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Abstract

An interval observer has been illustrated to be a suitable approach to detect and isolate faults affecting complex
dynamical industrial systems. Concerning fault detection, interval observation is an appropriate passive robust
strategy to generate an adaptive threshold to be used in residual evaluation when model uncertainty is located in
parameters (interval model). In such approach, the observer gain is a key parameter since it determines the time
evolution of the residual sensitivity to a fault and the minimum detectable fault. This thesis illustrates that the whole
fault detection process is ruled by the dynamics of the fault residual sensitivity functions and by the time evolution of
the adaptive threshold related to the interval observer. Besides, it must be taken into account that these two observer
fault detection properties depend on the used observer gain. As a consequence, the observer gain becomes a tuning
parameter which allows enhancing the observer fault detection performance while avoiding some drawbacks related
to the analytical models, as the wrapping effect. In this thesis, the effect of the observer gain on fault detection and
how this parameter can avoid some observer drawbacks (i.e. wrapping effect) are deeply analyzed. One of the results
of this analysis is the determination of the minimum detectable fault function related to a given fault type. This
function allows introducing a fault classification according to the fault detectability time evolution: permanently
(strongly) detected, non-permanently (weakly) detected or just non-detected. In this fault detection part of this
thesis, two examples have been used to illustrate the derived results: a mineral grinding-classification process and an
industrial servo actuator.

Concerning the interface between fault detection and fault isolation, this thesis shows that both modules can not be
considered separately since the fault detection process has an important influence on the fault isolation result. This
influence is not only due to the time evolution of the fault signals generated by the fault detection module but also to
the fact that the fault residual sensitivity functions determines the faults which are affecting a given fault signal and
the dynamics of this fault signal for each fault. This thesis illustrates this point suggesting that the interface between
fault detection and fault isolation must consider a set of fault signals properties: binary property, sign property, fault
residual sensitivity property, occurrence order property and occurrence time instant property. Moreover, as a result of
the influence of the observer gain on the fault detection stage and on the fault residual sensitivity functions, this
thesis demonstrates that the observer gain has also a key role in the fault isolation module which might allow
enhancing its performance when this parameter is tuned properly (i.e. fault distinguishability may be increased). As a
last point, this thesis analyzes the timed discrete-event nature of the fault signals generated by the fault detection
module. As a consequence, it suggests using timed discrete-event models to model the fault isolation module. This
thesis illustrates that this kind of models allow enhancing the fault isolation result. Moreover, as the monitored
system is modelled using an interval observer, this thesis shows as this qualitative fault isolation model can be built
up on the grounds of this system analytical model. Finally, the proposed fault isolation method is applied to detect
and isolate faults of the Barcelona’s urban sewer system limnimeters.

Keywords: Fault Detection, Fault Diagnosis, Robustness, Observers, Intervals, Discrete-event Systems.
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Resumen

En la presente tesis se demuestra que el uso de observadores intervalares para detectar y aislar fallos en sistemas
dindmicos complejos constituye una estrategia apropiada. En la etapa de deteccion del fallo, dicha estrategia permite
determinar el umbral adaptativo usado en la evaluacion del residuo (robustez pasiva). Dicha metodologia, responde a
la consideracion de modelos con parametros inciertos (modelos intervalares). En dicho enfoque, la ganancia del
observador es un parametro clave que permite determinar la evolucion temporal de la sensibilidad del residuo a un
fallo y el minimo fallo detectable para un tipo de fallo determinado. Esta tesis establece que todo el proceso de
deteccion de fallos viene determinado por la dindmica de las funciones sensibilidad del residuo a los diferentes fallos
considerados y por la evolucion temporal del umbral adaptativo asociado al observador intervalar. Ademas, se debe
tener en cuenta que estas dos propiedades del observador respecto la deteccion de fallos dependen de la ganancia del
observador. En consecuencia, la ganancia del observador se convierte en el parametro de disefio que permite mejorar
las prestaciones de dicho modelo respecto la deteccion de fallos mientras que permite evitar algunos defectos
asociados al uso de modelos intervalares, como el efecto wrapping. Uno de los resultados obtenidos es la
determinacion de la funcion fallo minimo detectable para un tipo de fallo dado. Esta funcion permite introducir una
clasificacion de los fallos en funcidon de la evolucion temporal de su detectabilidad: fallos permanentemente
detectados, fallos no permanentemente detectados y fallos no detectados. En la primera parte de la tesis centrada en
la deteccion de fallos se utilizan dos ejemplos para ilustrar los resultados obtenidos: un proceso de trituracion y
separacion de minerales y un servoactuador industrial.

Respecto a la interfaz entre la etapa de deteccion de fallos y el proceso de aislamiento, esta tesis muestra que ambos
modulos no pueden considerarse separadamente dado que el proceso de deteccion tiene una importante influencia en
el resultado de la etapa de aislamiento. Esta influencia no es debida solo a la evolucion temporal de las sefiales de
fallo generados por el modulo de deteccion sino también porque las funciones sensibilidad del residuo a los
diferentes posibles fallos determinan los fallos que afectan a un determinado sefial de fallo y la dindmica de éste para
cada uno de los fallos. Esta tesis ilustra este punto sugiriendo que el interfaz entre deteccion y aislamiento del fallo
debe considerar un conjunto de propiedades de dichos sefiales: propiedad binaria, propiedad del signo, propiedad de
la sensibilidad del residuo a un fallo dado, propiedad del orden de aparicion de las sefiales causados por los fallos y la
propiedad del tiempo de aparicion de estos. Ademas, como resultado de la influencia de la ganancia del observador
en la etapa de deteccion y en las funciones sensibilidad asociadas a los residuos, esta tesis ilustra que la ganancia del
observador tiene también un papel crucial en el modulo de aislamiento, el cual podria permitir mejorar el
comportamiento de dicho médulo disefiando éste parametro del observador de forma adecuada (Ej. Incrementar la
distincion de los fallos para su mejor aislamiento). Como ultimo punto, esta tesis analiza la naturaleza temporal de
eventos discretos asociada a las sefiales de fallo generados por el modulo de deteccion. A consecuencia, se sugiere
usar modelos de eventos discretos temporales para modelizar el modulo de aislamiento del fallo. Esta tesis muestra
que este tipo de modelos permite mejorar el resultado de aislamiento del fallo. Ademas, dado que el sistema
monitorizado es modelado usando un observador intervalar, esta tesis muestra como este modelo cualitativo de
aislamiento puede ser construido usando dicho modelo analitico del sistema. Finalmente, el método propuesto de
aislamiento del fallo es aplicado para detectar y aislar fallos en los limnimetros del sistema de alcantarillado de

Barcelona.
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Notation

Concerning the notation used in this PhD thesis, as a general rule, scalars are annotated with cursive lower case

letters (e.g. a, b, ...), vectors with cursive bold lower case letters (e.g., y, x, . . .) and, matrices with cursive bold

upper case letters (e.g., 4, B, . . .). Regarding vectors, if not otherwise noted, they are column vectors. Besides,

throughout this thesis document, the relation between vectors or matrices must be understood component by

component.

uy

Yo

TN

>

~

ry

set of fault signal

system state vector

measured system input vector
measured system output vector
system input vector

system output vector

output sensor fault vector
input sensor fault vector
actuator fault vector

set of faults
mapping
predicted system output vector

predicted system state vector

residual vector

value of the residual vector when just the model uncertainty is considered neglecting the existence
of faults, unknown inputs and noises. This value determines the adaptive threshold used to indicate

or not the existence of a fault
nomimal value of the i"-component of the residual r

discrete time instant

shift operator

transfer function matrix related to the residual computational form
transfer function matrix related to the residual computational form

system transfer function matrix

vector indicating the difference between the measured system output and the system output
model state matrix

matrix built up using those positive elements of matrix 4

matrix built up using those negative elements of matrix 4

model input matrix
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T A

~ O~

fa

fu

<, <,>and >

Y(k )i
H

r

r(k)i=p
[3(0)]

[r0)]

model output matrix

system direct transmission matrix

observer gain matrix

matrix whose elements determine the observation gain values needed to force the isotonicity of
matrix A,

matrix whose elements can be chosen freely to enhance the observer fault detection performance
and to guarantee the observer stability

component of matrix L placed in the i”-row and the j”-column

matrix related to the output sensor fault vector

matrix related to the input sensor fault vector

matrix related to the actuator fault vector

identity matrix

system output vector space

system input vector space

system state vector space

observer gain matrix value which places all the observer eigenvalues at the origin

transfer function matrix that determines the influence of the measured system input vector on the
predicted system output

transfer function matrix that determines the influence of the measured system output vector on the
predicted system output

transfer function matrix that determines the influence of the output sensor fault vector on the

measured system output vector

transfer function matrix that determines the influence of the actuator fault vector on the measured

system output vector

transfer function matrix that determines the influence of the input actuator fault vector on the
predicted system output

absolute value operator. When applied to a vector or a matrix, it must be understood element by
element

comparative operator. When applied to a vector or a matrix, it must be understood element by
element

value of predicted system output vector at time instant £ when L=0

transfer function matrix which determines the influence of the residual vector on the predicted

system output vector

value of the residual vector at time instant £ when L=0
interval at time instant £ associated with the predicted system output vector due to the model

uncertainty. It must be understood component by component

interval at time instant £ related to the residual as a consequence of the model uncertainty

15



y() O (k)]

D ™

2

A(0)

X

Xo

A,

K

A1l 4,7
B,

U=

max
min

%(k)
(k)

FSM

relation showing that the value of the measured system output vector at time instant & belongs to

the interval related to the predicted system output vector at this time instant. This relation must be

understood component by component

system vector parameter
time-invariant model interval parameter vector

model interval parameter vector component placed in the i/*-row
interval system state matrix whose components depend on the interval parameter vector 6

set of all the system states
intial value of the system state vector

observer state matrix whose expression is 4, () = A(0) - LC(0)

condition number of 4, whose value is determined by the result of the following matrix product:

observer input matrix whose expression is B, (0) = [3(0) L]

observer input vector given by u. (k) = [u(k) y(k)]T
interval set bounding the interval parameter vector, § 1@
model parameter vector space

interval hull of the predicted system state set

infinte norm of a vector or a matrix
spectral radius of matrix 4 given by maximum absolute value of all the eigenvalues associated with
this matrix

mid-point of the interval related to the predicted system state vector [fc(k)]

mid-point of the interval model parameter vector [0]
operator that allows to obtaing the maximum value of a given interval
operator that allows to obtaing the minimum value of a given interval

upper bound of the interval related to the predicted system state vector at time instant &

lower bound of the interval related to the predicted system state vector at time instant &
length of the sliding time window measured in number of samples used to compute a certain

trajectory of the predicted system output vector / state vector or order of a predictor equivalent to a
given observer
theoretical fault signature matrix

dimension of the fault set f

dimension of the fault signal set ¢

fault information system

set of fault hypothesis f; which are consistent with the observed fault signals
residual sensitivity matrix to a fault f

residual sensitivity matrix to an output sensor fault f,

residual sensitivity matrix to an output sensor fault f,,
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min

Ju

min

Ja
)
T,

FSMO01
FSMsign
FSMsensit
FSMorder
FSMtime
Sfactor(1,

Sfactorsign;

Sfactorsensit,

factororder;

Sfactortime;

DES

TDES
TLTS

residual sensitivity matrix to an output sensor fault f
residual disturbance vector caused by a fault f

minimum residual disturbance caused by a fault f so that this fault can be indicated by the system

model

minimum detectable fault of the type f required by the system model so that this fault can be

detected

left pseudo-inverse matrix of Sy

minimum detectable output sensor fault vector
minimum detectable input sensor fault vector

minimum detectable actuator fault vector

time instant at which the fault occurs

waiting time calculated from the largest transient time response from non-faulty situation to any
faulty situation

theoretical fault signature matrix related to the fault signal binary property

theoretical fault signature matrix related to the fault signal sign property

theoretical fault signature matrix related to the fault residual sensitivity property of a fault signal
theoretical fault signature matrix related to the fault signal occurrence order property

theoretical fault signature matrix related to the fault signal occurrence time instant property
occurrence probability of the fault hypothesis f; regarding the binary property of the observed fault
signals

occurrence probability of the fault hypothesis f; regarding the sign property of the observed fault
signals

occurrence probability of the fault hypothesis f; regarding the fault residual sensitivity property of
the observed fault signals

occurrence probability of the fault hypothesis f; regarding the occurrence order property of the
observed fault signals

occurrence probability of the fault hypothesis f; regarding the occurrence time instant property of
the observed fault signals

occurrence probability of the fault hypothesis f;

discrete event system

timed discrete event system

timed labelled transition system
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CHAPTER 1

PhD thesis introduction

1.1 Introduction

This chapter corresponds to the introduction of this PhD thesis document in which all the work carried out to achieve
the planned objectives is detailed. Thereby, the aim of this chapter is to describe the main motivations (Section 1.2)
which have inspired this PhD thesis. As a consequence, the general thesis objectives (Section 1.3) will be introduced,
although they will be more detailed in Chapter 2 as a result of an analysis of the state of art. Finally, in Section 1.4,

an outline of the structure of the document is depicted providing an abstract of every chapter.

1.2 Motivation

Modern control systems are becoming more and more complex and control algorithms more and more sophisticated.
Consequently, the issues of availability, cost efficiency, reliability, operating safety and environmental protection are
of major importance. These issues are important to, not only normally accepted safety-critical systems such as
nuclear reactors, chemical plants and aircrafts, but also other advanced systems employed in cars, rapid transits
trains, etc. For safety-critical systems, the consequences of faults can be extremely serious in terms of human
mortality, environmental impact and economic loss. Therefore, there is a growing need for on-line supervision and
fault diagnosis to increase the reliability of such safety-critical systems. For systems which are not safety-critical, on-
line fault diagnosis techniques can be used to improve plant efficiency, maintainability, availability and reliability. In
short, nowadays it is very important to detect and isolate faults in the shorter possible time for avoiding the faults
propagation in the whole process, or in order to adapt the control system so that the process can satisfy its purpose
even in the presence of faults.

Being conscious of the importance of fault detection and fault isolation in complex industrial systems, the Advanced
Control Systems (SAC) Group at the Automatic Control Department (ESAII) of the Technical University of
Catalonia (UPC) is carrying out a research line in this field which has already provided successful and significant
results in previous PhD theses, conference and journal papers. In this sense, this PhD thesis is performed into the
trend established by this research line contributing in some planned aspects. The starting point of these contributions
is determined by some drawbacks of the present methods and by some non-considered aspects, as it will be
illustrated in detail in Chapter 2. As a consequence, the obtained results can be considered as a novelty into the field
of the fault detection and isolation.

Thus, the scope of this thesis is focused on fault detection and isolation based on interval observers applied to
dynamical industrial systems (Chapter 2). In these days, the most of the existent contributions in fault detection and
isolation field using analytical interval models are based either on the simulation approach or on the prediction

approach (Chapter 2). On the other hand, as it will be pointed out in the next chapter, it is demonstrated that
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analytical models are affected by some problems which can seriously worsen the performance of the fault detection
and isolation module leading to wrong fault diagnosis results. In general, these drawbacks related to analytical
models are tackled using a complementary strategy since these analytical models do not have any tuning freedom
degrees. Nonetheless, the accurateness of this complementary strategy, in general, is only valid for a certain
particular cases.

On the other hand, what, in general, is not taken into account is that the simulation and prediction approaches are just
two specific cases of the observer approach for two concrete values of the observer gain (Chapter 2). Concerning
the observer approach, this analytical model has a set of tuning freedom degrees which may be used to tackle the
mentioned problems and to enhance the whole fault diagnosis performance. These aspects will be analysed in this
PhD thesis resulting in its main general objective.

Concerning those residual properties that determine the performance regarding fault detection and isolation, in
general, the existing methods do not consider their dynamics (i.e. fault residual sensitivity property (see Gertler,
1998)). Conversely, they just consider the steady-state value of these properties. This fact may lead to inaccurate
fault detection and fault isolation predictions resulting in a poor fault diagnosis performance of the considered
approach. This PhD thesis demonstrates that this residual fault diagnosis properties (mainly, residual sensitivity to a
Sfault, minimum detectable fault and adaptive threshold (Chapter 2)) have a time evolution and when it is considered,
it will be possible to predict exactly when a fault will be detected or not by the observer model according to its tuning
configuration: this is the time evolution of the fault signals generated by the fault detection module. Concerning fault
isolation, when the dynamics of these properties are considered, it is illustrated that the fault isolation module
performance is enhanced increasing its related fault distinguishability.

As a last aspect, this PhD thesis analyses the kind of model that should be applied to model the fault isolation
module. In general, the present approaches model this module according to the nature of the monitored system
model: when an analytical model is used, then, the fault isolation module is modelled using analytical techniques
while when the nature is qualitative, then, fault isolation uses a qualitative approach. This thesis analyse the nature of
the fault signals generated by the fault detection module concluding its timed discrete-event character. As a
consequence, it is proposed to model this module using a timed discrete-event approach, in spite the monitored
system has been modelled analytically. This fact allows enhancing the fault isolation performance reducing the
probability of giving wrong fault diagnosis results.

Although it is not the main objective of this thesis, it will be proposed a new fault detection and isolation approach

which takes into account all the results provided by the previous mentioned analyses.

1.3 General objectives

As a result of the previous section, the general objectives of this PhD Thesis are enumerated in the following. It must
be noticed that it is in Chapter 2 where they are explained in detail as a result of the analysis of the state of the art.
Thus, the main objectives are to analyse:

(a) The influence of the observer gain on the fault detection module performance.

(b) The influence of the observer gain on the fault isolation module performance.

(c) The influence of the observer gain on the interface between the fault detection and isolation modules.

(d) The influence of the dynamics of the model fault diagnosis properties on the fault diagnosis process.

(e) The most suitable fault isolation model type according to the nature of the fault signals generated by the fault

detection module.
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1.4 Thesis structure

In this section, the structure of this PhD thesis document is described detailing its different parts and chapters.
Thereby, for each chapter, a brief abstract and its related published papers are provided.

Apart from the Chapter 2 where a state of the art in fault detection and isolation is described, this PhD thesis
document is formed by one part related to all the planned objectives associated with the fault detection module and
by another one related to the interface between fault detection and fault isolation, and to the fault isolation module
itself. Thus, the Part I whose title is “Robust fault detection using linear interval observers and predictors” is
formed by the following chapters:

*  Chapter 3: Observer gain effect in linear interval observer-based fault detection.

*  Chapter 4: Designing fault detection linear interval observers to avoid the wrapping effect.

e Chapter 5: Approximating fault detection linear interval observers using A-order interval predictors.

Concerning the Part II whose title is “Fault diagnosis using interval observers”, its associated chapters are:
e Chapter 6: On the integration of fault detection and isolation in model based fault diagnosis.

e Chapter 7: Towards a better integration of passive robust interval-based FDI algorithms.

e Chapter 8: Fault isolation using linear interval observers: influence of the observer gain.

e Chapter 9: Fault diagnosis using linear interval observers: obtaining FSM matrices.

e Chapter 10: Fault diagnosis using a timed discrete event approach based on interval observers.

In the following subsections, for every chapter, a brief abstract and the related published papers are provided.

1.4.1 Chapter 3: Observer gain effect in linear interval
observer-based fault detection

In this chapter, an interval observer is illustrated to be a suitable passive robust strategy to generate an adaptive

threshold to be used in residual evaluation when model uncertainty is located in parameters (interval model). In such

approach, the observer gain plays an important role since it determines the minimum detectable fault for a given type

of fault and allows enhancing the observer fault detection properties. The aim of this chapter is to analyze the

influence of the observer gain on the time evolution of the residual sensitivity to a fault. Thereby, as a result of this

sensitivity study, the minimum detectable fault time evolution for a given type of fault and the interval observer fault

detection performance could be determined. In particular, three types of faults according their detectability time

evolution are introduced: permanently (strongly) detected, non-permanently (weakly) detected or just non-detected.

An example based on a mineral grinding-classification process is used to illustrate the results derived.

This chapter is based on the following published papers:

*  Meseguer, J., Puig, V., Escobet, T. (2006a) “Observer gain effect in linear observer-based fault detection”
IFAC SAFEPROCESS 06.

*  Meseguer, J., Puig, V., Escobet, T. (2007b). “Observer Gain Effect in Linear Interval Observer-based Fault
Detection” CDC’07 . New Orleans. USA.

*  Meseguer, J., Puig, V., Escobet, T. (2008c). “Observer Gain Effect in Linear Interval Observer-based Fault
Detection” Journal of Process Control (JPROCONT-D-07-00232).
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1.4.2 Chapter 4: Designing fault detection linear interval
observers to avoid the wrapping effect

As illustrated in Chapter 3, in model based fault detection is very important to analyze how the effect of model
uncertainty is considered when determining the optimal threshold to be used in residual evaluation. In case of model
uncertainty is located in parameters (interval model), an interval observer is shown in that chapter to be a suitable
strategy to generate this adaptive threshold. However, interval observers can be affected by the wrapping effect when
low computational algorithms, such as region-based approaches coming from the interval community, are used to
determine the predicted output interval. Chapter 4 shows that the wrapping effect might be avoided forcing the
observer gain to satisfy the isotonicity condition. Then, the effect of this observer condition on the time evolution of
the residual sensitivity to a fault and the minimum detectable fault, which were introduced in Chaper 3, is analyzed
in order to see whether the fault detection performance is enhanced or not. Finally, an example based on an industrial
servo actuator will be used to illustrate the derived results.
Regarding the related published papers, they are:
*  Meseguer, J., Puig, V., Escobet, T. (2006b) “Observer gain effect in linear interval observer-based fault
detection” IFAC SAFEPROCESS 06.
*  Meseguer, J., Puig, V., Escobet, T. (2008a) “Robust Fault Detection Linear Interval Observers Avoiding the
Wrapping Effect”. IFAC World Congress 2008, Seul, Korea.

1.4.3 Chapter 5: Approximating fault detection linear interval
observers using A-order interval predictors

Interval observers can be described by an ARMA model while A-order interval predictors by a MA model. Since an
ARMA model can be approximated by a MA model, this allows establishing the equivalence between interval
observers and interval predictors. Chapter 5 deals with the fault detection application and focuses on the equivalence

between the A-order predictor and the interval observer with the same fault detection performance. The predictor

approach is developed to obviate the wrapping effect commonly encountered with interval observer approaches.

Given a particular linear interval observer, a A-order interval predictor can be found such that its behaviour is

equivalent regarding fault detection and besides, it does not suffer from the wrapping effect. Thus, if the interval

observer fulfils the isotonicity property, this A-order interval predictor can be computed using two point-wise

trajectories corresponding to the upper and lower bound of each uncertain parameter. Finally, an example based on

an industrial servo actuator will be used to illustrate the derived results.

This paper is based on the following published paper:

*  Meseguer, J., Puig, V., Escobet, T., Tornil, S. (2007c) “Approximating Fault Detection Linear Interval
Observers Using 1-Order Interval Predictors” Proceedings of European Control Conference 2007 (ECC’07).

Kos, Greece.

1.4.4 Chapter 6: On the integration of fault detection and
isolation in model based fault diagnosis
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This chapter based on (Puig et al, 2004c) motivates the work which is carried out in the following chapters regarding
the interface between fault detection and fault isolation. Thereby, in this chapter it is pointed out that model-based
fault diagnosis can be divided in two subtasks: fault detection and fault isolation. Fault detection is based on
checking the consistency between the modelled and observed behaviours while fault isolation tries to isolate the
component that is affected by the fault. Since these two tasks can be executed in parallel, an interface between them
should be considered. Typically, the result of the fault detection tests represented as a binary vector is used as the
input to be analysed by the fault isolation module. However, when the result of each of these tests is codified
applying a binary approach, some information is lost. In this chapter, the drawbacks of this classical approach are

pinpointed suggesting some possible improvements.

1.4.5 Chapter 7: Towards a better integration of passive robust
interval-based FDI algorithms

In this chapter, a new interval model-based fault diagnosis method which improves the integration between fault
detection and fault isolation modules is proposed. This method is based on the proposed one in (Puig et al, 2005b)
and applies a new interface between both stages taking into account the information about the degree of fault signal
activation and the dynamics associated with each fault signal. The fault isolation process uses a combination of four
theoretical fault signature matrices. They store the knowledge about the faulty system behaviour which is determined
by the properties of the fault signals caused by the considered fault set: binary property, sign property, fault residual
sensitivity property and occurrence order property. Finally, the proposed method is applied to detect and isolate
faults of the Barcelona’s urban sewer system limnimeters.

This paper is based on the following published paper:

e Puig, V., Quevedo, J., Escobet, T., Meseguer, J. (2006b). “Toward a better integration of passive robust

interval-based FDI algorithms”. IFAC SAFEPROCESS 06. Beijing. China.

1.4.6 Chapter 8: Fault isolation using linear interval observers:
influence of the observer gain

In fault diagnosis, the integration between model-based fault detection and fault isolation plays a significant role in
the final result given by the fault diagnoser. The reason for this importance is because model-based fault detection
methods have inherent problems as lack of fault indication persistence, noise sensitivity or model errors and as a
result, fault detection performance is not as good as it might be required in order to give a reliable fault diagnosis
result. In addition, this fact might also confuse the fault isolation module when a set of fault signals must be observed
so that the right fault diagnosis result can be derived.

As demonstrated in Chapter 3, when using interval observers in fault detection, the observer gain has a key influence
on the quality of the fault indication. As a consequence, this chapter shows the observer gain has also an important
influence on the fault isolation result since it does depend on the time evolution of the fault signals which can only be
observed (detected) by the fault detection module.

This paper is based on the following published paper:

*  Meseguer, J., Puig, V., Escobet, T., Quevedo (2006c) “Observer gain effect in linear interval observer-based

fault isolation”. International Workshop on Principles of Diagnosis (DX 06).
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1.4.7Chapter 9: Fault diagnosis using linear interval
observers: obtaining FSM matrices

This chapter is based on the interval model-based fault diagnosis method described in Chapter 8§ which improves the
integration between fault detection and fault isolation considering the degree of fault signal activation and using a
combination of several theoretical fault signature matrices which store the theoretical properties of fault signals
caused by the occurrence of a certain fault. This chapter focuses on how to obtain those matrices, when an interval
observer is considered in the fault detection stage, using a procedure based on the fault residual sensitivity concept.
This issue allows studying the influence of the fault detection module on the fault isolation stage. Regarding the fault
isolation method proposed in Chapter 8, a new fault signal property is considered: the fault signal occurrence time
instant which let derive a new theoretical fault signature matrix: FSMtime. Moreover, this chapter considers the time
evolution of the fault signal dynamical properties. Finally, the proposed fault diagnosis approach is applied to detect
and isolate faults of the Barcelona’s urban sewer system limnimeters (level meter sensors).

This paper is based on the following published paper:

*  Meseguer, J., Puig, V., Escobet, T., Quevedo, J. (2007a) “Sensor Fault Diagnosis using Linear Interval

Observers” Workshop on Principles of Diagnosis DX 07. Nashville, TN, USA.

1.4.8 Chapter 10: Fault diagnosis using a timed discrete event
approach based on interval observers

This chapter proposes a fault diagnosis method using a timed discrete-event approach based on interval observers

which improves the integration of fault detection and isolation modules. The interface between fault detection and

fault isolation considers the degree of fault signal activation and the occurrence time instants of the fault signals

using a combination of several theoretical fault signature matrices which store the knowledge of the relationship

between fault signals and faults. This chapter proposes to implement the fault isolation module using a timed discrete

event approach. In this way, the diagnosis result will be enhanced since the occurrence of a fault generates a unique

sequence of observable events (fault signals) that will be recognized by the isolation module implemented as a timed

discrete event system. The states and transitions that characterize such a system can be inferred directly from the

relation between fault signals and faults. The proposed fault diagnosis approach is applied to detect and isolate faults

of the Barcelona’s urban sewer system limnimeters (level meter sensors).

This paper is based on the following published paper:

*  Meseguer, J., Puig, V., Escobet, T. (2008b) “Fault Diagnosis using a Timed Discrete Event Approach based on
Interval Observers”. IFAC World Congress 2008, Seul, Korea.

*  Meseguer, J., Puig, V., Escobet, T. (2008d) “Fault Diagnosis using a Timed Discrete-Event Approach based on
Interval Observers”. Submitted to IEEE SMC Transactions - Part A.
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CHAPTER 2
State of the Art and Objectives

2.1 Introduction

Since the beginning of 1970s, research in fault diagnosis has been gaining increasing consideration world-wide in
both theory and application (Reiter, 1987; Patton et al., 1998; Frank et al., 1997; Gertler, 1998; Blanke et al., 2003;
Koéscielny et al., 2004; Cordier et al., 2004; Rinner et al., 2004; Isermann, 2006). This development is still mainly
stimulated by the trend of automation towards more complexity and the growing demand for higher availability and
safety of control systems. However, a strong impetus also comes from the side of modern control theory that has
brought forth powerful techniques of mathematical modelling, state estimation and parameter identification that have
been made feasible by the spectacular progresses of computer technology.
A ‘fault’ is to be understood as an unexpected change of the system function although it may not represent physical
failure or breakdown. Such a fault disturbs the normal operation of an automatic system, thus causing an
unacceptable deterioration of the performance of the system or even leading to dangerous situations. A monitoring
system which is used to detect faults and diagnose their location and significance in a system is called a ‘fault
diagnosis system’. Such a system normally consists of the following tasks:
*  Fault detection: to make a binary decision — either that something has gone wrong or that everything is fine. It is
the identification of the fault appearance and the determination of the moment of its detection
*  Fault isolation: to determine the location of the fault, e.g., which sensor or actuator has become faulty? It
consists in determining the kind, place and time of the appearance of the fault; it follows the detection of that
fault.
*  Fault identification: to estimate the size and type or nature of the fault. It determines the fault size and its
changeability in time; it follows the isolation of that fault.
Fault detection is an absolute must for any practical system and isolation is almost equally important while fault
identification, on the other hand, may not be essential if no reconfiguration action is involved. Hence, fault diagnosis
is very often considered as fault detection and isolation, abbreviated FDI, in the literature.
In practice, the most frequently used diagnosis method is to monitor the level, or trend, of a particular signal, and
taking action when the signal reaches a given threshold. A traditional approach to fault diagnosis in the wider
application context is based on ‘hardware redundancy’ methods which use multiple lanes of sensors, actuators,
computers and software to measure and/or control a particular variable. Typically, a voting scheme is applied to the
hardware redundant system to decide if and when a fault has occurred and its likely location amongst redundant
system components (Favre, 1994). The major problems of this approach are the extra equipment and maintenance
cost and, furthermore, the additional space required accommodating the equipment.
In view of the conflict between the reliability and the cost of adding more hardware, it is sensible to attempt to use
the dissimilar measured values together to cross check each other, rather than replicating each hardware individually;

this is the concept of ‘analytical redundancy’.
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In analytical redundancy schemes, the resulting difference generated from the consistency checking of different
variables is called as a ‘residual signal’. The residual should be zero-valued when the system is normal, and should
diverge from zero when a fault occurs in the system. Analytical redundancy makes use of a mathematical model of
the monitored process and is therefore often referred to as the ‘model-based approach’ to fault diagnosis. This
consistency checking in analytical redundancy is normally achieved through a comparison between a measured
signal and its estimation. The estimation is generated by the mathematical model of the system being considered.
Consequently, the residual becomes a fault indicator which reflects the faulty situation of the monitored system.

In general, model-based diagnosis methods has been developed for many model domains, e.g. models from the A7-
field which are often logic based (Hamscher et al., 1992), or from Discrete Event Dynamic Systems for which
automata descriptions are common (Larsson, 1999; Sampath et al., 1995, 1996). A third model domain that is
commonly considered are models typically found in the field of signals and systems, e.g. models involving
continuous variables in continuous or discrete time whose typical model formulations are differential / difference
equations, transfer functions, and/or static relations. This last model domain based on analytical models is typically
used in Model-based FDI methods applying the already mentioned concept of ‘analytical redundancy’.

The major advantage of the model-based approach is that no additional hardware components are needed in order to

realize a fault diagnosis algorithm. This algorithm can be implemented in software on the process control computer.
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Fig. 2.1 Comparison between hardware and analytical redundancy schemes

As pointed out previously, Model-based FDI methods makes used of the mathematical model of the monitored
system. However, a perfectly accurate and complete model of a physical system is never available because the
presence of model uncertainty, unknown disturbances and noises. Hence, there is always a mismatch between the
actual process and its mathematical model even if there are no process faults. These discrepancies constitute a source
of false and missed alarms which can corrupt the FDI system performance. The effect of modelling uncertainties is
therefore the most crucial point in the model-based FDI concept, and the solution of this problem is the key for its
practical applicability (Frank, 1991; Patton et al., 1996; Patton et al., 1997). An FDI scheme designed to provide
satisfactory sensitivity to faults, associated with the necessary robustness with respect to modelling uncertainty, is
called a ‘robust FDI’ scheme. A number of methods have been proposed to tackle this problem, for example, the
unknown input observer, eigenstructure assignment, optimally robust parity relation methods (Chen et al., 1999).
However, the research is still under the way to develop the practically applicable methods.

Regarding the structure of the Chapter 2 remainder, a scope of fault detection and fault isolation is given in Section
2.2. Then, Section 2.3 focuses on the state of art of fault detection using system models while Section 2.4 does on the
state of art of model-based fault isolation. Both Section 2.3 and Section 2.4 point out the weaknesses and drawbacks
of the current approaches describing briefly how they will be tackled by this thesis. Thereby, the goals of this thesis

are established in these sections through the analysis of the current methods. Finally, in Section 2.5, all the objectives
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will be enumerated introducing the fault diagnosis method proposed by this thesis which will be developed in the

following chapters.

2.2 Scope of fault detection and fault isolation

As it was mentioned in the introduction, fault detection is the process of generating fault signals (¢) on the grounds

of the process variables (x) in order to detect faults . Thereby, detection algorithms should generate fault signals
which ought to contain information about faults. The mapping of the space of process variables into the space of fault
signals as well as the evaluation of these signals in order to detect and indicate the fault takes place during the
detection stage. Besides, it should be taken into account that in the diagnostics of processes, fault detection is
automatically performed by a diagnosing computer.

On the other hand, fault isolation is carried out on the basis of fault signals generated by the detection module. The
result of isolation is a diagnosis showing the faults or states of the system. The knowledge of the relationship that
exists between the fault signals and the faults or the technical states of the system is necessary in order to perform the
fault isolation. Thus, a completely reliable and unequivocal presentation of the existing faults or the definition of the
diagnosed system state is not always possible due to incomplete and uncertain knowledge of the system, limited
distinguishability of faults or states, uncertainty of fault signals, etc.

In general, fault detection and isolation methods may be classified into two major groups (Venkatasubrarnanian et
al., 2003a): those which do not utilize the model of the plant or the process to express the knowledge about its
physics and those which do . Regarding the last group, there are two mainly approaches: the analytical one where the
process or plant understanding is expressed in terms of mathematical functional relationships between the inputs and
outputs of the system and the qualitative one where these relationships are expressed in terms of qualitative
functions. The analytical approach is mainly used by the known FDI methodology which is based on engineering
disciplines as control theory and statistics. Conversely, another important methodology is the known as DX which is
based on the fields of computer science and artificial intelligence applying, typically, qualitative models.
Nonetheless, this thesis is not focused on comparing the FDI and DX methodologies. The techniques analyzed in this
thesis are just classified according to its application (fault detection or fault isolation).

Although this thesis is devoted to the model-based methods, the model-free techniques will be briefly reviewed in the

following.
2.2.1 Model-free methods

In this approach, the fault detection and isolation methods do not use a model of the plant and they range from

physical redundancy and special sensors through limit-checking and spectrum analysis to logical reasoning.

*  Physical redundancy. In this approach, multiple sensors are installed to measure the same physical quantity.
Any serious discrepancy between the measurements indicates a sensor fault. With only two parallel sensors,
fault isolation is not possible. With three sensors, a voting scheme can be built which allows to isolating the
faulty sensor. Physical redundancy involves extra hardware cost and extra weight, the latter representing a
serious concern, for example, in aerospace applications.

*  Special sensors may be installed explicitly for detection and isolation. A sort of these sensors are the known as

limit sensors (measuring e.g., temperature or pressure), which perform limit checking using additional hardware.
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Other special sensors may measure some fault-indicating physical quantity, such as sound, vibration, elongation,
etc.

e Limit checking. In this approach, plant measurements are compared by computer to preset limits. Exceeding the
threshold indicates a fault situation.

e Spectrum analysis of plant measurements may also be used for detection and isolation. Most plant variables
exhibit a typical frequency spectrum under normal operating conditions; any deviation from this is an indication
of abnormality. Certain types of faults may even have their characteristic signature in the spectrum, facilitating
fault isolation.

* Logic reasoning techniques form a broad class which is complementary to the methods outlined above, in that

they are aimed at evaluating the fault signals obtained by the detection hardware or software. The simplest

techniques consist of trees of logical rules of the “IF - fault signal ¢; - AND - fault signal ¢; - THEN —

conclusion” type. Each conclusion can, in turn, serve as a fault signal in the next rule, until the final conclusion

is reached.
2.2.2 Model-based methods

Fig. 2.2 shows the general fault diagnosis scheme using systems models. The general idea of fault diagnosis model-
based methods is to compare the available measurements of the monitored system with their corresponding
predictions obtained using a system model, either analytical or qualitative (Venkatasubrarnanian et al., 2003a). If
they differ significantly, then it may be concluded that a fault has occurred. Nonetheless, the problem with this
approach is that a precise description of a system that takes the effects of faults into account is usually impossible,
and even if such a description exists, the dependence that characterises particular faults cannot be defined on the
grounds of it. Therefore, different kinds of simplified models are used in fault detection and isolation.

When classifying models applied to the diagnostics of processes (systems), it is possible to distinguish models of
systems applied to fault detection and models used for fault isolation. Models used for fault detection describe

relationships existing within the system between the input (u#) and output (p) signals, and allow detecting changes

(fault signals ¢) caused by faults. Models used for fault isolation define the existing relationship between fault

signals ¢ and faults f, which will be represented by (¢ = f).

Analytical models as well as fuzzy and neural ones are applied to fault detection. These models usually describe the
system in the normal state what allow to calculate residuals reflecting divergences that may exist between the
observed operation of the system and the normal operation defined by the model through the computed system

predictions ( y ). These residuals are most often calculated as differences between the measured and the modelled

output signals. In a non-faulty state, residual values should oscillate around zero. In consequence, residual values
different than zero denote fault signals which should allow to detect and isolate the fault.

Conversely, residual values are rarely used for fault isolation. The binary or multi-value evaluation of residual values
is usually applied, and an inference about faults is carried out on the basis of fault signals which were converted in

such a way. Consequently, a classifier is needed for the conversion of residual continuous signals (r) into quality

fault signals (@) (r > ¢).

32



Models applied to fault isolation should map the space of fault signals into the space of faults (f) (¢p = f).Thereby,

and such as it was for the fault detection case, these relationships can be defined on the basis of analytical/qualitative
modelling, taking into account the effect of faults, training or using an expert’s knowledge.
As it was pointed out previously, there are two mainly approaches in model-based fault detection and isolation: the

analytical model-based approach which just uses analytical models and the qualitative model-based approach which
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Fig. 2.2 Fault diagnosis diagram using system models

2.2.2.1 Analytical model-based methods

The analytical redundancy (Isermann, 2005) of the monitored system measurements exists when an additional value
of a process variable is calculated on the grounds of a mathematical model that connects the estimated variable with
other measured signals. Mathematical models are applied to the calculation of process variable values instead of the
application of redundant measuring devices in the system structure. Thereby, analytical redundancy is used both for
fault detection and for fault isolation. The analytical model of the diagnosed system contains all relationships
existing among process variables what allow to obtain all physical redundant relationships needed to detect and

isolate faults.

2.2.2.2 Qualitative model-based methods

These methods can be applied both for fault detection and for fault isolation and mainly they are used because it may
often be difficult and time consuming to develop a good mathematical model. As a consequence of this issue, there
have been many attempts to use cruder descriptions (Reiter, 1987; Lunze, 1994; Frank 1996; Cordier et al., 2004) as
pointed out in (Venkatasubrarnanian et al., 2003b). The model is usually developed based on some fundamental
understanding of the physics of the process. In quantitative models this understanding is expressed in terms of

mathematical functional relationships between the inputs and outputs of the system. In contrast, in qualitative models
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these relationships are expressed in terms of qualitative functions centered around different units in a process. The

qualitative approach to fault diagnosis can be motivated by the following circumstances:

*  Faults can not be reasonably described by analytical models.

* The on-line information available is not given by quantitative measurements of the system output but by
qualitative assessments of the current operation conditions.

» If the system structure or parameters are not precisely known and diagnosis has to be based primarily on

heuristic information no quantitative model can be set up.
2.2.3 Type of faults and disturbances

In this section, what is meant by faults will be described and the tasks of fault detection and isolation will be

mentioned. According to (Gertler, 1998), faults are performance deteriorations, malfunctions or breakdowns in the

monitored plant or in its instrumentations which may be represented as unknown extra inputs acting on the system

(additive faults) or as changes of some plant parameters (multiplicative faults). While in many cases the

classification of a particular fault as additive or multiplicative follows naturally from its nature, sometimes it may

also be arbitrary. In general, the faults of interest belong to one of the following categories:

*  Additive process faults. These are unknown inputs acting on the plant, which are normally zero and which cause
a change in the plant outputs independent of the known inputs. Such faults best describe plant leaks, loads, etc.

*  Multiplicative process faults. These are changes (abrupt or gradual) in some plant parameters. They cause
changes in the plant outputs, which depend also on the magnitude of the known inputs.

*  Sensor faults. These are discrepancies between the measured and actual values of individual plant variables.
These faults are usually considered additive (independent of the measured magnitude).

*  Actuator faults. These are discrepancies between the input command of an actuator and its actual output.
Actuator faults are usually handled as additive.

A disturbance is also an unknown extra input acting on the plant. Thus, physically there is no difference between a

disturbance and certain faults. The distinctions is, indeed, subjective; we consider as faults those extra inputs the

presence of which we wish to detect while we consider as disturbances those which we want to ignore and be

unaffected by (Gertler, 1998). Some authors refer to the disturbances as ‘nuisance variables’.

Faults and disturbances will be handled as unspecified deterministic functions of time while noises are unknown

extra inputs, just like the additive disturbances, but they are assumed to exhibit random behaviour. They are also

assumed to have zero mean; any nonzero mean can be handled as a separate disturbance. The noises are also

nuisance variables the effect of which needs to be suppressed.

Modelling errors are errors or uncertainties in the parameters of the monitored system. Just like the multiplicative

faults, they are discrepancies between the true system and the model but they represent an undesirable interference

with fault diagnosis. Thus modelling errors can be considered as multiplicative disturbances. Note that in general it is

difficult to distinguish parametric faults from certain modelling errors though their long-term behaviour may provide

some clue: parametric faults develop in the course of system operation while some model errors may have been there

from the beginning.

Usually, the fault detection and isolation activity takes place on-line, in real time. The two tasks, detection and

isolation, may be performed in parallel or sequentially. In some diagnostic systems, a single decision conveys not

only the fact that a fault is present but also its location. In other systems, the detection task is running permanently

while the isolation task is triggered only upon the detection of the presence of a fault. Particularly, in fault detection

and isolation, the following conventions are usually adopted:
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» It is assumed that faults are not present initially in the systems but arrive at some later time instant. The faults
are generally described by deterministic time-functions which are unknown.

e Faults are those unknown inputs which we wish to detect and isolate while disturbances are nuisances which we
wish to ignore.

* Any noise, originating from the plant or from the sensors and actuators, is considered random with zero mean
(any nonzero mean is handled as a fault or disturbance).

*  Modelling errors are discrepancies between the model (model parameters) and the true system. They may be
present ever since the origins of the system or may arise due to operating-point changes. Model errors are
nuisances the effect of which we want to suppress. They may be considered as multiplicative disturbances, in
contrast to multiplicative faults which are also discrepancies between the model and the true system, but which
we wish to detect.

On the other hand, the detection performance of the diagnostic technique is characterized by a number of important

and quantifiable benchmarks, namely:

*  Fault sensitivity, that is, the ability of the technique to detect faults of reasonably small size;

*  Reaction speed, that is, the ability of the technique to detect faults with reasonably small delay after their

arrival;

*  Robustness, that is, the ability of the technique to operate in the presence of noise, disturbances and modelling

errors, with few false alarms.

Those benchmarks arise from the interaction between faults on the one hand and noise, disturbances and model

errors on the other hand, and are affected by the detection algorithm.

Regarding the isolation performance, its ability to distinguish faults depends on the physical properties of the plant,

on the size of faults, noise, disturbances and model errors and on the design of the algorithm. Multiple simultancous

faults are, in general, more difficult to isolate than single faults. Also, the interplay between faults and disturbances,
noise and model errors may lead to uncertain or incorrect isolation decisions. Further, some faults may be non-

isolable from one another because they act on the physical plant in an undistinguishable way.

2.3 Fault detection using system models
2.3.1 Model-based fault detection using residuals

In general, model-based fault detection methods use system (process) models in order to generate residuals
(Himmelblau, 1978; Gertler, 1998). Thus, Fig. 2.3 illustrates the general and conceptual structure of a model-based
fault detection module which consists in two main parts: the residual generation stage and the residual value stage.

This two-stage structure was first suggested by (Chow and Willsky, 1980) and now is widely accepted by the fault

diagnosis community. The main purposes of these two main stages are described as follows:

*  Residual Generation: Its purpose is to generate a fault-indicating signal-residual, using available input and
output information from the monitored system. This auxiliary signal is designed to reflect the onset of a possible
fault in the analyzed system. The residual should be normally zero or close to zero when no fault is present, but
should be distinguishably different from zero when a fault occurs. This means that the residual is

characteristically independent of system inputs and outputs, in ideal conditions. The algorithm used to generate

residuals is called a residual generator. Residual generation is thus a procedure for extracting fault signals (¢)
from the system, with the fault signal represented by the residual signal (r). The residual should ideally carry
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only fault information and to ensure reliable fault detection, the loss of fault information in residual generation
should be as small as possible.

Residual value evaluation: Every fault detection algorithm that makes use of an analytical, fuzzy or neural
model contains the decision-making part, in which the evaluation of the residual value takes place. In this stage,
the decision about the existence of a fault is made together with a possible indication of this event generating the
corresponding fault signal. This signal should carry information about the effect of the fault on the residual set
so that the fault isolation module can isolate this fault. A decision process may consist in a simple threshold test
on the instantaneous values or moving averages of the residuals (Puig et al., 1999; Ploix et al., 2000), or it may
consist of methods of statistical decision theory, e.g., generalized likelihood ratio (GLR) testing or sequential
probability ratio testing (SPRT) (Willsky et al, 1976; Basseville et al, 1988; Tzafestas and Watanabe, 1990;
Basseville and Nikiforov, 1993). On the other hand, this residual evaluation can also be carried out with the use
of fuzzy or neural logic (Korbicz et al., 1999) or qualitative methods (Kuipers, 1994; Leicht et al., 1994). The
residual evaluation related to these approaches allow taking into account the uncertainty of fault signal values
caused by disturbances in the system, measurement noise, modelling errors, and difficulties with the definition

of threshold values.
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Fig. 2.3 Conceptual structure of model-based fault detection using residuals

Model-based fault detection is concerned mainly with two important properties:

On-line fault diagnosis in which the diagnosis is carried out during system operation. This is because the system
input-output information required by model-based fault detection module is only available when the system is in
operation.

Robustness against disturbances, noise and modelling uncertainty that arises from incomplete knowledge and
understanding of the monitored processes. Consequently, the residual generated to indicate faults may also react
to the presence of noise, disturbances and model errors. Desensitizing the residuals to these sources is a most
important aspect in the design of the detection and diagnosis algorithm. In particular:

» To deal with the effects of noise, the residuals may be filtered and statistical techniques may be applied to

their evaluation.
» Disturbance decoupling may be built into the design of the residual generator, but it competes with isolation

enhancement for the available design freedom.
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» Robustness in the face of modelling errors is the most fundamental problem in model-based fault detection
and isolation. Several methods are available which usually rely on some sort of optimization: the known
techniques are effective only under limited circumstances.

In model-based fault detection, the generation of residuals needs to be followed by residual evaluation, in order to

arrive at detection and isolation decisions. Because of the presence of noise and model errors, the residuals are never

zero, even if there is no fault. Therefore, the residual evaluation requires testing the residuals against thresholds,
obtained empirically or by theoretical considerations. As it was already mentioned, another approach to achieve
residual evaluation robustness would be the use of a fuzzy or neural logic.

On the other hand, to facilitate fault isolation, the residual generators are usually designed (enhanced residuals)

exhibiting structural or directional properties. The isolation decisions then can be obtained in a structural (Boolean)

or directional (geometric) framework, with or without the inclusion of statistical elements.

Concerning residual generation methods in model-based fault detection and isolation, four main approaches can be

considered within the group of analytical methods applied to fault detection. In the next lines, few ideas about those

methods are given:

» Diagnostic Observers. The basic idea behind the diagnostic observer approaches is to estimate the outputs of
the system from the measurements (or a subset of measurements) by using either Luenberger observers in a
deterministic setting (Beard, 1971; Jones, 1973) or Kalman filters in a stochastic setting (Mehra and Peschon,
1971; Willsky, 1976 and 1986; Basseville, 1986). Then, the weighted output estimation error is used as a
residual. Thereby, while the flexibility in selecting the observer gains is used to minimize the noise effect on the
fault detection result in the Kalman approach, this freedom is applied to enhance the residual fault detection and
isolation properties in the Luenberger approach. As a result, the dynamics of the fault response can be
controlled, within certain limits, by placing the poles of the observer. This trend was followed by a long line of
researchers, including (Frank and Keller, 1980), (Frank and Wiinnenberg, 1989), (Viswanadham and Srichander,
1987), (Patton and Kangethe, 1989), (Chen et al., 1999), (Puig et al., 2003a), etc.

* Parity (consistency) relations. Parity relations are rearranged direct input-output model equations, subjected to
a linear dynamic transformation. The transformed residuals serve for detection and isolation. The residual
sequence is coloured, just like in the case of observers. The design freedom provided by the transformation can
be used for disturbance decoupling and fault isolation enhancement. Also, the dynamics of the response can be
assigned, within the limits posed by the requirements of casualty and stability. The parity relation approach to
generate the residual, based upon consistency checking on system input and output data over a time window,
was originally proposed by (Mironovski, 1979 and 1980). The approach was later proposed by (Chow and
Willsky, 1984), and has been expressed in several different versions: (Gertler, 1988), (Chen and Zhang, 1990).
The latest development regarding parity relation approaches can be found in (Gertler, 1997), (Gertler, 1998),
(Chen et al., 1999), (Ploix et al., 2006), etc.

e Parameter estimation. Another FDI approach is the use of parameter estimation which is based directly on
system identification techniques. In 1984, Isermann illustrated that process fault detection and isolation can be
achieved using the estimation of non-measurable process parameters and/or state variables in his survey paper
(Isermann, 1984). Parameter estimation is a natural approach to the detection and isolation of parametric
(multiplicative) faults. A reference model is obtained by first identifying the plant in fault-free situation. Then,
the parameters are repeatedly re-identified on-line. Deviations from the reference model serve as a basis for
detection and isolation. Parameter estimation may be more reliable than the analytical redundancy methods, but

it is also more demanding in terms of on-line computation and input excitation requirements and consequently,
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this approach will not be considered in the thesis. The latest development and applications can be found in

(Isermann, 1997), (Isermann, 2005), (Puig et al., 2005d), (Ingimundarson et al, 2005) .
As it has been realized recently, there is a fundamental equivalence between parity relation and observer based
designs (Gertler, 1997). In consequence, the two techniques produce identical residuals if the generators have been
designed for the same specification. A relationship, though weaker, has been found between parity relations and
parameter estimation.
Within the group of qualitative methods applied to fault detection, the main residual generation approach is based on
the use of neural and fuzzy models (Korbicz et al., 1999; Ayoubi, 1994). Neural and fuzzy models allow estimating
the values of system variable. Then, residual is generated as a difference between the measurement of the system
output and its estimation given by the neural or fuzzy model. A vital advantage of fuzzy and neural techniques is the
possibility of non-linear system modelling. Models of systems in the state of complete efficiency are obtained on the
grounds of experimental data with the use of different training techniques. This is especially important when
analytical models of the system are not known. Such models reflect well system operation within the signal changes
range on the grounds of which they are trained.
The advantage of fuzzy and neural networks is the possibility to connect expert’s knowledge with the available
measurement data. The expert’s knowledge is used to define the structure and initial values of the model parameters.
The model is a set of rules that can be interpreted and verified by the expert. The number of rules in fuzzy models
grows rapidly with the growth of the number of inputs and the number of fuzzy sets for particular inputs. This limits

their application to relatively simple systems.
2.3.2 Analytical model-based fault detection techniques

In this thesis, only the analytical model-based fault detection approach will be considered. As pointed out in Section
2.2.2, this approach uses a mathematical model of the monitored system in order to estimate the system outputs.

Comparing these estimations p(k) with the real system outputs y(k) (Residual generation stage), a set of residuals
r(k) is obtained. Then, analyzing this residual set, a decision about the existence of a fault f{k) is made (Residual

value evaluation stage) generating the corresponding fault signals ¢ (k) in case the residual evaluation determines a

fault is affecting the monitored system.

2.3.2.1 Residual generation and evaluation

As mentioned above, analytical model-based fault detection is based on generating a residual comparing the

measurements of physical variables y(k) of the process with their estimation p(k) provided by the associated

system model:
r(k)=y(k)=y(k) @.1)
Thereby, residuals r(k) will be generated at every time instant k by the residual generator. According to (Gertler,
1998), a residual generator is a linear discrete dynamic algorithm (a computational “system’) operating on the plant
observables, that is, on the command values of the controlled inputs and on the measured values of the measured
inputs and outputs. Its generic form is
r(k) =V (g Hu(k) +0(g™) y(k) 22
where: r(k) is the vector of residuals, ¥(g”) and O(g™) are transfer function matrices. However, this equation is not

necessarily a residual generator; it has to return zero-valued residuals when there are no faults, no nuisance inputs
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and no modelling errors. Thereby, considering a linear discrete dynamic system, its nominal input-output relationship
(without faults, disturbances and noise) is set by

y(k) = M(q " u(k) 23)
Then, when there are no faults, no nuisance inputs and no modelling errors, the Eq. (2.3) must be satisfied and a

proper residual generator must return zero-valued residuals. In consequence,

V(g uk)+0(q™" M (g Yuk)=0 (24)
has to be fulfilled for all #(k), requiring
V(g")=-0(a")M(q™) 25)
As a result, the generic residual generator (Eq. (2.2)) can be also written as
r(k)=0(g™)| y(k) = M(g ™ u(k) | .6

Both Eq. (2.2) ) and Eq. (2.6) are known as the computational form of the generic residual generator (Gertler, 1998).
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Fig. 2.4 Generic residual generator: computational form

Conversely, it should be noticed that the term

d(k) = y(k) =M (g u(k) @7)
of Eq. (2.6) is due to the effect of faults and nuisance inputs. In consequence, the generic form of the residual
generator can be also written in terms of these effects resulting in its internal or unknown-input-effect form (Gertler,
1998):

r(k) = 0(q)o(k) 2.8)

In an ideal situation, where the monitored system may only be affected by known faults and the estimations of the

model have no errors regarding the behaviour of the system in a non-faulty scenario, the residual value evaluation

stage will be able to indicate a fault affecting to the monitored system while the residual generator computes non-
zero-valued residuals at every time instant. In short, while

rk)=0, 2.9)

a fault will not be indicated. Otherwise, the residual value evaluation stage will generate the corresponding fault

signals (¢(k)) so that the fault isolation module can diagnose the detected fault.

Being more realistic, the residual »(k) will never be zero-valued since the monitored system is affected by nuisance
inputs which can not be either controlled or avoided and furthermore, the system model does have errors regarding
the system performance. Consequently, if condition (2.9) were used to determine the existence of a fault, the fault
detection module could indicate faults which do not actually exist.

In fault detection and isolation, robust residual generators must be used which do only react in presence of faults and

do not in presence of nuisance inputs or because of modelling errors affecting to the considered model. At the
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moment, residual generator robustness is the most important aspect when designing a fault detection and isolation
algorithm and it is still an open investigation field. This issue will be introduced in Section 2.3.2.3.

As it can be inferred from Eq. (2.1), the residual generation stage does depend on the model type used to estimate the
system output since this stage requires this estimation so that the residual can be generated. In general, different
model types will provide different estimations at every time instant k. In consequence, the residual value evaluation
stage is also affected by the model type. The reason is that this stage is based on checking if Eq. (2.9) holds or not,
assuming an ideal situation. As a result of the two previous statements, it is concluded that the whole fault detection
performance of the fault diagnostic system does depend on the type of analytical model used to estimate the system
output.

Conversely, as indicated by the residual computational form given by Eq. (2.6), the time evolution of the computed
residual does strongly depend on the transfer function O(g”) and consequently, if this function were properly

designed, the fault detection performance could be improved in order to achieve a better fault indication and to

generate a sequence of fault signals ¢(k) which allow to isolate the fault easily. Moreover, it must be taken into

account that O(g”’) has an influence on the residual generator structure and therefore, on the fault signals which can
be observed when a given fault occurs. In this way, a proper design of this function can add more fault
distinguishability in order to improve the reliability of the result given by the diagnostic system. In the following, it

will be shown that this function is determined by the used system model.

2.3.2.2 Residual generation using observers

In general, in model-based fault detection, the system model can be used in three different approaches, in simulation,
in prediction and in observation:
e Simulation approach. This is an open loop approach and the real measurements are not used to correct the

estimation given by the model.

e Prediction approach. This is a closed loop approach and the system output measurement y(k) will be used to

correct the estimation given by the model.

e Observation approach. This is a semi-closed loop where the system output y(k) will be partially used in order to
correct the estimation given by the model in simulation.

According to (Gertler, 1997), the simulation and prediction approaches (parity equation approach) can be seen as
two particular cases of the observation approach for two specific values of the observer gain. Thus, in this thesis, the
observer approach will be considered. Moreover, concerning the residual generation stage, (Gertler, 1998) shows the
equivalence between the observer approach and the parity equations (simulation and prediction approach) in relation
to the structure of the obtained residual generator and consequently, a fault detection analysis of the observer
performance will also allow to obtain information about the performance of predictors and simulators when
particularizing the observation gain matrix for the two values used for these two approaches.
Assuming that the system is completely observable, the general expression of a linear discrete-time observer in its
state-space form is given by

(k+1)= A%(k)+ Bu(k)+ L( y(k)- (k)

y(k)=Cx(k)
where yk)00", u)0O™, x(k)OO™ are the system output, input and the state-space vectors respectively;

(2.10)

y(k)OO" and x(k )OO™ are the estimated system output and state-space vectors respectively; 4, B and C are the
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state, the input and the output matrices respectively; L is the observer gain matrix designed to stabilise the observer
and to guarantee a desired performance regarding fault detection. It must be noticed that two extreme cases can be
considered in the observer definition. First, the observer becomes a simulator using L=0 and as a consequence, its
eigenvalues are equal to the ones of the considered system (L=0) (Chow et al, 1984) , but it can only be used when

the system is stable. Second, the observer becomes a predictor (Chow et al, 1984) when the observer gain (L =L,)

is selected such that all the observer eigenvalues are at the origin (“deadbeat observer” ) (Patton et al, 1991).
Moreover, the observer model has the capability of placing its eigenvalues between these two extreme cases using a
set of observation gains (L=L,) which are different from the ones mentioned previously. Regarding the simulation
and prediction cases, (Gertler, 1997) sets that they correspond to the well-known parity equations and they are
embedded in the observer equation (2.10).

