
METODOS MATEMATICOS 
PARA LA 
PREDICCION DE TRAFICO

MARIA NOGAL MACHO
Director: ENRIQUE CASTILLO

UNIVERSIDAD DE 
CANTABRIA

ETS INGENIEROS
DE CAMINOS, 
CANALES Y PUERTOS

DOCTORAL
TESIS





i

To my grandparents Eloina and Quint́ın,

for being an example of sacrifice, goodness and happiness.

Para mis abuelos Eloina y Quint́ın,

por ser un ejemplo de sacrificio, bondad y felicidad.



ii



Acknowledgments

I am glad to have this section that provides me the opportunity to write some words that

must be said. However I regret that there is no a good enough sentence to express my

deep feeling of gratitude to some people.

The first one of these persons is Enrique Castillo, my thesis director. It is a “thanks” in

capital letters, full of respect and admiration. I sincerely feel myself fortunate for having

been able to approach to his way of understanding job, research and life. Enrique has

given me his time and support. In addition, he has given me the chance of meeting and
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Para terminar, a Emilio Muela, un gran jefe que me permitió combinar trabajo y
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Abstract

Traffic engineering raises a great deal of aspects and problems related to mobility of people

and goods. In this thesis we have centered on traffic models for studying the vehicular

flow in traffic networks. We have tried to expose a general vision of the most common

current existing approaches and give some solutions for three concrete problems selected

among a great collection of them. The proposed models have been sent for publication to

the best especialized journals and they have been accepted with congratulation words.

This thesis provides the reader the following contributions:

• Literature review. A literature review about existing traffic approaches, classified

in static and dynamic models. Much of these approaches are illustrated with some

examples for a better understanding of the main concepts and ideas.

• A traffic flow reconstruction and estimation Bayesian approach based on

plate scanning. We present a new conjugate Bayesian model for reconstructing

and estimating traffic flows, based on plate scanning information, which permits us

to identify, totally or partially, the vehicle route, origin-destination and link flows

by scanning their corresponding plate numbers at an adequately selected subset of

links.

• A dynamic traffic loading model. A FIFO rule consistent model for solving

the continuous dynamic network loading problem is provided. The model assumes a

non-linear link travel time function of the link volumes and considers the congestion

effect taking into account the interaction of flows of all paths and their coincidence at

different times and locations. In addition, it considers the effect of a link congestion

on the upstream route links.

• A dynamic traffic models with stochastic demand. We present a dynamic

traffic model with stochastic demand for predicting some traffic variables such as link

travel times, link flows or link densities and their time evolution in real networks.

The model is a Beta-normal Bayesian network, whose probabilistic structure is learnt

by analyzing the correlation coefficients among variables.

v



vi Abstract

• Practical applications. All the proposed new models are tested in fictitious and

real traffic networks in order to analyze their characteristics and performances to-

gether with the validity of the results and the associated computacional requirements.

• Programm codes. We present the computational implementation of the formula

and algorithms proposed in this thesis, which have been used to obtain the mentioned

examples.
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1.1 Motivación

Con frecuencia, la ingenieŕıa y las poĺıticas de transporte y planificación precisan conocer

los futuros usuarios en el diseño de una nueva v́ıa de transporte o el impacto en el tráfico

a largo plazo de un nuevo aeropuerto, urbanización, etc., con el fin de conseguir un di-

mensionamiento adecuado o estimar la viabilidad financiera y social de los proyectos. Por

otra parte, a corto plazo, debido al aumento de congestión del tráfico en las ciudades, se

hacen necesarias medidas de gestión del tráfico, como pueden ser los sistemas urbanos de

control de tráfico tipo SCOOT (Split Cycle Offset Optimization Technique) o el sistema

SCAT (Sydney Coordinated Adaptive Traffic), que coordinan la operación de todas las

señales de tráfico en un área para dar fluidez a los veh́ıculos a través de la red. Estos

sistemas obtienen información sobre los flujos de tráfico en tiempo real, que es enviada a

una unidad central donde se procesa, y se toman decisiones sobre ese tráfico. Los benefi-

cios no sólo se plasman en la reducción de los tiempos de recorrido, en la mejora del flujo,

y la disminución de la congestión, sino también en la reducción de accidentes, ahorro de

combustible, la disminución de la contaminación del aire, y una mejora de las comodidades

residenciales.

Los modelos de tráfico son una de las herramientas más utilizadas para resolver los

problemas mencionados. Hay muchos modelos diferentes, en función de los objetivos que

se persigan, a saber, si predomina el corto o largo plazo, si lo que se quiere es predecir o

3



4 Chapter 1. Resumen de la tesis en español

estimar el tráfico, etc. Una respuesta técnicamente adecuada para estos problemas debe

ser lo más simple posible, pero debe ofrecer una solución práctica al problema principal

en cada caso.

1.2 Contenido de la tesis

Esta tesis está organizada básicamente en tres partes más un apéndice.

La primera parte incluye una revisión de la literatura existente acerca de los distintos

enfoques en el estudio del tráfico. Mas concretamente, se presentan los modelos de tráfico

estáticos y dinámicos. Gran parte de los métodos revisados se ilustran con ejemplos para

una mejor comprensión de los conceptos e ideas principales.

En la segunda parte, se presentan los siguientes modelos matemáticos originales:

• Un modelo para la reconstrucción y estimación de los flujos de tráfico a partir de

la lectura de las matŕıculas. Se aporta un modelo bayesiano conjugado para la

reconstrucción y estimación de los flujos de tráfico, basado en modelos α-Gamma

Γ(θ, λ) desplazada, H(α, θ, λ). Si se supone que el número de usuarios que viajan

a través de diferentes rutas son variables independientes H(α, θ, λ) con λ común,

los flujos en arcos, origen-destino (OD) y nodos son también variables aleatorias

H(α, θ, λ). Suponemos que la principal fuente de información proviene de la lectura

automática de las matŕıculas, lo que nos permite identificar, total o parcialmente,

el flujo en ruta, arco u OD, mediante el escaneo de las matŕıculas que pasan por un

subconjunto adecuadamente seleccionado de arcos. La reconstrucción de los flujos de

la muestra se puede hacer exacta o aproximadamente, dependiendo de la intensidad

del proceso de muestreo de matŕıculas. Con este fin, se usa una técnica de mı́nimos

cuadrados generalizada junto con las leyes de conservación. Se propone un método

bayesiano usando familias conjugadas, que permite calcular los diferentes flujos de

tráfico, tales como los de rutas, OD, arcos escaneados o arcos aforados. Además

se proporciona una descripción detallada de cómo se realiza la evaluación previa,

la toma de muestras, la posterior actualización y la obtención de la distribución

bayesiana.

• Un modelo de recarga de tráfico dinámico innovador. Se aporta un modelo consis-

tente con la regla FIFO para resolver el problema dinámico, continuo en el tiempo,

de recarga de red. El modelo calcula las funciones de los tiempos de recorrido de

los arcos en un conjunto finito de tiempos básicos equidistantes que se utilizan para

interpolar un spline monótono para obtener un tiempo continuo. El modelo supone

que el tiempo de recorrido del arco es función no lineal de los volúmenes de tráfico

del mismo, pero se realizan algunas correcciones con el fin de cumplir la regla FIFO

en ese conjunto básico de tiempos estudiado. Además, el uso de splines monótonos
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cúbicos garantiza la monotońıa que se precisa para cumplir la regla FIFO en todo

momento. El modelo consta de cinco unidades: (1) una unidad de definición de la

onda de flujo de la ruta, es decir, las funciones de intensidad de flujo de las rutas

en sus oŕıgenes mediante una función temporal; (2) una unidad de propagación de

esas ondas individuales de cada ruta a través de sus correspondientes rutas; (3) una

unidad de análisis del grado de congestión de los distintos arcos y cómo cambia con

el tiempo; (4) una unidad para combinar todas las ondas de las rutas resultando las

ondas de flujo total que se propaga a través de los arcos y nodos; y (5) una unidad

de compatibilidad de todo el proceso. La onda de intensidad flujo de la ruta, que

es la información básica de la que se parte, se modela como una combinación lineal

de ondas básicas. A continuación, las ondas se propagan a través de la red por sus

rutas, mediante el uso de la ecuación de conservación que aumenta o disminuye la

longitud de onda, modificando la altura de las ondas en función del grado de con-

gestión en los diferentes arcos. Entonces, esas ondas individuales de cada ruta se

combinan entre śı para generar las ondas de los arcos y nodos. Para terminar, el

sistema combina toda la información para hacerla compatible en horarios y lugares

utilizando un método iterativo hasta la convergencia.

• Un modelo dinámico de tráfico con demanda estocástica. Se aporta un modelo de

tráfico dinámico con demanda estocástica para la predicción de algunas variables

de tráfico, tales como los tiempos de recorrido, flujos o densidad de los arcos y su

evolución en el tiempo en redes reales. El modelo considera que las variables son

variables Beta generalizadas, de manera que, cuando se transforman sus marginales

a normal estándar, pasan a ser normales multivariadas. Esto le da suficientes grados

de libertad para reproducir (aproximadamente) las variables consideradas en un

conjunto discreto de pares tiempo-situación. Se dan dos opciones para conocer los

parámetros del modelo: (a) una basada en observaciones anteriores de las mismas

variables, y (b) otra basada en datos simulados utilizando modelos dinámicos. El

modelo es capaz de proporcionar una estimación puntual, un intervalo de confianza

o la función de densidad de la variable que se predice. Con este fin, se proporciona

una fórmula cerrada para obtener los valores de las variables futuras condicionadas

(tiempos de recorrido de los arcos o flujos), a partir de la información disponible

sobre las variables en tiempos recientes. Ya que sólo la información local y reciente

es relevante para realizar las predicciones de los flujos de los arcos a corto plazo, el

modelo es aplicable a las redes de gran tamaño.

Todos estos modelos propuestos se han probado en redes de tráfico ficticias y reales

con el fin de analizar sus caracteŕısticas, validez de los resultados y los correspondientes

requisitos computacionales.

En la tercera parte, se describen las conclusiones derivadas de cada uno de los modelos

y se muestran posibles ĺıneas de actuación futuras.
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Por último, se añade un apéndice donde se presenta la implementación computacional

de las fórmulas y algoritmos propuestos en esta tesis, que han sido utilizados para obtener

las aplicaciones prácticas mencionadas.

1.3 Redes de tráfico utilizadas

Cada uno de estos modelos se desarrolla en un caṕıtulo diferente de esta tesis, en la parte

de contribuciones originales. Además, los tres modelos se ilustran con algunos ejemplos:

1. La red de Nguyen Dupuis. Se trata de una pequeña red ficticia de uso común en la

literatura del transporte. Se utiliza en los tres modelos ya que, debido a su reducido

tamaño, permite explicar y analizar fácilmente los procedimientos y discutir los

resultados.

2. La red de Cuenca y la de Ciudad Real (España). Son redes reales de tamaño medio.

Sus topoloǵıas se utilizan para simular los flujos de tráfico mediante el modelo con-

sistente con la regla FIFO. Los resultados, después de simular 100 veces cada uno

de los ejemplos, se aplican al modelo de demanda estocástica. Por otra parte, la red

de Cuenca se utiliza en el modelo bayesiano de reconstrucción-estimación.

3. El ejemplo del Estado de Vermont (EE.UU.). Se trata de una red real de gran

tamaño. Se cuenta con los datos (número de usuarios) registrados en 85 estaciones

fijas en todo el estado de Vermont durante dos años, los 365 d́ıas, todas las horas

del d́ıa. Esta red se utiliza en el modelo de demanda estocástica.

1.4 Contribuciones

Las aportaciones originales de esta tesis se basan en los tres modelos mencionados. A

continuación se destaca el interés de cada uno de ellos:

Las principales aportaciones del modelo de estimación bayesiana basada en la lectura

de matŕıculas (véase el caṕıtulo 6) son los siguientes:

1. El modelo conjugado Gamma bayesiano propuesto tiene una propiedad importante:

si los flujos de ruta siguen esta distribución, el resto de flujos (OD, arcos, nodos y

flujos escaneados) siguen esta distribución. Esto significa que una sola familia nos

permite reproducir todos los flujos. Una vez seleccionado un modelo conjugado, se

proporcionan fórmulas cerradas para actualizar los valores a posteriori a partir de

los datos disponibles de la muestra.

2. El método bayesiano, mediante las distribuciones a posteri, permite conocer los

intervalos de confianza, es decir, no sólo proporciona una estimación puntual, sino
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los intervalos con sus probabilidades asociadas. Esta es una diferencia importante

con respecto a otros modelos existentes.

3. La técnica de la lectura de matŕıculas permite reproducir exactamente los flujos

reales si el conjunto de arcos escaneados están elegidos adecuadamente. Esto no es

posible con la técnica estándar de aforar los arcos.

4. Los costes computacionales requeridos por este método para los casos de redes reales

son bajos. Esto significa que se puede aplicar a grandes redes.

Las principales aportaciones del modelo de dinámico recarga de la red consistente con

la regla FIFO (véase el caṕıtulo 7) son los siguientes:

1. Se trata de un modelo continuo para redes reales de tráfico, que parece más conve-

niente que una versión discretizada del problema continuo. Aunque las funciones de

tiempo implican infinitos grados de libertad, se interpolan estas funciones mediante

splines monótonos cúbicos. Esto implica que el número de parámetros utilizados

para definir los modelos sigue siendo limitado y pequeño.

2. Se supone que el tiempo de recorrido del arco es una función no lineal de los

volúmenes del mismo, incluyéndose una serie de correcciones con el fin de cumplir la

regla FIFO. La idea consiste en añadir el retraso mı́nimo de tal forma que se cumpla

(esto es equivalente a considerar una cola de veh́ıculos debido a la congestión y

su posterior disipación), que se complementa con el uso de la interpolación cúbica

monótona que garantiza la satisfacción de la regla FIFO en el puntos interpolados.

3. Se considera el efecto de la congestión en la ubicación y momento adecuado, es decir,

el modelo evalúa el efecto de la congestión teniendo en cuenta la interacción de los

flujos de todas las rutas y su coincidencia en diferentes momentos y lugares. Por

otra parte, se tiene en cuenta el efecto de la congestión del arco en los arcos aguas

abajo de la ruta.

4. Se usa un esquema iterativo. En una iteración dada, primero se determinan los

tiempos de recorrido del arco asociado a un conjunto seleccionado cuidadosamente

de usuarios basándose en la interpolación mediante splines cúbicos de las funciones

de tiempo de recorrido del arco de una iteración anterior y, después, se actualizan los

splines monótonos cúbicos, ajustando los nuevos tiempos de recorrido. El proceso

se repite hasta la convergencia.

5. El método propuesto tiene costes computacionales moderados.

Las principales contribuciones del modelo de red bayesiana beta generalizada-gaussiana

(véase el caṕıtulo 8) son los siguientes:
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1. La red beta generalizada gaussiana, cuyas marginales son variables beta generali-

zadas, es decir, variables con un rango de [bi, ci] en vez del rango de las variables

beta estándar [0, 1], permite definir la distribución marginal de cada variable inde-

pendiente, de acuerdo con sus caracteŕısticas.

2. La estructura de covarianza de las variables de flujo se modela por medio de una

distribución normal multivariada. El alto número de parámetros del modelo pro-

puesto es muy fácil de estimar utilizando el método de la máxima verosimilitud

como método de estimación.

3. La selección de las variables relevantes para realizar una predicción dada se realiza

con la ayuda de los coeficientes de correlación entre las variables.

4. El modelo es espacio-temporal, es decir, se incluyen los tiempos y lugares.

5. Se aporta una comparación exhaustiva con otros modelos bayesianos existentes.

6. El modelo propuesto para hacer predicciones requiere un tiempo de CPU pequeño,

de forma que el método se puede aplicar a grandes redes.



Part II

Introduction and State-of-the-art

9





Chapter 2

Introduction and contributions
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2.1 Introduction

Frequently engineering, transportation policy and planning require to know the future

users on a planned road or the long-term traffic impact of a new airport, housing develop-

ment, etc., in order to dimension adequately or estimate the financial and social viability

of the projects. On the other hand, on a short-term, due to the more and more congested

traffic, cities have been forced to adopt some traffic management measures. One of these

measures - increasingly common- is the use of urban traffic control systems, such as the

Split Cycle Offset Optimization Technique (SCOOT) system or the Sydney Coordinated

Adaptive Traffic (SCAT) system, which coordinate the operation of all the traffic signals

in an area to give good progression to vehicles through the network. They obtain real-time

information on traffic flows that is sent to a central. Here, the information is processed and

decisions about traffic control are made. The advantages are not limited to decreasing the

travel times or improving the traffic flow, but to congestion, accidents or fuel reduction,

and avoiding or reducing environmental problems, etc.

Traffic models are very useful tools to solve the above mentioned problems. There are

a lot of different models according to the objectives to be reached, namely, sort or long

term analysis, predicting or estimation, etc. A good engineering answer to these problems

must be as simple as possible, but it must give a practical solution to the main problem

in each case.

In this thesis we present the following mathematical models:

11
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• A traffic flow reconstruction and estimation model based on plate scanning. A con-

jugate Bayesian model for reconstructing and estimating traffic flows, based on α-

shifted Gamma Γ(θ, λ) models H(α, θ, λ) is given. If the numbers of users traveling

through different routes are assumed to be independent H(α, θ, λ) variables with

common λ, the link, origin-destination (OD) and node flows are also H(α, θ, λ) ran-
dom variables. We assume that the main source of information is plate scanning,

which permits us to identify, totally or partially, the vehicle route, OD and link flows,

by scanning their corresponding plate numbers at an adequately selected subset of

links. The reconstruction of the sample flows can be done exactly or approximately,

depending on the intensity of the plate scanning sampling procedure. To this end,

a generalized least squares technique is used together with the conservation laws. A

Bayesian approach using conjugate families is proposed that allows us to estimate

different traffic flows, such as route, OD-pair, scanned link or counted link flows. A

detailed description of how the prior assessment, the sampling, the posterior updat-

ing and the obtention of the Bayesian distribution is given.

• A new dynamic traffic loading model. A FIFO rule consistent model for the con-

tinuous dynamic network loading problem is given. The model calculates the link

travel time functions at a basic finite set of equally spaced times which are used to

interpolate a monotone spline for all other times. The model assumes a non-linear

link travel time function of the link volumes, but some corrections are made in order

to satisfy the FIFO rule at the basic set. Furthermore, the use of monotone cu-

bic splines preserving monotonicity guarantees that the FIFO rule is satisfied at all

points. The model consists of five units: a path origin flow wave definition unit, a

path wave propagation unit, a congestion analysis unit, a network flow propagation

unit and an inference engine unit. The path flow intensity wave, which is the basic

information, is modeled as a linear combination of basic waves. Next, the individual

path waves are propagated throughout the paths by using a conservation equation

that stretches or enlarges the wave lengths and increase or reduce the wave heights

depending on the degree of congestion at the different links. Then, the individual

path waves are combined together to generate the link and node waves. Finally, the

inference engine unit combines all information items to make them compatible in

times and locations using an iterative method until convergence.

• A dynamic traffic model with stochastic demand. A stochastic demand dynamic

traffic model for predicting some traffic variables such as link travel times, link

flows or link densities and their time evolution in real networks is given. The model

considers that the variables are generalized Beta variables such that when marginally

transformed to standard normal become multivariate normal. This gives sufficient

degrees of freedom to reproduce (approximate) the considered variables at a discrete

set of time-location pairs. Two options to learn the parameters of the model are
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provided: (a) one based on previous observations of the same variables, and (b) based

on simulated data using existing dynamic models. The model is able to provide a

point estimate, a confidence interval or the density of the variable being predicted.

To this end, a closed formula for the conditional future variable values (link travel

times or flows) given the available past variable information, is provided. Since

only local information is relevant to short-term link flow predictions, the model is

applicable to very large networks.

Each of these models is developed in a different chapter of this thesis, in the original

contributions part. In addition, the three models are illustrated by some examples:

1. The Nguyen Dupuis network. It is a small fictitious network commonly used in the

transportation literature. It is utilized by the three models because due to its small

size it allows us to explain and analyze easily the procedures and discuss the results.

2. The Cuenca (Spain) and Ciudad Real (Spain) networks. They are real networks of

medium size. Their topologies are used to simulate traffic flows through the FIFO

rule consistent model. The results, after simulating 100 times each one, are applied

to the stochastic demand model. Moreover, the Cuenca network is used in the

reconstruction and estimation Bayesian model.

3. The Vermont-State (US) example. It is a large real network. We have the collection

of data (number of users) registered in 85 fixed stations located throughout the state

of Vermont for the 365 days for two years, every hour of the day. This network is

used in the stochastic demand model.

2.2 Contributions

The original contributions of this thesis are based on the three mentioned models. Now

we highlight the interest of each of them:

The main contributions of the Bayesian estimation model based on plate scanning

(Chapter 6) are:

1. The proposed conjugate Bayesian Gamma model has an important property: if the

path flows follow this distribution, all other flows (OD, link, node and scanned flows)

follow this distribution. This means that a single family permits us to reproduce

all flows. Since a conjugate model has been selected, closed formulas are given to

update posteriors when the sample data becomes available.

2. The Bayesian approach through the posterior distributions allows us to provide cred-

ible intervals, that is, not only a point estimate can be provided, but the associated

uncertainty. This is an important difference with respect to other existing models.
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3. The use of the plate scanning technique permits us to reproduce exactly the real

flows if the set of scanned links is adequately chosen. This is not possible with the

standard technique of counting link flows.

4. The computation time required to apply the proposed method to real cases is low.

This means that it can be applied to large networks.

The main contributions of the FIFO Rule consistent dynamic network model (Chapter

7) are:

1. We deal with a continuous model for real traffic networks, which seems more con-

venient than a discretized version of the real continuous problem. Though time

functions involve infinite degrees of freedom, we approximate these functions by

monotone cubic splines. This implies that the number of parameters used to define

the models remains finite and small.

2. We consider that the link travel time is a non-linear function of the link volumes,

but we make some corrections in order to satisfy the FIFO rule. The idea consists

of adding the minimum delay for such a condition to be satisfied (this is equivalent

to considering a queue of vehicles due to congestion and its later dissipation), which

is complemented with the use of monotone cubic interpolation that guarantees the

satisfaction of the FIFO rule at the interpolated points.

3. We consider the congestion effect at the adequate time and location, i.e. our model

evaluates the congestion effect taking into account the interaction of flows of all

paths and their coincidence at different times and locations. Moreover, we consider

the effect of a link congestion on the upstream route links.

4. We use an iterative scheme. At a given iteration, we first determine the link travel

times associated with a carefully selected set of users based on a previous iteration

cubic-spline approximation of link travel time functions and later we update the

monotone cubic splines, fitting them to the updated travel times. The process is

iterated until convergence.

5. We propose a method that has moderate cpu requirements.

The main contributions of the Generalized Beta-Gaussian Bayesian network model

(Chapter 8) are:

1. The Generalized Beta-Gaussian Bayesian network, whose marginals are generalized

Beta variables, that is, variables with range [bi, ci] instead of the [0, 1] range of stan-

dard Beta variables, allows us to define the marginal distribution of each individual

variable independently, according to its characteristics.
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2. The covariance structure of the flow variables is modeled by means of a multivariate

normal distribution. The large number of parameters of the proposed model are

very easy to estimate, using the maximum likelihood as estimation method.

3. The selection of relevant variables to make a given prediction is done with the help

of correlation coefficients among variables.

4. The model is spatio-temporal, that is, they include times and locations.

5. An exhaustive comparison with other existing Bayesian models are given.

6. The proposed model requires small cpu times to make predictions so that, the method

can be applied to large networks.
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Static traffic models
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3.1 Notation

βa parameter of the travel cost function associated with link a.

δpqr parameter of the Gumbel distribution associated with route r with

origin-destination p-q.

ηpq dual variable associated with the origin-destination p-q.

γ parameter of the travel cost function.

γe Euler constant.

γijpq parameters of calibration of the maximum entropy problem.

λa dual variable. Travel cost associated with link a.

µpqr dual variable. Over-cost associated with route r with origin-

destination p-q.

πpq equilibrium travel cost to travel from origin p to destination q.

17
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ρiq minimum travel costs to go from node i to node q.

θpq parameter of the Gumbel distribution associated with origin-

destination p-q.

ξpqr random error term associated with the route r with origin-destination

p-q.

a link.

aij link between nodes i and j.

ca travel cost function associated with link a.

ca0 free-flow conditions cost associated with link a.

Ca integral of the travel cost function associated with link a.

Cij integral of travel cost function associated with link aij.

cij travel cost function associated with link aij .

Cpqr perceived travel cost associated with route r with origin-destination

p-q.

cpqr travel cost function associated with route r with origin-destination p-q.

dpq demand for the flows from origin p to destination q.

costij minimum travel cost between any pair of nodes (i, j).

G(·) survival function of a cumulative distribution function.

hpqr flow on route r with origin-destination p-q.

Ppqr share of drivers choosing a route r with origin-destination p-q.

ppqr probability of a user to select path r of OD-pair p-q.

qa constant measuring the flow producing a given congestion level in the

link a.

r route.

Rpq set of routes with origin-destination p-q.

v̂ observed flow.

v∗ link flows resulting from an assignment problem.

va flow on link a.

vij total flow through link aij.

vijpq flow through link aij going from origin node p to destination node q.

vijq flow on link aij with destination q.

wijp flow coming from a given origin node p and using link aij .

zipq flow going from origin node p to destination node q and passing

through node i.

A set of links of a traffic network.

D set of origin-destination pairs of nodes.

N set of nodes of a traffic network.
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3.2 Introduction

Some models try to reproduce the traffic during a certain period assuming that the existing

conditions are stationary or that only mean values are of interest. They are called static

traffic models. However, other models assume that the traffic conditions change with time.

They are the so called dynamic models. We devote this chapter to the static traffic models,

more exactly, to the static traffic assignment (STA).

The problem of traffic assignment consists in describing how users of different origin-

destinations (OD) select their routes according to the traffic conditions. This is very

important because the traffic flow governs the network performance in terms of travel

time. In this problem the origin-destination traffic flows (demands) are assumed as data,

and the users traveling the different routes are the unknowns. Thus, it is crucial to know

how the users behave, i.e., how they select the adequate paths to go from origins to

destinations. In this chapter we assume that the problem is static and that there is a

constant-over-time travel demand.

The chapter is structured as follows. In Section 3.3, we introduce the User Equilib-

rium (UE), or the Wardrop’s first principle and we analyze several formulations to reach

this equilibrium according to the route knowledge. In Section 3.4, the System optimiza-

tion (SO), or the Wardrop’s second principle, is presented. In Section 3.5, we show the

Stochastic User Equilibrium (SUE) and two kinds of stochastic route choice models for

STA problems, the probit and the logit models. Finally, in the Appendix, we provide a

method to obtain the minimum travel times between any pair of nodes and all actually

used routes. Moreover, we explain how the previous method can be incorporated to obtain

disaggregated flows by ODs and to perform route enumeration.

3.3 User Equilibrium (UE). Wardrop’s first principle

Definition 1 (User equilibrium (UE)) A user equilibrium is reached when no vehicle

can improve their travel time by unilaterally changing routes, and it is assumed that all

the drivers have a perfect knowledge of the network and, hence, of the travel times.

Wardrop (1952) adopted the supply-demand equilibrium concept of economics, which

suggests that travel demand should be balanced against the performance of the transport

system in servicing that level of demand. This gives Wardrop’s first principle, or the user

equilibrium principle:

“Journey times in all routes actually used are equal, and less than

those which would be experienced by a single vehicle on any unused route”.

Mathematically, this principle can be expressed by the following variational inequality:

hpqr(cpqr − πpq) = 0, ∀r ∈ Rpq, (3.1)
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cpqr − πpq ≥ 0, ∀r ∈ Rpq, (3.2)

where hpqr is the flow on route r with origin-destination p-q, cpqr, the travel cost function

associated with route r with origin-destination (p, q), πpq, the equilibrium travel cost to

travel from origin p to destination q and Rpq, the set of routes with origin-destination p-q.

3.3.1 Traffic model with route knowledge

Let us suppose a connected traffic network with set of nodes N and set of links A. For

certain origin-destination pairs of nodes, p, q ∈ D, where D is a subset of N x N , there

are given positive demands dpq for origin-destination flows which give rise to a link flow

pattern (va)a∈A when distributed through the network. Further, assume that for each link

a there is a positive and strictly increasing travel cost function ca(va).

Beckmann et al. (1956) transformed the user equilibrium principle into the following

mathematical programming problem

Minimize
h,v

Z(v) =
∑

a∈A

∫ va

0
ca(s)ds =

∑

a∈A

Ca(va), (3.3)

subject to:
∑

r∈Rpq

hpqr = dpq : ηpq, ∀(p, q) ∈ D (3.4)

∑

(p,q)∈D

∑

r∈Rp,q

δapqrhpqr = va : λa, ∀a ∈ A (3.5)

hpqr ≥ 0 : µpqr, ∀r ∈ Rpq,∀(p, q) ∈ D (3.6)

(3.7)

with

δapqr =

{

1, if route r from node p to node q contains arc a;

0, otherwise,
(3.8)

where Ca(·) is the integral of the travel cost function associated with link a, and ηpq, λa
and µpqr are the dual variables1, and it has been assumed that the travel cost on a link

depends only on the flow on that link.

Theorem 1 (Variational relation associated with Wardrop’s first principle.)

Equations (3.3)-(3.8) imply Expressions (3.1)-(3.2)

Proof.

This can be proved by using the Karush-Kuhn-Tucker (KKT) conditions (see Sheffi

(1985))2.

1Whatever value of the objective function θ(λ, µ) of the dual problem is a lower bound of the primal

objective function f(h).
2These conditions must be satisfied by any stationary solution of the primal problem. Depending on

the convexity of the problem, we can have local or global optima (Castillo et al. (2001)).
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The Lagrangian function of this problem is

L(h,v;λ,µ) =
∑

a∈A

Ca(va) +
∑

(p,q)∈D

ηpq



dpq −
∑

r∈Rpq

hpqr



+ (3.9)

+
∑

a∈A

λa





∑

(p,q)∈D

∑

r∈Rp,q

δapqrhpqr − va



−
∑

(p,q)∈D,r∈Rpq

µpqrhpqr

and the Karush-Kuhn-Tucker conditions are:

∂L
∂va

= ca(va)− λa = 0; ∀a ∈ A (3.10)

∂L
∂hpqr

= −ηpq +
∑

a

λaδapqr − µpqr = 0; ∀(p, q) ∈ D,∀r ∈ Rpq (3.11)

∑

r

hpqr = dpq; ∀(p, q) ∈ D (3.12)

∑

(p,q)

∑

r

δapqrhpqr = va; ∀a ∈ A (3.13)

hpqr ≥ 0; ∀(p, q) ∈ D,∀r ∈ Rpq (3.14)

hpqrµpqr = 0; ∀(p, q) ∈ D,∀r ∈ Rpq (3.15)

µpqr ≥ 0; ∀(p, q) ∈ D,∀r ∈ Rpq. (3.16)

From (3.10) we get

ca(va) = λa, (3.17)

that is, the dual variable λa is the link cost.

From Equation (3.11) and considering (3.16) we have:

µpqr =
∑

a

λaδapqr − ηpq

= cpqr − ηpq ≥ 0; ∀(p, q) ∈ D,∀r ∈ Rpq, (3.18)

that implies

cpqr ≥ ηpq, ∀(p, q) ∈ D,∀r ∈ Rpq. (3.19)

In addition, due to (3.15) if hpqr > 0 then µpqr = 0 that implies cpqr = ηpq. In other

words, ηpq ≡ πpq is the equilibrium travel cost to travel from origin p to destination q.

This concludes the proof.

From Equation (3.18) we can conclude that the dual variable µpqr can be interpreted

as the over-cost (larger than the equilibrium one) associated with route r with origin-

destination (p, q).
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This proves that Equations (3.1) and (3.2) can be written in the following variational

form:

hpqr

(

∑

a

ca(va)δapqr − ηpq
)

= 0; ∀(p, q) ∈ D,∀r ∈ Rpq (3.20)

∑

a

ca(va)δapqr − ηpq ≥ 0; ∀(p, q) ∈ D,∀r ∈ Rpq. (3.21)

Another important issue is the uniqueness of the solution of Problem (3.3)–(3.8), es-

tablished by the following theorem. First we introduce the notion of Hessian matrices.

Definition 2 The Hessian matrix H(f) = of a function f(x1, x2, . . . , xn) is the square

matrix of its second-order partial derivatives, that is,

H(f) =























∂2f

∂x21

∂2f

∂x1∂x2
. . .

∂2f

∂x1∂xn
∂2f

∂x2∂x1

∂2f

∂x22
. . .

∂2f

∂x2∂xn
...

...
. . .

...
∂2f

∂xn∂x1

∂2f

∂xn∂x2
. . .

∂2f

∂x2n























. (3.22)

If the Hessian is positive definite at a non-degenerate point x∗, then f attains its local

minimum at x. If the Hessian is negative definite at x∗, then f attains a local maximum

at x∗. If the Hessian has both positive and negative eigenvalues then x∗ is a saddle point

for f (this is true even if x∗ is degenerate). Otherwise the test is inconclusive.

Theorem 2 (Uniqueness.) If the cost functions ca(va); a ∈ A are monotonically in-

creasing with respect to link flows va, then the Problem (3.3)–(3.8) has unique solution in

terms of link flows va.

Proof. To prove the uniqueness of the user equilibrium solution we can demonstrate that

the feasible region and the objective function in the Beckmann formulation are both con-

vex. Given the linearity of the constraints, the resultant feasible region of the optimization

problem is obviously convex.

We demonstrate the convexity of the objective function (3.3) with respect to the link

flows va by showing that the Hessian is positive definite.

Since
∂Z(v)

∂va
= ca(va),

∂2Z(v)

∂v2a
= c′a(va) and

∂2Z(v)

∂vavb
= 0; ∀b 6= a, the Hessian

becomes

∇2z(va) =













c′a(va) 0 0 . . .

0 c′b(vb) 0 . . .

0 0
. . .

...
...

... . . . c′A(vA)













, (3.23)
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and since ca has been assumed monotonically increasing with respect to link flow va, this

matrix is positive definite, and therefore, the equilibrium solution with respect to link

flows is unique.

On the contrary, we can have multiple solutions with respect to path flows hpqr.

3.3.2 Traffic model without route knowledge

The Ferris, Meeraus and Rutherford model

The Ferris, Meeraus and Rutherford model Ferris et al. (1999) provides an optimization

problem that not only gives the link flows but it identifies their corresponding destination

nodes directly without requiring neither route enumeration nor route choice probabilities.

In addition, they show how the optimization approaches to the traffic equilibrium problem

can be implemented using standard modelling software. The problem they propose is the

Beckmann model in terms of some disaggregated variables, which gives the link flows vijq
disaggregated by destinations without path enumeration:

Minimize
v

Q =
∑

aij∈A

Cij

(

∑

q

vijq

)

(3.24)

subject to
∑

aij∈A

vijq −
∑

aji∈A

vjiq = diq : λiq; i ∈ N , q ∈ D; i 6= q, (3.25)

vijq ≥ 0 : µijq; aij ∈ A, q ∈ D, (3.26)

where vijq is the flow through link aij with destination node q, Cij(·) is the integral of the
travel cost function associated with link aij , diq are the OD flows associated with origin

and destination nodes i and q, respectively, λiq and µijq are the dual variables, and it has

been assumed that the travel cost on a link depends only on the flow on that link.

We note that the balance equation for i = q does not need to be written because it is

a linear combination of the balance equations for the remaining nodes.

Finally, we indicate that the sensitivity of Q with respect to diq is λiq.

The role of dual variables. The Lagrangian function of this problem is

L(v;λ,µ) =
∑

aij∈A

Cij

(

∑

q

vijq

)

+
∑

i 6=q

λiq



diq −
∑

aij∈A

vijq +
∑

aji∈A

vjiq



−
∑

aij∈A, q∈D

µijqvijq

(3.27)

and the corresponding Karush-Kuhn-Tucker (KKT) conditions become

∂L
∂vijq

= cij

(

∑

q

vijq

)

− (1− δiq)λiq + (1− δjq)λjq − µijq = 0; aij ∈ A, q ∈ D,

(3.28)
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∑

aij∈A

vijq −
∑

aji∈A

vjiq = diq; i ∈ N , q ∈ D; i 6= q (3.29)

vijq ≥ 0; aij ∈ A, q ∈ D (3.30)

vijqµijq = 0; aij ∈ A, q ∈ D (3.31)

µijq ≥ 0; aij ∈ A, q ∈ D, (3.32)

where cij(·) is the derivative of Cij(·), and δiq is the Dirac Delta whose value is 1 when

i = q and zero otherwise.

From the system (3.28)-(3.32) we obtain

cij

(

∑

q

vijq

)

+ ρjq ≥ ρiq; aij ∈ A, q ∈ D; ⊥ vijq ≥ 0, (3.33)

∑

aij∈A

vijq −
∑

aij∈A

vjiq = diq; i ∈ N , q ∈ D, (3.34)

where ρiq = (1 − δiq)λiq and ⊥ represents complementary slackness, i.e., both conditions

must be satisfied but at least one with equality, λiq represents the minimum travel cost to

travel from node i to node q.

Note that (3.33) shows that the variables ρiq are the minimum costs to go from node

i to node q.

Equation (3.28) also shows that the dual variable µijq gives the differences between

the travel cost cij

(

∑

q
vijq

)

associated with link aij and the travel cost associated with

that link if we travel from node i to node j through the least expensive path. If these two

costs are identical, this means that the less expensive path from i to j passes through link

aij , and then µijq = 0. Otherwise, µijq < 0 (note that constraint (3.30) is a ≥ constraint).

We end this section by saying that a traffic model analogous to this one can be given

in which instead of the destination nodes, the origin nodes are identified. So, a similar

problem to (3.24)-(3.26) can be formulated if we disaggregate link flows by origins.

The Castillo et al. model

In this section we propose a model for disaggregating link flows by OD-pair flows by origin

and destination, i.e., to identify the origins and destinations of the link flows directly,

i.e., without the need of path enumeration, route choice probabilities or postprocessing

calculations.

Let vijpq be the flow through link aij going from origin node p to destination node q.

Given the origin-destination (OD) traffic flows, one can estimate the link flows associated
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with the different OD-pairs, using the following optimization problem, which corresponds

to the Wardrop equilibrium problem

Minimize
v

Z =
∑

aij∈A

Cij

(

∑

p,q

vijpq

)

(3.35)

subject to

dpqδip =
∑

aij∈A

vijpq −
∑

aji∈A

vjipq : λipq; (p, q) ∈ OD; i 6= q, (3.36)

vijpq ≥ 0 : µijpq; aij ∈ A; (p, q) ∈ OD, (3.37)

where vijpq is the flow through link (i, j) with origin node p and destination node q, λipq
are the dual variables associated with the corresponding constraints and δip is the Dirac

Delta whose value is 1 when i = p and zero otherwise. We have also assumed that the

travel cost on a link depends only on the flow on that link.

The problem (3.35)-(3.37) is a statement of the Beckmann et al. formulation of the

Wardrop equilibrium problem, but stated for each OD pair. As the travel cost function one

can select the Bureau of Public Roads (BPR) type cost functions, because it is generally

accepted and has nice regularity properties (see Cantarella (1997)), but other alternative

travel cost functions with the same regularity properties (increasing with flow, monotonic

and continuously differentiable) can be used instead.

Note that equation (3.36) represent the flow balance associated with the OD-pair (p, q),

for all nodes.

Note that the sensitivities of the objective function to changes in the dpqδip values are

the dual variable values λipq, because they appear as the independent term of Equation

(3.36) (see Castillo et al. (2006, 2005)).

Once the values of the OD link flows vijpq have been estimated using the optimization

problem (3.35)-(3.37), one can easily calculate important flow information. Thus, the

statement of the flow problem using the set of variables vijpq has the following important

advantages:

1. It avoids path enumeration.

2. We can easily calculate the flows wijp coming from a given origin node p and using

link aij:

wijp =
∑

q

vijpq. (3.38)

3. We can easily calculate the flows vijq going to a given destination node q and using

link aij:

vijq =
∑

p

vijpq. (3.39)
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4. We can easily calculate the total flow vij through link aij, as follows:

vij =
∑

p,q

vijpq. (3.40)

5. We can calculate the flow zipq going from origin node p to destination node q and

passing through node i as

zipq =
∑

i:aij∈A

vijpq. (3.41)

6. We can identify and/or enumerate the flow paths very easily. To enumerate paths of

an OD-pair (p, q), we can simply build the tree with accessible (with non-null flow

vijpq in some solution) branches (links) starting from the origin node p and ending

with the destination node q (see Figures 3.2 and 3.3, for example, to see how simple

is to obtain all used paths associated with a given OD pair by combining the used

links in all possible forms).

7. Equations (3.38) to (3.41) and the selected variables vijpq for the optimization prob-

lem (3.35)-(3.37) allow us incorporating new estimation techniques, based on infor-

mation about wijp, vijq, zipq and/or vijpq, which are not possible for other methods.

This has important practical implications.

