

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR.
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate
the name of the author

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Programa de Doctorat:

AUTOMÀTICA, ROBÒTICA I VISIÓ

Tesi Doctoral

SENSOR PLACEMENT FOR FAULT DIAGNOSIS
BASED ON STRUCTURAL MODELS:

 APPLICATION TO A FUEL CELL STACK SYSTEM

Albert Rosich Oliva

Directors: Ramon Sarrate
 Fatiha Nejjari

Abril de 2011

To Marta

Abstract

Diagnosing faults correctly can prevent serious damage on systems or a
loss of process performance. For this reason, the study of fault diagnosis
system design is an important research area. However, the application of
novel techniques in industrial processes are rare. This is mainly due to
the fact that the achieved diagnosis performance is not the expected one,
or the design techniques are cumbersome and difficult to implement. The
present work tries to mitigate these problems by choosing the location of
sensors in the process. It is known that diagnosis systems strongly depend
on the on-line information acquired from the process. Therefore, appropriate
sensor location will lead to better diagnosis performance and implementation
facilities.

In order to properly deal with the sensor placement problem for com-
plex systems, a suitable framework based on structural models is developed
beforehand. Some simplifications (e.g. single faults, no faulty models and
a one-to-one correspondence between a model equation and a fault) are
considered in order to only focus on the sensor placement analysis. This
framework also allows to easily handle installed sensors in the system and
to derive some properties that will be used later to develop the proposed
sensor placement approaches. Faults affecting the placed sensors are also
considered in this framework, as well as redundant sensors (i.e. sensors that
measure an already measured variable).

In this work, the combinatorial nature of the sensor placement prob-
lem is shown. This means that representing the complete set of possible
solutions may be unfeasible when the number of candidate sensors grows.
Therefore, only optimal solutions will be sought. The present work pro-
poses three new approaches to solve the optimal sensor placement problem
for fault diagnosis based on structural models. The first approach focuses
on efficiently generating the minimal redundant sub-models when different
candidate sensor configurations are tested. The second approach is based
on binary integer programming. And the third one is specifically devoted

i

ii

to perform the sensor placement when the unknown variable computation
in the residual generators is taken into account.

Deriving residuals from the minimal redundant sub-models requires com-
puting the unknown variables of such sub-models. This is not a trivial issue
when complex systems with non-linear equations (e.g. look-up tables, piece-
wise functions, maps, etc.) are considered. For this reason, a method that
ensures the unknown variable computation by assigning causality between
equations and variables is developed. This method is combined with the sen-
sors placement problem. Sensors are placed such that the unknown variable
computation in the residual generators is guaranteed.

Finally, the sensor placement techniques are applied to a fuel cell stack
system. The model used to describe the behaviour of this system consists
of 96 equations, most of them non-linear. Furthermore, there are 30 candi-
date sensors to improve the diagnosis specifications. The results obtained
from this case study are used to strength the applicability of the proposed
approaches.

Keywords: optimal sensor placement, fault diagnosis, fault detection
and isolation, structural analysis, minimal redundant sub-model, binary in-
teger programming, causal computability, fuel cell stack system.

Resum

Diagnosticar fallades correctament pot evitar importants d’anys en els sis-
temes o la pèrdua de prestacions del procés. Per aquest motiu, l’estudi
del disseny de diagnosticadors de fallades és una important àrea de recerca.
Malgrat tot, la implementació de tècniques innovadores en els processos in-
dustrial és poc freqüent. Això és degut, principalment, a que les prestacions
assolides pel diagnosticador dissenyat estan per sota de les esperades o bé a
que les tècniques de disseny són massa complexes i dif́ıcilment implementa-
bles. El present treball té per objectiu intentar resoldre aquests problemes
mitjançant la localització de sensors en el procés. D’aquesta manera, in-
stal·lant els sensors apropiats s’obtenen millores en les prestacions del diag-
nosticador i facilitats d’implementació.

Per tal de poder treballar adequadament amb el problema de localització
de sensors en sistemes complexos, prèviament es desenvolupa un marc de
treball basat en models estructurals. En aquest marc de treball es suposen
una sèrie de simplificacions (fallades simples, models de fallada inexistents
i una correspondència d’un a un entre equacions del model i fallades) amb
la finalitat de centrar-se només en la problemàtica de la localització de sen-
sors. Aquest marc de treball també permet considerar de forma eficient els
sensors instal·lats en el sistema, aix́ı com la possibilitat d’extreure algunes
propietats de diagnosis que seran posteriorment considerades a l’hora de
desenvolupar els diferents mètodes proposats per a la localització de sen-
sors. A més, es tenen també en compte les fallades que afecten als sensors
instal·lats, aix́ı com sensors redundants (sensors que mesuren una variable
que ja està mesurada).

El problema de la localització de sensors és de naturalesa combinatòria,
tal i com es mostra en el present treball. Això significa que la representació
de totes les possibles solucions pot esdevenir impossible quan el nombre
de sensors a considerar és gran. Per tant, tan sols es buscarà la solució
òptima. Es proposen tres enfocaments diferents per tal de resoldre la local-
ització òptima de sensors per diagnosi de fallades basada en models estruc-

iii

iv

turals. El primer mètode es centra en la generació eficient de sub-models
de redundància mı́nima per verificar les diferents configuracions de sensors
candidates. El segon mètode utilitza la programació binària entera per resol-
dre el problema. Finalment, el tercer mètode té en compte el càlcul de les
variables desconegudes en els generadors de residus a l’hora de resoldre el
problema de la localització de sensors.

La extracció de residus a partir dels sub-models de redundància mı́nima
requereix la determinació del valor de les variables desconegudes d’aquests
sub-models. Aquesta tasca no és gens fàcil al tractar-se de sistemes com-
plexes on apareixen equacions no lineals (per exemple, taules, funcions a
trossos, corbes caracteràstiques, etc.). Per aquest motiu, s’ha desenvolu-
pat un mètode que permet assegurar la calculabilitat de les variables de-
sconegudes mitjançant l’assignació de causalitats entre equacions i variables.
Aquest mètode es combina amb la localització de sensors. És a dir, es
cerquen els sensors òptims que cal instal·lar en el sistema, per tal de garantir
la calculabilitat de les variables desconegudes en els generadors de residus.

Les tècniques de localització de sensors són aplicades a un sistema basat
en una pila de combustible. El model emprat per descriure el comportament
d’aquest sistema consta de 96 equacions, la majoria de les quals són no
lineals. A més, hi ha la possibilitat d’instal·lar fins a 30 sensors per tal
de millorar la diagnosis del sistema. Degut a aquestes caracteŕıstiques del
sistema i del model, els resultats obtinguts mitjançant aquest cas d’estudi
reafirmen l’aplicabilitat dels mètodes proposats.

Paraules clau: localització de sensors òptima, diagnosis de fallades,
detecció i äıllament de fallades, anàlisis de models estructurals, sub-model
de redundància mı́nima, programació binària i entera, calculabilitat causal,
sistema de pila de combustible.

Acknowledgement

This dissertation was carried out at the Advanced Control Systems (SAC)
with the financial support of the Spanish Ministerio de Educación y Ciencia
within the FPI program (CICYT project DPI2005-05415). I would like
to thank my supervisor, professor Joseba Quevedo, for letting me join the
research group. I greatly appreciate all the work done by my advisor, Dr.
Ramon Sarrate, and my co-advisor, Dr. Fatiha Nejjari, for proofreading the
manuscript and their guidance on my research.

I am indebted to Dr. Fernando Bianchi for patiently answering my
questions and shedding some light on my worries. I also thank Dr. Ari
Ingimundarson for helping me during the first days, his advice was always
valuable. And, I would also like to thank all the people that is part or have
been part of the Aula Boeing office, especially Rosa, Miquel, Fernando, Juli
and Clàudia, for creating a really friendly atmosphere.

During my PhD, I had the opportunity to enjoy two stays abroad. I
thank Stéphane Ploix for welcoming me into his group in Grenoble (France)
and Erik Frisk for receive me in Linköping (Sweden) and helping me out
with my research.

Lastly, I also want to thank Marta and my family for their support,
patience and encouragement during these years. Without them, this thesis
would not have been a real fulfilment.

Albert Rosich Oliva

Terrassa, December 2010

v

vi

Notation

Consistency Diagnosis Notation

C The set of all process components.
B The set of all behavioral modes in a process.
M The set of all process model equations.
X The set of all unknown variables in a model.
Y The set of all known variables in a model.
X The domain of unknown variables X.
Y The domain of known variables Y.
O(M) The consistent observations of a model M .
assump(M) The set of behavioral modes supported by M .
D(y) The diagnosis statement inferred from the known variables y.

Bipartite Graph Theory Notation

G A bipartite graph.
|U | The cardinality of a set U .
MG A matching in the graph G.
Mmax

G A maximum matching in the graph G.
ν(G) The size (cardinality) of a maximum matching in G.
MV

G A complete matching of the vertex set V .
Mp

G A perfect matching in G.
∂VM The set of vertices in V incidents to the edges in M.
p0(U) The surplus function.

Structural Model Notation

G+ The over-determined part of the model represented by G.

vii

viii

G0 The just-determined part of the model represented by G.
G− The under-determined part of the model represented by G.
ϕs(M) The structural redundancy of a model M .
varZ(M) The variables in Z contained in some equation in M .
varM (Z) The equations in M containing some variable in Z.
M+ The over-determined set of equations in M .
M0 The just-determined set of equations in M .
M− The under-determined set of equations in M .

Sensor Placement Notation

Ω The set of all possible MSO sets.
F The set of faults.
FD The set of detectable faults.
F

1
I The non-symmetric fault isolability characterisation.

F
2
I The symmetric fault isolability characterisation.

FDmax The set of maximum detectable faults.
F

1
Imax

The set of maximum isolable faults using non-symmetric

characterisation.
F

2
Imax

The set of maximum isolable faults using symmetric

characterisation.
S The set of all candidate sensors.
S′ The set of all redundant sensors.
S0 The set of useful sensors.
C(S) The cost of a sensor configuration S.
[ω]S An equivalent class of MSO sets containing all the sensor

equations of S.
ΩS The set of MSO sets generated with S sensors in the model.
q The binary vector indicating the sensors chosen for installation.
W The binary matrix relating MSO sets and sensors.
V The binary matrix relating MSO sets and process faults.
ρ The non-linear MSO set selector vector.
λ The linear MSO set selector vector.
Cn

k The k-combination number of a set with n elements.
Pn

k The k-permutation number of a set with n elements.

ix

Causal Computation Notation

AL The set of edges indicating a linear relation.
A× The set of edges indicating a causal (but non-linear) relation.
A∆ The set of edges indicating a linear relation.
XL A set of linear computable variables.
EL A set of equations to compute linear variables.
X× A set of causally (but non-linear) computable variables.
E× A set of equations to compute causal variables.
X The set of all causally computable variables.
E The causally computable part of a model.
FD The set of causally detectable faults.
F

1
I The set of causally isolable faults.

Ωc The set of all causally computable MSO sets.

x

Contents

Abstract . i

Resum . iii

Acknowledgement . v

Notation . vii

List of Tables . xiv

List of Figures . xvii

List of Algorithms . xviii

1 Introduction 1

1.1 Motivation . 3

1.1.1 Practical Motivation based on the Case Study 4

1.2 Main objectives . 5

1.3 Outline . 6

1.4 Related Publications . 8

2 Review of Background Theory 11

2.1 Consistency based Diagnosis Framework 11

2.2 Structural Model . 16

2.3 Graph Theoretical Preliminaries 20

2.4 Testing Consistency in Structural Models 24

2.4.1 Minimal Sub-models for Testing Consistency 24

2.4.2 Review of Algorithms to Generate MSO Sets 28

3 Introduction to Optimal Sensor Placement 31

3.1 Basic Assumptions for Sensor Placement 31

3.2 Fault Detectability and Isolability 33

3.3 Sensors for Fault Diagnosis 38

3.3.1 Adding Sensors in the Structural Model 38

3.3.2 Faults in Sensors . 42

3.3.3 Physical Redundant Sensors 42

3.3.4 Useful Sensors for Fault Diagnosis 44

xi

xii CONTENTS

3.4 Maximum Diagnosis Specifications 46

3.5 Optimal Sensor Placement for Fault Diagnosis 47

3.5.1 Sensor Cost Function 47

3.5.2 Optimal Sensor Placement Problem Set-up 48

3.6 Related Works on Sensor Placement for Fault Diagnosis . . . 50

4 Sensor Placement by Incremental MSO Sets Generation 53

4.1 Introduction . 53

4.2 Relation between Sensors and MSO Sets 54

4.3 Algorithm for Optimal Sensor Placement 57

4.4 Application to the compressor model 59

4.5 Extension to Redundant Sensors 61

4.6 Conclusions . 64

5 Binary Integer Optimisation for Sensor Placement 67

5.1 Introduction . 67

5.2 Constraint Formulation for BIP 68

5.2.1 Preliminary Notation 68

5.2.2 MSO Set Selector . 69

5.2.3 Fault Detectability Constraints for BIP 71

5.2.4 Fault Isolability Constraints for BIP 73

5.3 BIP Optimisation for Sensor Placement 75

5.4 Redundant Sensor Extension 78

5.5 Binary Integer Linear Programming for Sensor Placement . . 79

5.5.1 Standard Binary Integer Linear Programming 80

5.5.2 Linear MSO Set Selector 80

5.5.3 Linear Fault Detectability and Isolability Constraints 82

5.5.4 BILP Optimisation for Sensor Placement 84

5.5.5 Sensor Placement and MSO Set Optimisation 88

5.5.6 BILP for MSO Set Optimisation 91

5.6 Conclusions . 91

6 Sensor Placement for Causally Computable MSO Sets 93

6.1 Causal Computability on Residual Generation 93

6.2 Causal Structural Model . 97

6.3 Extracting the Causally Computable Part 99

6.4 Detectability and Isolability with Causal Relations 103

6.4.1 Causal Structural Detectability 103

6.4.2 Causal Structural Isolability 104

6.5 Sensor Placement based on Causal Relations 106

CONTENTS xiii

6.5.1 Maximum Causal Detectability and Isolability Speci-
fications . 106

6.5.2 Sensor Placement Algorithm 107
6.5.3 Redundant Sensor Extension 109

6.6 Optimal Sensor Search Improvement 110
6.7 Generating Causally Computable MSO Sets 115
6.8 Conclusions . 116

7 Fuel Cell Stack System Application 119

7.1 Fuel Cell Stack Description 119
7.2 Review of Works on Diagnosis of FCS Systems 121
7.3 FCS System Benchmark . 122

7.3.1 FCS System Model . 124
7.3.2 Model Equations . 137
7.3.3 FCS Process Faults . 140
7.3.4 Causal Structural Model 141

7.4 Sensor Placement for FCS Systems 143
7.5 Implementation of Causal Residuals 145

7.5.1 Causal MSO Set Optimisation 145
7.5.2 Residual Implementation and Simulation 146

7.6 Comparison with Alternative Approaches 152
7.7 Conclusions . 153
7.A Causal Structural Models of the FCS System 155
7.B Causal MSO Set of FCS Model Equations 159
7.C Computation Sequences . 164

8 Concluding Remarks 167

8.1 Summary of Contributions . 167
8.2 Conclusions . 169
8.3 Proposed Approaches Discussion 170
8.4 Future Works . 172

Bibliography 175

xiv CONTENTS

List of Tables

2.1 Biadjacency matrix of the structural model of the compressor. 19

2.2 Structural model, (M,X, A′), of the compressor system. . . . 27

4.1 Compressor sensor costs. 59

4.2 Results from Algorithm 4.1 at intermediate iterations. 60

4.3 Fault equations contained in the MSO sets of ΩS111 62

5.1 Truth table of a valid MSO set. 70

5.2 W matrix for the compressor model. 71

5.3 V matrix for the compressor model. 72

5.4 Fault equations contained in the selected MSO sets. 78

5.5 Fault equations contained in the optimal selected MSO sets. . 89

6.1 Non-symmetric isolability example. 105

6.2 Optimal search example. 114

7.1 Variable nomenclature. 124

7.2 Variable subscription. 125

7.3 Reduced equation of the FCS model. 139

7.4 Correspondence between faults and equations. 141

7.5 Measurable variables and costs. 144

7.6 Fault Signature Matrix for the FCS system. 146

7.7 Noise standard deviation. 147

7.8 Modelling errors. 148

7.9 Air compressor model. 155

7.10 Supply manifold model. 155

7.11 Air cooler model. 155

7.12 Static humidifier model. 155

7.13 Anode flow controller model. 156

7.14 Outlet manifold model. 156

7.15 Structural fuel cell stack model. 156

7.16 Structural relations for component interconnections and known
variables. 157

7.17 Causal structural Fuel Cell System. 158

xv

xvi LIST OF TABLES

8.1 Approaches comparison. 172

List of Figures

1.1 Diagnosis system diagram. 2
2.1 Graphical interpretation of the behaviours modes in the do-

main Y. 14
2.2 Bipartite graph of the structural model of the compressor. . . 19
2.3 DM-decomposition in a biadjacency matrix. 23
6.1 Computation sequence. 95
6.2 Computation sequence with loop. 96
6.3 Causally computable structure with no linear relations. . . . 100
6.4 Computable structure with causal and linear relations. 102
6.5 Search tree for {s1, s2, s3, s4}. 112
7.1 Basic principle of a PEM fuel cell. 120
7.2 Fuel Cell Stack system. 123
7.3 Input signal pattern. 148
7.4 Simulation scenarios . 150
7.5 Simulation scenarios . 151
7.6 Computation sequence for r1. 164
7.7 Computation sequence for r2. 164
7.8 Computation sequence for r3. 164
7.9 Computation sequence for r4. 165
7.10 Computation sequence for r5. 165
7.11 Computation sequence for r6. 166
7.12 Computation sequence for r7. 166

xvii

xviii LIST OF FIGURES

List of Algorithms

2.1 Ω = findMSO(M,R) . 26
4.1 S∗ = IncrementalSP(M,S, C,F ,M) 58
6.1 EC = CausalModel(M,X) . 101
6.2 EL = LinearModel(M,X) . 101
6.3 E = ComputableModel(M) 102
6.4 MFD

= CausalDetectability(M,MF) 104
6.5 MFI

= CausalIsolability(M,MF) 105
6.6 isFeasible(Sk,S,M,MFDmax

,MFImax
) 108

6.7 S∗ = CausalSensorPlacement(M,S, C,MFDmax
,MFImax

) . . . 108
6.8 S∗ = searchOptimal(node, S∗,M ′

FDmax
,M ′

FImax
) 113

6.9 Ωc = findCausalMSO(M,R) 116

xix

xx LIST OF ALGORITHMS

Chapter 1

Introduction

Nowadays, there is no doubt that diagnosis systems are of great importance
for any complex process. Neglecting them or designing bad diagnosis sys-
tems can have a serious impact on process economy, product quality, safety,
productivity and pollution level. Automatic fault diagnosis arises in the
beginning of the 70’s with the advent of the on-line computer control of
processes. Up to now, there have been enormous advances in this field and
many works have been and are still being published. However, in many
industrial processes the diagnosis tasks are currently performed by hand or
using naive techniques.

The field of fault diagnosis covers a wide variety of disciplines and use a
large number of techniques. A first classification can be done by considering
the a priori knowledge of the system to diagnose (Vekatasubramanian et al.,
2003). When knowledge concerns past experiences in the process, it is called
process history based diagnosis. On the other hand, when this knowledge
develops from an explicit formal model, it is known as model based diagnosis.

The model based diagnosis task can be roughly summarised as diagnos-
ing faults in the system by comparing the set of system observations (mainly
controlled and measured signals) with a model. However, there is no gen-
eral framework for such diagnosis systems, and a suitable approach basically
depends on the system model and the faults to diagnose.

Processes can suffer from faults or malfunctions in any time during their
working life. A general diagnosis system works in parallel with the process.
The diagnosis system inputs are the observations provided by the process
measurements and the control or operating signals, see Figure 1.1. From
these observations, the diagnosis system tries to infer which behaviour de-
scribed by the model is actual in the process. This usually implies the
explicit or implicit computation of the values of the unknown model vari-

1

2 Chapter 1. Introduction

Process
x,y

y Redundant
Sub-model 1

Residual generator
x1,y1

y1 r1

Redundant
Sub-model 2

Residual generator
x2,y2

y2 r2

Redundant
Sub-model n

Residual generator
xn,yn

yn rn F
au

lt
D

et
ec

ti
on

&
Is

ol
at

io
n

D(y)

Diagnosis System

Figure 1.1: Diagnosis system diagram.

ables. However, more observations are needed to diagnose faults than the
required ones for computing the unknown variables (i.e. the model must
contain analytical redundancy). Hence, the expected behaviour computed
with the model is used to validate the actual process behaviour. This is
known in the diagnosis community as consistency checking.

Analytical redundancy is fundamental for the task of detecting fault
occurrences, i.e. fault detection. Moreover, it is also important for the task
to distinguish which faults are occurring in the system and which are not, i.e.
fault isolation. In general, the more redundancy the model has, the better
diagnosis performance can be achieved. An intuitive explanation is that a
model with a high degree of redundancy can be split into several redundant
sub-models, where each one of these sub-models can be used to diagnose
small components of the process, improving fault detection and isolation.

Analytical redundancy is highly dependent on the number of observa-
tions. Furthermore, the diagnosis task is often made difficult due to in-

Motivation 3

sufficient, incomplete or useless process observations. The problem on how
to obtain the required process observations has been barely treated in the
field of diagnosis, despite their importance in the fault diagnosis task. Till
now, and before the work developed in the framework of this thesis, just few
works had been dedicated to this problem, (Basseville et al., 1987), (Raghu-
raj et al., 1999), (Bagajewicz, 2000), (Travé-Massuyès et al., 2006). The
present dissertation specifically focuses on analysing which sensors should
be installed in a process in order to improve the diagnosis capabilities of a
model based diagnosis system and at the same time facilitate its design.

1.1 Motivation

Typically, the diagnosis system design consists in first studying the process
and identifying a set of faults or behaviour modes to diagnose. Then, a
diagnosis model has to be constructed from the process knowledge and the
set of faults. This model should be as detailed as possible and should also
contain fault information, if available. Once the model is developed, the
proper diagnosis system design begins. Since many approaches exist in the
literature, the most suitable one has to be chosen according to the type of
the model and the faults to diagnose. Finally, the diagnosis system is tested
in simulation and, whenever possible, in the real process.

During the diagnosis system design or even afterwards, one may realise
that the required diagnosis specifications are not fulfilled (i.e. the diagnosis
system does not diagnose the faults as expected). One possible solution
involves trying to improve the methods or/and the algorithms on which the
diagnosis system is based. Actually, there are a large number of publica-
tions devoted to obtaining a better diagnosis system for a given technique.
Another possibility involves improving the model. However, developing a
good model is usually a hard task. So, it becomes a drawback in many
industrial applications. Finally, it is also possible to improve the diagnosis
performance by providing the process with extra components in order to
increase the redundancy.

Sensors are the system components by means of which process observa-
tions are obtained. Therefore, by installing extra sensors in the process, the
number of observations increases and consequently so does the analytical
redundancy degree of the model. There may be some processes where in-
stalling extra sensors is not indicated, (e.g. insufficient space or extra weight
in aircrafts, the economical impact on electronic devices). However, for
many industrial processes where the presence of a non-diagnosed fault can

4 Chapter 1. Introduction

cause serious problems, the installation of extra sensors that improve fault
diagnosis is fully recommended.

The study of determining which sensors are needed to achieve certain
specifications is called sensor placement analysis. In fact, there are some
research areas where the sensor placement problem has been widely studied
(e.g. observability in the control field). This is not the case for the diagnosis
field, where there are just few isolated works. However, this topic has gained
an increasing interest during the last few years.

The sensor placement analysis for model-based diagnosis will be the main
topic on this thesis. Nevertheless, model-based diagnosis concerns a large
variety of models and techniques. Fitting all of them in a common framework
suitable for the sensor placement analysis is not feasible. Therefore, only a
sub-class of models will be considered. Such a sub-class will be justified by
the practical case study.

1.1.1 Practical Motivation based on the Case Study

To develop the results obtained and at the same time to test them, a practical
case based on a fuel cell stack system will be considered. The model used
was developed by (Pukrushpan et al., 2004) and currently has become a
reference model in the area of fuel cell stack control. This model comprises
several detailed subsystems required to operate a fuel cell stack. Because
of this, and the large number of non-linear equations (e.g. look-up tables,
piecewise functions, maps, etc) involved in the model, it is considered a
complex system. The fuel cell stack system and its model will be thoroughly
described in Section 7.3.

Due to the fact that the model has strong non-linearities and that the
system may work at several operating points, a diagnosis approach based on
a linearised model is not indicated. On the other hand, structural analysis
offers a suitable framework to handle such complex systems, since just the
structure of the model is considered. Furthermore, structural analysis is
based on efficient graph tools which allow to work with such models. Struc-
tural model-based diagnosis has been extensively studied by several authors
(Blanke et al., 2006), (Krysander, 2006). Therefore, from the diagnosis point
of view, there exists a well-grounded framework to cope with this kind of
models. For these reasons, the present work is confined to structural model
based approaches.

The fuel cell stack system considered in this thesis had originally a few
number of sensors installed, which derives in a low level of redundancy and
poses serious difficulties for achieving a good diagnosis performance. How-

Main objectives 5

ever, there are several process variables that could be easily measured which
makes appropriate to apply the sensor placement analysis to it. Moreover,
works related to fuel cell diagnosis are rather lacking in the literature. This
gives another good motivation to work on the diagnosis of this kind of sys-
tems.

1.2 Main objectives

As it was pointed out in the previous section, the main goal of this thesis
is to develop new methodologies for solving the sensor placement problem
in the fault diagnosis field. These methods must be as general as possible,
which means that they can be applied not only to the fuel cell stack system,
but also to any other complex system.

These methodologies will derive in algorithms capable of handling large-
scale structural models where the number of candidate sensors to be installed
is typically large. Therefore, computational efficiency of the developed al-
gorithms must be also taken into account.

Due to the fact that the set of solutions could become large (i.e. there
may exist a lot of possible sensor configurations that solve the problem), the
sensor placement problem will be formulated as an optimisation problem.
Only best cost solutions will be sought. Thus, the term optimal sensor
placement will be used.

Different features will be considered to evaluate and classify the devel-
oped algorithms. Such features will be based on the following criteria:

• The need to generate redundant sub-models by the algorithm.

• The flexibility on the diagnosis specifications considered by the algo-
rithm.

• The efficiency of the optimal search strategy used by the algorithm.

Generating redundant sub-models is a computing time demanding task.
Therefore, algorithms that do not require them are desirable. Neverthe-
less, it is easier to define diagnosis specifications from these redundant sub-
models. This implies that redundant sub-models are suitable to handle
several diagnosis properties for the sensor placement analysis. On the other
hand, the characterisation of certain diagnosis specifications by means of
model properties and not from redundant sub-models will also be investi-
gated. Fault detectability and isolability will be the basic diagnosis specifi-
cations that will be considered in all the approaches presented in this thesis.

6 Chapter 1. Introduction

The sensor placement problem can be viewed as a combinatorial problem
(i.e. find a sensor combination that fulfils some diagnosis specifications).
This entails special considerations in the optimal search implementation,
which needs to be carefully studied.

Another important goal is that every proposed method should be able
to handle both process and sensor faults. Process faults are the initial faults
defined on the process components before the sensor placement analysis is
performed, whereas sensor faults concern faults on the extra sensors, chosen
by the sensor placement analysis. Furthermore, how redundant sensors can
be efficiently handled by each algorithm will be also taken into consideration.

After the development of some generic algorithms, the optimal sensor
placement problem for the fuel cell stack system will be solved. This will
lead to an opportunity to test the algorithms and draw conclusions from a
practical point of view. The idea is to prove the importance of the sensor
placement analysis in the design of a diagnosis system.

1.3 Outline

The manuscript is organised in eight chapters. Chapter 2 presents back-
ground theory. Chapter 3 introduces a formal framework for the sensor
placement analysis. Next, three different approaches to solve the sensor
placement problem for fault diagnosis are proposed in Chapters 4, 5 and 6.
Chapter 7 is devoted to solve the sensor placement problem for the fuel cell
stack system. Finally, conclusions are drawn in Chapter 8. The outline of
this thesis is next briefly detailed:

• Chapter 2: A review of the main concepts needed through this thesis
is given. First, the diagnosis based on consistency checking is sum-
marised. Then, the basic issues about structural model representation
and graph theory are introduced. Finally, minimal redundant model
computation is also detailed, since it will be used in further chapters.

• Chapter 3: A framework to investigate the sensor placement problem
based on structural models is developed. This framework allows to
properly handle process and sensors faults, as well as redundant sen-
sors. The study on how redundant sensors affect the diagnosis capabil-
ities of the system is also investigated. Finally, the sensor placement
problem for fault diagnosis is formally presented.

• Chapter 4: A methodology to solve the sensor placement problem is
presented. In this approach, the required redundant sub-models are

Outline 7

provided at each iteration of the sensor configuration search. This
is performed by incrementally computing the set of redundant sub-
models.

• Chapter 5: In order to improve the search strategy presented in the
previous chapter, the sensor placement problem is solved here by
means of binary integer programming. Two formulations are pre-
sented. The first formulation involves non-linear constraints, whereas
the second one just uses linear inequality constraints. Extensions for
efficiently handling redundant sensors are proposed. Finally, binary
integer programming is also used for an optimal selection of the useful
redundant sub-models.

• Chapter 6: In this chapter, the computation of the known variables
in the residual generators is specially addressed. First, a new frame-
work to handle causalities in the unknown variable computation is
presented. Then, the sensor placement problem for fault diagnosis is
introduced under the causal computation framework. Two main al-
gorithms are developed in this chapter. The first one allows to solve
the sensor placement problem within the causal framework for both
process and sensors faults. The second algorithm, based on specific
heuristics, is limited to process faults, but its efficiency is better than
for the former algorithm.

• Chapter 7: The sensor placement problem is applied to a fuel cell
stack system. First, a detailed model of the process is presented.
Then, the sensor placement problem within the causal framework is
solved. Based on the obtained solution, several residuals are imple-
mented and tested. This chapter presents a methodology to design
diagnosis systems involving: structural model extraction from the an-
alytical model, sensor placement analysis, redundant sub-model com-
putation and residual generation.

• Chapter 8: The main contributions of this thesis are first summarised.
Next, the three sensor placement approaches presented in this thesis
are compared, and the main conclusions are drawn. Furthermore,
some possible future works are suggested.

8 Chapter 1. Introduction

1.4 Related Publications

Several publications have been derived during the doctoral courses and the
thesis development. A list of published works where the thesis author has
contributed to is next presented:

• A. Rosich, E. Frisk, J. Åslund, R. Sarrate, F. Nejjari (2010).
Fault Diagnosis Based On Causal Computations. IEEE Transactions
on Systems, Man, and Cybernetics–Part A. Under review.

• A. Rosich, A. A. Yassine, S. Ploix (2010). Efficient Optimal Sen-
sor Placement for Structural Model Based Diagnosis. 21th Interna-
tional Workshop on Principles of Diagnosis, DX’10. Portland, USA.

• F. Nejjari, R. Sarrate, A. Rosich (2010). Optimal Sensor Place-
ment For Fuel Cell System Diagnosis using BILP Formulation. 18th
Mediterranean Conference on Control and Automation. Marrakech,
Morocco.

• A. A. Yassine, A. Rosich, S. Ploix (2010). An Optimal Sen-
sor Placement Algorithm taking into account Diagnosability Specifi-
cations. 17th IEEE International Conference on Automation, Quality
and Testing, Robotics,. Cluj-Napoca, Romania.

• A. Rosich, E. Frisk, J. Åslund, R. Sarrate, F. Nejjari (2009).
Sensor Placement for Fault Diagnosis Based On Causal Computations.
7th IFAC Symposium on Fault Detection, Supervision and Safety of
Technical Process, Safeprocess’09. Barcelona, Spain.

• A. Rosich, F. Nejjari, R. Sarrate (2009). Fuel Cell System Di-
agnosis based on a Causal Structural Model. 7th IFAC Symposium on
Fault Detection, Supervision and Safety of Technical Process, Safepro-
cess’09. Barcelona, Spain.

• A. Rosich, R. Sarrate, F. Nejjari (2009). Optimal Sensor Place-
ment for FDI using Binary Integer Linear Programming. 20th Inter-
national Workshop on Principles of Diagnosis, DX’09. Stockholm,
Sweden.

• A. Rosich, R. Sarrate, V. Puig, T. Escobet (2007). Efficient
Optimal Sensor Placement for Model-Based FDI using an Incremental
Algorithm. Proc. 46th IEE Conference on Decision and Control. New
Orleans, USA.

Related Publications 9

• R. Sarrate, V. Puig, T. Escobet, A. Rosich (2007). Opti-
mal Sensor Placement for Model-based Fault Detection and Isolation.
Proc. 46th IEE Conference on Decision and Control. New Orleans,
USA.

• V. Puig, A. Rosich, C. Ocampo, R. Sarrate (2007). Fault-
Tolerant Explicit MPC of PEM Fuel Cells. Proc. 46th IEE Conference
on Decision and Control. New Orleans, USA.

• A. Rosich, V. Puig, J. Quevedo (2006). Fault-Tolerant Con-
strained MPC of PEM Fuel Cells. IAR Annual Meeting. Université
Henri Poincaré, Nancy, France.

10 Chapter 1. Introduction

Chapter 2

Review of Background

Theory

In this chapter, some theoretical fundamentals are reviewed, focusing on
those issues that have a special interest for the comprehension of this thesis.
The reader who is acquainted with these topics can skip to the next chapter
since no new contribution is here addressed.

In order to present a general framework suitable for sensor placement, the
foundations of diagnosis based on consistency are firstly introduced. Then,
the structural model is formally introduced, as the modelling representa-
tion used in this thesis. Since a structural model representation is a graph
representation, some theoretical issues on graph theory are also introduced.
Specifically those concerning bipartite graphs and the Dulmage-Mendelsohn
decomposition. Finally, this Chapter focuses on how parts of the model can
be selected to test consistency. In particular, the computation of Minimal
Structural Overdetermined (MSO) sub-models is reviewed, as well as the
existing works in the literature devoted to this issue.

Here, only basic concepts on these topics are covered. However, there
exists a great number of works extending the topics presented in this chapter.
The reader interested in further information is encouraged to resort to the
given bibliography.

2.1 Consistency based Diagnosis Framework

The task of diagnosing faults can be explained, regardless of the implemented
method, by using the notion of consistency based diagnosis. The framework
here presented arises as a result of combining approaches from the artificial

11

12 Chapter 2. Review of Background Theory

intelligence (AI) community and the control theory community (also known
as FDI). Main issues in the AI community (e.g. (De Kleer and Williams,
1987) and (Reiter, 1987)) deal with identifying those behaviour modes that
may be present in the process, being the inference procedure its key point.
On the other hand, FDI community issues (e.g. (Gertler, 1998) and (Chen
and Patton, 1999)) are more focused on obtaining signals (called residuals)
that are sensitive to faults, i.e. residual generator design. The basic ideas
developed in this section were first introduced by Nyberg and Krysander
(2003) and further detailed in Krysanders’ thesis (Krysander, 2006). It is
worth mentioning that an introduction to consistency based diagnosis can
be also found in (Blanke et al., 2006).

In the area of diagnosis, a system is usually assumed to consist of a set
C of components,

C = {c1, c2, c3, . . . }
For instance consider an air compressor system. It is possible to define some
components such as the electric motor, the compressor box or the manifold
of the outlet air flow. This allows us to assign different system descriptions
to each component, so that the entire system model can be split into several
component models. As it will be seen next, this facilitates the task of defin-
ing and representing faults in the system, as well as distinguishing between
faults during the fault isolation task.

System variables interact with one or several components. A variable
that only appears in one component is called internal variable, whereas a
variable shared by several components and/or observable is called external
variable. External variables connect a component to its outer world, it can
be whether an other system components or other external systems (e.g. a
control system or a diagnosis system).

A component c ∈ C is associated to one or several behaviour modes,
Bc. Typically, a component has at least the non-faulty behaviour mode,
NF , also known as “normal” behaviour mode for some authors. However,
it is also possible to associate one behaviour mode, Fi, for each fault de-
fined in the component. It is assumed that the real behaviour mode of a
component corresponds to exactly one of its associated behaviour modes
in Bc. Therefore, for convenience, an unknown-fault behaviour mode UF

is defined, which covers any non-specified behaviour mode. The set of all
behaviours modes associated to a component c is denoted as

Bc = {b1, b2, . . . , bn}
where each bi represents a different behaviour mode of the component: b1 =

Consistency based Diagnosis Framework 13

NF , bi = Fi−1 (i = {2, . . . , n− 1}) and bn = UF .

In a system, the different behaviour modes are characterised by means
of relations among the system variables. So, depending on how system
variables relate among them, the system will behave according to a given
mode. Here, the term equation will be used to denote any expression defining
a relationship between two or more system variables. Nevertheless, other
authors use other equivalent terms as, for example, the term relation used
in (Travé-Massuyès et al., 2006) or the term constraint used in (Ploix et al.,
2005). These equations represent the a priori knowledge available for model-
based diagnosis and can be expressed by a wide range of different classes:
dynamic-algebraic equations, logic laws, look-up tables, etc. Thus, a system
model can be defined by the set of equations that depend on the system
variables and is denoted as

M = {e1, e2, e3, · · · }

where ei represents the i-th equation of the model. Therefore, a behaviour
mode b ∈ Bc for a given component c ∈ C can be characterised by a subset
of model equations, Mb ⊆M. Mb is called the behaviour model of b.

The idea of consistency-based diagnosis is to determine, from the set of
model equation M, which behaviour modes are consistent with the observa-
tions. Thus, for diagnosis purposes, it is important to distinguish between
the set Y of known variables (or observations) and the set X of unknown
variables. The set Y usually refers to controlled and/or measured variables.

Let x and y denote vectors of variables in X and Y, respectively, and
let X and Y be its domains. According to (Krysander, 2006), a subset of
equations M ⊆M is consistent with the observations y ∈ Y if

∃x ∈ X : M(x,y) (2.1)

where M(x,y) means that all the equations in M are satisfied for the given
values in y. Analogously, the set of known variables consistent with M is
defined as

O(M) = {y ∈ Y | ∃x ∈ X : M(x,y)} (2.2)

In Figure 2.1 a graphical interpretation of the behaviour mode consis-
tency is depicted. The different behaviour modes are represented as space
subsets of the observation domain, Y. For instance, considering the obser-
vation y1 ∈ Y in the figure, it can be concluded that behaviour modes F1

and F3 are not consistent with y1, whereas behaviour modes NF , F2 and

14 Chapter 2. Review of Background Theory

y1

O(MUF)

O(MF1)

O(MNF)

O(MF2)

O(MF3)

Figure 2.1: Graphical interpretation of the behaviours
modes in the domain Y.

UF 1 are consistent with y1. For practical reasons, it is easier to draw a
diagnostic statement when the behaviour mode is not consistent with the
observations than when it is (Nyberg and Krysander, 2003).

To test consistency from a set of model equations, M , analytical redun-
dancy in the model must exist. In other words, there must be observations
such that the model is not consistent with:

∃y ∈ Y,∀x ∈ X : ¬M(x,y) (2.3)

where ¬M(x,y) means that there is at least one equation in M that is not
satisfied for the values in y. Note that this is equivalent to

∃y ∈ Y : y /∈ O(M) (2.4)

As said above, any behaviour mode b is characterised by a subset of
model equations, Mb. Thus, if the component is in a behaviour mode b then
it is assumed that Mb is consistent with any possible set of system observa-
tions. Given a model equation e ∈M, the operator assump(e) (Krysander,

1The space subset related with the behaviour mode UF in Figure 2.1 involves the whole
observation domain Y, despite it is difficult to see in the figure.

Consistency based Diagnosis Framework 15

2006) will denote those behaviour modes that are assumed to be consistent
with e,

assump(e) = {b | e ∈Mb} (2.5)

The assump(e) operator can be extended to also denote which behaviour
modes are assumed to be consistent with a set M of model equations,

assump(M) =
⋂

e∈M

assump(e) (2.6)

This implies that, given an inconsistent sub-model M , the conclusion drawn
for the diagnosis system is that assump(M) behaviour modes are incon-
sistent with the observations. Therefore, the remaining behaviour modes
Bc \ assump(M) are consistent with the observations (i.e. the behaviour
modes in Bc \assump(M) can explain the observed behaviour of the compo-
nent). To show how the diagnosis reasoning works within this framework,
the following example is proposed.

Example 2.1. Consider a component c with the following behaviour modes:

Bc = {NF ,F1,F2,UF }

The model of the component consists of three equations, M = {e1, e2, e3},
which describe the different behaviour modes as follows:

MNF = {e1, e2, e3}
MF1 = {e2, e3}
MF2 = {e1, e3}
MUF = ∅

This can be interpreted as equations e1, e2 and e3 describing the free fault
component behaviour. A fault related with F1 affects equation e1, therefore
equations e2 and e3 remain consistent in the presence of such fault. The same
interpretation can be done for a fault related with F2, but now the affected
equation is e2, i.e. e1 and e3 are consistent with F2. Finally, note that no
equation describes the unknown fault behaviour mode, UF , indicating that
any equation may become inconsistent in the presence of an unknown fault.

Now, assume that the sub-model M ′ = {e1, e2} becomes inconsistent,
which means that assump(M ′) is also inconsistent,

assump(M ′) = assump(e1)∩assump(e2) = {NF ,F2}∩{NF ,F1} = NF (2.7)

16 Chapter 2. Review of Background Theory

Therefore the diagnosis inference is that the component is behaving as one
of the remaining modes,

Bc \ assump(M ′) = {F1,F2,UF } (2.8)

Improving the diagnosis task in order to detect and isolate faults is pos-
sible by testing consistency on several sub-models, Mi ⊆ M. Given a set
of sub-models suitable to test consistency, the diagnosis statement, D(y),
is presented as a function from the set of all possible observations y to all
possible combinations of Bc,

D(y) : Y→ P(Bc) (2.9)

where P(Bc) denotes the power set of Bc, and D(y) is computed as

D(y) = Bc \
(

⋃

Mi is inconsistent

assump(Mi)
)

(2.10)

This shows that the diagnosis performance strongly depends on the sub-
models Mi to test consistency. How these sub-models are generated from
M is explained in Section 2.4.