In the following, the goal is to obtain the expression of the residual computational form (Eq. (2.6)) when an observer
model is used in order to obtain the transfer function O(g”) since, as mentioned above, this function rules the most of
the fault detection and isolation properties of the considered fault diagnosis model. Thereby, in order to obtain this
result some transformations of the interval observer state-space form must be done.

Thus, considering the residual expression given by Eq. (2.1) and taking into account that the residual r(k) can be seen
as an extra model input, the observer state-space form can be rearranged as

u(k)}

r(k) @.11)

X(k +1) = A%(k)+[ B L][
y(k) = Cx(k)
Then, assuming zero initial conditions, the input-output form of the observer using the g-transform is
J(k)=C(ql —A)” Bu(k)+C(ql-A)" Lr(k) 2.12)
Thus, defining p(k ), as the value of p(k) when L=0 (simulation value) and H,(q™',0) as
H,.(q"')=C(ql-4)""L 2.13)
the interval observer input-output form can be written as the sum of the estimation given by the simulation approach

(L=0) and a term which depends on the residual r(k):
P(k)= 3k g +H, (¢ Jr(k) @.14)
Thus, it must be noticed that the norm of the steady-sate value of H, (g™’ ) is proportional to the norm of the

observation gain L.
Conversely, taking into account that the general expression of the residual is given by Eq. (2.1) and using the observer

output estimation given by Eq. (2.14), the residual can be re-written as

r(k)=y(k)=3(k) = y(k)=3(k )=y ~H,(q" Jr(k) 2.15)
Then, grouping the terms associated with the residual to the left side of the equation,
(1+H,(q7))r(k)= y(k)= k), 2.16)

Examining the right-sided term of this equation and considering the definition of the residual (Eq. (2.1)), it must be

seen that this term corresponds to the residual generated by the simulation approach which can be written down as

r(k ) -y . Thus, taking into account that H (¢~ ) is a square matrix and considering (I +H,.( q_l ,0 )) has a inverse

matrix, this equation can be expressed as

-1
r(k)=(T+H,(q7)) r(k)y @17)
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This equation sets the relation between the residual related to the simulation approach and the residual generated by
an observer. As seen, this relation is ruled by a transfer function which depends on the observer gain L. As a
consequence, it can be said that the fault detection and isolation properties of the considered analytical model are
determined by L. Conversely, this equation such as shown above and all the derived conclusions regarding the
influence of the observer gain on the observer fault detection performance can be considered as a novelty presented
in this thesis and they will be analyzed in Chapter 3.

Comparing the residual computational form given by Eq. (2.6) with the residual form Eq.(2.17), the expression of the
transfer function O(g”) for the general case of an observer can be derived:

0(qg™"= (I +H, (q‘l))_1 = (I +C(ql —A)‘IL)_1 2.18)

taking into account the next equality

(k) =M (g™ Yuk) = (k) -y = y(k) = $(k) g = y(k) = C (gl = A)" Bu(k) (2.19)

Then, considering the simulation approach (L=0), the computational form of the residual is

r(k)ymg = ¥(k)=C(ql - A)” Bu(k) (2.20)

If the prediction approach (L=L,) is used,

_ -1\ _1
r(k)Lsz—(I+C(qI—A) Lp) [ ¥(k)=ClaT - 47" Bu(k)] @21

Lastly, for the observer case (L=L,) approach,

-1\ -1
r(k)L:L”:(I+C(qI—A) Lo) [y(k)—C(qI—A) Bu(k)J @.2)

Such as it can be seen in equations (2.20) and (2.21), when considering the simulation or prediction approach, the
structure of the residual generator is fully established and as a result, so does its fault detection and isolation
performance. Thus, using these methods there is nothing it can be done to try to enhance this performance and to
avoid some fault diagnosis problems (lack of fault indication, wrapping effect, noise effect, etc ) which will be
pointed out in the following section. On the other hand, when using the observer approach, the structure of its
residual generator is not determined since it depends on the value of the observer gain matrix L, which can be chosen
to place the observer eigenvalues between the origin (L=L,) and the ones related to the monitored system (L=0). In
consequence, this matrix could be designed to try to improve the observer fault detection and isolation performance
and to try to avoid some of the fault diagnosis problems. In this line, the Kalman filter approach designs the
observation gain to minimize the noise effect. In consequence, thinking about designing L to minimize the effect of
some fault diagnosis drawbacks does not secem to be an unreality. At the same time, a proper design of L could
improve some fault diagnosis properties like adding more fault distinguishability or more fault indication persistence.
In this way, one of the goals of this thesis is analyzing the effect of the observation gain on the observer fault

detection and isolation performance.

2.3.2.3 Robustness issues

As it was mentioned in Section 2.3.2.1, when building a model of a complex system to monitor its behaviour, there is
always a mismatch between the modelled and real behaviour since some effects are neglected, some parameters have
tolerance, some errors in parameters or in the structure of the model are introduced in the calibration process, etc.
Many times, these modelling errors could be bounded and included in the fault detection model. There are several
ways of modelling the uncertainty associated with the model. For instance, an approach providing a nominal model

plus the uncertainty on every parameter bounded by intervals determines what is known as interval model approach
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(or worst case model approach). In the FDI and automatic control community, this type of uncertainty is called
structured because it is assumed that the structure of the model is known but not the model parameters, in opposition
to a more general type of uncertainty which considers the structure of the model is not completely known but only
bounded. This type of uncertainty is known as unstructured. In FDI community a fault detection algorithm able to
handle uncertainty is called robust. The robustness of fault detection algorithm is the degree of sensitivity to faults
compared to the degree of sensitivity to uncertainty (Patton et al, 1994).

Research on robust fault detection methods has been very active in the FDI community these last years (Chen et al,
1999). One family of approaches, called active, is based on generating residuals which are insensitive to uncertainty,
while at the same time sensitive to faults. This approach has been extensively developed these last years for several
researchers using different techniques: unknown input observers, robust parity equations, H., etc. In (Chen and
Patton ,1999) there is an excellent survey of the active approach.

On the other hand, there is a second family of approaches, called passive, which enhances the robustness of the fault
detection system at the residual value evaluation stage. This approach is still under research. Several techniques have
been used, but most of them are based on using an adaptive threshold at the residual value evaluation stage.
According to (Gertler, 1998), there is no algorithm which is robust under arbitrary model error conditions. To design
an algorithm for robustness, rather detailed information is necessary about the nature of errors and uncertainties, and
such information is seldom available. But even if it is, what can be achieved is rather limited. Generally perfect
decoupling of the residuals from uncertainties it is only possible in a limited number of model parameters.

Adaptive thresholding techniques were first proposed by (Clark,1989), who suggests an empirical relation between
the operation point and the corresponding detection threshold. Further approaches are due to (Emami-Naemi et al,
1988), who develops a theoretical relation between the operation point, the model uncertainty and the detection
threshold. This approach is based on H., techniques and it was further explored by (Frank et al, 1991) and (Ding et al,
1991). Another approach for adaptive threshold generation was proposed by (Horak et al, 1988) and it is based on a
dynamical optimisation assuming parametric uncertainty.

The passive approach has the advantage over the corresponding active approach that it can achieve robustness in the
detection procedure in spite of the number of uncertain parameters in the model, and without using any
approximation based on the simplification of the underlying parameter representation.

The passive approach based on adaptive thresholds is based not in avoiding the effect of uncertainty in the residual
through perfect decoupling, but in propagating the parameter uncertainty to the residual, and then bounding the

residual uncertainty using an interval.

2.3.2.4 Passive robust approach

This thesis focuses on the adaptive thresholding passive robustness approach using interval models. The use of this

type of models has received several names depending on the field of research: in circuit analysis is known as worst-

case or tolerance analysis, in automatic control as set-membership, bounding approach or robust. Nowadays,

several research groups actually are following this approach. To the best of our knowledge these groups are:

» the group of University of Girona (UdG) (Armengol et al, 2000)

* the group of LAAS-Toulouse (Travé et al, 1997)

» the group of Technical University of Catalonia (UPC) (Puig et al, 1999), (Puig et al, 2000), (Puig et al, 2002a),
(Puig et al, 2003a), (Puig et al, 2003b), (Puig et al, 2004a), (Puig et al, 2004b), (Puig et al, 2005a)

* and two groups of CRAN-Nancy (Adrot et al, 2000), (Ploix et al, 2000), (Hamelin et al, 2000), (Ploix et al.,
2006)
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The problem of adaptive threshold generation in discrete time-domain using interval models can be formulated

mathematically as the need of computing at every time instant a system output estimation using an interval [ jz(k)] .

This interval does only have to wrap the system output when this system is not affected by any fault. Therefore,

while the system output interval estimation contains the system output, none fault will be indicated.
vy O[ 3(0)] (2.23)
In general, this approach compares the system output y(k) with its interval estimation [ jz(k)], provided by the

interval model, computing at every time instant the interval residual [r(k)] as

[r(0)] = (k) =[ (k)] (2.24)
.Then, derived from Eq. (2.23) and Eq. (2.24), the residual value evaluation stage does not indicate any fault while
00[r(k)] (2.25)
holds. Thereby, it can be said that the fault detection test is based on propagating the model uncertainty to the
residual set (Puig et al 2002) and checking the value of the resultant interval residual according to Eq. (2.25). While
the interval residual satisfies Eq. (2.25), no fault can be indicated since the residual value can be due to the model
uncertainty. Of course, this approach has the drawback that those faults producing a residual deviation smaller than
the residual uncertainty will be missed (“non-detectable faults™).
When considering a discrete linear time-invariant interval model, there are two main approaches to calculate the
system output estimation interval at every time instant: the set-based approach and the trajectory-based approach.
In the next section, these two methodologies are described describing different algorithms for each family and

pointing out their drawbacks and strengths.

2.3.2.5 Interval observation using set and trajectory-based approaches

As mentioned in the previous section, passive robust fault detection based on intervals observers needs to compute at

every time instant a system output estimation interval [ jz(k)] which is used to obtain the residual interval [r(k)] (Eq.

(2.24)) required by the residual value evaluation stage in order to indicate or not the presence of a fault (Eq. (2.25)) and
to generate the corresponding fault signals. Thereby, when considering a discrete linear time-invariant interval model
like the interval observer given by Eq. (2.10), there are two main approaches to calculate the system output interval
estimation at every time instant: the set-based (or region-based) approach and the trajectory-based approach. In this
section, these two methodologies are described showing different algorithms for each family and pointing out the
drawbacks and strengths of both approaches.

In general, the exact set produced by an interval observer (Eq. (2.10)) of the characteristics mentioned previously will
require a big effort in order to be calculated using a computer (Adrot et al, 2003) and normally, it is approximated by,
for example, a box, a polytope or an ellipsoid. Then, this type of simulation or state observation is known as set-
membership but when the calculated set is the interval hull of the exact set, then, it is called interval simulation or
state observation (Puig et al, 2005¢). In the literature, algorithms can be classified according to if they compute the
approximate set of estimated states using one step-ahead iteration based on previous approximate sets (set-based
approaches)(Adrot et al, 2003; El Ghaoui et al, 1999; Puig et al, 2001), or a set of point-wise trajectories generated
by selecting particular values of the observer interval parameter vector € using heuristics or optimisation
(trajectory-based approaches) (Puig et al, 2002b; Puig et al, 2003b; Tibken et al, 1993). In the first case, the set of

states X (k) is approximated at each iteration and some propagation algorithm is used to produce the approximate

set of states X (k +1). This approach is affected by several problems (specially, in case that the approximate set is
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the interval hull): wrapping effect, range evaluation of an interval function (in this case, the state-space function)

and the uncertain parameter time dependency. However, in the second case, the interval hull of X (k) is built

following real trajectories generated by selecting particular values of & . Consequently, this approach overcomes the
wrapping effect and preserves the uncertain parameter time dependency, but the problem of the interval function (in

this case the trajectory function x(k,u,y,x,,0)) range evaluation still remains. On the other hand, set-based

approaches present a lower computationally complexity than trajectory-based approaches do and consequently, they

seems to be more suitable for real-time applications.

2.3.2.5.1 Interval observation

According to (Puig et al, 2005a), the interval observation problem regarding the computation of the system output
estimation interval can be established in the same way than the inferval simulation problem presented in (Puig et al
2003b). This can be done since an interval observer can be seen as an interval simulator with two inputs: u(k) and
y(k). Thus, considering this point of view and the observer Eq. (2.10), the interval observer can be reorganised as:

u(k)

X(k+1)=(A4(0)~ LC(0)) X(k)+[B(0) L] [y( 5

} =A4,(0)x(k) + B, (0)u.(k)
(2.26)
(k) = C(0)x(k)

where A4, (0)=A4(0)-LC(0) is the state-space observer matrix, B, (0) =[B(0) L] is the resultant input matrix,

u, (k)= [u(k) y(k)]T , the resultant input and #0@ is a set of time-invariant model parameters bounded by an

interval set @ ={0 00"6,<6.<6,,i= 1,-.-,n5} which represents the uncertainty about the exact knowledge of real

system parameters. In consequence, derived from the interval observer structure shown by Eq. (2.26), the observer
gain matrix L must be designed to stabilise matrix 4, instead of matrix 4 and to guarantee a desired performance
regarding fault detection for all # (1@ , as mentioned previously.

In line with (Puig et al, 2005a), the solution set of a system which can be described by the interval observer (2.26) for

the time interval /0,N] consists of )A((O,N):{fc(k,u,y,fc 0):k0[0,N], 000,%, D)A(U} , where X(k,u,y,0,x,)

0°

denotes the solution of (2.26) at time & for some parameter vector # 1@ and some initial condition x, ] f(o at time

k=0. The set of values for a certain time instant & will be referred as the reachability set and denoted by

X (k) ={ %k uy.%,.0):000,%,0X,} @27)
Thus, given the observer gain matrix L guaranties the model stability for all § 1@ , the reachability set X (k) will be
bounded by region for each £ [1[0,).
Then, the interval observation problem consists in computing the interval hull of the reachability set X (k), i.e., the
smallest interval vector containing it: X (k) OoX (k), where 0O is used to denote the interval hull of X (k) , for all
k[J[0,N]. The sequence of interval vectors 0O X (k) with k7 [0,N] will be called the interval solution (or envelopes)

of the interval observer.

2.3.2.5.2 Interval observation drawbacks

When the interval observation approach is used in fault detection and isolation, several drawbacks must be taken into

account. In general, they a related to the type of algorithm applied to compute at every time instant the system output
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estimation interval and the corresponding residual. In the following, these drawbacks are described analysing how

they can be avoided tuning properly the interval observer model.

(a) Wrapping effect

The wrapping problem is related to the use of a crude approximation of the interval observer solution set and its
iteration using one-step ahead recursion of the state-space observer function, i.e, a region based approach. This

problem does not appear when the estimated trajectory function x(k,u, ,0), i.e., a trajectory based approach, is
used. On the other hand, when using the one-step ahead recursion approach, at each iteration, the true solution set

X(k) is wrapped into a superset feasible to construct and to represent the real region on a computer (in this paper,

its interval hull O X (k) ). Since the overestimation of the wrapped set is proportional to its radius, a spurious growth

of the enclosures can result if the composition of wrapping and mapping is iterated (Kiihn, 1998). This wrapping
effect can be completely unrelated to the stability characteristics of the observer, and even stable observers could
exhibit exponentially fast growing envelopes which are useless for practical purposes. Not all the interval observers
are affected by this problem. It has been shown that those that are monotone with respect to states do not present this
problem. These kinds of observers (systems) are known as isotonic (Cuguerd et al, 2002) or cooperative (Gouzé et
al, 2000). In case of observers whose state function is a contractive mapping (see definition 2), the overestimation of
the wrapped set does not increase along the time (Puig et al, 2003a).

Definition 1 (“isotonicity property”): A discrete-time system satisfies the isotonicity property if the variation of the

state function respects all the states and parameters is positive (Cuguerd et al, 2002).

Definition 2 (“contractivity property”): A function f:[7" 00 [J" is a contraction mapping if there is a number s,
with 0<s<I, so that for any vectors x and y it is satisfied that d(f(x), f(»)) < sd(x,y) where d(x,y) is the diameter
function and s is the contractivity. When linear functions of the type f=Ax are considered, ||A||m =s

According to the isotonicity and contractivity characteristics defined previously, a stable ( p(4) <1, where p(A4) is

the spectral radius') interval discrete-time system can be classified in 3 categories regarding the wrapping behavior:

» Isotonic systems: When the isotonicity property is achieved or in other words, all 4(#) matrix elements are

positive. In this case, region and trajectory based algorithms obtain the same estimation of states.

*  Non-isotonic but contractive systems: Although isotonicity is not achieved, the state matrix is a contractive

mapping

I, <1 (2.28)
and consequently, the state estimation suffers from wrapping effect when the region based approach is used but
because of the contractivity property, the state overestimation does not increase in time: stable wrapping effect.

*  Non-isotonic and non-contractive systems: In spite of the system stability, the state estimation when using
region based approach is unstable and consequently, a fast growing of the enclosures appears. In this case,
trajectory based approach must be used, in spite of its high complexity.

Comparing the enclosures produced by previous systems when using the region-based approach, the next
relation is set:

Isotonicity (without wrapping) E Contractivity (with stable wrapping) E Stability (with instable wrapping).

! The spectral radius of a given matrix is the maximum absolute value of all the eigenvalues of this matrix.
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(b) Temporal variance on uncertain parameters

An additional issue should be taken into account when an interval observer is used: uncertain parameter time-
invariance is not naturally preserved using one-step ahead recursion algorithms. If one-step recursion scheme is used
(ElGhaoui et al, 1999), the system state set X(k+/) is approximated by a set computed using a previous set which is
an approximation of the system state region X(k) and using the uncertain parameter set @ Then, the relation between
parameters and states is not preserved since every parameter contained in the parameter uncertainty region @ is
combined with every state of the X(k) approximation set when determining the approximation set of X(k+17). Thus,
recursive schemes based on one-step are intrinsically time varying. Parameter time-invariance can only be
guaranteed if the relation between parameters and states is preserved at every time instant. One possibility to
preserve this dependence is to derive a functional relation between states and parameters at every time instant that
will transport the system from the initial state to the present state. Then, two approaches about the assumption of the
time-variance of the uncertain parameters are possible:
»  the time-varying approach which assumes that uncertain parameters are unknown but bounded in their
uncertainty intervals and can vary at each time step since one-step ahead recursion algorithms are used. This is

the approach followed by (ElGhaoui et al, 1999) and (Puig et al, 2001), among others.

»  the time-invariant approach which assumes that uncertain parameters are unknown but bounded in their
uncertainty intervals and guarantee that they can not vary at each time step since a functional relation between
parameters and states is used instead of a one-step ahead recursion. This is the approach followed by (Tibken,

1993), (Horak et al, 1988) and (Puig et al, 1999), among others.

Although the set-based (region-based) algorithms belong to the time-varying approach, the parameter and state
relation is preserved at every time instant when monitoring an isotonic system. This statement is guaranteed by the
interval arithmetic. Then, if a system is not isotonic, an isotonic observer might be used in order to avoid this
problem and thereby, the system output interval estimation could be computed using a set-based approach which has

a low computational complexity.

(¢) Range evaluation of an interval function

When predicting the behaviour of a dynamic system with an interval observer, the need to evaluate the interval hull
of the system state interval estimation at each time step implies the computation of the range of an interval function.
Many approaches to interval observation need to evaluate the range of an interval function at every time instant in
order to determine the system state interval estimation. One possibility for evaluating this range is to apply directly
interval arithmetic substituting operations between real numbers by operations between intervals (Moore, 1966).
But, although the ranges of basic interval arithmetic operations are exactly the ranges of the corresponding real
operations, this is not the case if the operations are composed since multi instances of the same variable are not taken

into account. For instance: allow to us consider x [ [— 1,1] , then the interval for z =x—x should be 0, but when

applying interval arithmetic it is [— 2,2] . This phenomenon is termed as interval dependence or multi-incidence
problem (Moore,1966). One possibility to avoid this problem is to combine the use of interval arithmetic with a
branch and bound algorithm (Hansen, 1992). Another possibility to evaluate the range of an interval function is to
solve two optimisation problems (a minimisation and a maximisation) using numerical methods. But, classical

numerical optimisation algorithms can only guarantee local optimums since they are gradient based. Global
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optimums can only be obtained if the optimisation problems associated with the range evaluation are convex
(Bazaraa, 1993). However, in general, to guarantee global optimums in non-convex optimisation problems, global
optimisation algorithms based on branch and bound should be used (Puig et al., 1999).

Lastly, derived from the interval arithmetic properties, this problem only has an effect on those non-isotonic models
which are computed using a set-based algorithm. As analyzed above, when computing isotonic models using a set-
based approach, the relation between parameters and states is preserved and consequently, this interval function
range evaluation problem also vanishes. Then, when the monitored system is not isotonic, the use of an isotonic

observer allows avoiding the range evaluation problem in spite of using the set-based approach.

2.3.2.5.3 Set-based approaches to interval observation

One of the first approaches to compute a estimation of the system state region X(k+/) using a set-based method was

set by (Moore, 1966). This algorithm, when applied to a linear discrete-time interval model as (2.26), computes the

system state interval estimation [fc(k +1)] at time instant k+/ using as initial condition the system state interval
estimation [fc(k)] at time instant £. It is based on computing the natural interval extension of the state-space function

by replacing each occurrence of x(k) and @ by its corresponding interval and each standard function by its interval
evaluation (absolute algorithm) (Moore, 1966):

[k +D)] =A4,(0D[x(0)]+B,([0]u. (k) (2.29)
However, as explained in Section 2.3.2.5.2, replacing real numbers in a function by intervals often leads to large
overestimations that derive in a system state interval estimation [,;c(k +1)] which always increases its value, even if

the true solution contracts. A better approach is to apply the interval mean-value theorem (Moore, 1966) to equation
(2.29) (relative algorithm):

[%(k+D] = %, (k+ D+ 4, (0] ([*(0)] - %, (b)) (230
where

%, (k+1) = 4,(0)%, (k) + B, (0)u. (k) a1

with %,(k+1), %.(k) and @ being the mid-points of the intervals [X(k +1)], [%(k)] and [6], respectively.
However, this method suffers from the wrapping effect when the observer matrix A4, is not isotonic or this matrix is
ill-conditioned, as for example, those ones with eigenvalues with very different magnitudes (Nedialkov et al, 2001).
Otherwise, when the observer matrix A4, is isotonic, the Moore’s absolute algorithm can be used to calculate the
system state interval estimation avoiding the mentioned overestimations what results in a very low demanding
computational method.
In those cases where Moore’s algorithm is ill-conditioned, the set-based approach given by (Lohner, 1987) can be
used.. Lohner’s algorithm can avoid the wrapping effect in many systems but (Kiihn, 1998) has discovered some

cases where this approach fails.

2.3.2.5.4 Trajectory-based approaches to interval observation

Concerning the trajectory-based approach used to compute a estimation of the system state region X(k+1), a suitable

method is given by (Puig et al, 2002b). This method sets that the observer state region X (k) will be bounded at any

time instant k by its interval hull OX(k )= [i‘( k), E( k )J where:
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— k=1
%(k)=max {A(’f (0)%(0)+Y A" (0)B,(0 )u.(v )} 232)

v=0
k=1
(k)= min {Aﬁ (0)%(0)+) A, "‘V(a)Bo(a)u*(v)} 2.33)
v=0
subject to# 0@ and x, X,) and assuming time-invariant uncertain parameters: this method is known as a time-

invariant approach. At the same time that time invariance is preserved, the wrapping effect is avoided due to the
fact that uncertainty is not propagated from step to step but from the initial state. This approach yields the accurate
time-invariant worst-case observation without any conservatism, assuming that the previous optimisation problems
could be solved with infinite precision and the global optimum could be determined. However, in practice it only
could be solved with a given precision. On the other hand, one of the main drawbacks of this approach, besides its
high computational complexity, is that the objective function is a polynomial with degree increasing by one at each
iteration. As a result, the amount of needed computation increases with time being impossible to operate over a large
time interval. Consequently, some kind of approximation should be introduced to make the approach more tractable.
If the observer given by Eq. (2.26) is asymptotically stable, any transients settle to negligible values in a finite-time,
more precisely in /T samples, being ¢, the observer settling time and 7 the sampling time. This assumption implies
that the outputs of the observer at time & depend only on the inputs that occurred during the last #/7, samples.

Therefore, for any time £, it is possible to approximate algorithm given by Eq. (2.32) and Eq. (2.33) using a sliding

window of length A determined by the order of the settling time measured in number of samples (Puig et al, 2003b):

— k=1

x(k ):ma){Aj (0)%(k=2)+ > A" (0)B,(0)u.(v )} (2.34)
v=k-A
k=1

ic(k):min{Aj(ﬂ)fc(k—/])+ z Af‘l‘“(a)Bo(a)u*(v)} (2.35)
v=k-A

subject to: 000 and X(k-A)0OX(k-A).

Of course, with this approximation parameter time-invariance is only guaranteed inside the sliding window. This is
why this approach is called almost time-invariant (Puig et al, 2002b).

Another trajectory-based approach is the proposed by (Kolev et al, 1993). This method suggests an algorithm that

provides an inner solution for the interval observation problem by solving the optimisation problems given by Eq.

(234) and Eq. (2.35) involved in the previous algorithm but subject to: @0V (@) and x, OV( XO ) where:

V(@) and V( X ,) denotes the set of vertices of the uncertain parameters and initial states sets, respectively. Thus,

this algorithm is also known as a vertices algorithm. According to Nickel (Nickel, 1985), the inner solution coincides
with the interval hull of the solution set for some systems: those unaffected by the wrapping effect that verify their
state function is isetonic with respect to all state variables (Cuguero et al, 2002). For such systems, set and

trajectory-based approaches will provide the same results.

2.3.2.5.5 Avoiding the wrapping effect using interval observation

According to (Cuguerd et al, 2002) and as mentioned in Section 2.3.2.5.2, the wrapping effect affects to those
interval models which are not isotonic since there are some elements of their model state-space matrix which are
negative. Thus, when modelling a non-isotonic interval system using the interval observation approach, an isotonic
interval observer (Eq. (2.26)) could be obtained designing the observer gain matrix L so that its state-space matrix A4,
becomes isotonic in spite of the non-isotonicity of system state-space matrix A.
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As a consequence of using an isotonic interval observer, a simple iterative scheme as Moore’s algorithm will work
providing the same results than Puig’s algorithm starting from the initial state (i.e, infinite window length). That

means, the optimisation problem given by Eq. (2.32) and Eq. (2.33) can be simplified since computations do not have

to be referred to the initial state but only to the previous iteration (i.e, window length A=7). Such equivalence

establishes that in case isotonicity condition is fulfilled, set and trajectory-based approaches to interval observation
produce the same results, as mentioned above.

Additionally, as stated in Section 2.3.2.5.2, considering either a trajectory or set-based approach to interval
observation, parameter time-invariance is or is not, respectively, preserved. In (Cugueré et al, 2001), the relation
between the observations produced preserving or not preserving the uncertain parameter time-invariance for the same

g o

\arying Where: /O means interval

interval observer is presented. In particular, it is established that 1O, iane

observation. This means that an interval observer modelling an uncertain time-invariant system using the parameter
time-varying approach can be very conservative. However, in case an isotonic discrete-time observer, a set-based
(therefore time-varying) interval observation, based on one-step recursion, and a trajectory based (therefore time-
invariant) interval observation, based on the recursion given by Eq. (2.32) and Eq. (2.33) or on a Kolev’s algorithm,
will provide the same system state interval estimation (Cuguer6 et al, 2002). Consequently, in this case, not
preserving the relation between parameters and states is not important at all.

This thesis will focus on the conditions the observer gain matrix L must fulfil so that the interval observer becomes
isotonic and the wrapping effect can be avoided when using a set-based approach (Moore’s algorithm) whose
computational cost is lower than the corresponding one to the trajectory-based approaches. Moreover, in this thesis,
the effect of those observer gains conditions on the interval observer fault detection performance will also be

analyzed.

2.3.2.6 Fault detection problems using interval observers

As mentioned in Section 2.3.2.3, the residual generator (Eq. (2.6)) obtained using an interval observer approach can
have appealing fault detection properties if the observer matrix L is designed properly. This fact is due to the
influence of L on the transfer function O(g”’), such as it is seen in Eq. (2.18), which sets the model fault detection and
fault isolation properties, according to (Gertler, 1998). Conversely, when an interval observer is used to detect and
isolate faults, it is known that there are some problems which can affect negatively its performance. Those problems
related to the computation at every time instant k of the system state estimation interval were already exposed in
Section 2.3.2.5: wrapping effect, temporal variance on uncertain parameters and Range evaluation of an interval
function, where the last two problems can be referred as a computational complexity problem. In that section, it was
said that designing the observer gain matrix L so that the interval observer becomes isotonic, those problems can be
obviated.
Moreover, interval observation, understood as a general approach which contains both prediction and simulation,
also suffers from other kind of problems whose nature affects directly to the quality of fault indication given by the
observer:
*  Modelling error and initial condition sensitivity. The simulation approach is very sensitive to the non-
modelled dynamics and the unknown initial conditions. As a result, it tends to diverge very easily, especially if
the monitored system contains integrators. Nevertheless, observers and predictors avoid this problem using the

system output measurement to correct their estimations.
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*  Following fault effect. This problem appears when the model can not persistently indicate a fault and it is due to
the use of the system output measurement to correct the model system output estimation. In this case, the model
system output estimation tends to follow the system output and consequently, the expressions (2.23) and (2.25) can
be satisfied in spite of the fault existence and as a result, the residual value evaluation stage can no longer
indicate the fault. This problem is only avoided when using the simulation approach. However, observers can
partially control this effect using a proper observer gain matrix L. Conversely, predictors are deeply affected
because they use the whole system output measurement and its fault indication can only last a number of time
instants equal to its order.

* Noise sensitivity. The prediction approach is very sensitive to noise because it substitutes the estimation of the
system state by its measurement. Conversely, the observation approach is less noise sensitive because its system
state estimation is partially corrected using the system output measurement and this correction is controlled by
the value of the observer gain matrix L. Finally, the simulation approach is the most insensitive of the three
approaches to the noise effect because no correction of the estimated state is introduced. To deal with noise,
approaches based on statistical tests can be used, as in the case of the classical fault detection methodologies
based on numbers instead of intervals. (Basseville, 1993). Another approach to deal with noise can be designing
properly the observer gain matrix such as suggested by the Kalman filter method.

One of the goals of this thesis is to analyze the influence of the observer gain matrix on the observer fault detection

performance in order to find out if the influence of these negative problems can be avoided designing properly this

matrix or if their influence on the observer fault detection and isolation performance can partially be filtered out.

Table 2.1 shows the effect of those problems on the different fault detection approaches without taking into account

the benefits of a proper observer gain matrix design.

Problem Simulation | Observation | Prediction
Wrapping Effect Yes Yes No
Computational Complexity High High Low
Model Error Sensitivity High Medium Low
Initial Condition Sensitivity High Medium Low
Following Faults No Yes Yes
Noise Sensitivity Low Medium High

Table 2.1 Interval-based fault detection problems and their influence on simulation, observation and prediction

In practice, concerning passive robustness fault detection, the interval observer method is the most used approach
since observers are less model error sensitive than simulators and less noise sensitive than predictors. Regarding the
fault following effect, observers show a rather better behaviour than predictors. Moreover, observers can avoid
partially this effect when using a proper observation gain. In relation to the wrapping effect and the complexity
associated with the computation of the system output interval estimation, last years the research of adaptive
thresholding algorithms which use interval models for fault detection and isolation has been a very active research
area (Puig et al, 2002a). In (Puig et al, 2003a), interval observation applied to robust fault detection was introduced
while an interval simulation algorithm based on a optimization approach was proposed in (Puig et al, 2003b) to
compute the system output interval estimation. Nevertheless, this algorithm uses a trajectory-based approach

resulting in a high computational complexity. A goal of this thesis is to determine those conditions that the observer
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gain matrix must fulfil so that the wrapping effect can be avoided and as a result, less computational cost (set-based)
approaches as the Moore’s algorithm could be used. Moreover, the effect of these conditions on the observer fault

detection performance will also be analyzed in order to see how it is affected.

2.4 Fault isolation using system models

According to (Venkatasubrarnanian et al., 2003a), model-based fault isolation has been approached over the last two
decades from two different scientific communities: Artificial Intelligence, also known as the DX approach
(Hamscher et al, 1992) (Reiter, 1987), and Automatic Control, also known as FDI approach (Blanke et al,
2003)(Gertler, 1998)(Patton et al, 2000). The DX approach relies upon a well-founded and logically based theory for
diagnosis of static systems. From a logical point of view, fault detection is performed through a consistency-check
and organized around the conflict concept (fault signal). In this approach, fault localization or isolation is
automatically derived from the conflict detection stage, which usually relies upon some kind of dependency-
recording. On the other hand, the FDI approach considers fault diagnosis as two separate tasks: fault detection and
fault isolation based on generating and evaluating a set of analytical redundancy relations obtained off-line from
elementary component models of the physical systems.

Fault detection has traditionally been more deeply investigated in the DI community using a broad set of techniques
(parity equations, observers and parameter estimation) and looking at the nuisance effects of noise, perturbations
and model uncertainty (robust fault detection) (Chen et al, 1999). Conversely, fault isolation has been more deeply
investigated in the DX community thanks to the logical diagnosis theory developed by Reiter (Reiter, 1987).
However, when this theory has been applied to dynamical systems, some problems have appeared which prevent to
use it directly. In fact, the theoretical formalization for fault diagnosis applied to dynamic systems is nowadays an
open issue (Kleer et al, 2003). These problems have motivated further research on analysing off-line the set of
dependencies which could become conflicts (fault signals) as in the FDI approach (Pulido et al, 2002), based on the

common framework provided by (Cordier et al, 2000).

According to (Koscielny et al., 2004), fault isolation is carried out on the basis of fault signals, ¢, generated by the

detection module. Thus, the result of fault isolation consists in showing the faults affecting to the system, what

requires knowing the relationship that exists between the fault signals, ¢, and the faults, f. A completely reliable and

unequivocal presentation of the existing faults or the definition of the diagnosed system state is not always possible
due to incomplete and uncertain knowledge of the system, limited distinguishability of faults or states, uncertainty of
fault signals, etc.

In general, the following kinds of fault signals are applied as input signals of the fault isolation module or the system
state recognition process (Koscielny et al., 2004):

* residuals generated using the system models,

*  binary or multi-value signals created as a result of residual value evaluation,

*  binary or multi-value signals (features) generated with the use of classical and heuristic fault detection methods,

e statistic parameters that describe random signal properties,

e process variables, i.e., measured or calculated values of physical quantities.

2.4.1 Models applied to fault isolation
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Models applied to fault isolation or system state recognition should therefore map the space of fault signals ¢ into

the discrete space of faults f(¢ = f)

¢ ——— ——» /;
Fault isolation
¢, ——P model —————» /,
¢y —P > f;
o2f
6 ——— —>

Fig. 2.5 Fault isolation model mapping fault signals and faults

In fault isolation, it is possible to point out the following kind of models (Koscielny et al., 2004):

* models that map the space of binary fault signals into the space of faults,

* models that map the space of multi-value fault signals into the space of faults,

* models that map the space of continuous fault signals into space of faults.

The above models can be defined using different techniques: training, knowledge about the hardware redundant
structure, modelling the influence of faults on residual values or the expert’s knowledge.

Training data for the state of complete efficiency and for all of the states with faults, or at least a definition of the
fault states are necessary in the case of applying the training procedure. However, such data are difficult and often
impossible to obtain in the case of the industrial process diagnostics.

Conversely, it is relatively easy to define the relationship that exists between fault signal values when using a
hardware redundant structure in the diagnosed system. Nevertheless, such a solution is very rarely applied due to its
high costs.

If equations for the generation of residuals that contain the effect of faults are known, then it is possible to define
residual value ranges as well as fault signal values that correspond to residuals for the state without faults and for the
states with faults. Thereby, sets of fault signal values are obtained for particular faults and for the state of complete
efficiency. These sets define specific regions in the space of fault signals. This method requires a mathematical
description of the system which must allow deriving the effect of faults on the residuals or fault signals.

Another method consists in using an expert’s knowledge. The expert should define fault signal values that
correspond to particular faults. As a result, fault signal space regions that correspond to states with single faults and

to the non-faulty state are arbitrarily defined.

2.4.1.1 Models mapping the space of binary fault signals into the space of faults

Binary fault signals ¢; €{0,1} are obtained as a result of a two-value evaluation of residuals or process variable

value features. They are also generated as a result of implementing tests which consist in controlling limits or
examining the heuristic relationships existing among process variables. In this model group, it is possible to single

out the following models:
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(a) Binary diagnostic matrix

The model most often applied is a relation defined on the Cartesian product of the sets of faults f ={f;:j=12,....,
ns}t and fault signals ¢ = {¢;: i =1,2,...n, }:

FSM O @x f (2.36)
where FSM is the binary diagnostic matrix (Gertler, 1998; Koscielny, 2001; Cordier et al., 2000) which is also

known in the FDI community as the theoretical fault signature matrix (Gertler, 1998). This matrix stores the binary

influence of a given fault f; (column of FSM) on a given fault signal ¢; ( row of FSM ). Thereby, if the element
FSM; of this matrix is equal to ‘/’, it means the fault f; causes the occurrence of the fault signal ¢;. Otherwise, when
the fault f; has no effect on the fault signal ¢;, the element FSM;; is equal to ‘0’. Such as the FSM matrix is defined,

its /" —column contains the binary effect of fault J; on the fault signal set ¢. In consequence, this column is known as

the theoretical fault signature of f; .
This binary diagnostic matrix can be defined on the grounds of the residual equations which take into account the

effect of faults.

(b) Diagnostic trees and graphs

The relationship that exists between faults and fault signals can be presented in the form of a binary tree that defines
the method of diagnostic inference (Ulerich et al., 1988). The tree vertices correspond to fault signals (tests). Out of
each of the vertices come out two branches corresponding to two values of the fault signal: the true and the false
result of the test. A fault signal having a value that is analysed as the first one is the root of the tree.

Such a tree can be defined using the theoretical fault signature matrix FSM (Blanke et al, 2003), or directly on the

basis of an expert’s knowledge.

Fig. 2.6 Example of a diagnostic tree

(¢) Rules and logic functions

According to (Koscielny et al., 2004), the relationship existing between faults and binary fault signals can be defined
in the form of the following types:
if (9 =0)and---and (¢, =1)---and (g,, = 1) then fault (2.37)

if (¢ =1) then fault f, or---or f, or---or f,

(2.38)
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Every column of the theoretical fault signature matrix FSM allow obtaining a rule of the type given by Eq. (2.37): this
kind of rules is known as parallel reasoning and in general, they are used in the FDI approaches. Conversely, the
rows of FSM allow defining rules of the type given by Eq. (2.38) which are known as series reasoning and usually
they are used in DX approaches.

The logic function is the simplest possible relationship that exists between fault signals and faults. Binary fault
signals act as input, and the result of this function shows the state of a particular fault, i.e., its existence or absence. In

a general case, such a function takes the following form:

z, =[@ 0--0g]0[¢0--0¢ |00/ g, 00, | 2.39)
where zj is a the system binary state which indicates the occurrence of fault f;: its value is ‘7’ when f; is isolated and

‘0’ when it is not.

2.4.1.2 Models mapping the space of multi-value fault signals into the space of faults

Multi-value fault signals appear as a result of residual value or signal feature quantisation. They can also result from

process variable limit control with the application of several limiting values. It is assumed that a different set of

values w; can correspond to each one of the fault signals ¢, Thereby, models necessary for fault isolation using

multi-value fault signals realise the following mapping (Koscielny et al., 2004):
q)leX-uxwix---xww:fD{O,l}W (2.40)
It is possible to single out the following models belonging to this group: fault information systems, diagnostic trees

and graphs, and if-then rules.

(a) Fault information system: FIS

This type of models derives from the information system models used in the set theory developed by (Pawlak, 1983)
in the early 1980s. The fault information system models (FIS) were first introduced by (Koscielny, 2001) and they

can be seen as an extension of binary theoretical fault signature matrix (FSM) where the values of its non-null

elements are not a binary ones but they belong to the set of values wj; for the fault signal ¢; and the fault f;. This fact

allows adding fault distinguishability when using these models in fault isolation.

According to (Koscielny, 2001), a fault information system FIS is defined as follows:
FIS =<f,¢,w¢,,u> (2.41)

where w, is the set of values that contains all the values of the set wy associated with every couple <@,f,> :

w, = w, (2.42)

Regarding u, this is a function defined as
“:@x f - w, (2.43)

that determines for every couple <@, f,> , the corresponding set of values related to ¢;:

K@, [)=w, (2.44)
Therefore, FIS is a table that defines fault signal pattern values for particular faults which has the following
characteristics regarding the binary FSM:

e anindividual set of fault signal values can exist for each one of the fault signals:

55



«  the set of the /”-fault signal values can be a multi-value one;

e any element of the FIS can contain either one fault signal value or a subset of values.

(b) Other models

Mapping the space of multi-value fault signals into the space of faults or system states can also be represented in the
form of a tree or if-then-type rules (Venkatasubrarnanian et al., 2003b). These diagnostic trees are a generalisation of
the binary ones presented previously where the number of branches coming out of each node that corresponds to a
fault signal equals the number of values that each one of the signals can have.
The relation existing between faults and fault signals values can be defined using expressions that normally have the
following form:
if (@Uw, )and---and (@ Uw,)---and (¢, Uw,, ) then fault 7, (2.45)
if (¢ Uw ) then fault f, or---or f, or---or f, (2.46)
Thereby, rules of the form given by Eq, (2.45) can be derived from the columns of the FIS table, while rules of the

form given by Eq. (2.46) correspond to the rows of this table.

2.4.1.3 Models mapping the space of continuous fault signals into the space of faults

Residuals obtained using system models generate continuous fault signals. In this case, models applied to fault

isolation consider the following mapping:

p00" = f o, 1}n/_ (2.47)
Thereby, considering the space of continuous fault signals, the effect of a fault £; on the fault signal set ¢ is defined

by a region which should be characteristic of each fault so that a fault can be isolated.
Some methods used to model the mapping defined by Eq. (2.47) are: classic methods of pattern recognition, neural

networks, and neural fuzzy networks.

(a) Pattern pictures

The construction of a model for fault isolation consists therefore in defining regions in the space of fault signals
which constitute pattern pictures of faults. These regions can be defined in different ways. Thus, it is possible to
single out geometrical, polynomial and statistical classifiers (Tadeusiewicz et al, 1991).

Pattern recognition can be obtained during the process of training. In order to achieve this, it is necessary to possess
training data for all of faults. However, this is extremely difficult, and for many industrial systems even impossible.
The data can be obtained by fault simulation with the use of the system analytical model that takes the effect of faults

into account.

(b) Neural networks

Pattern recognition for particular faults can be mapped by a neural network. In early papers (Hoskins et al, 1988;
Kramer et al, 1990; Sorsa et al, 1993), neural networks were applied to fault isolation. In this kind of model,

residuals generated on the grounds of system models act as network inputs.
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(¢) Fuzzy neural networks

Fuzzy neural networks applied to fault isolation realise the fuzzy evaluation of residual values as well as diagnostic
inference (Syfert et al, 2001). The structure of a fuzzy neural network applied to fault isolation differs from the
structures used for system modelling. It contains no layer in which defuzzyfication is carried out. The number of

network outputs equals the number of distinguished faults or system states.
2.4.2 Model-based fault isolation techniques

There are a high variety of isolation methods. (Isermann et al, 1996) distinguishes two basic groups: classification

methods and automatic concluding methods. According to (Ko$cielny et al, 2004b), the fault isolation methods can

be classified depending on how the knowledge about the relation between fault signals and faults is obtained. In line
with this last criterion, (Koscielny et al, 2004b) signals out the following methods:

*  Methods in which the diagnostic relation results from the structure of mathematical or qualitative models used
for detecting faults. This approach can be divided into those methods that do not model the fault effect and those
ones that do model it..

*  Methods that require defining the relation between fault signals and faults during the training phase.

*  Methods based on an expert’s knowledge.

*  Methods in which the relation between fault signals and faults results from a redundant hardware structure.

Concerning the relation between fault signals and faults, the following model-based fault isolation methods can be

highlighted:

*  Methods using different type of graphs (Thoma et at., 2000; Mosterman et al., 1995; Blanke et al, 2003).

*  Methods using the binary diagnostic matrix (Gertler, 1998).

*  Methods using the fault information system (Koscielny, 2001).

*  Methods using fault-attributed regions in the space of fault signals (Gertler, 1998; Patton and Chen, 1991).

e  Methods using neural networks (Hoskins et al, 1988; Kramer et al, 1990; Sorsa et al, 1993).

*  Methods using fuzzy neural networks (Syfert et al, 2001).

The problems of choosing an adequate set of detection algorithms in order to ensure, among other things, the

required distinguishability of faults will be dealt in the successive subsections.
2.4.2.1 General approaches to fault isolation

In this section, general fault isolation methods using the fault isolation models introduced in Section 2.4.1 will be

described.

2.4.2.1.1 Faultisolation based on the binary diagnostic matrix

As mentioned in Section 2.4.1.1, the binary diagnostic matrix F.SM presents the relation existing between the values

of binary fault signals ¢ and faults f. It can be designed using system equations and taking the effect of faults into

account or on the basis of an expert’s knowledge. Fault isolation inference carried out by means of the binary
diagnostic matrix can be realised with the use of classical (Gertler, 1998) or fuzzy logic (Koscielny et al, 2001). The
latter approach allows taking fault signal uncertainty into consideration.

The binary diagnostic matrix is used for fault isolation together with different fault detection methods under the

specification that the fault signals being the outputs of the fault detection algorithms have to be binary ones.
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Such as it was Section 2.4.1.1, fault isolation methods using the binary fault isolation matrix can isolate faults
comparing the value of the observed fault signals with the information stored in that matrix FSM. Thereby, there are
two main groups of fault isolation methods using a binary FSM matrix depending on how they carry out this

comparison: parallel inference approach and series inference approach.

(a) Rules of parallel diagnostic inference on the assumption about single faults

Parallel diagnostic inference based on the binary diagnostic matrix consists in formulating a fault isolation result

comparing the observed binary fault signals ¢ = {¢;: i = 1,2,...n, } where ¢; € {0,1} with the theoretical fault

signature associated with all considered fault hypotheses determined by the set f = {f;: j = 1,2,....n7} (KoScielny et
al, 1995) (Gertler, 1998). Thereby, as mentioned in Section 2.4.1.1, it must be taken into account that the theoretical
fault signature of the fault hypothesis f; is stored in the j”'—column of matrix FSM where each element of this matrix

FsSM; € {0,1}.
Assuming that only a single fault exists, fault isolation is carried out using the set of observed fault signals ¢.

Thereby, the inference procedure consists in comparing the binary fault signals ¢;(k) computed at every time instant

by the fault detection module with the theoretical binary fault signature related to every fault hypothesis f; of the set f
which is stored in the j”-column of the binary matrix FSM. If all fault signals are zero-valued, the fault isolation
module shows a lack of faults:

UgU@: ¢ =0= DGN =0 (2.48)
where DGN is the set of fault hypothesis f; which are consistent with the observed fault signals.
When some fault signal values equal one according to the residual evaluation carried out by the fault detection
module, the fault isolation algorithm gives as diagnosis result a subset of the fault hypothesis set f whose signatures

are consistent with the observations:
DGN ={f,0f: ¢ =FSM;.0g0 g (2.49)

In case, using a robust fault detection approach based on interval models and according to Section 2.3.2.3, the binary

value of every fault signal is computed as it follows:

0 » (kO[5 &)
@k) = (2.50)
1 y,(k)0[5,(0)]

Then, a general approach of carrying out the comparison between the observed fault signature ¢(k) and the
theoretical one related to every fault hypotheses is calculating the distance between both vectors: ¢ (k) and the j”-

column of matrix FSM for the hypothesis f, e.g. using the Hamming distance measurement. As a result of this

comparison, a distance measurement d;(k) is obtained for every fault hypothesis f;, being d(k) the vector of all the

computed distances at time instant k: d(k) :[dl(k),---,d].(k),u-,dn,.(k)J. If the Hamming distance approach is

applied, then

dj(k)=§(FSMU Ueck)) 2.51)

i=1
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where [ is the XOR logic operator. Then, the fault hypotheses with the shortest distance regarding the current

observed fault signature ¢ are considered as the fault isolation result:

DGN = {fj 0f :0j whered (k)= : Dr{l}in f}[dv(k)]} (2.52)

This approach gives a simple idea of the fault isolation problem but it has many drawbacks which can lead towards a
wrong diagnosis result: e.g., this algorithm always provides a diagnosis result, even when no fault hypothesis exactly
matches the current observed fault signature vector. Consequently, this can cause the diagnosis to jump from a fault
hypothesis to another fault hypothesis, every time instant when a new symptom appears. Mostly, this fault isolation
methods using the binary theoretical fault signature matrix and based on a parallel inference are used by the FDI
community which uses analytical models to monitor the system. In this community, this method is known as the fault
isolation column view approach.

In general, the single fault assumption is not always justified. In that case, the states of multiple faults should be
taken into account in the diagnostic inference. It is usually sufficient to widen the set of the analyzed states of the
system with the states with multiple faults. This can be done by increasing the number of columns of the theoretical
fault signature matrix FSM or equally, increasing the fault set f grouping single faults. Thereby, there will be a new
column for each of the new considered multiple fault states where each of these columns shows the theoretical effect

of the related multiple fault state on the residuals, such as it was done for the case of single fault assumption.

(b) Rules of series diagnostic inference on the assumption about single faults

Series diagnostic inference consists in analysing subsequent fault signal values ¢;(k) and formulating the diagnosis

step by step, each time narrowing the set f of possible faults (Koscielny et al, 1995) (Gertler, 1998). Unlike the

parallel diagnostic inference method, this approach is mostly applied by the DX community. The fault isolation

process begins after the first fault signal has been observed (¢;;(k)=0-2¢,; (k+1)=1 where subindex i/’ stands for
the first observed component of the fault signal vector). Thus, the appearance of this fault signal implies the
existence of a fault of the set f which ¢;; (k) is sensitive to. The subset of fault hypotheses satisfying this condition is
shown in the first given fault diagnosis:

DGN, ={fj : Dj,-f,.uf [1 = FSM,.”]} (2.53)

Thereby, this subset DGV, of f is the set of possible fault hypotheses which must be considered when the next fault
signal will be observed. In consequence, the performance of this method allows narrowing the set of possible fault

hypotheses every time a new fault signal occurs. In general, once the series diagnostic inference has been applied p-/

times and a new fault signal ¢;, (k) has been observed, the result of the new series diagnostic inference can be written
as it follows:
DGN, =DGN,_; n{f; 0,0, [1=FsM,,; ]} (2.54)

In general, the series diagnostic inference only considers those fault hypotheses which can explain all the observed

fault signals. If the theoretical fault signature related to a given fault hypothesis f; contains a null value (FSM;=0)

where a fault signal has been observed (¢;(k)=1), this fault hypothesis will be automatically rejected by this method.

Regarding the parallel diagnostic inference method presented previously, this series reasoning avoids the flickering
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of the fault diagnosis result mentioned in the parallel diagnostic approach since this series inference method is based
on an incremental reasoning and not on an absolute reasoning such as it is used by the column view approach.
Therefore, this method is more suitable for those dynamic systems with time delays. On the other hand, the drawback
of this incremental reasoning is that every inference process leads to a set of possible faults requiring the observation
of all affected fault signals in order to give the final fault isolation result but conversely, the time it requires is
unknown by this method because temporal or dynamics aspects of the fault signals are not considered.

As mentioned in the fault parallel diagnostic inference method, this method assumes the single fault hypothesis.
However, this method can deals with multiple faults if the number of columns of the F.SM is increased considering
an extra column (theoretical fault signature) for each considered multiple fault hypotheses, such as mentioned in the

column view approach.

2.4.2.1.2 Diagnosing based on the information system

The information system is a generalisation of the binary diagnostic matrix F.SM as mentioned in Section 2.4.1.2. 1t
allows applying a multi-value evaluation of residuals, carried out individually for each fault signal. Thereby, a
generalisation of the binary parallel and series inference methods can be distinguished in this approach. Moreover,
although this approach is defined in the single fault assumption, it can also deal with multiple fault hypotheses
increasing the set f of fault hypotheses considering the multiple fault case, such as it was described in the fault in the

binary diagnostic matrix method explained previously.

(a) Parallel diagnostic inference based on the fault information system

The general shape of a diagnosis based on the fault information system FIS presented in Section 2.4.1.2 can be

described by the following formula:
DGN={fj Df:(gD,u(@,fj),D@D@ (2.55)
The diagnosis shows those faults whose theoretical signatures, which are predetermined by the FIS function

(@, f;), are consistent with the obtained values of the observed fault signals ¢;(k). This consistency means that the

value of each fault signal belongs to the subset of pattern values (¢, f;) defined in the FIS.

Comparing this approach with the binary parallel inference method based on the binary fault diagnostic matrix
(Section 2.4.2.1.1), the fact of considering the fault information system instead of the binary matrix FSM adds more
fault distinguishability. However, it does not avoid the fault isolation flickering problem which affects the binary
approach since this is due to the absolute reasoning process of this method and the fact that the temporal aspects of

the fault signals are not taken into account.

(b) Series diagnostic inference based on the fault information system

Series diagnostic inference based on the fault system information is carried out similarly as in the case of the binary

diagnostic matrix presented in Section 2.4.2.7.1. Thus, fault isolation process begins after the first fault signal has

been observed (¢;;(k)=0-2¢,; (k+1)=1). Then, the first diagnosis contains all faults detected by this fault signal:

DGN; ={f_/ : Dj:_/'/Df [(/h D/J((/lpfj)]} (2.56)
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As mentioned in the binary case, the performance of this method allows narrowing the set of possible fault

hypotheses every time a new fault signal occurs. Then, after applying this inference p-/ times and observing a new

fault signal ¢;,(k), the result of the new series diagnostic inference can be written as it follows:

DGN,=DGN,_; n {f] : D,:—f_,uf [qu O u(@p,fj)J} (2.57)
The basic advantage of serial inference is the possibility of giving the current diagnosis at every moment of the
diagnosis. In order to obtain the final diagnosis, the interpretation of all diagnostic signals usually is not necessary. In
consequence, it is possible to obtain a fault diagnosis in a shorter period of time than in the case of parallel inference.
That is only possible when all the fault hypotheses are clearly distinguishable from the isolation point of view.
Otherwise, all fault signals must be observed in order to give the resultant fault diagnosis being unknown the
required time. However, the fact of considering a fault information system (FIS) instead of a binary diagnostic
matrix (FSM) allows adding more fault distinguishability to the fault isolation reasoning being this point the

advantage regarding the binary fault diagnostic matrix approach.

2.4.2.1.3 Diagnosing based on the residual space

In the case of fault detection carried out with the use of system models, a set of residuals is generated. The space

whose all elements are residuals is called residual space, or parity space (Patton and Chen, 1991). Thus, the residual

set needs to have distinctive properties regarding each considered particular fault so that the fault can be isolated.

Residual sets designed with this objective in mind are referred to as enhanced residuals. There are two fundamental

residual enhancement approaches:

»  Directional residuals. In order to ensure the possibility of isolating faults, the set of residuals is designed in such
a way that the occurrence of particular faults characterises the specific (unique for each fault) place of residuals
in the parity space. One can therefore assign to each of the faults an individually designed directional vector
(Gertler, 1998) (Patton and Chen, 1991).

*  Structured residuals. They are designed so that each residual responds to a different subset of faults and is
insensitive to the others. When a particular fault occurs, some of the residuals do respond and others do not.
Then, the pattern of the response set, the fault signature, must be characteristic of that fault so that it can be
isolated.

In general, those fault isolation methods using these enhanced residuals are based on the binary fault diagnostic

matrix approaches explained previously (Gertler, 1998) being affected by the same drawbacks.

2.4.2.1.4 Other methods

Many other fault isolation methods are applied beside the ones presented above. It is possible to distinguish:

»  Pattern recognition methods. The possibility of applying pattern recognition methods in diagnostics results
from the assumption that a certain class of system patterns being in a defined technical state are closer to each
other than system patterns in other states despite measurement errors, different random factors, etc.
(Himmelblau, 1978) (Pau, 1981).

*  Diagnostic graphs. Fault isolation in these methods consists in defining graph paths, which can explain an
incorrect operation of the system. Bond graphs form a method of physical system modelling (Thoma et at.,
2000) which describe transformation, storage and dissipation of energy within the system, and present these

processes in the form of a graph which connects process variables. Thereby, this graph form is built on the
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grounds of the physical equations that describe the system. Diagnostics with the application of bond graphs was
used by (Mosterman et al., 1995).

Diagnostic inference on the basis of inconsistency. This group of methods was initiated by (Reiter at el., 1987).
In this approach, diagnosis is formulated on the basis of the analysis of inconsistencies detected in the operation
of the system. Inconsistencies are detected as a result of the comparison of the system operation and the model
on the basis of measurement data. The detected inconsistencies are the basis for generating the set of conflicts
understood as system element sets that contain a faulty element.

Application of stochastic automatons to the diagnostics of dynamical systems (Lunze, 2000).

2.4.2.2 Analytical model-based fault isolation techniques

Such as it was mentioned in Section 2.3.2, in this thesis the monitored system is modelled using an analytical model

given by an interval observer (FDI approach). Traditionally, applying this analytical approach to fault isolation, the

relationship between fault signals ¢ and faults f'is inferred using the analytical model of the system. In general, this

relationship is obtained using the residual equations # (Eq. (2.2)) or the analytical redundant relations (4 RR’s) built on

the grounds of the considered system model. Although using accurate system models, the most of the FDI fault

isolation approaches just consider a binary interface between fault detection and fault isolation modules. These

approaches are based, in general, on the binary diagnostic matrix FSM explained in Section 2.4.2.2.1 whose

architecture can be described by Figure 2.7.

Residual 1 Decision
Logic
TTlu‘eshultl 1
. - .
Residual 2 Decvflun lel.t — = Fault
Logic Isolation
TTlu‘eshuld 2 L

Decision
Loaic

Residual 3

Threshold 3

Fig. 2.7 Binary fault detection and fault isolation interface

As a result of this poor interface, these methods are affected by certain drawbacks which can lead to a wrong fault

diagnosis result:

The presence of noise produces chattering using the binary evaluation of the residual.

All fault signals ¢;(k) affected by a certain fault f;(k) according to the structure of the matrix FSM should be

activated at the same time instant and they should be persistently observed during the whole fault isolation
process. Otherwise, a wrong fault diagnosis result could be given. Nonetheless, because fault signals have their
own dynamics, neither they necessarily have to be activated at the same time nor they are persistently observed.

Restricting the relation between faults and fault signals to a binary one causes a loss of useful information that
can add fault distinguishability and accurateness to the fault isolation algorithm preventing possible wrong fault

diagnosis results. The occurrence of a fault causes the apparition of a certain subset of fault signals such that
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each of them have characteristic dynamical properties for this fault which can improve the performance of the

fault isolation algorithm if they are taken into account.

