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ABSTRACT 
 
Model parameters are usually estimated through minimization algorithms with respect to 
experimental data. However, the values obtained in this classical minimization approach 
are not always reliable and need critical evaluation (though the minimum of the cost 
function is attained). A new methodology based on the Fisher Information Matrix (FIM) is 
gaining importance in view of studying the model identifiability and for parameter 
estimation issues. The FIM matrix summarizes the amount of information obtained in 
each experiment because it considers the output sensitivity functions and the 
measurement errors of the experimental data. The information contained in this matrix 
depends on the quantity and quality of the experimental data. This work shows that 
parameter estimation values (and errors) are strongly dependent on the number of data 
available and on the measurement error implicit on this data. 
 

IV.1 Motivation of this work 
 
IV.1.1 PROBLEM STATEMENT 
 
The utilization of modeling tools in view of process design and characterization has 
become very widespread, for example in the environmental engineering field. Model 
parameters are estimated through minimization algorithms with respect to experimental 
data and, afterwards, the calibrated model can be used for the process improvement 
(e.g. in process design or process control). However, for a reliable posterior utilization of 
the estimated parameters, the assessment of their confidence intervals should be as 
important as the estimation of the parameter value itself (Dochain and Vanrolleghem, 
2001 or Brun et al., 2002, among many others). 
  
Recently, a lot of research is being conducted in assessing the precision of the 
parameters estimated from experimental data as for example in Walter and Pronzato, 
(1999); Omlin and Reichert, (1999); Dochain and Vanrolleghem, (2001); Brun et al., 
(2002) or Marsilli-Libelli et al., (2003). Confidence intervals assessment is not a 
straightforward issue, because many different factors are involved such as the 
experimental measurements quality, the inherent structure of the model or the 
minimization approach used (Beck, 1987). The FIM is gaining importance in view of 
examining the model identifiability and for parameter estimation issues. This matrix 
integrates the sensitivity of the measured outputs with the estimated parameters with 
the quantity and quality of the experimental data.  
 
This chapter aims to be a detailed and critical description (step by step) of the 
methodology based on FIM for the parameter estimation error assessment. For this aim, 
a typical example of substrate inhibition model in activated sludge processes (Andrews’s 
model) was used to detect the link between parameter estimation error and data 
quantity and quality. This example was developed so that it be could understood how 
model parameters were estimated. Moreover, it was thought to show how each 
parameter had an uncertainty which needs to be considered.  The parameter estimation 
was carried out with the classical simplex Nelder & Mead minimization algorithm (Nelder 
and Mead, 1965), using as a cost function the norm of the difference between the 
experimental data and the modeled data. The confidence intervals were assessed 
through a numerical method based on FIM. Both procedures were implemented in 
MATLAB® (MATLAB, 1999). 
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IV.1.2 THEORETICAL BACKGROUND 
 
1. Linear versus non-linear models 
 
Linearity is a basic characteristic of the model which has a very high impact on the 
properties of the solution. Two different kinds of linearity can be distinguished (for 
example, Walter and Pronzato, 1999): 
 

• Input linearity: a model is linear in its inputs when it satisfies the superposition 
principle with respect to its inputs (u) [eq IV.1]. 

 
yM(t, θ, α·u1+β·u2) = α·yM(t, θ, u1)+β·yM(t,θ, u2)   (IV.1) 

 
where u = input (u: vector of inputs) 

yM = measured output 
θ = parameter (θ : vector of parameters) 
 

• Parameter linearity: a model is linear in its parameters when it satisfies the 
superposition principle with respect to its parameters (θ) [eq IV.2]. 

 
yM(t,α·θ1+β·θ2,u) = α· yM(t,θ1,u)+β· yM(t,θ2,u)   (IV.2) 

 
Table IV.1 depicts examples of all the linear possibilities:  
 

Table IV.1 Description of the different existing linearities 
Model example Input linearity Parameter linearity 

yM(t+1,θ, u) = θ1·u1(t) YES YES 
yM(t+1,θ, u) = θ1·yM(t)+u1(t) YES NO 

yM(t+1,θ, u) = θ1·u1
2(t) NO YES 

yM(t+1,θ, u) = θ1·yM
2(t)+u1(t) NO NO 

 
Linear models are preferred since an analytical solution can be found and many 
mathematical tools for solving them have already been developed. On the other hand, 
non-linear systems may require complex numerical solutions and that is why they tend to 
be linearised. This linearization is performed either because the model can be considered 
as linear in the context of study or because one has been able to transform it as linear by 
a proper variable manipulation. For example, the system can be linearised around some 
equilibrium point (or steady state). However, the results obtained at this point will only 
be valid close to these parameter and variables values (Walter and Pronzato, 1999; 
Dochain and Vanrolleghem, 2001). Therefore, the utilization of non-linear models (where 
classical parameter uncertainty assessment tools can not be used) is increasing because 
of the narrow range of applicability of linearised non-linear models.  
 
2. Normal distribution 
 
The normal distribution [eq IV.3] is a two parameter mathematical distribution that 
describes the distribution of the population in terms of frequency versus value. In short, 
for a certain population with a certain mean (λ) and a certain standard deviation (σ), 
describes the frequency of appearance of certain value around µ.  
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3. Andrews substrate inhibition model 
 
The response of a microbial population to external substrate presence is generally 
modeled using Monod kinetics (see Henze et al., 2000 for example). However, different 
patterns of dependence on substrate concentration have been described in the literature. 
These different responses are commonly modeled using variants of the Monod kinetics. 
Substrate inhibition is a frequent phenomenon observed in the literature and several 
modifications of Monod have appeared for its description (Luong, 1987; Han and 
Levenspiel, 1988 or Meriç et al., 2002). Andrews modification (Andrews, 1968) is 
probably the most often used among all the others [eq. IV.4]. 
  

)K
S1)(KS(
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I
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++

µ
=µ       (IV.4) 

where KI = Inhibition constant (g/L) 
 KS = Substrate affinity constant (g/L) 
 S = Substrate concentration (g/L) 
 µMAX = maximum specific growth rate (1/d) 
 
This model derives from the Haldane equation (Haldane, 1965), which described enzyme 
inhibition by the formation of an inactive complex of the enzyme with two substrate 
molecules. In most of the cases, the ratio KS/KI is considered to be negligible in front of 1 
and, hence, the equation 4 can be simplified in terms of equation IV.5. 
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A lot of applications of Andrews inhibition model can be found in the literature. An 
example is the nitrification process, which is a two-step process where ammonia is first 
oxidized to nitrite and subsequently to nitrate. Both steps are considered to be inhibited 
by their own substrate: ammonia and nitrite respectively: for example Anthonisen et al., 
(1976) or Carrera et al., (2004a). 

 
4. Parameter estimation and confidence interval assessment 
 
The parameters can be estimated through a minimization algorithm where the weighed 
sum J (equation IV.6) of squared errors between model outputs y(k,θ) and the measured 
outputs yM(k) is minimized (k represented a certain sampling point). Qk is a weighting 
matrix to balance the effect of each kind of measurement. 
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M )k(y),k(yQ)k(y),k(yJ ]    (IV.6) 

 
where N is the number of measurements and θ are the values of set of parameters used 
to calculate the model outputs. 
 
The presented confidence interval assessment procedure is based on the Fisher 
Information Matrix (Dochain and Vanrolleghem, 2001). This matrix is regarded as an 
indicator of the amount of information contained in the experimental data. The FIM is 
calculated using a linearization of each one of the output signals in the neighborhood of 
the optimal vector of parameters θO. The linearization is conducted for each parameter as 
it is expressed in equation IV.7. 
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θ  stands for to the so called output sensitivity function, which are a numerical 
approach to the derivate of the output variable with respect to one parameter [IV.8]: 
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The information related to the dependencies among parameters can also be summarized 
in the FIM (Mehra, 1974). If Qk is calculated as the inverse of the covariance matrix of 
the measurement noise (error), the FIM is defined as equation IV.9. 
 

∑
=

θθ=
N
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k

T )k(YQ)k(YFIM     (IV.9) 

 
The FIM is a square matrix with the same number of columns (and rows) as parameters 
to estimate. For example, for a system with three estimated parameters (θ1, θ2 and θ3) 
and two output variables (y1, y2), the FIM is calculated as given below in equation IV.10: 
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Where Q1(k) corresponds to the inverse of the covariance vector of the measurement 
noise of the output variable y1 for each sampling point (k). When the measurement error 
is considered constant along the experiment, Q(k) becomes a number instead of a vector.  
The FIM matrix summarizes the quantity and quality of information obtained in each 
experiment because it considers the output sensitivity functions and the measurement 
errors of the experimental data (i.e. precision of an experiment). Assuming no model 
mismatch, measurement noise white (i.e. independent and normally distributed with zero 
mean) and uncorrelated (i.e. the measurement error covariance matrix is a diagonal 
matrix), the inverse of the FIM provides the lower bound of the parameter estimation 
error covariance matrix, which can be used for assessing the estimation uncertainty of θO 
(equation IV.11).  
 

1
O FIM)(COV −≥θ       (IV.11) 

 
Moreover, since output sensitivities of parameters with respect to measurement(s) are 
calculated using a model, the FIM also depends on the structure of the model. This 
property of FIM can be used to study the practical identifiability (local) of the model under 
the available experimental data (Dochain and Vanrolleghem, 2001). The model structure 
is a very important issue to take into account; since the FIM procedure aforementioned is 
based in no model mismatch (i.e. the model can describe correctly the experimental 
observations with the correct parameters). This assumption of “correct model” should not 
be always instantaneously accepted without examination. 
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IV.2 Andrews model as a case study 
 
IV.2.1 KINETIC MODEL 
 
The modeling software used is MATLAB® 6.5. The differential equations are solved using 
the internal function ode45. This solver is based on an explicit Runge-Kutta formula, the 
Dormand-Prince pair. Parameter optimization to fit to experimental data is carried out by 
using the heuristic method implemented in the MATLAB® function fminsearch (Nelder-
Mead-Simplex) using equation 6 as the cost function. 
 
The output measurement considered in this study was not the substrate concentration 
but the oxygen uptake rate (OUR) profile. This output variable is widely used for 
modeling purposes because it is relatively easy to measure meanwhile provides a lot of 
information. The amount of oxygen taken up is stoichiometrically linked to the substrate 
consumption rate by means of the biomass substrate yield. Equation IV.12 shows (in 
terms of mass basis of COD and nitrogen) the process occurring in a classical biomass 
growth for a certain organic substrate. 
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1 CHyOz  + ⎟⎟
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⎛
−

HY
1

1 O2 + iNB·NH3  CHaObNc + (...) CO2 + (…) H2O     (IV.12)     

 
where CHyOz is the substrate (mg COD/L) 

CHaObNc is the biomass (mg COD/L) 
YH is the biomass growth yield (g VSS/g COD)  
iNB is the percentage of nitrogen in biomass (g N/ g COD).  

 
Equations IV.13a-c show the set of ordinary differential equations to describe the kinetics 
of the system and Table IV.2 shows the parameters involved.  
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Table IV.2 Model parameters 

Known parameters Unknown parameters 

Biomass yield: Y 0.67 (g CODX/ g CODS) µMAX (1/d) 

Initial heterotrophic biomass: X(0) 2000 (mg CODX/L) KS (mg CODS /L) 
Initial substrate  S(0) 200 (mg CODS/L) KI (mg CODI /L) 

Final time 50 min  
 
As not all the parameters of the model depicted in equations IV.13a-c could be reliably 
estimated using only OUR measurements because of identifiability problems (Petersen et 
al., 2001 or Gernaey et al. 2002a), the biomass yield and the initial values of substrate 
and biomass were assumed as known parameters whereas the kinetic parameters (µMAX, 
KS and KI) were considered the unknown parameters.  
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IV.2.2 EXPERIMENTAL DATA GENERATION 
 
The “experimental data” used in this work was previously generated with the model 
described in equations IV.13 with  

µMAX = 6 1/d 
KS = 20 mg CODS/L  
KI = 100 mg CODI/L. 