Finally, remark that this framework has been here introduced regarding
the behaviour modes of a component. However, the framework can be easily
extended to cope with several components in a system and several behaviours
modes per component (Krysander, 2006).

2.2 Structural Model

The analysis of the model structure has been widely used in the area of
model-based diagnosis (Blanke et al., 2006). Next, it is explained what a
structural model is and how it can be represented.

The structural model of a system is an abstraction of the analytical
model. In fact, the structural model is a coarse model simplification since
only the relation between variables and equations is taken into account,
neglecting the mathematical expression of this relation. Due to its simple
description, it cannot be ensured that the diagnosis performance obtained
from structural models will hold for the practical case. However if the re-
quired diagnosis performance is not fulfilled for a structural model, neither
it will be for the practical case (i.e. only best case results can be computed).
It is usually assumed that all the equations in the model are compatible and
independent (Blanke et al., 2006).

Structural Model 17

Assumption 2.1. The set of solutions of a model of M equations is not
empty, i.e.

∃(x,y) ∈ X× Y : M(x,y) (2.11)

We say that the model equations in M are compatible.

Assumption 2.2. Given an observation y ∈ Y, two model equations ei, ej ∈
M do not define the same set of solutions, i.e.

{x ∈ X | ei(x,y)} 6⊆ {x ∈ X | ej(x,y)} (2.12)

We say that both model equations are independent.

One advantage is that the structural model is suitable for an early stage
of the system design, when the precise model expressions are not known
yet, but it is possible to determine which variables are related to each equa-
tion. Furthermore, the diagnosis analysis based on structural models are
performed by means of graph-based methods which have no numerical prob-
lems and are more efficient, in general, than analytical methods.

The structural model (or the structure) of a system is commonly repre-
sented by a bipartite graph according to the following definition.

Definition 2.1 (Structural model). Given a set of model equations, M,
that depend on variables Z = {X∪Y}, the structural model is defined as a
bipartite graph G = (M,Z;A) where M and Z are the set of vertices and
A is the set of edges such that

A = {(e, z) | variable z ∈ Z appears in equation e ∈M}

Given a structural model G = (M,Z;A), it is possible to refer to a
sub-model of M ⊆M equations and Z ⊆ Z variables, by its corresponding
bipartite sub-graph G′ ⊆ G, defined as

G′ = (M,Z;A′)

where the set A′ ⊆ A of edges is implicitly defined from the sets M and Z
as

A′ = {(e, z) ∈ A | e ∈M,z ∈ Z}
For instance, the bipartite sub-graph (M,X;A′) ⊆ G represents the struc-
tural model when just unknown variables are considered. Next example
shows the extraction of the structural model from the analytical model equa-
tions and its bipartite graph representation.

18 Chapter 2. Review of Background Theory

Example 2.2. An air compressor model driven by an electric motor is used
in this example. The analytical model equations that describe the free fault
behaviour of the compressor are

e1 : v = kv · ωc + R · i (2.13a)

e2 : Jω̇c = kt · i−B · ωc − τ (2.13b)

e3 : W = h(ωc, pin, pout, Tin) (2.13c)

e4 : η = Lookup-Table(W,pin, pout) (2.13d)

e5 : τ = Cp
Tin ·W
η · ωc

((

pout

pin

γ−1
γ

)

− 1

)

(2.13e)

The equations involving the electric motor are e1 and e2, where kv , R, J , kt

and B are model parameters like the electrical resistance, the motor inertia
or the friction coefficient, etc. The variables are: the motor voltage, v, the
motor current, i, the motor angular speed, ωc, and the compressor torque,
τ . The ω̇c denotes the derivative of the angular speed, i.e. ω̇c = dωc/dt. The
compressor box is modelled by the equations e3, e4 and e5 where Cp and γ
are parameters whereas the air flow, W , the input and output pressures, pin

and pout, the input air temperature, Tin, and the compressor efficiency, η,
are system variables. In equation e3 all the physics that involve the air flow
computation are included in function h to simplify the notation. The two
vertex sets of the structural model corresponding to the air compressor are

M = {e1, e2, e3, e4, e5}
Z = {ωc, i, τ,W, η, v, pin, pout, Tin} (2.14)

and the bipartite graph, showing the set of edges, is depicted in Figure 2.2.

Any bipartite graph, and consequently any structural model, can be
represented in matrix form by means of the biadjacency matrix. Let the two
vertex sets, M = {e1, e2, . . . } and Z = {z1, z2, . . . }, be explicitly ordered in
a bipartite graph G = (M,Z;A), then a biadjacency matrix Q = [qi,j] is
defined as

qi,j =

{

1, if (ei, zj) ∈ A

0, if otherwise
(2.15)

Example 2.3. Following with the Example 2.2, consider the bipartite graph
in Figure 2.2 and the vertex sets ordered as in (2.14). The corresponding
biadjacency matrix is shown in Table 2.1 where the ones have been replaced

Structural Model 19

ωc i τ W η v pin pout Tin

e1 e2 e3 e4 e5

Figure 2.2: Bipartite graph of the structural model of the
compressor.

ωc i τ W η v pin pout Tin

e1 × × ×
e2 × × ×
e3 × × × × ×
e4 × × × ×
e5 × × × × × × ×

Table 2.1: Biadjacency matrix of the structural model of
the compressor.

by “×” symbols and the zeros have been omitted in order to make the matrix
clearer.

Note that, assuming that the set of variables is partitioned into known
and unknown variables as

X = {ωc, τ, η}
Y = {i,W, v, pin, pout, Tin}

the sub-model (M,X;A′) ⊂ G corresponds to the biadjacency sub-matrix
consisting of all the equation-rows and the first, third and fifth variable-
columns in Table 2.1.

20 Chapter 2. Review of Background Theory

In terms of graph theory, the set of variables Z contained within the set
of equations M is the corresponding set of vertices Z adjacent to the vertices
M , and it is denoted as

varZ(M) = {z ∈ Z | ∃e ∈M : (e, z) ∈ A} (2.16)

Analogously, the set M of equations that contains any variable in Z is
denoted as

equM (Z) = {e ∈M | ∃z ∈ Z : (e, z) ∈ A} (2.17)

Example 2.4. From expressions (2.16) and (2.17), and according to the
compressor model introduced in the previous Examples 2.2 and 2.3, the
unknown variables contained in the electric motor sub-model are

varX({e1, e2}) = {ωc, τ}

and the compressor model equations that depend on the compressor torque,
τ , and the compressor efficiency, η, are

equM({τ, η}) = {e2, e4, e5}

In structural model-based fault diagnosis, only sub-models involving un-
known variables are of interest for the diagnosis analysis (Blanke et al.,
2006). For this reason, we will henceforth assume that the structural model
of a set of equations M ⊆ M is (M,varX(M), A′). Both notations will be
used interchangeably.

2.3 Graph Theoretical Preliminaries

This section introduces some basic fundamentals on graph theory, specially
those concepts used throughout this thesis. Principal definitions are given,
as well as notation concerning graph properties. An important part of this
section is devoted to formally present the Dulmage-Mendelsohn decomposi-
tion.

In graph theory and also in structural model-based diagnosis, the concept
of matching in a graph is widely used. Let G = (V ;E) be a graph where
V is the set of vertices and E is the set of edges, a matching is a set of
edges MG ⊆ E where no two edges share a common vertex. The size
(cardinality) of a matching, M, denoted as |M|, is the number of edges
within the matching. The set of vertices in V incidents to the edges in

Graph Theoretical Preliminaries 21

M is denoted by ∂VM, and |∂VM| denotes the cardinality of such a set.
Therefore, in a bipartite graph G = (V1, V2;E), MG ⊆ E is a matching if
and only if

|MG| = |∂V1MG| = |∂V2MG|
A vertex v ∈ V is covered by a matchingM if v ∈ ∂VM. An uncovered

vertex is called a free vertex.
A matching Mmax

G is called a maximum matching or a maximum size
matching if it is a matching with the largest cardinality. The size of a
maximum matching in G is denoted by ν(G). An edge is called admissible if
it is contained in some maximum matching. A matching MV1

G (respectively

MV2
G) of a bipartite graph G = (V1, V2;E) is a complete matching of V1 into

V2 (respectively V2 into V1) if and only if

∂V1MV1
G = V1 (respectively, ∂V2MV2

G = V2)

Finally, a matching Mp
G of a bipartite graph is a perfect matching if it is

a complete matching of V1 into V2 and it is, at the same time, a complete
matching of V2 into V1, i.e.

|Mp
G| = |V1| = |V2|

Recently, a special bipartite graph decomposition has been used in struc-
tural model-based diagnosis. This decomposition is known as the Dulmage-
Mendelsohn decomposition (Dulmage and Mendelsohn (1958), Murota (2000)),
also called DM-decomposition for short. Given a bipartite graph G =
(V1, V2;E), the DM-decomposition canonically decomposes the graph in a
family of sub-graphs:

Gk = (V1k
, V2k

;Ek) (k = 0, 1, · · · , b,∞) (2.18)

Next, the procedure to obtain such sub-graphs is explained, according to
(Murota, 2000). Firstly, let Γ(U) denotes the set of vertices in V2 adjacent
to some vertex2 in U ⊆ V1,

Γ(U) = {v ∈ V2 | ∃u ∈ U : (u, v) ∈ E} (2.19)

Then, the following sub-modular function called the surplus function (Lovász
and Plummer, 1986), is defined as

p0(U) = |Γ(U)| − |U | (2.20)

2The Γ(U) operator is equivalent to the varV2
(U), introduced in Section 2.2, for V1

being the set of equations and V2 being the set of variables. However, here the notation
used by Murota (2000) is kept.

22 Chapter 2. Review of Background Theory

From this surplus function, the subsets V1k
in the DM-decomposition (2.18)

are computed by first determining the family of the minimizers,

Lmin(p0) = {U ⊆ V1 | p0(U) ≤ p0(W),∀W ⊆ V1} (2.21)

and then by looking at any maximal ascending chain of Lmin,

U0 ⊂ U1 ⊂ · · · ⊂ Ub−1 ⊂ Ub (2.22)

The partition on the vertex set V1 is thereby computed from the sets in the
maximal ascending chain according to

V10 = U0 (2.23a)

V1k
= Uk \ Uk−1 (k = 1, · · · , b) (2.23b)

V1∞ = V1 \ Ub (2.23c)

The subsets V2k
are obtained from the subsets V1k

by applying the ad-
jacently operator defined in (2.19). Thus, the partition on the vertex set V2

is computed as

V20 = Γ(U0) (2.24a)

V2k
= Γ(Uk) \ Γ(Uk−1) (k = 1, · · · , b) (2.24b)

V2∞ = V2 \ Γ(Ub) (2.24c)

Finally, the subsets Ek of edges are intuitively defined as the set of edges
that are incident, at the same time, to any vertex v1 ∈ V1k

and any vertex
v2 ∈ V2k

,

Ek = {(v1, v2) ∈ E | v1 ∈ V1k
, v2 ∈ V2k

} (2.25)

Some properties can be derived from the DM-decomposition. In the
sub-graph G0, a complete matching of V20 into V10 always exists, and each
edge in E0 is admissible in G0. Similarly, in the sub-graph G∞, a complete
matching of V1∞ into V2∞ exists and each edge in E∞ is admissible in G∞.
In each sub-graph Gk (k = 1, · · · , b), called a consistent component (Murota,
2000), a perfect matching exists, where every edge in Ek is also admissible
in Gk. Therefore, for each DM-component, the following expressions hold

|V10 | > |V20 | (2.26a)

|V1k
| = |V2k

| (k = 1, · · · , b) (2.26b)

|V1∞ | < |V2∞ | (2.26c)

Graph Theoretical Preliminaries 23

V2∞ V2b
· · · V21 V20

V1∞

V1b

...

V11

V10

Figure 2.3: DM-decomposition in a biadjacency matrix.

The DM-decomposition can be graphically represented by a triangular
form in the biadjacency matrix (see Figure 2.3). The white areas mean that
only zeros can appear (there are no edges) while the coloured areas mean
that both, zeros and ones, can appear (there may be some edges). The
diagonal line represents the maximum matching in the graph, formed from
the complete matching of V1∞ into V2∞ within G∞, the perfect matchings
in each Gk (k = 1, · · · , b) and the complete matching of V20 into V10 within
G0.

Clearly, the DM-decomposition can be applied on a structural model
since it is based on a bipartite graph. In the structural model-based diagnosis
literature (Blanke et al., 2006), the DM-decomposition is used to decompose
a structural model M into three parts,denoted as

G+ = (M+,X+;A+) (2.27a)

G0 = (M0,X0;A0) (2.27b)

G− = (M−,X−;A−) (2.27c)

for M+,M0,M− ⊆ M and X+,X0,X− ⊆ X. These three parts, G+,
G0 and G−, are respectively called over-determined, just-determined and

24 Chapter 2. Review of Background Theory

under-determined parts of the model, and can be computed from the DM-
components as

G+ = G0 (2.28a)

G0 = ∪b
k=1Gk (2.28b)

G− = G∞ (2.28c)

It is worth remarking that the set of known variables is not required to
determine these three parts. In fact, by only regarding the set of equations,
the sub-graphs in (2.27) are well defined since

X+ = varX(M+) (2.29a)

X0 = varX(M0) \X+ (2.29b)

X− = X \ {X+ ∪X0} (2.29c)

Therefore, for the sake of notational convenience, the over-determined, the
just-determined and the under-determined parts of a model, M , will be
denoted by M+, M0 and M−, respectively.

2.4 Testing Consistency in Structural Models

In Section 2.1, it was seen that it is possible to detect and isolate faulty be-
haviour modes by testing consistency on different sub-models of the system.
Here, it will be explained how to choose such sub-models.

First, the principal properties for sub-models devoted to test consistency
are defined and characterised Next, the algorithm presented in (Krysander
et al., 2008) to generate this class of sub-models is described. Finally, related
works on this issue are reviewed and discussed.

2.4.1 Minimal Sub-models for Testing Consistency

The existence of analytical redundancy in a sub-model is a key property to
test consistency, as seen in Section 2.1. Here, it will be referred to structural
redundancy which can differ from the analytical redundancy if the structural
model is not independent and/or compatible.

Given a subset of model equations M ⊆ M and its corresponding bi-
partite graph G = (M,X;A′), the structural redundancy can be quantified
(Krysander, 2006) as

ϕs(M) = |M | − ν(G) (2.30)

Testing Consistency in Structural Models 25

Note that only the set of unknown variables is again considered. Any equa-
tion subset such that ϕs(M) ≥ 1 is said to contain structural redundancy
and can be therefore used to test consistency, since the model M fulfils (2.3).

According to (2.30), it is straightforward to see that ϕs(M
− ∪M0) = 0

for any equation subset M ⊆M. In fact, it can be verified that

∀y ∈ Y,∃x ∈ X : M ′(x,y) (2.31)

for any M ′ ⊆ (M− ∪M0). Thus, the only equations containing structural
redundancy are those in the over-determined part M+,

ϕs(M
+) = ϕs(M) (2.32)

This implies that equations in the structurally over-determined set M+ are
the only useful equations to test consistency.

Testing the consistency of the whole set M+ is not useful for distin-
guishing, among different behaviour modes, which are consistent and which
are not (only detection task can be performed). Therefore, the strategy to
follow is to derive different sub-models containing analytical redundancy so
that each sub-model can test the consistency of different behaviour modes
(the isolation task is accomplished).

A sufficient requirement to obtain the best isolability capabilities, from
a structural point of view, is to find all the minimal structurally overdeter-
mined (MSO) sub-models. An MSO set can be seen as a set of M equations
that contains structural redundancy and no proper subset M ′ ⊂M has this
property. This implies that ϕs(M) = 1 which motivates the next definition
(Krysander et al., 2008).

Definition 2.2 (Minimal Structurally Over-determined). A Minimal Struc-
turally Over-determined (MSO) set of equations M ⊆M is an over-determined
set M = M+ such that ϕs(M) = 1.

Typically, the consistency of an MSO set Mk ⊆M is tested by deriving
a residual generator (Chen and Patton, 1999). A residual generator is a
function rk(y) from the observations y to a non-negative scalar value. This
value is compared against a threshold Jk according to the following binary
decision:

rk(y) ≥ Jk → Mk is not consistent with y

rk(y) < Jk → Mk is consistent with y

Several techniques exist to construct residuals generators, e.g. parameter
estimation (Isermann, 2006), state observers (Patton et al., 1989), or parity
equations (Gertler, 1998).

26 Chapter 2. Review of Background Theory

In (Krysander et al., 2008) an efficient algorithm to compute all the MSO
sets given a structural model was developed. This algorithm is based on a
top-down search, beginning with the complete structurally over-determined
part M+ of the system model, and recursively constructing the search tree
by removing equations until all the MSO sets are found. A version of such
algorithm is depicted in Algorithm 2.1 where the first inputs are set to
M = M+ and R = ∅. Variable R records the set of equations already
removed in order not to compute the same MSO set more than once. During
the execution of the algorithm, the MSO sub-model ωi ⊆M is stored in Ω

(i.e. Ω = {ω1, ω2, ω3, · · · }).

Algorithm 2.1 Ω = findMSO(M,R)

Ω := ∅
if ϕs(M) = 1 then

Ω := {M}
else

while R 6⊇M do

Select an e ∈M \R
E := M \ (M \ {e})+
if E ∩R = ∅ then

R := R ∪ E
Ω := Ω ∪ findMSO(M \ E,R)

else

R := R ∪ E
end if

end while

end if

return Ω

To improve efficiency, a model reduction is cleverly done in Algorithm 2.1.
Instead of removing equations one by one, the equations are removed by
groups such that the structural redundancy is decreased by a rate of one at
every recursive call. This group of equations E forms an equivalent class
and can be easily computed (Krysander et al., 2008) as

E = M \ (M \ {e})+ (2.33)

by taking any equation e ∈M as long as M is a proper structurally overde-
termined (PSO) sub-model (i.e. M = M+). The resulting model reduction

Testing Consistency in Structural Models 27

ωc τ η

e1 ×
e2 × ×
e3 ×
e4 ×
e5 × × ×

Table 2.2: Structural model, (M,X, A′), of the compressor
system.

is therefore M \ E and it holds that

ϕs(M) = ϕs(M \ E) + 1 (2.34)

It is worth noting that the set M \E is still a PSO sub-model, i.e. M \E =
(M \ E)+.

Example 2.5. Consider the structural model M = {e1, . . . , e5} of the com-
pressor in Example 2.2 with the set X of unknown variables defined in Ex-
ample 2.3 (the biadjacency matrix in Table 2.2). Next, how Algorithm 2.1
computes all the MSO sets is shown.

First, note that M+ = {e1, e2, e3, e4, e5}, so the inputs to the algorithm
are M = {e1, e2, e3, e4, e5} and R = ∅. The algorithm steps are:

1. ϕs(M) = 2. M is not an MSO set.

2. Select e1. Then E = {e1} and E ∩R = ∅.

3. R := {e1}. Call findMSO(M,R) with M = {e2, e3, e4, e5} and R =
{e1}.

1. ϕs(M) = 1. M is an MSO set, return Ω = {M}.

4. Ω = {{e2, e3, e4, e5}}.

5. Select e2. Then E = {e2, e4, e5} and E ∩R = ∅.

6. R := {e1, e2, e4, e5}. Call findMSO(M,R) with M = {e1, e3} and
R = {e1, e2, e4, e5}.

1. ϕs(M) = 1. M is an MSO set, return Ω = {M}.

28 Chapter 2. Review of Background Theory

7. Ω = {{e2, e3, e4, e5}, {e1, e3}}.

8. Select e3. Then E = {e3} and E ∩R = ∅.

9. R := {e1, e2, e3, e4, e5}. Call findMSO(M,R) with M = {e1, e2, e4, e5}
and R = {e1, e2, e3, e4, e5}.

1. ϕs(M) = 1. M is an MSO set, return Ω = {M}.

10. Ω = {{e2, e3, e4, e5}, {e1, e3}, {e1, e2, e4, e5}}. Stop the while loop since
now R = M . Return Ω.

The algorithm finds all the three possible MSO sets of equations, Ω =
{ω1, ω2, ω3}, within the compressor model:

ω1 = {e2, e3, e4, e5}
ω2 = {e1, e3}
ω3 = {e1, e2, e4, e5}

2.4.2 Review of Algorithms to Generate MSO Sets

As pointed out in Section 2.1, there are in the literature several approaches
devoted to find what it could be generically called minimal redundant sub-
models. In some works, this issue is refereed as generating Analytical Redun-
dancy Relations (ARR) (Blanke et al., 2006). An ARR is a relation deduced
from a system sub-model which only contains observed variables.Therefore,
it can be directly used as a residual generator. To obtain an ARR from a
structural sub-model M , each unknown variable must be matched with one
equation (i.e. there exists a complete matching of the unknown variables
into the set of equations) and an extra unmatched equation must exist in
the model,

|M | = |varX(M)|+ 1 = |Mmax
M |+ 1 (2.35)

Usually, this is interpreted as each equation solving its matched unknown
variable and the extra equation (named redundant equation) testing the
consistency. This requirement fits with the MSO set definition. The main
difference between an ARR and an MSO set is that the computation of
the unknown variables must be explicitly ensured in an ARR whereas in an
MSO set is not (Armengol et al., 2009). Thus, it can be concluded that an
ARR is a particular case of an MSO set.

Testing Consistency in Structural Models 29

One of the early algorithms to generate ARRs was proposed in (Blanke
et al., 2006). This algorithm starts with a maximum matching in the set
of unknown variables and subsequently a family of ARR is found by adding
extra non-matched equations to the set of equations involved in the match-
ing. However the result is not complete, i.e. not all the possible ARRs are
guaranteed. Later, in (Gelso et al., 2008) the algorithm was improved such
that all possible ARRs are found. This was accomplished by iteratively com-
bining the set of ARRs computed in the former algorithm. Furthermore, the
algorithm in (Blanke et al., 2006) was extended in (Düştegör et al., 2004),
where the best possible matching according to computability criteria is used
to generate the resulting family of ARRs.

In (Travé-Massuyès et al., 2006) another algorithm to generate all the
ARRs was proposed. It first assumes that all the unknown variables are
measured and thereby every equation becomes an ARR. Then, it combines
these ARRs by eliminating variables and taking into account whether the
eliminated variables can be computed. In (Ploix et al., 2005), another me-
thod based on variable elimination was presented.

A modification of the (Krysander et al., 2008) method was presented in
(Rosich et al., 2009b). The objective of this modification is to guarantee
that all the unknown variables in an MSO set can be easily computed when
both, linear and non-linear equations, are involved in the MSO set. This
algorithm will be presented and further detailed in Section 6.7.

The artificial intelligence community uses the concept of minimal conflict
to test the consistency of a model. In (Cordier et al., 2004) the existence
of an equivalence between ARRs and conflicts was shown. A method to
compute the set of pre-compiled minimal conflicts was presented in (Pulido
and Gonzalez, 2004). Its strategy is based on choosing one equation and
then finding all the required equations to compute the unknown variables
within the chosen equation. Another similar method based on the same
strategy was also developed in (Krysander and Nyberg, 2002).

A detailed comparison of some of these methods presented above was
done in (Armengol et al., 2009). A general conclusion drawn from all these
methods, above mentioned, is that searching for all the MSO sets (or the
ARRs) has exponential time complexity. Furthermore, all the algorithms
that are complete (i.e. that compute all possible MSO sets) are equivalent
when unknown variable computability is not considered (all of them return
the same result). However, the computation time and the memory required
to achieve the same result can significantly vary from one method to another.

30 Chapter 2. Review of Background Theory

Chapter 3

Introduction to Optimal

Sensor Placement

This chapter introduces the foundations for a proper treatment of the opti-
mal sensor placement problem for fault diagnosis. First, some assumptions
are adopted in order to simplify the framework presented in Section 2.1. The
purpose of these simplifications is to facilitate the study of the sensor place-
ment problem by only focusing on the main issues of fault diagnosis systems.
Then, fault detectability and isolability are defined within the consistency
based diagnosis framework when structural models are used.

Once the fault diagnosis foundations used throughout this thesis are well
established, the concept of sensor is introduced within the framework of
fault diagnosis based on structural models. It will be shown how sensors are
handled in the structural model as well as some basic properties relating the
diagnosis performance with the sensors installed in the system. Furthermore,
the optimal sensor placement problem for model based fault diagnosis is
presented by means of a generalised formulation. Finally, a review of some
related works on sensor placement for fault diagnosis is given.

3.1 Basic Assumptions for Sensor Placement

As mentioned above, some assumptions are here introduced in order to sim-
plify the consistency based diagnosis framework. These assumptions can be
briefly summarised as:

• There is no explicit faulty behaviour model.

• Every fault is related to one model equation.

31

32 Chapter 3. Introduction to Optimal Sensor Placement

• Multiple faults are not considered.

First of all, it is assumed that no explicit description of a faulty behaviour
is available. This implies that only equations describing the non-faulty be-
haviour are allowed in the system model. Therefore, given the system model
equations, M, and the non-faulty behaviour mode, NF , the following expres-
sion holds

MNF = M (3.1)

This assumption has been proposed in several works, usually from the AI
community, e.g. (De Kleer and Williams, 1987) and (Reiter, 1987). These
works claim that using information of the faulty behaviour modes can be
sometimes warranted but is never guaranteed. Observe that obtaining fault
models from a real system implies an expert knowledge of the system, or in-
tentionally causing faults in the system for fault model identification. How-
ever, it is worth pointing out that using fault models may improve the
diagnosis capabilities of the diagnosis system, (Frisk et al., 2003).

The second assumption concerns the model equations used for describing
faulty behaviours modes. Given a fault fi associated with the behaviour
mode Fi ∈ B, the corresponding model equations describing such behaviour
will henceforth assumed to be

MFi
= M \ {efi

} (3.2)

for efi
∈ M. This means that all model equations, except efi

, describe
the behaviour of the system when fault fi is present. In other words, any
fault is limited to only affect one equation in the model. Note that this
does not hold for the non-faulty behaviour mode NF due to (3.1), or for the
unknown-fault behaviour mode, UF , since MUF = ∅.

This second assumption directly implies that the behaviour modes as-
sumed consistent with equation efi

are

assump(efi
) = {NF ,F1, · · · ,Fi−1,Fi+1, · · · } = B \ {Fi,UF } (3.3)

Therefore, when efi
becomes inconsistent implies that B \ {Fi,UF } are also

inconsistent, i.e. either fi or an unknown fault are a possible explanation of
the current system behaviour.

To motivate this second assumption, consider an MSO set of equations
ω ⊆M. Then, according to (2.6) and (3.3), the behaviour modes assumed
consistent with ω are

assump(ω) =
⋂

e∈ω

assump(e) = NF ∪ {Fi | efi
/∈ ω} (3.4)

Fault Detectability and Isolability 33

Therefore, when ω becomes inconsistent, only the remaining behaviour modes
can explain the actual behaviour of the system. Thus, the following be-
haviour modes are consistent with the observations:

B \ assump(ω) = {Fi | efi
∈ ω} ∪UF (3.5)

Now, it can be easily seen that, under this second assumption, diag-
nosis capabilities can be determined by just tracking equations efi

related
with fault behaviour modes Fi. Therefore, the diagnosis analysis can be
simplified since it is only required to take into account the model equation
while the behaviour modes remain in a second level. This assumption is also
used in other works devoted to sensor placement for fault diagnosis, such as
(Krysander and Frisk, 2008) and (Yassine et al., 2008).

Finally, it is also assumed that only single faults can occur in the system.
This is a normal assumption introduced in many works due to the fact that
the number of possible behaviours modes exponentially grows when multiple
faults are considered. However, it is possible to extend the diagnosis from
single faults to multiple faults (Nyberg, 2006). It can be argued, in support
of this assumption, that single faults are usually more probable in the system
than multiple faults.

The three assumption presented above will hold throughout this thesis
and can be roughly stated as:

Assumption 3.1. The system model only describes the non-faulty behaviour
mode, i.e. expression in (3.1) always holds. No explicit fault models are
considered.

Assumption 3.2. Every fault can only affect one model equation, i.e. ex-
pression in (3.2) always holds for all faulty behaviour modes Fi ∈ B, except
for NF and UF .

Assumption 3.3. Only single faults can occur in the system. Faulty be-
haviour modes corresponding to multiple faults are not considered.

3.2 Fault Detectability and Isolability

In fault diagnosis, the two main tasks are first determining a fault occurrence
in the system and second identifying which fault is present. These two tasks
are respectively known as fault detection and fault isolation. In the following,
basic definitions of fault detectability and fault isolability are given from the
consistency based diagnosis perspective. These definitions are similar to the
ones proposed in (Blanke et al., 2006) and (Krysander, 2006).

34 Chapter 3. Introduction to Optimal Sensor Placement

Definition 3.1 (Detectable fault). A fault fi represented by the behaviour
mode Fi ∈ B is detectable if there exists some observation y ∈ Y such that
Fi is consistent with y but the non-faulty behaviour mode, NF , is not.

Determining the consistent observation set for each behaviour mode is
not a trivial task when non-linear equations are involved in the model. De-
tectability analysis would be greatly simplified if structural model properties
could be used instead of analytical properties. This, however, entails relat-
ing analytical and structural properties which is also not trivial. Hence, to
mitigate such problem, the following assumption is also considered.

Assumption 3.4. Given a behavioural structural model Mb, it must hold
that

O(Mb) = O(M+
b) (3.6)

Assumption 3.4 means that just the equations in the over-determined
part of the model Mb constrain the set of consistent observations. Thus,
M+

b is the only useful part of the model for diagnosis. It should be noted,
however, that if (3.6) is not fulfilled, the model can still be used for diagnosis.
The drawback is that the set O(Mb)\O(M+

b) of consistent observations will
not be taken into account.

Now detectability analysis can be rather simplified when structural mod-
els are considered under Assumptions 3.1, 3.2 3.3 and 3.4. Theorem 3.1
shows a necessary condition for a structural models to detect faults.

Theorem 3.1. Given the structural model, M, of the system, a necessary
condition for detecting a fault fi is

efi
∈M+ (3.7)

Proof. We will prove the theorem by showing that efi
/∈ M+ implies that

fault fi is not detectable. First note that efi
/∈M+ is equivalent to

M+ ⊆M \ {efi
} (3.8)

This implies that
O(M \ {efi

}) ⊆ O(M+) (3.9)

where M = MNF and M \ {efi
} = MFi (Assumptions 3.1 and 3.2, re-

spectively). Then, since (3.6) must hold, we obtain that

O(MFi) ⊆ O(MNF) (3.10)

which, according to Definition 3.1, means that the fault fi is not detectable.

Fault Detectability and Isolability 35

The same result was obtained in Krysander (2006) for linear structured
models where (3.6) also holds. In fact, under such assumption, the minimal
checking model of Mb is M+

b which entails to not detect fault fi as long as
(3.8) holds (see Section 12.2 in Krysander (2006), specially Corollary 12.2).

Recall that due to model uncertainty only best case results can be ob-
tained by using structural models. This explains the lack of a sufficient
condition in Theorem 3.1. Nevertheless, it is clear that (3.7) can be effi-
ciently used to determine detectability under the aforementioned assump-
tions, which motivates the next detectability definition on structural models.

Definition 3.2 (Structurally detectable fault). A fault fi represented by
the behaviour mode Fi ∈ B is structurally detectable if (3.7) holds.

There exist several works in the literature, (Travé-Massuyès et al., 2006)
and (Ploix et al., 2005), that characterise structural fault detectability by
means of the MSO sets. The next lemma shows that, according to (3.7), it
is also possible to determine structurally detectable faults by regarding the
MSO sets.

Lemma 3.1. Given a set Ω of MSO sets obtained from M, a fault fi is
structurally detectable if there exists at least one MSO set ω ∈ Ω such that

efi
∈ ω (3.11)

Proof. From Algorithm 2.1, it is easy to verify that ω ⊆M+, which together
with (3.11), implies (3.7).

Determining the set of faults that can be isolated from a given fault is
also an important issue in diagnosis analysis. In the following definition,
fault isolability is introduced.

Definition 3.3 (Isolable fault). A fault fi represented by the behaviour
mode Fi ∈ B is isolable from another fault fj represented by the behaviour
mode Fj ∈ B if there exist some observations y ∈ Y such that Fi is consistent
with y but Fj is not.

According to this definition, the non-faulty behaviour mode NF cannot
be isolated from the other behaviour modes since it always becomes incon-
sistent for any consistency test. On the other hand, no faulty behaviour
mode can be isolated from the unknown-fault behaviour mode, UF , since it
never becomes inconsistent. In fact, as previously mentioned, UF is used as
a last resort when no other defined behaviour models can explain the actual

36 Chapter 3. Introduction to Optimal Sensor Placement

system behaviour. This highlights that, for diagnosis analysis, it suffices to
only consider those modes concerning faults, i.e. Fi, while the NF and UF

behaviour modes can be neglected, without loss of generality.
Note also that fault detection becomes a particular case of fault isolation

from the non-faulty behaviour mode, NF . Therefore, fault isolability can
also be characterised, by extending Theorem 3.1 to any couple of faulty be-
haviour modes, as a structural model property under the same assumptions
as for fault detectability.

Theorem 3.2. Given a structural model, M, of the system, a necessary
condition for isolating a fault fi from a fault fj is

efi
∈ (M \ {efj

})+ (3.12)

Proof. The proof is similar to the one in Theorem 3.1. We will prove that
efi

/∈ (M \ {efj
})+ implies that fi is not isolable from fj. Such a condition

is equivalent to

(M \ {efj
})+ ⊆M \ {efi

} (3.13)

and therefore

O(M \ {efi
}) ⊆ O((M \ {efj

})+) (3.14)

Now, regarding that M \ {efi
} = MFi and M \ {efj

} = MFj (Assumption
3.2), together with Assumption 3.4, we obtain that

O(MFi
) ⊆ O(MFj

) (3.15)

which, according to Definition 3.3, ends the proof.

As for the fault detection case, structural isolability will be defined based
on Theorem 3.2.

Definition 3.4 (Structurally isolable fault). A fault fi represented by the
behaviour mode Fi ∈ B is structurally isolable from another fault fj repre-
sented by the behaviour mode Fj ∈ B if (3.12) holds.

It is also possible to determine whether two faults are structurally isolable
by regarding the MSO sets, as the next lemma shows.

Lemma 3.2. Given a set Ω of MSO sets obtained from M, a fault fi is
structurally isolable from a fault fj if at least one MSO set ω ∈ Ω exists
such that

efi
∈ ω ∧ efj

/∈ ω (3.16)

Fault Detectability and Isolability 37

Proof. Again, it can be verified that such MSO set fulfils ω ⊆ (M \ {ef2})+.
Therefore, (3.16) implies that condition (3.12) is also fulfilled.

From Definitions 3.2 and 3.4, it is clear that the set of (structurally)
detectable and isolable faults can be determined before implementing the
diagnosis system and computing any MSO set. The same results could be
obtained from Lemmas 3.1 and 3.2 as long as all possible MSO sets, Ω,
computed by Algorithm 2.1 are provided (Krysander et al., 2008).

To characterise fault isolability, there are two possibilities. Let F be
the set of (structurally) detectable faults. The first possibility is based on
defining a family of sets F

1
I = {. . . , FI(fi), . . . } where the set FI(fi) is defined

such that

FI(fi) = {fj ∈ F | fi is isolable from fj} (3.17)

for all fi ∈ F.

The second possibility to characterise (structurally)isolability is by means
of a partition (M1,M2, · · · ,Mn) of the overdetermined part M+. In this
partition it holds that

(M \ {e})+ = M+ \Mk (k = 1, · · · , n) (3.18)

for any e ∈ Mk. In (Krysander et al., 2008), it is proved that each set of
such a partition defined in (3.18) is an equivalence class. Indeed, this is
the same equivalent class presented in (2.33) for improving the MSO set
computation. Then, the set of isolable faults can be characterised according
to the following theorem, presented in (Krysander and Frisk, 2008).

Theorem 3.3. Given a model M , let fi and fj be two (structurally) de-
tectable faults in M . The faulty behaviour mode fi is (structurally) isolable
from fj if and only if ei and ej belong to different sets in the partition defined
in (3.18).

Proof. See Theorem 3 in (Krysander and Frisk, 2008).

This means that (structurally) fault isolability can be represented by
means of a partition F

2
I = (F1, F2, · · · , Fm) on the detectable faults F, where

for any two faults f1, f2 ∈ Fi with Fi ∈ F
2
I it holds that

e1, e2 ∈Mk (3.19)

with e1 and e2 being the corresponding fault equations for f1 and f2, and
Mk a partition set, according to (3.18).

38 Chapter 3. Introduction to Optimal Sensor Placement

Observe that each set Fi ∈ F
2
I denotes the set of non (structurally)

isolable faults among them. Moreover, a key property derived from Theo-
rem 3.3 is that fault isolability is symmetric as long as is defined according
to Definition 3.4, i.e. if fi is (structurally)isolable from fj then fj is also
(structurally)1 isolable from fi. This also means that fj ∈ FI(fi) implies
that fi ∈ FI(fj) for FI(fi), FI(fj) ∈ F

1
I . This makes the isolability charac-

terisation F
2
I more compact than F

1
I . However, both characterisations are

fully equivalent.

3.3 Sensors for Fault Diagnosis

A sensor is a system component that allows us to obtain observations from
the process. This means that by adding more sensors to the system, the set
of observations can be easily increased. Therefore, better diagnosis perfor-
mance can be achieved since the capability of diagnosing faults significantly
depends on the observations, as it has been seen in the previous section. In
this section, how sensors are handled within the structural model will be
explained, and some important properties of adding sensors for diagnosis
will also be introduced.

It is important to remark that sensors link internal process information
with other external systems. Therefore, sensors can be installed in the sys-
tem for many purposes, e.g. control, monitoring or fault diagnosis. Here,
however, only sensors for diagnosis, specially for sensor placement analysis,
will be regarded. This implies that all sensors installed for purposes other
than diagnosis will be out of the scope of this thesis. Hence, in the follow-
ing, the term sensor will be limited to a non-installed sensor that may be
installed in the process in order to improve the diagnosis capabilities.

3.3.1 Adding Sensors in the Structural Model

Performing the sensor placement analysis implies that not already installed
sensors are candidate sensors for installation. Since the analysis is based on
model, the system model has to be adapted for every extra sensor chosen
for installation. Therefore, a handy treatment of such sensors in the model
is required.

Representing the sensors by means of the known variable set would be
a straightforward approach. If a sensor measuring some unknown variable

1Henceforth, detectability and isolability are based on Definitions 3.2 and 3.4. There-
fore, the term “structurally” will be intentionally neglected.

Sensors for Fault Diagnosis 39

x ∈ X is chosen for installation in the system, then the corresponding vari-
able, x, becomes known. This variable is removed from the set X of unknown
variables and is added into the set Y of known variables. Nevertheless, this
strategy is not desirable when handling faults in sensors since no sensor
behavioural model is explicitly defined. Instead of this, an explicit sensor
model will be used. Henceforth, any candidate sensor in the sensor place-
ment analysis is modelled by means of one single equation which is called
sensor equation, represented by

es : x = y (3.20)

for x ∈ X and y ∈ Y. Thereby, when a sensor is chosen for installation in
the original system, its corresponding sensor equation is added to the system
model (i.e. M ∪ {es} is the new set of model equations).

Usually, sensors have a signal conditioning stage that may include, for
example, signal filtering, linearisation or/and digitisation. Moreover, some
measurements involve more than one unknown process variables, e.g. a
wattmeter, that measures the electric power which depends on the elec-
tric current and the voltage. This means that the sensor model could be
generally modelled as

es : y = h(x1, . . . , xn) (3.21)

where h represents the signal conditioning process and x1, . . . , xn the un-
known process variables involved in the measurement.

To handle sensor models as in (3.21) the following strategy is adopted.
The sensor model is split in two equations by adding an extra unknown
variable x′ such that

e′s : x′ = h(x1, . . . , xn) (3.22a)

es : y = x′ (3.22b)

Then, the former equation e′s (3.22a) can be fitted in the structural
system model, as part of the original model, whereas equation (3.22b) is
now the corresponding sensor equation.

Remark that adding equation e′s into the model preserves the structural
redundancy of the model,

ϕs(M) = ϕs(M ∪ {e′s}) (3.23)

Furthermore, when the sensor is installed (i.e. equation es is added to the
model) both equations, e′s and es, belongs to the same DM-decomposition

40 Chapter 3. Introduction to Optimal Sensor Placement

part. In fact, this can be checked by considering the surplus function in
(2.20). It then holds that

|varX(M ∪{e′s})|− |M ∪{e′s}| > |varX(M ∪{e′s, es})|− |M ∪{e′s, es}| (3.24)

for any set M ⊆M. Therefore, the set M ∪ {e′s, es} is in the family of the
minimizers defined in (2.21), while the set M ∪ {e′s} is not (i.e. equations e′s
and es always come together in the DM-decomposition).

Summarising the above explanation, to handle a sensor for the sensor
placement analysis it is only required to consider the sensor equation (3.20).
Any other equations involved in the sensor model can be considered, with-
out loss of generality, in the equation set of the structural system model,
M. Now, a one-to-one correspondence between the sensor equation and the
measured variable exists, which motivates the following definition.

Definition 3.5 (Set of candidate sensors). The set S of all candidate sensors
is defined as a subset of unknown system variables S ⊆ X such that each
variable s ∈ S can be measured by installing a sensor in the system.