In general, these drawbacks are caused because the dynamics and the discrete event nature of the fault signals are not

considered. Thereby, restricting the interface between fault detection and fault isolation to a binary one causes the

loss of crucial information which can enhance the whole fault diagnosis process. A significant fault signal properties

that should be considered are:

The sign of the fault signal.
The sensitivity of the fault signal regarding to each fault hypothesis.
The order of the fault signal occurrence.

The time required for a fault signal to be observed once the fault occurs.

Some of the most important non-binary fault isolation methods that try to tackle some of the drawbacks mentioned

previously are:

DMP — Diagnostic Model Processor (Petti et al., 1990). In this method, the binary fault indication test (2.50) is
replaced by a fuzzy one based on the Kramer function preventing the chattering of the test result. Besides,
instead of using a binary diagnostic matrix, F.SM, a matrix with the same structure is applied but each element is
related to the steady-state value of the fault residual sensitivity property (Gertler, 1998) associated with this
element. Regarding the fault isolation, this is still based on a kind of parallel diagnostic inference method, in
spite of its mentioned weaknesses: e.g., DMP-method is blind for unexpected fault signals and thus, a wrong
fault diagnosis can be obtained.

DMA — Deep Model Algorithm (Chang et al., 1994). This method improves some weaknesses of the DMP
method.

Finite State Automatons (Lunze, 1994). This is the first method to deal with time aspects. In this automaton,
every state represents a partial or complete diagnosis. During the reasoning process, the automaton switches
from an initial state to partial-diagnosis states and in the end to a final diagnosis. Every transition is connected to
a condition that depends on time and the upcoming fault signals. Thus, time windows can be defined for every
transition and the time dependent fault pattern can be codified. Although this method considers time aspects
related to the fault signals, it is still a pure binary method being affected by the already mentioned drawbacks of
the binary approaches.

DTS — Dynamic Table of States (Koscielny et al., 1995). Its major benefit is that it establishes a fault signal
detection time, which describes the maximum time between the occurrence of a certain fault and the observation
of a certain fault signal. Those times can be derived from the monitored system model or they are known from
the system expert knowledge. Regarding the used fault isolation algorithm, it is based on a parallel diagnostic
inference approach and therefore, it suffers from the drawbacks mentioned previously.

BM — Behavioural Modes (Nyberg, 1999). In the BM method, the monitored system is divided in several
components, each of them having different behavioural modes: fault-free mode and different faulty ones. In
contrast to many other methods, the BM method uses explicit models of every behavioural mode of the
components. Thus, this approach compares the real system to those system models. An advantage of this
approach is that it is possible to isolate multiple faults thanks to the 'negative’ reasoning. Additionally, any fault
type can be modelled and many different ones for every component. Besides, the whole dynamic behaviour of a
fault is modelled. On the other hand, the size of the fault has to be known in order to get model-based

estimations of the faulty system behaviour that exactly correspond to the behaviour of the real system. Thereby,
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this method requires a big effort in order to model all the behavioural modes of the system components and to

identify the fault is affecting the system.
Considering the drawbacks of all the approaches presented previously, the second part of this thesis is focused on the
interface between fault detection and fault isolation proposed by (Puig et al, 2005b). This method can be viewed as
an extension of the binary diagnostic matrix proposed by (Gertler, 1998) in the sense that considers one diagnostic
matrix FSM for each fault signal property: binary, sign, fault residual sensitivity, fault signal occurrence order and
fault signal occurrence time. Thereby, this method, once the fault signal appears, registers all these properties in
order to compare their values with the theoretical ones stored in several diagnostic matrices. Moreover, instead of
using the binary fault detection test given by Eq. (2.50), this method uses a fuzzy test based on the one proposed by
the DMP-method. As illustrated in (Puig et al, 2005b) and such as it will be described in Chapter 7, this interface has
an appealing performance when used in dynamical systems. Nonetheless, it is affected by some weaknesses which
are derived from some simplifications:
. Although every fault signal has its own dynamics and consequently, its properties evolve with the time, this

method just considers the steady-state value of them.
. This method does not consider interval models and as a result, it uses a fixed fault detection threshold instead of
an adaptive one.

*  This method just considers a simulation model of the monitored system.
Regarding the fault isolation interface, one of the goals of this thesis will be to tackle the previous weaknesses of this
interface using an interval observer model of the system. On the other hand, concerning the fault isolation algorithm,
this thesis deals with the fact that a fault affecting the monitored system will generate a unique temporal sequence of
fault signals (events) where every fault signal evolves according to its own dynamics. Thereby, observing this
sequence and registering its dynamical properties, the fault can be isolated. This fault isolation discrete-event
approach built on the grounds of the analytical model of the system can be considered neither as a pure quantitative

approach nor as a pure qualitative one but as a hybrid approach.

2.4.2.2.1 Faultisolation based on interval observers

The main idea of using an extension of the fault detection and fault isolation interface proposed by (Puig et al,

2005b) is that these two modules can not be considered separately when a fault diagnosis process is carried out. The

reason is that the result of the fault detection module, a temporal sequence of fault signals, has a crucial influence of
the whole fault isolation process since:

. When a permanent fault occurs, a fault signal might not be observed permanently as a result of the fault

following effect (Table 2.1) of the used system model.

e Certain expected fault signals can not be observed because the size of the fault is not big enough so that the
related fault detection test (Eq. (2.50)) can indicate the fault according to the corresponding adaptive threshold.

* In general, fault isolation requires the observation of a subset of fault signals in order to determine a result. In
consequence, the fact that every fault signal has its own dynamics and some of them can not be observed
persistently o simply, they are not observed, can lead to a wrong fault isolation result if the whole fault diagnosis
process does not take into account these circumstances.

In general, this influence between fault detection and fault isolation modules is obviated assuming an ideal fault

detection result. This approach can lead to inconsistent results which might determine wrong decisions. These

negative aspects can be prevented if dynamical properties of fault signals are taken into account by the fault isolation
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module such as it is the case of the mentioned extension of the approach proposed by (Puig et al, 2005b) which will
be considered in this thesis.

On the other hand, according to (Puig et al., 2005b), the value of a fault signal at a certain time instant is set by the
value of its associated residual (Eq. (2.2)) at this time instant, such as it will be illustrated in Section 7.2.2 of Chapter
7. Then, taking into account that the residual dynamics are deeply affected by the observer gain matrix L (Eq. (2.22)),
the time evolution of the fault signals will also be affected by this matrix. As a result, it can be said that the influence
of the fault detection stage on the result of the fault isolation module may depend on the observer gain L. In this
thesis, the influence of fault detection on the fault isolation result will be illustrated analyzing the effect of the
observer gain. Regarding fault detection, it was mentioned in Section 2.3.2.5 that an appealing design of the observer
gain matrix L might help to prevent those negative drawbacks (7able 2.1) (e.g. the following fault effect and the
wrapping effect) related to the analytical system model what may also help to improve the fault isolation
performance. Conversely, as derived from Eq. (2.22), the dynamical properties of fault signals will be affected by the
observer gain and as a result, it may also be possible to design L in order to add more fault distinguishability and to
enhance the performance of the fault isolation module.

As viewed in Section 2.3.2.5, the structure of the diagnostic matrix FSM determines the fault signals which must be
observed when a certain fault occurs and consequently, this aspect has also an important influence on the obtained
fault isolation result. Thereby, according to definition of this matrix, F.SM, its structure derives from the structure of
the residual generator (Eq. (2.2)) which depends on the observer gain matrix L as shown in Eq. (2.22). In consequence,
a suitable design of L might allow obtaining suitable structures of the matrices FSM which enhance the result of

fault isolation. In this thesis, these aspects will also be illustrated.

2.5 Thesis Objectives

In Section 2.3 and Section 2.4, the state of art of the current methods applied to fault detection and fault isolation was
described pointing out their weaknesses and drawbacks. As a result of this analysis, in this sections it is briefly
described how this thesis tackles this present problems establishing its main objectives. Thus, in Section 2.5, these
objectives are enumerated grouping them according to the fault diagnosis module which they belong to: fault
detection module, fault detection/isolation interface module and fault isolation module. Finally, in this section, the

proposed fault diagnosis is also briefly described.
2.5.1 Fault detection objectives

The main aim of this group is to analyze the influence of the observer gain matrix L on the robust fault detection
performance for the purpose of:
(a) Obtaining fault detection quality considering the following observer properties:
1. Observer gain influence on the residual sensitivity to a fault.
2. Observer gain influence on the minimum detectable fault function.
3. Observer gain influence on the fault detection persistency.
(b) Avoiding the problems associated with the computation of the system output estimation interval when a set-
based approach is used.
1. Wrapping effect.
2. Range evaluation of an interval function.

3. Temporal variance on uncertain parameters.
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(c) Illustrating the equivalence between interval observers and interval predictors since:
1. This equivalence can be used to tackle the problems mentioned in point (b)

2. Interval predictors are not affected by the problems related to the initial state estimation.
2.5.2 Fault 1solation objectives

The main objective of this group is to analyze the influence of the observation gain matrix L on the fault isolation

module focusing on:

(d) The influence of the fault detection module on the fault isolation result.

(e) The influence of the observer gain L on the structure of the fault residual generator.

(f) The event nature of the generated fault signals which allows modelling the fault isolation module using a timed
discrete event approach.

The purpose of this analysis is to illustrate that a proper design of matrix L can enhance the fault isolations

performance.
2.5.3 Fault detection/isolation interface objectives

As mentioned in Section 2.4.2.2, the objectives of this thesis regarding the interface between fault detection and fault

isolation are focused on tackling the weaknesses of the interface presented in (Puig et al, 2005b). Thereby, the

interface proposed in this thesis must consider:

*  Model uncertainty derived from the proposed passive robust fault detection approach based on interval
observers.

*  The dynamics related to fault signals and the time evolution of their properties.

*  Lack of fault indication because of the fault following effect.

e Fault indication delays once the fault has occurred.

* Influence of the observer gain matrix L on the fault detection and fault isolation modules.

As aresult, a new interface will be proposed which will be described in the following section.
2.5.4 Fault diagnosis proposed approach

This thesis proposes a new fault diagnosis approach that tries to take into account the summarized aspects mentioned
in Section 2.5.1, Section 2.5.2 and Section 2.5.3. Thereby, this approach applies the architecture presented in Figure
2.8 whose modules are described briefly in the following:

»  Fault detection module generates a fault signal measuring the system inputs and outputs taking into account
model uncertainty. This is carried out using a fault detection interval observer which allows generating an
adaptive threshold that evolves along time. Thus, this computed adaptive threshold allows evaluating robustly
the consistency between the available measurements and the set of considered residual relations. Regarding the
chattering effect produced by noise, it is tackled using a fuzzy evaluation.

e Fault detection/isolation interface module evaluates fault signals generated by the fault detection module in
order to register their dynamical properties which will allow the fault isolation module to isolate the fault among
the considered fault hypotheses. These properties are summarized using several indicators which take into
account not only the activation value of the fault signal but also its fault sensitivity/sign and its activation

time/order.
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*  Fault isolation module reasons with the information used to build all the indicators provided by the improved
fault detection and isolation interface using a discrete-event fault diagnosis model that can be automatically built
from the analytical redundancy relations obtained from the monitored system model equations and the system

available measurements.
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Fig. 2.8 Block diagram of the fault diagnosis system
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CHAPTER 3
Observer gain effect in linear interval

observer-based fault detection

3.1 Introduction

Model-based fault detection of dynamic processes relies on the use of models to check the consistency of observed
behaviors. This consistency check is based on computing the difference between the predicted value from the model
and the real value measured by the sensors. Then, this difference, known as residual, will be compared with a
threshold value (zero in the ideal case). When the residual is bigger than the threshold, it is determined that there is a
fault in the system. Otherwise, it is considered that the system is working properly. However, when building a model
of a dynamic process to monitor its behavior, there is always a mismatch between the modeled and the real behavior.
This is because some effects are neglected in the model, some non-linearities are linearised in order to simplify the
model, some parameters have tolerance when they are compared between several units of the same component, some
errors in parameters or in the structure of the model are introduced in the model estimation process, etc. These
modeling errors introduce uncertainty in the model and interfere with the fault detection. A fault detection algorithm
able to handle uncertainty is called robust. Thus, in case of model parameter uncertainty, a model whose parameter
values are bounded by intervals, known as an interval model, is usually considered. The robustness of a fault
detection system means that it must be only sensitive to faults, even in the presence of model-reality differences
(Chen et al, 1999).

Robustness can be achieved at residual generation (active) or evaluation phase (passive). Most of the passive robust
residual evaluation methods are based on an adaptive threshold changing in time according to the plant input signal
and taking into account model uncertainty either in the time domain (Horak, 1988) or in the frequency domain
(Frank et al, 1994) (Hamelin et al, 2000). Recently, several researchers have used interval models in fault detection
(Fagarasan et al, 2004) (Ploix et al, 2006) (Sainz et al, 2002). Conversely, interval observers applied to robust fault
detection were already introduced in (Puig et al, 2003b) for linear interval systems using an optimization based
algorithm. Whereas in (Puig et al, 2006a), the extension to non-linear interval systems was presented. Furthermore,
in (Johansson et al, 2006), interval observation is solved using an inequality involving the convolution operator.

In observer-based fault detection methods, the observer gain plays an important role because it determines the time
evolution of the residual sensitivity to a fault and therefore the minimum detectable fault at any time instant (Chen at
al, 1999). In (Gertler, 1998), for example, the importance of residual sensitivity to a fault is noticed. Based on this
concept, the notion of “triggering limit”, which corresponds with the minimum detectable fault because it is a fault
that brings a residual to its threshold, is introduced. Therefore, a fault which is slightly smaller than the triggering
limit is never detected (“non-detectable fault”), while a slightly bigger fault is always detected (“detectable fault”).
In (Gertler, 1998), the residual sensitivity to a fault is analyzed in steady state, but according to (Gertler, 1988), it is
not certain that the maximum fault effect (sensitivity) on the residual occurs in steady state. In fact, this is not, in
general, the case.
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The aim of this chapter is to generalize the residual fault sensitivity presented in (Gertler, 1988) to the case of
interval observers, showing it is a time function and determines the minimum detectable fault at any time instant.
This will allow establishing three types of faults according to their detectability time evolution: permanently
(strongly) detected, non-permanently (weakly) detected or just non-detected. As a consequence, the problem of how
fault detectability evolves with time is opened. In addition, another problem appears when faults are not permanently
detected. Thus, the lack of fault indication persistency can confuse the fault isolation module in case that the residual
would have to be evaluated jointly with a set of residuals, being necessary that a subset of them are active at the
same time instant to isolate a given fault. This problem has been already noticed by (Combeastel et al, 2003) who
suggests registering the maximum residual value once reached. However, this strategy introduces an additional
problem, since then, once the fault is detected, its indication is still active in spite the fault has already vanished.
Finally, the effect of the observer gain on the time evolution of the residual sensitivity to a fault and the minimum
detectable fault at any time instant will be analyzed.

Regarding the structure of the Chapter 3 remainder, fault detection concepts using interval observers are introduced
in Section 3.2. Then, the time evolution of the fault residual sensitivity depending on the observer gain is analyzed
(Section 3.3). In Section 3.4, using the sensitivity studies, the time evolution of the minimum detectable fault and its
observer gain dependence is presented using interval observer-based methods. Finally (Section 3.5), an example

based on a mineral grinding-classification process will be used to illustrate the derived.

3.2 Fault detection using linear interval observers

3.2.1 Interval observer expression

Considering that the system to be monitored can be described by a MIMO linear uncertain dynamic model in

discrete-time, its state-space form considering faults is”

X(k+1)= A(0)x(k)+ B(0 )uy(k)+ F,(0)f,(k)
(k) =C(0)x(k)+D(0)uy(k )+ F,(0)f, (k)

where p()00", uy(k)’00™, x(k)OO™ are the system output, input and the state-space vectors respectively;

G.1)

A(0)00™™ B(9)00™™, C(6)00™™ and D(0)O0™ ™ are the state, the input, the output and the direct
transmission matrices respectively; 6 0" is the system parameter vector; f,(k)000" and f,(k)00™ represent faults
in the system output sensors and actuators respectively being F,(0)00™ "™ and F,(0)00"™ ™ their associated
matrices.

The system in Eq. (3.1) can be expressed in its input-output form using the shift operator g™ and assuming zero initial

conditions:

y(k) = p,()+G (g7, 0) f,()+ G (q.0) f, (k) (3.2)

where

yo(k) =M (g™ ,0)u, (k) 33)

2 1tis assumed that the system is in open-loop. The study of the effect of the loop is let a further research. Some preliminary results of effect of
loop in the fault sensitivity analysis can be found in (Jaques et al., 2003). Concerning the effect caused by disturbances and noises, it is not
considered in the scope of this PhD, in spite of its importance, being left as a further work.

it should be noticed that uy(k) is the real system input and does not have to be equal to the measured system input since the input sensor might be
faulty or affected by noise.
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corresponds to the system output without faults. M(g~',0) is the transfer function matrix regarding the system input
vector which can be expressed in terms of the system matrices as:
M(q™,0)=C(0)(ql - A(0))" B(0)+ D(0) (34)
Gy, and Gy, are the system transfer functions regarding the system faults (f;, f, ) and can be expressed as follows:
G.(q7.0)=C(O)ql - A®D))"F,(0) (3.5)
G,(q".0)=F,0) (3.6)
In line with Section 2.3.2.5, the system described by Eq. (3.1) is monitored using a linear observer with Luenberger

structure based on an interval model. This type of model considers that model parameters 6 are bounded by an

interval set @ = {0 minkd

6,<6<86,,i= 1,--.,n¢9} . This set represents the uncertainty about the exact knowledge of real

system parameters @. The interval for uncertain parameters can be inferred from real data using set-membership

parameter estimation algorithms (Milanese et al., 1996) (Ploix et al., 1999). The resulting interval observer assuming
the observability of the system (Eq. (3.1)) for all # 1@ can be written as:

%(k +1,0) = (A(0) - LC(0))(k) + (B(0) — LD(©)u(k) + Ly(k) = A,(0)3(k) + B, (0)u(k) + Ly(k) .
P(k,0) = C(0)x(k) + D(O)u(k) (3.7)

where u(k) is the measured system input vector, x(k,0) is the estimated system space-state vector and j(k,0) is the

estimated system output vector for a given value of @ @ . Noticing that the relation between the measured system,
u(k), and the real system input, uy(k), includes the effect of faults in the input sensors and as result, the expression
of u(k) can be written as:

u(k) = u,(k)+F,(0)f, (k) (3.8)

where f, (k)OO™ is the input sensor fault while F,(@)00™™™ is its associated matrix.

The observer gain matrix LOO™ is designed to stabilise the matrix A,(0) and to guarantee a desired

performance regarding fault detection for all # 0@ (Chilali et al., 1996). Thereby, as mentioned in Section 2.3.2.2,
three cases are embedded in the observer structure according to the chosen observation gain value L. In the first case,
the observer eigenvalues are equal to the ones of the monitored systems since L=0 (simulation approach). Then, the
case in which all the observer eigenvalues are placed at the origin using L=L, (prediction approach) and finally, the
case in which the observer eigenvalues range between the ones associated with the simulation and prediction

approaches using L=L, (observation approach).

The effect of the uncertain parameters 6 on the observer temporal response yp(k,8) will be bounded using an interval

satisfying:
yi(k,0)0[ 7, (k).5, (k) ] (39)
in a non-faulty case. Such interval is computed independently for each output (neglecting couplings among outputs):
3;(k) = min(5,(k.0)) and j;(k) = max(5, (k.0)) (3.10).

subject to the observer equations given by (3.7). Such interval can be computed using the algorithm based on
numerical optimisation presented in (Puig and et al., 2003a).
For simplicity, in the following the uncertain parameter dependency will only be made explicit in the system

matrices/transfer functions but not in the signals.
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Alternatively, the observer given by Eq. (3.7) can be expressed in input-output form using the g-transform and

considering zero initial conditions as follows:

W(k)=G(q".0)u(k)+H(q".0)y(k)

. Z i (3.11)
=G(q ,0)uy(k)+H(q ,0)y(k)+G,(q .0)f,(k)

where
G(q™'.0)=C(0)(q1-A,(0))" B,(0)+D(0) (3.12)
H(q".0)=C(0)(ql-A4,(0))"L (3.13)
Gu(q"'.0)=G(q"0)F,(0) (3.14)

3.2.2 Fault detection using interval observers

Fault detection is based on generating a residual comparing the measurements of physical variables y(k) of the
process with their estimation p(k) provided by the associated system model:

r(k)=y(k)=y(k) (3.15)
where r(k)00O"™ is the residual set. According to (Gertler, 1998), a generic form of a residual generator can be

obtained using Eq. (3.11) and written as:
r(k,0)=V(q",0)u(k)+0(q",0) (k) (3.16)

where: ¥(q”,0) and O(q”,0) are transfer functions. This residual expression is known as its computational form. The
transfer functions V(g”,0) and O(q™",0) can be obtained using Eq. (3.15) and Eq. (3.11). Then, it results:

Vig".0)=-G(q",0) (.17)
0(q",0)=1-H(q',0) (3.18)
As aresult, using Eq. (3.17) and Eq. (3.18), the computational form of the residual could be written as follows:
r(k,0)==G(g .Ou(k)+(I-H(g™,0)) y(k) (3.19)
In addition, the residual given by Eq. (3.19) can be also expressed in terms of the effects caused by faults using its

internal or unknown-input-effect form (Gertler, 1998). This form, obtained combining Eq. (3.15), Eq. (3.11) and Eq.

(3.2), is expressed as

r(k,0) = 1,(k,0)+(1-H(q™.0))(G (" .0 £,() +G . (¢7.0) £,(0)) -G, (¢ .0V £, (h) (3.20)
where
1 (k.0)==G(q™,0)u,(k)+(I - H(g".0)) »,(k) (3.21)
would be the expression of the non-faulty residual. Comparing Eq. (3.21) and Eq. (3.16), it should be noticed both ry(k)
and r(k) are affected in the same way by the observation gain L.
When considering model uncertainty located in parameters, the residual generated by Eq. (3.15) will not be zero even

in a non-faulty scenario. Thus, it must be considered that the propagation of the parameter uncertainty to the residual

will allow computing a residual interval at every time instant:

[r(0)] =[r(k),7 (k)] (3.22)
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where for the residual r;(k) related to the system output y;(k)? (neglecting couplings among outputs):

7 ; (k) =min(7;(k)) and 7,(k) = max(r,(k)) (3.23)
000 006

Notice that according to Eq. (3.9) and Eq. (3.15), r,(k) <0 and Z(k) > () when the monitored system is not affected
by any fault..
Then, the fault detection test is based on propagating the parameter uncertainty to the residual (Puig et al, 2002a) and
checking if

00[r(0)] = y(k)=[3(0)] or y(k) O[3(K)] (3:24)

holds or not. In case it does not hold a fault can be indicated.
3.2.3 Effect of the observer gain on the residual interval

Before analyzing the effect of the different types of faults on the residual, it is important to determine the influence
of the observer gain L on the residual interval (Eq. (3.22)) since, such as it is derived from Eq. (3.24), it has a decisive
influence on the observer fault detection performance. In order to illustrate this influence, the interval observer state-

space form is expressed as

Rk +1) = A@)%() +[BO) L] u(k)
r(k) (3.25)
Y(k) = C(0)x(k) + D(@)u(k)
using Eq. (3.7) and Eq.(3.15).
Then, assuming zero initial conditions, the input-output form of the observer using the g-transform is
y(k)= (C(B )(gI - Aco ))" B(0)+D(0 )) u(k)+C(0)(ql — A0 ))" Lr(k) (3.26)
Thus, defining y(k),—, as the value of p(k) when L=0 (simulation value) and H,(q™’,0) as
H,(q7,0)=C(0)(ql-4(0))" L 3.27)

the interval observer input-output form can be written as:

V)= 3(k)yog + H, (47 0)r(k) (3.28)
Conversely, taking into account that the general expression of the residual is given by Eq. (3.15) and using the

observer output estimation given by Eq. (3.28), the residual can be re-written as

r(k) = y(k)=3(k)= y(k)=3(k)p-g —H, (4" ,0)r(k) (3.29)

Then, taking into account that the transfer function H,(q™',0)(Eq. (3.27)) is a square matrix and considering that

(I +H,.( q_l ,0 )) has an inverse matrix, this equation can be expressed as

PR oo\
r(k)=(I+H,(q"0)) r(k)L=0=(I+C(0)(qI—A(0)) ’L) F(k)yeg (3.30)
for every value of 0@ and where r(k,0),_p =y(k)—y(k),—, is the residual generated by the simulation

approach (Eq. (3.15)). This equation shows that the residual generated by the observer approach for a certain value of

6 1] O depends on the observer gain L.

* As indicated for the system output estimation interval, the residual interval can be calculated using the algorithm presented in (Puig et al.,
2003b).
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In the remainder of this chapter it will be assumed that all elements of the matrices A and L are positive5 (A>0 and

L>0) . Thus, taking into account this assumption and the observer model definition, it follows: 0 < LC < A°. Note

that the extreme case LC=A is just reached by the predictor approach (L=L,) when C has an inverse matrix’.
Nonetheless, the applied observer gain is assumed to satisfy the following relation: 0 <L, <L, understood also
element by element. Under these conditions, the next relation can be established for whatever time instant £>0

|:l”,. (k)L=LI,:| 0 [l”[ (k)L=L,,:| 0 [l”[ (k)L=0:| = 1"“’ny @31

See the proof in the Appendix A.

Concerning the steady-state values of the residuals, relation given by Eq. (3.31) is satisfied when

1mdl+Hgg”ﬂﬂWW1+QﬂAl—mw»*4F1 (3.32)
qﬂ

as it will be demonstrated in Appendix B. It must be noticed that this relation (Eq. (3.32)) does not need A4 and L to be
positive matrices, although this case is out of the scope of this chapter.
Under the same conditions in which Eq. (3.31) is satisfied and taking into account Eq. (3.16) and Eq. (3.21), it must be

noticed that this inclusion relation is also satisfied by ry(k).

[”o‘ (k)L:L,,] O [”o, (k)L:L,,] 0 [ro, (k)HJ i=1---,ny (3.33)

Conversely, according to the residual definition given by Eq. (3.15), the residual interval could be written as

[r(®0)] = y(k) = [ 7(k)] (3.34)
and consequently, considering the influence of the observer gain L on the residual interval shown by Eq. (3.31), the

next relation regarding the influence of the observer gain on the system output estimation interval can be set

9 (0)ey, [O[7 (), [ O[5 ()] 20y (335)
3.3 Fault sensitivity

3.3.1 Fault sensitivity concept

The sensitivity of the residual (Gertler, 1998) to a fault is given by
S, = (3.36)

which is a transfer function that describes the effect on the residual, r, of a given fault £. In this section, the effect of
the observation gain matrix L on the fault residual sensitivity time evolution is analyzed considering output sensor
faults f,, input sensor faults f, and actuator faults f,. The expressions of these fault residual sensitivity functions are
obtained using Eq. (3.36) and the residual internal form given by Eq. (3.20). Thus, it will be shown these functions

have a time evolution which is determined by the observation gain matrix L.

> The case where this condition is not fulfilled has been analysed in Chapter 4 which is based on (Meseguer et al., 2008a) adapting the results
presented in this paper. The mentioned condition 4 >0 is a typical assumption when dealing with interval observers since in this case the wrapping

effect is avoided (Puig et al, 2002a) and the interval related to the system output estimation trajectories are generated by the vertices of the interval
parameters. See for example (Gouzé et al, 2000) (Rapaport et al, 2003).

6 0< LC £ A should be understood element by element, that is: 0 < (LC),-j Saj, where i, j=1,...,nx .
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3.3.2 Sensitivity of the residual to an output sensor fault

Analyzing the residual internal form given by Eq. (3.20), and considering the fault residual sensitivity definition
given by Eq. (3.36), the sensitivity for the case of an output sensor fault f, is given by a matrix S of dimension

ny X ny whose expression is:
$,(a7.0)=(1-H(g".0)G, (") =(1-CO)(aI -(40)-Lc®)) " L) F, @) =

-1 -1
Sfy” (q b 0) e S/jll.ny (q b 0) (337)

Sy, (@70) Sy (q7.0)
where the element of this matrix located at the i"-row and in the j”-column, noted as Sy, » describes the sensitivity
of the residual r;(k) related to the output system y;(k) regarding the fault f, (k) affecting the sensor related to the

output system y;(k).
This expression shows the residual sensitivity to an output sensor fault is a time function and how its dynamics and
steady-state gain is influenced by the observer gain. Thus, in order to point out this influence, this residual sensitivity

. . .. . 8
can be re-written using the matrix inversion lemma’:

S,(a7.0)=(1-H(g".0))G,(q".0)=(I+H (4".0)) F,@0)=

T (3.38)
- ( 1+C(0)(gl - A®)) L) F,(0)
Then, its value at time instant k=0, i.e. when an abrupt fault (modelled as a unit-step function) occurs, is
s,(0)=1lim S, (¢7',0)=F,(0) (3.39)
ji e

independently of the observer gain matrix L. When F, (é) is a diagonal matrix (i.e. additive output sensor fault

case),

N

Sh, o ... s . (0) F 0
s,(0) = : : = (3.40)
Sfym, (0) o Sfy”m, (0) O F

Yoy
where F, (i=1,...,ny) are the diagonal elements of matrix F, (5) . It must be taken into account that the expression

given by Eq. (3.40) has a meaningful importance regarding fault isolation since it illustrates that when an output

sensor fault f| (k) occurs at a certain time instant, the only residual r;(k) that reacts to this faulty situation at this

time instant is the one related to the faulty sensor while the other fault signals require more time in order to be
observed. This property allows rejecting the rest of possible output sensor fault hypothesis from the fault occurrence
time instant.

On the other hand, the steady-state value of Eq. (3.38) for an abrupt fault modelled as a unit-step function (Gertler,
1998) is given by

7 When C has an inverse matrix, 0 < LC < 4 and L,C=A force the observer gain to satisfy the relation 0 <L, <L P understood element by
element.

DC)' =4"'-A'B(D,'+C._A'B)"'C A", being

xTx T x

A =I.B =C(0).D,=(gI-A®)" and C, = L.

8 P .
Matrix inversion lemma: (4, + B
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@) =lmS, .0y =tim{(1+11,667.0)) ' F, )]

=(1+c@O)I-40)"L)" F,0)

(3.41)

In general, Eq. (3.38) demonstrates clearly that the time evolution of residual sensitivity to an output sensor fault is
affected by the observer gain matrix L and that this residual property can be tuned adjusting L in order to enhance the
fault detection and isolation results.

When the simulation approach is considered (L=0), Eq (3.41) is equal to Eq. (3.39) .
5, (), = F,(0) (3.42)
That means the simulator capability to detect a fault is a constant characteristic along the time. Moreover, it can be

y

noticed that in the case showed in Eq. (3.40), the sensitivity value of the residual 7;(k) to a fault f, is zero-valued for

all j: j=i and is not null when the fault is affecting the output sensor related to y;(k).
On the other hand, comparing Eq. (3.41) and Eq. (3.42) and taking into account that the considered interval observer
satisfies the Eq. (3.32), the following relation is derived regarding the diagonal elements of S (¢”",0) for every
value of 6O
‘sfy” (oo)‘ < ‘sfy” (0)‘ i=1-,ny (3.43)

while the other elements satisfy

‘sﬁw (oo)‘ > ‘sﬁ (0)‘ i=leny j=leeny i#) (3.44)
since their initial value is null (Eq.(3.40)). As mentioned, stability is assumed in any case.
That means the observer and predictor capability to detect a fault f, (k) affecting the sensor output y;(k) using the
residual 7;(k)(Eq. (3.24)) is worsened regarding the initial time instant when the fault occurs while the simulator keeps
constant this capability. On the other hand, except in the simulation case, the capability to detect a fault f, (k) (j=i)
using the residual r;(k) is improved along the time.
Evaluating the influence of L on diagonal elements of Eq. (3.41) and taking into account that the considered interval

observer satisfies the Eq. (3.32), it can be noticed that the steady-state value of the observer fault residual sensitivity is

bigger than the corresponding to the predictor resulting

‘s‘,},}_, (0,0),5, | < sy, @000, | <sy,, @0, 12100y (3.45)
for every value of 8 1@ . Otherwise, for the non-diagonal elements (j=i) the following relation holds

=

S/y,_/(°°50)L=L" sfvl_J(oo,a)L:o =0 i=l-ny j=Leny iZj (3.46)

3.3.3 Sensitivity of the residual to an input sensor fault

In this case, considering the residual internal form given by Eq. (3.20), and the fault residual sensitivity definition

given by Eq. (3.36), the residual sensitivity to an input sensor fault f, is given by a matrix Sy, of dimension ny Xnu

whose expression is:
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$,(a™,0)==G(g" O)F, (0) = ~(C(0) (a1 ~(40) - LC(®))" (B©) - LD®)) + D(0) | F,(0) =

-1 -1
S, (g 50) .. Sy (q.0) (3.47)

S‘/um,_l (qil ,0) - Sfumw (qil ,0)

where each row of this matrix is related to one component of the residual vector r= {r(k):i = 1,2,....ny } (Eq. 3.15)
while each column is related to one component of the input sensor fault vector f, = { foiJ=12..nu }. This

expression shows the residual sensitivity to an input sensor fault is also a time function whose dynamics and steady-
state gain are influenced by the observer gain. Then, its value at time instant k=0, i.e. when an abrupt fault (modelled

as a unit-step function) occurs, is

$,(0)=limS, (¢7',0) =-DF,(0) (3.48)

independently of the observer gain matrix L°. When D=0, Eq. (3.48) means that none input fault can be detected at its

occurrence time instant.
On the other hand, the steady-state value for an abrupt fault modelled as a unit-step function (Gertler, 1998) is given
by

$u(®) =limS, (¢7,0)=—~(C(0)I - 4,(0))" B,(0)+ D)F,(0) (3.49)

Eq. (3.49) shows the steady-state value of this sensitivity depends on the observation gain matrix L. Besides,

comparing this equation with Eq. (3.48), assuming D~0,the next relation between them is derived for every value of
006 :

‘s},u,_/ (oo)‘ > ‘sﬁ{w (0)‘ i=leny j=1,nu (3.50)

Unlike the output fault case, an input sensor fault is likelier to be detected after its occurrence time instant than when

the fault just appears. When the simulation approach is considered (L=0), Eq. (3.49) can be re-written as follows:
$,(),0 ==(C(O) (1-40))" B©O)+ D)) F,(0) e
Then, considering the predictor case (L=L,), the Eq. (3.49) becomes:
-1
5 ()10, = —(Cw)(l -(40)-L,c®)) (B©O)-L,D©))+ D(0>)Fu © (.52)

According to the influence of matrix L on Eq. (3.49) and neglecting the value of matrix D, the following relation is

fulfilled both by S,:

<

S‘S‘/i,u(ooao)llzo le,"',”y jzla"'anu (3.53)

|51, .00, | <5, (.0,
for every value of # @ and assuming stability.
As demonstrated in Appendix C, matrix S, satisfies relation (3.53) because the considered observer fulfils the

relations: 0<LC<A and 0<L,<L, .

9 . L Lo . . e . . .
Mostly, the direct transmission matrix D is considered zero-valued and thus, the residual sensitivity to an input sensor fault is null at its
occurrence time instant according to Eq. (3.48).
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Thus, in general, the absolute value of 5, associated with the simulation approach is bigger than the corresponding
iy

one to the observation approach while this is also bigger than the corresponding to the prediction approach.
3.3.4 Sensitivity of the residual to an actuator fault

In this case, considering the residual internal form given by Eq. (3.20), and the fault residual sensitivity definition

given by Eq. (3.36), the residual sensitivity to an actuator fault f; is given by a matrix Sz, of dimension nyXnu whose
expression is:

S.(¢".0)=(1-H(qg".0)G,(q".0) =

=(1-c@) (a1 -(40) - Lc©®)) ' L) c@)(91 - 4@)) " F.(0) = (3.54)

Sﬁ’l.l (q_l ’ 0) e Sf"l,m, (q_l b 0)

S,/a,,m (qil ,0) - Sﬁl,,)“w (qilaa)
where each row of this matrix is related to one component of the residual vector r= {ri(k):i = 1,2,....ny } (Eq. (3.15))
while each column is related to one component of the actuator fault vector f, = { £, J=12...nu }.This expression

shows the residual sensitivity to an actuator fault is also a time function whose dynamics and steady-state gain are
influenced by the observer gain. Furthermore, such as it was done for the output sensor fault residual sensitivity case,
in order to point out this influence, Eq. (3.54) is re-written using the matrix inversion lemma:
- - oA _ -1 a5

S.(¢7".0)=(I-H(q".0)G,(¢".0)=(I+H.(47.0) G,(¢".0)=
, (3.55)
- 1 ~ ~ \-1 ~

= (1+ C0)(qI - A0))” L) C()(qI - 40)) F,(0)
Analyzing this equation and the associated with the output sensor fault residual sensitivity given by Eq. (3.38), it is
seen the effect of the observer gain matrix L on both residual sensitivity equations is the same. Then, its value at time

instant k=0, i.e. when an abrupt fault (modelled as a unit-step function) occurs, is

s, (0) = ;ifg S.(q".0)=0 (3.56)

independently of the observer gain matrix L. The residual sensitivity matrix at this time instant is null, such as it is
for the input sensor fault assuming the direct transmission matrix D is zero-valued. That means none actuator fault
can be detected at this time instant. According to the effect of the observer gain matrix on this residual sensitivity, it
might be expected that the residual sensitivity at fault time occurrence were not zero-valued. But, on the other hand,
it should be taken into account that the effect of an actuator fault requires a period of time fixed by the system
dynamics till it affects to the system output.
The steady-state value for an abrupt fault modelled as a unit-step function (Gertler, 1998) is given by

$.(@) =lim S, (¢™.0) =lim| (I +H,(".0)) 6,7, |

) 4 ~ o ~ (3.57)

= (I+C(0)(I—A(0)) 1 L) C(@)(1-4@0)) F,@)
shows the steady-state value of this sensitivity is influenced by the observation gain matrix L such as it was
mentioned for the output sensor fault case (Section 3.3.2). Comparing this equation with Eq. (3.56), the following

relation between them is obtained for every value of 4 1@ :

[ss0, @) 25 O iz Loy j =L (3.58)
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Unlike the output fault case, an actuator fault is likelier to be detected after its occurrence time instant than when the
fault just appears, such as it is for the input sensor fault case. When the simulation approach is considered (L=0), Eq.

(3.57) can be re-written as follows:
$(®),, =CO)(I-4®) " F,(0) (3.59)
Then, considering the predictor case (L=L,), the Eq. (3.57) becomes:
54,0y, =(1+CO(1-40)) ' L,) €O)(1-40))" F.() (.60
According to the influence of matrix L on Eq. (3.57), the following relation is fulfilled by S

<

<

S (°°)L=L,, s (), St (), i=L-,ny j=1---,nu (3.61)

for every value of # 0@ and assuming stability. It must be noticed that relation (3.61) is satisfied because the interval

observer fulfils the condition given by Eq.(3.32).
3.3.5 Residual in terms of fault sensitivity

Finally, it is also important to notice how the fault residual sensitivity concept (see Eq. (3.36)) determines the value of
the residual at each time instant when the monitored system is affected by a fault. Thus, considering the residual
internal form given by Eq. (3.20), the residual sensitivity to an output sensor fault, S (Eq. (3.37)), to an input sensor

fault, Sy, (Eq. (3.47)), and to an actuator, Sz, (Eq. (3.54)), the residual expression can be re-written as follows:

r(k,0) =1, (k,0)+S,(q7",0) [, (k) +S (¢ ,0) f, (k) + S, (¢, 0) f,,(k) (3.62)
As noticed by (Gertler, 1998) and (Chen et al, 1999), this equation let us understand the importance of the fault

residual sensitivity to indicate the fault taking into account that a fault is detected while test (3.24) is not satisfied.

3.4 Minimum detectable fault

3.4.1 Minimum fault concept

As it has been already mentioned in the introduction of this paper, the minimum detectable fault (“triggering limir”)
corresponds to a fault that brings a residual to its threshold, provided no other faults and nuisance inputs are present.
Nevertheless, as it was mentioned, this model property is obtained by (Gertler, 1998) considering the residual
sensitivity to a fault in steady state. However, this is not right according to the results derived from Section 3.3. Then,
in this section, the minimum detectable fault concept can be adapted to the interval based fault detection methods as

the fault, f;f’f"(k ), whose residual disturbance counteracts the interval observer adaptive threshold from its

occurrence time instant, as it will be shown in the following.
Considering the system is just affected by one fault f(k) (f,(k) or f,(k) or f,(k)) whose occurrence time instant is given

by t,, the residual can be expressed in terms of the fault according to Eq. (3.62) as it follows:

r,(k,0)+d (k,0) k=t
r(k,0) = y(k0)+d, (k.6) 0 (3.63)
r,(k,0) k<t,
for every value of § 1@ and where
df(k,ﬂ)=S_/»(q_1,0)f(k)q_t0 (3.64)
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is the residual disturbance caused by the fault f{k), Sy(k) is the residual sensitivity to that fault, and ry(k), (Eq. 3.21)),
is a vector which contains the effect of the model parameter uncertainty on the residual. Thus, in line with the fault

detection test given by Eq. (3.24), its limit condition is given when

r(k)=0 or r(k)=0 (3.65)
considered componentwise.
The residual disturbance dy(k) which allow reaching one of the fault detection limit conditions for those values of

600 suchthat r(k)=r(k) or r(k)=r(k) will be noted as ‘rfm“ (k) :

. 0 if k<t
d7" (k) = J k<t (3.66)
-ry(k) if k=t
where d;‘?‘i“ (k) is considered zero-valued when k< #, because the fault has not occurred yet. Regarding the detection
border condition given by Eq. (3.66), it can be considered it takes place when the residual disturbance, d';‘i“(k) , caused

by the fault f(k) counteracts the effect of parameter uncertainty on the residual, ry(k). Therefore, ry(k) can be
understood as an adaptive threshold associated to the interval observer.

Then, according to the minimum detectable fault concept given at the beginning of this section and, considering Eq.
(3.66) and the expression of the residual disturbance caused by the fault f(k) given by Eq. (3.64), the minimum

detectable fault function £ (k) can be written as it follows:

fk=t1y)==8 (7" )'ry(k)
k>t

(3.67)

assuming Sf'lexists and for those values of @ 1@ such that r(k) =7 (k) or r(k)=r(k). Thus, a fault f(k) producing
a residual disturbance (d,(k)) bigger than the associated to £ (k) (d}“"’(k )) is always detected (strong fault

detection) in concordance with Eq. (3.65) and fault detection test given by Eq. (3.24), while a fault producing a smaller
residual disturbance is never detected.
It must be noticed that the procedure given by Eq. (3.67) presents two drawbacks: the non-existence of Sf'l and the

non-causalty of some elements of £ (k)- The first one occurs when the matrix Sy of dimension ny x nf" is non-

square and can be tackled using the left pseudo-inverse’’, S/, of Sy Thus, S will exist if and only if ny > nf

meaning that the number of residuals associated to the vector r(k) must be greater or equal than the number of faults

associated with the vector f{k). Regarding the second drawback, when some elements of 7" (k) are non-causal,

(Peng et al., 1997) proposes multiplying every of these elements by the required number of delays so that each of
them satisfies the causalty property.
In the following, for the clearness of the derived results, it is assumed the existence and stability of S/-'I and the

causalty of all the components of 7" (k).

3.4.2 Fault classification

-1
' The expression of S/ is given by: S} (q_l) = (S} (q_I )Sf (q_l )) S_; (q_j)
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As follows from the previous section, the minimum detectable fault function evolves with time according to Eq. (3.67)

, presenting a maximum and a minimum value for a given observation gain. Hence, the next fault classification from

detection point of view can be established:

- Non-detectable faults are never detected for any period of time because its interval residual disturbance d(k)
given by Eq. (3.64) is always contained in the corresponding one associated with the minimum detectable fault,

d}" (k), given by Eq. (3.66) and consequently, the fault is never detected.

[8,(g7.0)f(k)g™ | O[dp"(k.0)] Ok=y, (3.68)
- Permanently detected faults (strong fault detection) are always detected from its occurrence time instant. This

group of faults satisfies:
(8,70 f(k)g ™ |O[d}"(k.0)] Okzy, (3.69)

- Non-permanently detected faults (weak fault detection) are only detected for a period of time but detection does

not persist while fault does. These faults satisfy:
[8,(a7.0)fg™ |D[d}" (k,0)] (3.70)
for some time instants, k =7, .

In addition, because the residual disturbance caused by a fault and the system adaptive threshold can be adjusted
through the observer gain, a non-detectable fault for the given observation gain can become non-permanently
detected fault, if a suitable observation gain is set. Thereby, the fault detection time could also be adjusted using the

observation gain.
3.4.3 Fault detection time: detection persistence

In order to determine the fault detection time, the detection test (3.24) and its derived limit condition (3.65) must be
evaluated. Thus, it is concluded the fault is detected while its effect on the residual (residual disturbance) surpasses
the effect of the model structured uncertainty on the residual (interval observer threshold). This condition can be

expressed using the following equation:
[~d,(k,0)| O[r,(k.0)] k=1, 3.71)

According to the expressions of the residual disturbance caused by the fault (Eq. (3.64)) and the observer threshold
(Eq. (3.21)), the observer gain L has an important influence on the relation (3.71) and as a result, on the fault detection
time. Thus, the observer gain dependence of dy(k) is set by the function Sy (Section 3.3) while the observer gain
dependence of ry(k) is set by Eq. (3.33) (Section 3.2).

3.4.4 Minimum detectable fault analysis

In this section, the minimum detectable fault function ff’.""” (k) given by Eq. (3.67) is particularized considering output

sensor faults f;, input sensor faults £, and actuator faults f,. The aim of this particularization is to analyze the effect of
the observation gain L on the time evolution of this function. It must be noticed that both the minimum fault function

f7" (k) and the adaptive threshold ry(k) are theoretical concepts which are not required to be calculated on-line to

indicate the fault according to the fault indication test (3.24). However, their analyses will be interesting because they

provide a goodness index of the used fault diagnosis algorithm to detect faults. Thus, they help to tune it (i.e. using
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the observer gain L) in order to achieve the fault diagnosis requirements of the monitored system. Moreover, it could

be thought that both f7 (k) and ry(k) are computed in a initial configuration stage of the diagnosis algorithm.

Moreover, it must be noticed that since this analysis is carried out using vectors and matrices (f;, represents the set of
all single faults related to the system output sensors, f, is the set of all single faults related to the system inputs
sensors and f;, is the set of all single faults related to the system actuators), the minimum detectable fault vector

f7" (k) related to certain fault type (output sensor, input sensor or actuator) is obtained assuming a multiple fault

scenario where all the single faults of this type must be detected. This approach can give valuable information about
the goodness of the used method to detect faults but it can present a high complexity. Thereby, in order to prevent
this complexity, this analysis can be carried out for every residual assuming a single fault scenario. As a result, for
every residual and for every single fault, a minimum detectable fault function is obtained. Then, for a given single
fault scenario, the minimum detectable fault which will be indicated by all the residuals is the one of this set whose
absolute value is maximum at every time instant. This approach offers also helpful information about the goodness of
the used fault diagnosis approach to diagnose faults. Moreover, it prevents some difficulties derived from the

existence of the inverse matrix.

3.4.4.1 Minimum detectable output sensor fault

Considering that the output sensor fault residual sensitivity (Sj,) is given by Eq. (3.37), the minimum detectable fault

function given by Eq. (3.67) can be particularized for the output sensor fault as:

SR k=t,)==85(q7,0) " ry(k)=~F,(0)" (1 +C(0)(ql - A(0))” L)"o(k)

(3.72)

At time instant k=t, when the fault appears, the value of the minimum detectable output sensor fault is given by

£370)==5,0) 1,(1,) ==F,(0)" 1, (1,) ¢.73)
where s4,(0) is given by Eq. (3.39).Considering matrix F, is equal to the identity, Eq. (3.73) means the fault must be
bigger than the absolute value of the observer threshold at time instant 7, in order to be detected at its occurrence time
instant. As a consequence, given ry(k) depends on the observation gain L such as it is derived from Eq. (3.21), the fault
detection at this time instant depends on the observation gain in spite the residual sensitivity to a fault at this time

does not depend on L according to Eq. (3.39). In general, given ry(k) depends on the observation gain L such as it is

derived from Eq. (3.33), the next expression is fulfilled for every element of the vector f ;’i“ 0):

‘(f,} ()=, ) ‘ < ‘(ff} (O)L:a)’_‘ i=1,,ny (3.74)

i

where the subindex i’ indicates a certain component of the vector f™"

"+ (0). Eq. 3.74) means that the minimum

detectable output sensor fault at fault occurrence time instant is bigger when the simulation approach is considered
than when the prediction approach is used.

On the other hand, the steady-state value of Eq. (3.72) is given by

FIn ()= s (00) " 1y(00) = ~F, (6 (1 +C(0)(1-A4(0))" L) ry() (3.75)

where s5,(00) is given by Eq. (3.41) and ry(c0) is the steady-state of the adaptive threshold given by Eq. (3.21):
1y (@) = lim(=G(g ™ 0)) uy () + lim (1 = H g™, 0)) 3, (=)

(3.76)
==C(O)I = 4,(0)) BO)uy () +(I = C(O) (gl = 4,(0)) " L) yy ()
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, assuming matrix D is zero-valued. Thus, using Eq. (3.76), the steady-state of the minimum detectable fault given by

Eq. (3.75) can be expressed as follows:
mi — 0\ -1
SR (w) == F,(0)7 (~C(0)(1-4(0)) B(Ouy(e)+ yy (<)) 61
where a matrix product property'' is used.
Thus, Eq. (3.77) shows the steady-state value of the minimum detectable output fault does not depend on the observer
gains and its absolute value is given by the observer threshold steady-state value when all the observer gains are

equal to zero. This is because the observer gain effects on the observer threshold and on the residual sensitivity to a

fault counteract each other.

3.4.4.2 Minimum detectable input sensor fault

Considering that the input sensor fault residual sensitivity (Sj,) is given by Eq. (3.47), the minimum detectable fault

function given by Eq. (3.67) can be particularized for the input sensor fault as:

i (k=1y)==S3(q”0) (k)= F,(0)7 (C(0)(qI - 4,007 B(0)) " ry(k)
k=t

(3.78)

where matrix D is considered zero-valued.

At time instant k=t, when the fault appears, the value of the minimum detectable input sensor fault is given by

S (0)==5,(0) 1,(t,) =0 (3.79)
where sg(0) is given by Eq. (3.48). This expression means that an input sensor fault can not be detected at its
occurrence time instant #, since the residual sensitivity to this type of fault at this time instant is null such as it was
already noticed in Section 3.3.3.

On the other hand, the steady-state value of Eq. (3.78) is given by
, _ _ _ -1
T (00) = =5, (e0) ' ry(0) =-F, (0) ’[uo(oo) +(-cco)(ar-ac0))" Beo)) yo(oo)J 6:50)

using sp, () given by Eq (3.49), the steady-state of the adaptive threshold, r)( ), given by Eq. (3.76) and the matrix

product property.

Eq. (3.80) shows the steady-state value of the minimum detectable input sensor fault does not depend on the observer
gains such as it was determined in Section 3.4.4.1 when the output sensor fault case was considered. This is also
because the observer gain effects on the observer threshold and on the residual sensitivity to a fault counteract each

other.

Regarding the transient-state values of f ]'(’u"”, the influence of the observer gain matrix L is very similar to the

minimum detectable output sensor fault case (Section 3.4.4.1). Thus, as a consequence of the dependence of the
adaptive threshold ry(k) (Eq. (3.21)) on L described by Eq. (3.33), it can be set that, in general, the lower the norm of L,

the bigger the instant value of f7;

.. 1s. Then, once this function reaches its steady-state, its value does not depend on

L (Eq. (3.80)) such as mentioned above.

3.4.4.3 Minimum detectable actuator fault

-1 -1
" Matrix product property: (AX —BxDx_ICx) BxDx_I = AX_IBX D, —CxAx_IBx) being A, =1, B, =C(0), D, =(qI —A,(0)) and
C,=L.
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Considering that the actuator fault residual sensitivity (Sg) is given by Eq. (3.54), the minimum detectable fault

function given by Eq. (3.67) can be particularized for the actuator fault as:

Wk =1y)= =847 07 (k)= =Gy (q70) (1 +C0) (gl = 4(0)) L)ry(k)

(3.81)
where Gy, is given by Eq. (3.5).
At time instant k=t, when the fault appears, the value of the minimum detectable actuator fault is given by
i 0) = =5, (0) £y(t,) = (3.82)

where s;,(0) is given by Eq. (3.56). This expression means that an actuator fault can not be detected at its occurrence
time instant #, since the residual sensitivity to this type of fault at this time instant is null such as it was mentioned in
Section 3.3.4

Conversely, the steady-state value of Eq. (3.81) is given by
i (00)==s,(00) " 1y(w)

=-(CCO)1-(0) F,(0))" (-Co)(1-0))" B0 Juy(w0)+ y,())

(3.83)

using sg(0) given by Eq. (3.57), the steady-state of the adaptive threshold given by Eq.(3.76) and the matrix product
property.

Eq. (3.83) shows the steady-state value of the minimum detectable input sensor fault does not depend on the observer
gains such as it was determined in Section 3.4.2 when the output sensor fault case was considered. This is also
because the observer gain effects on the observer threshold and on the residual sensitivity to a fault counteract each

other.

Concerning the influence of the observer gain matrix L on the transient-state values of f ;Zm , the same behaviour can

be stated in regard to ff'y”i” (Section 3.4.4.1) and f’"i” (Section 3.4.4.2).

u

3.5 Application example

3.5.1 Description

The application example proposed to illustrate the obtained results deals with a mineral grinding-classification
process used in (Maquin et al., 2000). This process, such as presented in this reference is composed by two grinding
machines (B, and B,) and three mineral separators (H;, H, and H3). Each separator classifies the mineral particles in
two types depending on their size. The only input of the process (u(?)) is the input mineral flow, while the only
output (y(2)) is the output mineral flow whose mineral particles have the required size. On the other hand, this
reference considers two non-measured states: the output mineral flow of B, (x,(?)) and the output mineral flow of B,
(x;(2)). Besides, the considered process parameters are the time constants of B, and B, (7; = 300 s. and 7, = 60 s.)

and the separation coefficients of H;, H, and H; (¢; = 0.5, ¢;=0.3 and ¢; =0.1).
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Fig. 3.1 Scheme of the mechanical treatment unity to grind and classify a mineral flow

Nonetheless, in order to show all derived conclusions showed in the previous sections, some adaptations of the
application used in (Maquin et al., 2000) are considered in this paper. On one hand, parameter uncertainty is
considered in order to illustrate the interval observer case and on the other hand, the system output will not be given
by y(?) but by the states x;(¢) and x,(¢). As a result, the application used in this section is based on a SIMO system
with two outputs instead of a SISO system with one output such as used initially in (Maquin et al., 2000). Thus, in
order to build up the related interval observer, it is assumed that both states are measured. Then, the state-space form

in discrete time of the linear dynamic process is given by

x (k+1) _|am x, (k) . b, u(k—1)
x,(k+1) a, a, || x,(k) b,

» (k) x, (k)
y(k){ 1 }=[ l (3.84)
» (k) x, (k)
__L _ L _. I __ L _ T _. I
a, _1_?1’ a, _0271’ ay _0327 Ay _I_F’ b, _(l_cl)F’ b, _CIZ

2 1
taking into account that y(k) is the output vector of the adapted application example and where T is the sample

period, which must be chosen according to the eigenvalues of the state-space matrix (nominal value) in continuous
time. According to (Maquin et al., 2000), these eigenvalues are: A =-3.216x107s™" and A, =-1.678x10s™". In this
case, 7,=5.95 5. is used. The input mineral flow considered in this example is u(k)=1 Kg/s. Moreover, the time
instant k=0 is considered as the system start-up time instant and therefore, before that time instant the system was not

working. Thus, the monitored system initial conditions are assumed to be zero-valued.

Thereby, the related interval observer expressed in its state-space form (Eq. (3.7)) is

P(m)}:[an alz}P(k)Hb“}u(k){ku kuMyl(m}_P(k)ﬂ 5.55)
yz (k + 1) azl azz yz (k) bzl k21 kzz yz (k) y2 (k)

where a;;/]0.9752, 0.9850], a;,/00.0059, 0.0060], a,,;/]0.0099, 0.01] and a,,/7[0.8962, 0.9052] are the uncertain
elements of observer state-space matrix whose nominal values are given by the expressions shown in Eq. (3.84);
b;;00.0098, 0.01] and b,;/10.0492, 0.0501] are the uncertain elements of the observer input matrix; k;;, k;,, k»; and

ky; are the elements of the observer gain matrix.
The input-output form of this interval observer can be written using Eq. (3.11) and Eq. (3.85) can be written as:
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g™ +(a102b21 —a;zb“)q_z
o o -1 o _o o _o -2
- - - D (k) 1_(6122 +a11)q +(anazz _a12a21)q
$00 =G Ok + Hig™,0)y(k) = { AR BN P
(k) byq +(6121bn _a11b21)q
1=(a5, +ap ) g™ +(afa, —ajat, ) g | (3.56)
kg™ +(a102k21 —a;zk“)q_z kg™ +(a102kzz _a;zklz)q_z
L 1@ ran)a +(ahat —anas a7 1=(an v ai)o +(afah ~aan ) {yl 0]
k21q_l +(a§1k“ _alalkZI)q_z kzzq_l +(a;1k12 _alalkzz)q_z (k) ]

-2 -2

— o o -1 o _o _ o0 o0 _ o o -1 o _o _ o0 o0
1 (a22+a11)q +(a11a22 a12a21)q 1 (a22+a11)q +(a11a22 a12a21)q

o — o — o — 0 —
where a°;;=a;-k;;, a° p=a;5-ki2, a°21=az,-k;; and a°=as5-kos.

In the following, the residual sensitivity to a fault, the interval adaptive threshold and the minimum detectable fault
will be evaluated using the model parameters that allow computing §(k) which must be obtained applying Eq. (3.10)
and using a suitable algorithm as the one presented in (Puig et al., 2006). In the considered application example,
according to (Cuguer? et al., 2002), y(k) is obtained when 6 = 0 , while iz(k) is when @ =@ since all the elements
of the state-space matrix are positive. This fact is fully irrelevant for the results described in this chapter since it does
not focus on the computation of the system output estimation interval but on the fault detection performace related to
an interval observer model and on the influence of L on this performance.