 
The OUR profile obtained (from this point on reference OUR) is depicted in Figure IV.1. 
An error was added to each of the experimental measurements so that the data became 
more realistic. The measurement error noise was considered to be white, so it followed a 
normal distribution with zero mean. Hence, the MATLAB® function normrnd was used to 
generate random experimental error. This function returned a matrix of random numbers 
chosen from the normal distribution with the input parameters λ (reference OUR) and σ 
(measurement error). This function is only available with the statistics toolbox. However, 
the software provided also contains a similar version with the MATLAB® function randn 
which does not require any special toolbox, but the values generated do not follow a 
normal distribution. The experimental data obtained (using 3 % of measurement error) is 
also depicted on Figure IV.1. 
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Figure IV.1 OUR profiles: Reference (solid line) and experimental (•) (3 % of meas. error) 

 
IV.2.3 IMPLEMENTATION OF THE PROCEDURE 
 
The structure of the software implemented is described next. First of all, the 
“experimental” OUR measurements were generated as indicated in the paragraph above. 
Then, µMAX, KS and KI were estimated through fminsearch. The cost function was defined 
as the norm of the vector resulting of the difference between the experimental and the 
modeled data [eq. IV.6]. The OUR profile obtained using the optimal parameters (which 
minimize the cost function) was used for the calculation of the sensitivity functions, 
which are the basis for the calculation of the FIM. The sensitivity function of each 
parameter with respect to the output measurement (OUR) was calculated as described in 
equation IV.8. The FIM was calculated by means of equation IV. 9.  
 
QK is usually chosen as the inverse of the measurement error covariance matrix, and it is 
a square matrix with the same number of files (and columns) as output measurements 
used. In this study, the measurement error covariance matrix for the respirometric 
measurements (OUR) was calculated following the Petersen’s method (Petersen et al., 
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2001). The Petersen’s method used the data from a period when the value of the output 
variable was perfectly known. For example, QOUR can be estimated using a phase without 
external substrate (i.e. endogenous respiration phase) in which OUR is assumed to be 
relatively constant during a short-term period e.g. 30 min (Figure IV.2). In this OUR 
constant period, the average of the data and the resulting residuals (particularly the 
difference between the average OUR value and the experimental data) are calculated. 
The measurement error (s2) is then calculated as follows [eq. IV. 14]:    
 

pN
SSE

s2

−
=       (IV.14) 

where  SSE =Sum Squared Errors 
 N= Number of OUR measurements 
 p = Number of parameters 
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Figure IV.2 Example of QOUR estimation 

 
Then, the measurement error weighting matrix, Qk, is calculated taking the inverse of s2. 
This choice of Qk means that the more a measurement error is noise corrupted, the less it 
will count in the FIM. Finally, approximate standard errors for the estimated parameters 
can be calculated as the square root of the diagonal elements of the inverse of the FIM 
(Dochain and Vanrolleghem, 2001): 
 

)i,i(V)( i =θσ     where V = 1/FIM       (IV.15) 

 
Hence, the higher the FIM elements, the lower the standard errors estimated. This is 
understandable if one analyzes which factors make the FIM be higher [eq. IV.9]: high 
parameter sensitivity (high Yy

θ) and low measurement errors (low s2, high QK). Once the 
procedure is implemented, several changes can be developed to study their influence on 
the parameter estimation and the confidence interval assessment. These changes can be 
related to the model itself (variations in the model equations), to the experimental data 
used (number and quality) or to the initial guesses in the minimization algorithm. In this 
study, the influence of the number of data used for parameter estimation and the 
influence of the measurement error of this data were analyzed. 
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IV.3 Influence of quantity of experimental data 
 
In order to analyze the influence of the data quantity, the whole procedure was run 
several times varying the “experimental” measurement interval (sampling frequency): 
this was developed by varying the number of elements of the same “experimental” OUR 
vector. The parameter estimation results and standard deviation assessment are depicted 
in Figure IV.3. On the one hand, as can be seen in Figure IV. 3-left, there is a high 
variability in the parameter values depending on the measurement interval used. The 
general trend observed is the lower the sampling frequency (the higher the number of 
measurements), the closer the final estimated values to the real ones. When the 
measurement interval used was higher than one measurement each two minutes (in this 
case, less than twenty measurements), the values of the parameter estimation were not 
reliable and differ a lot from the real ones. However, there is also the possibility to obtain 
a good set of parameters with a fortunate set of experimental data, as for example the 
obtained with a measurement interval of 3.5 minutes. In addition, if the parameter fitting 
procedure was repeated with another experimental data set, different parameter values 
could be obtained although the same measurement interval was used. On the other 
hand, the Figure 3-right shows the ratio of the standard deviation of each parameter 
(calculated through equation IV. 15) over the value of the parameter versus the 
measurement interval. The graphic shows that the lower the measurement interval is, 
the more reliable the values of the estimated parameters become. 
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Figure IV.3 Influence of the measurement interval on the estimated parameter value (LEFT) 

and on the confidence interval assessment (RIGHT). 
µMAX: filled circle (estimated values), dashed line (mean) 

KS: white circle (estimated values) and dotted line (mean) 
KI: triangle (estimated values) and dash-dotted line (mean) 

 
An important fact to highlight is that even though the measurement error was unique, 
the parameter estimation errors obtained are different among the three parameters. The 
reason can be found when analyzing the sensitivity of each parameter with respect to the 
OUR profile. As an example, let us compare µMAX and KI. As can be seen in Figure IV.4, in 
the experiment proposed in this work, the sensitivity of the µMAX was higher than the 
sensibility of the KI in terms of absolute value. In short, small variations on the µMAX value 
would have stronger effects on the OUR profile than small variations on the KI value. 
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Hence, the value of µMAX would always be more easily assessed and the relative 
estimation error of µMAX would be always lower than the relative estimation error of KI. 
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Figure IV.4 Sensitivity functions of OUR with respect to µMAX (dashed),  

KS (dotted) and KI (dash-dotted). 
 

IV.4 Influence of quality of experimental data 
 
The influence of the data quality was studied through the variation of the measurement 
error of the experimental data. This measurement error appeared twice in the exercise: 
firstly when generating the “experimental” data and secondly when calculating the 
measurement error covariance matrix. The results obtained using different measurement 
errors are depicted in Figure IV.5. At first glance, the results obtained agreed with what 
should be expected: the increase of measurement error implied high dispersion on the 
parameter estimation (Figure IV.5-left) and a decrease in the reliability of the confidence 
intervals (Figure IV.5-right). Although a good set estimated parameter values can be 
obtained with a high measurement error (see for example error 0.06), they have a high 
uncertainty around 10-20 % (Figure IV.5 right). In addition, the repetition of the 
experiment with the same measurement error would probably lead to different estimated 
parameter values. 

 
The main idea derived form these two experiments is that parameter estimation should 
be a two-step process: parameter optimization + parameter error assessment. 
Otherwise, if only the first step was developed, it is not possible to know whether the 
obtained parameters were far from the reality or not. For example, one should be able to 
know that the parameter estimation values obtained with the higher measurement error 
and the lower frequency sampling are not as reliable as the ones obtained with lower 
measurement error and higher sampling frequency. As it is shown on Figures IV.3 and 
IV.4, these parameter estimation values obtained in both cases are very different. 
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Figure IV.5 Influence of measurements error on the parameter estimation (LEFT) and on the 

confidence interval assessment (RIGHT) 
µMAX: filled circle (estimated values), dashed line (mean) 

KS: white circle (estimated values) and dotted line (mean) 
KI: triangle (estimated values) and dash-dotted line (mean) 

 
 

CHAPTER IV Conclusions 
 

• An easily implementable procedure for parameter estimation and confidence 
interval assessment is described using the common Andrews substrate inhibition 
model as an example.  

 
• In addition, to understand the parameter estimation and confidence interval 

assessment, it is shown that a critical evaluation on the parameter estimation 
values is always required. The importance of the confidence interval assessment 
in view of future usage of the parameter estimation values (for example for 
process design or control) is also highlighted.  

 
• The effect of the quantity (number of measurements) and quality (measurement 

error) of data on the parameter estimation and confidence interval assessment is 
also clearly depicted. In general, the results show that the increase of the 
measurement frequency and the decrease of the measurement error imply a 
more accurate parameter estimation (in terms of proximity of the estimated 
value to the real one and in terms of confidence interval assessment). 
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CHAPTER V.A – Limitations of ASM1 and ASM3 

ABSTRACT 
 
This chapter deals with the two most popular models for the description of the biological 
COD removal: ASM1 and ASM3. However, some numerical inconsistencies arise when 
using these models to interpret the data obtained in short-term respirometric batch 
experiments. Both models were fitted to four different respirometric batch profiles 
obtained with biomass from different WWTPs. The parameter estimation results of both 
models are interpreted and discussed in view of their possible (mechanistic) biological 
meaning. Further, the practical (local) identifiability of both models is compared in view 
of unique parameter estimations. Improvements to modelling substrate conversion 
processes are discussed based on the mechanistic meaning and identifiability of the 
parameter estimates. 

 

V.A.1 Modelling COD removal: ASM models 
 
In 1987, the International Water Association (IWA) introduced the Activated Sludge 
Model nº1 (ASM1) for the description of the biological COD and nitrogen removal (Henze 
et al., 2000). In this model, biomass was considered to grow solely on the external 
substrate present and the oxygen consumption after the external substrate depletion was 
explained with the decay of biomass. In the conventional activated sludge processes, the 
feed regime is highly variable and biomass is subjected to alternating conditions of 
external substrate availability (feast phase) and absence of external substrate (famine 
phase). Under these dynamic conditions, internal storage polymers play an important 
role in the substrate consumption (van Loosdrecht et al., 1997).  
 
Recently, a new model for the COD removal (ASM3) has been developed mainly to take 
this storage phenomenon into account (Henze et al., 2000). The main innovation of this 
model is the assumption that all the readily biodegradable organic substrates taken up 
under feast conditions are directly converted into stored material. These stored 
compounds become the carbon and energy source for growth purposes in the subsequent 
famine period. In ASM3, the decay processes are replaced with the endogenous 
processes. The conceptual basis of ASM3 has been largely criticized and alternative 
models taking into account simultaneous storage and growth processes were proposed 
(e.g. van Aalst-van Leeuwen et al., 1997;, Krishna and Van Loosdrecht, 1999; Beccari et 
al., 2002; van Loosdrecht and Heijnen, 2002 or Karahan Gül et al., 2003). 

 

V.A.2 Experimental design 
 
In this study, parameter estimation and identifiability issues of ASM3 in view of model 
calibration are addressed and compared with the well-studied ASM1 model. To this aim, 
oxygen uptake rate (OUR) measurements of biomass sampled from three different full-
scale WWTPs were used. This work was derived from cooperation between the BIOMATH 
group (Ghent University) and the Environmental Engineering Group of UAB. For this 
reason, the experimental task was developed in two different laboratories with two 
different experimental set-ups for the OUR measurement. 
 
V.A.2.1 EXPERIMENTAL SET-UPS 
 
The experimental work was performed in two different set-ups. On the one hand, tests A 
and B were performed in the LFS-respirometer. On the other hand, tests B and C were 
performed using the hybrid-respirometric set-up. Both equipments are detailed in the 
equipment section (Chapter III.1.1 and III.1.3 respectively). Although based on different 
concepts, both set-ups allowed the measurement of a continuous OUR profile. 
  
In both set-ups, the biomass was first aerated overnight to reach the endogenous-state. 
Then, a first pulse of acetate was added to induce a “wake-up” effect on the biomass 
activity (Vanrolleghem et al., 1998). At the same time, ammonia in excess and ATU (30 
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mg/l) was added to avoid growth-limitation and nitrification, respectively. Activated 
sludge sampled from three different WWTP was used during experimental work: 
experiment D used biomass from the Maria Middlelares WWTP (Gent, Belgium), which 
performs COD removal and nitrification. Experiment C used biomass from Ossemeersen 
WWTP (Gent, Belgium), which performs COD removal, nitrification and denitrification the 
same way as Granollers WWTP (Catalonia, Spain) whose biomass was used for 
experiments A and B. These biomass samples were analysed for TSS and VSS according 
standard methods (APHA, 1995). 
 