In the following, according to this definition, a sensor s ∈ S will denote
the variable to be measured, as well as the physical measuring device to
be installed in the system. Now, it is clear that sensors can be handled by
pointing out the unknown variables s ∈ S and then adding the corresponding
sensors equation es to the model. Given a set of sensors S ⊆ S the set of
their corresponding sensor equations is denoted by MS ,

MS =
⋃

s∈S

es (3.25)

Adding extra sensors in the system may improve diagnosis capabilities.
To motivate this idea, the following lemma shows that the overdetermined
part of the model is never reduced by adding new equations.

Lemma 3.3. Let M1 and M2 be two arbitrary sets of equations such that
M1 ⊆M2, then it holds that

M+
1 ⊆M+

2 (3.26)

Proof. First recall that the overdetermined part is the minimal subset with
minimum surplus function p0. Hence, since M1 ⊆M2, it holds that

p0(M
+
2) ≤ p0(M

+
1 ∪M+

2) (3.27)

Sensors for Fault Diagnosis 41

Furthermore, the surplus function p0 introduced in (2.20) is a sub-modular
function (Murota, 2000) since

p0(A ∪B) + p0(A ∩B) ≤ p0(A) + p0(B) (3.28)

for A and B being subsets of one vertex set in the bipartite graph.

By replacing A with M+
1 and B with M+

2 in (3.28), the following ex-
pression is obtained

p0(M
+
1 ∪M+

2) + p0(M
+
1 ∩M+

2) ≤ p0(M
+
1) + p0(M

+
2) (3.29)

This, together with (3.27), implies that

p0(M
+
1) ≥ p0(M

+
1 ∩M+

2) (3.30)

Next, since M+
1 is the minimal subset in M1 with minimum surplus

function p0 (i.e. p0(M
+
1) < po(M

′) for any M ′ ⊂ M+
1), expression (3.30) is

only satisfied if M+
1 ⊆M+

2 .

The same can be intuitively seen by regarding the structural redundancy,
ϕs. In fact, adding sensor equations to the model increases the number of
equations but not the number of unknown variables. Therefore the redun-
dancy is never decreased by installing extra sensors,

ϕs(M) ≤ ϕs(M ∪MS) (3.31)

for any candidate sensor S ⊆ S. The next corollary formalises the idea of
improving the diagnosis capabilities by installing extra sensors.

Corollary 3.1. Let S ⊆ S be a candidate sensor set, then it holds that

M+ ⊆ (M ∪MS)+ (3.32)

Proof. It directly holds from Lemma 3.3.

On the one hand, Corollary 3.1 can be used to show that the more sensors
are installed in the system the more equations may appear in the overdeter-
mined part of the model, i.e. diagnosis performance may be improved. On
the other hand, it proves that an fault equation, efi

∈ M, never becomes
non-detectable by installing extra sensors. Thus the diagnosis performance
is never degraded by installing sensors2.

2This is only true as long as sensor faults are not considered (see next Section 3.3.2).

42 Chapter 3. Introduction to Optimal Sensor Placement

3.3.2 Faults in Sensors

As mentioned before, the system consists of a set of installed components
that can present several faults represented by its corresponding behaviour
modes. Sensors can be considered part of such set of components. Hence,
installing extra sensors to improve diagnosis can lead to an increase in the
number of possible faults to be considered in the diagnosis analysis. Fur-
thermore, a sensor fault is a special case of behaviour mode since it is only
present in the model when the sensor is installed. In the following, it will
be shown how to handle sensor faults in the sensor placement analysis.

Let S ⊆ S be a candidate sensor set that is installed in the system, i.e.
the current system model is (M∪MS). Assume that every sensor s ∈ S has
a faulty behaviour mode, Fs, associated to it. Then, the faulty behaviour
model corresponding to sensor s ∈ S is

MFs = M ∪ (MS \ es) (3.33)

which coincides with equation (3.2), with the sensor equation being used
instead. This can be understood as a fault in sensor s ∈ S affecting equation
es, which seems reasonable. Furthermore, by tracking sensor equations in
the model, it is possible to known which sensor faults need to be considered
(i.e. if es ∈ (M∪MS) then faulty behaviour mode Fs needs to be taken into
account in the analysis, otherwise not).

In order to distinguish between the original faults defined before the sen-
sor placement analysis and the faults in the extra sensors after the analysis,
the former are called process faults (denoted as fp) whereas the latter are
called sensor faults (denoted as f s). Remark that a process fault may refer
to a sensor as long as it is installed in the original system and not consid-
ered in the sensor placement analysis as a candidate sensor (e.g. a sensor for
control purposes).

3.3.3 Physical Redundant Sensors

Depending on the process, it may be possible to install in the system several
sensors measuring the same process variable. For instance, consider a pipe
with two sensors measuring the same inside flow. The sensor that measures
an already measured variable is named redundant sensor. Given a set of can-
didate sensors, S, the set of candidate redundant sensor will be denoted by
S′, where each redundant sensor in S′ measures the same unknown variable
as a sensor in S.

Sensors for Fault Diagnosis 43

A redundant sensor is modelled by means of its corresponding sensor
equation. Let s′ ∈ S′ be the redundant sensor of s ∈ S. Then, the redundant
sensor equation has the form

es′ : x = y′ (3.34)

where both equations, es and es′ , share the same unknown variable x ∈
X, but different known variables y, y′ ∈ Y. It is important to note that
sensor s must be installed in the system before s′ is chosen for installation.
Otherwise, s′ would not behave as a true redundant sensor. This requirement
should be ensured in the following.

Thus, the model of a system with all candidate sensors (non-redundant
as well as redundant) installed, is represented by

M ∪MS ∪MS′ (3.35)

Intuitively, considering redundant sensors should improve the diagnosis
performance, i.e. more observations are obtained. Next lemma shows how
diagnosis is improved by adding redundant sensors in the system.

Lemma 3.4. Let (M∪{es}∪{es′}) be a system model with a sensors s ∈ S

and its corresponding redundant sensor s′ ∈ S′. Then, it holds that

(M ∪ {es} ∪ {es′})+ = (M ∪ {es})+ ∪ {es} ∪ {es′} (3.36)

Proof. Fist, since the sub-model {es, es′} consists of two equations and one
sharing variable, it follows from (2.20) that

p0((M ∪ {es})+ ∪ {es} ∪ {es′}) = p0((M ∪ {es})+)− 1 (3.37)

Then, note that according to (2.21) and (2.22), (M∪{es})+ is the smaller
subset with the minimum surplus function in (M ∪ {es}). From this and
(3.37), it follows that (M∪{es})+ ∪{es}∪{es′}) is the smallest subset with
the minimum surplus function in (M ∪ {es} ∪ {es′}), which completes the
proof.

According to this lemma, installing redundant sensors does not improve
diagnosis on process faults since no new system model equation appears
in the overdetermined part. The only possible new equations appearing in
the overdetermined part are the redundant sensor equations. Thus, redun-
dant sensors can only improve diagnosis on sensor faults, which means that
regarding redundant sensors for process fault diagnosis makes no sense.

44 Chapter 3. Introduction to Optimal Sensor Placement

3.3.4 Useful Sensors for Fault Diagnosis

Given a set of candidate sensors, it may happen that some of them do not
improve the diagnosis performance. For instance, consider a sensor that
measures a variable not related with the system. Then, it is clear that
such sensor can not give any useful observation for diagnosis. This section
is devoted to determine which sensors can contribute to the diagnosis, so
that those sensors that are not useful can be rejected. By doing this, the
complexity of the sensor placement analysis can be reduced since less sensors
will be considered.

From the DM-decomposition introduced in Section 2.3, it can be seen
that removing equations from the just-determined or under-determined parts
of the model has no effect on the overdetermined part. Thus, given any set
M of model equations, it holds that

M+ = (M \M ′)+ (3.38)

for any M ′ ⊆ (M0 ∪M−). This motivates the fact that all sensor equations
appearing in the just-determined or under-determined parts can be removed
since no diagnosis capability will be lost. Therefore, the set S0 ⊆ S of useful
sensors can be defined as

S0 = {s ∈ S | es ∈ (M ∪MS)+} (3.39)

According to (3.38), it holds that the overdetermined part of the system
model with all the candidate sensors, S, remains unaltered when only useful
sensors S0 are used,

(M ∪MS)+ = (M ∪MS0)
+ (3.40)

meaning that sensors in S \ S0 do not improve diagnosis capabilities.
To cope with useful redundant sensors, it suffices to look for redundant

sensors in the useful sensors set S0. The set S′
0 ⊆ S′ of useful redundant

sensors is therefore defined as

S′
0 = {s′ ∈ S′ | s′ is the redundant sensor of s ∈ S0} (3.41)

Therefore, given a set of sensors, S, and a set of redundant sensors,
S′ to be installed in the system, the only sensors to be considered for fault
diagnosis are the sensors in S0 according to (3.39) and the redundant sensors
in S′

0 according to (3.41). Remark that the diagnosis performance on process
faults is not degraded by choosing S0 and S′

0 instead of S and S′,

M ∩ (M ∪MS ∪MS′)+ = M ∩ (M ∪MS0 ∪MS′
0
)+ (3.42)

Sensors for Fault Diagnosis 45

In fact, as proved in Lemma 3.4, useful redundant sensors in S′
0 neither

contribute to improve diagnosis performance on process faults since

M ∩ (M ∪MS ∪MS′)+ = M ∩ (M ∪MS0)
+ (3.43)

However, Theorem 3.4 shows how fault detectability and isolability for sensor
faults can be guaranteed by adding redundant sensors.

Theorem 3.4. Consider a system M with a set of useful sensors, S0, in-
stalled, as well as a redundant sensor s′ of s ∈ S0. Then, the sensor faults
corresponding to s and s′ are detectable and fully isolable from any other
process or sensor fault.

Proof. It suffice to prove that the faults in sensors s and s′ are detectable
and fully isolable in

M ∪MS0 ∪ {es′} (3.44)

According to Lemma 3.4, both sensor faults are detectable,

es, es′ ∈ (M ∪MS0 ∪ {es} ∪ {es′})+ (3.45)

Then, according to (3.39), it is straightforward to see that a fault in s is
isolable from a fault in s′ since

es ∈ (M ∪MS0)
+ (3.46)

Now, a fault in s is also isolable from any other fault as long as

es ∈ ((M ∪MS0 ∪ {es′}) \ {e})+ (3.47)

for any e ∈ (M∪MS0) \ {es}. First, note that ({es, es′})+ = {es, es′}. Then
according to Lemma 3.3, it holds that

({es, es′})+ ⊆ ((M ∪MS0 ∪ {es′}) \ {e})+ (3.48)

which fulfils (3.47).
Equations (3.46) and (3.47) prove that the fault in s are fully isolable.

Since both equations, es and es′ , are structurally equivalent, it suffices to
swap es for es′ to prove that the fault in s′ is also fully isolable.

According to the above theorem, fault detectability and full isolability
for a sensor s ∈ S0 and its corresponding redundant sensor s′ ∈ S′

0 come
for free when S0 and s′ are installed in the system. Moreover, this also
shows that there is no need to consider more than two sensors measuring

46 Chapter 3. Introduction to Optimal Sensor Placement

the same variable, even though it is physically possible, since fault detection
and isolation on sensors s and s′ is already ensured with two sensors.

In the following, for notational convenience, it will be assumed that only
useful sensors have been previously selected as candidate sensors before the
sensor placement analysis,

S , S0 (3.49)

The same assumption will hold for redundant sensors, S′ , S′
0.

3.4 Maximum Diagnosis Specifications

Installing all candidate sensors in the system does not guarantee that the
desired diagnosis specifications will be achieved. For this reason, it is im-
portant to know beforehand all the faults that could be detectable and all
the faults that could be isolable by placing extra sensors in the system.

Let FP be the set of process faults to be detected and isolated. According
to Assumption 3.2, there is one model equation efp ∈ M related to every
fault fp ∈ FP. Therefore it is possible to characterise the faults by their
corresponding fault equations. Furthermore, according to Corollary 3.1,
maximum detectability specifications of process faults can be achieved when
the whole set of candidate sensors, S, is installed in the system. Therefore,
the set of all detectable process faults is defined as

FDP
= {fp ∈ FP | efp ∈ (M ∪MS)+)} (3.50)

As mentioned in Section 3.3.2, sensor faults are directly related to their
corresponding sensor equations. Furthermore, recall from (3.49) that all
sensor faults can be detected since all sensors are useful for diagnosis. Then,
if FS is the set of sensor faults, it directly holds that the set of detectable
sensor faults is

FDS
= FS (3.51)

The same holds for redundant sensor faults. Let FS′ be the set of redundant
sensor faults, then the set of detectable redundant sensor faults is

FDS′
= FS′ (3.52)

Thus, the maximum set of detectable faults, involving both process and
sensor faults, is

FDmax = FDP
∪ FDS

∪ FDS′
(3.53)

Optimal Sensor Placement for Fault Diagnosis 47

Maximum fault isolability is achieved when all candidate sensors are
installed in the system. Thus, according to (3.12), a fault fi is isolable from
a fault fj if

efi
∈ (M ∪MS ∪MS′) \ {efj

})+ (3.54)

where efi
and efj

are either fault equations or sensor equations, depending
on fi and fj being a process or a sensor fault. In the following, either
F

1
Imax

or F
2
Imax

(see Section 3.2) will be used to characterise maximum fault
isolability according to (3.54).

Typically, maximum diagnosis specifications will be assumed (i.e. de-
tectability of faults in FDmax and isolability of faults according to F

1
Imax

).
Recall that no better diagnosis specifications can be achieved. However,
it is possible to define other specifications than the maximum ones. Any
diagnosis specifications, FD and F

1
I , will be feasible as long as

FD ⊆ FDmax (3.55)

and
F ′

I(f) ⊆ FI(f) (3.56)

for all f ∈ FD, where F ′
I(f) ∈ F

1
I and FI(f) ∈ F

1
Imax

.

3.5 Optimal Sensor Placement for Fault Diagnosis

Usually, there are several different sensor configurations that solve the sensor
placement problem when large-scale systems with many candidate sensors
are considered. Nevertheless, only one of these possible solutions has to be
finally chosen to design a diagnosis system. Here, in order to cope with this
selection decision, the best candidate sensor configuration will be sought.
Thus, the optimal sensor placement problem is addressed. This implies to
consider a cost function to evaluate the best (the optimal) solution among
all possible configurations.

3.5.1 Sensor Cost Function

The cost of installing a sensor in the system can be motivated by many rea-
sons and may depend on the system application. For instance, the purchase
price or the mounting facilities can be good reasons for devices which are
mass produced. On the other hand, for critical systems (e.g. aerospace de-
vices) the objective may focus on reliability and error robustness. Also, for
applications where the mounting space or the weight is limited, the number
of sensors could be optimised.

48 Chapter 3. Introduction to Optimal Sensor Placement

For a general use of the sensor cost and to not going into details in the
different purposes for installing sensors, the cost of installing a sensor will
be evaluated by a positive real number. This number generically evaluates
the properties to place the sensor (e.g. price, reliability, weight, etc.) with
respect to the other sensors.

Definition 3.6 (Sensor Cost). Let s ∈ (S∪S′) be a sensor. Then, the cost
associated to the installation of this sensor is C(s) > 0.

Thus, the cost of installing a set of candidate sensors is the sum of the
cost of installing each sensor in the candidate set. This is formally introduced
in the following definition.

Definition 3.7 (Sensor Set Cost). Let S ⊆ (S ∪ S′) be a subset of sensors.
Then, the cost of installing all the sensors in S is defined by

C(S) ,
∑

s∈S

C(s) (3.57)

A key property of the cost function defined in (3.57) is that it is a strictly
monotonic function since for Si, Sj ⊆ (S∪S′), if Si ⊂ Sj then C(Si) < C(Sj).
Observe that, according to Definition 3.6, two redundant sensors can have
different sensor costs.

3.5.2 Optimal Sensor Placement Problem Set-up

The optimal sensor placement problem for fault diagnosis is formulated in
this section from a general perspective. Here, it is assumed that an algorithm
(or a function), P , must be designed in order to test whether the diagnosis
requirements are fulfilled for a given set of sensors. This algorithm is fed
with the process information, typically represented by the model M of the
process, the set of candidate sensors S to be installed in the system and the
required diagnosis specifications, F . The algorithm returns a boolean value
indicating whether the diagnosis requirements are achieved,

P (M, S,F) =

{

1 if diagnosis specifications F are fulfilled
0 otherwise

(3.58)

This algorithm is developed mainly depending on the system descrip-
tion,M, and the diagnosis requirements, F . For instance, the system could
be described by means of linear equations or by a logic statement. In the
former case the algorithm should be based on linear algebra tools and in

Optimal Sensor Placement for Fault Diagnosis 49

the later case, relational algebra should be used. Concerning the diagnosis
requirements F , the algorithm will be different if, for example, the diag-
nosis specifications are based on model properties or on residual generator
properties. In the former case, the test is straight since the model is pro-
vided, while in the later case, it is required to generate all the MSO sets and
design the residual generators. However, sometimes it is possible to refor-
mulate the same diagnosis property based on MSO sets as a model property.
For instance, see fault detectability and isolability introduced in Section 3.2
(compare Theorem 3.1 with Lemma 3.1 and Theorem 3.2 with Lemma 3.2).

Now, let 2S be the power set of the candidate sensor set S, i.e. 2S is the
family of sensor sets that contains all the possible sensor configurations that
can be installed in the system. Then, a two-class partition can be introduced
in 2S, according to whether the diagnosis specifications are verified,

[2S]+ = {S ∈ 2S | P (M, S,F) = 1}
[2S]− = {S ∈ 2S | P (M, S,F) = 0}

The class [2S]+ is the set of all sensor configurations that are feasible
solutions for the sensor placement problem for diagnosis. Since each S ∈
[2S]+ has an associated cost according to Definition 3.7, then there exists a
S∗ ∈ [2S]+ such that it corresponds to the optimal solution.

Another important issue to be addressed in the the optimal sensor place-
ment problem is how the search of the optimal solution is performed. Due
to the combinatorial nature of the problem (i.e. find among all the possible
sensor configurations, the one which is the best solution) the search strategy
is in general computationally time demanding.

A general setup of the problem, valid for all the approaches introduced
in this thesis, is presented in the next definition.

Definition 3.8 (Optimal sensor placement problem for fault diagnosis).
Given a system model, M, a set of candidate sensors S, the cost function
C(S) and the diagnosis specifications, F . The optimal sensor placement
problem for fault diagnosis is formulated as

min
S⊆S

C(S)

subject to: P (M, S,F) = 1
(3.59)

The following chapters introduce several approaches to solve such a prob-
lem where different algorithms P and different search strategies are devel-
oped. All of them are based on a structural model and the required diagnosis
specifications are fault detectability and isolability (i.e. FD and F

1
I).

50 Chapter 3. Introduction to Optimal Sensor Placement

3.6 Related Works on Sensor Placement for Fault

Diagnosis

In this section, a review of the existing works devoted to sensor placement
for fault diagnosis is done. First, it is worth noting that there are only few
works devoted to sensor placement for fault diagnosis, and by no means a
general methodology that suits for all of them exists. Those works related
with structural models are specially highlighted since all the approaches
presented in this thesis are based on this kind of models. On the other hand,
works devoted to sensor placement for purposes other than fault diagnosis
are omitted.

One of the earliest works devoted to the sensor placement problem for
fault diagnosis was presented in (Basseville et al., 1987). Sensors are op-
timally placed for monitoring the eigenvalues of a linear dynamic system.
Another more recent work, also focused on linear dynamic systems, was pro-
posed in (Frisk et al., 2009). Here the detectability and isolability capabili-
ties are defined as model properties, instead of residual generator properties.
Besides, contrary to many other works, faults in the placed sensors are taken
into account.

Another work that handles a linear dynamic model is presented in (Com-
mault et al., 2008). This work is limited to linear structured systems. It uses
the structure of the model to work with graph based tools, specifically mini-
mal input separators. However, the computation of minimal input separator
presents serious computational complexity issues when the model becomes
large. Moreover, as it was pointed out in (Frisk and Krysander, 2007), there
are some strong assumptions that are difficult to fulfil in practical situa-
tions: the residual must be sensitive to just one fault and the fault could be
measurable.

Most of the works aiming at the sensor placement problem for fault
diagnosis are based on structural models or use other graph representations
to cope with the process description. For instance, in (Raghuraj et al., 1999)
a directed graph is used to represent which part of the model is affected by
each fault. From this “cause-effect” graph, the sensors needed to diagnose
the corresponding fault can be found. In this work, an ad hoc algorithm
is presented to find the optimal sensors such that fault detectability and
isolability are guaranteed. Another example of works based on graphs, can
be found in (Khemliche et al., 2006), where the approach is based on bond
graph models.

Next, those approaches based on structural models are discussed. A

Related Works on Sensor Placement for Fault Diagnosis 51

distinction will be made between those works that need the set of MSO
sets previously generated, and those that need no MSO sets. Remember
that generating the set of MSO sets, specially when all possible sensors are
assumed to be installed in the system, is a high time consuming task, since
the redundancy degree is usually high.

In (Travé-Massuyès et al., 2006) besides the ARR generation algorithm, a
method to find the sensors for a best diagnosability degree is developed. This
is done by first computing the set of all ARR assuming all possible sensors
installed, and then obtaining the diagnosability degree. Next, sensors and
their corresponding ARRs are removed until the minimal cardinality sensor
set that fulfils the same diagnosability degree is found. The sensor search
is improved in (Spanache et al., 2004) by means of a genetic optimisation
algorithm. Based on these works, in (Rosich et al., 2007) the search strategy
is modified by starting with no sensors and iteratively adding sensors while
the MSO sets are incrementally generated. This approach will be presented
in Chapter 4. Its main improvement is uselessness of generating all the MSO
sets, except for the worst case.

As previously mentioned, the sensor placement problem is in fact a com-
binatorial problem. Thus, if we are just interested in the best combination
according to some cost criterion, the problem can be formulated using bi-
nary integer programming. This was first noted in (Bagajewicz et al., 2004)
where an extension of the works done by Raghuraj et al. (1999) is performed
by applying binary optimisation. On the other hand, the works introduced
by Travé-Massuyès et al. (2006) are also improved by means of binary inte-
ger programming. In (Sarrate et al., 2007), the problem is redefined as an
optimal non-linear binary approach (similar to the one presented by Baga-
jewicz et al. (2004)) where the main contribution is that the set of MSO sets
are involved in the constraint formulation. Similar approaches are presented
in (Fijany and Vatan, 2006) and (Rosich et al., 2009c). Both present a lin-
ear representation of the same problem formulated in (Sarrate et al., 2007).
This means that the detectability and isolability properties are represented
from the set of MSO sets as linear constraints, being this its main contri-
bution. The difference between both approaches is that an ad-hoc branch
and bound algorithm is used in (Fijany and Vatan, 2006), whilst a standard
branch and bound algorithm for mixed integer linear programing are used
in (Rosich et al., 2009c). The methods presented in (Sarrate et al., 2007)
and (Rosich et al., 2009c) are detailed in Chapter 5.

As previously mentioned, generating the complete MSO set requires a
high computation time. So, some works have appeared recently without the
requirement of computing any MSO set. These methods ensure that the

52 Chapter 3. Introduction to Optimal Sensor Placement

MSO sets with the corresponding diagnosis capabilities can be generated af-
ter solving the sensor placement problem. Thus, the drawback of computing
MSO sets is avoided. In (Krysander and Frisk, 2008), an efficient method to
find all the minimal sensors set3 for maximum fault detectability an isola-
bilty from a structural model is proposed. The method is based on the
partial order defined by the well-constrained part, Gk (k = 1, . . . , b), of the
DM-decomposition (see Section 2.3). On the other hand, in (Yassine et al.,
2008) an alternative structural model decomposition, based on gathering
equations that can not be isolable (i.e. equations that always come together
in an MSO set) is proposed. From this decomposition, it is possible to de-
termine the set of detectable faults and the set of isolable faults. Then, the
optimal search on the candidate sensor set is performed. Finally, in (Rosich
et al., 2009a), a method that takes into account the causal computability of
the unknown variable in the residual generation is developed. This method
and the causal computability framework are presented in Chapter 6.

3
minimal set means that no proper subset is a solution.

Chapter 4

Sensor Placement by

Incremental MSO Sets

Generation

4.1 Introduction

The main objective of the approach presented in this chapter is to propose a
method for sensor placement based on the computation of MSO sets. This
method improves the efficiency of similar approaches by trying not to com-
pute all the MSO sets when all candidate sensors are installed. This is
achieved by developing an algorithm that solves the optimal sensor place-
ment problem by incrementally generating, at each iteration, only those
MSO sets that are required. Therefore, a solution can be found before gen-
erating the whole set of MSO sets. Moreover, since the search strategy is
based on the sensor set cost, the global optimal solution, using a desired
cost criterion, is ensured.

Since the corresponding MSO sets are provided, the method is suitable to
handle diagnosis specification other than fault detectability and isolability.
Actually, any property derived from the set of MSO sets can be used. For
example the highest derivative order required in a residual generator, the
causality (see Chapter 6) in the variable computation, model uncertainties,
the fault sensitivity, etc. Such properties can be verified automatically by
an ad-hoc algorithm as long as the required set of MSO sets and some extra
model information are provided.

Let F , M and ΩS denote, respectively, the diagnosis specifications de-
fined on the MSO sets, the system model containing all the information

53

54 Chapter 4. Sensor Placement by Incremental MSO Sets Generation

required to validate the diagnosis specifications and the set of MSO sets
generated from the set of sensors S ⊆ S. Then, a procedure P ′, similar to
(3.58), should be designed:

P ′(M,ΩS ,F) =

{

1 if diagnosis specifications F are fulfilled
0 otherwise

(4.1)

The difference with respect to procedure P in (3.58) is that the MSO sets
required for a given sensor configuration are now provided.

To find the optimal solution S∗, a coarse algorithm description that
solves the problem can be stated as

1. Choose the best sensor configuration, Si ⊆ S, not previously chosen.

2. Compute the set ΩSi
(e.g. ΩSi

= findMSO((M ∪MSi
)+, ∅), according

to Algorithm 2.1).

3. If P ′(M,ΩSi
,F) = 0 then return to step 1. If P ′(M,ΩSi

,F) = 1 then
Si is the optimal solution, S∗ := Si.

Step 1 could be implemented by enumerating all 2|S| possible sensor con-
figurations (if the number of sensors is not large). Step 2 is rather inefficient
since generating MSO sets is time demanding and here repeated MSO sets
are generated at each iteration. Thus, improving the efficiency in Step 2
will be the main objective of the present chapter. Finally, Step 3 depends
on the procedure P ′, which is especially designed according to the diagno-
sis specifications. This means that an ad-hoc algorithm must be designed
according to the considered diagnosis specifications. For instance, if the di-
agnosis specifications were fault detectability and isolability for structural
models, a procedure based on Corollaries 3.1 and 3.2 could be implemented.
Other diagnosis specifications would require the study of other properties in
order to develop a suitable procedure P ′.

4.2 Relation between Sensors and MSO Sets

As mentioned in Chapter 2, a residual only depends on known variables and
can be derived from an MSO set. Then, the sensors needed to compute the
corresponding residual can be determined by observing the sensor equations
that are included in the corresponding MSO set of equations. Given a set
Ω of MSO sets, it is possible to define a relation between two MSO sets

Relation between Sensors and MSO Sets 55

indicating that both MSO sets depend on the same set of sensors. This
relation is formally defined as

ω ∼ ω′ : ω ∩MS = ω′ ∩MS (4.2)

for ω, ω′ ∈ Ω

It follows from the definition that this relation is an equivalence relation.
Any equivalence relation must fulfil reflexivity, symmetry and transitivity
properties. Furthermore, the equivalence relation defines a partition on the
set of Ω into equivalent classes. The equivalence class, [ω]S , is defined from
this equivalence relation as,

[ω]S = {ω′ ∈ Ω | ω ∼ ω′} (4.3)

where the index S tells us which sensors equations are involved in each
equivalent class. Thus, according to (4.2) and (4.3) it holds that

MS = ω ∩MS (4.4)

for any MSO set ω ∈ [ω]S . Furthermore, if there is no MSO set that contains
the sensor equations MS then, for notational convenience, it will be assumed
that [ω]S , ∅.

Let ΩS be the set of all possible MSO sets when all the candidate sensors
are installed in the system, i.e. the MSO sets computed from M∪MS. Then,
the quotient set of ΩS is the set of all possible equivalent classes of ΩS by
∼, according to (4.3), and it is denoted as

ΩS/∼ = {[ω]S | ω ∈ ΩS} (4.5)

Next lemma shows that the set of MSO sets obtained from a sensor
configuration S ⊆ S installed in the system can be well defined by the
elements of ΩS/∼.

Lemma 4.1. Let ΩS be the set of all possible MSO sets obtained from the
model M ∪MS for S ⊆ S. Then, it holds that

ΩS =
⋃

Si⊆S

[ω]Si
(4.6)

for [ω]Si
∈ ΩS/∼.

56 Chapter 4. Sensor Placement by Incremental MSO Sets Generation

Proof. The proof is straightforward by first noting that ΩS ⊆ ΩS since ΩS

is the family of all the MSO sets in (M ∪MS)+ and ΩS is the family of all
the MSO sets in (M ∪MS)+, where (M ∪MS)+ ⊆ (M ∪MS)+.

Then, according to (4.2) and (4.3), the set defined by

⋃

Si⊆S

[ω]Si
(4.7)

comprises all the MSO sets in ΩS such that no MSO set contains other
sensor equations than the ones in MS , which is the same as saying that they
are all the MSO sets in (M ∪MS)+, i.e. ΩS .

In the following, it will be stated that the set of sensors, S, generates
the set ΩS of MSO sets. Lemma 4.1 also implies that some of the MSO sets
in ΩS can also be generated by a sensor set other than S. In fact, given two
sensor sets, S1 and S2, such that S1 ⊆ S2, it holds that

ΩS2 = (
⋃

Si⊆S1

[ω]Si
) ∪ (

⋃

Si∈2S2\2S1

[ω]Si
) = ΩS1 ∪ (

⋃

Si∈2S2\2S1

[ω]Si
) (4.8)

which implies that ΩS1 can be generated from either S1 or S2.
This shows that generating the MSO sets in ΩS can be efficiently done

by regarding the MSO sets generated by subsets of S. Due to the properties
of the cost function presented in Definition 3.7, the MSO sets that can be
generated by sensor sets with a smaller cost than the actual one can be
determined. This is shown in the next theorem.

Theorem 4.1. Let ΩS1 be the family of MSO sets generated by S1 ⊆ S. An
MSO set

ω ∈ ΩS1 \ [ω]S1 (4.9)

can be generated by a sensor set S2 ⊆ S such that C(S2) < C(S1).

Proof. According to Lemma 4.1 and since two equivalent classes are disjoint
sets, i.e. [ω]Si

∩ [ω]Sj
= ∅ for i 6= j, the set of MSO sets ΩS1 \ [ω]S1 can be

expressed as

ΩS1 \ [ω]S1 =
⋃

S2⊂S1

[ω]S2 (4.10)

where regarding the strictly monotonic property of the cost functions, it
holds that

C(S2) < C(S1) (4.11)

Algorithm for Optimal Sensor Placement 57

Now, when a sensor configuration Sk is chosen to test the diagnosis
specifications, if all sensor configurations with a smaller cost than C(Sk) have
been previously chosen, then it can be stated, according to Theorem 4.1,
that the MSO sets in ΩSk

\ [ω]Sk
have already been generated in previous

iterations. Hence, just the set [ω]Sk
needs to be computed at iteration k.

This motivates the fact that the sensor search strategy introduced in step
1 of the coarse description algorithm in Section 4.1 can be performed as
follows:

1. Choose the minimal cost sensor configuration, Si ⊆ S, not previously
chosen.

4.3 Algorithm for Optimal Sensor Placement

In this section, the Algorithm 4.1 which solves the optimal sensor placement
by incrementally generating the set of MSO sets is presented. The inputs
required by the algorithm are the structural system model M of the system,
the set S of possible sensors to be installed in the system, the cost C(s) of
each sensor s ∈ S as well as the diagnosis specifications F and the extra
model information M to call the procedure P ′.

First, the algorithm chooses a sensor subset by solving the following
combinatorial optimization problem at each k iteration,

min
Sk⊆S
{C(Sk) : Sk ∈ (2S \ k−1∪

l=1
{Sl})} (4.12)

Note that C(Sk) refers to the sensor configuration cost function defined in
Definition (3.57). Furthermore, the argument of this optimization problem
is the sensor configuration such that it has a minimal cost and it has not
been chosen in the previous iterations {1, . . . , k − 1}.

After the sensor configuration, Sk, has been chosen, the MSO sets in [ω]Sk

are generated. In this step, the structural model M and the corresponding
sensor equations MSk

are provided to compute the required MSO sets, [ω]Sk
.

To compute this set of MSO sets, one can adapt any of the existing lgorithms
mentioned in the introduction chapter, specifically in Section 2.4.2. Here,
however, the Algorithm developed in (Krysander and Frisk, 2008) is used.
As it was mentioned before, the original algorithm (see Algorithm 2.1) was
based on a top-down search, starting with all the equations of the model and
then removing equations step by step until an MSO set is found. Now, the
difference is that we are only interested in computing those MSO sets that
contain all the equations in MSk

. This is accomplished by firstly ensuring

58 Chapter 4. Sensor Placement by Incremental MSO Sets Generation

Algorithm 4.1 S∗ = IncrementalSP(M,S, C,F ,M)

k := 1
repeat

Sk := arg min
Sk⊆S

{C(Sk) : Sk ∈ (2S \ k−1∪
l=1
{Sl})} % Choose a sensor set

if (M ∪MSk
)+ ⊇MSk

then

[ω]Sk
:= findMSO((M ∪MSk

)+),MSk
) % Generate [ω]Sk

else

[ω]Sk
:= ∅

end if

Store [ω]Sk

ΩSk
:= ∪[ω]S′ for S′ ⊆ Sk % Build the ΩSk

k := k + 1
until P ′(M,ΩSk

,F) = 1 or Sk = S % Verify the diagnosis specifications

if P ′(M,ΩSk
,F) = 1 then

S∗ := Sk % The optimal solution is found

else

print “There is no solution”
end if

that MSk
⊆ (M∪MSk

)+. If this is not the case, then no MSO set containing
MSk

exists. Secondly setting the input variable R of the algorithm as R :=
MSk

, which forces the algorithm to not remove any equation in MSk
during

the MSO sets computation, i.e. all the computed MSO sets contain the
MSk

equations. Since the algorithm was proved to be complete (i.e. all
the possible MSO sets are found), then all possible MSO sets [ω]Sk

can be
ensured to be found, too. Once the [ω]Sk

has been generated, it is stored in
memory since it might be needed in further iterations.

In the next step, the set ΩSk
of MSO sets is obtained from the current

generated set [ω]Sk
and the remaining sets [ω]S′ for S′ ⊂ Sk. All the remain-

ing MSO sets have already been generated according to Theorem 4.1 and
the sensor search strategy of the algorithm. Thus, it is enough generating
[ω]Sk

. The following three statements are fulfilled when the algorithm is at
iteration k:

• All the ΩSk
\[ω]Sk

MSO sets have been generated in previous iterations.

• No sensor configuration S′ such that S′ ⊂ Sk is a solution.

• If the configuration Sk is a solution, then it is a global optimum.

Application to the compressor model 59

The algorithm continues iterating until the diagnosis specifications F
are fulfilled. This implies the use of function P ′ according to (4.1). If no
solution is found, the algorithm stops iterating after the sensor configuration
Sk = S has been tested and concludes that there is no solution.

In Section 4.6, issues concerning the efficiency of this algorithm and its
applicability to practical cases are discussed.

4.4 Application to the compressor model

An academic example based on the compressor model (see Example 2.2) is
presented. It shows how Algorithm 4.1 solves the sensor placement problem
for fault diagnosis when the required MSO sets are incrementally generated.

The system model used in this example consists of equations (2.13),
where its corresponding structural model is represented in Table 2.1. It is
assumed that all system variables are unknown, e.g. no sensors are installed
in the original system. The following candidate sensors are defined:

S = {ωc, i, τ,W, v, pin, pout, Tin} (4.13)

Note that all system variables can be measured except for the compressor
efficiency η. Some of these variables are easier to measure than others, so a
cost to each variable is set accordingly (see Table 4.1).

sensor ωc i τ W v pin pout Tin

cost 100 50 200 120 30 20 20 10

Table 4.1: Compressor sensor costs.

Two process faults FP = {f1, f2} are defined on the system model.
Fault f1 refers to a mechanical fault in the electric motor and is related to
expression (2.13b) (i.e. ef1 = e2), whereas fault f2 refers to a compressor box
fault in the outlet flow. Thus, it is related to expression (2.13c) (i.e ef2 = e3).
The diagnosis specifications are structural detectability and isolability for
all process faults in FP and all sensors faults as well. As mentioned earlier,
fault detectability and isolability can be defined by means of a set of MSO
sets, according to Corollaries 3.1 and 3.2. Thus, the algorithm P ′ should be
implemented to check whether expressions (3.11) and (3.16) are fulfilled for

60 Chapter 4. Sensor Placement by Incremental MSO Sets Generation

k Sk CSk
[ω]Sk

ΩSk

37 {i, v, pin, pout, Tin} 130 {ω1} {ω1}
67 {ωc, v, pin, pout, Tin} 180 {ω2} {ω2}
70 {ωc, i, v} 180 {ω3} {ω3}
75 {ωc, i, v, Tin} 190 ∅ {ω3}
76 {W,v, pin, pout, Tin} 200 {ω4} {ω4}
81 {ωc, i, pin, pout, Tin} 200 {ω5} {ω5}
82 {ωc, i, v, pout} 200 ∅ {ω3}
83 {ωc, i, v, pin} 200 ∅ {ω3}
87 {ωc, i, v, pout, Tin} 210 ∅ {ω3}
88 {ωc, i, v, pin, Tin} 210 ∅ {ω3}
91 {i,W, pin, pout, Tin} 220 {ω6} {ω6}
85 {ωc, i, v, pin, pout} 220 ∅ {ω3}
99 {i,W, v, pout, Tin} 230 {ω7} {ω7}
100 {i,W, v, pin, Tin} 230 {ω8} {ω8}
102 {ωc, i, v, pin, pout, Tin} 230 ∅ {ω1, ω2, ω3, ω5}
105 {i,W, v, pin, pout} 240 {ω9} {ω9}
111 {i,W, v, pin, pout, Tin} 250 {ω10, ω11} {ω1, ω4, ω6, ω7,

ω8, ω9, ω10, ω11}

Table 4.2: Results from Algorithm 4.1 at intermediate
iterations.

the set of MSO sets, ΩSk
, regarding the fault equations e2 and e3, as well as

the sensor equations in MSk
.

Once the diagnosis specifications are stated, Algorithm 4.1 is solves the
optimal sensor placement problem. Table 4.2 shows the results for those
iterations where some MSO sets are obtained, i.e. ΩSk

6= ∅. The results for
the sensors configurations from k = 0 to k = 111 such that [ω]Sk

= ∅ and
ΩSk

= ∅ are not shown in the table.

The computed MSO sets during the algorithm execution (see Table 4.2)
are:

ω1 = {e1, e2, e3, e4, e5, ei, ev, epin
, epout, eTin

}
ω2 = {e1, e2, e3, e4, e5, eωm , ev , epin

, epout , eTin
}

ω3 = {e1, eωc , ei, ev}
ω4 = {e1, e2, e3, e4, e5, eW , ev , epin

, epout, eTin
}

Extension to Redundant Sensors 61

ω5 = {e2, e3, e4, e5, eωc , ei, epin
, epout , eTin

}
ω6 = {e2, e3, e4, e5, ei, eW , epin

, epout, eTin
}

ω7 = {e1, e2, e3, e4, e5, ei, eW , ev, epout , eTin
}

ω8 = {e1, e2, e3, e4, e5, ei, eW , ev, epin
, eTin

}
ω9 = {e1, e2, e3, e4, e5, ei, eW , ev, epin

, epout}
ω10 = {e1, e3, ei, eW , ev , epin

, epout, eTin
}

ω11 = {e1, e2, e4, e5, ei, eW , ev , epin
, epout , eTin

}
(4.14)

where {eωc , ei, eτ , eW , ev , epin
, epout, eTin

} denotes the corresponding sensor
equation set MS for S defined in (4.13). Note that the generated MSO sets,
[ω]Sk

, only contain the sensor equations corresponding to Sk. For example,
look at iteration k = 70 where S70 = {ωm, i, v} and the generated MSO sets
are [ω]S70 = ω3, then the corresponding sensor equations are

ω3 ∩MS = {eωc , ei, ev} = MS70 (4.15)

The algorithm stops at iteration k = 111 since a solution is found. This
means that the solution, found at iteration k = 111, is the optimal solution

S∗ = S111 = {i,W, v, pin, pout, Tin} (4.16)

and the MSO sets that generate such a solution are

ΩS111 = {ω1, ω4, ω6, ω7, ω8, ω9, ω10, ω11} (4.17)

that fulfil the required diagnosis specifications. To easily verify this, Ta-
ble 4.3 shows, by means of a cross symbol, which fault equations (regarding
both process and sensor faults) belong to each MSO set in ΩS111 .

Remark that generating all the MSO sets with all the possible sensors
installed in the system would require to generate 46 MSO sets. Here, the
proposed algorithm generates 11 MSO sets and 8 out of these 11 are part of
the solution.

4.5 Extension to Redundant Sensors

The approach presented in this chapter can easily be extended to redun-
dant sensors. However, it is worth noting that when redundant sensors are
considered, the number of MSO sets to be handled grows exponentially and
the problem becomes rapidly intractable. On the other hand, the MSO sets

62 Chapter 4. Sensor Placement by Incremental MSO Sets Generation

e2 e3 ei eW ev epin
epout eTin

ω1 × × × × × × ×
ω4 × × × × × × ×
ω6 × × × × × × ×
ω7 × × × × × × ×
ω8 × × × × × × ×
ω9 × × × × × × ×
ω10 × × × × × × ×
ω11 × × × × × × ×

Table 4.3: Fault equations contained in the MSO sets of
ΩS111 .

obtained with redundant sensors can be straightforwardly deduced from pre-
vious generated MSO sets. There is no need to compute new MSO sets by
means of Algorithm 2.1.