If the model (3.35)-(3.37) is to be used for estimation purposes of link or OD-pair

flows, one must add one or two of the following constraints:

∑

(p,q)∈OD

vijpq = v̂ij ; ∀aij ∈ B ⊂ A, (3.42)

vijpq = v̂ijpq; ∀aij ∈ S ⊂ A, (3.43)

where v̂ijpq and v̂ij are observations of the selected observation sets S and B, respec-
tively, that is, we assume that we observe the flows of the links in the set B, or we

observe the flows of the links in set S and ask the users their origin and destinations

(a more informative observation).

In particular, the OD-pair flow estimates can benefit from using information of the

type in (3.43), when compared with estimates based only on link flows as in (3.42),

the standard technique.

8. The problem can be solved as a standard non-linear programming problem using

standard software packages as GAMS, for example. For the illustrative example at

the end of the section, we have used GAMS and the results were very precise.
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We note that though the problem (3.35)-(3.37) has unique solution in terms of total

link flows v∗ij , it can have infinitely many solutions in terms of vijpq
3, though they

are equivalent in terms of link costs (they have the same link costs). Thus, this

fact does not affect to the link costs but has practical implications in terms of the

distributions of link flows among the OD-pairs. That is why the vijpq observations

are needed.

We end by pointing out that in SUE (Stochastic User Equilibrium), introduced in

Section 3.5, this problem is resolved and those path flows are unique, because of the

behavioral mechanism used in stochastic loading.

To calibrate the resulting link flows we can play with the travel cost function Cij(v
∗
ij).

In fact, use of the model in real cases must be done after a good calibration of the

model parameters.

Looking for unique flows. As we have indicated, the vijpq solution of the problem (3.35)-

(3.37) are not necessarily unique. In Castillo et al. (2008e), the uniqueness problem is

solved by a minimum variance approach.

Another way of solving the uniqueness problem consists in using the maximum entropy

principle to select one solution among all optimal solutions of the problem (3.35)-(3.37),

that is, solving the problem:

Minimize
v

Z =
∑

aij∈A

∑

p,q

γijpqvijpq log (vijpq) (3.44)

where γijpq are parameters, subject to

dpqδip =
∑

aij∈A

vijpq −
∑

aji∈A

vjipq : λipq; (p, q) ∈ OD; i 6= q, (3.45)

∑

(p,q)∈OD

vijpq = v∗ij ; aij ∈ A, (3.46)

vijpq ≥ 0 : µijpq; ∀aij ∈ A; (p, q) ∈ OD. (3.47)

where v∗ij are the link flows resulting from the problem (3.35)-(3.37).

Note that the set of feasible solutions of the problem (3.35)-(3.37) is the solution of

the linear system (3.45)-(3.47), which is a polytope (see Castillo et al. (2000, 2002) for

methods to identify this polytope).

We note that the behavior of the users coming from different ODs at different links

aij can be calibrated by means of an adequate selection of the γijpq parameters.

3For example, in Figure 3.2 the costs of flows through nodes 6-7-11 and 6-10-11 are identical, because of

the Wardrop equilibrium, and then any exchange of users between both sub-paths does not alter the link

flows nor the corresponding costs. So, given an optimal solution to the problem, exchanging different OD

users from one sub-path to the other leads to another optimal solution with different vijpq values, though

the same link flows vij .
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The dual variables. Since it is important for practical purposes, in this section we give the

physical meaning of the dual variables of the optimization problem (3.35)-(3.37), which

can be obtained as follows.

The Lagrangian function of this problem is

L(v;λ1,λ2,λ3,µ) =
∑

aij∈A

C

(

∑

p,q

vijpq

)

−
∑

i,j,p,q

µijpqvijpq

+
∑

i,p 6=q

λipq





∑

aij∈A

vijpq −
∑

aji∈A

vjipq − dpqδip





=
∑

aij∈A

C

(

∑

p,q

vijpq

)

−
∑

i,j,p,q

µijpqvijpq −
∑

j,p 6=q

λjpq





∑

aij∈A

vijpq





+
∑

i,p 6=q

λipq





∑

aij∈A

vijpq − dpqδip



 . (3.48)

and the KKT conditions:

∂L
∂vijpq

= c





∑

(p,q)∈OD

vijpq



+(1− δiq)λipq − (1− δjq)λjpq − µijpq = 0;

aij ∈ A; (p, q) ∈ OD, (3.49)

dpqδip =
∑

aij∈A

vijpq −
∑

aji∈A

vjipq : λipq; (p, q) ∈ OD; i 6= q (3.50)

vijpq ≥ 0; aij ∈ A; (p, q) ∈ OD, (3.51)

µijpqvijpq = 0; aij ∈ A; (p, q) ∈ OD, (3.52)

µijpq ≥ 0; aij ∈ A; (p, q) ∈ OD, (3.53)

where c(·) is the first derivative of C(·) with respect to its argument and δiq is the Dirac

Delta whose value is 1 when i = q and zero otherwise, that leads to

c





∑

(p,q)∈OD

vijpq



 ≥ ρjpq − ρipq; aij ∈ A; (p, q) ∈ OD; i, j 6= q ⊥ vijpq ≥ 0, (3.54)

where ρipq = λipq(1− δiq) and this permits obtaining the minimum travel cost costij from

a node i to a node j based on the dual variables, when the corresponding path exists, that

is,

costij = ρjpq − ρipq; aij ∈ A, (3.55)

and this value must be independent of (p, q) ∈ OD. This shows that path costs depend

only on the origin and destination nodes involved.
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Figure 3.1: The Nguyen-Dupuis network, showing the nodes and links.

Example 1 (The Nguyen-Dupuis network ) With the purpose of illustrating the pro-

posed concepts and methods, they are applied to the Nguyen-Dupuis network. We use an

example of bidirectional flow. It consists of 13 nodes and 38 links, and we assume the

existence of symmetric links, i.e., any pair of nodes i and j is connected in both directions

by links aij and aji (see Figure 3.1). In this example, we use the BPR (Bureau of Public

Roads) cost function, i.e.,

ca(va) = ca0

[

1 + βa

(

va
qa

)γ]

,

where for a given link a, va refers to its flow, ca0 is the travel cost associated with free

flow conditions, qa is a constant measuring the flow producing congestion, and βa and γ

are constants defining how the cost increases with traffic flow.

The integral of this cost function is the following:

Ca(va) = vaca0

[

1 + βa

(

va
qa

)γ 1

γ + 1

]

,

The network data used in this example are βa = 1, γ = 4 and the ca0 and qa travel

cost constants used for every link a are shown in Table 6.3.

In this section we illustrate the traffic assignment problem, i.e., the OD-pair flows

are given and the flows vijpqr are determined. We consider the following OD-pair non-

symmetric flows:

d12 = 320 d13 = 640 d42 = 480 d43 = 160

d21 = 500 d31 = 640 d24 = 480 d34 = 300
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Link ca0 qa
1 -5 and 5-1 7 700

1 -12 and 12-1 9 560

4 -5 and 5-4 9 560

4 -9 and 9-4 12 280

5 -6 and 6-5 3 420

5 -9 and 9-5 9 420

6 -7 and 7-6 5 700

6 -10 and 10-6 5 280

7 -8 and 8-7 5 700

7 -11 and 11-7 9 700

Link ca0 qa
8 -2 and 2-8 9 700

9 -10 and 10-9 10 280

9 -13 and 13-9 9 280

10-11 and 11-10 6 700

11-2 and 2-11 9 280

11-3 and 3-11 8 560

12-6 and 6-12 7 140

12-8 and 8-12 14 560

13-3 and 3-13 11 560

Table 3.1: Network parameters of the Nguyen-Dupuis network.

To solve the traffic assignment problem with disaggregation of link flows, we go through

the following steps:

Step 1: Obtaining link flows and travel costs. Initially, the problem (3.35)-(3.37) is

solved, and then the problem (3.44)-(3.47) to get uniqueness. Tables 3.2 and 3.3 show

the resulting link costs and total link flows, classified by origins and destinations.

Step 2: Obtaining the OD cost matrix. Following the method presented in Appendix

3.5.2 and using these link costs, we obtain the minimum travel cost problem (3.93)-

(3.98), resulting the minimum costs matrix shown in Table 3.4. Note that there are

no empty values, showing that there are no unreachable nodes from a given one, and

no null values apart from those in the main diagonal.

Step 3: Enumerating paths. All minimum cost paths for each OD-pairs are found,

using the algorithm 2 given in Appendix 3.5.2. Table 3.5 shows all the paths utilized

by the users for different OD-pairs and their associated travel costs, which inter-

pretation will be given later. To clarify, we explain the meaning of the information

contained in Table 3.5 corresponding to the OD-pair (1, 3). It contains 6 rows with

the six corresponding paths and travel costs. The paths are all the minimum cost

paths for this OD-pair (the only paths considered). The travel costs are 53.7 and are

all identical, as it corresponds to Wardrop’s equilibrium.

Figures 3.2 and 3.3 show the sets of links AOD used by the eight OD-pair users. They

contain all minimum path costs obtained by algorithm 2. It is interesting to see that

apart from the OD-pair (1, 2), which has a single path, all OD-pairs have several

possible options for minimum cost paths. This is just a consequence of Wardrop

equilibrium.
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Origin-Destination

Link Cost Total flow 1- 2 1- 3 2- 1 2- 4 3- 1 3- 4 4- 2 4- 3

1 -5 8.9 506.9 0.0 506.9 0.0 0.0 0.0 0.0 0.0 0.0

1 -12 12.9 453.1 320.0 133.1 0.0 0.0 0.0 0.0 0.0 0.0

2 -8 19.4 725.9 0.0 0.0 495.0 230.9 0.0 0.0 0.0 0.0

2 -11 15.1 254.1 0.0 0.0 5.0 249.1 0.0 0.0 0.0 0.0

3 -11 17.6 586.3 0.0 0.0 0.0 0.0 583.5 2.8 0.0 0.0

3 -13 12.8 353.7 0.0 0.0 0.0 0.0 56.5 297.2 0.0 0.0

4 -5 10.8 376.7 0.0 0.0 0.0 0.0 0.0 0.0 298.8 77.9

4 -9 21.4 263.3 0.0 0.0 0.0 0.0 0.0 0.0 181.2 82.1

5 -1 9.2 526.0 0.0 0.0 0.2 0.0 525.8 0.0 0.0 0.0

5 -4 14.1 485.6 0.0 0.0 0.0 480.0 0.0 5.6 0.0 0.0

5 -6 16.6 613.4 0.0 237.1 0.0 0.0 0.0 0.0 298.5 77.9

5 -9 10.5 270.2 0.0 269.8 0.0 0.0 0.0 0.0 0.4 0.0

6 -5 23.4 678.4 0.0 0.0 0.0 479.7 196.0 2.8 0.0 0.0

6 -7 6.3 498.3 0.0 199.8 0.0 0.0 0.0 0.0 298.5 0.0

6 -10 8.1 248.2 0.0 170.3 0.0 0.0 0.0 0.0 0.0 77.9

6 -12 10.6 119.0 0.0 0.0 4.7 0.0 114.2 0.0 0.0 0.0

7 -6 6.8 545.2 0.0 0.0 0.7 231.5 310.2 2.8 0.0 0.0

7 -8 5.2 298.5 0.0 0.0 0.0 0.0 0.0 0.0 298.5 0.0

7 -11 9.1 199.8 0.0 199.8 0.0 0.0 0.0 0.0 0.0 0.0

8 -2 14.5 618.5 320.0 0.0 0.0 0.0 0.0 0.0 298.5 0.0

8 -7 5.1 230.9 0.0 0.0 0.0 230.9 0.0 0.0 0.0 0.0

8 -12 22.5 495.0 0.0 0.0 495.0 0.0 0.0 0.0 0.0 0.0

9 -4 26.7 294.4 0.0 0.0 0.0 0.0 0.0 294.4 0.0 0.0

9 -5 12.6 333.2 0.0 0.0 0.2 0.3 329.8 2.9 0.0 0.0

9 -10 14.2 225.3 0.0 43.8 0.0 0.0 0.0 0.0 181.5 0.0

9 -13 22.2 308.2 0.0 226.0 0.0 0.0 0.0 0.0 0.0 82.1

10-6 8.3 252.2 0.0 0.0 4.1 248.1 0.0 0.0 0.0 0.0

10-9 19.1 273.8 0.0 0.0 0.2 0.3 273.3 0.0 0.0 0.0

10-11 7.3 473.5 0.0 214.2 0.0 0.0 0.0 0.0 181.5 77.9

11-2 10.6 181.5 0.0 0.0 0.0 0.0 0.0 0.0 181.5 0.0

11-3 12.8 491.8 0.0 414.0 0.0 0.0 0.0 0.0 0.0 77.9

11-7 9.4 314.3 0.0 0.0 0.7 0.7 310.2 2.8 0.0 0.0

11-10 7.9 526.1 0.0 0.0 4.3 248.5 273.3 0.0 0.0 0.0

12-1 22.0 614.0 0.0 0.0 499.8 0.0 114.2 0.0 0.0 0.0

12-6 12.7 133.1 0.0 133.1 0.0 0.0 0.0 0.0 0.0 0.0

12-8 15.5 320.0 320.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

13-3 12.0 308.2 0.0 226.0 0.0 0.0 0.0 0.0 0.0 82.1

13-9 31.9 353.7 0.0 0.0 0.0 0.0 56.5 297.2 0.0 0.0

Table 3.2: Link costs, link total flows, and link flows associated with different origin-

destination nodes (INITIAL).
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Origin-Destination

Link Cost Total flow 1- 2 1- 3 2- 1 2- 4 3- 1 3- 4 4- 2 4- 3

1 -5 8.9 506.9 0.0 506.9 0.0 0.0 0.0 0.0 0.0 0.0

1 -12 12.9 453.1 320.0 133.1 0.0 0.0 0.0 0.0 0.0 0.0

2 -8 19.4 725.9 0.0 0.0 495.2 230.8 0.0 0.0 0.0 0.0

2 -11 15.1 254.1 0.0 0.0 4.8 249.2 0.0 0.0 0.0 0.0

3 -11 17.6 586.3 0.0 0.0 0.0 0.0 406.7 179.5 0.0 0.0

3 -13 12.8 353.7 0.0 0.0 0.0 0.0 233.3 120.5 0.0 0.0

4 -5 10.8 376.7 0.0 0.0 0.0 0.0 0.0 0.0 312.9 63.8

4 -9 21.4 263.3 0.0 0.0 0.0 0.0 0.0 0.0 167.1 96.2

5 -1 9.2 526.0 0.0 0.0 5.0 0.0 521.0 0.0 0.0 0.0

5 -4 14.1 485.6 0.0 0.0 0.0 324.1 0.0 161.6 0.0 0.0

5 -6 16.6 613.4 0.0 244.5 0.0 0.0 0.0 0.0 310.9 58.0

5 -9 10.5 270.2 0.0 262.4 0.0 0.0 0.0 0.0 2.0 5.7

6 -5 23.4 678.4 0.0 0.0 3.7 304.3 244.2 126.3 0.0 0.0

6 -7 6.3 498.3 0.0 166.3 0.0 0.0 0.0 0.0 301.6 30.5

6 -10 8.1 248.2 0.0 211.3 0.0 0.0 0.0 0.0 9.3 27.6

6 -12 10.6 119.0 0.0 0.0 0.0 0.0 119.0 0.0 0.0 0.0

7 -6 6.8 545.2 0.0 0.0 2.2 266.4 199.5 77.0 0.0 0.0

7 -8 5.2 298.5 0.0 0.0 0.0 0.0 0.0 0.0 298.5 0.0

7 -11 9.1 199.8 0.0 166.3 0.0 0.0 0.0 0.0 3.1 30.5

8 -2 14.5 618.5 320.0 0.0 0.0 0.0 0.0 0.0 298.5 0.0

8 -7 5.1 230.9 0.0 0.0 0.1 230.8 0.0 0.0 0.0 0.0

8 -12 22.5 495.0 0.0 0.0 495.0 0.0 0.0 0.0 0.0 0.0

9 -4 26.7 294.4 0.0 0.0 0.0 155.9 0.0 138.4 0.0 0.0

9 -5 12.6 333.2 0.0 0.0 1.3 19.8 276.9 35.3 0.0 0.0

9 -10 14.2 225.3 0.0 23.3 0.0 0.0 0.0 0.0 169.1 33.0

9 -13 22.2 308.2 0.0 239.2 0.0 0.0 0.0 0.0 0.0 69.0

10-6 8.3 252.2 0.0 0.0 1.5 37.9 163.6 49.3 0.0 0.0

10-9 19.1 273.8 0.0 0.0 1.3 175.7 43.6 53.3 0.0 0.0

10-11 7.3 473.5 0.0 234.6 0.0 0.0 0.0 0.0 178.4 60.5

11-2 10.6 181.5 0.0 0.0 0.0 0.0 0.0 0.0 181.5 0.0

11-3 12.8 491.8 0.0 400.8 0.0 0.0 0.0 0.0 0.0 91.0

11-7 9.4 314.3 0.0 0.0 2.1 35.6 199.5 77.0 0.0 0.0

11-10 7.9 526.1 0.0 0.0 2.7 213.6 207.2 102.5 0.0 0.0

12-1 22.0 614.0 0.0 0.0 495.0 0.0 119.0 0.0 0.0 0.0

12-6 12.7 133.1 0.0 133.1 0.0 0.0 0.0 0.0 0.0 0.0

12-8 15.5 320.0 320.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

13-3 12.0 308.2 0.0 239.2 0.0 0.0 0.0 0.0 0.0 69.0

13-9 31.9 353.7 0.0 0.0 0.0 0.0 233.3 120.5 0.0 0.0

Table 3.3: Link costs, link total flows, and link flows associated with different origin-

destination nodes.
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Node 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0.0 42.8 53.7 23.0 8.9 25.6 31.9 28.3 19.5 33.7 40.9 12.9 41.7

2 64.0 0.0 27.9 68.8 54.7 31.3 24.5 19.4 42.2 23.0 15.1 42.0 40.6

3 66.5 28.2 0.0 71.3 57.2 33.8 27.0 32.1 44.7 25.5 17.6 44.5 12.8

4 20.1 53.4 55.6 0.0 10.8 27.5 33.8 38.9 21.4 35.6 42.8 32.9 43.6

5 9.2 42.6 44.8 14.1 0.0 16.6 22.9 28.1 10.5 24.7 32.0 22.1 32.7

6 32.7 25.9 28.1 37.5 23.4 0.0 6.3 11.4 27.2 8.1 15.3 10.6 40.9

7 39.5 19.6 21.8 44.4 30.3 6.8 0.0 5.2 34.1 14.9 9.1 17.5 34.6

8 44.6 14.5 26.9 49.4 35.3 11.9 5.1 0.0 39.1 20.0 14.1 22.5 39.6

9 21.8 32.0 34.2 26.7 12.6 22.5 28.8 33.9 0.0 14.2 21.5 33.1 22.2

10 40.9 17.8 20.0 45.8 31.7 8.3 14.6 19.7 19.1 0.0 7.3 18.9 32.8

11 48.9 10.6 12.8 53.7 39.6 16.2 9.4 14.5 27.1 7.9 0.0 26.9 25.5

12 22.0 30.0 40.8 45.0 30.9 12.7 19.0 15.5 40.0 20.8 28.1 0.0 53.6

13 53.7 40.2 12.0 58.6 44.5 45.8 39.0 44.2 31.9 37.5 29.6 56.5 0.0

Table 3.4: Minimum travel cost between two given nodes.

Paths Cost

OD-pair 1-2

1 12 8 2 42.8

OD-pair 1-3

1 5 6 7 11 3 53.7

1 5 6 10 11 3 53.7

1 5 9 10 11 3 53.7

1 5 9 13 3 53.7

1 12 6 7 11 3 53.7

1 12 6 10 11 3 53.7

OD-pair 2-1

2 8 7 6 5 1 64.0

2 8 7 6 12 1 64.0

2 8 12 1 64.0

2 11 7 6 5 1 64.0

2 11 7 6 12 1 64.0

2 11 10 6 5 1 64.0

2 11 10 6 12 1 64.0

2 11 10 9 5 1 64.0

Paths Cost

OD-pair 2-4

2 8 7 6 5 4 68.8

2 11 7 6 5 4 68.8

2 11 10 6 5 4 68.8

2 11 10 9 4 68.8

2 11 10 9 5 4 68.8

OD-pair 3-1

3 11 7 6 5 1 66.5

3 11 7 6 12 1 66.5

3 11 10 6 5 1 66.5

3 11 10 6 12 1 66.5

3 11 10 9 5 1 66.5

3 13 9 5 1 66.5

OD-pair 3-4

3 11 7 6 5 4 71.3

3 11 10 6 5 4 71.3

3 11 10 9 4 71.3

3 11 10 9 5 4 71.3

Paths Cost

3 13 9 4 71.3

3 13 9 5 4 71.3

OD-pair 4-2

4 5 6 7 8 2 53.4

4 5 6 7 11 2 53.4

4 5 6 10 11 2 53.4

4 5 9 10 11 2 53.4

4 9 10 11 2 53.4

OD-pair 4-3

4 5 6 7 11 3 55.6

4 5 6 10 11 3 55.6

4 5 9 10 11 3 55.6

4 5 9 13 3 55.6

4 9 10 11 3 55.6

4 9 13 3 55.6

Table 3.5: All paths utilized by the users for different OD-pairs and associated travel costs.
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Figure 3.2: Different subsets AOD of links used by the four OD-pairs (Flow from left to

right).
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left).
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3.4 System optimization (SO). Wardrop’s second principle

The first Wardrop’s principle does not lead to the best possible use of the network system.

This is because user equilibrium considers that individual travelers act only in their own

interests, but not necessarily in the interest of the system as a whole. To optimize general

interests Wardrop proposed his second principle:

“The average (or total) travel time should be minimized”,

that leads to the so called system optimization (SO) formulation, which can be formulated

mathematically as a minimization problem of the total system journey time spent by all

users in the network:

Minimize
h,v

Z =
∑

a∈A

vaca(va), (3.56)

subject to

∑

r∈Rpq

hpqr = dpq : ξpq, ∀(p, q) ∈ D (3.57)

∑

(p,q)∈D

∑

r∈Rp,q

δapqrhpqr = va : φa, ∀a ∈ A (3.58)

hpqr ≥ 0 : µpqr, ∀r ∈ Rpq,∀(p, q) ∈ D (3.59)

Under the system optimum, some travelers may be assigned to routes that have travel

costs higher than the minimal that they could achieve by deciding by themselves indepen-

dently.

Theorem 3 (Variational relation associated with Wardrop’s second principle.)

Under Wardrop’s second principle, the marginal contribution to the total cost of the

system of a new user is identical for all used routes in the same OD and larger for the

unused routes of this OD. In other words, the following variational relation holds:

hpqr

(

∑

a

φaδapqr − ξpq
)

= 0, ∀(p, q) ∈ D,∀r ∈ Rpq, (3.60)

∑

a

φaδapqr − ξpq ≥ 0, ∀(p, q) ∈ D,∀r ∈ Rpq, (3.61)

Proof. The Lagrangian function of problem 3.56–3.59 is

L(h,v;λ,µ) =
∑

a∈A

vaca(va) +
∑

(p,q)∈D

ξpq



dpq −
∑

r∈Rpq

hpqr



+ (3.62)

+
∑

a∈A

φa





∑

(p,q)∈D

∑

r∈Rp,q

δapqrhpqr − va



−
∑

(p,q)∈D,r∈Rpq

µpqrhpqr
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The Karush-Kuhn-Tucker (KKT) conditions are:

∂L
∂va

= ca(va) + vac
′
a(va)− φa = 0; ∀a ∈ A (3.63)

∂L
∂hpqr

= −ξpq +
∑

a

φaδapqr − µpqr = 0; ∀(p, q) ∈ D,∀r ∈ Rpq (3.64)

∑

r

hpqr = dpq; ∀(p, q) ∈ D (3.65)

∑

(p,q)

∑

r

δapqrhpqr = va; ∀a ∈ A (3.66)

hpqr ≥ 0; ∀(p, q) ∈ D,∀r ∈ Rpq (3.67)

hpqrµpqr = 0; ∀(p, q) ∈ D,∀r ∈ Rpq (3.68)

µpqr ≥ 0; ∀(p, q) ∈ D,∀r ∈ Rpq. (3.69)

Equation (3.64) can be written as:

µpqr =
∑

a

φaδapqr − ξpq; ∀r ∈ Rpq. (3.70)

If hpqr > 0 then from (3.68) we have µpqr = 0, that according to (3.70) leads to ξpq =
∑

a
φaδapqr. In addition, due to (3.69) µpqr =

∑

a
φaδapqr − ξpq ≥ 0, that is

∑

a
φaδapqr ≥ ξpq.

This is equivalent to (3.60)-(3.61), that ends the proof.

In addition, using (3.63) we get:

φa = ca(va) + vac
′
a(va); ∀a ∈ A. (3.71)

In summary, we can draw the following interesting conclusions.

1. The dual variable φa can be interpreted as the link marginal contribution to total

travel time in the network of an additional traveler that increments the link cost in

ca(va) and the cost of other travelers in vac
′
a(va) (c

′
a(va) each).

2. The dual variables ξpq can be interpreted as the route (r of OD (p, q)) marginal

contribution to total travel time in the network of an additional traveler. In fact

if hpqr > 0 because of (3.68) we have µpqr = 0, that is, from (3.70) we get ξpq =
∑

a
φaδapqr. We note that this marginal contribution is the same for all used routes

in the same OD.

3. From Equation (3.70) we can conclude that the dual variable µpqr can be interpreted

as the over-contribution (larger than other routes in the same OD) associated with

unused route r with origin-destination (p, q).

Theorem 4 Both, the Wardrop first and second principles lead to the same solution for

uncongested networks (Sheffi (1985)).
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Proof. When the link is uncongested, then ca(va) ≃ Ca0 and then

Ca(va) =

∫ va

0
ca(s)ds = ca0(va),

i.e. both objective functions coincide. Since the constraints are common for both problems,

they share the same optimal solution.

The SO problem has no practical sense because it does not provide an equilibrium

condition because the users will try not to follow the common rule, but their own optimal

choices.

3.5 Stochastic User Equilibrium (SUE)

Definition 3 (Stochastic User Equilibrium (SUE)) An stochastic user equilibrium

is reached when no traveler believes that his travel time can be improved by unilaterally

changing route and it is assumed that driver’s perceptions and preferences are random.

Due to variations in perception and factors such as weather, lighting, etc., the path

times are perceived differently by each driver, therefore, the perceived travel time of each

path can be modeled as a random variable with its associated probability density function.

Given the perceptions of travel time, each driver is assumed to choose the shortest travel

time path from origin to destination.

To treat this problem analytically, let the random variable Cpqr represent the perceived

travel time on route r between origin p and destination q, where r ∈ Rpq, the set of paths

associated with OD pair p-q, and let cpqr be the measured, or actual travel time on route

r between p and q. Assume that:

Cpqr = cpqr + ξpqr ∀p, q, r, (3.72)

where ξpqr is a random error term associated with the route consideration. Furthermore,

assume that E[ξpqr] = 0, or E[Cpqr] = cpqr, in other words, the average perceived travel

time is the actual travel time. The average travel time can be interpreted as the travel

time used in the deterministic analysis. The share of drivers choosing the r − th route,

Ppqr, is given by:

Ppqr(cpq) = Prob [Cpqr ≤ Cpql ∀l ∈ Rpq] ∀p, q, r. (3.73)

In other words, the probability that a given route is chosen is the probability that its

travel time is perceived to be the lowest of the all alternative routes.

One of the practical reasons for using stochastic network loading models is the sen-

sitivity of the flows in deterministic models to small changes in the network. Consider,

for example, a two-paths network whose travel times are t and t′ = t + ∆t respectively,
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connecting a single OD pair. While ∆t ≥ 0, all the flow should be assigned to the lowest-

travel-time path, i.e., the path 1. Although ∆t→ 0, the path 2 has no flow. Treated by a

stochastic network loading model, the probability that route 1 is chosen will be approxi-

mately 0.50 (when ∆t ≥ 0). For very low variance, travelers perceive the difference among

the travel cost accurately and act accordingly, as the deterministic model (all-or-nothing)

and when the variance is larger, the change in the choice probability is more moderate

since the perception of travel times is less accurate. At the limit, when the variance is

extremely large, the actual travel times do not affect the perception, which is completely

random.

Theorem 5 (Equilibrium.) Assuming a network (N ,A), where N is the set of nodes

and A is the set of links, the mathematical equations associated with this model are:

dpqPpqr(cpq) = hpqr; ∀(p, q) ∈ D, r ∈ Rpq (3.74)

cpqr =
∑

a∈A

ca(va)δapqr; ∀(p, q) ∈ D, r ∈ Rpq, (3.75)

where D is the set of OD-pairs, Rpq is the set of paths associated with OD pair p-q, hpqr
is the flow associated with OD p-q and path r, Ppqr(cpq) is the probability that a random

individual traveling through origin-destination p-q chooses path r.

Therefore, a stochastic user equilibrium method can be stated as:

Minimize
v

ZSUE = −
∑

p,q∈D

hpqE

[

min
r∈Rpq

(Cpqr)

]

+
∑

a∈A

vaca(va)−
∑

a∈A

∫ va

0
ca(s)ds, (3.76)

where ZSUE is the objective function to be minimized, and v ≡ {va|a ∈ A} is the vector

containing the link flows to be estimated.

Proof. Since we have an unconstrained problem, the optimal solution must satisfy the

following equation

∂ZSUE

∂va
= −

∑

p,q∈D

hpq
∑

r∈Rpq

∂E
[

minr∈Rpq (Cpqr)
]

∂cpqr
c′a(va)δapqr + vac

′
a(va)

= c′a(va)



va −
∑

p,q∈D

hpq
∑

r∈Rpq

∂E
[

minr∈Rpq (Cpqr)
]

∂cpqr
δapqr



 = 0, (3.77)

which leads to

va =
∑

p,q∈D

hpq
∑

r∈Rpq

∂E
[

minr∈Rpq(Cpqr)
]

∂cpqr
δapqr or c′a(va) = 0, (3.78)

Based on the assumption of common regularity conditions (see, e.g., Sheffi (1985)) one

obtains

ppqr =
∂E
[

minr∈Rpq(Cpqr)
]

∂cpqr
, (3.79)
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where ppqr are the probabilities of a user to select path r of OD-pair p-q. We note that

(3.79) is not a result of solving the SUE problem, indeed it has nothing to do with equilib-

rium problems at all; from reading textbooks on random utility theory, one will find that

it is a fundamental property of such models, under certain regularity conditions.

Since

va =
∑

p,q∈D

hpq
∑

r∈Rpq

ppqrδapqr, a ∈ A, (3.80)

one could could identify (3.78) and (3.80) to get (3.79). However, we must note that

identification of (3.78) and (3.80) leads to a homogeneous linear system of equations, which

can have an infinite number of solutions, some or all of which could not be probabilities.

So, if the ppqr resulting from (3.79) are probabilities, we have one solution to our traffic

problem. Otherwise, we only have the solution to a mathematical optimization problem,

which does not represent our physical traffic situation.

We noted in (3.78) that Equation (3.77) has also the solution c′a(va) = 0, that in some

cases leads to va = 0. For example, this occurs with the commonly BPR function (used

in Example 7.11)

ca(va) = ca0

[

1 + βa

(

va
qa

)γ]

. (3.81)

Since

∂2ZSUE

∂va∂vb
=











c′′(va)

[

va −
∑

p,q∈D
hpq

∑

r∈Rpq

∂E
[

minr∈Rpq (Cpqr)
]

∂cpqr
δapqr

]

+ c′(va) if a = b

0 otherwise

and for the first solution in (3.78) we have c′(va) > 0, i.e., the travel cost function has

to be strictly increasing, we can guarantee that we are in front of a local minimum in

this case. On the contrary, the alternative solution coming from c′(va) = 0 is not a local

minimum.

The perceived travel time is assumed to have some probability distribution functions

on each path. Depending on the probability distribution of the random variable, we can

find different stochastic route choice models. The most widely used are the following ones:

3.5.1 The multinomial probit based models (MNP)

The probit based model was formulated by Burrel (1968) and was developed by

Daganzo and Sheffi (1977) later on.

As we explained (see Eq. (3.72)), the perceived travel time Cpqr has a deterministic

part cpqr, such that E[Cpqr] = cpqr, and a random part ξpqr, such that E[ξpqr] = 0.

In these models, the joint probability distribution of the perceived travel times is

assumed to be the multivariate normal distribution function (MVN). Then, the travel

times can be modeled as

Cpqr ∼MNV [cpqr,Σpqr], (3.82)
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where cpqr is the vector of means and Σpqr is a nonsingular, symmetric and positive define

covariance matrix. Due to the independence between the r ∈ R alternatives, the covariance

terms are zero, i.e., the covariance matrix is a diagonal matrix.

The MVN distribution has the property of the reproductivity, however, their cumula-

tive density function (cdf) does not have this property. When we calculate the probability

of choice (see Eq. (3.73)) we need to use the cdf, that implies to evaluate multiple inte-

grals. In order to avoid this difficulty there exist several methods like the approximation

method or Montecarlo simulation method.

We note that the normality assumption may not be entirely appropriate for modeling

the distributions of the perceived link travel times, since these times cannot be negative.

3.5.2 The multinomial logit based models (MNL)

In these models it is assumed that the probability distribution of the perceived travel time

on each path are the reversed Gumbel distributions.

If Cpqr ∼ Gumbelrev(θpq, δpqr), i.e., its survival function G(h) is
4

G(h) = exp[− exp(θpq(h− δpqr))] (3.83)

with mean

E[Cpqr] = δpqr − γe/θpq (3.84)

and variance

V ar[Cpqr] =
π2

6θ2pq
(3.85)

Assuming independence, we have

Gminr∈Rpq (Cpqr)(h) =
∏

r∈Rpq

exp[− exp(θpq(h− δpqr))]

= exp



− exp(θpqh)
∑

r∈Rpq

exp(−θpqδpqr)





= exp[− exp(θpq(h− δ0)), (3.86)

where

δ0 = −
1

θpq
log

∑

r∈Rpq

exp(−θpqδpqr), (3.87)

which proves the stability under minimum operations of the selected reversed Gumbel

family.

4We work with survival functions because it is more convenient than the cumulative distribution func-

tions (cdf) for dealing with minima. The survival function is S(x) = 1−F (x), where F (x) is the cumulative

distribution function.
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Taking now into account that

E[Cpqr] = δpqr − γe/θpq = cpqr, (3.88)

where γe is the Euler constant, and that

E[ min
r∈Rpq

Cpqr] = δ0 − γe/θpq, (3.89)

one obtains

E[ min
r∈Rpq

Cpqr] = −
1

θpq
log

∑

r∈Rpq

exp(−θpqcpqr − γe)−
γe
θpq

= − 1

θpq
log

∑

r∈Rpq

exp(−θpqcpqr),

(3.90)

and then Equation (3.76) becomes

Minimize
v

ZSUE =
∑

pq∈D

1

θpq
hpq log





∑

r∈Rpq

exp (−θpqcpqr)



+
∑

a∈A

vaca(va)−
∑

a∈A

∫ va

0
ca(s)ds,

(3.91)

which was obtained by Sheffi and Daganzo (1978), and from (3.79) and (3.90) one

obtains the well known logit formula:

ppqr =
∂E
[

minr∈Rpq(Cpqr)
]

∂cpqr
=

exp(−θpqcpqr)
∑

l

exp(−θpqcpql)
. (3.92)

The multinomial logit SUE has long been known to suffer from the problem of assuming

independent, identically distributed random path components. In addition, the reversed

Gumbel family used implies the same variance for all routes, which is not realistic.

The main reason for forcing all distributions for the same OD-pair p-q to share the

same value of the scale parameter θpq of the reversed Gumbel model is that only then, the

reversed Gumbel family is stable with respect to minimum operations.
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Appendix

A Travel times and routes

In this section we show how to obtain the minimum travel times (minimum cost) between

any pair of nodes and how to obtain all actually used routes.

A1 Determining minimum trip cost between any pair of nodes

Apart from using the dual variables to calculate the minimum costs (time) associated with

any pair of nodes, an alternative method, which also identifies the possible OD pairs and

the unreachable nodes from a given node, is given below.

Once the problem (3.35)-(3.37) has been solved, one can immediately determine the

costs (times) associated with the links, and the cost (time) of a given path can be calcu-

lated.

There are several available methods in the existing literature to calculate the table of

minimum costs to travel between any pair of nodes, and the unreachable nodes from a

given node. For the sake of completeness, we give below one of them, which can be stated

as the following optimization problem:

Maximize
cost

∑

i,j

costij (3.93)

subject to

costip ≤ costij + cjp; ∀ link ajp (3.94)

costij ≥ 0 (3.95)

costii = 0 (3.96)

costij ≤ cij; ∀ link aij (3.97)

costij ≤ c0 (3.98)

where cij is the cost associated with link aij, with value 0 if i = j, and c0 is a high enough

upper bound of the costs cij .

The problem (3.93)-(3.98) gives the minimum trip cost (time) costij between any pair

of nodes (i, j) if the resulting costij < c0, and the unreachable nodes from node i, if the

resulting costij = c0. It is based on the Bellman dynamic programming constraint (3.94).

Note that the constraint (3.98) is required to deal with nodes not connected to the

rest of nodes, and to avoid unboundedness.

A2 Route identification and minimum cost path finding algorithm

In this section we give some tools to identify and enumerate paths.
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Given a candidate to path between nodes p and q, that is, a sequence of links joining

two nodes p and q, it is very easy to decide whether or not it is a path with the help of

matrices costij and the link costs c∗ij. To this end, we sum the costs associated with all

the links of the candidate to path and if the total cost equals costpq it is a path; otherwise

it is not.

Next, we supply an algorithm for finding all paths corresponding to a given OD-pair

which all are of minimum cost. Note that an efficient use of the minimum cost table costij
is used by cancelling the branching scheme as soon as the partial paths are not optimal.

Algorithm 1 (Minimum cost path finding algorithm)

Input: A graph, a table costij of minimum travel costs among, origin Xi and destination

node Xj and a table with the link costs cij .

Output: All the minimum cost paths between origin node Xp and a destination node

Xq, or an empty set if there are no paths.

Initial Step: Xi ← Xp

Path← Xp

Visited← Xp

Pcost = 0.

CandidatePaths = 1

Iteration Step:

while CandidatePaths=1

if there exists Xr ∈ Adj(Xi)not in Visited, Pcost+ cir ≤ costpr and

Pcost+ cir ≤ costpq,
then

Add Xr to Visited and Path.

Pcost=Pcost+cir.

if Xr = Xq, then

A path has been found.

Remove node Xr from Path.

Pcost=Pcost - cir
Xi ← last node in Path.

else

Xi ← Xr.

else if Xi = Xp

There is no path.

CandidatePaths=0.

else

Remove node Xi from Path.
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Xi ← last node Xp in Path.

Pcost=Pcost - cpr.

end if.

end while.

B Implementation of the proposed method

In this section we explain how the previous methods can be incorporated to obtain disag-

gregated flows by ODs and to perform route enumeration.

The traffic assignment proposed method together with a post-process of the resulting

information to obtain the matrix of least costs and to enumerate optimal paths, can be

practically implemented in the following steps:

Step 1: Obtaining link flows and costs. Initially, the problem (3.35)-(3.37) is solved

to obtain all the link flows vij and the link cost matrix with elements cij . Once this

problem has been solved and the link flows v∗ij are known, the problem (3.44)-(3.47)

is solved to get the unique vijpq disaggregated flow values.

Step 2: Obtaining the OD cost matrix. Using the link costs resulting from prob-

lem (3.35)-(3.37), the minimum cost problem (3.93)-(3.98) is solved supplying the

minimum cost matrix C ≡ costij.

Step 3: Enumerating paths. All minimum cost paths for each OD-pairs can be found,

for example, using the algorithm given in Appendix 3.5.2. Note that only minimum

cost (optimal) paths are considered, that is, a reduced number (the most important

paths) with respect to all possible paths5.

5We note that from a practical point of view it has no sense considering routes which are hardly used.
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4.1 Notation

αa free-flow travel time.

ηa(t) link a travel time associated with a user that leaves link a at time t.

Λ total number of queued vehicles at the link exit node.

φpqr stochastic travel cost between the OD-pair p-q through the route r

associated with stochastic demand dpq(ω) or link capacity qa(ω).

φ∗pqr stochastic minimum travel cost associated with route r with origin-

destination p-q.

φ̂pqr(h, ω) worst-case travel cost between the OD-pair p-q through the route r

45
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associated with the worst case demand d̂pq.

πpq(t) equilibrium travel cost to travel from origin p to destination q at time

t.

ρ traffic density.

ρ∗ dimensionless density.

ρc critical density.

ρ∗c dimensionless critical density.

ρj jam traffic density.

τ(t) delay function.

τa(t) link traversal time for a vehicle entering the link a at time t.

a link.

A(x, t) cumulative flow past any point x by time t.

ca travel cost associated with link a.

cij(t) travel cost to go from the initial node i to the final node j associated

with the departure time t.

C∗
pqr least travel cost corresponding to route r with origin-destination

p-q.

cpqr travel cost function associated with route r with origin-destination p-q.