V.A.2.2 PARAMETER ESTIMATION  
 
Modelling, simulation and parameter estimation were performed using MATLAB 6.5 (The 
MathWorks, Natick, MA). The differential equations were solved using an explicit Runge-
Kutta (4,5) formula. Parameter estimation was carried out by using the Nelder-Mead 
Simplex search method, where the weighed sum J [eq. V.A1] of squared errors between 
model outputs y(tk,θ) and the measured outputs yM(k), with Qk as weighting matrix 
(equal to the inverse of the measurement error covariance matrix), is minimised: 
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where N is the number of measurements. Each of the output signals can be linearised in 
the neighbourhood of the optimal vector of parameters θO (Dochain and Vanrolleghem, 
2001): 
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where Yθ(t) is the so called output sensitivity function. If Qk is the covariance matrix of 
the measurement noise, the Fisher Information Matrix (FIM) is defined as: 
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The FIM matrix summarises the quantity and quality of information obtained in each 
experiment because it considers the output sensitivity functions and the measurement 
errors of an experimental data (i.e. accuracy of an experiment). Assuming white 
measurement noise and no model mismatch, the inverse of the FIM provides the lower 
bound of the parameter estimation error covariance matrix, which can be used for 
assessing the estimation uncertainty of θO [eq. V.A4]. 
 

1
O FIM)(COV −≥θ        (V.A4) 

 
Moreover, since output sensitivities of parameters with respect to measurement(s) are 
calculated using a model, the FIM also depends on the structure of the model. This 
property of FIM can be used to study the practical identifiability (local) of the model 
under the available experimental data (Dochain and Vanrolleghem, 2001).  
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V.A.2.3 ASM MODELS SIMPLIFICATION 
 
The mathematical models used (see Table V.A1) to interpret the experimental data are 
simplified versions of ASM1 and ASM3 respectively: aerobic degradation of COD as 
substrate. The processes included in Table V.A1 are described in detail in Henze et al., 
(2000). An empirical factor was added in the kinetics of two processes (processes nº 1 
and 4) to describe the fast transient period (1-3 minutes) in reaching the maximum OUR 
observed after the substrate addition. This phenomenon, known as “start-up”, can be 
mathematically described by a first order model (Guisasola et al., 2003; Vanrolleghem et 
al. 2004). 
 
For the parameter estimation, the initial concentration of biomass, XH(0) is estimated 
using the baseline endogenous OUR level prior to substrate addition, while fixing the 
decay rate coefficient (bH) to its default value assigned in the corresponding model. This 
approach was adopted since it is not possible to obtain unique values of both bH and 
XH(0) using OUR measurements alone. Hence, only one of the two parameters can be 
estimated and the other one should be fixed. In this study, bH was fixed to its default 
value since it does not vary significantly among different WWTPs.  

 
Table V.A1. The simplified ASM1 and ASM3 models used in this work (M stands for the Monod 

kinetics of the corresponding parameter: e.g. 
OO

O
O KS

S
M

+
= ) 

ASM1 Processes XH XSTO XS SS SO Kinetics 

1. Growth on SS 1  
 

S,HY
1

−  
S,H

S,H

Y

Y1 −
−  )e1·(XM·M

t

HOSH
τ

−
−µ  

2. Biomass decay -1  (1-fXS)   HHXb  

3. Hydrolysis   -1 1  HOX/XH X·M·Mk
HS

 

ASM3 Processes XH XSTO XS SS SO Kinetics 

4. SS Storage  1 
 

STOY
1

−  
STO

STO

Y
Y1 −

−  )e1·(X·M·M·k
t

HOSSTO
τ

−
−  

5. Growth on XSTO 1 
STO,HY
1

−  
 

 
STO,H

STO,H

Y

Y1 −
−  HOX/XH X·M·M·

HSTO
µ  

6. Endogenous 
respiration 

-1  
 

 -1 HOH X·M·b  

7. XSTO respiration  -1   -1 HOSTO X·M·b  

 
 where bSTO = XSTO respiration rate (1/d) 

fXS = fraction of slowly biodegradable products from lysis (g COD/ g COD) 
kH = hydrolysis maximum rate (1/d) 

 KO = oxygen affinity constant (mg O2/L) 
kSTO = maximum storage rate (1/d) 
SO = dissolved oxygen (mg O2/L) 
SS = external substrate (mg CODS/L) 
XH = heterotrophic biomass (mg CODX/L) 
XS = slowly biodegradable products (mg COD/L) 
XSTO = storage products (mg CODSTO/L) 

 YH,S = heterotrophic growth yield on external substrate (g CODX/g CODS) 
YH,STO = heterotrophic growth on storage products (g CODX/ g CODSTO) 
YSTO = heterotrophic storage yield (g CODSTO/g CODS) 

 µH,S = maximum growth rate on external substrate (1/d) 
 µH,STO = maximum growth rate on storage products(1/d) 

τ = time constant (start-up) (min) 
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V.A.3 Results and discussion 
 
V.A.3.1 EXPERIMENTAL RESULTS 
 
Experiment V.A1 (Table V.A2) consisted of four different respirometric batch tests 
obtained from three different full-scale WWTPs (Figures V.A1a-d). These OUR profiles 
were used to investigate the model-fit performance and identifiability for ASM1 and ASM3 
and showed different trends despite a pulse of the same substrate (acetate) was added, 
because the biomass used in each experiment was withdrawn from different WWTPs. The 
differences appreciated among the OUR profiles were probably linked to the operational 
conditions of the plant (i.e. SRT or alternating feed and famine conditions).  
  

Table V.A2 Experiment V.A1 
EXPERIMENT V.A1 Respirometric batch experiments from different WWTP 

Equipments LFS respirometer (V0 = 1 L) 
 Hybrid respirometer (V0 = 3 L) 

pH 7.8 
Temperature 25 ºC 

Pulses TEST A and B (Granollers) - 50 mg COD/L  
 TEST C (Ossemeersen) – 62.2 mg COD/L 
 TEST D (Maria Meddelares) – 58 mg COD/L 
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Figures V.A1 (a-d) Experimental OUR profiles obtained.  
 
For instance, in tests A, B and C two different phases could be easily distinguished. The 
first phase was related to the external substrate consumption, while the second phase 
corresponded to the consumption of the previously stored internal polymer. In Granollers 
and Ossemeersen WWTPs (tests A, B and C), both nitrification and denitrification took 
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place and the biomass was subjected to alternating anoxic and aerobic conditions under 
the dynamic influent substrate/wastewater pattern. Under these conditions of alternating 
external substrate availability, bacteria capable of storing substrate have a competitive 
advantage because they are able to balance their growth rate under continuously 
changing conditions as described in van Loosdrecht et al. (1997). They argued that under 
the periods of excess substrate, non-storage bacteria have to invest extra energy to 
grow faster in the presence of substrate and will deteriorate in the periods without 
substrate.  
 
On the other hand, one unique shoulder can be distinguished in test D which is a typical 
ASM1 type OUR profile. The biomass used in this experiment was withdrawn from the 
Maria Middlelares WWTP, which is continuously aerated, and is probably subjected to 
rather stable influent dynamics. In other words, the feast and famine phases are 
probably less pronounced in this WWTP. A deeper study in the effect of WWTP 
operational conditions on respirometric batch tests is done on Chapter V.D. 
 
V.A.3.2 ASM1 AND ASM3 FITTINGS 
 
The fittings of the models (ASM1 and ASM3) are depicted in Figures V.A2 and V.A3 
respectively and the results of the parameter estimation are given in Table V.A3. The 
parameter estimation errors obtained are quite small, in part because the method used is 
known to give too optimistic results due to autocorrelation in the OUR data (Dochain and 
Vanrolleghem, 2001).  
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Figures V.A2 (a-d) Experimental OUR profiles (dotted) versus simulated OUR of ASM1 (solid). 
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Figures V.A3 (a-d) Experimental OUR profiles (dotted) versus simulated OUR of ASM3 (solid). 
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A first glance at Figure V.A2 shows that ASM1 is not able to describe the tail observed in 
tests A and B, where the storage effect is emphasized. Many respirograms can be found 
in the literature with this tail, and the main criticism that ASM1 may receive is that these 
tails are not predicted when the feed solely contains readily biodegradable substrate. In 
contrast, when using typical raw wastewater the effect of storage would be lumped in the 
hydrolysis process and, hence, ASM1 could describe correctly the experimental OUR 
profile. As shown in Table V.A3, ASM3 better describes all the experimental profiles when 
comparing the sum of squared errors (SSE). This fact was expected since more 
parameters are estimated in ASM3 (seven versus five). The more parameters to be 
estimated, the more chances to obtain better fittings. 
 
Hence, the clearer the storage effect is, the higher the improvement of using ASM3 
instead of ASM1. This improvement is even observed in the experiment D, where no 
storage can be appreciated. However, once a good fitting is obtained, an analysis on the 
mechanistic meaning of the parameter estimation results is required. In the following, 
the analysis of the parameter estimation results of both models is developed. 
 

Table V.A3 Parameter estimation results and confidence intervals 
 (CODX – COD biomass, CODS – COD external substrate, CODP – COD PHA) 
ASM1 fittings TEST A TEST B TEST C TEST D 

µH,S (1/d) 3.876±0.003 4.112±0.009 1.020±0.001 2.951±0.001 
YH,S  (g CODX/g CODS) 0.757±0.001 0.792±0.001 0.666±0.001 0.726±0.001 

KS (mg COD/L) 1.789±0.005 1.63±0.02 0.558±0.008 0.718±0.005 
τ (min) 0.240±0.007 0.95±0.05 2.072±0.006 1.065±0.007 

XH(0) (mg CODX/L) 1250 1800 2300 1250 
SSE 2.386 2.192 1.673 0.966 

ASM3 fittings TEST A TEST B TEST C TEST D 
kSTO (1/d) 4.88±0.009 4.679±0.009 1.056±0.002 3.027±0.007 

YSTO  (g CODP/g CODS) 0.796±0.006 0.831±0.006 0.715±0.005 0.75±0.01 
KS (mg COD/L) 0.80±0.02 0.91±0.02 0.69±0.02 0.79±0.02 

µH,STO (1/d) 28.1±0.5 64±2 19.8±0.4 51± 32 
YH,STO  (g CODX/g CODP) 0.804±0.002 0.921±0.002 0.838±0.002 0.96±0.01 

τ (min) 0.123±0.005 0.34±0.01 2.21±0.03 1.02±0.03 
XH(0) (mg CODX·L) 1000 1500 2000 1000 

SSE 0.560 0.744 0.999 0.755 
 
where KS: substrate affinity constant (mg CODS/L) 
 
V.A.3.3 EVALUATION OF THE PARAMETER ESTIMATION RESULTS 
 
In the experiments with apparent storage (tests A and B) two different shoulders can be 
easily distinguished. According to ASM1, the direct growth on external substrate is the 
cause of the first shoulder, whereas the ASM3 model links this first consumption to the 
storage of substrate into internal polymer. These processes have different default yield 
values: 0.67 for the growth yield in ASM1 and 0.85 for the storage yield in ASM3, 
because less energy is required to store external substrate than to produce new cells. 
When fitting experimental data to ASM1, the growth yields obtained (0.76 and 0.79) 
were higher than 0.67. This finding indicated the storage presence because less oxygen 
consumption was observed while the majority of the substrate flux was incorporated into 
biomass (e.g. as new cells in ASM1 or internal storage products + new cells ASM3). 
  
On the other hand, the storage yields obtained by fitting ASM3 (0.79 and 0.83) were 
somehow lower than the default ASM3 (0.85), probably reflecting that not all the acetate 
consumed is stored. Yield values for storage with acetate in this range were also 
experimentally observed in other similar works: van Aalst-van Leeuwen et al., 1997 
(0.75); Krishna and van Loosdrecht, 1999 (0.73); Koch et al., 2000 (0.72); Karahan-Gül 
et al., 2003 (0.78).  
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These observations (i.e. higher growth yield in ASM1 and lower storage yields in ASM3) 
agreed with the fact that both growth and storage processes occurred simultaneously 
and part of acetate was used for growth, while the rest was stored. 
 
Although the tail is accurately fitted by ASM3 (Figure V.A3), the mechanistic meaning of 
the parameters related to this tail was highly questionable. First of all, the parameter 
estimation error of µH was the highest of all the parameters (especially in test D, where 
no storage effect was observed). Moreover, both the maximum growth rate (µH) and the 
growth yield (YH,STO) estimated by ASM3 (see Table V.A2) are noticeably higher than the 
default ones, 2 d-1 and 0.63 respectively. The reason for these high values could be that 
the real production of XSTO (e.g. PHA) during the experiment was less than the one 
predicted by the model. This is not surprising since ASM3 considers that all the acetate is 
stored. Hence, the experimentally observed tail (see Figure V.A3) is much smaller than 
the one predicted by the ASM3 with its default values. From a model-fit point of view, the 
value of µH must be increased so that the endpoint of PHA consumption can be correctly 
predicted. From a parameter identifiability point of view, however, YH,STO is correlated 
with µH (See below). Therefore an increase in µH is compensated by an increase in the 
estimate of YGSTO so that the total oxygen consumed is correctly predicted. 
  