Given a structural model M ∪MS with some sensors S ⊆ S installed
in the system, the structure is preserved when a sensor is replaced by its
corresponding redundant sensor. This is true since both sensor equations
depend on the same unknown variable (see Section 3.3.3). Thus, let ΩS be
all MSO sets generated from M ∪MS . Then, replacing sensor s ∈ S by its
redundant sensor s′ will produce the same MSO sets in ΩS but replacing
sensor equation es by its redundant sensor equation es′ . This set will be
denoted as ΩS|s′, indicating that sensor s has been replaced by its redundant
sensor s′. Therefore, it can be stated that

ΩS ∪ ΩS|s′ ⊂ ΩS∪{s′} (4.18)

The remaining MSO sets in ΩS∪{s′}, not deduced from the non-redundant
sensors are those MSO sets that contain both sensor equations, es and es′ .
However, it can be verified that

({es, es′})+ = {es, es′} (4.19)

and

ϕs({es, es′}) = 1 (4.20)

which shows that the equation set {es, es′} is an MSO set. In fact, this is the
only MSO set that depends on both sensors. Therefore, when a redundant

Extension to Redundant Sensors 63

sensor is introduced, the set of MSO sets can be deduced as:

ΩS∪{s′} = ΩS ∪ ΩS|s′ ∪ {es, es′} (4.21)

According to (4.21), the only set to be generated (using Algorithm 2.1)
when redundant sensors are handled is ΩS, the remaining MSO sets can be
directly deduced from ΩS . Next example shows how it should be proceeded
in the case of computing MSO sets with redundant sensors.

Example 4.1. Assume the following set of sensors {s1, s2} and its corre-
sponding redundant sensors {s′1, s′2}. The cost of each sensor is C(s1) =
C(s′1) = 2 and C(s′2) = C(s2) = 5. The steps to incrementally compute
the MSO sets, according to the search strategy of Algorithm 4.1 including
redundant sensors should proceed as follows:

1. Choose no sensor and compute [ω]∅.

Ω∅ = [ω]∅

2. Choose sensor {s1} and compute [ω]{s1}.

Ω{s1} = [ω]∅ ∪ [ω]{s1}

3. Choose sensor set {s1, s
′
1}.

Ω{s1,s′1}
= Ω{s1} ∪ Ω{s1}|s′1

∪ {es1 , es′1
}

4. Choose sensor {s2} and compute [ω]{s2}.

Ω{s2} = [ω]∅ ∪ [ω]{s2}

5. Choose sensor set {s1, s2} and compute [ω]{s1,s2}.

Ω{s1,s2} = [ω]∅ ∪ [ω]{s1} ∪ [ω]{s2} ∪ [ω]{s1,s2}

6. Choose sensor set {s1, s
′
1, s2}.

Ω{s1,s′1,s2} = Ω{s1,s2} ∪ Ω{s1,s2}|s′1
∪ {es1 , es′1

}

7. Choose sensor set {s2, s
′
2}.

Ω{s2,s′2}
= Ω{s2} ∪ Ω{s2}|s′1

∪ {es2 , es′2
}

64 Chapter 4. Sensor Placement by Incremental MSO Sets Generation

8. Choose sensor set {s1, s2, s
′
2}.

Ω{s1,s2,s′2}
= Ω{s1,s2} ∪ Ω{s1,s2}|s′2

∪ {es2 , es′2
}

9. Choose sensor set {s1, s
′
1, s2, s

′
2}.

Ω{s1,s′1,s2,s′2}
= Ω{s1,s′1,s2} ∪ Ω{s1,s′1,s2}|s′2

∪ {es2 , es′2
}

The set [ω∅], [ω{s1}], [ω{s2}] and [ω{s1,s2}] are computed with Algorithm 2.1,
while the remaining MSO sets are deduced from these sets. Note also that,
step 9 could be performed from s′1 instead of s′2,

Ω{s1,s′1,s2,s′2}
= Ω{s1,s2,s′2}

∪Ω{s1,s2,s′2}|s
′
1
∪ {es1 , es′1

}

which would provide the same result.
Note also that for s′1 to be a redundant sensor, it must be ensured that

s1 is already installed, which means that s′1 comes together with s1. The
same holds for s′2 and s2.

4.6 Conclusions

The approach presented in this chapter can be viewed as an improvement
of the work in (Travé-Massuyès et al., 2006) since not all the MSO sets
need to be computed. Only in the worst case, when the full set of candidate
sensors S is the optimal solution or there is no solution, all the MSO sets are
computed. However, since the MSO sets are incrementally computed and no
MSO set is computed more than once, it can be said that, in the worst case,
Algorithm 4.1 is as efficient as the approach presented in (Travé-Massuyès
et al., 2006). Therefore, the efficiency is improved whenever the optimal
solution is a subset of S.

In fact, the time required to find the optimal solution depends on the
cost of this optimal solution with respect to the other sensor configurations,
i.e. the smaller the cost of the optimal solution is, the faster the solution is
found. This means that large scale models can be efficiently handled as long
as the optimal solution has a low cost. Of course, the cost of the optimal
solution can not be known beforehand and intractable problems may be
expected. Note that, both the MSO set generation and the sensor set search
are time demanding procedures.

On the other hand, the main advantage is that all the required MSO sets
are provided for each possible solution. So, this method is suitable to handle

Conclusions 65

other diagnosis specifications beyond fault detectability and isolability where
the computation of MSO sets is required.

Finally, Algorithm 4.1 has been extended to handle redundant sensors.
However, the number of MSO sets rapidly grows when redundant sensors are
considered and moreover the number of sensor combination to test becomes
larger, which makes this approach not efficient for redundant sensors.

66 Chapter 4. Sensor Placement by Incremental MSO Sets Generation

Chapter 5

Binary Integer

Optimisation for Sensor

Placement

5.1 Introduction

The optimal sensor placement can be formulated as a Binary Integer Pro-
gramming (BIP) problem. This class of problems are a particular case of
what is known in the literature as Mixed Integer Programming. Specifically,
a BIP optimisation is based on restricting the value of the optimisation vari-
able to {0, 1}. Because of this, it is also known as 0-1 Integer Programming.
When solving the optimal sensor placement problem, the installation of a
sensor configuration is represented by a binary vector, q, such that each
sensor si ∈ S corresponds to a binary element qi of q, with qi ∈ {0, 1}.
Therefore, if the entry qi equals 1, the corresponding sensor must be in-
stalled whereas if qi equals 0, the sensor does not have to be installed.

There are some works that have already solved the sensor placement
problem by means of BIP formulation. For instance, the problem of placing
sensors for process monitoring and fault detection and isolation is addressed
in (Bagajewicz et al., 2004). This work departs from a directed graph that
indicates whether a fault affects the measurement of a sensor. This infor-
mation is codified into a BIP formulation in order to obtain the optimal
set of sensors such that every fault affects, at least, to one sensor (“fault
observability”) and two different faults affect to different sensors (“fault res-
olution”). A similar approach is introduced in this chapter but, here, the
MSO sets are considered. The direct relation between faults and sensors is

67

68 Chapter 5. Binary Integer Optimisation for Sensor Placement

not as straightforward as in (Bagajewicz et al., 2004). Fault detectability
and isolability depend on the available MSO set, and at the same time the
MSO set depends on the sensors installed in the system. Therefore, the MSO
information has to be codified as constraints in the optimization problem.

The main advantage of using this approach is that, once the constraints
are formulated, the optimisation is performed by means of standard algo-
rithms available in applications dedicated to mathematical programming.
Thus, we do not need to cope with the search of the optimal solution since
it is accomplished by the standard tools of such applications.

Next, the constraint formulation, which is the main part of this approach,
is first presented. Then, the sensor placement problem for fault diagnosis
will be formally presented as a BIP problem with non-linear constraints.
Later, the same problem is transformed into a linear optimisation problem,
where the same constraints are reformulated.

5.2 Constraint Formulation for BIP

5.2.1 Preliminary Notation

The present approach accounts for fault detectability and isolability for pro-
cess and sensors faults. To accomplish this, it will be assumed that the
complete set ΩS of all the MSO sets, when all the candidate sensors S are
installed in the system, is available. Recall that such a set can be computed
by Algorithm 2.1 with the following inputs,

ΩS = findMSO((M ∪MS)+, ∅) (5.1)

Let n be the number of MSO sets available, i.e. ΩS = {ω1, ω2, . . . , ωn},
and let k be the number of candidate sensors to be installed, i.e. k = |S|.
Then, a binary matrix W = [wij] of size n × k that relates MSO sets (the
row set) and sensors (the column set) is defined. Hence, matrix W is built
from the set of MSO sets as

wij =

{

1 if esj
∈ ωi

0 otherwise
(5.2)

for all ωi ∈ ΩS and all sj ∈ S. Remark that wij = 1 means that ωi depends
on the measurement of the sensor sj.

A binary matrix V which relates the MSO sets with the process faults is
also defined. Let l be the number of process faults that have to be detected
and isolated (i.e. l = |FDP

|). Then, the binary matrix V = [vi,j] of size

Constraint Formulation for BIP 69

n × l relates process faults (the column set) and MSO sets (the row set),
according to

vij =

{

1 if ef
p
j
∈ ωi

0 otherwise
(5.3)

for all ωi ∈ ΩS and all process fault fp
j ∈ FDP

. Note that matrix V is known
in the literature as the Fault Signature Matrix (FSM), (Cordier et al., 2004).
Since the diagnosis specifications also concern sensor faults , an extra matrix
relating MSO sets and sensor faults must be introduced. However, according
to the discussion in Section 3.3.2, the equation affected by a sensor fault is
the corresponding sensor equation. Then, it turns out that such a matrix is
equivalent to W. Thus, the FSM involving both process and sensor faults
is built as

(

V W
)

(5.4)

where the first l columns concern process faults and the remaining k columns
concern sensor faults.

5.2.2 MSO Set Selector

Not all the MSO sets in ΩS can be used to test the diagnosis specifications
when a sensor configuration is selected for installation. This motivates the
definition of the MSO set selector vector, ρ, which is a binary vector of
n elements (one for each MSO set) that indicates whether the MSO set is
valid, given a candidate sensor set S ⊆ S, i.e.

ρi = 1←→ the MSO set ωi is valid (5.5)

ρi = 0←→ the MSO set ωi is not valid (5.6)

Let ωi ∈ ΩS be an MSO set and let sj ∈ S be any of the sensors that
depends on this MSO set ωi (i.e. esj

∈ ωi). The MSO set is not valid as long
as any of its corresponding sensors is not installed (i.e. qj = 0). Otherwise
the MSO set is valid. Thus, ρi can be computed as

ρi =

k
∏

j=1

(

wij · qj + (1 −wij)
)

(5.7)

The possible values of each term within the product are shown in the truth
Table 5.1. If each product term in (5.7) equals 1 for all the sensors (i.e. for
all columns in W) then the MSO set ωi is valid and ρi equals 1, otherwise
the MSO set ωi is not valid and ρi equals 0.

70 Chapter 5. Binary Integer Optimisation for Sensor Placement

wij qj wij · qj + (1−wij)

0 0 1
0 1 1
1 0 0
1 1 1

Table 5.1: Truth table of a valid MSO set.

Example 5.1. Given the compressor model presented in Example 2.2. Now,
to reduce the number of MSO sets, assume that the variable set is parti-
tioned into Y = {ωm, pin, pout, Tin}, and X = {i, τ,W, η, v}. Therefore, the
structural model to consider is the sub-graph

G′ = ({e1, . . . , e5}, {i, τ,W, η, v};A′) (5.8)

in the biadjacency matrix depicted in Table 2.1. Let the candidate sensor
set be S = {i, τ,W, v}. Then, the MSO sets in ΩS are

ω1 = {e4, e5, eτ , eW } ω6 = {e2, e3, e4, e5, ei}
ω2 = {e3, eW } ω7 = {e1, ei, ev}
ω3 = {e3, e4, e5, eτ} ω8 = {e1, e2, eτ , ev}
ω4 = {e2, ei, eτ} ω9 = {e1, e2, e4, e5, eW , ev}
ω5 = {e2, e4, e5, ei, eW } ω10 = {e1, e2, e3, e4, e5, ev}

(5.9)

Matrix W is built, according to (5.2), from the MSO sets in (5.9) and
represented in Table 5.2, where ones are replaced by × symbols, and zeros
are blank spaces. Assume that the binary vector [q1, q2, q3, q4] is related to
the sensors vector [i, τ,W, v]. Then, according to (5.7), the MSO set selector
ρ is computed as

ρ1 = q2q3 ρ6 = q1

ρ2 = q3 ρ7 = q1q4

ρ3 = q2 ρ8 = q2q4

ρ4 = q1q2 ρ9 = q3q4

ρ5 = q1q3 ρ10 = q4

(5.10)

In the following, vector ρ = [ρ1, ρ2, · · · , ρn] will be used to implicitly
select, in the BIP optimisation, those MSO sets that are valid to test the
diagnosis specifications for a given sensor configuration.

Constraint Formulation for BIP 71

i τ W v

ω1 × ×
ω2 ×
ω3 ×
ω4 × ×
ω5 × ×
ω6 ×
ω7 × ×
ω8 × ×
ω9 × ×
ω10 ×

Table 5.2: W matrix for the compressor model.

5.2.3 Fault Detectability Constraints for BIP

Process Fault Detectability

To detect a process fault, at least one MSO set that contains the correspond-
ing fault equation (see Corollary 3.1) must exist. But now, this property is
restricted to valid MSO sets.

Given a process fault fp
j ∈ FD and the MSO set selector ρ,the detectabil-

ity constraint for a process fault is defined as

n
∑

i=1

vijρi ≥ 1 (5.11)

This constraint ensures that the corresponding column j of matrix V has
at least one 1 associated to a valid MSO set. In other words, there exists at
least one valid MSO set that makes fault fp

j detectable.

Example 5.2. Following with Example 5.1, consider now two process faults,
fp
1 and fp

2 , which are respectively related to equations e2 and e3. The
corresponding matrix V is represented in Table 5.3, from the MSO sets
in (5.9).

According to (5.11), the detectable constraint for fault fp
1 is

q1q2 + q1q3 + q1 + q2q4 + q3q4 + q4 ≥ 1 (5.12)

whereas for fault fp
2 is

q3 + q2 + q1 + q4 ≥ 1 (5.13)

72 Chapter 5. Binary Integer Optimisation for Sensor Placement

fp
1 fp

2

ω1

ω2 ×
ω3 ×
ω4 ×
ω5 ×
ω6 × ×
ω7

ω8 ×
ω9 ×
ω10 × ×

Table 5.3: V matrix for the compressor model.

Note, for example, that fp
1 becomes detectable as long as either sensor i, v ∈

S are installed and fault fp
2 becomes detectable for any candidate sensor

s ∈ S installed in the compressor.

Sensor Fault Detectability

Similar to process fault detectability, a sensor fault is detectable if its corre-
sponding sensor equation appears at least in one valid MSO set. Thus, the
elements of matrix W are now used instead of those of matrix V.

The main difference with respect to a process fault is that now the sensor
fault detectability constraint only needs to be active when the corresponding
sensor is installed. In other words, if the sensor is not installed then no sensor
fault is expected. This is achieved by introducing the optimisation variable,
qj, in the inequality constraint

n
∑

i=1

wijρi ≥ qj (5.14)

Note that when the sensor sj ∈ S is installed (qj = 1) the inequality
constraint is equivalent to (5.11). However, when the sensor is not installed
(qj = 0) the inequality holds for any value of the corresponding MSO set
selector.

Example 5.3. Consider the four sensors in Example 5.1, {i, τ,W, v}, and
the W matrix depicted in Table 5.2, according to (5.9). Then, from (5.14),

Constraint Formulation for BIP 73

the corresponding sensor fault constraints for detectability are respectively:

q1q2 + q1q3 + q1 + q1q4 ≥ q1 (5.15a)

q2q3 + q2 + q1q2 + q2q4 ≥ q2 (5.15b)

q2q3 + q3 + q1q3 + q3q4 ≥ q3 (5.15c)

q1q4 + q2q4 + q3q4 + q4 ≥ q4 (5.15d)

5.2.4 Fault Isolability Constraints for BIP

Fault Isolability between Process Faults

The fault isolability characterisation based on the set of MSO sets can be
derived from Corollary 3.2. Recall that a fault f1 is isolable from another
fault f2, if there exists at least one MSO set that contains ef1 while it
does not contain ef2 . Furthermore, due to the symmetric property of fault
isolability (see Section 3.2), if such condition holds and the two faults f1

and f2 are detectable, it can also be stated that there exist another MSO
set that contains ef2 and does not contain ef1 (i.e. fault f2 is isolable from
fault f1). Therefore, since all isolable faults must be detectable according to
the fault isolability specifications in (3.56), if we consider all valid MSO sets,
two process faults fp

j1
∈ Fk1 and fp

j2
∈ Fk2 for Fk1 , Fk2 ∈ F

2
I and k1 6= k2, are

isolable if
n
∑

i=1

ρi|vij1 − vij2 | ≥ 1 (5.16)

This inequality ensures that both columns j1 and j2 in matrix V (cor-
responding to fp

j1
and fp

j2
, respectively) are at least different in one row

associated to a valid MSO set. In other worlds, there exists at least one
MSO set such that it contains one fault equation but not the other one.

Example 5.4. Following with Example 5.2, the isolability constraint for
the two process faults, fp

1 and fp
2 , is

q3 + q2 + q1q2 + q1q3 + q2q4 + q3q4 ≥ 1 (5.17)

according to (5.16), matrix V in Table 5.3 and the MSO set selectors in
(5.10).

74 Chapter 5. Binary Integer Optimisation for Sensor Placement

Fault Isolability between Process and Sensor Faults

Similar constraints can be derived for isolability between a process fault and
a sensor fault. However, the constraint only needs to be active when the
corresponding sensor is installed. Therefore, given a process fault fp

j1
and a

sensor fault f s
j2

, both faults are isolable as long as

n
∑

i=1

ρi|vij1 − wij2| ≥ qj2 (5.18)

This inequality is always fulfilled when sensor sj is not installed (i.e.
qj = 0). Otherwise the two faults must be isolable.

Example 5.5. Consider, from Example 5.2, process fault fp
1 and a sen-

sor fault f s
3 of the flowmeter measuring the air flow, W . The isolability

constraint between these two faults is defined, according to (5.18), as

q2q3 + q3 + q1q2 + q1 + q2q4 + q4 ≥ q3 (5.19)

where matrix V is in Table 5.3, matrix W is in Table 5.2 and the MSO set
selectors are in (5.10).

Fault Isolability between Sensor Faults

Isolability between two sensor fault can be easily deduced from the other
fault isolability constraints. In this case, the constraint needs to be active
only when both sensors are installed. Let sj1 and sj2 be two arbitrary
sensors, such that their corresponding sensor faults are isolable in F

2
I . Then,

sensor faults f s
j1

and f s
j2

are isolable if

n
∑

i=1

ρi|wij1 −wij2 | ≥ qj1qj2 (5.20)

Note that, only when both sensors are installed (qj1 = 1 and qj2 = 1), the
right hand side of this inequality becomes 1, and the constraint is fulfilled
as long as both faults are isolable. Otherwise, the right hand side becomes
0 and the constraint is always fulfilled.

Example 5.6. From Example 5.3, consider the pair of sensor faults corre-
sponding to W and v (i.e. f s

3 and f s
4 , respectively). Therefore, from (5.20),

matrix W and matrix V (depicted in Tables 5.2 and 5.3) and the MSO set
selector in (5.10), the isolability constraint for sensor faults f s

3 and f s
4 is

q2q3 + q3 + q1q3 + q1q4 + q2q4 + q4 ≥ q3q4 (5.21)

BIP Optimisation for Sensor Placement 75

5.3 BIP Optimisation for Sensor Placement

Now, the sensor placement problem for fault diagnosis can be formulated
as a BIP problem using the constraints previously introduced. Given the
diagnosis specifications FDP

and F
2
I , the number of constraint concerning

fault detectability is equal to the number of faults in FDP
plus the number

of sensor faults in FDS
,

|FDP
∪ FDS

| = l + k (5.22)

On the other hand, fault isolability constraints are defined from pairs of
faults. This means that all possible detectable faults must be combined in
pairs, such that every pair of faults does not belong to the same set F ∈ F

2
I .

Assume that F
2
I is partitioned in m sets, F

2
I = {F1, F2, · · · , Fm}, then the

number of constraints concerning fault isolability is

m−1
∑

i=1

|Fi|
m
∑

j=i+1

|Fj | (5.23)

In order to correctly apply expressions (5.16), (5.18) or (5.20), we need to
take into account whether the involved faults in each isolability constraint
are process or sensor faults.

A cost vector c is defined based on the cost of each sensor in S: ci =
C(si), with si ∈ S. Then, given the cost vector c, matrices W and V

extracted from the set of MSO sets ΩS and the diagnosis specifications
FDP

and F
2
I , the sensor placement problem for fault diagnosis based on BIP

optimisation is formulated as:

min
q

cTq subject to: (5.24)

ρi =
k
∏

j=1

(

wij · qj + (1− wij)
)

i = {1, . . . , n}

n
∑

i=1

vijρi ≥ 1 j = {1, . . . , l}

n
∑

i=1

wijρi ≥ qj j = {1, . . . , k}

n
∑

i=1

ρi|vij1 − vij2| ≥ 1
j1, j2 ∈ {1, . . . , l} and
fp

j1
, fp

j2
are isolable in F

2
I

76 Chapter 5. Binary Integer Optimisation for Sensor Placement

n
∑

i=1

ρi|vij1 −wij2 | ≥ qj2

j1 ∈ {1, . . . , l}, j2 ∈ {1, . . . , k}
and fp

j1
, f s

j2
are isolable in F

2
I

n
∑

i=1

ρi|wij1 −wij2 | ≥ qjqqj2

j1, j2 ∈ {1, . . . , l} and
f s

j1
, f s

j2
are isolable in F

2
I

qi ∈ {0, 1} i = {1, . . . , k}

This problem can be solved, for example, by IBM ILOG CPLEX1, which
is a software application for solving both, linear and non-linear, optimisation
problems.

Example 5.7. To show the complete formulation of the problem, consider
again the compressor model presented in Examples 5.1 and 5.2. Recall that
there are two process faults fp

1 and fp
2 and 4 possible sensors to be placed

{i, τ,W, v} which can be faulty. Therefore, four sensor faults, f s
1 , f s

2 , f s
3 and

f s
4 are defined.

The set of MSO sets ΩS = {ω1, . . . , ω10} was introduced in (5.9). The
cost of the sensors is C(i) = 50, C(τ) = 200, C(W) = 120 and C(v) = 30,
therefore the cost vector is

c =
(

50 200 120 30
)T

(5.25)

All faults must be detectable and isolable (which coincides with the
maximum diagnosis specifications). Thus, diagnosis specifications are

FDP
= {fp

1 , fp
2 }

FDS
= {f s

1 , f s
2 , f s

3 , f s
4}

F
2
I = {{fp

1 }, {fp
2 }, {f s

1}, {f s
2}, {f s

3}, {f s
4}}

The optimisation problem is formulated as

min
q

50q1 + 200q2 + 120q3 + 30q4 subject to: (5.26a)

q1q2 + q1q3 + q1 + q2q4 + q3q4 + q4 ≥ 1 (5.26b)

q3 + q2 + q1 + q4 ≥ 1 (5.26c)

q1q2 + q1q3 + q1 + q1q4 ≥ q1 (5.26d)

q2q3 + q2 + q1q2 + q2q4 ≥ q2 (5.26e)

q2q3 + q3 + q1q3 + q3q4 ≥ q3 (5.26f)

q1q4 + q2q4 + q3q4 + q4 ≥ q4 (5.26g)

1Visit www.ibm.com for further information.

BIP Optimisation for Sensor Placement 77

q3 + q2 + q1q2 + q1q3 + q2q4 + q3q4 ≥ 1 (5.26h)

q1q4 + q2q4 + q3q4 + q4 ≥ q1 (5.26i)

q2q3 + q2 + q1q3 + q1 + q3q4 + q4 ≥ q2 (5.26j)

q2q3 + q3 + q1q2 + q1 + q2q4 + q4 ≥ q3 (5.26k)

q1q2 + q1q3 + q1 + q1q4 ≥ q4 (5.26l)

q3 + q2 + q1q2 + q1q3 + q1q4 + q4 ≥ q1 (5.26m)

q2q3 + q3 + q1q2 + q1 + q2q4 + q4 ≥ q2 (5.26n)

q2q3 + q2 + q1q3 + q1 + q3q4 + q4 ≥ q3 (5.26o)

q3 + q2 + q1 + q1q4 + q2q4 + q3q4 ≥ q4 (5.26p)

q2q3 + q2 + q1q3 + q1 + q1q4 + q2q4 ≥ q1q2 (5.26q)

q2q3 + q3 + q1q2 + q1 + q1q4 + q3q4 ≥ q1q3 (5.26r)

q1q2 + q1q3 + q1 + q2q4 + q3q4 + q4 ≥ q1q4 (5.26s)

q3 + q2 + q1q2 + q1q3 + q2q4 + q3q4 ≥ q2q3 (5.26t)

q2q3 + q2 + q1q2 + q1q4 + q3q4 + q4 ≥ q2q4 (5.26u)

q2q3 + q3 + q1q3 + q1q4 + q2q4 + q4 ≥ q3q4 (5.26v)

qi ∈ {0, 1} i = {1, 2, 3, 4} (5.26w)

Constraints (5.26b) and (5.26c) concern detectability of process faults and
constraints (5.26d)-(5.26g) concern detectability of sensor faults. Constraint
(5.26h) concerns isolability between process faults, constraints (5.26i)-(5.26p)
concern isolability between process and sensors faults and finally constraints
(5.26q)-(5.26v) concern isolability between sensor faults.

After solving this optimisation problem with ILOG OPL, the optimal
solution is

q∗ =
(

1 0 1 1
)T

which corresponds to the set of optimal sensors S∗ = {i,W, v}. By substi-
tuting this result into (5.10), the following MSO set selectors are obtained:

ρ1 = 0 ρ6 = 1
ρ2 = 1 ρ7 = 1
ρ3 = 0 ρ8 = 0
ρ4 = 0 ρ9 = 1
ρ5 = 1 ρ10 = 1

(5.27)

So the MSO sets needed to fulfil the diagnosis specifications are ω2, ω5, ω6,
ω7, ω9 and ω10. Remark also that the selected MSO sets are indeed the set
of MSO sets generated by the solution S∗ (i.e. ΩS∗). Table 5.4 is built from

78 Chapter 5. Binary Integer Optimisation for Sensor Placement

the selected MSO sets. Note that all process and sensor faults are detectable
and isolable (i.e. the diagnosis specifications are fulfilled).

e2 e3 ei eW ev

ω2 × ×
ω5 × × ×
ω6 × × ×
ω7 × ×
ω9 × × ×
ω10 × × ×

Table 5.4: Fault equations contained in the selected MSO
sets.

5.4 Redundant Sensor Extension

The formulation presented in (5.24) can be extended to also involve redun-
dant sensors S′. First, the variable vector is extended to (qT q′T)T where
q′ = (q′1 · · · q′k)T represents the redundant sensors. The same sub-index
indicates that q′i represents the redundant sensor of qi.

A redundant sensor can only be installed when the non-redundant sensor
is already installed. This can be formulated by the following constraint,

qi − q′i ≥ 0 (5.28)

for all redundant sensors. The only combination that does not fulfil this
inequality is for qi = 0 and q′i = 1 which is the case that must be avoided.

Recalling the conclusions drawn in Section 3.3.3, it is known that redun-
dant sensors do not improve process fault specifications. Recall also that
when a redundant sensor is placed, both, the non-redundant and the redun-
dant sensor faults, become directly detectable and isolable from the other
possible faults. These properties will help to efficiently handle redundant
sensors in the BIP formulation.

First, since redundant sensors do not affect process faults, only those
constraints that are affected by sensor faults must be redefined. Recall, from
Theorem 3.4, that a non-redundant sensor fault becomes directly detectable

Binary Integer Linear Programming for Sensor Placement 79

when its redundant sensor is placed. Then, constraint (5.14) is redefined as

q′j +

n
∑

i=1

wijρi ≥ qj (5.29)

Now, when the redundant sensor is installed (q′j = 1), the detectability
constraint is fulfilled, no matter which MSO sets are valid.

Similar modifications can be applied for isolability between process and
sensors faults, and for isolability between sensor faults as well. Thus, the
isolability constraint (5.18) between a process and a sensor fault is redefined
as

q′j2 +
n
∑

i=1

ρi(vij1 − wij2)
2 ≥ qj2 (5.30)

and the isolability constraint (5.20) between two sensors faults is redefined
as

q′j1 + q′j2 +

n
∑

i=1

ρi(wij1 − wij2)
2 ≥ qj1qj2 (5.31)

In conclusion, dealing with redundant sensors entails: extending the op-
timisation vector to also include the redundant sensors in S′, adding the
constraints (5.28), and modifying constrains (5.14), (5.18) and (5.20) ac-
cording to (5.29), (5.30) and (5.31), respectively. Therefore, no new MSO
sets are computed and the set of constraints is not significantly increased.
However, the set of optimisation variables is increased, being this the main
drawback, since the time required to find a solution for such problems is
exponential with the number of optimisation variables.

5.5 Binary Integer Linear Programming for Sen-

sor Placement

Up to now, in this chapter, it has been seen how the sensor placement prob-
lem can be formulated as a BIP problem with non-linear constraints. This
is basically due to the fact that the MSO set selector is a product of op-
timisation variables and therefore non-linear. Here, the same problem is
transformed into a linear optimisation problem and thus refereed as Binary
Integer Linear Programming (BILP). So, a standard branch and bound al-
gorithm, which is in general more efficient than the algorithms used for a
non-linear optimisation, may be used.

80 Chapter 5. Binary Integer Optimisation for Sensor Placement

This section is therefore devoted to reformulate the non-linear inequal-
ities, previously introduced, into linear inequalities. For the sake of sim-
plicity, in the continuation it will be assumed that all detectable faults are
fully isolable. This means that each set Fi ∈ F

2
I involves only one fault (i.e.

|F2
I | = l + k). How to relax such an assumption will be explained at the end

of this section.

5.5.1 Standard Binary Integer Linear Programming

The BILP formulation (Wosley, 1998) is very similar to the well known linear
programming formulation. A standard optimisation problem using BILP
is formulated as a linear objective function and a set of linear inequality
constraints in matrix form. This is expressed as:

min
x

cT x subject to: (5.32)

Ax ≤ b (5.33)

x is binary (5.34)

where x is the vector of variables, c is the vector of variable costs, A is a
matrix and b is a vector. The difference with linear programming is that the
vector of variables is constrained to be binary, i.e. x ∈ {0, 1} for all x ∈ x.

An standard the branch and bound algorithm developed to solve linear
binary optimisation problems consists in an implicitly enumeration of all the
possible combinations. Then, an upper and a lower bound are iteratively
computed in order to efficiently discard combinations that are not a solution.
Usually the upper and the lower bound are based on a constraint relaxation
by means of linear programming, where the binary restriction x ∈ {0, 1} is
omitted. In general, a solution is found, despite the exponential computa-
tional complexity of these algorithms.

In the continuation, the In matrix will denote the identity matrix of
order n, whereas 0n×m and 1n×m will denote respectively a matrix of zeros
and ones, of n rows and m columns.

5.5.2 Linear MSO Set Selector

Clearly, the MSO set selector constraint presented in (5.7) is not linear
and therefore it cannot be casted as a linear inequality in (5.33). However,
replacing the product by a summation implies that the sum equals k when

Binary Integer Linear Programming for Sensor Placement 81

the MSO set is valid (ρi = 1),

k
∑

j=1

[wijqj + (1− wij)] = k ←→ The MSO set ωi is valid (5.35)

On the other hand, a non-valid MSO set ωi implies that there is at least
one term of the summation which equals zero and therefore the summation
is smaller than k. The following linear inequality holds as long as the MSO
set ωi is not valid (ρi = 0),

k
∑

j=1

[wijqj + (1− wij)] < k ←→ The MSO set ωi is not valid (5.36)

Now, a binary variable λi is introduced in the inequality (5.36) as follows:

k
∑

j=1

[wijqj + (1− wij)]− kλi ≥ 0 (5.37)

Given a non-valid MSO set, inequality (5.37) holds if and only if λi = 0
(according to (5.36)), whereas if the corresponding MSO set is valid then
the same inequality holds for both λi = 0 and λi = 1. This implies that

MSO set ωi is not valid −→ λi = 0 (5.38)

where the reverse of the implication clause is not necessary true. Hence, λi

can be viewed as a dummy variable in the optimisation problem where it
is forced to zero as long as the corresponding ωi is a non-valid MSO set.
Variable λi will be called the linear MSO set selector and plays the same
role as ρi in the BIP formulation.

Because equation (5.37) is linear, it can be extended to all the n MSO
sets, and written in matrix-vector form as







wi1 · · · wik

...
. . .

...
wn1 · · · wnk













q1
...
qk






− k







λ1
...

λn






+







β1
...

βn






≥ 0n×1 (5.39)

where βi =
∑k

j=1(1 − wij) for i = {1, · · · , n}. Finally, equation (5.39) can
be written in a compact form as

(

−W kIn

)

(

q

λ

)

≤ β (5.40)

where vector λ =
(

λ1 · · · λn

)T
is the set of linear MSO set selectors

and β =
(

β1 · · · βn

)T
is a vector of independent coefficients.

82 Chapter 5. Binary Integer Optimisation for Sensor Placement

5.5.3 Linear Fault Detectability and Isolability Constraints

Similar constrains to those presented in Section 5.2.3 are also defined here.
The main difference is that now there is a linear MSO set selector λ in
the optimisation vector, which is constrained by a linear inequality. Since
inequality constraints (5.11), (5.14), (5.16) and (5.18) are already linear,
there is no needed to modify them. Inequality (5.20) is not linear but a
straightforward linear equivalent representation will be introduced.

Moreover, since the constraints are linear, they can be written in matrix
form. Therefore, in this section, it is shown how to built such matrices based
on the elements of matrices W and V. It is assumed that the pair of indices
used for isolability constraints are lexicographically ordered2.

Lexicographical order is used to sort the Cartesian product of two or-
dered sets. Given two sets of ordered indices, then any pair of indices can
be ordered, according to the lexicographical order, as

(i1, i2) ≺ (j1, j2)↔ i1 < j1 or (i1 = j1 and i2 < j2) (5.41)

Process Fault Detectability

The constraint introduced in (5.11) for fault detectability is extended to all
l process faults in FDP

and written in compact form using the linear MSO
set selector,

(

0l×k −VT
)

(

q

λ

)

≤ −1l×1 (5.42)

Sensor Fault Detectability

Since the constraint (5.14) for sensor fault detectability is linear, it can be
extended to all sensors and written in compact form as

(

Ik −WT
)

(

q

λ

)

≤ 0k×1 (5.43)

Isolability between Process Faults

Let Cn
k be the number of k-combinations of a set with n elements,

Cn
k =

n!

(n− k)!k!
(5.44)

2The term lexicographical order is also known as dictionary order or alphabetic order.

Binary Integer Linear Programming for Sensor Placement 83

To introduce the isolability constraints involving all possible pairs of process
faults in FDP

, let matrix Vff = [vff im
] be an n× Cl

2 matrix such that

vff im
= |tij1 − tij2| ∀j1, j2 ∈ {1, . . . , l} : j1 < j2 (5.45)

where m indexes, in lexicographical order, the set of pairs (j1, j2).
From matrix Vff , constraint (5.16) can be extended to all combinations

of two process faults, and written in compact form as

(

0Cl
2×k −Vff

T
)

(

q

λ

)

≤ −1Cl
2×1 (5.46)

Isolability between Process and Sensor Faults

The constraint (5.18) for isolability between process and sensor faults can
be extended to all possible pairs involving one process fault and one sensor
fault, and written in compact form as

(

G2 −Vfs
T
)

(

q

λ

)

≤ 0l·k×1 (5.47)

where G2 is an (l · k) × k matrix, built from the concatenation of identity
matrices of order k as follows

G2 =
(

Ik Ik · · · Ik

)T
(5.48)

and Vfs = [vfsip
] is an n× (l · k) matrix such that

vfsir
= (vij1 − wij2)

2 ∀j1 ∈ {1, . . . , l},∀j2 ∈ {1, . . . , k} (5.49)

where r indexes, in lexicographical order, the Cartesian product of the pro-
cess fault set and the sensor fault set. For formulation convenience, the
indices concerning process faults are assumed to be lower ordered than the
indices concerning sensor faults.

Note that matrix G2 involves the sensor variable qj2 with the process
fault fj1, according to the index r used in (5.49).

Isolability between Sensor Faults

Linear constraints for isolability between sensor faults are derived from in-
equality (5.20). Remark that the right hand side of the inequality is not
linear. This can be easily solved by transforming that inequality into

n
∑

i=1

(wij1 − wij2)
2λi ≥ qj1 + qj2 − 1 (5.50)

84 Chapter 5. Binary Integer Optimisation for Sensor Placement

Now, both expressions are equivalent in the sense that the right hand side
of this expression equals 1 when both sensors are installed (qj1 = 1 and
qj2 = 1). Otherwise, the constraint is always fulfilled. So, the constraint in
(5.50) for isolability between two sensor faults is now linear.

To extend constraint (5.50) to all possible combinations of two sensors,
let the matrix Vss = [vssit

] of size n× Ck
2 be

vssit
= (wij1 − wij2)

2 ∀j1, j2 ∈ {1, . . . , k} : j1 < j2 (5.51)

where t indexes in lexicographical order the set of the Ck
2 sensor faults pairs.

Now, equation (5.50) can be extended to any combination of two sensor
faults, and written in compact form as

(

G3 −Vss
T
)

(

q

λ

)

≤ 1Ck
2×1 (5.52)

where matrix G3 involves the corresponding pair of sensors, according to
the indices j1 and j2. Thus, the matrix G3 is an Ck

2 × k matrix, built as

G3 =































1
...
1

Ik−1

0 1
...

...
0 1

Ik−2

...
0 · · · 0 1 1































(5.53)

5.5.4 BILP Optimisation for Sensor Placement

Once linear detectability and isolability constraints have been introduced
as linear inequalities, the optimal sensor placement for fault detection and
isolation is formulated as

min
(qT λ

T)T
(cT 01×n)

(

q

λ

)

subject to: (5.54)

Binary Integer Linear Programming for Sensor Placement 85



















−W kIn

0l×k −VT

Ik −WT

0Cl
2×k −Vff

T

G2 −Vfs
T

G3 −Vss
T



















(

q

λ

)

≤



















β

−1l×1

0k×1

−1Cl
2×1

0l·k×1

1Ck
2×1



















(5.55)

(qT λT) is binary (5.56)

where constraint (5.55) is the concatenation of (5.40), (5.42), (5.43), (5.46),
(5.47) and (5.52) respectively. For n MSO sets, l process faults and k sensors,
the number of rows (i.e. constraints) in (5.55) is n + l + k + Cl+k

2 , according
to:

• the MSO set selector constraints (5.40) involve n rows,

• the detectability constraints (5.42) and (5.43) involve l + k rows,

• the isolability constraints (5.46), (5.47) and (5.52) involve

Cl
2 + l · k + Ck

2 = Cl+k
2

rows.

This formulation is completely equivalent to the non-linear formulation
(5.24) presented in Section 5.3. It is worth noting that now the vector of
variables is extended to include the MSO set selector λ. This implies that the
cost vector is also extended. However, since the purpose of the optimisation
is to find the set of optimal sensors, the cost related to the λ is set to zero.
By doing this, the selected valid MSO sets in the optimisation problem have
no effect in the solution cost. Hence, λ is regarded as a dummy vector.