D abscissa coordinate of a given point.

D∗ dimensionless abscissa coordinate of a given point.

dpq demand for the flows from origin p to destination q.

d̂pq worst case demand associated with the origin p to destination q at

time t.

Ea(t) cumulative inflow up to time t for link a.

ea(t) inflow rate for link a at time t.

Ga(t) cumulative flow associated with the exit of link a by time t.

ga(t) outflow rate for link a at time t.

hpqr flow on route r with origin-destination p-q.

h∗pqr(t) flow on route r with origin-destination p-q at time t in a dynamic user

equilibrium state.

L link length.

Ni(t) maximum number of vehicles that can be inside cell i at time t (cell

capacity).

ni(t) number of vehicles in cell i at time t.

q traffic flow.

q∗ dimensionless flow.

qa(ω) stochastic link capacity.

Qi(t) maximum flow in cell i at time t.

qm maximum flow.

Rpq set of routes with origin-destination p-q.
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t time.

t∗ dimensionless time.

Ta(t) link a entry time associated with a user that leaves link a at time t.

u traffic velocity.

u∗ dimensionless velocity.

u0 free-flow speed.

uc critical velocity.

uw shock wave speed.

va flow on link a.

x abscissa coordinate.

x∗ dimensionless abscissa coordinate.

x0 abscissa associated with the initial time.

x∗0 dimensionless abscissa associated with the initial time.

xa(t) number of vehicles on link a at time t.

xmax maximum number of vehicles in a link. Capacity.

yi(t) maximum flow in cell i and the number of vehicles that coming from

cell i− 1 can enter cell i during the time interval (t, t+ 1).

Ypqr(t) cumulative number of vehicles entering the network at origin p and

exiting at destination q over route r at any time t.

ypqr(t) instantaneous flows that arrives at destination q from origin p at

time t.

A set of links of a traffic network.

D set of origin-destination pairs of nodes.

N set of nodes of a traffic network.

4.2 Introduction

Dynamic traffic models consist in describing traffic flow patterns over time and space on

a transportation network for a given set of time-varying origin-destination (OD) demands

based on some predefined conditions. The users select their routes and departures times

according to the traffic conditions and desired arrival times.

Figure 4.1 shows a classification of dynamic traffic assignment problems described in

this chapter.

These problems present two components: (i) the network loading, i.e., how traffic

propagates on a transport network and hence governs the network performance in terms

of travel time; and (ii) the assignment strategy, i.e., how the travelers select their routes,

departures times, modes or destinations.

The Network Loading is a process that is used to calculate how flows distribute over

a network with a given route inflow profile for each origin-destination pair. In general, we

can distinguish between two categories:
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Figure 4.1: Classification of the dynamic traffic assignment problems.

• Simulation-based approach model. This approach emphasizes each individual driver’s

behavior, and has the advantage of closely approximating the behavior of individual

drivers while readily considering several traffic control schemes. The number of

attributes involved is normally quite large, and the properties of the solution remain

uncertain. In this group it is worth mentioning the follow-the-leather models (see

Chandler et al. (1958), Gazis et al. (1961) or Wagner et al. (1996)), which try to

reproduce each driver’s behavior due to some stimulus. These models assume that

there is a high correlation between the response of a driver and the relative speed

of his vehicle with respect to the vehicle ahead. However, such a deep detailed

description of traffic flow implies a very high requirements of memory and cpu time,

that make these models inapplicable for real cases of traffic flow.

• Analytical-based approach model. This approach concerns the average driver’s be-

havior, and is essentially macroscopic. The significant advantages of the analytical

models are: (i) the derived optimality conditions can be characterized by preset

driver behavior principles, such as utility maximization or equilibrium condition,

and (ii) the sensitivity analysis for different scenarios is easier to perform since the

procedure is usually less time consuming than with a simulation-based approach.

In this chapter we refer to the analytical-based approach model.

The chapter is structured as follows. In Section 4.3, we present some basic concepts

and relationships that are necessary to treat the dynamic traffic approach. In addition,

we define causality and the FIFO rule, providing three different mathematical ways to

observe this principle. In Section 4.4, we show the main network loading models, i.e.,
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the hydrodynamic models, the Merchant-Nemhauser (M-N) model, the delay function

model, the point and physical queue models and the cell transmission model. About the

hydrodynamic models we develop a dimensional analysis in order to treat the problem

in a dimensionless form. In Section 4.5, the assignment strategy is analyzed. We divide

this part in deterministic and stochastic approach. Among the deterministic models, we

describes the most used formulations: the mathematical program-based, the variational

inequality-based and the optimal control-based. About the stochastic models, we include

the cases when the random variable is the travel cost or, when the demand or the road

capacity is stochastic. In Section 4.6, we draw some conclusions. Finally, in the Appendix

of this chapter, we present the characteristic lines method.

4.3 Traffic flow components

This section presents some concepts and relationships that are used along the chapter.

Let ea(t) be the inflow rate for link a at time t, ga(t), the outflow rate for link a at

time t, Ea(t), the cumulative inflow up to time t for link a, Ga(t), the cumulative outflow

up to time t for link a, τa(t), the link a traversal time at time t and xa(t) the number of

vehicles on link a at entering time t. By definition, we have:

Ea(t) =

∫ t

0
ea(s)ds, or ea(t) =

∂Ea(t)

∂t
, (4.1)

Ga(t) =

∫ t

0
ga(s)ds, or ga(t) =

∂Ga(t)

∂t
. (4.2)

The flow conservation condition requires the number of vehicles on a link at a

particular time to be equal to the total inflow at the entry of that link at that time minus

the corresponding total outflow at the link exit:

xa(t) = Ea(t)−Ga(t). (4.3)

By taking derivatives, we have the following alternative expression for the flow conservation

condition:

ẋa(t) = ea(t)− ga(t). (4.4)

Assuming that the vehicles leave links in the same order as they enter, we can derive

the link travel time of each vehicle. Then, the vehicle entering link a at time t1 exits this

link at time t2 if and only if

Ea(t1) = Ga(t2). (4.5)

As no overtaking is allowed1, the link travel time of a vehicle is equal to the link exit time

1This condition is assumed in common traffic models and is called the FIFO condition, as explained in

section 4.3.1.
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Figure 4.2: Relationships among the link occupancy (xa), inflow rate (ea), outflow rate

(ga), cumulative inflow (Ea) and cumulative outflow (Ga).

minus the corresponding entry time. So, we have the following important relationships:

Ea(t) = Ga (t+ τa(t)) , or (4.6)

τa(t) = G−1
a [Ea(t)]− t, (4.7)

which allow us to know how flow changes with time.

Taking the derivative of (4.6) with respect to t we obtain the well known flow prop-

agation condition:

ga(t+ τa(t)) =
ea(t)

1 +
dτa(t)

dt

. (4.8)

Figure 4.2 shows the relationships among the link occupancy (xa), inflow rate (ea),

outflow rate (ga), cumulative inflow (Ea) and cumulative outflow (Ga) that have been

discussed mathematically in (4.1)–(4.8).

Following Nie and Zhang (2005a), analytical-based approach models present a common

framework, i.e., these models consider (i) the flow conservation, (ii) the flow propagation

and (iii) the flow behavior. With “flow behavior” they assume that the link traversal time

for a vehicle entering the link at the beginning of the interval τ(t), or the link outflow

during the studied time interval g(t), is a function of the physical characteristics of the

link (e.g. free flow travel time, bottleneck capacity...) and the current link state (e.g.

volume), considering the causality and the FIFO (First Input First Output) rule:
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τ(t) or g(t) = f(free flow travel time αa, bottleneck capacity qm,

causality, FIFO, queue spillback...).

4.3.1 Causality and the FIFO rule

Causality refers to the property that the link travel times for traffic entering at time t2
only depend on the traffic entering at time t1 ≤ t2. This property means that the speed

and travel time of a vehicle on a link is affected by the speed of vehicles ahead but not

by vehicles behind (Heydecker and Addison (1996)).

FIFO (First Input First Output) rule (on the link level) means that users who enter the

link earlier will leave it sooner. We can consider three level FIFO rules: link, route and

OD. Link (or route) FIFO is satisfied if every user who enters the link (or route) earlier will

leave it sooner. Similarly, OD FIFO is satisfied if users on the same OD pair who depart

the origin earlier will arrive the destination sooner. Link FIFO can prevent unrealistic

situation such as the fast traffic “jump over” the preceding slow traffic. In particular, on

a single-lane road and in a queue, no overtaking can occur and capturing FIFO for this

situation in modeling is a mandatory.

In the following paragraphs we provide three different mathematical ways to observe

this principle.

A. In terms of τ a(t). Let τa(t) be the travel time associated with a vehicle that enters

link a at time t, then the FIFO condition can be expressed as indicated by the following

theorem.

Theorem 6 The FIFO condition is equivalent to:

τ ′a(t) > −1. (4.9)

Proof. First we proof that condition (4.9) is necessary. Let ω > 0, then the FIFO

condition, expressed in terms of the link exit times of two vehicles entering the link at

times t and t+ ω, respectively, can be written as

t+ τa(t) < t+ ω + τa(t+ ω); ω > 0, (4.10)

that is,

τa(t+ω)−τa(t) > −ω ⇔ τa(t+ ω)− τa(t)
ω

> −1 ⇒ τ ′a(t) = lim
ω→0

τa(t+ ω)− τa(t)
ω

> −1.
(4.11)

Condition (4.9) is sufficient too. If τ ′a(t) > −1, then we have

τa(t+ ω) = τa(t) +

t+ω
∫

t

τ ′a(t)dt > τa(t) +

t+ω
∫

t

−1dt = τa(t)− ω,
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which implies (4.10).

B. In terms of ηa(t). Let ηa(t) be the link a travel time associated with a vehicle that

leaves link a at time t, then we have the following theorem.

Theorem 7 The FIFO condition is equivalent to:

η′a(t) < 1. (4.12)

Proof. Necessary condition: Let ω > 0, then the FIFO condition, expressed in terms of

the link entry times of two vehicles leaving the link at times t and t+ ω, respectively, can

be written as

t− ηa(t) < t+ ω − ηa(t+ ω); ω > 0, (4.13)

that is,

ηa(t+ ω)− ηa(t) < ω ⇔ ηa(t+ ω)− ηa(t)
ω

< 1 ⇒ η′a(t) = lim
ω→0

ηa(t+ ω)− ηa(t)
ω

< 1.

(4.14)

Sufficient condition: If η′a(t) < 1, then we have

ηa(t+ ω) = ηa(t) +

t+ω
∫

t

η′a(t)dt < ηa(t) +

t+ω
∫

t

1dt = ηa(t) + ω,

which implies (4.13).

C. In terms of Ta(t). Let Ta(t) be the link a entry time associated with a vehicle that

leaves link a at time t, we have:

Theorem 8 The FIFO condition is equivalent to:

T ′
a(t) > 0. (4.15)

Proof. Necessary condition: Let ω > 0, then the FIFO condition can be written as

Ta(t) < Ta(t+ ω); ω > 0, (4.16)

that is,

Ta(t+ ω)− Ta(t) > 0 ⇔ Ta(t+ ω)− Ta(t)
ω

> 0 ⇒ T ′
a(t) = lim

ω→0

Ta(t+ ω)− Ta(t)
ω

> 0.

(4.17)

Sufficient condition: If h′a(t) > 0, then we have

Ta(t+ ω) = Ta(t) +

t+ω
∫

t

T ′
a(t)dt > Ta(t) +

t+ω
∫

t

0dt = Ta(t),
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which is (4.16).

Theorems 6, 7 and 8 are three equivalent forms of expressing the FIFO condition.

Depending on the way of dealing with traffic problems one of them can be more convenient

than the other two.

Accordingly, linear travel time functions like τ(t) = k1 + k2x(t), where k1 and k2 are

positive constants, obey FIFO. On the other hand, Daganzo (1995b) proved that the travel

time functions depending on the inflow e(t) can violate FIFO.

4.4 Network loading Models

4.4.1 Hydrodynamic Models

The analogies of traffic flow with fluid and gas dynamics has attracted the attention of

physicists and engineers in the past. Consequently, a great collection of papers dealing

with the problem of modeling traffic flow using well known equations from hydraulics have

been published. They led to the so-called macroscopic models for traffic simulation.

Thus, one possibility for analyzing the dynamic case consists in using the hydraulic

analogy, that is, assuming that the arcs are channels and that the traffic flow is replaced

by a fluid (see Hopf (1950), Lax (1954), Whitham (1974)). Two important works of this

approach were Lighthill and Whitham (1955) and Richards (1956), who independently

proposed similar methods for traffic flow. An important contribution of these models to

traffic problems is in the Newell’s kinematic wave trilogy (Newell (1993a,b,c)). Newell,

instead of using the Lighthill-Whitham-Richards (LWR) theory to evaluate flows or densi-

ties, proposes to evaluate the cumulative flow A(x, t) past any point x by time t, because a

solution for A(x, 1) can be evaluated directly from boundary or initial conditions without

its evaluation at intermediate times and positions. Using this idea, Newell considers sev-

eral examples including single and multiple O-D pairs. Other interesting results using this

model, as the analysis of a red light turning green or red can be seen in Childress (2005),

but unfortunately most of its applications are for single arcs and/or particular cases.

In this section, we discuss the mathematical bases of the hydrodynamic models. Due

to the simplicity of the formulation that let us a better understanding, we have chosen a

dimensionless point of view. In the appendix of this chapter we present the characteristic

lines method, in terms of density and in terms of flow, and then we solve the red to green

traffic light case. Finally, we give some examples with different density distributions.

Variables involved

To begin, we define and expose the relationships between the traffic stream variables that

are involved in a traffic model, namely, density, flow and speed.

Density (ρ) is defined as the number of vehicles per unit area of the roadway. In traffic
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flow, the two most important densities are the critical density (ρc) and the jam

density (ρj). The maximum density achievable under free flow is ρc, while ρj is the

minimum density achieved under congestion. In general, the jam density is in the

order of seven times the critical density.

Flow (q), or traffic intensity, is the number of vehicles passing a reference point per unit

time, and is measured in vehicles per hour. The inverse of flow is headway, which is

the time that elapses between the ith vehicle and the i+1 vehicle passing a reference

point in space. In congestion, the headway remains constant and reaches a minimum

value.

Speed (u) in traffic flow is defined as the distance traveled per unit time. The speed of

every single vehicle is almost impossible to track on a roadway; therefore, in practice,

average speed is calculated by sampling vehicles over a period of time or area and is

calculated and used in formulas.

c c

c

c

c

c j

j

m

o

j

0 0

m

q=ρu

Figure 4.3: Relationships among flow, density and speed for vehicle movement.

Figure 4.3 shows the usually assumed relationships between flow (q), density (ρ) and

speed (u). The maximum flow rate, qm, represents the highest rate of traffic flow that

the highway is capable of handling. The traffic density that corresponds to this maximum

flow rate is ρc, and the corresponding speed is uc (critical speed).

The basic premise of traffic flow models is that speed is a decreasing function of density.

As the density increases, the space between vehicles decreases and drivers react by lowering
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Figure 4.4: Empirical relationship density-velocity.

their speed. Mathematically, it can be expressed as:

u = u0

(

1− ρ

ρj

)

, (4.18)

where u0 is the free-flow speed (which is observed at zero density). Note that when the

density is the traffic jam density (ρj), the highway section becomes so congested that the

traffic stops (u = 0).

According to Mannering and Kilareski (1998), it is important to note that field studies

have shown that the speed-density relationship tends to be nonlinear at low densities and

high densities. In fact, the overall speed-density relationship is better represented by three

relationships as indicated in Figure 4.4: (i) a nonlinear relationship at low densities whose

speed slowly declines from the free-flow value, (ii) a linear relationship over the large

medium-density region (as shown in Equation (4.18)), and (iii) a nonlinear relationship

near the traffic jam density as the speed asymptotically approaches zero with increasing

density. In any case, along this section we will work with traffic stream models that are

based on the assumption of a linear speed-density relationship.

Since q = ρu, from (4.18) the following parabolic flow-density model can be obtained

q = u0

(

ρ− ρ2

ρj

)

. (4.19)

The general form of Equation (4.19) is shown in Figure 4.3 (lower-left diagram).

Finally, the following equation shows the relationship between flow and speed:

q = ρj

(

u− u2

u0

)

. (4.20)
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This relationship is also a parabolic function as shown in Figure 4.3 (upper-right dia-

gram). This figure shows that two speeds are possible for each q value, up to the highway’s

capacity qm. It is desirable, for any given flow, to keep the average space-mean speed on

the upper portion of the speed-flow curve (i.e., above uc). When speeds drop below uc,

traffic is in a highly congested and unstable condition.

Finally, we define the shockwave how the propagation of congestion upstream from

a traffic bottleneck. Congestion shock waves will vary in propagation length, depending

upon the upstream traffic flow and density. Figure 4.5 shows the relationship among flow,

density and speed in a traffic bottleneck.

ρ

q

Wave Speed (w)

U0

1

Figure 4.5: Relationship among flow, density and speed in a traffic bottleneck.

Dimensional analysis

We consider the following list of 11 variables involved in our traffic problem:

{q, ρ, ρj , ρc, u, u0, x, x0,D,L, t}, (4.21)

i.e., traffic intensity, density, jam traffic density, density associated with maximum inten-

sity of flow, velocity, maximum velocity, the abscissa coordinate, the abscissa associated

with the initial time, the abscissa coordinate of a given point, the link length and time.

The Buckingham theorem states that any relation among these 11 variables is equiv-

alent to a relation among the reduced set of 8 dimensionless variables (see the variable

dimensional Table 4.1):
{

q∗ =
q

ρju0
; ρ∗ =

ρ

ρj
; ρ∗c =

ρc
ρj

;u∗ =
u

u0
;x∗ =

x

L
;x∗0 =

x0
L
;D∗ =

D

L
; t∗ =

tu0
L

}

. (4.22)
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Note that we have used u0, ρj and L as basic or normalizing variables.

Table 4.1: Dimensional table of the variables involved in the traffic problem.

q ρ ρj ρc u u0 x x0 D L t

Veh 1 1 1 1 0 0 0 0 0 0 0

L 0 -1 -1 -1 1 1 1 1 1 1 0

T -1 0 0 0 -1 -1 0 0 0 0 1

Traffic variables in dimensionless form

If we apply the Buckingham theorem to obtain the relations among the following set of

variables: {ρ, ρj , u, u0}, {q, ρ, ρj , u0} and {q, ρj , u, u0}, we get (see Table 4.2)

u∗ = f(ρ∗), (4.23)

q∗ = g(ρ∗) (4.24)

and

q∗ = h(u∗), (4.25)

where f(·), g(·) and h(·) are arbitrary functions. As one example, we can easily check that

the well known relationships (4.18), (4.19) and (4.20) using the dimensionless variables in

(4.22), can be written in dimensionless form as (see Table 4.2)

u∗ = f(ρ∗) = (1− ρ∗), 0 ≤ ρ∗ ≤ 1, (4.26)

q∗ = g(ρ∗) = ρ∗ (1− ρ∗) , 0 ≤ ρ∗ ≤ 1 (4.27)

and

q∗ = h(u∗) = u∗ (1− u∗) , 0 ≤ u∗ ≤ 1, (4.28)

respectively.

From Equation (4.27) we obtain that

0 ≤ q∗ ≤ 1/4.

This proves that Expressions (4.18), (4.19) and (4.20) satisfy the Buckingham theorem.

Note that

w(ρ) =
dq(ρ)

dρ

∣

∣

∣

∣

ρ(x,t)

= u0(1− 2ρ/ρj), (4.29)

that in dimensionless form becomes

w∗(ρ∗) =
dq∗(ρ)

dρ∗

∣

∣

∣

∣

ρ∗(x,t)

= (1− 2ρ∗). (4.30)
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Table 4.2: Dimensional tables of the variables involved in three traffic problems.

ρ ρj u u0
Veh 1 1 0 0

L -1 -1 1 1

T 0 0 -1 -1

q ρ ρj u0
Veh 1 1 1 0

L 0 -1 -1 1

T -1 0 0 -1

q ρj u u0
Veh 1 1 0 0

L 0 -1 1 1

T -1 0 -1 -1

Formulation

Let q(x, t), u(x, t) and ρ(x, t) be the traffic intensity, velocity and density, respectively,

associated with location x at time t. These three magnitudes are related by

q(x, t) = F (ρ(x, t)) = ρ(x, t)u(x, t). (4.31)

The conservation law stated at the space and time intervals (x, x+ dx) and (t, t+ dt),

respectively, leads to (flow entering the space interval minus flow leaving the interval equal

to increment of users, all referred to the time interval dt):

ρ(x, t+ dt)dx− ρ(x, t)dx = q(x, t)dt− q(x+ dx, t)dt, (4.32)

that produces the partial differential equation

∂ρ

∂t
+
∂q

∂x
= 0, (4.33)

which is the differential equation sought after.

Equation (4.33) in dimensionless form becomes

∂ρ∗

∂t∗
+
∂q∗

∂x∗
= 0, (4.34)

Differential equation in terms of ρ(x, t)

Assuming the functional relation (4.31), between q(x, t) and ρ(x, t) we have

∂ρ

∂t
+
∂ρu(ρ)

∂x
= 0 ⇔ ∂ρ

∂t
+ F ′(ρ)

∂ρ

∂x
= 0. (4.35)

From (4.18) we obtain

F (ρ) = u0ρ

(

1− ρ

ρj

)

. (4.36)

Equation (4.35) in dimensionless form becomes

∂ρ∗

∂t∗
+ (F ∗)′(ρ∗)

∂ρ∗

∂x∗
=

∂ρ∗

∂t∗
+ (1− 2ρ∗)

∂ρ∗

∂x∗
= 0, (4.37)

where

q∗ = F ∗(ρ∗) = ρ∗(1− ρ∗).
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An important advantage of model (4.35) that facilitates the solution of many particular

problems is that its general solution can be obtained analytically as:

x = tF (ρ(x, t)) + Φ(ρ(x, t)) (4.38)

where Φ(·) is an arbitrary function, which can be verified by taking partial derivatives and

replacing into (4.35).

Note that for t = 0, Expression (4.35) becomes x = Φ(ρ(x, 0)). So, if ρ(x, 0) is

invertible (strictly monotone) with respect to its first argument, we have

Φ(x) = ρ−1(x, 0). (4.39)

The family of characteristic lines passing throughout the points (x0, 0) are:

x = F ′(ρ)t+ x0 = u0

(

1− 2ρ

ρj

)

t+ x0 (4.40)

and in dimensionless form the family of characteristic lines passing throughout the points

(x∗0, 0) are:

x∗ = (1− 2ρ∗) t∗ + x∗0. (4.41)

Shock wave (ρ equation)

In this section we derive the propagation speed of a shock wave.

s
α

γ
2

γ
1

∆x
1

∆x
2

α−γ 2

γ
2

α−γ 1
π/2+γ 1

π/2+γ 2π/2−α

Figure 4.6: Two close trajectories in the neighborhood of a shock wave. The ρ flow density

function case.

Consider Figure 4.6, where we have plotted the trajectories of two vehicles running in

close times in the neighborhood of the shock wave discontinuity. Using the seen theorem,

from the figure we get

s

cos γ1
=

∆x1
sin(α− γ1)

(4.42)

s

cos γ2
=

∆x2
sin(α− γ2)

, (4.43)
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that leads to

∆x1
∆x2

=
cos γ2 sin(α− γ1)
cos γ1 sin(α− γ2)

(4.44)

=
cos γ2(sinα cos γ1 − cosα sin γ1)

cos γ1(sinα cos γ2 − cosα sin γ2)
(4.45)

=
tanα− tan γ1
tanα− tan γ2

=
uw − u1
uw − u2

, (4.46)

where uw = tanα is the shock wave speed and u1 = tan γ1 and u2 = tan γ2 are the vehicle

speeds before and after the shock wave discontinuity.

Since the flow circulating between both vehicle trajectories must be identical before

and after crossing the shock wave, we must have:

ρ1∆x1 = ρ2∆x2 ⇔ ∆x1
∆x2

=
ρ2
ρ1
, (4.47)

and then from (4.46) we get

uw =
ρ2u2 − ρ1u1
ρ2 − ρ1

=
q2 − q1
ρ2 − ρ1

. (4.48)

If now we consider the relationship (4.19), we get

uw =
q2 − q1
ρ2 − ρ1

(4.49)

=

u0

(

ρ2 −
ρ22
ρj

)

− u0
(

ρ1 −
ρ21
ρj

)

ρ2 − ρ1
(4.50)

=

u0

(

ρ2 − ρ1 −
(ρ2 − ρ1)(ρ2 + ρ1)

ρj

)

ρ2 − ρ1
(4.51)

=
u0
ρj

(ρj − ρ1 − ρ2), (4.52)

that in dimensionless form becomes

u∗w = 1− ρ∗1 − ρ∗2 (4.53)

and if ρ1 = ρ2 = ρ gives

u∗w = 1− 2ρ∗. (4.54)

Differential equation in terms of q∗(x, t)

In the previous paragraph we have eliminated q(x, t) to obtain a differential equation for

ρ(x, t). In this section we eliminate ρ(x, t) to obtain a differential equation for q(x, t), but

in order to illustrate its advantages, we use a dimensionless form.
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Since

q∗ = ρ∗(1− ρ∗), (4.55)

solving for ρ∗ we obtain

ρ∗ = G∗(q∗) =
1±√1− 4q∗

2
, (4.56)

and taking partial derivatives in (4.56) with respect to t∗ we get

∂ρ∗

∂t∗
= G∗′(q∗)

∂q∗

∂t∗
= (1− 4q∗)−1/2 ∂q

∗

∂t∗
, (4.57)

and substituting (4.57) into (4.34) we get the differential equation in terms of q∗(x∗, t∗)

∂q∗

∂x∗
+G∗′(q∗(x∗, t∗))

∂q∗

∂t∗
=
∂q∗

∂x∗
± (1− 4q∗)−1/2 ∂q

∗

∂t∗
= 0.

The family of characteristic lines passing throughout the points (0, t0) are:

t∗ = G∗′(q∗(0, t∗0))x
∗ + t∗0 = ±(1− 4q∗(0, t∗0))

−1/2x∗ + t∗0. (4.58)

The intersection of two infinitely close characteristic lines neglecting infinitesimal terms

is given by

t∗ = G∗′(q∗(t∗0))x
∗ + t∗0

= G∗′(q∗(t∗0 +∆t∗0))x
∗ + t∗0 +∆t∗0

= G∗′(q∗(t∗0) + ∆t∗0(q
∗)′(t∗0))x

∗ + t∗0 +∆t∗0

= (G∗′(q∗(t∗0)) + ∆t∗0(q
∗)′(t∗0)G

∗′′(q∗(t∗0))x
∗ + t∗0 +∆t∗0, (4.59)

that leads to

x∗ = − 1

(q∗)′(t∗0)G
∗′′(q∗(t∗0))

, (4.60)

t∗ = t0 −
G∗′(q∗(t∗0))

(q∗)′(t∗0)G
∗′′(q∗(t∗0))

, (4.61)

that are the parametric equations of the intersection curve.

Shock wave (q∗ equation)

In this section we derive the propagation speed of a shock wave of the q∗ differential

equation.

Figure 4.7 shows the trajectories of two vehicles running in close times in the neighbor-

hood of the shock wave discontinuity. Note that in this case, the x and t axes have been

exchanged with respect to those in subsection 4.4.1. This means that the angles γi and γ
′
i

for i = 1, 2, on one side, and α and α′, on the other, are complementary (add up to π/2).



62 Chapter 4. Dynamic traffic models
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Figure 4.7: Two close trajectories in the neighborhood of a shock wave. The q∗ flow

intensity function case.

Similarly, we denote u∗−1
w = 1/u∗w, u

∗−1
1 = 1/u∗1 and u∗−1

2 = 1/u∗2, to the dimensionless

velocity inverses.

Using the sine theorem, from the figure we get

s

cos γ′1
=

∆t∗1
sin(α′ − γ′1)

(4.62)

s

cos γ′2
=

∆t∗2
sin(α′ − γ′2)

, (4.63)

that leads to

∆t∗1
∆t∗2

=
cos γ′2 sin(α

′ − γ′1)
cos γ′1 sin(α

′ − γ′2)
(4.64)

=
cos γ′2(sinα

′ cos γ′1 − cosα′ sin γ′1)

cos γ′1(sinα
′ cos γ′2 − cosα′ sin γ′2)

(4.65)

=
tanα′ − tan γ′1
tanα′ − tan γ′2

=
u∗′w − u∗′1
u∗′w − u∗′2

, (4.66)

where, as indicated, u∗−1
w = tanα′ is the inverse of the shock wave speed and u∗−1

1 = tan γ′1
and u∗−1

2 = tan γ′2 are the inverses of the vehicle speeds before and after the shock wave

discontinuity.

Denoting by q∗1 and q∗2 to the flow intensities before and after the shock wave, in this

case, we have:

q∗1∆t
∗
1 = q∗2∆t

∗
2 ⇔ ∆t∗1

∆t∗2
=
q∗2
q∗1
, (4.67)

and then similar to (4.66) we get

∆t∗1
∆t∗2

=
u∗−1

w − u∗−1
1

u∗−1
w − u∗−1

2



4.4. Network loading Models 63

and then

u∗−1
w =

q∗2u
∗−1
2 − q∗1u∗−1

1

q∗2 − q∗1
=
ρ∗2 − ρ∗1
q∗2 − q∗1

. (4.68)

If now we consider the relationship (4.56), we get

u∗−1
w (q∗1 , q

∗
2) =

ρ∗2 − ρ∗1
q∗2 − q∗1

=
±
√

1− 4q∗1 ∓
√

1− 4q∗2
2(q∗2 − q∗1)

, (4.69)

where we have indicated explicitly that u∗−1
w depends on q∗1 and q∗2 .

If q∗2, q
∗
1 → q∗ we get u∗−1

w (q∗, q∗) =
1√

1− 4q∗
.

Conclusion

In addition, this model has some limitations, such as: (a) the shock waves lead to dis-

continuous wave profiles, which do not seem very realistic in practice, (b) the assumed

relations between velocity and density are not adequate to describe nonequilibrium situa-

tions, (c) the interactions among vehicles is not adequately taken into consideration, and

many others. These limitations motivated important modifications proposed by several

authors, leading to complex models that involved well known equations, such as the Burg-

ers equation (see Whitham (1974)), the Boltzmann equation (see Prigogine and Herman

(1971) or Paveri Fontana (1975)) and the Navier-Stokes like equations (see Stokes (1845)).

These modifications include additional terms to consider important traffic effects, such as:

(a) the acceleration and (b) the interaction of vehicles, (c) a dynamic equation for the

average velocity, (d) a convection term to describe velocity changes caused by average

vehicle motion, (e) an anticipation term to consider drivers awareness of the traffic condi-

tions ahead, (f) a viscosity term to smooth out sudden density and velocity changes, (g)

a relaxation term, (h) an interaction term to describe the deceleration of vehicles due to

next vehicle ahead, etc.

In conclusion, very complex models are required to reproduce the real and complicated

traffic flow behavior but unfortunately, there are no analytical solutions for the general

Navier-Stokes equation and only in very special cases this solution is known. Consequently,

either simplified versions of the Navier-Stokes equation are used to deal with traffic prob-

lems, or complicated numerical methods that are not practical for traffic networks need

to be used.

4.4.2 M-N Model (Merchant-Nemhauser)

Merchant and Nemhauser (1978a,b) proposes the following model, based on an exit-flow

function that determines the share of the number of users leaving the link during a time

interval. It can be expressed as:

xi+1 = xi + ei − gi (4.70)
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gi = f(xi). (4.71)

Equation (4.70) forces the flow conservation. Equation (4.71) models the flow behavior

(exit flow approach), being f(xi) a nondecreasing and concave function to model conges-

tion. In addition, xi ≥ f(xi), that is, the number of users leaving the link cannot exceed

the number of users inside the link. We can use the function f(x) = min{γmx, qm}, being
qm the maximum flow and the function γm < 1. Note that gi is bounded from above by

the maximum flow that can be discharged during a given interval of time ∆t.

We have included this model because the first assignment models used this loading

approach. The disadvantage of this model is the difficulty in defining the function γm.

For example, if we assume uniform flow distribution, γm will be 1.

4.4.3 Delay-Function Model

The delay function model is based on choosing a form of the delay function τ(t) which

is FIFO-consistent (τ̇(t) > −1). Whether the delay function is a linear one like τ(t) =

k1+k2x(t), where k1 and k2 are positive constants, which always holds the FIFO condition,

the model can be defined as follows:

ẋa(t) = ea(t)− ga(t) (4.72)

τa(t) = αa + qmxa(t) (4.73)

ga(t+ τa(t)) =
ea(t)

1 + τ̇a(t)
. (4.74)

Equation (4.72) is the flow conservation, Equation (4.73) models the link flow behavior

(travel time approach) and Equation (4.74), the flow propagation.

This model is difficult to calibrate when realistic results are required.

4.4.4 Point and Physical Queue Models

• The point queue model is based on the following assumptions: (i) the vehicles have

zero length; (ii) the link traversal speed is the free flow speed; (iii) the vehicles wait

for exiting if the link exit-capacity is exceeded. There exist tree general formulations,

namely, (a) the exit flow function approach, where the inflow rates and occupancies

are given and the outflow rates are determined by the flow conservation condition

and then, the travel time is calculated using the flow propagation condition; (b) the

travel time function approach, where we determine the travel times based on the flow

conservation and the travel times functions, given the link inflows and occupancies

and then, the outflow rate can be obtained by flow propagation condition; and (c)

the mixed approach, where the inflow rate and occupancy are known, also we require

both predefined travel time functions and exit flow functions, but the travel times

and the outflow rates are determined separately by their corresponding equation and

the flow conservation condition, without satisfying the flow propagation condition.
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APPROACHES

Point Queue Model

Exit flow function approach Travel time function approach Mixed approach

Flow conservation Flow conservation Flow conservation

g(t) = f(·) τ(t) = f(·) g(t) = f(·)
Flow propagation Flow propagation τ(t) = h(·)

Physical Queue Model

Exit flow function approach Combined approach

Flow conservation Flow conservation

g(t) = f(xmax) running segment queuing segment

Flow propagation τ(t) = f(·) g(t) = f(xmax)

Hydrodynamic relationship Flow propagation

Table 4.3: Different approaches in the point and physical queue models

• The physical queue model considers the vehicle lengths, whereupon it let us capture

junction blockage and queue spillback2 in a network model. There exist two general

formulations, namely, (a) the exit flow function approach, which is similar to the

exposed exit flow function approach, but this one uses the hydrodynamic wave model

of traffic flow, considering the storage capacity (xmax) in the exit flow function

to capture the effects of physical queues; and (b) the combined approach, which

divides a link into a running segment (based on the travel time function) and a

queuing segment (based on an exit flow function, which considers the downstream

storage capacity but does not consider shockwaves), combining flow conservation

and propagation conditions.

Table 4.3 shows a summary of the different types of approaches in the point and

physical queue models.

For a better understanding, we show an example of the point queue model evaluated

with the exit flow function approach. The formulation used, whose conditions have been

explained before, can be expressed as follows (see Nie and Zhang (2005a)):

dΛ(t)

dt
=

{

0 if Λ(t) = 0 and e(t− αa) < qm
e(t− αa)− qm otherwise

(4.75)

g(t) =

{

e(t− αa) if Λ(t) = 0 and e(t− αa) < qm
qm otherwise

(4.76)

τ(t) = αa +
Λ(t+ αa)

qm
, (4.77)

2spillback refers to the end of queue spilling backwards in the network.
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where Λ is the total number of queued vehicles at the exit node, αa and qm represent the

free-flow travel time and bottleneck capacity respectively. Equations (4.75) and (4.77) are

the flow conservation and propagation conditions, and the Equation (4.76) means the flow

behavior expressed by an exit flow function.

Example 2 (Four different cases of the point queue model) We describe an ex-

ample of a piece-wise constant density which reaches other different piece-wise constant

densities for the cases:

(a) A group of vehicles with a density of 25% of the jam density that reach other group

with a density of 60% of the jam density.

(b) A group of vehicles with a density of 25% of the jam density that reach other group

with a density of the jam density.

(c) A group of vehicles with a density of 60% of the jam density that reach other group

with a density of 25% of the jam density.

(d) A group of vehicles with a density of 100% of the jam density that reach other group

with a density of 25% of the jam density.

We assume a one-way road whose free speed is 100 km/h, with qm = 1600 vh/h and

ρj = 65 vh/km. As this model offers two degrees of freedom: the maximum flow and the

free flow speed (we must divide the link in S time ticks that are necessary to cover the link

with a free flow speed), we choose the next values: 50 segments S of 1 km and the clock

tick value of 36 sec. and the maximum flow is 16 vehicles/tick. Note that a user needs 50

ticks to cover the total link length (50 km) at 100 km/h. The piece-wise densities, which

are applied on ten ticks each one, are the following:

ρ∗ 0.25 0.60 1.00

users/tick 16.25 39.00 65.00

Figure 4.8 shows the evolution of the number of vehicles in the link over time for

each case. We consider three different bottleneck capacities, i.e., the blue line depicts a

bottleneck capacity of qm = 800 vh/h, the red line, qm = 1600 vh/h and the green line, an

infinite capacity. At time = 0 there are no users in the link. With time, the total amount

of vehicles is inside the link, for example, in case (b) there are

10 ticks × 16.25users/tick + 10 ticks × 65users/tick = 812.5users.

In all cases, the first user leaves the link in 50 ticks, the free flow travel time. However,

last users requiere different times. Hence, the queue effect appears. We can also see that
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Figure 4.8: Evolution of the number of vehicles in the link over time (PQ model). Cases

a, b, c and d

when the bottleneck capacity is unlimited, the last users link travel time is the free flow

travel time. This implies that the link traversal speed is the free flow speed. Finally, we

point out that the negative slice of the curve is always the same for the cases (a), (b), (c)

and (d) and it relies on the qm value.

Finally, Table 4.4 shows a comparative study of the solution properties of the point

queue and the physical queue model, according to Szeto and Lo (2005).

4.4.5 Cell Transmission Model

The cell transmission model (CTM) is a discrete model that reproduces hydrodynamic flow

models and permits predicting traffic evolution over time and space including transient

phenomena, such as the building, propagation and dissipation of queues. It was first

defined by Daganzo.

The CTM predicts macroscopic traffic behavior on a given corridor by evaluating the

flow and density at a finite number of intermediate points (cells) and at a finite number

of different time steps, such that relationship tick/cell is the free flow speed.
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Solution

Properties Point queue problems Physical queue problems

Causality May or may not satisfy causality, Obey causality.

depending on the choice of travel

time or exit flow functions.

Link FIFO May or may not satisfy Link FIFO, May or may not satisfy Link FIFO,

depending on the choice of travel depending on if addition variables

time or exit flow functions. are introduced to capture Link FIFO.

Route FIFO Satisfy Route FIFO if they satisfy Link FIFO.

OD FIFO Satisfy this property under the DUO condition and certain

assumptions, but not satisfy under the SDUO conditions

Continuity w.r.t. Continuous under mild assumptions. Possibly discontinuous.

route flows

Monotonicity w.r.t. Usually non-monotonic.

route flows

Differentiability Differentiable under differentiable Possibly discontinuous.

w.r.t. route flows link travel time functions and non- Possibly non-differentiable

differentiable under continuous

flow functions

Continuity of OD Continuous under mild assumptions. Possibly discontinuous.

w.r.t. demands

Solution Existence Must exist. May not exist.

Solution uniqueness Non-unique in terms of route flows and links flows.

Table 4.4: Comparative study of the solution properties of the point queue and the physical

queue model.

Let ni(t), Ni(t), Qi(t) and yi(t) be the number of vehicles in cell i at time t, the

maximum number of vehicles that can be inside cell i (cell capacity), the maximum flow

in cell i and the number of vehicles that coming from cell i− 1 can enter cell i during the

time interval (t, t+ 1), respectively. Then, we have

ni(t+ 1) = ni(t) + yi(t)− yi+1(t), (4.78)

that expresses the number of vehicles ni(t + 1) in cell i at time t + 1 as the number of

vehicles in cell i at a previous time t plus the number of vehicles yi(t) entering cell i minus

the number of vehicles yi+1(t) leaving this cell, all at time t.

According to Daganzo (1992, 1995b), the number of vehicles entering cell i is the

minimum of three quantities, as follows:

yi(t) = min(ni−1(t), Qi(t), Ni(t)− ni(t)), (4.79)

that expresses three possible limits to yi(t): (a) the number of vehicles in cell i − 1, (b)

the maximum possible flow of cell i and (c) the cell i capacity, respectively.
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Considering the hydrodynamic model equivalence, the last relationship can be ex-

pressed as:

q(x, t) = min (uρ(x, t), qm, u(ρj − ρ(x, t))); 0 ≤ ρ(x, t) ≤ ρj . (4.80)

The occupancy restriction yi ≤ Ni(t)−ni(t) is conservative because it assumes that no

vehicle leaves cell i at time t. This is equivalent to assuming that density waves propagate

backwards at the free flow speed3 when waves move much slower. In order to improve

the model, Daganzo includes the relationship w/v (wave shock velocity/vehicular speed),

changing the manner in which vehicles approach the bottleneck and the location of queues.