High values of the ASM3 growth yield, YH,STO, were also observed in the literature when 
fitting ASM3 to experimental data (Koch et al., 2000; Karahan-Gül et al., 2003; Beccari 
et al., 2002). These high values were contradicting the conceptual basis of ASM3 since 
the predicted growth yield values did not have any longer mechanistic meaning. On the 
other hand ASM1 was not able to predict the tail often observed in OUR obtained from 
batch experiments. Nevertheless, for a profile with low storage effect (as test C) an 
increase in the bH value could result in better model-fit. 
 
Test D seemed to be the only OUR profile which was in agreement with ASM1 because 
the typical storage tail was not observed. However, the estimated growth yield (0.73) 
(see Table V.A3) was still higher than the default value in ASM1 (0.67). This observation 
strongly suggested the presence of storage phenomenon and as such, it again supported 
the aforementioned observation of simultaneous storage and growth. Concerning the fit 
of ASM3 to test D, non-reliable/non-mechanistic parameter estimates were obtained (see 
Table V.A3), particularly the values referring to the growth on storage product. For 
example, µH was around 50 d-1 for the same reason explained below: the actually 
experimental produced XSTO is lower than what the ASM3 predicts. 
 
V.A.3.4 SIMULTANEOUS GROWTH AND STORAGE HYPOTHESIS 
 
In general, more reliable parameter values would be obtained if the ASM3 model could 
describe that part of the acetate was used directly for growth. In this case, the model 
would predict less PHA production and the predicted tail would be lower and, then, closer 
to the experimental data. Moreover, a decrease on the values of µH and YH,STO would be 
necessary to describe the tail. The reduction of the tail (i.e. the reduction of the oxygen 
consumption due to the storage process) as a function of a percentage of the acetate 
used directly for growth is depicted in Figure V.A4. In this figure, four simulations with a 
model coming from a combination of ASM1 and ASM3 are performed. 
 
This observation of simultaneous growth and storage on the external substrate has 
already been developed in some metabolic models such as: van Aalst-van Leeuwen et al. 
(1997) and, recently, in the works of van Loosdrecht and Heijnen (2002) and Karahan-
Gül et al. (2003). Apart from a more reliable description of the reality, considering the 
growth on external substrate can help to overcome another described failure of ASM3: 
ASM3 fails in predicting the maximum growth rate profile on short-term respirometric 
batch experiments. Krishna and van Loosdrecht (1999) pointed out the presence of a 
discontinuity on this profile. In other words, the growth rate observed in the feast phase 
is higher than the one observed in the famine phase. ASM1 correctly describes this 
observation, because the oxygen consumption is solely related to the growth process, so 
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both the OUR and the growth rate profiles have the same trend. In contrast, ASM3 
predicts a constant growth rate and continuous along the experiment corresponding to 
the maximum growth rate on storage product. Finally, two different growth rates are 
predicted when simultaneous growth and storage on external substrate is considered 
and, hence, the model describes more accurately the reality. Chapter V.B of this thesis 
develops a new model for biological COD removal including simultaneous growth and 
storage, which is upgraded with titrimetric measurements. This model is calibrated and 
validated in chapters V.C and V.D. 
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Figure V.A4 Simulation of the effect of a percentage of acetate being directly used for growth 

 
V.A.3.5 PRACTICAL (LOCAL) IDENTIFIABILITY ASM3 USING OUR 
 
An important issue that should be considered in modeling, particularly in view of 
calibration, is the identifiability of the models. The identifiability of the ASM1 model based 
on short-term respirometric profiles is already discussed in detail in Dochain and 
Vanrolleghem (2001). ASM3 introduces the storage process in addition to the growth 
process for the description of the tail.  
 
The growth process on XSTO of ASM3 is a totally different model structure, which contains 
three parameters: µH, KSTO and YH,STO (see Table V.A2). As shown in Figure V.5-upleft, the 
output sensitivity functions of µH and KSTO (calculated for test C) are correlated with each 
other. This implies that both parameters cannot be uniquely identified. The correlation 
between these two parameters became clear when the shape of the objective function, J, 
[eq. V.A1] was calculated around an optimum as a function of µH and KSTO. The shape of 
objective function (see Fig V.A5-upright) showed a flat valley with a certain direction in 
the plane (µH and KSTO). This has often been observed in Monod-type models (e.g. 
Dochain and Vanrolleghem, 2001). This means that several different combinations of µH 
and KSTO can fit the experimental data equally well. This observation was also confirmed 
when both parameters were considered for parameter estimation. In that case, the 
parameter estimation error (uncertainty in parameter estimation) of µH and KSTO 
increased considerably, up to 300% of relative errors, indicating no reliable estimates for 
both parameters are possible.  
 
On the other hand, the shape of the objective function as a function of µH and YH,STO 
depicted in Figure V.A5-downleft does not show linearity in the plane (µH and YH,STO). 
However, the contour plots of the objective function are rather large which indicates that 
still a high correlation exists between these two parameters.  
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The same conclusion can be obtained from the plot of the objective function as a function 
of KSTO and YH,STO (Figure V.A5 – downright). This implies the existence of a severe 
correlation between KSTO and YGSTO. In this study, KSTO was not estimated together with µH 
and YGSTO and it was fixed to its default value in ASM3 i.e. 1 g CODSTO / g CODX. 
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Figure V.A5 Sensitivity functions of µH (solid line), KSTO (short-dashed line) and YH,STO (dotted line) 

(UPLEFT) and correlation of  µH and KSTO (UPRIGHT), µH and YH,STO (DOWNLEFT) and KSTO and YH,STO 

(DOWNRIGHT). 
 

CHAPTER V.A Conclusions 
 

• ASM3 better describes all the experimental profiles when comparing the sum of 
squared errors. However, it has to be taken into account that seven parameters 
are estimated in this model in contrast with ASM1, where only five parameters are 
estimated. 

 
• In experiments with considerable storage, ASM1 is not able to predict the tail 

observed due to the internal polymer consumption. In contrast, ASM3 can 
describe this second tail accurately, but non-mechanistic parameters are obtained.  

 
• The growth yield (YH) obtained by fitting ASM1 to the short-term respirometric 

batch profiles is higher than the default one (0.67) and the storage yield (YSTO) 
obtained by fitting ASM3 is lower than the default one (0.85). These values agree 
with the observation of simultaneous storage and growth on external substrate 
already developed in other works (e.g. van Loosdrecht and Heijnen, 2002). The 
introduction of this hypothesis would also help to improve the mechanistic 
meaning of the estimated parameters. 
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• From a practical identifiability point of view, this study shows the difficulty to 
obtain reliable values of the parameters related to the ASM3-growth process 
because µH and KSTO are not identifiable, and high correlation exists between YGSTO 
and µH, and YGSTO and KSTO. 

 
• Future model developments should take into account the identifiability issues. 

Non-identifiable model structures should be avoided to improve the mechanistic 
meaning of model parameters thereby facilitating model validation tasks. 
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CHAPTER V.B – Modelling simultaneous growth and storage processes 

ABSTRACT 
 
This research aims to further improve the mechanistic modelling of the simultaneous 
storage and growth processes occurring in activated sludge systems as described in the 
previous chapter. For this aim, a new model based on an extensive and critical review on 
previous works is developed. This model is particularly focused in describing the natural 
conditions of a WWTP (i.e. slowly growing biomass under low and alternating F/M ratio 
with low PHB content). This chapter includes the elementary mass and reduction 
balances to obtain the corresponding stoichiometric coefficients and the deduction of the 
kinetics of each process. This model is designed to be calibrated using both respirometric 
and titrimetric data, hence, the prediction of the proton production/consumption is also 
developed for each of the processes.  
 

V.B.1 Motivation of this work 
 
The modelling of activated sludge processes, particularly the biological substrate 
conversions, has evolved fundamentally in the last two decades from simple growth-
based kinetics, ASM1, to more complicated models involving the description of storage 
phenomena, ASM3 (Henze et al., 2000). In the case of biological COD removal, the major 
driving force behind this modelling trend was the increased understanding of storage 
polymers to play an essential role as intermediate in the substrate removal processes. 
ASM3 was one of the first models to address the storage phenomenon. To keep the 
modelling exercise simple, ASM3 assumes that all readily biodegradable substrate (SS) is 
first stored as internal storage products (XSTO) before it is used for growth during the 
famine phase. Being the first attempt to evaluate ASM3 using experimental data, Krishna 
and van Loosdrecht (1999) had observed that ASM3 failed to model two significant 
experimental observations:  
 

• The discontinuity in the growth rate of biomass observed experimentally 
between feast and famine phases  

 
• It required prediction of higher levels of internal storage polymers than 

measured to fit the oxygen consumption during feast and famine phases.  
 
As described in Chapter V.A, the major cause of this failure was the experimentally 
observed fact that storage and growth on external substrate occur simultaneously as 
opposed to the assumption of ASM3 that only storage occurs during the feast phase. 
Moreover, the ASM3 approach also causes severe practical identifiability problems that 
resulted in unrealistic and non-mechanistic parameter estimates when using batch OUR 
data (a common methodology in ASM models calibration). From a mechanistic modelling 
point of view, it becomes clear that ASM3 should be extended to account for 
simultaneous storage and growth process (see Chapter V.A). 
 
For this aim, several models in addition to Krishna and van Loosdrecht (1999) have been 
proposed to improve the mechanistic modelling of simultaneous storage and growth 
processes in activated sludge systems. However, there is no commonly agreed model 
yet. The identifiability issues are very important in this case, since once the simultaneous 
growth and storage theory is admitted, a new model with at least three processes with 
different rates and yields should be proposed: 
 

1. The substrate uptake for storage purposes (YSTO : g CODSTO/g CODS) 
2. The substrate uptake for growth purposes  (YH,S : g CODX/g CODS) 
3. The growth on stored product  (YH,STO : g CODH/g CODSTO) 
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Figure V.B1 shows a schematic view of these processes: 
 

STORAGE PRODUCT

BIOMASS

SUBSTRATE 

 
Figure V.B1 Schematic representation of the simultaneous growth and storage process. Feast 

phase (solid), famine phase (dash-dotted). 
 
The endogenous decay of the biomass and the lysis of the stored product should be 
added to the model for a reliable description of the system. Hence, the model is rather 
complex and requires five processes to describe the system. These models are generally 
calibrated with respirometric batch tests and the OUR measurement alone does not 
provide enough information for a reliable estimation of all the stoichiometric and kinetic 
parameters. For this reason, some works include an extra measurement as substrate or 
storage product in view of solving the identifiability problem among other reasons. 
 
As the model contain ordinary differential equations, at least and initial value of each 
compound is necessary. This fact may be significant particularly in the case of storage 
product and heterotrophic biomass fraction because these compounds are not commonly 
measured. Concerning to the biomass concentration, the biomass growth can be 
considered negligible in short-term batch experiments. Thus, the real value of biomass 
concentration is lumped in the measurement of VSS and the estimation of the maximum 
process rate constants. On the other hand, the case of the storage product is not that 
simple. The storage product concentration fluctuates strongly along the experiment and 
its description is important since some of the process kinetics depend on its value. 
Hence, if the storage product concentration is not measured, it may be complicated to 
reliably identify the model parameters. In this sense, most of the literature models need 
to use simplifications and assumptions for a reliable estimation of the parameters. These 
simplifications are not always acceptable and are only useful for their particular 
experiments presented. 
  
Acetate is used as substrate in the experiments conducted in this chapter, since it is the 
most important volatile fatty acid (VFA) present in WWTP. Moreover, it is assumed that 
most of acetate is stored as poly-β-hydroxybutyrate (PHB). PHB is a well-known storage 
polymer because it is a very important cell component and its measurement is common 
in many studies. In addition, many substrates are degraded in the cell with acetyl-COA 
as intermediate which is also the precursor of PHB formation (van Loosdrecht et al., 
1997). PHB also acts a reducing equivalent pool because it is more reduced than acetate 
(van Aalst-van Leeuwen et al., 1997). 
 