Example 5.8. Consider the same problem as the one presented in Exam-
ple 5.7. Then, the corresponding matrices W and V are

W =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 1 1 0
0 0 1 0
0 1 0 0
1 1 0 0
1 0 1 0
1 0 0 0
1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

; V =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0
0 1
0 1
1 0
1 0
1 1
0 0
1 0
1 0
1 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

86 Chapter 5. Binary Integer Optimisation for Sensor Placement

Note that the number of MSO sets is n = 10, the number of sensors to
install is k = 4 and the number of process fault is l = 2. To pose the MSO
set selector constraints according to (5.40) vector β is computed as

β =
`

2 3 3 2 2 3 2 2 2 3
´T

Now, matrices Vff , Vfs and Vss are computed according to (5.45), (5.49)
and (5.51),

Vff =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0
−1
−1
−1
−1

0
0

−1
−1

0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

;Vfs =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 −1 −1 0 0 −1 −1 0
0 0 −1 0 −1 −1 0 −1
0 −1 0 0 −1 0 −1 −1
0 0 −1 −1 −1 −1 0 0
0 −1 0 −1 −1 0 −1 0
0 −1 −1 −1 0 −1 −1 −1

−1 0 0 −1 −1 0 0 −1
−1 0 −1 0 0 −1 0 −1
−1 −1 0 0 0 0 −1 −1
−1 −1 −1 0 −1 −1 −1 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

;Vss =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

−1 −1 0 0 −1 −1
0 −1 0 −1 0 −1

−1 0 0 −1 −1 0
0 −1 −1 −1 −1 0

−1 0 −1 −1 0 −1
−1 −1 −1 0 0 0
−1 −1 0 0 −1 −1
−1 0 −1 −1 0 −1

0 −1 −1 −1 −1 0
0 0 −1 0 −1 −1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Finally, matrices G2 and G3 are built according to (5.48) and (5.53),

G2 =

0

B

B

B

B

B

B

B

B

B

B

@

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1

C

C

C

C

C

C

C

C

C

C

A

; G3 =

0

B

B

B

B

B

B

@

1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1

1

C

C

C

C

C

C

A

From all these matrices, and according to (5.54)-(5.56), the optimal sensor
placement problem for the compressor system is formulated as

Binary Integer Linear Programming for Sensor Placement 87

min
(q1···q4 λ1···λn)T

50q1 + 200q2 + 120q3 + 30q4 + 0λ1 + · · · + 0λ10

subject to:

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

0 −1 −1 0 4 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 4 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 4 0 0 0 0 0 0 0

−1 −1 0 0 0 0 0 4 0 0 0 0 0 0
−1 0 −1 0 0 0 0 0 4 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 4 0 0 0 0
−1 0 0 −1 0 0 0 0 0 0 4 0 0 0

0 −1 0 −1 0 0 0 0 0 0 0 4 0 0
0 0 −1 −1 0 0 0 0 0 0 0 0 4 0
0 0 0 −1 0 0 0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 −1 −1 −1 0 −1 −1 −1
0 0 0 0 0 −1 −1 0 0 −1 0 0 0 −1

1 0 0 0 0 0 0 −1 −1 −1 −1 0 0 0
0 1 0 0 −1 0 −1 −1 0 0 0 −1 0 0
0 0 1 0 −1 −1 0 0 −1 0 0 0 −1 0
0 0 0 1 0 0 0 0 0 0 −1 −1 −1 −1

0 0 0 0 0 −1 −1 −1 −1 0 0 −1 −1 0

1 0 0 0 0 0 0 0 0 0 −1 −1 −1 −1
0 1 0 0 −1 0 −1 0 −1 −1 0 0 −1 −1
0 0 1 0 −1 −1 0 −1 0 −1 0 −1 0 −1
0 0 0 1 0 0 0 −1 −1 −1 −1 0 0 0
1 0 0 0 0 −1 −1 −1 −1 0 −1 0 0 −1
0 1 0 0 −1 −1 0 −1 0 −1 0 −1 0 −1
0 0 1 0 −1 0 −1 0 −1 −1 0 0 −1 −1
0 0 0 1 0 −1 −1 0 0 −1 −1 −1 −1 0

1 1 0 0 −1 0 −1 0 −1 −1 −1 −1 0 0
1 0 1 0 −1 −1 0 −1 0 −1 −1 0 −1 0
1 0 0 1 0 0 0 −1 −1 −1 0 −1 −1 −1
0 1 1 0 0 −1 −1 −1 −1 0 0 −1 −1 0
0 1 0 1 −1 0 −1 −1 0 0 −1 0 −1 −1
0 0 1 1 −1 −1 0 0 −1 0 −1 −1 0 −1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

q1

q2

q3

q4

λ1

λ2

λ3

λ4

λ5

λ6

λ7

λ8

λ9

λ10

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

≤

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

2
3
3
2
2
3
2
2
2
3

−1
−1

0
0
0
0

−1

0
0
0
0
0
0
0
0

1
1
1
1
1
1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

(5.57)
`

q1 · · · q4 λ1 · · · λ10

´

is a binary vector (5.58)

where the dashed lines show the different matrices and vectors used in this
formulation.

This optimisation problem can be solved, for example, by either IBM
ILOG CPLEX or MATLAB. In this case the bintprog command of the
Optimization Toolbox in MATLAB is used. The result returned is

q =
(

1 0 1 1
)T

(5.59a)

88 Chapter 5. Binary Integer Optimisation for Sensor Placement

λ =
(

0 1 0 0 0 0 1 0 1 0
)T

(5.59b)

The result obtained is the same as in Example 5.7 (i.e. S∗ = {i,W, v}). The
difference is that the selected MSO sets are now ω2, ω7 and ω9. This is due
to the one-way implication in (5.38), which ensures that a non-valid MSO
set is never selected. However, not all valid MSO sets will be selected.

At the beginning of this section it was assumed that any detectable fault
was fully isolable from the others. If this is not the case (i.e. there are some
pairs of faults that are non-isolable in the diagnosis specifications F

2
I), then

it suffices to remove those row-constraints in (5.55) that are related to the
non-isolable pairs of faults.

The linear approach presented here can be easily extended to also cover
redundant sensors. In fact, the extra constraints introduced in Section 5.4
to handle redundant sensors are linear. Thus, the same constraints are also
applicable to the BILP formulation.

5.5.5 Sensor Placement and MSO Set Optimisation

Since the MSO set selector variable is now in the optimisation vector, it is
possible to extend the optimisation to the family of MSO sets. There may
exist several reasons for optimising the set of MSO sets. As an example of
different criteria for optimizing the set of MSO sets, consider the following:

• Minimising the number of the chosen MSO sets: set the same cost for
each MSO set.

• Minimising the complexity of the chosen MSO sets: set a cost propor-
tional to the number of equations involved in each MSO set.

• Maximising the isolability properties of the chosen MSO sets: set a
cost proportional to the number of (process and sensor) fault equations
contained in each MSO set.

Now, λ is not treated as dummy vector. Instead, cost for each MSO set is
included in the cost vector. Hence, the optimisation problem is reformulated
as

min
(qT λ

T)T
(cT cT

λ)

(

q

λ

)

subject to: (5.55) and (5.56) (5.60)

where vector cλ =
[

cλ1 · · · cλn

]T
is a column-vector of n elements stat-

ing the cost of the MSO sets.

Binary Integer Linear Programming for Sensor Placement 89

Fault Isolability Constraints for MSO Set Optimisation

A problem arises in the fault isolability constraints when both, sensors and
MSO sets, are optimised at the same time (as in (5.60)). Since not all the
possible MSO sets may be used (only the optimal MSO sets will be used),
the symmetric property of fault isolability (see Section 3.2) is no longer
ensured. This can be easily showed in the following example.

Example 5.9. Example 5.8 is used, but now the cardinality of the set of
selected MSO sets is also optimised (i.e. each MSO set has an associated
cost of 1). The problem is formulated as

min
(q1···q4 λ1···λ10)

50q1 + 200q2 + 120q3 + 30q4 + λ1 + · · ·+ λ10

subject to: (5.57) and (5.58)

The result is the same as in (5.59), S∗ = {i,W, v} and the set of optimal
MSO sets Ω∗ = {ω2, ω7, ω9}. Table 5.5 shows which fault equations are
included in each selected MSO set. In this table, it can be seen, for example,
that process fault fp

2 (related with e3) is not isolable from a fault in sensor
W since there is no MSO set ω in Ω∗ such that

e3 ∈ ω ∧ eW 6∈ ω (5.61)

However, a fault in sensor W is isolable from process fault fp
2 since ω9

contains eW but not e3.

e2 e3 ei eW ev

ω2 × ×
ω7 × ×
ω9 × × ×

Table 5.5: Fault equations contained in the optimal selected
MSO sets.

As the example shows, the symmetric property does not hold as long
as residual exoneration (Travé-Massuyès et al., 2006) is not assumed. The
residual exoneration assumption is adopted when it can be guaranteed that
a fault always affects the residual by exceeding its threshold. However, this

90 Chapter 5. Binary Integer Optimisation for Sensor Placement

is not very realistic in practical situations, since a fault may not always
exceed the residual generator threshold under noise or model uncertainty.
Then, the isolability constraints must be reformulated in order to handle
the isolability specification when MSO set optimisation is desired within the
BILP formulation.

The new isolability constraint formulation can be deduced directly from
Corollary 3.2. Let fp

j1
and fp

j2
be two process faults, then fp

j1
is isolable from

fp
j2

if
n
∑

i=1

vij1(1− vij2)λi ≥ 1 (5.62)

This constraint is satisfied as long as there is at least one valid MSO set (λi =
1) such that it contains the fault fp

j1
equation (vij1 = 1) but not the fault

fp
j2

equation (vij2 = 0). Constraint (5.62) is the counterpart of constraint
(5.16). From this, it can be easily deduced the following constraints:

• A process fault fp
j1

is isolable from a sensor fault f s
j2

fault if

n
∑

i=1

vij1(1− wij2)λi ≥ qj2 (5.63)

• A sensor fault f s
j1

fault is isolable from a process fault fp
j2

if

n
∑

i=1

wij1(1− vij2)λi ≥ qj1 (5.64)

These two constraints, (5.63) and (5.64), are the counterpart of (5.18).

• A sensor fault f s
j1

fault is isolable from a sensor fault f s
j2

fault if

n
∑

i=1

wij1(1− wij2)λi ≥ qj1 + qj2 − 1 (5.65)

which is the counterpart of constraint (5.20).

Now, since the symmetric property does not hold, given two faults, f1

and f2, it is required to check whether f1 is isolable from f2 as well as f2

is isolable from f1. As a consequence, the number of constraints concerning
isolability is extended to the number of permutations of two faults from the
set of l + k detectable faults, P l+k

2 . Recall that, beforehand, the number of

Conclusions 91

isolability constraints was at most Cl+k
2 . Now, optimising sensors and MSO

sets requires at most two times more isolability constraints,

P l+k
2 =

(l + k)!

(l + k − 2)!
= 2Ck+l

2 (5.66)

5.5.6 BILP for MSO Set Optimisation

The BILP formulation could also be used to only optimise the set of MSO
sets by omitting the sensor placement problem. Given a sensor configura-
tion, not all possible MSO sets are needed to implement a diagnosis system.
Usually, a reduced set of MSO sets is sufficient. In this situation the best
MSO sets can be chosen by performing such optimisation, based on a crite-
rion as those proposed in Section 5.5.5.

Given a set of n MSO sets Ω and a set of l detectable and fully isolable
faults in Ω, the optimal MSO sets are sought such that the diagnosis speci-
fications are preserved. This problem can be easily solved by the following
BILP formulation,

min
λ

cT
λλ subject to: (5.67)

(−VT

−V′
ff

T

)

λ ≤
(−1l×1

−1Pl
2×1

)

(5.68)

λ is binary (5.69)

where V′
ff is an n×P l

2 matrix, built from (5.62) by using all P l
2 fault pairs.

Note that now there is no distinction between process and sensor faults. A
sensor fault is regarded as a process fault since sensors are assumed already
installed in the system.

5.6 Conclusions

The optimal sensor placement problem for fault diagnosis has been presented
as a binary integer optimisation problem. This allows us to solve the problem
by means of standard algorithms included in powerful packages devoted
to non-linear programming. Therefore, there is no need to cope with the
optimal search since these tools apply internal heuristics in order to make
the search as efficient as possible. However, the nature of the problem is
combinatorial, which means that the time required to find a solution is, in
general, exponential with the number of variables to optimise.

92 Chapter 5. Binary Integer Optimisation for Sensor Placement

In any case, the main drawback of this approach is the need of generating
all the MSO sets with all the sensors installed, i.e. the set ΩS. Note that
computing ΩS can be troublesome for systems with a large set of candidate
sensors, since the number n of MSO sets grows exponentially with the re-
dundancy degree of the system. In fact, this is usually the main limitation
of this approach for systems with a large number of candidate sensors, since
the number of all possible MSO sets becomes extremely large. In general,
it can be stated that if the set ΩS can be generated, then binary integer
programing for sensor placement can be applied with no computational re-
striction. However, when generating all MSO sets is not feasible, the method
can still be applied if only a reduced number of MSO sets is considered.

The same problem has been reformulated by using linear constrains.
Similar conclusions can be drawn for the linear approach. The difference is
that standard algorithms developed for linear integer programming can be
used. Furthermore, due to the fact that the MSO set selector variable, λ,
needs to be included in the optimisation vector, the optimisation is extended
to cover both sensors and MSO sets. Hence, the optimal set of sensor to
be installed for a given diagnosis specifications and the optimal set of MSO
sets to be implemented in the diagnosis system can be obtained in one step.
However, the computational complexity is increased. Furthermore, to carry
out this double optimisation, fault isolability constraints are reformulated
since the symmetric property of fault isolability is lost when not all possible
MSO sets are considered in the final solution. This can be avoided if residual
exoneration is assumed, though Definition 3.3 is no longer valid.

In the present approach, sensor redundancy is introduced without re-
computing any new MSO set in both, non-linear and linear, approaches.
Moreover, detectability and isolability for both, process and sensor faults,
are addressed as diagnosis specifications. However, the method could be
extended to other diagnosis specifications. The only requirement is that
these extra specifications should be based on MSO sets and expressed as
non-linear inequality constraints in the case of non-linear BIP and as linear
inequality constraints in the case of BILP.

Chapter 6

Sensor Placement for

Causally Computable MSO

Sets

In this chapter, a methodology to solve a particular case of the sensor place-
ment problem for fault detection and isolation is addressed. This particular
case deals with the causal computability of unknown variables in the residual
computation.

The causal computability of unknown variables is a key issue when deriv-
ing residuals for complex systems. Those systems usually involve non-linear
equations that must be solved when implementing residual generators. Ad-
dressing the causal computation of the unknown variables in each MSO set
guarantees that a residual generator can be directly implemented from an
MSO set. However, the disadvantage of this approach is that only a sub-class
of MSO sets can be used for this purpose. The sensor placement problem for
causally computable MSO sets is also addressed in order to find the sensors
such that this required sub-class of MSO sets can be generated.

6.1 Causal Computability on Residual Generation

In structural model based diagnosis, consistency may be checked by using
a set of redundant sub-models (i.e. MSO sets of equations). A residual
generator can be implemented from an MSO set by computing the internal
unknown variables through a convenient manipulation of the equations and
later checking consistency in a redundant equation. This concept is known
(Blanke et al., 2006) as a causal interpretation of the computability. The re-

93

94 Chapter 6. Sensor Placement for Causally Computable MSO Sets

sult is a directed bi-partite graph, named computation sequence, that shows
how internal values can be computed from the equations (value propagation)
in every redundant sub-model. However, to guarantee that the residual is
generated by using non-linear equations, the structural model framework
needs to be adapted in order to handle causal computability. Few works
focus this causal assignment in the fault diagnosis field. For instance, in
(Ploix et al., 2008) causality is taken into account in the computation of
the set of redundant sub-models. In (Svärd and Nyberg, 2008) causality is
treated in derivative and integral computations by considering which solver
tools are available, whereas in (de Flaugergues et al., 2009) the causality of
invertible function is fitted in the structural analysis.

An MSO set of equations has the property of a complete matching in
the unknown variable set, plus an extra non-matched equation named the
redundant equation. This redundant equation is used for checking consis-
tency. As an example, assume the following MSO set (6.1), consisting of
three equations (e1, e2 and e3), where {y1, y2} are the known variable set
and {x1, x2} are the unknown variable set. A possible complete matching of
the unknown variable set into the equation set is {(e1, x1), (e2, x2)}, so that
the redundant equation is e3.

e1 : x1 = h1(y1)
e2 : x2 = h2(x1, y2)
e3 : h3(x1, x2, y1) = 0

(6.1)

As mentioned above, one way to obtain a residual from this MSO set
is building the computation sequence, which tells how to compute the un-
known variables. Following with the example, the matching is interpreted
as e1 solves x1 and e2 solves x2. Figure 6.1 shows the computation sequence
derived from this matching. Now, the internal values can be straightfor-
wardly propagated, according to the computation sequence, to compute the
residual as

r(y1, y2) = h3(h1(y1), h2(h1(y1), y2), y1) (6.2)

where,
{

r(y1, y2) ≃ 0 means that there is consistency
r(y1, y2) 6≃ 0 means that there is no consistency

(6.3)

Using this procedure when designing residual generators in complex sys-
tems gives an intuitive idea on how the residual can be computed. However,
solving a certain variable in a non-linear equation could be a hard task or
even could not be possible, which ultimately poses restrictions on the resid-
ual generator design. This means that not all matchings can be used to

Causal Computability on Residual Generation 95

y2

y1

e1

x1
e2

x2

e3

r(y1, y2)

Figure 6.1: Computation sequence.

design a residual generator. For instance, now consider that the matching
is {(e3, x1), (e2, x2)} in (6.1). Assume that x1 cannot be expressed as an
explicit variable in e3. Thus, the value of x1 cannot be directly computed
from x2 and y1. So, other tools (e.g. numeric solvers, symbolic manipulation
of formulae, etc.) should be used to compute x1. Therefore no computation
sequence can be derived from this matching.

Most of the previous works, that have addressed this topic, state that
it suffices the existence of a computation sequence to be able to compute
a residual by means of value propagation. However, these works allow the
existence of loops inside the computation sequence, which does not guarantee
that the computations can be performed. This is shown in next example.
Consider the set of non-linear equations (6.4), where x1 and x2 are unknown
variables and y1 and y2 are known variables.

e1 : h1(x1, x2, y1) = 0
e2 : h2(x1, x2, y2) = 0
e3 : h3(x1, x2) = 0

(6.4)

Assume that x1 can be computed by means of e1 and x2 can be computed
by means of e2. A causal matching exists, {(e1, x1), (e2, x2)}, and therefore
the corresponding computation sequence (see Figure 6.2) can be derived.
This means that e1 and e2 can be rearranged as

e′1 : x1 = g1(x2, y1)
e′2 : x2 = g2(x1, y2)

(6.5)

Then, propagating variable x2 into the first equation,

x1 = g1(g2(x1, y2), y1) (6.6)

where x1 may not be directly computable as an explicit variable. This
situation arises since the computation sequence in Figure 6.2 contains the

96 Chapter 6. Sensor Placement for Causally Computable MSO Sets

y2

y1

e2

e1

x2

x1 e3

r(y1, y2)

Figure 6.2: Computation sequence with loop.

following loop,

e1 → x1 → e2 → x2 → e1 (6.7)

which imposes that variables x1 and x2 should be instantiated at the same
time since the value of x1 depends on x2 and vice versa.

This kind of loops is known as algebraic loops. It is not always possible
to break an algebraic loop and find an analytical expression that solves the
unknown variables. An algebraic loop can be solved using other methods like
numeric solvers or non-linear optimisation. However, there is no guarantee
that these methods find the solution (numeric solvers might not converge
and non-linear optimisation might find a local optimum) or the time needed
to find the solution can be large. On the other hand, from a structural point
of view, it is not possible to know if a given algebraic loop can be broken to
derive an explicit analytical expression that permits to solve the unknown
variables.

Therefore, residual generators that depend on submodels that imply the
inverse computation of non-invertible functions will be excluded. Further-
more, equation subsets that involve both, algebraic and differential, loops
in the computation sequence will be excluded as well. So that, no complex
solving tools will be needed and the residual computation will be ensured.
On the other hand, to keep the simplicity of the approach and at the same
time reduce the restrictiveness, sub-models including linear loops will not be
excluded, since solving linear equations is not a complex task. In order to
cope with causalities in the unknown variable computation, existing struc-
tural methods for finding sub-models and computational sequences have to
be modified.

The main objective of this approach is to perform diagnosis analysis and
sensor placement by taking into account a class of residual generators that

Causal Structural Model 97

are particularly easy to implement in a diagnosis system based on non-linear
system models.

6.2 Causal Structural Model

Knowing when an MSO set can be used to generate a residual (using the
computation sequence with no loops, described in the previous section) re-
quires to know which variables can be computed and those that can not be
computed in each equation of the model. In this section, it will be shown
that this information can be fitted in the structural model by defining a
class partition on the set of edges.

In non-linear equations, unknown variables can not always be computed
as a function of the others. For instance when non-invertible functions are
considered. This leads to introduce the definition of a causally computable
variable (or causal variable).

Definition 6.1 (Causal variable). Let h(X) = 0 be an equation of the
model. Variable xi ∈ X is causal in h, if xi can be computed using h,
assuming that the remaining variables, X \ xi, are known. It is said that
there is a causal relation between xi and h.

From Definition 6.1 it holds that equation h can never be used in the
computation sequence to compute non-causal variables. Furthermore, as
discussed in the previous section, causal variables involved in loops are also
non-computable, except for loops where all the equations are linear with al-
gebraically independent coefficients. This motivates the following definition.

Definition 6.2 (Linear variable set). Let h(X) = 0 be an equation of the
model. A set of variables Xi ⊆ X is linear in h if h can be arranged as
L(Xi) + g(X \Xi) = 0 and |Xi| > 1, where L is a linear function. It is said
that there is a linear relation between Xi and h.

Note that considering one single variable as a linear variable in an equa-
tion does not make sense. Linear variables are meant to be considered for
identifying linear algebraic loops, and one single linear variable never forms
a linear loop. Thus, linear relations are considered whenever two or more
linear variables appear in the same equation.

Returning to the set of equations (6.5), assume now that x1 and x2 are
linear variables in both equations. This means that they can be arranged
as e1 : L1,1(x1) + L1,2(x2) = f1(y1) and e2 : L2,1(x1) + L2,2(x2) = f2(y2).
Then, as long as [L1,1 L2,1]′ and [L1,2 L2,2]′ are linearly independent,

98 Chapter 6. Sensor Placement for Causally Computable MSO Sets

unknown variables can be easily computed or the loop can be broken (e.g.
inverting the matrix or using the Gaussian elimination method).

From the discussion so far, it can be concluded that a set of unknown
variables will be computed in a computable sequence as long as the following
two conditions hold:

Condition 1: There exists a complete matching on the unknown variables
such that there is a causal relation between all equation-variable pairs
in the matching.

Condition 2: There are no loops involving causal and/or non-causal vari-
ables. The only loops that can appear must just involve linear vari-
ables.

Condition 1 ensures the existence of a computation sequence. Condi-
tion 2 ensures that the corresponding computation sequence has no loops
involving non-linear equations.

The causal structural model is now formalised as a bipartite graph where
M = {. . . , ei, . . . } is the vertex set of model equations, X = {. . . , xj , . . . }
the vertex set of unknown variables, and A the set of edges, such that
(ei, xj) ∈ A as long as xj ∈ X appears in equation ei ∈M . Information on
causal and linear relations can be well fitted in the structural model by an
equivalent class partition on the set of edges, such that

A = AL ∪A× ∪A∆ (6.8)

where, according to the previous definitions:

• AL = {(e, x) ∈ A | x is a linear variable in e}. This class of edges will
be represented in the biadjacency matrix by an “L” symbol.

• A× = {(e, x) ∈ A | x is a causal (but not linear) variable in e}. The
cross,“×”, symbol will be used to represent this class of edges.

• A∆ = A\(AL∪A×). This class gathers the remaining subset of edges,
where a (e, x) ∈ A∆ means that the unknown variable x can not be
computed (is non-causal) in e. This relation will be represented by a
“∆” symbol in the biadjacency matrix.

This approach differs from previous works on causal computability in
the fact that now loops in the computation sequence are taken into account.
This allows rejecting a special class of loops (those that involve non-linear

Extracting the Causally Computable Part 99

equations) in the computation sequence, whereas loops involving linear re-
lations are preserved.

Knowing when a variable can be causally computed in an equation may
depend on the application and the required specifications. For instance,
computing the derivatives of a variable with respect to the time is not de-
sirable whenever measurements contain noise. On the other hand, when
measurements are smooth or properly filtered, computing derivatives might
be possible. Stating when a variable can be considered computable is out
of the scope of this approach. Here generic tools to handle causality are
presented and it is assumed that the causal assignment is given.

6.3 Extracting the Causally Computable Part

Given a structural model, it should be known whether a set of unknown
variables can be computed when causal and linear relations are considered
(according to Conditions 1 and 2). Let G = (M,X;A) be a causal structural
model. First, for the sake of simplicity, assume that there are no linear
relations (i.e. A = A× ∪ A∆). Condition 1 holds if there exist a complete
matching MX

G in X, such that

MX
G ⊆ A× (6.9)

Let ∂MMX
G be the subset of equations in M incident to edges in MX

G .
Then, Condition 2 holds if the just-determined sub-graph G′ ⊆ G such that

G′ = (∂MMX
G ,X;A′) (6.10)

has no loops involving edges inMX
G . This is equivalent to say that there is

no consistent component (see Section 2.3), Gk ⊆ G′(= G′0) for k = 1, . . . , b,
that contains more than one equation,

|Mk| = |Xk| = 1 k = 1, . . . , b (6.11)

for Gk = (Mk,Xk;A′), Mk ⊆ ∂MMX
G and Xk ⊆ X.

If a complete matching with such properties exist then the set of un-
known variables, X, can be computed using the computation sequence with-
out loops. Note that, this means that the set of equations and the set of
variables can be rearranged such that the biadjacency matrix has a trian-
gular form with a diagonal of “×” symbols. Figure 6.3 shows this pattern
where all unknown variables can be evaluated.

100 Chapter 6. Sensor Placement for Causally Computable MSO Sets

×
×
···
×
×

x1 x2 · · · xm

X

e1

e2

...

em

∂MMX
G

em+1

...

en

M \ ∂MMX
G

Figure 6.3: Causally computable structure with no linear
relations.

Algorithm 6.1 searches for the set of equations EC ⊆M that can be used
to compute the causal variables in X. This is iteratively done by finding
equations that only contain one causal variable,

e ∈M : |varX(e)| = 1 ∧ {e, varX(e)} ∈ A× (6.12)

Note that, according to (6.9) and (6.12), it holds that

(e, varX(e)) ∈MX
G

After finding equation e, the graph is pruned and the algorithm continues
searching for more equations until no more equation-variable pairs can be
found. Finally, the algorithm returns the set of equations, EC , containing
all the equations in M that can be used to compute the set XC of causal
variables. A similar algorithm to find a matching with no loops, called
ranking algorithm, was presented in (Blanke et al., 2006).

Here, it is assumed that a set of variables can be solved if every variable
can be matched to an equation using a causal edge (Condition 1 holds) and
there are no algebraic loops (Condition 2 holds), so any consistent component
concerning more than one equation-variable pair is rejected.

Now, assume that linear relations are considered (i.e. A = AL∪A×∪A∆).
Since a subset of linear variables can be solved in an algebraic loop, no
restrictions are applied for linear relations.

Extracting the Causally Computable Part 101

Algorithm 6.1 EC = CausalModel(M,X)

XC := ∅
while ∃e ∈M : |varX(e)| = 1 ∧ (e, varX(e)) ∈ A× do

X := X \ varX(e)
XC := XC ∪ varX(e)

end while

EC := {e ∈M | varX(e) ⊆ XC}

Since linear variables and their relations are of interest, the set of equa-
tions, EL, that depends on these linear variables is first identified

EL = {e ∈M | (e, x) ∈ AL;∀x ∈ varX(e)} (6.13)

The Dulmage-Mendelsohn decomposition can be applied to determine
the subset of computable variables in a causal structural model. In fact,
given the set EL of linear equations, the equations in the just-determined
and over-determined parts can be used to compute linear variables, whereas
the equations in the under-determined can not. Thus, the set of equations
EL to compute linear variables is determined as

EL = E0
L ∪ E+

L (6.14)

Remark that this holds under the assumption that the linear coefficients
of these equations are algebraically independent. Note that, according to
(2.29), the linear computable variables XL ⊆ X can be directly determined
as

XL = varX(EL) = varX(E0
L) ∪ varX(E+

L) (6.15)

Algorithm 6.2 summarises how to compute the set of equations, EL.

Algorithm 6.2 EL = LinearModel(M,X)

EL := {e ∈M | (e, x) ∈ AL;∀x ∈ varX(e)}
EL := (E0

L ∪ E+
L)

The diagonal matching presented in Figure 6.3 can be now improved
by taking into account the set of linear computable variables. The result-
ing structural decomposition is shown in Figure 6.4 where the triangular
form remains, but now the consistent components can take more than one
equation-variable relation as long as the variables are linear. The unknown
variables X ⊆ X involved in this matching are computable. The equations
in E ⊆M can be used to compute X and are determined as

E = {e ∈M | varX(e) ⊆ X} (6.16)

102 Chapter 6. Sensor Placement for Causally Computable MSO Sets

×
L

×···
L L

L L

×

XX \ X

E

M \ E

Figure 6.4: Computable structure with causal and linear
relations.

The corresponding sub-graph (E ,X ;A′) in Figure 6.4 will be called the
causally computable sub-model.

Algorithm 6.3 finds the causally computable sub-model E of model M .
This is done by iteratively alternating between Algorithm 6.1 and Algo-
rithm 6.2, and pruning the graph in both sets (the set of equations and
the set of variables) until no more computable equations, either causal or
linear, can be found. Afterwards, the set X of computable variables can be
determined from E as

X = varX(E) (6.17)

Algorithm 6.3 E = ComputableModel(M)

E := ∅
X = varX(M)
repeat

EC := CausalModel(M \ E ,X)
X := X \ varX(EC)
E := E ∪ EC
EL := LinearModel(M \ E ,X)
X := X \ varX(EL)
E := E ∪ EL

until EC ∪ EL = ∅

From the discussion above, it is clear that all remaining equations, M \E ,
are not useful anymore in this approach, since they contain variables, X \X ,

Detectability and Isolability with Causal Relations 103

that can not be computed in a computation sequence. Furthermore, remark
that extracting the computation sequence given by sub-graph (E ,X ;A),
(decomposed as in Figure 6.4) is straightforward since now the matching-
diagonal establishes a true interpretation of which equation solves each vari-
able.

6.4 Detectability and Isolability with Causal Re-

lations

This section is devoted to explain how to determine the set of detectable
faults and the set of isolable faults when causal computations are taken into
account in the residual computation.

Clearly, there exists a complete matching in the variables of the causally
computable sub-model E , see Figure 6.4. Hence, there is no under-determined
part in E (i.e. E− = ∅). Remark that this matching is a causal matching,
all the edges represent either causal relations with no loops or linear rela-
tions with possible loops. Because the matching is complete, it follows that
the over-determined set of equations, E+, contains part of this matching
(variables in E+ are also causally computable). In fact, E+ is the part of
the model that is causally computable and contains redundancy. Fault di-
agnosis analysis based on the Dulmage-Mendelsohn decomposition can be
performed on the equation set E .

6.4.1 Causal Structural Detectability

According to Theorem 3.1, all fault equations in the over-determined part
correspond to detectable faults. The same argument can be applied to the
causally computable sub-model E of the model M when causal computations
are considered. Thus, fault detectability in the causal framework is next
defined.

Definition 6.3 (Causally detectable fault). A fault f is causally detectable
in a structural model M if the corresponding fault equation ef is in the
over-determined part of the causally computable sub-model,

ef ∈ E+ (6.18)

where E = ComputableModel(M), according to Algorithm 6.3.

Given a causal structural model M and a set F of faults, Algorithm 6.4
finds all causally detectable fault equations. The algorithm first computes

104 Chapter 6. Sensor Placement for Causally Computable MSO Sets

the causally computable model E by means of Algorithm 6.3, and then
expression (6.18) is applied to find the causally detectable fault equations,
MFD

⊆M.

Algorithm 6.4 MFD
= CausalDetectability(M,MF)

E := ComputableModel(M)
MFD

:= E+ ∩MF

The set of causally detectable faults FD can be directly determined from
its corresponding fault equation set,

FD = {f ∈ F | ef ∈MFD
} (6.19)

6.4.2 Causal Structural Isolability

Isolability analysis is based on Theorem 3.2. Given a model M and a set of
detectable faults FD, a fault fi ∈ FD is structurally isolable from fj ∈ FD

if fj is detectable in the sub-model M \ {fi}. The same reasoning can be
applied to fault isolability when causal computations are considered.

Definition 6.4 (Causally isolable fault). A fault fi is causally isolable from
a fault fj in a structural model M , if fault fi is causally detectable in the
causally computable sub-model of M \ {efj

},

efi
∈ E+

fj
(6.20)

where Efj
= ComputableModel(M \ {efj

}), according to Algorithm 6.3.

Now, the symmetric isolability property (see Section 3.2) does not hold
for causal isolability (a fault fi that is causally isolable from a fault fj does
not imply that fj is causally isolable from fi) since the causally computable
sub-model is not preserved when removing different non-isolable fault equa-
tions. Consequently, isolability characterisation F

2 cannot be applied in the
causallythe computable framework. This is illustrated in the next example.

Example 6.1. Assume the following causal structural model represented
in Table 6.1 with M = {e1, e2, e3, e4}, where the causally detectable faults
f1 and f2 affect respectively equations e1 and e2 (ef1 = e1 and ef2 = e2).
Applying Algorithm 6.3 for M \ {e1} and M \ {e2} yields

Ef1 = ComputableModel((M \ {e1}) = {e2, e3, e4}
Ef2 = ComputableModel((M \ {e2}) = {e4}

Detectability and Isolability with Causal Relations 105

x1 x2

f1 → e1 ∆ ∆
f2 → e2 × ×

e3 ∆ ×
e4 ×

Table 6.1: Non-symmetric isolability example.

Then, the over-determined part of each set is computed by means of the
DM-decomposition,

E+
f1

= {e2, e3, e4}
E+

f2
= ∅

where, according to Definition 6.4, f2 is isolable from f1 whereas the reverse
does not hold. Thus, the symmetry property is not satisfied.

Algorithm 6.5 computes the causally isolable faults for each fault in FD.
First, the algorithm computes the causally computable sub-model from the
equation set M \ {ef} and then finds the causally isolable faults from f by
applying (6.20).

Algorithm 6.5 MFI
= CausalIsolability(M,MF)

M
F
1
I

:= ∅
for all ef ∈MF do

Ef = ComputableModel((M \ {ef})
MFI

(f) := E+
f ∩MF

end for

The output of Algorithm 6.5 is a family of fault equation sets where each
MFI

(f) contains the fault equations corresponding to the faults that are
isolable from f . Therefore, the family of isolable sets F

1
I = {. . . , FI(fi), . . . }

can be built as

FI(fi) = {f ∈ F | ef ∈MFI
(fi)} (6.21)

106 Chapter 6. Sensor Placement for Causally Computable MSO Sets

6.5 Sensor Placement based on Causal Relations

Given a causal structural model, the causal detectability and isolability of
the model can be computed by using Algorithms 6.4 and 6.5, respectively.
In this section, a method to solve the sensor placement when causal compu-
tations are considered will be introduced.

Sensors are chosen for installation by adding their corresponding sensor
equation to the system equation set. Remark that now a causal relation
exists between a sensor equation es and the unknown variable that becomes
measured,

(es, varX(es)) ∈ A× (6.22)

6.5.1 Maximum Causal Detectability and Isolability Specifi-

cations

According to Section 3.4, maximum detectability specification is ensured
when all candidate sensors are installed in the system. Hence, causally
detectable faults and causally isolable faults can be determined beforehand.
However, there may be some useless sensors that do not improve diagnosis
capabilities when causality is taken into account. Let ES be the causally
computable model of a structural system model M with all possible sensors
S installed in the system, (i.e. ES = ComputableModel(M ∪MS)). Then
the set of useful sensors S0 ⊆ S is determined according to

S0 = {s ∈ S | es ∈ E+
S } (6.23)

Therefore, there is no need to consider further sensors from S \ S0 in the
sensor placement analysis when causality is considered.

Given a structural model M of the system and the set of faults F (in-
volving both, process faults FP and sensor faults FS, i.e. F = FP ∪ FS),
maximum causal detectability is computed by Algorithm 6.4 when all useful
sensors S0 are chosen for installation,

MFDmax
= CausalDetectability((M ∪MS0),MF) (6.24)

Then, maximum causally detectable faults are determined by

FDmax = {f ∈ F | ef ∈MFDmax
} (6.25)

Remark that all useful sensor faults are causally detectable since E+
S ⊆

MFDmax
holds.

Sensor Placement based on Causal Relations 107

Maximum causal isolability is also determined when all sensors S0 are
installed in the system. Thus, Algorithm 6.5 can be used to compute the
maximum causal isolability among the maximum detectable faults,

MFImax
= CausalIsolability((M ∪MS0),MFDmax

) (6.26)

Then, maximum causal isolability F
1
Imax

= {. . . , FI(fi), . . . } is determined
by

FI(fi) = {f ∈ F | ef ∈MFImax
(fi)} (6.27)

In the following, maximum causal detectability, FDmax , and maximum
causal isolability, F

1
Imax

, will be the assumed diagnosis specifications for the
sensor placement problem when causal computations are considered in the
residual implementation. However, remark that lower specifications than
the maximum ones could also be used in this approach. Furthermore, for
notational convenience, it will be assumed that non-useful sensors have been
removed before the sensor placement analysis (i.e. S , S0).

6.5.2 Sensor Placement Algorithm

The main idea to solve the sensor placement problem is computing causally
detectable faults and the causally isolable faults for a given sensor configu-
ration and then test whether these faults fulfil the diagnosis specifications.
Let Sk ⊆ S be a sensor configuration. Then, the causally detectable faults
are computed as

MFD
= CausalDetectability((M ∪MSk

),MFDmax
) (6.28)

Recall that detectable faults of the non installed sensors should not be
considered. Then, causal detectability specifications are fulfilled as long as
it holds that

MFD
= MFDmax

\MS̄k
(6.29)

where MS̄k
are the sensor equations of the not installed sensors, S̄k = S\Sk.

Expression (6.29) is fulfilled as long as all process faults and all sensors Sk

faults in MFDmax
are detectable.

Causal isolability can be similarly reasoned. Let MFI
be the causal

isolability for sensor configuration Sk,

MFI
= CausalIsolability((M ∪MSk

),MFDmax
) (6.30)

Then, the causal isolability specifications are fulfilled if

MFI
(f) = MFImax

(f) \MS̄k
∀f : ef ∈MFD

(6.31)

108 Chapter 6. Sensor Placement for Causally Computable MSO Sets

A procedure P similar to the one introduced in (3.58) is designed. Now,
the diagnosis specifications to be fulfilled are maximum causal detectability
and isolability of both process and installed sensor faults. Algorithm 6.6
summarises all this procedure and returns a logic value: 1 if the diagnosis
specifications are fulfilled and 0 otherwise.

Algorithm 6.6 isFeasible(Sk,S,M,MFDmax
,MFImax

)

S̄k := S \ Sk

MFD
= CausalDetectability((M ∪MSk

),MFDmax
)

if MFD
6= MFDmax

\MS̄k
then

return 0 % Causal detectability specifications are not fulfilled

end if

MFI
= CausalIsolability((M ∪MSk

),MFDmax
)

for all ef ∈MFD
do

if MFI
(f) 6= MFImax

(f) \MS̄k
then

return 0 % Causal isolability specifications are not fulfilled

end if

end for

return 1 % Causal detectability and isolability specifications are fulfilled

The same search strategy adopted for the incremental approach in Algo-
rithm 4.1 is here applied but now using Algorithm 6.6 to verify the diagnosis
specifications. Algorithm 6.7 performs the optimal sensor search for maxi-
mum causal detectability and isolability specifications.

Algorithm 6.7 S∗ = CausalSensorPlacement(M,S, C,MFDmax
,MFImax

)

k := 1
repeat

Sk := arg min
Sk⊆S
{C(Sk) : Sk ∈ (2S \ k−1∪

l=1
{Sl})}

k := k + 1
until isFeasible(Sk,S,M,MFDmax

,MFImax
) = 1

S∗ := Sk

The algorithm first chooses the set of sensors with the fewest cost, Sk,
not previously chosen and then tests whether the set of causally detectable
and isolable faults, computed for the sensor configuration Sk, satisfy the
maximum causal detectability and isolability specifications. If satisfied, then
the solution is found. Otherwise the algorithm continues searching for the
next set of sensors until the optimal solution is found.

Sensor Placement based on Causal Relations 109

It is worth noting that no MSO set is generated for this approach. There-
fore the MSO set computation burden is avoided. Note also that the same
algorithm can be applied when causality is not considered. This would imply
modifying Algorithm 6.6 in order not to consider causality.

6.5.3 Redundant Sensor Extension

Extending the approach to handle redundant sensors can be straightfor-
wardly done by increasing the initial set of sensors to also cover the redun-
dant sensors, i.e. S ∪ S′. However, as in the other approaches, considering
redundant sensors increases the number of sensor combinations to test and
therefore the computing time of the algorithm is, in general, exponentially
increased. How redundant sensors affect the causal detectability and isola-
bility properties of the system will be next investigated.

Let ES0 be the computable part of the system model when a set of useful
sensors S0 is installed, and let ES0∪{es′}

be the causally computable part
of the same model when an extra redundant sensor s′ is added. Since a
redundant sensor can only be used to compute an already measured variable,
no new variables are computed by installing redundant sensors. This implies
that

ES0∪{es′}
= ES0 ∪ {es′} (6.32)

From this expression, it is easy to see that installing redundant sensors does
not contribute to improve the causal detectability nor the causal isolability
of process faults. Furthermore, according to (6.23), MS0 ⊆ ES0. Thus
expression (6.32) can be rewritten as

ES0∪{es′}
= (ES0 \MS0) ∪MS0 ∪ {es′} (6.33)

which is equivalent to expression (3.44). Therefore, Theorem 3.4 also holds
for the causal approach. Consequently, when a sensor and its corresponding
redundant sensor are installed in the system, it can be concluded that both
sensor faults are causally detectable, and moreover any causally detectable
fault is causally isolable from any of these two sensor faults. This means that
Algorithm 6.6 does not need to verify whether the diagnosis specifications
concerning a sensor and its redundant sensor faults are fulfilled, since ac-
cording to the above discussion, they become automatically detectable and
isolable from any other fault.

110 Chapter 6. Sensor Placement for Causally Computable MSO Sets

6.6 Optimal Sensor Search Improvement

The optimal sensor search in Algorithm 6.7 is now improved by designing
an ad-hoc algorithm. This algorithm uses two heuristics based on properties
of sensor placement for diagnosis.

The first heuristic is related with the monotonicity of the sensor cost
function. The second heuristic entails a restriction on the type of faults to
be considered.