In the following, the residual sensitivity to a fault, the interval adaptive threshold and the minimum detectable fault

will be evaluated using the model parameters that allow computing j (k) . According to (Cuguer? et al., 2002), (k) is
obtained when 6 =@ , while (k) is when @ =@ since all the elements of the state-space matrix are positive.
Regarding the interval observer residual, its expression using the ¢™' transform is

bug™ +(apby, —alb, ) g
o ()i )
1y (k) b,q"' +(a;’1b11 —afleI)q

_ o o -1 o _ o _ _0 0
1 (a22+a11)q +(a11a22 a12a21)‘1

u(k)+

-2

r(k)==G(g™ .0u()+(I-H(g™.0)) p(k) = {

-2

(3.87)
1_(";2 ""’11)‘1_1 +(a11a§2 _alozaﬂ)q_z ~knq™ (a12 2 a;zklz)q_z
+ 1_(‘1;2 +alol)qil +(a1"1a;’2 _alazagl)qiz (azz +an)q (ana;z _alazagl)qiz |:y1(k):|
_]‘721‘]71 _(aglkll _alolkZI)qi (azz +ay), )CI (alolazz _alza§1)q7 (k)
1_(";2 ""’101)‘1_1 +(a1"1a§2 _aloza;l)q—z (azz +au)q (alulagz _aloza;l)q—z

where r(k)=[r,(k) r>(k)]"

3.5.2 Sensitivity of the residual to an output sensor fault

According to Section 3.3.2, the sensitivity of the residual to a sensor fault is given by Eq. (3.37). When particularizing
this property for the application example case, this function becomes a square matrix of dimension 2X2 whose

expression, considering F, is equal to the identity 7, is
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S
- - - ~ S fna
$,a" 0 =(1-HG".0)G, " 0= " =
Sy S

-2 -2

~kq™ - (alozkzz —ank, ) q

_ o o -1 o_o _ _o0 o0
1 (a22+a“)q +(a“a22 alz“n)‘]

_ o -1 o _ o
1 (azz +a“)q +(a11a22 al2a2l)q
_ o o -1 o_ o0 _ 0 0
1 (azz +a“)q +(a11a22 a12a21)q
_ -1 _ o _ 0 -2 _ o -1 o _ o -2
kyq (a21k11 allk2l)q 1 (azz +a“)q +(a“a22 a12a21)q

o o -1 o _o o o -2 o o -1 o _o o o -2
1 (a22+a“)q +(a11a22 al2a2l)q 1 (a22+a“)q +(a“a22 alz“n)‘]

(3.88)

-2 -2

where each function Sﬁn,, is the sensitivity of the residual 7,(k)( r;(k) or ry(k)) regarding a fault affecting the sensor

related to the output y;(k) (y:(k) or y1(k)).

Considering the observer gain parameterization k;=/la; (i=1,2 and j=1,2) and assuming an abrupt fault modelled as a

unit-step function, the time evolution of S, ~and S, = are drawn varying / from simulation (/=0) to prediction (/=1)

, being the sweeping interval A/=0.04 and where the time unit is set by a sample period.

Fig. 3.2"% shows the residual sensitivity function Sy, does not depend on the observation gain at fault occurrence

time instant being equal to one according to Eq. (3.39) when F,=I, while its steady-state value does: it is equal to the
initial value for simulators while it is smaller than this value for predictors according to what is derived in Section
3.3.2 (Eq. (3.45)). Besides, the greater the observation gain is, the faster the dynamics of the residual sensitivity is and
consequently, the fault detection of a predictor approach could only last during few time steps unlike observer and
simulator approach.

Regarding the time evolution of the residual sensitivity function S, = plotted in Fig. 3.3, this function does not

2,1
depend on the observation gain at fault occurrence time instant either being its value null such as derived from Eq.
(3.39). It must be taken into account that the existence of this function is because of the use of the observation gains

meaning that S, is zero-valued for every time instant when the simulation approach is used (Fig. 3.2)(Eq. (3.38)).

Concerning the steady-state of this function, it presents a maximum for a given value between simulation and

prediction which is obtained for /=0.04 in Fig. 3.3 (Eq. (3.46)).

Sensitivity of residual r1 to a fault affecting the y1 sensor (-)
T T T T T T

1=0.0 (Simulation)

0.8 q

o
o
L

Sensitivity

1=0.04

1=0.08
0.2 B

1=0.12

5 10 15 20 25 30 35 40 45 50
Time (-)

Fig. 3.2 Time evolution of the sensitivity of residual (k) to an abrupt fault affecting the output sensor y,(k) regarding the observation gain when

P(k) = 5(k)

"2 The arrow direction drawn in the figure sets the direction in which the observer gain increases its value.
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Sensitivity of residual r2 to a fault affecting the y1 sensor (-)

Sensitivity

1=0.0 (Simulation)
| I

10 20 30 40 50 60 70 80 90 100
Time (-)

Fig. 3.3 Time evolution of the sensitivity of residual (k) to an abrupt fault affecting the output sensor y,(k) regarding the observation gain when

P(k) = (k)

3.5.3 Sensitivity of the residual to an input sensor fault

The sensitivity of the residual to a sensor fault is given by Eq. (3.47) (see Section 3.3.3). Thereby, considering the
application example, this function becomes a matrix of dimension 2x1 whose expression, considering F, is equal to
the identity 7, is:

-2

bug + (aln2b21 - G;Zb“)q

_ 4 4 -1 o _o0o _ 0 o0
1 (a22+a11)q +(a11a22 a12a21)q

S, N
- - Jiny
S,(q".0)=-G(q",0)F,(0) = s |77 D . >
fuz, byq +(a21b11 _alleI)q

_ o o -1 o_o _ o0 o0 -2
1 (a22+a11)q +(a11a22 a12a21)q

(3.89)

Considering the parameterization k;=la; (i=1,2 and j=1,2), the time evolution of the residual sensitivity function

S, without taking into account the sign of Eq. (3.89) is drawn varying / from simulation (/=0) to prediction (/=1),

being the sweeping interval A/=0.04.

Sensitivity of the residual rl to a fault affecting the input sensor (-)
T T

1=0.0 (Simulation)

Sensitivity

50 100 150 200 250 300 350 400
Time (-)

Fig. 3.4 Time evolution of the sensitivity of residual r,(k) to an abrupt fault affecting the input sensor regarding the observation gain when

P(k) = (k)
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In Fig. 3.4, the residual sensitivity function S, ~does not depend on the observation gain at initial time instant either

and it is equal to zero according to Eq. (3.48) when matrix D~0. On the other hand, its dynamics and steady-state

value show a similar observation gain dependency to the output sensor fault case. As it can be seen, Fig. 3.4 is in

concordance with results presented in Section 3.3.3, specially, the fulfillment of the relation given by Eq. (3.53).
3.5.4 Sensitivity of the residual to an actuator fault

Finally, the sensitivity of the residual to an actuator fault is given by Eq. (3.54)(see Section 3.3.4). In the application
example case, this function becomes a matrix of dimension 2x1. Regarding Gy, (Eq. (3.5)), it is assumed that satisfies
the following expression:
-1 gy — -l g — Gyl
Gulqg.0)=G(q.0).-, =| . (3.90)
y2
where the value of the function G' (Eq. (3.12)) is given by Eq. (3.86) in this application example case. Then, the
expression of the residual sensitivity to actuator fault is given by

S, S, S, G
S ‘ _1’0 - I _H _1’0 G . _1’0~ - Jay, - S s Y1 -
a0 =(I-H(q".0)G,(q".0) L 1 L 5, |6

Jay, Iy »2
1_(‘1;2 "'an)qi1 +(a11a§2 _alozazl)‘f2 G + ~kq™ _(aluzkzz _agzklz)‘fz
1=(as, +a))q ™ +(ahan —apa g™ " 1=(ag +ap g™ +(ahal - ahad) ) g
~kyq™ _(aglkll _alnlkZI)q_z + 1 _(azz +alnl)q_1 +(a101a22 _alzagl)q_z
e

Y ] o) -1 o _o0o _ 0 0 -2 ol Y ] o) -1 o_o _ _0 0
1 (a22+a11)q +(a11a22 a12a21)q 1 (a22+a11)q +(a11a22 a12a21)

G, (3.91)

G,

Then, the time evolution of S i, considering the parameterization k;=la; (i=1,2 and j=1,2) can be drawn varying /

from simulation (/=0) to prediction (/=1). In this case, the resulting figure looks like the one obtained in the input
sensor fault case (Fig. 3.4).

As it was discussed in Section 3.3.4, the residual sensitivity to an actuator fault does not depend on the observation
gain at initial time instant either being zero-valued (Eq. (3.56)). On the other hand, its dynamics and its steady-state
value show a similar observation gain dependency regarding the input sensor fault case. In short, these results are in

line with what was presented in Section 3.3.4, highlighting the relation given by Eq. (3.61).
3.5.5 Interval observer adaptive threshold

According to Eq. (3.63), the interval observer adaptive threshold ry(k) might be obtained from Eq. (3.87) assuming
there are no faults and as a result, ry(k) is a vector of dimension 2x1 (ro(k)=/ ros(k) ro2(k)]"). Thus, the time evolution
of the lower bound of ry;(k) related to § (k)= j,(k) is drawn varying [ (k;=la; (i=1,2 and j=1,2)) from simulation
(I=0) to prediction (/=1) without taking into account the sign of Eq. (3.87) and being the sweeping interval A/=0.04.

Fig. 3.5 shows the influence of the observer gains on the threshold dynamics and its steady-state value. In the
simulation approach (/=0), the parameter uncertainty has the maximum effect on the adaptive threshold and
consequently, the maximum residual disturbance caused by the fault is required in order to be detected. This figure

illustrates the fulfillment of the interval threshold relation given by Eq. (3.33).
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interval observer adaptive threshold related to y1(Kg/s)
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Fig. 3.5 Time evolution of the lower bound of the interval observer adaptive threshold 7, (k) regarding the observation gain considering an abrupt
step system input given by u(k)=1 Kg/s

3.5.6 Minimum detectable output sensor fault function

As mentioned previously, the minimum detectable output sensor fault is given by Eq. (3.67) using the residual
sensitivity to an output sensor fault given by Eq. (3.37) and the interval observer adaptive threshold given by Eq. (3.21)
.Thereby, when particularizing this expression for the example application case, it becomes a vector of dimension
2x1 which can be obtained using the residual sensitivity to an output sensor fault given by Eq. (3.88) and the interval
adaptive threshold obtained using the residual equation (Eq. (3.87)) such as mentioned in the previous section. Thus,

its expression is

) -1 -1 ff:lin (k _tO) Sﬁ’l.l Sﬁ’l.z B rOl(k)
ik —1,)= -8, (¢",0) " (k) =| " =- =
fp" (k=) ==8,(q.6) 1, (k) [ ff:‘:‘"(k—to)l {Sﬁ“ S5, |:roz(k):|

1_(azz ""’101)q71 +(a22a1”1 _alzagl)q ’ kg™ +(k22a12 _k12a22)q

. — 7, (k) + — - (k)
) 1_(a22 +a”)q 1+(a22a” —alzaﬂ)q 2o 1—(a22 +a”)C] 1+(a22a11 —alzazl)q 2 (3.92)
]‘721‘171 +(k11a21 _knall)qu 1_(a11 +a;2)q_l +(a“a;2 _a21a102)q_2

k k
1‘((122 +a11)q71 +(a22a11 —alzazl)qu ot )+1_(azz ""’11)5171 +(azza11 —alzam)q’z 7in (F)

k=1,

-2

where it must be noticed that both f j'-;’li” and f ;y"j" are causal functions. In the following, the time evolution of f j'-;’li”

given by Eq. (3.92) when 6 = 0 and t= 200 is plotted varying / (k;~la; (i=1,2 and j=1,2)) from simulation (/=0) to
prediction (/=1), being the sweeping interval A/=0.04. It must be taken into account that at this fault occurrence time

instant (7)) the system is still at its transient state.
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Minimun detectable output sensor fault related to y1 (Kg/s)
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Fig. 3.6 Time evolution of the minimum detectable output sensor fault related to y,(k) regarding the observation gain when # =8 and #~ 200.

In Fig. 3.6 (£p)=200), the observer gain dependence is such as described by Eq. (3.72). At time instant #y=200, when
fault occurs, its initial value is just determined by the threshold value at this time instant. This is because the system
has not reached its steady state yet. Then, the observer gains have an influence on the threshold dynamics and thus,
on the minimum detectable fault transitory state. When that fault reaches its steady state, the observer gains influence
disappears because its effect on the threshold and on the residual sensitivity counteracts each other.

On the other hand, when just analyzing a fault affecting to the output sensor related to y;(k), f, (k), assuming the

other sensors and actuators are non-faulty, the method showed in Section 3.4.1 allows obtaining a minimum

detectable fault function related to residual r;(k), f5 ‘:1 , and another one related to residual 7,(k), £ . Thereby, their

V2.1

expressions are

2

1, (k)

i - - 1- a;z +‘1101 q_l + alula;z _lezagl q
f/ly': (k - to) = _S./}'l_l (q 1’0) erI (k) == ( ) ( ) —

1_(‘1;2 +a11)q71 +(a11a§2 —afzaﬂ)q (3-93)
k=t
i 1_( 2 +all)q +(“101‘122 alza;)q ’
STk =1)= =S, (@”0) " (B)g = A OB k)
. . ks, +(a21k11 _a11k21)q : (.94

k=1,

where according to the procedure given by (Peng et al., 1997), f™"

4. 1s delayed one time instant since the resultant

function is not causal. Then, evaluating Eq. (3.93) for 8 =8 ( P(ky=p(k))or 8 =0 (k)= J(k)), this expression sets

the minimum detectable output sensor fault related to y;(k) so that r;(k) can indicate the fault (Eq. (3.24)). Thus,
regarding Eq. (3.94), this expression sets also the minimum detectable output sensor fault related to y,(k),but this time,
so that r,(k) can indicate the fault (Eq. (3.24)). On the other hand, it must be taken into account that if fault isolation

were required, all the residuals affected by the fault should violate the condition given by Eq. (3.24). In this case, the

absolute value of the minimum detectable fault related to y;(k)( j,;':‘l" ), which guarantees that both r;(k) and r,(k)

indicate this fault, is

abs ( "f;.',:i" ) = max (abs (f_mi“ ), abs( ,'y“z“l’ )) (3.95)
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3.5.7 Minimum detectable input sensor fault function

As pointed out in Section 3.4.4.2, the minimum detectable input sensor fault is given by Eq. (3.78) using the residual
sensitivity to an input sensor fault given by Eq. (3.47) and the interval observer adaptive threshold given by Eq. (3.21).
Then, evaluating this expression when using the application example, using the input sensor fault residual sensitivity
(Eq. (3.89)) and the interval adaptive threshold (Eq. (3.87)), it must be noticed that the procedure determined by Eq.
(3.67) can not be applied since matrix S, (Eq. (3.89)) is not a square matrix. In this case, as mentioned in Section 3.4.1,
a modified procedure can be used where the left pseudo-inverse matrix of Sy, Sf,,+, is considered instead of Sf,,'l .Asa
result, a minimum detectable input sensor fault vector whose dimension is just 1x1 is determined. This vector can be
interpreted as the result of the equation system given by (3.65), formed by 2 equations when considering the
application example, such that the quadratic error regarding the exact solution of every equation is minimum.
Although this modified procedure allow us validating the goodness of the considered system model from the input
sensor fault detection point of view, it seems to be more reasonable to analyze each residual independently in order

min

to obtain the minimum detectable input sensor fault regarding the residual ;(k), f." , and the minimum detectable

gl

mn " such as it was done in Section 3.5.6 to obtain the functions f™"

input sensor fault regarding the residual ry(k), f fs

()

(Eq. (3.93)) and f, fl}nzl? (Eq. (3.94)). Thereby, the expressions of these functions are

nin 1 e L 1=(as, +a) ) g +ahas, —ahds ) g7
/lulu (k=t,)= _Sfu” (¢7.0) 1”01(1‘7)‘1 ‘= ( ) B ( 5 3 ) 1o (k)
by, +(a12b21 _azzbn)q (3.-96)

k=1,

4 o -1 o _o o _o -2
1 (a22+a11)q +(a11a22 012‘121)‘]

S (k=1,)==S,, (¢7,0) ', (k)g™ = .
“ ’ . " by, +(a§1b11 _aloleI)q : (397

k=1,

where S, and S, are given by Eq. (3.89) and both f, ™ and / f';;“ have been delayed one time instant according

to the method given by (Peng et al., 1997) since they were not causal. When evaluating f ‘;‘li“ (Eq. 3.96)) for 6 = 0
(k) =3k)) or =8 (k)= $(k)), this function establishes the minimum detectable input sensor fault related to

u(k) so that r;(k) can indicate the fault (Eq. (3.24)). Conversely, /™" (Eq. (3.97)), this expression sets also the

minimum detectable input sensor fault related to u(k),but this time, so that r,(k) can indicate the fault (Eq. (3.24)). As
a result, the minimum detectable input sensor fault, such that both »;(k) and r,(k) can indicate the fault according to

the fault detection test Eq. (3.24), is given by
abs (/") = max abs (/") abs (/) (3.9%)

In the following, the time evolution of f;™ given by Eq. (3.96) when 0 = 0 and t,= 200 is plotted varying [ (k;=la;

(i=1,2 and j=1,2)) from simulation (/=0) to prediction (/=1), being the sweeping interval A/=0.04.
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Fig. 3.7 Time evolution of the minimum detectable input sensor fault related to (k) regarding the observation gain when # =6 and #= 200.
Comparing the influence of the observer gain on the minimum detectable input sensor fault function described in

Section 3.4.4.2 with the time evolution of f, ™" (Eq. (3.96)) plotted in Fig. 3.7 (t,=200), some differences can be seen

gl

in line with the initial value of the function at time instant k= ¢, and its steady-state value. These discrepancies

respond to the facts that f /‘Zi“ has been delayed one time instant in order to achieve the causality property and f ‘;‘li“
is the minimum detectable input sensor fault function related just to 7;(k) since the exact procedure shown in Section

3.4.4.2 could not be applied due to Sy, has no inverse matrix. Taking into account these particulars, the transient-state

min
Ll

of function f;" plotted Fig. 3.7 is in line with the results of Section 3.4.4.2. Concerning the steady-state value of

*min

> Fig. 3.7 shows this value depends slightly on the observer gain, unlike Eq. (3.80). However, this influence

could be assumed negligible in comparison with the dependence observed in the transient-state.
3.5.8 Minimum detectable actuator fault function

In Section 3.4.4.3, the influence of the observer gain matrix L on the time evolution of the minimum detectable
actuator fault function was analysed. This function is set by Eq. (3.81) using the actuator fault residual sensitivity
matrix, Sy, (Eq. 3.54)) and the interval observer adaptive threshold given by Eq. (3.21). When particularizing this
expression for the application example, matrix Sy, is set by Eq. (3.91) while the interval adaptive threshold is set by
Eq. (3.87). However, such as mentioned in the minimum detectable input sensor fault case (Section 3.5.7), the
minimum detectable actuator fault procedure given by Eq. (3.81) can not be applied since Sy, has no inverse matrix
when particularized for the application example. In this case, the left pseudo-inverse matrix of Sy, Sf,f, could be used
allowing to obtain a minimum detectable actuator fault vector whose dimension is just 1x1, such as it was already
described in Section 3.5.7 for the minimum detectable input sensor fault case. Nonetheless, such as pointed out in the
previous section, another procedure to obtain the minimum detectable actuator fault consists in analyzing each

residual independently in order to obtain the minimum detectable input sensor fault regarding the residual r;(k),

f ,‘;i“ , and the minimum detectable input sensor fault regarding the residual r,(k), fm"

Jay

. Then, the expressions of

these functions are

fmne=t,)==S,, (¢".0)" 1, (k)g™
k=t

(3.99)
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o (k=1,) = =S, (q7.0) "1, (k)g™
=

(3.100)

where S, and S, = are given by Eq. 3.91) and both £ min

a)

and f ,‘;‘;“ have been delayed one time instant (Peng et

min

al., 1997) since they were not causal. When evaluating /™ (Eq. (3.99)) for 0 =0 ( Pk)=3k)) or =0

( (k) = p(k)), this function establishes the minimum detectable actuator fault related to u(k) so that r;(k) can indicate

min
J fa,

the fault (Eq. (3.24)). Conversely, (Eq. (3.100)), this expression sets also the minimum actuator fault related to

u(k),but this time, so that »,(k) can indicate the fault (Eq. (3.24)). As a result, the minimum detectable actuator fault,

such that both r;(k) and r,(k) can indicate the fault according to the fault detection test Eq. (3.24), is given by

abs(f‘f,““):max(abs( ‘,‘;‘li“),abs( /‘:‘")) (3.101)

Next, the time evolution of f ‘;‘li“ given by Eq. (3.99) when 0 = 0 and 7,= 200 is plotted varying [ (k;=la; (i=1,2 and
j=1,2)) from simulation (/=0) to prediction (/=1), being the sweeping interval A/=0.04.

Minimun detectable actuator fault related to residual r1 (Kg/s)
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Fig. 3.8 Time evolution of the minimum detectable actuator fault related to r,(k) regarding the observation gain when @ =6 and t~ 200.
Comparing the influence of the observer gain on the minimum detectable actuator fault function described in Section

3.4.4.3 with the time evolution of f, ‘.:i“ (Eq. (3.99)) plotted in Fig. 3.8 (¢£,)=200), some discrepancies are stated

regarding the initial value of the function at time instant k= 7y and its steady-state value, such as mentioned in Fig. 3.7

where the time evolution of £

Ji

is plotted. These dissimilarities are due to the facts that f ,‘;‘Ii“ has been delayed one

time instant and "

a)

is the minimum detectable actuator fault function related just to »;(k). Concerning the time

min

evolution of function ;" plotted Fig. 3.8, this is in line with the results of Section 3.4.4.3 considering the

mentioned particulars. Conversely, the steady-state value of £}

Ja

shows a slightly dependence on the observer gain,

unlike Eq. (3.83), such as mentioned in the previous section for the input sensor fault case. However, this influence

could also be neglected in comparison with the dependence observed in the transient-state.
3.5.9 Fault classification: output sensor fault case

In the following, assuming a fault scenario affecting the output sensor related to y,(k), different additive output
sensor faults are applied to this sensor in order to illustrate the three fault types shown in Section 3.4.2. Thus, it is

considered that the fault occurrence time instant is #5=200 and the observers gains are tuned as follows: k;;=la;; and
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ky=lay, being [=0.04 while k;;=a;, and kj;;=a,;. Firstly, a slightly bigger fault than the minimum detectable one
obtained using Eq. (3.95) is applied. In Fig. 3.9, the time evolution of the output sensor measurements (y,(k) and y,(k))
and their interval estimations computed by the interval observer are plotted pointing out that the fault is indicated
permanently by both residuals (7;(k) and r,(k)) (strong fault detection) according to detection test given by Eq. (3.24)
. Conversely, when a slightly smaller fault than the one established by Eq. (3.93) is applied (Fig. 3.10), the fault is not
indicated by none residual since the detection test is always fulfilled (see Eq. (3.24)). Finally, in Fig. 3.1/ a constant
fault whose value is 0.15 Kg/s (roughly, 20% of the system output nominal steady-state value) is considered. Then,
the fault is indicated during a period of time by r;(k) since its occurrence time instant, but not by r,(k). Later on, the
fault is not longer indicated since it becomes smaller than the minimum detectable fault required for every residual

and consequently, the fault is not persistently indicated (weak fault detection).
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Fig. 3.9 Time evolution of y,(k) and y,(k)) and their interval estimations assuming a single fault scenario affecting the output sensor related to
vi(k) at time instant £=200 which is slightly bigger than the required one by both residuals (Eq. (3.95)).
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Fig. 3.10 Time evolution of y,(k) and y,(k)) and their interval estimations assuming a single fault scenario affecting the output sensor related to
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vi(k) at time instant #=200 which is slightly smaller than the required one by (k) (Eq. (3.93)).
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Time ewlution: y2 interval estimation (Kg/s) / y2 measurement (Kg/s)
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Fig. 3.11 Time evolution of y,(k) and y,(k)) and their interval estimations assuming a single fault scenario affecting the output sensor related to
vi(k) at time instant £=200 which has a constant value of 0.15 Kg/s

3.5.10 Fault classification: input sensor fault case

In this case, a fault scenario affecting the input sensor related to u(k) is assumed applying different additive input
sensor faults to illustrate the three fault types shown in Section 3.4.2. Concerning the fault occurrence time instant,
this is #,=200. On the other hand, the observer gains are tuned as follows: k;;=la;; and k;,=la,, being [=0.04 while
ki;=a;; and k,=a,,; Firstly, a slightly bigger fault than the minimum detectable one obtained using Eq. (3.98) is
applied. In Fig. 3.12, the time evolution of the output sensor measurements (y;(k) and y,(k)) and their interval
estimations computed by the interval observer are plotted illustrating both residuals (7;(k) and r,(k)) are indicating
permanently the fault (strong fault detection)(Eq. (3.24)). Then, when a slightly smaller fault than the one established
by Eq. (3.97) is applied (Fig. 3.13), the fault is not indicated by none residual since the detection test is always
fulfilled (see Eq. (3.24)). Finally, in Fig. 3.14 a fault which is only indicated during a period of time by r,(k) since its
occurrence time instant, but not by r;(k) is considered. Later on, the fault is not longer indicated by any residual (Eq.
(3.24)) (weak fault detection).
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Time ewolution: y2 interval estimation (Kg/s) / y2 measurement (Kg/s)
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Fig. 3.12 Time evolution of y;(k) and y,(k)) and their interval estimations assuming a single fault scenario affecting the input sensor related to
u(k) at time instant #=200 which is slightly bigger than the required one by both residuals (Eq. (3.98)).
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Time ewolution: y2 interval estimation (Kg/s) / y2 measurement (Kg/s)
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Fig. 3.13 Time evolution of y,(k) and y,(k)) and their interval estimations assuming a single fault scenario affecting the input sensor related to
u(k) at time instant #=200 which is slightly smaller than the required one by r,(k) (Eq. (3.97)).
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Time ewolution: y1 interval estimation (Kg/s) / y1 measurement (Kg/s)
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Fig. 3.14 Time evolution of y;(k) and y,(k)) and their interval estimations assuming a single fault scenario affecting the input sensor related to
u(k) at time instant #=200 which is only detected for few time instants by (k)

3.5.11 Fault classification: actuator fault case

In this section, a fault scenario affecting the actuator u(k) is assumed applying different additive actuator faults in
order to illustrate the three fault types shown in Section 3.4.2. Concerning the fault occurrence time instant and the
applied observer gains: #,=200, k;;=la;; and kj,=la,, being /=0.04 while k;,=a,, and k,/=a,,. Firstly, a slightly bigger
fault than the minimum detectable one obtained using Eq. (3.101) is applied. In Fig. 3.15, the time evolution of the
output sensor measurements (y;(k) and y,(k)) and their interval estimations computed by the interval observer are
plotted pointing out both residuals (7;(k) and r,(k)) are indicating permanently the fault (strong fault detection)(Eq.
(3.24)). Then, when a smaller fault than the one established by Eq. (3.100) is applied (Fig. 3.16), the fault is not
indicated by none residual since the detection test is always fulfilled (see Eq. (3.24)). Finally, in Fig. 3.17 a fault
which is only indicated during a period of time by r,(k) since its occurrence time instant, but not by r;(k) is

considered. Later on, the fault is not longer indicated by any residual (Eq. (3.24)) (weak fault detection).

100



y1 (Kgls)

y2 (Kgls)

Fig. 3.15 Time evolution of y;(k) and y,(k)) and their interval estimations assuming a single fault scenario affecting the actuator u(k) at time
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instant £=200 which is slightly bigger than the required one by both residuals (Eq. (3.101)).
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Time ewolution: y2 interval estimation (Kg/s) / y2 measurement (Kg/s)
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Fig. 3.16 Time evolution of y;(k) and y,(k)) and their interval estimations assuming a single fault scenario affecting the actuator u(k) at time
instant #,=200 which is smaller than the required one by r»(k) (Eq. (3.100)).
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Fig. 3.17 Time evolution of y,(k) and y,(k)) and their interval estimations assuming a single fault scenario affecting the actuator u(k) at time
instant £=200 which is only detected for few time instants by (k)

3.6 Conclusions

This Chapter has presented a study that shows how the observer gain affects the fault detection performance of the
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interval observer-based methods, according to the fault detection objectives enumerated in Section 2.5.1. This
analysis, carried out following the seminal ideas proposed by (Gertler, 1998), points out the influence of the observer
gain on the time evolution of the residual sensitivity to a fault, considering both sensor and actuator faults. As a
novelty, this thesis considers the dynamical properties of the fault residual sensistivity pointing out their importance
in the fault diagnosis process. The qualitative results of this analysis regarding the influence of the observation gain
on fault residual sensitivy are briefly illustrated in 7able 3.1. On the other hand, the effect of observer gain on the
time evolution of the residual and its associated adaptive threshold is described. Thereby, the residual is expressed in
terms of the fault residual sensitivity functions and its adaptive threshold allowing to obtain the minimum detectable
fault. As a novelty, the time evolution of the minimum detectable fault for a given type of fault is determined using
the residual adaptive threshold and the observer gain. This let us introduce three types of faults according to the time
evolution of its residual disturbance: permanently detected (strong fault detection), non-permanently detected (weak
fault detection) or just non-detected. Finally, an example based on a mineral grinding-classification process is used to

illustrate the results derived.

Simulation | Observation | Prediction
L=0 L=1L, L=1L,

S, Constant Pulse Deadbeat
Dynamic Dynamic

S, Constant
response response
Dynamic Dynamic

S Constant
response response

Table 3.1 Qualitative influence of the observer gain on the time evolution of the fault residual sensitivity functions
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CHAPTER 4
Designing fault detection linear interval

observers to avoid the wrapping effect

4.1 Introduction

Most of the robust residual evaluation methods are based on an adaptive threshold changing in time according to the
plant input signal and taking into account the model uncertainty. These last years the research of adaptive
thresholding algorithms that use interval models for FDI has been a very active research area since the seminal work
(Horak, 1988): (Armengol et al, 2000), (Puig et al, 2002a), (Fagarasan el al, 2004) and (Ploix et al, 2006). In (Puig et
al, 2003a) interval observers applied to robust fault detection have been introduced and in (Puig et al, 2003b), an
interval simulation algorithm based on optimization through the set of possible real trajectories contained in the
interval model is proposed. However, this trajectory based approach has a very high computational complexity. On
the other hand, region (or set) based algorithms coming from the interval analysis (Kiihn, 1998) are much less
computational demanding but interval observers can suffer from several problems, such as the wrapping effect, if the
model matrix does not fulfil the isotonicity property (Cuguerd et al, 2002). The aim of this chapter is to show how
those problems, mainly the wrapping effect, can be avoided when an interval observer model is considered in spite a
low computational algorithm is used to estimate the output interval time evolution. This will only be possible if the
observer gain matrix satisfies a key condition. On the other hand, the effect of this condition on the observer fault
detection performance is also analyzed to see whether it is enhanced or not. This chapter continues the work
developed in Chapter 3 based on the derived results of reference (Meseguer et al., 2007b) which is focused on fault
detection based on intervals observers. It shows the influence of the observer gain on the residual sensitivity to a fault
and on the minimum detectable fault (Gertler, 1998) since, such as it was noticed by (Chen et al 1999), the observer
gain plays an important role in fault detection because it determines the time evolution of those fault detection
properties.

The structure of the Chapter 4 remainder is the following: in Section 4.2, fault detection concepts using interval
observers are recalled and besides, the observer gain matrix design to avoid the wrapping effect is discussed. Then,
(Section 4.3), the influence of avoiding the wrapping effect using the observer gain matrix on the observer fault
detection performance is analyzed. In Section 4.4, the conclusions obtained in previous sections are exemplified
using an application example based on an industrial smart actuator. Finally, Section 4.5 describes the main

conclusions of this chapter.
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4.2 Interval observation: adaptive thresholding

The problem of adaptive threshold generation in discrete time-domain using interval observers can be formulated
mathematically as the need of determining the predicted output interval [ (k) ,}(k)] at every time-instant using the
interval observer given by Eq. (3.7) and according to the expressions given by Eq. (3.10).

In order to determine [ (k) ,;(k) ], the observer given by Eq. (3.7) is written as a model with one output and two

inputs, assuming the observability of the system (Eq. (3.1)) for all § 1@ :

u(k)}

X(k+1)=4,(0)x(k)+[B,0) L] { ()

4.1)
y(k) = C(0)x(k) + D(O)u(k)
where A4, (0)=A0)-LC(@®) and B,(0)=B(0)-LD(6) and taking into account that the matrix and vector dimensions

were given in Section 3.2.1. Then, interval observation can be formulated as an interval simulation and the existent
algorithms for this methodology can be used (Puig et al, 2003b). As mentioned in Chapter 2, Section 2.3.2.5, a
possible classification of those algorithms can be established according to if they compute the output interval using
(Puig et al, 2005a): one step-ahead iteration based on previous approximations of the set of estimated states (region
or set based approaches), or a set of point-wise trajectories generated by selecting particular values of 8 1@ using
heuristics or optimisation (#rajectory based approaches). But, when the undesired wrapping effect wants to be
avoided, (Puig et al, 2005a) shows the trajectory based approach must be used in spite of its high computational cost.
In this section, it is demonstrated that region based algorithms can also avoid wrapping effect and others pathologies
when the interval observer is not formulated as a simulator but a proper observation gain matrix is used in order to
counteract the model matrix elements that cause the appearance of the wrapping effect. Once the unsuitable elements

of the model matrix 4(@), which cause the undesired effects, are identified, an suitable observation gain matrix L
must be set in order to counteract them in the interval observer matrix 4,(@) . Only if the observation gain matrix L

satisfies that condition, the low computational cost algorithms can be used in order to evaluate the output interval at
every time instant. In contrast to Chapter 3, it must be noticed that in this chapter the assumption A>0 and L>0 is not

applied.

4.2.1 Problems to be considered in interval observation

These problems were already introduced in Chapter 2, Section 2.3.2.5.2, and consequently, in this section they are

just briefly recalled in order to understand how the observation gain matrix can avoid their effects:

4.2.1.1 Wrapping effect problem

As mentioned in Chapter 2, the problem of wrapping is due to the use of a crude approximation of the interval
observer solution set and its iteration using one-step ahead recursion of the state space observer function, i.e, a
region based approach. This problem does not appear if instead the estimated trajectory function x(k,u, y,0), i.e., a
trajectory based approach is used. The wrapping effect problem can be completely unrelated to the stability
characteristics of the observer. Thereby, it must be noticed that not all the interval observers are affected by this
drawback. According to (Cuguerd et al, 2002), those that are monotone with respect to states do not present this

problem: these kinds of observers (systems) are known as isotonic (Cuguer? et al, 2002) or cooperative (Gouzé et al,
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2000). In case of observers whose state function is contractive mapping (see Definition 2 of Section 2.3.2.5.2), the

overestimation of the wrapped set does not increase along the time (Puig et al, 2003b).

4.2.1.2 Temporal variance on uncertain parameters

As mentioned in Chapter 2, an additional issue that should be taken into account is how uncertain parameter time-

invariance is assured since a step-ahead algorithm does not preserve it. In the literature two approaches can be found:

e The time-varying approach which assumes that uncertain parameters are unknown but bounded in their
confidence intervals and can vary at each time step (ElGhaoui et al, 1999) (Puig et al ,2001).

e The time-invariant approach which assumes that uncertain parameters are unknown but bounded in their
confidence intervals and they can not vary at each time step (Horak, 1988), (Puig et al, 1999).

Although the region based algorithms belong to the time-varying approach, in the case of isotonic systems, the

parameter and state relation is preserved at every time instant because the interval arithmetic guarantees it. If a

system is not isotonic, an isotonic observer must be used in order to avoid this problem when using low

computational complexity algorithms.

4.2.1.3 Range evaluation of an interval function

Many approaches to interval observation need to evaluate the range of an interval function at every time instant in
order to determine the interval for system states. One possibility for evaluating the range of the function is to use
interval arithmetic (Moore, 1966). But, although the ranges of basic interval arithmetic operations are exactly the
ranges of the corresponding real operations, this is not the case if the operations are composed. This phenomenon is
termed as interval dependence or multi-incidence problem (Moore,1966). As mentioned in Section 2.3.2.5.2, one
possibility to avoid this problem is to combine the use of interval arithmetic with a branch and bound algorithm
(Hansen, 1992). Another possibility to evaluate the range of an interval function is to solve two optimization
problems (a minimization and a maximization) using numerical methods. On the other way, it is not hard to show
that isotonic systems do not suffer this problem and consequently, another way to avoid the multi-incidence problem
is using an isotonic observer. At the same time, wrapping effect is also avoided when algorithms that propagate
regions are used.

In short, the previous problems appear because of the non-isotonicity property of the system model matrix A4(8)

when using the region-based approach. In order to avoid them, non-isotonic models must be turned into isotonic
observers using a proper observation gain matrix L. That kind of observers allows to use low computational

algorithms in fault detection applications.

4.2.2 Designing the observer gain matrix L to avoid the
wrapping effect

When an observer is used instead of an interval simulator, the observer matrix, 4, = 4(0) - LC(0), sets the dynamical
properties of the observer instead of the system matrix, 4(@) including the appearance of the wrapping effect. If
A,(0) is isotonic (Cuguero6 et al, 2002), the interval observer does not suffer from that pathology when using a
region-based approach, in spite of the non-isotonicity of 4(@) . Therefore, the clue to avoid this undesired problem is

to design properly the observation gain matrix L so that 4, (¢) becomes an isotonic matrix.
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In this section, a stable interval observer whose matrix A4(@) is neither isotonic nor contractive (see Definition 2 of
Section 2.3.2.5.2) is considered. Thus, the non-isotonicity property of matrix A4(g) establishes the existence of at
least one state £, (k) of the model state vector X(k) whose variation regarding another state ;21_ (k) is negative or, in
other words, at least one element of the considered system matrix, A(6), is negative: a, <0 . Then, the observer
matrix A, (@) achieves isotonicity only if the corresponding element a,,; of this matrix is zero-valued.

a,; =a,~(LC), =0  [i,jwherea, <0" @.2)

where (LC); is the element of the resultant matrix LCOO™™ placed in the i”-row and ;j”-column. Conversely,

condition given by Eq. (4.2) can be also expressed as it follows:

ny

a; =Y l,c,,  Oi,jwherea, <0 (4.3)
a=l1

where /;, are the i"-row elements of the observation gain matrix L and ¢,; are the j™"-column elements of the output
matrix C(6) related to the observer model. Thereby, while the elements c,; of matrix C(6) are determined by the
observer model structure and they can not be chosen freely in order to force condition (4.3), there are much more
freedom degrees in order to force that condition choosing the elements /;, associated with the observation gain matrix
L.

When forcing condition (4.3), a prediction relation of the state x,(k) regarding x; (k) is established in order to avoid

the appearance of the wrapping effect when using the region-based approach. Nevertheless, the rest of the elements

(LC)

of the resultant matrix LCOO™ ™ do not have any effect on the isotonicity property of the observer

mnlm#i,n# j

matrix A,(0) . And consequently, the elements ,, (I <a<ny) associated with the observation gain matrix LOO™"

might be chosen freely in order to achieve the desired fault detection performance but it must be taken into account
that condition (4.3) can also have an influence on the observer stability and therefore, the values of those observer
gains might verify additional restrictions in order to guarantee it.
Condition (4.3) is not necessary to turn an unstable wrapping into a stable one. In this case, (LC); must fulfil

(LO), 0[0.q, ] (44)
and being A,(#) a contractive matrix (see Definition 2 of Section 2.3.2.5.2). Derived from (4.4), the state

overestimation using region-based algorithms decreases when the observation relation of %, (k) regarding x; (k)

becomes closer to a prediction. Then, isotonicity is achieved and trajectory and region-based approaches obtain the
same state estimations (Puig et al, 2005a).

Regarding the observation gain L, this matrix can be partitioned in a matrix L. whose elements determine the
observation gain values needed to force the isotonicity condition (4.3) and a matrix L, whose elements can be chosen
freely to enhance the observer fault detection performance and to guarantee the observer stability. Thereby, the

observer matrix A(f) can be seen as the sum of two matrices: A, (@) built up using those positive elements of
A(@) and A_(6) determined by the negative ones. Then, in line with the definition of those matrices, the next

expressions can be set:

AB)=A,(0)+A.(0) (4.5)

13 Expressing the system (3.1) in its observable canonical form given its observability for all 06O , condition (4.2) can be applied for all the
negative elements of matrix 4. This is also the case when C has a inverse matrix.

107



L=L +L 4.6)

A,(0)=(A4,(0)-L,C(0))+(A.(0)-L.C(9)) .7

(4.8)

(4.@),, =

mn

a,, Um#i,n# jwherea, >0
0 OUm=in=jwherea; <0

0 Om#i,n# jwherea,, >0
(4.©),, = “9)

a,, Um=i,n=jwherea; <0

ny

_ Zlmacan Um#i,n# jwherea,, >0

(L.Cc®) =14 (4.10)
0 Um =i,n=jwherea,; <0
(L), =(410), @i

Thus, the elements of matrix L.C are positive or zero-valued while those elements of matrix L.C are negative or

zero-valued. Then, comparing the norm of the observer gain matrix A4,(0) (Eq. (4.7)) when the isotonicity condition

(4.3) (or equivalently, condition (4.11) ) is forced or not, the next relation is set

[4,0) 1.0 ]

In spite of the previous relation (Eq.(4.12)), it must be taken into account that condition (4.3) forces the negative

RO @12)

elements of 4,(6) to be null what let also establish the next relation:

[1=4,0)1.c=0]2 |1 = 4,0) 0= | #13)
Alternatively, analyzing the non-zero-valued elements of matrix L_, they must fulfil the relation given by condition
(4.3). Thereby, when all non-zero-valued elements of C(6) are positive, the non-zero-valued elements of L. must be

negative while the non-zero-valued elements of L. must be positive. In general, neither all elements of matrix L.

have to be negative nor all elements of matrix L. have to be positive when forcing condition (4.3).

4.3 Influence of the isotonicity condition used to
avoid the wrapping effect on the interval observer
fault detection performance

The aim of this section is to show the effect of condition (4.3) used to avoid the wrapping effect on the interval
observer fault detection performance. As it was mentioned previously, that condition sets some element values of the
resultant matrix LC and consequently, it may also affect to the interval observer fault detection performance as it will
be illustrated in this section. First, the effect on the residual sensitivity to a fault studied in Section 4.3.1 is analyzed.
Then, the effect of this condition on the time evolution of the computed interval observer residual and the associated
adaptive threshold is illustrated (Section 4.3.2). Finally, using the done sensitivity analysis, the effect on the

minimum detectable faults (Section 4.3.3) and the fault detection time (Section 4.3.4) is studied.

4.3.1 Influence of the isotonicity condition on the residual
sensitivity to a fault function
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The residual sensitivity to a fault is given by Eq. (3.36) as it was presented in Section 3.3.1 of Chapter 3. In this
section, the effect of condition (4.3) on the residual sensitivity to a fault is shown when it is particularized to an output

sensor fault given by f;, to an input sensor fault given by f,, and to an actuator fault given by f;, .

4.3.1.1 Residual sensitivity to an output sensor fault

As it was mentioned in Section 3.3.2, the residual sensitivity to an output sensor fault is given by Eq. (3.37) and both
its dynamics and its steady-state value are influenced by the observer gain matrix L. Then, when condition (4.3) (or
equivalently, condition (4.11) ) is forced to turn A4,(#) into a isotonic matrix assigning prediction values to those
elements (LC),,, of the resultant matrix LC where the associated element a;; of matrix 4(@) is negative, the residual
sensitivity time evolution is deeply affected. The residual sensitivity to a fault at time instant k=0, i.e. when an abrupt
fault (modelled as a unit-step function) occurs, is

s, (0)=limS(¢",0)=F, ) (4.14)

, independently of the observer gains such as it was shown in Eq. (3.39) and consequently, it is unaffected by
condition (4.3) . On the other hand, the steady-state value for an abrupt fault modelled as a unit-step function is given
by the Eq. (3.41) analyzed in Section 3.3.2. Thereby, taking into account the condition (4.3), this equation can be re-

written as it follows:
. _ a 4 -1 ~
$,() =lim S, (¢7,0) = (1 +CO)(1-A0)" (L +L. )) F,(0) @15)
Analyzing the non-zero-valued elements of matrix L., they must fulfil the relation given by the condition (4.11). In

this way, assuming all non-zero-valued elements of C(8) are positive, the non-zero-valued elements of L. must be

negative while the non-zero-valued elements of L. must be positive. Consequently, when forcing the isotonicity

condition of A, (@), the steady-state value of the elements of S, (¢™,0) for every value of 0@ (Eq.(4.15)) may

i
increase its value regarding the case where that condition is not forced.

<

Sp, (°°)L_c:0 Sp, (°°)L_C:A_ i=L-ny j=1-,ny (4.16)
As derived from the structure of matrix Sy, (Eq. (3.38)), relation (4.16) is satisfied when matrices 4, L and C do not
fulfil the condition given by Eq. (3.32). In Chapter 3, the assumption of 4>0 and L>0 was made and consequently,
according to the observer structure and the stability condition, this condition was always fulfilled. In this chapter,
matrix 4 does not satisfy the isotonicity property and as a result, when avoiding the wrapping effect using condition
(4.2), the elements of L may not be positive, as mentioned above, and consequently, condition (3.32) may not be
satisfied resulting the relation given by Eq. (4.16).

In this case, this effect caused by the isotonicity condition might be partially counteracted choosing properly values
of matrix L, since they have positive values.

Summarizing in regard to the effect of the isotonicity condition (4.3) on the time evolution of the output sensor fault

residual sensitivity function, it is concluded:

1. The interval observer dynamics determined by matrix A4,(@) are affected because that condition set some
elements of matrix LC to their prediction values and as a consequence of that, the eigenvalues of the interval
observer matrix are closer to the null value.

2. At time instant when the fault occurs, that condition has no effect on the residual sensitivity function since its

value at this time instant does not depend on the observation gain matrix L such as it is indicated by Eq. (4.14).
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3. The steady-state value and the gain of the residual sensitivity function is affected by the isotonicity condition
such as it is seen in Eq. (4.15) but, because that condition force some elements of matrix LC to their prediction
values, it was expected a decreasing of this values such as it was mentioned in Section 3.3.2 (Meseguer et al.,
2007b). Indeed, this is not the case when the isotonicity condition is forced since it sets the use of observation
gains whose values are negative (i.e. the elements of the output matrix C are positive). Then, the relation (4.16)
may be satisfied meaning that the steady-state value increases regarding the case where the isotonicity condition

is not forced.

4.3.1.2 Residual sensitivity to an input sensor fault

In this case, the residual sensitivity function is given by Eq. (3.47) (Section 3.3.3) and according to its structure , this
function is also deeply affected when the interval observer matrix A,(@) is forced to satisfy the isotonicity property
using the condition (4.3) such as it was mentioned in the output sensor fault case shown in the previous section.
Thereby, following the analysis steps used in the previous section, the residual sensitivity to a fault at time instant

k=0, i.e. when an abrupt fault (modelled as a unit-step function) occurs, is
s,(0)=1imS . (¢”',0) = -DF,(0) 4.17)
, rareiad
, independently of the observer gains such as it was shown in Eq. (3.48) and thus, it is not affected by condition (4.3)

such as in the output sensor case. Regarding the steady-state value determined in Section 3.3.3, this is given by Eq.

(3.49) where matrix A4,(¢) can be expressed in terms of matrices L,C and L.C (Eq. (4.7)). Thus, this equation can be

re-written as it follows:

S, () = 99} S, (q".0)= —(C(0)(I -(A40)-L,C(0) —L_C(a)))‘1 (B(0)-LD(9)) + D)Fu 0) (4.18)

taking into account that mostly D~0. As indicated by Eq. (4.13), when forcing the isotonicity condition (4.3), the norm

of the matrix I —A4,(0) decreases regarding the case in which that condition is not forced. Therefore, according to
the contractivity property (see Definition 2 in Section 2.3.2.5.2) of a linear system,,it is concluded that the steady-

state value of the elements of S, (¢~',0) for every value of # 1@ (Eq. (4.18)) may also increase its value regarding

fi

the case where that condition is not forced such as it was shown in the previous section for the output sensor case.

<

S fu, (®)pcea| =Ly j=Leonu (4.19)

‘sﬁxw (oo)L_C=0
In regard to the effect of the isotonicity condition on the dynamics of the residual sensitivity to an input sensor fault,

the conclusions obtained for the output sensor case are also valid.

4.3.1.3 Residual sensitivity to an actuator fault

Comparing the actuator fault residual sensitivity function given by Eq.(3.54) regarding the residual sensitivity to an

output sensor fault given by Eq. (3.37), it is seen both functions are affected by the observer gain matrix L throw the

transfer function O(q™',0) = (I -H (q_l,H)) whose expression is given by Eq. (3.18). As a consequence of that, when

forcing the isotonicity condition (4.3), the actuator fault residual sensitivity is affected such as it is the sensitivity to an

output sensor fault. Thus, the residual sensitivity to a fault at time instant k=0, i.e., when it appears is

$,(0)= ;if{lo S.(q".0)=0 (4.20)
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, independently of the observer gains such as it was shown in Eq. (3.56) and consequently, it is unaffected by
condition (4.3) . Conversely, the steady-state value is given by Eq. (3.57) (Section 3.3.4) and it can be expressed in

terms of matrices L, and L_ ,such as in Eq. (4.15) for the output sensor fault case, as it follows:
- - ~\- ~
5, () =limS,(¢7,0) = (1+C(0)(1 -A40)" (L, +L_)) C(H)(I —A(0)) 'F.(6) @.21)
, pciad
Thus, comparing Eq. 4.21) with Eq. (4.15) and taking into account what was mentioned in the beginning of this
section, it is concluded that the steady-state value of the elements of S, (¢”',0) for every value of 110 (Eq. (4.21))

may also increase its value regarding the case where that condition is not forced:

<

S, (%) c=p S, () ey | i=Lesny j=1eeenu (4.22)

assuming all non-zero-valued elements of C(6) are positive. In a general case, the conclusions obtained for the output

sensor case are also valid (Section 4.3.1.1). Thus, the relation given by Eq. (4.22) might be satisfied when the elements

of the observation gain matrix L are required to be negative.
4.3.2 Influence of the isotonicity condition on the residual

In Section 3.2.3 of Chapter 3, the effect of the observer gain matrix L on the residual time evolution was analyzed.
Mainly, this effect is described by Eq. (3.30) and its derived relation, (3.31), obtained assuming that all the elements of
matrices A and L are positive. Thereby, when these hypotheses are satisfied, the residual time evolution fulfils the
relation given by Eq. (3.31), as demonstrated in Appendix A. Nonetheless, the use of the isotonicity condition (4.3)
implies that 4 has some negative elements and therefore, as seen in Section 4.2.2, some elements of L may also be
required to be negative (L.). As a result, relation (3.31) may not be satisfied. Recalling the expression of Eq. (3.30) in

order to analyze it under the worst assumption that the isotonicity condition forces the non-zero-valued elements of

L_to be negative (non-zero-valued elements of C(6) are positive), this expression is re-written as:

r)=(1+H,47,0)) rk),_, = (1 +C(0)(ql - A®))" (L, + L_))_l r(k),_, @23)

As it can be seen in Eq. (4.23), the influence of the observer gain on the time evolution of the residual is determine by

the term (I +H (¢ ,49))_l . If the expression of this term is compared with the expression of the function S, (q”",0)
(Eq. (3.38)), the following relation could be set

(1+H,47.0) =5,47.0), 5., (4.24)

for every value of #[1@ . Considering just the steady state, it was aready explained in Section 4.3.1.1 that when all
the elements of matrices 4 and L are not positive, the relation given by Eq. (3.32) (Section 3.2.3) may not be satisfied
and consequently, according to the contractivity property of a linear system (Appendix B) the relation (3.31),

considered in steady state, may not be true when the condition (4.3) is forced. In this case, the residual may fulfil
|rz'(°°)L_C:0| < |rf(°°)1,_c:A_ | i=1-,ny (4.25)

for every value of # 1@ and as a result,

[7(2)pcc | O[7(@)pcmy | P51 smy (4.26)
what is an unexpected conclusion regarding the result mentioned in Section 3.2.3 (Eq. (3.31)). Moreover, concerning
the similarity between the expression of the residual r(k) and its associated adaptive threshold ry(k) (Section 3.2.2), it
must be taken into account that forcing the isotonicity condition may have a influence on the time evolution of the

adaptive threshold very similar to the described one for the residual case (Eq. (4.25), Eq. (4.26)):
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|ro‘ (°°)L_c=o| < |ro‘ (CO T | i=1--,ny 4.27)

for every value of § 1@ and

[, () cep | O 1 () | =iy (4.28)
Regarding the time evolution of the system output estimation interval, it may be also affected by the isotonicity
condition according to the definition of the interval residual given by Eq. (3.34) (Section 3.2.2). In consequence, the

interval associated with every component of the computed vector (k) may satisfy the next relation:

[5:()ccg | O 910y | i=1eesmy (4.29)
In Section 3.2.3, it was signalled out that the interval [ jz(k)] generated using the simulation approach encloses the

one generated by the observer and predictor approaches while the observer system output estimation interval
encloses the one generated by the predictor approach (Eq. (3.35)). Thus, according to Eq. (4.29), this result may not be
true since the output interval generated when the isotonicity condition is forced may enclose the one generated if that
condition would not be forced. Thereby, the system output estimation interval generated by an observer approach

might enclose the one generated by a simulator.

In conclusion, when the isotonicity condition (4.3) is forced to avoid the wrapping effect, [ jz(k)] may enclose the one
generated if that condition would not be forced. Then, according to the fault detection condition given by Eq. (3.24)
(Section 3.2.2), the interval observer will need a bigger fault in order to start indicating the fault. Then, it can be said

that avoiding the wrapping effect using the observer gain matrix L worsens the fault detection performance of the

interval observer model.

4.3.3 Influence of the isotonicity condition on the minimum
detectable fault function

In Section 3.4, the minimum detectable concept was introduced (Eq. (3.67)) and particularized for the cases of output
sensor fault (Eq. (3.72)), input sensor fault (Eq. (3.78)) and actuator fault (Eq. (3.81)). Moreover, the effect of the
observer gain matrix L on the time evolution of these functions was also analyzed. Then, in this section, the effect of
forcing the isotonicity condition (4.3) on the minimum detectable function is examined for each of the cases

mentioned previously.

4.3.3.1 Minimum detectable output sensor fault

The minimum detectable output sensor fault function is given by Eq. (3.72) which can be expressed in terms of the

matrices L, and L. as it follows:

SR k=1,)==845(q",0) " ry(k)=~F,(6)” (1 +C(0)(qI - A(0))” (L, + L—))"o(k)

(4.30)

where it must be taken into account that the observer adaptive threshold ry(k) given by the Eq. 3.21) (Section 3.2.2) is
affected by the isotonicity condition such as it was described in Section 4.3.2 (Eq. (4.28)). At time instant k=¢, when

the fault appears, the value of Eq. (4.30) (Section 3.4.4.1) is given by

£77(0)=~F,0)"r,1,) @31)
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Thus, given that forcing the isotonicity condition may widen the interval adaptive threshold regarding the case this

condition is not used (Eq. (4.28)), the initial value of every component of the vector f™"

5 mmay increase its absolute

value.

<

‘(f;;m (O)L_c=0 ) (fjr;in (O)L_C=A_ )l‘ i=1--,ny (4.32)

Regarding the steady-state value of this minimum fault function (Eq. (4.30)), it was demonstrated in Section 3.4.4.1

i

(Eq. (3.77)) that this value does not depend on the observer gain matrix L (Meseguer et al, 2007b).

In conclusion, when forcing the isotonicity condition, the minimum detectable output sensor fault vector is only
affected during its transient-state and not once it reaches its steady-state value. The transient-state values of this
function are bigger than the ones obtained when this condition is not used and consequently, this fact means that the
interval observer requires a bigger output sensor fault during the residual transient state caused by the fault to start

indicating the faulty situation.

4.3.3.2 Minimum detectable input sensor fault

The minimum detectable input sensor fault function is given by Eq. (3.78) which can be expressed in terms of the

matrices L,C and L. C as it follows:

SRk =1y)==8 (a7 0) 1y (k)= F,(0)" (C(0)(qI = A(0)~ L,C(0)~ LC(0)) B(8)) " ry(k)
k=t,

(4.33)

where matrix D is considered to be null.
At time instant k=¢, when the fault appears, the value of Eq. (4.33) (Section 3.4.4.2) is given by

fim0)=o (4.34)
Regarding the steady-state value of this minimum fault function (Eq.(4.33)), it was demonstrated in Section 3.4.4.2
(Eq. (3.80)) that this value does not depend on the observer gain matrix L.
Although neither the initial value of this function (Eq. (4.34)) nor its steady-state value are affected by the isotonicity
condition (4.3), its transient-state values may be influenced. Initially, they are basically affected by the threshold ry(k)
which may already be influenced (Eq. (4.28)) by this condition since time instant k=0 (Section 4.3.2). Conversely,
since time instant k=t,, the effect of that condition on the residual sensitivity function (Eq. (4.19)) starts counteracting
the effect on the adaptive threshold ry(k) until the function reaches its steady-state where its values does not depend
on the observer gain matrix L. Then, according to Eq. (4.28), the transient-state values of every component of the

min

vector f;" may increase its absolute value satisfying the next relation:

<

(fjr;m(k_to)L_c:A_) ‘ i=1-,ny

‘(f;;m (k=19)r.c=0 ) ; (4.35)

ty <k <o

i

Thus, such as it was mentioned in the minimum detectable output sensor case, when forcing the isotonicity condition,
the minimum detectable input sensor fault is also affected during its transient-state and not once it reaches its steady-
state value. The transient-state absolute values are also bigger than the ones obtained when this condition is not used
and consequently, the fault detection performance associated to the interval observer is also worsened when forcing

the isotonicity condition.

4.3.3.3 Influence on the minimum detectable actuator fault
The minimum detectable actuator fault function is given by Eq. (3.78) which can be expressed in terms of the matrices

L, and L. as it follows:
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i k=1y) = =S, (a70) 0y (k) = =G (g™ 007 (1+€(0) (gl = A(0)) ! (Lo + 1))y (k)

k=t

(4.36)

where Gy, is the system transfer function regarding the actuator fault f;, which does not depend on the observer gain
matrix L according to Eq. (3.5) (Section 3.2.1). On the other hand, comparing Eq. (4.36) with the obtained one for the
output sensor case (Eq. (4.30)), it is seen that both are affected by the observer gain matrix L in the same way and
consequently, the isotonicity condition (4.3) will also have the same effect on them. At time instant k=¢, when the

fault appears, the value of Eq. (4.36) (Section 3.4.4.3) is given by

S ;:in (0)=o (4.37)
Regarding the steady-state value of this minimum fault function (Eq.(4.36)), it was demonstrated in Section 3.4.4.3
(Eq. (3.83) ) that this value does not depend on the observer gain matrix L.
Then, such as it was explained for the input sensor case (Section 4.3.3.2), the effect of isotonicity condition on the
transient-state values are basically established by the influence of that condition on the adaptive threshold ry(k). In

consequence, the next relation may be satisfied

‘( ‘/l;m(k_to)l,_cw)
t, < k <oo

S‘( min(k_t) _ )‘ i:l’...’ny
; fa 0)Lc=a_), 4.38)
As a result, such as it was mentioned for output sensor and input sensor cases, when forcing the isotonicity condition,
the transient-state absolute values of the minimum actuator fault function are also bigger than the ones obtained
when this condition is not used and consequently, the fault detection performance associated to the interval observer

is also worsened when forcing that condition.

