.
Wheel/rail dynamic contact force.
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to obtain roughness random time histories which are described by the same PSD for

example, based on the use a combination of triangular series [73]. The principal concept

involved in this procedure is to represent a stochastic process in terms of the sum of a

certain number of cosine functions with uniform distribution random phase.

To obtain an approximation of the aleatory roughness spatial histories of any spatial

period, the original roughness PSD can be randomly interpolated and rescaled, imposing

that the total energy of the signal has to remain unchanged. This procedure can also be

used when the roughness spectral information has been defined as the form of one-third

octave bands.

This approach is developed using some random parameters. Therefore, the resulting

simulated process is not a unique solution. In fact, there are infinite possible simulated

processes which satisfy the original PSD distribution.

4.6 Influence of the subgrade parameters on the wheel/rail

contact force

Finally, the effects of the subgrade on the wheel/rail dynamic contact force are presented

in this section. Figs. 4.40, 4.41, 4.42, 4.43, 4.44, 4.45, 4.46 and 4.47 display the transfer

function between the wheel/rail dynamic contact force and the roughness excitation

(Eq. (4.59)) for the four cases of superstructure parameters (see Tables 4.1, 4.2 and

4.3) and for five different subgrade parameters of the Table 3.1. The superstructure

equivalent model with frequency dependant parameters 4.4.2 is used to obtain these

transfer functions. In Sections C.3.2 and C.3.1, the responses of the wheel and the rail

due to the roughness excitation are also presented.

As can be seen in these figures, the influence of the subgrade parameters on wheel/rail

dynamic contact force is more intense when for high stiffness tracks combined with low

stiffness grounds. As shown in Section 4.2, the influence of the subgrade parameters on

the track receptance behaves in the same manner.

As can also be observed, the effects of the subgrade parameters on the wheel/rail dy-

namic contact force are significant solely near the resonance of the in-phase mode of the

complete model. Note that this resonance is always below the resonance of the in-phase

mode shown in the results of the track receptance (Section 4.2) since the unsprung mass

incorporated by the rolling stock model reduces the natural frequencies of the system.

Finally, a evaluation example of wheel/rail dynamic contact force is presented here. The

module of the joint roughness PSD used to do this calculation is shown in Fig. 4.48. The
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Figure 4.40: Module of the transfer function between the wheel/rail dynamic contact
force and the roughness excitation for Case 1 (see Tables 4.1, 4.2 and 4.3) and for five

different subgrade parameters in Table 3.1.
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Figure 4.41: Phase of the transfer function between the wheel/rail dynamic contact
force and the roughness excitation for Case 1 (see Tables 4.1, 4.2 and 4.3) and for five

different subgrade parameters in Table 3.1.
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Figure 4.42: Module of the transfer function between the wheel/rail dynamic contact
force and the roughness excitation for Case 2 (see Tables 4.1, 4.2 and 4.3) and for five

different subgrade parameters in Table 3.1.
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Figure 4.43: Phase of the transfer function between the wheel/rail dynamic contact
force and the roughness excitation for Case 2 (see Tables 4.1, 4.2 and 4.3) and for five

different subgrade parameters in Table 3.1.
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Figure 4.44: Module of the transfer function between the wheel/rail dynamic contact
force and the roughness excitation for Case 3 (see Tables 4.1, 4.2 and 4.3) and for five

different subgrade parameters in Table 3.1.
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Figure 4.45: Phase of the transfer function between the wheel/rail dynamic contact
force and the roughness excitation for Case 3 (see Tables 4.1, 4.2 and 4.3) and for five

different subgrade parameters in Table 3.1.
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Figure 4.46: Module of the transfer function between the wheel/rail dynamic contact
force and the roughness excitation for Case 4 (see Tables 4.1, 4.2 and 4.3) and for five

different subgrade parameters in Table 3.1.
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Figure 4.47: Phase of the transfer function between the wheel/rail dynamic contact
force and the roughness excitation for Case 4 (see Tables 4.1, 4.2 and 4.3) and for five

different subgrade parameters in Table 3.1.
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contact filter proposed by Remington [196] is used again to treat this roughness data.

From this spectral information, one hundred different spatial histories are simulated

using the method presented in Section 4.5.4. The evaluation is performed by assuming:

� Train velocities tested: 15, 25 and 35 m/s.

� Rolling stock parameters of the Table 4.10.

� Superstructure parameters: Case 1, 2, 3 and 4 (see Tables 4.1, 4.2 and 4.3).

� Subgrade parameters: all five study cases (see 3.1).

� Frequency ranges tested: Complete range (all the significant frequency range of

the wheel/rail contact force) and the frequency range between 1 and 80 Hz (as

defined by standards [33, 34]).
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Figure 4.48: Joint roughness power spectral density (PSD) of the wheel and the rail.

For the complete frequency range, the results of the wheel/rail dynamic contact force are

presented in Tables 4.11, 4.12, 4.13 and 4.14. The results calculated considering only the

frequency range between 1 and 80 Hz are presented in Tables 4.16, 4.17, 4.18 and 4.19.

To calculate the wheel/rail dynamic contact force in this reduced frequency range (1-80

Hz), a 8-order Butterworth filter is used, setting the cutoff frequency to 100 Hz. This

kind of filter is selected to ensure very low passband ripple. In Tables 4.15 and 4.20 the

ratio between the mean value of the standard deviation induced by subgrade influence
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RMS value [N] of the wheel/rail dynamic contact force

Train velocity

Grounds 15 m/s 25 m/s 35 m/s

Quaternary 3692.59± 181.67 6047.67± 277.66 8243.92± 329.93

Tertiary 3691.59± 181.74 6048.08± 277.65 8244.15± 329.92

Mesozoic 3691.87± 181.73 6048.46± 277.63 8244.48± 329.91

Paleozoic 3692.13± 181.71 6048.38± 277.63 8244.35± 329.91

Igneous Rocks 3691.77± 181.74 6048.47± 277.63 8244.47± 329.91

No subgrade coupling 3691.87± 181.73 6048.59± 277.62 8244.55± 329.91

Table 4.11: RMS value of the wheel/rail dynamic contact force for Case 1 (see Tables
4.1, 4.2 and 4.3), for the five different grounds (see Table 3.1) and for 15, 25 and 35

m/s of train velocity. 95% of confidence intervals. Complete frequency range.

RMS value [N] of the wheel/rail dynamic contact force

Train velocity

Grounds 15 m/s 25 m/s 35 m/s

Quaternary 5947.6± 320.1 8442.02± 321 12494.99± 655.44

Tertiary 5933.07± 320.44 8475.38± 322.12 12518.66± 654.86

Mesozoic 5934.98± 320.45 8500.3± 322.77 12534.8± 654.55

Paleozoic 5935.19± 320.33 8489.09± 322.47 12528.48± 654.65

Igneous Rocks 5934.12± 320.49 8503.02± 322.83 12536.87± 654.47

No subgrade coupling 5933.78± 320.57 8507.51± 322.99 12540± 654.45

Table 4.12: RMS value of the wheel/rail dynamic contact force for Case 2 (see Tables
4.1, 4.2 and 4.3), for the five different grounds (see Table 3.1) and for 15, 25 and 35

m/s of train velocity. 95% of confidence intervals. Complete frequency range.

RMS value [N] of the wheel/rail dynamic contact force

Train velocity

Grounds 15 m/s 25 m/s 35 m/s

Quaternary 4856.87± 366.69 5615.41± 200.62 8090.93± 325.91

Tertiary 4169.14± 231.04 5477.04± 186.19 8071.44± 327.02

Mesozoic 4002.07± 207.02 5457.22± 185.16 8075.54± 327.12

Paleozoic 4105.73± 224.96 5462.01± 185.7 8073.57± 327.12

Igneous Rocks 3955.75± 200.81 5448.57± 184.76 8074.11± 327.19

No subgrade coupling 3933.8± 198.19 5447.18± 184.79 8075.86± 327.22

Table 4.13: RMS value of the wheel/rail dynamic contact force for Case 3 (see Tables
4.1, 4.2 and 4.3), for the five different grounds (see Table 3.1) and for 15, 25 and 35

m/s of train velocity. 95% of confidence intervals. Complete frequency range.
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RMS value [N] of the wheel/rail dynamic contact force

Train velocity

Grounds 15 m/s 25 m/s 35 m/s

Quaternary 8018.68± 800.39 10186.11± 1501.64 8278.61± 496.51

Tertiary 5954.32± 447.18 7175.14± 521.89 7191.07± 197.22

Mesozoic 5058.15± 332.44 6142.23± 277.75 6932.66± 166.73

Paleozoic 5229.3± 346.22 6249.76± 290.16 6939.64± 166.6

Igneous Rocks 4878.73± 310.27 5993.25± 248.73 6905.21± 166.07

No subgrade coupling 4758.51± 294.81 5901.15± 232.59 6887.09± 165.88

Table 4.14: RMS value of the wheel/rail dynamic contact force for Case 4 (see Tables
4.1, 4.2 and 4.3), for the five different grounds (see Table 3.1) and for 15, 25 and 35

m/s of train velocity. 95% of confidence intervals. Complete frequency range.

Standard deviations ratio: Subgrade influence / Random behaviour

Train velocity

Superstructure parameters 15 m/s 25 m/s 35 m/s

Case 1 4.313· 10−3 2.446· 10−3 1.447· 10−3

Case 2 3.549· 10−2 1.507· 10−1 5.083· 10−2

Case 3 2.892 6.848· 10−1 4.383· 10−2

Case 4 5.791 6.387 4.763

Table 4.15: Ratio of the standard deviations induced by the subgrade influence and
by the aleatory behaviour of the roughness for Cases 1, 2, 3 and 4 (see Tables 4.1, 4.2
and 4.3), for the five different grounds (see Table 3.1) and for 15, 25 and 35 m/s of

train velocity. Complete frequency range.