A new for the biological COD removal including simultaneous growth and storage is 
developed based on a critical review on previous works. This model is focused describing 
activated sludge processes with slowly growing biomass (i.e. high SRT) under low and 
alternating F/M ratio in view of modelling full-scale WWTPs. A particular emphasis was 
given to the kinetic description of the degradation of storage polymers under famine 
conditions for biomass with low PHB content, as typically found in full-scale WWTPs. To 
facilitate full-scale application of the model, it can be simply calibrated with batch OUR 
data (Chapter V.C) and titrimetric data (see Chapter V.D).  
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V.B.2 Review on previous biological COD removal models 
 
V.B.2.1 THE RESEARCH LINE OF THE DELFT UNIVERSITY OF 
TECHNOLOGY (TUD)  
 
The group of the TUD is probably one of the top research groups in the field of storage 
polymers in bioprocesses and they have been working on this topic since the 1990s. In 
one of their first works about the storage process, van Loosdrecht et al. (1997) indicated 
that microorganisms capable to store substrate for a posterior use have a strong 
competitive advantage over microorganisms without this capacity. This advantage is 
emphasized when they are subjected to alternating feast and famine conditions. The 
reason is that the formation of storage polymers allows the organism to maintain a 
balanced metabolism in front of sudden changes in the external substrate concentration. 
When subjected to limited substrate conditions, the substrate uptake machinery is 
working at its maximum rate. If the external substrate concentration suddenly increases, 
a high amount of substrate is taken up which cannot be directly converted in cells (i.e. 
direct growth) and part of this substrate is stored. Hence, bacteria capable of balancing 
their growth rate independently of the external substrate concentration will be favoured 
under feast-famine conditions. In addition, they asserted that the relation between 
oxygen and substrate consumed was very low when compared to pure cultures indicating 
the presence of the storage process. From their experience, a value of 0.5 g COD/g COD 
for aerobic growth yield could be used for a wide range of bacteria and substrates. 
 
Van Aalst-van Leeuven et al. (1997) developed a metabolic model for the PHB production 
and consumption for Paracoccus pantotrophus under alternating substrate conditions. 
This model developed for a pure culture pretended to be also appropriate to mixed 
culture systems, where a similar behaviour was predicted. They proposed a model where 
simultaneous growth and storage was considered since acetate was degraded to acetyl-
COA which could be either directly used for growth or stored as PHB. In absence of 
substrate the microorganisms utilised the internal stored PHB for the acetyl-COA 
synthesis necessary for growth. One of the big accomplishments of this model was to 
solve the identifiability issue of the three necessary yields by linking their value to a 
unique parameter: the P/O ratio (δ), i.e. the mol of ATP for mol NADH2 used in the 
oxidative phosphorylation [eq. V.B1a-c]. 
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=   
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−δ

=   (V.B1a-c) 

 
They found a value of δ = 1.84 mol ATP/mol NADH2 for this pure culture which implied 
the next yield values (transformed in COD units): YH,S= 0.47 g CODX/g CODS, YSTO = 0.73 
g CODSTO/g CODS and YH,STO= 0.60 g CODX/g CODSTO. The storage/growth pathway 
(YSTO·YH,STO) produced only 7 % less biomass than the direct growth process, so storing 
for posterior growth seemed an efficient pathway. From a kinetic point of view, van 
Aalst-van Leeuven et al. (1997) linked the process rates with one parameter, mATP, which 
stands for the maintenance coefficient. The substrate conversion rate (rS) in the feast 
phase was calculated as equation V.B2, whereas the rate in biomass growth (rX) in the 
famine phase was calculated as equation V.B3. 
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where mS and mP are maintenance coefficients. These can also be calculated as function 
of δ and mATP [eqs. V.B4a,b]: 
 

12
m

m ATP
S −δ
=  , 

25.025.2
m

m ATP
P −δ
=     (V.B4a,b) 

 
They observed that the acetate uptake and PHB degradation rates in both the feast and 
famine phases were highly influenced by the PHB content in the cell. They decided to 
choose the simplest form of kinetic equations which was equation V.B5a for the feast 
phase and equation V.B5b for the famine phase. These kinetic expressions will be 
discussed in the model development section. 
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where fPHB = ratio of PHB in the cell (i.e. XPHB/XH) (g CODSTO/g CODX) 
 fPHB

MAX = maximum ratio of PHB in the cell (i.e. XPHB/XH) (g CODSTO/g CODX) 
 fPHB

MIN = minimum ratio of PHB in the cell (i.e. XPHB/XH) (g CODSTO/g CODX) 
 KP = degradation constant (g CODX/d/g CODSTO) 

rP = product consumption rate (1/d) 
 
Later, Krishna and van Loosdrecht (1999) studied the simultaneous acetate storage and 
growth in activated sludge cultures. They utilised OUR, acetate and PHB measurements 
for the process analysis and proposed an ASM-like model considering simultaneous 
growth and storage. Their model was hand-calibrated and few parameters were modified 
with respect to the ASM3 model (Henze et al., 2000), except for the yields which were 
assumed to be the same as the ones of van Aalst-van Leeuven et al. (1997) for 
Paracoccus pantotrophus. In spite of using the δ value from the pure culture, the 
modelled profiles described reasonably well the trends of the measured compounds. 
Particularly, the discontinuity observed in the evolution of the growth rate value was 
successfully described. From a kinetic point of view, they substituted the kinetic 
expressions of van Aalst-van Leeuven et al. (1997) shown in equations V.B5 for the 
Monod factors typical of ASM-like models and added an inhibition factor of acetate on the 
growth on stored product process. They assumed that when acetate was present in the 
media, the biomass did not grow from stored product.  
 
Beun et al. (2000, 2001) extended the model of van Aalst-van Leeuven et al. (1997) to 
activated sludge cultures. They used the stoichiometric relations of V.B1 and found a 
value of δ between 1.6 and 2 mol ATP/mol NADH2. However, it is not clear how they 
calculate these values for a mixed activated sludge culture. Beavis and Lehninger (1986) 
stated that the determination of the intrinsic or mechanistic P/O ratio of oxidative 

phosphorylation is difficult because of the unknown magnitude of leak fluxes. They 
suggested that the mechanistic P/O ratio is 1.75 for succinate oxidation and 2.75 for 
NADH oxidation. In any case, δ should not exceed the value of 3 due to thermodynamic 
considerations (Lehninger et al., 1993).  
 
Beun et al. (2000, 2001) performed experiments at very different SRT (from 3.8 and 
19.8 d). In the feast phase, they found that the substrate uptake rate decreased 40 % 
with this increase in the SRT whereas PHB was produced in a more or less constant rate. 
With respect to the famine phase, they observed that the degradation rate of PHB was 
more dependent on the PHB content in the cell than on the SRT of the system. When 
modelling the PHB degradation rate, they used neither equation V.B5 nor classical Monod 
kinetics, but applied the multiple-order kinetics equation [eq. V.B6] as done in Grau et al. 
(1975), Murnleitner et al. (1997) or Dircks et al., (2001). They found different order 
values (n) and maximum rate (k) for each of their experiments.  
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( )nPHB
PHB f·k
dt

df
−=      (V.B6) 

 
Finally, van Loosdrecht and Heijnen (2002) summarised all the prior knowledge of their 
research line in a very interesting paper. Once they accepted that the substrate was used 
for both growth and storage purposes they meditated which was the preferential use of 
the substrate and concluded that the effect of SRT on the growth rate is the key 
parameter for understanding process. 
 
Studies of the storage phenomenon with pure cultures at low SRTs (i.e. high growth rate) 
showed that the accumulation rate of storage products was the difference between the 
maximum substrate uptake rate and the substrate uptake rate required for growth. 
Hence negligible storage was observed in a culture operated at a growth rate close to its 
maximum substrate uptake rate (i.e chemostat). 
 
On the other hand, most WWTPs are typically operated at high SRTs (i.e. low growth 
rate) to achieve complete biological nutrient removal resulting in biomass with a rather 
low average growth rate (~1/SRT). In addition, biomass tends to be subjected to 
alternating feast and famine conditions. They argued that under these conditions the 
competition on substrate uptake rate is much more important than the competition on 
growth rate. Hence, bacteria maximise its substrate uptake rate (qMAX) when external 
substrate is present whereas they grow in a balanced way. Then, these bacteria are able 
to grow on the storage product when external substrate is depleted. These bacteria do 
not optimise the growth rate when substrate is present. Consequently, the maximum 
substrate flux into the cell exceeds the amount used for the maximum growth of the 
biomass and the difference is diverted to formation of the storage polymers.  
 
In this range of high SRT, qMAX is slightly changing with SRT (Beun et al., 2001) while 
µMAX is strongly affected by SRT variation. Hence, the ratio of PHB produced per acetate 
taken up can be considered constant (around 0.67 g CODPHB/ g CODAC) since the storage 
becomes the dominant process under these conditions.  
 
At this point, van Loosdrecht and Heijnen (2002) proposed a model to describe the 
variation of the growth rate on SRT based on the level of protein synthesising system 
(RNAs and anabolic enzymes) in the cells of the organisms. This model included the 
variation of the growth rate on the enzyme content, though this enzyme content could 
not be modelled and served only for calculation purposes. The conceptual background of 
this model is discussed in model development section. 
 
V.B.2.2 OTHER RELATED WORKS 
  
Dircks et al. (2001) modelled the PHB accumulation and production using biomass from 
pilot-plant and full-scale WWTPs. As the sludge used was withdrawn from an UCT-EBPR 
plant, the role of glycogen was also considered. From a COD balance, they observed that 
a small amount of biomass was produced in the feast period (see Table V.B1). They also 
observed that the amount of PHB produced was similar to the value 0.67 value predicted 
by van Loosdrecht and Heijnen (2002).  
 
They measured the dependence of the PHB degradation rate on the PHB content in the 
cell for a wide range of PHB content values in order to obtain a reliable model. They also 
used the multiple-order kinetics model [eq. V.B6] and observed that optimum the 
reaction order (n) increased (from 0.7 to 2.2) as the PHB content in the cell decreased 
(i.e. SRT decreased) in a range from almost 0 to 0.12 g CODPHB/g CODX. The results 
obtained in this work did not allow formulating a general common kinetic factor for the 
dependence of the famine process rate on the PHB fraction because of the variety 
observed on the estimated k and n values. 
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Table V.B1 Yield values for the feast phase calculated by Dircks et al. (2001) 
SRT YH,S (g CODX/g CODAC) YH,STO (g CODX/g CODSTO) 
4 d 0.07 0.67 
21 d 0.05 0.65 

 
Third et al. (2003) studied the effect of oxygen concentration on the feast phase 
processes and performed several batch experiments measuring PHB, acetate and OUR at 
different oxygen setpoints (0.1 to 2 mg O2/L). They observed that both the substrate and 
the storage rate were strongly affected by oxygen limitation. In addition, they observed 
that the ratio of PHB produced to acetate uptake increased to 0.67 g CODPHB/ g CODAC as 
the DO set point decreased.  Moreover, they observed that the biomass growth on low 
DO values was practically negligible since all the available ATP produced was used for 
substrate uptake. They modelled their experimental results with a metabolic model based 
on van Aalst-van Leeuven et al. (1997) and concluded that a combination of low DO and 
long SRT ensured maximum PHB storage with the minimum growth.  
 
Beccari et al. (2002) and Karahan-Gül et al. (2003) did a parallel and similar work. They 
extended the classical ASM3 model (Henze et al., 2000) so that it could describe the 
simultaneous growth and storage process. They both added a reaction where biomass 
could grow directly on external substrate (i.e. the growth process of ASM1). Karahan-Gül 
et al. (2003) also added an inhibition factor on the growth on stored product to avoid 
simultaneous growth on external substrate and stored product. They both calibrated the 
model with OUR and substrate values. However, they did not take into account 
identifiability issues and worked with three independent yield values. Neither acetate nor 
PHB was measured and only OUR was used for parameter estimation. Moreover, their 
respirometric experimental profiles did not show enough storage for a reliable parameter 
estimation.  
 