4.3.4 Influence of the isotonicity condition on the fault
detection persistency

In Section 3.4.3, it was explained that a fault is detected while its effect on the residual (residual disturbance d(k)
given by Eq. (3.64)) surpasses the interval observer threshold ry(k) which is originated by the effect of the model
structured uncertainty on the residual. This fault indication condition is given by Eq. (3.71). On the other hand, when
the isotonicity condition (4.3) is forced, both the interval observer threshold ry(k) (Section 4.3.2) and the residual
disturbance dgk) (Section 4.3.1) may be affected increasing their absolute values regarding the case where that
condition is not used. However, it must be taken into account that ry(k) is affected since k=0 while d4k) is since the
fault occurrence time instant k=¢, and is not fully affected until it does not reach its steady-state. In consequence, the
fault indication might be affected negatively during the transient-state caused by the fault requiring more time

instants to start indicating the fault or/and indicating the fault during less time instants.

4.4 Application example

4.4.1 Description

The application example proposed to illustrate the obtained results deals with an industrial smart actuator which has
been proposed as an FDI benchmark in the context of the European research training network DAMADICS (Fig.
4.1). This smart actuator is used in the evaporation station of a sugar factory in Poland and it consists in a control

valve, a pneumatic servomotor and a smart positioner (Bartys, 2002) (Fig. 4.2).
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Fig. 4.1 DAMADICS smart actuator. Fig. 4.2 DAMADICS smart actuator block diagram

Using physical modeling (Bartys, 2002) linearising around the operating point and a mixed optimization-
identification algorithm as in (Ploix et al, 1999), the following linear interval model of the actuator valve position has
been derived:

X(k+1)=A(0)x(k)+B(0)u(k)

) ) (4.39)
Y(k)=C(0)x(k)

with: £(6) =[2,(k)  %,(k) %K)

00 8 0
A@=|1 0 6|, B@O)=| 0|, cO)=[0 0 1] and uk)=CrP(k-2)
01 6 o

1 4

where: ,(k) is the valve position estimation, y(k) is the estimation of this position measured by the displacement
transducer (in Volt), CVP(k) is the command pressure (in Pascal) measured by a given input sensor and the uncertain

parameters are bounded by their confidence intervals according to: 6;/7[1.1417 1.1471], 6,/7[0.3995 0.4103], 6;/.7[-
0.5537 -0.5484], and 6,/7[2.180e-4 2.183e-4] while their nominal values are given by 6°;=1.1444, 6°,=0.4049, 6°;=

-0.5510, and 6°,=2.182¢-4. In this application example, a constant command pressure whose value is u(k)= I Pa
has been considered. According to (Cuguer6 et al, 2002), because some elements of 4(g) are negative, this model

suffers from the wrapping effect when the output interval [ i(k),;(k)] is calculated using a region-based algorithm.

Besides, this wrapping effect is not stable because the system matrix 4(g) is non-contractive (||A(0)||m >1).

The aim of using this application example is to show the influence of the wrapping effect on the observer output
interval generation when region-based algorithms are used. Then, when the isotonicity condition (4.3) is forced, the
wrapping effect is avoided and consequently, both region and trajectory-based approaches estimate the same output

interval at every time instant.

In order to obtain the system output estimation interval, [ i(k),;(k)], the interval observer defined by Eq. (4.1) is

used. Thereby, its input-output form can be obtained from Eq. (4.39) considering L=[ k3, k,, k1"

(k) =G(q" . 0Ouk)+H(q",0)y(k) =

-1
84(’1 )+

u(l) kg +hg” +hg” (440)
1+ (k =8)g ™ +(k, =6,)g 7 +(k,=6)q” L+ (k =8)g™ +(k, =6,)g " +(k, =6)q

= y(k)
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where k;, k; and k; are the observer gains used to avoid the wrapping effect and to enhance the interval fault
detection performance regarding the needed requirements. Conversely, in line with the actuator model (4.39), the
isotonicity condition (4.3) is satisfied whether

k, =6, (4.41)

Considering the parameterisation k, =/,6,, Eq. (4.41) implies /; = /. Concerning /; and /,, these observer gains must

guarantee the observer stability apart from enhancing fault detection performance. Thus, analyzing the observer

stability, the next values are considered
I =1=05 (4.42)

It must be taken into account that when the observer matrix A,(f) fulfils the isotonicity property, the region and

trajectory-based approaches compute the same system output estimation interval. Moreover, in this case, the

trajectory-based approach obtain this interval using two well-known values of the model parameter set: according to

(Cuguero et al., 2002), these values are 0 00" for the upper envelope §(k) and @ 00" for lower envelope y(k).

On the other hand, in this application example, in line with the done observer simulations and for the considered
observation gains, it can also be accepted that those parameter values let obtain the output envelopes in spite the
isotonicity condition is not fulfilled.

Regarding the observer residual, its expression is given by

r(k0)=~G(q” Ouik)+{1~H(g",0)) (k)=

- ol_p2_p 3 (4.43)
_ Gq . k) 1 f]’]q 8q _239 _—
1+(k,~6)q7" +(k,6,)g7 +(k; =8, )g 1+(k,~6)q7" +(k,~6, )47 +(k; =6, )q

In the following, the resulting system output estimation interval (4.40) is calculated using the region and trajectory-
based approaches in order to show the influence of the isotonicity condition (4.41). Assuming a small constant
additive fault affecting the system output sensor occurring at time instant #y)=200 and whose value is given by f= 0.01
Volt (roughly, 10% of the system output nominal steady-state value), the time evolution of the system output
estimation interval, its nominal value and the system output (green line) are plotted between the time instants ¢,=790
and #,=220 using /,=1,=[3=0.5. In this case, while the trajectory-based approach produces an accurate output interval
what let detect the fault (Fig. 4.3); the corresponding interval generated by the region-based algorithm is useless
because it suffers from unstable wrapping effect (Fig. 4.4) because the observer gains do not fulfil the isotonicity

condition (4.41).
In Fig. 4.5, the isotonicity condition is applied (/;=1) without changing the value of the others observer gains what let

avoid the wrapping effect when the region-based approach is used and besides, both approaches estimate the same

output interval and consequently and as a result, both of them can detect the fault.
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Trajectory based approach: Output interval estimation (Volt) / Output measurement (Volt)
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Fig. 4.3 Time evolution of the system output estimation interval, its nominal value and the output sensor measurement (green line) using a
trajectory-based algorithm where /,=/,= [5=0.5.

Region based approach: Output interval estimation (Volt) / Output measurement (Volt)
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Fig. 4.4 Time evolution of the estimated interval output, its nominal value and the output sensor measurement (green line) using a region-based
algorithm where /,=1,= [;=0.5.

Trajectory/Region based approaches:
Output interval estimation (Volt) / Output measurement (Volt)
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Fig. 4.5 Time evolution of the estimated interval output, its nominal value and the output sensor measurement (green line) using region and
trajectory-based algorithms and being /,=/,=0.5 and /;=1.

On the other hand, in Fig. 4.6 ([;=[,=0.5 and /3=0.97) it is shown the case the isotonicity condition is not satisfied but

the region-based approach suffers from a stable wrapping effect because ||A0 (t9)||oc <1 as a consequence of the value
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of /5. In this case, the output interval generated by the region-based approach (red lines) is wider than the
corresponding to the trajectory-based approach (blue lines) because of the output interval propagation error when a
region algorithm is used.

In the next sections, the goal of the application example is to show the influence of the isotonicity condition (4.41) on
the interval observer fault detection performance considering sensor and actuator faults. First, the effect on the
residual sensitivity to a fault, on the residual and on the interval observer threshold is analyzed. Then, the effect on
the minimum detectable fault function and on the residual disturbance caused by a fault is studied. Finally, some
sensor and actuator faults are applied in order to illustrate the influence of condition (4.41) on their detection. This
study is done considering two sets of observer gains: one of them fulfils condition (4.41) (/;=[,=0.5 and /;=1) while the
other does not (/;=1,=0.5 and [;=0). Besides, in this example, all the variables (residual sensitivity, threshold,

minimum detectable fault, residual disturbance caused by a fault) will be evaluated using the parameter lower bounds

000" instead of the corresponding interval parameters @ on behalf of the clearness of the plots shown in the

following sections.

Trajectory/Region based approaches:
Output interval estimation (Volt) / Output measurement (Volt)
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0075 I I I I I
190 195 200 205 210 215 220

Time(-)

Fig. 4.6 Time evolution of the estimated interval output, its nominal value and the output sensor measurement (green line) using region and
trajectory-based algorithms and being /,=/,=0.5 and /5=0.97.

4.4.2 Influence of the isotonicity condition on the residual
sensitivity to a fault function

The effect of forcing the isotonicity condition (4.3) on the time evolution of the residual sensitivity to a fault was
described in Section 4.3.1 for output sensors faults (), input sensors faults (f;) and actuators faults (f;). Thus, in this

section, the results obtained in Section 4.3.1 are particularized for the application example presented in Section 4.4.1.

4.4.2.1 Residual sensitivity to an output sensor fault

In the following, the application example is used to illustrate the effect of the isotonicity condition (4.3) on the
residual sensitivity to an output sensor described in Section 4.3.1.1. Thereby, considering the general expression of
this function given by Eq. (3.37) (Section 3.3.1) and particularizing for the example application (Eq. (4.39)) using its
residual expression (Eq. (4.43)), the output sensor fault residual sensitivity associated to the application example is

given by

118



, B} A 1-84¢7' -6,47 —64"
S,(a".0)=(1-H(g".0))G,(q".0)= o (4.44)

1k =8)g7 (k=847 + (k= 6)q”
where F), is assumed to be the identity matrix 1.

Then, the time evolution of the residual sensitivity to an output sensor fault (Eq. (4.44)) is plotted in Fig. 4.7 assuming
an abrupt fault modelled as a unit-step function and considering the observer gain sets mentioned previously: one

that satisfies the isotonicity condition (/;,=/,=0.5 and /;=1) and another that does not (/;=/,=0.5 and /;=0). Besides, as

it was already mentioned, instead of using the interval parameters 6, their associated lower bounds & are used

=

assuming the clearness of the plot,

Residual sensitivity to an additive output sensor fault (-)
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Fig. 4.7 Time evolution of the residual sensitivity associated to an additive abrupt output sensor fault considering two sets of observer gains and
using the parameter lower bounds.

Thereby, Fig. 4.7 shows that when the isotonicity condition (/5=1) is forced, the absolute value of the residual
sensitivity steady-state value increases (Eq.(4.16)). Regarding its dynamics, this is deeply affected but it is difficult to

say anything in general since it also depends on the system model.

4.4.2.2 Residual sensitivity to an input sensor fault

Regarding the effect of the isotonicity condition (4.3) on the time evolution of the residual sensitivity to an input fault,
it was described in Section 4.3.1.2. Thereby, when considering the application example, the residual sensitivity to an
input sensor fault is obtained particularizing its general expression given by Eq. (3.47) using the residual expression
associated to the application example (Eq. (4.43)):

04q_1
1+ (k, =6)g ™" +(k, =6,)q~ +(k, —8,)q"

S.(q".0)=-G(q",0)F,(0)=- (4.45)

where F, is equal to the identity matrix 1.

Considering the two observer gain sets mentioned above, (/;=1,=0.5 and /;=1) and (/;,=1,=0.5 and /5=0), and assuming
an abrupt fault modelled as a unit-step function, the time evolution of the residual sensitivity (Eq. (4.45))is plotted in

Fig. 4.8 using the parameter values given by 8 such as it was explained in the output sensor fault residual sensitivity

case.
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Fig. 4.8 shows the effect of forcing the isotonicity condition (4.3) on the residual sensitivity dynamics and steady-
state value. According to Eq. (4.19), when that condition (/;=1) is fulfilled, the absolute value of the input sensor fault
residual sensitivity steady-state value increases. Regarding its dynamics, this is deeply affected but it is difficult to
say anything in general since it also depends on the system model.

X 10‘3 Residual sensitivity to an input sensor fault (Volt/Pa)

25r bt
11=12=0.5 and I13=1
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0 I I I I I I I I I I I
5 10 15 20 25 30 35 40 45 50 55 60

Time (-)

Fig. 4.8 Time evolution of the residual sensitivity associated to an additive abrupt input sensor fault considering two sets of observer gains and
using the parameter lower bounds.

4.4.2.3 Residual sensitivity to an actuator fault

Regarding the effect of the isotonicity condition (4.3) on the time evolution of the residual sensitivity to an actuator
fault, it was described in Section Section 4.3.1.3. Thus, when considering the application example, the residual

sensitivity to an actuator fault (Eq. (3.54)) can be particularized using the residual expression given by Eq. (4.43):

S.(¢".0)=(I-H(g".0)G,(¢g".0)= 1-64" -64" ~604"
Ja P ? Ja ’ 1+(k1 _Hl)q_l +(k2 _Hz)q_z +(k3 _93)61_3

G.(q™.0) (4.46)
where Gy, is given by Eq. (3.5). Then, for this application example, it is assumed that this transfer function satisfies

the following expression:
G.(¢".0)=Gq".9),, “47)

Considering the two observer gain sets mentioned previously, (/,=/,=0.5 and /;=1) and (/,=[,=0.5 and /5=0), and
assuming an abrupt fault modelled as a unit-step function, the time evolution of the residual sensitivity (Eq. (4.46)) is

drawn in Fig. 4.9 using the parameter values given by 6.

Fig. 4.9 shows the effect of forcing the isotonicity condition (4.3) on the residual sensitivity dynamics and steady-
state value. According to Eq.(4.22), when that condition (/5=1) is fulfilled, the absolute value of the actuator fault
residual sensitivity steady-state value increases. Regarding its dynamics, this is deeply affected but it is difficult to

say anything in general since it also depends on the system model.
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Residual sensitivity to an actuator fault (Volt/Pa)
0.025 T T T

0.02-

11=12=0.5 and 13=1
0.015-

Sensitivity

0.01-

0.005 -

11=12=0.5 and 13=0
[ —

L L L L L L L L L L
50 100 150 200 250 300 350 400 450 500 550 600
Time (-)

Fig. 4.9 Time evolution of the residual sensitivity associated to an additive abrupt actuator fault considering two sets of observer gains and using
the parameter lower bounds.

4.4.3 Influence of the isotonicity condition on the adaptive
threshold

In Section 4.3.2, the effect of the isotonicity condition (4.3) on time evolution of the residual and the adaptive
threshold was analyzed. In this section, the obtained results are particularized for the application example case
described in Section 4.4.1. Then, assuming a scenario free of faults and nuisance inputs, the observer adaptive
threshold is given by Eq. (4.43) according to Eq. (3.62) (Section 3.3.5). Then, using the two observer gain sets
mentioned above, (/;=[,=0.5 and /;=1) and (/;=,=0.5 and /;=0), the time evolution of the observer threshold is plotted

in Fig. 4.10 using the parameter values given by &.

Trajectory based approach: Interval observer threshold (Volt)
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Fig. 4.10 Time evolution of the observer adaptive threshold considering two sets of observer gains and using the parameter lower bounds..
Fig. 4.10 confirms the conclusions mentioned previously (Eq. (4.28)) when the isotonicity condition (4.3) (/;=1) is

forced. In this case, the adaptive threshold generated by the interval observer increases its values worsening the fault

detection as bigger faults will be required in order to detect them.
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4.4.4 Influence of the isotonicity condition on the minimum
detectable fault function

In Section 4.3.3, the effect of the isotonicity condition (4.3) on the minimum detectable fault function was analyzed
particularizing this function for output sensor faults (Section 4.3.3.1), input sensor faults (Section 4.3.3.2) and
actuator faults (Section 4.3.3.3). Then, in this section, the main obtained conclusions are illustrated when the

monitored system is given by the application example described in Section 4.4.1.

4.4.4.1 Minimum detectable output sensor fault

In the following, using the application example, the effect of forcing the isotonicity condition on the minimum
detectable output sensor fault function can be illustrated. In this case, this function is given by Eq. (3.67) using the
fault residual sensitivity to an output sensor fault given by Eq. (4.44) and the interval observer threshold given by Fig.
4.10. Thus, the considered function can be expressed as it follows:

_1+(k _‘91)‘1_1 +(k, _‘92)‘1_2 +(k; _‘93)‘1

-3
ff;r/”n(k_t()): iy -2 -3 r()(k)
1-6q -6, " —06yq

(4.48)
k=t

Considering the two observer gain sets, (/;=/,=0.5 and /;=1) and (/;=1,=0.5 and /;=0), and assuming the fault

occurrence time instant (¢y) is 400, the time evolution of the minimum detectable fault function is plotted in Fig. 4.11

using the parameter values given by § .

Minimum detectable output sensor fault (Volt)
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Fig. 4.11 Time evolution of the minimum detectable output sensor fault function considering two sets of observer gains and using the parameter
lower bounds.

In Fig. 4.11, it is shown forcing the isotonicity condition (4.3) has no effect on the steady-state value of the minimum
detectable output sensor fault function according to Eq. (3.77), since its effect on the residual sensitivity and on the
interval observer threshold counteract each other. On the other hand, that function is affected during its transitory
state because the influence of that condition on the interval observer threshold. It must be taken into account that the
function value at fault occurrence time instant is basically determined by the threshold value at this time instant

(Eq.4.3D)).

4.4.4.2 Minimum detectable input sensor fault
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For the case of the minimum detectable input sensor fault (Section 4.3.3.2), this function is determined by Eq. (3.67)
using the residual sensitivity to an input sensor fault given by Eq. (4.45) and the interval observer threshold given by
Fig. 4.10 when the application example system. Then, its expression is given by

_1+(k,=6)q” +(k;=6,)g7 +(k; =6, )g” (k)

i (k=1ty) =
6,q (4.49)

k=1,

In this case, it must be taken into account that this function is not causal (Section 3.4.1): it is not defined at its initial
time instant (k=t;). At this time instant, the function values do not depend on the observer gain: it is later when the
observation gain influence appears. Thereby, such as it was mentioned en Section 3.4.1, the procedure given by
(Peng et al., 1997) must be applied in order to turn Eq. (4.49) into a causal function. In this case, this procedure

consists in delaying this function one time instant:

i (k=ty) = fr" (k=ty)q”! (4.50)

Considering the two observer gain sets, (/;=/,=0.5 and /;=1) and (/;=1,=0.5 and /;=0), and assuming the fault
occurrence time instant (#y) is 400, the time evolution of the minimum detectable fault function is plotted in Fig. 4.12

using the parameter values given by &.
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Fig. 4.12 Time evolution of the minimum detectable input sensor fault function considering two sets of observer gains and using the parameter
lower bounds.

In this figure, it is seen that forcing the isotonicity condition has no effect on the steady-state value of this function,
such as it was mentioned previously. In opposition, it is affected during its transitory-state as consequence of the
influence of this condition on the interval observer threshold. In short, Fig. 4.12 shows the influence of the

isotonicity condition on the time evolution of that function is the same than the output sensor case seen in Fig. 4.11.

4.4.4.3 Influence on the minimum detectable actuator fault

In this case, considering the application example, the minimum detectable actuator fault function is given by Eq.
(3.67) using the residual sensitivity to an actuator fault given by Eq. (4.46) and the interval observer threshold given by

Fig. 4.10. Thus, this function can be expressed as it follows:
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-1 1+(k1_91)‘]_1+(k2_92)‘1_2 +(k3_93)q_3r (k)
_ _ — 0
1-6q - 2‘12_ 3‘13

min _ - _ -1 p
i k=1,)=~(G(g™ 0,y ) s

k=t

In this case, it must be taken into account that this function is not causal either (Section 3.4.1) as the function
associated to the minimum input sensor fault (Eq. (4.49)) analyzed in the previous section. Consequently, the
procedure given by (Peng et al., 1997) must be considered to turn Eq. (4.51) into a causal function. Then, Eq. (4.51) is

delayed one time instant resulting the following equation:
il (k=ty) = fr" (k=ty)q™" “52)
Considering the two observer gain sets, (/;=/,=0.5 and /;=1) and (/;=[,=0.5 and /;=0), and assuming the fault

occurrence time instant (7)) is 400, the time evolution of the minimum detectable fault function is plotted in Fig. 4.13

using the parameter values given by § .

Such as it was shown in the output and input sensor fault cases, Fig. 4.13 shows that the minimum detectable
actuator fault function is also only affected by the isotonicity condition during its transitory-state. Once this function
reaches its steady-state value, this condition has no longer influence on the values of this function.
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Fig. 4.13 Time evolution of the minimum detectable actuator fault function considering two sets of observer gains and using the parameter lower
bounds.

4.4.5 Influence of the isotonicity condition on the fault
detection persistency

In Section 4.3.4, the effect of the isotonicity condition (4.3) on the fault indication test (Eq. (3.71)) was described.
Then, this effect is illustrated in the following subsections when considering the example application system

considering output sensor faults, input sensor faults and actuator faults.

4.4.5.1 Influence on the residual disturbance caused by an output sensor fault and on
the fault indication

In this example, a fault occurring at #,=400 whose value is f=-0.02 Volt (roughly, 20% of the system output nominal

steady-state value) is considered. Then, considering the two observer gain sets, (/,=/,=0.5 and /;=1) and (/,=/,=0.5
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and /;=0), the time evolution of the interval adaptive threshold, [ry(k)] (dashed line), and the interval residual
disturbance originated by the fault, [-d«k)] (solid line), are plotted in Fig. 4.14. According to Eq. (3.71) (Section
3.4.3), the fault can not be indicated while [ry(k)] contains [-dgk)] since the effect of the fault on the residual does

not counteract the one caused by the model uncertainty.

Fig. 4.14 shows that when the isotonicity condition is forced (/5=1) (upper plof), the interval adaptive threshold
[ro(k)] widens regarding the case where that condition is not forced (lower plof) and consequently, the fault
indication persistency worsens . As soon as the fault residual disturbance values decrease, as a consequence of the
output sensor fault residual sensitivity time evolution (Eq. (4.44); Fig. 4.7), it is contained into the interval related to

the adaptive threshold and as a result, the fault can no longer be indicated (Eq. (3.71)).

Output sensor fault: residual disturbance (Volt) - interval observer threshold (Volt)
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Fig. 4.14 Time evolution of the interval fault residual disturbance (solid line) and the interval observer threshold (dashed line) considering two sets
of observer gains where the occurrence of a constant output sensor fault whose value is -0.02 Volt at time instant #,=400 is considered.

4.4.5.2 Influence on the residual disturbance caused by an input sensor fault and on the
fault indication

In this case, an input sensor fault occurring at #y=400 whose value is f=-9 Pa (roughly, 9 times bigger than the input
used in Section 4.3) is considered. Then, considering the two observer gain sets, (/;=/,=0.5 and /;=1) and (/,=[,=0.5
and /5=0), the time evolution of the interval adaptive threshold [ry(k)] and the interval residual disturbance originated

by the fault [-d/(k)] are plotted in Fig. 4.15.

Such as it was mentioned in the output sensor fault case, when forcing the isotonicity condition (upper plot), the fault
indication worsens regarding the case in which this condition was not forced (lower plot). In this case, as a
consequence of the interval adaptive threshold widening, the input sensor fault residual disturbance requires more

time to exceed the adaptive threshold than the case where the isotonicity condition is not forced.
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Input sensor fault: residual disturbance (Volt) - interval observer threshold (Volt)
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Fig. 4.15 Time evolution of the interval fault residual disturbance (solid line) and the interval observer threshold (dashed line) considering two sets
of observer gains where the occurrence of a constant input sensor fault whose value is -9 Pa at time instant #=400 is considered.

4.4.5.3 Influence on the residual disturbance caused by an actuator fault and on the
fault indication

In this case, an actuator fault occurring at #y=400 whose value is f=-9 Pa (roughly, 9 times bigger than the input used
in Section 4.3) is considered. Then, considering the two observer gain sets, (/;=/,=0.5 and /5=1) and (/,=/,=0.5 and
/;=0), the time evolution of the interval adaptive threshold [ry(k)] and the interval residual disturbance originated by
the fault [-d/(k)] are plotted in Fig. 4.16.

Such as it was mentioned in the input sensor fault case, when forcing the isotonicity condition (upper plof), the fault
indication worsens regarding the case in which this condition is not forced (lower plof). In this case, when the
isotonicity condition is forced, the actuator fault residual disturbance also requires more time to exceed the adaptive
threshold as a consequence of the adaptive threshold interval widening.

Actuator fault: residual disturbance (Volt) - interval observer threshold (Volt)
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Fig. 4.16 Time evolution of the interval fault residual disturbance (solid line) and the interval observer threshold (dashed line) considering the two
sets of observer gains where the occurrence of a constant actuator fault whose value is -9 Pa at time instant £)=400 is considered.

4.4.5.4 Output sensor fault detection

In this case, an output sensor fault occurring at time instant ;=400 and whose value is given by f= -0.06 Volt

(roughly, 60% of the system output nominal steady-state value) is considered. In Fig. 4.17, the time evolution of the
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system output estimation interval, its nominal value and the system output measurement (green line) is plotted using
a trajectory-based approach and an observer gain set which does not satisfy the isotonicity condition: (/,=/,=0.5 and
15=0). Besides, at the bottom of the figure, a fault indicator activated when the fault is detected (red line) is also
plotted. On the other hand, in Fig. 4.18, the same functions are plotted but this time using an observer gain set which
fulfils that isotonicity condition (/,=/,=0.5 and /5=1).

Comparing Fig. 4.18 where the isotonicity condition is forced regarding Fig. 4.17 where it is not, it is seen clearly
that this condition that allow avoiding the wrapping effect widens the system output estimation interval computed by
the observer such as it was already mentioned in the relation (4.29) (Section 4.4.2). As a result, this comparison points
out that the fault indication is worsened when the isotonicity condition is forced such as it was mentioned in Section

4.4.2 and in Section 4.4.4.

Trajectory based approach: Output interval estimation (Volt) / Output measurement (Volt)
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Fig. 4.17 Time evolution of the estimated interval output, its nominal value and the output sensor measurement (green line) using an observer
gain set which does not fulfil the isotonicity condition (/,=/,=0.5 and /;=0) and considering an output sensor fault whose value is -0.06 Volt at time
instant ¢,/=400.

Trajectory based approach: Output interval estimation (Volt) / Output measurement (Volt)
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Fig. 4.18 Time evolution of the estimated interval output, its nominal value and the output sensor measurement (green line) using an observer gain
set which fulfils the isotonicity condition (/,=/,=0.5 and /5=1) and considering an output sensor fault whose value is -0.06 Volt at time instant
t=400.

4.4.5.5 Input sensor fault detection

In this case, an input sensor fault occurring at time instant ¢,=400 whose value is given by /= -6 Pa (roughly, 6 times

bigger than the input used in Section 4.3) is considered. In Fig. 4.19, the time evolution of the system output
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estimation interval, its nominal value and the system output measurement (green line) is plotted using a trajectory-
based approach and an observer gain set which does not satisfy the isotonicity condition: (/,=/,=0.5 and /5=0) while
in Fig. 4.20, the same scenario is plotted but using an observer gain set which fulfils the isotonicity condition

(11212:0.5 and 13:1).

Comparing Fig. 4.20 (/;=1,=0.5 and /5=1) and Fig. 4.19 ({;=1,=0.5 and /5=0), it is also seen clearly that the isotonicity
condition widens the system output estimation interval (Section 4.4.2) and consequently, the observer fault detection
performance is worsened such as it was shown in the previous section for the output sensor case.

Trajectory based approach: Output interval estimation (Volt) / Output measurement (Volt)
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Fig. 4.19 Time evolution of the estimated interval output, its nominal value and the output sensor measurement (green line) using an observer gain
set which does not fulfil the isotonicity condition (/,=/,=0.5 and /;=0) and considering an input sensor fault whose value is -6 Pa at time instant
1,~=400.

Trajectory based approach: Output interval estimation (Volt) / Output measurement (Volt)
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Fig. 4.20 Time evolution of the estimated interval output, its nominal value and the output sensor measurement (green line) using an observer gain
set which fulfils the isotonicity condition (/;,=/,=0.5 and /;=1) and considering an input sensor fault whose value is -6 Pa at time instant #,=400.

4.4.5.6 Actuator fault detection

In this case, an actuator fault occurring at time instant #,=400 whose value is given by f= -1 Pa (roughly, /0 times
bigger than the input used in Section 4.3) is considered. In Fig. 4.21, the time evolution of the system output
estimation interval, its nominal value and the system output measurement (green line) is plotted using a trajectory-

based approach and an observer gain set which does not satisfy the isotonicity condition: (/,=/,=0.5 and /5=0) while
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in Fig. 4.22, the same scenario is plotted but using an observer gain set which fulfils the isotonicity condition
(11212:0.5 and 13:1).

Comparing Fig. 4.22 (I,=1,=0.5 and I5=1) and Fig. 4.21 (I;=[,=0.5 and /5=0), it is also seen clearly that the isotonicity
condition widens the system output estimation interval (Section 4.4.2) such as mentioned for the output and input
sensor fault cases shown in the previous sections. Thus, in the actuator fault case, the observer fault detection

performance is also influenced negatively.

Trajectory based approach: Output interval estimation (Volt) / Output measurement (Volt)
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Fig. 4.21 Time evolution of the estimated interval output, its nominal value and the output sensor measurement (green line) using an observer gain
set which does not fulfil the isotonicity condition (/,=/,=0.5 and /;=0) and considering an actuator fault whose value is -/ Pa at time instant #,=400.

Trajectory based approach: Output interval estimation (Volt) / Output measurement (Volt)
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Fig. 4.22 Time evolution of the estimated interval output, its nominal value and the output sensor measurement (green line) using an observer gain
set which fulfils the isotonicity condition (/,=/,=0.5 and /;=1) and considering an actuator fault whose value is -/ Pa at time instant #,=400.

4.5 Conclusions

According to the point (b) of fault detection objectives (Section 2.5.1), this chapter shows a method to avoid the
wrapping effect which is affecting an interval model when it is computed using a low computational algorithm
(“region-based approach”). It is demonstrated that it is not necessary to use a high computational algorithm
(“trajectory-based approach”) to avoid this effect but it is enough to consider an interval observer model whose
observer gain matrix L has been properly designed. In fact, this method is only based on turning the non-isotonic
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model matrix into an isotonic one using the mentioned matrix L. (L= L,+L_). This chapter also shows that designing
L to avoid the wrapping effect may apparently worsen the observer fault detection performance. However, analyzing
the main observer fault detection properties, it can be seen that a proper design of L, might counteract the negative

effect of L. regarding fault detection performance, although this task is out of the scope of this thesis.
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CHAPTER §

Approximating fault detection linear interval

observers using A-order interval predictors

5.1 Introduction

Model based fault detection can use different types of model representation in order to generate the residual. In case
of model parameter uncertainty, a model whose parameter values are bounded by intervals, known as an interval
model, is usually considered such as it was described in Chapter 3 and Chapter 4. This chapter is focused on finding
the equivalence between interval observers and A-order interval predictors regarding fault detection since predictor
models avoid those problems associated with the state estimation such as the wrapping effect (Section 2.3.2.5 of
Chapter 2). In (Chow et al, 1984), a minimum order predictor (“dead-beat observer” (Patton et al, 1991)) was
obtained from a state-space model but regarding fault detection, this model does not show appealing properties as its
fault indication persistence is minimum and given by the system order (Meseguer et al, 2006a). This chapter mainly
deals with a generalization of the “dead-beat observer” method since given an interval observer whose fault
detection properties have been carefully designed using the observation gain (Meseguer et al, 2006b), an equivalent
A-order predictor is obtained which has the same fault detection behaviour but avoids those drawbacks related to the
state estimation when region-based (set-based) algorithms (Section 2.3.2.5) are used. According to (Gertler, 1998),
an observer can be described by an ARMA model, i.e, by an IIR filter. On the other hand, a A-order predictor can be
described by a MA model of order ), i.e, by an FIR filter. It is known from the literature that an IIR filter (i.e.
ARMA model) can be approximated by a FIR filter (i.e, MA model) of infinite order. This fact will be used in this
chapter to approximate fault detection linear interval observers by A-order interval predictors. This will allow that
given a particular linear interval observer, a predictor of order A with an equivalent a fault detection performance can
be found.

In the literature, the importance of the fault residual sensitivity regarding the quality of the fault indication is noticed
by (Gertler, 1998). According to (Chen et al, 1999), when an interval observer is considered, the observer gain plays
an important role because it determines the time evolution of the fault residual sensitivity and the associated adaptive
threshold derived from the model structured uncertainty. As a result, and such as it was shown in Chapter 3 based on
(Meseguer et al., 2007b), the observer gain determines the observer fault detection properties.

However, as seen in Chapter 4, when the model matrix does not fulfil the isotonicity property (Cuguero et al, 2002),
interval observers can suffer from wrapping effect if low computational algorithms, as the region-based approaches

coming from the interval community, are used (Puig et al, 2005a). In this chapter based on (Meseguer et al., 2008a),
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it was demonstrated that designing properly the observer gain matrix, the wrapping effect can be avoided. This
design is based on forcing that the observer state-space matrix fulfils the isotonicity property. Nonetheless, if the
equivalent A\-order predictor were used in this case, the wrapping effect would be also avoided as these models do
not suffer from that effect since their estimations are only based on measurements. Besides, if the observer were
isotonic using or not the conditions given by (Meseguer et al., 2008a), the equivalent predictor could be computed
using two known point-wise trajectories given by the lower and upper bounds of the uncertain parameters (Cuguer6
et al, 2002) what has an appealing low computational cost. If the observer were not isotonic, the equivalent predictor
would have to be computed using the general trajectory-based approach which has a high computational cost.

The structure of the Chapter 5 remainder is the following: the way to obtain an A-order predictor equivalent to an
interval observer is presented in Section 5.2. In the following (Section 5.3), the behaviour of observers and their
equivalent predictors is analyzed when applied to fault detection in order to show their equivalence. Finally (Section

5.4), an example based on an industrial servo actuator will be used to illustrate the derived results.

5.2 Equivalence between interval predictors and
interval observers

As illustrated in Chatper 3 (Section 3.2.1), the monitored system can be described by a MIMO linear uncertain

dynamic model in discrete-time whose state-space form considering faults is
X(k+1)=A(0)x(k)+B(0 )uy(k)+F,(0)f,(k)
y(k)=C(0)x(k)+F,(0)f,(k)

where y(k)00", uok)00™, x(k)OO™ are the system output, input and the state-space vectors respectively;

(.1

A(6)00™ ™ B(0)O0™™ and C()O0™ ™ are the state, the input and the output matrices respectively; 6 10"¢
is the system parameter vector; f,(k)00" and f,(k)00™ are faults in the system output sensors and actuators

respectively being F,( 0 ) and F,( 0) their associated matrices. Regarding the system model representation used in

Section 3.2.1 (Eq. (3.1)), the system model considered in this section (Eq. (5.1)) neglects the effect of direct

transmission matrix D( @) since it has no influence in the derived results and genrally, it is considered zero-valued.

5.2.1 Observer

As it was mentioned in Section 3.2.1, assuming the observability for all 000 the system described by Eq. (5.1) can

be monitored using a linear observer with Luenberger structure based on an interval model whose model parameters

0 are bounded by an interval set @ :{0 minkd

0<6< @} which represents the uncertainty about the exact knowledge

of real system parameters @ . Thus, this interval observer can be written as:
x(k +1) = (A(0) = LC(0))x(k) + B(@)u(k) + Ly(k) = A,(0)x(k) + B(0)u(k) + Ly(k) 52)
y(k) = C(0)x(k) '
In Chapter 3 (Section 3.2.1), it was noticed that two particular cases could be distinguished in the observer model
structure: the simulator (L=0 assuming system stability (Chow et al, 1984)) and the predictor (L= L, (Chow et al,

1984)). According to (Patton et al, 1991), the predictor obtained forcing L= L, is the predictor of minimum order
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(“dead-beat observer”) which can only indicate a fault for a minimum time instants given by the system order. In
line with the main conclusions of Chapter 3 based on the results of (Meseguer et al, 2007b), when an observer is
considered (L= L,"*), the fault indication is more persistent for a certain value of L, than the corresponding one to the
dead-beat observer and consequently, the observer model structure seems to be more suitable in order to enhance the
fault detection performance of a certain model.

As it was shown in Section 3.2.1, the observer given by Eq. (5.2) can be expressed in transfer function form using the

g-transform and considering zero initial conditions as it follows:

¥k)=G,(q".0)uk)+H,(q¢7",0)y(k) (53)
where:

G,(q7'.0)=C(0)(1-97'4,(0))" B(0)q”" (5.4)

H,(q'.0)=C(0)(I1-q7"'4,(0))" Lq” (5.5)

The sub index ‘o’ indicates these transfer functions are associated to the observer model. Besides, comparing these
functions with those obtained in Section 3.2.1 (Eq. (3.12) and Eq. (3.13)), it can be seen there is no difference
neglecting the direct transmission matrix D(6). Regarding the system output measurement, y(k), and the system
input measurement, #(k), it must be taken into account that their expressions are given by Eq. (3.2) and Eq. (3.8)

respectively shown in Section 3.2.1
5.2.2 Predictor

On the other hand, the system described by Eq. (5.1) could be also monitored using a linear interval predictor. This
model can be written as it follows

y(k+1)=A,0)y(k)+ B, (0)u(k) (5.6)

where matrices 4,(0)00"" and B,(@)00™ " are obtained from the system model (5.1) and the predictor parameter
vector is defined such it was in Section 3.2.1. Using the method given by (Patton et al, 1991) or (Ploix et al, 2006),
the predictor of minimum order is obtained which behaves like an observer when the condition L= L, is satisfied.
According to (Patton et al, 1991), the fault indication given by this predictor ( “dead-beat observer’’) has a minimum
persistence when the fault is not persistently indicated (weak fault detection) (Section 3.4.2) what may origin a poor
performance of the fault detection module causing a wrong fault diagnosis result. Considering this drawback, this
chapter is focused on obtaining a A-order predictor which behaves like an observer for a given value of L. This
method can be viewed as a generalization of the approaches given by (Patton et al, 1991) and (Ploix et al, 2006).

Equivalently, the predictor given by Eq. (5.6) can also be expressed in transfer function form using the shift operator

g and assuming zero initial conditions as it follows:

Wk)=G,(q".0)u(k)+H ,(q7'.0)y(k) 5.7)

where:
G,(¢".0)=B,(0)g" 5:8)
H,(q7.0)=4,(0)5” (5.9)

and the sub index ‘p’ indicates these transfer functions are associated with the predictor model.

14 L, is a set of observer gains that places all the observer eigenvalues between the ones related to the monitored system (simulation approach)
and the origin (prediction approach)
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5.2.3 Equivalence between A-order interval predictors and

interval observers

Propagating the observer equation (5.2) k times forward, starting from k=0, the predicted output at time £ can be
determined as
k k
P(k)=C(0)A4,(0)"%(0)+ C(0)4,(0)"" B(O)u(k=v)+) C(6)A,(0) " Ly(k-v) (5.10)
v=l v=1
for every value of 11O .
The current estimated output not only depends on the initial state, but also on the last £k measurements of the system
inputs and outputs. The contribution of the states depends on the dynamics of the observer and as a result, if & is large
enough, the contribution of the initial state x(0) to the output estimation p(k) can be dismissed. Thereby, this
simplification can be assumed if the next relation is satisfied:
A (0) =(A(0)-LC(0))} =0 0000, k> (5.11)

where A is the time window which assures the fulfilment of the relation (5.11). Equivalently, it can be said that the

dynamics of the observer has vanished some steps ago. Then, the predicted output can be approximated through

A A
(k)= ZC(&)AU(H)V"B(a)q‘”‘“}u(k—1){ZC(a)Ao(a)”"Lq‘”‘“ y(k=1) (5.12)

v=1 y=]

which is exactly equal to the predictor expression given by Eq. (5.6) and therefore, this especial interval observer
,where the contribution of the initial x(0) can be obviated if the relation (5.11) is satisfied, can be seen as a interval
predictor of order A which compute at every time instant, roughly, the same system output estimation interval.
Comparing Eq. (5.6) with Eq. (5.12), the matrices of the predictor model related to those of the interval observer are

obtained resulting

A

A,(q7,0)=.C(0)4,(0) Lg™"™" (5.13)
v=l
A

B,(q7,0)=) C(0)A4,(0)" B(6)g"™" (5.14)
v=l

The inspection of these equations shows that the relationship between the interval observer and the interval predictor
scheme is given in terms of the observer matrix 4,, which depends on the observer gain matrix L. This gain not only
determines the observer behaviour but also the order A of the equivalent predictor. The interval predictor given by Eq
(5.12) is a closed-loop predictor since it uses measurements of past system inputs and outputs to predict the present
system output.

From Eq. (5.12), it follows that if the particular case of L=0 corresponding to a simulator were considered, predictor
(5.12) would have been an open-loop predictor that only uses measurements of past system inputs to predict the

present system output.

In order to derive analytically the order A\ of the equivalent interval predictor to a given interval observer, the

following proposition can be used:
Proposition 1 (Puig et al, 2003b). Let us consider that the interval observer given by Eq. (5.2) is asymptotic stable.

Then, for a k>[, where
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lé‘ = max M (5.15)
000 log p(0)
,the condition given by Eq. (5.16) is fulfilled with a desired degree of approximation e:
4,0 =H[A(0)—LC(0)]ku —¢=0 0O0O (5.16)

, where p is the spectral radius of the interval observer matrix 4, determined by the maximum absolute value of all
the eigenvalues of this matrix and « is the condition number of 4, whose value is determined by the result of the
following matrix product: ||4,]|.|| 4,”||. A matrix with a high & is said to be ill-conditioned, otherwise it is considered
well-conditioned.

Thus, Eq. (5.15) describes the equivalent predictor order dependence regarding the observer gain matrix L. The bigger
is the norm of L, the observer poles tend to zero and consequently, so does the spectral radius. Then, according to Eq.
(5.15), the lower is the order A of the obtained equivalent predictor. When L= L, the observer is a “dead-beat
observer” (Patton et al, 1991), and thus, o tends to zero what provokes /. to tend to its minimum value given by the
system order. Otherwise, when L= 0, the observer is a simulator (Chow et al, 1984), and p tends to its maximum

value given by one, and thus, /. tends to an infinite value.

5.2.4 Computational complexity

(Puig et al, 2005a) shows the problem of interval observation can be translated to an interval simulation. As it is
noticed by (Ploix et al, 20006), interval simulation requires lots of computations at each sample time, being generally
incompatible with real-time constraint needed by the fault detection module when applied to complex dynamic
system (trajectory-based algorithm). The reason is that, except for some particular cases, the recurrence leads to
replace state-space value sets by simpler outer value sets, such as boxes or ellipsoids what yields some over-
estimations. The propagation of these approximations (using a region-based algorithm) induces an accumulation of
errors leading to an explosion of the computed sets (wrapping effect) (Puig et al, 2005a) such as it was also analyzed
along the Chapter 4. On the other hand, checking on a finite horizon, such as parity space approach does, avoids this
drawback because the integration over a long time window is not required. However, as noticed in previous section,
parity space approach produces a minimum order predictor that has a response equivalent to a “dead-beat observer”.
Thus, as it is known (Puig et al, 2002a), when applied to fault detection, the minimum order predictor (or “dead-beat
observer”) is highly sensitive to noise and, depending on the fault, only indicates the fault at its occurrence time
instant. Conversely, observer models through the observer gain can filter noise and indicate the fault presence for
longer time as illustrated in Chapter 3 derived from the results obtained in (Meseguer et al, 2007b). This motivates
the use of higher order predictors with a fault detection performance equivalent to the behaviour of an observer but
without the drawback of being affected by the wrapping effect, such as demonstrated in Chapter 4. However,
although the wrapping effect problem is avoided, computational complexity still remains since optimization
problems related to compute a higher-order predictor equivalent to a given observer are non-linear regarding the
parameters (trajectory-based algorithms). Then, in order to guarantee the tightest interval bounding output
prediction, a global optimization algorithm should be used since the optimization problem is non-convex. The only
case in which such computational complexity can be reduced is when higher order predictor comes from an observer

whose matrix 4 (@) has all elements positive (isotonic matrix). In this case, the estimation interval for each system
output prediction can be obtained evaluating the model uncertain parameters using two point-wise sets determined by

their lower and upper interval bound (3, (k) = j,(k,0) and j (k) = j,(k,0)) (Cuguer6 et al, 2002). Then, the equivalent
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A-order predictor interval output can be also computed using these two known point-wise trajectories as Eq. (5.15)

forces each observer trajectory to be equivalent to the associated predictor trajectory. In this case, the output
estimation generated by the equivalent interval observer would also be computationally cheap since a set propagation
based approach (region-based algorithm) can be applied. This is because in this case the interval observer is
unaffected by the wrapping effect (Puig et al, 2005a). Besides, it should be taken into account that the elements of

A,(0) can be forced to be positive through the observer gain matrix L (Meseguer et al, 2008a) such as it was shown

in Chapter 4 (Section 4.2.2).
5.3 Application to fault detection

5.3.1 Residual generation and evaluation

As mentioned in Chapter 3 (Section 3.2.2), fault detection is based on calculating at every time instant a residual

comparing the measurements of physical variables y(k) associated with the monitored system with their estimation
y(k) provided by the associated system model:

r(k)=y(k)=y(k) (5.17)
According to (Gertler, 1998) and such as it was shown in Section 3.2.2, a general expression for the residual, known

as its computational form, is given by
r(k,0)=V(q",0)u(k)+0(q™",0)y(k) (.18)

where: r(k)O0"™ is the residual set, V(g,0) and O(g™,0) are transfer functions.

When the interval observer model is considered, the transfer functions ¥(g”,8) and O(q”,0) can be obtained using

Eq. (5.3) and Eq. (5.17) what results in:
V,(q".0)=-G,(q".0)=-C(OI~q"4,0)" BO)q" (5.19)
0,(¢".0)=1-H,(q",0)=1-CO)I-q"4,0) " Lg" (5.20)
Comparing these expressions with the calculated ones in Section 3.2.2 (Eq. (3.17) and Eq. (3.18)), it can be seen they

are equal if D( ) is neglected.

In the interval predictor case, those transfer functions can be obtained using Eq. (5.7) and Eq. (3.18) what results in:

V,(¢".0)=-G,(q".0)= -B,(0)q" (5.21)
-1 — -1 — -1
0, .0)=1-H,(q ,0)= (I-A4,0)q") (5.22)
In the fault detection and fault isolation interface used in (Puig et al. 2005b), the residual (5.17) is computed regarding
the nominal observer model yp° (k) obtained using the observer parameter set # =0° 1@

r(k)=y(k)=y°(k) (5.23)
Such as it was mentioned in Chapter 3 (Section 3.2.2), when considering model uncertainty located in parameters,
the residual generated by (5.23) will not be zero even in a non-faulty scenario. In this case, the possible values of each

component of this residual vector, °(k), can be bounded using the following interval (neglecting couplings among

outputs), such as illustrated by (Puig et al, 2002a):

[ (k), i (k)] (5.24)
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where:
r{ (k) = (k) = 57 (k) and 7° (k) = §, (k) = 5 (k) (5.25)
being 21, (k) and )T/l (k) the bounds of the /"-system output estimation computed using the interval observer (5.2) or

its equivalent interval predictor (5.12) and obtained according to Eq. (3.10).
In this case, this residual interval constitutes the adaptive threshold since the comparison of every component of the
nominal residual vector, 7’;(k), with its corresponding bounding interval (Eq. (5.24)) allows the indication of the fault
if the following relation is satisfied.

(k) OLrf (k). ()] (526)
It should be noticed that this fault detection test is fully equivalent to the one given by Eq. (3.24) in Chapter 3
(Section 3.2.2).

5.3.2 Equivalence between the interval observer and its
associated interval predictor regarding fault indication

As it was mentioned in the previous section, the indication of a fault by the fault detection stage is just determined by

the test given by the Eq. (5.26). Thus, two models (interval observer and its equivalent A-order predictor) which

generate at every time instant the same residual r°(k) having the same adaptive threshold [r¢(k),r; (k)] will indicate

the fault equivalently.
According to Eq. (5.15) which sets the order of the equivalent predictor to the given interval observer, the system

output estimations given by both models fulfil the following condition:

3,(k.0)~5,(k,0)| =0 DOOO (5.27)
where the sub index ‘o’ is set for the observer model while sub index p for the equivalent predictor model.
Therefore, according to the residual expression given by Eq. (5.17), the residuals generated by both models also fulfil
an equivalent condition:

|, (c,0)=r, (k,0)|=0 CwOO (5.28)

Then, considering the conditions given by Eq. (5.27) and Eq. (5.28), the observer and its equivalent predictor are

generating at every time instant the same residual r°(k) and the same adaptive threshold [r} (k),l_”;) (k)] and

consequently, both models have an equivalent performance regarding the fault indication.
5.3.3 Sensitivity of the residual to a fault

In Chapter 3 (Section 3.3), the concept of fault sensitivity of the residual (Gertler, 1998) was recalled extending this
concept to interval models focusing on the dynamical aspects of this model property. In this section, a complete
analysis regarding the influence of the observer gain L on the time evolution of this property was carried out.
According to (Gertler, 1998) regarding non-interval models and (Meseguer et al, 2007b) regarding interval observer
models and such as it was shown along Chapter 3, the fault residual sensitivity is a key property of the considered
model concerning its fault detection behaviour as it determines the adaptive threshold, the minimum detectable fault

and the time a fault is indicated.
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In this section, it will be demonstrated that interval observers and their equivalent A-order predictors must have the

same residual sensitivity to whatever kind of fault affecting to the monitored system.

The residual internal form given by Eq. (3.62) (Section 3.3.5) determines that the value of the residual at every time
instant is given by the disturbance caused by different faults which can affect the monitored system (actuator fault, £,
output sensor fault, £, and input sensor fault, £,) and the disturbance caused by the model parameter uncertainty. This
residual form shows that the residual disturbance caused by a fault vector is determined by the residual sensitivity to
this kind of fault (residual sensitivity to an actuator fault, Sy, given by Eq. (3.54), residual sensitivity to an output
sensor fault, S, given by Eq. (3.37), residual sensitivity to an input sensor fault, S, given by Eq. (3.47)) while the
residual disturbance caused by the model parameter uncertainty is given by the adaptive threshold, ry, (Eq. (3.21)).
Then, considering the monitored system is affected by a fault vector f whose occurrence time instant is ¢#,, the

expression of the residual according to Eq. (3.62) will be given by

r.0) = {ro (k0)+S,(q”.0)f (kg™ k=1, 529)

r,(k,0) k<t,
where S is the residual sensitivity to the fault vector f. Then, according to Eq. (5.28), at whatever time instant k, the
interval observer and its equivalent predictor generate the same residual (Eq. (5.28)). As a result of this statement, it is
concluded both models must have the same residual sensitivity to the fault vector fif condition (5.15) is fulfilled. This

equivalence can be written as it follows:

S,(q".0)=S,(q".0) 0006 (5.30)
where the sub index ‘o is set for the observer model while sub index p for the equivalent predictor model.
This result shows that such as in Section 3.3 (Chapter 3) the fault residual sensitivity dynamics was described
regarding the observation gain L, the same sensitivity dynamics can also be achieved with the equivalent predictor

calculating its order using Eq. (5.15). In the following, Table 5.1 describes the sensitivity dynamics in terms of L and

A such as it was done in terms of L in Table 3.1 (Section 3.6).

Simulation | Observation | Prediction
L=0 or | L=L,or L=L, or
Ao o n<A<eow A=n

Sy Constant Pulse Deadbeat
Dynamic Dynamic

S Constant
response response
Dynamic Dynamic

S Constant
response response

Table 5.1 Fault residual sensitivity dinamics'®

5.4 Application example

5.4.1 Description
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The application example proposed to illustrate the obtained results is the industrial smart actuator FDI Benchmark
used in Chapter 4 (Section 4.4) to demonstrate how an interval observer can avoid the wrapping effect forcing the
observer gain to satisfy a especial condition (Section 4.2.2) and to illustrate the effect of this condition on its fault
detection performance. Although the properties of the considered model of this smart actuator are equal to the ones
presented in Chapter 4 (Section 4.4), in this section are recalled for the clarity of the given results. Thereby, such as
it was shown in Section 4.4, the following linear interval model of this smart actuator is considered:

X(k+1)=A(0)x(k)+B(0)u(k)

F(k)=C(0)5(k) e

with: %(k) =[%,(k) %) %K),

0
A@)=[1 0 6|, BO)=|0|, cO)=[0 0 1] and uk)=CrP(k-2)
64

where: %, (k) is the valve position estimation, p(k) is the estimation of this position measured by the displacement
transducer (in Volt), CVP(k) is the command pressure (in Pascal) measured by a given input sensor. Then, as used in
Chapter 4 (Section 4.4), the model uncertain parameters are bounded by their confidence intervals: 6,//[1.1417
1.1471], 6,/7[0.3995 0.4103], 6;/7[-0.5537 -0.5484], and 6,/7[2.180e-4 2.183e-4] while their nominal values are
given by 0°,=1.1444, 6°,=0.4049, 6°;= -0.5510, and 6°,=2.182e-4. Regarding the command pressure, a constant value

given by u(k) =1Pa has been considered.

5.4.2 Output estimation and residual analysis

As shown in Section 4.4.1 and according to Eq. (5.3), the interval observer estimation of the system output can be

obtained from Eq. (5.31) considering the following observer gain matrix L=[ k3, k;, k1]T:

y(k) =G, (¢, 0)uk)+H, (g ,0)y(k) =
94q71

_ ; kg +hql +kg” (5.32)
1+(k =6)q" +(k,=0,)q" +(k, =6)q"

k
1+(k =6)q" +(k,=6,)q" +(k, = 6)q" vo

() +

where k;, k;and k; are the observer gains. Regarding the residual expression, its form can be inferred from Eq. (5.18),

Eq. (5.19) and Eq. (5.20) using Eq. (5.32):
1k 0)=V,(g” Opuk)+O,(g™ 0)y(k) =(~G(q.0)) k) +{1-H,(g”,0)) yk) =
-] _n.1_ 2 _pn 3
—_ _ G4 . k) 1 fjﬂq 8q _23q _
1+(k, =6, )g " +(k,=6,)q~ +(k; =6, )g 1+(k;=8)q”" +(k,~6,)q~ +(k; =6, )q

(5.33)

k)

As it was said in Chapter 4 (Section 4.4.1), the state-space matrix 4(g) of the application example model (Eq. (5.31))
does not fulfil the isotonicity property and consequently, the system output estimation using the interval observer
given by Eq. (5.32) is affected by the wrapping effect when a region-based algorithm is used and the isotonicity
condition given by Eq. (4.3) is not forced. As it was seen, this condition is satisfied when

k, =6, (5.34)
which using the known observer gain parameterization k, = /.8 implies /;=1. In case, condition given by Eq. (5.34) is

not forced, the output estimation done by the interval observer should be obtained using a trajectory-based approach

or, according to Section 5.2.2, using its equivalent A-order interval predictor as both approaches estimate the same

system output interval according to Eq. (5.27).

15 . ..
n stands for the predictor minimum order.

139



Thereby, let us assume a constant additive fault affecting the system output sensor occurring at time instant #,=200
and whose value is given by f= 0.01 Volt (roughly, 10% of the steady-state system output nominal value) and let us
also consider an observation gain set determined by /,= [,=[;=0.5. Then, in Fig. 5.1, the time evolution of the system
output estimation interval and its nominal estimation and the output sensor measurement (green line) are plotted
between the time instants ¢,=790 and ¢,=220 using the interval observer input-output form given by Eq. (5.32) and
considering a trajectory-based algorithm (upper plot) and a region-based algorithm (lower plot). Thereby, according
to the mentioned above, while the trajectory based approach produces an accurate interval what allows to detect the
fault; the corresponding interval produced using a region based approach is useless because of the wrapping effect

which causes an unstable growing system output estimation interval.

Trajectory based approach: Output interval estimation (Volt) / Output measurement (Volt)
T T T T T

0.1
0.095 -
0.09 -
0.085

0.08 - B

0.075 I I I I I
190 195 200 205 210 215 220

Time(-)

4 Region based approach: Output interval estimation (Volt) / Output measurement (Volt)
T T T T T

2;_/_/_/_/_//,

2 —w

4 I I I I L
190 195 200 205 210 215 220
Time(-)

Fig. 5.1 Time evolution of the system output estimation interval, its nominal value, and the system output sensor measurement (green line) using a
trajectory and region-based algorithm and where the observers gains are given by /,=/,= [;=0.5

5.4.3 Equivalence between observers and predictors

Using the application example, in this section, the evolution of the equivalent predictor order, )\ regarding the
observation gain of its associated interval observer is described. Thus, for a given observer gain, using Eq. (5.15), the
order A of the equivalent predictor is obtained for a certain degree of approximation & Then, in Fig. 5.2, the
evolution of the predictor order versus the observer gain is plotted considering the parameterization k, =/6, varying
the / from simulation (/=0) to prediction (/=/) and using an approximation degree given by &=/e-5. It must be taken
into account that for a certain value of /, Eq. (5.15) is evaluated considering all the possible trajectories related to the
interval observer determined for the uncertainty related to the parameters. It can be noticed that when the observer
works as a simulator (/ — 0), the order of its equivalent predictor is affected by a fast growing, i.e., the memory of
the predictor increases fastly. On the other hand, when the observer works as a predictor (/ — 1) (predictor of order
n=3, being n the system order), the equivalent predictor tends to the order of the system ( “dead-beat observer”

(Patton et al, 1991)), i.e., the memory of the predictor decreases until the system order.
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Equivalent predictor order vs Observation gain
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Fig. 5.2 Evolution of the equivalent predictor order regarding the observation gain of its associated interval observer
5.4.4 Time evolution of the residual sensitivity to a fault

In Section 5.3.3, it was shown that the fault residual sensitivity functions of the interval observer and its equivalent

A-order predictor are equal when the degree of approximation &€ can be underestimated since it is roughly zero-

valued. Thus, the goal of this section is to exemplify this statement using the application example and considering the
residual sensitivity to an output sensor fault, Sy, , and the residual sensitivity to an input sensor fault, Sg, .

Such as it was seen in Chapter 3 (Section 3.3), the functions Sy and Sy, are given by Eq. (3.37) and Eq. (3.47),
respectively. Concerning these expressions, it must be noticed that they are valid for the interval observer and also
for its equivalent predictor. The fault residual sensitivity functions associated with the interval observer are obtained
when the transfer function matrices O(¢™',0) and V(q™',0) are calculated using Eq. (5.20) and Eq. (5.19),
respectively. On the other hand, if Eq. (5.22) and Eq. (5.21) were used to calculate those transfer functions, the fault
residual sensitivity functions associated with the equivalent predictor would be obtained.

Focusing on the application example, when an interval observer is considered, according to Eq. (3.37) and Eq. (5.33),

its residual sensitivity to an output sensor fault is given by

S,;(q7.0)=0,(47,0)G,(q".0) = LA M
e T T e - 8)q T + (k= 6)g7 +(k, —6)g”

(5.35)
assuming matrix F) is equal to the identity matrix 1. Conversely, according to Eq. (3.47) and Eq. (5.33), the interval
observer residual sensitivity to an input sensor fault can be written as it follows:
-1
g
1+(k =6)q" +(k, =8)q" +(k, = 6)q”

S, (a".0)=V,(q",0)F,(0)=- (5.36)

assuming matrix F,, = I.
Concerning the equivalent predictor associated with the interval observer given by Eq. (5.32), its residual sensitivity to
an output sensor fault can be obtained using Eq. (3.37), Eq. (5.22), Eq. (5.13) and considering the matrices 4 and C

associated with the monitored system (Eq. (5.31)).

