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1.1. Aujeszky's disease 

Aujeszky's disease (AD) also known as pseudorabies, is caused by the pseudorabies 
virus which belongs to the Alphaherpesvirinae subfamily of the Herpesviridae 
(Mettenleiter, 2000). It was first described in 1813 in cattle suffering with extreme 
pruritus. The term “pseudorabies” was first used in Switzerland in 1849 because the 
clinical signs in cattle were considered similar to those of rabies. In 1902 Aladar 
Aujeszky, the Hungarian for whom the disease is named, determined that the etiologic 
agent was filterable, i.e., not bacterial and also conducted research on the disease in the 
dog and cat. The agent was first recovered from swine in 1909 by Weiss (Pejsak and 
Truszcynski, 2006).     
Aujeszky's disease  virus (ADV) is composed of a nucleoprotein core which contains 
the genome- a DNA single chain with 145 kb- , an icosahedral capsid of 162 capsomers, 
a proteinaceous tegument, and a lipid bilayer envelope derived from cellular membranes 
which contains virally encoded (glyco) proteins (Mettenleiter, 2000). 
ADV displays a very broad host range and is able to infect most mammals except higher 
primates, including humans (Schmidt et al., 2001). ADV is highly virulent for most of 
the species: in cattle, sheep and goats produces a uniformly fatal infection characterized 
by clinical pruritus and encephalitis (Pejsak and Truszcynski, 2006). The pig is the only 
host which is able to survive a productive infection and serve as a virus reservoir 
(Mettenleiter, 2000). 
Following oronasal exposure, primary replication occurs in the epithelia of the upper 
respiratory tract (Pejsak and Truszcynski, 2006). After a first round of replication in the 
epithelia, progeny virus is abundantly produced (Mettenleiter, 2000) and thereafter, 
infection of tonsils and lungs ensues and the virus is disseminated through the body 
either in free form or via infected leukocytes. In addition, the virus enters the trigeminal 
and olfactory nerve endings and invades the central nervous system (Pejsak and 
Truszcynski, 2006). Surviving pigs can remain latently infected and productive viral 
replication can be reactivated in response to various stimuli (Schmidt et al., 2001). 
Major sites of ADV latency are the trigeminal ganglion, the olfactory bulb and the 
tonsil. In these organs, viral DNA can be detected in the absence of infectious virus 
production (Mettenleiter, 2000). 
The severity of the clinical outcome resulting from the infection is determined by the 
age and immunological status of the animal as well as the virulence and dose of 
exposure to the virus (Zuckermann, 2000). Infections can result in neurological signs in 
piglets, respiratory tract illness in older pigs and abortion in pregnant sows (Pejsak and 
Truszcynski, 2006). Some strains of ADV are associated with reproductive failure and 
others with respiratory disease, but all of them are able to cause neurological disorders 
in young pigs. Nervous disorders are very occasionally seen in fattening pigs (Segalés et 
al., 2003). Young piglets are highly susceptible, with mortality rates reaching 100% 
during the first 2 weeks and decreasing to 50% during the third and fourth week of age. 
In grower-finishing pigs, respiratory signs are the most common observations. 
Morbidity in an infected group often reaches 100%, but in cases uncomplicated by 
secondary infections, mortality ranges from 1-2%. Complications caused by bacteria, 
particularly A. pleuropneumoniae, increase the losses dramatically. In pregnant females, 
abortion often occurs and may be the first sign of AD. Sows infected in the first 
trimester may resorb fetuses and return to estrus. If infection takes place in the second 
or third trimester of pregnancy, it is usually manifested by abortion or stillborn and/or 
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weak pigs, particularly if the infection occurs close to term (Pejsak and Truszcynski, 
2006).  
The diagnosis of AD can be confirmed by isolation of ADV from the oropahryngeal 
fluid, nasal fluid (swabs) or tonsil biopsies of living pigs. For post-mortem isolation 
samples of brain and tonsils are the preferred specimens. In addition, the virus can 
sometimes be found in other tissues including the lung, spleen, liver, kidney, lymph 
nodes and pharyngeal mucosa. In latently infected animals, the most consistent site for 
virus isolation is the trigeminal ganglion in domestic pigs (Pejsak and Truszcynski, 
2006) and the sacral ganglia in wild boars (Romero et al., 2003). 
Isolation can be made by inoculating a tissue homogenate into a susceptible cell line; 
porcine kidney (PK-15) cells are most often used. Specificity of the cytopathic effect 
can be verified by immunofluorescence, immunoperoxidase or neutralisation with 
specific antiserum (OIE, 2004). 
The polymerase chain reaction (PCR) can be used to identify ADV genomes in 
secretions or organ samples, being the primary advantage its speed. 
Immnunofluorescence (IF) is still of some importance for detection of viral antigen in 
tissue sections and nasal swabs (Pejsak and Truszcynski, 2006). Aujeszky's disease 
antibodies are demonstrated by virus neutralisation or enzyme-linked immunosorbent 
assay (ELISA). Virus neutralisation (VN) has been recognised as the reference method 
for serology, but for general diagnostic purposes it has been widely replaced by the 
enzyme-linked immunosorbent assay (ELISA) because of its suitability for large-scale 
testing and the fact that ELISAs can distinguish vaccinated and infected pigs, if gene-
deleted vaccines are used. The tests can be performed on meat juice as well as serum 
(OIE, 2004). 
 

• Epidemiology: 
 

Pigs are the only natural host of ADV. Other animals found on farms such as rats and 
mice are dead-end hosts (Mettenleiter, 2000). The primary means of transmission of the 
virus among swine farms is thought to be by direct contact between infected and 
susceptible pigs because of movement of infected animals (Austin and Weigel 1992).  
Indirect contacts by vehicles, equipment, personnel, feed or artificial insemination can 
also spread the virus among farms (Tamba et al., 2002, Solymosi et al., 2004). 
Moreover, the virus may be transmitted among swine farms by aerosol suspensions of 
virus (Christensen et al., 1990, 1993; Casal et al., 1997). 
 
Transmission of ADV within farm usually occurs by the oropharyngeal route after 
direct contact of infected and susceptible animals and the ingestion or aspiration of 
infected aerosols, secretions and excretions (Romero et al., 2003). 
During acute infections, the virus is present in the tonsil epithelium, milk, urine and 
vaginal and preputial secretions (Anonymous 2007). The infectious period is up to 16 
days (Bouma et al., 1995) as antibodies against gE appear approximately 14 days after 
infection (Van Oirschot et al., 1991). 
In the environment, the virus can remain infectious for as long as seven hours in the air, 
if the relative humidity is at least 55%. It is inactivated by sunlight, drying and high 
temperatures (Anonymous, 2007a). In slurry, ADV is inactivated in 2-4 minutes at 
62ºC. The levels of virus likely to be present in slurry following AD outbreaks are 
assumed to be low (Turner et al., 2000). 
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• Wildboars: 
 
Within the European Union (EU), all disease programs have been directed towards the 
control of AD in domestic pigs. However, as this goal is approached and an AD-free 
status has to be maintained, a wildlife reservoir becomes increasingly important. On the 
basis of EU regulations, there is no need to monitor wild boar for the occurrence of 
economically important diseases, with the exception of classical swine fever. Thus, in 
Europe, serological surveys in wild boar mainly depend on the current disease situation, 
public interest and funding (Müller et al., 2003). AD has been reported in wild boars in 
different countries: Germany (Müller et al., 1998), France (Albina et al., 2000), Croacia 
(Zupancic et al., 2002), Spain (Vicente et al, 2005), Slovenia (Vengust et al, 2006) and 
Switzerland (Leuenberger et al., 2007). 
Nevertheless, in Germany Müller et al., (1998) did not found evidence of disease 
transmission to domestic pigs despite the presence of an endemic focus in wild boars. 
Also, in France AD infection is enzootic in wild boars in areas where it has been 
eradicated in domestic pigs (Albina et al., 2000) and in a study carried out in south-
central Spain it was concluded that there was no evidence of interaction between the 
epidemiology of ADV in domestic pig and the wild boar (Ruiz-Fons, 2006). The 
infectious AD cycle within the wild boar population appears to be independent of that in 
domestic pigs (Westergaard, 2000). However, domestic pigs kept outdoors may be one 
exception to the rule since they may have increased chances of direct contacts with 
infected wild boars (Albina et al., 2000). Hars and Rossi (2005) suggested that the wild 
boar was responsible of the appearance of AD outbreaks in open-air domestic pig herds 
in the French department of Loire. AD in wild boar populations is preferably 
transmitted by the venereal route (Romero et al., 2001). 
 

• AD distribution: 
 

AD can be found in parts of Europe, Southeast Asia and Central and South America 
(Anonymous 2007). Canada, New Zealand and the United States are free of AD since 
2004 (Pejsak and Truszcynski, 2006). In Europe, AD has never been reported in 
Norway, Finland or Malta. In the European Union, by April 2008, Finland, Austria, 
Cyprus, Czech Republic, Germany, Denmark, Luxembourg, Slovakia, England, 
Scotland, Wales, Sweden and France are free of AD and vaccination is prohibited. 
There is an approved eradication programme in Belgium, Netherlands, Bolzano 
province in Italy and some provinces of Spain. In Figure 1, the European Union 
situation, as included in European decision 2008/269/CE is represented (Anonymous, 
2008). 
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Figure 1. European Union situation as included in 2008/269/CE (source: own production)  
 
 
In Spain, the eradication is in process. Each year, the Spanish government publishes the 
farm prevalence by county. A farm is defined as positive if at least one positive animal 
is confirmed by the official gE enzyme-linked immunosorbent assay method. The last 
published data relates to the end of 2007 serological results. At that point, in 348 
counties there were no positive farms, in 103 less than 10% were positive and in 16 
counties between 10 and 58% of the farms were positive. The geographical distribution 
of these counties has been represented in a map by the agricultural ministry (figure 2). 
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Figure 2. Serological prevalence at the end of 2007 (from Ministery of Agriculture, fisheries and food ; 
MAPA). 
 
 

• Control measures and legislation: 
 
The framework of animal health problems affecting intra-Community trade in bovine 
and swine animals is defined in the Council Directive 64/432/EEC of 26 June 1964 
(Anonymous, 1964). It defined health requirements to be met if live pigs were to be 
moved between member states and established the legal basis for AD control in the EU 
(Müller et al., 2003).  
In 1990, this basic trade Directive was amended in such a way that measures relevant to 
the control and eradication of AD could be made by Commission Decisions. In 1993, 
the European Commission adopted two major Decisions concerning protective 
measures in relation to AD and trade in live pigs. Commission Decision 93/24/EEC 
(Anonymous, 1993a) set out the health conditions which apply to pigs moving into 
areas where the disease is absent, while Commission Decision 93/244/EEC 
(Anonymous, 1993b) defined health requirements applying to pigs destined to member 
states where an approved eradication programme was in place. The two Decisions 
divided the territory of the EU into areas where the disease was absent; areas where 
approved eradication programs were being implemented and areas where AD was either 
not under official control or where control/eradication programs did not yet meet the 
criteria for approval by the Commission (Westergaard, 2000).  In July 2001, both 
Commission Decisions were amended and merged into the Commission decision 
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2001/618/EC (Anonymous, 2001) which provided with additional guarantees in intra-
community trade of pigs relating to Aujeszky’s disease. 
In the last decades, big efforts have been made to eradicate AD. To reach this goal, the 
development and approval of a glycoprotein-E (gE) deleted vaccine was the decisive 
break-through, as this vaccine made it possible for the first time to distinguish infected 
from vaccinated pigs (Van Oirschot et al., 1986).This led to large application of gE-
deleted vaccines and to new control strategies. 
In Spain, a decree (RD) published in 1995 (Anonymous, 1995) started the AD 
eradication programme. This was based on the forbidding of the use of gE positive 
vaccines, the establishment of a compulsory vaccination program and animal 
movements restrictions. The vaccination program consisted in vaccination of breeding 
sows three times per year, fatteners at least once between 10 and 12 weeks of age and 
two vaccinations of gilts before entering the reproductive cycle. Movement of animals 
was allowed between farms of similar AD status and a serological control of farms was 
implemented. In 2003, due to the additional guarantees in intra-community trade of pigs 
relating to Aujeszky’s disease included in Commision Decision 2001/618/CE, the AD 
eradication programme was adapted and reinforced by the 427/2003 decree (RD) 
(Anonymous, 2003a). In this new programme, vaccination of breeding sows was 
compulsory also three times per year, but it had to be done at regular intervals. Fatteners 
had to be vaccinated at least two times; the first application between 10 and 12 weeks of 
age and the second one three or four weeks after. Gilts had to be vaccinated three times 
before entering the reproductive cycle. Vaccination was not compulsory in farms 
classified as officially free or in process to obtain this status. Annual serological testing 
of farrow to weaning and farrow to finish farms was established, the sample size was 
calculated based on a detection of a 5% of prevalence with a 95% of confidence. Also, 
all gilts of auto-replacement were to be tested in order to ensure that only gE-negative 
gilts were used as reproductors. On the other hand, movements of animals were allowed 
only between farms or areas with similar AD status. 
In 2005 (206/2005 decree (RD)), a new modification in the AD eradication programme 
was implemented. Farms were classified according to the following classification: 
 
- A0: Farms with unknown Aujeszky’s diseases status.  
- A1: Farms were the vaccination protocol was known and with positive results in the 
last serological control.  
- A2: Farms were the vaccination protocol was known and with negative results in the 
last serological control.  
- A3: Farms classified as free. 
- A4: Farms classified as officially free. 
 
It was established the figure of veterinary responsible of the implementation of AD 
eradication programme in each farm. Compulsory annual serological testing of farrow 
to weaning and farrow to finish farms was continued and counties began to be classified 
based on the proportion of positive sow farms in the county: 
 

- County with high prevalence: proportion of positive sow farms higher than 10%. 
- County with low prevalence: proportion of positive sow farms equal or lower than 
10%. 
- County free of AD: no positive sow farms 
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A compulsory serological control of fattening farms was also established; the number of 
samples to be tested was calculated based on a detection of a 20% of prevalence with a 
95% of confidence. Movement of animals was allowed between counties with the same 
AD classification (Anonymous, 2005a). Finally, in 2006, the programme was reinforced 
again (636/2006 decree (RD)); the main changes were related to the process to be 
classified as AD free: necessary two consecutive negative serological results and no 
clinical signs in the last 12 months, serological control of fattening farms was based on 
risk assessment results (Anonymous, 2006a).   
 
In Catalonia region, the adaptation of these programmes were done and completed by 
the design of specific eradication programmes for the region (Anonymous, 2003b, 
Anonymous, 2006b). The eradication of AD was design to be achieved through 
different phases of 1 year of duration each one: 
 
Phase 1 (April 2003 – May 2004): National measures were complemented by 
serological testing of fatteners in purely fattening units and in fatteners of farrow to 
finish farms and the application of movement restrictions on farms with prevalence 
higher than 20%. 
Phase 2.1 (June 2004 – May 2005): During this period movement restrictions were 
applied on those farms with prevalence higher than 10%. More efforts were applied to 
ensure those points included in the previous phase and it was initiated the process to 
qualify farms or areas as AD free. 
Phase 2.2 (June 2005 – May 2006): In this period, efforts were made in order to qualify 
farms and areas as AD free by a voluntary programme. Movement restrictions were 
applied on those farms with prevalence higher than 0%. Also movement restrictions 
were applied based not only on a farm basis, also based on area AD status. 
Phase 3 (June 2006 – May 2007): Qualification of farms and areas by a compulsory 
programme and movement restrictions on those farms with prevalence higher than 0%. 
Also, in this period, a compulsory programme of slaughter of positive animals was 
established. 
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1.2. Spatial epidemiology 

The term spatial epidemiology is used to define studies where the geographical location 
of the events is a fundamental component (Saez and Saurina, 2007). It is consider a 
subdiscipline of epidemiology whose primary purpose is to describe and explain the 
spatial pattern of disease (Durr and Gatrell, 2004). Knowledge of where and when a 
disease occurs enables the generation of disease causation hypothesis for diseases with 
unknown or poorly characterised aetiology, identification of disease risk factors and the 
design of efficient disease surveillance and control programmes in animal health (Ward, 
2007). 
 
Up to the 1980s, it is difficult to find examples in the veterinary literature; the 
exceptions are works undertaken by parasitologists, interested in the interaction between 
climate and disease via its effect on vectors and intermediate hosts. One of the first 
works was conducted by Robson et al., (1961) who showed that the East Coast fever in 
Tanzania was confined to areas where tsetse flies were absent and cattle was present. 
Also in Tanzania (Lake Victoria) Yeoman (1966) by carefully mapping disease 
outbreaks in relation to the cattle population, draw a line separating enzootic and 
epizootic areas and map the spatial development of the disease. In human medicine, 
there are studies dating from the beginning of the 1800s in which maps were employed 
to demonstrate the distribution of disease (Lawson and Williams, 2001). Possibly the 
most famous use of mapping in epidemiology in this period were the studies by John 
Snow of the cholera epidemics in London in 1854 (Figure 3). Through observation of 
the adresses of the people who die. Snow was among the first to show clearly that 
cholera could be spread through a contaminated water supply (Lawson and Williams, 
2001). 

 
Figure 3. John Snow map of cholera deaths and water supply in London. 
 



Spatial analysis of Aujeszky’s disease eradication 

 - 13 -

Nevertheless, it was not until the 1980s, thanks to the technical breakthroughs in 
computing, that spatial epidemiology was really developed. Advances in geographic 
information systems (GIS), statistical epidemiology and availability of high-resolution, 
geographically referenced health and environment data, created new opportunities to 
investigate geographic variations in disease occurrence (Elliot and Wartenberg, 2004). 
GIS, spatial analysis and remote sensing are the main tools employed in spatial 
epidemiology (Durr and Gatrell, 2004). GIS are powerful tools for displaying and 
querying spatial information and in the last years they have been build more user-
friendly and powerful software packages. The fundamental ingredient of these packages 
is the use of map layers which contain different information about the mapped area. 
Each layer can be manipulated interactively (edited) to provide a composite map 
(Lawson and Williams, 2001). Spatial analysis techniques have been developed in 
parallel, but largely independently. As a result, modern GIS software still has fairly 
limited spatial analysis functionality (Pfeiffer, 2004). Spatial analysis deals with the 
exploration, description and analysis of data taking into account their geographical 
distribution (Saez and Saurina, 2007). Spatial data are defined as geographical features 
and the attributes of these features, each feature will often have multiple attributes 
(Pfeiffer and Jones, 2002). There are different types of spatial data: 
 

- Lattice data: observations are aggregated at specific areas. For example number 
of cases of a specific disease by parish. 

- Point processes: the data set may consist of locations only, or it may be a 
marked point process, with data values associated with each location (marks). 

- Geostatistical data: In this case measures are done at specific locations but the 
observation of interest is continuous. For example, measures of rainfall or 
temperature. 

 
To manage spatial data, a GIS requires both spatial and non-spatial database 
management functionality. The geographical features are managed by the spatial data 
functions, which also maintain links to the attribute data. The latter are often stored in a 
standard database management system (Pfeiffer and Jones, 2002). The spatial analysis 
techniques to be applied will be dependent on the type of spatial data that we have and 
the objective of the study (Saez and Saurina, 2007). In general, the analysis of spatial 
data consists of 3 components: exploratory analysis (finding interesting patterns), 
visualization (showing interesting patterns) and spatial modelling (explaining 
interesting patterns).  

1.2.1. Exploratory Analysis 
 
Exploratory analysis involves statistical examination of the data for the presence of any 
patterns. Such analysis allows determining geographical trends related with the disease, 
but can not be used to test causal hypothesis (Pfeiffer and Jones, 2002).   
 
1- Disease clustering: 
 
a) Focused-cluster tests are used when there is a pre-specified point source for a 
presumed epidemic, and the question of interest is whether there is an elevated risk of 
the disease around that specific source. These tests do not appear to have been 
extensively used in veterinary epidemiology (Ward and Carpenter, 2000). 
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b) Most proposed tests for spatial clustering are tests for global clustering (Kulldorf, 
2006). These methods test for clustering throughout the study region without the ability 
to locate the sites of specific clusters (Ward and Carpenter, 2000). The data are typically 
measured on a categorical or continuous scale. If the data can be treated as 
continuous, the presence of spatial autocorrelation can be assessed using Moran´s I 
statistic or a variogram. Spatial autocorrelation is the tendency for nearby spatial units 
to record similar values (Durr and Gatrell, 2004). The Moran´s I coefficient is 
essentially a modification of the ordinary (Pearson) correlation coefficient but with an 
added term which measures spatial proximity. However, what is mean by proximity has 
to be defined (Durr and Gatrell, 2004) and also weights to these values must be given 
(Saez and Saurina, 2007). With lattice spatial data, one common definition for spatial 
proximity is that the area units must have a common boundary. Alternatively, if the 
distance between the centroids is measured, proximity can be defined in terms of a 
threshold distance (Durr and Gatrell, 2004). The weights for the neighbourhood values 
can be specified as binary (1/0) depending if the neighbour is adjacent or inside the 
threshold distance or as a function of the distance between pairs of points (Saez and 
Saurina, 2007). The Moran´s I coefficient, provides a one-number overall measure of 
spatial autocorrelation with a numerator that measures the extent to which adjacent 
points (as described by the elements of ‘w’) have similar deviations about the mean of 
the data, and a denominator that standardizes that quantity to reflect the scale or 
variability of the variable being examined. This statistic is given by: 

 
 
Where ‘n’ is is the number of pair of points to be compared, ‘x’ is the variable of 
interest, ‘ ’  is the mean of ‘x’ and ‘w’ is the neighbourhood weigth matrix describing 
the adjacency or distance between the i-th and j-th point. The statistical significance is 
calculated by a z-statistic, using the standard deviation of Moran (Ward and Carpenter, 
2000). 
 