On the other hand, Beccari et al. (2002) found that ASM3 could favourably describe only 
their OUR measurements. They had to include the growth on external substrate to 
describe their PHB measurements. However, this inclusion did not agree yet with their 
ammonia measurements and they included a new process called “internal accumulation” 
or “biosorption”. Although they had 4 measurements (acetate, OUR, PHB and ammonia) 
the model complexity they introduced (4 rates with four yields) and their parameter 
estimation procedure had probably some identifiability problems. 
 
Finally, Hanada et al. (2002) adopted the idea that some microorganisms maximise their 
storage rate and some maximise their growth rate and hypothesised that there existed 
two different kinds of biomass in their dual biomass model. They tried to quantify the 
amount of each biomass present by means of PHA and biomass staining with Nile Blue A 
and DAPI, respectively. They considered that the fraction of “ASM3 bacteria” in each 
WWTP is strongly influenced by the operational plant conditions. They tested 5 different 
WWTP and found different PHB/Ac values (from 0.4-0.5 in C-mol basis). 
 
V.B.2.3 UPGRADING CARBON REMOVAL MODELS WITH 
TITRIMETRY: THE WORK OF GERNAEY et al. 
 
One of the objectives of this chapter is to upgrade the simultaneous storage and growth 
model with titrimetric measurements. Hence, new compounds such as protons or carbon 
dioxide should be included in the model. Titrimetric measurements are very helpful in 
monitoring biological processes since they provide high quality information about the 
process with simple equipment (pH control loop). These measurements have already 
been used to monitor biological aerobic and anoxic carbon removal processes (Gernaey 
et al., 2002a,b; Pratt et al., 2004; Sin, 2004). Based on these works, each of the 
processes included in the model was extended to integrate titrimetric measurements (see 
below). 
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Gernaey et al., (2002a, b), from the BIOMATH research group (Ghent University), laid 
the foundations of the link between titrimetric measurements and carbon removal 
processes in view of modelling. They identified which were the processes which mostly 
influenced the pH (i.e. substrate and ammonia uptake and CO2 stripping) and studied the 
practical identifiability of the model with combined respirometric-titrimetric 
measurements. The inclusion of titrimetry enabled the identification of one extra 
parameter combination and, hence, a more reliable biomass growth yield estimation than 
with only respirometric measurements. They used a simple model where biomass directly 
grew on external substrate, without considering the storage compounds, which certainly 
play an important role on the carbon removal process. Actually, their experiments were 
conducted with biomass which showed low storing capacity. 
 
If  substrate is considered as a weak acid (e.g. acetate or propionate), it is mostly in the 
dissociated form (A-) in a pH range close to neutrality. However, it is accepted that 
substrate is uptaken in a neutral way, so each mole of dissociated acid taken up needs a 
mole of proton from the medium. The dissociation factor (ϖ) indicates the amount of acid 
dissociated in the medium This value can be calculated from the acidity constant and the 
pH [eq. V.B7]: 
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Hence, equation V.B8 shows that ϖ moles of protons would be consumed for each mol of 
substrate taken up (rVFA = VFA uptake rate) and acid dosage would be required to 
maintain the pH at a certain setpoint. 
 

VFAr·PRH       ϖ−=       (V.B8) 
 
By the same token, ammonia is also taken up in a neutral way (NH3). The pKNH4 is 9.25 
and hence, in a pH range close to neutrality most of the ammonia is in NH4

+ form. 
Likewise the previous equation, the dissociation (α) factor of NH4

+ has to be taken into 
account. It can be deduced with pH and pKNH4 [eq. V.B9]. 
 

α = 
[ ]

[ ] [ ] 4NH

4NH

pKpH

pK

·43

3

1010

10

NHNH

NH
−−

−

+ +
=

+
    (V.B9) 

 
Hence, equation V.B10 shows that α moles of protons would be released for each mol of 
ammonia taken up (rNH4 = NH4 uptake rate) and acid dosage would be required to 
maintain the pH at a certain setpoint. 
 

NH4r·PRH       α−=       (V.B10) 
 
Finally, the carbon stripping effect on pH had to be taken into account. Acid dosage is 
required to balance the effect of the stripped carbon dioxide. As they used short-term 
experiments to calibrate their model, they assumed that under these conditions the CO2 
stripping rate could be considered constant. Hence, they predicted a constant acid 
addition which they called background proton production rate (BPPR). This may be the 
most controversial issue in their model, since this assumption is only valid under certain 
conditions, i.e. low oxygen transfer efficiency, high pH and short-term experiments (Pratt 
et al., 2004; Sin, 2004).  
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V.B.2.4 CONSIDERATIONS ABOUT GERNAEY’S APPROACH TO THE 
CO2 STRIPPING PROCESS 
 
In order to check the consistency of Gernaey’s approach, the evolution of CO2 in an 
aerated pH controlled system was modelled. In a continuously aerated system, the 
evolution of SCO2 can be described by equation V.B11: 
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where CPREND = Carbon Production Rate under endogenous conditions (mol CO2/L/min) 

kLaCO2 = global carbon dioxide transfer coefficient (1/min) 
SCO2 = dissolved carbon dioxide (mol CO2/L) 
SCO2

* = saturation concentration of carbon dioxide (mol CO2/L) 
 
Under steady state conditions, equation V.B11 can be simplified to equation V.B12: 
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When the pH of the system is controlled, there is an acid dosage which is influencing the 
equilibrium values. Equations V.B13-.B15 show the evolution of dissolved carbon dioxide, 
bicarbonate (SHCO3) and protons (SHP) due to the stripping, the equilibrium displacement 
(EQ) and the acid dosage (AD). 
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The ratio between bicarbonate and carbon dioxide is fixed with the equilibrium constant 
[eqs. V.B16,b and V.B17. 
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Hence, equation V.B18 arises from V.B14 and V.B17: 
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This ordinary differential equation is like dx/(a-x)=b·dt and has an analytical solution 
which corresponds to V.B19: 
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Figures V.B2 depicts the evolution of SCO2 according to the previous equation with default 
parameters (Table V.B2). 
 

Table V.B2 Default parameters to model SCO2 evolution 
Parameter Value Parameter Value 

SCO2
SS 0.05 mM pH 7.5 

SCO2(0) 1 mM pK1 6.36 
kLaCO2 0.3 1/min   
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Figure V.B2 Simulation of the SCO2 profile in an aerated bioreactor with kLa = 0.3 1/min 

 
As can be observed, Gernaey’s approach of a constant BPPR is not appropriate if all the 
experiment is considered since the slope of the SCO2 decrease is variable. However, for 
short-term experiments (between arrows) it could be a fair simplification. In addition, it 
can be observed that the lower the SCO2 is the longer the time this simplification can be 
accepted (Figure V.B2). In addition, if the kLaCO2 of the system was set to a lower value 
(i.e. kLaCO2 = 0.1 1/min) the decrease would be slower and the assumption of constant 
BPPR could be sustained longer (Figure V.B3). 
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Figure V.B3 Simulation of the SCO2 profile in an aerated bioreactor with kLa = 0.1 1/min 
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V.B.2.5 EXTENDING THE CO2 STRIPPING APPROACH  
 
Later on, Sin (2004) from the same research group extended the Gernaey’s approach by 
integrating the physical and chemical equilibriums involved in the dynamic CO2 system: 
the carbonic acid – carbonate equilibrium, aeration, carbon stripping processes. This 
extension was also developed in parallel by the research group of the University of 
Brisbane (Pratt et al., 2004). Using their sensor called TOGA with off-line gas 
measurements, they integrated the carbon transfer rate (CTR) measurement to the OUR 
and HPR measurements in view of model calibration and succeeded in closing the carbon 
balance. Although they accepted that simultaneous growth and storage should be 
included in the model, they did not adopt this assumption properly, since they model 
only included substrate uptake for growth and for storage. They omitted the growth on 
stored substrate characteristic from the famine phase though admitted that PHB was 
oxidised after acetate depletion. Hence, their model could not describe the classical 
storage tail observed in respirometric batch experiments once the substrate is depleted. 
Again, the fact of working with biomass with low storing capacity allowed omitting the 
growth on storage product process of the model. 
 
With respect to identifiability, they used two independent yields which were not 
practically identifiable according to their experimental data. They linked YH,S and YSTO with 
a parameter λ, which represented the proportionality in the kinetics of both processes.  
However, infinite combinations of yields satisfied the values of λ found. They found that 
the substrate storage rate was 3-4 times faster than the growth rate on external 
substrate, which is in agreement with many works. It indicates that in the feast phase 
bacteria optimise the substrate uptake versus the growth. 
 
Next, the whole dynamic CO2 system description developed in the works described above 
is shown. By including these processes in the model, it is possible to integrate the HPR 
and CER as a measured variable.  
 
A. CARBONIC ACID –CARBONATE EQUILIBRIA 
 
The carbonic acid-carbonate stoichiometry is depicted in equation V.B20: 

 
−+−+ +⇔+⇔⇔+ 2

333222 COH2HCOHCOHOH)g(CO    (V.B20) 
 
where pK1 = 6.36 and pK2 = 10.35 for pure water (Edwards, 1978; Spérandio and Paul,        
1997 or Cai and Wang, 1998).   
 
The acid carbonic form is rather unstable and most of the carbon is on CO2 form. The 
ratio of CO2 to H2CO3 is 99.76% a 0.24% at 25 ºC (Musvoto et al., 2000a). The second 
deprotonation of the carbonic acid was neglected because the common working pHs were 
close to neutrality. Hence, at these pH levels, most of the total inorganic carbon is on 
bicarbonate form. Two different equilibriums were considered taking into account the 
reaction between CO2 and hydroxyl ions (Sperándio and Paul, 1997). 
 

−−

−+

⇔+

+⇔+

32

322

HCOOHCO

HCOHOHCO
     (V.B21) 

 
The evolution of these compounds can be predicted using the equilibrium kinetics as 
described with the set of equations V.B22-V.B26: 
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B.CARBON DIOXIDE STRIPPING AND AERATION 

 
These processes describe the carbon dioxide and oxygen transfer from the liquid to the 
gas phase due to the physical equilibrium between the two phases. These gas/liquid 
mass transfer equilibriums are considered to be limited by the liquid side transfer and 
their kinetics are generally based on a driving force and one efficiency coefficient [eq. 
V.B27 and V.B28]. In the experiments developed in this thesis, SCO2 was generally higher 
than SCO2*, hence, CTR was negative and CO2 was stripped. On the contrary, oxygen was 
transferred to the gas phase to the liquid phase.  
 

rCTR=kLaCO2·(SCO2*- SCO2)      (V.B27) 
 

rOTR=kLaO2·(SO2*-SO2)     (V.B28) 
 

V.B.3 Model development: Feast phase 
 
As discussed above, modelling simultaneous storage and growth involves two distinct but 
complementary phases: feast and famine. Under feast conditions, two modelling 
approaches have been employed: traditional ASM and metabolic approaches. The first 
approach, based on a traditional ASM-type model structure, requires three distinctive 
yield coefficients independent from each other (i.e. storage, direct growth on external 
substrate and growth on internal storage products). Examples of this approach are 
Beccari et al. (2002), Karahan-Gul et al. (2003), Carucci et al. (2001) or Pratt et al. 
(2004). 
 
On the other hand, a second approach is based on the metabolic model of van Aalst-van 
Leeuwen et al. (1997) for pure cultures described above (equations V.B1).Examples of 
this approach are the works of Beun et al. (2000), Beun et al. (2001) and van Loosdrecht 
and Heijnen (2002). This approach has been used in this study since the correlation of 
the three yields appeared to be closer to the reality than three independent yields. 
Moreover, this approach makes it possible to restrict the calibration to the estimation of 
only one parameter (δ) instead of three yield coefficients. The latter is a very important 
aspect of modelling in view of reliability and full-scale applicability of models for WWTPs 
(Henze et al., 2000). 
 
V.B.3.1 AEROBIC GROWTH OF HETEROTROPHS (CiHjOkNl) ON 
SUBSTRATE (CxHyOz) 
 

A. STOICHIOMETRY 
 
The process stoichiometry (in molar basis) is described in equation V.B29. The 
stoichiometry of the direct aerobic growth on substrate in view of modelling with 
titrimetric measurements has already been developed in the literature (Pratt et al., 2003, 
Sin et al., 2004). 

 
a CxHyOz + b O2  +c NH3   CiHjOkNl + d CO2 + e H2O        (V.B29) 
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As this expression was developed in C-mol basis, it can be assumed x and i = 1.The 
mass and degree of reduction balances of the process corresponded to the set of 
equations V.B30 (a-d):  
 

C ) a = 1 + d         (V.B30a) 
      H ) a·y + 3c =j+2·e            (V.B30b) 

N ) c = l          (V.B30c) 
degree of reduction ) a·(γS) + b·(-4) + c·(0) = γX + d·(0) + e·(0)  (V.B30d) 

 
where γS is the degree of reduction of the substrate and γX is the degree of reduction of 
the biomass. 
 