8,,(a".0)=0,G".0)G,(¢".0)=1-H,(q".0)= (I-4,0)¢") =

=I- (Z/]: c(9) (A(0) - Lc)"*l Lq—(v—l) j q_l

(5.37)

where F, = I, \ is obtained using Eq. (5.15) and L=[ k3, k>, k,]".
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Then, using Eq, (3.47), Eq. (5.21), Eq. (5.14) and the matrices A, B, C and L associated to the monitored system (Eq.
(5.31)), the equivalent predictor residual sensitivity to an input sensor fault can be calculated computing the following

equation

S,.(a".0)=V,(¢".OF,0)=-G,(¢".0)= -B,0)¢" =

A - g (5.38)
=->CO)(A0)-LC)" BO)¢g "¢

v=1

assuming F, = L

In the following, considering an abrupt fault modelled as a unit-step function, the time evolution of those residual
sensitivity functions are plotted using the observer gain set given by k;=k,=k;=0.5 and considering just the nominal
value of the uncertain parameters (€ = 8° 0@ ). In this case, the equivalent predictor order is given by /=36 (Fig.

5.2) considering a predictor approximation degree £&=/e-5 (Eq. (5.15)).

1F ]
Additive output sensor fault residual sensitivity (-):
\ interval observer / Equivalent predictor
05F | B
ok e ——
/
-
05 I I I I I I I I I
0 5 10 15 20 25 30 35 40 45 50
Time(-)
x 10"
0
af Additive input sensor fault residual sensitivity (V/Pa): i
interval observer / Equivalent predictor
2L i
3k i
4b o i
50 N i
Il I I Il Il I I Il I
0 5 10 15 20 25 30 35 40 45 50

Fig. 5.3 Time evolution of the residual sensitivity function to an output sensor fault (upper plot) and the residual sensitivity function to an input
sensor fault (lower plot) using the nominal observer (green line) and its equivalent predictor (red line)

In Fig. 5.3, the residual sensitivity functions to an output sensor fault (upper plot) and to an input sensor fault (lower
plot ) are drawn using both the nominal observer (green line) and its associated equivalent predictor (red line). As it
can be seen in this figure, comparing the time evolution of the residual sensitivity to an input/output fault related to
the nominal observer with the one related to the equivalent predictor, they are almost undistinguishable when both

schemes are really equivalent.
On the other hand, in Fig. 5.4, the case in which both models are not equivalent is plotted. This is achieved

considering /<36, for example /=3. In this case, such as it can be seen in Fig. 5.4, the time evolution of the residual

sensitivity to an output/input sensor related to both models is different since they are not equivalent.
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Fig. 5.4 Time evolution of the residual sensitivity function to an output sensor fault (upper plot) and the residual sensitivity function to an input
sensor fault (lower plot) using the nominal observer (green line) and its equivalent predictor (red line) which does not satisty condition (5.15)

5.4.5 Predictor and observer behaviour in fault scenario

The goal of this section is to compare the fault detection performance of an interval observer whose system output
estimations are obtained using the trajectory based approach (Section 2.3.2.5.4) (Puig et al, 2003b) with the fault
detection performance of its corresponding equivalent predictor considering the fault scenario used in Section 5.4.2
and assuming a predictor approximation degree &=/e-5 (Eq. (5.15)). In addition, this behaviour comparison is also
used to confirm the equivalent predictor also avoids the wrapping effect such as the interval observer when it is
computed using the trajectory based approach as it was mentioned along Chapter 4.

Firstly, a case where both type of models are fully equivalent regarding fault detection is shown in Fig. 5.5. This is
achieved when the order of the equivalent predictor ‘A’ is equal to 36 according to Eq. (5.15) and the observer gains
mentioned in Section 5.4.2 are used (I;= [,=[3=0.5). Then, in Fig. 5.5, the time evolutions of the nominal residual
(green line) (Eq. (5.33), # =0° 0O ) and its associated adaptive threshold (blue line) (Eq. (5.24)) are plotted between
the time instants /90 and 220 using both models (interval observer: upper plot; equivalent predictor: lower plot)
showing the full equivalence between them. As a result, the interval observer and its correspondent predictor are also

equivalent regarding their fault detection properties according to the fault detection test given by Eq. (5.26).

Interval observer: Residual & Adaptive threshold time evolution (Volt)
0.01 T T
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Time(-)
001 Equivalent predictor: Residual & Adaptive threshold time evolution (Volt)
. T 7 T T T

0.005 - ~
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Time(-)

Fig. 5.5 Time evolution of the nominal residual (green line) and its adaptive threshold (blue line) using the interval observer (upper plot) and its
equivalent predictor (lower plot)
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In the following, a case where the predictor is not equivalent to its associated interval observer is considered. This is
achieved when the equivalent predictor order is smaller than the obtained by Eq. (5.15). In this case, an order given by
A=7 is used. Then, the nominal residual (green line) and its adaptive threshold (blue line) corresponding to both
models (interval observer: upper plot; equivalent predictor: lower plot) are plotted in Fig. 5.6 between the time
instants /90 and 220. Analyzing this figure, it can be noticed that while the interval observer nominal residual is null
when the fault does not exist (k<200), the associated with the equivalent predictor is not due to its non-accurate
system output approximation and according to the fault detection condition given by Eq. (5.26), this model would be

indicating the fault existence although the fault does not appear till time instant #,=200.

Interval observer: Residual & Adaptive threshold time evolution (Volt)

-0.01 L L I L L
190 195 200 205 210 215 220

Time(-)
Equivalent predictor: Residual & Adaptive threshold time evolution (Volt)
T T T T T

190 195 200 205 210 215 220
Time(-)

Fig. 5.6 Time evolution of the nominal residual (green line) and its adaptive threshold (blue line) using the interval observer (upper plot) and its
equivalent predictor (lower plot)

5.4.6 Computing the equivalent predictor interval output using
two known point-wise trajectories

When the observation gain condition given by Eq. (5.34) ([3=1) is forced, the observer output interval can be
computed using the region-based approach avoiding the wrapping effect (Meseguer et al, 2008a). That is because

the interval observer matrix (4, = 4- L) fulfils the isotonicity property (all its elements are positive) and thus,

according to (Cuguerd et al, 2002), the trajectory of the output interval upper bound is obtained when the uncertain

parameters are equal to their interval upper bound (§ (k)=7 (k,§,6,,6,,8,)) while the trajectory of the output

interval lower bound is obtained when the parameters are equal to their interval lower bound (

(k) =3(k,8.6,,6,,6,) ). Conversely, these two output interval trajectories could also be generated by the equivalent

predictor using the uncertain parameter lower and upper bounds what means that the output interval can be also
generated by the equivalent predictor using only two known point-wise trajectories and consequently, its
computational cost is lower than the corresponding to the general trajectory-based approach.

In the following, the next observations gains are considered: /;=[,=0.5 and [;=I. Then, assuming an equivalent
predictor approximation degree £=1e-5, the equivalent predictor order is given by /=112. Considering those observer
and predictor parameters, the system output estimation interval and its nominal value are generated (blue lines) in
Fig. 5.7 using the interval observer computed by the region-based approach (upper plot) and its equivalent predictor
computed using only the two known point-wise trajectories (lower plot) such as it was mentioned above. Besides, the

time evolution of the system output measurement is also plotted (green line) . Fig. 5.7 shows how both methods
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generate exactly the same interval output and consequently, they are equivalent regarding their fault detection

performance.

Region based approach: Output interval estimation (Volt) / Output measurement (Volt)
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Fig. 5.7. Time evolution of the system output estimation interval and its nominal value (blue lines), and the output sensor measurement (green
line) using the interval observer (upper plot) and its equivalent predictor (ower plot)

5.4.7 Influence of the equivalent predictor order \ on the fault
indication persistence

(Meseguer et al., 2007b) shows that when interval observers are used, the observer gain has an important influence
on the fault indication persistence. In general, the fault indication persistence depends on the observer gain, on the
dynamics of the fault residual sensitivity and on the parameter uncertainty. Moreover, as indicated in (Meseguer et
al, 2007b), when the simulation approach can not detect the fault and the ‘dead-beat observer’ (Patton et al, 1991)
can only detect during a number of time instants equal to its order, optimum observer gain values between
Simulation and Prediction (‘dead-beat observer’) can be applied to such that the fault indication persistence can be
enhanced. When instead of using the interval observer, its equivalent A-order predictor is used; the order A of this
model plays the same role regarding the fault indication persistence than the observer gain, derived from the shown

equivalence between both models.

Next, assuming a constant additive fault affecting the system output sensor occurring at time instant #,~200 and
whose value is given by f= 0.1 Volt (roughly, I time of the steady-state system output nominal value), the time
evolutions of the system output estimation interval and its nominal value (blue lines) generated by the equivalent
predictor are plotted. In addition, the time evolution of the system output measurement (green line) and the fault
detection indicator (red line) are also plotted. In Fig. 5.8, a predictor whose order is /=117 is considered. This is
equivalent to the observer given by Eq. (5.32) when /;,=[,=[3=0.05 and &=Ie-5. On the other hand, in Fig. 5.9, the

predictor of minimum order is used (A=3) which is equivalent to the interval observer when /;,=/,=[;3=1 and £=1e-5.
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Equivalent predictor:Output interval estimation (Volt) / Output measurement (Volt)
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Fig. 5.8. Time evolution of the system output estimation interval and its nominal value (blue lines), and the output sensor measurement (green
line) using a A-order predictor (A=117). The fault indicator is plotted in red line

Equivalent predictor:Output interval estimation (Volt) / Output measurement (Volt)
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Fig. 5.9 Time evolution of the system output estimation interval and its nominal value (blue lines), and the output sensor measurement (green line)
using a A-order predictor (A=3). The fault indicator is plotted in red line

5.5 Conclusions

This chapter demonstrates that it is possible to determine an interval A-order predictor which is fully equivalent to an
interval observer with a certain observer gain L when applied to fault detection applications. The presented method is
an extension of the approach presented by (Ploix et al, 1999) where the predictor of minimum order (“dead-beat
observer” (Patton et al, 1991)) was obtained. In the presented approach, the order of the equivalent predictor is
determined by the observer gain matrix L and offers to the predictor model the same fault indication persistence than
the corresponding to the interval observer. Such equivalence is based on the fact that an interval observer can be
represented by an ARMA model, while a predictor by a MA model and it is known from the literature that an ARMA
model can be approximated by a MA model of infinite order. On the other hand, this chapter shows that the use of
the A-order equivalent predictor is very interesting in fault detection applications because it avoids those problems
associated with the state estimation as the initial state value problem or the wrapping effect. In addition, the

equivalent predictor can be computed efficiently if the associated interval observer fulfils the isotonicity property
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which can always be forced using the observer gains (Meseguer et al, 2008a). In this case, the interval output
generated by the equivalent predictor is determined by two known point-wise trajectories obtained when the

uncertain parameters are equal to their interval upper and lower bounds (Cuguerd et al, 2002).
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CHAPTER 6
On the integration of fault detection and

isolation in model based fault diagnosis

6.1 Introduction

As mentioned in Section 2.4, model-based diagnosis has been approached from two different scientific communities
(Venkatasubrarnanian et al., 2003a): Artificial Intelligence, also known as the DX approach (Hamscher et al, 1992)
(Reiter, 1987), and Automatic Control, also known as FDI approach (Blanke et al, 2003)(Gertler, 1998)(Patton et al,
2000). Nonetheless, both approaches are considering separately the fault detection and the fault isolation tasks.
Thereby, elements of comparison between both approaches have been included in (Cordier et al, 2000), which
provides a common framework for research from both communities. In such trend, some recent works have tried to
merge the best of each approach (Ploix et al, 2003) (BRIDGE project). In this merging process, the fault diagnosis
task has been again separated in the task of fault detection and isolation.

However, most of the research in both communities has been focused either in the detection task or in the isolation
task but very few papers deal with the interface between these two modules. Only few researchers have pointed out
the importance of this interface but only from one of the two approaches (Combastel et al, 2003). The aim of this
chapter is to recall that the interface between fault detection and fault isolation modules should be carefully designed
in order to avoid the loss of information which derives in decreasing the quality of final fault diagnosis result,
specially when dynamic systems are diagnosed (Puig et al, 2004c).

This remainder of Chapter 6 is organized as follows: Section 6.2 analyses the limitations of the binary interface
between fault detection and fault isolation; Section 6.3 proposes a motivational example which illustrates the fault
isolation problems when every fault signal has its own dynamics and consequently, every fault signal may appear at
different time instants; Section 6.4 proposes some improvements on the existing FDI and DX fault isolation schemes
in order to deal with the problems presented in Section 6.3. Finally, Section 6.5 presents the obtained main

conclusions.
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6.2 Limitations of FDI fault isolation and DX fault
isolation

As mentioned in Chapter 2, model-based fault detection tests are based on the evaluation of a certain set of n
numerical fault indicators, residuals r(k), (also known as analytical redundancy relations (ARRs) in the FDI
community or potential conflicts in the DX community) derived from the elementary models of system components

and the available measurements coming from sensors (Ploix et al, 2003):

r(k) =¥ (y(k), u(k)) ©.1)

where ¥ is the residual generator function that allows computing the residual set at every time instant using the
measurements of the system inputs and outputs (i.e. set by Eq. (3.16) in FDI approach).

Using either an approach coming from FDI (as for example, Staroswiecki’s structural analysis (Staroswiecki et al,
1989)) or an approach coming from DX (as for example, Pulido’s GDE based algorithm (Pulido et al, 2001)), the
whole set of residuals 7(k) (ARRs) for a certain system and a certain set of sensors can be generated. Each detection
test (7;(k)) should be evaluated on-line in order to decide if it is or not violated at a given time instant (typically a

binary codification is used: 0 indicated not violation and / violation):
0 if |r(k)| <7, (no fault)

(6.2)
1 if (k)| =7, (fault)

@k) = {
where 7; is the threshold associated to the detection test 7;(k). This residual test constitutes the detection phase of the

fault diagnosis process. Finally, the evaluation of each detection test will let obtain the observed fault signature of

the system: @(k) = [qq(k),@(k),u-,% (k)] such as indicated in Chapter 2. This vector can be considered as a set of

fault signals which will be used by the fault isolation module in order to isolate the fault.

6.2.1 FDI fault isolation

The observed fault signature is, then, supplied to the fault isolation module that will try to isolate the fault so that a

fault diagnosis result can be given. This module is able to produce such a fault diagnosis since it has the knowledge
about the binary relation between the considered fault hypothesis set f(k) :{ [k, f(k),-+, f, y (k)} and the fault
signal set ¢ (k). This relation is stored in the called theoretical binary fault signature matrix (FSM). Thereby, an

element FSM;; of this matrix is equal to / if the fault hypothesis f;(k) is expected to affect the residual 7,(k) such that

the related fault signal ¢;(k) is equal to / when this fault is affecting to the monitored system. Otherwise, the element

FSM;; is zero-valued. Then, fault isolation lies in looking for the theoretical fault signature of the fault signature

matrix FSM which matches with the observed signature ¢(k). For example, in case of having the following fault

signature matrix
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i | LS
o | 1 1 1
| 1 ] 0 1
o; | 1 1] o

Table 6.1 Fault signature matrix
then, the following logical tests allow isolating the different faults without considering that noise or perturbations

may cause detection errors:

fi=aUa Ug
f,=q0g Og (6.3)
fi=gUa Ug

Thereby, fault isolation FDI approach can be viewed as a parallel diagnostic inference (column view) approach

(Gerter, 1998) (Section 2.4.2.1.1).

6.2.2 DX fault 1solation

According to (Cordier et al, 2000), FDI fault detection approach using ARRs and DX fault detection approach using
potential conflicts can be considered equivalent. However, fault isolation can be tackled in two different ways within
the DX community: consistency-based, CBD, or abduction-based (Hamscher et al, 1992). Thereby, while
consistency-based diagnosis tries to reject those behavioural modes which are not consistent with current
observations, abduction-based diagnosis tries to explain current observation with a consistent behavioural mode
assignment. In this line, the abduction-based diagnosis is closer to the FDI approach than the consistency-based
approach. Nevertheless, for real complex dynamic systems there is no direct translation from the static consistency
test to the dynamic one (Chantler et al, 1996).

Based on the framework proposed by Cordier (Cordier et al, 2000), the fault signature matrix presented in Table 6.1
is interpreted in fault isolation CBD approach considering separately each line associated with a violated ARR,
isolating R-conflicts (i.e., a set of components which must be considered abnormal in order to be consistent with the
observed fault signature) before a common explanation can be given (i.e, it follows a series diagnostic inference

(row view) of the table (Gerter, 1998) (Section 2.4.2.1.1).

6.2.3 Common limitations

Given that every fault signal ¢;(k) may exhibit different dynamics, some information is lost between fault detection

and fault isolation modules when fault diagnosis of dynamic systems is carried out applying the above mentioned
DX and FDI approaches. This is a consequence of considering just a binary interface between both modules which is
obtained using a binary codification of every fault detection test (Eq. (6.2)) related to a given set of residuals r(k)
(ARR’s or potential conflicts). This loss of information might result in a wrong fault diagnosis or even though, faults

might not be isolated since they are undistinguishable regarding the binary property of the fault signals. Among the

152



fault signal lost information when considering the mentioned binary interface, the following properties are
highlighted:

*  The sensitivity of the fault signal regarding to each considered fault.

e  The sign of the fault signal.

e The fault signal occurrence order of a given 4RR regarding the others is not recorded.

*  Once the fault occurs, every fault signal ¢,(k) has its own persistency.

*  The time window required so that all fault signals caused by a fault can be observed is not considered although
every fault signal has its own dynamics and consequently, they may have different apparition time instants.

e The instability of the fault detection test indicator (chattering) as a consequence of the presence of noise and the
used binary test is not considered.

Thus, if this information were considered in the interface between fault detection and fault isolation modules, the

fault diagnosis result could be improved remarkably. Following the analysis done in (Puig et al, 2004c), in the next

section some clues of the importance of considering fault signal dynamical properties are given using the approaches

coming from both communities.

6.3 Motivational example

In order to show the importance of considering the fault signal dynamics when diagnosing dynamical systems, an
example is used. In this example, in spite of the system dynamical properties, once the effect of faults on the

considered fault signals has been determined, the following binary theoretical fault signature matrix, FSM, is used:

Sor | Sz | Ja | S
ol 11 1o
o | 11 ] o |

Table 6.2 Fault signature matrix

Such as it can be seen in this matrix, faults f;; and f;, are isolable since their binary fault signature is different from
the signature of faults f,; and f,,. However, faults f,; and f,, are not isolable when a binary fault isolation approach
is applied since they have the same binary fault signature.

The isolation approaches presented in Section 6.2 uses a set of binary fault detection tests (Eq. (6.2)) to compose the
observed fault signature. Given the isolation decision at time instant & only depends on the results of these tests at
this time instant, this scheme is purely static, independently of the followed approach and consequently, it may cause
false fault isolation decisions, especially when some fault detection tests have a transient behaviour (especially in
dynamic slow/delayed systems) in response to the faults.

When using the previous static FDI or DX fault isolation approaches in dynamical systems where each fault signal

¢i(k) has its own dynamics, their behavior is very different during the transient time and as result, an erratic diagnosis
may be provided.

Fig. 6.1 describes the time evolution of fault signals when a fault £}, occurs. As it can be seen, the fault signals ¢; and
¢, do not appears at the same time because of the dynamics of the system. Thereby, Table 6.3 illustrates the
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corresponding FDI and DX CBD diagnostics at the time instants #; and ¢, in which each fault signal appears. Then,
using the fault signature presented in Table 6.2, FDI approach, which follows the column view approach, provides
the following diagnosis: between #,<k<t,, the observed fault signature correspond to the associated one with fault f;,,
while at k>1,, the observed fault signature corresponds to f;; or f,,. As a conclusion, while all fault signals associated
with a given fault do not have been observed because of the different appearance times, an FDI isolation approach
will provide erratic diagnosis during the transient-state (see Table 6.3).

On the other hand, if a DX CBD isolation approach is used since it follows the row view approach, those

components associated with activated fault signals will be considered as possible faulty candidates. Using the

example used in the FDI case which deals with the occurrence of a fault f};, the activation of fault signal ¢; will

provide as possible faults f,;, f,> and f;;, considering only single faults. Then, the activation of symptom ¢, will allow

reducing the set of possible faults to f;; and f,. Thereby, DX approach allows refining incrementally the first
diagnosis which already includes the fault which is affecting the considered system without providing erratic

diagnosis in the transient-state (see Table 6.3).

A 9
1
0 > t
t
1 A o,
0 >
t t
Fig. 6.1 Sequence of fault symptoms
Time ] %
Fault Signals &1=1 $,=0 ¢1=1 ¢,=1
FDI Jer Jy1 O fy2
DX CBD Ser Ofy1 O 2 S D fyz

Table 6.3 Diagnosis with FDI and DX CBD approaches (in black the provided diagnostic )

6.4 Approaches to deal with fault isolation
considering fault signals with different apparition
time instants

After a review of the existent approaches, a set of improvements was proposed in (Puig et al, 2004c) to deal with
fault isolation applied to dynamical systems. As mentioned, the fault signals related to this kind of systems have their
own dynamics and consequently, their apparition time instants may be different. Thereby, as illustrated in Section
6.3, if the dynamics of every fault signal is not taken into account, wrong fault diagnosis results can be obtained.
Such as demonstrated in (Puig et al, 2004c), these enhancements can be used in the existent fault isolation

approaches (either FDI or DX) without increasing the complexity related to the fault isolation algorithm.
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6.4.1 Introduction

Delayed/slow systems are an important class of dynamic systems, which generally are composed by many
subsystems with important delay times in their behaviour or with large transient responses. Some examples of
delayed/slow systems are energy and water distribution networks, chemical processes, etc. In this class of systems,
when a fault occurs, their associated fault signals never appear simultaneously. If the fault isolation decision
procedure is static, as illustrated in Section 6.3, the fault propagation may produce a fault diagnosis result changing
during the system transient-state caused by the fault. This problem has already been noticed by Koscielny
(Koscielny, 1995) (Koscielny, 2000), Console (Console et al, 2001) and by Quevedo (Quevedo et al, 2001) among
others. In both DX and FDI communities, there are recent works where the inclusion of information associated with
the model dynamics and the fault signal occurrence time instants allow improving the fault diagnosis results when
applied to dynamical systems.

Most DX methods take advantage of implicit temporal knowledge in the structure of the model, which can be
represented as a set of QSIM/QDEs (Dvorak et al, 1992) (Ng, 1990), temporal causal graphs (Mostermann et al,
1997) or causal influences (Travé-Massuyes et al, 1997). These pieces of knowledge allow enhancing the isolation
process in the transient period caused by the fault. This model temporal information can also be used to predict later
deviations or to estimate delayed consequences. Moreover, this information can be used to favouring fault diagnosis
candidates according to the dynamics of their observed fault signals (Mostermann et al, 1999) (Travé-Massuyes et al,
1997) or to reject them if their effects are not present at a given time instant (Alonso et al, 2000). In general these
techniques use rules which, given a fault signal at time %, compute the diagnosis result taking into account the
observations in time instants earlier than time instant k. Thus, these approaches let obtain a final fault isolation result
after a sequence of transient diagnostics. Console (Console et al, 2001) proposes temporal decision trees which take
into account temporal information on the fault signals and temporal constraints on the recovery actions to be
performed, increasing the fault discrimination.

On the other hand, in the FDI community, the works of Koscielny (Koscielny, 1995)(Koscielny, 2000) propose a
new fault signature matrix replacing binary /’s by an interval of time [7,,,,tu.],Where t,,;, and ¢, are the minimum
and maximum time period between fault occurrence and the fault signal appearance. The conclusion of this approach
is that the fault isolation performance can be improved taking into account the time of fault signal appearance.
Moreover, this approach suggests that once the fault occurs, the final fault isolation result can be obtained in a certain

number of time instants determined by the number of affected fault signals and their appearance time instants.

6.4.2 Fault 1solation considering fault signals with different
appearance time instants

According to (Puig et al., 2004), one possible approach to deal with fault signals with different appearance time
instants, independently of the fault isolation approach, consists in not allowing an isolation decision until a prefixed
waiting time (7,,) has elapsed from the first fault signal appearance. This reference proposes that 7, must be
calculated from the largest transient time response (7};) from non-faulty situation to any faulty situation. Moreover,
depending on the nature of the faults (abrupt or incipient), there is usually a detection time that should be added.

In the example described in Section 6.3, T,, must be calculated from the largest transient time response from non-

faulty situation to any faulty situation, being, in this case, the transient time response from ¢;=¢,=0 to ¢;=¢,=1

resulting in T,=max(t; ,t, ). Moreover, taking into account the uncertainty about the knowledge of the delays #; and ¢,
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and the detection time, a security time period should be added to T, in order to enhance the fault diagnostic decision
reliability. In this example, then T,, > T}, = max(t,,t, ) (see Table 6.4).
In the case of some DX approaches, it is also possible to exonerate those components not involved in the violated

detection tests once the waiting time 7, has elapsed. This will allow obtaining the same isolation results than FDI

approach.
Time 1 1 T,
Fault Signals ¢1:] QSZ:O ¢1:] QSZ:] ¢1:] QSZ:]
FDI ﬁ‘] f);] Dﬂd .f)‘II Uf_;lz
DX CBD Jer Ly O 12 Sor L £ S O fy2

Table 6.4 Diagnosis with FDI and DX CBD approaches (in black the provided diagnostic )

6.4.3 Fault isolation considering the appearance order of fault
signals

A second improvement described in (Puig et al, 2004c) is based on taking into account the appearance order of fault
signals.

The binary theoretical fault signature matrix, FSM, (Section 2.4.2.1.1) gives a static relation between faults f and

fault signals ¢. Thereby, when taking into account the order of fault signal appearance, the fault isolation algorithm

increases its capacity to discriminate one fault from the rest since this fault signal property allow to distinguish those
faults which have the same static theoretical fault signature but a different dynamic fault signature, i.e, different
appearance order of their associated fault signals.

As a result, the approach presented in (Puig et al, 2004c) proposes the use of a new fault signature matrix named
dynamic fault signature matrix (DFSM) (2;) (Quevedo et al, 2001). This matrix is composed using an analysis of
the propagation of each fault. Each element of this matrix has two digits: the first digit (index) codifies the result of
the detection test (0 means non-fired test while / means fired test) and the second digit (sub index) codifies the
logical sequential order of appearance of the fault signal for every fault hypothesis. This sub index describes in a
simple way the propagation of the fault effect on the system and can be inferred from the analytical redundancy
relations or by analysis of the fault effects on the model.

Considering again the fault signature matrix presented in Table 6.2, the faults f,; and f,, have identical static fault
signature and consequently, they are not isolable. However, considering the fault signal appearance order, these
faults can be isolated if their associated fault signals have different appearance order, as assumed in the following. In

this case, the dynamic fault signature matrix can be written as shown in Table 6.5

Sor | Sz | Ja | S
o3} 1 1, 1, 0
) 1, 1, 0 1,

Table 6.5 Dynamic fault signature matrix
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Such as it can be seen in this dynamic (7able 6.5), when the fault signal appearance order is considered, all the
theoretical fault signatures are different and as a result, this approach can isolate faults f,; and f,,. (Puig et al., 2004)
defines these two faults as sequentially isolable but not static isolable. In Table 6.6, considering the faulty scenario

used in Section 6.3, the fault diagnosis result is given when the dynamic fault signature matrix is used.

Time t t, T,
Fault Signals ¢=1 ¢p,=0 ¢=1 ¢p,=1 ¢=1 ¢p,=1
FDI Jer S i
DX CBD Jer Lt Sl S

Table 6.6 Diagnosis with FDI and DX CBD approaches (in black the provided diagnostic )

6.4.4 Fault isolation considering the fault signal appearance
time instant

A third improvement shown in (Puig et al, 2004c¢) consists in considering not only the fault signal appearance order

but also their appearance time instant which is bounded by the time interval [¢ J = [@,a J where ¢, and @, are

the minimum and maximum appearance time instant of all fault signals related to the fault f; from the first fault signal

appearance.

Regarding Table 6.5, if the monitored system were affected by a new fault f; with the same dynamic fault signature

than f;,, it would not be possible to isolate both faults even considering their appearance order. Conversely, according
to (Puig et al., 2004) when the interval [¢/] for each fault is known, these two faults could be isolated if their

associated appearance time intervals do not have an intersection.

Then, taking into account the interval [¢/] and considering the new fault f5, the matrix DFSM given by Table 6.5

can be re-written as follows:

Sy Jy2 Jer fe2 S5
o |1, 1, 1, 0 1,
103 1, 1, 0 1, 1,

(0] | [¢.] | [0, | [0.] | [8.] | [&]

Table 6.7 Modified dynamic fault signature matrix (assuming the case ayl < @)

In order to check this modified dynamic fault signature matrix, three different single-fault scenarios corresponding to
faults f,;, f5 and f; are considered and analysed in Table 6.8, Table 6.9 and Table 6.10, respectively. These tables
present how this matrix allows isolating two faults that are not isolable using the fault signal occurrence order. In this

case, the fault isolation is possible due to the knowledge of the time interval in which fault signals should appear.
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Time ] b <2< 9,
Fault Signals ¢1=1 ¢»,=0 ¢1=1 ¢,=1
FDI fer S
DX CBD Jer Ofyr O fs S

Table 6.8 Diagnosis with FDI and DX CBD approaches (in black the provided diagnostic)

Time 2 Bi<tz< P,
Fault Signals ¢;=1 ¢p,=0 ;=1 p,=1
FDI Jer S5
DX CBD Jer Ofyr O fs fs

Table 6.9 Diagnosis with FDI and DX CBD approaches (in black the provided diagnostic)

Time ‘ max([ @, 1[4, 1L ]
Fault Signals ¢1:] ¢2:0 ¢1:] ¢2:]

FDI Jei S5

DX CBD for Ot O fs Js

Table 6.10 Diagnosis with FDI and DX CBD approaches (in black the provided diagnostic)

6.5 Conclusions

Chapter 6 is based on the results obtained in (Puig et al., 2004) and presents a set of problems that appear when fault
detection and isolation are handled by separated modules such as it is usual in the FDI methods. Regarding the DX
community, there is also a current trend where these two tasks are considered separately: mostly, when integrating
methods of both communities using for example detection tests based on FDI techniques and isolation methods based
on DX techniques. Consequently, the fault diagnosis problems presented in this section should be interesting for both
the FDI community and the DX community.

This chapter identifies the fault diagnosis problems of dynamical systems which result of considering a binary
codification of the fault detection tests when a static reasoning scheme is applied. The effect of these problems is
remarkable when the monitored system has a large transient state once the fault occurs. The solutions proposed in
(Puig et al., 2004) are based on some improvements of the basic FDI and DX CBD schemes considering temporal

aspects related to the fault signal dynamics.
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CHAPTER 7
Towards a better integration of passive

robust interval-based FDI algorithms

7.1 Introduction

As mentioned in Chapter 6, fault detection and fault isolation tasks are usually considered separately in model-based

fault diagnosis. The typical interface between these two modules is based on a binary codification of the evaluation

of each residual (fault signal) what allow obtaining a binary observed fault signature (Section 2.4.2.1.1). Then, the

fault isolation process consists in matching the observed fault signature with some of the theoretical fault signatures

which are obtained using a binary codification of the effect of every fault on every residual (fault signal) generating a

theoretical signature for every fault hypothesis (Section 2.4.1.1). As a result, if the observed signature matches with

one theoretical signature related to a certain fault hypothesis, this process let isolate the fault. Such as it was

introduced in Chapter 6 and in Section 2.4.2.2 of Chapter 2, this binary approach has some important drawbacks

which are due to the loss of information between the fault detection module and the fault isolation module. This

weakness has been also noticed by (Combastel et al., 2003) which suggests that the whole fault diagnosis

performance can be highly increased by improving this interface between fault detection and isolation modules. In

particular, the interface can be improved taking into account the following information:

* The effect of model uncertainty on the fault detection threshold what let generate an adaptive threshold as shown
in Chapter 3 (Section 3.2.2).

* The residual signs since faults can cause positive or negative residual values.

e The size of the residual value (fault signal). Thus, the fault can cause a big violation of the threshold or only a
small fault signal-activation.

» The sensitivity of a residual with respect to a certain fault (Section 3.3).

*  The dynamics related to a fault signal which determines both its appearance time instant and its time evolution.

* The appearance order of the fault signals which can be estimated when considering the dynamics of every fault
signal.

In addition, it should not be forgotten that when using a binary evaluation of the residual (Eq. (6.2)), the presence of

noise affecting the sensor measurements may cause chattering effect on the result of this evaluation.

In this chapter, a new interval-based FDI algorithm that improves the integration between the fault detection and

fault isolation modules is presented which uses the information mentioned previously. The core of this fault-isolation

method for the non-uncertainty systems was proposed in (Puig et al, 2005b). Thus, the approach presented in this

chapter is an extension of the one proposed in (Puig et al, 2005b) for the uncertain system case and it is the first step

of a set of improvements which will be introduced in the following chapters. Thereby, the following strengtheners of

the method proposed in this chapter regarding the presented one in (Puig et al, 2005b) can be highlighted:
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*  Uncertain systems are considered which let obtain an adaptive threshold used in the residual evaluation stage in
order to decide if the monitored system is affected or not by a fault.

e The method is tested using real data of the Barcelona’s urban sewer system such as it will be explained below.

Conversely, both this method and the one presented in (Puig et al., 2006) are affected by the following weaknesses:

e The time evolution of the dynamical properties of the fault signals is not considered.

» The theoretical occurrence time instant of every fault signal is not used. In (Puig et al, 2005b) a first definition of
this pattern was given without showing how it can be estimated using the considered model.

* These methods do not say anything about how to obtain the waiting time 7, required for the appearance of all
fault signals once the fault occurs. Thus, although the drawback of a static fault diagnosis reasoning (Chatper 6)
is known, this method still uses it.

e The estimation of the system output is obtained using a predictor of minimum order in spite of the drawbacks
mentioned in Chapter 3 and Chapter 5.

In the following chapters of this /7 Part of the thesis, these weaknesses will be tackled in order to enhance the whole
fault diagnosis process.
The fault isolation method proposed in this section is applied to the limnimeters of Barcelona’s urban sewer system:
a telemetry network containing more than 100 limnimeters and some quality sensors connected to a Supervisory
Control and Data Acquisition system (SCADA) which has been in operation since 1994. This SCADA is carrying
out a real-time global control in the whole Barcelona network with the objective of reducing flooding and the
combined sewers overflow (CSO) (Cembrano et al., 2002). The achievement of these goals avoid realising untreated
water to the environment and let take full advantage of the storage capacity of the urban drainage network and the
treatment plants. On the other hand, it must be taken into account that the control of the urban sewer system depends
on the reliability of the measurements given by the instruments, specially by the limnimeters used to measure the
water level in the storage tanks. Thus, if a set of limnimeters were affected by a certain fault, the data obtained from
the faulty instruments could confuse the control module and as a result, the control objective might not be achieved
resulting in some disastrous consequences. These negative consequences justify the use of a fault diagnosis system in
order to detect and isolate faulty instruments and to reconstruct faulty measurements using the measurements of the
non-faulty instruments. In this chapter, the fault diagnosis method has been applied to a real faulty scenarios
collected from limnimeters of Barcelona’s network in order to test the goodness of its performance.

Regarding the structure of the remainder of Chapter 7, passive robust fault detection using interval models is recalled

in Section 7.2. In Section 7.3, the integration of robust interval based methods with a new fault isolation method is

discussed. In Section 7.4, the introduced fault isolation approach is applied to diagnose faults affecting to the
limnimeters of the Barcelona sewer network considering different real fault scenarios. Finally, in Section 7.5, the

main conclusions are presented.
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7.2 Fault detection using interval models based on a
passive robustness approach

7.2.1 Fault detection test based on a passive robustness
approach

In this section, the fault detection test which was already introduced in Chapter 5 (Section 5.3.1) is recalled since it
will allow introducing the manner in which fault signals are computed at every time instant. Thus, such as it was
already mentioned in Section 3.2.2, model-based fault detection tests let determine the existence of a fault affecting

the monitored system comparing the measurements of physical variables y(k) of the process with their estimation
y(k) provided by the associated system model. However, since model uncertainty located in the parameters is
considered (@ 00" is the vector of uncertain parameters with their values bounded by a compact set # 1@ of box

type, i.e., O :{0 oore

<0< 5} ), the residual may be computed using the nominal model y°(k,6°) related to the

interval model which is obtained when using 4 =6¢" 06 .
r° (k) = y(k) = y° (k) (7.1
In a non-faulty scenario, r°(k)should be zero-valued at every time instant k considering an ideal situation.

Nevertheless, it will never be satisfied since the system can be affected by unknown inputs (i.e. noise, nuisance
disturbances, etc) and the model might be affected by some error assumptions (model errors) apart from its
considered parameter uncertainty. Thus, the residual generated by Eq. (7.1) can not be expected to be zero-valued in a
non-faulty scenario. However, propagating the interval observer parameter uncertainty to the residual, the values of
the nominal residual (Eq. (7.1)) will be bounded by the interval (neglecting couplings among outputs) (Puig et al.,
2002):

[} (), ()] (72)

where as indicated in Section 5.3.1:
r{ (k) = 3,(k) =37 (k) and 7° (k) = 3, (k) = 3/ (k) (7.3)
As a result, while the nominal residual 7’ (k) satisfies the following relation, a fault can not be indicated since the
measurements related to the system outputs satisfy the relation given by Eq. (3.9) (Section 3.2.1)
1 () DLz (k). (k)] a4

Thereby, according to the fault detection strategy given by relation (7.4), the interval given by Eq. (7.2) can be seen as

an adaptive threshold. Such as presented by (Puig et al, 2002a), the main goal of the fault detection module consists
in checking for every residual 7’(k) if the relation (7.4) holds or not what can be seen as a passive robust strategy

based on generating an adaptive threshold. Conversely, it must be taken into account that this strategy is totally

equivalent to the one presented in Section 3.2.2 of Chapter 3 (Eq. (3.24)).

7.2.2 Fault signal generation
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The fault detection test (7.4) relies on the comparison of the numerical value of the nominal residual »’(k), which

may be affected by noise, with its associated adaptive threshold. This binary procedure may lead to undesirable
decision instability (chattering) because of the effect of noise on the sensor measurements and consequently, a
persistency criterion should be introduced (Theillol et al., 1997). Such as indicated by the DMP-approach (Petti et
al., 1990), a gradual reasoning involved by the use of fuzzy logic is an appealing alternative to bypass this chattering
phenomenon. Then, as it was proposed in (Puig et al. 2005), the fault diagnostic signal (or fault signal) for each

residual is calculated in the approach presented in this paper using the Kramer function (Petti et al., 1990):

URGYAG) M
1+ (r7 (k) /7 (K))* if (k)20
(k)= )
AR T
_ ‘ s
e midy | Tes

The appealing performance of this function is due to its introduced grading when evaluating the residual in order to

conclude the existence or not of a fault. When using the Kramer function given by Eq. (7.5), the residuals are

normalized to a metric between -1 and 1, @(k) D[—l, 1] , which indicates the degree of satisfaction of Eq. (7.4) for
every nominal residual 7’ (k) : 0 for perfectly satisfied, I for severely violated high and -/ for severely violated low.

In the following, a fault signal will be notated as ¢;(k) and it is considered that it exists while |¢;(k)|>0.5. Otherwise,
|pi(k)|<0.5, the fault signal does not exist from fault detection and isolation point of view. Conversely, the set of all

fault signals will be notated as ¢ = {¢;: i = 1,2,...n, }.

7.3 Architecture of the fault isolation approach

7.3.1 Architecture components

The passive robustness-based fault detection approach presented in previous section is integrated with a fault
isolation algorithm in order to diagnose those faults affecting the monitored system. In Fig. 7.1, the fault isolation
module architecture proposed in (Puig et al, 2005b) is presented which consists in three main components. The first
one is called the memory component and determines the interface between the fault detection and fault isolation
modules. It is based on a memory which stores information related to the time evolution of every fault signal and is
updated cyclically by the fault detection module. The second element of this fault isolation architecture is the pattern
comparison component which compares the fault signal information stored in the memory component with the
theoretical one stored in different fault signature matrices: one for each considered fault signal pattern. The last
element is the decision logic component which diagnoses the most probable fault according to the monitored

properties of the observed fault signals.
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Fig 7.1 Architecture of the fault isolation approach
7.3.2 Memory component

The memory component is built on the grounds of a table which stores some information related to the time

evolution of every fault signal ¢;(k). Thereby, once the first fault signal is observed, for each fault signal ¢;(k)
(|¢:(k)| >0.5) computed according to Eq. (7.5), the memory component stores the occurrence time instant (k,;), defined
as the first time instant where |¢;(k,;)|=0.5, and the fault signal value (himar)'® Whose absolute value is maximum.

Every time the fault detection module detects a new fault signal or an observed fault signal reaches a new value ¢;,q

this memory is updated with the new information situation.

Such as it was discussed in Chapter 6 (Section 6.4), fault signals associated with dynamical systems do not appear at
the same time instant since each of them has its own dynamics. This fact, such as it was already discussed, can
confuse the fault isolation module obtaining a wrong fault diagnosis result if a suitable strategy is not used.
According to (Puig et al., 2004) and such as it was presented in Section 6.4, this problem can be solved if a fault

diagnosis result is not given until all fault signals have appeared once the first one is observed. This waiting time 7,

W

(Section 6.4.2) is calculated from the larger transient time response 7, from the non-faulty situation to any faulty

situation. After this time has been elapsed, a fault diagnosis result is proposed and the memory component is reset

being ready to start the diagnosis of a new fault. This reset consists in deleting the information related to all vanished

' .. =@lk,.) where

7. 1)

= max(
k2ky
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fault signals (|¢;(k)|<0.5) and the value ¢,,,, of those fault signals which can still be observed at this time instant
(|¢i(k)| >0.5). Following the method given by (Combastel et al., 2003), inside the diagnosis time window T, the
value ¢, registered for every observed fault signal changes at time instant & if |;(k)|> |@imax |- Then, @i = &i(k).

According to this strategy, the value |¢@;.. | can only rise and not fall inside the time window T, , in spite the

associated fault signal has already vanished. This behaviour provides two advantages to the fault isolation algorithm
performance:
»  The effect of noise is partially filtered out. That leads to smoother diagnosis results without flickering.

*  The problem of non-persistence fault signals inside the diagnosis time window T, is filtered since just the peaks
of activation are stored. However, this strategy does not solve the general problem of the non-persistence of the

fault signals. In general, some observed fault signals ¢;(k) might vanish (|¢;(k)|<0.5) once T,, has elapsed and

this fact do not let conclude that the fault has also disappeared since the model estimations could be affected by
the fault following effect analysed in Chapter 3 and introduced in Section 2.3.2.6 of Chapter 2. Consequently,

the model might have lost its capacity to detect faults and therefore, wrong fault diagnosis results may be

concluded. Conversely, if the value ¢;,,. were never deleted, the fault would always be diagnosed in spite it

could already have vanished being the system affected by no fault. The influence of this problem on the fault
diagnosis result will be analysed in Chapter §.
This memory component makes the information related to the fault signal time evolution accessible for later
computation by explicitly storing that data. In this way, time aspects of fault isolation can be tackled in a very easy

and straightforward way.

7.3.3 Pattern comparison component

Once the time window T, has elapsed and while at least one fault signal is observed (|¢;(k)|>0.5), the pattern

comparison component compares the fault signal information registered in the memory component with the

theoretical one which describes the theoretical influence of a fault f; on the time evolution of the fault signal set ¢

regarding to some of their properties or patterns. The manner of storing the theoretical influence of faults on the fault
signals is based on the concept of the theoretical fault signature matrix (FSM). As mentioned in Section 2.4.1.1
(Chapter 2), an element FSM;; of this matrix is /" when the sensitivity function of the residual 7;(k) to fault £; is not

null (Section 3.3), otherwise, this element is ‘0°. This interpretation assumes that the occurrence of f; is observable in

ri(k) and therefore, the fault signal ¢;(k) (|¢:(k)|>0.5) will appear during at least few time instants. This hypothesis is

known as fault exoneration or no compensation. In this proposed approach, the fault signature matrix concept is
generalized since the binary interface is extended taking into account more fault signal properties. Thus, there will be
as many FSM matrices as different properties are taken into account: binary property (FSM0I), sign property
(FSMsign), fault residual sensitivity property (FSMsensit) and occurrence order property (FSMorder).

Finally, this process which is carried out by the comparison component allows computing one factor at the end of the
time window T, for every considered fault signal property and for each fault hypothesis f;. Every factor estimates the
occurrence probability of a certain fault hypothesis f; comparing the fault signal observations related to a certain

property (binary, sign, residual sensitivity and order) with the theoretical values for this fault hypothesis f; and for
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this property stored in the corresponding FSM matrix. In the following sections of this chapter, more detailed
information about these factors will be given.

It should be taken into account that in this first approach presented in Chapter 7, the time evolution of the fault signal
properties is not considered yet but their steady-state values. It will be in the following chapters where this approach

will be extended considering the dynamical aspects of the fault signals.

7.3.3.1 FSMO1: Evaluation of fault signal occurrence

The FSMO01-table contains the theoretical binary patterns that faults produce in the residual equations which can be
codified using the values ‘0’ for no influence, ‘/’ otherwise. Thereby, this matrix can be obtained such as the
theoretical fault signature matrix FSM introduced by (Gertler, 1998)( Section 2.4.1.1). Then, an element FSMO0I; of
this matrix is ‘7’ when the sensitivity function of the residual (k) to fault /; is not null, otherwise, this element is

‘0°. This statement can be expressed by the following equation:

Loif S, (gH#0
FSMO1; = ) . (7.6)
0, if §, (¢)=0

where Sf’_/ is the sensitivity function of the nominal residual (k) regarding the fault hypothesis f; (Section 3.3).

Such as it was mentioned previously, the occurrence probability of the fault hypothesis f; regarding the binary

property of the observed fault signals can be obtained calculating factor01; according to the following equation:

ny

Y (boolean(g(k)) FSM01,)

factor01,(k) == - of; (1.7)
D> FSMO1,
i=1
with
boolean(q(iy =1 " I =0 78
oolean(@ = L it @ #0 (7.8)
and where zvf; is the zero-violation-factor whose expression is
0, if0i0{L..ny} with FSM01, =0
of; = and @ . #0 (7.9)

1, otherwise
Thus, computing factor01; such as it is indicated by Eq. (7.7), the following behaviour is obtained: those expected and

observed fault signals ¢;(k) support the fault hypothesis f; while the observation of an unexpected fault signal let

reject that fault hypothesis of the final diagnosis result. Moreover, those missing fault signals also affect indirectly

the supportability of the fault hypothesis via the denominator of Eq. (7.7).

7.3.3.2 FSMsign: Evaluation of fault signal signs

The FSMsign-table contains the theoretical sign patterns that faults produce in the residual equations. Those patterns

can be codified using the values ‘0’ for no influence, ‘+/” or ‘-1’ for positive/negative deviation for every FSMsign;.

In this approach, the element FSMsign; related to the fault signal ¢;(k) (nominal residual »’(k)) and the fault

hypothesis f; is obtained evaluating the sign of the steady-state value of the associated residual sensitivity function

Sf’_/ to a fault f; (Section 3.3) considering an unit step as an input. Thus, FSMsign; is calculated evaluating the

following equation:
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0 if Sfu (gH=0
FSMsignij =<1 if Sy (00)>0 (7.10)
-1 if 5, (0)<0
where s, (o) is the steady-state value of S, when an unit step input is considered (Section 3.3). The reason of
using the fault residual sensitivity function S, is because according to the residual internal form expression (Eq.

(3.62)) (Section 3.3.5) and to the fault residual sensitivity concept (Eq. (3.36)) (Section 3.3.1), the influence of a fault

on the residual is just determined by this function once the fault signal is observed (|¢;(k)| >0.5).
On the other hand, in this approach the observed signs associated with every observed fault signal ¢;(k) are

determined by the sign of its corresponding value ¢,,,, stored in the memory component such as it is illustrated in

the following expression:
0 if @,.=0
sign(@(k)) =11 if @.. >0 (7.11)
_1 if @max < O
Thereby, with regard to the fault signal sign property, the probability of the occurrence of the fault hypothesis f; will
be set by the factorsign;. This factor is computed comparing the theoretical fault signal signs for the hypothesis f;

stored in the j”-column of matrix FSMsign with the fault signal observed signs stored in the memory component.

This comparison requires counting the number of signs of the fault signal vector ¢ (k) which coincide with the ones

related to every fault hypothesis f;, considering both the case in which all residuals have been violated positively and

the case in which they are violated negatively. Thus, this number of signs can be counted using the following

expression:
ny 1y
numsign (k) = max(z ckecksign(@(k), FSMsign, ),Z ckecksign(@(k), ~FSMsign,)) (7.12)
i=1 i=1
where
0 if g, =0
ckecksign(¢(k), FSMsign,) =40 if sign(@(k)) # FSMsign; and @, # 0 (7.13)

1 if sign(@(k)) = FSMsign,; and @, #0

max

Then, t he factorsign; is obtained as follows:

numsign  (k
Jactorsign (k) = WA z
Z|FSMsignij|

i=1

vf ; (7.14)

It should be taken into account that the approach presented in this section to calculate this factor is just an

approximation since, such as it was shown in Section 3.3, the fault residual sensitivity S, is a function of time and

consequently, the sign property of a fault signal can fluctuate along the time. In Chapter 9, the fault signal dynamics
will be considered allowing to introduce more accurate approaches. On the other hand, an appealing approximation

to calculate this factor is based on evaluating both the observed and the theoretical property of the fault signal at its

occurrence time instant, k. This approach can be viewed as an evaluation of the theoretical and observed residual

derivative regarding time at time instant k.
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7.3.3.3 FSMsensit: Evaluation of fault sensitivities

The value of an element of the table FSMsensit, FSMsensit;, describes how easily a fault f; will cause the i"-residual
(k) to violate its associated adaptive threshold given by the interval [r; (k),;? (k)] (Eq. (7.2)), such as it is described
by Eq. (7.4), originating the occurrence of the fault signal ¢;k) (|¢i(k)|>0.5). Thereby, according to the residual

internal form (Eq. (3.62)) (Section 3.3.5) and the main results of Section 3.3, every element FSMsensit; must be

directly proportional to the fault residual sensitivity function S, and inversely proportional to the associated

threshold 7.° (k) or r¢ (k) (Eq. (7.2)). In consequence, the expression of FSMsensit; can be written as it follows:

0 if S, (47)=0
s, ()
e if (k)20
FSMsensit, = r,-”(k)| (7.15)
K 00
f';() it r(k)<0
1 ()

where s, (o) is the steady-state value of S, when an unit step input is considered (Section 3.3).
Although the fault residual sensitivity S, is a function of time such as it was demonstrated in Section 3.3, its

steady-state value is just considered in the approach presented in this chapter such as it was also suggested by
(Gertler, 1998). This is just an initial approximation which will be discussed and improved in Chapter 9 where the
time evolution of the function Sy will be considered.

Conversely, regarding the fault residual sensitivity property related to every fault signal, the comparison component

computes at the end of the time window T, for every fault signal ¢;(k) and for every fault hypothesis f; the factor

factorsensit;. Thus, this factor uses the values ¢, of every fault signal ¢,(k) weighted by the corresponding
elements F'SMsensit; related to the fault hypothesis f; in order to determine the occurrence probability of this fault
hypothesis. Nevertheless, it should be noticed that those values ¢;,.. related to non-observed fault signals are

considered zero-valued in the memory component. As a reference, the approach used to obtain factorsensit; can be

also found in the DMP-method (Petti et al., 1990). Then, the expression of this factor can be written as it follows:

ny
Z ((/{max FSMsensit, )
. _|i=
factorsensttj (k) =

- zvfj (7.16)

Z |FSMsensi 4 |
i=1

7.3.3.4 FSMorder: Fault signal occurrence order evaluation

Such as it was shown in Chapter 6, when a fault f; affects a dynamical system, the fault signals do not appear at the

same time but each of them has its own dynamics and time evolution. As a result, the occurrence of a fault will
originate the appearance of a set of fault signals ¢ in a characteristic order which will help to isolate the fault from
the set f of possible faults. Thereby, for the fault hypothesis f;, the j™-column of the table FSMorder contains the

theoretical occurrence order of those affected fault signals which is codified using ordinal numbers, starting with ‘7.

Moreover, if two fault signals appear at the same time or if they explicitly may commute their order, then they should
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share the same ordinal number. Regarding those fault signals which are theoretically not affected by that fault

hypothesis, they get the code ‘0’ in the corresponding cells of matrix FSMorder.

n, if S, (q")#%0

(7.17)
0 if S, (4")=0

FSMorderI.j = {

where 77, is the ordinal number that determines the theoretical occurrence order of the fault signal ¢;(k) regarding the

fault hypothesis f; . According to the residual internal form (Eq. (3.62)) (Section 3.3.5), it can be seen that the fault
signal occurrence order for a given fault hypothesis is determined basically by the fault residual sensitivity function
and by the adaptive threshold. In Chapter 9, an approximated method to determine the theoretical values of this fault
signal property will be presented.

Conversely, the occurrence order of all observed fault signals is indirectly stored in the memory component since for

every observed fault signal ¢,(k), this element stores its appearance time instant (k). Thereby, for those non-

observed fault signals, the corresponding parameter k,; stored in the memory component will be zero-valued.

Then, comparing the fault signal observed information with the theoretical one stored in the matrix FSMorder, the
comparison component can compute factororder; for every fault hypothesis f; at the end of the time window 7, in
order to estimate the occurrence probability of every fault hypothesis. Thus, the expression of factororder; is given
by the following equation:

ny

Z (ckeckorder (@ (k), FSMorder; ))
JSactororder, (k) == - f; (7.18)
Z boolean(FSMorder; )

i=1

where
0o if k,=0
ckeckorder(g(k), FSMorder; ) = 0 if order(@(k))# FSMorder,)and k, # 0 (7.19)
1 if order(g(k)) = FSMorder,) and k, # 0

and order(@(k)) is the occurrence order of the fault signal ¢;(k) which can be inferred from the information stored

in the memory component such as it was already mentioned above.
7.3.4 Decision logic component

The last task of the considered diagnosis algorithm is the decision logic component. At the end of the time window
T,, this element determines the occurrence probability d; of every fault hypothesis f; using the associated factors:
Sfactor01, factorsign;, factorsensit; and factororder; Thereby, d; may be calculated using two possible alternatives:
» the highest factor

d; = max (factor01, factorsign, factorsensit;, factororder;) (7.20)
»  or weighting these factors according to its significance in the fault diagnosis process

d; = (a;factor01j + a, factorsign; + a; factorsensit;+ Qy factororder,) (7.21)
where @, ...., a, O [0,1] are the weighing parameters proposed by fault diagnosis designer.
As an initial approximation, factorsensit; and factororder; are considered more important than the rest of the factors.

However, this issue will be discussed in Chapter 9 and in Chapter 10. Finally, the diagnosed fault given by the
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decision logic component will be the one whose occurrence probability d; is the highest of all possible fault

hypotheses f;.

7.4 Case of study

7.4.1 Description

To illustrate the fault diagnosis approach proposed in this paper, a real case of study based on the Barcelona urban
drainage system is used. The city of Barcelona, with a population of 3,000,000 inhabitants in an area of 98 square
Km’, has a combined sewer system (waste and rainwater go into the same sewers) of approximately 1,500 Km.
Additionally, the yearly rainfall is not very high (600 mm/year), but it includes heavy storms typical of the
Mediterranean climate that cause a lot of flooding problems and combined sewer overflows to the sea that cause
pollution (CSO). Such a complex system is conducted through the control centre in CLABSA (Barcelona Sewer
Company) using a remote control system (in operation since 1994) that includes sensors, regulators, remote stations
and communications (Fig. 7.2). The real-time control of the sewer network is based on model predictive control
(MPC), as the global control law which sets the references for local controllers located on different actuator (gates
and pumps) elements of the sewer network using measurements taken from sensors distributed along the network and
rain sensors. These references are computed in real-time using an operational model to predict time ahead the
network dynamics, the current state of the system, provided by sensors, the current rain intensity measures and
appropriate rainfall predictions. The control objective is to minimize flooding and combined sewer overflow to the
environment, and to maximize the utilization of wastewater treatment plants. However, the global optimal control of
the sewer network is vulnerable to faults. Faults in sensors (rain-gauges and limnimeters) and actuators (gates and
pumps), especially in heavy rain scenarios are usual. If these faults are not detected and isolated, and if it is possible,
also corrected introducing some mechanism that assures fault tolerance, the global optimal control should be
stopped, moving the control to the local mode. Since in every rain scenario, several faults, especially in sensors,
occur, it is highly probable that it will be stopped. This will make very difficult the success of the global control

system.

The application example of this chapter is based on a part of this network that covers 12 of the twenty catchments of
the city and it contains 3 diversion gates and only one real detention tank, whose capacity is 35000 m”. It includes the
main sewer which carries water to the treatment plant and the four main seafront sea pollution points. Moreover,
there are five passive flow-diversion (overflow) devices and the network is metered by means of 4 rain-gauges and
14 limnimeters (water level meters). The aim of the fault diagnosis algorithm proposed in this paper will be to detect

and isolate faults in those limnimeters.
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Fig. 7.3 Virtual reservoir model of Barcelona network prototype
7.4.2 Modelling limnimeters

Limnimeters can be monitored using a rainfall-runoff on-line model of the sewerage network. Complex non-linear
rainfall-runoff models are very useful for off-line operations (calibration and simulation) of the sewerage network,
but for on-line purposes, as the global optimal control and fault diagnosis, a much simpler structure of the model
must be selected. One possible model methodology to derive a rainfall-runoff real-time model of a sewerage network
is through a simplified graph relating the main sewers and a set of virtual and real reservoirs (Cembrano, 2002). A
virtual reservoir is an aggregation of the sewer network catchment which approximates the hydraulics of the
retention of rain, runoff and sewage water. The hydraulics of a virtual reservoir can be described by the following
equation:

dV(t)

=0, =0,,,O+P@®)S (7.22)
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where: V' is the water volume accumulated in the catchment, Q,, and Qg are flows entering and exiting the
catchment, P is the rain intensity falling in the catchment and S its surface. Input and output sewer levels are
measured using limnimeters and they can be related with flows using a linearised Manning relation:

0,H=M,L, @) ad Q,,, @& =M,,,L,,, (). Moreover, it is assumed that: 0O, ()=KV(t). Then,

substituting these relations in Eq. (7.22) and considering that the measurement sample time is 7,=300 s, the following
discrete-time model for every limnimeter can be derived:

Ly, (k+D)=aL,,  (k)+bL, (k)+cl(k)) (7.23)

‘down up

where:a=(1-K.T,), b=M, KT /M and ¢ =S8K, /M Using this modelling methodology, a model of the

down down *

selected part of the Barcelona’s sewer network is presented in Fig. 5.3.
7.4.3 Interval models for limnimeter fault detection

Thereby, this methodology applied to the selected sewer network allow diagnosing faults of a set f7,, related to 14
limnimeters (Lgs, Loz Los, Loo, Lis L7, Lo, Ly, Lys, Lys, Lss, Lss Lgp and Lsy) modelling a set L, of 12 limnimeters
(Los, Loz Los, Loo, Lis, Loz, Lso, Ly, Lys, Lss, Lgy and Lsy) according to the procedure indicated in Section 7.4.2 (Eq.
(7.23)). In this chapter, the fault detection model for every limnimeter of the set L, is given by an interval predictor
whose general structure is given by Eq. (7.23) and whose parameters must be estimated using real data from the
sensors installed in the network. In this case, the measurements provided by the limnimeters related to the set f7,,
and by a set G of 4 rain-gauges (G,3;, G4, G5 and G;). These rain-gauges measure the rain intensity which is falling
to every virtual reservoir. Thus, according to the real topology of the sewer network, the rain-gauge G,; measures the
rain intensity P;; falling into the virtual reservoir V;;, G;, measures P;, G;5s measures P;, P, Py and P,y and G,
measures P,, Ps, P, Py and P;,. Moreover, in spite it can not be seen in Fig. 7.3, it must be taken into account that
limnimeter Lys is installed into the real tank V; what allows measuring its water level, Ls; let measure the entering
flow of the virtual reservoir V', and Ls, is installed close to the gate C, measuring its related water flow.