The spatial dependence over various distances can be represented by a variogram 
(Gatrell, 2004). These are presented as graphs with distance (spatial lag) on the x-axis 
and variation (semivariance) on the y-axis. In spatial statistics the semivariance is 
described by: 
 

 
Where ‘z’ is a datum at a particular location, ‘h’ is the distance between data, and ‘n(h)’ 
is the number of paired data at a distance of  ‘h’.  
Semivariance is the converse of autocorrelation, in that it is low in the presence of local 
spatial effects and increases to a maximum where there is no longer spatial dependence 
(Durr and Gatrell, 2004). A variogram curve with a flat shape suggests the absence of 
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spatial dependence. A curve with an exponential shape, expressing increasing 
variability between pairs of locations with distance, reflects the presence of spatial 
dependence (Pfeiffer, 2004).   
For data measured as categorical, nearest-neighbour test (Clark and Evans, 1954), 
Cuzick-Edwards´s test (Cuzick and Edwards, 1990) and K-function (Diggle et al., 
1995) among others, have been used to detect case clustering.  
Results of the nearest-neighbour test are subject to confounding because it does not 
take into account the underlying population at risk. If the population at risk is clustered, 
then disease cases arising from that population are also expected to be clustered (Ward, 
2007). The index of the nearest neighbour test is the ratio of mean Euclidean distance 
between nearest neighbour points in a given area (Dobserved) to mean distance expected 
from a randomly distributed series of points in that area (Drandom), where: 
 
  Drandom = 0.5 √(A/N)  and Dobserved = ∑ dij / N .  
 
‘N’ is the number of points, ‘A’ is the study area size and ‘dij’ is the distance between 
nearest-neighbour points ‘i’ and ‘j’. The statistical significance is determined by 
calculating a z-statistic (Ward and Carpenter, 2000). 
To take into account the underlying population, and avoid thus confounding, the 
Cuzick-Edwards´s test and the K-function tests adjust for the presence of 
heterogeneously distributed population at risk. This is accomplished by selecting 
appropriate controls for the cases. Controls are drawn from the same underlying 
population as cases, thereby accounting for clustering that may occur in the population 
regardless of the clustering of cases (Ward, 2007). Under the null hypothesis, a similar 
cluster would be expected for the cases and the controls, if no disease-association was 
present (Carpenter, 2001).In Cuzick-Edwards´s test, the statistic is derived by first 
counting, for a given case, the number of nearest neighbours that are also cases. This is 
then summed over all cases to yield the global statistic. The statistical significance is 
assessed by comparing its value with its expected value under the null hypothesis of 
random labelling of case and control locations (Rogerson, 2006). 
The K-function, is calculated as the number of events within a distance ‘s’. For 
clustered patterns, each event is likely to be surrounded by further members of the same 
cluster, therefore, for smaller ‘s’ values the K-function will be relatively large. 
Conversely, if events are regularly spaced, each event is likely to be surrounded empty 
space and, for small values of ‘s’, the K-funtion will be small. To take into account the 
heterogeneous spatial distribution of the underlying population at risk, separate K-
functions for cases (Kcase) and controls (Kcontrols) are computed. The observed difference 
function: 
 
D = Kcase - Kcontrols  
 
 is interpreted as a measure of the extra aggregation of case events over and above that 
observed for controls (Stevenson, 2003). 
 
c) Local-cluster tests: The spatial scan statistic (Kulldorf, 1997) is a cluster detection 
test able to locate the site and to test the significance of specific clusters. It is a 
recommended test for the detection of local clusters (Song and Kulldorf, 2003). The test 
can be used for spatially aggregated data as well as when exact geographic coordinates 
are known for each individual. Therefore it can be used for lattice or point spatial data. 
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It can also be used with categorical data (Bernoulli model) as well as for continuous 
data (Poisson model).  
With the Bernoulli model there are cases and non-cases represented by a 0/1 variable 
and with the Poisson model, the number of cases in each location is assumed to be 
Poisson-distributed. Under the null hypothesis, the expected number of cases in each 
area is proportional to its population size (Kulldorf, 2006). The SaTScan software uses 
this test, it searches for clusters by using a variable circular window size to detect 
spatial clusters in large areas, while controlling for the underlying population (Kulldorf, 
1997). The circle is centred on each of the points. For each point, the size of the circle 
varies continuously from zero to some upper limit specified by the user. Each circle is a 
possible candidate cluster. For each circle a likelihood ratio statistic is computed, based 
on the number of observed and expected cases within and outside the circle and 
compared with the likelihood under the null hypothesis (Aamodt et al., 2006). The 
likelihood function under the Poisson assumption is proportional to: 
 

 
 
where C is the total number of cases, c is the observed number of cases within the 
window and E[c] is the expected number of cases within the window under the null-
hypothesis. I() is an indicator function. When SaTScan is set to scan only for clusters 
with high rates, I() is equal to 1 when the window has more cases than expected under 
the null-hypothesis, and 0 otherwise (Kulldorf, 2006). 
For the Bernoulli model the likelihood function is: 

 
 
where c and C are defined as above, n is the total number of cases and controls within 
the window, while N is the combined total number of cases and controls in the data set.  
 
The likelihood function is maximized over all window locations and sizes, and the one 
with the maximum likelihood constitutes the most likely cluster. This is the cluster that 
is least likely to have occurred by chance. The likelihood ratio for this window 
constitutes the maximum likelihood ratio test statistic (Kulldorf, 2006). Its distribution 
under the null-hypothesis is obtained by repeating the same analytic exercise on a large 
number of randomly selected replications of the data set generated under the null-
hypothesis (Ward and Carpenter, 2000). The p-value is obtained through Monte Carlo 
hypothesis testing by comparing the rank of the maximum likelihood from the real data 
set with the maximum likelihood from the random data sets (Kulldorf, 2006). 
 
2 - Disease mapping: 
 
Disease mapping studies aim to summarize spatial variation in disease risk, in order to 
assess and quantify the amount of true spatial heterogeneity and the associated patterns, 
to highlight areas of elevated or lowered risk and to obtain clues as to the disease 
aetiology (Best et al., 2005). 
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 The detection of disease clusters has typically been approached as a hypothesis testing 
problem; whether the geographical distribution of disease is random or not, adjusting 
for the geographical distribution of the population (Ugarte et al., 2005). Disease 
mapping methods are most useful for capturing gradual regional changes in disease 
rates, and are less useful in detecting abrupt localized changes indicative of clustering 
(Gangnon and Clayton, 2000). As the objectives of these map presentations are to 
identify locations with unusually high or low disease levels, a common parameter 
represented is the ratio between the observed and expected cases (Elliot and 
Wartenberg, 2004). Traditionally, the ratio of observed to expected counts is called a 
Standardized Incidence Ratio (SIR) and this ratio is an estimate of relative risk within 
each area (the ratio describes the odds of being in the disease group rather that the 
background group) (Lawson et al., 2003). 
 
Due to the counts of cases observed in a particular location (Oi) is a counter variable, it 
can be modelled by a Poisson distribution (likelihood function). The local variability of 
the counts is thus modelled as follows:   
 
Oi ~Poisson (Eiθi)  
 
The parameter of interest is θi , the relative risk (estimation of SIR) that quantifies 
whether the area ‘i’ has a higher (θi >1) or lower (θi <1) occurrence of cases than that 
expected from the reference rates (Richardson et al., 2004). 
 
In order to avoid confounding, the SIR must be standardised by those known variables 
that are linked with the disease of study. The standardisation of this ratio can be done by 
the direct or the indirect method. In the direct standardisation the expected cases are 
calculated using the rate of a reference population while the indirect standardisation 
uses the rate calculated after aggregating the data from all regions included in the 
analysis. In human epidemiology, the most common is to standardise by age, in order to 
take into account the age structure between areas to be compared (Saez and Saurina 
2007). In veterinary medicine the standardisation by breed has been used to compare 
bovine spongiform disease risk between areas (Abrial et al., 2005a; Stevenson et al., 
2005a; Allepuz et al., 2007). 
 

1.2.2. Data visualization 
 
The results of the statistical procedures are represented visually in mapped form. Hence, 
some consideration must be given to the purely cartographic issues that affect the 
representation of geographical information (Lawson et al., 2003). The type of map 
presentation depends on the type of data available, either the actual event locations 
(such as the x-y coordinates) or aggregate data (Pfeiffer and Jones, 2002).   
 
To visualise point data, the oldest and most frequently-used method is to plot the 
locations of the study subjects using their Cartesian coordinates. Whereas plots of point 
events provide a general impression of the spatial characteristics of the process under 
investigation, they present problems where there are multiple events at the same 
location since no indication of event density can be appreciated. Because of this, point 
maps are best suited for displaying location information for small numbers of events 
(Stevenson, 2003). If a continuous surface is to be mapped based on a discrete set of 
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observation points, then interpolation techniques, based on geostatistical methods, 
must be used (Lawson and Williams, 2001). Interpolation techniques enable the 
construction of isopleth maps. These maps show the distribution of spatially continuous 
phenomena by a logical sequence of tones colour that symbolizes equal values. Isolines 
are often overlaid on top of an isopleth map to indicate threshold value. 
 
Choropleth maps are a common method for visualising lattice data. Areas within a 
region of interest are shaded according to a discrete scale based on the recorded value of 
the attribute of interest for that area. The hatching pattern or colour is based on a class 
interval or continuous scale derived from a descriptive statistic of the aggregated data, 
such as the prevalence of disease for example. When inspecting choropleth maps the 
following factors should be taken into consideration (Pfeiffer and Jones, 2002): 
 
a) The boundaries are usually chosen for political or other reasons irrelevant to disease 
spread, although such boundaries may have a direct impact on the reporting of disease.    
 
b) Large areas may visually dominate the map, even though their importance may be 
limited with respect to the corresponding population size (Berke, 2005). In the 
geography literature, this is called the modifiable area unit problem (Elliot and 
Wartenberg, 2004).  
 
A range of methods have been developed to deal with these problems. The modifiable 
area unit problem can be solved by analysing the data on the basis of the smallest area 
units for which information is available. Moreover, the use of different polygonal 
boundary definitions is advised, if practical (Stevenson, 2003). Also, to overcome the 
visual bias and for a more natural representation of the continuous spatial variation in 
risk, isopleth maps can be used to visualize the underlying risk of disease using 
geostatistical methods (Berke, 2005). 
 
There are a number of techniques that can be used to interpolate data by use of 
deterministic methods or to predict the values statistically at the grid-coordinates 
(Berke, 2004). Among the possible choices is inverse distance weighting (IDW), kernel 
smoothing and kriging. 
 
Inverse distance weighting (IDW) is a method of interpolation that estimates values by 
averaging the values of data points in the neighborhood of each point weighted only by 
distance (d). The weights (w) are a decreasing function of distance. The closer a point is 
to the data point being estimated, the more influence, or weight; it has in the averaging 
process.  
 
w(d) =  
 
 
The value of p is specified by the user, the most common choice is p= 2. The size of the 
neighborhood can be expressed as a radius or as a number of points. In the first case, the 
radius is constant independently of the density of farms, while in the second one, the 
size of the radius increases until achive a given number of farms. All the measured 
points that fall within the radius will be used in the calculation of each interpolated data 
point. The search radius will increase until it can encompass the minimum number of 
points. 

dp 

1 
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Kernel density estimation: This technique involves the placement of a regular grid over 
a region of interest and the construction of an area (known as the kernel) around each 
observed point (x1,x2, …, xn) to define a distance-decaying density estimate. The kernel 
density estimate for each grid cell equals the sum of the density estimates that fall 
within the cell. The intensity of a spatial point pattern x, f(xh), is given by: 

 
 Where the term ‘K’ defines the shape of the kernel structure to be used (Gaussian, 
triangular, quartic,…) being the Gaussian the most-commonly used and the term ‘h’ 
defines the radius of the kernel (known as the bandwidth or smoothing parameter) 
(Stevenson, 2003). The larger the bandwidth, the smoother is the surface map; whereas 
when the selected bandwidth is too small the resulting density will resemble the original 
point pattern. Diverse methods have been proposed to adjust the window size 
appropriately (Berke, 2005) but, sensitivity analysis, by repeating the same analytical 
exercise with different bandwidths, is a practical way to choose the radius that better 
represents the data. With marked point processes where attribute variables are recorded 
at each location, the density of the attribute value is estimated by constructing a non-
parametric kernel regression surface where the Cartesian coordinates provide the 
covariates of the regression and the attribute values provide the vector of responses. 
Where no attribute values are provided (for example, where interest lies in determining 
the density of farm holdings in an area) a kernel density surface may be constructed 
using the Cartesian coordinates of each farm holding (Stevenson, 2003). 
Recently, Benschop et al., (2007) used a novel kernel estimator with a spatially adaptive 
smoothing bandwidth to visualise the spatial pattern of Salmonella risk in the Danish 
swine Salmonella control programme. This approach takes into account the population 
density among the region resulting in a more detailed analysis of the data. 
 
Kriging: is a method for spatial interpolation or prediction based on a set of 
observations at point locations by the use of a linear combination of surrounding 
sampled values. Unlike kernel density estimation, kriging is based on a parametric 
spatial model (Berke, 2005). The kriging predictor is a weighted average that is 
calculated from the entire sample with weights depending on the semi-variogram. The 
weights are constructed to give regional risk estimates more influence on the prediction 
the closer they are to the prediction sites and to downplay a cluster of points that 
contains largely redundant information (Berke, 2005). Within a probabilistic 
framework, kriging attempts to: (a) minimize the error variance; and (b) systematically 
set the mean of the prediction errors to zero, so that there are no over- or under-
estimates (Anonymus, 2005b).  
The problems with the kriging method for generating isopleth maps of disease 
occurrence are (1) heterogenous variances in the regional estimates and (2) the potential 
of negative interpolations. The first problem can be ameloriated by the use of smoothing 
techniques to the data prior to kriging. Appropiate geostatistical modelling can solve the 
second problem (Berke, 2004). 
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1.2.3. Modelling 
 
Once SIR has been standardised by confounding variables, if any, the model can be 
extended to include specific covariates (Stevenson, 2003): 
 
log(μi)=log(Ei) + α + β1x1i + ... + βmxmi  

 

Where μi= Eiθi   
 
The use of the SIR for disease mapping, assumes that once all known and observable 
confounding variables are included, the resulting map will be clean of all artefacts and 
hence depicts the true excess risk surface. However, unknown or unmeasured risk 
factors may lead to extra variation in the observed counts (greater variation than that 
expected from a Poisson distribution) and also they will vary in space, which in turn 
induces spatial correlation between the observed disease counts in nearby units 
(Stevenson, 2003). These two sources of extra variation are called the uncorrelated 
heterogeneity and correlated heterogeneity respectively.  
 
The correlated and uncorrelated heterogeneity of θi should be included in the analysis in 
order to clean the SIR and obtain a true risk surface: 
 
log(μi) = log(Ei) + α + β1x1i + ... + βmxmi  + si + ai 
 
where ‘si’ represents the structured (correlated heterogeneity) and ‘ai’ the unstructured 
(uncorrelated heterogeneity). They can be included as random effects in a generalized 
linear mixed model (GLMM); but Bayesian modelling approaches allow the exact 
analysis of these random effects (Lawson and Zhou, 2005). Also, in the frequentist 
framework is not possible to include neighbourhood matrixes to take into account the 
correlated heterogeneity. Alternatively, Bayesian methods enable the use of big and 
complicate neighbour matrixes and therefore, they are a necessary tool when dealing 
with such analyses. 
 

• Bayesian methods: 
 
In the past, statistical analyses based on Bayes theorem were often daunting because of 
the numerical integrations needed. Recently, computer intensive sampling methods of 
estimation have revolutionised the application of Bayesian methods in fields as diverse 
as biostatistics, econometrics and genetic mapping (Congdon, 2001). 
In the classical statistics the probability is based on the relative frequency achieve when 
an experiment is repeated a lot of times in similar conditions, however, in the Bayesian 
perspective, the uncertainty about parameters or hypothesis is represented as a 
probability (Saez and Saurina, 2007). In the frequentist framework, parameters are fixed 
non-random quantities and the probability statements concern the data. In the Bayesian 
framework, probability statements are made about model parameters (Congdon, 2001) 
and it is assumed that the parameters have distributions. These distributions control the 
form of the parameters and are specified by the investigator, usually based on their prior 
belief concerning their behaviour. 
Prior distributions and likelihood provide two sources of information about any 
problem. The likelihood informs about the parameter via the data, while the prior 
distributions inform via prior beliefs or assumptions. The product of the likelihood and 
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the prior distributions is called the posterior distribution. This distribution describes the 
behaviour of the parameters after the data are observed and prior assumptions are made. 
In Bayesian modelling all the inference about parameters is made from the posterior 
distribution. Posterior distributions are sampled to give a range of values (posterior 
sample) this contains a large amount of information about the parameter of interest 
(Lawson et al., 2003). The starting point of Bayesian statistics began in XVIII century 
with the Bayes theorem (Bayes 1702 – 1761) (Saez and Saurina, 2007): 
 

 
Where: 
 
p (θ ) is the prior distribution.  
p (X / θ) is the probability distribution of the data, also named likelihood function. 
p (θ / X) is the posterior distribution. In this probability distribution, the information 
contained in the prior knowledge about the parameter and the observed data has been 
combined to obtain the posterior distribution of the parameter of interest (θ ).    
The election of the prior distributions is a subjective election and is base on expert 
knowledge and on the type of data that we have. When the prior and posterior 
distributions come from the same family of distributions the prior is said to be conjugate 
to the likelihood. The most common prior conjugate distributions for the usual 
likelihood functions are (Saez and Saurina, 2007): 
 
 
Likelihood Prior distribution Posterior distribution 
Normal Normal Normal 
Binomial Beta Beta 
Poisson Gamma Gamma 
 
 
When a Bayesian hierarchical model is employed it is no longer possible to provide a 
simple point estimate for any parameter of interest. The parameters are no longer 
assumed to be fixed, they are assumed to arise from a distribution of possible values. 
Given the observed data, the parameter or parameters of interest will be described by 
the posterior distribution, and hence this distribution must be found and examined. It is 
possible to examine the mean or mode of the posterior distribution to give a point 
estimate for a parameter (Lawson et al., 2003). 
In general, a posterior distribution can be so complex that simulation methods must be 
used to obtain samples. There are two basic methods for this: 
 

- Gibbs sampling 
- Metropolis-Hastings sampling 

 
Both methods use simulation to generate sample values over large numbers of 
iterations. Samples are drawn from distributions to provide starting values that should 
converge to a stationary distribution (the posterior distribution) (Pfeiffer, 2004). 
 The ‘Gibbs sampling’ algorithm is one of the most simply and used for Monte Carlo 
Markov Chain (MCMC) calculations (Saez and Saurina, 2007). Moreover, WinBUGS 
(Bayesian Inference Using Gibbs Sampling) was developed for Gibbs sampling. In 
figure 4, Bayesian methodology is represented. 
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Figure 4: Schematic representation of Bayesian analysis methodology (source: own production) 
 
Sampled chains require an initial burn-in period until they can be assumed to converge 
to the posterior distribution of interest (Lawson et al., 2003). Unlike most numerical 
methods used in statistical inference, MCMC does not give a clear indication of whether 
it has converged (Plummer et al., 2006). Judging convergence has been the subject of 
much debate and can still be regarded as art rather than science. There are a wide 
variety of methods now available to assess convergence of chains within MCMC 
(Lawson et al., 2003). Usual practice is to run multiple chains for the same model, 
starting for different initial values, and visually inspect ‘trace’ plots for convergence. 
Once convergence reached, samples should look like a random scatter about a stable 
mean value (Figure 5) (Best and Abellan, 2006). It is also possible to check the 
convergence of the algorithm using the Gelman-Rubin convergence diagnostic 
implemented in WinBUGS. This test is based on running parallel chains from different 
starting values; at convergence their ratio (R) is close to 1 (Lawson et al., 2003). 
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Figure 5. Trace plot to visually inspect for convergence. Convergence has been reached; as samples look 
like a random scatter about a stable mean value (source: Best and Abellan, 2006). 
 