Thus, equation (4.79) can be rewritten as follows:

yi(t) = min{ni−1(t), Qi(t), (w/u)(Ni(t)− ni(t))}. (4.81)

Example 3 (Four different cases of the cell transmission model) Figures 4.9,

4.10, 4.11 and 4.12 represent the same four cases described in Example 2 but solved by the

cell transmission model, showing the density evolution with time.

We assume the previous example values of free speed, density and flow. As this model

offers four degrees of freedom, the free flow speed (we must choose an adequate relationship

between cell length and tick time), the maximum flow, the jam density and the wave speed,

we choose the following values: the cell length is 1 km, the clock tick value (cell travel time)

36 sec., the maximum flow is 16 vehicles/tick, the cell jam density is 65 vehicles/cell and

the ratio w/v = 1.

At time = 0 there are no users in the link. With time, vehicles move forward condi-

tioned by the maximum flow (Q∗ = 0, 246). In all cases, the first user leaves the link in

50 ticks, the free flow travel time. However, last users requiere different times. In cases

(a) and (c) they need 85 ticks while in cases (b) and (c), they need 101 ticks.

In order to illustrate the factor w/v effect, we add the case (a) considering the rela-

tionship w/v = 0.20 (see figure 4.13). Note how the forehead of the piece-wise constant

density goes back, meanwhile for the w/v = 1 case this effect does not happen. Note that

the traversal time increases with respect to the case of w/v = 1.

Table 4.5 shows the required time to enter and leave the link, and the link travel time

for the case (a) with different w/v values. This table shows how the required time to leave

the link decreases when the ratio w/v increases. We point out that the link traversal speed

is the free flow speed.

3If we assume Ni(t) instead of Ni(t) − ni(t), it implies an instant download capability. However, it is

assumed a download capability of ni vehicles with a delay of a tick (note that the tick is fixed by mean of

the free flow speed).
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Figure 4.9: Time evolution of flow density (CTM). Case (a): ρ∗1 = 0.60 and ρ∗2 = 0.25.
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Figure 4.10: Time evolution of flow density (CTM). Case (b): ρ∗1 = 1.00 and ρ∗2 = 0.25.
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Figure 4.11: Time evolution of flow density (CTM). Case (c): ρ∗1 = 0.25 and ρ∗2 = 0.60.
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Figure 4.12: Time evolution of flow density (CTM). Case (d): ρ∗1 = 0.25 and ρ∗2 = 1.00.
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Figure 4.13: Time evolution of flow density (CTM). Case (a): ρ∗1 = 0.60 and ρ∗2 = 0.25,

with w/v = 0.20.

Link length = 50 Km

w/v 0.10 0.20 0.50 0.85 1.00

Time to enter to the link 95 52 36 35 35

Time to leave the link 145 102 86 85 85

Link travel time 50 50 50 50 50

Table 4.5: Travel time (ticks) by Daganzo for case a with different w/v values.
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4.5 Assignment Strategy

This part of the DTA problems deals with the travel choice, i.e., how the travelers select

their departures times and routes. The difference with the STA problems is that, whereas

in STA models the travel times are static (no time-dependent), in the DTA problems the

travel costs depend on the departure time.

First of all, we discuss two concepts that commonly appears in the traffic literature,

namely, dynamic user equilibrium (DUE) and dynamic user-optimal (DUO):

The dynamic user equilibrium is a temporal generalization of the static equilibrium

assignment problem (UE) (see Section 3.3), i.e., at equilibrium, only the routes with

minimal (actual o perceived) travel cost have flow. However, in the dynamic analysis we

have: (i) the route choice and (ii) the departure time choice. The first authors dealing with

DUE reach equilibrium only considering the route choice in a time-dependent network.

For example, Merchant and Nemhauser (1978a,b) and Carey and Revelli (1986) minimize

the cost over a specified planning horizon, and Janson (1991) studies the equilibrium in

successive time intervals of 10-15 minutes and considers additional constrains to insure

continuous flows. Later, papers such as Friesz et al. (1993b) or Ran et al. (1996) consider

both the departure time choice and route choice in a simultaneous route-departure

equilibrium.

The dynamic user-optimal approach assumes that users choose the least time paths,

however, due to the dynamic nature of the problem, no equilibrium is reached. It is based

on the Optimally Principle that states that the shortest path for a to b through c must

be comprised of the shortest paths from a to c and c to b4. There exists three dominance

criteria considered in the determination of a shortest path:

• Deterministically Pareto optimal. For a given departure time, there is one path (or

several paths with the same travel cost associated) such that the other existing paths

have zero-probability for being shortest.

In this case, the Optimally Principle is guaranteed iff, for the departure times s and

t such that s ≤ t,
s+ cij(s) ≤ t+ cij(t), (4.82)

where cij(t) is the travel cost to go from the initial node i to the final node j

associated with the departure time t.

• Stochastically Pareto optimal. For a given departure time, there is one path (or

several paths with the same travel cost associated) such that the other existing

paths have smaller probability for being shortest.

4The Optimally Principle always holds when the travel costs are independent. However, to guarantee

the principle the rest of the cases we have to add more conditions.
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In this case, the Optimally Principle is guaranteed iff, for the departure times s and

t such that s ≤ t,
Pr(s+ cij(s) ≤ z) ≤ Pr(t+ cij(t) ≤ z). (4.83)

In other words, the probability of arriving by any given time z cannot be increased by

leaving later. This condition is defined as stochastic consistency by Wellman et al.

(1995).

• Expecting value (EV) dominance. For all departure times, there is one path (or

several paths with the same travel cost associated) which has the lowest expected

time.

Miller-Hooks and Mahmassani (2000) define the following EV-dominance criteria

and extend the Optimally Principle as follows: Let φijr(t) be the random travel

time for the rth path from node i to the destination node j at departure time

interval t. For each t ∈ T , E[φir(t)] is the path with the minimum expected time.

Then, a path r is nondominated iff no path l exists such that

E[φijl(t)] ≤ E[φijr(t)] ∀t ∈ T (4.84)

and ∃t ∈ T |E[φijl(t)] < E[φijr(t)]; (4.85)

otherwise, the path r is dominated. Therefore, all subpaths of a nondominated path

with the same destination node as this path must themselves be nondominated.

Once these concepts have been exposed, we present the DTA models divided in deter-

ministic or stochastic ones.

4.5.1 Deterministic Models

In this part we introduce three different ways to treat the deterministic DTA, namely, the

mathematical program-based, the variational inequality-based and the optimal control-

based.

Previously, we define the dynamic user equilibrium (DUE) state according to the

Wardrop principle as:

“The travel costs incurred by traffic on all routes entered by traffic

during the same time interval are equal or less than those that

would be on any unused route at that time interval.”

Mathematically, it can be expressed as:

hpqr(t)(cpqr(t)− πpq(t)) = 0, ∀p, q ∈ D,∀r ∈ Rpq,∀t, (4.86)

cpqr(t)− πpq(t) ≥ 0, ∀p, q ∈ D,∀r ∈ Rpq,∀t, (4.87)

where Rpq is the set of routes of OD pair (p, q), hpqr(t) the flow on route r ∈ Rpq at time

t, cpqr(t) is the cost associated with route r with origin-destination (p, q) at time t and

πpq(t) is the equilibrium travel cost of any route of OD pair (p, q) at time t.
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The mathematical program-based formulation

Janson (1991) proposed the following formulation by developing the Beckmann et al.

(1956) formulation:

Minimize
h,v

Z(v) =

∫

t

∑

a∈A

∫ va(t)

0
ca(w)dwdt, (4.88)

subject to:

∑

r∈Rpq

hpqr(t) = dpq(t), ∀(p, q) ∈ D,∀t (4.89)

va(t) =

∫

s

∑

(p,q)∈D

∑

r∈Rp,q

hpqr(s)δ
t
apqr(s)ds, ∀a ∈ A,∀t (4.90)

hpqr(t) ≥ 0, ∀(p, q) ∈ D,∀t (4.91)

with

δtapqr(s) =











1, if traffic on route r of OD (p, q) departing at time s is

present on link a at time t;

0, otherwise,

where A is the set of links of a connected transportation network with set of nodes N ,

D is a subset of origin-destination pairs (p, q) and ca(t) is the cost associated with link a

at time t. There are given positive demands dpq(t) for origin-destination flows -variable

over time- which give rise to a time dependent link flow pattern va(t) when distributed

through the network.

This formulation has been adopted in much of the literature such as Ran et al. (1996)

or Janson and Robles (1995). Han (2006) show how the Beckman dynamic model is not

equivalent to the Wardrop dynamic principle.

The variational inequality (VI)-based approach

According Smith (1979), the dynamic Wardrop principle can be expressed by a variational

inequality. We consider the path inflow vector h such that:

∑

r∈Rp,q

hpqr(t) = dpq(t), ∀(p, q) ∈ D,∀t (4.92)

hpqr(t) ≥ 0, ∀(p, q) ∈ D,∀r ∈ Rpq,∀t (4.93)

then, the assignment at time t, expressed in form of a column vector of route inflows

h∗(t) ∈ H(t), is an equilibrium if and only if:

− [h− h∗(t)]T · c(t) ≤ 0 ∀h ∈ H(t), (4.94)



76 Chapter 4. Dynamic traffic models

where c(t) is the column vector of route costs incurred by travelers departing at time t

and H(t) denotes the corresponding set of all route flows at time t.

From the DUE state we know that the flow entering a route r at time t would be greater

than zero only if the travel cost on the route is equal to the minimum travel cost at that

time. On the other hand, due to the fact that the cost vector is assumed non-negative, the

equilibrium solution h∗(t) at time t can be obtained by maximizing Equation 4.94, i.e.,

ZV I = Arg Min
h∗∈H(t)

[

Max
h∈H(t)

(

−[h− h∗(t)]T · c(t)
)

]

. (4.95)

Therefore, we can write the dynamic user equilibrium assignment problem over time

in the form of a dynamic programme as:

Min
h∗

∫

t
Max
h∈H(t)

(

−[h− h∗(t)]T · c(t)
)

dt (4.96)

subject to

h∗(t) ∈ H(t), ∀t. (4.97)

We note that at each time t there is no contribution from future flows in the integration

because the value of the integrand will be zero at equilibrium. This means that we can

find optimal solutions at time t without knowledge of the inflows at future times.

The existence of solution requires (i) c(t) to be a continuous function of h∗ and (ii) h∗

to be a non-empty compact convex set5.

The uniqueness of solution requires c(t) to be strictly monotone6.

This approach has been developed by Smith (1993) who formulates a route-based

dynamic route choice problem or Friesz et al. (1993b) who raises a route-based departure

time and a route choice problem.

The optimal control-based approach

The optimal control-based approach consists on determining control strategies that cause

a process to satisfy the physical constraints while at the same time minimize or maximize

performance criterion. Using the optimal control theory, Ran et al. (1993) propose an

instantaneous dynamic user optimal (DUO) traffic assignment problem, i.e, determining

the vehicle flows at each instant of time of on each link that result from drivers using

minimal-time routes under the currently prevailing travel times. They assume that the

time-dependent origin-destination trip pattern is known a priori, and the departure times

of travelers are given (they do not study the optimal choice of departure times).

They define the dynamic user optimal equilibrium (DUO) as follows:

5Given a variational inequality problem V I(F,K), Theorem 1.4 in Nagurney (1993) states that if K is

a compact convex set and F (x) is continuous on K, then the V.I. problem admits at least one solution x∗.
6Given a variational inequality problem V I(F,K), Theorem 1.6 in Nagurney (1993) states that if F (x)

is strictly monotone on K, then the solution of the V.I. is unique, if one exists.
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Definition 4 (DUO) If for each OD pair at each decision node at each instant of time,

the travel times for all routes that are being used equal the minimal instantaneous route

travel time, the dynamic traffic flow over the network is in a dynamic user-optimal state.

The “instantaneous travel time” means the travel time that is incurred if traffic con-

ditions on the link remain unchanged while traversing the link.

The instantaneous travel time can be expressed by a sum of an instantaneous flow-

dependent running time f1a(·) over link a and an instantaneous queuing delay f2a(·):

ca [xa(t), ea(t), ga(t)] = f1a [xa(t), ea(t)] + f2a [xa(t), ga(t)] , (4.98)

being xa(t) the number of users traveling on link a at time t, and ea(t) and ga(t) the inflow

and outflow rate to/from the link a at time t respectively. The instantaneous travel time,

ca(·), is assumed to be nonnegative, increasing and differentiable with respect to xa(t),

ea(t) and xa(t) and ga(t), respectively.

Then, the dynamic user-optimal traffic assignment problem is formulated as follows:

Minimize I =

∫ T

0

∑

a∈A

{

∫ ea(t)

0
f1a [xa(t), w] dw +

∫ ga(t)

0
f2a [xa(t), w] dw

}

dt, (4.99)

subject to

dxapq
dt

= eapq(t)− gapq(t) : λapq(t), ∀a, p, q; (4.100)

dEpqr(t)

dt
= ypqr(t) : νpqr(t), ∀r, p, q 6= p; (4.101)

∑

a∈A

eapq(t) = dpq(t) : σpqj(t) ∀q, p 6= q; (4.102)

∑

a∈B(j)

gapq(t) =
∑

a∈A(j)

eapq(t) : σpqj(t) ∀p, q, j 6= p, q; (4.103)

∑

a∈B(j)

gapq(t) = ypq(t) : σpqj(t) ∀p, q 6= p; (4.104)

xapqr(t) =
∑

h∈r

[xhpqr (t+ τa(t)) − xhpqr(t)] + [Ypqr (t+ τa(t))− Ypqr(t)] : µapqr(t),

∀a ∈ B(j), p, q, r, j 6= p; (4.105)

eapq(t) ≥ 0 ∀a, p, q; (4.106)

gapq(t) ≥ 0 ∀a, p, q; (4.107)

xapqr(t) ≥ 0 ∀a, p, q, r; (4.108)

ypqr(t) ≥ 0 ∀p, q, r; (4.109)

Ypqr(t) ≥ 0 ∀p, q, r; (4.110)

Ypqr(t0) = 0 ∀p, q, r; (4.111)

xapqr(t0) = 0 ∀a, p, q, r; (4.112)



78 Chapter 4. Dynamic traffic models

where Ypqr(t) is the cumulative number of vehicles entering the network at origin p

and exiting at destination q over route r at any time t; ypqr(t) denotes the instantaneous

flows that arrives at destination q from origin p at time t. A(j) is the set of links whose

tail nodes is j (after j), and B(j) is the set of links whose head nodes is j (before j); r is

a section of route r from node j to destination q; and τa is the link-a travel time that is

estimated and updated in an iterative procedure.

The control variables are eapq(t), gapq(t) and ypqr(t) and Equations (4.100) and (4.101)

imply the flow conservation on each link and for cumulative arrivals at each destination.

Equations (4.102)–(4.104) are flow conservation constraints at each node that includes

origins and destinations. The other constrains include flow propagation, nonnegativity

and boundary conditions. Additional definitional constraints are:
∑

pq
eapq(t) = ea(t),

∑

pq
gapq(t) = ga(t),

∑

r
xapqr(t) = xapq(t),

∑

pqr
xapqr(t) = xa(t),

∑

pq
xapq(t) = xa(t),

∑

r
ypqr(t) = ypq(t).

The interpretation of Equation (4.105) is that for any link a ∈ B(j), vehicles on link a

using route r at any time t must result in either:

1. Added vehicles on a downstream link or links on subroute r at time t+ τa(t), or

2. Increased exiting vehicles at destination q at time t+ τa(t).

Ran et al. (1993) demonstrate that the instantaneous DUO traffic assignment problem

(4.99–4.112) satisfies the instantaneous dynamic user-optimal conditions (4.86 and 4.87).

Moreover, they prove that the optimal solution is applicable to any subroute, even if all

links on an entire route are not in use at the same time.

On the other hand, since the objective function of the optimal control program (4.99)–

(4.112) is convex to respect to the control variables7, there is a unique optimal solution.

4.5.2 Stochastic Models

Dynamic stochastic network equilibrium-optimal approach consists in predicting of the

equilibrium-optimal flows based on the stochastic inputs in a time-dependent network.

These equilibrium-optimal flows will follow some statistical distributions. So, we can find

three relevant groups on traffic assignment under stochastic environment depending on

the kind of the stochastic inputs: (i) when the cost of the trip (generally we speak of the

travel time) is the random variable8, (ii) when the demand is stochastic, or (ii) when the

road capacity is stochastic.

7The state variables are xa and Ea, the control variables are ea, ga and ya, and t is the independent

variable.
8The random travel cost is interpreted as the perceived travel time, as in stochastic static choice models

happen.
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Stochastic travel cost

This approach makes the assumption that there are systematic errors in the travelers

perception of the cost of routes. In this case, the formulation is similar to that exposed

in Section 3.5, i.e., probabilistic route choice models, as the probit and logit models, are

used but assuming that the travel cost, demand and flows are time-dependent.

In line with the static case, Han (2002) defines the stochastic dynamic user equilibrium

(SDUE) as follows:

Definition 5 (SDUE) At each instant no traveler believes that he or she can improve

his or her perceived travel cost by unilaterally changing route.

This principle can be expressed as:

Ppqr(t) =
hpqr(t)

dpq(t)
∀(p, q) ∈ D,∀r ∈ Rpq; (4.113)

∑

r∈Rpq

hpqr(t) = dpq(t) ∀(p, q) ∈ D; (4.114)

hpqr(t) ≥ 0 ∀(p, q) ∈ D, (4.115)

where the choice probability is

Ppqr(t) = Prob
[

C∗
pqr(t) ≤ C∗

pql(t); ∀l ∈ Rpq|C(t)
]

∀p, q, r, (4.116)

and C∗
pqr(t) is the least travel cost corresponding to the route r with origin-destination p-q

at instant t and it is dependent on the route cost pattern C(t) at this instant.

Ran et al. (1996) treat this problem using the VI method (see Section 4.5.1), i.e., if

h∗pqr(t) are the route inflows in a equilibrium state, Equations 4.117–4.120 are necessary

and sufficient conditions, assuming that the travel cost is strictly monotone w.r.t. the

path flow.
∑

(pq)∈D

∑

r∈Rp,q

Kpqr(t)[hpqr(t)− h∗pqr(t)] ≥ 0, ∀hpqr (4.117)

subject to

hpqr(t) ≥ 0 ∀(p, q) ∈ D,∀t; (4.118)
∑

r∈Rpq

hpqr(t) = dpq(t) ∀∀t, (4.119)

where

Kpqr(t) = [hpqr(t)− dpq(t)Ppqr(t)]
∂Cpqr(t)

∂hpqr(t)
≥ 0. ∀hpqr (4.120)
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Stochastic demand and capacity

This approach makes the assumption that one or both demand and capacity are stochastic.

For example, Watling (2002) or Zhou and Chen (2008) assume that demand is distributed

as a random variable, stationary Poisson and log-normal, respectively. Lo and Tung (2003)

consider the stochastic link capacity and Zhang et al. (2011), between others, analyze the

stochastic demand and capacity together.

The two relevant models on traffic assignment under this stochastic environment are

the Expected value (EV) model and the Best worst-case (BW) model.

Let φpqr(h, ω) define the travel cost between the OD-pair p-q through the route r

associated with some uncertain values, as the demand dpq(ω) or link capacity qa(ω)
9.

Expected value (EV) model

This model considers that the users select paths to minimize their expected travel cost,

E[φpqr(h, ω)], assuming that the expected demand is E[dpq(ω)]. Then, the EV model

solves the equilibrium problem as follows:

Minimize
h,φ

∗
ZEV = Min

[

E[φpqr(h, ω)]− φ∗pqr
δpqrhpqr − E[dpq(ω)]

]

= 0. (4.121)

where φ∗pqr is the stochastic minimum travel cost and δpqr is the Dirac Delta whose value

is 1 when the route r has the OD-pair p-q and zero otherwise.

The solution is [hpqr, φ
∗
pq], where hpqr has not uniqueness while the link flows are unique

if φ∗pqr is assumed strictly monotone w.r.t. the path flows (hpqr).

Best worst-case (BW) model

This model considers that each user selects the path to minimize for each i the worst-case

cost φ̂ipqr(h, ω) = maxωφ
i
pqr(h, ω), assuming the worst case demand d̂ipq = maxωd

i
pq(ω).

Minimize
h,φ

∗
ZBW = Min

[

φ̂pqr(h, ω)− φ∗pqr
δpqrhpqr − d̂pq(ω)

]

= 0. (4.122)

4.6 Conclusions

In this chapter we have presented dynamic traffic models. More precisely, we have exposed

the general points of the analytical-based approach of the main loading models, namely:

9Note that this concept is different to Cpqr, which is interpreted as the perceived travel cost function.
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Condition Complementary conditions Necessariness

and Sufficiency

CAUSALITY CONDITION

Ensuring flow propagation It is neither necessary

condition. nor sufficient.

LINK FIFO CONDITIONS

Ensuring flow propagation 1. Single traffic type It is necessary and

condition. 2. ea(t) ≥ 0 and ga(t) ≥ 0 sufficient.

The derivative of the travel time Travel time function τ (t) must be It is necessary and

associated with a user that enters differentiable sufficient.

link a at time t, τ (t): τ ′

a(t) > −1.

The derivative of the travel time Travel time function η(t) must be It is necessary and

associated with a user that leaves differentiable sufficient.

link a at time t, η(t): η′

a(t) < 1.

The derivative of the entry time Entry time function T (t) must be It is necessary and

associated with a user that leaves differentiable sufficient.

link a at time t, T (t): T ′

a(t) > 0.

Non-differentiable travel time It is sufficient.

functions τ (·), η(·) or T (·) in a

deterministic queuing model

(Huang and Lam (2002)).

Travel time functions depending Violate FIFO.

on the inflow τ (ea(t))

(Daganzo (1995b)).

The inflow rate e(·) ≤ Ba and the It is sufficient.

derivative of the travel time
∂τa(x, t)

∂(x)
≤ 1/Ba, Ba is a constant

for link a (Xu et al.(1999)).

ROUTE FIFO CONDITIONS

Link FIFO satisfies. It is necessary and

sufficient.

OD FIFO CONDITIONS (Ran et al. (1996))

Link FIFO satisfies for the route 1. The travel cost is the sum of It is necessary and

choice DUO problems. travel time and schedule delay cost. sufficient.

(Szeto and Lo (2004)) 2. The schedule delay cost is

piecewise linear.

3. The unit travel time cost is

higher than that of early arrival.

Table 4.6: Summary of different conditions that guaranty the causality and FIFO rule.

1. Kinematic models, based on the hydrodynamic analogy, which allowed the first dy-

namic approaches. With these models we can know the important traffic variables

(flow, density, time, trajectory, etc.) in the studied link. In fact, in simple traffic

cases, the solution is very realistic. However, when the conditions are more complex,
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the problem is unapproachable.

2. Merchant-Nemhauser and delay-function models are conceptually very simple but,

when we need realistic results, they are difficult to calibrate. On the other hand,

they are black boxes, because they do not define what happens inside the link.

3. Queue models (point or physical) allow to simulate the delay due to the link satu-

ration. Moreover, the physical queue models include the shock-wave effect in this

delay, i.e., the variables inside the link can be approached.

4. Finally, the CTM gives the traffic evolution inside the link, taking account the

generation, propagation and dissipation of queues. However, it is a very costly

computational approach and, by that, impracticable in real networks.

Table 4.6 we provide a summary of different conditions that guaranty or not the nec-

essariness and the sufficiency of the causality and FIFO rule.

On the other hand, we have analyzed the assignment strategy. The main conclusions

drawn are:

1. Due the dynamic nature of the problem, the concept “equilibrium” is often replaced

by “optimal”. The criterion to evaluate this optimal state changes according to the

kind of approach used.

2. The deterministic approach is a temporal generalization of the static equilibrium

assignment problem.

3. The stochastic approach includes a great variety of problems depending on the kind

of the stochastic inputs. These problems can be classify in (i) random travel cost

(temporal generalization of the static stochastic assignment problem), and (ii) when

the demand or the road capacity is stochastic.

It is evident that the stochastic analysis tends to be more realistic, however, the math-

ematical difficulties associated include the non-uniqueness of the solution, mathematical

instability, etc.
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Appendix

A Characteristic lines method

Childress (2005) suggests the characteristic lines method to solve the differential equation

exposed in section 4.4.1.

Definition 6 (Characteristic lines method) The characteristic lines method (CLM)

consists of lines that emanate from the boundaries of the time-space domain and carry the

value of density defined on the boundaries by the initial and boundary conditions. When

two characteristic lines intersect, density at the point of the intersection should have two

values which is physically unfeasible. The discontinuity of density at this point causes the

generation of a shock wave which moves with the speed uw.

∂ρ(x, t)

∂t
+
dq(ρ)

dρ

∣

∣

∣

∣

ρ(x,t)

∂ρ(x, t)

∂x
= 0. (4.123)

To work with the characteristic lines method we can use the following procedure:

Step 1: (Characteristic lines) Express the equation for the characteristic lines in the

form:

x =
dq(ρ)

dρ

∣

∣

∣

∣

ρ(x0,0)

t+ x0. (4.124)

Step 2: (Solve for x0) Solve Equation (4.124) for x0 as a function of x and t.

Step 3: (Write the solution) Obtain the solution by replacing the obtained function

x0(x, t) into the initial condition ρ0(x) = ρ(x, 0), that is,

ρ(x, t) = ρ0(x0(x, t)). (4.125)

Example 4 (Queue traffic flow when a red light turns green) We are interested

in the case of a red light turning green. If this takes place at t∗ = 0, then at t∗ = 0

we have a density given by

ρ∗(x∗, 0) =

{

1 if x∗ < 0

0 if x∗ > 0.
(4.126)

To solve Equation (4.123) with the initial condition (4.129), we use the characteristic lines

method described in Section A.

For the exterior regions we have:
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Step 1: (Characteristic lines) For the characteristic curves emerging from the region

x∗ < 0, the speed is w∗ = (1 − 2ρ∗) = 1 − 2 = −1, so that the characteristic lines

are x∗ = −t∗ + x∗0. Similarly, for the characteristic curves emerging from the region

x∗ > 0, the speed is u∗ = (1 − 2ρ∗) = 1 − 0 = 1, so that the characteristic lines are

x∗ = t∗ + x∗0.

Step 2: (Solve for x0) Solving for x∗0 in the two cases above, we get

x∗0(x
∗, t∗) =

{

x∗ + t∗ if x∗ < 0

x∗ − t∗ if x∗ > 0.
(4.127)

Step 3: (Write the solution) Equation (4.127) leads to the solution

ρ∗(x∗, t∗) =

{

1 if x∗ < −t∗
0 if x∗ > t∗.

(4.128)

For the intermediate region, we can derive the characteristic curves using two different

procedures:

Method 1. Instead of a sudden change in the ρ∗(x∗, t∗) function, such as that in (4.126),

we can consider a continuous change as

ρ0(x) = ρ∗(x∗, 0) =











1 if x∗ < 0

(1− x∗/ǫ) if 0 < x∗ < ǫ

0 if x∗ > ǫ,

(4.129)

where ǫ is a small positive number.

To solve Equation (4.123) with the initial condition (4.129), we use the three-step

method described in Section A.

Step 1: (Characteristic lines) The characteristic curves in the intermediate region

are given by

x∗ = (1−2ρ∗(x∗0, 0))t
∗+x∗0 = (1−2(1−x∗0/ǫ))t∗+x∗0 = −t∗+2x∗0t

∗/ǫ+x∗0. (4.130)

Step 2: (Solve for x0) Solving for x∗0, we get

x∗0 =
x∗ + t∗

1 + 2t∗/ǫ
. (4.131)

Step 3: (Write the solution) Equation (4.131) leads to the solution

ρ∗(x∗, t∗) = ρ∗0(x0(x, t)) = 1− x∗ + t∗

ǫ+ 2t∗
=
ǫ+ t∗ − x∗
ǫ+ 2t∗

, (4.132)

which letting ǫ→ 0 gives

ρ∗(x∗, t∗) =
t∗ − x∗
2t∗

. (4.133)
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Method 2. It is clear that the characteristic curves in the intermediate region emanate

from the point (0, 0), and then they must be of the form ρ∗(x∗, t∗) = r(x∗/t∗), where r() is

a function to be determined. Replacing this expression for ρ∗(x∗, t∗) into the differential

equation
∂ρ∗(x∗, t∗)

∂t∗
+ (1− 2ρ∗(x∗, t∗))

∂ρ∗(x∗, t∗)

∂x∗
= 0, and letting ξ = x∗/t∗, we obtain

0 =
∂r

∂ξ

∂ξ

∂t∗
+ (1− 2r)

∂r

∂ξ

∂ξ

∂x∗
=
∂r

∂ξ

[

− x∗

(t∗)2
+ (1− 2r)

1

t∗

]

=
∂r

∂ξ

1

t∗
[−ξ + (1− 2r)] ,

(4.134)

that is,

ρ∗(x∗, t∗) = r =
1− ξ
2

=
t∗ − x∗
2t∗

, (4.135)

which is the same result as (4.133).

Thus, we finally have:

ρ∗(x∗, t∗) =















1 if x∗ < −t∗
t∗ − x∗
2t∗

if −t∗ ≤ x∗ ≤ t∗

0 if x∗ > t∗

(4.136)

and taking into account that u∗(x∗, t∗) = 1− ρ∗(x∗, t∗), we obtain

u∗(x∗, t∗) =















0 if x∗ < −t∗

1− t∗ − x∗
2t∗

=
t∗ + x∗

2t∗
if −t∗ ≤ x∗ ≤ t∗

1 if x∗ > t∗.

(4.137)

Finally, since q∗(x∗, t∗) = ρ∗(x∗, t∗)u∗(x∗, t∗), we have

q∗(x∗, t∗) =















0 if x∗ < −t∗
(t∗)2 − (x∗)2

4(t∗)2
if −t∗ ≤ x∗ ≤ t∗

0 if x∗ > t∗.

(4.138)

Figure 4.14, 4.15 and 4.16 show the ρ∗(x∗, t∗), u∗(x∗, t∗) and q∗(x∗, t∗) respectively

contours.

Once we have the solution of our red light turning green problem, we can ask several

questions, such as those treated below.

a. Time to start moving. The first question is: how long does it take for a vehicle at

a distance D > 0 in front of the traffic light to start moving? This question can be easily

answered from (4.137) because the vehicle at its starting time has zero speed. So, we have

u∗ = 0 ⇔ t∗D + x∗D
2t∗D

= 0 ⇔ t∗D = −x∗D = D∗, (4.139)



86 Chapter 4. Dynamic traffic models

-1

-0.5

0

0.5

1

x

0

0.2

0.4

0.6

0.8

1

t*

0
0.25

0.5

0.75

1

rho

-1

-0.5

0

0.5x*

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1.

rho*contours

* t*

x*

Figure 4.14: ρ∗(x∗, t∗) contours.
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Figure 4.15: u∗(x∗, t∗) contours.

where t∗D is the dimensionless time associated with distance D∗.

To recover the initial variables we consider that

t∗D = D∗ ⇔ tDu0
L

=
D

L
⇔ tD =

D

u0
.

b. Car trajectories. The second question is: what are the trajectories of the vehicles

after they start moving? To answer this question, we need to solve the differential equation

dx∗

dt∗
=
t∗ + x∗

2t∗
, (4.140)

whose solution is

x∗(t∗) = t∗ + C
√
t∗. (4.141)



A. Characteristic lines method 87

-1

-0.5

0

0.5

1

x

0

0.2

0.4

0.6

0.8

1

t*

0

0.1

0.2
q*

-1

-0.5

0

0.5x*

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

00
0.0250.025
0.050.05
0.0750.075
0.10.1

0.1250.125
0.150.15

0.1750.175
0.20.2

0.2250.225
0.250.25

q*contours

x*

t*

Figure 4.16: q∗(x∗, t∗) contours.

In order to determine the constant C, we recall that at time t∗D = D∗, the vehicle starts

moving, that is,

x∗(t∗) = −D∗ = t∗D + C
√

t∗D ⇒ C = −2
√
D∗. (4.142)

so that (4.141) becomes

x∗(t∗) = t∗ − 2
√
t∗D∗ t∗ > D∗, (4.143)

that gives the looked after trajectories.

One example is given in Figure 4.17.

c. Time to reach the origin. A third interesting question is: at what time t∗0 the

vehicle that was at t∗ = 0 in x∗D is reaching the origin? From (4.143), we can easily obtain

the time required for a vehicle to reach the origin after start moving, as follows:

0 = x∗(t∗0) = t∗0 − 2
√

t∗0D
∗ ⇔ t∗0 = 4D∗, (4.144)

that is,
t0u0
L

= 4
D

L
⇔ t0 =

4D

u0
.

d. Time to reach a given point. Also, we ask: what is the time t∗1 required for a

vehicle to reach the point x∗ = D∗
1 after start moving? This time is given by

D∗
1 = x∗(t∗1) = t∗1 − 2

√

t∗1D
∗, (4.145)

that is,
√

t∗1 =
√
D∗ +

√

D∗ +D∗
1, (4.146)

that leads to

t∗1 = (
√
D∗ +

√

D∗ +D∗
1)

2 = 2D∗ +D∗
1 + 2

√

D∗(D∗ +D∗
1), (4.147)
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Figure 4.17: Trajectories followed by the vehicles after start moving.

That recovering the initial variables leads to

t1 =
2D +D1 + 2

√

D(D +D1)

u0
, (4.148)

Consequently, the link travel time can be calculated as follows:

If we assume that D = L1 and D1 = L− L1, we get

ta =
L+ L1 + 2

√
LL1

u0
. (4.149)

If, additionally, we assume L1 = αL10, we finally get

ta =
L(1 + α) + 2L

√
α

u0
=

L

u0
(1 +

√
α)2 = t0(1 +

√
α)2, (4.150)

which in dimensionless terms becomes

t∗a = t∗0(1 +
√
α)2 = t0(1 +

√

x∗a)
2, (4.151)

which implies

h (α/2, α) = (1 +
√
α)2. (4.152)

10Note that in this case α = x∗

a
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If the jam is at the end of the link and has length D, we have

t∗ = max(1, 4D∗), (4.153)

which implies

h (α, 2(1 − α)) = max(1, 4α). (4.154)

e. Flow behind the jam produced by a red light turning green. Finally, the

time required for a vehicle to travel a link in this case is given by

t∗ = max(1, 4D∗), (4.155)

because it is the maximum of the times required for a vehicle starting at the link origin

and traveling at a maximum speed, and the time of the last vehicle in the jam region to

reach the end of the link, that, according to (4.144) is t∗ = 4D∗.

Example 5 (Four different cases by characteristic lines method) To illustrate

we consider four different cases. The graphics 4.18 and 4.19 shows the characteristic

lines associated with a group of vehicles of constant density which reach other group with

a different constant density for the cases (a), (b), (c) and (d). Due to the dimensionless

nature of the method, we just need to define the grade of occupancy of each stretch to

define completely the problem.

The characteristics emanating from a stretch with constant density, ρ, are parallel with

slope 1 − 2ρ. When the density ρ1 falls to another low value ρ2, the “fan characteristic”

appears. The instantaneous transition of density implies that density takes all the values

between ρ1 and ρ2 and that there is no discontinuity on the slopes of the characteristics.

However, when the density ρ1 reaches to another higher value ρ2, their characteristic lines

intersect, causing the generation of a shock wave. The red lines, whose slope is
1

uw
=

1

1− ρ1 − ρ2
, are these discontinuity lines. In the same graphic the vehicular trajectories

have been represented. We can see how the trajectory changes when it intersects the shock

wave.

The graphics 4.20, 4.21, 4.22 and 4.23 show the density evolution over time. They

have been obtained by sectioning the characteristic lines graphic for each time t.
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Trajectories
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Figure 4.18: Four different problems solve by the characteristic lines method. Case a:

ρ∗1 = 0.60 and ρ∗2 = 0.25 and case b: ρ∗1 = 1.00 and ρ∗2 = 0.25.
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Figure 4.19: Four different problems solve by the characteristic lines method. Case c:

ρ∗1 = 0.25 and ρ∗2 = 0.60 and case d: ρ∗1 = 0.25 and ρ∗2 = 1.00.
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The second group �ts 

the �rst one together

Figure 4.20: Evolution of the density with the time (characteristic lines method). Case a:

ρ∗1 = 0.60 and ρ∗2 = 0.25.

The second group �ts 

the �rst group together

Figure 4.21: Evolution of the density with the time (characteristic lines method). Case b:

ρ∗1 = 1.00 and ρ∗2 = 0.25
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Figure 4.22: Evolution of the density with the time (characteristic lines method. Case c:

ρ∗1 = 0.25 and ρ∗2 = 0.60

Figure 4.23: Evolution of the density with the time (characteristic lines method). Case d:

ρ∗1 = 0.25 and ρ∗2 = 1.00
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B A(x, t) function

In this section we expose the A(x, t) function and its interesting properties.

Theorem 9 If there exists a function A(x, t) such that

ρ(x, t) = −∂A(x, t)
∂x

(4.156)

q(x, t) =
∂A(x, t)

∂t
, (4.157)

then, the corresponding q(x, t) and ρ(x, t) functions satisfy the conservation law, that is,

∂ρ

∂t
+
∂q

∂x
= 0. (4.158)

Proof. Taking derivatives with respect to x and t in (4.156) and (4.157), respectively,

and adding up the two values, we get

∂ρ

∂t
+
∂q

∂x
= − ∂A

∂t∂x
+

∂A

∂x∂t
= 0. (4.159)

In particular, we can define A(x, t) in a convenient form.

Definition 7 (A(x, t) function) We define the A(x, t) function as the number of vehicles

that has passed x up to time t, which can be defined in two different forms, that is,

A(x, t) =

∫ ∞

x
ρ(x, t)dx (4.160)

or

A(x, t) =

∫ t

0
q(x, t)dt. (4.161)

Note that A(x, t) is an increasing function with x

(

∂A(x, t)

∂x
< 0

)

and a decreasing

function with t

(

∂A(x, t)

∂t
> 0

)

.

If the number of vehicles that is inside the interval (x, x+u) at time t+ v is evaluated

as the number of vehicles in (x, x+u) at time t plus the vehicles that crosses x during the

time interval (t, t+ v) minus the vehicles that leave x+ u at interval of time (t, t+ v), we

obtain:
∫ x+u

x
ρ(x, t+ v)dx =

∫ x+u

x
ρ(x, t)dx+

∫ t+v

t
q(x, t)dt−

∫ t+v

t
q(x+ u, t)dt, (4.162)

which, expressed in terms of A(x, t), becomes

A(x, t+ v)−A(x+ u, t+ v) = [A(x, t) −A(x+ u, t)] + [A(x, t+ v)−A(x, t)]−
−[A(x+ u, t+ v)−A(x+ u, t)], (4.163)
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Figure 4.24: Illustration of the A(x, t) function.
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Figure 4.25: Illustration of the vehicle trajectories (level curves of the A(x, t) function).

which is an identity. So, we conclude that the A(x, t) function, defined as the number of

vehicles that has passed x at time t satisfies the conservation law (4.158).

In order to illustrate all these concepts, the following graphics show the relationship

between the function A(x, t) and the variables x and t.

We emphasize the fact that the trajectories of the vehicles represented in Figure 4.24

must not cut themselves because of the FIFO condition (see Section 4.3.1).
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5.1 Notation

α parameter of the statistical function.

β(α, θ) Beta function with parameters α and θ.

βij regression coefficient of Xj in the regression of Xi on their parents.

Γ(α) Gamma function.

λ parameter of the shifted-Gamma model.

µ mean.

Πi set of parents of node Xi in a directed acyclic graph.

πi parents of node i.

ψ2
i conditional variance of Xi given Πi = πi.

Σ variance-covariance matrix.
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σ2 variance.

ΣY Y variance-covariance matrix of Y .

ΣY Z covariance matrix of Y and Z.

σzz variance of Z.

Θ domain of definition of the θ parameter.

θ parameter of the statistical function.

E set of evidential nodes.

Iβ(x;α, θ) incomplete Beta function.

n number of nodes in a Bayesian network.

U(0, 1) standard uniform random variable.

X random variable.

X set of nodes (random variables) in a directed acyclic graph.

xi value of the random variable associated with node i in a Bayesian

network.

H(α, θ, λ) shifted-Gamma family of densities.

5.2 Motivation

In order to get a better understanding of the following chapters, we have considered

convenient to devote this chapter to explain some statistical tools to be used.

This chapter is organized as follows. In Section 5.3, we introduce some statistical

families that are required in Chapters 6 and 8, namely, the shifted-Gamma function and

the Beta distributions. We present the Bayesian approach in Section 5.4 and in Section

5.5, we provide some background on the Bayesian network models. In Section 5.6, we

explain the particular case of Gaussian Bayesian networks and, in Section 5.7, the Gaussian

mixture Bayesian network models are introduced.

5.3 Some statistical families

5.3.1 The shifted-Gamma function

In this section we introduce the reader to shifted-Gamma models that are required to

understand Chapter 6.