RMS value [N] of the wheel/rail dynamic contact force

Train velocity

Grounds 15 m/s 25 m/s 35 m/s

Quaternary 495.39± 42.53 383.1± 58.39 278.11± 152.59

Tertiary 480.31± 41.57 380.82± 58.72 277.08± 152.98

Mesozoic 479.49± 41.66 382.22± 58.64 277.88± 152.73

Paleozoic 482.78± 41.63 383.25± 58.55 278.32± 152.56

Igneous Rocks 478.54± 41.62 382.3± 58.65 277.93± 152.72

No subgrade coupling 478.16± 41.6 382.63± 58.65 278.1± 152.66

Table 4.16: RMS value of the wheel/rail dynamic contact force for Case 1 (see Tables
4.1, 4.2 and 4.3), for the five different grounds (see Table 3.1) and for 15, 25 and 35

m/s of train velocity. 95% of confidence intervals. Frequency range: 1-80 Hz.
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RMS value [N] of the wheel/rail dynamic contact force

Train velocity

Grounds 15 m/s 25 m/s 35 m/s

Quaternary 1544.47± 148.37 1093.76± 104.07 695.85± 192.7

Tertiary 1409.99± 130.7 1015.47± 100.99 655.45± 200.98

Mesozoic 1341.26± 122.65 969.43± 97.94 633.16± 206.33

Paleozoic 1366.01± 126.39 971.5± 97.58 634.4± 206.19

Igneous Rocks 1323.69± 120.31 958.98± 97.44 628.07± 207.49

No subgrade coupling 1311.17± 119 948.82± 97 622.97± 208.84

Table 4.17: RMS value of the wheel/rail dynamic contact force for Case 2 (see Tables
4.1, 4.2 and 4.3), for the five different grounds (see Table 3.1) and for 15, 25 and 35

m/s of train velocity. 95% of confidence intervals. Frequency rang: 1-80 Hz.

RMS value [N] of the wheel/rail dynamic contact force

Train velocity

Grounds 15 m/s 25 m/s 35 m/s

Quaternary 3513.76± 476.54 1958.25± 254.95 1140.91± 154.15

Tertiary 2468.55± 297.64 1387.27± 147.28 815.6± 103.71

Mesozoic 2151.41± 256.18 1216.97± 124.84 720.02± 96.51

Paleozoic 2345.19± 294.44 1275.86± 138.49 756.06± 102.71

Igneous Rocks 2060.17± 241.14 1168.95± 116.94 692± 94.17

No subgrade coupling 2012.81± 234.41 1137.89± 113.1 675.78± 93.55

Table 4.18: RMS value of the wheel/rail dynamic contact force for Case 3 (see Tables
4.1, 4.2 and 4.3), for the five different grounds (see Table 3.1) and for 15, 25 and 35

m/s of train velocity. 95% of confidence intervals. Frequency range: 1-80 Hz.

RMS value [N] of the wheel/rail dynamic contact force

Train velocity

Grounds 15 m/s 25 m/s 35 m/s

Quaternary 5638.41± 727.99 7445.5± 1641.11 4233.86± 771.73

Tertiary 4226.38± 339.3 4426.67± 592.38 2531.23± 284.53

Mesozoic 3385.31± 296.78 3079.51± 341.94 1773.53± 167.77

Paleozoic 3721.2± 355.2 3353.14± 376.27 1921.64± 184.73

Igneous Rocks 3230.39± 286.11 2865.9± 308.58 1651.9± 152.19

No subgrade coupling 3163.24± 284.71 2765.18± 293.54 1592± 145.16

Table 4.19: RMS value of the wheel/rail dynamic contact force for Case 4 (see Tables
4.1, 4.2 and 4.3), for the five different grounds (see Table 3.1) and for 15, 25 and 35

m/s of train velocity. 95% of confidence intervals. Frequency range: 1-80 Hz.
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Standard deviations ratio: Subgrade influence / Random behaviour

Train velocity

Superstructure parameters 15 m/s 25 m/s 35 m/s

Case 1 6.031· 10−1 3.339· 10−2 6.738· 10−3

Case 2 1.34 1.085 2.654· 10−1

Case 3 3.697 4.072 3.207

Case 4 4.814 5.998 7.05

Table 4.20: Ratio of the standard deviations induced by the subgrade influence and
by the aleatory behaviour of the roughness for Cases 1, 2, 3 and 4 (see Tables 4.1, 4.2
and 4.3), for the five different grounds (see Table 3.1) and for 15, 25 and 35 m/s of

train velocity. Frequency range: 1-80 Hz.

and the mean value of the standard deviation induced by the aleatory behaviour of the

roughness is shown, for both frequency ranges.

As can be seen in Tables 4.11, 4.12, 4.13 and 4.14, the effect of the subgrade is totally

negligible for Cases 1 and 2, since the variability induced by the aleatory behaviour of

the roughness is more important. In contrast, for Cases 3 and 4 the variability induced

by the subgrade kind is, in general, more important than the variability induced by

the roughness. This is an expected result, since the receptance of the track (Section

4.2) and the transfer functions Fw/r/ε(ω) (Figs. 4.40, 4.41, 4.42, 4.43, 4.44, 4.45, 4.46

and 4.47) behave in the same manner. Therefore, combinations of low stiffness grounds

with high stiffness superstructures induce important changes on the rail/wheel dynamic

contact force with respect to the non-coupled case. As the effect of the subgrade is more

significant at low frequencies, the results for the 1-80 Hz frequency range show a more

important influence of the subgrade on the wheel-rail contact force. In this case the

effect of the subgrade in Cases 1 and 2 is no longer clearly negligible.

With regard to train velocity, this parameter expands the roughness spectra in the

frequency domain since ω = kvtrain, modifying the significant frequency range of the

excitation. In consequence, the velocity modifies the response of the system. Specifically,

from the transfer functions Fw/r/ε(ω) presented before one can infer that, in general, the

wheel/rail dynamic contact forces increases with the excitation frequency. Therefore, in

the case of the complete frequency range, the wheel/rail dynamic contact force increases

with train velocity. This tendency can be observed in the results presented in Tables

4.11, 4.12, 4.13 and 4.14. In contrast, an inverse behaviour can be observed for the case

of the reduced frequency range (1 to 80 Hz) in Tables 4.16, 4.17, 4.18 and 4.19. As

the excitation spectra is modified by the train velocity by the expression ω = kvtrain,

the spectral energy contained in this frequency range and, thus, the dynamic wheel/rail

contact force decrease as the train velocity increases.
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4.7 Conclusions

The coupled superstructure model developed in this chapter allows to evaluate the dy-

namics of the wheel/rail contact, taking into account the subgrade, the superstructure

and the vehicle. The relevance of the superstructure/subgrade coupling has been stu-

died for a wide range of superstructure and subgrade parameters. It is shown that for

combination of high stiffness subgrades and low stiffness superstructures, the effect of

the subgrade is totally negligible with regard to the dynamics of the wheel/rail contact,

significantly reducing the time consuming of this model. Only in the case of low stiffness

subgrades and high stiffness superstructures the superstructure/subgrade interaction is

really important. But, even in this extreme case, this interaction does not significantly

affect at frequencies above to 200 Hz.



Chapter 5

Reference vibration amplitude

determination

Finally, a methodology to calculate the vibration time history at any point on the

surface of the ground induced by the passage of one wheel is presented. It follows from

the analytical development showed in Chapter 4 and by using the wheel/rail contact

force as a moving excitation load. This model is the second step and final step of a

complete generation/propagation model in preliminary assessment studies.
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5.1 Generalisation of the track response to a moving force

arbitrarily varying in time

In the previous chapter, a methodology to evaluate the track receptance to a fixed con-

centrated harmonic load in the application point and the time history of the wheel/rail

contact force has been presented. A modification of this development is presented here

with the aim of calculating the vibration time history at any point on the ground surface

induced by one wheelset travelling at a velocity vtrain along the track.

First, the Bernoulli-Euler differential equation (Eq. (4.6) for the case of fixed concen-

trated load) must be modified to take into account the motion of the source:

EI
∂4zr
∂x4

+ ρS
∂2zr
∂t2

+ f(x, t) = fw/r(t) δ(x− vtraint) (5.1)

Transforming to the wavenumber-time domain by using Eq. (B.7) gives

EIk4
xz̄r + ρS

∂2z̄r
∂t2

+ f̄(kx, t) = f̄w/r(t) eikxvtraint (5.2)

and now transforming to the wavenumber-frequency domain by using the Fourier trans-

form of the form

Z̄(k, ω) =

∫ +∞

−∞
z̄(k, t)e−iωtdt (5.3)

finally results in

EIk4
xZ̄r − ρSω2Z̄r + F̄ (kx, t) =

∫ +∞

−∞
f̄w/r(t) e−i(ω−kxvtrain)tdt (5.4)

A change of variables ω̃ = ω − kxvtrain, as proposed by Lombaert and Degrande [16],

gives the following expression

EI

(
ω − ω̃
vtrain

)4

Z̄r − ρSω2Z̄r + F̄

(
ω − ω̃
vtrain

, t

)
=

∫ +∞

−∞
f̄w/r(t) e−iω̃tdt (5.5)

and, since the right term for the latter equation has the form of the Fourier transform

shown in Eq. (5.3), Eq. (5.5) reduces to
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EI

(
ω − ω̃
vtrain

)4

Z̄r − ρSω2z̄r + F̄

(
ω − ω̃
vtrain

, t

)
= Fw/r(ω̃) (5.6)

In view of these expressions, it seems clear that the Doppler effect appears in this

case [190, 197], where ω̃ is the frequency emitted by the moving source and ω is the

frequency observed at the receiver. Thus, from the point of view of a fixed receiver, the

frequency content of the excitation is stretched: specifically it is expanded or contracted

by a factor ranging between [vmin
p /(vmin

p + vtrain), vmin
p /(vmin

p − vtrain)], where vmin
p is the

smallest phase velocity of interest. Supporting this hypothesis, Ditzel has identified the

Doppler effect in field measurements of railway induced vibrations [187].

5.2 Ground response to a moving load arbitrarily varying

in time

The response of the ground due to a strip load F̄g(kx, ω) is described by the Eqs. (4.33),

(4.34) and (4.35). This load can be written in terms of only the rail vertical displacement

as

F̄g(kx, ω) =

[
Q′(ω)

G′(ω)Iky(kx, ω) + 1

]
Z̄r (5.7)

by the combination of Eqs. (4.39) and (4.41). Following a similar procedure that is used

to obtain Eq. (4.44), Eq. (5.6) can be written as a function of only the rail vertical

displacement:

Z̄r =
Fw/r(ω̃)

EI
(
ω−ω̃
vtrain

)4
− ω2ρS +Q(ω)−

G(ω)Q′(ω)Iky ( ω−ω̃
vtrain

, ω)

G′(ω)Iky ( ω−ω̃
vtrain

, ω)+1

(5.8)

Mixing Eqs. (5.7) and (5.8) gives the following expression of the distributed load applied

by the superstructure to the subgrade:

F̄g(kx, ω) =
Q′(ω)

G′(ω)Iky(
ω−ω̃
vtrain

, ω) + 1
·

·
Fw/r(ω̃)

EI
(
ω−ω̃
vtrain

)4
− ω2ρS +Q(ω)−

G(ω)Q′(ω)Iky ( ω−ω̃
vtrain

, ω)

G′(ω)Iky ( ω−ω̃
vtrain

, ω)+1

(5.9)
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Finally, introducing this expression in Eqs. (4.33), (4.34) and (4.35) one can obtain the

response of the ground in the wavenumber-frequency domain. To obtain the response

of the ground in the spatial-time domain a Fourier antitransform of the form

(xg0, yg0, zg0) =
1

8π3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
(X̄g0, Ȳg0, Z̄g0) ei(ωt−kxx−kyy)dωdkxdky (5.10)

must be applied. It may be computed using a Fast Fourier Transform algorithm [172],

for example fftn which is provided by MATLAB and allows to perform a N-D discrete

Fourier transform. As shown before, a more powerful algorithm for the case of typical

seismological oscillatory integrands is the Logarithmic Fast Fourier Transform [135, 136].