Heuristic 1: Given two sensor sets, S1 and S2, such that S1 ⊂ S2, then it
holds that

C(S1) < C(S2) (6.34)

Heuristic 2: As long as only process faults are considered, if S1 is not a
solution for the sensor placement then any sensor set S2 such that
S2 ⊂ S1 neither is a solution,

S1 is not a solution→ S2 is not a solution ∀S2 ⊂ S1 (6.35)

According to Definition 3.7, Heuristic 1 directly holds. On the other
hand, to intuitively motivate Heuristic 2, note that the more sensors are
installed in the system, the larger becomes the number of unknown variables
that can be causally computed. In fact, it holds that

ES2 ⊆ ES1 (6.36)

where ES1 is the computable part of the system model M ∪MS1 (with S1

sensors chosen for installation) and ES2 is the computable part of the system
model M ∪MS2 (with S2 sensors chosen for installation). Then, according
to Lemma 3.3, it holds that

E+
S2
⊆ E+

S1
(6.37)

Recall that process faults are always related to system equations in M.
Therefore, if a process fault is not detectable (or isolable) with S1 installed
in the system, then, according to (6.37), it will not be detectable (or isolable)
with S2 installed in the system.

Heuristic 2 does not hold for sensor faults. It may happen that sensor
faults fulfil the diagnosis specifications with S2 installed, whereas a fault in
sensor s ∈ S1 \ S2 is not detectable with S1 installed. For this reason, the
present algorithm will only concern process faults.

The search space containing all possible sensor configurations is repre-
sented by the nodes in a graph-tree. The root node represents the sensor

Optimal Sensor Search Improvement 111

configuration with all candidate sensors. The tree is built from the root
node by first removing sensors with a greater cost. Thereby, nodes with a
smaller cost are first built.

Every node in the tree consists of two sensor sets:

• node.S, the sensor configuration that the node represents (i.e. a pos-
sible solution to test).

• node.R, the sensors that are allowed to be removed in its sub-nodes.

An upper bound, B̄, and a lower bound, B
¯
, are defined for every node. The

upper bound is the cost of the sensor configuration to test,

B̄(node) = C(node.S) (6.38)

while the lower bound is the lowest reachable cost by exploring sub-nodes.
This is computed as

B
¯
(node) = C(node.S)− C(node.R) (6.39)

Example 6.2. A small example with four sensors, S = {s1, s2, s3, s4}, will
be used to illustrate the proposed search algorithm. Assume the following
sensor costs: C(s1) = 6, C(s2) = 5, C(s3) = 2 and C(s4) = 1. The cost of a
sensor configuration follows from Definition 3.7. The corresponding graph-
tree is depicted in Figure 6.5. The tree building sequence is indicated in
the figure by a circled number near each node. For each node, the elements
contained in node.R are indicated in bold.

The search strategy is based on a depth-first search by choosing first
the nodes with lowest costs and back-tracking to other not already explored
nodes when a branch exploration is aborted. Throughout the search, the
best solution is updated in S∗, whenever a feasible solution with lower cost
than the current best one is found. A branch exploration is terminated at
some node when any of the following two conditions is fulfilled:

Condition 1: The node is not a feasible solution for the sensor placement
problem.

Condition 2: The lower bound B
¯

of the current node is not lower than the
cost of the current best solution: B

¯
(node) ≥ C(S∗).

112 Chapter 6. Sensor Placement for Causally Computable MSO Sets

{s
1
,s

2
,s

3
,s

4
}B̄

=
1
4

B ¯
=

0
0

{s
2
,s

3
,s

4
}B̄

=
8

B ¯
=

0
1

{s
3
,s

4
}B̄

=
3

B ¯
=

0
2

{s
4
}B̄

=
1

B ¯
=

0
3

{}
B̄

=
0

B ¯
=

0
4

{s
3
}B̄

=
2

B ¯
=

2
5

{s
2
,s

4
}B̄

=
6

B ¯
=

5
6

{s
2
}B̄

=
5

B ¯
=

5
7

{s
2
,s

3
}B̄

=
7

B ¯
=

7
8

{s
1
,s

3
,s

4
}B̄

=
9

B ¯
=

6
9

{s
1
,s

4
}B̄

=
7

B ¯
=

6
1
0

{s
1
}B̄

=
6

B ¯
=

6
1
1

{s
1
,s

3
}B̄

=
8

B ¯
=

8
1
2

{s
1
,s

2
,s

4
}B̄

=
1
2

B ¯
=

1
1

1
3

{s
1
,s

2
}B̄

=
1
1

B ¯
=

1
1

1
4

{s
1
,s

2
,s

3
}B̄

=
1
3

B ¯
=

1
3

1
5

Figure 6.5: Search tree for {s1, s2, s3, s4}.

Optimal Sensor Search Improvement 113

These two conditions are motivated by Heuristics 1 and 2. According to
(6.35), if a node is not a feasible solution then its sub-nodes are neither a
feasible solution, so the branch exploration is aborted.

On the other hand, concerning Condition 2, remark that the lower bound
B
¯

of the node indicates the cost of the best sub-node in the branch. If
Condition 2 is fulfilled, then there is no better sub-node in the branch than
the current best solution S∗. Therefore, it does not worth going on exploring
this branch, although there could exist a feasible solution (but not optimal).

Algorithm 6.8 recursively performs the optimal search for the sensor
placement. Variable node is initialised with the set of all candidate sensor
(node.S := S, node.R := S). The best sensor configuration is also initialised
as S∗ := S, which ensures that the maximum diagnosis specifications are
fulfilled. The algorithm generates sub-nodes by removing a sensor from
node.R. The depth-first search is performed by first choosing the sub-node
with the lowest cost. If the current sub-node does not fulfil Conditions
1 and 2, then deeper sub-nodes are recursively explored. Otherwise, the
remaining sub-nodes are rejected (the branch exploration is aborted) and
the next lowest cost sub-node is chosen. And so on until all the sub-nodes
are tested or discarded.

Algorithm 6.8 S∗ = searchOptimal(node, S∗,M ′
FDmax

,M ′
FImax

)

for all s ∈ node.R ordered in decreasing cost do

childNode.S := node.S \ {s}
node.R := node.R \ {s}
childNode.R := node.R
if B

¯
(childNode) < C(S∗) and

isFeasible(childNode.S, ∅,M,M ′
FDmax

,M ′
FImax

) then

if C(childNode.S) < C(S∗) then

S∗ := childNode.S % update the best solution

end if

S∗ := searchOptimal(childNode, S∗,M ′
FDmax

,M ′
FImax

)
end if

end for

return S∗

Now, sensors faults are not considered in the maximum causal diagnosis
specifications. Therefore, maximum causal detectability and isolability are
redefined by means of its corresponding fault equations as

M ′
FDmax

= MFDmax
\MS (6.40)

114 Chapter 6. Sensor Placement for Causally Computable MSO Sets

current cutting best
iteration node cost condition node cost

0 0 14 — 0 14
1 1 8 — 1 8
2 2 3 (1) 1 8
3 6 6 (1) 1 8
4 8 7 — 8 7
5 9 9 — 8 7
6 10 7 — 8 7
7 11 6 — 11 6
8 12 8 (2) 11 6
9 13 12 (2) 11 6
10 15 13 (2) 11 6

Table 6.2: Optimal search example.

M ′
FImax

(f) = MFImax
(f) \MS (6.41)

Remark that Algorithm 6.6 is used to verify if the diagnosis specifications
are fulfilled. However, any other algorithm could be used as long as property
(6.35) is ensured. This means, for instance, that the same search algorithm
can be used when causal computations are not considered.

The global optimal solution is guaranteed since all possible branches are
considered and sub-nodes are only discarded (the search tree is pruned) when
it is ensured that no better solution can be found. The following example
shows a sample search of Algorithm 6.8.

Example 6.3. Following with Example 6.2, assume that the sensor config-
urations that fulfil the diagnosis specifications are:

{s1, s2, s3, s4} {s2, s3, s4} {s1, s3, s4} {s1, s2, s4} {s1, s2, s3}
{s2, s3} {s1, s4} {s1, s3} {s1, s2} {s1}

Table 6.2 shows the sequence that Algorithm 6.8 follows to find the
optimal solution for this example.

After completing the sequence, the algorithm returns node 11 with S∗ =
{s1}. Remark that the tree in Figure 6.5 is only used to illustrate the depth-
first search procedure. The algorithm does not need to built the whole tree.

Generating Causally Computable MSO Sets 115

The algorithm efficiency depends on where the optimal solution is located
in the search tree. In other words, the nearer the solution is respect to the
root node or the leave nodes, the faster it is found. The efficiency also
depends on the cost of the sensor configuration. If all the sensors have
similar costs then the number of nodes with the same cost becomes bigger,
which hinders the task of rejecting nodes using Condition 2.

Given a set of k candidate sensors to be installed in the system, (i.e.
|S| = k) and assuming that the optimal solution involves k/2 sensors. The
worst case is achieved when the algorithm needs to traverse all the n/2-
combinations of n sensors to find the optimal solution.

6.7 Generating Causally Computable MSO Sets

After solving the sensor placement problem under causal relations, the set
of MSO sets can be generated. However not all possible MSO sets will be
useful to generate residuals using the computation sequence with non causal
loops. An MSO set that is useful in the causal framework (i.e. a residual
can be generated by means of the computation sequence, according to the
discussion in Section 6.1), will be called causally computable MSO set (or
causal MSO set).

The set of causal MSO sets is a subset of all possible MSO sets. There-
fore, a possible method to obtain the causal MSO sets would be an exhaus-
tive search among all the MSO sets in order to select those MSO sets that
are causally computable. So, knowing whether a MSO set is causally com-
putable could be done by means of Algorithm 6.3. Given an MSO set ω, the
algorithm returns the causally computable sub-model. Then, the MSO set
is causally computable if it holds that

ω = ComputableModel(ω) (6.42)

However, generating all the MSO sets and then rejecting those that are not
causally computable is not an efficient method. In this section, a modifi-
cation of Algorithm 2.1 is presented in order to only compute the causally
computable MSO sets.

The new part in Algorithm 6.9 comprises Steps 2-4. The if -condition in
Step 3 is used to reject all over-determined sets that have no computable
part. At the same time avoids finding repeated causal MSO sets.

Since Algorithm 2.1 finds all possible MSO sets, it can be stated that the
present new algorithm finds all possible causally computable MSO sets. It
is worth noting that the inputs of the algorithm are a causally computable

116 Chapter 6. Sensor Placement for Causally Computable MSO Sets

Algorithm 6.9 Ωc = findCausalMSO(M,R)

1: Ωc := ∅;
2: E = ComputableModel(M) % Select the computable part of the model

3: if (M \ E+) ∩R = ∅ then

4: M := E+ % Update the model with the over-determined computable part

5: if ϕs(M) = 1 then

6: Ωc := {M}
7: else

8: while R 6⊇M do

9: Select an e ∈M \R
10: E := M \ (M \ {e})+
11: if E ∩R = ∅ then

12: R := R ∪ E
13: Ωc := Ωc ∪ findCausalMSO(M \E,R)
14: else

15: R := R ∪ E
16: end if

17: end while

18: end if

19: end if

20: return Ωc

structural model M and the empty vector of already removed equations,
R = ∅.

6.8 Conclusions

In this chapter, the computation of unknown variables when deriving resid-
uals have been addressed. The novelty of this approach is that causal and
linear relations between variables and equations are taken into account in
order to guarantee the computability of the set of residuals later needed in
the practical implementation of the diagnosis system. The approach leads
to a restricted class of residuals. But, in compensation, an easy implemen-
tation is ensured where only forward value propagation is required. From a
theoretical point of view, this can be viewed as a lack of completeness since,
compared to the non-causal approach, some diagnosis capabilities might be
lost. However, the presented approach is more focused on practical appli-
cations, where a simpler implementation prevails. Specially, for large-scale
systems with non-linear equations. On the other hand, the degree of re-

Conclusions 117

strictiveness is chosen by the designer who decides how to assign causality
according to the available tools for residual evaluation.

Since the approach might be too restrictive, the sensor placement prob-
lem is addressed. Sensors are placed in order to guarantee that a set of
causal MSO sets are generated to detect and isolate faults. Our experience
applying this approach to large scale systems shows that usually it suffices
to install a few number of extra sensors to be able to obtain satisfactory
results.

First, Algorithm 6.7 has been introduced to solve the sensor placement.
This algorithm is just an adaptation of Algorithm 4.1 for the incremental
MSO set generation: sensors are optimally added until the specifications
are fulfilled. For this reason, Algorithm 6.7 presents similar computational
drawbacks as Algorithm 4.1. Next, Algorithm 6.8 has been developed to
improve the efficiency of the optimal search. This new algorithm is in general
faster than the former, since it uses efficient heuristics to discard some sensor
configurations. The main drawback is that sensors faults and redundant
sensors are not considered. However, we believe that this methodology could
be easily extended to cope with these issues.

It is worth noting that no residual or MSO set is computed when solving
the sensor placement problem. This makes the presented approach more
efficient compared to methods that require MSO set computation.

Furthermore, an adaptation of the MSO sets generation algorithm to
only compute the causal MSO sets has been proposed. Although the algo-
rithm is still time demanding for systems with certain redundancy degree,
it significantly reduces the computation time that would require generating
all MSO sets and later rejecting those that are not causal.

In the next chapter, a case study based on this approach is investigated.
The results obtained will be compared with the ones obtained when ap-
plying alternative approaches described in the previous Chapters. Thus,
advantages and drawbacks will be highlighted.

118 Chapter 6. Sensor Placement for Causally Computable MSO Sets

Chapter 7

Fuel Cell Stack System

Application

Nowadays, fuel cell systems are in increasing interest in the scientific com-
munity as an alternative to conventional production fuel-fossil based energy.
The energy produced by fuel cells is included in the so-called renewable en-
ergies and has serious possibilities to be the future energy. For this reason,
many works on fuel cells technology have been recently published. However,
there are only few works on diagnosis applied to fuel cell systems.

The aim of this chapter is double. Firstly, the sensor placement ana-
lyisis and residual generator design are performed on the Fuel Cell Stack
(FCS) system. Secondly, a systematic methodology to implement residual
generators for large scale systems is presented.

7.1 Fuel Cell Stack Description

A brief introduction of the basic operation principles of a fuel cell stack is
given in this section. For further details on fuel cells, the reader is refereed
to (Barbir, 2005), (EG&G Technical Services and Corporation, 2002) and
(Larminie and Dicks, 2003).

A fuel cell is an electrochemical energy converter that converts the chem-
ical energy of fuel into electrical current. A fuel cell is in some sense similar
to a battery. It has an electrolyte, a negative electrode and a positive elec-
trode, and it generates direct electrical current through an electrochemical
reaction. The difference is that a fuel cell produces energy as long as re-
actants are supplied. Typical reactants for fuel cells are hydrogen as fuel
and oxygen as oxidant. However, the ambient air is commonly used as an

119

120 Chapter 7. Fuel Cell Stack System Application

Figure 7.1: Basic principle of a PEM fuel cell.

oxidant since it contains enough oxygen for the reaction. Once the reaction
takes place, the fuel cell generates waste heat and water, being this the main
attraction of fuel cell systems as a clean power source.

The basic physical structure of a fuel cell consists of an electrolyte layer in
contact with a porous anode and cathode electrode plates. A schematic rep-
resentation of a fuel cell sandwich structure, and its basic operation principle
is shown in Figure 7.1. There are different kinds of electrolyte layers. Here
a PEM (Polymer Electrolyte Membrane or Proton Exchange Membrane)
fuel cell is used. The PEM has a special property: it conducts protons but
is impermeable to gas (the electrons are blocked through the membrane).
Hydrogen gas is continuously fed to the anode electrode and, with the help
of a catalyst, it splits into electrons and hydrogen protons,

2H2 → 4H+ + 4e−

Protons travel through the membrane, whereas electrons travel through an
external electrical circuit, producing electrical energy, and come back to the

Review of Works on Diagnosis of FCS Systems 121

other side of the membrane, the cathode electrode. In the catalyst on the
cathode side, the electrons meet the protons and the oxygen that is fed to the
cathode electrode. Then, the hydrogen protons together with the electrons
combine with the oxygen, producing water,

O2 + 4H+ + 4e− → 2H2O

In fact, the overall reaction that starts at the anode side and ends at
the cathode side of the fuel cell stack is a combustion reaction since the
hydrogen is combusted or “burnt” in a simple reaction:

2H2 + O2 → 2H2O

Typically, the voltage produced by one cell is from 0 to 1 volt, depending
on the operating point and the size of the load connected to the fuel cell.
To obtain a useful voltage many cells have to be connected in series. Such a
collection of fuel cells in series is known as a stack. The total stack voltage
is therefore the number of cells multiplied by the average cell voltage.

Auxiliary devices are required to ensure the proper operation of the fuel
cell stack. Typical devices are a gas compressor, filters, valves, pumps, a
refrigeration subsystem, humidifiers, flow controllers, pressure and temper-
ature sensors, etc. Thus, the term FCS system will be used to refer to the
whole system comprising the fuel cell stack and its auxiliary devices.

Fuel cell stack systems present high efficiency and do not create pollu-
tants such as hydrocarbon or nitrogen oxide. Due to their properties, fuel
cells may be attractive for several applications such as vehicle propulsion or
remote power sources.

7.2 Review of Works on Diagnosis of FCS Systems

In the literature, the works devoted to FCS system diagnosis can be roughly
divided in two groups. The first group involves works coming from the
fuel cell community. In this group, some cumbersome techniques such as,
those based on gas chromatography, neutron imaging or magnetic resonance
imaging can be found. For further details on these techniques the reader is
refereed to (Wu et al., 2008b).

Furthermore, in the fuel cell community, there also exist other ad-hoc
techniques that use a specialised knowledge to perform diagnosis on FCS
systems. Some examples of such techniques are the polarisation curve, the
current interruption or the electrochemical impedance spectroscopy. The

122 Chapter 7. Fuel Cell Stack System Application

polarisation curve method is a simple technique to investigate the actual
behaviour of the fuel cell. It consists in plotting the fuel cell voltage against
the current density under some operation conditions and then using the
expert knowledge to determine how the fuel cell is behaving. The cur-
rent interruption method is used to determine the voltage losses of the fuel
cell by interrupting the current of the electric circuit. The electrochemical
impedance spectroscopy deals with measuring the internal resistance of the
fuel cell in a frequency sweep. In (Wu et al., 2008a) and (Barbir, 2005) all
these techniques are described in detail.

The second group of works on FCS system diagnosis are developed from
the automatic control perspective. The proposed methods are based on
models and thus more general. A reduced number of papers devoted to
model-based diagnosis for FCS system has been found. Next, the most
outstanding works are presented.

In (Riascos et al., 2008), four faults related to several subsystems of the
FCS system are diagnosed by using Bayesian networks. The faults concern
the air-reactor blower, the refrigeration system, a fuel loss in the membrane
(also known as fuel crossover) and the hydrogen pressure. In (Escobet et al.,
2009), a set of relative residuals are designed to diagnose a set of fault
scenarios. Residual design techniques are also used in (Ingimundarson et al.,
2008), where two test quantities are developed to detect hydrogen leaks in
the anode side. Finally, in (Yang et al., 2009), a set of structured residuals
is obtained from a bond-graph model of a FCS system.

7.3 FCS System Benchmark

Next, a benchmark based on a FCS system is presented for diagnosis pur-
poses. First, the analytical equations involving the fuel cell stack and its
auxiliary equipment are detailed. Then, the model is built, the set of faults
to be diagnosed are introduced, and finally causality is defined in order to
obtain a causal structural model.

The model used here was first developed and implemented in Simulink
by Pukrushpan in his thesis (Pukrushpan, 2003) and later further detailed
in (Pukrushpan et al., 2004). The model is widely accepted in the control
community as a good representation of the behaviour of a FCS system. The
system model scheme is depicted in Figure 7.2. The cathode side consists
of an air compressor to feed atmospheric air to the cathode, a supply man-
ifold that connects the compressor output with the air cooler input, and an
air cooler and a static humidifier, that respectively refrigerates and humid-

FCS System Benchmark 123

Compressor
Supply

Manifold
Air

Cooler
Static

Humidifier

Fuel
Cell

Stack Outlet
Manifold

Anode Flow
Control

Figure 7.2: Fuel Cell Stack system.

ifies the air before entering the stack. The model guarantees the required
stoichiometry by regulating the hydrogen, supplied from a pressurised or
liquid hydrogen tank, by means of a controlled valve. The electrochemical
principles of the fuel cell stack are also modelled in order to accurately eval-
uate the electricity production and the stack outputs. This implies specific
model equations for the anode, the cathode, the membrane and the stack
voltage. Finally, the cathode outlet manifold of the fuel cell is considered in
the model as an external component.

The model only describes the normal operation mode. Hence purges in
the anode side are not considered. This means that all the hydrogen in
the anode side is consumed. It is also assumed that the temperature of the
fuel cell is known and constant since its dynamic behaviour is much more
slower than that of the rest of the model. These two assumptions reduce
the complexity of the model by not considering a discrete behaviour nor
thermodynamic equations for the stack model.

The model was originally developed for control purposes. So, it is neces-
sary to first pinpoint which equations belong to each component. In order
to do so, every component is modelled apart. This means that internal
and external variables are considered apart for each component, and then
extra equations will be defined to interconnect the different components.
Following this procedure, the component behaviour can be easily modelled,
as well as system faults defined. Note that, by doing this, the number of
variables and equations involving the complete model is increased. However,
the redundancy degree is preserved, meaning that no extra computing effort
is expected. In fact, all the structural properties needed for diagnosis will
remain unaltered.

The resulting FCS system model is a complex and large-scale model in-

124 Chapter 7. Fuel Cell Stack System Application

volving 96 equations and 96 unknown variables. Next, the analytical equa-
tions of each subsystem are detailed and later in Section 7.3.4 the causal
structure of the model will be obtained.

7.3.1 FCS System Model

Variable Nomenclature

For a better understanding, the meaning of the system variables is shown in
table 7.1.

Variable Description Units

v Voltage V
ωc Angular speed rad/s
τ Torque N ·m
i Electrical current A
φ Relative humidity
W Mass flow kg/s
T Temperature K
p Pressure Pa, atm, Bar
η Efficiency
y Mole fraction
m Mass kg
λ. Water content

Table 7.1: Variable nomenclature.

Variable subscripts will be used to indicate the component a variable is
related to. Table 7.2 shows the subscripts denoting the system components,
as well as some other useful atributes. It is also important to point out that
given a variable x, in a differential equation, its derivative with respect to
time will be denoted by ẋ.

Basic Principles

First, some equations concerning basic physic principles are detailed. From
the ideal gas law, the pressure and the mass of gas are related according to

pV = mRT (7.1)

FCS System Benchmark 125

Subscript Meaning

cp Compressor
sm Supply manifold
ac Air cooler
sh Static humidifier
afc Anode flow control
st Fuel cell stack
an Stack anode
ca Stack cathode
m Stack membrane
om Outlet manifold
H2 Hydrogen
O2 Oxygen
v Vapour

atm Atmospheric

Table 7.2: Variable subscription.

where p is the gas pressure, V is the volume, m is the mass of the gas, T is
the gas temperature and R is the gas constant.

The equation used to calculate the saturation pressure, at a given tem-
perature from 0oC to 100 oC, is

log10(psat) = a4T
4 + a3T

3 + a2T
2 + a1T + a0 (7.2)

where ai, for i = {0, 1, 2, 3, 4}, are constant coefficients. Since this equation
is frequently used in the model description, psat(T) will be used instead of
the equation in (7.2), indicating that saturation pressure only depends on
temperature T .

The thermodynamic properties of a gas mixture are used to represent
gases of different species. Specifically, when the mixture involves water
vapour, the relative humidity is given by

φ2 =
p2psat(T1)φ1

p1psat(T2)
(7.3)

Air Compressor

The air compressor is decomposed into two main parts. One part concerns
the electric motor, whereas the other part concerns the compressor box.

126 Chapter 7. Fuel Cell Stack System Application

The compressor motor is modelled using a direct current electric motor
model. The first equation describes the electric part of the model, where
the voltage applied to the compressor vcp is transformed into an angular
speed, ωcp, through a ratio parameter kv, and electrical losses through the
resistance parameter Rcp and the compressor current icp:

vcp = kvωcp + Rcpicp (7.4)

The real motor torque τmcp is calculated by subtracting the friction
torque from the theoretical motor torque. The friction torque is calcu-
lated by means of a friction coefficient B, whereas the theoretical torque is
calculated by means of the torque coefficient kt:

τmcp = kt · icp −B · ωcp (7.5)

The variation of the angular speed is computed by the difference between
the motor and the compressor torques,

Jcpω̇cp = τmcp − τcomcp (7.6)

where Jcp is the inertia coefficient of both compressor and motor.
A compressor flow map is used to determine the air flow rate, Wcp,

supplied by the compressor. This is done by means of a nonlinear curve fit-
ting method named Jensen & Kristensen (Moraal and Kolmanovsky, 1999).
First, the input values (temperature, angular speed and pressure) are scaled:

Tcp,cor = Tatm/288 (7.7)

ωcp,cor =
ωcp

√

Tcp,cor

(7.8)

pratio =















0 if
10−5pcp,out

1,01325patm
≤ 0

10−5pcp,out

1,01325patm
if 0 <

10−5pcp,out

1,01325patm
< 1000

1000 if
10−5pcp,out

1,01325patm
≥ 1000

(7.9)

Then, the normalized compressor flow rate, Φ, is calculated as

Φ = Φmax(M)(1 − e
β(M)(Ψ

Ψmax(M)
−1)

) (7.10)

where the parameters Φmax(M), β(M) and Ψmax(M) are polynomial func-
tions of the Match number M , defined by

M =
Uc√

γRaTatm

(7.11)

FCS System Benchmark 127

Ra is the gas constant, γ is the specific heat ratio of the air and Uc is the
compressor blade tip speed calculated by

Uc =
π

60
dcωcp,cor (7.12)

with dc the compressor diameter outlet. Parameter Ψ in (7.10) is calculated
using the following expression,

Ψ =
CpTatm(p

γ−1
γ

ratio − 1)
1
2U2

c

(7.13)

The corrected air flow rate, Wcor,cp is calculated from the normalized
compressor flow rate as

Wcor,cp = Φρa
π

4
d2

cUc (7.14)

where ρa is the air density. Finally, the output air flow rate can be computed
as

Wcp,out = Wcp,cor
patm

√

Tcp,cor

(7.15)

The compressor efficiency, ηcp, is determined by means of a look-up table
from the corrected air flow rate and the corrected air pressure. This relation
is denoted as

ηcp = LookupTable(Wcp,cor, pratio) (7.16)

The air temperature at the compressor exit is calculated as

Tcp,out = Tatm −
Tatm

ηcp
(p

γ−1
γ

ratio − 1) (7.17)

and the applied torque to drive the compressor is determined using the
following thermodynamic equation

τcomcp = Cp
Tatm

ηcp
(p

γ−1
γ

ratio − 1)Wcp,out (7.18)

where Cp is the specific heat capacity of the air.

Equation (7.3) is used to calculate the relative humidity of the compres-
sor output gas:

φcp =
pcp,outpsat(Tatm)φatm

patmpsat(Tcp,out)
(7.19)

128 Chapter 7. Fuel Cell Stack System Application

Supply Manifold

Manifolds are modelled as a lumped volume in pipes or connections between
different devices. The inlet supply manifold model describes the behavior
of the pipe connecting the compressor output with the air cooler input. To
calculate the outlet air flow, a linearised model of a nozzle is used,

Wsm,out = ksm,out(psm,out − psm,ds) (7.20)

where ksm,out is the supply manifold outlet flow constant. The mass conser-
vation principle is used in a flow balance, therefore it must hold that

ṁsm = Wsm,in −Wsm,out (7.21)

The air temperature is expected to decrease in the supply manifold.
Therefore, the following pressure dynamic equation is used

ṗsm,out =
γRa

Vsm
(Wsm,inTsm,in −Wsm,outTsm,out) (7.22)

where V is the supply manifold volume and Tsm,out is the output temperature
of the air flow through the manifold, which is calculated using the ideal gas
law

Tsm,out =
Vsmpsm,out

Ramsm
(7.23)

As before, equation (7.3) is used to calculate the relative humidity,
φsm,out, of the supply manifold output gas:

φsm,out =
psm,outpsat(Tsm,in)φsm,in

psm,inpsat(Tsm,out)
(7.24)

Air Cooler

To prevent any damage in the stack membrane, the cathode inlet air has to
be cooled down before entering the stack. As it was mentioned, this model
does not describe the heat transfer effect. Hence an ideal static air cooler
model is proposed. The outlet air temperature of the air cooler, Tac,out is
set to a desired value,

Tac,out = Tdes (7.25)

and only the effect of the humidity change is taken into account, according
to (7.3):

φac,out =
pac,outpsat(Tac,in)φac,in

pac,inpsat(Tac,out)
(7.26)

FCS System Benchmark 129

Both, flow and pressure, do not change inside the cooler, so:

Wac,out = Wac,in (7.27)

pac,out = pac,in (7.28)

Static Humidifier

To avoid hydration problems in the membrane, the air also needs to be
properly humidified. This task is done by a static humidifier which sets a
desired level of humidity in the air. A static model to describe the humidifier
behavior is used. Here, it is assumed that the air temperature does not
change inside the humidifier:

Tsh,out = Tsh,in (7.29)

However, since an extra amount of vapour has to be added to the air, the
air flow and pressure change. First, the vapour pressure of the inlet gas,
pv,sh,in, is calculated as

pv,sh,in = φsh,inpsat(Tsh,in) (7.30)

where psat(Tsh,in) is the saturation pressure of inlet gas calculated according
to (7.2). Using the gas mixture the properties, dry air pressure, pa,sh,in, is
calculated by

pa,sh,in = psh,in − pv,sh,in (7.31)

and the humidity ratio is determined as

wsh,in =
Mv

Ma

pv,sh,in

pa,sh,in

(7.32)

where Mv is the water molar mass and Ma is the atmospheric air molar
mass. Now, the mass flow rates Wa,sh,in and Wv,sh,in, both from dry air and
vapour, can be calculated:

Wa,sh,in =
1

1 + wsh,in

Wsh,in (7.33)

Wv,sh,in = Wsh,in −Wa,sh,in (7.34)

Note that there is no change in the dry flow rate in the humidifier, so

Wa,sh,out = Wa,sh,in (7.35)

130 Chapter 7. Fuel Cell Stack System Application

Furthermore, the outlet vapour pressure of the humidifier can be calculated
from the outlet air humidity, φsh,out, together with the saturation pressure,

pv,sh,out = φsh,outpsat(Tsh,out) (7.36)

Remark that psat(Tsh,out) is the output gas saturation pressure calculated
from (7.2), using Tsh,out. The humidity of the outlet air flow is the desired
humidity set by the humidifier,

φsh,out = φdes (7.37)

and the dry air pressure does not change through the humidifier

pa,sh,out = pa,sh,in (7.38)

So the outlet vapour flow, Wv,sh,out, is computed as

Wv,sh,out =
pv,sh,out

pa,sh,out

Mv

Ma

Wa,sh,out (7.39)

The amount of water flow needed to be injected in the air to achieve the
desired level of humidity can be determined from the inlet and outlet vapour
flows,

Wv,inj = Wv,sh,out −Wv,sh,in (7.40)

Finally, the total outlet air flow rate Wsh,out and the outlet air pressure
psh,out are determined by

Wsh,out = Wsh,in + Wv,inj (7.41)

psh,out = pa,sh,out + pv,sh,out (7.42)

Anode Flow Control

The hydrogen supplied to the anode is regulated by a proportional controller.
The controller takes the differential pressure between anode and cathode to
compute the regulated hydrogen flow, Wafc,out,

Wafc,out = K1(K2 · pafc,+ − pafc,−) (7.43)

It is assumed that this control law is instantaneous, therefore no dynamic
effect is considered. This is a feasible assumption since the hydrogen comes
from a high pressure tank and the control valve has a fast response.

FCS System Benchmark 131

Outlet Manifold

A similar equation introduced for the supply manifold is now used to describe
the outlet manifold. Here, the calculated pressure will be used in the cathode
to determine the flow rate. Contrary to the supply manifold, the pressure
drop is large since the output is the atmospheric pressure whereas the change
of air temperature is negligible. So

ṗom,out = Tom,in
Ra

Vom
(Wom,in −Wom,out) (7.44)

where Vom is the outlet manifold volume. The main difference with respect
to the supply manifold is an equation that describes the behavior of the
nozzle (throttle). Here a non-linear equation is used instead,

Wom,out = NonlinearNozzle(pom,out, pom,ds, Tom,in) (7.45)

The air temperature and humidity do not change throughout the mani-
fold, so:

Tom,out = Tom,in (7.46)

φom,out = φom,in (7.47)

Fuel Cell Stack

Cell anode:

Note first that, since purge operation is not considered in the model, the
anode exit flow rate, Wan,out, is assumed null:

Wan,out = 0 (7.48)

On the other hand, the hydrogen flow rate inside the anode is balanced re-
garding the hydrogen input flow,WH2,in, the hydrogen flow output, WH2,out,
and the reacted hydrogen, WH2,reacted,

ṁH2 = WH2,in −WH2,out −WH2,reacted (7.49)

The consumed hydrogen rate depends on the stack current,

WH2,reacted = MH2

n · ist
2F

(7.50)

where MH2 is the hydrogen molar mass, n is the number of cells and F is
the Faraday’s constant.

132 Chapter 7. Fuel Cell Stack System Application

The hydrogen and vapour mass in the anode can be related with the
hydrogen partial and the vapour partial pressure respectively by means of
the ideal gas law (7.1):

mi =
piVan

RiTst

i ∈ {H2, (v, an)} (7.51)

where Van is the anode volume, RH2 is the hydrogen gas constant and Rv,an

is the vapour gas constant. Note that the vapour mass in the hydrogen
is bounded by the maximum amount of water that the gas can contain,
mv,max,an, calculated as

mv,max,an =
psat(Tst)Van

Rv,anTst
(7.52)

Therefore, if mv,an > mv,max,an then mv,an = mv,max,an.
The inlet and outlet hydrogen flow, WH2,in and WH2,out, are calculated

from the inlet and outlet gas pressures and humidities, respectively. First,
the gas pressures are calculated as

pv,an,i = φan,ipsat(Tst) i ∈ {in, out} (7.53)

pH2,i = pan,i − pv,an,i i ∈ {in, out} (7.54)

and the humidity ratio as

wan,i =
Mv

MH2

pv,an,i

pH2,i

i ∈ {in, out} (7.55)

Finally the hydrogen flow ratio can be calculated by

WH2,i =
1

1 + wan,i
Wan,i i ∈ {in, out} (7.56)

A similar flow rate balancing is done for the anode humidity. It is as-
sumed that there is no liquid water inside the anode volume. Hence, there
is no water flow leaving the anode. This implies that mv,an ∈ [0,mv,max,an].

ṁv,an = Wv,an,in −Wv,an,out −Wv,membr (7.57)

Water flow across the membrane will be determined in the membrane hy-
dration model. Both, the vapour input and output flows, are calculated by
subtracting the hydrogen flow from the total gas flow,

Wv,an,i = Wan,i −WH2,i i ∈ {in, out} (7.58)

FCS System Benchmark 133

Once all the partial pressures of each gas in the anode have been deter-
mined, the output anode pressure can be calculated as

pan,out = pH2 + pv,an (7.59)

The relative humidity of the anode outlet gas is the ratio between vapour
pressure and saturation pressure, as long as the vapour mass is under the
maximum. Otherwise, the outlet gas is fully humidified and the relative
humidity is set to 1:

φan,out =

{ pv,an

Psat(Tst)
if mv,an ≤ mv,max,an

1 if mv,an > mv,max,an

(7.60)

Cell membrane:

The membrane model describes the water flow across the membrane,
Wv,membr, and the membrane water content, λ. . The water content is a
function of the average water activity between the anode and cathode water
activities. It turns out that water activity is equivalent, for gases, to relative
humidity, φ. Next, a generic equation for membrane water content is used
to represent such relation. For a detailed information and a parameter
description the reader is refereed to Pukrushpan (2003).

λ. = WaterContentFunction(φan,out, φca,out) (7.61)

The total stack water flow rate across the membrane, Wv,membr can be com-
puted as

Wv,membr = Nv,membr ·Mv ·Afc · n (7.62)

where Nv,membr is the water molar flow rate per unit area and per cell, and
Afc is the fuel cell active area.

The water molar flow rate is obtained through the following flow balance:

Nv,membr = Nv,osmotic −Nv,diff (7.63)

The net anode to cathode water flow caused by electro-osmotic drag is
calculated as

Nv,osmotic = nd(λ.)
ist

AfcF
(7.64)

where nd(λ.) is the electro-osmotic drag coefficient which depends on the
membrane water content. The net cathode to anode water flow caused by
back diffusion is calculated as

Nv,diff = Dw(λ. , Tst)
cv,ca(φca,out)− cv,an(φan,out)

tm
(7.65)

134 Chapter 7. Fuel Cell Stack System Application

where tm is the membrane thickness and Dw(λ. , Tst) is the diffusion coeffi-
cient calculated from the membrane water content and the stack tempera-
ture, Tst. Water concentrations at the membrane surface on the anode and
cathode sides, cv,ca(φca,out) and cv,an(φan,out), depend on the membrane wa-
ter content in the cathode and the anode, respectively. Thus, they depend
on the corresponding cathode or anode humidity.

Cell cathode:

The cathode flow model is similar to the anode flow model. Here, the
mixed nature of atmospheric air is taken into account. Thus, mass flow
balancing involving oxygen, nitrogen and vapour will be performed. First,
cathode vapour mass flow balance is considered in the following equation,

ṁv,ca = Wv,ca,in −Wv,ca,out + Wv,membr + Wv,ca,gen (7.66)

with mv,ca ∈ [0,mv,max,ca].
The vapour mass flow rate generated in the fuel cell is obtained from the

stack current

Wv,ca,gen = Mv
n · ist
2F

(7.67)

The cathode inlet vapour mass flow can be determined from the total cath-
ode inlet flow by

Wv,ca,in = Wca,in(1− 1

1 + wca,in
) (7.68)

Cathode humidity ratios are calculated as for the anode side case:

wca,i =
Mv

Ma,i

φca,ipsat(Tst)

pca,i − φca,ipsat(Tst)
i ∈ {in, out} (7.69)

where Ma,in is the inlet air molar mass regarding the standard mixture of
0.21 of oxygen and (1− 0.21) of nitrogen and Ma,out is the outlet air molar
mass. Note that, since oxygen is consumed in the reaction, the inlet air
molar mass is constant whereas the outlet air molar mass depends on the
oxygen mole fraction, yO2,ca, Ma,out(yO2,ca).

The oxygen mole fraction, yO2,ca is also needed to calculate the outlet
flows,

yO2,ca =
pO2

pO2 + pN2

(7.70)

Similarly, the cathode inlet oxygen and nitrogen mass flows are deter-
mined from the cathode inlet humidity ratio as follows:

WO2,in = xO2,inWca,in
1

1 + wca,in

(7.71)

FCS System Benchmark 135

WN2,in = (1− xO2,in)Wca,in
1

1 + wca,in
(7.72)

where xO2,in is a constant parameter that depends on the input oxygen
mass fraction. The mass of each gas in the cathode side is related to the
corresponding partial gas pressure by the ideal gas law:

mi =
piVca

RiTst
i ∈ {O2, N2, (v, ca)} (7.73)

where Vca is the cathode volume, RO2 is the oxygen gas constant, RN2 is the
nitrogen gas constant and Rv,ca is the vapour gas constant. The cathode
vapour mass is upper bounded by the maximum value,

mv,max,ca =
psat(Tst)Vca

Rv,caTst
(7.74)

Therefore, if mv,ca > mv,max,ca then mv,ca = mv,max,ca. Now, the oxygen
flow rate balancing is performed:

ṁO2 = WO2,in −WO2,out −WO2,reacted (7.75)

where the oxygen mass flow depends on the stack current

WO2,reacted = MO2

n · ist
4F

(7.76)

being MO2 the oxygen molar mass.
The last gas flow balancing, corresponding to the nitrogen mass flow

rate, is calculated as
ṁN2 = WN2,in −WN2,out (7.77)

The vapour, oxygen and nitrogen outlet mass flows are respectively cal-
culated in the following three equations

Wv,ca,out = Wca,out(1−
1

1 + wca,out

) (7.78)

WO2,out = xO2,out(yO2,ca)Wca,out
1

1 + wca,out
(7.79)

WN2,out = (1− xO2,out(yO2,ca))Wca,out
1

1 + wca,out
(7.80)

where xO2,out is a parameter which depends on the outlet molar fraction,
yO2,ca.

136 Chapter 7. Fuel Cell Stack System Application

The total cathode outlet flow rate is calculated by means of a simplified
orifice model:

Wca,out = kca,out(pca,out − pst,ds) (7.81)

where kca,out is the orifice constant and pst,ds is the stack downstream pres-
sure. The total cathode pressure is obtained using the mixed gas properties,

pca,out = pO2 + pN2 + pv,ca (7.82)

Finally, the cathode humidity is calculated from the vapour partial pres-
sure and the saturation pressure

φca,out =

{ pv,ca

Psat(Tst)
if mv,ca ≤ mv,max,ca

1 if mv,ca > mv,max,ca

(7.83)

Stack voltage:

The stack voltage, vst, is obtained by multiplying a single cell voltage
by the number of cells, n. To calculate the cell voltage, the cell open circuit
voltage, E, is first considered and then the voltage losses are subtracted
from it. The losses considered in this model are the activation loss ,vact,
the ohmic loss, vohm, and the concentration loss, vconc. Therefore, the main
equation to compute the stack voltage is

vst = n(E − vact − vohm − vconc) (7.84)

It is assumed that the open circuit voltage depends on the stack temperature
and both hydrogen and oxygen pressures,

E = OpenCircuitVoltage(Tst, pN2 , pO2) (7.85)

The activation loss voltage is determined by the following equation,

vact = vo + va(1− e
−c1

ist
Afc) (7.86)

where ci is a constant, vo depends on the stack temperature, the saturation
pressure and the cathode pressure, and va depends on the stack temperature,
the saturation pressure and the oxygen partial pressure. These dependen-
cies are determined by means of a nonlinear regression. Thus, they are
generically represented in the following two equations

vo = NonlinearRegression1(Tst, psat(Tst), pca,out) (7.87)

FCS System Benchmark 137

va = NonlinearRegression2(Tst, psat(Tst), pO2) (7.88)

The dropped ohmic voltage due to the membrane resistance is calculated by

vohm =
ist
Afc

Rohm(λ. , Tst) (7.89)

where Rohm(λ. , Tst) is the internal electrical resistance, which strongly de-
pends on the membrane water content, λ. , and the cell temperature, Tst.
The concentration losses can be obtained from

vconc = ist(c2(Tst, pO2 , psat(Tst))
ist

imax

)c3 (7.90)

where c2(Tst, pO2 , psat(Tst)) is a parameter that depends on the stack tem-
perature, the oxygen pressure and the saturation pressure, while the c3 and
imax are constant parameters.