Let X be a random variable having the probability density function (pdf)(see

Castillo et al. (1996)):

g(x;α, θ, λ) =
λ(λ(x− α))θ−1e−λ(x−α)

Γ(θ)
, x ≥ α, (5.1)
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where Γ(θ) is the Gamma function:

Γ(α) =

∞
∫

0

e−xxα−1dx, (5.2)

which for integer values of θ coincides with (θ − 1)!. We denote this family of densities as

H(α, θ, λ).
The mean and variance of X are E[X] = α+ θ/λ and V ar[X] = θ/λ2, respectively.

We indicate that in most practical cases we must have θ > 1, and then, the mode

is α + (θ − 1)/λ and the shape of the density is similar to the normal density (but non-

symmetric).

An important practical property of the family of densities H(α, θ, λ) is its reproduc-

tivity, as indicated by the following theorem.

Theorem 10 The family of densities {H(α, θ, λ);α ≥ 0, θ > 0, λ > 0} described in (5.1)

is reproductive, that is, the sum of two of more copies of independent random variables in

this family belongs to this family.

Proof. We use characteristic functions in this proof. The characteristic function of a

random variable with density (5.1) is

φH(α,θ,λ)(t) = eitα
(

1− it

λ

)−θ

(5.3)

and the characteristic function of the sum of two random variables X ∼ H(α1, θ1, λ1) and

Y ∼ H(α2, θ2, λ2) is

φH(α1,θ1,λ)+H(α2,θ2,λ)(t) = φH(α1,θ1,λ)(t) φH(α2,θ2,λ)(t)

= eitα1

(

1− it

λ

)−θ1

eitα2

(

1− it

λ

)−θ2

= eit(α1+α2)

(

1− it

λ

)−(θ1+θ2)

= φH(α1+α2,θ1+θ2,λ)(t), (5.4)

that proves its reproductivity and shows how the parameters of the random variables X

and Y must be combined to obtain the parameters of the random variable X + Y .

5.3.2 The standard Beta distributions

Due to we use the generalized Beta distribution in Chapter 8, we consider convenient to

introduce the standard Beta distributions.
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Figure 5.1: Examples showing that the pdf of Beta random variables take on a wide range

of different shapes.

The Beta random variable is useful for modeling experimental data with range limited

to the interval [0, 1] (see Figure 5.1). Its name is due to the presence of the Beta function

in its pdf, which is defined as

β(α, θ) =

∫ 1

0
xα−1(1− x)θ−1 dx, α > 0, θ > 0 (5.5)

and is related to the Gamma function by the relation

β(α, θ) =
Γ(α)Γ(θ)

Γ(α+ θ)
. (5.6)

The pdf of a Beta random variable is given by

f(x) =
xα−1(1− x)θ−1

β(α, θ)
=

Γ(α+ θ)

Γ(α)Γ(θ)
xα−1(1− x)θ−1, 0 ≤ x ≤ 1, (5.7)

where α > 0 and θ > 0. The Beta random variable is denoted by Beta(α, θ). The cdf

(cumulative distribution function) of the Beta(α, θ) is

F (x) =

∫ x

0
f(t)dt =

∫ x

0

tα−1(1− t)θ−1

β(α, θ)
dt = Iβ(x;α, θ), (5.8)

where Iβ(x;α, θ) is called the incomplete Beta function, which cannot be given in closed

form, but can be obtained by numerical integration.

The mean and variance of the Beta random variable are

µ =
α

α+ θ
and σ2 =

αθ

(α+ θ + 1)(α + θ)2
,

respectively.

The interest in this variable is also based on its flexibility, because it can take on many

different shapes, which can fit different sets of experimental data very well. For example,
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Figure 5.1 shows different examples of the pdf of the Beta distribution. Two particular

cases of the Beta distribution are interesting. Setting (α = 1, θ = 1) gives the standard

uniform random variable, U(0, 1), while setting (α = 2, θ = 1 or α = 1, θ = 2) gives the

triangular random variable whose cdf is given by f(x) = 2x or f(x) = 2(1−x), 0 ≤ x ≤ 1,

respectively.

5.4 The Bayesian approach

Let X be a random variable belonging to the parametric family f(x|θ). Bayesian statis-

ticians, instead of assuming θ a fixed value, as classical statisticians do, consider θ as

a random variable itself. Bayesian statisticians combine the knowledge of experts with

neutral knowledge obtained from samples x. The first one is given as an “a priori” distri-

bution, denoted f(θ; η), where η parameters are known. The neutral knowledge is later

combined with the prior, using the Bayes theorem, to obtain the “posterior” distribution,

f(θ; η|x). The Bayes’ rule can be expressed as follows:

f(θ; η|x) = f(x|θ)f(θ; η)
∫

θ

f(x|θ)f(θ; η)dθ =̇f(x|θ)f(θ; η), (5.9)

where f(x|θ) is the likelihood of the data.

When the families of priors and posteriors coincide, we say that this family and the

likelihoods are conjugate. In this case, the posterior parameters can be easily obtained in

terms of the prior parameters and the sample values.

The Bayesian approach is equivalent to assuming that the true probability function

is a mixture (known as the Bayesian probability function) of f(θ) with weights given by

the prior before obtaining the sample, or the posterior, after the sample is obtained. The

Bayesian predictive probability function after the sample becomes known, is

f(x; η) =

∫

Θ

f(θ; η|x)g(x; θ)dθ, (5.10)

where Θ is the domain of definition of the θ parameter.

The Bayesian approach consists of the following steps:

1. Select the likelihood family.

2. Select the family of priors (normally but not always a conjugate family)1.

3. Assess the prior distribution on the parameters.

1An alternative to conjugate models consists in using Markov chain Monte Carlo methods.
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4. Obtain the sample data.

5. Calculate the posterior distribution.

6. Estimate the parameters by the posterior mean or mode and their variabilities using

the posterior distributions and use the initial distribution with these estimates or,

alternatively, use the Bayesian distribution in (5.9).

5.5 Bayesian network models

We describe below some characteristics of Bayesian networks and at the same time we try

to emphasize the importance of these models with respect to traffic problems. Bayesian

network models have frequently been used to solve a wide variety of practical problems

(see, for example, Sheffi (1988), Castillo et al. (1997b,a, 1999) or Jensen (2001)) and in

particular in the field of traffic engineering (see Castillo et al. (2008d,e)). Next, the par-

ticular case of Gaussian Bayesian networks is presented in more detail.

Definition 8 (Bayesian network) A Bayesian network is a pair (G,P), where G is

a directed acyclic graph (DAG) defined on a set of nodes X (the random variables),

P = {p(x1|π1), . . . , p(xn|πn)} is a set of n conditional probability densities, one for each

variable, and Πi is the set of parents of node Xi in G. The set P defines the associated

joint probability density (JPD) of all nodes as

p(x) =

n
∏

i=1

p(xi|πi). (5.11)

Bayesian networks have two main elements:

• Graph G. It contains all the qualitative information about the relationships among

the variables, no matter what probability values are assigned to them. For example,

the conditional independence relations among variables in X can be inferred directly

from graph G. This allows us to determine which information is relevant to given

variables when the knowledge of other variables becomes available, and in particular,

which variables contain redundant information and which ones add new information

with respect to the already existing one. This is very useful in the case of traffic

models, for which link flow information at different times and links contains such

redundant information, which needs to be identified.

• The set of conditional probabilities of the variables given their parents.

The probabilities in P contain the quantitative information, i.e., they quantify the

qualitative properties revealed by the graphical structure. The factorization of the

joint probability density implied by (5.11) is very simple and facilitates its calcu-

lation. In addition, the updating of probabilities when having evidence of some



5.6. Gaussian Bayesian networks models 105

variables can be very easily done; in other words, the conditional probabilities of a

set of variables given another set of evidential variables can be immediately calcu-

lated because Bayesian networks are especially designed to this end. This property

is also relevant to traffic flow problems, in which we aim at predicting some traffic

flows based on other traffic flow data.

We note that Bayesian networks are very general, i.e., any probability distribution can

be represented by a Bayesian network.

Example 6 (Example of Bayesian traffic network) Let us consider the simple traf-

fic network in Figure (5.2). Assume that we have only the OD pair (1, 3) and two routes

{(1, 2), (3)}. Then, it is clear that the link flows v1, v2 and v3 depend on the OD flow

T , leading to the Bayesian network in the right part of Figure (5.2), where the arrows go

from parents to sons. Note that link flow va has the T OD flow as a parent, and the T

OD flow has va as son, if link a is contained in at least one path of such a OD pair.

Figure 5.2: A traffic network and its associated Bayesian network.

Finally, we point out that working with Bayesian networks normally has two main

phases:

1. Learn the parameters of the model. Learning the models means estimating the pa-

rameters that defines the network, i.e., the dependance structure and the associated

conditional probabilities.

2. Propagation of evidence. The propagation of evidence2 consists on updating the

probabilities of the variables since the evidence. Consequently, we use the network

to make predictions.

5.6 Gaussian Bayesian networks models

In this section we define the particular case of Gaussian Bayesian networks.

2 There are three kinds of propagation algorithms: exact, approximate and symbolic ones.
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Definition 9 (Gaussian Bayesian network) Any Bayesian network (G,P) is said to

be a Gaussian Bayesian network if and only if the joint probability distribution associ-

ated with its variables X is a multivariate normal distribution, N(µ,Σ), i.e., with joint

probability density function

f(x) = (2π)−n/2|Σ|−1/2 exp
{

−1/2(x − µ)TΣ−1(x− µ)
}

, (5.12)

where µ is the n-dimensional mean vector, Σ is the n × n covariance matrix, |Σ| is the

determinant of Σ, and µT denotes the transpose of µ.

Gaussian Bayesian networks have been treated, among others, by Sheffi (1988), Kenley

(1986), Shachter and Kenley (1989), and Castillo et al. (1997b,c).

5.6.1 Representation of the Gaussian Bayesian Network

We have two possible representations of the JPD of a normal Bayesian network, i.e., the

JPD of the variables in a Gaussian Bayesian network can be specified in two different

ways:

1. Using a factorization of the JPD as a product of Gaussian cumulative probability

densities.

f(xi|πi) ∼ N



µi +
i−1
∑

j=1

βij(xj − µj), ψ2
i



 , (5.13)

where βij is the regression coefficient of Xj in the regression of Xi on the parents of

Xi, Πi, and

ψ2
i = Σi − ΣiΠi

Σ−1
Πi

ΣT
iΠi

is the conditional variance of Xi, given Πi = πi, where Σi is the unconditional

variance of Xi, ΣiΠi
is the matrix of covariances between Xi and the variables in Πi,

and ΣΠi
is the covariance matrix of Πi.

2. Alternatively, we can define the normal JPD function using the covariance matrix of

the Gaussian JPD. Shachter and Kenley (1989) use the following recursive formula,

in whichW (i) denotes the i×i upper left submatrix ofW and βi denotes the column

vector {βij : j < i}:

W (i+ 1) =















W (i) +
βi+1β

T
i+1

ψ2
i+1

| −βi+1

ψ2
i+1

−−−−−−− + −−−−
−βT

i+1

ψ2
i+1

| 1

ψ2
i+1















, (5.14)

with W (1) = 1/ψ2
1 .
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Several algorithms advantageously use the structure provided by the first representation

for evidence propagation (see Xu and Pearl (1989), and Chang and Fung (1991)). The

following section introduces a kind of propagation used in the Gaussian networks models.

5.6.2 Exact propagation of evidence in Gaussian Network Models

In this section we present a conceptually simple and efficient algorithm that uses the

covariance matrix representation. This algorithm illustrates the basic concepts underlying

the exact propagation in Gaussian network models. An incremental implementation of the

algorithm allows updating probabilities without the need to invert matrices3, when a single

piece of evidence is observed. It also allows us to perform a sequential selection of the

most informative variables (flows) to be observed. This selection is based on the correlation

coefficients of the updated conditional variances in order to take into account redundant

information. The main result is given in the following theorem, which characterizes the

CPDs obtained from a Gaussian JPD (see, for example, Anderson (1984)).

Theorem 11 Conditionals of a Gaussian distribution. Let Y and Z be two sets

of random variables having a multivariate Gaussian distribution with mean vector and

covariance matrix given by

µ =

(

µY
µZ

)

and Σ =

(

ΣY Y ΣY Z

ΣZY ΣZZ

)

,

respectively, where µY and ΣY Y are the mean vector and covariance matrix of Y , µZ and

ΣZZ are the mean vector and covariance matrix of Z, and ΣY Z is the covariance of Y and

Z. Then the CPD of Y given Z = z (the evidence) is multivariate Gaussian with mean

vector µY |Z=z and covariance matrix ΣY |Z=z that are given by4

µY |Z=z = µY +ΣY ZΣ
−1
ZZ(z − µZ), (5.15)

ΣY |Z=z = ΣY Y −ΣY ZΣ
−1
ZZΣZY . (5.16)

Note that the conditional mean µY |Z=z depends on z but the conditional variance ΣY |Z=z

does not.

Theorem 11 suggests an obvious procedure to obtain the means and variances of any

subset of variables Y ⊂ X, given a set of evidential nodes E ⊂ X whose values are known

to be E = e. Replacing Z in (5.15) and (5.16) by E, we obtain the mean vector and

covariance matrix of the conditional distribution of the nodes in Y . Note that considering

Y = X \ E we get the joint distribution of the remaining nodes, and then we can answer

3It is based on Expressions (5.15) and (5.16).
4These evidence propagation formulas are valid only for normal Bayesian networks. Other Bayesian

networks require other formulas (see Castillo et al. (1997b) or Jensen (2001)).
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questions involving the joint distribution of nodes instead of the usual information that

refers only to individual nodes.

Note that once we have calculated ΣY |Z the variance of Y due to the knowledge of Z

has been removed and we can other proceed to evaluate the extra variance of Y due to

other Y variables. In other words, we can select the data that contain the best information

that complements the already existing one.

In order to simplify the computations, it is more convenient to use an incremental

method, updating one evidential node at a time (taking elements one by one from E)5. In

this case, we do not need to calculate the inverse of a matrix because it degenerates to a

scalar. Moreover, µy and Σyz are column vectors, and Σz is also a scalar, i.e., Σ
−1
ZZ ≡ 1/σzz.

Thus, this algorithm provides a simple and efficient method for evidence propagation in

Gaussian Bayesian network models. When the number of nodes in the transportation

network is large, which is usually the case, this approach of updating the joint pdf can be

replaced by other techniques, such as the Markov Chain Monte Carlo (MCMC) methods

(see Gilks et al. (1996)) to update the joint pdf sequentially as evidences become available.

Bayesian networks are prepared to predict target variable distributions for any com-

bination of evidential variables. This means that they are able to deal with missing

information without any extra complication. This is useful in traffic problems where we

can have missed information. In Section 8.5 we provide some examples.

5.7 Gaussian mixture Bayesian network models

In this section we describe the Gaussian mixture Bayesian network model. We start by

defining Gaussian mixture Bayesian networks.

Definition 10 (Gaussian mixture Bayesian network) A Bayesian network is said

to be a Gaussian mixture Bayesian network if its joint pdf is a linear convex combination

of multi-normal densities, that is, if its pdf is of the form

f(x;Θ) = (2π)−n/2
M
∑

ℓ=1

αℓ|Σℓ|−1/2 exp
{

−1/2(x − µℓ)
TΣℓ

−1(x− µℓ)
}

, (5.17)

where
M
∑

ℓ=1

αℓ = 1; αℓ ≥ 0, ℓ = 1, 2, . . . ,M, (5.18)

5The incremental method produces very similar results as the method of updating the evidence in a

single pass, as has been checked. Note that in addition, the numerical procedures of both methods are

different, and the rounding errors act in a different way.
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µℓ are the n-dimensional mean vectors, Σℓ are the n × n covariance matri-

ces, |Σℓ| is the determinant of Σℓ, µℓ
T denotes the transpose of µℓ, and Θ =

{α1, α2 . . . , αM ;µ1,µ2 . . . ,µM ;Σ1,Σ2, . . . ,ΣM} is the set of parameters of the model.

In this case, the Bayesian network is said to have M normal components.

5.7.1 Learning the Gaussian mixture Bayesian network

We estimate the parameters in the set

Θ = {α1, α2 . . . , αM ;µ1,µ2 . . . ,µM ;Σ1,Σ2, . . . ,ΣM}.

Since the maximum likelihood is considered as the best method from the point

of view of statistical convenience, we adopt this method and use the well known

Expectation-Maximization (EM) method, whose name was given in a classic 1977 paper

(see Dempster et al. (1977)).

An expectation-maximization (EM) algorithm is a method for finding maximum likeli-

hood or maximum “a posteriori” estimates of parameters in statistical models, where the

model depends on unobserved variables. EM is an iterative method which, as its name

indicates, consists of two steps: an expectation (E) step, which computes the expectation

of the log-likelihood evaluated using the current estimate for the parameters, and a max-

imization (M) step, which computes parameters maximizing the expected log-likelihood

found on the E step. The process is repeated until convergence6.

Application of the EM-algorithm to our case here leads to the following estimates,

which must be iterated until convergence.

α
(i)
ℓ =

N
∑

k=1

p
(

ℓ|xk;Θ
(i−1)

)

N
; ℓ = 1, 2, . . . ,M, (5.19)

where

p
(

ℓ|xk;Θ
(i−1)

)

=
α
(i−1)
ℓ p

(

xk|Θ(i−1)
)

M
∑

ℓ=1

α
(i−1)
ℓ p

(

xk|Θ(i−1)
ℓ

)

; ℓ = 1, 2, . . . ,M, k = 1, 2, . . . , N, (5.20)

and Θℓ = {µℓ,Σℓ}

µℓ
(i) =

N
∑

k=1

x p
(

ℓ|xk;Θ
(i−1)
ℓ

)

N
∑

k=1

p
(

ℓ|xk;Θ
(i−1)
ℓ

)

; ℓ = 1, 2, . . . ,M (5.21)

6It has been shown that under very general conditions this method is convergent and has good properties.

This justifies its common use (see Wu (1983)).
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and

Σ
(i)
ℓ =

N
∑

k=1

(x− µ
(i)
ℓ )(x− µ

(i)
ℓ )T p

(

ℓ|xk;Θ
(i−1)
ℓ

)

N
∑

k=1

p
(

ℓ|xk;Θ
(i−1)
ℓ

)

; ℓ = 1, 2, . . . ,M. (5.22)

where xk is the kth element of the sample, N is the sample size, M is the number of

normal components of the model, and i is the iteration number.

In order to accelerate the convergence process it is convenient to start with a good

guess of the right estimates. One possible option consists in using the K-means method,

which provides us with initial estimates, that can be denoted as {α(0)
ℓ ,µℓ

(0),Σ
(0)
ℓ }.

The K-means method

The K-means method aims to partition n observations into k clusters in which each

observation belongs to the cluster with the nearest mean. It is similar to the EM algorithm

for mixtures of Gaussians in that they both attempt to find the centers of natural clusters

in the data as well as in the iterative refinement approach employed by both algorithms.

The K-means algorithm proceeds by alternating between two steps until no change in the

centroids takes place:

1. Assignment step: Assign each observation to the cluster with the closest mean

(i.e. partition the observations according to the Voronoi diagram generated by the

means).

2. Update step: Calculate the new centroids as the means of the observations in each

cluster.

5.7.2 Propagation of evidence in Gaussian mixture Bayesian network

Let Y be the random variable (traffic variable) to be predicted and Ŷ the predicted value.

Our predictions Ŷ will be based on the conditional probabilities of the random variable Y

being predicted given (conditioned) the evidence X. To this end, we will use the expected

conditional value Ŷ = E[Y |X].

Since

P (Y |X) =
P (Y,X)

P (X)
(5.23)

=

M
∑

ℓ=1

αℓ f(X;µℓX ,ΣℓXX)f(Y ;µℓY |X,ΣℓY |X)

M
∑

ℓ=1

αℓ f(X;µℓX,ΣℓXX)

(5.24)

=

M
∑

ℓ=1

βℓf(Y ;µℓY |X ,ΣℓY |X), (5.25)
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where

βℓ =

M
∑

ℓ=1

αℓ f(X;µℓX,ΣℓXX)

M
∑

ℓ=1

αℓ f(X;µℓX,ΣℓXX)

(5.26)

µℓY |X = µℓY −ΣℓYXΣ
−1
ℓXX(µℓX −X) (5.27)

ΣℓY |X = ΣℓY Y −ΣℓYXΣ
−1
ℓXX

ΣℓXY (5.28)

Then, our prediction is given by

Ŷ = E[Y |X] =
M
∑

ℓ=1

βℓ µℓY |X. (5.29)

Finally, we can use the matrix ΣℓY |X to obtain confidence bounds.
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6.1 Notation

α location parameter of the shifted-Gamma function.

αa free-flow travel time of link a.
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βa parameter of the travel cost function associated with link a.

δra terms of the path-link incidence matrix.

ǫrs active hyperparameter of the shifted-Gamma function corresponding

to route r and the s element in the sample.

ǫ̂rs posterior active hyperparameter of the shifted-Gamma function

corresponding to route r.

ηr active hyperparameter of the shifted-Gamma function corresponding

to route r.

η̂r posterior active hyperparameter of the shifted-Gamma function

corresponding to route r.

γ parameter of the travel cost function.

λ parameter of the shifted-Gamma function.

νi parameter of the shifted-Gamma function associated to the number

of users traveling through the OD-pair i.

ρr active hyperparameter of the shifted-Gamma function corresponding

to route r.

ρ̂r posterior active hyperparameter of the shifted-Gamma function

corresponding to route r.

ρi location parameter of the shifted-Gamma function associated to the

number of users traveling through the OD-pair i.

ρai location parameter of the shifted-Gamma function associated to the

number of users using link a and traveling the OD-pair i.

Θ domain of definition of the θ parameter.

θ parameter of the shifted-Gamma function.

θai parameter of the shifted-Gamma function associated to the number

of users using link a and traveling the OD-pair i.

a link.

ca travel cost function associated with link a.

ca0 free-flow conditions cost associated with link a.

Cir set of links in route r of OD-pair i.

Fr random amount of users choosing route r.

fr path flows.

f̂r reconstructed path flows.

f0r prior path flows.

n(r;SC) number of routes that can be distinguished from route r using the

set SC of scanned links.

n0 size of the virtual prior sample.

nr sample size corresponding to route r.

nc number of scanned links.

qa constant measuring the flow producing a given congestion level in
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the link a.

r route

ti OD-pair i flows.

Ti number of users traveling through the OD-pair i.

va unobserved link flows.

v̂a link count information.

Vai number of users using link a and traveling the OD-pair i.

Va number of users using link a.

ŵr flow associated to route r observed by plate scanning technique.

Ws number of users passing through and only through a given subset

As of links.

X random variable.

x0rs s element in a virtual sample.

As subset of observed links.

F feasible set of scanned links observations.

H(α, θ, λ) shifted-Gamma density function.

R set of routes.

Ri set of paths of each OD pair i.

SC set of links to be scanned.

6.2 Introduction

Predicting traffic flow is one of the main aims of traffic models. Two important problems

in the traffic field are: the traffic assignment and the trip matrix estimation problems. In

the first, the origin-destinations (OD) flows are assumed to be known and the link flows

are sought, while in the second, some observations (link flows, path flows, plate scanned

flows, etc.) are taken and the OD-flows are estimated.

Though there are many variants, the traffic assignment problem has been traditionally

dealt with primarily using two different methods: the User Equilibrium (UE) model and

the Stochastic User Equilibrium (SUE) model, as we have explained in Chapters 3 and 4.

In the matrix estimation (ME) problem, we observe traffic in some links and try

to estimate the OD-pair flows (see Ashok and Ben Akiva (2000), Ben-Akiva and Lerman

(1985), Tobin and Friesz (1988), Yang et al. (1992), Castillo et al. (2008a), Castillo et al.

(2008d), etc.). Given independent error-free link flows, if the number of OD pairs is larger

than the number of links, the problem is under-specified and there is an infinite set of

solutions for the OD-pair flows satisfying the conservation laws. In order to have a unique

solution, one has to give more information. Normally, people use a prior OD trip matrix,

which can come from many different sources, including an old out-of-date, another OD

matrix obtained by an alternative method, etc.
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To obtain the OD flow estimates a wide variety of models can be utilized. They can

be classified in two main groups:

Optimization based methods. Among these methods we can mention:

• Least squares and generalized least squares methods minimize the sum of squares of

the differences between the predicted and the prior OD trip matrices (see Cascetta

(1984), Carey and Revelli (1986), Cascetta and Nguyen (1988), Bell (1991), and

Doblas and Benitez (2005)).

• Entropy or information based methods determine the most likely OD flow matrix

that is consistent with the information contained in the observed link flow data

(see Willumsen (1978), Van Zuylen (1978), Van Zuylen and Willumsen (1980), and

Rossi et al. (1989)).

Statistical based methods. With respect to these methods we distinguish between:

• Classical statistical methods assume the traffic flows to be multivariate random

variables from a given family, such as multivariate normal, Poisson (Lo et al.

(1996), Vardi (1996) and Hazelton (2000)), gamma, etc. For estimation pur-

poses normally they maximize the likelihood function (see also Spiess (1987)

and Cascetta and Nguyen (1988), or Bayesian networks as Sun et al. (2006) and

Castillo et al. (2008d,e)).

• In the Bayesian methods, the parameters themselves are considered as random vari-

ables. For example, Maher (1983) combines a multivariate normal distribution with

a multivariate normal prior and considers random normal errors in observations,

Tebaldi and West (1998) consider Poissonian flows, and citeMahmassaniS:81 deal

with the problem of updating trip generation parameters.

While in the ME problem the route choice proportions or the link flows in the road

network are assumed to be the input data and the trip flow matrix, the output, in the traffic

assignment problem, the trip flow matrix is the input and the route choice proportions,

the output. Thus, bi-level approaches that couple together both problems, have been

proposed to solve some inconsistencies in the solutions of both problems when they are

solved independently. Some examples are Yang (1995) and Maher and Zhang (1999) and

Maher et al. (2001), Fisk (1988) or Lo and Chan (2003).

In this chapter we deal with the problem of estimating traffic flows in general: that

is, to estimate origin-destination trip matrices (ME), path and link flows based on plate

scanning.

In order to estimate traffic flows, some authors propose using probe vehicles,

as Hellinga and Van Aerde (1994), who provide a statistical analysis of the OD es-

timators, Gentili and Mirchandiani (2005) who discuss the use of path-ID sensors,
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Zhou and Mahmassani (2006) or Asakura et al. (2000), who use AVI counts, or

Bianco et al. (2006) who use node sensors. However, in this chapter we use regular vehicles

without any special detectors installed.

The plate scanning approach to traffic flow estimation has become frequently used, due

to the considerably larger amount of information it contains when compared with other

standard methods, such as Watling (1994) or Castillo et al. (2008c)), and the advantage

of being able to use the information gathered by surveillance and traffic control systems

based on Automatic Number Plate Recognition (ANPR). The idea is to register the plate

numbers of the circulating vehicles together with the corresponding times on some subsets

of links and use this information to reconstruct vehicle routes from which OD and link

flows are evaluated.

Following Hazelton (2001) we consider the two different problems:

• The reconstruction problem. This kind of problem tries to assess “the actual number

of trips between each OD pair that occurred during the observational period”, that

is, “the most probable set of OD movements that are consistent with a set of link

flows” according to Bell (1983)

• The estimation problem. This problem aims to estimate the expected (or mean)

number of OD trips based on several observations.

For the estimation problem, we combine the advantages of Bayesian methods with

those of the plate scanning technique and treat the traffic flow problem as an integrated

one in which we include OD-pairs, paths and link flows as related flows. We present a

general conjugate Gamma Bayesian model that permits updating the model parameters

very easily when information is available.

Maher (1983) assumes a multivariate normal distribution for the OD flows and obser-

vation link errors, and calculates the posterior density of the OD flows given the obser-

vations. Compared with Maher’s method, which is a well-based model because it uses a

multivariate random variable, reproductive, infinitely divisible and justified from the point

of view of approximations to other models, such as the binomial and Poisson, the proposed

method uses gamma random variables which in addition to sharing these good properties

with the normal model, are positive. In addition to point estimates of the parameters,

as with Maher’s method, credible intervals can be obtained for path, OD and link flows,

which is a clear advantage with respect to traditional traffic assignment models that do

not supply information about the variability of the parameter estimates.

The chapter is organized as follows. In Section 6.3, we illustrate the plate scanning

approach. Once this has been explained, in Section 6.4, we introduce the trip matrix

estimation problem in a general way. In Section 6.5, we explain how a new model for

estimating traffic flows based on the shifted-Gamma function can be applied and, in Section

6.6, how this model can be implemented in practice. With the purpose of illustrating



118 Chapter 6. Bayesian estimation based on plate scanning

1

4

1 2

3

4 5

2 3

1

4

1

3

4 5

2 3

1

4

1

3

4

2 3

2 2

5

case 1. Scanned Links case 2. Scanned Links

Figure 6.1: The elementary example network used for illustrative purposes, showing the

nodes, links and the set of scanned links (continuous arrows).

the proposed methods, they are applied to the Nguyen-Dupuis network and the Cuenca

network, in Sections 6.7 and 6.8, respectively. Finally, some conclusions are given in

Section 6.9.

6.3 Traffic reconstruction based on plate scanning

In this section we illustrate the plate scanning approach. The idea consists in registering

plate numbers and the corresponding times of the circulating vehicles at some subsets of

links to reconstruct vehicle routes1. In this chapter we assume error-free scanned obser-

vations.

With the purpose of illustrating the concepts and the proposed methods, we use a

simple network. It consists of 4 nodes and 5 unidirectional links (see Figure 6.1).

Table 6.1 shows the 4 OD-pairs considered and the corresponding 7 paths used in this

example, which are the only possible paths for each OD pair due to the unidirectional

links.

We assume that we observe the set SC ≡ {1, 3, 4, 5} (see the continuous arrows in

Figure 6.1).

Once the set SC of scanned links is known, the next step consists in obtaining the

feasible set of scanned link observations, set F . Following Castillo et al. (2009), the set F
of all subsets of scanned link feasible observations is determined by checking which links

in SC are contained in each path, i.e., F ≡ ∪r∈Ri
(SC ∩ Cir), where Cir is the set of links

in route r of OD-pair i, and Ri is the set of paths of each OD pair i. Consequently, if we

had cameras on links 1, 3, 4 and 5, then we would have counts on the sequences: {1}, {3},
{4}, {5}, {1, 4}, {1, 3, 5}, and {3, 5}, see the central part of Table 6.1. Therefore, the flow

1The times are used only to derive the order in which the scanned links were traveled.
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SC1 SC2
Scanned links Scanned links

OD route code (r) Links 1 3 4 5 F n(r;SC1) 1 3 4 F ′ n(r;SC2)
1-4 1 1 3 5 XX X {1, 3, 5} 6 XX {1, 3} 6

1-4 2 1 4 X X {1, 4} 6 X X {1, 4} 6

1-4 3 2 5 X {5} 6 {−} 0

2-4 4 3 5 X X {3, 5} 6 X {3} 5

2-4 5 4 X {4} 6 X {4} 6

1-2 6 1 X {1} 6 X {1} 6

2-3 7 3 X {3} 6 X {3} 5

Table 6.1: Set of 4 OD-pairs, 7 routes considered in the elementary example, and scanned

link feasible observations and associated values of r for the sets SC1 = {1, 3, 4, 5} and

SC2 = {1, 3, 4}.

associated with each subset, ŵr, can be obtained.

Note that not all 2nc−1 possible combinations of scanned links are feasible for a given

network and set of routes, being nc the number of scanned links (elements of set SC).
Clearly sequences {1, 3, 4}, {1, 4, 5}, {3, 4}, {3, 4, 5}, {4, 5} and {1, 3, 4, 5} are not feasible

in that no vehicle in this network with the routes in Table 6.1 can pass the cameras in

that order.

Hence, with scanned data from certain links, we get more information (7 flow values,

equivalent to 7 linear constraints) than simple counts on those links (4 flow values, equiv-

alent to 4 linear constraints). This is extremely important because the OD estimation

problem is usually under-specified, that is, the number of unknowns (OD or path flows)

is much larger than the number of data items (link flows), although this does not happen

in this simple example. Thus, the plate scanning technique, assuming measures to be

error-free, permits the reduction of the degree of underspecification and eventually (with

adequately selected scanned links) it becomes possible to completely estimate the OD

and/or the path flows2.

We point out that if some link is removed from the subset of scanned links SC, complete

route identification is impossible. The number of routes that can be distinguished from

route r1 using the set SC of scanned links was expressed by Castillo et al. (2009) as:

n(r1;SC) =
∑

r2 6=r1

min

(

∑

a∈SC

(δr1a + δr2a )(1 − δr1a δr2a ), 1

)

; ∀r1 ∈ R (6.1)

where δra is the path-link incidence matrix (δra = 1 if link a belongs to route r, and δra = 0

2Note that OD estimation requires fewer scanned links than route estimation.
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otherwise). Note that if n(r1;SC) = |R| − 1, where |R| is the cardinal of the route set R,
the route r1 can be distinguished from all other routes by SC.

For example, if we had cameras on links 1, 3 and 4, we would obtain a new set F ′ (see

Table 6.1). As Table 6.1 shows, in this case we cannot know the path flow 3 (empty set),

and the flow of routes 4 and 7 are mixed due to them sharing the same sub-set of F ′.

However, we have more information (5 flow values) than the case with link counts alone

(3 flow values).

Therefore, given a set of scanned links in any network, all the possible feasible sequences

(sub-paths) in which a vehicle can pass these cameras in that order can be constructed,

and identifying such a sequences, the path flows contributing to the total flow attributed

to that sequences can be identified too. Each of these sequences then provides a linear

equality constraint on the path flows.

On the other hand, if together with the plate scanning approach we select the set of

scanned links by means of optimization methods (see Castillo et al. (2008e,c)), the set

SC of scanned links can become sufficient to identify all routes because every route has

associated with it a different set of scanned links, as Table 6.1 shows. Note that given a car,

we can determine its set of scanned links and then identify its route. Thus, that subset SC
would be minimal for a complete identification of routes, and will allow estimating exact

flows.

6.4 Matrix estimation problem based on plate scanning

Once the concept of plate scanning has been explained, we introduce the trip matrix

estimation problem in a general way. The main objective of the trip matrix estimation

problem is to find an OD matrix T, close to a prior OD matrix T̄ subject to the assignment

method, i.e a matrix coherent with the users behavior (how they selected the adequate

paths to go from origins to destinations).

Based on the observations and the prior matrix, the OD matrix estimate can be ob-

tained by many different methods; in particular, we work with the scanned link information

(ŵr). These data can be used for reconstructing path flows and trip matrices, using the

following model, which uses a quadratic objective function with the weighted sum of the

differences between the predicted and the prior path flows:

Minimize
fr ; r∈Ri

Z =
∑

r1∈Ri1
,r2∈Ri2

(

fr1 − f0r1
)

γr1r2
(

fr2 − f0r2
)

(6.2)

subject to

ŵr =
∑

r∈R

fr ηr; r ∈ R (6.3)

v̂a =
∑

r∈R

fr δ
a
r ; a ∈ As, (6.4)
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fr ≥ 0, (6.5)

where r refers to route, R is the set of routes, Ri is the set of feasible routes of OD-pair

i, fr are the path flows, f0r are the prior path flows, γr1r2 are the weights (normally the

elements of the inverse of a covariance matrix), As is the subset of observed links, δar is

1 if route r contains link a and 0, otherwise, and ηr is one if the route r contains all and

only the links in Cr (scanned sub-route of set F), 0, otherwise.
The proposed model is able to work with two types of observations, which correspond

to (i) the plate scanning link case (ŵr), and (ii) the usual link count information (v̂a), since

the nature of information is the same for both set of data. However, note that constraints

(6.4) for scanned links are redundant given constraints (6.3).

Alternatively, equation (6.2) can be replaced by

Minimize
fr; r∈Ri

Z =
∑

i







∑

r∈Ri

(fr − f0r )
∑

r∈Ri

f0r







2

. (6.6)

Without loss of generality, the matrix γr1r2 can be assumed to be symmetric3. So, we

make this assumption in this chapter. Note that the gamma γ weight matrix is used to

take into account not only the variance but the covariance structure of the path flows.

However, to keep things simple, we have considered the objective function in (6.2) as a

least squares expression with weights

γr1r2 =

{

1/σ2r1 if r1 = r2
0 otherwise .

Once the path flows have been reconstructed as f̂r, the OD flows ti and the unobserved

link flows va can be obtained as follows

va =
∑

r∈R

f̂r δ
a
r ; a /∈ As, ti =

∑

r∈Ri

f̂r; i ∈ OD. (6.7)

6.5 Proposed model for estimating traffic flows

In this chapter we propose a new model for estimating traffic flows based on the

shifted-Gamma function described in Section 5.3.1. In this section we explain how the

model can be applied. First, we start by discussing the following simplifying assumptions

3If it is not, we can make γ∗

r1,r2
= γ∗

r2,r1
= (γr1r2 + γr2r1)/2, where γ∗

r1,r2
are the elements of a

symmetric matrix leading to an identical quadratic form to that associated with the initial non-symmetric

matrix with elements γr1r2 .
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and later, we analyzed some of the properties of the model.

Assumptions

1. The random amount of users Fr choosing route r follows a distribution in the family:

F ≡ H(α, θ, λ)|α ≥ 0, θ > 0, λ > 0},

i.e., Fr ∼ H(αr, θr, λ), where λ is the same for all routes. We note that this family

H(α, θ, λ) of distributions has good properties, because the associated random vari-

ables are positive (as the number of users), it is reproductive (the sum of H(α, θ, λ)
distributions in F belongs to F), and it is infinitely divisible. In addition, it can

have positive skewness as the observed traffic flows.

The location α parameter is needed to reproduce flows whose lower bound is a

positive number (a common case in practice). We note that using a H(α, θ, λ)
probability model does not imply a prescribed link between the mean and variance

of traffic flows, which could be not true in some cases (see Hazelton (2003)), as it

occurs with Poisson models used by several authors.

We denote H(α,θ, λ) to the model including all routes, where α and θ are the

vectors of all H(α, θ, λ) parameters for all routes and λ is identical for all routes.

For a given route there exists a minimum number of users (normally much larger

than zero) that can be estimated, and since it is very far from zero, forcing it to be

zero is a great limitation. This is the justification of the α parameter. Note that

when a normal distribution N(µ, σ) is used, the probability of having flows smaller

than µ − 3σ is very small, and this is practically equivalent to assuming a lower

bound in µ − 3σ even though this value is well above zero. Since the α parameter

can be estimated for each route, if in some routes it is convenient to use the value

zero, we can use it.

2. All components of the multivariate shifted-Gamma random variable Ui =

(F1, . . . , FRi
), where Ri is the number of routes of OD i, are independent. This

means that the number of users choosing the different routes of a given OD pair is

independent. Note that here we are not assuming a given fixed number of OD users,

in which case the independence assumption could be questioned.

3. The multivariate random variables U1, U2, . . . , UI , where I is the set of OD pairs, are

independent. This implies that the users of different OD-pairs act independently.

These assumptions lead to the following derived properties.

Assumptions 2 and 3 above will be invalid if there are some effects inducing serial

correlation in the path flow data or if significant events affect the network. In such
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a cases, some data preprocessing would be necessary to convert data before using the

proposed methods below.

Derived Properties

1. The random number of users Ti =
∑

r∈Ri

Fr, where Ri is the set of routes of OD-

pair i, traveling through the OD-pair i follows a H (ρi, νi, λ) distribution, where

ρi =
∑

r∈Ri

αr and νi =
∑

r∈Ri

θr, i.e. it belongs to family F too.

2. The number of users Vai using link a and traveling the OD-pair i is a H (ρai , θ
a
i , λ)

distribution, where ρai =
∑

r∈Ri

αrδ
a
r and θai =

∑

r∈Ri

θrδ
a
r , which belongs to family F

and δar is 1 if link a belongs to a route r, and 0 otherwise.

3. The number of users Va =
∑

i
Vai using link a is a H

(

∑

i
ρai ,
∑

i
θai , λ

)

distribution,

which belongs to family F .

4. The number of usersWs passing through and only through a given subset As of links

has a H( ∑

r∈R(As)

αr,
∑

r∈R(As)

θr, λ) distribution, where R(As) is the subset of routes

passing through and only through all links in As.

Since the proposed model is very general, it can be applied not only to traffic but to

other fields.

6.5.1 Conjugate of F families

Bayesian statisticians often work with conjugate priors, which are parametric families

of distributions such that their associated posteriors belong to the same families. The

parameters of the conjugate family, are referred to as hyperparameters.

Since the likelihood of the H(α,θ, λ) family is

L(x;θ,α, λ) =̇ exp

[

∑

r∈R

{

(θr−1)
nr
∑

i=1

log(xri−αr)−λ
nr
∑

i=1

xri+nr(λαr−log Γ (θr)+θr log λ)

}]

;

αr ≤ min (xr1, xr2, . . . , xrnr), (6.8)

where xr1, xr2, . . . , xrnr are sequences of independent and identical observations on the

path, link or OD flow of interest, the results of Arnold et al. (1993, 1996) and Castillo et al.