The interval predictor related to every limnimeter must be calibrated in order to guarantee that its estimated interval
output includes all the limnimeter non-modelled effects. Thus, an algorithm inspired by the one proposed in (Ploix et
al., 1999) is used. It is based on the use of classical identification methods, such as the least-squares method, to
provide the nominal values of the model parameters. Then, using optimization tools, the output intervals are adjusted
until all the limnimeter measurements are covered by the estimated output interval.

According to Eq. (7.1), the estimations given by the limnimeter models of the set L,, allow obtaining a set r of 12

residuals (or ARR). Thus, according to Eq. (7.5), each residual of the set » determines a fault signal being ¢ the set of

all possible fault signals caused by the faults of the set f;,,. Such as mentioned along this chapter, the properties of

the observed fault signals let the fault isolation algorithm introduced in Section 7.3 predict a diagnosis result.

Concerning the influence of the limnimeter faults of the set f7,, on the fault signal set ¢, it is described by the four

theoretical fault signature matrices (FSM0I, FSMsign, FSMsensit and FSMorder)(Section 7.3.3) showed below
which are derived from the sewer network topology (Figure 7.3) and from the presented limnimeter modelling

approach (Eq. (7.23)).
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FSMO01 Matrix

f L03 f L07 f L08 f L09 f L16 f L27 f L39 f L41 f L45 f L47 f L53 f L56 f L80 f L54
é Loz 1 0 0 0 0 1 0 0 0 0 0 0 0 0
@ Lo7 0 1 0 0 0 0 0 0 0 0 1 0 0 0
b Los 0 0 1 0 1 0 0 0 0 0 0 0 1 0
@ Log 0 0 0 1 0 0 0 0 0 0 0 0 0 0
b 116 0 0 0 0 1 0 0 0 0 0 0 0 1 0
b o7 0 0 0 0 0 1 0 0 0 0 0 0 0 0
@ 139 0 0 0 0 0 0 1 0 0 0 0 0 0 0
¢ a1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
¢ Las 0 0 0 0 0 0 0 1 1 1 0 0 0 0
b 154 0 0 0 0 0 0 0 0 0 0 1 1 0 1
¢ 156 0 0 0 0 0 0 0 0 0 0 0 1 0 0
? 180 0 0 0 0 0 0 0 0 0 1 0 0 1 0

Table 7.1 Theoretical fault signature matrix related to the binary property
FSM sign Matrix

fros | froz | fros | froo | frae | froz | fuso | frar | furas | fraz | fuss | fise | frso |fisa
b Loa +1 0 0 0 0 -1 0 0 0 0 0 0 0 0
¢ Lo7 0 +1 0 0 0 0 0 0 0 0 -1 0 0 0
b Los 0 0 +1 0 -1 0 0 0 0 0 0 0 -1 0
b Loo 0 0 0 +1 0 0 0 0 0 0 0 0 0 0
?L16 0 0 0 0 +1 0 0 0 0 0 0 0 -1 0
b L7 0 0 0 0 0 +1 0 0 0 0 0 0 0 0
@ 1390 0 0 0 0 0 0 +1 0 0 0 0 0 0 0
b Lo 0 0 0 0 0 0 -1 +1 0 0 0 0 0 0
@ L4s 0 0 0 0 0 0 0 -1 +1 -1 0 0 0 0
b 154 0 0 0 0 0 0 0 0 0 0 -1 -1 0 +1
¢ 156 0 0 0 0 0 0 0 0 0 0 0 +1 0 0
? 180 0 0 0 0 0 0 0 0 0 -1 0 0 +1 0

Table 7.2 Theoretical fault signature matrix related to the sign property
FSM sensit Matrix

fros | froz | fros | froo | frae | froz | fuso | frar | furas | fraz | fuss | fise | frso |fisa
b0 10.241] 0 0 0 o |-0156] o 0 0 0 0 0 0 0
¢ Lo7 0 |0.115| O 0 0 0 0 0 0 0 |-0.033 O 0 0
b Los 0 0 0360 O |[-0.193] O 0 0 0 0 0 0 |-0.294] O
b Loo 0 0 0 0.128] O 0 0 0 0 0 0 0 0 0
sl O 0 0 o [o0383] o 0 0 0 0 0 0o |[-0248] o
b L7 0 0 0 0 0 0.082 0 0 0 0 0 0 0 0
b 1390 0 0 0 0 0 0 03791 O 0 0 0 0 0 0
¢ Lo 0 0 0 0 0 0 ]-0.958]0.042] O 0 0 0 0 0
@ 145 0 0 0 0 0 0 0 |-0.254]0.014] 0.187 0 0 0 0
b 154 0 0 0 0 0 0 0 0 0 0 |-0.810(-0.393] O 1
b 156 0 0 0 0 0 0 0 0 0 0 0 0.080 0 0
? 180 0 0 0 0 0 0 0 0 0 |-0.580( O 0 0.256| O

Table 7.3 Theoretical fault signature matrix related to the fault residual sensitivity property
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FSM order Matrix

fros | froz | fros | froo | frae | fuor | fuiso | fras | fras | fiaz | fiss | fuse | fiso |fisa
® Loz 1 0 0 0 0 2 0 0 0 0 0 0 0 0
b Lo7 0 1 0 0 0 0 0 0 0 0 2 0 0 0
b Los 0 0 1 0 2 0 0 0 0 0 0 2 0 0
b Loo 0 0 0 1 0 0 0 0 0 0 0 0 0 0
b 16 0 0 0 0 1 0 0 0 0 0 0 0 2 0
b 127 0 0 0 0 0 1 0 0 0 0 0 0 0 0
b 139 0 0 0 0 0 0 1 0 0 0 0 0 0 0
b La1 0 0 0 0 0 0 2 1 0 0 0 0 0 0
& Las 0 0 0 0 0 0 0 2 1 2 0 0 0 0
b 154 0 0 0 0 0 0 0 0 0 0 1 1 0 1
b 56 0 0 0 0 0 0 0 0 0 0 0 1 0 0
@ Lso 0 0 0 0 0 0 0 0 0 1 0 0 1 0

Table 7.4 Theoretical fault signature matrix related to the occurrence order property

It must be taken into account that the elements of FSMsensit matrix showed in Table 7.13 are just the fault residual

sensitivity steady-state values, s, (), instead of the ones derived from the use of Eq. (7.15). However, the presented
£

fault isolation algorithm does use Eq. (7.15) to obtain the elements of FSMsensit.

7.4.4 Fault scenario

The fault diagnosis algorithm presented in Section 7.3 has been tested using several real fault scenarios in spite of its
weaknesses mentioned in Section 7.1 in order to illustrate the goodness of this approach. In this section, a real
scenario occurred the 28/09/2001 is presented in which the Barcelona sewer network operators registered a faulty
behaviour of the limnimeter L,;. The aim of this initial test is to show the general performance of the presented fault
isolation algorithm without carrying out a deep analysis since it will be done from Chapter §.
Thereby, such as shown by the binary fault signature matrix FSMO1 (Table 7.1), this faulty scenario has just an
influence on the residuals (fault signals) associated with the models of limnimeters L 5 and Lg). Consequently, both
must be activated in order to diagnose that fault.
The nominal predictor model related to L,sis given by

Lys(k+1) = ay Ly (k) + by Ly (k) + ¢, Ly, (k) (7.24)
where a,5=0.985, b,5~0.254 and c,5=-0.186.
Regarding the nominal predictor that models the behaviour of Lgy, it is given by

Ly (k +1) = ag Lyy (k) + by L, (k) (7.25)

where ag;=0.744 and b,5=0.58.
In the approach used in this section, the output intervals associated with the nominal predictor models are adjusted
statistically until all the limnimeter measurements are covered by the estimated output intervals when there is none of
the faults of the set f,,. Conversely, from Chapter 8 the output intervals will be computed using models with
uncertain parameters since according to (Puig et al., 2002), this kind of models may show a better performance in
applications where an on-line computation is required.
As seen in Fig. 7.4, the occurrence of the fault in L7, f;47, provoked the nominal residuals associated with L5 and

Lgg, ¥°145 and 7’19, to violate their associated adaptive thresholds (Eq. (7.2)) and as a result, the associated fault

signals, ¢;45 and ¢;g, could be observed for a period of time since their associated absolute values were greater or

equal than 0.5 (Section 7.2.2), such as it can be viewed in Fig. 7.5; in other words, r°;45 and r°;4, did not satisfy the
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fault detection condition (7.4) for a certain period of time. Thus, according to these observations and to the
information stored in the four theoretical fault signature matrices, the fault isolation algorithm could isolate the fault

affecting to L,;.

L45 residual (m) & adaptive threshold time ewolution (m)
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Fig. 7.4 Time evolution of the residuals and their corresponding adaptive thresholds
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Fig. 7.5 Time evolution of the fault signals considering their absolute value

Fig. 7.4 and Fig. 7.5 show clearly that the fault is not persistently indicated (weak-fault detection; Section 3.4.2) by
the residuals (Eq. (7.4)) and therefore, the observation of the fault signals is only possible for a certain period of time.
As it can be seen, this fact could affect the isolation of the fault if a suitable strategy were not use. This issue will be
analyzed in Chapter 8 as an extension of the main conclusions derived from Chapter 3 where this model

performance was already analyzed focusing only in fault detection.

In Fig. 7.6, the time evolution of the fault isolation factors (factor(l, factorsign, factorsensit; and factororder;)
(Section 7.3) related to every fault hypothesis of the set f7,, is plotted. Regarding the value of the waiting time
window T, it is equal to the sampling time period 7 in spite of knowing that it is not its optimum value. Thus, the
fault isolation factors are computed at every time instant and consequently, the influence of the fault indication
persistence on the fault isolation result can be noticed. It will be in Chapter 9 where the optimum value of T, will be

discussed.
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Fig 7.6 Time evolution of the fault isolation factors

Such as it can be deduced from the theoretical fault signatures matrices (FSMO0I, FSMsign, FSMsensit and
FSMorder) shown in Section 7.4.3 and according to the time evolution of the fault signals showed in Figure 7.5, the
only two fault hypotheses whose factors have non-null values, at least for a certain period of time, are f;,; and f;4
indicating L,; and Lg as the faulty limnimeters. Conversely, observing Fig. 7.6 and assuming that the fault does not
disappears once it occurs (at least, it is quite unlikely), it would not be hardly to think that the decision logic
component (Section 7.3.4) of the proposed fault isolation architecture would give f;,7 as the best candidate since all
its associated factors reaches bigger values than the ones corresponding to f;5). Moreover, it would not be hardly to
think either, that using an incremental fault diagnosis approach, instead of an static one, and considering a suitable

value of T,, this fault isolation algorithm could avoid the confusion when just one fault signal is observed at the

beginning, ¢;,5, and the confusion once ¢;,5 vanishes, since f;,; hypothesis is the only one that fulfils that all its

associated fault signals were observed and besides, they appeared in the expected occurrence order. Nevertheless,
once all fault signals vanish, it is even assumed that the fault still persists and consequently, the diagnosed result is
still valid. If the fault would have vanished, something else should be done in order to detect this event. In the
following chapters, the effect of the non-persistence of the fault signals on the fault isolation result and suitable

strategies to avoid this drawback are deeper analyzed.

7.5 Conclusions

In this chapter, an interval model-based fault diagnosis method that improves the integration between the fault
detection and isolation modules has been proposed. This method is based on a new interface between both stages
which takes into account the information about the degree of fault signal activation and the dynamics associated with
each fault signal. The fault isolation process uses a combination of four theoretical fault signature matrices which
store the knowledge about the faulty system behaviour determined by the properties of the observed fault signals
(binary property, sign property, fault residual sensitivity property and occurrence order property). In this chapter,
some weaknesses of this fault diagnosis method are remarked in order to introduce the analysis which will be

presented in the following chapters.
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CHAPTER 8
Fault isolation using linear interval

observers: influence of the observer gain

8.1 Introduction

These last years, the integration between fault detection and fault isolation tasks in model-based fault diagnosis has
been a very active research area (see among others (Combastel et al., 2003), (Pulido et al., 2005) or (Puig et al,
2005b)) since it plays an important role in the final result given by the fault diagnoser, as illustrated in Chapter 6 and
Chapter 7. Consequently, the typical binary interface between these two modules has been improved using additional
information what let improve the fault diagnoser performance as it was shown in Chapter 6. One example is the fault
isolation architecture (Fig. 7.1) presented in Chapter 7 where different aspects associated with the time evolution of
the fault signals are considered in order to give an accurate result: binary property, sign property, fault residual
sensitivity property and occurrence order property.

However, model-based fault detection methods still have some weaknesses as lack of fault indication persistence
(Chapter 3), noise sensitivity and model errors. Therefore, as a result of these inherent problems, their fault detection
performance can be worse than the one it might be required in order to give a reliable fault diagnosis result.
Moreover, this fact might also confuse the fault isolation module when a subset of fault signals must be observed
during the same period of time so that the right fault diagnosis result can be derived. This happens when the FSM
matrices (theoretical fault signature matrices) are not diagonal with respect to the fault hypotheses what the most
likely situation is.

When using fault detection methods based on observers, the observer gain plays an important role in their fault
detection performance as it determines the time evolution of the residuals, their fault sensitivity functions and as a
consequence, the minimum detectable fault function at any time instant (Chen et al., 1999). Therefore, such as it was
demonstrated in Chapter 3, the fault indication persistence also depends on the observer gain (Meseguer et al.,
2006). On the other hand, as it was presented in that chapter, faults can be classified in three types depending on their
detectability. Thus, there will be faults permanently detected (strong detection), non-permanently detected (weak
detection) and non-detected. Regarding this issue, the reference (Meseguer et al, 2006) shows that the observer gain
does also have an influence on how a fault will be detected: permanently, non-permanently or non-detected.

The above mentioned fault detection problems and their influence on the fault isolation module have been already
noticed by (Combastel et al., 2003) who suggests registering the maximum absolute value of the residual value once
reached. However, this strategy introduces an additional problem, since then, it is not possible to know when the
fault disappears. Another approach would be using structured residuals in a diagonal form (Gertler, 1998) but it
might be too complicated in this case because of the parameter uncertainty. When using an interval observer method,
the effect of those fault detection problems might be partially avoided designing properly the observer gain matrix
and therefore, the fault isolation result might be also improved.
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The goal of this chapter is to illustrate how different fault isolation results are obtained depending on the observer
gain for a given fault scenario in spite of using an accurate fault isolation algorithm: right persistent fault isolation,
right non-persistent fault isolation, wrong fault isolation and lack of fault isolation. The applied fault isolation
architecture is the one introduced in Chapter 7 (Fig. 7.1). Thereby, concerning the weaknesses of this approach
mentioned in Section 7.1, just one is improved. This is the considered models will no be given by uncertain
predictors but by interval observers with uncertain parameters such as the ones showed in Chapter 3. Thus, the effect
of the fault detection stage and the observer gain on the fault isolation module can be analyzed. Nevertheless, this
analysis is carried out considering a qualitative approach since it will be in Chapter 9 where a more quantitative
approach will be considered.

The interval observer-based fault diagnosis algorithm will be applied to real faulty scenarios affecting to limnimeters
of Barcelona’s urban sewer system application described in Section 7.4.

Regarding the structure of the remainder of Chapter 8, passive robust fault detection using interval observers is
recalled in Section 8.2. In Section 8.3, the integration of robust fault detection interval observer methods with the
considered fault isolation algorithm is discussed. In Section 8.4, for a given limnimeter fault scenario, several
observer gain sets are applied in order to illustrate their influence on the resulting fault isolation. Finally, in Section

8.5, the main conclusions are presented.

8.2 Passive robust based fault detection using
interval observers

As assumed in Chapter 3, Chapter 4 and Chapter 5, from this chapter it is considered that the monitored system can
be described analytically by a MIMO linear uncertain dynamic model in discrete-time and state-space form,
including faults, as follows
x(k +1) = AD)x(k) + B(0)u, (k) + F,(0) £, (k)
y(k) = CO)x(k) + F,(0) f, (k)

noticing that this equation is equal to Eq. (3.1) assuming that the direct transmission matrix D is zero-valued. As

8.1

mentioned in Section 3.2.1, y(k))O0", uy(k)J0™, x(k)OO™ are the system output, input and the state-space vectors
respectively; A( 6 ), B( 6 ) and C( 6 ) are the state, the input and the output matrices respectively; 0 is the system
parameter vector; f,(k)00" and f,(k)00™ represent faults in the system output sensors and actuators respectively

being F,( 6 ) and F,( @) their associated matrices.
8.2.1 Interval observer expression

As done in Chapter 3 and Chapter 5, from this chapter it is assumed that the system described by Eq. (8.1) can be

monitored using a linear observer with Luenberger structure based on an interval model whose model parameters 6

are time-invariant but bounded by an interval set @ :{0 00"e<@< 5} which represents the uncertainty about the

exact knowledge of real system parameters 0 . Thus, the resulting interval observer assuming the observability of the

system (Eq. (8.1)) for all 00O canbe expressed using Eq. (3.7) (Section 3.2.1) but this time matrix D is considered to

be zero-valued:
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x(k+1)=(A(0) - LC(0))x(k) + B(@)u(k)+ Ly(k) = A (0)x(k) + B(@)u(k)+ Ly(k)

§6) = C(O0)3(h) o
where u is the measured system input vector, X is the estimated system space-state vector and J is the estimated
system output vector. Besides, it must taken into account that as indicated in Section 3.2.1, the observer gain matrix

L is designed to stabilise the matrix A (0)= A(f)— LC(0) and to guarantee a desired performance regarding fault

detection for all # 0@ . Conversely, the effect of the uncertain parameters 8 on the observer temporal response will

allow obtaining a system output estimation interval: [ j(k) ,_jz(k) ],where for each output (neglecting couplings among
outputs):
,(k) =min(y,(k,0)) and y,(k) = max(y, (k,0)) (83)
Thereby, in case that there is no fault, each system output fulfils:
Y, (0O § (k).5,(k) =[5, (k)] (8:4)

Finally, the interval observer given by Eq. (8.2) can be expressed in transfer function form using the g-transform and

considering zero initial conditions as it follows:

J(k)=G(q™,0)u(k)+H(q™,0)y(k) (8.5)
where:

G(g".0)=C(OXI~q"4,0)" BO)g" (8.6)

H(q",0)=CO)I-q"4,0) " Lg" 3.7

Noticing that Eq. (8.5) is fully equivalent to Eq. (3.11) presented in Section 3.2.1.
8.2.2 Fault detection using interval observers

This section is an extension of Section 7.2 (Chapter 7) when using interval observers to model the monitored system
and it is based on some conclusions of Section 3.2.2 (Chapter 3). Thus, as already exposed, fault detection is based

on calculating at every time instant a residual comparing the measurements of physical variables y(k) with their

estimation p(k) provided by the interval observer:

r(k) = y(k) = y(k) (8.8)
According to (Gertler, 1998), the computational form of the residual (Section 3.2.2) is given by
r(k,0) =V (g ,0)u(k)+0(q™",0) y(k) (8.9)

where considering the observer input-output form (Eq. (8.5)), the transfer functions V(g”’,0) and O(q™,0) can be

written as it follows:
V(g",0)=-G(q",0)==C(O)I~q 4,0))" B(O)q" (8.10)
0(¢".0)=1-H(qg".0)=1-C(O)I-q"4,0) " Lg" (8.11)
As illustrated in Section 7.2.1, residual (8.9) can be computed regarding the nominal observer model yp°(k) obtained
using #=0"06 ,
1 (k) = y(k) = y° (k) (8.12)
where propagating the interval observer parameter uncertainty to the residual (8.8), the values of every component of

the nominal residual (Eq. (8.12)) will be bounded by the interval (Puig et al., 2002):
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[ (k). (k)] ®.13)

where:
£ (k)= 3,(k) = 77 (k) and 7" (k) = 5,(k) = 37 (k) (8.14)
Then, taking into account the definition of the nominal (Eq. (8.12)) and its associated adaptive threshold (Eq. (8.13)),

no fault will be indicated while the following fault detection condition is satisfied

() O] (), i (k)] ®.15)
noticing the equivalence of this condition and the one expressed in terms of system output measurements and their

associated estimation (Eq. (8.4))

On the other hand, instead of using the fault detection test (8.15), the fault diagnostic signal (fault signal) ¢;(k) for

every residual r;(k) (Eq. (7.5)) is calculated as indicated in Section 7.2.2. Then, when there is no fault, the values of

every fault signal satisfies the expression |¢;(k)|<0.5 and consequently, they are not observable. Otherwise

(Ip:(k)| >0.5), the fault signals are observable which indicates that a given fault is affecting the monitored system.

8.2.3 Fault signal dynamics

In general, the occurrence of a fault signal can be caused by different faults and therefore, what let distinguish one

fault from another are the fault signal dynamic properties: they should be different for each different fault. According
to (Gertler, 1998), these theoretical dynamic properties of a fault signal ¢;(k) caused by a given fault f; are set by the
sensitivity of the associated residual r;(k) to this fault f; introduced in Section 3.3 of Chapter 3. As exposed in that
section, the concept of the residual sensitivity to a fault (Eq. (3.36)) can be expressed analytically as

o
f af

Thus, the residual sensitivity to a fault is a dynamic time function which describes how a fault is affecting the

Ky (8.16)

residual and consequently, the dynamic properties of the fault signals caused by this fault.

Concerning fault detection stage whose main task is the generation of fault signals, Chapter 3 based on the reference
(Meseguer et al, 2007b) shows the importance of this concept both in the residual time evolution and in the quality of
the fault detection.

Particularizing Eq. (8.16) for a certain type of fault (f}, f, and f;), Section 3.3.2 shows that the residual sensitivity for

the case of an output sensor fault £, ={f,;: j = 1,2,....n, } is given by a matrix Sj € 0"x0" whose expression is

S,(a™.0=(1-H(g".0)G,(a".0)=(1-cO) (g1 -(40) - Lc®))" L) F,(0) =

-1 -1
Sp,(a50) . Sy (47,0) (8.17)

Sf}'m»,l (q_l ? 0) o Sfym»_ny (q_l » 0)
In the same way, the residual sensitivity to an input sensor fault f,={f,;: j = 1,2,....n, } (Section 3.3.3) is given by a

matrix S; € O0"x0™ whose expression is:
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$,(a™.0)=~Glg™ O)F,0) ==(C(0) (al ~(40) - LC(®))” (B©) - LD(®)) + D)) F, (0) =

-1 -1
Sp, (g 0) .. Sy (q7.0) (8.18)

S, @0 = S, (q7.0)

Thereby, the residual sensitivity to an actuator fault f,= {f,;: j = 1,2,....n, } (Section 3.3.4) is given by a matrix Sy €

O™x0™ whose expression is:

S.(q".0)=(1-H(g".0))G,(q".0)=
(1 -C0)(qI -(40)-LC®)))” L) C(0) (qI - A(é))_l F.(0)= (8.19)

S,/al_l (qilsa) Sfal_m (qilsa)

S, @0) = S, (q7.0)

Then, as demonstrated in Section 3.3.5 of Chapter 3, the residual computational form (Eq. (8.9)) can be expressed in
terms of the fault residual sensitivity matrices (Sg, Sp and Sg) and the adaptive threshold ry(k)(Eq. (3.21)) as it

follows:

r(k,0) =1, (k,0)+ S, (q7.0) f,(k)+ S (¢7.0) f,(k) + S, (q7.0) [, (k) (8.20)

Thereby, taking into account that the fault signals ¢;(k) are generated evaluating residual given by Eq, (8.20) such as

indicated by Eq. (8.12) and Eq. (8.13) and then, applying Eq. (7.5), the next conclusions can be obtained regarding the

influence of the fault residual sensitivity functions on the fault signal set ¢ according to Eq. (8.20):

e the fault residual sensitivity functions establish which residual (k) (fault signal ¢;(k)) is affected by which fault

(i S Say)s

» the fault residual sensitivity functions establish the dynamics of a given fault signal regarding a given fault,

e the knowledge of the dynamic properties of the fault residual sensitivity functions allow inferring the theoretical
dynamic properties of the fault signals generated by the occurrence of a given fault and as a result, the set of the
theoretical fault signature matrices FSM presented Section 7.3.3 can be inferred in order to be to be used by the

fault isolation algorithm, as presented in Section 7.3 when using the fault isolation architecture given by Fig. 7.1.

In Chapter 3, the importance of the fault residual sensitivity matrices (S, Syp, and Sy,) (Section 3.3) in the whole fault
detection process is demonstrated. This residual property determines both the persistence of the fault indication and
the minimum detectable fault function, f (k) , at every time instant. Moreover, Section 3.3 demonstrates that
when using interval observers, the dynamics and the structure of matrices Sy, (Eq. (8.17)), Sy, (Eq. (8.18)) and Sy, (Eq.
(8.19)) are set by the observer gain matrix L. The influence of L on the fault residual sensitivity matrices is analyzed

in detail along Section 3.3 but briefly, as shown in Section 3.6, the influence of L on the dynamics of Sy, Sy, and Sy,

can be characterized by the following table:
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Simulation | Observation | Prediction
L=0 L=L, L=1L,
S Constant | Pulse Deadbeat
Dynamic Dynamic
S Constant
response response
Dynamic Dynamic
Sh Constant
response response

Table 8.1 Observer gain influence on the fault residual sensitivity dynamics
One of the main conclusions of Chapter 3 is that the performance of the fault detection module may be varied using
the observer gain matrix L what may allow enhancing the fault indication result if this matrix is designed properly.
The goal of designing L properly is to achieve more reliable fault diagnosis results.
Concerning the fault isolation process, the influence of the fault residual sensitivity matrices on this process was
mentioned above derived from Eq. (8.20) but nothing was said regarding the influence of matrix L. Thus, taking into

account the influence of L on S, Sj, and Sy, summarized in Table 8.1 but analyzed in detail in Section 3.3, the

following conclusions can be derived from the influence of L on the fault signal set ¢ and therefore, on the fault

isolation process:

*  Given that the structure of the matrices Sg, (Eq. (8.17)), Sz (Eq. (8.18)) and Sy, (Eq. (8.19)) sets which residual ;(k)

(fault signal ¢;(k)) is affected by which fault (f,;, £, /o)) (Eq. (8.20)) and given that their structure depends on the

observer gain matrix L, it can be concluded that L may determine the fault signals which are affected by a
certain fault and consequently, the structure of the theoretical fault signature matrices FSM. As a result, a
proper design of matrix L may obtain matrices FSM whose structure might enhance the fault diagnosis result
adding more fault distinguishability.

*  Given that the dynamics of matrices Sy, (Eq. (8.17)), Sp (Eq. (8.18)) and Sy, (Eq. (8.19)) depends on L and given

that the dynamics of the fault signals ¢;(k) depends on these matrices, it can be concluded that the fault signals

dynamics may be influenced by matrix L and consequently, a proper design of this matrix may also add more
fault distinguishability what can improve the accurateness of the fault isolation algorithm.
All the dynamical aspects related to the fault signals will be analyzed more in detail in the following chapters

illustrating how the matrices F.SM can be obtained.

8.3 Fault isolation algorithm

In this section, the fault isolation algorithm presented in Section 7.3 (Fig. 7.1) is used taking into account two main

changes:

»  This algorithm is integrated with the interval observer-based fault detection approach presented in Section 8.2.1
and consequently, the four different theoretical fault signature matrices (FSMO1, FSMsign, FSMsensit and
FSMorder) are obtained using this fault detection approach. Although the theoretical fault signal properties
regarding a certain fault hypothesis are still considered in steady-state. It will be in the following chapter where
the procedure to obtain the set of matrices FSM will be illustrated considering all the fault signal dynamical

aspects described in Section 8.2.1.
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*  The waiting time T, is equal to the sample period 7 in order to show clearly the observer gain effect on the
fault isolation result.
Recalling the general performance of this fault isolation algorithm (Section 7.3), the first component between the

fault detection and fault isolation modules (memory component) is an interface based on a memory that stores along

a time window given by 7,, and for every residual (fault signal), the time instant (k) in which the fault signal

appears (|¢;(k,;)|>0.5) and the fault signal value (Gimar)’ Whose absolute value is maximum. Then, at the end of this

time window, an isolation result is given based on the memory stored information and on a pattern comparison

component. This component compares the observed properties of the observed fault signals ¢;(k) with the theoretical

ones regarding to every fault hypothesis f; (binary property, sign property, fault residual sensitivity property and
occurrence order property) which are stored in the four FSM matrices (FSMO01, FSMsign, FSMsensit and
FSMorder). Thus, for every fault hypothesis f; and for every fault property, a factor (factor0l, factorsign,
factorsensit; and factororder; ) is computed determining the occurrence probability of this fault hypothesis regarding
the observations of this fault property. At the end, using these factors, the logic decision component chooses the best

candidate.

This fault isolation algorithm needs the time window T, in order to avoid fault detection problems as the lack of fault
indication persistence (Section 3.4.2) and the fact that all fault signals do not appear at the same time since they have
different dynamics. This opens a new problem: which is the length of this time window and how can it be calculated?
This fault isolation approach is known as relative fault isolation. However, in the algorithm version considered in
this chapter, there is no memory component and consequently, a fault isolation result is given at every time instant
(T=T,): absolute fault isolation. As it was already mentioned above, this assumption is done in order to show the
effect of the observer gain on the fault isolation result and how these gains might avoid the fault detection problems.

The efficiency of the absolute approach relies basically on a proper design of the observer gain matrix in order to
avoid the mentioned fault detection problems. On the other hand, the efficiency of the relative approach based on
predictors relies on determining an optimal time window 7 since in this case, residual activation lasts only few time
instants as it was already illustrated in Chapter 3. Once observed the first fault signal, the length of this time window

T, must be enough so that all the affected fault signals can be observed during at least one time instant, otherwise a

wrong isolation result could be set. Conversely, taking into account that fault signal dynamics are ruled by the

corresponding residual sensitivity function matrix (Section 8.2.3), the T, dependency regarding to this function can

be stated. Besides, when using observers, the observer gain L will also have an influence on this time window since

it determines the time evolution of the fault residual sensitivity function (Section 3.3).

In fault isolation where normally a subset of fault signals ¢;(k) must be active at the same time in order to isolate the

fault, the lack of fault indication persistence presented by a residual r;(k) (Section 3.4.2) or its associated fault signal

¢i(k) and the fact that fault signals have different dynamics (Section 8.2.3) may confuse the isolation module and

consequently, different fault isolation results may appear:

182



*  Right persistent fault isolation: the fault isolation module can isolate the fault and its result lasts while the fault
is affecting the system. This is because the associated fault signals can always be observed once the fault
appears.

*  Right non-persistent fault isolation: the fault isolation algorithm can precisely isolate the fault during just a
certain period of time since either fault signals are not persistently observable or they require different periods of
time in order to be observable.

*  Wrong fault isolation: the fault isolation algorithm can not give a right fault isolation result since there are some
fault signals which are not observable.

*  Lack of fault isolation: this is the case when fault signals are not observable according to the adaptive threshold

of the fault detection module.

On the other hand, given that observer gain matrix L affects the dynamics of the fault signals ¢;(k) (Section 8.2.3),

different types of fault isolation result could be obtained varying the observer gain. That means that the observer gain
could be designed in order to enhance the fault isolation (Section 8.2.3). On the other hand, when using a predictor or

simulator model, the observer gain is already fixed and consequently, the fault isolation result can not be enhanced.
8.4 Application example

8.4.1 Application description

This section uses the application example based on 12 limnimeters of the Barcelona urban drainage system which
was already explained in Section 7.4. However, in this case the limnimeters related to the set L,, (Section 7.4.3) are
modelled using interval reduced observers with uncertain parameters instead of interval predictors. The structure of
this interval observer model is derived from Eq. (7.23).

As explained when using interval predictor models (Section 7.4.3), the interval observer related to every limnimeter
must be calibrated in order to guarantee that its estimated interval output includes all the limnimeter non-modelled
effects. Thus, an algorithm inspired by the one proposed in (Ploix et al., 1999) can be used. It is based on the use of
classical identification methods, such as the least-squares method, to provide the nominal values of the model
parameters. Then, using optimization tools, the uncertain parameter intervals of the considered reduced observer are
adjusted using a worst-case approach (Puig et al, 2003b) until all the measured data is covered by the interval of
prediction for the considered observer gain.

In this setion, a real limnimeter fault scenario is analyzed in order to illustrate that when varying the observer gain,
different fault isolation results could be obtained. In particular, for the analyzed case, the fault isolation result will be:
*  right persistent fault isolation,

e right non-persistent fault isolation,

e wrong fault isolation,

e and lack of fault isolation.
8.4.2 Fault scenario

The proposed interval observer-based fault diagnosis approach has been tested using a faulty scenario affecting the
limnimeter Lzo. In this fault scenario, the limnimeter output was zero-valued from time instant k&=7/50. According to

the binary fault signature matrix FSM01 shown in Table 7.1, this faulty scenario has just an influence on the
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residuals associated to limnimeters L3 and L,; and thus, both must be activated in order to isolate that fault or in

other words, the fault signals ¢; 30 and ¢;,; must be observed.

The reduced observer associated with Lo is given by
Ly (k+1) = ayy (1= Ly) Ly (k) + 3y B (k) + ayolyy Ly (k) 8.21)

where /39 (I30=0, simulation; l39=1, prediction) is the associated observer gain using the parameterization k;o=I39a39,
P, is the rain intensity measured by the rain gauge G5 and a39//[0.496, 0.744], ¢39/7[0.601, 0.901]. These interval
parameter values are valid for the observer gains tested in this section.
Regarding L, its associated reduced interval observer is

Ly (k+1)y = a, (1=1,)) L, (k) +b,, Ly (k) + ¢, P (k) + a1, Ly, (k) (8.22)
where l,; (k;;=14a4;) is the associated observer gain, P, is the rain intensity which is also measured by the rain gauge
G5 and a,;[7[0.869, 1.063], b,;[7[-0.296, -0.245], c39/7[0.734, 0.897]. These interval parameter values are valid for
the observer gains tested in this section.
First, the observer gains are set so that a right persistent fault isolation result can be diagnosed. Then, new observer
gain values are given so that the fault almost becomes non-detectable (Section 3.4.2). Finally, new values are

assigned so that the fault isolation result becomes non-permanent and partially wrong.
8.4.3 Persistent fault isolation case

In this case, the used observer gains are: I3 =0.35 and I,; =0.4, the fault isolation algorithm indicates L3 as the faulty

sensor from the fault occurrence time instant. The observer gains have been chosen so that none of the fault signals

¢ can be observed in a non-faulty scenario and their values are as low as possible so that the fault does not fully
contaminate the observer model estimation. Thus, once the fault has occurred, the fault signals ¢;3 and ¢,y

associated with L3y and Ly, are observed (|¢z4;|=>0.5 and | ¢ 30| >0.5) while the fault lasts.

In Fig. 8.1, the time evolution of the nominal residuals (+°;39 and 7°;4;) and their associated adaptive thresholds are
plotted. This figure shows that both #°;39 and r°;,; are out of their associated adaptive thresholds from fault time

occurrence (k=150) and thus, both of them are indicating persistently that fault (Section 3.4.2).

In Fig. 8.2, the time evolution of the absolute value of the fault signals ¢;;0 and ¢4, is plotted. Indeed, in order to

avoid the noise effect, the diagnosis algorithm does not use the instant values of ¢; ;0 and ¢;,; but an average of the

last values associated with a given time window and this is what is plotted in Fig. 8.2. These fault signals indicate the

fault while their absolute value is bigger than 0.5 (|¢;4;|>0.5 and |¢; 39| >0.5) what happens from few time instants

once the fault has appeared (k=150) till the end of the scenario. Consequently, derived from this figure, the fault is
persistently detected by the interval observers related to both limnimeters.

In Fig. 8.3, the fault isolation result time evolution is plotted: factor0l (Eq. (7.7)), factorsign (Eq. (7.14)), factorsensit
(Eq. (7.16)) and factororder (Eq. (7.18)) related to every fault hypothesis of the set fi,, (Section 7.4). In this fault
scenario and for the used observer gains, only the fault indicators related to a fault affecting Lj¢ are activated and they
do persistently from fault occurrence time instant till the end of the scenario. Consequently, the fault is clearly

isolated by the interval observers for the applied observer gains.
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Fig. 8.3 Time evolution of the fault isolation factors
8.4.4 Almost non-fault isolation case

In this case, using the same fault scenario, the isolation algorithm can just isolate the fault for very few time instants
because the fault detection does not last longer. This is because the interval observers associated with both
limnimeters are using high observer gain (I30=0.85 and 1,;=0.85 ) values and consequently, their performance is quite
close to the one related to a predictor: the model predicted values are almost fully contaminated by the fault since

few time instants once the fault has occurred (Section 3.3).
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In Fig. 8.4, the time evolution of the nominal residuals (r°;39 and 7°;4;) and their associated adaptive thresholds are

plotted. This figure illustrates that, once the fault has occurred, both 7°; 39 and #°;,; are into their associated adaptive

thresholds for the most of the time instants. Consequently, the fault signals ¢;3 and ¢, (Fig. 8.5) are hardly

observed for very few time instants. As a result, the fault isolation indicators (factor0! (Eq. (7.7)), factorsign (Eq.

(7.14)), factorsensit (Eq. (7.16)) and factororder (Eq. (7.18))) of L3¢ fault hypothesis, f;39, are hardly activated

(|¢r47|>0.5 and |¢30|>0.5) and therefore, the fault can not be isolated. The time evolution of these indicators is

plotted in Fig. 8.6.
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8.4.5 Non-persistent fault indication and partially wrong fault
isolation

In this case, using the same fault scenario, the fault is clearly isolated from its occurrence but it is just for a certain

time window since ¢3¢ is not persistently observed. Then, the isolation algorithm decreases the values of the factor

indicators (factor01y s, factorsign g 39, factorsensit ;39 and factorordery ;o) associated with the fault hypothesis f; 39
and on the other hand, it activates the indicators associated with f;,;. This fact could lead to a wrong fault isolation
result from that time instant. The fault isolation behavior described previously is obtained when L3y model uses an
observer gain quite similar to the one used in Section 8.4.4 while the corresponding one to L,; is quite similar to the
one used in Section 8.4.4 (I30=0.7 and 1,;=0.5 ).

In Fig. 8.7, the time evolution of the nominal residuals (+°;39 and 7°;4;) and their associated adaptive thresholds are
plotted, while Fig. 8.8 shows the time evolution of the fault signals ¢; 39 and ¢;,; (absolute values). Both figures are
in line with the behavior described previously.

Conversely, the time evolution of the fault isolation indicators (factor0l (Eq. (7.7)), factorsign (Eq. (7.14)),

factorsensit (Eq. (7.16)) and factororder (Eq. (7.18))) associated with fault hypotheses f;30 and f;,; is plotted. This

figure describes how the fault isolation algorithm might be confused between the hypotheses f;30 and f;,; once fault

signal ¢, 39 becomes non-observable (|¢.30[<0.5). In spite of this fact, the factor factorsensit; ;o continues having a

bigger value than factorsensit; 4; and consequently, this fault hypothesis might still be the best candidate.
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8.5 Conclusions

In general, model-based fault detection methods have inherent problems as the lack of fault indication persistence,
noise sensitivity or model errors and as a result, fault detection performance is not as good as it might be needed in
order to give a reliable fault diagnosis result. This fact may confuse the fault isolation module and consequently,
wrong faults may be diagnosed. According to the points (d) and (e) of the fault isolation objectives of this thesis
(Section 2.5.2), Chapter 8 shows fault isolation results may be very sensitive to the fault indication persistence
provided by the fault detection module. It also shows that this lack of persistence can deteriorate the integration
between the fault model-based detection module and the fault isolation module and as a consequence, both modules
should not be considered separately. Moreover, when using interval observers, the fault indication persistence might
be improved designing properly the observer gain matrix. Therefore, the fault isolation results might be also
enhanced. Thereby, this chapter describes qualitatively the influence of the observer gain on the fault isolation

module.
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CHAPTER9
Fault diagnosis using linear interval

observers: obtaining F'SM matrices

9.1 Introduction

This chapter is based on the interval model-based fault diagnosis method described in Chapter 8§ which improves the
integration of fault detection and isolation tasks considering the degree of fault signal activation and using a
combination of several theoretical fault signature matrices which store the theoretical properties of fault signals
when a fault occurs. As mentioned in Chapter 8, model-based fault detection methods still have some problems as
lack of fault indication persistence, noise sensitivity and model errors (Meseguer et al. 2006a). As a result, fault
detection performance can be worse than the required one in order to give a reliable fault diagnosis result. As a
consequence, the fault isolation module might be confused when a subset of fault signals must be observed during
the same period of time so that the right fault diagnosis result can be derived. However, there is another type of
influence of fault detection on the fault isolation module. This influence is derived from the matter that the
performance of the fault detection and fault isolation modules depends on the structure of the residual generator, as
illustrated along the Chapter 3 for the fault detection case and in Section 8.2.3 for the fault isolation case.
Consequently, when designing the residual generator to enhance the fault detection result, the fault isolation module
is also affected. As a consequence of this integration between both modules, the design of the residual generator
structure must be planned to enhance the whole fault diagnosis process and not just one of the both modules.
Thereby, in fault diagnosis, fault detection and fault isolation can not be considered separately. Otherwise, the
enhancement of the performance of one of the modules might worsen the performance of the other.

On the other hand, as mentioned in Section 8.2.3, the structure of the residual generator sets the knowledge the fault
isolation module has about faults regarding their influence on the fault signal set what allows obtaining the set of
theoretical fault signature matrices (FSM). In this chapter, the obtaining process of these matrices is illustrated when
using a passive robust fault detection approach based on interval observers.

Finally, applying the obtained F.SM matrices, the interval observer-based fault diagnosis algorithm used in Chapter 8
will be applied to the limnimeters of Barcelona’s urban sewer system to assess the validity of the derived results.
Thereby, regarding to the weaknesses of the fault isolation approach used in Chapter 8, all of them are improved:

e The time evolution of the dynamical properties of the fault signals is considered.

* The theoretical occurrence time instant of every fault signal is used.

» The waiting time 7, required for the appearance of all fault signals once the fault occurs is obtained.

* The estimation of the system output is obtained using an interval observer with uncertain parameters.

Regarding the structure of the chapter remainder, in Section 9.2 the influence of fault detection on the fault isolation

module is explained more in detail. Then, (Section 9.3) a method to obtain the theoretical fault signature matrices is
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presented describing the influence of the observer gain L. Section 9.4 is focused on how the fault isolation result is
obtained and the effect of the observer gain on this stage. Finally, (Section 9.5) the application example is used to

illustrate the main points described along this chapter.

9.2 Integration between fault detection and fault
isolation when using interval observers

One of the main conclusions obtained Chapter 3 is that the fault detection performance is established by the structure
of the residual generator whose computational form (Eq. (3.19)) is described in Section 3.2.2. Thereby, assessing at
every time instant the computed residual interval (Eq. (3.22)) against the fault detection condition (3.24), the fault is
indicated or not. On the other hand, the fault residual sensitivity concept introduced in Section 3.3 and the internal
form of the residual generator (Eq. (3.20)) presented in Section 3.2.2 let conclude that the residual generator can be
written in terms of the residual sensitivity to an output sensor fault, S, (Eq. (3.37)), to an input sensor fault, Sy, (Eq.

(3.47)), and to an actuator, Sy, (Eq. (3.54)), such as shown in Section 3.3.5 and Section 8.2.3:

r(k,0) =r,(k,0)+S (¢ .0) f,(k)+ S, (¢7.,0) [, (k) + S, (¢, 0) f,, (k) ©.1
This expression shows that the structure of the residual generator is basically determined by the structure of the fault
residual sensitivity matrices and consequently, as mentioned along the Chapter 3, the performance of the fault
detection module depends basically on their structure and dynamics. On the other hand, as derived from the
equations of matrices S, g, and Sy, both their structure and dynamics depends on the observation gain matrix L and
this is the reason which let conclude that the whole performance of the fault detection module can be tuned using L
(Chapter 3).
Concerning fault isolation, Section 8.2.3 sets the importance of matrices Sj, Sp, and Sy, on the fault isolation module
derived also from the residual generator structure expressed in its internal form (Eq. (9.1)). Mainly, as described in

that section, this importance is because the structure and dynamics of matrices Sg,, Sy, and Sy, determine the residuals

ri(k) (fault signals ¢,(k)) affected by a certain fault (f}, f,;, f,;) and the dynamics of the observed fault signals when

the fault occurs. As a consequence, according to the definition of the theoretical fault signature matrix FSM (Section
7.3.3), the knowledge of matrices Sg, Sy, and Sg, will allow building up the set of matrices FSM used by the fault
isolation algorithm. Moreover, as demonstrated in detail in Section 3.3 and summarized by Table 8.1, each fault
residual sensitivity matrix (Sy, Sp and Sy,) related to a certain type of fault (f,;, f, f,) has its own dynamical
properties what implies that the fault signal subset caused by this type of fault has also different dynamical properties
regarding the fault signal subset caused by another fault type. Then, if matrices Sy, Sz, and Sy, are known, more fault
distinguishability is added to the fault isolation algorithm allowing to enhance its performance, as it will be seen in
the following section. In conclusion, the fault residual sensitivity matrices (S, Sp and Sy,) play also a crucial role in
the performance of the fault isolation module. In addition, because the dependence of this matrices regarding the
observer gain L (Section 3.3), it can be concluded that the performance of the fault isolation module may also be
tuned using the observer gain.

Therefore, the fault residual sensitivity matrices (S, Sy, and Sy,) play significant role both in fault detection and in
fault isolation setting the performance of the whole fault diagnosis process. Conversely, when using interval
observers, the observer gain L may allow tuning the behaviour of this process enhancing the final result. Derived
from these statements, it can be affirmed that fault detection and fault isolation are closely integrated throw the

matrices Sy, Sp and Sy, and consequently, these matrices should be designed taking into account the whole fault
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diagnosis process and not just one of its modules (fault detection or fault isolation). Otherwise, when enhancing just

one module, the other could be affected negatively.

9.3 Fault detection and isolation interface: FSM
matrices

In Section 7.3 (Chapter 7) and in Section 8.3 (Chapter 8), the interface between fault detection and fault isolation

was illustrated. On the one hand, this interface consist in a memory component (Section 7.3.2) which registers for

every observed fault signal (|¢;(k)| >0.5) its occurrence time instant (k,;) and its value ¢, whose absolute value is

maximum. Then, on the other hand, this interface considers also the theoretical influence on the fault signal set ¢ of

every fault f; belonging to the set f of faults which wanted to be isolated. As mentioned in Section 7.3 and in Section
8.3, this theoretical influence is stored in four different theoretical fault signature matrices, FSM, applying a method
that is an extension of the proposed by (Gertler, 1998) in which just the fault signal binary property was considered.
Thus, as described in these sections, the four matrices are: the binary fault signal activation matrix (FSMO01), the
fault signal sign matrix (FSMsign), the fault residual sensitivity matrix (FSMsensit), and the fault signal occurrence
order matrix (FSMorder). As described, the structure of those matrices is set by the following: the element FSM;; of

one of these matrices contains the expected influence of fault f; on the nominal residual (k) (Bq. (7.1)) related to the

fault signal ¢;(k) (Eq.(7.5)). Then, the comparison component (Section 7.3.3) of the fault isolation algorithm

determines for every fault signal property a occurrence probability (factor0l; factorsign;, factorsensit; and
factororder;) for every fault hypothesis f; applying the fault signal observed and theoretical properties registered by
the fault detection and isolation interface.

In this section, a new important fault signal property will be introduced. This is the fault signal occurrence time

instant is introduced. Its theoretical value related to a fault signal ¢;(k) and to a fault hypothesis f; will be stored in the

element of the i”-file and j”-column of the matrix FSMtime. The following subsections illustrate how to obtain
matrices FSMsensit and FSMtime and how they are affected by the observer gain matrix L taking into account that,
as mentioned in Section 9.2, these matrices can be derived from the fault residual sensitivity matrices (S, S and
Sy.). Moreover, it will be illustrated how the other matrices can be derived from them.

Regarding the fault isolation algorithm used in Chapter 8, this approach is also used in this chapter but improving its
weaknesses. Thereby, the time evolution of the dynamical properties of the fault signals is considered, the theoretical
occurrence time instant of every fault signal is used and the waiting time 7,, required for the appearance of all fault
signals once the fault occurs will be obtained using FSMtime.

Finally, it must be taken into account that the influence of a fault affecting the output sensor y; on its associated

residual 7; is registered in the diagonal element FSM;; of the corresponding theoretical fault signature matrix.
9.3.1 FSMsensit: fault sensitivity matrix

The fault residual sensitivity matrix Sy sets the residual capacity to detect faults (Gertler, 1998) and as described in
Section 9.2, its importance in the whole fault diagnosis process is crucial. In Section 7.3.3.3, matrix FSMsensit, was
defined as a matrix whose element FSMsensit; establish how easily a fault f; will cause the i"-residual (k) to

violate its associated adaptive threshold. However, although Section 3.3 determines this property has a time evolution
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and is influenced by the observer gain matrix L, the values of every element FSMsensit; were obtained considering
the steady-state value of the residual sensitivity to a fault. Thus, in this section FSMsensit is obtained considering the

time evolution of the property. Thereby, the following equation describes how to compute the entries FSMsensit;

S, (@ nk-1,)

if r’(k)=z0andk=>t¢
7,-”(/‘)| if 17 (k) 0

FSMsensit, =1 S, (q7)n(k=1,) "
sensit,, % if r’(k)<0Oandk>¢, -2)
! (k)

0 if k<torS, (g7)=0

where 7(k) is an unitary abrupt step input, S, (¢7") is the sensitivity associated with the nominal residual r’ (k)

regarding the fault hypothesis f; (f,, f.;. fo;) and £, is the fault occurrence time instant. When ¢, is unknown, it must be

estimated using the occurrence time instant k;

of the first observed fault signal ¢;(k). As consequence of the fault

residual sensitivity time dependency, FSMsensit; evolves dynamically since the fault occurrence time instant #,. This
function is corrected using the detection threshold as the bigger it is, the more difficult fault signals will be observed,

according to Eq. (8.15).

9.3.1.1 Influence of fault residual sensitivity matrix Sy on FSMsensit

Focusing on the properties of fault residual sensitivity matrices (S, Sp, and Sz,) described in detail Section 3.3 and
on the structure of the matrix FSMsensit (Eq. (9.2)), in general, the next information may be derived concerning the
fault isolation stage:

« if an abrupt output sensor fault f; is detected, it must be from time instant ¢, since the residual sensitivity to this

output sensor fault regarding its associated residual #;(k) (rj(k):yj(k)—j/j(k) ), (S,.J_/(q'l)) (Eq. 3.43)), is
maximum at fault occurrence time instant (Section 3.3.2) causing the observation of the fault signal ¢;%).
Therefore, when an abrupt output sensor fault occurs, the fault occurrence time instant #,is always known since
it is equal to the occurrence time instant k, of the first observed fault signal. Conversely, regarding the
sensitivity of the other residuals r;(k) (Sf’_/ (¢™")) to this fault Jyp» it is zero-valued (Eq. (3.40)) at fault occurrence

time instant, ¢y, and consequently, the corresponding fault signals ¢;(k) (i=) are not observed yet

» the residual sensitivity to an input sensor fault f,; (Eq. (3.48)) (assuming D~0) and to an actuator fault f;; (Eq.

(3.56)) are null at #, (Section 3.3.3 and Section 3.3.4) and consequently, these faults can not be detected at this

time instant and they associated fault signals will not be observed either.

9.3.1.2 Deriving FSM01 and FSMsign from FSMsensit

According to Section 7.3.3.1, the FSMO01-table contains the theoretical binary influence that faults ﬁ produce in the

residual equations r;(k) which can be codified using the values 0 for no influence, 1 otherwise. This matrix can be
obtained such as the theoretical fault signature matrix FSM introduced by (Gertler, 1998) (Section 7.3.3.1) but
besides, it can be derived from the matrix FSMsensit (Eq. (9.2)) described in the previous section. Thereby, its

expression is
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FSMO1, =

]

I,  FSMsensit; # 0
9:3)

0, FSMsensit; =0

Concerning FSMsign-table, this matrix contains the theoretical sign patterns (Section 7.3.3.2) faults f; produce in the
residual equations #’i(k). As described by Section 7.3.3.2, those patterns can be codified using the values 0 for no
influence, +1/-1 for positive/negative deviation for every FSMsign;. Concerning the value of FSMsign;, according
to the residual internal form (Eq. (8.20)) and the definition given in Section 7.3.3.2, the fault residual sensitivity sets

the sign pattern a given fault f; produces in a given residual (k). Thereby, the element FSMsign; related to the fault
signal ¢;(k) (nominal residual r°(k)) and the fault hypothesis f; (f,;, £, f;) can be derived from matrix FSMsensit

(Eq.(9.2)) as it follows:

0 if k<t, or FSMsensit;=0
FSMsign;; = : ‘ 04
V| sign( FSMsensit; ) if k 2 1, and FSMsensit; # 0

On the other hand, the observed signs associated with every observed fault signal ¢;(k) will be obtained as it follows:

0 if |@k)]<0.5

sign(@(k)) =<1 if @(k)=0.5 9.5)
-1 it @k)<-05

9.3.2 FSMtime: fault signal occurrence time matrix

When a fault f; (f), i, /o) occurs, the affected residuals (k) need different periods of time to start indicating that

fault or equivalently, the fault signals ¢;(k) require different periods of time to appear. Each element of the ;” -

column of the matrix FSMtime contains the time interval [ ¢, ,

@, ] in which the fault signal ¢;(k) is expected to

appear. The value ﬁ.j is associated to the minimum f-type fault which is considered to be isolated, while @j is

associated with the maximum f-type fault the monitored system might suffer. Thus, the values @j for a given fault f;
could be estimated carrying out a test for every residual which compares the residual disturbance (Eq. (3.64))
(Section 3.4.1) caused by a fault in the nominal residual 7’(k) with the adaptive threshold given by Eq. (8.13).

Derived from fault detection test given by Eq. (8.15) and from the residual internal form (Eq. (8.20)), this test can be

written as:

S, (@™ (g™ O (k). ri (k)] k24, ©6)
where [ /.* (k) is the worst case of a f-type fault the monitored system might suffer. Then, the time the residual
requires to start indicating the fault (g, ) is obtained using the minimum time instant k,,;, that satisfies Eq. (9.6).

o =k

Y min Lo -7
When monitoring a system, the fault occurrence time instant #) is unknown in general. Hence, the values 9,
associated with the fault hypothesis f; must be referred to the first observed fault signal. Then,

¢, =9, ~min(J,) ©.8)

The value @, might also be calculated using test (9.6) but in this case, fl* (k) must be the minimum f-type fault
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which is considered to be isolated. Thus, the values J, are obtained and then,

ij
7, =3, ~min(d)) 09
Regarding the elements of matrix FSMtime,

FSMti [¢,.8,]1 ¥ S, (a)#0 (9.10)
mme.. = ’
L= i S, (g7 =0

it is remarkable the influence of the observer gain L on the interval [ @j , @.] derived from its influence on the fault

residual sensitivity matrices (Sg, Sy, and Sy,) (Section 3.3) and consequently, a proper design of L might help so that
all the fault signals were observed at the same time instant.

Derived from FSMtime, one of the most important parameters of the fault isolation algorithm can be obtained. This
is the time window T, which determines the maximum period of time required once the first fault signal is observed
so that all fault signals can appear. In other words, 7, is the period of time needed, once the first fault signal is
detected, to give an accurate fault diagnosis result unless there were only one fault hypothesis left supporting the

observed fault signal temporal sequence before T, would have ended. Thereby, T, can be obtained as it follows:

Tw = n&[alx(ay) 9.11)

On the other hand, in order to compare the occurrence time instant of the observed fault signal sequence with the

stored one in matrix FSMtime, the factor factortime;is calculated for every fault hypothesis as it follows:

ny

Z (Ckecktime (ka sk,.r s FSMtime; ))
JSactortime (k) = i=1

” zvf ; 9.12)

Z boolean(FSMtime; )

i=1

where k,; is the apparition time instant of the fault signal ¢,(k), k.., is the apparition time instant of the first observed

fault signal,
ckecktime (kﬁ. sk, FSMtime; ) =
0 if k,~k, OFSMtime, or |g(k)|<0.5 ©.13)
{1 if  k,—k, OFSMtime, and |@(k)|20.5

) 0, if FSMtime; =[-1,-1]
boolean(FSMtime,;) = I if FSMiime #[-1,1] 9.14)
2 U 2

and where zvf; is the zero-violation-factor (Eq. (7.9)) (Section 7.3.3.1) whose expression is
0, if0i0{l,..,n} with FSM01, =0
wf, = and |g(k)|20.5 (0.15)

1, otherwise

9.3.2.1 Influence of fault residual sensitivity matrix Sy on FSMtime

When applying all the fault isolation particulars described in Section 9.3.1.1 regarding the influence of the properties
of matrices (Sj, Sp and Syp) (Section 3.3) on matrix FSMsensit, a simplification can be done concerning the

expression of FSMtime. Mainly, these particulars are:
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*  Assumption of abrupt output sensor fault f,. Then, at fault occurrence time instant f,, the residual related to

sensor yi(k) (r.(k)=y.(k)-3;(k)) is the only residual which has the capacity to indicate the fault causing the

observation of the fault signal ¢;(k).

* Input sensor faults f,; (assuming D~0) and actuator faults f;; are not indicated by none residual at fault

occurrence time instant .

e As already mentioned, regarding the structure of the theoretical fault signature matrices, FSM, it is assumed
that the influence of a fault affecting the output sensor y; on its associated residual r; is registered in the diagonal
element FSM;; of the corresponding theoretical fault signature matrix.

As a consequence of all these particulars, the elements of matrix F.SMtime can be expressed as it follows:

[0,0] if i=j
FSMtime, =4[¢;.@;1 if i#jandS§, (gH#0 (9.16)
[-1,-1] if S,;_/ (g"H=0

9.3.2.2 Deriving FSMorder from FSMtime

According to Section 7.3.3.4 where matrix FSMorder was introduced, this matrix contains the observation order of
the fault signals caused for every fault hypothesis. Thereby, the elements of this matrix for a f-type fault can be
obtained from FSMtime as
o where 9,(0)=¢,
FSMorder, = and FSMtime, #[~1,-1] 9.17)
0 if FSMtime,;=[-1,-1]

where J; is a vector that contains the non-repeated elements ¢, of the ™ -column of FSMtime ordered ascendant

and whose values are not equal to -/.
When considering the fault isolation particulars described in Section 9.3.2.1, the elements of matrix FSMorder

satisfies the following relation according to the expression of the elements FSMtime given by Eq. (9.16),:

1 if i=j
FSMorder,.l. ={o>1 if i#jand FSMtimei/. z[-1,-1] 9.18)
0 if FSMtime,=[~1,~1]

assuming the model associated to each system output is not static. Thus, when considering just abrupt output sensor

faults, the first observed fault signal will allow isolating the faulty sensor according to Eq (9.18).