The previous evaluation of the Iky term, performed in the track receptance calculation,

can be used to lower the computational time of the Eq. (5.10). Other options, as ex-

plained in Section 2.2.7, are performing a numerical integration using the Filon’s method

[108, 124, 125, 172], the Nonuniform Fast Fourier Transform [137], or any other numerical

integration approach that allows to deal with high oscillatory integrands, as for example

the complex exponential window method [198]. The application of Apsel’s technique (see

Appendix A) will improve the speed of any numerical integration approach, whenever

an analytical solution of the static integral can be obtained.

The wheel/rail contact force evaluation performed in the previous chapter gives only its

dynamic part. To take into account also the quasi-static excitation, the wheel/rail static

contact force ((mw +msprung)g) must be added to the wheel/rail dynamic contact force

in order to obtain a time history of the complete contact force.

To obtain a solution in the time domain for a complete train passage a properly delayed

summation of single wheel solutions must be carried out. With this resulting signal, one

can obtain one-third octave band spectra at far-field evaluation point (see Chapter 3)

and, finally, use a semi-analytical propagation law (as, for example, a multi-point source

Barkan law) to obtain the vibration field at the infrastructure surroundings.



Chapter 6

Contributions and

recommendations

This work is focused on the generation and propagation parts of the at-grade train

induced vibrations problem in the frame of preliminary assessment projects. These

preliminary studies must be faced in first stages of train infrastructure construction

projects or before the construction of any residential complex near to an existing train

infrastructure. The simplicity and efficiency of the model used, in terms of economic

and time costs, are the most important aspects of these studies. The model presented

in this thesis is developed by taking into account all these requirements. Its simple

analytical formulation allows for the calculation of any particular case, with good com-

putational efficiency and without too many input parameters. These input parameters

are the mechanical properties of the viscoelastic and homogeneous ground model, the

distributed mechanical parameters of the ballast, the sleepers, the fasteners and the rail

for the 2-layer supporting model of the superstructure and the mechanical parameters

of the vehicle modelled as a 1DOF system. The analytical behaviour of this model al-

lows for the evaluation of the effect of these parameters on the response of the track

and the surrounding ground, becoming a tool to obtain a first approximation for the

evaluation of the required vibration mitigation measures. Additionally, the model can

be easily adapted for the use of semi-analytical or empirical models in the propagation

part, becoming a generation model that gives a reference vibration amplitude at a cer-

tain reference distance, which is a proper feeding of these semi-analytical or empirical

propagation models.
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6.1 Principal contributions of this work

As introduced before, the principal contribution of this work is the development of a

complete generation/propagation model to be used in preliminary assessment studies.

In the process of this development, other important contributions have emerged:

� First approximation of the near field region dimensions. The viscoelastic

and homogeneous half-space model has been used to calculate an approximation

to the near field region dimensions. This model is used because its low time/e-

conomical cost makes it the best option in preliminary assessment studies. The

quantification of the near field region dimensions will delimit the applicability of

semi-analytical propagation models based on Rayleigh wave spreading. The in-

fluence of the ground parameters on the near field distance (the dimension that

defines the near field region) is studied. With the aim of make a wide calcula-

tion example, parameters of five very distinct real grounds are chosen to quantify

numerically the near field distance.

� Application of Apsel’s technique to accelerate the superstructure/sub-

grade coupling evaluation. Apsel’s technique (Appendix A) was developed

to deal with the oscillatory integrands which appear in seismic wave propagation

problems. This technique has been applied successfully to the evaluation of the

superstructure/subgrade coupling, thus improving the computational efficiency of

this calculus.

� Obtain an accurate equivalent 2DOF model of the superstructure using

frequency dependent parameters. The frequency dependency of the equiva-

lent 2DOF model parameters allows for an exact representation of the receptance

of the coupled system, accurately taking into account the distortions induced by

the superstructure/subgrade coupling on the track response.

� The influence of the subgrade on the track response has been charac-

terised. The track response, in terms of its static receptance and of the wheel/rail

contact force, has been evaluated for different combinations of rolling stock, super-

structure and subgrade parameters. This investigation concludes that this influ-

ence is generally only significant for high stiffness superstructures combined with

soft soils and below 200 Hz. In the other cases, the non-coupled system can be

used, significantly reducing the computational time involved in model calculation.
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6.2 Recommendations for future research

Railway induced vibrations and, more specifically, the research lines within this main

issue, such as vehicle/track dynamics, soil-structure interaction and surface wave propa-

gation, are fascinating and challenging subjects where much remains to be investigated.

In the case of this thesis, the ideas and investigations presented can be further expanded

to improve the precision or computational efficiency of any part of the complete model

presented. The research presented also opens the door to new research lines that the

author considers interesting to better understand the complete phenomena. Here the

most interesting further extensions and new research lines are outlined:

� As metioned in Chapter 3, there are some combinations of damping ratios (DP and

DS) that produce strange results on the MX and MZ factors. Specifically, it has

been found that, in these strange cases, the Rayleigh amplitude decreases much

more than the combined contribution of both the P-wave and S-wave. Since this

is a contradiction with the amount of experimental data available to seismological

science, one may assume that these damping ratio combinations are probably non-

physical, and, therefore, it will be important to know what these combinations

are.

� A quantification of the near field distance for more accurate models of the ground

(layered, anisotropic, other models of damping...) and the source will quantify the

error induced by the viscoelastic and homogeneous model and delimit its applica-

bility.

� Obtain an approximation to the period of frequency dependent receptance oscilla-

tions to improve the computational efficiency and accuracy of the fast method to

obtain the coupled receptance presented in Section 4.3.

� As the computational efficiency is the most important parameter in the case of

this study, the numerical integration of the oscillatory integrands becomes a very

interesting and necessary field of research.

� Develop an efficient and very accurate approach to obtain, experimentally, the

parameters of the superstructure and the subgrade, with which to validate the

model. Most authors have stated that the precision of this determination is much

important than the model accuracy, therefore it is also an important line of re-

search.

� The adaptation of this model for the case of underground railways may be very

useful to make preliminary assessment studies of the impact of railway induced
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vibrations in urban areas, ensuring that the principal advantages of this model

(low time/economical costs) will remain unchanged.



Appendix A

Static integrands and integrals

As Apsel and Luco stated [105, 106, 126], the oscillatory behavior of the integrals used

to calculate the displacement and stress fields of a point source buried in a viscoelastic

half-space can be minimised using the following approach:

I(r, ω) = I(r, 0) +

∫ klim

0

[
Ĩ(k, ω)− Ĩ(k, 0)

]
Jn(kr)dk (A.1)

where I are integrals, Ĩ are integrands, klim is a truncated superior limit of integration

and Jn(.) is the nth-order Bessel function of the first kind. This technique can be

generalized to integrals used for other sources or other ground models and thus, with

other kinds of oscillatory kernels.

With regard to this thesis, some integrals used in Chapters 3 and 4 can be transformed

using this technique in order to reduce the computational cost of the numerical integra-

tion. With respect to the excitation source, these integrals are:

� Infinite line source. Eqs. (3.1) and (3.2).

� Point source. Eqs. (3.19) and (3.20).

� Infinite strip source at y = 0. Eq. (4.43).

A.1 Static integrands and integrals for infinite line source

expressions

The original integrand of the Eq. (3.1) avoiding the kernel is
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Ĩu(k, ω) =
k(2k2 − k2

β − 2υυ′)

(2k2 − k2
β)2 − 4k2υυ′

(A.2)

The evaluation of Ĩu(x, 0) is not obvious because the direct substitution of ω = 0 gives

an indeterminate form: 0/0. Calculating the limit of Ĩu(x,w) when ω tends to zero by

the application of the l’Hôpital’s rule results in

Ĩu(k, 0) = lim
ω→0

[
k(2k2 − k2

β − 2υυ′)

(2k2 − k2
β)2 − 4k2υυ′

]
=

β2

2k(β2 − α2)
(A.3)

Therefore, the expression (3.1) evaluated at ω = 0 can be written as

Iu(x, 0) =
iQ

2πµ

β2

2(β2 − α2)
P
∫ +∞

−∞

e−ikx

k
dk (A.4)

where P represents the Cauchy principal value, which is required because there is a pole

at k = 0 and it resides inside the integration path along the real axis. This Cauchy

principal value integral can be evaluated using contour integration around, for example,

the integration path showed in Fig. A.1. This approach results in

∫ −ε

−R
+

∫

Cε

+

∫ R

ε
+

∫

CR

= −2πi
∑

Res (A.5)

where R tends to infinity and ε tends to zero.

CR

Re(k)Im(k)

C 

 

R

Figure A.1: Integration path used in the evaluation of the integral inside Eq. (A.4).
Symbol � represents the pole.