(1996) suggest the following conjugate family as a general conjugate family with active4

4A hyperparameter is said active if its updated posterior value depends on the sample. Otherwise it is

said inactive.
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hyperparameters:

q(θ,α, λ|η, ξ,ρ) =̇ exp

[

∑

r∈R

{

(θr−1)
ηr
∑

s=1

log(ξrs−αr)−λρr+ηr(λαr−log Γ (θr)+θr log λ)

}]

,

αr ≤ min(ξrs, . . . , ξrηr ), (6.9)

where the posterior active hyperparameters (η̂, ξ̂, ρ̂), denoted by the hat, become

η̂r = ηr + nr; ξ̂rs =

{

xrs if s ≤ η̂r
0 otherwise

, ρ̂r = ρr +

nr
∑

i=1

xri, (6.10)

where ηr and ρr are the prior values, nr is the sample size and {xrℓ : ℓ = 1, 2, . . . , η̂r} is the
sample corresponding to route r, including the virtual sample used for prior assessment

(see Section 6.6.1). Note that Expression (6.10) is the hyperparameter updating formula

for this model.

Note that our prior does not produce a conjugate family in the usual sense, since the

parameter vector ξ increases in dimension with the number of observations nr, but we

can consider an asymptotic family with an infinite number of parameters including all of

them.

Since
n
∑

ℓ=1

log(xℓ − α) and
n
∑

ℓ=1

xℓ tend to ∞ as n → ∞, the effect of prior information

(η, ξ,ρ) could vanish as n→∞. However, we must take some care, because if ξrs = x0rs <

αr,true (where αr,true indicates the true value of the shift parameter for route r) then the

support of the posterior distribution of αr will never include the true value. This issue

can be dealt with by selecting cautious, large values of x0rs(s = 1, 2, . . . , ηr) but this will

introduce bias into point estimates for finite sample sizes.

Due to its complexity (exponential and gamma functions appear in it), the mean of

the gamma conjugate distribution (6.9) cannot be obtained in closed form. Thus, as an

alternative to the mean, we use the mode of (6.9) to estimate the Gamma parameters,

i.e., we maximize (6.9), with respect to all parameters, to estimate them.

Note that using the mean as the Bayesian estimate is due only to the use of quadratic

utility functions. So, using the mode (the most probable) should not be considered to be a

worse criterion, especially because the maximum likelihood criterion is generally accepted

in Statistics.

Even though the gamma Bayesian model is well known by statisticians, there are some

implementation details, which are not so well established and without them, one can face

important numerical problems. Some of the ideas, which can be useful to people wishing

to implement these models, are the following:

• Maximize the logarithm of (6.9) instead of (6.9) itself (note that the gamma function

can take very large values).
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• Use a numerical procedure for the direct evaluation of the logarithm of the gamma

function instead of evaluating the gamma function and taking the logarithm.

• Use parameters χ2
r = θr to guarantee non-negativity of the parameters.

• From a practical point of view it is convenient to replace the parameter αr by the

expression:

αr = min (xr1, xr2, . . . , xrη)− β2r , (6.11)

with βr ∈ R. This permits ignoring the constraints

0 ≤ αr ≤ min (xr1, xr2, . . . , xrη).

• For the initial θ-estimates, which are required by any non-linear maximization pro-

cedure, one can use moment estimators.

The prior assessment is a very important step of the method, because the results of

the proposed method for small samples depend strongly on it. However, this is not a

problem, because if scanners have been installed, since all recordings are automatic, one

could in theory collect as many observations as required. Some practical method for the

prior assessment is given in Section 6.6.

6.6 Practical implementation of the proposed method

In this section we explain how the proposed traffic model can be implemented in practice.

First, we point out that since Ti, Fr, Va and Ws are H(α, θ, λ) random variables, we

can use the Bayesian approach with any of them5. However, to apply this approach,

we need to observe a sample of the corresponding random variable. In fact, we observe

directly only the Ws and some link variables Va, and calculate or estimate from them Ti,

Fr and the remaining Va variables. If the calculation is possible, this is equivalent to a

direct observation, and the Bayesian approach is valid. Otherwise, the sample is only an

estimate and then the Bayesian estimate is only approximate. This method is practically

illustrated in Sections 6.7 and 6.8 by its application to the Nguyen-Dupuis and the Cuenca

networks.

In the following section when we refer to a sample, we refer indistinctly to a sample

of Ti, Fr, Va or Ws, depending on the random variable we are dealing with. Thus, the

proposed methods are valid for any of those flows.

5Nevertheless, if we estimate or reconstruct the path flows Fr, then all other variables Ti, Va and Ws

can be calculated from these.
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6.6.1 Prior assessment in practice

For the proposed method it is more convenient to have informative priors for traffic flows

in order to obtain good results when the data is not sufficient for a good reproduction of

the traffic flows. This is a consequence of the under-specification of the traffic problem.

The prior assessment can be done by the following methods:

1. Assessment of priors from a virtual sample of path flows. Following Klieter (1992),

by means of an imaginary sample, i.e., we ask the human expert to provide virtual

samples of sizes nr0 as the most representative of his/her knowledge. Once this

sample is known, we use (6.10) to get the prior hyperparameters:

ηr = nr0 (6.12)

ξrs = x0rs, 1 ≤ s ≤ n0, (6.13)

ρr =

ηr
∑

s=1

x0rs, (6.14)

where x0rs is the s element in the sample, and the superindex 0 refers to virtual prior

sample.

Note that the prior values have negligible effect for large n.

2. Assessment of priors based on an out-of-date route information. Another possibil-

ity consists in using a prior or out-of-date route information xr. Then the prior

hyperparameters are also given by (6.12) to (6.14).

6.6.2 Sampling traffic flows

In Bayesian methods we need a sample of the random variable being involved. As indicated

in this chapter, we consider plate scanning as the main sampling technique. This means

that we directly obtain wr for r ∈ R, the set of feasible combinations of scanned links,

and the corresponding links. However, the information about routes, OD-pairs and the

unobserved links can be obtained exactly or approximated as follows.

For estimating the path flows based on plate scan of a subset of link flows, we use the

model presented in Section 6.3, with objective function (6.2) subject to (6.3) and (6.5)6,

or with objective function (6.6) subject to (6.3) and (6.5). Likewise, in the reconstruction

problem, once the path flows have been estimated, f̂r, the OD flows ti and the unobserved

link flows va can be obtained by means of equations (6.7).

We note that in order for the Bayesian techniques to be fully valid, the route, OD-

pair and links flows involved must be uniquely determined. To this end it is interesting

to obtain which sets of flows satisfy this property when insufficient number of links have

6Remember that constraints (6.4) for scanned links are redundant given constraints (6.3).
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been scanned. This can be done using the techniques in Castillo et al. (2008a,b). Two

examples of these techniques are illustrated in Sections 6.7 and 6.8. If the flows involved

in the Bayesian method are not uniquely determined, we can use the estimates, but in this

case the results must be interpreted with care, because the uncertainties in these values

have not been taken into account.

6.6.3 Obtaining posteriors

Once the sample of the random variable being considered has been obtained, the posterior

η̂ hyperparameters can be calculated in terms of the prior η parameters as

η̂r = ηr + nr (6.15)

ξ̂rs = xrs, 1 ≤ s ≤ η̂r, (6.16)

ρ̂r = ρr +

nr
∑

i=1

xri (6.17)

where xrs are the sample elements of the random variable, that is, Ti, Fr, Va or Ws,

including the virtual sample used for prior assessment.

Note that ηr = n0, which is the size of the virtual prior sample, measures the relative

weight of the human expert information with respect to the information contained in a

real sample of size n. For example, if nr0 = nr, they have the same associated amount of

information.

Related to this latter issue is the link between the precision of the estimates arising

and the quality of (i) the prior and (ii) the count data. The prior information can have a

large weight compared with the observed sample data or vice versa. As indicated a small

weight on the prior is not recommended, unless the plate scanned information is complete

or almost complete.

6.6.4 Bayesian estimates of flows

The proposed model for traffic flow estimation uses the family of conjugate distributions

for theH(α, θ, λ) family associated with the corresponding random variables Ti, Fr, Va and

Ws, taking into account that we select the posterior mode for estimating the parameters,

the estimation problem can be stated as:

Maximize
θ,α,λ

[

∑

r∈R

{

(θr−1)
η̂r
∑

s=1

log(ξ̂rs−αr)−λρ̂r+η̂r(λαr−log Γ (θr)+θr log λ)

}]

, (6.18)

where we have assumed a prior with independent components for the traffic flow parame-

ters, which can be recognized as the maximum likelihood estimate based on the extended

sample (prior plus real sample).
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Finally to clarify, we explicitly indicate that the outputs of the proposed model are

the posterior distributions, from which one immediately can obtain point estimates (the

modes) and/or credible intervals. If point estimates are used, they provide the α, θ and

λ parameters of the H(α, θ, λ) corresponding densities, and then probability intervals for

the flows can be obtained. As an alternative, we can also use the Bayesian distribution

(5.9).

6.6.5 Variability of parameter estimates and predictions

The posterior distributions can also be used for deriving estimates of the parameter esti-

mates variability. One of the weak points in traditional traffic assignment models is that

they produce a point prediction for the traffic flow vector. This is often interpreted as

some kind of estimate of the mean flow pattern. However, from a system performance

perspective it is of paramount importance. Estimates of variability are therefore highly

desirable. One of the advantages of a statistical approach is the availability of such esti-

mates (e.g. OD flow credible intervals). Using the posterior distributions of the parameter

estimates one can obtain the credible intervals for the parameter estimates, an advantage

with respect to other traffic flow prediction or estimation methods. However, this is valid

only for flows uniquely determined by the scanned links. Otherwise, the credible intervals

will be unconservative (too narrow) because they ignore a source of variation (uncertainty

associated with the unobserved flows).

When the number of scanned links is sufficient to cover all routes of the network, the

problem is not simply to estimate the population mean by the sample mean α+θ/λ using

link scanned data, because it is a Bayesian approach, but to provide the posterior distri-

butions, from which the Bayesian distributions can be calculated, and credible intervals

too.

6.6.6 Proposed algorithm

The following algorithm is proposed for reproducing and estimating the H(α, θ, λ) model

in the sense of Hazelton (2001). Though it is described for path flows Fr, the model is

directly applicable to Ti, Va or Ws flows.

Step 0: Initialization: Obtain a set of links to be scanned and identify the

feasible set of observed scanned link combinations. This set can be obtained

from a previous set of cameras in the network, or the optimal set of links to be

scanned can be obtained using the methods in Castillo et al. (2008c).

Next, the set of all observable scanned link combinations is determined by the in-

tersection of the set of scanned links SC with the set of links in each route. If no

intersection set is repeated when considering all routes, the corresponding set of ob-
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served links will allow us to identify all path flows; otherwise, the path flows with

identical intersection sets will be confounded.

Step 1: Obtain the virtual prior sample of F 0
r . We assume that we have an

out-of-date trip matrix t0i , which is used to solve the SUE problem to obtain the

corresponding reference virtual prior sample of f0r . Once the flows in {f0r ; r ∈ R}
are known, the link or node flow prior samples can be obtained from them.

Step 2: Identify the sets of route, OD and link flows uniquely determined.

This can be done using the techniques in Castillo et al. (2008a,b) or Tables such as

6.1. Then, we know to which flows the proposed Bayesian technique can be applied

and for which flows this technique provides only approximate estimates.

Step 3: Obtain the Fr priors. To assess the prior hyperparameters, we use (6.12)-

(6.14) for the H(α, θ, λ) variables Fr with the virtual sample in Step 1, replicating

n0 times each flow7. Of course, we can also assign different n0 values for each path

flow.

Step 4: Get the plate scanned observations and reconstruct path flows. The

observations ŵr and the associated subset of link flows v̂a are directly obtained, that

is, we directly get the two types of data: scanned data and count data. Since the

path flows are not directly observed, we solve the problem (6.2)-(6.3) and (6.5) (or

the problem (6.6) subjected to (6.3) and (6.5)) using the prior values f0r and the

observations ŵr, to obtain the path flows fr. Finally, using (6.7) we obtain the

unobserved flows va and the OD flows ti. Note that this step corresponds to the

reconstruction problem in the sense of Hazelton (2001).

Step 5: Obtain the Fr posteriors. We use Equations (6.15) to (6.17) to obtain the

Fr posteriors.

Step 6: Obtain the mode posteriors of Fr. The model parameters are estimated

by solving the problem (6.18), that is, obtaining the mode posteriors.

Step 7: Use of the H(α, θ, λ) model. Finally, we can use theH(α, θ, λ) model with the

posterior modes as parameters, or the Bayesian distribution to represent the traffic

flows. In particular, we can use these distributions to obtain probability intervals for

the corresponding random variables. Alternatively, for uniquely determined flows

we could obtain the corresponding credible intervals of the Bayesian distribution

(mixture of H(α, θ, λ) distributions using the posterior as weight function).

7The value of n0 must be selected depending on the weight one wants to give to the prior information.
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Figure 6.2: The Nguyen Dupuis network used for illustrative purposes, showing the nodes,

links and the set of scanned links (with outlined arrows). The origin-destination nodes

have been shown shaded.

6.7 Example: The Nguyen-Dupuis network

With the purpose of illustrating the proposed methods, they are applied to the Nguyen-

Dupuis network topology, which consists of 13 nodes and 38 links. We assume the existence

of bidirectional flow, i.e. any pair of nodes i and j is connected in both directions (see

Figure 6.2). The H(α, θ, λ) model was already justified in Section 6.5, Assumption 1.

To test the proposed methods, six origin-destination nodes have been assumed (they are

shown shaded in Figure 6.2), together with 18 OD-pairs (all possible combinations between

the three left nodes {12, 1, 4} and the three right nodes {8, 2, 3}).
Given the nature of the investigation, it is crucial that the specification of OD pairs

and routes is comprehensive, or at least clearly objective. Otherwise there is a real danger

that the limited choice of OD/routes invalidates the findings of the study. So, in practical

cases this must be done with care. We consider the already described six origin-destination

nodes and OD-pairs; however any set of OD-pairs could be considered too.

In order to know how the demand is distributed by the network, we use a path-based

SUE assignment model, with the multinomial logit assignment model with parameter

θ = 0.5 for the stochastic loading, because it gives a unique set of path flows. However,

with the aim of getting a simple example, the paths have been generated by means of an

objective process: UE assignment has been applied with the demands shown in Table 6.4
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OD-pair r Paths OD-pair r Paths

1-2 1 1 5 6 7 8 2 3-4 27 3 11 10 9 4
1-2 2 1 12 6 7 8 2 3-4 28 3 13 9 4
1-2 3 1 12 8 2 3-12 29 3 11 7 6 12
1-3 4 1 5 6 7 11 3 3-12 30 3 11 10 6 12
1-3 5 1 5 6 10 11 3 4-2 31 4 5 6 7 8 2
1-3 6 1 5 9 10 11 3 4-2 32 4 9 10 11 2
1-3 7 1 5 9 13 3 4-2 33 4 9 10 11 7 8 2
1-3 8 1 12 6 7 11 3 4-3 34 4 9 10 11 3
1-3 9 1 12 6 10 11 3 4-3 35 4 9 13 3

1-8 10 1 5 6 7 8 4-8 36 4 5 6 7 8
1-8 11 1 12 6 7 8 4-8 37 4 9 10 11 7 8
1-8 12 1 12 8 8-1 38 8 7 6 5 1
2-1 13 2 8 7 6 5 1 8-1 39 8 7 6 12 1
2-1 14 2 8 7 6 12 1 8-1 40 8 12 1
2-1 15 2 8 12 1 8-4 41 8 7 6 5 4
2-4 16 2 8 7 6 5 4 8-4 42 8 7 11 10 9 4
2-4 17 2 8 7 11 10 9 4 8-12 43 8 7 6 12
2-4 18 2 11 10 9 4 8-12 44 8 12

2-12 19 2 8 7 6 12 12-2 45 12 6 7 8 2
2-12 20 2 8 12 12-2 46 12 8 2

3-1 21 3 11 7 6 5 1 12-3 47 12 6 7 11 3
3-1 22 3 11 7 6 12 1 12-3 48 12 6 10 11 3
3-1 23 3 11 10 6 5 1 12-8 49 12 6 7 8
3-1 24 3 11 10 6 12 1 12-8 50 12 8
3-1 25 3 11 10 9 5 1
3-1 26 3 13 9 5 1

Table 6.2: Set of 18 OD-pairs and 50 routes (defined by nodes) considered in the Nguyen-

Dupuis example.

(true mean OD flows). In this way, we obtain a specific restricted set of paths for each OD

pair, and we are able to show the results in the form of tables and figures of reasonable

size.

Once the UE assignment has been applied with the demands of Table 6.4 (column 4),

50 minimum cost routes are obtained, which are given in Table 6.2. We have used the

Bureau of Public Roads (BPR) cost function

ca(va) = ca0

[

1 + βa

(

va
qa

)γ]

,

where for a given link a, ca0 is the cost associated with free flow conditions, qa is a constant

measuring the flow producing congestion, and αa and γ are constants defining how the

cost increases with traffic flow. The network data used in this example are shown in Table
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Link ca qa Link ca qa Link ca qa Link ca qa
1 -5 7 700 5 -6 12 420 8 -7 9 700 11-3 8 560

1 -12 9 560 5 -9 9 420 8 -12 14 560 11-7 4 700

2 -8 9 700 6 -5 12 420 9 -4 5 375 11-10 4 700

2 -11 9 280 6 -7 5 700 9 -5 9 420 12-1 9 560

3 -11 9 560 6 -10 4 280 9 -10 5 280 12-6 7 140

3 -13 11 560 6 -12 6 140 9 -13 9 280 12-8 14 560

4 -5 12 560 7 -6 5 700 10-6 4 280 13-3 11 560

4 -9 5 375 7 -8 9 700 10-9 4 280 13-9 9 280

5 -1 7 700 7 -11 4 700 10-11 4 700

5 -4 12 560 8 -2 9 700 11-2 9 280

Table 6.3: Network parameters of the Nguyen-Dupuis network.

True mean Prior mean True mean Prior mean

OD O D flow flow OD O D flow flow

1 1 2 210.00 247.38 10 4 2 320.00 387.45

2 1 3 430.00 498.54 11 4 3 110.00 123.14

3 1 8 320.00 385.01 12 4 8 210.00 226.16

4 2 1 210.00 218.78 13 8 1 320.00 341.64

5 2 4 320.00 370.36 14 8 4 210.00 236.61

6 2 12 50.00 64.33 15 8 12 60.00 69.87

7 3 1 430.00 561.33 16 12 2 50.00 65.64

8 3 4 110.00 124.85 17 12 3 40.00 47.60

9 3 12 40.00 42.07 18 12 8 60.00 76.62

Table 6.4: OD pairs and corresponding true and prior mean flows.

6.3, where the ca and qa cost constants used for every link a are shown, being βa = 1 and

γ = 4 for every one.

With these 50 routes, we can then apply the SUE assignment model with the true

mean OD-pair flows given in Table 6.4 in order to get the true mean link flows (see Table

6.5, columns 3 and 7).

As we have mentioned previously, we have selected this simple example in order to be

able to show the results in form of tables and figures of reasonable size. But, due to the

good properties of the quadratic objective function in (6.2) and the linear constraints in

(6.3), we do not see special problems in dealing with much larger problems, though there

is a limit imposed mainly by the number of routes.
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True mean Prior mean

Link Cost flow flow

1- 5 9.09 422.84 517.34

1-12 21.97 537.16 613.59

2- 8 9.71 309.50 370.85

2-11 18.34 270.50 282.62

3-11 11.11 300.14 389.63

3-13 12.47 279.86 338.62

4- 5 12.58 201.64 262.65

4- 9 17.77 438.36 474.10

5- 1 9.11 425.75 518.41

5- 4 12.54 196.33 258.28

5- 6 35.27 412.60 495.64

5- 9 10.89 211.89 284.36

6- 5 32.56 401.83 480.52

6- 7 6.54 422.03 521.64

6-10 4.31 139.43 148.25

6-12 21.65 154.41 177.92

7- 6 6.34 422.71 503.53

7- 8 10.81 362.40 468.90

7-11 4.02 181.85 179.60

True mean Prior mean

Link Cost flow flow

8- 2 10.06 310.70 410.30

8- 7 10.14 369.66 417.28

8-12 32.66 529.84 601.69

9- 4 17.71 443.67 473.53

9- 5 11.23 220.25 296.17

9-10 29.80 368.70 417.87

9-13 28.70 281.54 340.59

10- 6 4.37 133.54 154.91

10- 9 26.47 384.06 431.09

10-11 5.71 508.13 566.12

11- 2 19.38 269.30 290.17

11- 3 8.95 298.46 328.69

11- 7 4.03 175.26 213.11

11-10 5.96 517.60 586.00

12- 1 21.13 534.25 603.33

12- 6 23.80 148.87 174.25

12- 8 36.31 538.30 629.19

13- 3 12.51 281.54 340.59

13- 9 28.25 279.86 338.62

Table 6.5: Links, link costs and true and prior link mean flows.

6.7.1 Reconstructing and estimating traffic flows

Following the ideas of Hazelton (2001), we distinguish between reconstruction and estima-

tion, i.e., we reconstruct all traffic flows and use them for estimation purposes. To this end,

the steps indicated in the algorithm in Section 6.6.6 are used. This algorithm has been im-

plemented in GAMS (General Algebraic Modeling System) (see http://www.gams.com/).

In order to test the performance of the proposed method, we have assumed the true

mean OD flows ttruei shown in Table 6.4 column 4, and assigned them to the network by

SUE, to obtain the assumed true mean link and path flows (see Table 6.5 columns 3 and

7, and Table 6.6 column 4). The resulting OD, path and link flows are taken as the true

values. Though we apply the proposed Gamma method to path flows, it can be applied

to OD or link flows in a similar way.

Step 0: Initialization. Obtain a set of links to be scanned and identify the

feasible set of observed scanned link combinations. In this example we have

considered that we do not have a previous set of cameras installed. Therefore, we

are free to choose the optimal set of scanned links for full observability, which have
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been obtained using the method explained in Castillo et al. (2008c). This method

takes into account the topology of the network and routes, and looks for a set of

scanned links such that given any two different routes we have at least one observed

link which is in one of the routes and not in the other. In other words, a subset of

scanned links able to identify all path flows. The resulting set was:

SC ≡ {1, 2, 3, 5, 8, 9, 11, 13, 18, 20, 21, 22, 23, 29, 31, 33, 34, 36}, (6.19)

which is shown in Figure 6.2 (see the links with continuous arrows).

Note that this set is only optimal for the 50 paths selected in Table 6.2. If we had

more paths, the optimal set SC (6.19) would be larger.

The set of all scanned link feasible observations is determined by intersection of the

set of scanned links SC with the set of links in each route (see Table 6.6, column 6).

Step 1: Obtain the virtual prior sample of F 0
r . In order to illustrate the goodness

of the proposed method, we have assumed random prior flows sufficiently apart from

the true flows. To this end, the prior OD matrix is generated randomly from the

true OD flows ttruei in Table 6.4 column 4, as t0i = αit
true
i , where the αi factors

are assumed to be independent normal N(1.2, 0.12) random variables (see Table 6.4,

column 5). Next, assigning them to the network by SUE, the prior virtual sample

of link and path flows f0r is obtained (see Table 6.5 columns 4 and 8, and Table 6.6

column 3). This provides virtual samples for the OD, path and link flows.

Step 2: Identify the sets of route, OD and link flows uniquely determined.

As an example, using the first 14 scanned links (see Table 6.6 and the vertical line

separating these links from the rest of scanned links), we identify the following 28

routes:

{1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 16, 17, 25, 26, 27, 31, 33, 35, 36, 37, 38, 41, 42, 45, 46, 48, 49},

the following 23 total link flows:

{1, 2, 3, 5, 7, 8, 9, 10, 11, 12, 13, 15, 16, 18, 20, 21, 22, 23, 24, 25, 26, 29, 37}

and the 4 OD-pairs: {1, 12, 14, 16} (see Table 6.7 row 14(a)). We can apply the

proposed H(α, θ, λ) Bayesian model to these flows, but applying this model to unde-

termined flows by using their estimates as true values implies no consideration of the

associated uncertainty, and then the analysis must be done with care (it is only an

approximation), and Bayesian credible intervals are no longer valid. Nevertheless,

in these cases the mean estimates are still useful in practice.

Step 3: Obtain the Fr priors. Based on the fictitious sample f0r replicated n0 times,

the prior hyperparameters of Fr are obtained using (6.12)-(6.14).
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Step 4: Get the plate scanned observations and reconstruct traffic flows. Since

we have no observed flows w0
r , we have simulated a sample of size n of the path flows

using the corresponding H(α, θ, λ) distributions and the true means, and evaluated

the scanned flows w0
r . Next, the problem (6.6) subject to (6.3) and (6.5) with the

prior values f0r and the observations w0
r is solved to obtain the path flow estimates fr.

Finally the corresponding unobserved flows va and the OD flows ti are reconstructed

using (6.7).

Step 5: Obtain the Fr posteriors. Once the sample of the path flows has been

obtained, the posterior η̂ hyperparameters can be calculated in terms of the prior η

parameters using equations (6.15) and (6.17), in order to obtain the Fr posteriors.

Step 6: Obtain the posterior modes of Fr. The posterior modes of Fr are obtained

by solving the problem (6.18). Since the mode, the resulting mean posterior values

are calculated and shown in Table 6.6 (column 5) for n = n0 = 10.

Step 7: Use of the Gamma model. Finally, the Gamma model can be used with the

posterior modes as parameters, or the Bayesian distribution to represent the traffic

flows, i.e. OD-pair and link flows. Do not forget that we could obtain the corre-

sponding intervals of the Bayesian distribution (mixture of H(α, θ, λ) distributions

using the posterior as weight function).

To illustrate the power and the performance of the proposed method based on plate

scanning and to facilitate the comparison with the standard method based on link obser-

vations, we have estimated the OD-pair flows by two methods:

Case (a) Based on the information supplied by the scanned links.

Case (b) Based on the information contained in the counted links.

The results of both (a) and (b) cases are shown by means of graphs and tables. Table

6.6 shows the estimated α̂+ θ̂/λ path flows together with the set of scanned link feasible

observations.

The discussion below is separated in two subsections, one related to reconstruction

results, and one to estimation results.

6.7.2 Discussion of the reconstruction results

In this section we use the proposed methods for reconstructing the traffic flows, i.e., we

find a solution compatible with the observations.

Figure 6.3 shows the reconstructed links flows for the cases of: (a) no observations

(largest black circles), (b) 10 observations (small gray circles), and (c) 18 observations

(small black circles). The true link flows are indicated by the largest red circles. The
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Figure 6.3: Reconstructed link flows for the cases of no observations (largest black circles),

10 (small gray circles) and 18 (small black circles) observations are shown. The true link

flows are indicated by the red circles. Upper figure refers to plate scanning, and lower

figure to the case of the standard total counted link flow observations.

upper figure refers to plate scanning, and the lower figure to standard counted links.

From it, we can conclude that the prior information of some link flows is far from the true

flow (a typical situation in practice). However, the link flow estimates after observing 18

links by plate scanning is exact (see upper figure). This is not the case for the standard

method of using counted link flows (lower figure).

Figure 6.4 shows the reconstructed OD flows for the cases of: (a) no observations

(largest black circles), (b) 10 observations (small gray circles), and (c) 18 observations

(small black circles). The true OD flows are indicated by the largest red circles. The

upper figure refers to plate scanning, and the lower figure to the case of the standard

total link flow observations. Similar conclusions to those drawn from Figure 6.3 can be

obtained for the OD estimates. Both Figures 6.3 and 6.4 permit us to conclude that the
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Figure 6.4: Reconstructed OD flows for the cases of no observations (largest black circles),

10 (small gray circles) and 18 (small black circles) observations are shown. The true OD

flows are indicated by the largest red circles. Upper figure refers to plate scanning, and

lower figure to the case of the standard total counted link flow observations.

proposed method, based on plate scanning, clearly outperforms the standard method of

using counted link flows for reconstructing purposes.

Apart from illustrating the particular case above, we have analyzed the effect of the

prior on the final parameter estimates by simulation. To this end, we have kept the

same true and prior flows and simulated the actual flows assuming H(α, θ, λ) distributions
for the path flows. For each of these cases, the OD flows have been reconstructed and

the corresponding errors evaluated. The results have all been produced based on 100

replications, and are given in Table 6.7, where the predictions (expected values) for the

OD-pair flows and their corresponding root mean square errors (RMSE) are shown for

several cases. The first column refers to the number of observed links, which are scanned

links for rows labelled (a), and counted link flows for rows with label (b). It is assumed

that the observed links are those in (6.19), which have been introduced in the following
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Figure 6.5: Left graph: Relative gain in terms of the average RMSE for OD flows, using

scanned links with respect to the total link observations (count data), and right graph:

Number of independent linear equality constraints for scanned and count data.

way

SC = {8, 3, 2, 31, 13, 5, 1, 36, 34, 33, 21, 22, 18, 11, 20, 23, 29, 9}

in order to avoid redundant information for the count data case, i.e. to avoid link flows

which are combinations of previous link flows, and therefore they do not add new infor-

mation.

In each group of two rows, the first contains the expected values of the OD flow

estimates and the second the root mean square error (RMSE), which have been calculated

for all OD-pairs. In the table, the exact estimates have been shown in bold. Note that,

as the number of scanned links decreases, the number of exact estimates reduces.

The case of no observations (0 observed links) contains the prior means, since for no

information, one gets the prior values.

From this table, the following conclusions can be drawn:

1. The OD-pair flow estimates based on the information supplied only by the scanned

links (case (a)) is exact for 18 scanned links for all OD-pairs, and still remains exact

for some OD-pairs when the number of scanned links decreases (see the boldfaced

values). When this number decreases, the OD-pair flows are closely estimated.

2. The OD-pair flow estimates based on the information contained in counted links (case

(b)), together with the prior information is reasonable good, but this is more due

to the important weight given to the prior information, compensating the reduced

information contained in the observations. For no information at all, the predictions

coincide with the prior values, as expected.

3. The proposed method, based on scanned links gives much better results than the one

based on total link flows only, because it supplies more information than counted
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links. In addition, it is much less influenced by the prior flow information. In fact,

when the number of scanned links reaches the optimum value, this influence is null.

Figure 6.5 compares graphically the two methods: scanned links and counted links.

The left graph in Figure 6.5 shows the relative gain in terms of the normalized average

RMSE (ARMSE) of OD flows for each observed case (depending on the number of observed

links), using the scanned links compared with the total link observations (count data).

This figure shows the ratio ARMSE/ARMSE0, where ARMSE0 is the average RMSE

for the case of no observations, versus the number of observed links. One can see that the

ratio is one when we have no observations in both cases, and decreases with the number of

observations, reaching the value zero (exact values) for the scanned data, whereas for count

data, the ratio is 0.6 for 18 scanned links. Note that, the differences between scanned links

and counted links appear only after the first four scanned links are reached. This means

that the information provided by the first scanned links is the same as that provided by

link counts. However, after four scanned links, the gain due to scanned data is clear.

The right graph in Figure 6.5 shows the number of independent linear constraints

provided for every number of scanned links, illustrating the information provided in both

scanned and counted data cases. We can observe that the number of linear equations

is equal to both cases for the first four observed links. However, after this, the number

of linear equations for scanned data increases faster than for count data. So, 50 linear

constraints are produced from the scanned data while only 18 linear constraints from the

count data when we observe 18 links. This clearly explains the average RMSE coincidence

for the first 3 observed links in Figure 6.5, the decrease error for scanned data, and the

higher quantity of information supplied by scanned data than by count data.

Finally, Figure 6.6 shows the RMSE/mean ratios for the reconstruction of the path

flows in the cases of counted links (lower figure) and scanned links (upper figure) for dif-

ferent number of observed links (0 to 18). The continuous lines correspond to 18 observed

links. They have been obtained by solving the problems (6.6)-(6.4)-(6.5) and (6.6)-(6.3)-

(6.5) for counted and scanned links, respectively. Note that (a) the errors for a reduced

number of observed links (scanned or counted) are exactly the same, (b) for an interme-

diate number of observed links, the errors are smaller for the case of scanned links than

for counted links, and (c) the errors are null for 18 scanned links.

6.7.3 Discussion of estimation results

First, we deal with the case of full observability, that is, the case in which we have observed

all the scanned links. Figure 6.7 shows the estimated α̂ + θ̂/λ values of the gamma

H(α, θ, λ) path flows. The first figure is for a very informative prior and a small sample,

the second one corresponds to an equilibrium between the prior and the sample, and the

third figure is for an uninformative prior and a large sample. The true values of α+θ/λ are

shown in red, and the estimates as black small circles. This figure shows how the parameter
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Figure 6.6: RMSE/mean ratios for the predictions of the path flows in the cases of counted

(upper figure) and scanned (lower figure) links for different number of observed links (0

to 18). The continuous lines correspond to 18 observed links.

estimates (posterior modes) improve with increasing the sample size n compared with the

informative content of the prior n0. Note that the parameter estimates converge to the

true values with increasing n.

In Table 6.6 column 5 we give the parameter estimates of the route variables Fr (α̂+θ̂/λ

values) for the case of n = n0 = 10 (similar information of the sample and the prior). From

these values we can immediately calculate the parameter values of the H(α, θ, λ) variables
Ti, Va and Ws.

Next, we deal with partial observability. In Figure 6.8 we show the RMSE/mean ratios

for the posterior mode estimates of the path flows, for the cases of m = 10;n = 10 (upper

figure), and m = 1;n = 10 (lower figure). Note how the RMSE errors decrease with the

weight of the sample size, that is, when the prior has less weight, and how, for a low

number of scanned links, the RMSE coincides with that for the same number of counted

links (see Figure 6.6).
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Figure 6.7: Estimated α̂ + θ̂/λ parameters of the H(α, θ, λ) path flows. The first figure

is for a very informative prior and a small sample, the second one corresponds to an

equilibrium between the prior and the sample, and the third figure is for an uninformative

prior and a large sample. The true values of α+ θ/λ are shown in red, and the estimates

as black small circles.
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Figure 6.8: RMSE/mean ratios for the posterior mode estimates of the path flows, for the

cases of n0 = 10;n = 10 (upper figure), and n0 = 1;n = 10 (lower figure).

6.7.4 Final comments

It is interesting to point out here the importance and the differences between counted links

and what we are observing (scanned links). The information ŵr in Table 6.6 contains 50

values resulting from the 18 scanned links. This means that instead of observing 18

numerical values (the total flows at the scanned links), we observe 50 numerical values,

i.e. a lot more information, which explains the great improvement of the proposed method

with respect to that of observing the link flows, even if a prior information is not used,

and the perfect identification of the corresponding OD-pairs flows based on 18 scanned

links.

In fact, observing the link flows alone (counted link flows) provides a poor information

because the number of compatible solutions for the OD-pair flows is very large, and this

must be complemented with other information, as for example previous or prior link flows.

The number of observed links (18 in our example) could be very small compared with the

high number of degrees of freedom one large network can have. In summary, the cases with

scanned links provide better reconstruction and in consequence, better estimates than the

case with link counts alone, if the set of scanned links is sufficiently large.
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wr Scanned links and their intersections with route links

OD r prior true α̂+ θ̂/λ̂ 1 2 3 5 8 9 11 13 18 20 21 22 23 29 31 33 34 36 n1(r,SC1) n1(r,SC2)

1 1 35 25 27 X X X X 49 49

1 2 17 12 13 X X X 49 49

1 3 195 173 175 X X X 49 49

2 4 62 68 68 X X X 49 49

2 5 81 80 82 X X X X 49 49

2 6 47 27 33 X X X 49 49

2 7 238 185 198 X 49 49

2 8 31 33 33 X X 48 49

2 9 40 38 38 X X X 49 49

3 10 55 38 43 X X X 49 49

3 11 27 19 21 X X 49 49

3 12 304 263 280 X X 48 49

4 13 21 27 24 X X X X 49 49

4 14 12 14 14 X X X 48 49

4 15 186 170 175 X X X 48 49

5 16 70 37 46 X X X 49 49

5 17 18 12 14 X X X X 49 49

5 18 283 271 274 X X 48 49

6 19 4 4 3 X X 48 49

6 20 60 46 52 X X 48 49

7 21 83 64 69 X X X 48 49

7 22 48 33 39 X X 46 49

7 23 85 74 80 X X X X 48 49

7 24 49 38 41 X X X 46 49

7 25 58 34 41 X X X 49 49

7 26 238 187 202 X 49 49

8 27 24 17 20 X X X 49 49

8 28 100 93 96 X 48 49

9 29 21 19 19 X 46 49

9 30 21 21 22 X X 46 49

10 31 79 39 54 X X X 49 49

10 32 290 269 273 X X 48 49

10 33 18 11 14 X X X X 49 49

11 34 20 14 16 X X X 48 49

11 35 103 96 102 X 49 49

12 36 184 162 170 X X 49 49

12 37 43 48 45 X X X 49 49

13 38 33 41 39 X X X 49 49

13 39 19 21 20 X X 48 49

13 40 290 258 268 X X 48 49

14 41 188 159 166 X X 49 49

14 42 48 51 52 X X X 49 49

15 43 4 5 4 X 48 49

15 44 66 55 57 X 48 49

16 45 5 3 3 X X 49 49

16 46 60 47 51 X X 49 49

17 47 21 18 20 X 0 49

17 48 27 22 24 X X 49 49

18 49 6 4 5 X 49 49

18 50 70 56 62 X 0 49

Table 6.6: The set of scanned link feasible observations, observed prior and true mean

flows, reconstruct and estimated wr flows, and associated values of r. The θ̂ estimates are

for n0 = 10 and n = 20. SC1 is the set of the first 14 scanned links, and SC2 is the set of

all 18 scanned links.
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Observed OD

links t1,2 t1,3 t1,8 t2,1 t2,4 t2,12 t3,1 t3,4 t3,12 t4,2 t4,3 t4,8 t8,1 t8,4 t8,12 t12,2 t12,3 t12,8
PRIOR

0(a) 247.4 498.5 385.0 218.8 370.4 64.3 561.3 124.8 42.1 387.5 123.1 226.2 341.6 236.6 69.9 65.6 47.6 76.6
42.7 74.5 69.7 20.6 55.2 17.0 137.0 18.0 7.8 70.3 19.4 28.6 34.4 34.8 14.9 19.1 10.7 19.0

(b) 247.4 498.5 385.0 218.8 370.4 64.3 561.3 124.8 42.1 387.4 123.1 226.2 341.6 236.6 69.9 65.6 47.6 76.6

42.7 74.5 69.7 20.6 55.2 17.0 137.0 18.0 7.8 70.3 19.4 28.6 34.4 34.8 14.9 19.1 10.7 19.0

Predictions and RMSE

1(a) 247.4 498.5 385.0 218.8 370.4 64.3 561.3 124.8 42.1 356.3 119.1 225.5 341.6 236.6 69.9 65.6 47.6 76.6

42.7 74.5 69.7 20.6 55.2 17.0 137.0 18.0 7.8 37.9 15.8 28.1 34.4 34.8 14.9 19.1 10.7 19.0

(b) 247.4 498.5 385.0 218.8 370.4 64.3 561.3 124.8 42.1 356.3 119.1 225.5 341.6 236.6 69.9 65.6 47.6 76.6
42.7 74.5 69.7 20.6 55.2 17.0 137.0 18.0 7.8 37.9 15.8 28.1 34.4 34.8 14.9 19.1 10.7 19.0

2(a) 247.4 498.5 385.0 170.7 363.2 59.3 561.3 124.8 42.1 356.3 119.1 225.5 341.6 236.6 69.9 65.6 47.6 76.6

42.7 74.5 69.7 40.9 48.8 12.7 137.0 18.0 7.8 37.9 15.8 28.1 34.4 34.8 14.9 19.1 10.7 19.0

(b) 247.4 498.5 385.0 170.7 363.2 59.3 561.3 124.8 42.1 356.3 119.1 225.5 341.6 236.6 69.9 65.6 47.6 76.6
42.7 74.5 69.7 40.9 48.8 12.7 137.0 18.0 7.8 37.9 15.8 28.1 34.4 34.8 14.9 19.1 10.7 19.0

3(a) 225.5 497.1 332.1 170.7 363.2 59.3 561.3 124.8 42.1 356.3 119.1 225.5 341.6 236.6 69.9 65.6 47.6 76.6

23.1 73.2 23.1 40.9 48.8 12.7 137.0 18.0 7.8 37.9 15.8 28.1 34.4 34.8 14.9 19.1 10.7 19.0

(b) 225.5 497.1 332.1 170.7 363.2 59.3 561.3 124.8 42.1 356.3 119.1 225.5 341.6 236.6 69.9 65.6 47.6 76.6

23.1 73.2 23.1 40.9 48.8 12.7 137.0 18.0 7.8 37.9 15.8 28.1 34.4 34.8 14.9 19.1 10.7 19.0

4(a) 224.9 478.1 330.6 170.7 363.2 59.3 561.3 124.8 42.1 361.9 113.4 225.6 341.6 236.6 69.9 65.6 45.7 76.6
22.6 52.3 20.4 40.9 48.8 12.7 137.0 18.0 7.8 42.8 12.3 28.2 34.4 34.8 14.9 19.1 9.1 19.0