Accuracy of the posterior estimates can be assessed by using the Monte Carlo standard 
error for each parameter. To reach efficiency, the Monte Carlo error should be small in 
relation to the posterior standard deviation. As a rule of thumb, the simulation should be 
run until the Monte Carlo error for each parameter of interest is less than about 5% of 
the sample standard deviation (Lawson et al., 2003). A powerful feature of the Bayesian 
approach is that all the inference about parameters is made from the posterior 
distribution, so it is simple to calculate the probability e.g. Pr(θ > 1) (Best and Abellan, 
2006).  
 
For model goodness-of-fit measure, the deviance information criterion (DIC) proposed 
by Spiegelhalter (2002) measures the goodness-of-fit of any given model (Lawson and 
Williams, 2001). DIC is a measure of model fit penalised by the complexity of the 
model and its value is calculated by adding the effective number of parameters to the 
posterior mean deviance of the model. The ‘‘best fit’’ model is the one with the smallest 
DIC value (Lawson et al., 2003). 
 
As mentioned before, the correlated and uncorrelated heterogeneity of the SIR can 
be included in the analysis by the use of random effects. The random effect for the 
correlated heterogeneity (bi) can be linearly added to the model: 
 
Oi ~Poisson (Eiθi)  
 
Ln(μi) = ln(Ei) + (α + β1x1i + ... + βmxmi)  + si + ai 
 
 
For the (si) term, the correlated heterogeneity, various choices exist, but the most 
common ones are the Multivariate Normal model (MVN) or the Conditional 
Autoregressive Model (CAR).   
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With the MVN the (si) term follows a multivariate normal distribution with spatially 
structures covariance matrix (Best and Abellan, 2006): 
 
si ~ MVN (0i, ν ) 
 
where ν denotes the correlation between si and sj. A common practice is to model the 
correlation as function of distance: 
 
νij = f(dij ;- φ) ; where φ describes the strength of the correlation and dij denotes the 
distance between ‘i’ and ‘j’.  
 
Instead of directly modelling the correlation between log relative risks as a function of 
distance between areas, an alternative approach is to model conditional dependence 
between risks in different areas. Besag et al. (1991) proposed a conditional 
autoregressive (CAR) prior for the log relative risks in a disease mapping context in 
which the relative risk in one area is influenced by the average log relative risk of its 
neighbours. CAR models are the most commonly used models for smoothing risks 
(Ugarte et al., 2005). Besag et al., (1991) recommended modelling the Ln(θi) as the sum 
of two random components; a CAR model (si) and a random effect without spatial 
structure (ai); the uncorrelated heterogeneity. This is the Besag, York and Mollie 
model: 
  
log(θi) = ai + si 
 
  Where; 
 
ai ~ Normal (0,ν)  
 
si ~ CAR (W, τ ); W=0 if is not a neighbour and W=1 if they are neighbours. 
 
Several times, certain areas or locations, presents a number of cases equal to cero. The 
excess of zeros in the data count relative to the Poisson distribution, leads to different 
approximations than the Besag, York and Mollie model, based on the standard Poisson 
distribution. In this context, data may follow a mixture distribution rather than a Poisson 
distribution. Lertxundi (2006) suggested that the threshold to consider that there is an 
excess of zeros in the data is when this proportion is over 40-50%. The use of mixture 
models is a common approximation for this problem. These models assume an 
underlying partition of the population into k homogeneous components, where each 
component has a different risk level, depending on possibly different covariates. 
Usually, there are two homogeneous components, one for zeros (non observed cases) 
and the other for those that are not zero (positive values). The most common 
approximations for mixture models are (Lertxundi 2006): 
 
Zero Inflated Poisson (ZIP) and Zero Inflated Negative Binomial (ZINB) 
distributions:  
In ZIP models the response variable is modelled as a mixture of the Bernoulli (zero-
counts) and Poisson (non-zero counts) distributions. 
In practice, count data are often overdispersed so that alternative distributions such as 
the zero inflated negative binomial (ZINB) may be more appropiate than the ZIP (Xiang 
et al., 2007).  
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The ZINB distribution is a mixture distribution assigning a mass of p to ‘extra’ zeroes 
and a mass of (1 – p) to a negative binomial distribution, where 0 ≤ p ≤1. A negative 
binomial distribution approaches a Poisson distribution when there is not 
overdispersion. The ZINB model therefore accounts for the ‘excess of zeroes’ and also 
for the extra heterogeneity in the positive outcome (Mwalili et al., 2004). 
 
Hurdle models:  
 
In this type of models zero-counts and non zero-counts are treat completely separately 
(Lertxundi, 2006). Locations with zero-counts could not have a non-zero count. In the 
case of veterinary medicine, this is not logical, as far as there are animals it must exist a 
risk level. Therefore, these types of models are not applicable in veterinary 
epidemiology.    
 
Spatial statistical disease modelling can be aimed at investigating possible causal 
effects which are considered to be associated with the disease occurrence. In this 
framework, the model does not use any information on any known mechanisms of 
transmission or incubation for the disease. These models use a retrospective approach 
(Lawson and Zhou, 2005), usually require a large amount of data, and are generated 
from existing georeferenced data sets about disease occurrence as well as potential risk 
factors (Pfeiffer, 2004). They provide summaries and parameter estimates relevant to 
disease management (French and White, 2004). These studies are used in conjunction 
with simple descriptive studies of geographical variation in an attempt to determine how 
much of the variation in disease rates is associated with variation in exposure (Lawson 
et al., 2003). When working with aggregated data, the so-called ecological fallacy can 
arise. The ecological fallacy arises when an attempt is made to ascribe to individuals the 
characteristics which have been derived from the properties of groups of population 
(Lawson and Williams, 2001). For this reason, observations at the ecologic scale will 
usually need validation and replication at the individual level, for example, through 
cohort or case-control studies. The problem of ecological bias may be lessened when 
the analysis is carried out at a more local or small-area scale as the analysis is closer to 
the level of the individual (Elliot and Wartenberg, 2004). Despite this problem, 
ecological studies have some advantages over other studies because they include the 
ability to study a large population at a low cost (Pfeiffer and Jones, 2002). 
On the other hand, mechanistic models include some form of transmission dynamic 
within their structure (Lawson and Zhou, 2005). Model parameters are used within a 
spatial and temporal framework to generate data in the form of predicted patterns of 
disease (French and White, 2004). 
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1.3. Application of Spatial Epidemiology tools in veterinary 
epidemiology 

 
• Application for research on Aujeszky’s disease: 

  
In the USA, GIS and spatial statistics were used in the early 90`s to investigate about 
the spatial distribution of AD in different states and those factors implicated in the 
geographic distribution of the virus (Marsh et al., 1991; Austin and Weigel 1992; 
Norman et al., 1996): 
 
In 1991, Marsh et al., (1991) developed a computerized database linked to a geographic 
information system developed by the Land Management Information Center of the 
Minessota State Planning Agency, to study the spread of ADV among swine herds in 
the state of Minesotta. They conducted a pilot study in one Minessota County with 280 
swine herds, of which AD status was known in 115. GIS technology was used to obtain 
data sets describing topographical features: distance to nearest road, rivers and lakes; 
distance to nearest known infected herd and to count the number of herds within a given 
area. They used proportional hazard models (Cox regression analysis) to identify factors 
associated with AD infection. They did not found association between AD status of the 
herd and distance to nearest road or nearest infected herd. However, farrow to finish 
production system, a complete confinement management and density of swine herds 
within a 5 km radius, were considered risk factors. The presence of a river or lake 
within a 1km distance had a protective effect. 
Austin and Weigel (1992) used second-order spatial analysis (spatial autocorrelation) 
methods to analyze the distribution of county AD prevalence rates (proportion of 
infected herds) in Illinois. The degree of spatial dependence among variables was 
calculated as a function of distance between points. For such analysis they used the 
centroids of the counties. This analysis revealed a clustering of counties with higher 
prevalence (tended to be close to one another), more so than the clustering observed for 
counties with larger numbers of swine herds. They conducted a multiple linear 
regression analysis to test for the association of county AD prevalence with county herd 
density, average herd size in the county and regional density of AD infection rates. 
These variables accounted for the 69% of the variance in AD county prevalence rates. 
The most important factor was the regional density of AD. County herd density and 
average herd size were also related but at a lower level.  
Norman et al., (1996) conducted a spatial analysis of AD in Pennsylvania State. They 
developed a case-control study involving 123 infected herds and 162 non infected herds. 
In buffers of 1.61 km, 3.22 km and 6.44 km radius around each farm they calculated the 
density of infected, non infected, vaccinated, farrow to finish and farrow to weaning 
herds. They build multivariate models and used unconditional logistic regression to 
analyze the data. They did not have enough data to evaluate variables included in the 
1.61 km buffer, but a decreased on the risk of AD was associated with high density of 
non infected herds and low density of infected herds within 3.22 km. Increased risk of 
AD was associated with low density of vaccinated herds and being a farrow to finish 
herd increased the probability for becoming infected, compared with farrow to weaning 
farms. They obtained similar results in the 6.44 km buffer.     
In all of these studies conducted in different states of the USA, a particular route of 
transmission of the virus between farms was not ruled out, but all three highlighted the 
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importance of area spread in the transmission of AD infection between herds, and 
recommended to take into account for eradication efforts. 
 
In France, Auvigne and Hery (1997) described the spatial distribution of AD in 
Brittany (Northwest France) and analysed the relationship between seroprevalence and 
pig density. They used a spatial moving average to reduce the influence of geographical 
units with few observations. This method calculates a corrected value for each variable 
which depends on its observed value and on the observed value in a radius. The 
corrected values were included in a linear regression model: dependent variable 
seroprevalence and pig density as explanatory variable. They run separately 4 
regressions, one for each departament of Brittany. As previous studies conducted in the 
USA, pig density was found to be related to AD seroprevalence, but the intensity of the 
relation (slope and R-squares) was different from one department to another. The 
authors attribute these differences to the fact that pig density might be insufficient to 
describe the structure of the pig industry in one area (they did not take into account the 
ratio sows/fatteners). Also, other variables like mean size of herds or vaccination 
schemes were not included in the analysis.      
More recently, Solymosi et al., (2004),conducted a spatial risk assessment of herd sero-
status in a county in Hungary with all known pig herds (except pure fattening units). 
They used a stepwise logistic regression to test the association between sero-status of 
pig herds and presence of topographical features (lake, forest and highway) and 
uninfected herds in circular radius 1-10 km (in 1 km increments; one logistic regression 
for each radius) around each herd. They found that lake and highway were positively 
associated with AD seropositivity whereas the presence of a forest and uninfected herds 
had a protective effect. The authors speculate that the effect of the lake could be due to 
the existence of more abundant vegetation around the lake, which increases the risk 
through wildlife or wildlife vectors (e.g. rodents, foxes, birds) or to an increase in the 
possibility of airborne virus transmission because of the fog and higher humidity around 
a lake. On the other hand, the forest could decrease the risk of infection by decreasing 
air-borne transmission. 
Berke and Beilage (2003) and Berke (2005) used data about AD infections at farm level 
(only from herds with breeding pigs) in a region of high animal density in Germany at 
the beginning of the national eradication project to propose an exploratory relative risk 
mapping approach. This approach enables the investigation of unknown spatially 
varying risk factors and facilitates hypothesis generation about putative risk factors 
(Berke, 2005). On the basis of serological findings 186 farms were classified as positive 
out of a total of 482 investigated farms (Berke and Beilage, 2003). This approach 
proceeds in four steps. First, they search for disease clusters, if any, in the study area 
using the spatial scan statistic and the population is classified as exposed (inside the 
cluster) and unexposed (outside the cluster). Second, they calculate the background risk 
(prevalence in the unexposed population) from the population at risk outside the high 
risk areas. Third, they create the risk surface map. To produce the risk surface map 
Kernel density estimates were used in order to give weighted means for each location in 
the study area. The risk surface is calculated as the ratio between the kernel density of 
cases and the kernel density of the population at risk. In the fourth last step, the risk 
surface was scaled using the background risk to obtain the exploratory relative risk map 
(Berke, 2005). The use of this approach to investigate AD distribution on Germany gave 
a complete presentation of the geographical variation in risk in the study area. Also, two 
clusters were identified using spatial scan statistics implemented in SaTScan software 
(www.satscan.com). 
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• Application for research on other diseases different than Aujeszky’s 

disease:  
 
    Until recently, GIS, remote sensing and spatial statistics were underexploited in the 
field of veterinary epidemiology, due to the prohibitive cost of hardware and the 
complexity of GIS software that required a high level of expertise . The developments 
in computer performance of the last decade have not only reduced the costs of 
equipment but have made available easy-to-use Web-based software which in turn have 
meant that GIS are more widely accessible by veterinary services at all levels (Calistri 
et al., 2007a). 
Also, in the last years, due to computational advances, spatial analysis has become more 
easily accessible for epidemiologists. However, while developments in spatial statistics 
within the human health field have advanced considerably, there has been less evidence 
of a corresponding interest in such methodology within veterinary medicine (Lawson 
and Zhou, 2005). 
 

• Application of GIS in veterinary activities: 
 
The spatial tools available in modern GIS software such as theme overlays, buffering 
and spatial filtering, have been used to generate single or combinations of variables to 
be used within a modelling framework (Durr et al., 2000). Also, the increased 
awareness of the possibilities offered by GIS has created new opportunities for 
decision-makers to enhance their planning, analysis and monitoring capabilities. A 
picture is worth a thousands words and decision-makers increasingly require that 
information is mapped (Wint, 2007). GIS technology has been used for the monitoring 
of animal diseases and zoonoses, for surveillance activities and as a web tool for data 
and knowledge sharing.   
 
Among others, it has been used by Perruci et al., (2007) to monitor parasitic infections 
in an organic grazing cattle herd in the Natural Park of Migliarino-San Rossore-
Massaciuccoli (Pisa). They collected samples from cattle between 2002 and 2006 every 
two to three months and also environmental parameters and data on biodiversity.  
GIS was used to determine the land-use heterogeneity based on land-use sequences 
between the pixels in six different transects made in the area, to create vector maps of 
the different grazing areas and to plot on a map all collected data and evaluate the 
presence, prevalence and intensity of endoparasitic diseases.  
 
GIS technology has been used for the surveillance of different diseases. In Bluetongue, 
it has been used for serological and vector (Culicodes biting midges) surveillance 
activities in different countries (Capela et al., 2003, Torina et al., 2004, Calvete et al., 
2006, Purse et al., 2006).  GIS has been useful to produce detailed maps of the spatial 
distribution of the main  vector in the Mediterranean Basin (Culicoides imicola) and that 
of potential novel vectors, and also for visual comparison of the spatial distribution of 
Culicoides complexes and disease outbreaks. 
Also in the surveillance framework, it has been used as a system applied to the 
international surveillance and control of transboundary animal diseases by the 
development of the global animal health information system (EMPRES-i). This is a 
programme developed by the Food and Agriculture Organization (FAO) that supports 
the Emergency Prevention System for Transboundary Animal and Plant Pests and 
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Diseases (EMPRES). EMPRES-i monitors data on major transboundary animal 
diseases: Highly Pathogenic Avian Influenza (HPAI), Foot and Mouth Disease (FMD), 
Rift Valley fever (RVF), Contagious Bovine Pleuropneumonia (CBPP), African swine 
fever (ASF) and rinderpest. Through the use of GIS, disease observation data entered 
into EMPRES-i can be visualised as basic maps and combined with additional 
geographical layers such as land use, poultry density, remote sensed imagery or other 
variables hypothesised as relevant to the epidemiology of the disease, providing with 
timely and accurate situation updates (Martin et al., 2007). 
 
The use of GIS as a web tool for data and knowledge sharing is exploding in the last 
years mainly due to the spread of globalisation with its consequent impact on trade, 
information exchange networks and emerging diseases. The veterinary and research 
communities that utilise and adapt GIS analyses are expanding and the demand from 
government and media for disease-related information and early warning systems is 
increasing. All of this depends on networked data exchange and standardised data 
processing (Wint, 2007). The United States Department of Agriculture (USDA) 
Veterinary Services, to date, have the following mapping applications: Equine 
Infectious Anemia Testing, National Tick survey distribution maps, the emergency 
Management Response System-Mapping Module for disease investigations and 
emergency outbreaks, and the Scrapie mapping module to assist with the control and 
eradication of this disease. Thanks to this Web-based interactive mapping service, users 
can use spatial data through a familiar internet browser, interact with data and create a 
customised output, a map or a spreadsheet. The functionality of the applications can be 
used without having to purchase GIS software or learn GIS software (Maroney et al., 
2007). Also, since the Bluetongue spread across the Mediterranean Basin and into the 
Balkans, an information network based on internet links and on geographic information 
system website technologies have been established between Balkan and Eastern 
Mediterranean countries (East-BTNet project). The GIS application developed it is not 
only used for the presentation and analysis of spatial data, but it represents an exclusive 
interface for accessing data entry and retrieval forms (Calistri et al., 2007b). 
 

• Application of Remote Sensing images in veterinary activities: 
 
Applied to epidemiological research, remote-sensing techniques can be used to 
determine and monitor factors involved in disease transmission. Historically, the first 
studies were carried out on schistosomosis, malaria, tick-diseases and trypanosomiasis 
and then applied on many other vector-borne diseases (De La Rocque et al., 2004). 
Tatem et al., (2003) processed remotely sensed imagery to obtain variables with 
environmental significance like the normalized difference vegetation index (NDVI), 
middle infra-red reflectance (MIR), land surface temperature (LST) and air temperature 
(TAIR). By discriminant analysis, they identified the combination of remotely sensed 
variables that most effectively allocated the presence-absence and abundance of 
Culiciodes imicola captured during summer 2000 and 2001 in 87 sites across Portugal. 
The models where then used to predict the distribution and abundance of Culiciodes 
imicola for the rest of Europe and North Africa. Culiciodes imicola was predicted to be 
present and in high abundance in Baleares, Sardinia, Corsica, Sicily, areas of mainland 
Italy, large areas of Greece, western Turkey, northern Algeria and Tunisia. 
Guis et al., (2007) used environmental data related to bluetongue (BT) occurrence in 
Corsica (France). They assumed that the active flight range of C. imicola should range 
between a few hundred meters and a few kilometres, and therefore they tested three 
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sizes of buffer zones: 0.5, 1 and 2 km in radius around each farm. In order to identify 
potential landscape risk factors, they described the environmental surrounding using a 
high spatial resolution SPOT image and a digital elevation model (DEM). From the 
DEM they obtained the altitude, slope, sunshine index and aspect and from the SPOT 
image the NDVI, a land-cover map and landscape metrics. The results reveal the role of 
landscape structure, particularly those characterizing prairies and woodlands, as well as 
farm type, latitude and sunshine to explain the presence of bluetongue. This approach 
was adapted to a different French region where C. imicola was present but not the virus, 
to help focus the trapping sites of the entomological surveillance system in the areas 
where BT risk was the greatest.  
Leblond et al., (2007) also used remote sensing technologies to identify landscape 
features of Camargue area (France) associated with risk of West Nile virus 
transmission as defined by the presence of confirmed horse cases. They classified the 
landscape categories (open water, rice fields, salty ponds,…) from a SPOT-4 satellite 
image. By using generalized linear models they tested the relationship between the 
presence of cases and proportions of landscape categories in the wet area. They found 
that rice fields, wet “sansouire” and open water were the major components of the 
landscape that were associated with the presence of West Nile virus cases. 
 

• Application of spatial statistics in veterinary activities: 
 
As mentioned before, the analysis of spatial data consists of 3 components: exploratory 
analysis (finding interesting patterns), visualization (showing interesting patterns) and 
spatial modelling (explaining interesting patterns).  
 
In the framework of exploratory analysis, different techniques have been used: the 
Cuzick-Edwards´s test (global cluster test), has been used to identify clusters of 
antibodies against bluetongue virus in cattle in Australia (Ward and Carpenter, 1995), 
Corynebacterium pseudotuberculosis cases in horses in California (Doherr et al., 1999), 
cases of bovine spongiform encephalopathy in animals born after the feed ban in 
Switzerland (Doherr et al., 2002) and of bovine tuberculosis in Argentina (Perez et al., 
2002). Also, the K-function, as a global cluster test has been used by different authors; 
it has been used by O’Brien et al., (2000) to study the spatial and temporal distribution 
of cancers in Michigan and to compare this distribution with cancers in human 
population. French et al., (1999) used the method to investigate the space-time pattern 
of sheep scab in Great Britain between 1973 and 1992. Also it was used by Picado et 
al., (2007) to describe the spatio-temporal pattern of the risk of infection during the 
2001 Foot and Mouth Disease outbreak in United Kingdom.  
Perhaps the most widely exploratory technique used has been the local cluster test, 
spatial scan statistic implemented in SaTScan software (www.satscan.org). In the last 
years, SaTScan has been widely used to search for clusters on domestic animals as well 
as on wildlife populations. Among others, the spatial scan statistic has been used to 
identify clusters of bovine spongiform encephalopathy in Great Britain (Stevenson et 
al., 2000) Switzerland (Doherr et al., 2002) Ireland (Sheridan et al., 2005) France 
(Abrial et al., 2003) and Spain (Allepuz et al., 2007). It has also been used to identify 
clusters of bovine tuberculosis in Argentina (Perez et al., 2002); bovine tuberculosis in 
badgers populations in Ireland (Olea-Popelka et al., 2003) and to assess, also in Ireland, 
the spatial relationship between Myocbacterium bovis strains in cattle and badgers 
(Olea-Popelka et al., 2005). It has also been used to search for clusters of Aujeszky’s 
disease in an animal-dense region in Germany at the beginning of the national 
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eradication programme (Berke and Beilage, 2003). In the United States has been used to 
propose an early warning system for West Nile Virus activity based on the detection of 
dead bird clusters (Mostashari et al., 2003). In Denmark Vigre et al., (2005) used it to 
investigate if the incidence of herds diagnosed with Postweaning Multisystemic 
Wasting Syndrome (PMWS) were particularly high in some geographical areas. Mainar 
et al., (2005) used spatial scan statistics to identify and locate significant spatial clusters 
of small ruminant brucellosis in a northern province of Spain between 1997 and 1999, 
and Alba et al. (2008) used it to study the spatial distribution of Maedi and Pestivirus 
infections in sheep in Catalonia. In Ontario (Canada) it was used to test for spatial 
clustering of swine influenza (Poljak et al., 2007). 
As mentioned before, while exploration and visualisation are used as descriptive tools 
for generating causal hypothesis, epidemiological modelling of spatial data aims to 
explain or predict the occurrence of disease (Pfeiffer, 2004). 
  