In consequence, the integral inside Eq. (A.5) is equal to
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P
∫ +∞

−∞

e−ikx

k
dk = −

∫

Cε

−
∫

CR

−2πi
∑

Res (A.6)

As can be seen in Fig. A.1, there are no poles inside the integration closed loop. There-

fore,
∑

Res = 0. On the other hand, as

lim
|k|→∞

[
e−ikx

k

]
= 0 when 0 ≥ arg(k) ≥ −π (A.7)

the integral along the loop CR is

lim
R→∞

∫

CR

e−ikx

k
dk = 0 (A.8)

Finally, the integral along the loop Cε is

∫

Cε

= πiRes

(
e−ikx

k
, 0

)
(A.9)

and by the application of Cauchy’s integral formula, by which a residue for a simple pole

located at z = b of the function f(z) is

Res(f, b) = lim
z→b

(z − b)f(z) (A.10)

where z is a complex variable, one can obtain

∫

Cε

= πi lim
|k|→0

[
(k − 0)

(
e−ikx

k

)]
= πi (A.11)

Thus, Eq. (A.4) is reduced to

Iu(x, 0) =
Qβ2

4µ(β2 − α2)
(A.12)

Following the same approach for the case of vertical displacement, the static integrand

(also avoiding the kernel) and integral result in, respectively

Ĩw(k, 0) = lim
ω→0

[
k2
βυ

(2k2 − k2
β)2 − 4k2υυ′

]
=

α2

2k(β2 − α2)
(A.13)
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Iw(x, 0) =
iQα2

4µ(β2 − α2)
(A.14)

A.2 Static integrands and integrals for point source ex-

pressions

For the case of a vertical point source, the static integrands associated to the radial and

vertical displacement expressions (Eqs. (3.19) and (3.20) respectively) can be evaluated

also applying the l’Hôpital’s rule:

Ĩq(k, 0) = lim
ω→0

[
k2(2k2 − k2

β − 2υυ′)

(2k2 − k2
β)2 − 4k2υυ′

]
=

β2

2(β2 − α2)
(A.15)

Ĩw(k, 0) = lim
ω→0

[
kk2

βυ

(2k2 − k2
β)2 − 4k2υυ′

]
=

α2

2(β2 − α2)
(A.16)

Now, using the well-known integral

∫ ∞

0
Jn(kr)dk =

1

r
n > −1 (A.17)

the static integrals are

Iq(x, 0) = − Lβ2

4πµr(α2 − β2)
(A.18)

Iw(x, 0) =
Lα2

4πµr(α2 − β2)
(A.19)

A.3 Static integrands and integrals for infinite strip source

expressions at its directrix

As can be seen in Chapter 4, Eq. (4.43) allows for a calculation of the vertical displace-

ment of the ground surface due to an infinite strip source at its directrix (y = 0). For

this case, the static integrand is
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Ĩky(kx, ky, 0) = lim
ω→0




υxyk
2
β[

2(k2
x + k2

y)− k2
β

]2
− 4υxyυ′xy(k

2
x + k2

y)


 =

=
α2

2
√
k2
x + k2

y (β2 − α2)

(A.20)

which is also calculated using l’Hôpital’s rule. Therefore, Eq. (4.43) evaluated at ω = 0

can be written as

Iky(kx, 0) =
α2

2πµ(β2 − α2)

∫ ∞

0

sin(cky)

cky

1√
k2
x + k2

y

dky (A.21)

The contour integration approach is used, as in the previous sections, to solve the inte-

gral inside Eq. (A.21). In this case, the following function is assumed initially as the

integrand to integrate:

eicky

cky
√
k2
x + k2

y

(A.22)

This integration can be performed using the integration path showed in Fig. A.2. As

can be seen in this figure, a branch cut appears in the complex plane due to the square

root contained in the denominator of the integrand.

CR

Im(k )

C 

 

R

ik x

0

0

 ik x

y

Re(k )y

- CR

+

Figure A.2: Integration path used in the evaluation of the integral of the Eq. (A.22).
Symbols � represent the poles and the strip line represents the branch cut.
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The application of contour integration leads to

∫ −ε0
−R

+

∫

Cε0

+

∫ R

ε0

+

∫

C−R

+

∫

Cεikx

+

∫

C+
R

= 2πi
∑

Res (A.23)

Letting ε0 and εikx tend to zero and R tends to infinity

P
∫ +∞

−∞
=

∫ −ε0
−R

+

∫ R

ε0

= −
∫

Cε0

−
∫

C−R

−
∫

Cεikx

−
∫

C+
R

+2πi
∑

Res (A.24)

As before, there are no poles inside the closed loop. Furthermore, the limit of the

integrand when |ky| tends to infinity and 0 ≤ arg(ky) ≤ π is zero, and therefore the

integral along the loops C−R and C+
R is zero. Thus, Eq. (A.24) reduces to

P
∫ +∞

−∞
= −

∫

Cε0

−
∫

Cεikx

(A.25)

On the one hand and in similar manner as in Eq. (A.11)

∫

Cε0

= −πi lim
ky→0


(ky − 0)


 e−icky

cky
√
k2
x + k2

y




 = − πi

c|kx|
(A.26)

On the other hand, the integral along the loop Cεikx can be written as

∫

Cεikx

=

∫ ikx

i∞

eicky

ckyk
+
xy

dky − πi lim
ky→ikx

[
(ky − i)

eicky

cky(k2
x + k2

y)

]
+

+

∫ i∞

ikx

eicky

ckyk
−
xy

dky = 2

∫ i∞

ikx

eicky

ckyk
−
xy

dky

(A.27)

where

k+
xy =

√
k2
x + k2

y imposing that Im(k+
xy) > 0

k−xy =
√
k2
x + k2

y imposing that Im(k−xy) < 0
(A.28)

And if one adopts ky = −ik′y as a variable substitution, Eq. (A.28) becomes
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∫

Cεikx

= 2

∫ ∞

kx

e−ck
′
y

ck′y

√
k′2y − k2

x

idk′y (A.29)

Finally, inserting Eqs. (A.26) and (A.29) in Eq. (A.25), taking advantage of the Eq.

(A.22) symmetry and taking only the imaginary part (as the Euler’s formula states that

eiθ = cos θ + i sin θ), Eq. (A.21) reduces to

Iky(kx, 0) =
α2

4πµ(β2 − α2)


 π

c|kx|
− 2

∫ ∞

|kx|

e−ck
′
y

ck′y

√
k′2y − k2

x

dk′y


 (A.30)





Appendix B

Superstructure model without

subgrade coupling

In this appendix the analytical solution of the superstructure model presented in Sec-

tion 4.1 in the assumption of no superstructure/subgrade coupling is presented. This

simplified superstructure model is shown in Fig. B.1.

 ! "!

Rail

Fasteners

Sleepers

Ballast

zr

x
z

kB,cB

zs kF,cF

'

'

Figure B.1: 2-layer continuous support model without superstructure/subgrade cou-
pling.
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B.1 Governing equations

Eqs. (4.6), (4.2) and (4.3) define the motion, induced by a unitary, vertical and harmonic

point load applied on the head of the rail at x = ζ, of the superstructure model with

superstructure/subgrade coupling, which is presented in Chapter 4. Since the applied

load is unitary, the specified problem is, of course, one of determining the Green’s

function for the system. Assuming the subgrade as a completely rigid body, Eqs. (4.6)

and (4.2) remain unchanged and the equation of motion of the sleepers (Eq. (4.3))

becomes

kF (z′r − z′s) + cF (ż′r − ż′s)− kBz′s − cB ż′s = msz̈
′
s (B.1)

Considering a solution of the form

z = Zeiωt (B.2)

the governing equation of the sleepers reduces to

(kF + iωcF )(Z ′r − Z ′s)− (kB + iωcB)Z ′s = −msω
2Z ′s (B.3)

that is defined in the frequency domain. In this domain, the governing equation of the

rail can be written as

EI
∂4Z ′r
∂x4

− ρSω2Z ′r + (kF + iωcF )(Z ′r − Z ′s) = Fw/r(ω) δ(x− ζ) (B.4)

which is obtained mixing Eqs. (4.9) and (4.2) and considering displacement solutions of

the form (B.2). From Eq. (B.3), the vertical motion of the distributed sleepers in the

frequency domain can be expressed as

Z ′s =
kF + iωcF

kF + iωcF + kB + iωcB −msω2
Z ′r (B.5)

Substituting Eq. (B.5) into (B.4) gives

EI
∂4Z ′r
∂x4

− ρSω2Z ′r +Q(ω)Z ′r = Fw/r(ω) δ(x− ζ) (B.6)
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where Q(ω) is defined by the expression (4.10). By the application of a Fourier transform

of the form

Z̄(k, ω) =

∫ +∞

−∞
Z(x, ω)eikxdx (B.7)

to Eq. (B.6) is possible to obtain the rail displacement solution in the wavenumber-

frequency domain:

EIk4Z̄ ′r − ρSω2Z̄ ′r +Q(ω)Z̄ ′r = Fw/r eikζ (B.8)

This expression can be also expressed as

k4Z̄ ′r − k4
0Z̄
′
r =

Fw/r

EI
eikζ (B.9)

where

k0 =
4

√
ω2ρS −Q(ω)

EI
(B.10)

Therefore, the rail displacement in the wavenumber-frequency domain can be defined by

Z̄ ′r =
Fw/r

EI

eikζ

k4 − k4
0

(B.11)

Applying the Fourier antitranform associated to the transform defined by the Eq. (B.7),

which have the form

Z(x, ω) =
1

2π

∫ +∞

−∞
Z̄(k, ω)e−ikxdk (B.12)

one can obtain that the rail vertical receptance in the spatial-frequency domain is given

by

Z ′r
Fw/r

=
1

2πEI

∫ +∞

−∞

e−ik(x−ζ)

k4 − k4
0

dk (B.13)
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B.2 Analytical solution by contour integration

The denominator of the integrand of the Eq. (B.13) have four roots:

k = ±k0,±ik0 (B.14)

If k0 is a real number, two of these four roots are real and two imaginary. For this case,

it can be found the development of contour integration and the solution of this problem

in [78]. But when k0 is a complex value any of the four roots are not pure real nor pure

imaginary, as can be seen in Figs. B.2 and B.3.

k0

ik 0

-k0

-ik 0

Re(k)

Im(k)

Figure B.2: Poles distribution for k0 located in the first quadrant of the complex
plane and integration path for x > ζ. Symbols � represent the poles.

In these figures it is also presented two different integration paths that allow for a

evaluation, following the contour integration technique, of the integral in Eq. (B.13).

Applying this approach to both paths gives the following expression

∫ +∞

−∞
+

∫

SC
= ±2πi

∑
Res (B.15)

where
∫
SC is the integration along the semicircular portion of the path and

∑
Res is

the summation of the residues of the poles inside the integration contour. The sign of

the term ±2πi
∑

Res is defined by the direction of rotation: positive for anticlockwise

direction and negative for clockwise direction.



Appendix B. Superstructure model without subgrade coupling 117

k0

ik 0

-k0

-ik 0

Re(k)

Im(k)

Figure B.3: Poles distribution for k0 located in the first quadrant of the complex
plane and integration path for x < ζ. Symbols � represent the poles.

On one hand, the first path (Fig. B.2) is used when x > ζ because, in this case, the

integral along this semicircular path is equal to zero. On the other hand, the second

path (Fig. B.3) is used when x < ζ for the same reason.