(b) 226.7 472.3 335.0 170.7 363.2 59.3 561.3 124.8 42.1 356.9 118.5 225.5 341.6 236.6 69.9 65.6 45.7 76.6

23.9 47.2 24.8 40.9 48.8 12.7 137.0 18.0 7.8 38.4 15.4 28.1 34.4 34.8 14.9 19.1 9.4 19.0

5(a) 224.9 478.1 330.6 185.8 346.4 61.1 545.4 124.8 42.1 361.9 113.4 225.6 340.4 196.8 69.9 65.6 45.7 76.6
22.6 52.3 20.4 26.9 34.9 13.9 121.0 18.0 7.8 42.8 12.3 28.2 33.5 19.6 14.9 19.1 9.1 19.0

(b) 226.7 472.3 335.0 175.9 357.4 59.9 542.0 124.8 42.1 356.9 118.5 225.5 340.2 188.3 69.9 65.6 45.7 76.6

23.9 47.2 24.8 35.9 43.8 13.1 117.8 18.0 7.8 38.4 15.4 28.1 33.3 25.5 14.9 19.1 9.4 19.0

6(a) 224.9 478.1 330.6 185.8 346.4 61.1 477.0 121.0 36.4 361.9 113.4 225.6 340.9 213.5 69.9 65.6 45.7 76.6

22.6 52.3 20.4 26.9 34.9 13.9 53.7 15.4 7.1 42.8 12.3 28.2 33.9 13.2 14.9 19.1 9.1 19.0

(b) 226.7 472.3 335.0 172.2 361.5 59.5 473.1 122.6 38.8 356.9 118.5 225.5 341.2 222.0 69.9 65.6 45.7 76.6
23.9 47.2 24.8 39.4 47.1 12.8 50.3 16.4 6.9 38.4 15.4 28.1 34.1 22.4 14.9 19.1 9.4 19.0

7(a) 223.3 408.7 326.7 185.8 346.4 61.1 477.0 121.0 36.4 361.9 113.4 225.6 340.9 213.5 69.9 65.6 40.8 76.6

21.5 23.4 18.5 26.9 34.9 13.9 53.7 15.4 7.1 42.8 12.3 28.2 33.9 13.2 14.9 19.1 0.0 19.0

(b) 224.6 404.2 329.9 172.2 361.5 59.5 473.1 122.6 38.8 356.6 118.8 225.5 341.2 222.0 69.9 65.6 46.7 76.6

22.3 29.2 21.7 39.4 47.1 12.8 50.3 16.4 6.9 38.2 15.6 28.1 34.1 22.4 14.9 19.1 9.9 19.0

8(a) 223.3 408.7 326.7 185.8 346.4 61.1 477.0 121.0 36.4 361.9 113.4 225.6 340.9 213.5 69.9 53.4 40.8 60.0
21.5 23.4 18.5 26.9 34.9 13.9 53.7 15.4 7.1 42.8 12.3 28.2 33.9 13.2 14.9 8.1 0.0 6.8

(b) 223.7 407.5 327.6 172.2 361.5 59.5 473.1 122.6 38.8 356.7 118.7 225.5 341.2 222.0 69.9 59.6 46.4 68.4

21.6 26.1 20.6 39.4 47.1 12.8 50.3 16.4 6.9 38.2 15.6 28.1 34.1 22.4 14.9 13.6 9.7 11.2

9(a) 223.3 408.7 326.7 202.3 345.0 45.8 478.6 120.4 35.5 361.9 113.4 225.6 307.3 213.5 69.9 53.4 40.8 60.0
21.5 23.4 18.5 9.9 33.9 6.1 55.0 15.1 6.7 42.8 12.3 28.2 11.5 13.2 14.9 8.1 0.0 6.8

(b) 223.7 407.5 327.6 171.6 361.8 59.8 473.0 122.6 38.8 356.7 118.7 225.5 332.6 221.5 69.9 59.6 46.4 68.4

21.6 26.1 20.6 39.9 47.4 12.9 50.3 16.5 6.9 38.2 15.6 28.1 22.1 21.9 14.9 13.6 9.7 11.2

10(a) 223.3 408.7 326.7 202.3 330.6 50.1 477.9 120.3 36.4 361.9 113.4 225.6 307.3 213.2 69.9 53.4 40.8 60.0

21.5 23.4 18.5 9.9 13.7 0.0 54.3 15.1 5.6 42.8 12.3 28.2 11.5 13.0 14.9 8.1 0.0 6.8

(b) 223.7 407.5 327.6 171.7 346.8 59.8 473.1 122.6 38.8 356.7 118.7 225.5 332.5 220.8 69.9 59.6 46.4 68.4
21.6 26.1 20.6 39.8 29.9 13.0 50.3 16.4 6.9 38.2 15.6 28.1 22.0 21.4 14.9 13.6 9.7 11.2

11(a) 223.3 408.7 326.7 202.3 328.6 50.1 477.9 120.3 36.4 361.9 113.4 225.6 307.3 215.2 69.8 53.4 40.8 60.0

21.5 23.4 18.5 9.9 9.9 0.0 54.3 15.1 5.6 42.8 12.3 28.2 11.5 11.5 15.0 8.1 0.0 6.8

(b) 223.7 407.5 327.6 174.2 354.5 59.8 475.5 121.6 37.4 356.7 118.7 225.5 336.8 200.8 69.8 59.6 46.4 68.4

21.6 26.1 20.6 37.3 36.8 13.0 52.4 15.8 6.9 38.2 15.6 28.1 25.5 15.0 14.8 13.6 9.7 11.2

12(a) 223.3 408.7 326.7 202.3 328.6 50.1 477.9 120.3 36.4 361.9 113.4 225.6 307.3 215.2 58.7 53.4 40.8 60.0

21.5 23.4 18.5 9.9 9.9 0.0 54.3 15.1 5.6 42.8 12.3 28.2 11.5 11.5 0.0 8.1 0.0 6.8

(b) 223.7 407.5 327.6 180.9 359.9 51.8 477.0 121.0 36.4 356.7 118.7 225.5 324.0 198.5 58.8 59.6 46.4 68.4

21.6 26.1 20.6 30.9 41.6 8.2 53.8 15.4 7.1 38.2 15.6 28.1 16.1 15.7 8.1 13.6 9.7 11.2

13(a) 217.2 429.5 312.0 202.3 328.6 50.1 477.9 120.3 36.4 352.8 113.6 166.1 307.3 215.2 58.7 53.4 40.8 59.9
17.7 0.0 17.7 9.9 9.9 0.0 54.3 15.0 5.6 33.7 12.3 40.6 11.5 11.5 0.0 8.1 0.0 6.8

(b) 221.0 416.6 321.1 180.9 359.9 51.8 477.0 121.0 36.4 346.0 119.2 144.6 324.0 198.5 58.8 58.7 46.2 67.2

19.8 18.4 18.9 30.9 41.6 8.2 53.8 15.4 7.1 28.9 15.9 62.4 16.1 15.7 8.1 12.9 9.6 10.4

14(a) 217.2 429.5 312.0 202.3 328.6 50.1 477.9 120.3 36.4 353.5 113.6 169.8 307.3 215.2 58.7 51.6 40.8 57.5

17.7 0.0 17.7 9.9 9.9 0.0 54.3 15.1 5.6 34.3 12.3 36.9 11.5 11.5 0.0 7.0 0.0 7.0

(b) 223.3 408.8 326.6 180.9 359.9 51.8 477.0 121.0 36.4 359.8 119.2 148.4 324.0 198.5 58.8 53.5 41.4 60.1
21.4 24.5 19.7 30.9 41.6 8.2 53.8 15.4 7.1 40.7 15.8 58.6 16.1 15.7 8.1 9.2 7.5 8.1

15(a) 209.0 429.5 320.2 202.3 328.6 50.1 477.9 120.3 36.4 317.7 113.6 205.6 307.3 215.2 58.7 48.5 40.8 60.6

0.0 0.0 0.0 9.9 9.9 0.0 54.3 15.0 5.6 12.3 12.3 0.0 11.5 11.5 0.0 0.0 0.0 0.0

(b) 183.1 409.3 366.3 180.9 359.9 51.8 477.0 121.0 36.4 351.8 119.2 157.2 324.0 198.5 58.8 50.3 41.4 62.8
27.7 24.0 48.2 30.9 41.6 8.2 53.8 15.4 7.1 33.2 15.8 49.9 16.1 15.7 8.1 7.5 7.5 8.2

16(a) 209.0 429.5 320.2 202.3 328.6 50.1 480.7 111.9 36.7 317.7 113.6 205.6 307.3 215.2 58.7 48.5 40.8 60.6

0.0 0.0 0.0 9.9 9.9 0.0 56.5 0.0 5.4 12.3 12.3 0.0 11.5 11.5 0.0 0.0 0.0 0.0

(b) 183.1 409.3 366.3 181.0 355.8 51.6 477.4 111.7 36.4 351.8 119.2 157.2 324.2 198.5 58.7 50.3 41.4 62.8

27.7 24.0 48.2 30.8 37.2 8.1 54.2 8.6 7.1 33.2 15.8 49.9 16.2 15.7 8.0 7.5 7.5 8.2

17(a) 209.0 429.5 320.2 202.3 328.6 50.1 480.7 111.9 36.7 322.0 109.3 205.6 307.3 215.2 58.7 48.5 40.8 60.6

0.0 0.0 0.0 9.9 9.9 0.0 56.5 0.0 5.4 0.0 0.0 0.0 11.5 11.5 0.0 0.0 0.0 0.0

(b) 183.1 409.3 366.3 181.0 355.8 51.6 477.4 111.7 36.4 351.8 119.2 157.2 324.2 198.5 58.7 50.3 41.4 62.8

27.7 24.0 48.2 30.8 37.2 8.1 54.2 8.6 7.1 32.9 13.5 49.9 16.2 15.7 8.0 7.5 7.5 8.2

18(a) 209.0 429.5 320.2 210.1 320.8 50.1 427.4 111.9 38.9 322.0 109.3 205.6 315.6 207.0 58.7 48.5 40.8 60.6

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

(b) 183.1 409.3 366.3 180.6 356.4 52.0 449.5 111.6 36.6 351.8 119.2 157.2 323.1 199.2 59.0 50.3 41.4 62.8
27.7 24.0 48.2 31.1 37.7 8.2 25.8 8.6 7.0 32.9 13.5 49.9 15.4 15.2 8.0 7.5 7.5 8.2

Table 6.7: Mean values and RMSEs obtained based on 100 replications for the cases (a)

scanned plates, and (b) the standard link data. Model H(α, θ, λ).
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Figure 6.9: The Cuenca network showing the nodes and links.

6.8 The Cuenca network

In this section we show that the proposed method can be applied to real size networks,

as the Cuenca network (see Figure 6.98), which consists of 672 links, 232 nodes and 219

routes.

Unfortunately, we have had no financial support for installing the cameras. So, we

have used simulated data for this network. We proceeded as follows:

1. To assume the parameters of our models H(α, θ, λ) for all the route, OD-pairs, links

and scanned flows in a consistent way, we have assumed the true mean OD flows

ttruei , and we have assigned them to the network by SUE. The resulting flows were

the assumed true mean flows.

2. Since 78 scanned links are sufficient for full observability of this network, we have

studied a sequence of these links, ranging from no links to all of them, to illustrate

how the results improve with increasing the number of scanned links.

8Image is captured from http://maps.google.es/maps
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3. To generate the priors, we generate a random set of OD-pair flows as t0i = αit
true
i ,

where the αi factors were assumed to be independent normal N(1.2, 0.12) random

variables. Next, assigning them to the network by SUE, the prior virtual samples of

all flows were obtained.

4. The set of flows to which the proposed Bayesian technique can be applied and for

which this technique provides only approximate estimates was determined (see Table

6.8).

5. The prior hyperparameters are determined using (6.12)-(6.13), replicating n0 = 10

times each flow.

6. The true flows were generated from the H(α, θ, λ) model, from which the sample

flows were simulated (n = 10). A similar weight for the prior and the sample was

considered (n0 = n = 10). Note that the sample size n required for the sample to

dominate the estimation depends on the value of the sample size n0 of the virtual

sample prior, i.e. on the ratio n/n0. For n/n0 > 1 the sample dominates.

7. We solved the problem (6.6) subject to (6.3) and (6.5) using the scanned link flows

to obtain the path flow fr, from which all other flows were calculated, and obtained

the corresponding RMSE. One example is given in the left part of Figure 6.10 for

the OD-pair flows (continuous line).

8. We solved the problem (6.6) subject to (6.4) and (6.5) using the counted link flows

to obtain the path flow fr, from which all other flows were calculated, and obtained

the corresponding RMSE. One example is given in the left part of Figure 6.10 for

the OD-pair flows (dashed line). Figure 6.10 contains the information in Figure

6.5 for this case, where it can be seen that the amount of information increases

exponentially with the number of scanned links. We note that the RMSE have been

calculated based on the assumed true flow values.

9. For the flows which are fully observable we obtained the posteriors using Equations

(6.15) and (6.16), and solved problem (6.18) to obtain the mode posteriors.

It is impossible to show all the results in this chapter, but we can say that they are

similar to those shown for the Nguyen Dupuis network.

When the method described in Section 6.6 was applied to this network, the execution

time for one run with 78 scanned links was 0.03 seconds on a Dell Optiplex 755 desktop

computer.

To illustrate how the reduction in the number of scanned links influences the number

of fully observable link, OD and path flows, we give Table 6.8, which shows how the

percentages of fully observed links, OD and routes change with the number of scanners

used. Finally, Figure 6.10 shows how the number of linear constraints and the prediction
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Number Percentages

of scanned links link flows path flows OD flows

78 100 100 100

70 78.82 76.71 74.37

60 57.64 49.77 48.24

50 36.46 33.78 31.15

40 27.88 23.74 20.10

Table 6.8: Percentages of fully observed link, route and OD flows for different number of

scanned links.
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Figure 6.10: Results for the Cuenca network. Left figure: relative gain in terms of the

average RMSE values for OD flows using scanned links (continuous line) with respect to

the counted link observations (dashed line). Right figure: number of independent linear

equality constraints for scanned (continuous line) and count (dashed line) data relative

gain in terms of the average.

errors change with the number of scanners, going from no scanners to the number of

scanners leading to full observability, so all range of possibilities are studied.

6.9 Conclusions

The main conclusions that can be drawn from this chapter are:

1. A new model based on the family F ≡ H(α, θ, λ) ≡ {α+Γ(θ, λ);α ≥ 0, θ > 0, λ > 0},
which is a triparametric family of positive, reproductive, infinitely divisible and with

positive skewness of distributions has been proposed. The model has more degrees

of freedom than other models, such as the Poisson, for example, because the mean

E[X] = α+ θ/λ and the variance V ar[X] = θ/λ2 are independent parameters.

2. The family F ≡ H(α, θ, λ) ≡ {α+Γ(θ, λ);α ≥ 0, θ > 0}with common λ for all flows
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is statistically consistent to model route, OD-pair, link, node, scanned flows, etc. In

this way, the same family is valid to model all of them.

3. Since evaluation of posterior means is difficult, we have suggested to use the posterior

modes instead, which can be calculated by solving simple optimization problems.

4. The proposed methods allow us to use sampling techniques which cannot be used by

other methods, such as plate scanning information. These techniques lead to very

good estimates of all traffic flows due to the large amount of information contained

in them.

5. Link count data can be sufficient to estimate (uniquely) OD (and route) flows given

repeated sampling (see Vardi (1996) and Hazelton (2000)). However, these meth-

ods require some reasonably strong assumptions on the traffic generation process.

Without these assumptions, link count information is insufficient to identify ori-

gin, destinations or routes. On the contrary, plate scanning makes this estimation

possible.

6. A comparison of the information contained in count data with that contained in

scanned data indicates that using the traditional link flow information to estimate

traffic flows can lead to poor results compared with the latter. The reason is simply

that plate scanned data supply more information than link counts only.

7. Application of the proposed method to the Nguyen-Dupuis network example has

shown the applicability and interest of the proposed method, and pointed out that

the proposed estimation method leads to good estimates.

8. Though the proposed Bayesian method is valid only for uniquely determined (route,

OD and link) flow samples, application to incomplete samples seems to give good

results for point estimates, as the Nguyen-Dupuis and Cuenca examples have shown.

Figures 6.5 and 6.10 show how the number of linear constraints and the prediction

errors change with the number of scanners, going from no scanners to the number

of scanned leading to full observability.

9. Due to the low cpu cost, the proposed methods can be applied to large networks.
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7.1 Notation

αa free-flow travel time of link a.

ᾱpi vector of parameters associated with path p.

βa parameter of the travel time function associated with link a.

δa parameter of the travel time function associated with link a.
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γ parameter of the travel time function.

µpi mean parameter of the ith component of path p.

σpi standard deviation parameter of the ith component of path p.

τ−1
a (t) entry time of a user that exits link a at time t.

τa(t) link traversal time for a vehicle entering the link a at time t.

θpai(t) departure time from the origin of path p of a user who exits the ith

link ai of path p at time t.

Da(t) lower bound of link travel time for vehicles entering link a at time t.

ea(t) inflow rate for link a at time t.

fN(µ,σ)(t) probability density function (pdf) of the normal distribution with

mean µ and standard deviation σ.

Ga(t) cumulative flow associated with the exit of link a by time t.

ga(t) outflow rate for link a at time t.

gpa(t) outflow rate of link a at time t due to path p.

Hp(t) cumulative inflow rate at the origin of path p at time t.

hp(t) inflow rate at the origin of path p at time t.

hpi coefficients of the linear combination to generate hp(t).

np number of function components.

nlinks number of network links.

p path.

q(t; ᾱpi) parametric family of probability density functions with parameter ᾱpi.

Qak queue dissipation time at link a at time tk.

rn(t) flow intensity at node n and time t.

sa(t) link a congestion ratio.

tk set of discrete times to be considered for k = 1, . . . , n.

touta link exit time of a user who enters link a at time t.

xa(t) number of vehicles on link a at time t (link traffic volume).

xmax
a number of vehicles on link a leading to a travel time αa(1 + βa).

A set of links of a traffic network.

A(n) set of links entering node n.

D set of origin-destination pairs of nodes.

N set of nodes of a traffic network.

P(a) set of paths containing link a.

S(a) set of all links downstream link a in all its paths.

7.2 Introduction

In Chapter 4 we have introduced dynamic models, that is, models describing the traffic

evolution not only in space but also in time.
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Dynamic models can be classified as discrete and continuous, depending on the way

space and time are dealt with. Since in reality both magnitudes are continuous, those

models that consider the traffic evolution as continuous functions, called continuous mod-

els, are the most adequate. However, they are also the most complex. In order to simplify

the models, in many cases they are discretized in time, in space or in both variables. More

precisely, models can be classified as:

1. Discrete models. In this case both space and time are discretized by means of a net

N ≡ {(xi, tj)|i = 1, 2, . . . , n; j = 1, 2, . . . ,m} and the traffic evolution is calculated

only at the nodes of this net. This simplifies the treatment of the problem, but the

prize we need to pay is that in order to know traffic variables in other points we

need some kind of interpolation. One example of these models is the well known cell

transmission model proposed by Daganzo (1992).

2. Continuous models. We say that we have a continuous model when both variables,

space and time, are treated as continuous. In this case, any traffic variable y is given

as a continuous function y = g(x, t). Though these models are those reproducing

better the real situation of traffic, they are difficult to deal with and require a lot of

resources. Examples of these models are the hydrodynamic-based models.

3. Mixed models. These are models that combine discrete and continuous solutions

either in time or space. Thus, two models can be considered in this group:

(a) Discrete time and continuous space. If we model the traffic at a discrete set of

times and use continuous functions for space, we have one of such a models.

(b) Discrete space and continuous time. One example of this group is the case of

a network in which only the traffic evolution at the nodes or the link ends is

modeled by continuous functions.

4. Smoothed discrete models. These are models of discrete time or/and space such that

they have made continuous by using interpolating bidimensional functions such as

the Gordon-Coons. In this case we end with a continuous model that has been built

based on discrete data.

When interpolating values it is very important to make an adequate selection of: (a)

the basic points (the net), and (b) the interpolating function.

As it was explained in Chapter 4, in dynamic models we can distinguish two phases:

an assignment stage and a loading stage. In the assignment stage we analyze how the

users choose their destinations or transportation modes, and also how they decide among

all possible routes of their OD. In the loading stage, we analyze how the traffic network

behaves when the users compite for space and congestion appears based on the assumed

demand functions resulting from the assignment stage.

In addition to the previous classification, traffic problems can be grouped as:
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1. Deterministic models: in these type of models we assume that the users make deci-

sions in a systematic way based on a measurable criterion, such as travel time, cost,

etc. In addition the network characteristics are assumed to be fixed and known to

the user and no changes, such as climatological incidents, accidents, etc., are con-

sidered. Consequently, both the resulting demand and the travel times (costs) are

of a systematic type, i.e., with no uncertainty. This is why these models are called

deterministic.

2. Stochastic models: in these models we assume that: (i) the users decide in a random

manner, or (ii) they decide in a systematic way but the network characteristics

are uncertain. This implies random demands and/or travel times. If the users are

responsible for uncertainty, we are led to a stochastic demand that will produce

stochastic travel time functions. However, stochastic travel time functions can also

be due to random network behavior (network capacity, climatology, etc.).

In this chapter we present a deterministic dynamic traffic model which is of smooth

type above described in time but discrete in space. More precisely, we assume given path

demand time functions, that leads to “systematic” travel time functions, and after selecting

a net based on nodes, we smooth our discrete time values by means of a polynomial

interpolation.

Based on the time demand functions at their origin nodes, we study how the different

traffic flows progresses and compite for space throughout the network until they reach

their destinations. To this end we need to analyze the level of congestion at all points

in the network. Once these levels have been determined, the travel times of all links and

paths can be evaluated. Since we are looking for realistic predictions, we need to consider

the satisfaction of some important properties such as the link FIFO rule (see Chapter 4),

in such a way that any user arriving first to any link also reaches its end in the first place.

We note that link FIFO satisfaction implies path FIFO satisfaction.

Since we need to choose a link travel time function, reflecting in a realistic way all

variables determining this travel time, satisfaction of the FIFO rule is not trivial. For

example, Ran et al. (1996) assumes that the link traversal time, Da(t), at time t can be

determined by a function of the link volume xa(t) and the entering ea(t) and ga(t) exiting

flow rates,

Da(t) = f(ea(t), ga(t), xa(t)). (7.1)

However, as Nie and Zhang (2005b) explain, such an assumption was found problem-

atic. For instance, Daganzo (1995a) shows that (for the above delay function), unless the

right hand side is reduced to f(xa(t)), some inflow profiles can always be found to cause

FIFO violations. Since the formulation of the delay-function model requires a FIFO-

consistent delay function, the type of functions as 7.1 in general cannot be used in a
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delay-function model. Nevertheless, Daganzo not only demonstrates this, but states that

the dependence on xa(t) must be constant of linear (see the different formulations of

the FIFO rule in Chapter 4). Examples of authors using these linear relationships are

Friesz et al. (1993a), Astarita (1996) and Celikoglu (2007). Some important results on

conditions for non-linear to be valid are given by Xu et al. (1999) and Zhu and Marcotte

(2000). However, the practical implication is that these conditions can fail in real cases.

On the other hand, continuous dynamic traffic models raise, as indicated above, the

problem of selecting: (a) the set of basic points (discrete times) on which the interpolation

is to be based, and (b) the polynomial used in such a interpolation. Some relevant papers

dealing with this topic are Xu et al. (1998), Wu et al. (1998) or Rubio-Ardanaz et al.

(2003). However, there are still some problems to be solved, such as:

1. These algorithms try to identify the times at which some important events occur,

which are used as the basic times for a polynomial interpolation. These events are the

arrivals of the first users of each path to the beginning of each link. Unfortunately,

these times are irregularly distributed on the period of study, and can be too many

(an excessive number to deal with in real situations). Moreover, these time events

are not necessarily determinant in the analysis, because usually the beginning of a

path flow corresponds to very low flow, which is compatible with the assumption of

null initial flow. On the contrary, identifying significant changes of flow would be

much more relevant.

2. The number of fitted interpolating polynomials is number of routes × number of

links, which is very high.

3. The use of Lagrangian polynomials does not guarantee some important properties

of the flow. For example, if the basic points show an increasing trend, the fitted

polynomial could not keep this property, and in fact it fails to do so in some cases.

The proposed model considers that the link travel time is in fact a non-linear function

of the link volumes, but we make some corrections in order to satisfy the FIFO rule. The

idea consists in adding the minimum delay for such a condition to be satisfied (this is

equivalent to considering a queue of vehicles due to the congestion and its later dissipa-

tion), which is complemented by the use of the cubic monotone Hermite interpolation

(see Fritsch and Carlson (1980)) that guarantees the satisfaction of the FIFO rule at the

interpolated points.

The chapter is structured as follows. In Section 7.3, we define the path flow wave

at the origin node, i.e., the flow intensity functions at the origin of each path by means

of some time-dependent functions. In Section 7.4, we determine how these individual

path flow waves propagate throughout their paths. In Section 7.5, we analyze the path

flow wave interactions (in nodes and links) and, in Section 7.6, the congestion due to

these interactions. In Section 7.7, we explain the approximation of the τ−1
a (t) function
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Figure 7.1: The elementary example network used for illustrative purposes, showing the

nodes and links.

as the basis of the model. The Section 7.8 describes the proposed methodology and the

algorithm implemented in Matlab code. In the next Section 8.4 we provide some examples

of application. In Section 7.10, we compare the proposed model with other existing models

and finally, in Section 7.11, we draw some conclusions.

To facilitate the understanding of all the concepts managed, we consider a traffic

network (N ,A) where A is a set of links and N is a set of nodes, from which one can

distinguish the subset D, of origin-destination pairs of nodes, and we use the simple

illustrative example shown in Figure 7.1. It consists of 6 nodes, 9 links and 9 paths as

indicated in Table 7.1, where its three columns contain the OD-pairs defined by their

origins and destinations, the path number and the path links, respectively.

OD Path number (p) Links

1-4 1 1 5 8

1-4 2 2 8

1-4 3 3 9

1-4 4 3 6 8

1-4 5 4 7 9

1-4 6 4 7 6 8

2-4 7 5 8

3-4 8 7 6 8

3-4 9 7 9

Table 7.1: Set of 3 OD–pairs and 9 paths (defined by its and nodes and links) in the

example.
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Figure 7.2: Observed time flow evolution at two given sites in the city of Cuenca (Spain).

7.3 Path flow wave at the origin node

In this section we expose the path flow intensity functions at the origin of each path by

means of some time-dependent functions, i.e., the time evolution of the number of users

entering the network.

If we observe the time evolution of traffic flow at a given location, we obtain curves such

as those indicated in Figure 7.2, which correspond to a given section of the city of Cuenca

(Spain). We note that practically all the data we have observed have this pattern, which

can be considered as a sum of several simpler individual waves, with relative maxima at

the rush-hours and very low values at night hours.

Since a function has infinite degrees of freedom, arbitrary functions cannot be dealt

with, so, a good way of defining path flow functions is by means of parametric families of

functions that are defined by a finite number of parameters. In this way, a small set of

real numbers provides the required information for each path function. We propose path

flow intensity functions of the form

hp(t) =

np
∑

i=1

hpiq(t; ᾱpi), (7.2)

where hp(t) is the inflow traffic intensity (veh/hour) associated with path p at its origin

and time t, np is the number of function components, q(t; ᾱpi) is a parametric family of

probability density functions1, with vector parameter ᾱpi, and hpi > 0 are the coefficients

of the linear combination (the path flow associated with the i component).

In summary, path intensity functions are assumed linear combinations of a basic set

of probability density functions (pdf).

Example 7 (Illustrative example) Let us assume an industrial area network. The

path flows in this area present two maxima at rush-hours, one in the morning, the other

1Note that we have used probability density functions in order to have a total flow hpi associated with

each component.
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Path µp1 σp1 hp1 µp2 σp2 hp2 Path flow

1 8.25 2.07 8214 15.55 1.63 7883 16096

2 7.59 1.81 7925 15.21 1.85 8668 16592

3 7.58 1.92 8831 14.56 2.06 7584 16414

4 7.96 1.93 8304 15.61 1.75 8489 16792

5 7.51 1.94 8636 15.23 2.31 7929 16565

6 8.48 1.51 8216 15.16 1.81 7603 15819

7 8.07 2.00 7648 14.50 2.20 8609 16257

8 8.00 1.88 7836 15.77 2.00 8056 15892

9 7.99 1.80 8829 15.57 2.45 8974 17804

Table 7.2: Parameters used in path flows of the illustrative example.

one, early afternoon, and the night flow is very low. Accordingly, we can reproduce with

sufficient precision the traffic intensity of each path by a linear combination of normal

densities (waves), whose total area is the total path flow, that is:

hp(t) =

np
∑

i=1

hpifN(µpi,σpi)(t), (7.3)

where np is the number of components (two in this case), hp(t) is the traffic intensity

(veh/hour) associated with path p at time t, fN(µpi,σpi)(t) is the probability density function

(pdf) of the normal distribution, hpi is the daily flow associated with the normal density

N(µpi, σpi), and µpi and σpi are the time associated with the maximum intensity and the

corresponding standard deviation σi, which measures the traffic spread of wave i of path

p, respectively2.

For illustrative purposes, in Table 7.2 and Figure 7.3 we present one example of the

assumed path flow functions for the illustrative example in Figure 7.1. Note that all of

them exhibit two relative maxima around 8.00 and 15.00 hours, which are the peak hours,

though different shapes modeled by using different standard deviation parameters σi; i =

1, 2, . . . , np.

As shown in Table 7.2, the assumed maxima intensities of the two traffic waves of all

paths takes place close to 8.00 and 15.00 hours, and the corresponding values of σpi have

been simulated randomly. Similarly, the total path flow has been assumed random and it

has been randomly distributed between both components.

2The family of functions in (7.3) is one of the many possible alternatives, so that it can be replaced by

other family without any problem.
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Figure 7.3: Path flow intensities at the path origins as a function of time for the illustrative

example.

Finally, we define the cumulative inflow rate at the origin of path p at time t as

Hp(t) =

t
∫

0

hp(t)dt =

np
∑

p=1

hpi

t
∫

0

q(t; ᾱpi)dt. (7.4)

7.4 Path flow wave propagation

In this section we analyze how the individual path flow waves progress throughout the

path and evolve with time. As indicated in the introductory chapters, the traffic flow

intensities decrease and the travel times increase with the increasing congestion. More

precisely, once each path flow enters the network, it progresses as a wave that stretches or

enlarges, depending on the degree of congestion of the traversed links.

Figure 7.4 shows how the path wave progresses throughout the path and evolves with

time. The upper plot corresponds to the traffic intensities at the origin node, and the
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Figure 7.4: Evolution of the wave flow intensity at the origin node and at the ends of all

links of path 6 together with the corresponding intervals associated with two arbitrary

selected departure time periods.

other four plots indicate how this wave moves with time and deforms due to the increasing

congestion. Note that at earlier times in the day the path congestion is nonexistent or low,

but later it increases due to the presence of users of other paths, producing a decrease in

the traffic intensities, that is, an enlargement of the traffic wave (intermediate and lower

plots in Figure 7.4).

The areas below these curves are the number of users of the corresponding path, so

that, these areas must be identical at all times for all individual path flows.

In order to see how the individual path waves progress throughout the path, we need

to apply the conservation law. In Figure 7.5 we show the traffic intensity wave at two

given locations: (a) the path origin and (b) the end of link a of path p, and we show the

associated time intervals corresponding to the same users.

If gpai(t) is the outflow rate of link ai at time t due to path p, since the area associated

with a time interval and below the intensity function is the number of users that pass

through that location, the flow propagation principle leads to the following equation that

expresses the coincidence of the number of users in the time intervals (t0, t0 + dt0) and

(θpai(t0), θ
p
ai(t0 + dt0)), where θ

p
ai(t) is the path p departure time of a user who exits the
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Figure 7.5: Illustration of how the traffic wave satisfies the flow propagation principle and

the function θpa(t).

ith link ai of path p at time t (see the graph in Figure 7.5 and Friesz et al. (2001)):

gpai(t) = hp(θ
p
ai(t))

dθpai(t)

dt
. (7.5)

Note that this expression is based on the FIFO rule and that the argument θpai(t)

of function hp(·) models the local stretching or enlarging of the wave, and that
dθpai(t)

dt
modifies the traffic intensity (wave height) accordingly.

We point out that there exists a different θpai(t) function for each link ai of each path

p.

Consequently, the progression of the individual path intensity wave throughout their

paths can be calculated as soon as the function θpai(t) is known and the resulting wave

form is given by Equation (7.5).

Equation (7.5) guarantees that the global mass balance constraint holds, that is,

t
∫

0

gpai(t)dt =

θpai(t)
∫

θpai(0)

hp(θ
p
ai(t))dθ

p
ai(t), (7.6)

which can be used to derive θpai(t) when hp(t) is given.
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In summary, the important equation (7.5) allows us to obtain the link flows at time t,

if the path flow functions at their origins hp(t) and the θpai(t) function are known, where

a is the link. In a following section we indicate how the last function can be obtained.

7.5 Path flow wave interactions

Since the flows corresponding to each path mix with other path flows and all together

generate a mixed flow function, we can obtain the link and node flows by combining the

path flows adequately. This unit combines all individual path flow intensities to obtain

the link and node flow intensities.

7.5.1 Link flow intensities

The traffic flow intensity at the exit of link a is given by adding the flow intensities of the

corresponding paths (flow conservation principle), that is,

ga(t) =
∑

p∈P(a)

gpai(t) =
∑

p∈P(a)

hp
(

θpai(t)
) dθpai(t)

dt
, (7.7)

where P(a) is the set of paths containing link a.

Note that in Expression (7.7) we use the θpai(t) function, which must be known before

calculating ga(t). This fact forces to an iterative approach, as we explain later.

Example 8 (Illustrative example) Figure 7.6 illustrates this formula showing the flow

intensity curves for all links at the end of the iterative process, where the different colors

refer to the different path components. We can easily see that they correspond to the sum

of the flows of all paths, taking into account the delays associated with each path. Note

that the appearance of peaks corresponds to peaks of the different paths. In some cases, as

in link 6, the peaks disappear due to the congestion.

7.5.2 Node flow intensities

Finally, the node flow intensities (excluding the path origin nodes) can be calculated by

adding the flow intensities of the corresponding paths (flow conservation principle), that

is, by means of the formula

rn(t) =
∑

a∈A(n)

ga(t), (7.8)

where rn(t) is the flow intensity at node n and time t and A(n) is the set of links entering
node n.

Example 9 (Illustrative example) Figure 7.7 shows the traffic intensity entering the

different nodes at the end of the iterative process, that is, after convergence, but excluding
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Figure 7.6: Link flow intensity curves showing the corresponding path components for the

case of the illustrative example.

the path flows at their origins, where the different colors refer to the different path compo-

nents. A detailed analysis of these curves allows us to identify the route interactions and

their effect on congestion.

7.6 Congestion analysis

In this section we analyze the congestion in order to determine how the link volume varies

with time. To this end, we define Da(t) as the link travel time for vehicles entering link

a at time t. In fact, Da(t) is a lower bound of the link travel time (see Equation (7.16)),

which is active only when no queue exists.

To evaluate the Da(t) function we must take into account the network congestion.

Traffic models normally assume a relation between the traffic intensity and the travel

time, taking into account that the larger the congestion, the smaller the velocity or the

larger the travel time. In this model, the travel time Da(t) of a vehicle that enters link a
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Figure 7.7: Node flow evolution in the illustrative example.

at time t is assumed to be a function of the number of vehicles xa(t) (link volume) at link

a and time t. But, furthermore, in order to reproduce the upstream shock wave due to the

congestion, we assume that it depends on the immediate downstream path link volumes.

More precisely,

Da(t) = αa

[

1 + βa (sa(t))
γ + δa max

b∈S(a)
(sb(t))

γ

]

, (7.9)

where αa is the free travel time and βa, γ are parameters of the travel time function

associated with link a, δa is a parameter used to take into account the congestion ahead of

the link a being considered, S(a) is the set of all links downstream link a in all its paths,

and sa(t) is a dimensionless ratio measuring the degree of link congestion,

sa(t) =
xa(t)

xmax
a

, (7.10)

where xmax
a is a constant measuring the flow producing a given congestion level in the

link a (it can be associated with a given service level).

We point out the similitude between Equation (7.9) and the widely-used Bureau of
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Public Roads (BPR) function3

Da = αa

[

1 + βa

(

xa
xmax
a

)γ]

. (7.11)

The BPR values usually are βa = 1 and γ = 4 but, obviously, it depends on the studied

case.

Equation (7.9) adds a third term to Equation (7.11) in order to consider the shock

wave effect, going back from the congested area to the studied link.

We note that δa << βa because the influence of the degrees of saturation of downstream

links on the a link travel time must be smaller than the influence of its own degree of

saturation.

The travel time function (7.9) is an important part of the overall model. The term

headed by βa penalizes the number of cars inside link a at entry time t, and the term

headed by δa penalizes high congestions on any path immediately ahead of link a and

allows us to propagate congestion upstream of link a.

Figure 7.8 shows the influence of the Da parameters, namely, βa, γ, and δa, and

the maxima downstream saturation max(sb). The magenta line, as reference, shows the

βa = 1, γ = 4, δa = 0.1 and max(sb) = 1 case. We see that higher βa values involve

higher travel times, and this increase is larger for larger sa values. Moreover, for high γ

values, the travel time increases faster when sa is close to 1, but not for small values of

sa. Also note the back effect of the shock wave due to the δa and max(sb) terms when a

downstream link is congested: when δa is around βa, the shock wave influence is important

(it can duplicate the travel time), mainly when the studied link is low congested. The

graphic of the effect of the downstream link saturation shows that max(sb) ≤ 1 values

hardly influence Da, but when max(sb) > 1, a constant delay is added to the link travel

time. Accordingly, we want to point out that the model calibration is fundamental.

The number of vehicles on link a at time t that appears in (7.10) and is used in (7.9),

can be calculated by:

xa(t) = Ga(t
out
a )−Ga(t) ∀a,∀t, (7.12)

i.e., the difference of the link cumulative outflows between the link entry time t and the

link exit time touta . The cumulative number of vehicles that has left the link a until time

t is given by

Ga(t) =
∑

p

Hp (θ
p
a(t)) , (7.13)

where Hp(·) is the expression in (7.4).

3The advantage of the BPR formula is that uses flows that are not restricted by link capacity, so we can

know the network behavior. Moreover, it is a function easy to compute and evaluate. To use this function

it is necessary to evaluate the parameter values for each particular network.
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Figure 7.8: Influence of βa, γ, δa y max(sb) in the link travel time function.

If we define τ−1
a (t) as the entry time of a user that exits link a at time t, θpa(t) can be

expressed as follows:

θpa(t) = τ−1
an (τ−1

an−1
(. . . τ−1

a1 (t))), (7.14)

where a1, a2, . . . , an are the links of path p. In this model we propose to interpolate the

τ−1
a (t);∀a functions in order to evaluate (7.14). We note that spline functions have been

used before by other authors to approximate travel time functions, but for reproducing

path travel times and not necessarily monotone (see Rubio-Ardanaz et al. (2003)).

We point out that the times required to cross nodes are assumed to be null. This

implies that the link exit time functions can be built directly from the link travel time

functions alone.

The main problem is that initially we do not know the number of vehicles xa(t) inside

link a, and we need to make an initial guess to later iterate until convergence. This is

explained in Section 7.8
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7.7 Approximation of the τ−1a (t) function

As we have indicated, the model aims to approximate the continuous τ−1
a (t) functions by

mean monotonic splines. We approximate the inverse of the link travel time functions

instead of the link travel time functions because we need it to evaluate the path travel

times and we can use this function directly without inverting it.

On the paragraphs below, we explain this approximation and why this interpolation

is adequate.

7.7.1 Interpolation by cubic monotonic Hermite splines

A spline, S(m)(x), is a m-order curve defined by n − 1 pieces in the interval [a, b] defined

by means of polynomials, such as:

S(m)(x) = p1(x) x1 ≤ x < x2,

S(m)(x) = p2(x) x2 ≤ x < x3,

...

S(m)(x) = pn−1(x) xn−1 ≤ x ≤ xn,

where {a = x1, x1, x2..., xn = b} are the known or basic points.

They are usually used because they yield similar results than the original functions

but requiring low-degree polynomials. So, we avoid the oscillations when high-degree

polynomial interpolation are used.

The widely-used interpolation is the cubic one. If we assume a bidimensional space,

where the polynomials pi(x) form a 3-order spline S(3)(x) in the interval [a, b], then, for

a set of n basic points, there exist n − 1 polynomials of degree 3 to fit, then 4(n − 1)

unknown values. We have to impose the following fitting conditions:

• each polynomial pi(x) stars and finishes at two basic points of the set {a, x1, x2..., b}
(2(n − 1) conditions).

• the first-derivatives of two adjacent polynomials pi(x) at a basic point are the same

value ((n − 2) conditions).

• the second-derivatives of two adjacent polynomials pi(x) at a basic point are the

same value ((n− 2) conditions).