 In 2001 Foot and Mouth Disease (FMD) Outbreak in Great Britain mechanistic 
spatial models were constructed, predicting the effectiveness of intervention efforts and 
thus helping to inform policy-making (Boender et al., 2007). Among others Keeling et 
al., (2001) and Morris et al., (2001) developed mechanistic models for FMD.  In the 
model of Keeling et al., (2001) the likelihood of transmission between farms was 
determined by their spatial separation and a distance kernel. The kernel was estimated 
from contact tracing performed during the epidemic and described the relationship 
between spatial separation and the likelihood of transmission (by any route). Every day, 
the probability of infection was calculated for each farm, and this was used to 
determine, by Monte Carlo simulation, whether the event happened. The model was 
used to produce a map of predicted cases. Morris et al., (2001) like Keeling et al., 
(2001) developed a model that was location-specific and predicted both the scale and 
spatial pattern of the disease. The probability that each infected farm would transmit to 
any other farm on a given day was determined by a set of probability distributions. Four 
mechanisms of transmission were simulated: local spread to nearby farms via fomites or 
personnel, spread by the movement of animals to farms or markets, long-distance wind-
borne spread, and dairy tanker movements. These models were a significant 
development and they contributed to the outbreak and its control (French and White, 
2004).  
Boender et al., (2007), developed a spatial mechanistic model for the spread of Highly 
Pathogenic Avian influenza poultry in the Netherlands. On each day, farms were 
classified as susceptible (S), being infected on that day (B), infected but not infectious 
(E), infectious (I) or removed (R). Based on data collected during an outbreak of a 
highly pathogenic H7N7 avian influenza virus in The Netherlands in 2003, they 
estimated model parameters. The central concept of the model was the transmission 
kernel, which determines the probability of pathogen transmission from infected to 
uninfected farms as a function of interfarm distance. Their model generated risk maps 
for the spread of avian influenza in poultry and showed that there are two poultry-dense 
areas in The Netherlands where epidemic spread is possible, and in which local control 
measures are unlikely to stop the disease. In these areas an epidemic can only be 
brought to an end by the depletion of susceptible farms by infection or massive culling.   
 
Bovine Spongiform Encephalopathy (BSE), Influenza and Tuberculosis (TB) among 
others, have been studied by different authors in the framework of spatial statistical 
disease modelling aimed at describe spatio-temporal spread and investigate 
hypothesised causal effects. 



Spatial analysis of Aujeszky’s disease eradication 

 - 32 -

 
In relation to BSE, Ducrot et al., (2005) by means of hierarchical Bayesian models 
based on a Poisson distribution with spatial smoothing, described the spatial evolution 
of BSE risk in different periods in France. They built four different analyses to examine 
the spatial distribution of the BSE risk for different successive birth periods and they 
found that there was a significant spatial heterogeneity of the BSE risk for each of them. 
Also, the areas with the highest BSE risk were different for each birth cohort. Also, in 
Great Britain Stevenson et al., (2005a) used Bayesian hierarchical models to evaluate 
area-level BSE risk for cattle born before and after the July 1988 ban on feeding 
ruminant-derived meat and bone meal to ruminants. In Spain, these models were used 
by Allepuz et al., (2007) to evaluate the BSE-risk distribution before and after the 
implementation on changes in MBM processing. In France, Great Britain and Spain 
covariates were included in the Bayesian hierarchical models in order to test hypothesis 
that could explain the BSE-risk spatial distribution. This BSE risk seemed to be linked 
with low levels of cross-contamination of cattle feed by pig feed (Abrial et al., 2005b; 
Stevenson et al., 2005a; Allepuz et al., 2007). 
 In Influenza, Pfeiffer et al., (2007), used a random effects logistic regression model to 
analyse the association between various risk factors and the risk of outbreak occurrence 
at commune level during a particular epidemic wave period of the HPAI occurrence in 
Vietnam. The risk of outbreak occurrence increased with a greater percentage of rice 
paddy fields, increasing domestic water bird and chicken density. The authors proposed 
to consider the resulting risk maps when defining areas of high and low risk as part of 
risk-based surveillance. On a cross-sectional study of swine influenza in Ontario 
(Canada) in finisher herds in 2004 and 2005, Poljak et al., (2008), observed a different 
transmission pattern of the epidemic H3N2 subtype compared to the H1N1 subtype. 
Only the H3N2 positive herds in 2005 clustered in space. They used logistic regression 
modelling and their results suggest that both, infection between neighbouring farms or a 
common geographical risk factor, might have played a role in the H3N2 transmission 
pattern. A negative association between the probability of being an H3N2 positive herd 
and the reported distance to the nearest pig herd was suggestive of local spread either by 
airborne, trough biological vectors or mechanical vectors and fomites. Type of gilt 
source might be a common geographical risk factor if groups of premises located in 
close proximity used the same source of H3N2-infected breeding animals.  
 
 In south-east of New Zealand Porphyre et al., (2007), described the temporal and 
geographical distribution of confirmed cases of bovine tuberculosis (TB). They defined 
six-year periods, between 1980 and 2003, in order to coincide with changes against the 
possum (TB reservoir) depopulation strategies. Prior to map the TB incidence rate by 
period they applied empirical Bayesian methods to smooth it. These methods estimate 
the posterior distribution on the basis of applying maximum likelihood procedures to 
existing data, whereas fully Bayesian methods generate the posterior using a sampling 
process (Pfeiffer, 2004). They also used SaTScan to identify clusters of disease in each 
period and results were compared with disease mapping. The Bayes adjusted incidence 
maps, and the scan statistic analyses showed that changes in the spatial and temporal 
pattern of TB were associated with spatial and temporal changes in possum control 
strategies applied throughout the study period.  
Miller et al., (2007) used spatial scan statistics to identify TB clusters in white-tailed 
deer in north-eastern Michigan. This analysis enabled them to divide the deer 
population into cases (TB cluster areas) and controls (areas outside TB clusters). They 
used logistic-regression models with spatial effects, by using a neighbourhood 
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approach, to identify associations between possible risk factors and cluster membership. 
They included as covariates in the model: land-use, land-type, numbers of large feeding 
sites collected by aerial surveillance, deer related data (average age and percent group 
that were males) and interaction terms. They found that factors that promoted 
congregation of deer for extended periods of time (natural cover, access to water, and 
less human contact) appeared to be associated with increased odds of TB positivity. 
 
 
Conclusion: 
 
  In the last years, due to computational advances, spatial epidemiological analysis has 
become more easily accessible for epidemiologists (Lawson and Zhou, 2005). Increased 
data quality and availability through the development of modern animal disease and 
production monitoring and surveillance systems, the ability to sort and recombine data 
using GIS, and the increasing availability of software packages over the past three 
decades, have created an ideal environment for epidemiologists to apply spatial and 
temporal analytical techniques to disease problems (Ward, 2007). 
At the same time, the increased awareness of the possibilities offered by GIS, spatial 
analysis and remote sensing has created new opportunities for decision-makers to 
enhance their planning, analysis and monitoring capabilities (Calistri et al., 2007a).  
Nowadays spatial epidemiological analysis methods are becoming a standard 
component of the epidemiologist’s tool chest of analysis techniques. 
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2. OBJECTIVES 
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Main objective: Conduct a spatial analysis of the Aujeszky's disease (AD) eradication 
programme in Catalonia, Spain, from 2003 to 2007. This objective can be detailed in the 
following points: 
 
 
 
 
1. - Explore for high risk areas (clusters) in order to test whether the spatial distribution 
of AD in the region during the consecutive eradication periods was homogeneously 
distributed over the territory or clustered in space.  
 
 
 
2.- Identify areas where reinfection and elimination of AD in sow farms (farrow to 
weaning and farrow to finish) were more likely to occur. 
 
 
 
3. - Evaluate the effect of geographical factors on the success of the eradication of AD 
during the different phases of the eradication programme in Catalonia.   
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3.1. Study area 

 

The study was conducted in Catalonia in northeast Spain. This is the largest pig 
producing region in the country with a census of 6.3 million pigs and 5,700 farms, 
which represents 25% and 4% of the national and European pig population respectively 
(Anonymous, 2007b). 
 

3.2. Data 

 

Number of positive and negative animals tested by the gE official enzyme-linked 
immunosorbent assay method (ELISA) (INGEZIM® ADV gE, Ingenasa; CIVTEST® 
suis ADV gE, Hipra) for each farm were obtained through the Department of 
Agriculture of the Autonomous Government of Catalonia and through pig health 
associations. They also provided information on the type of farm (farrow to weaning, 
farrow to finish and fattening), date of sampling, geographical coordinates and census. 
The herd was considered the epidemiological unit of study. A herd was considered 
positive if at least one animal presented a positive result to the gE in the official 
competitive enzyme-linked immunosorbent assay method. The geographical 
coordinates of pig slaughterhouses were also obtained from the Department of 
Agriculture. Cartographic database of roads of Catalonia were obtained from the 
geographical information system services of Girona province (SIGTE). Only 
conventional roads were included in the analyses. Motorways and pathways were 
excluded from the cartographic database of roads.  
 

3.3. Study periods 

 

The study has been conducted through the different phases considered in the official 
eradication program. Each phase elapsed for about 1 year and stablished more strict 
measures to control the infection:   
Phase 1: April 2003 – May 2004: Serological testing of fatteners. Movement 
restrictions were applied on farms with prevalence higher than 20%. 
Phase 2.1: June 2004 – May 2005. Movement restrictions were applied on those farms 
with prevalence higher than 10% 
Phase 2.2: June 2005 – May 2006. Movement restrictions were applied on those farms 
with at least one seropositive animal. 
Phase 3: June 2006 – May 2007. Qualification of farms and areas was applied by a 
compulsory programme. 
Measures adopted during each of the phases are explained with more detail in the 
introduction chapter. 
 
 
 



Spatial analysis of Aujeszky’s disease eradication 

 - 42 -

3.4. Descriptive epidemiology 

 
For the descriptive epidemiology SPSS (v. 14) (SPSS Inc. Chicago, USA) and Epi Info 
(v 3.3.2) (http://www.cdc.gov/epiinfo) softwares were used. ArcMap® v9.1 of ESRI, 
Redlands, CA was used to represent pig farm density. This density was represented with 
a Kernel density surface calculated with a bandwidth of 5km.  
 

3.5. Exploratory analysis 

 
The objective of this part of the study was aimed at exploring whether the spatial 
distribution of AD in Catalonia, at the end of each eradication period from 2003 to 
2007, was homogeneously distributed over the territory or clustered in space. We also 
aimed at determining areas where reinfection and elimination of AD in sow farms 
(farrow to weaning and farrow to finish) were more likely to occur. 
For that purpose, we used SaTScan® v6.1 (http://www.satscan.org). As explained in the 
introduction chapter, the spatial scan statistic searches for clusters by using a variable 
circular window size to detect spatial clusters in large areas while controlling for the 
underlying population (Kulldorff, 1997). The circle is centred on each of the points. For 
each point, the size of the circle varies from zero to an upper limit specified by the user. 
As recommended by Kulldorf (1997), a 50% of the population at risk was selected as 
the upper limit for the circles.     
To explore the spatial distribution of Aujeszky’s disease, we ran different purely spatial 
analyses based on the Bernoulli model in each eradication period. We only scanned for 
clusters with high rates (more cases than expected). The number of Monte Carlo 
simulations was set at 999, and clusters with p-value<0.05 were considered as 
statistically significant. Only statistically significant non-overlapping clusters were 
reported (Kulldorff, 2006).  
We performed four different purely spatial analyses in each period with the following 
case/control definitions represented by a 1/0 variable: 
 
a) Positive sow farms: Sow farms with at least one positive sample (cases) and sow 
farms with no positive samples (controls) at the end of each eradication period. 
b) Positive fattening farms: purely fattening farms with positive samples in any of the 
analyses carried out during each period (cases) and negative fattening farms during the 
whole period (controls). 
c) Elimination analysis (based on sow farms which became negative): Sow farms with 
positive samples at the beginning of each period and negative at the end of the period 
(cases) and positive sow farms during the whole period (controls).  
d) Reinfection analysis (based on sow farms which became positive): Sow farms with 
negative samples at the beginning of each period and positive at the end (cases) and 
negative sow farms during the entire period (controls).  
 
The resulting clusters were coded using numbers and letters. The first number 
corresponds to the period of the AD-eradication programme in Catalonia: period 0 (at 
the start of the study: April 2003), period 1 (from April 2003 to May 2004), period 2.1 
(from June 2004 to May 2005), period 2.2 (from June 2005 to May 2006) and period 3 
(from June 2006 to May 2007). The capital letter indicates the type of cluster analysis: 



Spatial analysis of Aujeszky’s disease eradication 

 - 43 -

‘S’: Positive sow farms. ‘F’: Positive fattening farms. ‘E’: Elimination analysis ‘R’: 
Reinfection analysis. The lower case letter indicates the cluster detected by the spatial 
scan statistic, where the letter ‘a’ represents the most likely cluster and ‘b’, ‘c’, etc; the 
secondary clusters.  
In order to explore the relation between the results of the analyses, we exported the 
cluster information file to ArcMap® v9.1. The different clusters were represented on a 
map of Catalonia and over a Kernel density surface of pig farms (farrow to weaning, 
farrow to finish and fattening) calculated with a bandwidth of 5km. 
 
The density of pig farms was calculated for elimination clusters and reinfection clusters. 
In order to do so, the area of each cluster was calculated with the Spatial Statistical 
Tools of ArcToolbox from ArcMap®. Then, the number of pig farms inside each cluster 
was calculated by merging the cluster and pig farm themes. Finally, pig farm density for 
each cluster was obtained by dividing the number of farms per cluster by the cluster’s 
area. 
The proportion of positive fattening pig farms within eradication and reinfection 
clusters in each period was obtained from the database by merging the cluster and pig 
farm themes. The Shapiro Wilk test was used to test for the normality of the farm 
density variable; the p-value was below 0.05, and therefore the variable was not 
considered to be normally distributed. Due to this, a non-parametric alternative to a t-
test (Wilcoxon rank-sum test) was used to test for farm density differences between 
clusters of reinfection and elimination. A Pearson’s chi-square test was used to test for 
differences in the proportion of positive fattening farms between reinfection and 
elimination clusters. Odds ratios and their 95% confidence intervals were also 
calculated. Differences were considered statistically significant when p<0.05. SAS 
software (version 9.1 SAS Institute Inc., Cary, NC) was used for these analyses. 
 

3.6. Modelling 

 The aim of this part was to evaluate the effect of geographical factors on the probability 
of being AD positive in Catalonia during the different phases of the eradication 
programme. 

• Explanatory variables included in the analysis: 
 
Four geographic variables were included in the analysis:  a) Distance to the nearest 
slaughterhouse, b) distance to the nearest conventional road, c) mean number of AD 
serological positive sows in the neighbourhood (750 meters) of each sow farm, and d) 
mean number of AD serological positive fattening pigs in the neighbourhood (750 
meters) of each sow farm. A non geographic variable, type of farm (farrow to finish vs 
farrow to weaning) was also included in the analysis.  
ArcGIS 9.1 was used to map and manage spatial information. A joint, based on spatial 
location, was used to calculate the shortest Euclidean distance between sow farms 
(farrow to weaning and farrow to finish) and slaughterhouses and conventional roads.  
For each period, the mean number of positive animals in the neighbourhood of each sow 
farm was calculated: a buffer radius of 750 meters was created around each sow farm. 
This buffer was merged with pig farm themes, and a list with the serological results of 
all fattening and sow farms on the neighbourhood of each sow farm was obtained. 
Density of positive sow and fattening animals was calculated as: 
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         ∑(pi*ni)/Ni 
 
Where i=1,…,n indexes neighbour farm (sow or fattening), ‘p’ is the proportion of 
positive animals to the gE official ELISA, ‘n’ is the number of sows or fattening 
animals in the farm and ‘N’ is the total number of fattening or sow farms in the 750m 
buffer radius.   
In order to simplify the numerical fitting of the models, distance to nearest 
slaughterhouse and nearest conventional road variables were standardised resting them 
by their mean and dividing them by their standard deviation. Mean number of AD 
serological positive sows and AD serological positive fattening pigs in the 
neighbourhood of each sow farm were divided by 1,000. 

• Disease mapping: 
 
The aggregation level used in the analysis was the farm (i = 1, . . . , n). Being ‘n’ the 
number of sow farms (farrow to weaning and farrow to finish) in each eradication 
period. A positive sow farm was defined as a sow farm (farrow to weaning or farrow to 
finish) where there is at least one positive animal to the gE official ELISA.  
In disease mapping, it is often to find two basic forms of extra variation. First, as in the 
no spatial scale, a form of independent and spatially uncorrelated extra variation can be 
assumed. This is called uncorrelated heterogeneity (Lawson et al., 2003). Secondly, 
geographically close areas tend to have similar disease rates (Clayton and Bernardinelli, 
1992) so independence of risk between close areas cannot be assumed. This is called 
correlated heterogeneity. This form of extra variation implies that there exists spatial 
autocorrelation between spatial units. This autocorrelation could arise because the 
disease of concern could be naturally clustered in its spatial distribution at the scale of 
observation. Many infectious diseases display such spatial clustering, and a number of 
apparently non-infectious diseases also cluster (Lawson et al., 2003). 
To model the extra variation of the parameter of interest and take into account the risk 
dependence between close areas, spatial hierarchical Bayesian models were used. 
These models have the advantage of the possibility to control the variability of the 
parameter of interest by the use of prior distributions, overcoming therefore the classical 
problem of overdispersion in disease mapping (Abrial et al., 2005).  

• Specification of the model 
 
Because a sow farm can be positive or negative we assumed that the number of positive 
sow farms (Oi) follows a binomial distribution: 
 
Oi ~ binomial (pi ,ni) 
 
Where i=1,...,N indexes the farm, ‘n’ is the number of sow farms in each eradication 
period and ‘p’ is the probability of being a positive sow farm in each period. 
 
The probability of being a positive sow farm is given by: 
 
logit (pi)= β0 + ai + si 
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Where ‘ai’ and ‘si’ indicate the uncorrelated heterogeneity and spatially-correlated 
heterogeneity random effects respectively.  

• Uncorrelated and correlated heterogeneity 
 
   For the prior distribution of ai we chose a normal distribution centred on zero: 
 
ai ~ N (0,ν) 
 
where ‘ν’ is the precision (inverse of variance) of the prior distribution. 
 
To take into account the spatial autocorrelation, we used the conditional autoregressive 
(CAR) model with a spatial component (si) proposed by Besag et al., (1991).  
This spatial component takes into account the spatial dependence between neighbour 
farms (500 meters radius). The prior distribution of this parameter follows a normal 
distribution: 
 
si ~ N (Ьi, σni) 
 
where ‘Ьi’ is the mean of the spatial component in the set of farms neighbours to farm 
‘i’ and ‘σ’ is the precision, weighted by ‘ni’, the number of neighbours of farm ‘i’. 

• Incorporating covariates in the models 
 
The number of slaughtered animals is not homogeneous over the different 
slaughterhouses of the region. Also, the number of transported pigs is not homogenous 
in the different roads. Because of that, we assumed that the different slaughterhouses 
and roads influence ‘pi’ differently so the regression parameters were individualised. 
The prior distribution for these parameters was assumed to follow a normal distribution: 
 
β1 ~ N(0,τ1) 
β2 ~ N(0,τ2) 
 
where ‘τ1’ and ‘τ2’ are the precision of the prior distribution of ‘β1’ and ‘β2’ respectively. 
 