Therefore, the calculation of the integral reduces to the evaluation of the residues en-

closed by the selected contour. Using Cauchy’s integral formula, Eq. (A.10), to evaluate

the residues in all possible cases (for the two different integration paths and for k0 in

each quadrant of the complex plane) gives the rail vertical displacement solution, that

is defined, for Re(k0) > 0 and Im(k0) > 0 by

Z ′r
Fw/r

=
1

4k3
0EI

(
−e−k0(x−ζ) + ieik0(x−ζ)

)
forx > ζ

Z ′r
Fw/r

=
1

4k3
0EI

(
−ek0(x−ζ) + ie−ik0(x−ζ)

)
forx < ζ

(B.16)

for Re(k0) < 0 and Im(k0) > 0 by

Z ′r
Fw/r

=
1

4k3
0EI

(
ek0(x−ζ) + ieik0(x−ζ)

)
forx > ζ

Z ′r
Fw/r

=
1

4k3
0EI

(
e−k0(x−ζ) + ie−ik0(x−ζ)

)
forx < ζ

(B.17)

for Re(k0) < 0 and Im(k0) < 0 by
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Z ′r
Fw/r

=
1

4k3
0EI

(
ek0(x−ζ) − ie−ik0(x−ζ)

)
forx > ζ

Z ′r
Fw/r

=
1

4k3
0EI

(
e−k0(x−ζ) − ieik0(x−ζ)

)
forx < ζ

(B.18)

and for Re(k0) > 0 and Im(k0) < 0 by

Z ′r
Fw/r

=
1

4k3
0EI

(
−e−k0(x−ζ) − ie−ik0(x−ζ)

)
forx > ζ

Z ′r
Fw/r

=
1

4k3
0EI

(
−ek0(x−ζ) − ieik0(x−ζ)

)
forx < ζ

(B.19)

This solution is the Green’s function of the problem or the receptance of the rail to this

kind of load (vertical and applied at x = ζ and at the rail head).

B.3 Natural frequencies

This track model have two resonant frequencies, associated to the in-phase and anti-

phase modes. In the case of the undamped system, this two modes are defined by two

natural frequencies. The analytical expressions of these natural frequencies follow from

Eq. (B.16) by assuming no viscous and structural dampings. In this case, k0 can be

expressed as

k0 = 4

√
ω2ρS(kF + kB −msω2)− kF (kB −msω2)

EI(kF + kB −msω2)
(B.20)

To evaluate the natural frequencies ω̄′n Eq. (B.16) denominator must be equalled to

zero. Therefore, natural frequencies are the positive solutions of the equation

−msρSω̄
′4
n + (ρS(kF + kB) + kFms)ω̄

′2
n − kFkB = 0 (B.21)

where n is the number of the mode. Solving this fourth-degree equation gives 4 solutions



Appendix B. Superstructure model without subgrade coupling 119

ω̄′−1 =−
√
ρS(kF + kB) + kFms −R

2msρS

ω̄′+1 =

√
ρS(kF + kB) + kFms −R

2msρS

ω̄′−2 =−
√
ρS(kF + kB) + kFms +R

2msρS

ω̄′+2 =

√
ρS(kF + kB) + kFms +R

2msρS

(B.22)

where

R =
√
S2ρ2(kB + kF )2 + 2SρmskF (kF − kB) + k2

Fm
2
s (B.23)

As the term ρS(kF + kB) + kFms is always higher than R, ω̄′+1 and ω̄′+2 are always real

positive values and ω̄′−1 and ω̄′−2 are always real negative values. Ignoring these negative

solutions, the natural frequencies of the in-phase and anti-phase modes are, respectively,

ω̄′1 =

√
ρS(kF + kB) + kFms −R

2msρS
(B.24)

ω̄′2 =

√
ρS(kF + kB) + kFms +R

2msρS
(B.25)

In contrast to an SDOF or MDOF typical vibration models, the natural frequency of this

model is not exactly equal to the resonant frequency for the case of structural damping.





Appendix C

Complete results obtained by

using the superstructure model

In this appendix, the results obtained for any combination of superstructure and sub-

grade parameters shown in Tables 4.1, 4.2, 4.3 and 3.1 are presented. This results are:

� Track receptances at the load application point: the effects of the subgrade pa-

rameters on them. Section C.1.

� The parameters of the equivalent model obtained by fitting the receptances. Sec-

tion C.2.

� The effect of the subgrade parameters on the wheel/rail contact dynamics. Section

C.3.

C.1 Effects of the subgrade parameters on the track re-

ceptance

In this section the effects of the subgrade mechanical parameters, which are the Young’s

modulus, Poisson’s ratio, density, and the dampings DP and DS , on the track receptance

at the load application point is presented in its non-dimensionless and dimensionless

forms. It is also presented the effects of the superstructure width in this track receptance.

This results are obtained following the approach presented in Sections 4.1 and 4.2 and

complete the results presented there.
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C.1.1 Effects of the ground types
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Figure C.1: Module of the rail receptance for five different subgrade parameters of
the Table 3.1 and for the superstructure parameters in Case 1 (see Tables 4.1, 4.2 and

4.3).
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Figure C.2: Phase of the rail receptance for five different subgrade parameters of the
Table 3.1 and for the superstructure parameters in Case 1 (see Tables 4.1, 4.2 and 4.3).
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Figure C.3: Adimensional module of the rail receptance for five different subgrade
parameters of the Table 3.1 and for the superstructure parameters in Case 1 (see Tables

4.1, 4.2 and 4.3).

0 10 20 30 40 50 60 70 80 90 100
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Frequency [Hz]

P
h
as
e( Z

r

Z
′ r

)
[r
ad

]

 

 
Quaternary
Tertiary
Mesozoic
Paleozoic
Igneous Rocks

Figure C.4: Adimensional phase of the rail receptance for five different subgrade
parameters of the Table 3.1 and for the superstructure parameters in Case 1 (see Tables

4.1, 4.2 and 4.3).
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Figure C.5: Module of the rail receptance for five different subgrade parameters of
the Table 3.1 and for the superstructure parameters in Case 2 (see Tables 4.1, 4.2 and

4.3).
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Figure C.6: Phase of the rail receptance for five different subgrade parameters of the
Table 3.1 and for the superstructure parameters in Case 2 (see Tables 4.1, 4.2 and 4.3).
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Figure C.7: Adimensional module of the rail receptance for five different subgrade
parameters of the Table 3.1 and for the superstructure parameters in Case 2 (see Tables

4.1, 4.2 and 4.3).
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Figure C.8: Adimensional phase of the rail receptance for five different subgrade
parameters of the Table 3.1 and for the superstructure parameters in Case 2 (see Tables

4.1, 4.2 and 4.3).
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Figure C.9: Module of the rail receptance for five different subgrade parameters of
the Table 3.1 and for the superstructure parameters in Case 3 (see Tables 4.1, 4.2 and

4.3).
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Figure C.10: Phase of the rail receptance for five different subgrade parameters of
the Table 3.1 and for the superstructure parameters in Case 3 (see Tables 4.1, 4.2 and

4.3).
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Figure C.11: Adimensional module of the rail receptance for five different subgrade
parameters of the Table 3.1 and for the superstructure parameters in Case 3 (see Tables

4.1, 4.2 and 4.3).
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Figure C.12: Adimensional phase of the rail receptance for five different subgrade
parameters of the Table 3.1 and for the superstructure parameters in Case 3 (see Tables

4.1, 4.2 and 4.3).
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Figure C.13: Module of the rail receptance for five different subgrade parameters of
the Table 3.1 and for the superstructure parameters in Case 4 (see Tables 4.1, 4.2 and

4.3).
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Figure C.14: Phase of the rail receptance for five different subgrade parameters of
the Table 3.1 and for the superstructure parameters in Case 4 (see Tables 4.1, 4.2 and

4.3).
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Figure C.15: Adimensional module of the rail receptance for five different subgrade
parameters of the Table 3.1 and for the superstructure parameters in Case 4 (see Tables

4.1, 4.2 and 4.3).
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Figure C.16: Adimensional phase of the rail receptance for five different subgrade
parameters of the Table 3.1 and for the superstructure parameters in Case 4 (see Tables

4.1, 4.2 and 4.3).
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C.1.2 Effects of the dampings DP and DS
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Figure C.17: Module of the rail receptance for five different combinations of subgrade
damping coefficients DP and DS and for the superstructure parameters in Case 1 (see
Tables 4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade are equal

to the Quaternary ground type (see Table 3.1).
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Figure C.18: Phase of the rail receptance for five different combinations of subgrade
damping coefficients DP and DS and for the superstructure parameters in Case 1 (see
Tables 4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade are equal

to the Quaternary ground type (see Table 3.1).
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Figure C.19: Adimensional module of the rail receptance for five different combina-
tions of subgrade damping coefficients DP and DS and for the superstructure param-
eters in Case 1 (see Tables 4.1, 4.2 and 4.3). The other mechanical parameters of the

subgrade are equal to the Quaternary ground type (see Table 3.1).
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Figure C.20: Adimensional phase of the rail receptance for five different combinations
of subgrade damping coefficients DP and DS and for the superstructure parameters in
Case 1 (see Tables 4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade

are equal to the Quaternary ground type (see Table 3.1).
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Figure C.21: Module of the rail receptance for five different combinations of subgrade
damping coefficients DP and DS and for the superstructure parameters in Case 2 (see
Tables 4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade are equal

to the Quaternary ground type (see Table 3.1).
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Figure C.22: Phase of the rail receptance for five different combinations of subgrade
damping coefficients DP and DS and for the superstructure parameters in Case 2 (see
Tables 4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade are equal

to the Quaternary ground type (see Table 3.1).
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Figure C.23: Adimensional module of the rail receptance for five different combina-
tions of subgrade damping coefficients DP and DS and for the superstructure param-
eters in Case 2 (see Tables 4.1, 4.2 and 4.3). The other mechanical parameters of the

subgrade are equal to the Quaternary ground type (see Table 3.1).
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Figure C.24: Adimensional phase of the rail receptance for five different combinations
of subgrade damping coefficients DP and DS and for the superstructure parameters in
Case 2 (see Tables 4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade

are equal to the Quaternary ground type (see Table 3.1).
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Figure C.25: Module of the rail receptance for five different combinations of subgrade
damping coefficients DP and DS and for the superstructure parameters in Case 3 (see
Tables 4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade are equal

to the Quaternary ground type (see Table 3.1).
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Figure C.26: Phase of the rail receptance for five different combinations of subgrade
damping coefficients DP and DS and for the superstructure parameters in Case 3 (see
Tables 4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade are equal

to the Quaternary ground type (see Table 3.1).
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Figure C.27: Adimensional module of the rail receptance for five different combina-
tions of subgrade damping coefficients DP and DS and for the superstructure param-
eters in Case 3 (see Tables 4.1, 4.2 and 4.3). The other mechanical parameters of the

subgrade are equal to the Quaternary ground type (see Table 3.1).
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Figure C.28: Adimensional phase of the rail receptance for five different combinations
of subgrade damping coefficients DP and DS and for the superstructure parameters in
Case 3 (see Tables 4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade

are equal to the Quaternary ground type (see Table 3.1).
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Figure C.29: Module of the rail receptance for five different combinations of subgrade
damping coefficients DP and DS and for the superstructure parameters in Case 4 (see
Tables 4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade are equal

to the Quaternary ground type (see Table 3.1).
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Figure C.30: Phase of the rail receptance for five different combinations of subgrade
damping coefficients DP and DS and for the superstructure parameters in Case 4 (see
Tables 4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade are equal

to the Quaternary ground type (see Table 3.1).
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Figure C.31: Adimensional module of the rail receptance for five different combina-
tions of subgrade damping coefficients DP and DS and for the superstructure param-
eters in Case 4 (see Tables 4.1, 4.2 and 4.3). The other mechanical parameters of the

subgrade are equal to the Quaternary ground type (see Table 3.1).
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Figure C.32: Adimensional phase of the rail receptance for five different combinations
of subgrade damping coefficients DP and DS and for the superstructure parameters in
Case 4 (see Tables 4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade

are equal to the Quaternary ground type (see Table 3.1).
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C.1.3 Effects of the density
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Figure C.33: Module of the rail receptance for five different subgrade densities and
for the superstructure parameters in Case 1 (see Tables 4.1, 4.2 and 4.3). The other
mechanical parameters of the subgrade are equal to the Quaternary ground type (see