7.3.2 Model Equations

In the previous subsection, the equations describing the basic physical prin-
ciples have been described. In this subsection, the complete model involving
up to 96 equations is presented. Three different kinds of equations are dis-
tinguished: component equations, known variable equations and component
interconnection equations.

Component equations refer to the equations that model the FCS sys-
tem components. These are obtained applying a model reduction procedure
to the equations introduced in the previous subsection. Known variables
equations are introduced in the model to indicate that some model vari-
ables are assumed known. Component interconnection equations describe
the interconnections among components.

Component Equations

According to (Krysander and Nyberg, 2002), given an overdetermined struc-
tural model M , if there exists a subset X ′ ⊆ X of unknown variables such
that

1 + |X ′| = |equM (X ′)| (7.91)

then the set of equations equM (X ′) can be combined into one equation,
and the variables X ′ can be removed from the original model. By doing
this, the structural model is reduced while no diagnosis structural property
is missed since it is proved that all the equations in equM (X ′) will appear

138 Chapter 7. Fuel Cell Stack System Application

together in an MSO set. Furthermore, in (Krysander et al., 2008), it is shown
that such set of equations can be found by means of the equivalent classes
introduced in (2.33). In fact, every equivalent class that involves more than
one equation fulfils expression (7.91). Therefore, it can be lumped into one
single equation.

However, it is important to note that if some variables in X ′ can be
measured (i.e. they involve candidate sensors), then, since X ′ are removed
during the model reduction, the initial candidate sensor set might also be
reduced, leading to a loss of performance in the sensor placement problem.
To prevent this, it is required that all candidate measurable variables (see
Section 7.4 for candidate sensors in the FCS system) will be omitted from the
structural model when model reduction is performed. Hence, no measurable
variable will be removed and the initial candidate sensor set is preserved.

The model reduction procedure is separately performed for each compo-
nent in the FCS system model. For each lumped equation set, it is checked
whether the removed variables can be causally computed (see Chapter 6). If
the removed variables are not causally computable then the corresponding
set of equations is not lumped. The result is depicted in Table 7.3 where an
equivalence between the new and the original equations is given. Due to the
model reduction, some original variables are missing and some equations are
lumped, for this reason the variable nomenclature is preserved, whereas all
equations are renamed.

Known Variable Equations

Some model variables are assumed known. This is the case of atmospheric
variables such as humidity (φatm), temperature (Tatm) and pressure (patm).
The outlet manifold releases the gas to the atmosphere. Therefore, the
downstream pressure (pds,om) is also known. A similar assumption is done
for the inlet anode hydrogen humidity (φan,in) since the hydrogen comes
from a pressurised tank where humidity is known. The desired air temper-
ature (Tdes) and the desired air humidity (φdes) are setpoints and therefore
regarded as known variables. Furthermore, the original model has an exter-
nal controller which controls the compressor voltage (vcp) by means of the
stack current (ist), consequently these two variables are also known.

The following equations state that these variables are known, so they
have been added to the model:

e62 : φatm = 0.5 e65 : pom,ds = 1atm e68 : φdes = 0.2
e63 : Tatm = 298K e66 : φan,in = 0.4 e95 : ist = imeasured

st

e64 : patm = 1atm e67 : Tdes = 353K e96 : vcp = vcontrolled
cp

FCS System Benchmark 139

New Original New Original New Original
equ. equations equ. equations equ. equations

e1 (7.4) e21 (7.30) e41 (7.57)(7.58) for i = in

e2 (7.5) e22 (7.31) e42 (7.58) for i = out

e3 (7.6)(7.18) e23 (7.36) e43 (7.60)
e4 (7.7) e24 (7.37) e44 (7.48)
e5 (7.9) e25 (7.38) e45 (7.61)
e6 (7.8)(7.10-7.14) e26 (7.32-7.35)(7.39-7.40) e46 (7.62-7.63)
e7 (7.15) e27 (7.41) e47 (7.66-7.68)
e8 (7.16) e28 (7.42) e48 (7.69) for i = in

e9 (7.17) e29 (7.43) e49 (7.69) for i = out

e10 (7.19) e30 (7.44) e50 (7.73) for i = O2

e11 (7.20) e31 (7.45) e51 (7.71)(7.75)(7.76)(7.79)
e12 (7.21) e31 (7.46) e52 (7.73) for i = N2

e13 (7.22) e33 (7.47) e53 (7.72)(7.77)(7.80)
e14 (7.23) e34 (7.2) for T = Tst e54 (7.73) for i = v, ca

e15 (7.24) e35 (7.49-7.50) e55 (7.74)
e16 (7.25) e36 (7.51)(7.59) for i = H2 e56 (7.70)
e17 (7.26) e37 (7.51) for i = v, an e57 (7.78)
e18 (7.27) e38 (7.52) e58 (7.81)
e19 (7.28) e39 (7.53-7.56) for i = in e59 (7.82)
e20 (7.29) e40 (7.53-7.56) for i = out e60 (7.83)

e61 (7.84-7.90)

Table 7.3: Reduced equation of the FCS model.

It is important to note that by considering the above mentioned variables
as known, the resulting model is a well-determined set of equations where all
the remaining unknown variables can be computed. This is reasonable since
the model can be simulated (i.e. all the internal variables can be computed
by the simulation engine).

Component Interconnection Equations

Once every component is modelled, those components that have common
external variables should be connected. This is accomplished by imposing
that an external variable of a component equals to another external variable
of a different component. Therefore, extra equations need to be added to
the model.

For instance, consider the compressor output flow, Wcp,out which, in the
original model, is also the supply manifold input flow since all the com-
pressed air flows to the supply manifold. An extra variable, Wsm,in, for the
supply manifold input flow has been defined, and the following equation has
been added to indicate that the compressor is connected with the supply

140 Chapter 7. Fuel Cell Stack System Application

manifold:
e69 : Wsm,in = Wcp,out (7.92)

The following equations are included to the model to interconnect system
components:

e70 : Tsm,in = Tcp,out e78 : pca,out = psm,ds e86 : Wom,in = Wca,out

e71 : psm,in = pcp,out e79 : pafc,+ = psm,out e87 : Tom,in = Tst

e72 : φsm,in = φcp e80 : pafc,− = pan,out e88 : φom,in = φca,out

e73 : psm,out = pcp,out e81 : Wan,in = Wafc,out e89 : pan,in,in = pafc,−

e74 : Wac,in = Wsm,out e82 : Wsh,in = Wac,out e90 : Wca,in = Wsh,out

e75 : Tac,in = Tsm,out e83 : Tsh,in = Tac,out e91 : Tst = Tsh,out

e76 : pac,in = psm,out e84 : psh,in = pac,out e92 : pca,in = psh,out

e77 : φac,in = φsm,out e85 : φsh,in = φac,out e93 : φca,in = φsh,out

e94 : pst,ds = pom,ds

7.3.3 FCS Process Faults

Seven process faults have been defined in the FCS system. The faults are
defined such that either a parameter or a computed value from an unknown
variable is modified in the simulation model. As a result, the fault only
affects one equation, i.e. the fault equation.

There are two compressor faults, fcp1 and fcp2. Fault fcp1 represents an
electric fault where the electrical resistance varies (e.g. due to an overheat-
ing). Specifically, it affects parameter Rcp in (7.4). Fault fcp2 represents
a malfunction of the compressor box. It is simulated by modifying Wcor,cp,
computed from the Jensen & Kristensen compressor map in (7.14). The sup-
ply manifold is affected by fault fsm which represents, for example, a leak.
It is simulated by a variation of the output air flow calculated in (7.20). Air
cooler and static humidifier faults are represented, respectively, by fac and
fsh. These two faults are simulated by a change in the setpoints values, Tdes

and φdes, meaning that the device is not working properly. Next fault, fst,
affects the fuel cell stack. It represents a malfunction in the outlet cathode
(e.g. the outlet is partially stuck). Specifically, it is simulated by means of
a variation of the outlet air flow Wca,out in (7.81). Last fault fom affects the
outlet manifold by modifying Wom,out in the non-linear nozzle expression
(7.45). It could represent either a leak or an outlet obstruction. Table 7.4
shows the correspondence between the faults and their fault equations of
the model (see Table 7.3).

Faults fcp1, fcp2, fsm, fst and fom are simulated as multiplicative faults
where the corresponding parameters or computed variables are proportion-
ally altered, e.g. Rfaulty

cp = 0.9Rcp. On the other hand, faults fac and fsh are

FCS System Benchmark 141

Fault Fault equation Fault description

fcp1 e1 compressor motor fault
fcp2 e6 compressor box fault
fsm e11 supply manifold fault
fac e16 air cooler fault
fsh e24 static humidifier fault
fom e31 outlet manifold fault
fst e58 stack cathode fault

Table 7.4: Correspondence between faults and equations.

simulated as additive faults, where an offset is added to their corresponding
setpoints, e.g. T faulty

des = Tdes + 0.4K.

7.3.4 Causal Structural Model

The causality assignment is defined on the set of edges of the structural
model. The resulting structural models are depicted in Appendix section 7.A.

Due to the non-linear and dynamic nature of the FCS model, the causally
computable approach, introduced in Chapter 6, is used for this particular
application. It is worth recalling, that other diagnosis approaches could also
be implemented for this application, although this would imply to deal with
non-linear equations using numerical solvers, for instance.

Next, the causal characterisation of the structural model is introduced.
Causality has been applied by studying whether each equation-variable pair
forms a causal, linear or non-causal relation, according to Definitions 6.1
and 6.2. Some of the equations of the air compressor model are used to
exemplify different kinds of causality. For instance all the variables in equa-
tions e1 and e2 (corresponding to (7.4) and (7.5)) are assumed linear since
they are linearly related (i.e. both equations can be rewritten according to
Definition 6.2):

(

kv Rcp −1 0
B −kt 0 1

)









ωcp

icp
vcp

τmcp









=

(

0
0

)

(7.93)

As an example involving a non-invertible relation, consider equation e5

(corresponding to (7.9)). This equation represents a typical saturation func-

142 Chapter 7. Fuel Cell Stack System Application

tion. Hence, pratio is assigned as a causal variable and patm and pcp,out are
non-causal variables. Another example of a non-invertible relation is found
in equation e8 (corresponding to (7.16)) involving a look-up table which is
difficult or impossible to invert. Therefore, ηcp is a causal variable whereas
Wcp,cor and pratio are non-causal variables.

Next, a discussion follows on how causality is applied to differential equa-
tions for this application. Here, for the sake of a better residual implementa-
tion, integral causality is assumed. It should be noted that mixed (integral
and derivative) causality could be used. However, since measurements are
noisy and system dynamics are in general fast, derivative causality becomes
unfeasible for a practical residual implementation. Therefore, derivative
causality is avoided and no derivative variable is computed. The author is
aware that assigning causality to differentiated variables is an issue under
investigation and can affect the diagnosis properties of the system. De-
pending on whether integral, derivative or mixed causality is applied, fault
detectability and isolability properties can vary (Frisk et al., 2010). This
issue will not be studied here and causality on differentiated variables will
be regarded as the standard causality defined in Chapter 6.

There are different approaches to represent differentiated variables in a
structural model (Krysander et al., 2008). In this thesis, a variables and its
time derivative are considered the same variables. This would be equivalent
to consider a differential relation of the form

ed : ẋ =
d

dt
x

and two different variables, x and ẋ. This is basically due to the fact that
integral causality is assumed and each differentiated variable only appears
in one equation. Consider, for example, equation e3 where the differentiated
variable, ω̇cp, can also be represented by adding ed in the model,

e3 : ω̇cp =
1

Jcp

(

τmcp − Cp
Tatm

ηcp

(p
γ−1

γ

ratio − 1)Wcp

)

(7.94)

ed : ω̇cp =
d

dt
ωcp (7.95)

which corresponds, under integral causality, to the following causal struc-
tural model

ω̇cp ωcp τmcp Tatm ηcp pratio Wcp

e3 × × × × × ×
ed ∆ ×

Sensor Placement for FCS Systems 143

However, as it was mentioned, equations e3 and ed could be merged by
replacing ω̇cp to obtain

ωcp =
1

Jcp

∫ t

0

[

τmcp − Cp
Tatm

ηcp

(p
γ−1

γ

ratio − 1)Wcp

]

dt (7.96)

which implies that ωcp is assigned as a causal variable in e3, whereas τmcp ,
Tatm, ηcp, pratio and Wcp are regarded as non-causal variables in e3,

ωcp τmcp Tatm ηcp pratio Wcp

e3 × ∆ ∆ ∆ ∆ ∆

Therefore, in the structural model there is no distinction between, for ex-
ample, ωcp and ω̇cp, and both are denoted by ωcp.

The use of integral causality as in (7.96) implies to know the initial
condition for the integration in order to obtain the real value of ωcp. For this
particular case and for the sake of simplicity, the system is always assumed
to start in the same operating point, which is known. Nevertheless, if this
was not the case, estimation techniques such as state observers could be
considered to converge the model state to the initial operating point.

7.4 Sensor Placement for FCS Systems

The aim of this section is to solve the sensor placement problem for the FCS
system by using the causal framework presented in Chapter 6. Especially,
Algorithm 6.8 will be used to search for the optimal sensor configuration.
The complete causal structural model used to solve the sensor placement
problem is represented in Table 7.17 (in Appendix section 7.A).

Installing sensors for measuring any variable is not always possible or it
may be difficult. For instance, measuring some internal variables in the fuel
cell stack would require inserting probes into the stack which is physically
impossible. Other variables like a partial mass in the gas mixture is consid-
ered not measurable because a complex measuring equipment is needed and
therefore installing such device would not be realistic for practical applica-
tions. In all, 30 variables will be assumed to be measurable. Thus, the set
of candidate sensors is

S ={ωcp, τmcp , icp,Wcp,out, Tcp,out, φcp,Wsm,out, Tsm,out, psm,out, φsm,out,

Wac,out, Tac,out, φac,out,Wsh,out, Tsh,out, psh,out, φsh,out,Wv,inj ,Wom,out,

pom,out, φom,out,Wafc,out, pan,in,Wan,out, pan,out, φan,out,Wca,out, pca,out,

144 Chapter 7. Fuel Cell Stack System Application

measurable measurable measurable
variable cost variable cost variable cost

ωcp 10 Wac,out 40 φom,out 150
τmcp 25 Tac,out 2 Wafc,out 40
icp 1 φac,out 150 pan,in 5

Wcp,out 40 Wsh,out 40 Wan,out 40
Tcp,out 2 Tsh,out 2 pan,out 5
φcp 150 psh,out 5 φan,out 150

Wsm,out 40 φsh,out 150 Wca,out 40
Tsm,out 2 Wv,inj 100 pca,out 5
psm,out 5 Wom,out 40 Wv,an,out 100
φsm,out 150 pom,out 5 Wv,ca,out 100

Table 7.5: Measurable variables and costs.

Wv,an,out,Wv,ca,out}

and their corresponding cost is depicted in Table 7.5.

Different dimensionless costs have been assigned to each measurable vari-
able according to the ease of installation and the price of its corresponding
sensor. For example, note that measuring humidity or vapour in gases has
a large cost since the sensors are expensive and difficult to install in the
system. On the other hand, installing sensors to measure air temperatures
or pressures are easy and the price is low. Moreover, the measurements
obtained from them are rather reliable. Therefore, this kind of sensors have
an smaller costs. Air flow, angular speed and motor torque are assumed to
be measurable at an intermediate cost.

The required specifications for this particular case are maximum causal
detectability and maximum causal isolability for the set of faults in Table 7.4.
No sensor fault is considered as well as no redundant sensor either.

First, the set of useful sensors, S0, is determined according to (6.23). It
is verified that all the proposed sensors are useful, i.e. S0 = S. Then, the
maximum causal detectability and maximum causal isolability is computed
according to (6.24) and (6.26), respectively. The specifications obtained are
that all the faults are detectable and fully isolable,

FDmax = {fcp1, fcp2, fsm, fac, fsh, fst, fom}

Implementation of Causal Residuals 145

and

FI(fcp1) = {fcp2, fsm, fac, fsh, fst, fom}
FI(fcp2) = {fcp1, fsm, fac, fsh, fst, fom}
FI(fsm) = {fcp1, fcp2, fac, fsh, fst, fom}
FI(fac) = {fcp1, fcp2, fsm, fsh, fst, fom}
FI(fsh) = {fcp1, fcp2, fsm, fac, fst, fom}
FI(fst) = {fcp1, fcp2, fsm, fac, fsh, fom}
FI(fom) = {fcp1, fcp2, fsm, fac, fsh, fst}

for F
1
I = {FI(fcp1), FI(fcp2), FI(fsm), FI(fac), FI(fsh), FI(fst), FI(fom)}.

Algorithm 6.8 has been implemented in Matlab and then used to com-
pute the optimal solution. The optimal set of sensors to be installed in the
system is

S∗ = {ωcp,Wcp,out, Tsm,out, psm,out, Tsh,out, psh,out,Wom,out, pom,out, pca,out}
(7.97)

with a cost C(S∗) = 114. The solution is found in approximately 6 minutes.

7.5 Implementation of Causal Residuals

In this section, the family of causal MSO sets are first computed from the
optimal solution (7.97). Then, an optimal set of those MSO sets is selected
to later implement the corresponding residuals by using the computation
sequence. The main objective of this section is to show how residuals are
implemented for a diagnosis system within the causal framework.

7.5.1 Causal MSO Set Optimisation

Algorithm 6.9 is used to compute the causal MSO sets. First of all, the
sensor equations for the optimal solution (7.97) must be added to the causal
structural model. Running Algorithm 6.9, 63 causal MSO sets are found.
These causal MSO sets are shown in Appendix section 7.B.

Not all MSO sets are required to diagnose the faults, but a reduced
subset will suffice. To find the optimal reduced subset of causal MSO sets,
the BILP formulation presented in Section 5.5.6 is used. Given a causal
MSO set, ω, its corresponding cost C(ω) is defined by the number of fault
equations appearing in ω. According to Table 7.4, this criterion can be
stated as:

C(ω) = |ω ∩ {e1, e6, e11, e24, e31, e58}| (7.98)

146 Chapter 7. Fuel Cell Stack System Application

fcp1 fcp2 fsm fac fsh fom fst

ω1 → r1 ×
ω2 → r2 ×
ω6 → r3 ×
ω7 → r4 ×
ω41 → r5 ×
ω57 → r6 ×
ω60 → r7 ×

Table 7.6: Fault Signature Matrix for the FCS system.

For instance, ω1 in Appendix section 7.B only contains fault equation e31,
so C(ω1) = 1, whereas C(ω3) = 2 since there are two fault equations (e16

and e31) in ω3. Recall from Section 5.5.5 that this criterion was proposed
to maximize the isolability properties of the chosen MSO sets, Indeed, by
doing this, the number of faults affecting each residual is minimal, which
facilitates the task of fault isolation. The set of selected causal MSO sets is
the following:

ω1, ω2, ω6, ω7, ω41, ω57, ω60 (7.99)

The corresponding Fault Signature Matrix is depicted in Table 7.6. Re-
mark that all faults are causally detectable and causally isolable. Note also
that thanks to forcing a minimal number of faults for each causal MSO set,
it is possible, for this particular case, to obtain a one-to-one relationship
between a fault and a residual, which trivialises the fault isolation task.

7.5.2 Residual Implementation and Simulation

Seven residuals, r1, . . . , r7, are derived from the selected causal MSO set
(7.99) (see Table 7.6). The computation sequence, as introduced in Chap-
ter 6, is used to implement the corresponding residual generators1. Such
computation sequences are depicted in Appendix section 7.C. Residuals are
computed by forward value propagation without non-linear loops. Residu-
als relate measurements in the optimal set of sensors S∗ (7.97) and the a
priori known variables (atmospheric variables, setpoints and control vari-
ables). It is also important to point out that linear loops are not present in

1An observer has been implemented in residual generator r6 in order to compensate
the error produced by uncertainties in the dynamic equation.

Implementation of Causal Residuals 147

any implemented residual, though linear relations are allowed in the causal
framework.

For the sake of readability, relations among components and sensor equa-
tions are omitted in Appendix section 7.C, and only the main FCS model
equations are depicted (i.e. equations from Table 7.3). These computation
sequences are implemented in Simulink as residual generators. Then, they
are tested against the FCS model presented in Section 7.3.

To make the approach more realistic, noise is added in the measure-
ments. Four kind of sensors are considered: air flow sensors, angular speed
sensors, pressure sensors and temperature sensors. The noise is modelled as
a white noise with a Gaussian distribution. Table 7.7 shows nominal order
of magnitude of the different kinds of sensor and their standard deviation.

Nominal Noise
magnitude standard deviation

Air flow ∽ 0.1kg/s 4.5 · 10−4kg/s
Angular speed ∽ 104rad/s 10rad/s

Air pressure ∽ 3 · 105Pa 300Pa
Temperature ∽ 350K 0.07K

Table 7.7: Noise standard deviation.

Some modelling errors or uncertainties are also introduced in order to
set up a more realistic simulation. This is done by modifying some values
of the parameters involved in the equations of the computation sequences.
Hence, discrepancies between the FCS system model and the equations in
the residual generators are obtained, which is something often encountered
in real applications. Table 7.8 shows both parameter values: one is used in
the FCS system simulation model and the other in the residual generator
implementation.

A series of simulations have been performed in order to test the residuals
against different fault scenarios. In each simulation, the system operates
in the same operating points. This is achieved by modifying the input
variables of the model which obey to system load changes. In Figure 7.3,
the compressor voltage and the stack current pattern used in all simulations
is depicted.

Figures 7.4 and 7.5 show the normalised residuals for each simulation.
Thresholds are roughly defined in order to set the intervals where residuals

148 Chapter 7. Fuel Cell Stack System Application

Parameter In the FCS In the residual
description Symbol system simulator generator Units

Gas constant Ra 289.9 287 J/(kg ·K)
Vapour molar mass Mv 18.015 · 10−3 18.02 · 10−3 kg/mol

Compressor
diameter outlet

dc 0.2286 0.2287 m

Compressor inertia J 5.01 · 10−5 5 · 10−5 kg/m2

Speed-to-voltage
coefficient

kv 15.3012 · 10−3 14.5 · 10−3 V/(rad/s)

Current-to-torque
coefficient

kt 22.496 · 10−3 24 · 10−3 N ·m/Amp

Friction coefficient B 1.91 · 10−5 2 · 10−5 N ·m/(rad/s)
Electric resistance R 1.16 1.2 Ω

Supply manifold
volume

Vsm 0.01838 0.02 m2

Outlet manifold
volume

Vom 5.313 · 10−3 5 · 10−3 m2

Table 7.8: Modelling errors.

50

100

150

200

250

V
c

p
(V

)

0 5 10 15 20 25 30

100

200

300

I
s

t
(A

)

time (sec)

Figure 7.3: Input signal pattern.

are not activated. Specifically, in Figure 7.4(a) the evolution of the residuals
for the fault free case is shown. Observe that, residual r6 is sensitive to
operating point changes. However, thanks to the observer the residual is

Implementation of Causal Residuals 149

confined inside the interval defined by the thresholds. The residual responses
corresponding to fault scenarios are represented in the remaining subplots
(Figure 7.4(b)- 7.5(h)). Note that, despite the noise and modelling errors,
it is possible to determine the occurrence of a fault by checking whether the
residual crosses the threshold. Furthermore, by taking into consideration
the fault signature matrix in Table 7.6, it is straightforward to determine
which of the seven possible faults has occurred.

In these simulations, fault magnitudes concerning multiplicative faults
are quantified between 5% and 10% of the nominal parameter or unknown
variable, except for the compressor motor fault fcp1 which is 30%. Con-
cerning additive faults, the air cooler fault fac is simulated as an increment
of 0.4K in the desired air temperature, whereas the static humidifier fault
fsh is simulated as a 1% increment in the desired relative humidity of the
air. All faults occur after 10 seconds of the beginning of the corresponding
simulation scenario.

150 Chapter 7. Fuel Cell Stack System Application

−5

0

5

r
1

−5

0

5

r
2

−5

0

5

r
3

−5

0

5

r
4

−5

0

5

r
5

−5

0

5

r
6

0 5 10 15 20 25 30
−5

0

5

r
7

time (sec)

(a)

−5

0

5

r
1

−5

0

5

r
2

−5

0

5

r
3

−5

0

5

r
4

−5

0

5

r
5

−5

0

5

r
6

0 5 10 15 20 25 30
−5

0

5

r
7

time (sec)

(b)

−5

0

5

r
1

−5

0

5

r
2

−5

0

5

r
3

−5

0

5

r
4

−5

0

5

r
5

−5

0

5

r
6

0 5 10 15 20 25 30
−5

0

5

r
7

time (sec)

(c)

−5

0

5

r
1

−5

0

5

r
2

−5

0

5

r
3

−5

0

5

r
4

−5

0

5

r
5

−5

0

5

r
6

0 5 10 15 20 25 30
−5

0

5

r
7

time (sec)

(d)

Figure 7.4: Simulation scenarios: (a) fault free scenario;
(b) fault fcp1 scenario; (c) fault fcp2 scenario; (d) fault fsm

scenario.

Implementation of Causal Residuals 151

−5

0

5

r
1

−5

0

5

r
2

−5

0

5

r
3

−5

0

5

r
4

−5

0

5

r
5

−5

0

5

r
6

0 5 10 15 20 25 30
−5

0

5

r
7

time (sec)

(e)

−5

0

5

r
1

−5

0

5

r
2

−5

0

5

r
3

−5

0

5

r
4

−5

0

5

r
5

−5

0

5

r
6

0 5 10 15 20 25 30
−5

0

5

r
7

time (sec)

(f)

−5

0

5

r
1

−5

0

5

r
2

−5

0

5

r
3

−5

0

5

r
4

−5

0

5

r
5

−5

0

5

r
6

0 5 10 15 20 25 30
−5

0

5

r
7

time (sec)

(g)

−5

0

5

r
1

−5

0

5

r
2

−5

0

5

r
3

−5

0

5

r
4

−5

0

5

r
5

−5

0

5

r
6

0 5 10 15 20 25 30
−5

0

5

r
7

time (sec)

(h)

Figure 7.5: Simulation scenarios: (e) fault fac scenario;
(f) fault fsh scenario; (g) fault fom scenario; (h) fault fst

scenario.

152 Chapter 7. Fuel Cell Stack System Application

7.6 Comparison with Alternative Approaches

The choice of Algorithm 6.8 to solve the sensor placement problem for the
FCS system is motivated in this section. A comparison to the other ap-
proaches presented in this thesis is given next.

All the approaches proposed in this thesis could be used to solve the
sensor placement problem for the FCS system within the causal framework.
The incremental MSO set generation approach presented in Chapter 4 (Al-
gorithm 4.1) could be adapted to only generate causal MSO sets, whereas
the binary programing-based approach in Chapter 5 would require comput-
ing beforehand the whole set of causal MSO set with all candidate sensors
installed in the system. However, as argued below, Algorithm 6.8, presented
in Chapter 6, is the most suitable.

Bear in mind that computing the causal MSO sets with the optimal set of
sensors S∗ (7.97) installed in the system requires approximately 20 minutes
(the redundancy degree of this model ϕs is 9). However, the complexity of
computing causal MSO sets is, theoretically, exponential with respect to the
structural redundancy degree. Thus, the time required to compute the MSO
sets with all the candidate sensors installed in the system (with a redundancy
degree ϕs = 30) is extremely large. Indeed, it has been tried to compute
such sets by running a computer for several days but the algorithm did not
end up. This motivates avoiding binary programming-based approaches to
solve the sensor placement problem for the FCS system.

Next, the performance of the optimal search in the incremental MSO set
generation approach is analysed. First of all, note that the set of candidate
sensors involves 30 possible measurable variables. This implies that the
search space consists of 230 ≈ 109 possible configurations. Recall that,
in this approach, the search strategy consists in starting with no sensor
and then iteratively adding sensors according to their cost until a sensor
configuration that fulfils the diagnosis specifications is found. The optimal
solution S∗ (7.97) has a cost of 114. Therefore, there are 180000 sensor
configurations with a lower cost than 114. This implies that the incremental
algorithm would traverse these sensor configurations in order to find the
solution. Moreover, this also implies that 180000 sets of MSO sets ([ω]Si

for
i ∈ {1, . . . , 180000}) need to be efficiently stored and manipulated by the
algorithm, which poses a serious inconvenience to the applicability of this
approach to the FCS system.

On the other hand, the sensor search strategy proposed in Algorithm 6.8
is more efficient than these other approaches. Actually, it has been found
that Algorithm 6.8 only traverses 1854 sensor configurations. The diagnosis

Conclusions 153

specifications are tested just for 308 of those traversed configurations (i.e.
Algorithm 6.6 receives 308 calls). The number of feasible solutions encoun-
tered during the search is 152, which means that the depth-first search is
aborted in all the remaining configurations (i.e. Algorithm 6.6 aborts the
depth-first search 1702 times). That explains why the solution is found in 6
minutes whereas in the other approaches it would take days.

7.7 Conclusions

Implementing diagnosis systems for large models involving non-linear equa-
tions is not a trivial issue. In this chapter, a systematic methodology to
design such diagnosis systems has been proposed by using one of the al-
gorithms previously presented in this thesis. Furthermore, a real case ap-
plication based on a fuel cell stack system has been used to motivate and
exemplify the diagnosis system design.

Given a set of non-linear equations describing the non-faulty behaviour
of the system, the diagnosis system design methodology can be summarised
in the following four main steps:

1. Extract the causal structural model of the system. The system is
decomposed into components. Each component is modelled apart,
and later extra interconnections are added to the model. To obtain
the causal structural model, causal, non-causal and linear relations
have to be identified.

2. Solve the optimal sensor placement problem in the causal framework.
This requires assigning a cost to each possible sensor and computing
the maximum achievable specifications.

3. Obtain the causal MSO sets needed for the diagnosis system. This
implies computing first the causal MSO sets when the optimal sensor
set is installed in the system, and secondly choosing the optimal set
of causal MSO sets.

4. Given the optimal causal MSO sets, implement the residual generators
by using the computation sequence. The diagnosis specifications can
be then verified by simulation.

In Step 1, the model equations must be described as detailed as possible
in order to avoid unintentional simplifications. Step 2 and its implementa-
tion is the main topic of this thesis. Once the optimal solution is found,

154 Chapter 7. Fuel Cell Stack System Application

Step 3 can be carried out. Here, Algorithm 6.9 has been used to directly
compute the causal MSO sets when the sensors S∗ are installed in the sys-
tem. The algorithm needs 20 minutes to compute the 63 causal MSO sets.
It is important to point out that the complete set of MSO sets obtained with
this solution when no causality is regarded is 2619201. Therefore, another
possible approach would be first compute the whole set of MSO sets and
later reject those that are not causal, to finally obtain the true 63 causal
MSO sets. However, this would not be as efficient as directly computing the
causal MSO sets. After computing the causal MSO sets, an optimal subset
is sought by means of a binary optimisation.

Step 4 is devoted to residual implementation by first implementing the
computational sequence which is ensured due to the existence of a causal
matching without non-linear loops in every causal MSO set, and then testing
its performance in simulation and/or the real plant whenever possible. At
this step and looking at the results shown in Figures 7.4 and 7.5, it is worth
to mention that worse results could be expected. This is because, since the
approach is based on a structural model, it is only ensured that residuals
are not affected by certain faults, whereas the reverse is not ensured. Thus,
some residuals could be not sensitive to its corresponding fault according to
Table 7.6.

Finally, the same problem could be solved without considering causality.
This has been done with Algorithm 6.8 by using a causal structural model
without causality assignments. The solution is found in 4 seconds. The new
optimal sensor configuration is {icp, pom,out} with cost 6 (a priori, this is
a better configuration than S∗ (7.97)). From this sensor configuration, 26
non-causal MSO sets could be generated. However, each MSO set would
contain, on average, 90 equations. This would hamper the implementation
of the residual generators since non-linear equations should have to be solved
in a non-causal way.

Causal Structural Models of the FCS System 155

Appendix

7.A Causal Structural Models of the FCS System

Causal structural models for the FCS system are here described by means of
bi-adjacency matrices. There is one structural model for each component in
the FCS system. The corresponding bi-adjacency matrices are represented
by means of the following tables. At the end of this section, in Table 7.17,
all these models are gathered into the complete causal structural model of
the FCS system.

v
c
p

ω
c
p

τ
m

c
p

i c
p

φ
a

t
m

W
c
p
,o

u
t

T
c
p
,o

u
t

p
c
p
,o

u
t

φ
c
p

p
r
a

t
io

W
c
o
r
,c

p

η
c
p

T
a

t
m

p
a

t
m

T
c
p
,c

o
r

e1 L L L
e2 L L L
e3 × ∆ ∆ ∆ ∆ ∆
e4 L L
e5 ∆ × ∆
e6 ∆ ∆ × ∆ ∆
e7 × × × ∆
e8 ∆ ∆ ×
e9 × ∆ × ×
e10 × ∆ × × ∆ ×

Table 7.9: Air compressor
model.

W
s
m

,i
n

T
s
m

,i
n

p
s
m

,i
n

φ
s
m

,i
n

p
s
m

,d
s

W
s
m

,o
u

t

T
s
m

,o
u

t

p
s
m

,o
u

t

φ
s
m

,o
u

t

m
s
m

e11 L L L
e12 ∆ ∆ ×
e13 ∆ ∆ ∆ ∆ ×
e14 × × ×
e15 ∆ × × ∆ × ×

Table 7.10: Supply
manifold model.

W
a

c
,i

n

T
a

c
,i

n

p
a

c
,i

n

φ
a

c
,i

n

T
d
e
s

W
a

c
,o

u
t

T
a

c
,o

u
t

p
a

c
,o

u
t

φ
a

c
,o

u
t

e16 L L
e17 ∆ × × ∆ × ×
e18 L L
e19 L L

Table 7.11: Air cooler
model.

W
s
h

,i
n

T
s
h

,i
n

p
s
h

,i
n

φ
s
h

,i
n

φ
d
e
s

W
s
h

,o
u

t

T
s
h

,o
u

t

p
s
h

,o
u

t

φ
s
h

,o
u

t

W
v
,i

n
j

p
v
,s

h
,i

n

p
a

,s
h

,i
n

p
v
,s

h
,o

u
t

p
a

,s
h

,o
u

t

e20 L L
e21 ∆ × ×
e22 L L L
e23 ∆ × ×
e24 L L
e25 L L
e26 × × × × × ×
e27 L L L
e28 L L L

Table 7.12: Static humidifier
model.

Causal Structural Models of the FCS System 157
A

ir
C

o
m

p
re

ss
o
r

S
u
p
p
ly

M
a
n
if
o
ld

A
ir

C
o
o
le

r
S
ta

ti
c

H
u
m

id
ifi

e
r

A
F
C

O
u
tl

e
t

M
a
n
if
o
ld

F
u
e
l
C

e
ll

S
ta

c
k

vcp
ωcp
τmcp
icp

φatm
Wcp,out
Tcp,out
pcp,out

φcp
pratio
Wair,corr
ηcp

Tatm
patm

Tcp,cor

Wsm,in
Tsm,in
psm,in
φsm,in
psm,ds
Wsm,out
Tsm,out
psm,out

φsm,out
msm

Wac,in
Tac,in
pac,in
φac,in
Tdes
Wac,out
Tac,out
pac,out

φac,out

Wsh,in
Tsh,in
psh,in
φsh,in
φdes
Wsh,out
Tsh,out
psh,out
φsh,out
Wv,inj
pv,sh,in
pa,sh,in
pv,sh,out
pa,sh,out

pafc,+
pafc,−

Wafc,out

Wom,in
Tom,in
φom,in
pom,ds

Wom,out
Tom,out
pom,out

φom,out

ist
Wan,in
pan,in
φan,in
Wca,in
pca,in
φca,in
Tst
pst,ds
vst
Wan,out
pan,out

φan,out
Wca,out
pca,out

φca,out ·
·
·

e
6
2

×

e
6
3

×

e
6
4

×

e
6
5

×

e
6
6

×

e
6
7

×

e
6
8

×

e
6
9

L
L

e
7
0

L
L

e
7
1

L
L

e
7
2

L
L

e
7
3

L
L

e
7
4

L
L

e
7
5

L
L

e
7
6

L
L

e
7
7

L
L

e
7
8

L
L

e
7
9

L
L

e
8
0

L
L

e
8
1

L
L

e
8
2

L
L

e
8
3

L
L

e
8
4

L
L

e
8
5

L
L

e
8
6

L
L

e
8
7

L
L

e
8
8

L
L

e
8
9

L
L

e
9
0

L
L

e
9
1

L
L

e
9
2

L
L

e
9
3

L
L

e
9
4

L
L

e
9
5

×

e
9
6

×

T
ab

le
7.

16
:

S
tr

u
ct

u
ra

l
re

la
ti
on

s
fo

r
co

m
p
on

en
t

in
te

rc
on

n
ec

ti
on

s
an

d
k
n
ow

n
va

ri
ab

le
s.

158 Chapter 7. Fuel Cell Stack System Application

v c
p . . .

T
c
p
,c

o
r

W
s
m

,i
n

. . .
m

s
m

W
a
c
,i
n

. . .
φ

a
c
,o

u
t

W
s
h
,i
n

. . .
p

a
,s

h
,o

u
t

p
a
f
c
,−

. . .
W

a
f
c
,o

u
t

W
o
m

,i
n

. . .
φ

o
m

,o
u
t

i s
t . . .

p
s
a
t(

T
s
t)

e1
...

e10

Air
Compressor

Table
7.A

e11
...

e15

Supply
Manifold

Table
7.10

e16
...

e19

Air
Cooler

Table
7.11

e20
...

e28

Static
Humidifier

Table
7.12

e29

Anode Flow
Control

Table
7.13

e30
...

e33

Outlet
Manifold

Table
7.14

e34
...

e61

Fuel Cell
Stack

Table
7.15

e62
...

e96

Structural relations for component interconnections and known variables

Table 7.16

Table 7.17: Causal structural Fuel Cell System.

Causal MSO Set of FCS Model Equations 159

7.B Causal MSO Set of FCS Model Equations

Next, the set of causal MSO sets for the FCS system application are detailed.
These MSO sets are computed for the optimal set of sensor S∗ (7.97). Note
that the sensor equations corresponding to S∗ are eωcp , eWcp,out, eTsm,out ,
epsm,out, eTsh,out

, epsh,out
, eWom,out, epom,out and epca,out.