Finally, the four random effects (uncorrelated and correlated heterogeneity, distance to 
nearest slaughterhouse and conventional road) and the three covariates (type of farm, 
mean number of positive sows and positive fattening animals) were linearly added to the 
prior distribution of ‘pi’:  
 
(1) logit (pi) = β0 + β1 typei + β2 sows i  + β3fatteningi  +   
                                      β4i slaughterhouse i + β5iroad i + ai + si 

             
The residuals of the model (resid) were computed as: 
 
 residi = Oi - pi 
 
The spatial locations of the residuals were useful to evidence the geographical areas 
where the probability of being a positive sow farm were less explained by the 
explanatory variables included in the model.  
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Prior distributions were established for the parameters. Non-informative prior 
knowledge was considered with a flat distribution for the intercept (β0) and normal 
distributions for covariate parameters and random effects. These normal distributions 
have a 0 mean and their precision follow a gamma distribution (hyperprios) of mean 0.1 
and variance 1,000 (Lawson et al., 2003). 
 
To implement the model we used WinBUGS version 1.4.3 (Medical Research Council, 
Biostatistics Unit of Cambridge, London, http://www.mrc-
su.cam.ac.uk/bugs/welcome.shtml), a free software for Bayesian Inference using Gibb 
Sampling. The posterior distribution of the parameters was obtained from 45,000 
Markov chain Monte Carlo simulations (MCMC) after a burn-in of 5,000 simulations. 
Conformity analysis was made from the percentile posterior distribution given by the 
quantiles of the usable chain, making appropriate interpretations in the context of 
disease mapping (Richardson et al., 2004). Convergence of the chains was checked 
using the sample trace plot and Gelman-Rubin convergence diagnostic of the deviance 
(as is a global parameter of the model) (Lawson et al., 2003). In appendix 1 the sintaxis 
of the model is displayed.  

• Construction of the neighbouring matrix 
 
In order to apply the CAR model to our data, we defined a neighbour farm as a farm 
located in a distance of 500m of each sow farm. In order to do so, a 500m radius buffer 
around each sow farm was created in each period. The neighbouring matrix (W) was 
created based on the intersections of the farm buffers. If the buffers of two farms (i and 
j) intersect each other, then these farms are neighbouring and the element wij of W 
neighbouring matrix is 1 otherwise 0. The neighbourhood matrix calculation was 
performed using maps2WinBUGS version 1.5.1 (Solymosi et al, 2008).  

• Displaying results into a map 
 
Because the interpretation problems that present the plots of point events, we decided to 
use interpolation techniques in order to represent the results on each eradication period. 
We used the inverse distance weighting (IDW) calculated with a fixed bandwidth of 
4km, in order to represent the predicted probability of infection by the model, the 
observed infected sow farms and the residuals of the model.  
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4.1. Descriptive analysis 

4.1.1. Study population 
 
 In April 2003, (period 0) just at the beginning of the study, a total of 5,504 farms (with 
3,546,656 animals) were included in the analysis; and at the end of the study, in June 
2007 (period 3) the number of farms was 5,854 with 4,301,011 animals. The number of 
farms and animals during the different periods of the study are shown in table 1. 
 

  Period 0 Period 1 Period 2.1 Period 2.2 Period 3 
Farrow to finish 1,152 1,158 820 874 1,053 

Farrow to weaning 857 869 665 738 800 
Fattening farms 3,495 3,495 1,770 3,734 4,001 

 
Number 
of farms 

Total 5,504 5,522 3,255 5,346 5,854 
Sows 202,775 204,890 154,344 178,164 222,019 Farrow 

to 
finish 

Fatteners 1,429,094 1,843,543 588,037 648,209 813,954 

Farrow to weaning 217,510 232,348 225,854 284,354 314,392 
Fattening farms 3,126,371 3,126,371 1,424,130 3,351,185 3,764,600 

 
Number 

of 
animals 

Total 4,975,750 5,407,152 2,392,365 4,461,912 5,114,965 
 
Table 1. Number of farms and animals during the different periods of study; period 0 (April 2003), period 
1 (May 2004), period 2.1 (May 2005), period 2.2 (May 2006) and period 3 (May 2007). 
 
   Farms are not homogeneously distributed over the study region. The geographic 
distribution of fattening and sow farms is represented in figure 6: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Kernell density surface, calculated with a 5km bandwidth, of fattening farms (left) and sow 
farms (right) in the study region. 
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4.1.2. Serological results 
 
At the beginning of the study (April 2003) 1,212 out of 2,009 sow farms in Catalonia 
had at least one sow with positive serological results to AD (60.3%). At the end of 
period 1 (May 2004), the proportion was similar, 1,194 out of 2,027 (58.9%). In May 
2005 (end of period 2.1), the proportion decreased to 54.1% (804 with positive 
serological results out of 1,485 sow farms). At the end of period 2.2 (May 2006) the 
proportion was 23.4% (377 out of 1,612), and at the end of period 3 (May 2007) it fell 
to 9.7% (180 out of 1,853). The proportion of positive sow farms (farrow to weaning 
and farrow to finish) at the end of each eradication period and the within prevalence in 
positive sow farms are represented in tables 2 and 3. 
 
 
 Proportion of positive farrow to 

weaning farms 
Prevalence in positive farrow to weaning 

farms (%) 
Period Pos Neg Perc(%) Mean (sd) 25% 50% 75% 

April 2003 493 364 57.5 32.2 (29.8) 8.3 20.3 50 
Period 1 

(May 2004) 
477 392 54.9 26.4 (28.2) 5.4 13.9 38.6 

Period 2.1 
(May 2005) 

369 296 55.5 19.8 (23.3) 3.4 9.8 27.4 

Period 2.2 
(May 2006) 

156 582 21.1 25.2 (27.9) 2.5 12.1 41.1 

Period 3 
(May 2007) 

67 733 8.3 30.1 (29.9) 5.7 20 44.9 

 
 
Table 2. Positive (Pos), negative (Neg) and Proportion (perc) of Aujeszky’s disease positive farrow to 
weaning farms and within prevalence (mean, standard deviation (sd) and quartile distribution) in positive 
farrow to weaning farms at the end of each eradication period. 
 
 
 

 Proportion of positive farrow to 
finish farms 

Prevalence in positive farrow to finish farms 
(%) 

Period Pos Neg Perc(%) Mean(sd) 25% 50% 75% 
April 2003 719 433 62.4 44.4(33.3) 13 36.9 73.6 
Period 1 

(May 2004) 
717 441 61.9 34.4(31.1) 7.1 24.6 56.3 

Period 2.1 
(May 2005) 

435 385 53.1 24.8(26.2) 4.2 13.3 37.5 

Period 2.2 
(May 2006) 

221 653 25.3 26.1(29.6) 3.1 11.4 45.1 

Period 3 
(May 2007) 

113 940 10.7 37.4(31.7) 10 26.7 61.5 

 
 
Table 3. Positive (Pos), negative (Neg) and Proportion (perc) of Aujeszky’s disease positive farrow to 
finish farms and within prevalence (mean, standard deviation (sd) and quartile distribution), in positive 
farrow to finish farms at the end of each eradication period. 
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 In relation to purely fattening units, during the first period of study, 598 out of 3,495 
(17.11%) had serological positive animals. This proportion was of 7.1% (126 out of 
1,770) during period 2.1; 9.4% (351 out of 3,734) during period 2.2 and 8.5% (341 out 
of 4,001) during period 3. 
 

4.1.3. Geographical factors included in the analysis 
 
In figure 7 is shown the distribution of pig slaughterhouses and conventional roads 
included in the analysis. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Distribution of pig slaughterhouses (left) and conventional roads (right) present in Catalonia and 
included in the analysis. 
 
Most of the sow farms (75%) in the area of study had a pig slaughterhouse and/or a 
conventional road within a distance of 9km and 1km respectively (table 4). 
 
 Mean(sd) Min 25% 50% 75% Max 
Distance to 
slaughterhouse 

6,294 (4,268) 73 3,070 5,341 8,632 36,434 

Distance to 
conventional road 

721 (817) 1 175 457 955 6,086 

 
Table 4. Mean, standard deviation (sd), minimum (Min), maximum (Max) and quartile distribution of the 
distance (in meters) from sow farms to the nearest slaughterhouse and nearest conventional road. 
 
At the end of the first period; 912 out of the 1,194 positive sow farms (76.4%) had 
positive sows in their neighbourhood (750 meters radius buffer), 720 (60.3%) had 
positive fatteners and 629 (52.7%) had both sows and fatteners. This proportion was of 
27.2% (219 out of 804) at the end of period 2.1; of 36.9% (139 out of 377) at the end of 
period 2.2 and decreases to 20.5% (37 out of 180) at the end of period 3. The number of 
positive sow and fattening animals in the neighbourhood of positive sow farms at the 
end of each eradication period is represented in tables 5 and 6.  
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 Positive 

sow farms 
Positive sow farms with 

positive sows in the 
neighbourhood 

 

Perc (%) Mean(sd) 25% 50% 75% 

April 2003 
May 2004 

1,194 912 76.4 56.9(93.3) 13 37 66 

June2004 
May 2005 

804 476 59.2 46.5(78.8) 11 26 49 

June2004 
May 2006 

377 225 59.7 53.2(95.4) 7 19 52 

June2006 
May 2007 

180 88 48.9 42.2(82.9) 3 20.5 54.5 

 
Table 5. Percentage (Perc) of positive sow farms with positive sows in the neighbourhood and mean, 
standard deviation (sd) and quartile distribution of  Aujeszky’s disease serological positive sows  in the 
neighbourhood of positive sow farms during each eradication period. 
 
 
 

 Positive 
sow farms 

Positive sow farms with 
positive fatteners in the 

neighbourhood 
 

Perc (%) Mean(sd) 25% 50% 75% 

April 2003 
May 2004 

1,194 720 60.3 438.4(454.9) 112.5 378.5 598.5 

June2004 
May 2005 

804 257 31.9 382.6(545.2) 138 240 486 

June2004 
May 2006 

377 200 53.1 615(517.7) 203 538.5 846 

June2006 
May 2007 

180 52 28.8 150.1(124.2) 11.5 148 261 

 
Table 6. Percentage (Perc) of positive sow farms with positive fatteners in the neighbourhood and mean, 
standard deviation (sd) and quartile distribution of Aujeszky’s disease serological positive fattening 
animals  in the neighbourhood of positive sow farms during each eradication period. 
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4.2. Exploratory analysis  

4.2.1. Cluster analysis 

a) Positive sow farms:  
 
Using spatial scan statistics, we identified clusters of Aujeszky’s disease positive sow 
farms (farrow to weaning and farrow to finish) throughout the study period. The 
prevalence ratio estimates and areas (square kilometres) of the different clusters are 
presented in Table 7. The prevalence ratio values for the clusters were between 1.56 and 
1.73 at the beginning of the study (April 2003) and increased as the study progressed to 
reach values between 5.15 and 5.48 for the last period (June 2007).   
 

Period Clusters Population Observed P-value Area 
(Km2) 

Prevalence 
ratio 

0Sa 405 341 0.001 39,806 1.61 

0Sb 95 84 0.001 676 1.56 

0Sc 53 49 0.001 34 1.62 

 
April 
2003 

0Sd 24 24 0.008 12 1.73 

1Sa 242 202 0.001 223 1.58 

1Sb 476 347 0.001 31,774 1.41 

 
May 
2004 

1Sc 21 21 0.018 7.8 1.79 

2.1Sa 267 194 0.001 329 1.76 May 
2005 

2.1Sb 171 133 0.001 1,974 1.82 

2.2Sa 171 87 0.001 1,354 3.10 

2.2Sb 127 70 0.001 1,454 3.24 

June 
2006 

2.2Sc 33 24 0.001 8.8 3.88 

3Sa 116 45 0.001 745 5.15  
June 
2007 3Sb 78 34 0.001 903 5.48 

 
Table 7. Results of the spatial scan statistic analyses on sow farms (farrow to weaning and farrow to 
finish) with the Bernoulli model and a maximum scanning window of 50% of the population at risk. 
Population and observed columns indicate the total number of sow farms and number of Aujeszky’s 
disease positive sow farms located inside the cluster respectively. The first number of the code of the 
cluster corresponds to the period, the capital letter indicates the type of cluster analysis and the lower case 
letter indicates the cluster detected by the spatial scan statistic, where letter ‘a’ represents the most likely 
cluster and ‘b’, ‘c’ and ‘d’ the secondary ones. 
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b) Positive fattening farms: 
  
Comparing the farms that had at least one positive animal with those without positive 
animals, two significant clusters were identified in the first period, one in the second, 
two in the third and two in the fourth one. As with sow farms, the ranges of prevalence 
ratios increased throughout the study period from 1.73 to 2.45 in the first period to 2.77 
to 5.52 in the last period (Table 8).  
 
 

Period Cluster Population Observed P-value Prevalence 
ratio 

1Fa 1,260 531 0.001 1.73 April 2003 
May 2004 1Fb 46 34 0.001 2.45 
June 2004 
May 2005 

2.1F 874 198 0.001 3.44 

2.2Fa 591 237 0.001 3.64 June 2005 
May 2006 2.2Fb 138 66 0.001 3.28 

3Fa 1,161 181 0.001 2.77 June 2006 
May 2007 3Fb 24 11 0.039 5.52 

 
Table 8. Results of the spatial scan statistic analyses on fattening farms with the Bernoulli model and a 
maximum scanning window of 50% of the population at risk. Population and observed columns indicate 
the total number of fattening farms and Aujeszky’s disease positive ones respectively inside the cluster. 
The first number of the code of the cluster corresponds to the period, the capital letter indicates the type 
of cluster analysis and the lower case letter indicates the cluster detected by the spatial scan statistic, 
where letter ‘a’ represents the most likely cluster and ‘b’ the secondary cluster.  
 
c) Elimination analysis (based on sow farms that became negative): 
 
Significant clusters were identified in the four study periods, which indicate that the 
proportion of positive farms that eliminated the infection was higher in some areas. The 
relative risk values during the different periods were similar, ranging from 1.54 to 2.83 
(Table 9a). 
 
d) Reinfection analysis (based on sow farms that became positive):  
 
The spatial scan statistic identified areas where the proportion of farms that became 
positive was higher in the four study periods. The relative risk values of these clusters 
were higher than the values of other cluster types, ranging from 3.14 to 18.55. There 
was an increase in the relative risk values in period 4 compared to the previous ones 
(Table 9b).  
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Period Cluster Population Observed P-value Relative 
Risk 

Area 
(Km2) 

1Ea 69 29 0.014 2.43 392 April 2003 
May 2004 1Eb 40 20 0.025 2.83 69 

2.1Ea 178 95 0.001 1.89 1,228 June 2004 
May 2005 2.1Eb 30 23 0.005 2.42 549 
June 2005 
May 2006 

2.2E 269 209 0.001 1.54 5,188 

a) 

June 2006 
May 2007 

3E 144 121 0.001 1.71 5,241 

April 2003 
May 2004 

1R 212 126 0.001 5.41 225 

2.1Ra 9 9 0.001 5.98 6 June 2004 
May 2005 2.1Rb 50 24 0.001 3.14 963 
June 2005 
May 2006 

2.2R 173 28 0.001 5.29 2,215 
b) 

June 2006 
May 2007 

3R 18 8 0.001 18.55 239 

 
Table 9. Results of the spatial scan statistic analyses to search for clusters of elimination (a) and clusters 
of re-infection (b), with the Bernoulli model and a maximum scanning window of 50% of the population 
at risk. The first number of the code of the cluster corresponds to the period, the capital letter indicates the 
type of cluster analysis and the lower case letter indicates the cluster detected by the spatial scan statistic, 
where letter ‘a’ represents the most likely cluster and ‘b’ the secondary cluster.  

4.2.2. Geographical location of clusters 
 
The location of clusters from the different analyses and periods are represented in 
Figures 8, 9, 10 and 11. Three different sized clusters were identified in the study of 
positive sow farms in the first period in the central (1Sa) and western (1Sb, 1Sc) parts of 
the region (Fig.8). Clusters 1Sa and 1Sb overlapped with clusters of sow, fattening and 
reinfection in the same or in the following periods (Fig.8, 9, 10 and 11), in contrast to 
1Sc where clusters of sows, fattening and reinfection were not identified in the same or 
the following periods (Fig.8, 9, 10 and 11). 
For the second period, clusters of fattening farms (2.1F) were identified in the north 
eastern part of the region. During the following periods, clusters of sow farms (2.2Sb, 
3Sb), fattening farms (2.2Fb, 3Fb) and reinfection in sow farms (2.2R, 3R) were 
identified in this area (Fig. 9, 10 and 11). 
We identified areas where the proportion of sow farms that became negative 
(elimination) was higher compared to the whole region throughout the four study 
periods. During the first period these areas were located in the western (1Ea) and central 
(1Eb) parts of the region (Fig. 8). In the second period they were located in the western 
(2.1Eb) and central parts (2.1Ea) (Fig.9), in the third period they moved to the central 
and north eastern parts (2.2E) (Fig.10), and in the fourth period to the central and 
western parts of the region (3E) (Fig.11).  
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Figure 8. Clusters identified in the first period (April 2003 – May 2004) with the spatial scan statistic (Bernoulli 
model). a) clusters of positive sow farms (S) and fattening farms (F), b) clusters of elimination (E) and re-
infection (R). Clusters are represented over a Kernell density surface of pig farms (farrow to weaning, farrow to 
finish and fattening). Areas with higher pig farms density are represented with higher colour intensity. 
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Figure 9. Clusters identified in the second period (June 2004 – May 2005) with the spatial scan statistic 
(Bernoulli model). a) clusters of positive sow farms (S) and fattening farms (F), b) clusters of elimination (E) 
and re-infection (R). Clusters are represented over a Kernell density surface of pig farms.   
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Figure 11. Clusters identified in the fourth period (June 2006 – May 2007) with the spatial scan statistic 
(Bernoulli model). a) clusters of positive sow farms (S) and fattening farms (F), b) clusters of elimination (E) 
and re-infection (R). Clusters are represented over a Kernell density surface of pig farms.   
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Figure 10. Clusters identified in the third period (June 2005 – May 2006) with the spatial scan statistic 
(Bernoulli model). a) clusters of positive sow farms (S) and fattening farms (F), b) clusters of elimintion (E) 
and re-infection (R). Clusters are represented over a Kernell density surface of pig farms.   
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In central, western and north eastern Catalonia there was a geographical association 
between the clusters of positive sow farms, positive fattening farms and re-infected sow 
farms, as indicated in figure 12. In areas where clusters of positive sow or fattening 
farms were detected, we identified clusters of sow farms that became positive in the 
same or the following period.  
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. Geograhical overlap of clusters identified during the four periods of study (see the text to 
interpret the clusters notation).*These clusters covered an area of central and northeastern part of the 
region.  

 

4.2.3. Pig farm density and proportion of serologically positive 
fattening farms in reinfection and elimination clusters 
 
   The mean density of pig farms was 0.40 farms per square Km (median of 0.29 and 
standard deviation of 0.33) in clusters where more sow farms became negative 
(elimination) and 1.51 (median of 0.70 and standard deviation of 1.62) in clusters where 
more sow farms became positive (reinfection). There was a statistically significant 
difference between them (p value<0.05). The proportion of positive fattening farms was 
higher in those areas where more sow farms became positive (Table 10). 
 
 
 
 
 
 
 
 
 
 

Central area West area Northeast  area 

1Sa 1Fb 1R1Sb 

2.1Sa 2.1F*2.1Sb 2.1Ra2.1Rb 2.1F 

2.2Sc 2.2R*2.2Sa 2.2Fa 2.2Sb 2.2F 2.2R

3Sa 3Fa 3Fb 3Sb 3R 

May 2004 

May 2005 

May 2006 

May 2007 

1Fa 
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Clusters of reinfection Clusters of elimination  
Positive 

fattening  
farms 

Fattening  
farms 

Positive 
fattening   

farms 

Fattening  
farms 

 
OR (CI: 95%) 

April 2003 
May 2004 

67 348 40 303 1.57 (1.02 – 2.4)* 

 

June 2004 
May 2005 

9 154 2 170 5.28  (1.1 – 24.8)* 

June 2005 
May 2006 

61 1011 46 1333 1.86 (1.3 – 2.8)* 

June 2006 
May 2007 

29 162 103 1559 3.08 (1.9-4.8)* 

 
Table 10. Percentage of fattening farms with AD serological positive animals in clusters of reinfection 
and eradication. (*) indicates that differences are statistically significant (p-value<0.05). 
 