Table 3.1).
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Figure C.34: Phase of the rail receptance for five different subgrade densities and
for the superstructure parameters in Case 1 (see Tables 4.1, 4.2 and 4.3). The other
mechanical parameters of the subgrade are equal to the Quaternary ground type (see

Table 3.1).
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Figure C.35: Adimensional module of the rail receptance for five different subgrade
densities and for the superstructure parameters in Case 1 (see Tables 4.1, 4.2 and 4.3).
The other mechanical parameters of the subgrade are equal to the Quaternary ground

type (see Table 3.1).
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Figure C.36: Adimensional phase of the rail receptance for five different subgrade
densities and for the superstructure parameters in Case 1 (see Tables 4.1, 4.2 and 4.3).
The other mechanical parameters of the subgrade are equal to the Quaternary ground

type (see Table 3.1).
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Figure C.37: Module of the rail receptance for five different subgrade densities and
for the superstructure parameters in Case 2 (see Tables 4.1, 4.2 and 4.3). The other
mechanical parameters of the subgrade are equal to the Quaternary ground type (see

Table 3.1).
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Figure C.38: Phase of the rail receptance for five different subgrade densities and
for the superstructure parameters in Case 2 (see Tables 4.1, 4.2 and 4.3). The other
mechanical parameters of the subgrade are equal to the Quaternary ground type (see

Table 3.1).
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Figure C.39: Adimensional module of the rail receptance for five different subgrade
densities and for the superstructure parameters in Case 2 (see Tables 4.1, 4.2 and 4.3).
The other mechanical parameters of the subgrade are equal to the Quaternary ground

type (see Table 3.1).
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Figure C.40: Adimensional phase of the rail receptance for five different subgrade
densities and for the superstructure parameters in Case 2 (see Tables 4.1, 4.2 and 4.3).
The other mechanical parameters of the subgrade are equal to the Quaternary ground

type (see Table 3.1).
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Figure C.41: Module of the rail receptance for five different subgrade densities and
for the superstructure parameters in Case 3 (see Tables 4.1, 4.2 and 4.3). The other
mechanical parameters of the subgrade are equal to the Quaternary ground type (see

Table 3.1).
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Figure C.42: Phase of the rail receptance for five different subgrade densities and
for the superstructure parameters in Case 3 (see Tables 4.1, 4.2 and 4.3). The other
mechanical parameters of the subgrade are equal to the Quaternary ground type (see

Table 3.1).
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Figure C.43: Adimensional module of the rail receptance for five different subgrade
densities and for the superstructure parameters in Case 3 (see Tables 4.1, 4.2 and 4.3).
The other mechanical parameters of the subgrade are equal to the Quaternary ground

type (see Table 3.1).
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Figure C.44: Adimensional phase of the rail receptance for five different subgrade
densities and for the superstructure parameters in Case 3 (see Tables 4.1, 4.2 and 4.3).
The other mechanical parameters of the subgrade are equal to the Quaternary ground

type (see Table 3.1).
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Figure C.45: Module of the rail receptance for five different subgrade densities and
for the superstructure parameters in Case 4 (see Tables 4.1, 4.2 and 4.3). The other
mechanical parameters of the subgrade are equal to the Quaternary ground type (see

Table 3.1).
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Figure C.46: Phase of the rail receptance for five different subgrade densities and
for the superstructure parameters in Case 4 (see Tables 4.1, 4.2 and 4.3). The other
mechanical parameters of the subgrade are equal to the Quaternary ground type (see

Table 3.1).
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Figure C.47: Adimensional module of the rail receptance for five different subgrade
densities and for the superstructure parameters in Case 4 (see Tables 4.1, 4.2 and 4.3).
The other mechanical parameters of the subgrade are equal to the Quaternary ground

type (see Table 3.1).
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Figure C.48: Adimensional phase of the rail receptance for five different subgrade
densities and for the superstructure parameters in Case 4 (see Tables 4.1, 4.2 and 4.3).
The other mechanical parameters of the subgrade are equal to the Quaternary ground

type (see Table 3.1).
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C.1.4 Effects of the Poisson’s ratio
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Figure C.49: Module of the rail receptance for five different Poisson’s ratios of the
subgrade and for the superstructure parameters in Case 1 (see Tables 4.1, 4.2 and 4.3).
The other mechanical parameters of the subgrade are equal to the Quaternary ground

type (see Table 3.1).
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Figure C.50: Phase of the rail receptance for five different Poisson’s ratios of the
subgrade and for the superstructure parameters in Case 1 (see Tables 4.1, 4.2 and 4.3).
The other mechanical parameters of the subgrade are equal to the Quaternary ground

type (see Table 3.1).
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Figure C.51: Adimensional module of the rail receptance for five different Poisson’s
ratios of the subgrade and for the superstructure parameters in Case 1 (see Tables
4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade are equal to the

Quaternary ground type (see Table 3.1).
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Figure C.52: Adimensional phase of the rail receptance for five different Poisson’s
ratios of the subgrade and for the superstructure parameters in Case 1 (see Tables
4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade are equal to the

Quaternary ground type (see Table 3.1).
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Figure C.53: Module of the rail receptance for five different Poisson’s ratios of the
subgrade and for the superstructure parameters in Case 2 (see Tables 4.1, 4.2 and 4.3).
The other mechanical parameters of the subgrade are equal to the Quaternary ground

type (see Table 3.1).
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Figure C.54: Phase of the rail receptance for five different Poisson’s ratios of the
subgrade and for the superstructure parameters in Case 2 (see Tables 4.1, 4.2 and 4.3).
The other mechanical parameters of the subgrade are equal to the Quaternary ground

type (see Table 3.1).
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Figure C.55: Adimensional module of the rail receptance for five different Poisson’s
ratios of the subgrade and for the superstructure parameters in Case 2 (see Tables
4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade are equal to the

Quaternary ground type (see Table 3.1).
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Figure C.56: Adimensional phase of the rail receptance for five different Poisson’s
ratios of the subgrade and for the superstructure parameters in Case 2 (see Tables
4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade are equal to the

Quaternary ground type (see Table 3.1).
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Figure C.57: Module of the rail receptance for five different Poisson’s ratios of the
subgrade and for the superstructure parameters in Case 3 (see Tables 4.1, 4.2 and 4.3).
The other mechanical parameters of the subgrade are equal to the Quaternary ground

type (see Table 3.1).
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Figure C.58: Phase of the rail receptance for five different Poisson’s ratios of the
subgrade and for the superstructure parameters in Case 3 (see Tables 4.1, 4.2 and 4.3).
The other mechanical parameters of the subgrade are equal to the Quaternary ground

type (see Table 3.1).
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Figure C.59: Adimensional module of the rail receptance for five different Poisson’s
ratios of the subgrade and for the superstructure parameters in Case 3 (see Tables
4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade are equal to the

Quaternary ground type (see Table 3.1).
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Figure C.60: Adimensional phase of the rail receptance for five different Poisson’s
ratios of the subgrade and for the superstructure parameters in Case 3 (see Tables
4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade are equal to the

Quaternary ground type (see Table 3.1).
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Figure C.61: Module of the rail receptance for five different Poisson’s ratios of the
subgrade and for the superstructure parameters in Case 4 (see Tables 4.1, 4.2 and 4.3).
The other mechanical parameters of the subgrade are equal to the Quaternary ground

type (see Table 3.1).
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Figure C.62: Phase of the rail receptance for five different Poisson’s ratios of the
subgrade and for the superstructure parameters in Case 4 (see Tables 4.1, 4.2 and 4.3).
The other mechanical parameters of the subgrade are equal to the Quaternary ground

type (see Table 3.1).
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Figure C.63: Adimensional module of the rail receptance for five different Poisson’s
ratios of the subgrade and for the superstructure parameters in Case 4 (see Tables
4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade are equal to the

Quaternary ground type (see Table 3.1).
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Figure C.64: Adimensional phase of the rail receptance for five different Poisson’s
ratios of the subgrade and for the superstructure parameters in Case 4 (see Tables
4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade are equal to the

Quaternary ground type (see Table 3.1).
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C.1.5 Effects of the Young’s modulus
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Figure C.65: Module of the rail receptance for five different Young’s modulus of the
subgrade and for the superstructure parameters in Case 1 (see Tables 4.1, 4.2 and 4.3).
The other mechanical parameters of the subgrade are equal to the Quaternary ground

type (see Table 3.1).
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Figure C.66: Phase of the rail receptance for five different Young’s modulus of the
subgrade and for the superstructure parameters in Case 1 (see Tables 4.1, 4.2 and 4.3).
The other mechanical parameters of the subgrade are equal to the Quaternary ground

type (see Table 3.1).
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Figure C.67: Adimensional module of the rail receptance for five different Young’s
modulus of the subgrade and for the superstructure parameters in Case 1 (see Tables
4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade are equal to the

Quaternary ground type (see Table 3.1).
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Figure C.68: Adimensional phase of the rail receptance for five different Young’s
modulus of the subgrade and for the superstructure parameters in Case 1 (see Tables
4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade are equal to the

Quaternary ground type (see Table 3.1).
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Figure C.69: Module of the rail receptance for five different Young’s modulus of the
subgrade and for the superstructure parameters in Case 2 (see Tables 4.1, 4.2 and 4.3).
The other mechanical parameters of the subgrade are equal to the Quaternary ground

type (see Table 3.1).
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Figure C.70: Phase of the rail receptance for five different Young’s modulus of the
subgrade and for the superstructure parameters in Case 2 (see Tables 4.1, 4.2 and 4.3).
The other mechanical parameters of the subgrade are equal to the Quaternary ground

type (see Table 3.1).
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Figure C.71: Adimensional module of the rail receptance for five different Young’s
modulus of the subgrade and for the superstructure parameters in Case 2 (see Tables
4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade are equal to the

Quaternary ground type (see Table 3.1).
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Figure C.72: Adimensional phase of the rail receptance for five different Young’s
modulus of the subgrade and for the superstructure parameters in Case 2 (see Tables
4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade are equal to the

Quaternary ground type (see Table 3.1).
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Figure C.73: Module of the rail receptance for five different Young’s modulus of the
subgrade and for the superstructure parameters in Case 3 (see Tables 4.1, 4.2 and 4.3).
The other mechanical parameters of the subgrade are equal to the Quaternary ground

type (see Table 3.1).
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Figure C.74: Phase of the rail receptance for five different Young’s modulus of the
subgrade and for the superstructure parameters in Case 3 (see Tables 4.1, 4.2 and 4.3).
The other mechanical parameters of the subgrade are equal to the Quaternary ground

type (see Table 3.1).
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Figure C.75: Adimensional module of the rail receptance for five different Young’s
modulus of the subgrade and for the superstructure parameters in Case 3 (see Tables
4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade are equal to the

Quaternary ground type (see Table 3.1).