ω1 = {e31, e65, e87, e91, eWom,out , epom,out, eTsh,out
}

ω2 = {e16, e20, e67, e83, eTsh,out
}

ω3 = {e16, e20, e31, e65, e67, e83, e87, e91, eWom,out, epom,out}
ω4 = {e11, e12, e14, e69, e71, e73, e78, eWcp,out, epsm,out , epca,out, eTsm,out}
ω5 = {e4, e5, e7, e8, e9, e11, e13, e63, e64, e69, e70, e71, e73, e78, eWcp,out , epsm,out ,

epca,out, eTsm,out}
ω6 = {e4, e5, e7, e8, e9, e11, e12, e13, e14, e63, e64, e69, e70, e71, e73, e78, eWcp,out ,

epsm,out, epca,out}
ω7 = {e4, e5, e7, e8, e9, e10, e15, e17, e19, e20, e21, e22, e23, e24, e25, e28, e62, e63,

e64, e68, e70, e71, e72, e73, e75, e76, e77, e83, e84, e85, eWcp,out, epsm,out ,

epsh,out
, eTsm,out , eTsh,out

}
ω8 = {e4, e5, e7, e8, e9, e10, e15, e16, e17, e19, e21, e22, e23, e24, e25, e28, e62, e63,

e64, e67, e68, e70, e71, e72, e73, e75, e76, e77, e83, e84, e85, eWcp,out , epsm,out ,

epsh,out
, eTsm,out , eTsh,out

}
ω9 = {e4, e5, e7, e8, e9, e10, e15, e16, e17, e19, e20, e21, e22, e23, e24, e25, e28, e62,

e63, e64, e67, e68, e70, e71, e72, e73, e75, e76, e77, e84, e85, eWcp,out , epsm,out ,

epsh,out
, eTsm,out , eTsh,out

}
ω10 = {e4, e5, e7, e8, e9, e10, e15, e16, e17, e19, e20, e21, e22, e23, e24, e25, e28, e62,

e63, e64, e67, e68, e70, e71, e72, e73, e75, e76, e77, e83, e84, e85, eWcp,out,

epsm,out, epsh,out
, eTsm,out}

ω11 = {e4, e5, e7, e8, e9, e10, e11, e13, e15, e17, e19, e20, e21, e22, e23, e24e25, e28,

e62, e63, e64, e68, e69, e70, e72, e73, e75, e76, e77, e78, e83, e84, e85, eWcp,out ,

epsm,out, epsh,out
, epca,out, eTsm,out , eTsh,out

}
ω12 = {e4, e5, e7, e8, e9, e10, e11, e13, e15, e16, e17, e19, e21, e22, e23, e24e25, e28,

e62, e63, e64, e67, e68, e69, e70, e72, e73, e75, e76, e77, e78, e83, e84, e85,

eWcp,out, epsm,out , epsh,out
, epca,out, eTsm,out , eTsh,out

}

160 Chapter 7. Fuel Cell Stack System Application

ω13 = {e4, e5, e7, e8, e9, e10, e11, e13, e15, e16, e17, e19, e20, e21, e22, e23, e24, e25,

e28, e62, e63, e64, e67, e68, e69, e70, e72, e73, e75, e76, e77, e78, e84, e85,

eWcp,out, epsm,out , epsh,out
, epca,out, eTsm,out , eTsh,out

}
ω14 = {e4, e5, e7, e8, e9, e10, e11, e13, e15, e16, e17, e19, e20, e21, e22, e23, e24, e25,

e28, e62, e63, e64, e67, e68, e69, e70, e72, e73, e75, e76, e77, e78, e83, e84, e85,

eWcp,out, epsm,out , epsh,out
, epca,out, eTsm,out}

ω15 = {e4, e5, e7, e8, e9, e10, e11, e12, e14, e15, e17, e19, e20, e21, e22, e23, e24, e25,

e28, e62, e63, e64, e68, e69, e70, e72, e73, e75, e76, e77, e78, e83, e84, e85,

eWcp,out, epsm,out , epsh,out
, epca,out, eTsm,out , eTsh,out

}
ω16 = {e4, e5, e7, e8, e9, e10, e11, e12, e14, e15, e17, e19, e20, e21, e22, e23, e24, e25,

e28, e62, e63, e64, e68, e69, e70, e71, e72, e73, e75, e76, e77, e78, e83, e84, e85,

eWcp,out, epsm,out , eWcp,out , epsm,out , epsh,out
, epca,out, eTsh,out

}
ω17 = {e4, e5, e7, e8, e9, e10, e11, e12, e14, e15, e16, e17, e19, e21, e22, e23, e24, e25,

e28, e62, e63, e64, e67, e68, e69, e70, e72, e73, e75, e76, e77, e78, e83, e84, e85,

eWcp,out, epsm,out , epsh,out
, epca,out, eTsm,out , eTsh,out

}
ω18 = {e4, e5, e7, e8, e9, e10, e11, e12, e14, e15, e16, e17, e19, e21, e22, e23, e24, e25,

e28, e62, e63, e64, e67, e68, e69, e70, e71, e72, e73, e75, e76, e77, e78, e83, e84,

e85, eWcp,out , epsm,out , epsh,out
, epca,out, eTsh,out

}
ω19 = {e4, e5, e7, e8, e9, e10, e11, e12, e14, e15, e16, e17, e19, e20, e21, e22, e23, e24,

e25, e28, e62, e63, e64, e67, e68, e69, e70, e72, e73, e75, e76, e77, e78, e84, e85,

eWcp,out, epsm,out , epsh,out
, epca,out, eTsm,out , eTsh,out

}
ω20 = {e4, e5, e7, e8, e9, e10, e11, e12, e14, e15, e16, e17, e19, e20, e21, e22, e23, e24,

e25, e28, e62, e63, e64, e67, e68, e69, e70, e72, e73, e75, e76, e77, e78, e83, e84,

e85, eWcp,out , epsm,out , epsh,out
, epca,out, eTsm,out}

ω21 = {e4, e5, e7, e8, e9, e10, e11, e12, e14, e15, e16, e17, e19, e20, e21, e22, e23, e24,

e25, e28, e62, e63, e64, e67, e68, e69, e70, e71, e72, e73, e75, e76, e77, e78, e84,

e85, eWcp,out , epsm,out , epsh,out
, epca,out, eTsh,out

}
ω22 = {e4, e5, e7, e8, e9, e10, e11, e12, e14, e15, e16, e17, e19, e20, e21, e22, e23, e24,

e25, e28, e62, e63, e64, e67, e68, e69, e70, e71, e72, e73, e75, e76, e77, e78, e83,

e84, e85, eWcp,out, epsm,out , epsh,out
, epca,out}

ω23 = {e4, e5, e6, e8, e9, e11, e13, e63, e64, e69, e70, e71, e73, e78, eWcp,out, eωcp ,

epsm,out , epca,out, eTsm,out}

Causal MSO Set of FCS Model Equations 161

ω24 = {e4, e5, e6, e8, e9, e11, e12, e13, e14, e63, e64, e69, e70, e71, e73, e78, eWcp,out ,

eωcp , epsm,out , epca,out}
ω25 = {e4, e5, e6, e8, e9, e10, e15, e17, e19, e20, e21, e22, e23, e24, e25, e28, e62, e63,

e64, e68, e70, e71, e72, e73, e75, e76, e77, e83, e84, e85, eωcp , epsm,out , epsh,out
,

eTsm,out , eTsh,out
}

ω26 = {e4, e5, e6, e8, e9, e10, e15, e16, e17, e19, e21, e22, e23, e24, e25, e28, e62, e63,

e64, e67, e68, e70, e71, e72, e73, e75, e76, e77, e83, e84, e85, eωcp , epsm,out ,

epsh,out
, eTsm,out , eTsh,out

}
ω27 = {e4, e5, e6, e8, e9, e10, e15, e16, e17, e19, e20, e21, e22, e24, e23, e25, e28, e62,

e63, e64, e67, e68, e70, e71, e72, e73, e75, e76, e77, e84, e85, eωcp , epsm,out ,

epsh,out
, eTsm,out , eTsh,out

}
ω28 = {e4, e5, e6, e8, e9, e10, e15, e16, e17, e19, e20, e21, e22, e23, e24, e25, e28, e62,

e63, e64, e67, e68, e70, e71, e72, e73, e75, e76, e77, e83, e84, e85, eωcp , epsm,out ,

epsh,out
, eTsm,out}

ω29 = {e4, e5, e6, e8, e9, e10, e11, e13, e15, e17, e19, e20, e21, e22, e23, e24e25, e28,

e62, e63, e64, e68, e69, e70, e72, e73, e75, e76, e77, e78, e83, e84, e85, eWcp,out ,

eωcp , epsm,out , epsh,out
, epca,out, eTsm,out , eTsh,out

}
ω30 = {e4, e5, e6, e8, e9, e10, e11, e13, e15, e16, e17, e19, e21, e22, e23, e24, e25, e28,

e62, e63, e64, e67, e68, e69, e70, e72, e73, e75, e76, e77, e78, e83, e84, e85,

eWcp,out, eωcp , epsm,out , epsh,out
, epca,out, eTsm,out , eTsh,out

}
ω31 = {e4, e5, e6, e8, e9, e10, e11, e13, e15, e16, e17, e19, e20, e21, e22, e23, e24, e25,

e28, e62, e63, e64, e67, e68, e69, e70, e72, e73, e75, e76, e77, e78, e84, e85,

eWcp,out, eωcp , epsm,out , epsh,out
, epca,out, eTsm,out , eTsh,out

}
ω32 = {e4, e5, e6, e8, e9, e10, e11, e13, e15, e16, e17, e19, e20, e21, e22, e23, e24, e25,

e28, e62, e63, e64, e67, e68, e69, e70, e72, e73, e75, e76, e77, e78, e83, e84, e85,

eWcp,out, eωcp , epsm,out , epsh,out
, epca,out, eTsm,out}

ω33 = {e4, e5, e6, e8, e9, e10, e11, e12, e14, e15, e17, e19, e20, e21, e22, e23, e24, e25,

e28, e62, e63, e64, e68, e69, e70, e72, e73, e75, e76, e77, e78, e83, e84, e85,

eWcp,out, eωcp , epsm,out , epsh,out
, epca,out, eTsm,out , eTsh,out

}
ω34 = {e4, e5, e6, e8, e9, e10, e11, e12, e14, e15, e17, e19, e20, e21, e22, e23, e24, e25,

e28, e62, e63, e64, e68, e69, e70, e71, e72, e73, e75, e76, e77, e78, e83, e84, e85,

eWcp,out, eωcp , epsm,out , epsh,out
, epca,out, eTsh,out

}

162 Chapter 7. Fuel Cell Stack System Application

ω35 = {e4, e5, e6, e8, e9, e10, e11, e12, e14, e15, e16, e17, e19, e21, e22, e23, e24, e25,

e28, e62, e63, e64, e67, e68, e69, e70, e72, e73, e75, e76, e77, e78, e83, e84, e85,

eWcp,out, eωcp , epsm,out , epsh,out
, epca,out, eTsm,out , eTsh,out

}
ω36 = {e4, e5, e6, e8, e9, e10, e11, e12, e14, e15, e16, e17, e19, e21, e22, e23, e24, e25,

e28, e62, e63, e64, e67, e68, e69, e70, e71, e72, e73, e75, e76, e77, e78, e83, e84,

e85, eWcp,out , eωcp , epsm,out , epsh,out
, epca,out, eTsh,out

}
ω37 = {e4, e5, e6, e8, e9, e10, e11, e12, e14, e15, e16, e17, e19, e20, e21, e22, e23, e24,

e25, e28, e62, e63, e64, e67, e68, e69, e70, e72, e73, e75, e76, e77, e78, e84, e85,

eWcp,out, eωcp , epsm,out , epsh,out
, epca,out, eTsm,out , eTsh,out

}
ω38 = {e4, e5, e6, e8, e9, e10, e11, e12, e14, e15, e16, e17, e19, e20, e21, e22, e23, e24,

e25, e28, e62, e63, e64, e67, e68, e69, e70, e72, e73, e75, e76, e77, e78, e83, e84,

e85, eWcp,out , eωcp , epsm,out , epsh,out
, epca,out, eTsm,out}

ω39 = {e4, e5, e6, e8, e9, e10, e11, e12, e14, e15, e16, e17, e19, e20, e21, e22, e23, e24,

e25, e28, e62, e63, e64, e67, e68, e69, e70, e71, e72, e73, e75, e76, e77, e78, e84,

e85, eWcp,out , eωcp , epsm,out , epsh,out
, epca,out, eTsh,out

}
ω40 = {e4, e5, e6, e8, e9, e10, e11, e12, e14, e15, e16, e17, e19, e20, e21, e22, e23, e24,

e25, e28, e62, e63, e64, e67, e68, e69, e70, e71, e72, e73, e75, e76, e77, e78, e83,

e84, e85, eWcp,out, eωcp , epsm,out , epsh,out
, epca,out}

ω41 = {e4, e5, e6, e7, e63, e64, e73, eWcp,out, eωcp , epsm,out}
ω42 = {e4, e5, e6, e7, e11, e12, e14, e63, e64, e69, e71, e73, e78, eωcp , epsm,out , epca,out,

eTsm,out}
ω43 = {e4, e5, e6, e7, e8, e9, e11, e13, e63, e64, e69, e70, e71, e73, e78, eωcp , epsm,out ,

epca,out, eTsm,out}
ω44 = {e4, e5, e6, e7, e8, e9, e11, e12, e13, e14, e63, e64, e69, e70, e71, e73, e78, eωcp ,

epsm,out , epca,out}
ω45 = {e4, e5, e6, e7, e8, e9, e10, e11, e13, e15, e17, e19, e20, e21, e22, e23, e24, e25,

e28, e62, e63, e64, e68, e69, e70, e72, e73, e75, e76, e77, e78, e83, e84, e85, eωcp ,

epsm,out , epsh,out
, epca,out, eTsm,out , eTsh,out

}
ω46 = {e4, e5, e6, e7, e8, e9, e10, e11, e13, e15, e16, e17, e19, e21, e22, e23, e24, e25,

e28, e62, e63, e64, e67, e68, e69, e70, e72, e73, e75, e76, e77, e78, e83, e84, e85,

eωcp , epsm,out , epsh,out
, epca,out, eTsm,out , eTsh,out

}
ω47 = {e4, e5, e6, e7, e8, e9, e10, e11, e13, e15, e16, e17, e19, e20, e21, e22, e23, e24,

Causal MSO Set of FCS Model Equations 163

e25, e28, e62, e63, e64, e67, e68, e69, e70, e72, e73, e75, e76, e77, e78, e84, e85,

eωcp , epsm,out , epsh,out
, epca,out, eTsm,out , eTsh,out

}
ω48 = {e4, e5, e6, e7, e8, e9, e10, e11, e13, e15, e16, e17, e19, e20, e21, e22, e23, e24,

e25, e28, e62, e63, e64, e67, e68, e69, e70, e72, e73, e75, e76, e77, e78, e83, e84,

e85, eωcp , epsm,out , epsh,out
, epca,out, eTsm,out}

ω49 = {e4, e5, e6, e7, e8, e9, e10, e11, e12, e14, e15, e17, e19, e20, e21, e22, e23, e24,

e25, e28, e62, e63, e64, e68, e69, e70, e72, e73, e75, e76, e77, e78, e83, e84, e85,

eωcp , epsm,out , epsh,out
, epca,out, eTsm,out , eTsh,out

}
ω50 = {e4, e5, e6, e7, e8, e9, e10, e11, e12, e14, e15, e17, e19, e20, e21, e22, e23, e24,

e25, e28, e62, e63, e64, e68, e69, e70, e71, e72, e73, e75, e76, e77, e78, e83, e84,

e85, eωcp , epsm,out , epsh,out
, epca,out, eTsh,out

}
ω51 = {e4, e5, e6, e7, e8, e9, e10, e11, e12, e14, e15, e16, e17, e19, e21, e22, e23, e24,

e25, e28, e62, e63, e64, e67, e68, e69, e70, e72, e73, e75, e76, e77, e78, e83, e84,

e85, eωcp , epsm,out , epsh,out
, epca,out, eTsm,out , eTsh,out

}
ω52 = {e4, e5, e6, e7, e8, e9, e10, e11, e12, e14, e15, e16, e17, e19, e21, e22, e23, e24,

e25, e28, e62, e63, e64, e67, e68, e69, e70, e71, e72, e73, e75, e76, e77, e78, e83,

e84, e85, eωcp , epsm,out , epsh,out
, epca,out, eTsh,out

}
ω53 = {e4, e5, e6, e7, e8, e9, e10, e11, e12, e14, e15, e16, e17, e19, e20, e21, e22, e23,

e24, e25, e28, e62, e63, e64, e67, e68, e69, e70, e72, e73, e75, e76, e77, e78, e84,

e85, eωcp , epsm,out , epsh,out
, epca,out, eTsm,out , eTsh,out

}
ω54 = {e4, e5, e6, e7, e8, e9, e10, e11, e12, e14, e15, e16, e17, e19, e20, e21, e22, e23,

e24, e25, e28, e62, e63, e64, e67, e68, e69, e70, e72, e73, e75, e76, e77, e78, e83,

e84, e85, eωcp , epsm,out , epsh,out
, epca,out, eTsm,out}

ω55 = {e4, e5, e6, e7, e8, e9, e10, e11, e12, e14, e15, e16, e17, e19, e20, e21, e22, e23,

e24, e25, e28, e62, e63, e64, e67, e68, e69, e70, e71, e72, e73, e75, e76, e77, e78,

e84, e85, eωcp , epsm,out , epsh,out
, epca,out, eTsh,out

}
ω56 = {e4, e5, e6, e7, e8, e9, e10, e11, e12, e14, e15, e16, e17, e19, e20, e21, e22, e23,

e24, e25, e28, e62, e63, e64, e67, e68, e69, e70, e71, e72, e73, e75, e76, e77, e78,

e83, e84, e85, eωcp , epsm,out , epsh,out
, epca,out}

ω57 = {e1, e2, e3, e4, e5, e7, e8, e63, e64, e73, e96, eWcp,out , eωcp , epsm,out}
ω58 = {e1, e2, e3, e4, e5, e6, e8, e63, e64, e73, e96, eWcp,out , eωcp , epsm,out}
ω59 = {e1, e2, e3, e4, e5, e6, e7, e8, e63, e64, e73, e96, eωcp , epsm,out}

164 Chapter 7. Fuel Cell Stack System Application

ω60 = {e58, e30, e86, e87, e91, e94, eWom,out , epom,out, epca,out, eTsh,out
}

ω61 = {e58, e30, e31, e65, e86, e87, e91, e94, epom,out , epca,out, eTsh,out
}

ω62 = {e58, e16, e20, e30, e67, e83, e86, e87, e91, e94, eWom,out , epom,out, epca,out}
ω63 = {e58, e16, e20, e30, e31, e65, e67, e83, e86, e87, e91, e94, epom,out , epca,out}

(7.100)

7.C Computation Sequences

Next, the computation sequences corresponding to the optimised causal
MSO sets, ω1, ω2, ω6, ω7, ω41, ω57, ω60 are detailed. Hence, deriving residual
generators is straightforward since the causal residual computation is always
ensured.

Figure 7.6: Computation
sequence for r1.

Figure 7.7: Computation
sequence for
r2.

Figure 7.8: Computation sequence for r3.

Computation Sequences 165

Figure 7.9: Computation sequence for r4.

Figure 7.10: Computation sequence for r5.

166 Chapter 7. Fuel Cell Stack System Application

Figure 7.11: Computation sequence for r6.

Figure 7.12: Computation sequence for r7.

Chapter 8

Concluding Remarks

The conclusions and contributions drawn from this thesis are presented in
this chapter. First, the main contributions are summarised. In the conclu-
sions section, the importance of placing sensors for diagnosis is highlighted.
Also, general conclusions derived from the sensor placement problem anal-
ysis are detailed. Next, a comparison of the basic features of the three
approaches presented throughout this thesis is presented. Finally, some
guidelines are given for future works and extensions.

8.1 Summary of Contributions

The sensor placement has traditionally been a marginal topic in the diagnosis
field. In the last few years, this subject has gained the interest of several
researches, and new contributions have been recently published. This thesis
takes advantage of this, by using or improving these new works. On the other
hand, new contributions and developments are achieved, where the existing
works are not suitable. The main contributions are next summarised:

1. Framework development for sensor placement analysis: Chap-
ter 3. The bases for the sensor placement analysis are established
based on existing literature. In order to do so, definitions for fault
detectability and isolability, based on either structural model or MSO
sets properties, are introduced. This allows to handle the same di-
agnosis specifications throughout this thesis. Furthermore, a suitable
representation of sensors is chosen to efficiently handle them in all
proposed methodologies. Maximum diagnosis specifications are also
determined.

167

168 Chapter 8. Concluding Remarks

2. Redundant sensors in the sensor placement problem: The-
orem 3.4. A novel contribution in Chapter 3 is the study of how
redundant sensors affect fault detectability and isolability properties
for a given structural model. The results derived from Theorem 3.4
are later used to efficiently handle redundant sensors in all proposed
methods. Similar results were achieved in Krysander and Frisk (2008)
and Frisk et al. (2009). However, in these works, no explicit redundant
sensor consideration is done and the results are only valid for models
without under-determined part.

3. Sensor placement by incremental MSO set generation: (Rosich
et al., 2007) and Chapter 4. A method to solve the sensor placement
based on MSO set properties is proposed. The novelty is that not all
the MSO sets are computed, being this approach more efficient than
similar existing approaches. A key contribution for the applicability of
this method is Theorem 4.1. Given a sensor configuration, MSO sets
can be incrementally generated by only computing those MSO sets
that contain all the corresponding sensor equations. It is ensured that
the remaining MSO sets can be reused from previously tested sensor
configurations.

4. Binary non-linear programming for sensor placement: (Sar-
rate et al., 2007) and, Sections 5.2 and 5.3. The sensor placement
problem is addressed as a binary integer optimisation problem. This
is mainly possible due to a MSO set selector constraint (5.7), which
validates MSO sets for a given sensor configuration.

5. Binary linear programming for sensor placement: (Rosich et al.,
2009c), (Nejjari et al., 2010) and Section 5.5. The binary non-linear
programming formulation turns into a linear formulation by defining
a linear MSO set selector constraint (5.37). This allows the use of
standard BILP optimisation techniques. This formulation can be used
not only to solve the sensor placement problem (Section 5.5.4) but
also the MSO set selection. This can be done together with the sensor
selection (Section 5.5.5) or independently (Section 5.5.6).

6. Causal computation for residual generators: (Rosich et al.,
2009a) and Chapter 6. A framework to properly deal with the compu-
tation of unknown variables when residual generators are derived from
MSO sets is implemented. Algorithms that ensure a feasible variable

Conclusions 169

computation are developed. Furthermore, fault detectability and isola-
bility are redefined by taking into account such causal computations.

7. Sensor placement for causal computation framework: (Rosich
et al., 2009a) and Chapter 6. The sensor placement problem is ad-
dressed when causal computations are considered. It is important to
mention that no MSO set is generated to solve such problem.

8. Efficient optimal sensor search strategy: (Frisk et al., 2010) and
Section 6.6. The new search strategy developed to find the optimal
sensor configuration allows, in general, to solve the sensor placement
problem for a large number of candidate sensors. Indeed, there are
some practical cases (e.g. the FCS system) that can only be solved in
a reasonable time, at the moment, by using such search strategy.

9. Sensor placement and residual generators for a FCS system:

(Rosich et al., 2009b) and Chapter 7. Sensor placement and residual
generator techniques are applied on a FCS system. This is a novel
contribution to the fuel cell community regarding the diagnosis system
design.

8.2 Conclusions

In this thesis, the sensor placement problem based on fault diagnosis has
been addressed as the main topic. It has been shown that diagnosis capabil-
ities of the system can be significantly improved by installing the appropriate
set of sensors. Furthermore, the diagnosis system design can be simplified
when the problem of placing suitable sensors is solved beforehand. For these
reasons, the sensor placement problem should be considered in the design
of a process to be diagnosed, or to improve the diagnosis capabilities of the
diagnosis system to be implemented in an existing process.

Solving the sensor placement for diagnosis can be treated from many dif-
ferent points of view. Indeed, such a problem depends on the kind of system
description, the required diagnosis specifications, as well as the technique
used to implement the diagnosis system. Because of this, developing a sen-
sor placement method, that works for all possible fault diagnosis systems, is
unattainable. Here, fault diagnosis systems are based on consistency check-
ing by means of structural models. The required diagnosis specifications
to be fulfilled are fault detection and isolation for both, process and sen-
sor faults. In author’s opinion, such diagnosis requirements are the most

170 Chapter 8. Concluding Remarks

elementary that a diagnosis system must fulfil. However, some of the me-
thods presented here could be easily extended to other possible diagnosis
requirements.

Considering faults in sensors is a delicate issue since the more sensors
are added to the system, the larger the number of faults to be diagnosed
is. Consequently, full fault isolability concerning all faults is generally not
possible, or the number of sensors required for installation is too large. A
good solution to deal with this issue is to consider redundant sensors, as
long as installing the same sensor more than once in the system is feasible.
It has been proved that adding redundant sensors only improves sensor fault
diagnosis. Therefore, the sensor placement problem for diagnosis when re-
dundant sensor are accepted has been addressed in this thesis. Furthermore,
efficient strategies to work with redundant sensors have been developed for
the proposed approaches.

The nature of the sensor placement problem, as seen in this thesis, is
basically combinatorial. This means that the search space exponentially
grows with the number of sensors to be considered. To cope with this issue,
the problem has been set up as an optimisation problem (the optimal sen-
sor set is sought). Different optimisation techniques have been introduced
based on the approach suitability. These optimisation techniques cover stan-
dard optimisation formulation (e.g. BILP formulation) and optimum search
algorithms as well.

MSO set generation methods have also been addressed in this thesis as
a consequence of the study of the sensor placement problem. Specifically,
algorithms for incremental generation of MSO sets and causal MSO sets
have been developed.

Another secondary topic addressed within the sensor placement problem
is the computation of unknown variables in a residual. A framework that
takes into account how unknown variables can be computed for a given
structural model has been introduced. Finally, such approach has been
tested in a process based on a fuel cell stack. The results have proved
that the method is perfectly applicable and efficiently works for large-scale
systems.

8.3 Proposed Approaches Discussion

In the following, the main features of the three approaches presented in this
thesis are compared and discussed. Below, we reefer to the incremental
approach, the binary programming approach and the causal computation

Proposed Approaches Discussion 171

approach introduced in Chapters 4, 5 and 6, respectively.
An important feature is the number of MSO sets generated during the

sensor search. As mentioned before, generating MSO sets has a high com-
putational cost. Therefore, the fewer MSO sets are computed, the more
efficient the approach is. The binary programming approach requires the
whole set of all the MSO sets generated beforehand. The incremental ap-
proach efficiently computes only those MSO sets required at each iteration
of the sensor search. Thus, in general, fewer MSO set are generated. On the
other hand, the causal computation approach needs no MSO sets. Thus, it
is the most efficient approach from the required MSO sets point of view.

Another feature to be taken into account is the sensor search efficiency.
All the proposed approaches search for the optimal sensor configuration.
How this search is performed varies from one approach to another. First,
it is worth noting that, in the worst case, the computation time of all the
adopted search strategies exponentially depends on the number of sensors.
However, in general, there are approaches that are faster than others. The
most time demanding approach is the incremental approach. This is due
to the search strategy being rather simple, since it is based on testing sen-
sor configurations in increasing cost until a solution is found. The binary
programming approach, specially the BILP formulation, should be the most
efficient since it uses standard and well-studied algorithms. However, its
efficiency is penalised as the optimisation vector is increased by the MSO
set selector variables. Thus, it can be stated that the binary programming
approach has a medium efficiency. Finally, the causal computation approach
using Algorithm 6.8 results to be the most efficient since sets of sensor config-
urations are cleverly rejected from the diagnosis specification test. Equiva-
lent size problems have been tested in the three approaches, being the causal
computation approach the fastest.

The last feature to be analysed is how easily the proposed approaches can
be adapted to a diagnosis specification other than fault detectability or isola-
bility. Defining diagnosis specifications as MSO set properties is in general
easier than defining the same diagnosis specifications as structural model
properties. The causal computation approach, as mentioned before, does
not generate any MSO set. Thus, diagnosis specifications must be tested by
means of structural model properties. In (Krysander and Frisk, 2008), fault
detectability and isolability are characterised as structural model properties.
Later, in Chapter 6 such properties are extended to also cover causal de-
tectability and isolability. Furthermore, to use Algorithm 6.8, Heuristics 1
and 2 (Section 6.6) must be fulfilled by the diagnosis specifications. Indeed,
fault detectability and isolability specifications (as presented in (Krysander

172 Chapter 8. Concluding Remarks

and Frisk, 2008)), as well as causal detectability and isolability, fulfil these
two heuristics. For other diagnosis specifications, further studies should be
done. This poses serious restrictions on the diagnosis specification flexibility
for the causal computation approach. In the binary programming approach,
the diagnosis specifications are based on MSO set properties. However, they
must be formulated as inequality constraints (non-linear or linear, depend-
ing on the BIP or BILP formulation). This limits the degree of freedom at
coping with new diagnosis specifications. Finally, the incremental approach
tests specifications by means of an external procedure P ′ (4.1). Therefore,
diagnosis specification treatment depends on the implementation of this pro-
cedure where the required MSO sets and sensors are provided. Hence, the
incremental and binary programming approaches are easier to implement
for a wide range of diagnosis specifications than the causal computation ap-
proach.

Generated MSO Sensor search Diagnosis specifications
Ranking sets requirements efficiency flexibility

1 causal computation causal computation incremental
2 incremental binary programming binary programming
3 binary programming incremental causal computation

Table 8.1: Approaches comparison.

Summarising this discussion, Table 8.1 qualitatively ranks the three ap-
proaches according to the main features explained above. It can be con-
cluded that efficiency is lower when a more flexible algorithm, with respect
to the diagnosis specification requirements, is used. On the other hand, ad-
hoc algorithms for specific diagnosis specifications entail better efficiency.
However, they usually require more design effort. As it could be expected,
when developing an algorithm to solve the sensor placement problem, there
is a trade-off between flexibility and efficiency.

8.4 Future Works

Many advances on sensor placement for fault diagnosis, specially based on
a structural model, have been done recently. Nevertheless, there are some
open issues that need to be solved. The first issue concerns the computa-
tional complexity of the problem. Methods that work for a certain num-

Future Works 173

ber of candidate sensors become useless when the number is scarcely in-
creased. Therefore, algorithms with non-exponential computational com-
plexity should be explored.

An alternative to deal with a high computational complexity is to in-
vestigate distributed diagnosis techniques. Such techniques are based on
the “divide and conquer” principle, transforming an unfeasible problem into
several feasible sub-problems. One possibility is to design decentralised di-
agnosis systems. Another possibility is to develop distributed algorithms to
perform the sensor placement analysis and the MSO sets computation.

Another future extension related with the complexity is the reduction
and simplification of the inequality constrains of the BIP formulation. It has
been noticed that there are some constraints that can be removed since they
do not affect the solution. Moreover, constraints could also be simplified by
applying boolean algebra theory.

Up to now, most of the works devoted to sensor placement for fault di-
agnosis are focused on fault detection and isolation specifications. However,
sometimes these specifications are not sufficient to design good diagnosis
systems, and other diagnosis specifications must be sought. For instance, in
this thesis, the computation of the unknown variables in the residual gen-
erators has been addressed. However, future works could deal with other
diagnosis specifications such as disturbance decoupling, noise filtering, fault
identification, robust residual generators, etc. First, studies on determin-
ing other meaningful diagnosis requirement should be carried out. Then,
how they can be integrated in the sensor placement problem, by means of
structural model properties if feasible, should be investigated.

Furthermore, the sensor placement for diagnosis could be extended to
also cover techniques other than the ones used here. For instance, sensor
placement for fault diagnosis based on either analytical or statistical mod-
els could be addressed. This may include linear and non-linear observer
techniques, parameter estimation techniques or likelihood ratio test.

Another issue that can be improved is the MSO set computation. For
a given a model the set of MSO sets computed is usually too large and
some MSO sets must be rejected based on some MSO set properties. This
can be done by combining optimisation techniques (e.g. see Section 5.5.6)
and adapting the algorithm devoted to the MSO set computation (e.g. Al-
gorithm 6.9 for causal MSO set computation). However, algorithms that
directly compute, without exponential computational complexity, the set of
optimal MSO sets fulfilling certain properties should be investigated. This
would solve the time demanding problem of computing MSO sets.

A possible future work is the implementation or integration of the pro-

174 Chapter 8. Concluding Remarks

posed methodologies in a diagnosis toolbox. Since such methodologies are
based on models, it is possible to automatically extract the structural model
from any simulator and then perform the sensor placement analysis and the
MSO set computation. If causalities were assigned in the simulator, residual
generators could also be derived and implemented by the toolbox.

Finally, the developed theory could be extended to fault tolerant control.
The idea is to place sensors in the process in order to improve the control
capabilities when faults are present in the system. Actuator placement anal-
ysis could be also performed using similar approaches since redundancy in
the actuators is a key concept in fault tolerant control.

Bibliography

J. Armengol, A. Bregon, T. Escobet, E. G. M. Krysander, M. Nyberg,
X. Olive, B. Pulido, and L. Travé-Massuyès. Minimal structurally
overdetermined sets for residual generation: A comparison of alterna-
tive approaches. In Proceedings of IFAC Safeprocess’09, pages 1480–1485,
Barcelona, Spain, 2009.

M. Bagajewicz. Design and Upgrade of Process Plant Instrumentation. Tech-
nomic Publishers, Lancaster, PA, 2000.

M. Bagajewicz, A. Fuxman, and A. Uribe. Instrumentation network design
and upgrade for process monitoring and fault detection. AIChE J., 50(8):
1870–1880, Aug. 2004.

F. Barbir. PEM Fuel Cells: Theory and Practice. Elsevier, 2005.

M. Basseville, A. Benveniste, G. Moustakides, and A. Rougee. Optimal sen-
sor location for detecting changes in dynamical behavior. IEEE Transac-
tions on Automatic Control, 32(12):1067 – 1075, December 1987.

M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki. Diagnosis and
Fault-Tolerant Control. Springer, 2nd edition, 2006.

J. Chen and R. Patton. Robust Model-Based Fault Diagnosis for Dynamic
Systems. Kluwer Academic Publishers, Boston, 1999.

C. Commault, J.-M. Dion, and S. Y. Agha. Structural analysis for the sensor
location problem in fault detection and isolation. Automatica, 44(8):2074
– 2080, 2008.

M.-O. Cordier, P. Dague, F. Levy, J. Montmain, M. Staroswiecki, and
L. Trave-Massuyes. Conflicts versus analytical redundancy relations: a
comparative analysis of the model based diagnosis approach from the ar-
tificial intelligence and automatic control perspectives. IEEE Transactions
on Systems, Man, and Cybernetics-Part B, 34(5):2163–2177, 2004.

175

176 BIBLIOGRAPHY

V. de Flaugergues, V. Cocquempot, M. Bayart, and M. Pengov. Struc-
tural analysis for fdi: a modified, invertibility-based canonical decomposi-
tion. In 20th International Workshop on Principles of Diagnosis (DX-09),
Stockholm, Sweden, June 2009.

J. De Kleer and B. C. Williams. Diagnosing multiple faults. Artificial
Intelligence, 32(1):97 – 130, 1987.

D. Düştegör, V. Cocquempot, and M. Staroswiecki. Structural analysis for
residual generation: Towards implementation. In Proceedings of the 2004
IEEE International Conference on Control Applications, 2004.

A. L. Dulmage and N. S. Mendelsohn. Covering of bi-partite graph. Canada
J. Math, 10:527–534, 1958.

I. EG&G Technical Services and S. A. I. Corporation. Fuel cell handbook,
2002.

T. Escobet, D. Feroldi, S. de Lira, V. Puig, J. Quevedo, J. Riera, and
M. Serra. Model-based fault diagnosis in pem fuel cell systems. Journal
of Power Sources, 192(1):216 – 223, 2009.

A. Fijany and F. Vatan. A new efficient algorithm for analyzing and opti-
mizing the system of sensors. In Proceedings of the 2006 IEEE Aerospace
Conference, Big Sky, Montana, USA, Mar. 4–11, 2006.

E. Frisk and M. Krysander. Sensor placement for maximum fault isolabil-
ity. In 18th International Workshop on Principles of Diagnosis (DX-07),
pages 106–113, Nashville, USA, 2007.

E. Frisk, D. Düştegör, M. Krysander, and V. Cocquempot. Improving fault
isolability properties by structural analysis of faulty behavior models: ap-
plication to the DAMADICS benchmark problem. In Proceedings of IFAC
Safeprocess’03, Washington, USA, 2003.

E. Frisk, M. Krysander, and J. Åslund. Sensor placement for fault isolation
in linear differential-algebraic systems. Automatica, 45(2):364 – 371, 2009.

E. Frisk, A. Bregon, J. Åslund, M. Krysander, B. Pulido, and G. Biswas.
Diagnosability analysis considering causa interpretations for differential
constraints. In 21th International Workshop on Principles of Diagnosis
(DX-10), Portland, USA, October 2010.

BIBLIOGRAPHY 177

E. R. Gelso, S. M. Castillo, and J. Armengol. An algorithm based on struc-
tural analysis for model-based fault diagnosis. In Artificial Intelligence
Research and Development. Frontiers in Artificial Intelligence and Apli-
cations, 2008.

J. Gertler. Fault Detection and Diagnosis in Engineering Systems. Marcel
Dekker, Inc., New York, 1998.

A. Ingimundarson, A. G. Stefanopoulou, and D. A. McKay. Model-based de-
tection of hydrogen leaks in a fuel cell stack. Control Systems Technology,
IEEE Transactions on, 16(5):1004 –1012, September 2008.

R. Isermann. Fault-Diagnosis Systems: An Introduction from Fault Detec-
tion to Fault Tolerance. Springer, 2006.

M. Khemliche, B. O. Bouamama, and H. Haffaf. Sensor placement for com-
ponent diagnosability using bond-graph. Sensors and Actuators A: Phys-
ical, 132(2):547 – 556, 2006.

M. Krysander. Design and Analysis of Diagnosis Systems Using Structural
Analysis. PhD thesis, Linköping Univ., Linköping, Sweden, June 2006.

M. Krysander and E. Frisk. Sensor placement for fault diagnosis. IEEE
Transactions on Systems, Man, and Cybernetics-Part A, 38(6):1398–1410,
2008.

M. Krysander and M. Nyberg. Structural analysis utilizing MSS sets with
application to a paper plant. In Proc. of the Thirteenth International
Workshop on Principles of Diagnosis, Semmering, Austria, May 2002.

M. Krysander, J. Åslund, and M. Nyberg. An efficient algorithm for finding
minimal over-constrained sub-systems for model-based diagnosis. IEE
Transactions on Systems, Man, and Cybernetics-Part A, 38(1), 2008.

J. Larminie and A. Dicks. Fuel Cell Systems Explained. Wiley, 2003.

L. Lovász and M. Plummer. Matching Theory. North-Holland, 1986.

P. Moraal and I. Kolmanovsky. Turbochanger modeling for automotive con-
trol applications. SAE Paper, 1999.

K. Murota. Matrices and Matroids for Systems Analysis. Springer-Verlag,
2000.

178 BIBLIOGRAPHY

F. Nejjari, R. Sarrate, and A. Rosich. Optimal sensor placement for fuel cell
system diagnosis using bilp formulation. In 18th Mediterranean Confer-
ence on Control and Automation, pages 1296–1301, Marrakech, Morocco,
2010.

M. Nyberg. A fault isolation algorithm for the case of multiple faults and
multiple fault types. In Proceedings of IFAC Safeprocess’06, Beijing,
China, 2006.

M. Nyberg and M. Krysander. Combining AI, FDI, and statistical
hypothesis-testing in a framework for diagnosis. In Proceedings of IFAC
Safeprocess’03, Washington, USA, 2003.

R. Patton, P. Frank, and e. R. Clark. Fault Diagnosis in Dynamic Systems
Theory and Application. Prentice Hall, New York, 1989.

S. Ploix, M. Desinde, and S. Touaf. Automatic design of detection tests
in complex dynamic systems. In Proceedings 16th IFAC Word Congress,
Prague, Czech Republic, 2005.

S. Ploix, A. A. Yassine, and J. M. Flaus. An improved algorithm for the
design of testable subsystems. In Proc. of 17th IFAC World Congress,
Seoul, Korea, 2008.

J. T. Pukrushpan. Modeling and Control of Fuel Cell Systems and Fuel
Processors. PhD thesis, Univ. of Michigan, Ann Arbor, Michigan, 2003.

J. T. Pukrushpan, A. Stefanopoulou, and H. Peng. Control of Fuel
Cell Power Systems Principles, Modeling, Analysis and Feedback Design.
Springer, 2004.

B. Pulido and C. A. Gonzalez. Possible conflicts: a compilation technique
for consistency-based diagnosis. IEEE Transactions on Systems, Man,
and Cybernetics-Part B, 34(5):2192–2206, Oct. 2004.

R. Raghuraj, M. Bhushan, and R. Rengaswamy. Locating sensors in complex
chemical plants based on fault diagnostic observability criteria. AIChE
J., 45(2):310–322, Feb. 1999.

R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence,
32(1):57 – 95, 1987.

L. A. M. Riascos, M. G. Simoes, and P. E. Miyagi. On-line fault diagnos-
tic system for proton exchange membrane fuel cells. Journal of Power
Sources, 175(1):419 – 429, 2008.

BIBLIOGRAPHY 179

A. Rosich, R. Sarrate, V. Puig, and T. Escobet. Efficient optimal sensor
placement for model-based FDI using and incremental algorithm. In Proc.
46th IEEE Conference on Decision and Control, pages 2590–2595, New
Orleans, USA, December 2007.

A. Rosich, E. Frisk, J. Åslund, R. Sarrate, and F. Nejjari. Sensor placement
for fault diagnosis based on casual computations. In Proceedings of IFAC
Safeprocess’09, Barcelona, Spain, July 2009a.

A. Rosich, R. Sarrate, and F. Nejjari. Fuel cell system diagnosis based
on a causal structural model. In Proceedings of IFAC Safeprocess’09,
Barcelona, Spain, July 2009b.

A. Rosich, R. Sarrate, and F. Nejjari. Optimal sensor placement for fdi
using binary integer linear programming. In 20th International Workshop
on Principles of Diagnosis (DX-09), Stockholm, Sweden, June 2009c.

R. Sarrate, V. Puig, T. Escobet, and A. Rosich. Optimal sensor placement
for model-based fault detection and isolation. In Proc. 46th IEEE Con-
ference on Decision and Control, pages 2584–2589, New Orleans, USA,
December 2007.

S. Spanache, T. Escobet, and L. Travé-Massuyès. Sensor placement opti-
misation using genetic algorithms. In 15th International Workshop on
Principles of Diagnosis (DX-04), Carcassonne, France, June 23–25, 2004.

C. Svärd and M. Nyberg. A mixed causality approach to residual generation
utilizing equation system solvers and differential-algebraic equation the-
ory. In 19th International Workshop on Principles of Diagnosis (DX-08),
Blue Mountains, Australia, 2008.

L. Travé-Massuyès, T. Escobet, and X. Olive. Diagnosability analysis based
on component supported analytical redundancy relations. IEE Transac-
tions on Systems, Man, and Cybernetics-Part A, 36(6):1146–1160, 2006.

V. Vekatasubramanian, R. Rengaswamy, K. Yin, and S. Kavuri. A review
of process fault detection and diagnosis part I: Quantitative model-based
methods. Computer and Chemical Engineering, 27:293–311, 2003.

L. A. Wosley. Integer Programming. John Wiley & Sons, New York, USA,
1998.

180 BIBLIOGRAPHY

J. Wu, X. Z. Yuan, H. Wang, M. Blanco, J. J. Martin, and J. Zhang. Diag-
nostic tools in pem fuel cell research: Part i electrochemical techniques.
International Journal of Hydrogen Energy, 33(6):1735 – 1746, 2008a.

J. Wu, X. Z. Yuan, H. Wang, M. Blanco, J. J. Martin, and J. Zhang. Diag-
nostic tools in pem fuel cell research: Part ii: Physical/chemical methods.
International Journal of Hydrogen Energy, 33(6):1747 – 1757, 2008b.

Q. Yang, A. Aitouche, and B. Ould-Bouamama. Structural diagnosability of
fuel cell stack system based on bond graph tool. In Proceedings of IFAC
Safeprocess’09, Barcelona, Spain, 2009.

A. A. Yassine, S. Ploix, and J. M. Flaus. A method for sensor placement
taking into account diagnosability criteria. Int. J. Appl. Math. Comput.
Sci., 18(4):497–512, 2008.