4.3. Modelling  

4.3.1. Parameter results 
 
The hierarchical bayesian binomial model, suggested that the number of positive 
fattening animals in the neighbourhood of each sow farm, increases the probability of 
being AD positive. On the other hand, the number of positive sows in the 
neighbourhood did not influence significantly on the likelihood of being AD positive in 
the different periods (i.e. the bayesian credible interval of the regression parameter for 
this covariate conatined the zero). The type of farm (farrow to weaning or farrow to 
finish) also did not influence the probability of being AD positive.  
In period 1, positive fattening pigs in the neighbourhood (750 meters radius) influenced 
positively the probability of being AD positive: the 95% bayesian credible interval of 
the regression parameter for this variable is 0.005 - 0.31. i.e.: for 1,000 increases in 
number of positive fattening animals in the neighbourhood of each sow farm the odds of 
being AD positive increases by a factor between 1.005 and 1.36 (logarithmic inverse of 
0.005 and 0.31). 
In period 2.2, having positive fattening animals in the neighbourhood increased the 
likelihood of each sow farm to be AD positive between 1.84 and 3.22 (logarithmic 
inverse of 0.61 – 1.17). In period 2.1 and period 3, any variable had a positive relation 
with the probability of being positive. 
For each period, the estimate values, monte carlo error (MC error) and percentile 
distribution for the bayesian credible intervals of the intercept (β0) and the fixed 
regression parameters of the type of farm (β1 ), positive sows in the neighbourhood (β2) 
and positive fattening in the neighbourhood (β3), are presented in table 11. 
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Table 11. Estimate value, odds ratio (OR), monte carlo error (MC error) and percentile distribution for the 
95% bayesian credible intervals of the intercept (β0) and the fixed regression parameters of the type of 
farm (β1 ), positive sows in the neighbourhood (β2) and positive fattening in the neighbourhood (β3) of the 
binomial model (logit (pi)). In bold are represented those parameters which influence the probability of 
being AD positive. *Interpretation: for 1,000 increases in number of positive fattening animals in the 
neighbourhood of each sow farm the odds of being AD positive increases by that factor.  
 
 
As mentioned before, we assumed that the different slaughterhouses and roads influence 
‘pi’ differently (the number of transported and slaughtered pigs is not homogenous on 
the study region) and therefore the regression parameters for these covariates were 
individualised. They were introduced in the model as random effects.  
All the bayesian credible intervals estimated by the binomial model, of these 
individualised regression parameters, contained the value zero. Therefore, the distance 
to the nearest slaughterhose and conventional road did not significantly influenced the 
probability of being AD positive in any period.  
 
The estimate of the standard deviation, MC error and percentile distribution of the 
bayesian credible intervals of the regression parameters of the explanatory variables 
included as random effects (distance to nearest slaughterhouse (β4) and distance to 
nearest road (β5) and the random effects for the uncorrelated heterogeneity (a) and 
correlated heterogeneity (s) are shown in table 12.  
 
 
 

Model ( logit (pi) ) Estimate OR MC error Percentile distribution 
    5% 10% median 90% 95% 

β0 : -8.45  0.0041 -8.61 -8.58 -8.46 -8.32 -8.28 
β1:   -0.03  0.0012 -0.13 -0.11 -0.02 0.03 0.05 
β2:  0.03  0.0046 -0.35 -0.21 0.01 0.32 0.48 

 
Period 1 

(May 2004) 

β3:   0.15 1.61* 0.0027 0.005 0.03 0.15 0.27 0.31 
         

β0 : -9.95  0.0121 -10.38 -10.32 -9.92 -9.61 -9.55 
β1:  0.02  0.0012 -0.07 -0.05 0.02 0.11 0.15 
β2 : -0.15  0.0031 -0.34 -0.29 -0.13 -0.02 0.01 

 
Period 2.1 

(May 2005) 
 β3:  0.008  0.0005 -0.02 -0.01 0.01 0.03 0.04 
         

β0 : -14.56  0.0177 -15.14 15.05 -14.55 -14.07 -13.99 
β1: 0.14  0.0033 -0.03 -0.01 0.12 0.32 0.37 
β2: -0.45  0.0179 -2.15 -1.61 -0.11 0.11 0.22 

 
Period 2.2 

(May 2006) 
β3: 0.89 2.43* 0.0057 0.61 0.67 0.89 1.11 1.17 

         
β0 : -33.1  0.6165 -48.72 -48.0 -28.95 -16.62 -16.09 
β1:  -0.01  0.0175 -0.55 -0.26 -0.0003 0.04 0.52 
β2:  -0.35  0.0869 -3.42 -1.29 -0.004 0.38 1.13 

 
Period 3 

(May 2007) 
β3:  0.51  0.0825 -1.01 -0.36 0.007 1.96 4.47 
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Table 12. Estimate of the standard deviation, monte carlo error (MC error) and percentile distribution of 
the bayesian credible intervals of the regression parameters of the explanatory variables included as 
random effects (distance to nearest slaughterhouse (β4) and distance to nearest road (β5)) and the random 
effects for the uncorrelated heterogeneity (a) and correlated heterogeneity (s) for each period.   
 
 
 
The residuals were useful to evidence those areas where the probability of each sow 
farm to be infected was less explained by the covariates included in the model. In 
figures 13 to 17, the predicted probability of infection by the model, the observed 
infected sow farms and the residuals of the model for each period are represented. Most 
of the areas were the probability of being infected was high was not predicted by the 
model. Because of that, the geographic distribution of the observed infected farms is 
quite similar to the distribution of the residuals of the model. The predictive value of the 
model was quite higher in the west part of the region as compare to the rest of the 
region.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Model ( logit (pi) ) Estimate MC error Percentile distribution 
   5% median 95% 

β4: 0.11 0.0030 0.02 0.11 0.23 
β5:  0.12 0.0040 0.03 0.11 0.28 
a:  0.07 0.0016 0.02 0.06 0.13 

 
Period 1 

(May 2004) 
s:  0.06 0.0015 0.03 0.06 0.13 

      
β4:  0.03 0.0005 0.01 0.03 0.05 
β5: 0.09 0.0027 0.02 0.07 0.21 
a:  0.06 0.0017 0.02 0.05 0.13 

 
Period 2.1 

(May 2005) 
 s:   0.16 0.0052 0.03 0.14 0.38 
      

β4: 0.05 0.0014 0.02 0.04 0.12 
β5: 0.15 0.0083 0.03 0.10 0.45 
a: 0.10 0.0031 0.03 0.08 0.45 

 
Period 2.2 

(May 2006) 
s: 0.11 0.0043 0.02 0.08 0.31 

      
β4: 0.38 0.0384 0.01 0.13 1.66 
β5: 0.21 0.0146 0.01 0.06 0.92 
a: 12.29 0.2928 4.02 11.18 19.96 

 
Period 3 

(May 2007) 
s: 0.12 0.0082 0.01 0.06 0.40 
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Figure 13. Predicted probability of AD infection in sow farms by the hierarchical Bayesian binomial model  
(a), observed infected sow farms (b) and residuals of the model (c); represented with the inverse distance 
weighting function (fixed bandwidth of 4km) for period 1 (May 2004). 

a) b) 

c) 
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Figure 14. Predicted probability of AD infection in sow farms by the hierarchical Bayesian binomial model 
(a), observed infected sow farms (b) and residuals of the model (c); represented with the inverse distance 
weighting function (fixed bandwidth of 4km) for period 2.1 (May 2005). 

a) b) 

c) 
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Figure 15. Predicted probability of AD infection in sow farms by the hierarchical Bayesian binomial model 
(a), observed infected sow farms (b) and residuals of the model (c); represented with the inverse distance 
weighting function (fixed bandwidth of 4km) for period 2.2 (May 2006). 

a) b) 

c) 
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Figure 16. Predicted probability of AD infection in sow farms by the hierarchical Bayesian binomial model 
(a), observed infected sow farms (b) and residuals of the model (c); represented with the inverse distance 
weighting function (fixed bandwidth of 4km) for period 3 (May 2007). 

a) 
b) 

c) 
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  4.3.2. Convergence diagnostic 
 
As mentioned in the introduction chapter, when Bayesian methods are employed, the 
parameter or parameters of interest are described by the posterior distribution and 
therefore, this posterior distribution must converge to a stationary distribution. Once 
convergence reached, samples should look like a random scatter about a stable mean 
value. It is also possible to check the convergence using the Gelman-Rubin convergence 
diagnostic implemented in WinBUGS; at convergence is close to 1. 
 
In figures 17 to 20, trace plots for the deviance of the models and the Gelman-Rubin 
convergence diagnostic for each period are represented. Convergence has been reached 
in all the priods; as trace plots look like a random scatter about a stable mean value and 
the Gelman-Rubin convergence diagnostic is close to 1. 
 

 

 
 

Figure 18. Trace plots (a) and Gelman-Rubin convergence diagnostic (b) of the 
deviance for period 2.1 (May 2005). 

Figure 17. Trace plots (a) and Gelman-Rubin convergence diagnostic (b) of the deviance 
for period 1 (May 2004). 
 

a)

b)

a)

b)
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Figure 20. Trace plots (a) and Gelman-Rubin convergence diagnostic (b) of the deviance 
for period 3 (May 2007). 
 

Figure 19. Trace plots (a) and Gelman-Rubin convergence diagnostic (b) of the deviance for 
period 2.2 (May 2006). 
 

a)

b)

a)

b)
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5.  DISCUSSION 
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AD eradication programmes started in the UE in the 80`s. Since then, the number of 
countries free of the disease has been increasing. In the European Union, Finland, 
Austria, Cyprus, Czech Republic, Germany, Denmark, Luxembourg, Slovakia, England, 
Scotland, Wales, Sweden and France are free of AD and vaccination is prohibited. 
There is an approved eradication programme in Belgium, Netherlands, Bolzano 
province in Italy and some provinces of Spain (Anonymous, 2008). 
 
Despite the increase in the use of spatial epidemiological analysis methods in the last 
years, a spatial analysis of the evolution and progress of Aujeszky’s Disease eradication 
programme during different years, to our knowledge, has not yet been carried out. Most 
of the papers reporting the progress in the eradication and control programmes are 
mainly descriptive and aimed at documenting the evolution of AD in different countries, 
the key points of the eradication programmes and to discuss the effectiveness of the 
different measures applied such as mass vaccination, stamping out, test and removal and 
continuous serological monitoring (Auvigne and Bougeard, 2000; Elbers et al., 2000; 
Martini et al., 2003; Müller at al., 2003; Robertson and Wierup 2000; Taft, 2000; 
Vannier et al., 2000).   
 
The main goal of this study is to conduct a spatial analysis of the AD eradication 
programme in Catalonia from 2003 to 2007. In the first part of the research, we 
conducted an exploratory analysis in order to explore the spatial distribution of the 
disease, and then we applied spatial modelling in order to test the role of different 
geographical factors in the success of the AD eradication programme.   
 
We used data from the different samples obtained in the catalan farms from 2003 to 
2007. In most of the cases, the sampling method used in the eradication campaign 
allowed to detect the disease given that the within-herd prevalence was higher than 5% 
in sow farms and 20% in fattening farms (with a 95% confidence level). Even though 
the sample size and the sensitivity and specificity of the ELISA could generate false 
positive or false negative farms, we consider that this possible misclassification would 
only affect a small proportion of farms and these would most probably be 
homogenously distributed. Therefore, this possible inaccuracy would not significantly 
affect the final results. 
 
In the exploratory analysis we applied the spatial scan statistic to observational data of 
AD in consecutive periods to determine the presence of clusters of infected sow farms 
and infected fattening farms, as well as clusters representing the elimination of the 
infection and reinfection. In this part of the study, we identified areas with a 
significantly higher proportion of sow farms that became negative in each of the four 
study periods, which indicates that the eradication of the disease had a spatial 
component (Figures 8, 9, 10 and 11). In Italy, Martini et al., (2003) evaluated the 
progress of the control programme for Aujeszky’s disease using a survival approach 
applied to gE-seropositive swine herds (farrow to weaning and farrow to finish) at the 
beginning of the programme. They also found significant differences in the probability 
of herds from different areas becoming gE-seronegative. 
  
Moreover, the cluster analysis of positive sow and fattening farms evidenced that the 
geographical distribution of ADV and its evolution on Catalonia is not homogeneous. 
There are areas where the proportion of ADV-seropositive sow farms and fattening 
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farms, is higher as compared to the whole region. In the west part of the study area, 
clusters of ADV-seropositive sow or fattening farms were detected during the four 
periods of study. In the central part, clusters were detected in the three first period of 
study and in the northeast area in the three last periods of study (figures 8, 9, 10 and 11). 
The prevalence ratio values within these clusters increased throughout the study period 
(Table 7). This is due to the high proportion of positive farms in the whole region at the 
beginning of the study compared with the final period: as the number of serologically 
positive farms out of the clusters decreases (the denominator), the prevalence ratio value 
of the cluster increases. 
 
In this exploratory study, areas with a high proportion of reinfections were located 
roughly in the same areas where more sow and fattening farms were positive. These 
zones had a higher pig farm density than areas of elimination. High pig density has been 
previously considered as a risk factor for AD-seropositivity by different authors (Marsh 
et al., 1991; Weigel et al., 1992; Stegeman et al., 1995a; Boelaert et al., 1999; Heliez et 
al., 2000; Zanardi et al., 2000; Tamba et al., 2002). These results suggest a potential role 
for the local spread of infection, and that pig density and the proportion of positive 
fattening farms in the area may affect the success of AD eradication programmes.  
 
The questions that arise from these results are: Is the local spread of ADV responsible 
for the persistence of AD in certain areas? If so, which underlying factors are 
implicated in this local spread, and why does it occur in these areas? These factors 
may be of paramount importance, and may imply the need to apply specific control 
measures in these areas in order to eradicate AD faster.  
 
The spread of ADV between neighbouring farms could be attributed in some cases to 
airborne transmission of the virus (Christensen et al., 1990, 1993; Casal et al., 1997), 
but this probably only occurs under favourable circumstances (Pejsak and Truszcynski, 
2006). Other factors such as indirect contact: vehicles, equipment or personnel (Tamba 
et al., 2002; Solymosi et al., 2004) might also play a role in local spread. It has also 
been suspected that wildlife may contribute to between-herd transmission. The role of 
wild mammals was suggested by Kirkpatrick et al., (1980) but supporting empirical 
evidence has not been available (Austin and Weigel, 1992). 
 
In the second part of the study we tried to elucidate the role of some factors that could 
be implicated in local ADV transmission. We studied several geographic variables 
describing the possible risk factors associated to proximity: Distance to the nearest 
slaughterhouse, distance to conventional roads, mean number of AD serological 
positive sows in the neighbourhood (750 meters radius) of each sow farm and mean 
number of AD serological positive fattening pigs in the neighbourhood (750 meters 
radius) of each sow farm. The role of those factors in the local spread of ADV is 
reasonable both under airborne virus spread and under virus transmission by indirect 
contacts (carrier animals, mechanical vectors, equipment, personnel, etc). These 
variables were included in a hierarchical Bayesian model. 
 
The use of hierarchical Bayesian models, allowed us to include these factors as 
covariates in the model. The first part of the study was mainly exploratory and these 
types of studies only involve examining the data statistically for the presence of 
patterns, but they cannot be used to test causal hypothesis (Pfeiffer and Jones, 2002). 
Moreover, the use of these models allowed us to take into account the spatial 
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dependence (autocorrelation) among the data; which can be included in the model as a 
random effect. Bayesian modelling approaches allow these random effects to be 
analysed exactly (Lawson and Zhou, 2005). 
 
As the AD eradication programme progresses an increased number of sow farms and 
areas are being classified as AD officially free. The purpose of this measure is to reduce 
the transmission of ADV between farms. As the numbers of ADV-free sow farms 
increased, the spread of ADV by purchased pigs would decrease (Elbers et al., 2000). In 
such situation, topographical factors like proximity to a slaughterhouse or a road with 
frequent animal transport may be an uncontrolled risk factor because animals from 
infected areas can be slaughtered in free areas. In some areas, especially in the central 
part of Catalonia, there are big slaughterhouses. In the last years these facilities have 
been a concern for farmers and veterinarians of these areas and the role of the distance 
to slaughterhouses and roads in the persistence of the disease has been frequently 
speculated. The relationship between topographical factors such as distance to roads, 
rivers, lakes or forest, and the probability of AD infection has been studied by some 
authors. Marsh et al., (1991) did not found association between the likelihood of 
becoming infected and distance to nearest road. The presence of a river or lake within a 
1km distance had a protective effect. However, their data covered just 41% of the pig 
units in the study area. More recently, Solymosi et al., (2004) found that the presence of 
a lake or a highway were positively associated with AD seropositivity whereas the 
presence of a forest had a protective effect. The authors speculate that the effect of the 
lake could be due to the existence of more abundant vegetation around the lake, which 
increases the risk through wildlife or wildlife vectors (e.g. rodents, foxes, birds), or to 
an increase in the possibility of airborne virus transmission because of the fog and 
higher humidity around the lake. On the other hand, the forest could reduce the risk of 
infection by decreasing airborne transmission. In our study, we did not evaluate the 
effect of topographical factors such as the presence of a lake, a river or a forest in the 
neighbourhood of each sow farm. However, distances to the nearest conventional road 
and to the nearest slaughterhouse were evaluated. According to our results, these 
variables did not increase the probability of a sow farm becoming infected in any of the 
study periods. This result might be influenced by the overall AD prevalence in the study 
region. As the number of AD positive animals in the region decreases, the possible 
influence of the proximity to a slaughterhouse or a road also decreases (as the number 
of infected slaughtered animals and infected transported pigs decreases). Our study 
began in 2003, when the 60% of the sow farms had serological positive animals and the 
mean prevalence of animals within positive farms was over 20% (table 2). In such 
situation, we believe that the number of transported and slaughtered positive animals 
was large enough in order to have detected a relation, if there was any, between these 
factors and the probability of a sow farm to be infected. The analysis of the data of 
previous years, when the disease was even more distributed over the region, could have 
been useful in order to analyze the effect of these geographical factors on the 
probability of being AD positive. However, data was not available for all the region of 
study before 2003, so we decided to begin the analysis on that year.  
 
From the four geographical variables included in the model, only positive fattening 
animals in the neighbourhood of sow farms increased the probability of being AD 
positive. The results of the model suggested that this probability was influenced by the 
presence of fattening positive animals in the neighbourhood, except in period 2.1 and 
period 3. In period 2.1, this was more likely due to the fact that in this period we did not 
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have data on the serological results of many fattening farms (table 1), than to a lack of 
effect of positive fattening animals in the neighbourhood. Despite that in Catalonia a 
serological testing was implemented on purely fattening units in 2003 (beginning of 
period 1) it was not until 2005 that national legislation (206/2005 decree (RD)) made 
compulsory the serological controls on fattening units. 
 
The lack of association found in period 3, could be attributable to the low number of 
positive sow farms (only 180) and to the low proportion of them that had positive 
fattening animals in their neighbourhood (52). These values were higher in previous 
periods: 1,194 positive sow farms, 720 of them with positive fattening farms in the 
neighbourhood in period 1, and 377 positive sow farms from which 200 had infected 
fattening farms in the neighbourhood in period 2.2 (table 6). However, the proportion of 
positive fattening units in period 2.2 and period 3 were quite similar: 9.4% during 
period 2.2 and 8.5% during period 3. Results from period 1 and 2.2 suggest that positive 
fattening animals in the neighbourhood can difficult the eradication of the disease in 
sow farms, as they increase the probability of AD infection. However, the fact that in 
period 3 the number of positive sow farms with positive fattening animals in their 
neighbourhood is low, as compared with previous periods, and the lack of association 
found in this period, suggest that local spread from neighbouring fattening farms in the 
neighbourhood has not a high effect in order to eradicate AD from sow farms.           
 
On the other hand, the number of positive sows in the neighbourhood of each sow farm 
did not influence the probability of being AD positive in any of the periods of study. 
The probability of a fattening farm infecting a neighbouring sow farm seems to be 
higher than the probability of a sow farm infecting a neighbouring sow farm. This result 
could be related to herd size and density within finishing herds. In the model developed 
by Van Nes et al., (1998) herd size appeared to be an important risk factor in between-
herd transmission of ADV. However, Bouma et al., (1995), concluded that ADV 
transmission was not influenced by the size of the population, but was more likely 
related to the density of pigs. Density of pigs within the herd, determines that the 
reproduction ratio (the number of units infected by one infectious unit) within a 
finishing herd is higher than in a sow herd. From field observations, the reproduction 
ratio within a finishing herd was estimated for groups of twice-vaccinated pigs as 1.5 
and for pigs vaccinated once as 3.4 (Stegeman et al., 1995b). For vaccinated sows it was 
estimated to be 0.7 (Van Nes et al., 1996). When major outbreaks occur in finishing 
herds they become highly infectious to other herds by non-animal contacts, e.g., 
airborne transmission and people visiting herds (Van Nes et al., 1998). 
 
In our study, the type of farm (farrow to weaning or farrow to finish) did not have an 
influence on the probability of a sow farm becoming infected. The relation between the 
type of farm and the probability of being infected has produced contradictory results in 
the literature. Martini et al., (2003) did not found significant differences on the 
probability of becoming gE-seronegative between herds of different type (farrow to 
weaning versus farrow to finish). However, Marsh et al., (1991) and Norman et al., 
(1996), among others, found that being a farrow to finish herd increased the probability 
of becoming AD infected. These results might be linked with herd immunity as a 
consequence of vaccination. Stegeman et al., (1995b) concluded that double vaccination 
of finishing pigs, abolished the risk of new infections of sows by the presence of 
finishing pigs  in the farm. In Spain, since 2003, fatteners have to be vaccinated at least 
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two times; the first application between 10 and 12 weeks of age and the second one 
three or four weeks after (Anonymous 2003a).  
 