0 20 40 60 80 100 120 140 160 180 200
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Frequency [Hz]

P
h
as
e( Z

r

Z
′ r

)
[r
ad

]

 

 
E = 20MPa
E = 90MPa
E = 350MPa
E = 1500MPa
E = 4000MPa

Figure C.76: Adimensional phase of the rail receptance for five different Young’s
modulus of the subgrade and for the superstructure parameters in Case 3 (see Tables
4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade are equal to the

Quaternary ground type (see Table 3.1).
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Figure C.77: Module of the rail receptance for five different Young’s modulus of the
subgrade and for the superstructure parameters in Case 4 (see Tables 4.1, 4.2 and 4.3).
The other mechanical parameters of the subgrade are equal to the Quaternary ground

type (see Table 3.1).
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Figure C.78: Phase of the rail receptance for five different Young’s modulus of the
subgrade and for the superstructure parameters in Case 4 (see Tables 4.1, 4.2 and 4.3).
The other mechanical parameters of the subgrade are equal to the Quaternary ground

type (see Table 3.1).



Appendix C. Complete results obtained by using the superstructure model 161

0 50 100 150 200 250 300
0.5

1

1.5

2

Frequency [Hz]

∣ ∣ ∣Z
r

Z
′ r

∣ ∣ ∣[
-]

 

 
E = 20MPa
E = 90MPa
E = 350MPa
E = 1500MPa
E = 4000MPa

Figure C.79: Adimensional module of the rail receptance for five different Young’s
modulus of the subgrade and for the superstructure parameters in Case 4 (see Tables
4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade are equal to the

Quaternary ground type (see Table 3.1).
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Figure C.80: Adimensional phase of the rail receptance for five different Young’s
modulus of the subgrade and for the superstructure parameters in Case 4 (see Tables
4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade are equal to the

Quaternary ground type (see Table 3.1).
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C.1.6 Effects of the superstructure width
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Figure C.81: Module of the rail receptance for five different widths of the contact area
between the superstructure and the subgrade and for the superstructure parameters in
Case 1 (see Tables 4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade

are equal to the Quaternary ground type (see Table 3.1).
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Figure C.82: Phase of the rail receptance for five different widths of the contact area
between the superstructure and the subgrade and for the superstructure parameters in
Case 1 (see Tables 4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade

are equal to the Quaternary ground type (see Table 3.1).
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Figure C.83: Adimensional module of the rail receptance for five different widths of
the contact area between the superstructure and the subgrade and for the superstructure
parameters in Case 1 (see Tables 4.1, 4.2 and 4.3). The other mechanical parameters

of the subgrade are equal to the Quaternary ground type (see Table 3.1).
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Figure C.84: Adimensional phase of the rail receptance for five different widths of the
contact area between the superstructure and the subgrade and for the superstructure
parameters in Case 1 (see Tables 4.1, 4.2 and 4.3). The other mechanical parameters

of the subgrade are equal to the Quaternary ground type (see Table 3.1).
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Figure C.85: Module of the rail receptance for five different widths of the contact area
between the superstructure and the subgrade and for the superstructure parameters in
Case 2 (see Tables 4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade

are equal to the Quaternary ground type (see Table 3.1).
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Figure C.86: Phase of the rail receptance for five different widths of the contact area
between the superstructure and the subgrade and for the superstructure parameters in
Case 2 (see Tables 4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade

are equal to the Quaternary ground type (see Table 3.1).
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Figure C.87: Adimensional module of the rail receptance for five different widths of
the contact area between the superstructure and the subgrade and for the superstructure
parameters in Case 2 (see Tables 4.1, 4.2 and 4.3). The other mechanical parameters

of the subgrade are equal to the Quaternary ground type (see Table 3.1).
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Figure C.88: Adimensional phase of the rail receptance for five different widths of the
contact area between the superstructure and the subgrade and for the superstructure
parameters in Case 2 (see Tables 4.1, 4.2 and 4.3). The other mechanical parameters

of the subgrade are equal to the Quaternary ground type (see Table 3.1).
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Figure C.89: Module of the rail receptance for five different widths of the contact area
between the superstructure and the subgrade and for the superstructure parameters in
Case 3 (see Tables 4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade

are equal to the Quaternary ground type (see Table 3.1).
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Figure C.90: Phase of the rail receptance for five different widths of the contact area
between the superstructure and the subgrade and for the superstructure parameters in
Case 3 (see Tables 4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade

are equal to the Quaternary ground type (see Table 3.1).
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Figure C.91: Adimensional module of the rail receptance for five different widths of
the contact area between the superstructure and the subgrade and for the superstructure
parameters in Case 3 (see Tables 4.1, 4.2 and 4.3). The other mechanical parameters

of the subgrade are equal to the Quaternary ground type (see Table 3.1).
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Figure C.92: Adimensional phase of the rail receptance for five different widths of the
contact area between the superstructure and the subgrade and for the superstructure
parameters in Case 3 (see Tables 4.1, 4.2 and 4.3). The other mechanical parameters

of the subgrade are equal to the Quaternary ground type (see Table 3.1).
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Figure C.93: Module of the rail receptance for five different widths of the contact area
between the superstructure and the subgrade and for the superstructure parameters in
Case 4 (see Tables 4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade

are equal to the Quaternary ground type (see Table 3.1).
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Figure C.94: Phase of the rail receptance for five different widths of the contact area
between the superstructure and the subgrade and for the superstructure parameters in
Case 4 (see Tables 4.1, 4.2 and 4.3). The other mechanical parameters of the subgrade

are equal to the Quaternary ground type (see Table 3.1).
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Figure C.95: Adimensional module of the rail receptance for five different widths of
the contact area between the superstructure and the subgrade and for the superstructure
parameters in Case 4 (see Tables 4.1, 4.2 and 4.3). The other mechanical parameters

of the subgrade are equal to the Quaternary ground type (see Table 3.1).
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Figure C.96: Adimensional phase of the rail receptance for five different widths of the
contact area between the superstructure and the subgrade and for the superstructure
parameters in Case 4 (see Tables 4.1, 4.2 and 4.3). The other mechanical parameters

of the subgrade are equal to the Quaternary ground type (see Table 3.1).
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C.2 Equivalent model parameters

C.2.1 Equivalent model with constant parameters

Equivalent model parameters

Parameters Case 1 Case 2 Case 3 Case 4

m′r [kg] 80.45 98.41 75.88 66.68

m′s [kg] 288.57 217.9 245.4 217

k′F [N/m] 3.447· 108 8.125· 108 4.638· 108 4.489· 108

k′B [N/m] 5.081· 107 1.872· 108 1.617· 108 4.105· 108

c′F [N s/m] 2.716· 104 3.476· 103 4.57· 104 7.07· 104

c′B [N s/m] 3.012· 104 2.529· 105 6.62· 104 1.504· 105

Table C.1: Equivalent model parameters obtained for Cases 1, 2, 3 and 4 (see Tables
4.1, 4.2 and 4.3) and for a quaternary subgrade (see Table 3.1). Constant parameters.
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C.2.2 Equivalent model with frequency dependence parameters
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Figure C.97: Fasteners equivalent stiffness as a function of the frequency for Case 1
(see Tables 4.1, 4.2 and 4.3) and for five different subgrade parameters of the Table 3.1.
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Figure C.98: Fasteners equivalent structural damping as a function of the frequency
for Case 1 (see Tables 4.1, 4.2 and 4.3) and for five different subgrade parameters of

the Table 3.1.
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Figure C.99: Ballast equivalent stiffness as a function of the frequency for Case 1 (see
Tables 4.1, 4.2 and 4.3) and for five different subgrade parameters of the Table 3.1.
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Figure C.100: Ballast equivalent structural damping as a function of the frequency
for Case 1 (see Tables 4.1, 4.2 and 4.3) and for five different subgrade parameters of

the Table 3.1.
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Figure C.101: Fasteners equivalent stiffness as a function of the frequency for Case
2 (see Tables 4.1, 4.2 and 4.3) and for five different subgrade parameters of the Table

3.1.
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Figure C.102: Fasteners equivalent structural damping as a function of the frequency
for Case 2 (see Tables 4.1, 4.2 and 4.3) and for five different subgrade parameters of

the Table 3.1.
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Figure C.103: Ballast equivalent stiffness as a function of the frequency for Case 2
(see Tables 4.1, 4.2 and 4.3) and for five different subgrade parameters of the Table 3.1.
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Figure C.104: Ballast equivalent structural damping as a function of the frequency
for Case 2 (see Tables 4.1, 4.2 and 4.3) and for five different subgrade parameters of

the Table 3.1.
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Figure C.105: Fasteners equivalent stiffness as a function of the frequency for Case
3 (see Tables 4.1, 4.2 and 4.3) and for five different subgrade parameters of the Table

3.1.
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Figure C.106: Fasteners equivalent structural damping as a function of the frequency
for Case 3 (see Tables 4.1, 4.2 and 4.3) and for five different subgrade parameters of

the Table 3.1.
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Figure C.107: Ballast equivalent stiffness as a function of the frequency for Case 3
(see Tables 4.1, 4.2 and 4.3) and for five different subgrade parameters of the Table 3.1.
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Figure C.108: Ballast equivalent structural damping as a function of the frequency
for Case 3 (see Tables 4.1, 4.2 and 4.3) and for five different subgrade parameters of

the Table 3.1.
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Figure C.109: Fasteners equivalent stiffness as a function of the frequency for Case
4 (see Tables 4.1, 4.2 and 4.3) and for five different subgrade parameters of the Table