9.4 Diagnosis result: Logic decision

As shown in the proposed fault isolation architecture (Fig. 7.1), the last task of the considered diagnosis algorithm is
the decision logic component (Section 7.3.4). At the end of the time window T, this component gives a fault
diagnosis result based on the occurrence probability d; related to every fault hypothesis f; calculated using one of the
proposals given in Section 7.3.4 and all the factors related to f: factor01; factorsign; factorsensit;, factororder;
factortime;. This result indicates the most probable fault which is affecting to the considered system.

As illustrated in Section 9.3, matrices FSM01, FSMsign and FSMorder may be derived from FSMtime and

FSMsensit. Consequently, another proposal to obtain the occurrence probability d; related to every fault hypothesis f;
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would be using just factorsensit; and factortime;. Concerning factororder, it is not always accurate to consider that
its significance can be obviated since the observation order property of a fault signal is related to a set of fault signals
while the occurrence time instant property is just related to one fault signal, for a given f. Thereby, d; may be
calculated using these two new possible alternatives:
e the highest factor

d; = max (factorsensit;, factororder;, factortime) 9.19)
*  or weighting these factors according to its significance in the fault diagnosis process

d; = (@, factorsensit;+ a, factororder; + a; factortime;) (9.20)
where Q; , 0, 03 [ [0,1] are the weighing parameters proposed by fault diagnosis designer.
In these new proposals, factororder; and factortime; play a significant role on the final result as this factors are very
robust regarding the non-persistence fault indication given by the fault detection module while factorsensit; is not so
robust. On the other hand, if the fault diagnosis result might be very influenced by the model errors, all three factors
should be used since factororder; and factortime; might be inaccurate.
Finally, regarding the influence of the observation gain matrix L, Section 9.2 describes the key influence of the fault
residual sensitivity matrices (Sg, S and Sy,) on the whole fault diagnosis process (fault detection and fault isolation
module). As recalled in this section and demonstrated in detail in Section 3.3, the dynamics and structure of these
matrices is set by L and consequently, so do the dynamics and structure of the theoretical fault signature matrices
FSMtime and FSMsensit. As a consequence, the result given by the decision logic component may also be

influenced by the applied design of matrix L

9.5 Case of study: Barcelona urban drainage system

9.5.1 Fault isolation scenario description

This section uses the application example of 12 limnimeters of the Barcelona urban drainage system which was
already described in Section 7.4 and in Section 8.4 where a set L,, of limnimeters are modelled using interval
reduced observers with uncertain parameters. However, unlike Section 7.4 and Section 8.4, the measurements of the
limnimeters and the rain-gauges will not be obtained from real data but from a simulator of the Barcelona urban
drainage system. Thereby, some unknown effects of the measurements can be avoided in order to focus this analysis

on the effect of the observer gain L on the fault isolation result.

In this Chapter 9, only the fault signal set ¢;y; and ¢;,; associated with the limnimeters L; and L,; will be considered

to illustrate the results and conclusions described in previous sections of this chapter. According to the theoretical
binary fault signature matrix FSM0I given by Table 7.1 (Chapter 7), this fault signal set allow diagnosing faults
affecting to the limnimeters Ly; and L,;, f19; and f;,; and is composed by two residuals, one for each limnimeter.

Thus, the expressions of the interval reduced observers used to monitor Ly; and L,; are given by
lA’O} (k + 1) = aO3 (1 - ZO3 )Z:OS (k) + b03L27 (k) + 003})07 (k) + a03lO3LO3 (k) (921)
i’27 (k+1)=a, (-1, )i’27 (k) * ¢y s (k) + @yl Ly (K) 9.22)
where /y; and [,; are the associated observer gains using the parameterizations ky3;=[yzag; and k,,;=l,7a,;. Py; and Pys
are the rain intensities measured by the rain gauges G, and G, respectively. Conversely, the model parameters are

obtained using parameter estimation from experimental data considering that the following intervals describes the

possible values of each parameter: ay;)0.8816, 0.9084], bo;[J[0.0381, 0.0393], cy3L][1.4469¢4, 1.4910e4],
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a»7[J[0.9544, 0.9737] and ¢,,/][6.2641e3, 6.3907¢3]. These interval parameter values are valid for the observer gains
tested in this section.

The nominal residual associated to limnimeter L; using the observer (9.21) is given by

bu -1
()~
1+ag (I, =g

l—cz(’)’3q'1
- et 1 o(k)-
1+ag3(lg3 _1)5171 03( )

o -1
Co3q

r (k)= e ——
n () 1+ ag (I, — g™

P, (k) (9.23)

According to the fault residual sensitivity concept presented in Section 3.3 and in Section 8.2.3, the sensitivity of this
residual to an additive fault in Ly; (Fy(0)=I) is
_ 1—-a%qg™
So(a™) =m 9.24)
which satisfies that when an additive abrupt fault affecting Ly; occurs, the fault signal ¢;; is observed from the fault
occurrence time instant ¢, if the fault is detected (Section 9.3.1.1). On the other hand, in case of an additive fault
affecting L,; (F,(0)=I), the sensitivity of the residual associated to the limnimeter L; is
0 -1y — g’
Se-m(q7) =~ v a5 —Dg" (9.25)

According to Section 9.3.1.1, fault signal ¢;,;1s never observed at ¢, as its fault residual sensitivity is null at this time

instant.

Analogously, in case of the limnimeter L,,, its nominal residual is

1_a§7q_1 C; q'l
Lo k)= / Fs (k 9.26
1+a2”7(12”7 _l)q’l 27( ) 1+a207(]207 _1)q—1 05( ) ( )

Thus, the sensitivity of this residual to an additive fault affecting L, is

1y (k) =

_ l_ao qfl
Su 1y = 27 927
»(q7) (s -~ (9.27)

while its sensitivity to an additive fault affecting Ly; is
Sy 03(@™) =0 9.28)
Such as for the fault signal ¢;; case, the residual sensitivity given by Eq. (9.27) shows that the fault signal ¢;,; is

observed from the occurrence time instant ¢ if the fault is detected and assuming a abrupt fault scenario.
9.5.2 FSM matrices

In this section, considering the fault isolation scenario described in Section 9.5.1, the value of the theoretical fault

signature matrices (FSMO01, FSMsign, FSMsensit, FSMorder and FSMtime) is obtained and analyzed.

9.5.2.1 FSMsensit, FSM01 and FSMsign

Considering the residual generator associated with limnimeters Lj; and L,; (Eq. (9.21) and Eq.(9.22)), the
corresponding matrices FSMsensit, FSM01 and FSMsign are analyzed in this section.

In the proposed fault isolation algorithm, the fault residual sensitivity pattern FSMsensit; is calculated dynamically
at every time instant once a fault is detected (Eq. (9.2)). The fact of considering the residual sensitivity as a time
function instead of a steady-state value really matters in the fault diagnosis result as, for instance, the residual

sensitivity to an abrupt output sensor fault may be maximum at #, while it is null if the fault affects an input sensor
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(Section 9.3.1.1). On the other hand, the observer gains have an influence on the elements of FSMsensit which might

help to differentiate the effect a fault produces in the fault signal set (Section 9.3.1). Concerning the case of study and

according to Eq. (9.2), the elements of this matrix are given by Table 9.1 when k > t, and r030, r270 are positive.

ﬁ03 ﬁ27
¢ S(?3 (q_l)”(k _to) S(?3727 (q_l )ﬂ(k _to)
7o ()| 7o ()|
SO -1 k _
®r27 0 = (‘]70)27](()| )

Table 9.1 FSMsensit Matrix

Regarding matrices FSM0! and FSMsign, they are derived from FSMsensit according to Eq. (9.3) and Eq. (9.4),

respectively. Then, in line with Table 9.1, their values in this study case are given by Table 9.2 and 9.3.

Jros | Srz
®ro3 1 1
Gr27 0 1

Table 9.2 FSM(01 Matrix

ﬁ03 ﬁZ 7
Pros 1 -1
br27 0 1
Table 9.3 FSMsign Matrix

9.5.2.2 FSMtime and FSMorder

In this section, considering residual generator associated with limnimeters Ly; and L,; (Eq. (9.21) and Eq.(9.22)), the
matrices corresponding FSMtime and FSMorder are analyzed.

In this case, the expression (9.16) can be used to calculate the FSMtime matrix elements (Section 9.3.2.1). Thus, all
elements of this matrix are determined except for the element FSMtime;, which is calculated dynamically when the
first fault signal is observed. When test (9.6) is carried out, a simplification is done regarding the considered adaptive
threshold ([r¢ (k). (k)] ): a constant adaptive threshold is used whose value is given by the worst-case regarding the

detection of the fault. This is
[_Ti’Ti] (9.29)

where T, :max[rmrzax(abs (Kf(k))),rmrigfﬂi(abs(;f(k)))]

21y

where abs is the absolute value function.
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max

The worst sensor fault of type f; is assumed to be an abrupt step whose gain /™ is equal to the maximum estimated
value of all sensors affected by this type of fault. The minimum fault of type f; which is considered to be isolated is
assumed to be an abrupt step whose gain f /.mi“ is derived from the minimum detectable fault functions (Section 3.4)
of type f; associated with each residual. This gain is calculated as it follows:

= mDell_x{abs( ) (9.30)

where fl.,‘f;i“ is the steady-state value of the minimum detectable fault of type f; regarding the i" -residual considering

its associated threshold is given by the Eq. (9.29).

T.

—_t
sy, ()

f".)n}lﬂ =

9.31)
where s, (o) is the steady-state value of the fault residual sensitivity functions shown in Section 9.5.1.

In the following, the values in seconds of the FSMtime matrix associated with residuals (9.23) (¢93) and (9.26) (¢;27)

are shown for two specific scenarios: Scenario 1 (Table 9.4) where t=4000 s (Sampling Time 7,=300 s), Iy, =0.01,
(5, =0.01 and Scenario 2 (Table 9.5) where t,=4000's , [j, =0.01,1), =0.5
ﬁ03 ﬁ27

¢ro3 | [0,0] [900, 6300]

¢r27 | [-1,-1] [0,0]

Table 9.4 FSMtime Matrix

fL03 fL27

Pros [0,0] [900, 3900]

G127 | [-1,-1] [0,0]

Table 9.5 FSMtime Matrix

These tables confirm the influence of the observer gain on matrix FSMtime.
Concerning FSMorder, the expression (9.18) can be applied (Section 9.3.2.1) according to the considered fault

scenario. Thus, the elements of the FSMorder matrix are fully determined independently of the observer gain.

Jros | Srz
®ro3 1 2
Gr27 0 1

Table 9.6 FSMorder Matrix

9.5.3 Fault scenarios
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In this section, considering the residual generator associated with the limnimeters Ly; and L,; (Eq. (9.21) and Eq.(9.22)),

the time evolution of the residuals and the fault isolation factors (factorsensit; and factortime;) are plotted

considering the two scenarios introduced in the last section when a constant additive fault appears at time instant

t9=4000 s affecting L,;. The value of this fault is equal to the minimum isolable fault according to the Scenario I

f127=0.5566 m. The difference between these scenarios is only the values of the observer gains in order to show their

influence and the importance of factortime; when the result given by factorsensit; is confusing. In those fault

scenarios, the factors are calculated at every time instant k (7,,=300 s corresponding to one sample since 7,=300 s)

since then, the effect of the observer gains on them can be seen more clearly. Besides, a third scenario is considered

which is like Scenario 2 but where the right value of T, is used according to Table 9.5 and Eq. (9.11).

Scenario 1: t)=4000 s, T,=300 s, 7, =0.01 and [}, =0.01

In this fault scenario, the fault is clearly detected and isolated as illustrated by the time evolution of the residuals

(Fig. 9.1) and by the time evolution of the fault isolation factors (Fig. 9.2).

LO3 residual (m) & adaptive threshold time evolution (m)
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Fig. 9.1 Time evolution of the residuals and their adaptive thresholds in scenario 1.
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Fig. 9.2 Time evolution of the fault isolation factors in scenario 1.
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It can be noticed from Fig. 9.1 that the fault is detected at its occurrence time instant by the residual associated with
L7, as expected according to its fault sensitivity function (Eq. (9.27)) while the residual related to L,; does not detect

it till later such as it was also expected according to its fault sensitivity (Eq. (9.25)) and the values of matrix

FSMtime (Table 9.4). Finally, it should be taken into account that while only one fault signal is observed (¢;,;), only

Sfactorsensity,; reaches its maximum value as the residual sensitivity of Ly; is nearly zero-valued when fault appears.
This is because the dynamics of the residual sensitivity functions has been taken into account when computing

matrix FSMsensit.

Scenario 2: t,=4000 s, T,=300 s, [, =0.01 and [J, =0.5

In this scenario once the fault occurs, it is only clearly indicated by the residual associated with L,; during few time
instants (Fig. 9.3). Concerning the other residual, the fault is detected such as it was in the Scenario 1. This
inaccurate behaviour of the fault detection module causes factorsensit; to be also inaccurate regarding the fault
isolation result (Fig. 9.4). Conversely, because the observed fault signal occurrence time instants satisfy the
theoretical values stored in matrix FSMtime, the factor factortime; is not affected by this lack of fault indication and
it let clearly isolate the fault.
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Fig. 9.3 Time evolution of the residuals and their adaptive thresholds, scenarios 2 and 3.
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Fig. 9.4 Time evolution of the fault isolation factors in scenario 2.

Scenario 3: t,=4000 s, T,=3900's, Iy, =0.01 and [J, =0.5
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Unlike Scenario 2, in this scenario the right value of the time window 7,,, according to Eq. (9.11) is used: 7,,=3900 s.

This value assures that once the first fault signal is observed (¢;,; at £y=4000 s: see Fig. 9.3), the rest of the fault

signals (¢r9;) will have been observed, at least, during few time instants, at the end of this time window

(t=ty+T,,=7900s). Then, the first diagnosis result is given which already let isolate clearly the fault (Fig. 9.5). This
result is kept constant till the end of the next time window.

factorSensit time ewolution (-)

0.8F
0.6
0.4F
0.2+
0
0 0.5 1 15 2.5 3
Time(s)
X . . 10
1 factorTime time evolution (-) X
— T T T
0.8F “ B
0.6 |_27\\ 1
0.4} \ i
0.2 “ B
0 . | . . . . .
0 0.5 1 15 2 2.5 3
Time(s) X 10

Fig. 5.19. Time evolution of the fault isolation factors in scenario 3.

9.6 Conclusions

Fault isolation is influenced by fault detection as both of them use the residual generator as a key element. This
element allows the fault isolation algorithm to know the expected properties of the fault signal set when a fault
hypothesis occurs. In consequence, the theoretical fault signature matrices can be obtained analyzing the effect of
faults on the residual generator and taking into account that this effect is set by the dynamics and structure of the
fault residual sensitivity matrices. Moreover, because the residual generator depends on the observer gain L, the
influence of this matrix on the fault isolation module is also concluded. This influence allow to add more fault
distinguishability designing properly the theoretical fault signature matrices using the observation gain matrix. This
fact is unrelated to the type of fault, in spite this chapter is focusing more in sensor faults due to the use application
example.

This chapter follows the trend in FDI to analyze the influence of the detection stage in the isolation results
(Combastel et. al 2003). The main contribution is the method provided for on-line computation of the FSM including
temporal information about the evolution of the fault signals —i.e. fault signal values -, which can be used to support
or reject fault modes in the isolation stage. Moreover, related to recent works in BRIDGE, the interval model-based
observer ,which is used to estimate the system behaviour for detection purposes, provides a different way to cope
with uncertainty in model parameters: modal intervals (Armengol et al. 2001), or different techniques for envelope
generation (Loiez et al. 1998;Rinner et al., 2004). Finally, from a pure DX perspective, this work can be seen as an
initial step towards on-line calculation of temporal fault signal evolution as needed in diagnosis chronicles (Cordier

et al. 2000).
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CHAPTER 10
Fault diagnosis using a timed discrete-event

approach based on interval observers

10.1 Introduction

In model-based fault diagnosis applied to dynamic processes (systems), it is possible to distinguish between models
applied to fault detection (Section 2.3) and models used for fault isolation (or system state recognition) (Section 2.4)
(Koscielny et al. 2004a). Models used for fault detection (either, in the DX community or in the FDI community)
describe relationships existing between the system inputs and outputs (using qualitative or quantitative approaches),
and allow detecting inconsistencies caused by faults generating fault diagnostic signals (fault signals). Typically,
inconsistencies are detected by computing a residual signal as the difference between the real and the modelled
system behaviour. More precisely, a fault signal appears when the residual evaluation stage associated with the fault
detection task concludes that the residual time evolution is caused by the effect of a fault (Chow et al., 1984). Thus,
although the fault signal is characterized by a given dynamics, it can be considered as a discrete event caused by the
fault effect on the monitored system. The goal of the fault detection model is to generate fault signals so that the fault
can be isolated. The type of the model used in fault detection (qualitative or quantitative), in general, depends on the
system knowledge and the effort required to obtain an accurate model. If an accurate analytical model can be
obtained using a reasonable effort, this type of models seems to be a better choice than the qualitative models.
Otherwise, qualitative models seem to be better in fault detection.

On the other hand, models used for fault isolation (qualitative or analytical) define the relationship existing between
observed fault signals and faults. The basic idea of a fault diagnosis system is that the occurrence of a fault will
generate a unique sequence of observable fault signals (events) that will establish the presence of a given fault. In
general, the model type (qualitative or quantitative) used in fault isolation depends on the type of the fault detection
model. However, since a fault signal can be seen as a discrete-time event with a given occurrence time instant,
dynamics and duration, the use of those qualitative models known as timed discrete events models (Lunze et al.
2005) follows naturally. In this sense, (Daigle et al, 2007) uses a temporal labelled transition system which is built
on the grounds of a femporal causal graph that models the behaviour of the monitored systems. Conversely,
temporal dynamic table of states (T-DTS) method (Kosciclny et al., 2004c) models the relationship between fault
signals and faults using the called Fault Information System (FIS). The fault isolation algorithm used by this
method is based on series inference where the occurrence of a new fault signal let narrow the possible fault
hypotheses checking its observed properties and the information stored in the FIS. However, this kind of models is
not very common when fault detection stage is modeled using an analytical model (at least in the FDI community).
In this chapter, the proposed fault diagnosis approach will combine a fault isolation qualitative timed discrete event
model with the fault detection analytical model based on interval observers presented in Section 3.2 (Chapter 3) and

recalled in Section 7.2 (Chapter 7). This chapter follows forward the work developed in Chapter 7, Chapter 8 and
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Chapter 9. Recalling this line of research, Chapter 7 demonstrates that the typical binary interface proposed by
(Gertler, 1998) between fault detection and fault isolation can lead to inaccurate fault isolation results and shows that
fault isolation performance can be enhanced when other fault signal properties are considered: the fault signal sign,
its static fault residual sensitivity, the fault signal occurrence order and the fault signal occurrence time instant. In
Chapter 8, the interface presented in Chapter 7 is used and the monitored system is modelled using an interval
observer model. This last section characterizes the influence of the fault detection stage on the fault isolation result.
As a result, this chapter illustrates that observation gain matrix may be designed to enhance the fault detection and
isolation results. Chapter 9 continues the work developed in both previous sections showing that the relationship
between faults and the fault signal dynamical properties can be obtained analytically using the residual generator
structure related to the monitored system interval observer. This chapter demonstrates the crucial importance of the
fault residual sensitivity matrices in the whole fault diagnosis process and the importance of considering the fault
signal dynamics.

The aim of this chapter is to propose a fault diagnosis method using a timed discrete-event approach based on
interval observers which improves the integration of fault detection and isolation tasks. The proposed method can be
considered as a BRIDGE approach that tries to benefit from the best of the FDI and DX diagnosis communities.
Thereby, in this approach, fault signals are represented as a temporal sequence of discrete events using a qualitative
approach while fault detection is based on the analytical model represented by an interval observer described in
Section 8.2. In this way, it will be shown that all available and useful information of the fault detection and isolation
tasks is considered. The interface between fault detection and fault isolation is based on the presented one in Section
9.3. Thereby, the diagnosis result will be enhanced since the occurrence of a fault generates a unique sequence of
observable events (fault signals) that will be recognized by the isolation module implemented as a timed discrete
event system. The states and transitions that characterize such a system can be inferred directly from the relation
between fault signals and faults. The proposed fault diagnosis approach is applied to detect and isolate faults of the
Barcelona’s urban sewer system limnimeters (level meter sensors).

Regarding the proposed fault diagnosis process, this chapter focuses just on the fault isolation module since both the
fault detection module and the interface between fault detection and fault isolation were already illustrated in
Chapter 8 and Chapter 9, respectively. In consequence, concerning the structure of the remainder, in the next
section, an overview of the proposed approach is presented in order to point out its motivation. Then, in Section 10.3,
the fault isolation algorithm based on a timed discrete event system is shown. Then, in Section 10.4, the interval
observer-based fault diagnosis algorithm will be applied to the limnimeters of Barcelona’s urban sewer system to

assess the validity of the derived results.
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10.2 Overview of the proposed approach

10.2.1 Motivation

As described in Section 6.2, model-based fault diagnosis is based on a certain set of n numerical fault indicators,
known as residuals r(k) which connect the measured inputs u(k) and the measured outputs y(k) of the monitored
system:

r(k) =¥ (y(k),u(k)) (10.1)
where ¥ is the residual generator function that allows computing the residual set at every time instant using the
measurements of the system inputs and outputs. Ideally, according to (Gertler, 1998), this function is a residual
generator if the computational form of the residual set, which can also be expressed as a set of analytical redundancy
relations (4RR),is null when no fault is affecting the system (Section 2.3.2.1).

According to (Gertler, 1998), the fault detection task consists in deciding if there is a fault affecting the monitored

system by checking each residual 7 (k) of the residual set against a threshold 7; that takes into account model
uncertainty, noise and the unknown disturbances. The result of this test applied to every residual r (k) produces an

observed fault signature (k) (observed fault signal set): @(k) = [gq(k),@(k),---,% (k)] As mentioned in Section

6.2 and Section 2.4.2.1, a basic way of obtaining these observed fault signals could be throw a binary evaluation of
every residual 7 (k) against a certain threshold 7; (Gertler, 1998):

0 if |n(b)|<T,

1 if |r(b)] >, (102

The observed fault signature is, then, supplied to the fault isolation module that will try to isolate the fault so that a

fault diagnosis result can be given. This module is able to produce such a fault diagnosis since it has the knowledge

about the binary relation between the considered fault hypothesis set f(k) :{ [ k), fr(k), -, fn/ (k)} and the fault

signal set ¢ (k). This relation is stored in the called theoretical binary fault signature matrix (FSM) described in

Section 2.4.1.1 and Section 6.2.1. In short, an element FSM;; of this matrix is equal to 1 if the fault hypothesis f;(k) is

expected to affect the residual 7;(k) such that the related fault signal ¢;(k) is equal to 1 when this fault is affecting to

the monitored system. Otherwise, the element F'SM;; is zero-valued.

However, as mentioned along Chapter 6 and Chapter 7, this basic fault detection an isolation scheme has the

following drawbacks, among others:

(a) The threshold 7,should be determined and adapted on-line according to the system inputs and outputs taking
into account the model uncertainty.

(b) The presence of the noise produces chattering when using the binary evaluation of the residual.

(c) All fault signals ¢,(k) affected by a certain fault f(k) according to the structure of the matrix FSM should be

activated at the same time instant and they should be persistently observed during the whole fault isolation
process. Otherwise, a wrong fault diagnosis result could be given. Nonetheless, because fault signals have their

own dynamics, neither they necessarily have to be activated at the same time nor they are persistently observed.

205



(d) Restricting the relation between faults and fault signals to a binary one causes a loss of useful information that

can add fault distinguishability and accurateness to the fault isolation algorithm preventing possible wrong fault
diagnosis results. The occurrence of a fault causes the apparition of a certain subset of fault signals such that
each of them have characteristic dynamical properties for this fault which can improve the performance of the

fault isolation algorithm if they are taken into account.

Some of these problems should be considered by the fault detection module (for example, (a) and (b)), while the

others by the fault isolation module (for example, (c) and (d)), or by the interface between both stages.

10.2.2 Proposed approach

As described briefly in Section 2.5.4 of Chapter 2, Chapter 10 proposes a new fault diagnosis approach which tries

to take into account the problems indicated previously by using the architecture presented in Fig. 10.1.

This architecture consists in the following modules:

Fault detection module which generates fault signals measuring the system inputs and outputs taking into
account model uncertainty. This module is carried out using the passive robust fault detection method based on
intervals observers as presented in Chapter 3 and Chapter 8. This approach allows computing an adaptive
threshold that evolves along time (drawback (a)) which is applied to evaluate robustly the consistency between
the available measurements and the set of considered residuals. Concerning the chattering effect produced by the
presence of noise when evaluating the residual using a binary approach (drawback (b)), this problem has been
faced using the fault signal generation method based on the Kramer function described in Section 7.2.2.

Fault detection/isolation interface module which evaluates fault signals generated by the fault detection module
in order to register their dynamical properties. This will allow the fault isolation module to isolate the fault
among the considered fault hypotheses. These properties are summarized using several indicators which take
into account not only the activation value of the fault signal but also its fault sensitivity/sign and its occurrence
time instant/order. This proposed interface module is described in Chapter 9 and tries to handle the problems
(drawback (d)) associated with the fault signal persistence, the residual sensitivity to a fault, the fault signal
occurrence order and the fault signal occurrence time instant. As a result, the interface between fault detection
and fault isolation modules is improved enhancing the performance of the used fault diagnosis system,

Fault isolation module reasons with the information used to build all the indicators provided by the improved
fault detection and isolation interface using a discrete-event fault diagnosis model that can be automatically built
from the analytical redundancy relations obtained from the monitored system model equations and the system
available measurements. This approach is based on the issue that the occurrence of a fault will generate a unique
temporal sequence of fault signals whose dynamical properties allow isolating the fault. This method tries to
tackle the drawback (c) and apart from new components which will be presented in this chapter, uses the
memory component and some parts of the comparison component of the fault isolation architecture presented in

Fig. 7.1 and described in Section 7.3.
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Fig. 10.1 Block diagram of the fault diagnosis system

10.3 Fault isolation module

10.3.1 Fault isolation algorithm as a DES

The fault isolation module and the interface between fault detection and fault isolation can be formalized as a
discrete event system (DES)"" since a given fault affecting to the monitored system will cause a unique sequence of
fault signals (events) whose dynamical properties should allow obtaining a fault diagnosis result. Taking into account
temporal aspects in the sequence of fault signals (order and time instant of occurrence), a timed discrete event model
(TDES) will allow modeling more accurately the fault isolation process from the occurrence of the first fault signal of
the temporal sequence until a fault isolation result is given. A timed discrete event model of this type is known as a
timed labeled transition model (TLTS) (Daigle et al., 2007). Using this modeling approach, the fault signals would be
the events, the states would be given by all the fault hypotheses supporting the observed fault signal sequence and the
transitions would be set by the comparison between the theoretical and the observed dynamical properties of the fault

signals.

10.3.2 Fault isolation and interface module components

10.3.2.1 Description

Figure 10.2 presents the components of the fault isolation and interface modules which are an evolution of the fault
isolation architecture proposed in Fig. 7.1 (Chapter 7). As mentioned in Section 10.3.1, the main idea of this new
fault isolation approach is based on the fact that a given fault affecting to the monitored system will cause a unique
temporal sequence of fault signals what will allow obtaining a diagnosis result comparing the dynamical properties
of the observed fault signals with the ones stored for each fault hypothesis in the theoretical fault signature matrices,

FSM (Section 9.3).

7 Fault isolation methods built using a DES consist in a set of states connected by transitions (Sampath ez a/, 1996). The transitions are related to
events generated by the fault effect on the monitored system, while the states indicate a certain situation of the whole fault isolation process.
Moreover, when these transitions are built taking into account some temporal aspects, the discrete event model (DES) is known as a timed discrete
event model (TDES) (Chen et al, 1997).
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Fig. 10.2 Components related to the interface and fault isolation modules

The fault isolation algorithm starts with the occurrence of the first fault signal (|¢;(k)|>0.5) and ends when there is

only one fault hypothesis supporting the observed temporal sequence of fault signals or when the diagnosis time
window T, (Eq. (9.11)) (Section 9.3.2) has ended. Thereby, the first element of this algorithm is a memory component
which registers some information of the observed fault signals, such as described in Section 7.3.2. The second
element is a timed series inference component which compares the stored information of a new observed fault signal
with the information stored in matrices FSM01, FSMtime, and FSMorder for those non-rejected fault hypotheses.
The result of this series inference component is the rejection of those fault hypotheses that do not support the
observations. When there is only one fault hypothesis left, the algorithm ends giving that hypothesis as the fault
diagnostic result. Otherwise, when the time window T, has ended, the third element, the patfern comparison
component, computes factorsensit; for those non-rejected fault hypotheses. Then, the last element, the logic decision
component, gives as a diagnostic result the fault with the biggest absolute value of the factor factorsensit;.

Concerning the timed series inference component, this is a new component regarding the architecture presented in
Fig. 7.1 and tries to take benefit from the event nature of fault signals and from the fact that a fault affecting the
system will generate a unique temporal sequence of fault signals. In the following section, more detailed explanation
of the performance of this component will be given. Finally, regarding the pattern comparison and logic decision
components, they work as described in Section 7.3 using the architecture shown in Fig. 7.1. However, in the new
architecture described by Fig. /0.2, these components are restricted to the fault residual sensitivity property since the

binary, the fault occurrence time instant and the occurrence order properties are checked by the timed series
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inference component. This approach assumes that the fault signal sign property is already set by the fault residual

sensitivity property, as mentioned in Section 9.3.1.2.
10.3.2.2 Timed series inference component

The timed series inference component is based on the fact that each new fault signal allows rejecting those
hypotheses that do not support the observations and in consequence, a diagnosis result can be given before the time
window T,, (Eq. (9.11)) (Section 9.3.2) ends. Thereby, the rejection of a certain fault hypothesis when a new fault
signal is observed is based on the comparison between the information related to this fault signal which is stored in
the memory component and the theoretical properties of this fault signal for this fault hypothesis, which are stored in
the matrices FSMO01, FSMtime, and FSMorder. In consequence, the observation of a new fault signal will allow
narrowing the subset of fault hypotheses which are still supporting the observations and consequently, the ones
which are still candidates to set the diagnosis result. When there is just one fault hypothesis left, the reasoning
process ends giving this hypothesis as diagnosis result. Otherwise, the process ends once the period of time 7, has
elapsed since the observation of the first fault signal.

This component can be built using a timed labelled transition system (Daigle et al., 2007) where the initial state is the
non-faulty state, then, each fault hypotheses (set f) have a TLTS representation which are connected to this initial
state. The TLTS representation associated with a given fault hypothesis shows the fault signal temporal sequence
caused by this fault. In each state transition, the properties of the new observed fault signal are compared with those
stored in FSMO01, FSMorder and/or FSMtime for this fault hypothesis. The present state of a fault hypothesis 7LTS
representation just indicates that this fault hypothesis is still supporting the observed fault signal temporal sequence.
When a new fault signal occurs, for each non-rejected fault hypotheses, the state transition starting in the present
state is evaluated. If this evaluation fails, the fault hypothesis is rejected. At the end of the diagnosis time window T,
those non-rejected fault hypotheses will establish the final fault diagnosis result.

According to the definition given by (Daigle et al., 2007), a TLTS can be seen as the following tuple
7=(0,90. %6 (10.3)

where Q; is the set of states, g, is the initial state, X is the set of labels and 9, is the set of transitions. Thus, when

applying this 7LTS definition to model the presented timed series inference component, there will be a tuple 7~

related to every fault hypothesis f; that belongs to the set f of all the considered fault hypotheses. All these set of

elements 7 will just have one element in common: the state g, related to the non-faulty state. Regarding the states

0,,€ O;, its number ny; is set by the number of fault signals ¢,(k) affected by the fault hypothesis f;. This is

ny
ny =Y FSMOI, (10.4)

i=1

The present state Q,; of Z just have the meaning that the fault hypothesis f; is still supporting the observations.

Regarding the transitions d,; of the set d;, they connect O, ;; with O, being g, , the first state. Thus, there will be for
a certain 7, a transition for every fault signal related to the fault hypothesis f;: this is ng; In this way, the transition
4,; will be related to the fault signal ¢;(k) whose theoretical occurrence order for this fault hypothesis is given by p’

(FSMorder;=p). Thereby, concerning the sequence of transitions and states in 7, they have an ascendant order set

byp=1,..., ng.
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About the labels X, of the set 3, there is one for each transition d,; and consequently, for each fault signal ¢;(k)
related to the fault hypothesis f;. Thereby, the evaluation of all the labels X, is carried out when the p’h -fault signal
¢i(k) is observed. If the evaluation of X, fails, the fault hypothesis f; is rejected. Otherwise, the state O,; becomes the
present state of 7. Thereby, 3J,; is carried out evaluating the following relation

ij = (ckeckorder (@(k), FSMorder[,. )) and (ckecktime (kw. , qu/ , FSMtime[j )) (10.5)
where the functions checkorder and checktime are given by Eq. (7.19) and Eq.(9.13), respectively.

According to the mentioned previously, a diagram of the set of elements Z which models the performance of this

timed series inference component is presented in Fig.10 3.

Fig. 10.3 Timed series inference component modelled using a timed labelled transition system

10.4 Case of study

10.4.1 Description

This section uses the application example of 12 limnimeters of the Barcelona urban drainage system which was
already explained in previous sections (Section 9.3). As mentioned, the used methodology applied to the selected
sewer network (Fig. 7.3) let diagnose faults of a set f;,, composed by 14 limnimeters modelling a set L,, of 12
limnimeters using interval reduced observers with uncertain parameters. Thereby, the estimations given by the
limnimeter models of the set L,, allow obtaining a set r of 12 residuals. Thus, according to Eq. (7.5), every residual of
the set r determines a fault signal being ¢ the set of all possible fault signals caused by the faults of the set f7,,.

Then, a fault affecting a limnimeter of the set f,, will cause a temporal sequence of fault signals (a subset of ¢)
whose properties will let detect and isolate the fault using the new fault isolation algorithm presented in Section

10.3.2 (Fig. 10.2).
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10.4.2 Fault Signature Matrices

In this section, fault signature matrices FSMsensit and FSMtime related to the considered case of study are given.
These matrices are computed as shown in Section 9.3 assuming the observer gains /; (k;=/a;)(Eq. (9.21)) of all interval
observers associated with the limnimeter set L,, are equal to 0.0/ and the occurrence of the first fault signal is

detected at time instant 7,=4000 s. Thereby, they show the relationship between the limnimeter fault set f;,, and the
properties of the fault signal temporal sequence ¢ originated by these faults and consequently, they let isolate
limnimeter faults using either the fault isolation algorithm described in Section 10.3. As mentioned in Section 9.3, the

other three matrices (FSMO01, FSMsign and FSMorder) of the interface can be easily obtained from FSMsensit and
FSMtime.

Regarding FSMsensit (see Section 9.3.1), it must be taken into account that each element of this matrix is a time
function, mainly, based on the sensitivity of residual related to a certain fault signal to a given fault hypothesis (Eq.
9.2)). Thus, in the following, the elements of FSMsensit matrix showed in Table 10.1 are just the fault residual
sensitivity steady-state values instead of the ones derived from the use of Eq. (9.2). However, the presented fault

isolation algorithm does use this equation to obtain the elements of FSMsensit. In this table, f;,, is a fault affecting

the limnimeter L,,; while ¢y, is the fault signal associated with the residual r;; obtained using the interval observer

model of L,,;.

FSM sensit Matrix

Tros | Tror | Tuoe | fros | fuse | Frzr | fuos | frar [Tuas] fuar | Fiss | fuss | Fueo | Fuss
s (0921 o | o | o o [-0.340[ o0 0 0 0 0 0 0 0
ér | 0 [0933] o | o 0 0 0 0 0 o [-0150 o 0 0
b | 0 | o |oos1] o [-0752] o 0 0 0 0 0 [-0408] o [-5.162
b | 0| o] o Jooas| o 0 0 0 0 0 0 0 0 0
édus| o | o] o] o |og77] o 0 0 0 0 0 o [-0255] 0
¢px|l 0l 0] o] o o [o7sa| o 0 0 0 0 0 0 0
éd| 0| 0] o] o 0 o [o0964| o 0 0 0 0 0 0
édwm| 0ol o] o] o 0 o [-0.908] 0.955 | 0 0 0 0 0 0
édus| 0| o] o] o 0 0 0 |[-57.243| 0 |97.484| o 0 0 0
| 0| 0] o] o 0 0 0 0 0 0o |o265]|-0.183] o 1
¢ | 0| 0] o] o 0 0 0 0 0 0 o [os02| o 0
| 0| o] o] o 0 0 0 0 0 [-14.085| 0 0 1 0

Table 10.1 Theoretical fault signature matrix related to the fault residual sensitivity property

Table 10.2 presents FSMtime matrix (see Section 9.3.2), where the fault occurrence time intervals are expressed in
seconds. According to the value of the presented FSMtime and Eq. (9.11), the value of the diagnosis time window for

this scenario is 7, = 30600 s.
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FSMtime Matrix

fros | fror | fios | fioo fiie fio7 fiag fra fias fla fuss fiss fieo fiss
¢ 103 | [0,0] |[-1,-1]) [-1,-1]| [-1,-1]} [-1,-1] |[900,6300]| [-1,-1] [-1,-1] |[-1-1]) [-1,-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1]
é 07 |[-1.-1]] [0,0] | [-1,-1]| [-1,-1]} [-1,-1] [-1,-1] [-1,-1] [-1,-1] |[-1-1]) [-1,-1] [2100,5400]| [-1,-1] [-1,-1] [-1,-1]
® s |[-1.-1]|[-1,-1]} [0,0] |[-1,-1]| [600,4200]| [-1,-1] [-1,-1] [-1,-1] |[-1-1]) [-1,-1] [-1,-1]  [[900,4200] [-1,-1] [[300,4200]
@00 |[1-1([1-10f[1-10f (0,01 | [1,-1] [-1-1] [1-1] 1-1 |- -1 [1-1] [1-1] [1-1] [1-1]
¢ e |[-1.-1])[-1,-1]) [-1,-1] | [-1,-1] [0,0] [-1,-1] [-1,-1] [-1,-1] |[-1-1]) [-1,-1] [-1,-1] [-1,-1] |[300,2400]| [-1,-1]
¢ 27 (L[ LA LA L1 (1] [0,0] [1-1] (1-1 |- -1 [1-1] [1-1] [1-1] [1-1]
brae |L-1( L) LA L1 [0 [-1-1] [0.0] [ o | B G Y [-1-1] [-1-1] [-1-1] [-1-1]
G |[-1-1])[-1,-1]) [-1,-2]f [-2,-20)  [-1,-1] [-1,-1] ][300,3900] [0,0] [-1,-1] [-1-1] [-1,-1] [-1,-1] [-1,-1] [-1,-1]
b s |[-1-10) [1-1]) [F1,-10) [-2,-10) [-1.-1] [-1,-1] [-1,-1] |[300,1800]| [0,0] |[300,30600]| [-1,-1] [-1,-1] [-1,-1] [-1,-1]
¢ isa (L[ LA LA FL-1Df (1] [-1-1] [1-1] (1-1 |- -1 [0,0] [0,0] [1-1] [0,0]
Guise |-L-10( L) LA LA [0 [-1-1] [-1-1] 1-1 |F-1f [ [-1-1] [0,0] [-1-1] [-1-1]
b |L-afafafeey) e | | | [ oo [ERETI T YR

Table 10.2 Theoretical fault signature matrix related to the fault signal occurrence time instant property

10.4.3 Fault isolation method using the timed discrete-event
approach

In this section and for the considered case of study, a fault isolation process will be designed following the fault
isolation architecture presented in Section 10.3 focusing on the timed labelled transition system used to model the
timed series inference component (see Fig. 10.2) (Section 10.3.2.1). In this case, this fault isolation model will be

built just considering a subset of 6 fault hypotheses affecting to L4 L,7, Lso, Ly, Loz and Ls, of the fault set f;,, (Fig.

10.4). In this figure, the label of the transition related to the fault signal ¢,,, for the fault hypothesis f;,, (fault

affecting limnimeter L,,;) will be noted as X;,,;. .,,; (Eq. (10.5)) while all the states related to a certain fault hypothesis

will be notated as f,,, .

Non-faulty state

X

LI6-LI6 p)
Y12 Y30.139 L54-L54

2L03-L27 [

X

Fig. 10.4 Limnimeter fault isolation based on a timed LTS model
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The associated representation of this timed labelled transition system can be seen as the integration of all the
information stored in FSM01, FSMorder and FSMtime in the same structure, as has been described in Section
10.3.2.

Focusing on a fault scenario where a fault affecting limnimeter L,, occurs at #,= 4000s, the time evolution of the

affected residuals and their associated adaptive thresholds (Eq. (8.15)) are plotted in Fig. 10.5.
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Fig. 10.5 Time evolution of the residuals and their adaptive thresholds.

Analyzing the time evolution of those residuals and according to Eq. (8.15) and Eq.(7.5), the first observed fault signal

will be ¢,,; (fault signal related to limnimeter L,; observer model) since time instant ¢=f,. The value of factorsensit;

(Eq.(7.16)) and factortime; (Eq. (9.12)) related to all fault hypotheses of the set f;,, is presented in Fig. 10.6. It can be

seen that only those factors related to the fault hypothesis f;,; are activated from the fault occurrence time instant.

Then, according to the fault isolation discrete-event model presented Fig. /0.4 and the information stored in FSM01,

FSMorder and FSMtime, all fault hypotheses except f;,7 (fault affecting L,;) will be rejected. Afterwards, the fault

signal ¢;; is observed supporting the LTS representation associated with f;,;.

factorSensit time ewolution (-)

N T
o8 “ ~ 1
0.61 \\ 1
0.4f \ )
0.2} “ il
0 : : ‘ ‘ :
0 0.5 1 15 2 2.5 3
Time(s) 4
N factorTime time ewolution (-) x10
0.8 | )
L27 |
0.6 \ \‘ 1
o~ |
0.4F ‘ 1
|
0.2} “ )
0 | I L L L -
0 0.5 1 1.5 2 2.5 3
Time(s) x 10"

Fig. 10.6 Time evolution of factorsensit; and factortime; related to all fault hypotheses of the set fi,.
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Fig. 10.7 Isolation of a fault affecting L,; using a Timed LTS model

10.5 Conclusions

This chapter proposes a model-based fault diagnosis method using a timed discrete-event approach based on interval
observers which improves the integration of fault detection and isolation tasks. The interface between fault detection
and fault isolation module considers the degree of fault signal activation and the occurrence time instant of the fault
signals using a combination of several fault signature matrices which store the knowledge of the relationship between
diagnostic signals and faults. Such fault signatures matrices can be derived from the system model using a fault
residual sensitivity analysis. Moreover, exploiting the discrete-time event nature of the fault signals generated by the
fault detection module, a fault diagnoser based on a timed discrete-event model can automatically be implemented.
Using such approach, faults can be diagnosed since their occurrence generates a unique sequence of observable
events (fault signals) that can be recognized by the isolation module. The states and transitions that characterize such
a model can be inferred directly from the relationship between fault signals and faults. To exemplify the use and
illustrate the effectiveness of the proposed approach, a real case study consisting in diagnosing faults of the

limnimeters used for the global control of the Barcelona sewer network is used.

214



215



Concluding remarks

11.1 Introduction

According to the PhD thesis objectives determined in Section 2.5 (Chapter 2) and the work carried out in the
previous chapters, this chapter summarize the main contributions of this PhD thesis. It must be noticed that this
contributions were already described in each corresponding chapter. Moreover, in this chapter it is also pointed out
the further work derived from the main obtained results.

Without taking into account the introduction chapter (Chapter 1) and the chapter of the state of the art (Chapter 2),
the obtained contributions and conclusions will be described showing their relations regarding the planned objectives

(Section 2.5).

11.2 Contributions

In the following subsections of this section, the contributions derived from every general group of objectives

(Section 2.5) will be illustrated, as mentioned above.
11.2.1 Fault detection objectives

The contributions related to this group of objectives were obtained in Chapter 3, Chapter 4 and Chapter 5 of this

PhD thesis document. Thereby, regarding the fault detection objectives set in point (a) of Section 2.5.1, the main

contributions are:

(a) Illustration of the influence of the observer gain on the time evolution of the fault residual sensitivity function.

(b) Determination of the minimum detectable fault function when considering an interval observer-based approach
pointing out its dynamical aspects and the influence of the observer gain. This point can be considered as an
extension of the triggering limit concept introduced by (Gertler 1998).

(c) Determination of a fault classification according to the time evolution of their detectability: permanently
detected (strong fault detection), non-permanently detected (weak fault detection) or just non-detected.

(d) Determination of the adaptive threshold related to the interval observer and the effect of the observer gain on it.

(e) Determination of the influence of the observer gain on the envelopes associated with the system output
estimation interval computed by the interval observer.

(f) Illustration of the influence of the observer gain on the fault detectability.

These contributions were mainly derived from Chapter 3 which illustrates that the performance of the fault detection

module is established by the adaptive threshold related to the interval observer. Thereby, this adaptive threshold

depends on the uncertainty, and by the different fault residual sensitivity functions related to the residual generator

built up using the interval observer model. This chapter signals out that both observer fault detection properties have
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an associated dynamics which depends basically on the observer gain. As a result, the observer gain can be seen as

the tuning parameter of the interval observer which may allow obtaining the required fault detection performance.

On the other hand, Chapter 4 tackles the set of fault detection goals enumerated in point (b) of Section 2.5.1 being its

main contributions:

(g) Observer gain design procedure to avoid the wrapping effect when using low computational algorithms
(set/region-based approaches) to compute the system output estimation interval at every time instant.

(h) Influence of this observer gain design procedure on the performance of the fault detection module.

The main conclusion of this chapter is that designing properly certain elements of the observer gain matrix, the

wrapping effect can be avoided when using low computational algorithms. A drawback of this procedure is that the

interval observer fault detection performance might be affected negatively. Nonetheless, this effect might be

counteracted setting properly the values of the other elements of the observer gain matrix.

Concerning the last set of fault detection objectives (point (¢) of Section 2.5.1), they are carried out in Chapter 5

obtaining the following contributions:

(1) Design procedure to obtain a A-order interval predictor equivalent to a certain interval observer from their fault

detection performance point view.
(j) Tlustration that when state-space matrix of the interval observer satisfies the isotonicity property (Chapter 4),
the system output estimation interval can be obtained by the fault detection equivalent predictor using two

known point-wise trajectories.

The main conclusion of Chapter 4 is that a A//-order interval predictor equivalent to a certain interval observer

regarding their fault detection performance can be obtained. It must be noticed that predictors do not suffer either
from the wrapping effect or from the initial condition sensitivity problem (Table 2.1). Moreover, if the interval
observer is isotonic, the system output estimation interval related to the equivalent interval predictor can be

computed using two known point-wise trajectories.
11.2.2 Fault detection/isolation interface objectives

This group of objectives was tackled in Chapter 6, Chapter 7 and part of Chapter 9. However, Chapter 6 has only a
motivational function regarding the non-accurateness associated with a binary interface between fault detection and
fault isolation. Thereby, the main conclusion of this chapter is that the fault detection module and the fault isolation
modules can not be considered separately such as it is proposed by those methods using a binary interface but the
dynamical properties of the fault signals must be considered. This non-binary fault detection/isolation interface
allows adding more fault distinguishability to the fault isolation algorithm and besides, takes into account the effect
of the fault detection module on the fault isolation result.

Concerning Chapter 7, this chapter is based on the fault isolation method proposed by (Puig et al, 2005b) focusing
on the interface between fault detection and fault isolation. In (Puig et al, 2005b), the properties of a non-binary
interface are described without giving a procedure for its construction. In this chapter, the different steps which must
be followed to build up this interface according to a passive robust fault diagnosis approach based on interval
observers are given. The most of these steps will be tackled in Chapter 8, Chapter 9 and Chapter 10. Thereby, the
main contributions of this chapter are:

(a) Adaptation of the method proposed by (Puig et al, 2005b) to a passive robustness approach based on interval

models.
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(b) Procedure to model the Barcelona sewer network in order to detect and isolate faults affecting the limnimeter
Sensors.

The main conclusion of Chapter 7 is that the accurateness of the whole fault diagnosis process is notably enhanced

when a set of properties related to fault signals is considered to isolate the fault instead of just considering the binary

property. It is in the following where this interface is further tested using an interval observer-based fault diagnosis

approach.

As mentioned, the last contributions in this group of objectives related to the interface between fault detection and

isolation were obtained in Chapter 9:

(c) Illustration of the importance of the fault residual sensitivity functions on the fault isolation process since they
determine the dynamics of the fault signals and the structure of the theoretical fault signature matrices (FSM).

(d) Procedure to compute the theoretical fault signature matrices when using interval observers and when
considering the time evolution of the fault signal properties.

The main conclusion of this chapter regarding this interface is that for those fault diagnosis approaches based on

analytical models it is very important to know the expressions of the fault residual sensitivity functions since they

rule not only the results of the fault detection stage but also the results of the fault isolation module. They determine

the dynamics of the generated fault signals and the fault signals which will be affected by a given fault (structure of

the FSM matrices).

11.2.3 Fault isolation objectives

As described in Section 2.5, the last group of objectives is related to the fault isolation module which was tackled in
Chapter 8, part of Chapter 9 and Chapter 10 obtaining a set of new contributions. Thereby, Chapter 8 focuses on the
fault isolation objectives shown in point (d) of Section 2.5.2 being its main contributions:

(a) Adaptation of the method proposed by (Puig et al, 2005b) applying interval observers.

(b) TIllustration that the result obtained by the fault isolation module is influenced by the fault detections module
and therefore, both modules can not be considered separately. This influence is due to problems affecting the
fault detection module (7able 2.1) and to the fact that the isolation of a fault requires the activation of a subset
the residuals in a certain period of time. This result justifies the use of the interface proposed by (Puig et al,
2005b).

(c) Tlustration that the observer gain has a key influence on the result given by the observer gain. This influence
derives from the effect of the fault detection module on the fault isolation process and from the fact that the
detectability of a fault depends on the observer gain, such as depicted in Chapter 3.

(d) Adaptation of the procedure to model the Barcelona sewer network in order to detect and isolate faults affecting
the limnimeter sensors applying interval observers.

The main conclusion of this chapter is that the fault detection and fault isolation modules can not be considered

separately when designing a fault diagnosis process. This is due to the fact that the results given by the fault isolation

module depend significantly on the time evolution of the fault signals generated by the fault detection stage. The
importance of this aspect is remarkable since, as mentioned previously (Table 2.1), fault detection is affected by
some inherent problems and fault isolation requires the activation of a subset of fault signals in order to isolate the
fault without any error. Moreover, this influence of the fault detection module on the fault isolation process stands
out even more the fact of considering a set of fault signal properties in the interface between both modules instead of

considering just the binary property. As a last conclusion of this chapter, the influence of the observer gain on the

218



fault isolation result is derived from since, as concluded in Chapter 3, the generation of fault signal by the fault

isolation stage is ruled by the observer gain.

Concerning the fault isolation goal described in point (e) of Section 2.5.2, Chapter 9 allow obtaining the following

contribution:

(e) TIlustration of the importance of the observer gain matrix L on the fault isolation process since its influence on
the dynamics of the fault residual sensitivity functions, such as demonstrated in Chapter 3.

The main conclusion of this chapter regarding this aspect is that the observer gain matrix L have also a key influence

on the fault isolation module since, as demonstrated in Chapter 3, this matrix determines the dynamics of the fault

residual sensitivity functions. In consequence, a proper design of this matrix might allow enhancing the fault
isolation result according to a certain requirements.

The last contributions are achieved in Chapter 10 which focuses on the fault isolation objectives shown in point (f) of

Section 2.5.2:

(f) Tlustration that the fault isolation module should be modelled using a timed discrete-event models since the
fault signals generated by the fault detection module can be considered as a discrete-event that occurs at a
certain time instant.

(g) Procedure to model the fault isolation module using a timed discrete-event approach when monitored system is
modelled applying an interval observer approach.

(h) Proposition of a new fault diagnosis method derived from the results obtained in the Part II of this PhD thesis.
This method can be seen as an evolution of the proposed by (Puig et al, 2005b).

The main conclusion of this chapter is that modelling the fault isolation module using a timed discrete-event

approach allows enhancing the performance of this module regarding its accurateness. This result derives from the

timed discrete-event nature of the fault signals generated by the fault detection module. Besides, it must be noticed

that this aspect does not depends whether the monitored system is modelled analytically or qualitatively.

11.3 Further work

When all the required tasks were carried out in order to achieve the planned objectives, some new important aspects

regarding passive robust fault diagnosis based on intervals observers appeared which were kept out of the scope of

this PhD thesis. However, they were listed as a further work since the analysis of these points may enhance the

performance of the interval observer regarding the whole fault diagnosis process. This set of new tasks, which were

kept as a further work, is:

(a) Disturbance and noise influence on the performance of the fault detection module and the effect of the observer
gain on it.

(b) Observer gain design procedure to avoid some of the fault detection drawbacks related to the analytical model
approaches (Table 2.1): i.e avoiding the wrapping effect minimizing the noise effect.

(c) A proper extension of the concept minimum detectable fault in a multiple fault scenario.

(d) Design procedure of the elements of the observer gain matrix which have not been set to avoid the wrapping
effect in order to counteract the possible negative influence of obviating this effect.

(e) A proper definition of the minimum isolable fault and its benefits when considered in the fault diagnosis stage.

Design procedure to enhance the fault isolation result using the observer gain matrix as a tuning parameter in order to

add more fault distinguishability.
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Appendices

Appendix A

In this section, it is demonstrated that the residual relation given by Eq. (3.31) is satisfied when the interval observer

(Eq.(3.7)) is stable and both its state-space matrix 4 and its observation gain matrix L are positive, assuming the
observability of the system (Eq. (3.1)) for all # 0@ . Besides, the observer gain is assumed to satisfy the following
relation: 0 < L, < L, , understood element by element. According to these assumptions, it is satisfied:
(a) 0s(LC); say; being a; and (LC); the elements placed in the i"-row and j"-column of matrices 4 and LC,
respectively and where i, j = 1,...,nx
(b) 0=(L,); <(L,); being (L); and (L,); the elements placed in the i"-row and jth-column of the observation gain
matrix L and its value when a predictor model is used, respectively and where i = /,...,nx and j =1,...,ny
(c) |4-Lc|<1
According to Eq. (3.29) of Section 3.2.3,
r(k)+H, (¢ ,0)r(k)=r(k) (2.1
where the transfer function H,.( q_I ,0) is given by Eq.(3.27) and, as mentioned in Section 3.2.3, the term r(k);_,

corresponds to the residual generated by the simulation approach. Then, Eq. (12.1) can be re-written as follows using

the matrix inversion lemma

r(6)=(1-CO)(aT = 4,(0)) " L)1),y = r(),. = CO) Y 40V 7 L)), (122)

k-1
Particularizing Eq. (12.2) for the residual interval upper bound (¥ (k) =7 (k),, —C(H)Z A, (0) 7 L¥ (j),., which

j=0

_ k-1 )
satisfies the relation r(k)>0'® in a non-faulty scenario and noticing that the term C(H)Z A O LF()),., isa

=0
function of the matrix L, every component related to the residual upper bound ;(k) achieves its maximum value in

the range 0 < LC< A for L=0 (that is, when the observer eigenvalues are equal to the ones related to the

monitored system). On the other hand, in the predictor case (L =L,) this term can be approximated taking into

account that A4, (0)k =0 for k>nx since in this case all the observer eigenvalues are placed at the origin. In

consequence, every component related to the residual r(k) achieves its minimum value. Finally, considering a

8 ;(k) >0 should be understood component by component, that is: i (k)y>0 i=1,---,ny
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value of the observer gain (L =L,) which is between the two previous extreme cases, the expression
0< A-LC < A allows establishing the following relation for whatever time instant k>0

i (K),, <7 (k),, <5 (k)

»

L0 i=1--,ny (12.3)

Conversely, for the case of the residual interval lower bound which satisfies the relation r(k) <0 in a non-faulty

scenario, a similar expression can be obtained using an analogous reasoning:

E(k)L:L Eﬁ(k)l,:l,u Zﬁ(k)Lza i=1,---,ny (12:4)

P

As aresult of Eq. (12.3) and Eq. (12.4), the following relation is obtained

50,0, |0 [r0),, B[00, ] =t (29
completing the proof.
Appendix B

This section illustrates the required condition so that the residual relation given by Eq. (3.31) can be satisfied in
steady-state. Although it is not strictly necessary, as hypothesis, it will be assumed all the elements of matrix 4 are

positive and the observer gain matrix L satisfies the relation 0 < L, < L, , understood element by element.
According to Eq. (3.29) of Section 3.2.3, the residual fullfils the following relation:

(I+C(0 (gl - A4(0))” L) F(k)=r(k )yeg (12.6)
where, the term r(k);_, corresponds to the residual generated by the simulation approach. Then, Eq. (12.6) can be

expressed in steady-state as

(I+C(0 (I-400))" L) F(%0)=r(),_, (12.7)
Thus, applying the contractivity property (see Definition 2 in Section 2.3.2.5.2) of a linear system, the relation
[r(e)] O[r();-] (12.8)
is satisfied when
H(I +C(0)(1-4(0))" L)H > (12.9)

Then, given that A and C are constant matrices and L satifies the relation 0 <L, <L,, the following residual

relation can be written

[7(2),ms, O[5 ()00, |0 (), ] iy 1210

Eq. (12.9) confirms that the elements of matrices 4, C and L do not have to be positive.

Appendix C
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In this section, it is demonstrated that the steady-state of the residual sensitivity to a input fault,S;, (Eq.(3.49))

satisfies the relation (3.53) when the interval observer fullfils 0< LC<A and 0<L, < LI,, neglecting the direct-

input matrix D (D=0). Thus, Eq. (3.49) can be written as:

s, () = lqiirllsfu (¢7,0)= —(C(ﬁ) (I +LC@O)- A(l9))_1 B(O)) F (0) (12.11)
According to procedure applied in Section 3.3.3, Eq. (12.11) can be seen as the steady-state value of Sy, for an abrupt
fault modelled as a unit-step function (Gertler, 1998). Then, considering that this fault occurs at time instant k=0 and
propagating Sy, from this time instant until k=00, Eq. (12.11) can be written as:
k-1 -
5, () = —C(O){Z(A(H) - LC(0))k_’ 'B(O)F, (0)} (12.12)
Jj= k- oo
Since the estability of the interval observer is assumed and it satisfies 0<LC<A and 0<L,<L,, the following
relation can be written:
0<|A4@0)-LC©)|<||40)|<1 (12.13)

In consequence, the steady-state of Sy, (Eq. (12.11)) will satisfy the relation given by Eq. (3.53). This is

<ls;, (.0,

57, (2,0),, | <5, (0.0),, =Ly =1 (12.14)
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