The spatial locations of the residuals of the model were useful to evidence the 
geographical areas where the probability of infection was less explained by the 
explanatory variables included in the model. As shown in figures 13 to 16, the 
probability of infection predicted by the model was much lower than the obtained from 
the real data. Therefore, the pattern of the residuals of the model (observed versus 
predicted) was very similar to the observed infection in sow farms, showing that 
neighbourhood transmission might not be the main factor related to the success of the 
eradication of Aujeszky`s disease in sow farms.  
In a study conducted in Brittany by Heliez et al., (2000) the authors suggest that the two 
main risk factors for new infections by Aujeszky`s disease virus are airborne 
transmission and purchase of infected piglets.  Austin and Weigel (1992) suggested that 
high density of AD infection was the primary risk factor for the spread of ADV between 
herds, and Norman et al., (1996) found that AD risk decreased with high density of non 
infected herds and low density of infected herds. If there is a high geographic density of 
ADV infected herds, there is a reservoir of virus for potential spread and transmission 
risks are increased (Austin and Weigel 1992). From the results of our study, it is 
concluded that neighbourhood transmission might not be the main factor related to the 
probability of infection of a sow farm. However, the spread of AD within the area was 
first suggested by the exploratory analysis; where a geographical association was found 
between clusters of positive sow farms, fattening farms and sow farms that became 
positive. Area includes many aspects influencing the epidemiology of ADV infection, 
some of them are related to local AD spread such as contacts between herds or pig trade 
pattern, and others are not related to local spread, such as: presence of related industries, 
farmers’ attitude and compliance or efficiency of the veterinary services. We agree with 
Martini et al., (2003) that the existence of disease clusters is possible without farm-to-
farm spread. However, as it was not possible to obtain reliable information on these 
factors, they were not included in the analysis.  
The results concerning to ADV local spread from neighbouring farms might be 
influenced by the definition of neighbourhood used in the analysis. The decision to use 
a buffer radius of 750 meters as neighbourhood definition, to calculate positive density 
of animals around each sow farm, had the objective of testing neighbourhood spread 
and avoiding the introduction of more variability in the model. At such spatial scale, the 
relationship between the probability of being AD positive and the number of positive 
animals in the neighbourhood might have been undetected in some occasions.  Marsh et 
al., (1991) did not found association between probability of becoming infected by AD 
and distance to nearest infected herd, however density of swine herds within a 5 km 
radius, was considered a risk factor. The results of Norman et al., (1996) suggesting the 
importance of local spread were obtained at a 3.22 km and a 6.44 km buffers, whereas 
the data of  the 1.6 km buffer radius were too sparse to evaluate. Also, Tamba et al., 
(2002) in northern Italy, found that the number of pigs in a 6 km radius was a 
significant risk factor for sow farms (farrow to finish and farrow to weaning).  
 
Risk mapping studies are based on the idea that, aside of herd-specific risk factors there 
might be unobserved geographical varying risk factors present (Berke and Beilage 
2003). However, from the results of our study we conclude that geographical factors 
have had moderate importance and that herd-specific risk factors such as variables 
describing biosecurity measures, vaccination schemes or the health status of the 
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purchased pigs might be much more related to the probability of AD infection, and 
therefore to the success of the AD eradication programme, than the variables included 
in this study. 
 
In the last years, spatial epidemiological analysis has become more easily accessible for 
epidemiologists. However, while developments in spatial statistics within the human 
health field have advanced considerably, there has been less evidence of a 
corresponding interest in such methodology within veterinary medicine (Lawson and 
Zhou, 2005). The development of models to explain the spatial evolution of the disease 
taking into account the location of the herds (considering the spatial autocorrelation) at 
point level has been a rarely studied topic in veterinary medicine. Other studies have 
attempted to develop models in order to analyze observational point data at some point 
time. Biggeri et al., (2006) used Bayesian Gaussian spatial exponential models and 
Bayesian kriging to study the risk of dog parasite infection in the city of Naples. 
Stevenson et al., (2005b) used a mixed-effects geostatistical model, accounting for 
extra-binomial variation and spatial dependence in Varroa prevalence on honey bees in 
New Zealand. The effect of distance from the likely site of incursion of Varroa into 
New Zealand on the probability of an apiary being Varroa-positive was introduced in 
the model as a covariate. In both studies, the spatial autocorrelation was parameterised 
as a continuous process; it was not based on a finite set of locations. In the study of 
Stevenson et al., (2005b), apiaries i and j were correlated to an extent determined by the 
distance separating them (dij). Also, Biggeri et al., (2006) used exponential decaying 
function to parameterise the spatial correlation. In our study, at first, we also tried to 
parameterise the spatial autocorrelation as a function of distance between sow herds (as 
an exponential decaying function). However, the simulation was computing not possible 
and we decided to change the approach. In our opinion, the size of the study population 
have make not possible to use this approach. The study population of Stevenson et al., 
(2005b) was comprised of 641 apriaries and Biggeri et al., (2006) collected faeces from 
415 different points. In our study, the period with less sow farms was period 1 with 
1,485 sow farms.  
 
In order to fit the models we decided to parameterise the spatial dependence based on a 
finite set of locations. This set of locations was defined as those farms located in a 500 
meters buffer radius around each sow farm; this decision was arbitrary and based on not 
including more variability in the model. To our knowledge, such approach to take into 
account the spatial autocorrelation has never been used, but we think it can be a good 
approach to take into account spatial dependence when the most common method, 
distance decaying based on an exponential function, is not possible to apply. Another 
choice could have been to create a lattice surface by aggregating data at some area level, 
creating a grid of a specific size and overlaying layers, in order to apply the CAR model 
in its classical framework (lattice data). However, we believe that as data was available 
at point level, it was not worthy to aggregate data as we would lose precision. On the 
other hand, the relation with covariates would have been very difficult to assess. 
 
 Alternatively to the study of the relation between topographical factors and the 
presence (probability of infection) of ADV in the herd during the different phases of the 
AD eradication programme, we tried to study the relation of those factors and the 
within-herd seroprevalence in sow herds. For that purpose, we also developed a 
hierarchical Bayesian model. In this model, we assumed that the number of serological 
positive sows in each sow farm follow a Poisson distribution. Also, because count data 
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contained an excess of zeros relative to the Poisson distribution (more than 90% in 
period 3) we decided to use a mixture model. In medical applications, a popular 
approach to analyse such data is to use a zero-inflated Poisson (ZIP) regression model. 
Also, in practice, data count is often overdispersed so that alternative distributions such 
as the zero-inflated binomial (ZINB) may be more appropriate than the ZIP (Xiang et 
al., 2007). In appendix 2, the specification, syntax and results of the ZINB model for 
each period, have been included.   
 
We believe that the results from these models are not valid. The ZINB model used in 
our study nearly predicted all the observed cases in each of the sow farms. Because of 
that, as shown in figures 25 to 28, the residuals are very small. We believe that is not 
possible for those variables to predict almost all the observed cases in each sow farm, 
and therefore we have considered that the results were not valid. However, as the 
methodology and specification of the model might be of interest, we decided to include 
them in an appendix (appendix 2). ZINB models, to our knowledge, have not been used 
in veterinary medicine. Examples of such applications can be found in caries prevention 
in dental epidemiology (Böhning et al., 1999), fisheries research (Minami et al., 2007) 
or accident analysis (Li et al., 2008) among other disciplines. 
A possible explanation for the lack of validity of the results of this model was the 
assumption that the observed number of cases in each sow farm to followed a Poisson 
distribution. The distribution of the counts is typically assumed to come from a Poisson 
distribution when the diseases considered are rare, so the distribution gives a good 
approximation of the underlying binomial distribution that would hold for each risk 
stratum. In a Poisson distribution, the probability of the counts must be independent for 
i=1,2,…, n (Richardson et al., 2004). AD is not a rare disease (at least in the first 
periods), and besides is an infectious disease, so the assumption that the number of 
positive sows present in the different sow farms can be modelled by the Poisson 
distribution might not be correct. In the bayesian framework, to our knowledge, there 
are not adjustment criteria for the models. If convergence is achieved, is believed that 
the results from the model are valid. DIC value can be used to compare model 
adjustment with different combinations of variables. In our models, convergence of the 
deviance (overall parameter of the model) was achieved in all the periods; however, we 
consider the results can not be valid, as only geographical factors are not likely to 
predict all the observed cases.  
In veterinary medicine, hierarchical Bayesian models based on Poisson distributions 
have been used to study the geographical distribution of Bovine Spongiform 
Encephalopathy (BSE) risk and the relation with covariates such as pig population 
(Abrial et al 2005b; Ducrot et al., 2005; Stevenson et al., 2005a; Allepuz et al., 2007). 
However, BSE is a rare and non infectious disease, and might match better the Poisson 
assumption than AD. Different approaches might be necessary in order to study the 
spatial distribution of the AD risk and its relation with different covariates. 
 
Another option for the lack of validity of the ZINB model in our study is the bias in the 
observed number of cases within each farm. Within sow prevalence was estimated from 
the number of positive samples obtained in the farm. In most of the cases, the AD 
serological screening carried out during the different eradication periods was based on a 
sample of animals that made it possible to state that the within-herd prevalence was 
lower than 5% in sow farms with a 95% confidence level. Because of that, samples 
obtained in this screening is not a good estimate of the within herd prevalence and 
might altered the results of the model.  



Spatial analysis of Aujeszky’s disease eradication 

 - 78 -

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Spatial analysis of Aujeszky’s disease eradication 

 - 79 -

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6. CONCLUSIONS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Spatial analysis of Aujeszky’s disease eradication 

 - 80 -

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Spatial analysis of Aujeszky’s disease eradication 

 - 81 -

 
 
 
 
 
 
1. - The distribution of Aujeszky’s disease in Catalonia during the period 2003-2007 
was not homogeneous. Clusters of positive sow and fattening farms were detected in all 
the study periods in the same areas. Clusters of negative sow farms that became positive 
were also detected in these areas. This geographical relationship suggests a possible role 
of the local spread in AD. 
 
 
 
2. – The proportion of positive farms that eliminated the infection was higher in some 
areas. Therefore, the elimination of the disease had a spatial component.    
 
 
 
3. - High number of fatteners AD serologically positive in the proximity of a sow farm 
increased its probability of becoming infected. 
 
 
4. – The distance to the nearest slaughterhouse and road did not influence the 
probability of being AD positive in any of the periods of study.   
 
 
 
5. - The studied geographical factors do not seem to have played an important role on 
the success of the AD eradication programme. Herd-specific risk factors such as 
biosecurity measures, vaccination schemes or the health status of the purchased pigs 
might be much more related to the probability of AD infection, and therefore to the 
success of the AD eradication programme, than the geographical variables included in 
this study. 
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Summary 
 
Aujeszky’s disease (AD) eradication programme started in Spain in 1995, but it was not 
until 2003, due to the additional guarantees in intra-community trade relating to 
Aujeszky’s, that AD eradication programme was adapted and ensured. The aim of this 
study is to conduct a spatial analysis of the Aujeszky's disease (AD) eradication 
programme in Catalonia, Spain, from 2003 to 2007. The study has been divided in four 
periods, based on the phases designed in the AD eradication programme in Catalonia.  
 
In the first part of the study, we explore for high risk areas (clusters) in order to test 
whether the spatial distribution of AD in the region during the consecutive eradication 
periods was homogeneously distributed over the territory or clustered in space. 
Different purely spatial analyses, based on the Bernoulli model, were run with 
SaTScan® v6.1 in each period. Clusters of positive sow farms (farrow to weaning and 
farrow to finish) and/or fattening farms were identified in the four study periods in the 
western, central and north eastern part of the region. The prevalence ratio values of 
these clusters increased throughout the study period due to the fact that the risk of 
disease decreased faster outside the clusters than inside the clusters. In order to study 
the evolution of the disease, we explored for areas where more negative sow farms 
became infected and areas where more sow farms eliminated the infection. These 
analyses demonstrated areas with significantly higher proportions of sow farms that 
became negative, which indicates that the eradication of the disease has a spatial 
component.  
Clusters of negative sow farms that were infected again (reinfections) were also 
detected in the four study periods. The relative risk values of these clusters were much 
higher compared to the other cluster analyses. There was a geographical association 
between the clusters of positive sow farms, positive fattening farms and re-infected sow 
farms. This association could be attributable to the local spread of Aujeszky´s disease 
virus. Pig farm density could be a factor influencing the local spread of infection and 
was therefore evaluated for clusters of re-infected sow farms and clusters of sow farms 
that eliminated the infection. The mean density of pig farms was 0.40 farms per square 
Km (median of 0.28 and standard deviation of 0.33) in clusters of sow farms that 
became negative and 1.51 (median of 0.70 and standard deviation of 1.61) in clusters 
where more sow farms became positive (p-value<0.05).  
 
Based on these results, in the second part of the study, we tested the role of 
geographical factors that could be implicated in local spread and persistence of AD in 
certain areas. Several geographic variables describing the possible risk factors 
associated to neighbourhood transmission: Distance to the nearest slaughterhouse, 
distance to conventional roads, mean number of AD serological positive sows and 
serological positive fattening pigs in the neighbourhood (750 meters radius) of each sow 
farm were included in a hierarchical Bayesian binomial model. A non geographic 
variable; type of farm (farrow to weaning versus farrow to finish) was also included. 
The use of Bayesian models allowed us to take into account the spatial dependence 
(autocorrelation) among the data; included in the model as a random effect. Spatial 
dependence was parameterised with a conditional autoregressive distribution (CAR) 
based on a set of neighbours. The set of neighbours was defined as those farms located 
in a 500 meters buffer radius around each sow farm.  
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From the four geographical variables included in the model, only positive fattening 
animals in the neighbourhood of sow farms increased the probability of being AD 
positive. In the first period, 1,000 positive fattening pigs in the neighbourhood (750 
meters buffer radius) increase the odds of each sow farm being AD positive by a factor 
between 1.005 and 1.36. In period 2.2, having positive fattening animals in the 
neighbourhood increased the likelihood of each sow farm to be AD positive between 
1.84 and 3.22. In period 2.1 and period 3, none of the variables had a positive relation 
with the probability of being positive. The type of farm (farrow to weaning or farrow to 
finish) also did not influence the probability of being AD positive in any period. 
The geographical pattern of the residuals of the hierarchical bayesian binomial model 
(observed versus predicted) was very similar to the observed infection in sow farms in 
all the eradication periods, showing that neighbourhood transmission might not be the 
main factor related to the eradication of Aujeszky`s disease in sow farms. Other herd-
specific risk factors might be much more related to the probability of AD infection than 
the geographical variables included in this study. 
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Resum  
 
El programa d’eradicació de la malaltia d’Aujeszky va començar a Espanya l’any 1995, 
però no va ser fins el 2003, quan a causa de les garanties suplementàries establertes en 
els intercanvis intracomunitaris de l’espècie porcina amb relació a la malaltia 
d’Aujeszky, que aquest programa es va reforçar i es varen establir les bases del 
programa coordinat de lluita, control i eradicació de la malaltia. L’objectiu d’aquest 
estudi és realitzar una anàlisi espacial de l’eradicació de la malaltia d’Aujeszky a 
Catalunya (Espanya) des del 2003 fins el 2007. L’estudi s’ha dividit en quatre períodes, 
en base a les diferents etapes establertes al programa d’eradicació a Catalunya.  
 
A la primera part de l’estudi, varem analitzar si la distribució espacial de la malaltia 
d’Aujeszky a Catalunya ha estat homogènia o hi han hagut zones d’alt risc 
(conglomerats) durant les diferents etapes del programa d’eradicació. Per fer-ho, en 
cada període varem realitzar diferents anàlisis espacials amb el programa SaTScan v6.1 
basats en el model de Bernoulli. En els quatre períodes d’estudi, varem identificar 
conglomerats de granges positives de truges  (cicle obert i cicle tancat) i/o de granges 
positives d’engreixos, tant a l’oest com al centre com a l’est de Catalunya. Com que el 
risc d’infecció va disminuir més ràpidament fora dels conglomerats que dintre, els 
valors del ràtio de prevalença d’aquests conglomerats augmenten al llarg del temps. Per 
analitzar l’evolució de la malaltia, varem estudiar si hi havia àrees en les que la 
proporció de granges que s’havien reinfectat o que havien eliminat la infecció era més 
gran. Aquestes anàlisis van demostrar que hi havia zones en les que la proporció de 
granges que havien eliminat la infecció era més alta, i per tant que l’eradicació de la 
malaltia té també un component espacial. 
 
En els quatre períodes d’estudi, també es van detectar àrees en les que la proporció de 
granges reinfectades havia estat més alta. El risc relatiu d’aquests conglomerats era més 
gran que el dels conglomerats descrits abans. D’altra banda, existeix una associació 
geogràfica entre els conglomerats de granges de mares positives, granges  d’engreix 
positives i granges de mares reinfectades. Aquesta associació podria ser deguda a la 
transmissió a nivell local del virus d'Aujeszky. Ja que la densitat de granges a una zona 
podria ser un factor relacionat amb aquesta transmissió local, varem analitzar aquesta 
variable en conglomerats d’eradicació i de reinfeccions. La densitat mitjana de granges 
de porc als conglomerats d’eradicació és de 0.4 granges per quilòmetre quadrat (mitjana 
de 0.28 i desviació estàndard de 0.33) i de 1.51 (mitjana de 0.7 i desviació estàndard de 
1.61) als conglomerats on més granges de truges s’han reinfectat (valor de p<0.05).  
 
En base a aquests resultats, a la segona part de l’estudi varem analitzar el paper que 
podien exercir factors geogràfics en la transmissió a nivell local del virus i en la 
persistència de la malaltia d’Aujeszky a determinades zones. Per fer-ho, varem usar un 
model jeràrquic bayesià, en el que varem incloure diferents variables geogràfiques que 
podien estar implicades en la transmissió a nivell local del virus; com són la distància a 
l’escorxador més proper, distància a la carretera més pròxima, nombre d’animals 
d’engreix positius pròxims a la granja (radi de 750 metres) i nombre de truges positives 
pròximes a la granja (radi de 750 metres). Al model també varem incloure una altra 
variable no geogràfica: tipus de granja (cicle obert o cicle tancat). L’ús d’aquests 
models jeràrquics bayesians permet d’incorporar un terme que té en compte la 
dependència espacial (autocorrelació) existent a les dades. La dependència espacial va 
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ser inclosa al model mitjançant una distribució normal condicionalment autoregressiva 
(CAR) basada en un nombre de veïns. Aquests veïns van ser definits com aquelles 
granges localitzades en un radi de 500 metres de cada granja de truges.  
 
De les quatre variables geogràfiques incloses al model, només la presència d’animals 
d’engreix positius presents a la proximitat d’una granja de truges incrementava la 
probabilitat d’infecció pel virus d'Aujeszky. Al primer període, per cada 1000 porcs 
d’engreix al voltant de cada granja de mares, l’odds (raó de probabilitats) de cada granja 
d’ésser positiva s’incrementava per un factor entre 1.005 i 1.36. En el període 2.2, tenir 
porcs d’engreix al voltant augmentava la raó de probabilitats d’infecció per un valor 
d’entre 1.84 i 3.22. En el període 2.1 i en el període 3, cap de les variables va influir de 
forma significativa en la probabilitat de ser una granja positiva. El tipus de granja (cicle 
obert o cicle tancat) tampoc es va relacionar amb la probabilitat de ser una granja 
positiva en cap dels períodes de l’estudi.  
El patró geogràfic dels residus (observats versus predits) del model binomial jeràrquic 
bayesià va ser molt similar al dels observats, en tots els períodes de l’estudi. Aquest 
resultat evidencia que la transmissió a nivell local del virus d’Aujeszky probablement 
no hagi estat el principal factor relacionat amb la persistència del virus en granges de 
truges. Altres factors, específics de cada granja, probablement han tingut una relació 
més alta en la probabilitat d’infecció que les variables geogràfiques incloses en aquesta 
anàlisi.  
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Resumen 
 
El programa de erradicación de la enfermedad de Aujeszky comenzó en España en 
1995, pero no fue hasta el 2003, cuando debido a las garantías suplementarias 
establecidas en los intercambios intracomunitarios de la especie porcina en relación a la 
enfermedad de Aujeszky, que dicho programa se reforzó y se establecieron las bases del 
programa coordinado de lucha, control y erradicación de la enfermedad. El objetivo de 
este estudio es realizar un análisis espacial de la erradicación de la enfermedad de 
Aujeszky en Cataluña (España) desde el 2003 hasta el 2007. El estudio se ha dividido 
en cuatro periodos, en base a las diferentes etapas establecidas en el programa de 
erradicación en Cataluña.     
 