3.1.
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Figure C.110: Fasteners equivalent structural damping as a function of the frequency
for Case 4 (see Tables 4.1, 4.2 and 4.3) and for five different subgrade parameters of

the Table 3.1.
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Figure C.111: Ballast equivalent stiffness as a function of the frequency for Case 4
(see Tables 4.1, 4.2 and 4.3) and for five different subgrade parameters of the Table 3.1.
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Figure C.112: Ballast equivalent structural damping as a function of the frequency
for Case 4 (see Tables 4.1, 4.2 and 4.3) and for five different subgrade parameters of

the Table 3.1.
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C.3 Subgrade influence on the response of the wheel/rail

contact dynamics

C.3.1 Subgrade influence on the wheel response
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Figure C.113: Module of the transfer function between the wheel vertical displace-
ment and the roughness excitation for Case 1 (see Tables 4.1, 4.2 and 4.3) and for five

different subgrade parameters of the Table 3.1.
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Figure C.114: Phase of the transfer function between the wheel vertical displacement
and the roughness excitation for Case 1 (see Tables 4.1, 4.2 and 4.3) and for five different

subgrade parameters of the Table 3.1.
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Figure C.115: Module of the transfer function between the wheel vertical displace-
ment and the roughness excitation for Case 2 (see Tables 4.1, 4.2 and 4.3) and for five

different subgrade parameters of the Table 3.1.
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Figure C.116: Phase of the transfer function between the wheel vertical displacement
and the roughness excitation for Case 2 (see Tables 4.1, 4.2 and 4.3) and for five different

subgrade parameters of the Table 3.1.
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Figure C.117: Module of the transfer function between the wheel vertical displace-
ment and the roughness excitation for Case 3 (see Tables 4.1, 4.2 and 4.3) and for five

different subgrade parameters of the Table 3.1.
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Figure C.118: Phase of the transfer function between the wheel vertical displacement
and the roughness excitation for Case 3 (see Tables 4.1, 4.2 and 4.3) and for five different

subgrade parameters of the Table 3.1.
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Figure C.119: Module of the transfer function between the wheel vertical displace-
ment and the roughness excitation for Case 4 (see Tables 4.1, 4.2 and 4.3) and for five

different subgrade parameters of the Table 3.1.
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Figure C.120: Phase of the transfer function between the wheel vertical displacement
and the roughness excitation for Case 4 (see Tables 4.1, 4.2 and 4.3) and for five different

subgrade parameters of the Table 3.1.
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C.3.2 Subgrade influence on the rail response
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Figure C.121: Module of the transfer function between the rail vertical displacement
and the roughness excitation for Case 1 (see Tables 4.1, 4.2 and 4.3) and for five different

subgrade parameters of the Table 3.1.
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Figure C.122: Phase of the transfer function between the rail vertical displacement
and the roughness excitation for Case 1 (see Tables 4.1, 4.2 and 4.3) and for five different

subgrade parameters of the Table 3.1.
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Figure C.123: Module of the transfer function between the rail vertical displacement
and the roughness excitation for Case 2 (see Tables 4.1, 4.2 and 4.3) and for five different

subgrade parameters of the Table 3.1.
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Figure C.124: Phase of the transfer function between the rail vertical displacement
and the roughness excitation for Case 2 (see Tables 4.1, 4.2 and 4.3) and for five different

subgrade parameters of the Table 3.1.
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Figure C.125: Module of the transfer function between the rail vertical displacement
and the roughness excitation for Case 3 (see Tables 4.1, 4.2 and 4.3) and for five different

subgrade parameters of the Table 3.1.
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Figure C.126: Phase of the transfer function between the rail vertical displacement
and the roughness excitation for Case 3 (see Tables 4.1, 4.2 and 4.3) and for five different

subgrade parameters of the Table 3.1.
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Figure C.127: Module of the transfer function between the rail vertical displacement
and the roughness excitation for Case 4 (see Tables 4.1, 4.2 and 4.3) and for five different

subgrade parameters of the Table 3.1.
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Figure C.128: Phase of the transfer function between the rail vertical displacement
and the roughness excitation for Case 4 (see Tables 4.1, 4.2 and 4.3) and for five different

subgrade parameters of the Table 3.1.
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C.3.3 Subgrade influence on the wheel/rail contact force
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Figure C.129: Module of the transfer function between the wheel/rail dynamic con-
tact force and the roughness excitation for Case 1 (see Tables 4.1, 4.2 and 4.3) and for

five different subgrade parameters of the Table 3.1.
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Figure C.130: Phase of the transfer function between the wheel/rail dynamic contact
force and the roughness excitation for Case 1 (see Tables 4.1, 4.2 and 4.3) and for five

different subgrade parameters of the Table 3.1.
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Figure C.131: Module of the transfer function between the wheel/rail dynamic con-
tact force and the roughness excitation for Case 2 (see Tables 4.1, 4.2 and 4.3) and for

five different subgrade parameters of the Table 3.1.
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Figure C.132: Phase of the transfer function between the wheel/rail dynamic contact
force and the roughness excitation for Case 2 (see Tables 4.1, 4.2 and 4.3) and for five

different subgrade parameters of the Table 3.1.
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Figure C.133: Module of the transfer function between the wheel/rail dynamic con-
tact force and the roughness excitation for Case 3 (see Tables 4.1, 4.2 and 4.3) and for

five different subgrade parameters of the Table 3.1.
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Figure C.134: Phase of the transfer function between the wheel/rail dynamic contact
force and the roughness excitation for Case 3 (see Tables 4.1, 4.2 and 4.3) and for five

different subgrade parameters of the Table 3.1.
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Figure C.135: Module of the transfer function between the wheel/rail dynamic con-
tact force and the roughness excitation for Case 4 (see Tables 4.1, 4.2 and 4.3) and for

five different subgrade parameters of the Table 3.1.
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Figure C.136: Phase of the transfer function between the wheel/rail dynamic contact
force and the roughness excitation for Case 4 (see Tables 4.1, 4.2 and 4.3) and for five

different subgrade parameters of the Table 3.1.



Appendix D

Determination of the

superstructure/subgrade contact

width

In Chapter 4, the superstructure for a single railway is assumed as an infinite strip load,

of width 2c, that acts on the surface of the subgrade. In this appendix the possible range

of values of this width is deduced for the case of ballasted tracks.

As shown in [199], it can be assumed that the load transmitted from a sleeper to the

ballast approximately coincides with a cone distribution. The stresses of the ballast are

uniformly distributed over this cone region and they are null outside the cone. The

dimensions of this cone in the subgrade contact determine the effective contact area

between the ballast and the subgrade.

In Fig. D.1 the variables involved in the problem are presented, where αB is the ballast

stress distribution angle, dB is the depth of the ballast, le is the effective supporting

length of half sleeper on the ballast, les is the effective supporting length of half sleeper

on the subgrade and lc is the distance between the centres of the rail heads.

For this model, the width of the ballast/subgrade interaction area is

2c = 2dB tanαB + le + lc = les + lc (D.1)

In Table D.1, the possible values of the variables inside Eq. (D.1) are presented.

where the variation of les are calculated using les = 2dB tanαB + le and where dB also

contains the sub-ballast.
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Figure D.1: Stresses transmitted through the ballast in the cross-sectional area of the
track.

Variable Range of values

αB 30°-45°
dB 0.3-0.7 m
le 0.7-1.27 m
les 1-2.7 m
lc 1.505-1.743 m

Table D.1: Range of values of the variables inside Eq. (D.1). Source: [3]

From these ranges of values, the width of the effective superstructure/subgrade inter-

action area ranges approximately between 2.5 and 4.5 m, by the application of Eq.

(D.1).
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[88] U. Holzlöhner. Vibrations of the elastic half-space due to vertical surface loads.

Earthquake engineering and Structural dynamics, 8(5):405–414, 1980.
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[154] G. Bornitz. Über die Ausbreitung der von Groszkolbenmaschinen erzeugten Boden-

schwingungen in die Tiefe (About the propagation of ground vibrations generated

by piston engines in depth). J. Springer, 1931.

[155] D.S. Kim and J.S. Lee. Propagation and attenuation characteristics of various

ground vibrations. Soil dynamics and earthquake engineering, 19(2):115–125, 2000.

[156] C.L. Dym. Attenuation of ground vibration. Sound and Vibration, 10(4):32–34,

1976.

[157] H. Amick. A frequency-dependent soil propagation model. In Conference on

Optomechanical engineering and vibration control, Denver, July 20-23 1999.

[158] G.R. Watts. The generation and propagation of vibration in various soils produced

by the dynamic loading of road pavements. Journal of Sound and Vibration, 156

(2):191–206, 1992.

[159] H. Amick and M. Gendreau. Construction vibrations and their impact on

vibration-sensitive facilities. Technical report, ASCE Construction Congress 6,

Orlando, Florida, February 22, 2000.

[160] P.B. Wei, H. Xia, and J.G. Chen. Validation of an empirical prediction model for

train-induced ground vibrations. In Proceedings of 3rd International Symposium

on Environmental Vibrations-Prediction, Monitoring, Mitigation and Evaluation,

2007. ISEV 2007 Conference, Taipei, Taiwan.

[161] H.P. Verhas. Prediction of the propagation of train-induced ground vibrations.

Journal of Sound and Vibration, 66(3):371–376, 1979.

[162] V.V. Krylov. Generation of ground vibrations by superfast trains. Applied Acous-

tics, 44(2):149–164, 1995.

[163] V.V. Krylov. On the theory of railway-induced ground vibrations. Journal of

Physique IV, 4(C5):769–772, 1994.



Bibliography 206

[164] V.V. Krylov. Spectra of low-frequency ground vibrations generated by high-speed

trains on layered ground. Journal of low frequency noise vibration and active

control, 16(4):257–270, 1997.

[165] V.V. Krylov. Generation of ground vibration boom by high-speed trains. In

Noise and Vibration from high-speed trains, pages 251–283, London, 2001. Thomas

Telford Ltd.

[166] V.V. Krylov. Effects of track properties on ground vibrations generated by high-

speed trains. Acta Acustica, 228(1):129–156, 1999.

[167] V.V. Krylov. Vibrational impact of high-speed trains. I. Effect of track dynamics.

Journal of Acoustical Society of America, 100(5):3121–3134, 1996.
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[173] D.V. Jones, D. Le Houédec, A.T. Peplow, and M. Petyt. Ground vibration in the

vicinity of a moving harmonic rectangular load on a half-space. European Journal

of Mechanics A/Solids, 17(1):153–166, 1998.
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