The balance of the degree of reduction was developed with NH3 as N-compound 
reference (Roels 1983, Heijnen, 1999). Once the substrate and the biomass compositions 
were known, there were 5 unknown variables (a, b, c, d and e) and only 4 equations, 
which made the system unsolvable, unless an extra restriction or equation was obtained. 
This degree of freedom was the biomass growth yield on external substrate (YH,S,C), 
where the sub index C stands for molar basis.  
 
Hence, a= 1/YH,S,C where YH,S,C (moles CX/moles CS).  
 
Solving the balances [eqs. V.B30], equation V.B29 became V.B31: 
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 (V.B31) 
 
The stoichiometric coefficients of substrate, oxygen, ammonia and biomass could be 
converted to COD and N weight units [eq. V.B32] assuming that: 
 

1. one mole of electron corresponded to 8g of COD (likewise to an oxygen mol with 
32g and 4 electron moles). 

2. the degree of reduction of one compound is the number of electron moles 
present in a C mol of compound. Hence, 1 mol of CS = 8·γS g COD.  
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Equation V.B33 arises dividing all the stoichiometric coefficients by 8·γX: 
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Equation V.B34 shows the conversion of the biomass growth yield in molar units (YH,S,C) 
to the yield in weight units (YH,S). YH,S,C was substituted for YH,S in equation V.B34. The 
percentage of nitrogen in biomass in weight basis (iNB) could be calculated as 14·l/8γx. 
 

YH,S,C =   S,H
X

S Y
8
8
γ
γ

where YH,S was g CODX/g CODS    (V.B34) 
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  (V.B35) 
 
At this point the Respiratory Quotient (RQ) of this process can be obtained [eq. V.B36]. 
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For example: for acetate as substrate (γS=4) and biomass as CH1.4N0.2O0.4 (γX=4) this 
process in molar basis would become (V.B37). 
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    (V.B37) 
 

Then RQ = 1 mol CO2/ mol O2 

 
Equation V.B38 shows that the amount of proton consumed in this process should be 
calculated taking into account two different effects: the substrate and the ammonia 
uptake [eqs. V.B8 and V.B10].  
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     (V.B38) 

 
where iCSS represents the number of carbon atoms in the substrate. 
 rX = biomass growth rate (mg CODX /L/min) 
 

B. KINETICS 
 
The process kinetics are shown on equation V.B39. As can be observed, the maximum 
growth rate on external substrate (µMAX,S) is corrected with the corresponding substrate 
limitations factors (Monod kinetics). Moreover, a first order delay is added to describe the 
start-up phenomenon as described in Chapter I.2. 
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where  KNH = ammonia affinity constant (mg N/L) 

KO= oxygen affinity constant (mg O2/L) 
KS = external substrate affinity constant (mg CODS /L) 
SNH = ammonia concentration (mg N/L) 
SO = oxygen concentration (mg O2/L) 
SS = external substrate concentration(mg CODS/L) 
τ = time constant of the start-up phase (min) 
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V.B.3.2 FORMATION OF STORAGE PRODUCTS (CoHpOq) FROM 
SUBSTRATE (CxHyOz) 
 

A. STOICHIOMETRY 
 

The process stoichiometry (in molar basis) is described in equation V.B40: 
 

a CxHyOz + b O2   CoHpOq + c CO2 + d H2O        (V.B40) 
 
As this expression was developed in C-mol basis, it can be assumed x and o = 1.The 
mass and degree of reduction balances of the process corresponded to the set of 
equations V.B41 (a-c):  
 

C ) a = 1+c         (V.B41a) 
H ) a·y = p+2·d        (V.B41b) 
degree of reduction ) a·(γS) + b·(-4)  = γSTO + c·(0) + d·(0)   (V.B41c) 

 
Once the substrate and storage product compositions were known, there were 4 
unknown variables (a, b, c and d) and only 3 equations, which made the system 
unsolvable, unless an extra restriction or equation was obtained. This degree of freedom 
was the storage yield (YSTO,C), where the sub index C stands for molar basis.  
 
Hence, a= 1/YSTO,C where YSTO,C (moles CSTO/moles CS).  
 
Solving the balances [eqs. V.B41], equation V.B40 became V.B42: 
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The stoichiometric coefficients of substrate, oxygen, and stored product could be 
converted to COD weight units [eq. V.B43] likewise equation V.B32: 
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(V.B43) 
 
Equation V.B44 arises dividing all the stoichiometric coefficients by 8·γSTO: 
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Equation V.B45 shows the conversion of the storage yield in molar units (YSTO,C) to the 
yield in weight units (YSTO). YSTO,C was substituted for YSTO in equation V.B46. 
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YSTO,C =   STO
STO

S Y
8
8
γ
γ

where YSTO was g CODSTO/g CODS    (V.B45) 
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At this point the Respiratory Quotient (RQ) of this reaction can be obtained [eq. V.B47]. 
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For example: for acetate as substrate (γS=4) and its storage as PHB (γSTO=4.5) this 
process in molar basis would become: 
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(V.B48) 
  

If YSTO = 0.85 g CODSTO/g CODS (from ASM3; Henze et al., 2000) then RQ = 1.63 . 
 

Equation V.B49 shows the amount of proton consumed in this process, which is 
calculated with the electron balance of the substrate [eq. V.B8].  
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−      (V.B49) 

 
where rSTO stands for the storage rate (mg CODSTO/L/min) 
 

B. KINETICS 
 
The process kinetics are shown on equation V.B50. As can be observed, the maximum 
storage rate (kSTO) is corrected with the corresponding substrate limitations factors 
(Monod kinetics). Moreover, a first order delay is added to describe the start-up 
phenomenon as described in Chapter I.2. 
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V.B.3.3 FEAST PHASE:  PROCESS RATES 
 
According to the research line of TUD, the kinetics of the feast phase strongly depend on 
the evolution of the growth rate with SRT. At low SRTs (i.e. high growth rate) negligible 
storage is observed since the growth rate is close to its maximum substrate uptake rate. 
On the other hand, at high SRTs (i.e. low growth rate) the substrate uptake rate of the 
biomass is higher than the the average growth rate. Consequently, the difference 
between substrate uptake (qMAX) and substrate used for growth (µMAX) is diverted to 
formation of the storage polymers. Under these conditions, van Loosdrecht and Heijnen 
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(2002) asserted that the qMAX was slightly changing with SRT while µMAX is strongly 
affected by SRT variation. Hence, the ratio of PHB produced per acetate taken up can be 
considered constant since the storage becomes the dominant process under these 
conditions (around 0.67 g CODSTO/g CODS). This premise has been experimentally 
confirmed in several works such as Beun et al., (2000); Beun et al., (2001); Dircks et al., 
(2001) or Third et al., (2003). 
 
From a mathematical point of view, the biological control of substrate flux into the cell 
can be illustrated using a branch-pipe analogy (see Figure V.B4). In this branch-pipe 
analogy, the flow F1 stands for the substrate influx into the cell, F3 for the substrate flux 
diverted to growth and F2 for the substrate flux diverted to storage. Experimental 
observations with slowly growing systems showed that the ratio of storage products to 
substrate taken up (F2/F1) could be considered constant. The remaining substrate flux is 
diverted to growth (F3). This experimental observation can be modelled by considering a 
ratio controller on the flow F2 that is indicated by valve A. In this way, the flow of F2 can 
be controlled by fixing its value to a certain fraction of F1, fSTO [eq. V.B51] which means 
that the substrate flow to F3 is also controlled [eq. V.B52].  

 
F2 = fSTO * F1       (V.B51) 

 
F1-F2= F3; F3 = (1-fSTO) * F1     (V.B52) 

 

F1 F2

F3

A 

 
 

XSTO

XH

SS
INSS

Figure V.B4. Illustration of substrate flux into the cell (LEFT) and branch-pipe analogy for control 
of substrate flux under feast conditions (RIGHT) 

 
From a strict mathematical point of view, it is not important where the control valve is 
allocated to allow for a good description of the experimental observations. However, 
biochemically, it has two different meanings depending whether the limiting step is the 
growth rate or the storage rate. Most probably the reality consists of a mixture of 
biomass with different strategies, but this is beyond the scope of this study. Again, the 
mathematical representation of both strategies remains largely the same. 
 
One of the most difficult issues to model is the internal substrate (SS

IN). According to 
previous metabolic models (van Aalst-van Leeuven et al., 1997), this compound would 
correspond to acetyl-COA. Including this compound would increase too much the model 
complexity with new stoichiometric and kinetic parameters. In addition, it is not a 
compound normally measured. On the other hand, this compound becomes necessary 
since a unique substrate uptake process must be included. Otherwise, biomass would 
uptake substrate for growth and for storage directly for the exterior. 
 
The substrate flux under feast conditions can be modelled as follows [eq. V.B53]. 
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where is the rate of substrate conversion in terms of mg CODIN

Sr S/L/min 
  
The internal substrate concentration, SS

IN, can be assumed at steady state (i.e. rS
IN = 0). 
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The steady state assumption of SS
IN is mostly correct during the feast phase in a pulse 

experiment, except for two short unsteady-state phases: 
 

• at the time of SS pulse addition The description of the first unsteady-state part 
can be lumped into the description of the transient response usually observed in 
batch experiments (Vanrolleghem et al., 2004) 

 
• just after depletion of SS respectively. This second unsteady-state phase will be 

captured by a small change in the substrate affinity constant (KS). Therefore, for 
most of the time equation V.B54 is accomplished. 
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Equation V.B55 can be translated into the following equality assuming no substrate 
limitations: 
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Based on experimental observations of the constant ratio of substrate uptake/storage as 
discussed above in detail, the control is assumed on F2 which means that biomass is 
maintaining storage rate in constant value [eq. V.B56]:  
 

  and STOMAXSTOSTO Yqfk ⋅⋅= ( ) S,HMAXSTOS,MAX Yqf1 ⋅⋅−=µ     (V.B56) 

 
where fSTO is the fraction of the substrate flux diverted to the storage products (g CODS/g 
CODS). As discussed below, fSTO·YSTO should be around 0.6-0.7 for WWTP with high SRT. 
However this value should not be taken as universal, since it is influenced by many 
factors such as the alternating feed pattern, the plant SRT… In this way, modelling the 
rates of simultaneous storage and growth reduces to estimation of three parameters, i.e. 
fSTO, δ and qMAX.  
 
It is important to note that from a metabolic point of view, equation V.B55 should also 
include a fraction of substrate used for maintenance such as the Herbert-Pirt equation 
(Beun et al., 2000; van Loosdrecht and Heijnen, 2002). However, in traditional ASM 
models (Henze et al., 2000) the maintenance concept of the biomass is already lumped 
into the endogenous decay coefficient describing many other processes such as death, 
predation, lysis etc. According to the classical approach, the maintenance of biomass was 
implicitly included in the endogenous decay coefficient in order to keep the model at a 
reasonable complexity.  
 
Although based on the same conceptual background, the major difference between the 
proposed model and the model of van Loosdrecht and Heijnen (2002) is the approach to 
this internal substrate issue (SS

IN). They did not include this compound in their model and 
all the substrate taken up was directly stored as PHB. Then, part of this PHB is used for 
growth. The process kinetics and stoichiometry are developed so that when model was 
simulated biomass is observed to grow on external substrate. 
 
The model of van Loosdrecht and Heijnen (2002) uses the XSTO component to divert the 
substrate flux to growth and to storage in order to keep the modelling simple (see Figure 
V.B5). Hence, the direct growth on substrate is modelled with XSTO as intermediate 
although the kinetics of both process result in a fast conversion of substrate to biomass. 
However, in this way, the interpretation of the mathematical model becomes dangerous 
since it implies that the biomass grows both in the feast phase and the famine phase 
using XSTO but then in two different ways, with two different yields and two different 
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growth rates. One of the two processes is less efficient than the other (in energy terms). 
Hence, the biomass would also choose the most efficient pathway under the same 
conditions. 
 