En la primera parte del estudio, analizamos si la distribución espacial de la enfermedad 
de Aujeszky en Cataluña ha sido homogénea o han existido zonas de alto riesgo 
(conglomerados) durante las distintas etapas del programa de erradicación. Para ello, en 
cada periodo realizamos diferentes análisis espaciales con el programa SaTScan® v6.1 
basados en el modelo de Bernoulli. En los cuatro periodos de estudio, identificamos 
conglomerados de granjas positivas de cerdas (ciclo abierto y ciclo cerrado) y/o de 
granjas positivas de engordes, tanto en la parte oeste como en el centro y este de 
Cataluña. Debido a que el riesgo de infección disminuyó más rápido fuera de los 
conglomerados que dentro, los valores del ratio de prevalencia de estos conglomerados 
aumentaron a lo largo del tiempo. Para analizar la evolución de la enfermedad, 
estudiamos si había áreas en las que la proporción de granjas que se habían reinfectado 
o que habían eliminado la infección era mayor. Estos análisis demostraron que había 
zonas en las que la proporción de granjas que habían eliminado la infección era más 
alta, y por lo tanto que la erradicación de la enfermedad tiene también un componente 
espacial. 
 
En los cuatro periodos de estudio, también se detectaron áreas en las que la proporción 
de granjas reinfectadas fue más alta. El riesgo relativo de estos conglomerados era 
mayor que el de los otros análisis de conglomerados. Por otro lado, existía una 
asociación geográfica entre los conglomerados de granjas de madres positivas, granjas 
de engorde positivas y granjas de madres reinfectadas. Esta asociación podría ser debida 
a la transmisión a nivel local del virus de Aujeszky. Ya que la densidad de granjas en 
una zona podría ser un factor relacionado con esta transmisión local, analizamos esta 
variable en conglomerados de erradicación y de reinfecciones. La densidad media de 
granjas de porcino en los conglomerados de erradicación fue de 0.4 granjas por 
kilómetro cuadrado (mediana de 0.28 y desviación estándar de 0.33) y de 1.51 (mediana 
de 0.7 y desviación estándar de 1.61) en los conglomerados donde más granjas de 
cerdas se habían reinfectado (valor de p<0.05).    
 
En base a estos resultados, en la segunda parte del estudio analizamos el papel que 
podían desempeñar factores geográficos en la transmisión a nivel local del virus y en la 
persistencia de la enfermedad de Aujeszky en determinadas zonas. Para ello, usamos un 
modelo jerárquico bayesiano y en él incluimos diferentes variables geográficas que 
podían estar implicadas en la transmisión a nivel local del virus; como son la distancia 
al matadero más cercano, distancia a la carretera más próxima, número de animals de 
engorde positivos próximos a la granja (radio de 750 metros) y número de cerdas 
positivas próximas a la granja (radio de 750 metros). En el modelo también incluimos 
otra variable no geográfica: tipo de granja (ciclo abierto o ciclo cerrado). El uso de estos 
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modelos jerárquicos bayesianos permite incorporar un término que tiene en cuenta la 
dependencia espacial (autocorrelación) existente en los datos. La dependencia espacial 
fue incluida en el modelo mediante una distribución normal condicionalmente 
autoregresiva (CAR) basada en un número de vecinos. Dichos vecinos fueron definidos 
como aquellas granjas localizadas en un radio de 500 metros de cada granja de cerdas.  
 
De las cuatro variables geográficas incluidas en el modelo, sólo la presencia de 
animales de engorde positivos presentes en la proximidad de una granja de cerdas 
incrementaba la probabilidad de infección por el virus de Aujeszky. En el primer 
periodo,  por cada 1000 cerdos de engorde en la vecindad de cada granja de madres, el 
odds (razón de probabilidades) de ser positiva de cada granja se incrementaba por un 
factor entre 1.005 y 1.36. En el periodo 2.2, tener cerdos de engorde en la vecindad 
aumentaba la razón de probabilidades de infección por un valor entre 1.84 y 3.22. En el 
periodo 2.1 y en el periodo 3, ninguna de las variables influyó de forma significativa en 
la probabilidad de ser una granja positiva. El tipo de granja (ciclo abierto o ciclo 
cerrado) tampoco se relacionó con la probabilidad de ser una granja positiva en ninguno 
de los periodos del estudio.  
El patrón geográfico de los residuos (observados versus predichos) del modelo binomial 
jerárquico bayesiano fue muy similar al de los observados, en todos los periodos del 
estudio. Este resultado evidencia que la transmisión a nivel local del virus de Aujeszky 
probablemente no haya sido el principal factor relacionado con la persistencia del virus 
en granjas de cerdas. Otros factores, específicos de cada granja, probablemente tengan 
una relación más alta en la probabilidad de infección que las variables geográficas 
incluidas en este análisis.                 
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Appendix 1. Sintaxis of the binomial model 
 
 
model { 
  for (i in 1 : N) { 
     O[i]  ~ dbin(p[i],n[i])   
logit(p[i]) <- alpha+b1*x0[i]+c11[i]*x11[i]+c31[i]*x31[i]+c35*x35[i]+c36*x36[i]+ S[i]+eta[i] 
eta[i]~dnorm(0, tau.eta)} 
      
      for (i in 1 : N) { 
      c11[i]~ dnorm(0, tau.c11) 
      c31[i]~ dnorm(0, tau.c31)} 
 
  # CAR prior distribution for spatial random effects:  
  S[1:N] ~ car.normal(adj[], weights[], num[], tau.S) 
  for(k in 1:sumNumNeigh) { 
      weights[k] <- 1 
  } 
  # Other priors: 
  alpha  ~ dflat() 
 
# Prior on regression coefficients 
 
  b1 ~ dnorm(0,tau.b1) 
  c35 ~ dnorm(0,tau.c35) 
  c36 ~ dnorm(0,tau.c36) 
 
#Hyperpriors 
 
  tau.S   ~ dgamma(0.1,0.001)                                       
  sdS <- sqrt(1 / tau.S)  
  tau.eta   ~ dgamma(0.1,0.001)                                       
  sdeta <- sqrt(1 / tau.eta)  
  tau.c11  ~ dgamma(0.1, 0.001)       
  sdc11 <- sqrt(1 / tau.c11)  
  tau.c31  ~ dgamma(0.1, 0.001)       
  sdc31 <- sqrt(1 / tau.c31) 
  tau.b1  ~ dgamma(0.1, 0.001)       
  sdb1 <- sqrt(1 / tau.b1) 
  tau.c35  ~ dgamma(0.1, 0.001)       
  sdc35 <- sqrt(1 / tau.c35) 
  tau.c36  ~ dgamma(0.1, 0.001)       
  sdc36 <- sqrt(1 / tau.c36) 
  } 

Interpretation: 
 
alpha: constant (intercept) 
 
b1, c11, c31, c35, c36: Parameters of type of farm, distance to slaughterhouse, distance to roads, mean 
number of positive sows and mean number of positive fatteners covariates. 
 
x0, x11, x31, x35, x36: Type of farm, distance to slaughterhouse, distance to roads, mean number of 
positive sows and mean number of fatteners covariates. 
 

S, eta: random effects for the correlated and uncorrelated heterogeneity. 
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APPENDIX 2: ZINB model 
 
 
1) Specification of the model: 
 
   For each sow farm we estimated the relative risk (RRi), which represents an 
increase/decrease in the risk of infection compared to a standard risk evaluated in the 
whole region: 
 
 
     RRi  =               
 
 
Being Oi and Ei the observed and expected positive sows, respectively, in each farm. 
The observed positive sows in each farm were computed as follows: 
 
 
Oi =            * Ni 
 
 
 
Where i=1,…, n indexes the farm, ‘Ni’ is the number of sows present and ‘Pi’ and  ‘Ti’ 
are the number of positive sows to the gE official enzyme-linked immunosorbent assay 
method and the number of sows tested, respectively, at the end of each eradication 
period.  
The expected positive sows in each farm were estimated by applying the overall AD 
ratio in the whole of Catalonia to the sow population in each farm: 
 
Ei = R*Ni 

 

 
Where ‘R’ and ‘Ni’ are the overall ratio of positive sows in the whole region and the 
number of sows in each ‘i’ farm respectively. 
 
 
Due to the counts of cases observed in a particular location (Oi) is a counter variable, 
the number of AD positive sows in each farm can be modelled as a Poisson distribution 
centred on μ: 
 
 
μi (μi=RRiEi) 
 
Oi ~Poisson (μi)    
 
 
 
   However, because the excess of zeros in the data count (i.e. high proportion of farms 
with no positive animals, especially in the last periods) we decided to use a mixture 
distribution rather than a Poisson distribution for the number of AD positive sows in 

 
Pi 

Oi 

Ei 

Ti 
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each farm. This model assumes an underlying partition of the population into two 
homogeneous components, one for the zero counts (farms without seropositive animals) 
and the other for the non-zero counts (farms with seropositive animals). Therefore, the 
data likelihood is a mixture of two distinct processes: 
 
        L(Yi) = πif1 + (1-πi) f2 
 
where i=1,…,n indexes farm; ‘π’i is the probability of being a zero count and 1-πi the 
probability of a non-zero count; f1 is discrete with mass point at zero and f2 is a negative 
binomial count distribution (Poisson with extra variation) (Greene, 1994) with mean  μi. 
Leading to a Zero Inflated Negative Binomial model (ZINB). 
 
The probability of having positive animals in the sow farm is given by: 
 
log(μi)= β0 + ai + si 
 
Where ‘ai’  and  ‘si’ indicates the uncorrelated heterogeneity and spatially-correlated 
heterogeneity random effects respectively. 
 
 
2) Incorporating covariates in the models: 
 
   The number of slaughtered animals is not homogeneous over the different 
slaughterhouses of the region. Also, the number of transported pigs is not homogenous 
in the different roads. Because of that, we assumed that the different slaughterhouses 
and roads influence ‘RRi’ differently so the regression parameters were individualised. 
The prior distribution for these parameters was assumed to follow a normal distribution: 
 
β1 ~ N(0,τ1) 
β2 ~ N(0,τ2) 
 
Where ‘τ1’ and ‘τ2’ are the precision of the prior distribution of ‘β1’ and ‘β2’ 
respectively. 
 
The four random effects (uncorrelated and correlated heterogeneity, distance to nearest 
slaughterhouse and conventional road) and three covariates (type of farm, mean number 
of positive sows and positive fattening animals) were linearly added to the prior 
distribution of  ‘μi’.  
 
log(μi)= β0 + β1 typei + β2 sows i  + β3fatteningi  + β4i slaughterhouse i + β5iroad i + ai + bi 

             
The residuals of the model were computed as: 
 
residi = Oi - pi 

 
Prior distributions were established for the parameters. Non-informative prior 
knowledge with a flat distribution was considered for the intercept (β0) and normal 
distributions of mean 0 and variance 100,000 for covariate parameters (mean number of 
positive sows and fattening animals and sows:fattening). For the precision of the 
random covariates (distance to nearest slaughterhouse and conventional road) a gamma 



Spatial analysis of Aujeszky’s disease eradication 

 - 109 -

distribution of mean 0.5 and variance 2,000 was used and a power distribution with 
mean 0 and variance -0.5 for the precision of the two random effects (uncorrelated and 
correlated heterogeneity) (Barceló et al., 2008). 
 
3) Sintaxis of the ZINB model: 

model { 
  for (i in 1 : N) { 
     mu[i,1]<-0 
     mu[i,2]<-lambda[i] 
     mu.i[i]<-mu[i,index[i]] 
     index[i] ~ dcat(theta[1:2])  
     # mixture 
     O[i]  ~ dpois(mu.i[i]) 
     log(lambda[i]) <- 
log(E[i])+alpha+b1*x0[i]+c11[i]*x11[i]+c31[i]*x31[i]+c35*x35[i]+c36*x36[i]+S[i]+eta[i] 
     RR[i] <- mu.i[i]/E[i] 
     PRP[i]<-step(RR[i]-1)  
     resid[i]<-O[i]-mu.i[i] 
     eta[i] ~ dnorm(0, tau.eta)} 
     p ~ dbeta(1,1) 
     theta[1]<-p 
     theta[2]<-1-p 
 
      for (i in 1 : N) { 
      c11[i]~ dnorm(0, tau.c11) 
      c31[i]~ dnorm(0, tau.c31)} 
 
  # CAR prior distribution for spatial random effects:  
  S[1:N] ~ car.normal(adj[], weights[], num[], tau.S) 
  for(k in 1:sumNumNeigh) { 
      weights[k] <- 1 
  } 
  # Other priors: 
  alpha  ~dflat()    
  b1 ~ dnorm(0,1.0E-6)        
  tau.S <- pow(sdS,-2)                                       
  sdS ~ dunif(0,5)   
  tau.eta <- pow(sdeta,-2)        
  sdeta ~ dunif(0,5)  
  tau.c11  ~ dgamma(0.5, 0.0005)        
  sdc11 <- sqrt(1 / tau.c11)  
  tau.c31  ~ dgamma(0.5, 0.0005)        
  sdc31 <- sqrt(1 / tau.c31) 
  c35  ~ dnorm(0,1.0E-6)          
  c36 ~ dnorm(0,1.0E-6)                          
} 
Interpretation: 
 
alpha: constant (intercept) 
 
b1, c11, c31, c35, c36: Parameters of type of farm, distance to slaughterhouse, distance to roads, mean 
number of positive sows and mean number of positive fatteners covariates. 
 
x0, x11, x31, x35, x36: Type of farm, distance to slaughterhouse, distance to roads, mean number of 
positive sows and mean number of fatteners covariates. 
 

S, eta: random effects for the correlated and uncorrelated heterogeneity.  
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4) Parameter results 
 
   For each period, the estimate values by the ZINB model, monte carlo error (MC error) 
and percentile distribution of the bayesian credible intervals of the intercept (β0) and the 
fixed regression parameters of the type of farm (β1), positive sows in the neighbourhood 
(β2) and positive fattening in the neighbourhood (β3) are presented in table 13. 
 
 

model (log(μi)) Estimate MC 
error 

Percentile distribution 

   5% 10% median 90% 95% 
β0:  10.47 0.1361 5.76 6.44 10.66 14.13 14.51 
β1:  5.22 0.0791 1.59 2.43 5.23 7.05 7.24 
β2 : -0.32 0.0155 -0.85 -0.75 -0.24 0.01 0.03 
β3 : 0.21 0.0106 -0.07 -0.05 0.19 0.53 0.61 

 
Period 1 

(May 2004) 
 

       
        

β0:   12.67 0.1714 6.66 7.54 13.37 16.99 17.26 
β1:  6.52 0.0975 2.51 3.67 7.07 8.79 9.08 
β2 : 0.72 0.0242 -0.05 0.01 0.75 1.35 1.39 
β3 : 1.22 0.0242 0.41 0.58 1.26 1.87 1.95 

 
 

Period 2.1 
(May 2005) 

       
        

β0: 10.77 0.1417 5.31 6.41 11.03 14.17 15.12 
β1:  7.48 0.1076 3.32 4.07 7.63 10.37 10.76 
β2 : 3.34 0.0635 1.37 1.59 3.39 5.08 5.41 
β3 : -0.001 0.0216 -0.74 -0.67 0.11 0.51 0.60 

 
 

Period 2.2 
(May 2006) 

       
        

β0: -0.03 0.0313 -1.04 -0.86 -0.14 0.96 1.09 
β1: 0.82 0.0547 -0.56 -0.46 0.44 2.37 2.46 
β2 : 0.37 0.0099 0.12 0.15 0.32 0.68 0.76 

 
Period 3 

(May 2006) 
β3 : -0.26 0.0089 -0.56 -0.51 -0.24 -0.02 0.03 

 
 
Table 13. Estimate values, monte carlo error (MC error) and percentile distribution for the bayesian 
credible intervals of the intercept (β0) and the fixed regression parameters of the type of farm (β1), 
positive sows in the neighbourhood (β2)  and positive fattening in the neighbourhood (β3) of the ZINB 
model (log(μi)). In bold are represented those parameters which influence the AD relative risk of sow 
farms.  
 
 In the first period, 258 out of 2,027 (12.7%) of the individualised regression parameters 
of the slaughterhouse covariate were related to AD risk. In period 2.1, this proportion 
was of 8.5% (127 out of 1,485), in period 2.2 it fell to 5.8% (94 out of 1,612) and in 
period 3 all the individualised bayesian credible intervals of the regression coeffcients 
contained the zero value. In this period, there was any relationship between the distance 
from each farm to the nearest slaughterhouse and AD risk. 
In relation to the distance to the nearest conventional road, in the first period 87 (4.3%)  
sow farms presented an AD risk related with this covariate. This proportion was 3.5% 
(52 farms) in period 2.1; 1.5% (25 farms) in period 2.2 and zero in period 3. 
Figures 21 to 24 show the density and location of sow farms where the distance to the 
nearest slaughterhouse or conventional road was related to the AD risk  
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Figure 21. Kernell density surface of sow farms (calculated with a bandwidth of 5km) where the distance 
to the nearest slaughterhouse (left) or conventional road (right) was related to the AD risk in period 1 
(May 2004). 
 

 
 
 
 
 
 
 
 
 
 

Figure 22 Kernell density surface of sow farms (calculated with a bandwidth of 5km) where the distance to the 
nearest slaughterhouse (left) or conventional road (right) was related to the AD risk in period 2.1 (May 2005). 
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The estimate of the standard deviation, MC error and percentile distribution of the 
bayesian credible intervals of the regression parameters of the explanatory variables 
included as random effects (distance to nearest slaughterhouse (β4) and distance to 
nearest road (β5) and the random effects for the uncorrelated heterogeneity (a) and 
correlated heterogeneity (s) are shown in table 14.  
 

Figure 23. Kernell density surface of sow farms (calculated with a bandwidth of 5km) where the distance to the 
nearest slaughterhouse (left) or conventional road (right) was related to the AD risk in period 2.2  (May 2006). 

Figure 24. Kernell density surface of sow farms (calculated with a bandwidth of 5km) where the distance to the 
nearest slaughterhouse (left) or conventional road (right) was related to the AD risk in period 3 (May 2007). 
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Table 14.  Estimate of the standard deviation, MC error and percentile distribution of the regression 
parameters of the explanatory variables included as random effects (distance to nearest slaughterhouse 
(β4) and distance to nearest road (β5)) and the random effects for the uncorrelated heterogeneity (a) and 
correlated heterogeneity (s) of the ZINB model for the different periods of study. 
  
 
   The relative risk values increased during the different periods of study. In the first 
period, these values increased until 6.24 whereas in period 3 reach the value of 29.82. 
As mentioned before, the residuals were used to evidence those areas where the AD risk 
of each sow farm was less explained by the covariates included in the model. 
The distribution of the relative risk values and the residuals of the model are shown in 
figures 25 to 28.  

Model (log(μi)) Estimate (sd) MC error Percentile distribution 
   5% median 95% 

β4: 27.9 0.5634 10.48 27.8 47.24 
β5: 19.19 0.3433 8.12 19.55 31.08 
a:  4.98 0.0002 4.95 4.99 5 

 
Period 1 

(May 2004) 
 s:  4.95 

 
0.0007 4.86 4.97 4.99 

      
β4: 28.11 0.4426 13.47 27.28 41.69 
β5: 19.16 0.2893 9.07 18.65 28.1 
a: 4.97 0.0006 4.92 4.98 4.99 

 
Period 2.1 

(May 2005) 
 s: 4.92 0.0016 4.76 4.94 4.99 
      

β4: 43.14 0.7521 15.16 45.47 66.65 
β5: 27.71 0.4187 12.68 28.62 42.14 
a: 4.96 0.0011 4.88 4.97 42.14 

 
Period 2.2 

(May 2006) 
 s: 4.82 0.0067 4.46 4.88 4.99 
      

β4: 2.31 0.0644 0.77 1.83 4.93 
β5: 1.32 0.0483 0.26 1.12 3.24 
a: 2.37 0.0334 1.31 2.33 3.46 

 
Period 3 

(May 2007) 
 s: 0.90 0.0323 0.20 0.71 2.15 
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Figure 25. Relative risk values (left) and residuals (right) for period 1 (May 2004). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 26. Relative risk values (left) and residuals (right) for period 2.1 (May 2005). 
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Figure 27. Relative risk values (left) and residuals (right) for period 2.2 (May 2006). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 28. Relative risk values (left) and residuals (right) for period 3 (May 2007). 
 
 
 
 
 
 
 



Spatial analysis of Aujeszky’s disease eradication 

 - 116 -

5) Convergence diagnostic: 
 
   In figures 29 to 32, trace plots for the deviance of the models and the Gelman-Rubin 
convergence diagnostic for each period are represented. Convergence has been reached; 
as trace plots look like a random scatter about a stable mean value and the Gelman-
Rubin convergence diagnostic is close to 1. 
 
 
 

 
 
 

 
 
 

Figure 30. Trace plots (a) and Gelman-Rubin convergence diagnostic (b) of the deviance for period 2.1 
(May 2005). 

Figure 29 Trace plots (a) and Gelman-Rubin convergence diagnostic (b) of the deviance for period 1 (May 
2004). 

a) 

b) 

a) 

b) 
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Figure 31. Trace plots (a) and Gelman-Rubin convergence diagnostic (b) of the deviance for period 2.2 
(May 2006). 

Figure 32. Trace plots (a) and Gelman-Rubin convergence diagnostic (b) of the deviance for period 3 
(May 2007). 

a) 

b) 

a) 

b) 