 

 XH

XSTO

CELL

SS

 
 
 
 
 
 
 
 
 

Figure V.B5 Mathematical formulation used in the model of van Loosdrecht and Heijnen (2002) 
(⎯⎯ feast phase,  ------- famine phase) 

 

V.B.4 Model development: Famine phase 
 
V.B.4.1 AEROBIC GROWTH OF HETEROTROPHS (CiHjOkNl) ON 
STORAGE PRODUCT (CoHpOq) 
 

A. STOICHIOMETRY 
 

The process stoichiometry (in molar basis) is described in equation V.B57: 
 

a CoHpOq + b O2 +c NH3  CiHjOkNl + d CO2 + e H2O       (V.B57) 
 
As this expression was developed in C-mol basis, it can be assumed i and o = 1The mass 
and degree of reduction balances of the process corresponded to the set of equations 
V.B58 (a-d):  
 

C ) a = 1+d         (V.B58a) 
H ) a·p + 3c= j+2·e        (V.B58b) 
N ) c = l          (V.B58c) 

degree of reduction ) a·(γSTO) + b·(-4) +c (0) = γX + d·(0) + e·(0)   (V.B58d) 
 

The balance of the degree of reduction was developed with NH3 as N-compound 
reference (Roels 1983, Heijnen, 1999). Once the biomass and storage product 
compositions were known, there were 5 unknown variables (a, b, c, d and e) and only 4 
equations, which made the system unsolvable, unless an extra restriction or equation 
was obtained. This degree of freedom was the biomass growth yield on stored product 
(YH,STO,C), where the sub index C stands for molar basis.  
 
Hence, a= 1/YH,STO,C where YH,STO,C (moles CX/moles CSTO).  
 
Solving the balances [eqs. V.B58], equation V.B57 became V.B59: 

 

OH
2

jl3p
Y

1

CO1
Y

1
NOCHNH·lO

4

Y
1

OCH
Y

1
2

C,STO,H
2

C,STO,H
lkj32

XSTO
C,STO,H

qp
C,STO,H

−−

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+→+

γ−γ

+

(V.B59) 
 
The stoichiometric coefficients of stored product, oxygen, biomass and ammonia could be 
converted to COD and N weight units [eq. V.B60] likewise V.B32: 
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Equation V.B61 arises dividing all the stoichiometric coefficients by 8·γS: 
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·8
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X

H2O   (V.B61) 

Equation V.B62 shows the conversion of the storage yield in molar units (YH,STO,C) to the 
yield in weight units (YH,STO). YH,STO,C was substituted for YH,STO in equation V.B63. The 
percentage of nitrogen in biomass in weight basis (iNB) could be calculated as 14·l/8γx. 
 

YH,STO,C =   STO,H
X

STO Y
8

8
γ
γ

where YH,STO was g CODX/g CODSTO    (V.B62) 
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At this point the Respiratory Quotient of this reaction can be obtained [eq. V.B64]: 
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  (V.B64) 

 
For example: for PHB as storage polymer (γSTO=4.5) and CH1.4O0.4N0.2 as biomass 
(γX=4.2) this process in molar basis would become [eq. V.B65]. 
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(V.B65) 
 

If YH,S = 0.63 g CODX/g CODS (from ASM3; Henze et al., 2000) then RQ = 0.7. Equation 
V.B66 shows that the amount of proton required in this process can be calculated due to 
the ammonia uptake for growth as described in equation V.B10. 
 

HPR= X
NB r

14
i·α

      (V.B66) 
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V.B.4.2 FAMINE PHASE KINETICS 
 
The typical process of the famine phase is the growth on the storage product with the 
energy coming from its oxidation. The PHB is degraded for energy obtainment and 
growth purposes. However, there is no commonly agreed kinetic model yet. Two 
approaches have been usually employed to describe the kinetics of degradation of XSTO 
under famine conditions: surface saturation-type kinetics and a first-order model.  
 
On the one hand, the surface saturation-type kinetics [eq. V.B67] (Henze et al., 2000; 
Krishna and van Loosdrecht, 1999; Beccari et al., 2002; Karahan-Gul et al., 2003), e.g. 
as in ASM3, has been shown to cause severe practical identifiability problems due to its 
structure, resulting in unrealistic parameter estimates (see Chapter V.A).  
 

H

STO
STO

H

STO

H

STO

X
XK

X
X

)X
X(f

+
=      (V.B67) 

 
On the other hand, the multiple-order type models [eq. V.B6] (van Aalst-van Leeuwen et 
al., 1997; Beun et al., 2000; Beun et al., 2001; Dircks et al., 2001; van Loosdrecht and 
Heijnen, 2002) were developed and applied for experimental conditions leading to 
biomass with high internal storage products content. However, activated sludge from full-
scale WWTPs has a much lower fraction of storage products due to the limited availability 
of external substrate sources as opposed to the studies in well-controlled lab 
environments. Hence, the multiple-order type kinetics may not be proper for full-scale 
WWTPs.  
 
In this study several model structures including the above mentioned models have been 
applied to OUR data obtained with sludge from full-scale WWTPs with low PHB content 
(results not shown). The following kinetic expression was found to describe the 
degradation of storage products reasonably well: 
 

REG
XSTO

H

STO

H

STO
STO

H

STO

H

STO

f
X

X

·

X
XK

X
X

)X
X(f

+
=                (V.B68) 

 
The first part of this mathematical expression describes the surface-saturation type 
degradation kinetics of XSTO likewise ASM3 (Henze et al., 2000). The second part 
assumes that the degradation of XSTO is regulated as function of the storage content of 
the cell, fXSTO = XSTO/XH likewise Dircks et al. (2001). This means that when fXSTO is high, 
the degradation of XSTO is faster, depending on the regulation constant of the cell, 
fXSTO

REG.  However, when fXSTO is decreasing and approaching a minimum level in the 
biomass, the biomass starts to limit the degradation rate of XSTO. 
 
This expression was chosen because: 
 

• Dircks et al. (2001) explicitly showed that the degradation rate of PHB strongly 
depended on the PHB content of the cell. 

• van Aalst-van Leeuwen et al. (1997) hypothesised that biomass always contains 
a minimum PHB content. This implies that biomass is likely to control the 
degradation rate of storage products such that a minimum level of storage 
products can be maintained.  

• Experimental observations (particularly OUR from batch experiments) showed 
that there are at least two phenomena corresponding to a fast and a slow 
degradation rate of XSTO under famine conditions (see below). This fact cannot be 
described with a classical Monod kinetics. 
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Equation V.B67 can be rewritten as follows, resulting in a second-order type kinetic 
expression [eq. V.B69]: 
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where K2 = KSTO *  and KREG

XSTOf 1= .  REG
XSTOf

 
In this expression, K2 becomes the affinity of the biomass towards XSTO/XH (g CODSTO/g 
CODX) and K1 is nothing but the regulation constant of the biomass as function of XSTO/XH  
(g COD/g COD). Similar to previous studies (e.g. van Loosdrecht and Heijnen, 2002), the 
growth rate of biomass on XSTO is assumed to occur under strictly famine conditions, i.e. 
a Monod inhibition function for external substrate is added to the kinetic description of 
rSTO. This is a significant assumption that will be discussed in Chapter V.C. 
 

V.B.5 Model development: Endogenous processes 
 
V.B.5.1 ENDOGENOUS BIOMASS DECAY 
 

A. STOICHIOMETRY 
 

The process stoichiometry (in molar basis) is described in equation V.B70: 
 

a CiHjOkNl + b O2  c CO2 + d NH3 + e H2O       (V.B70) 
 

As this expression was developed in C-mol basis, it can be assumed i = 1. The mass and 
degree of reduction balances of the process corresponded to the set of equations V.B71 
(a-d):  
 

C ) a = c         (V.B71a) 
H ) a·j = 3d + 2f        (V.B71b) 
N ) a·l = d          (V.B71c) 

degree of reduction ) a·(γX) + b·(-4) = c·(0) + d·(0) + e·(0)   (V.B71d) 
 

The balance of the degree of reduction was developed with NH3 as N-compound 
reference (Roels 1983, Heijnen, 1999). Once the biomass composition was known, there 
were 4 unknown variables (a, b, c and d) and 4 equations, which made the system 
solvable without any extra restriction or equation. 
 
Solving the balances [eqs. V.B71], equation V.B70 became V.B72: 
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l·3j
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γ
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The stoichiometric coefficients of biomass, oxygen and ammonia could be converted to 
COD and N weight units [eq. V.B73] by the same token as equation V.B32. 
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Equation V.B74 arises dividing all the stoichiometric coefficients into 8·γX: 
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All the stoichiometric values obtained should be multiplied for (1-fXI) since part of the 
biomass (fXI) decays into inert fraction. Hence, the real stoichiometric equation would be 
equation V.B75. The percentage of nitrogen in biomass in weight basis (iNB) could be 
calculated as 14·l/8γx. 
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Finally, the amount of proton can be calculated taking into account the ammonia released 
coming from the biomass and the ammonia concentration in the inert fraction: 

 

HPR= 
14

i)f1·( NBXI−α−
·rENDX     (V.B76) 

 
where rENDX is the endogenous biomass decay rate (mg CODX/L/min). 
 

B. KINETICS 
 
The kinetics of this process were assumed from the ASM models (Henze et al., 2000) and 
consisted of a maximum rate limited by a Monod on oxygen [eq. V.B77]: 
  

H
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HXEND X
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V.B.5.2 AEROBIC RESPIRATION OF STORAGE PRODUCTS
 
A. STOICHIOMETRY 
 
The process stoichiometry (in molar basis) is described in equation V.B78: 

 
a CoHpOq + b O2  c CO2 + d H2O         (V.B78) 

 
As this expression was developed in C-mol basis, it can be assumed o = 1.The mass and 
degree of reduction balances of the process corresponded to the set of equations V.B79 
(a-c):  

 
C ) a = c         (V.B79a) 
H ) a·p = 2d          (V.B79b) 
degree of reduction ) a·(γSTO) + b·(-4) = c·(0) + d·(0) + f·(0)   (V.B79c) 

 
Once the storage product composition was known, there were 3 unknown variables (a, b, 
and c) and 3 equations, which made the system solvable without any extra restriction or 
equation. 
 
Solving the balances [eqs. V.B79], equation V.B78 became V.B80: 
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The stoichiometric coefficients of storage product and oxygen could be converted to COD 
weight units [eq. V.B81] by the same token as equation V.B32: 
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Equation V.B76 arises dividing all the stoichiometric coefficients into 8·γSTO: 
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B. KINETICS 
 

The kinetics of this process were assumed from the ASM models (Henze et al., 2000) and 
consisted of a maximum rate limited by a Monod on oxygen [eq. V.B83]: 
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V.B.6 Model stoichiometric and kinetic matrix 
 

Table V.B3 Model stoichiometric and kinetic matrix
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   ( ) S,HMAXSTOS,MAX Yqf1 ⋅⋅−=µSTOMAXSTOSTO Yqfk ⋅⋅=  ; ;  

M stands for a Monod kinetic function (the substrate considered is indicated in the subscript) e.g. MS = SS/(KS+SS). 
 
The first-order empirical model (1-et/τ) is used to model the transient response observed in OUR data obtained from batch experiments as in 
Vanrolleghem et al., 2004 or Guisasola et al., 2003. 
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Chapter V.B Conclusions 
 

• A new model for biological COD removal was developed using mass and reduction 
balances. The major improvement of this model is to consider the simultaneous 
growth and storage process. Moreover it includes: 

 
1. the three yields linked to one unique parameter 
2. a new approach to describe the substrate kinetics in the feast phase  
3. the dynamic CO2 system to describe titrimetric data  
4. a new factor to describe the PHB degradation kinetics on biomass with low 

PHB content. 
 
• The simultaneous growth and storage processes were included based on the 

experimental observations previous works (particularly from TUD). However, 
these works include models which have been improved in this chapter. 

 
• The utilisation of the simplification of constant BPPR used in Gernaey et al., 

2002a, b is constrained to short-term experiments with low gas/liquid mass 
transfer efficiency. 

 
• The model was upgraded with titrimetric data using the dynamic CO2 system 

developed by Pratt et al., (2004) and Sin (2004). Hence, the titrimetric data can 
be described without time constraints. 
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