However, two more conditions need to be specified, which can be two of the following ones:

• the second-derivative of S(3)(x) at the endpoints, a and b, are some known values (2

conditions). As particular case, zero curvature can be assumed.

• the first-derivative of S(3)(x) at the endpoints, a and b, are the same unknown value

(1 condition).
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• the second-derivative of S(3)(x) at the endpoints, a and b, are the same unknown

value (1 condition).

Due to the fact that each solved curvature is only related to the curvature of its two

adjacent neighbors, the solution matrix for a cubic spline is always tridiagonal.

Most of the linear algebra algorithms require much less computer cost when tridiagonal

matrices are used, thus, this interpolation is significatively more efficient.

On the other hand, the Hermite interpolation is a method to obtain the lowest order

polynomial function, P (m)(x), that fits the basic points, the function itself and some of its

derivatives. It consists in calculating the successive derivatives in the basic points, so that

the polynomial4 is closer to the real function. Moreover, the Hermite interpolate function

keeps other imposed requisites as the monotonicity, concavity, etc.

In the proposed model we use the interpolation by cubic monotonic Hermite splines

with the following conditions:

• on each interval, P (3)(x) is fitted in the basic points and certain slopes at the two

endpoints.

• the first derivative of P (3)(x) is continuous. However, the second derivative is prob-

ably not continuous and there may be jumps at the second derivative.

• The slopes of P (3)(x) at the basic points are chosen in such a way that P (3)(x)

preserves the shape of the data and respects monotonicity. This means that, on

intervals where the basic data are monotonic, so is P (3)(x); at points where the data

has a local extremum, so does P (3)(x)5.

The difference between the standard splines interpolation and the Hermite splines

interpolation is that, in the first case, the slopes are chosen in such a way that the second

derivative is continuous. This produces a more accurate result if the data consists of values

of a smooth function. However, the Hermite splines have no overshoots and less oscillation

if the data are not smooth. The two are equally expensive to evaluate.

The link entry time functions, τ−1(t), are approximated by cubic monotonic Hermite

splines in order to satisfy the FIFO rule. The monotonic Hermite splines guaranty that, if

the basic points have a increasing character, the whole spline is increasing, i.e., the FIFO

rule is satisfied.

7.7.2 Selection of the basic points

The basic points for the Hermite interpolation are chosen as follows:

1. We divide the studied time interval into n − 1 disjoint and exhaustive intervals

(tk, tk+1); k = 1, 2, . . . , n− 1, where t1 = 0 and tn is the end time.

4This polynomial exists and is unique.
5In section 7.7.3 we explain that the basic points are corrected in order to force the monotonic trend.
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2. We analyze users who enter the links at times t1, t2, . . . , tn and calculate the number

of link users xa(t) at the time of arrival to the link.

3. With this information, we use the flow propagation principle and the congestion

equation (7.9) to obtain the times Da(tk) required for these users to travel each path

link. Accordingly, we calculate toutak , i.e., the link a exit time when a user enters at

the discrete time tk.

4. The set of points {(toutak , tk);∀k} is used to fit the cubic Hermite splines to approxi-

mate τ−1(t) and thus, the travel time functions for each link a (Da(t)).

7.7.3 The FIFO rule consistency

In order to satisfy the FIFO rule, we work with monotone functions τ−1
a (t), i.e., the

necessary and sufficient condition for the FIFO condition to hold. The τ−1
a (t) functions

are monotone splines, and the monotonicity is guaranteed by means of two conditions: (a)

a set of monotone increasing basic points {(toutak , tk)|k = 1, 2, . . . , n} used to fit the splines,

and (b) the use of monotone Hermite splines, preserving its increasing character at all

points.

In other words, we approximate the τ−1
a (t) function by means of

τ−1
a (t) ≈ splinea(t; (toutak , tk)), (7.15)

where toutak = (touta1 , t
out
a2 , . . . , t

out
an ) and tk= (t1, t2, . . . , tn) are sets of discrete entry times

where the link a exit times are evaluated. Note that identical entry times are selected for

all links.

In order to respect the FIFO rule, we update toutak as follows:

toutak = max
{

tk +Da(tk), t
out
ak−1 +Qak

}

, (7.16)

where Qak, is the queue dissipation time at link a at time t added in order to include the

traffic jam effect, as follows,

Qak =
[

Ga(t
out
ak )−Ga(t

out
ak−1)

] αa(1 + βa)

xmax
a

. (7.17)

Note that preventing the overtaking means queueing, and this is what expression (7.16)

does.

Figure 7.9 shows two users A and B and their positions at four different instants tk−1,

tk, t
out
ak−1 and toutak in the neighborhood of link a, where the first two correspond to the

entering times of these users, and the last two are the corresponding exit times. Since

Da(tk) is a lower bound of the link travel time of user B, we have

toutak ≥ tk +Da(tk). (7.18)
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Figure 7.9: Illustration of the different terms in Expressions (7.16) and (7.17).

On the other hand, since Ga(t
out
ak ) − Ga(t

out
ak−1) is the number of users traveling between

users A and B, if we assume a degree of saturation sa(tk) = 1, the time required for user

B to exit the link is Qak and then

toutak ≥ toutak−1 +Qak. (7.19)

Then, from (7.18) and (7.19), we get (7.16).

The expression (7.17) is based in the proportionality rule, in such a way that if there

is Ga(t
out
ak ) − Ga(t

out
ak−1) vehicles, since the saturation is xa/x

max
a = 1, the link traversal

time required is αa(1 + βa)
6.

If we assume a strictly increasing Ga(t) function, (7.17) provides a Qak > 0 if toutak >

toutak−1 (this condition is forced in the iterative procedure to be described in Section 7.8), and

then (7.16) guarantees that the set of points {(toutak , tk)|k = 1, 2, . . . ,m} has an increasing

trend.

Note that, in fact, (7.16) can imply an increase of the link travel time if the second

term (a queuing term) toutak−1 +Qak is greater than the first term tk +Da(tk).

Example 10 (Illustrative example) To illustrate, Figure 7.10 shows the described pro-

cess. Path 6 has been chosen, which has four links (4, 7, 6 and 8).

The parameters used in the congestion function (7.9) for the network are indicated in

Table 7.3. We have assumed a free flow speed of 100 Km/hour and, in order to analyze

the upstream congestion propagation, a value xmax
6 that is a 25% of the values for the

remaining links.

The left figure 7.10 shows the link travel time functions during 32 hours obtained. Note

the high congestion in link 6 due to the assumed low value of xmax
6 . An associated light

upstream congestion propagation can be observed at link 7.

6Note that the usual value βa = 1, when the saturation is 100%, implies that the link travel time is

twice as much as the free-flow link travel time.
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link αa(hours) βa δa γ xmax
a (veh.)

1 2.24 1.00 1/3 2.00 22360.68

2 2.24 1.00 1/3 2.00 22360.68

3 2.24 1.00 1/3 2.00 22360.68

4 2.24 1.00 1/3 2.00 22360.68

5 1.41 1.00 1/3 2.00 14142.14

6 2.00 1.00 1/3 2.00 5000.00

7 1.41 1.00 1/3 2.00 14142.14

8 2.24 1.00 1/3 2.00 22360.68

9 2.24 1.00 1/3 2.00 22360.68

Table 7.3: Parameters used in the congestion function.
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The right figure 7.10 shows the flow intensity function at the origin and the link exit

time curves, in order to obtain the link travel time Da(tk). The link exit times are function

of the corresponding path departure times. Since path 6 has four links, we show a set of

five curves, including the path origin curve, that is, the identity function f(t) = t. These

curves provide the exit times of all the links of a user starting the trip at time t obtained

from the link travel time functions shown on the left part of the figure.

To approximate the link travel time curves by cubic Hermite splines, we select a discrete

set of points {(toutak , tk); k = 1, 2, . . . , n}, where tk = (k − 1)δ with n = 32/δ + 1 and δ can

take different values, for example δ = 0.1, 0.2, 0.5 or 1 if the network congestion wants to

be evaluated every 6 minutes, 12 minutes, 30 minutes or one hour. Figure 7.10 illustrates

how the values of xa(t) and Da(t) are calculated at a generic point tk of this set of points

based on the actual approximation (splines) of the Da(t) functions. Given a pair (toutak , tk)

of exit-entry times to link a, which is obtained from the spline approximation, we obtain

the corresponding path departure times θpa(tk) and θpa(toutak ), which allows us to obtain the

values of Ga(tk) and Ga(t
out
ak ), using expression (7.13), and the value of xa(tk) by means

of (7.12)

xa(t3) =

θpa(t
out
ak

)
∫

θpa(tk)

hp(t)dt.

This allow us to evaluate Da(t) using Expression (7.9).

We note that the above process requires the knowledge of θpa(t), as the inverse exit link

time functions. There are two possible options to deal with these functions:

1. Use cubic splines to fit these functions. This option requires fitting a high number of

splines (number of routes × number of links per route), which is memory and time

consuming.

2. Build these functions based on the τ−1
a (t) functions. This process requires only to fit

as many functions as links, but has the inconvenience that each evaluation is more

costly (travel times of all links in a path need to be evaluated).

The second is the one used in the examples and in the MatLab computer implemen-

tation that has been developed for the examples.

The organigram in Figure 7.11 shows how to build the exit link time functions θpai(t)

based on the τ−1
ai (t) functions.

Example 11 (Illustrative example) Figure 7.12 shows the θpai(t) functions obtained

after using the Hermite spline interpolation between the selected discretized times with the

units being hours. The number of curves coincides with the number of links per path. The

link exit-entry time functions have been obtained by adding the departure time function
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Figure 7.11: Organigram: How to obtain the θpai(t) function based on the link exit-entry

time function τ−1
ai (t). We enter with the link exit time t and the resulting value t is the

desired path starting time.

f(t) = t and the corresponding link travel time functions for all paths with the correspond-

ing link. If we pay attention to path 6, it is easy to identify when is the worst time to

start the path travel. In this case (see Figure 7.13) the segments t4, t7, t6 and t8 show the

time needed for this traveler to cover the different links belonging to this path (links 4, 7,

6 and 8). At the same time it is interesting to realize that in all graphs the time needed

for covering the journey is very similar for people who start at the first and the last hours

of the day.

Note that each θpa(t) time function allows us to identify the instant at which a traveler

reaches the end of every link during the journey.

7.8 Inference engine

Since, as indicated previously, the xa(t) and Da(t) functions are interrelated, and they

are dependent on congestion which is not known initially, we need to iterate the process

until convergence. In other words, we initially need to assume a degree of congestion at

the different links, and according to it we evaluate the link travel times, and with this

information we update the congestion degrees, and repeat the process until convergence

of the process.

The following algorithm shows how the iterative process works and is the core of the

proposed method. Note that we have a triple control of the iterations:

Number of iterations: when it exceeds the number of iterations itermax implies that the
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Figure 7.12: Illustrative example. Link exit time functions obtained by adding the depar-

ture time function f(t) = t and the corresponding link travel time functions for all paths

with the corresponding link.

problem does not converge. In this case, the program has to stop.

Tolerance: when the error between consecutive iterations is less than a permitted toler-

ance tol, it is assumed that the problem has correctly converged, and the iterative

process finishes.

Maximum link saturation: the fact that the maximum saturation exceeds a given thresh-

old sat0max is an indication that the flow cannot be supported by the network and it

becomes blocked by traffic. In that case, we stop the iterative process.

Algorithm 2 (Evaluation of the τ−1
a (t) functions.) 7

7To understand this algorithm it is convenient to refer to Figure 7.10.
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Figure 7.13: θpa(t) curves showing the largest congestion time for path 6 and the corre-

sponding departure time and leaving times of all links of path 6.

INPUT: The network topology, the set of intervals (tk); k = 1, 2, . . . , n, the free travel

times of all links αa, the link parameters βa, δa, x
max
a and γ, the tolerance tol, the

maximum allowed saturation sat0max and the maximum number of iterations itermax.

OUTPUT: The set of functions {τ−1
a (t)|a ∈ A}.

1. Initiation. Let the initial basic set of points for the τ−1
a (t) spline function be

(toutak , tk), where t
out
ak = tk + αa, and let error = 2 tol, iter = 1 and satmax = 0.

2. Step 1. Check convergence or out of limit conditions. While error > tol

and iter < itermax and satmax < sat0max repeat Steps 2 to 6. Otherwise, go to Step

11.

3. Step 2. Consider all points tk of the discrete set of times. For k = 1 to n

repeat Steps 3 to 9.
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4. Step 3. Consider all links. For a = 1 to nlinks repeat Steps 4 to 9.

5. Step 4. Consider all paths with link a. For all paths with link a repeat Steps

5 to 9.

6. Step 5. Obtain associated departure times. For each paths with link a calcu-

late departure times θpa(tk) and θpa(toutak ) associated with the pair of values (toutak , tk),

where the θpa(t) are evaluated using the actual spline functions and the formula (7.14):

θpa(t) = τ−1
an (τ−1

an−1
(. . . τ−1

a1 (t))).

7. Step 6. Evaluate cumulative flows associated with each path. For each of

the above paths, evaluate the cumulative flow associated with θpa(tk) and θ
p
a(toutak ), and

accumulate it using Expression (7.13):

Ga(t) =
∑

p

Hp (θ
p
a(t)) .

8. Step 7. Calculate xa(tk). Calculate xa(tk) using the formula in Expression

(7.12):

xa(tk) = Ga(t
out
ak )−Ga(tk).

9. Step 8. Calculate Da(tk). Calculate Da(tk) using Expressions in (7.10) and

(7.9), that is,

Da(tk) = αa

[

1 + βa (sa(tk))
γ + δa max

b∈S(a)
(sb(tk))

γ

]

,

where

sa(tk) =
xa(tk)

xmax
a

and update the maximum saturation as

satmax = max (satmax, sa(tk)).

10. Step 9. Update toutak values to toutak . Update the basic exit and entry times

(toutak , tk) by means of Expressions (7.17) and (7.16):

Qak =
[

Ga(t
out
ak )−Ga(t

out
k−1)

] αa(1 + βa)

xmax
a

and

toutak = max
{

tk +Da(tk), t
out
ak−1 +Qak

}

.
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11. Step 10. Update splines. The splines are updated by means of (7.15)

τ−1
a (t) ≈ splinea(t; (touta , t))

and go to Step 1.

12. Step 11. End of algorithm. If iter = itermax inform the user about a con-

vergence problem. If satmax ≥ sat0max inform the user about a saturation problem

(network blocked by an excessive flow). Otherwise, return actual splines as the final

ones and used them to evaluate all flow functions.

With respect to convergence we have experienced no problems. In fact, we can use

a relaxation factor to avoid oscillations, so that the iterations converge monotonically to

the solution. We start from a free flow solution and iterate in such a way that congestion

increases monotonically. The convergence is very fast (a few iterations).

This model satisfies important properties, such as causality and link and route FIFO

properties, but not the OD FIFO property, because users have not complete information

about travel times of all paths. However, the differentiability with respect to path flows

does not hold due to the non-differentiability of Equations (7.9) and (7.16).

To finish, in Appendix 10 we show the Matlab implementation of the exposed model

and, in order to clarify, a diagram of the procedure dependence.

Example 12 (Illustrative example) To conclude the illustrative example, figure 7.14

shows the path 6 flow evolution at the end of all its links.

In this case, we see an important distortion due to the congestion produced at link 6

when the link intensity is higher than xmax
a . More precisely, it maintains its shape (wave

length and height) at links 4 and 7 due to lack of congestion. At link 6 the wave suffers two

different processes: (a) an elongation, due to congestion, roughly between 22 and 26 hours,

and (b) a wave stretching (wave length reduction and height increase) after 26 hours on,

due to the end of congestion produced by arrival to destinations of users from other paths.

Finally, we point out that the cpu time required to solve the illustrative problem on a

portable DELL Latitude E6500 computer, was 47.00 sec.

7.9 Examples of application

In this section we apply the proposed method to more complicated examples to show that

it is applicable in real practice.

7.9.1 The Nguyen-Dupuis example

In this section we use the simple Nguyen-Dupuis type network, with 13 nodes and 38 links

in Figure 6.2, to illustrate the proposed methods. The paths considered are those in Table

7.4.
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Figure 7.14: Illustrative example. Path 6 flow evolution at the end of all its links.

Four of the assumed path intensity functions at their origins are shown in Figure 7.15.

Note that they consist of linear combinations of two normal densities with maxima around

8.00 and 15.00 hours, and different spreads. A complete description of the assumed path

flow intensities is given in Table 7.5.

We have used the following parameter values: βa = 1, δa = 1/3 and γ = 3, the

αa values have been obtained using a free flow speed of 100 Km/hour, and the xmax
a ;∀a

correspond to 100 vehicles/Km.

Once these path flows have been propagated through the network, we can see the

resulting link intensity functions. Some are shown in Figure 7.16. Note that they are

combinations of the path waves with different delays.

The link travel time functions are shown in Figure 7.17, where we can see how traffic

congestion in the different links varies with time.

The node flow intensity functions appear in Figure 7.18, where it can be seen that they

are linear combinations of path flows, and more complex than link functions because they

involve more paths.

It is interesting to see the upstream congestion caused by link 14 on links 11 and 35,

where the induced same trends of the link travel time function can be observed.
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Path links

Path Links

1 1 11 14 18 20
2 2 35 14 18 20
3 2 36 20
4 1 11 14 19 31
5 1 11 15 29 31
6 1 12 25 29 31
7 1 12 26 37
8 2 35 14 19 31
9 2 35 15 29 31
10 1 11 14 18
11 2 35 14 18
12 2 36
13 3 21 17 13 9
14 3 21 17 16 34
15 3 22 34
16 3 21 17 13 10
17 3 21 19 33 28 23
18 4 33 28 23
19 3 21 17 16
20 3 22
21 5 32 17 13 9
22 5 32 17 16 34
23 5 33 27 13 9
24 5 33 27 16 34
25 5 33 28 24 9
26 6 38 24 9
27 5 33 28 23
28 6 38 23
29 5 32 17 16
30 5 33 27 16

Path links

Path Links

31 7 11 14 18 20
32 8 25 29 30
33 8 25 29 32 18 20
34 8 25 29 31
35 8 26 37
36 7 11 14 18
37 8 25 29 32 18
38 21 17 13 9
39 21 17 16 34
40 22 34
41 21 17 13 10
42 21 19 33 28 23
43 21 17 16
44 22
45 35 14 18 20
46 36 20
47 35 14 19 31
48 35 15 29 31
49 35 14 18
50 36
51 37
52 38
53 34
54 1
55 2
56 3
57 5
58 33 27
59 33
60 29

Table 7.4: Set of paths with the corresponding links considered for the Nguyen-Dupuis

network example.

Finally, the resulting (τp)−1
a (t) functions after convergence of the iterative process

appear in Figure 7.19.

Figures 7.16, 7.17, 7.18, 7.19 and 7.20 have been built with the same criteria as in the

case of our simple example described above. In this case, due to the high number of paths

(60), only paths 1, 4, 11 and 47 have been considered, but link and node flows show all

paths passing throughout them. It is particularly interesting to see what the evolution of

flow corresponding to path 11 is with important delays in the arrival times (see Figure
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Figure 7.15: The Nguyen-Dupuis network showing the path intensity functions at their

origins.
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Figure 7.16: The Nguyen-Dupuis network showing the link intensity functions at their

exits.

7.19). This path shows a significant evolution of its second wave in links 35, 14 and 18

with an increase of its crest.
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Path µr1 σr1 hp1 µr2 σr2 hp2 Path

flow

1 8.34 1.90 3004 14.48 1.58 2905 5909

2 7.77 2.03 2917 15.78 1.55 3140 6058

3 8.10 1.88 3189 14.17 1.80 2815 6004

4 7.67 1.91 3031 14.96 2.31 3087 6118

5 7.97 1.65 3131 15.46 1.90 2919 6050

6 8.46 1.88 3005 14.62 2.19 2821 5826

7 7.65 1.70 2834 14.39 2.10 3123 5957

8 7.94 2.38 2891 15.16 2.09 2957 5848

9 7.71 1.68 3189 14.56 1.61 3232 6421

10 8.00 2.47 3106 15.53 1.76 3217 6323

11 7.61 1.67 3005 14.80 1.92 3111 6116

12 8.42 2.09 3127 14.47 2.29 2772 5899

13 8.02 2.13 2748 14.22 1.77 3168 5916

14 7.60 2.29 2867 15.34 2.36 3125 5992

15 8.38 2.14 2930 14.61 1.80 2889 5819

16 8.48 2.08 2743 15.12 2.07 2996 5739

17 8.09 2.33 2924 15.32 1.51 2748 5672

18 7.65 1.71 2955 14.69 2.04 3001 5957

19 7.81 2.46 2946 14.95 2.45 3134 6080

20 7.60 2.16 2930 15.63 1.61 3045 5975

21 7.70 2.38 3226 14.87 2.46 2836 6063

22 7.50 2.12 2705 14.54 1.62 2780 5485

23 8.31 1.88 2939 14.74 1.80 2973 5913

24 7.71 1.83 3091 15.54 2.43 3137 6228

25 8.03 1.81 3230 15.12 1.83 3162 6392

26 7.80 1.58 2708 14.81 1.60 3235 5943

27 7.75 1.83 2789 14.99 1.80 2869 5659

28 7.79 1.83 3005 14.78 2.20 2719 5724

29 8.11 1.89 2972 15.04 2.17 2934 5905

30 8.18 1.55 2738 15.29 2.02 3078 5817

Path µr1 σr1 hp1 µr2 σr2 hp2 Path

flow

31 8.29 1.77 2972 15.16 1.72 2959 5931

32 8.32 2.45 2907 14.58 1.59 3199 6106

33 7.54 1.71 3158 15.18 2.41 2971 6129

34 8.02 1.96 2965 15.41 1.61 3045 6010

35 8.16 2.40 2864 14.44 2.49 3212 6076

36 8.44 2.19 3037 14.87 1.56 3215 6252

37 7.95 2.22 3092 14.31 1.84 2782 5874

38 8.34 1.91 2783 14.09 1.56 3226 6009

39 7.97 2.13 3053 15.37 1.83 3226 6279

40 7.85 1.70 2941 15.33 2.02 3205 6146

41 8.23 2.43 2837 15.37 1.74 3174 6011

42 8.46 2.06 2829 15.08 2.43 2866 5695

43 8.39 2.12 3206 15.12 1.92 2732 5938

44 8.24 1.75 3119 14.98 1.54 3005 6124

45 7.99 1.92 2915 15.86 2.28 3093 6008

46 7.90 2.23 2865 15.55 1.50 3230 6095

47 8.26 2.27 2804 15.31 1.90 3114 5918

48 7.81 1.56 3222 14.14 2.25 3160 6382

49 8.14 1.89 3055 14.63 1.58 2791 5846

50 8.15 1.72 3007 14.95 1.66 2762 5770

51 8.45 1.51 3123 15.18 1.63 3012 6135

52 7.72 1.54 3215 15.11 2.31 2727 5943

53 7.69 2.04 2717 14.19 1.59 2848 5565

54 7.63 2.03 2927 14.08 1.65 2922 5849

55 8.28 2.23 3120 14.70 1.91 2904 6023

56 7.68 2.06 3066 14.98 2.34 2854 5920

57 8.16 1.85 3020 14.37 2.02 2961 5981

58 7.83 1.76 2875 15.89 2.47 3090 5965

59 8.42 2.16 3127 14.94 1.98 2927 6055

60 8.18 2.45 2990 15.53 2.02 2745 5735

Table 7.5: Parameters used in path flows of the Nguyen-Dupuis example.

Finally, we point out that the cpu required time for these calculations on a portable

was 544 sec.
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Figure 7.17: The link travel time Da(t) functions for the Nguyen-Dupuis example.
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Figure 7.18: The Nguyen-Dupuis network showing the node intensity functions.
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Figure 7.19: The Nguyen-Dupuis network showing the θpa(t) functions.
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links 2, 35, 14, and 18.
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Figure 7.21: Examples of the cumulated link travel times curves showing link congestion

of two paths of the Cuenca network.

7.9.2 The Cuenca network

In this section we aim at testing the proposed methods with a real network and checking

that the computation times are reasonable. With this aim in mind, the methods were

applied to the city of Cuenca network, with 232 nodes, 672 links and 219 paths (see

Figure 6.9).

We have used the following parameter values: βa = 1, δa = 1/3 and γ = 1, the

αa values have been obtained using a free flow speed of 30 Km/hour, and the xmax
a ;∀a

correspond to 100 vehicles/Km.

The observed flow trends corresponding to this example were very similar to those pre-

sented before for the small networks8. Alternatively, in Figure 7.21 we have accumulated

the link travel times for two paths. The following interesting features can be observed

from this figure:

• In the case of the path shown in the left graph in Figure 7.21 we can see that the first

and last few links have no or small congestion, thus showing almost parallel trends.

However, some intermediate links have some congestion at peak hours that lead to

bands with width changes leading to a general trend showing relative maxima and

minima at peak hours, while an almost horizontal and parallel trend appears at early

and late hours in the day.

• The path of the graph on the right-hand side of Figure 7.21 is composed by links

with congestion because this path comes from a very generative zone and goes to a

very attractive one. See that the second last link of this path has a huge increase of

link travel time in both peak hours. Again the traffic is fluid at early and late hour,

showing the typical parallel trend.

8Note that since this is a medium-size city network the path travel time is less than half hour. This

is the reason why we have not represented the θpa(t) curves, which present a very narrow trend and are

difficult to visualize.
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Figure 7.22: Some examples of link flow intensity curves of the Cuenca network with the

corresponding path flow components.

Figure 7.22 shows some examples of link flow intensity curves of the Cuenca network

with the corresponding path flow components. The difference with previous graphs here

is that the congestion is almost simultaneous in all links and path flows.

Finally, we note that the number of iterations required for convergence varies from a

single iteration when there is no saturation at all (reduced traffic flow), to 3 to 8 iterations

when large congestion is present.

The resulting cpu time was 1215 sec. for the case of no congestion.

7.10 Comparison with other models

Though with some limitations, the exposed model has important advantages. The origi-

nality of the model lies mainly on proposing a FIFO consistent (see Section 7.7) dynamic

traffic model which includes non-linear delay functions of link volumes, but also lies in the

following convenient features, some of them shared with other existing methods:

1. We deal with a smooth continuous model for real traffic networks, which seems more

convenient than a discretized version of the real continuous problem.

2. Though time functions involve infinite degrees of freedom, we approximate these
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functions by cubic splines. This implies that the number of parameters used to

define the models remains finite and small. To this end we determine the link

travel times of some users at a discrete set of fixed times, and these data are used

to directly approximate the link travel time functions by monotone cubic Hermite

splines (continuous functions). This is an efficient way of dealing with such a complex

problem and satisfying the FIFO rule.

3. Instead of inverse path link exit time functions, which are a very large number of

functions (number of paths×mean number of links per path), we work with link

exit-entry time functions, which are a number of functions equal to the number of

links. This implies an important reduction in the number of implied functions and

a reduction in memory and spline function estimations on the one hand, and avoids

redundancies, on the other.

4. The inverse path-link exit time functions are evaluated in terms of the link travel

time functions by a simple algorithm without the need to build the corresponding

path approximations (splines or other approximations).

5. We use an iterative scheme. At a given iteration, we first determine the link travel

times associated with a carefully selected set of users based on a previous iteration

cubic-spline approximation of link travel time functions and later we update the

cubic splines, fitting them to the updated travel times. The process is iterated until

convergence. Our experience shows that this process is rapidly convergent.

6. We consider the congestion effect at the adequate time and location, i.e. our model

evaluates the congestion effect taking into account the interaction of flows of all

paths and their coincidence at different times and locations.

7. The required memory and cpu requirements for the proposed model remain moder-

ate.

7.11 Conclusions

The main conclusion that we draw from the material in his chapter are the following.

1. Although existing dynamic traffic models based on the hydraulic analogy explain

important features of traffic flow, they are very high time consuming and become

prohibitive to be used in intermediate or large networks. Thus, alternative models

become necessary to make them useful in the engineering practice.

2. The proposed method is a continuous method in which the link exit-entry time

functions τ−1
a (t) are approximated by monotone cubic Hermite splines and path

origin flow functions are assumed to be linear combinations of a basic set of functions.
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Both approximations can be improved as much as desired by increasing the set of

basic points and the set of basic functions, respectively.

3. The proposed method is a possible alternative that implies a reasonable computation

time and on the other hand seems to reproduce the real traffic in a sufficiently

close way. The path traffic waves propagate through the network by stretching and

enlarging according to the degree of congestion of the corresponding links and joining

with other path waves at the network nodes. Both the stretching-enlarging and the

merging processes satisfy the FIFO rule within and among different path flows.

4. The proposed linear combination of normal densities to reproduce the time varying

path flows seems to be a reasonable simplification which is close to the real values.

We note that the combination of these functions leads to complex flow intensity

evolution curves with a trend similar to the observed curves in reality.

5. The model assumes that the link travel time is a non-linear function of the link vol-

ume and also of the immediate downstream path link volumes, but some corrections

(queue considerations) are made in order to satisfy the FIFO rule at the basic set.

Further the use of monotone cubic splines preserving monotonicity, guarantees that

the FIFO rule is satisfied at all points.

6. The treatment of traffic congestion can be easily done by means of an iterative

process: first, we evaluate traffic congestion based on the actual link travel time

functions, and later, we update the link travel time functions based on congestion.

The process can be started by assuming no congestion in the first iteration, and

correcting this in successive iterations. We have obtained convergence in 3 or 4

iterations and no more than 15 iterations when some congestion is present.

7. Due to the path flow intensities are used as the basic time functions, and the link

and node flow intensities are obtained from them based on the network topology,

the conservation and propagation laws are satisfied over all the network.
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8.1 Notation

α shape parameter of the Beta distribution.

β(α, θ) Beta function with parameters α and θ.

Γ(α) Gamma function with parameter α.

µ mean.

Φ cumulative distribution function of the standard normal random

variable.
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σ2 variance.

ΣXX variance-covariance matrix of X.

θ shape parameter of the Beta distribution.

a link.

b lower end of the generalized Beta variable.

b̂at estimated Beta parameter of the random variable Xat of link a at

time t.

c upper end of the generalized Beta variable.

ĉat estimated Beta parameter of the random variable Xat of link a at

time t.

GBeta(α, θ; b, c) generalized Beta function with parameters α, θ, b and c.

k observation.

S subset of variables.

t time.

t0 time of prediction.

tm discrete time value.

ts predicted time.

uat random value from a standard Beta(α, θ) variable.

X̂ estimate of variable X.

Xat generalized Beta random variable associated with link a and time t.

xkat observation k of the random variable x of link a at time t.

Yat standard normal random variable associated with link a and time t.

ykat standard normal variable value corresponding to observation k in link

a at time t.

A set of links of a traffic network.

B0 set of link-time pairs.

D set of origin-destination pairs of nodes.

N set of nodes of a traffic network.

8.2 Introduction

In Chapter 7 we have discussed the loading problem in dynamic models, that is, given

a deterministic traffic demand evolution function, we were interested in knowing how

the users compete for space and the traffic wave propagates throughout the network by

stretching or enlarging, depending on the congestion level. However, in reality the demand

is not deterministic but random, and changes from day to day. In this chapter, we deal

with the stochastic nature of demand and analyze how these random changes can be

predicted based on previous information, that is, the traffic situation in different locations

at times before the prediction time.
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Several models have been used in the existing literature to reproduce the stochastic

character of traffic flow, such as time series models (see Lee and Fambro (1999), William

(1999)), neural network models (see Hall and Mars (1998), E. Castillo and Pruneda.

(1998)), Bayesian networks (see Sun et al. (2006), Queen and Albers (2009)), etc. We

concentrate on Bayesian network models that allow us to reproduce both the stochastic

character of flows together with its dynamic nature. Nevertheless, Bayesian networks are

more appropriate for traffic models because:

1. Contrary to neural network models, Bayesian network models provide not only mean

values of predictions but the corresponding variabilities. In fact, they provide density

functions. We note that this is much more than the confidence intervals provided

by time series models.

2. Bayesian network models are specially designed to make predictions when new in-

formation is available and to perform the corresponding prediction updating. Note

that this is exactly the problem we have in traffic prediction because the available

information is changing with time and we need to update predictions.

3. Apart from theoretical reasons, there is clear evidence in favor of Bayesian networks.

For example, Sun et al. (2006) compare Bayesian network models with other existing

models such as neural network and time series models and conclude that Bayesian

networks are clearly superior in performance.

Bayesian networks are very useful to represent the statistical relationships among mul-

tivariate random variables in a simple and easily implementable way and have been used

for traffic prediction in the past. In particular, Sun et al. (2006), Castillo et al. (2008d,e);

Sánchez-Cambronero et al. (2011) have applied Bayesian networks to steady-state or total

traffic flow problems.

Sun and Zhang (2005) present a spatio-temporal Bayesian network predictor that in-

corporates the spatial and temporal information available by selecting variables using the

Pearson correlation coefficients. The joint density is assumed to be a mixture of Gaussian

distributions. Sun et al. (2006) propose a Bayesian network to model the traffic flow rates

of adjacent road links in a transportation network, so that link flow time changes can be

predicted in terms of other link flow rate time changes. The joint probability distribu-

tion of the variables involved is assumed to be a mixture of Gaussian distributions whose

parameters are estimated using the well-known expectation maximization (EM) method.

The Bayesian network structure is advantageously used to make predictions when partial

information is available. Principal component analysis is also used for selecting the set of

relevant variables required to predict a given link flow.

Yu and Cho (2008) use a Gaussian mixture Bayesian network to predict a given link

flow based on both upstream and downstream link data and its own historical data.
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Bayesian network Estimation Variable selection Spatio-

Reference distribution method method temporal

Castillo et al. (2008d,e)

Sanchez-Cambronero Gaussian Maximum likelihood Traffic network structure NO

et al. (2011)

Sun et al. (2006) Gaussian mixture Expectation-Maximization Principal components NO

Queen and Albers (2009) Multiregression - External intervention NO

Sun and Zhang (2005) Gaussian mixture Maximum likelihood Pearson correlation YES

Yu and Cho (2008) Gaussian mixture Expectation-Maximization Latest adjacent links NO

Proposed method Generalized Maximum likelihood Conditional YES

beta-Gaussian expectations variances

Table 8.1: Some existing Bayesian network models.

Queen and Albers (2009) propose a multivariate Bayesian dynamic model called the mul-

tiregression dynamic model (MDM). In particular, they deal with the prediction of traffic

when sudden changes occur using the technique of external intervention that allows iden-

tifying the relevant variables based on the Bayesian network structure. Table 8.1 gives a

summary of previous models.

Most Bayesian network models used in stochastic dynamic models are Gaussian or

mixtures of Gaussian distributions. This means that the random variables involved have

unlimited range (−∞,∞), and that all individual variables are mixtures of normals with

the same weights. Although the model is powerful, this could be an important limitation

in practice. In order to provide a more realistic and a positive range for the variables

and extra degrees of freedom, in this chapter we propose a Generalized Beta-Gaussian

Bayesian network, the marginals of which are generalized Beta variables, that is, variables

with range [bi, ci] instead of the [0, 1] range of standard Beta variables. This allows us to

define the marginal distribution of each individual variable independently, according to its

characteristics. In addition, the covariance structure is modeled by means of a multivariate

normal distribution.

The large number of parameters of the proposed model is very easy to estimate, as

shown in the following sections. There seems to be agreement in using the maximum

likelihood as estimation method, though in some cases with the help of the expectation

maximization (EM) algorithm. The variable selection methods are based on Pearson cor-

relation coefficients, principal components or conditional variances. Finally, some models

are spatio-temporal, that is, they include times and locations.

This chapter is organized as follows. In Section 8.4, we describe the dynamic model

defined as Generalized Beta-Gaussian Bayesian network (GBGN) model for stochastic

demand. In Section 8.6, we explain some implementation problems we have faced in the

implementation of the Gaussian mixture Bayesian network models. In Section 8.5, we

give some examples of application to illustrate the performance of the GBGN proposed

method. In Section 8.6, we compare the model proposed in this chapter, the normal
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Bayesian network, and the Gaussian mixture model. Finally, in Section 8.7 we give some

conclusions.

8.3 The generalized Beta distribution

As indicated in section 5.3.2, the Beta random variable is useful for modeling experimental

data with range limited to the interval [0, 1]. This fact does not restrict the use of the

Beta random variable because if Y is a random variable defined on the interval [b, c], then

X =
Y − b
c− b

defines a new variable such that 0 ≤ X ≤ 1. Therefore, the Beta density function can be

applied to a random variable defined on the interval [b, c] by translation and a change of

scale, that is,

E[Y ] = b+ (c− b)E[X] (8.1)

σ2Y = (c− b)2σ2X . (8.2)

In this chapter we consider this generalized Beta distribution that is denoted

GBeta(α, θ; b, c). Since it is important to relate the statistical parameters to traffic pa-

rameters, we provide this relation below:

b is the minimum possible value of the random variable being dealt with (link travel

time, link flow, etc.).

c is the maximum possible value of the random variable being dealt with.

α, θ are two parameters that permit the shape of the density of the random variable

being dealt with to be defined. If α = θ we obtain symmetric densities. If α > θ we

get densities concentrated on the largest values (negative skewness) and if θ > α we

get densities concentrated on the lowest values (positive skewness) (see Figure 5.1).

8.4 The Generalized Beta-Gaussian Bayesian network

model

In this section, we propose what we denominate the Generalized Beta-Gaussian Bayesian

network model (GBGN). Let Xat be the random variable associated with link a and time

t. This variable can be the link travel time, the link flow, the link flow density or any

other variable we are interested in. To facilitate the understanding of our description we

use here as Xat the link travel time associated with a user entering link a at time t, where

t ∈ {t0, t1, . . . , tm} is a discrete time. Nevertheless, in other examples we use Xat as the

flow rate, where a refers to a station.
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8.4.1 Model assumptions

In our model we make the following assumptions:

1. We assume that Xat ∼ GBeta(αat, θat; bat, cat) (approximately), that is, Xat can be

approximated by a generalized Beta variable, whose parameters depend on the link

a and time t being considered.

This assumption provides us with sufficient degrees of freedom (four location, scale

and shape parameters) to reproduce the marginal Xat random variables.

2. Since in the next assumption we are going to assume Gaussian Bayesian networks,

we need to work with normal marginals Yat. To this end, we transform the Xat

generalized Beta random variables to standard normals N(0, 1) by means of the

transformation:1

Yat = Φ−1(FGBeta(αat ,θat;bat,cat)(Xat)), (8.3)

where Φ(x) is the cdf of the standard normal random variable and FGBeta(α,θ;b,c)(x)

is the cdf of the generalized Beta distribution.

3. We assume that the random variables Yat; a ∈ A; t ∈ {t0, t1, . . . , tm} can be

reproduced by a normal Bayesian network, where the parents of Yat are in

∪k∈{0,1,2,...,s}{Ya0t−k|a0 ∈ A}, that is, future flow properties depend only on present

and past properties.

This assumption permits us to reproduce the variance-covariance structure of all the

variables.

Our GBGN proposed model depends on a large number of parameters that include

the four generalized Beta parameters per variable, already discussed, plus the parameters

involved in our Bayesian normal model, i.e., (n2 + 11n)/2 parameters, where n is the

number of variables. The covariance parameters include the information on the correlation

of the different pairs of traffic variables, which is very important to decide which of the

traffic variables have information on other traffic variables and how this changes when new

information becomes available.

8.4.2 Learning the Generalized Beta-Gaussian Bayesian network

In order to learn the GBGN parameters we need some data. To this end, we have two

alternatives: (a) measure real data in the network where the model is to be applied, or

(b) use simulations to obtain the data.

1If we transform any random variable using as transformation function its cdf, we obtain a standard

uniform U(0, 1) variable. Performing this transformation to the GBeta(α, θ; b, c) random variable Xat and

the standard normal N(0, 1) random variable Yat we get Φ(Yat) = FGBeta(αat,θat;bat,cat)(Xat), from which

(8.11) can be immediately obtained.
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In either case, we assume that we know the set

{xkat; a = 1, 2, . . . , n; t = 1, 2, . . . ,m; k = 1, 2, . . . , s}, (8.4)

where a, t and k refers to link, time and replication, the lower case letters xkat refer to

the sample values of Xk
at, and n, m and s are the number of links, the number of time

instants considered and the sample size, respectively.

The learning process has two main steps: (a) learning the generalized Beta parameters

and (b) learning the mean and covariance matrix of the standard normal Bayesian network.

Estimating the generalized Beta parameters

In order to estimate the generalized Beta parameters we have selected two alternatives:

1. The maximum likelihood method. We estimate the parameters as follows:

(a) The parameter bat is estimated using the expression

b̂at = 1.05min
k

(xkat)− 0.05max
k

(xkat). (8.5)

Although the maximum likelihood estimate is mink(xkat), we use the above

expression to reduce the probability of future data to be out of range.

(b) Similarly, though the maximum likelihood estimate is maxk(xkat), the param-

eter cat is estimated using the expression

ĉat = 1.05max
k

(xkat)− 0.05min
k

(xkat). (8.6)

(c) The αat, θat parameters are estimated by maximum likelihood of the standard

Beta random variable using the sample

uat = (xkat − b̂at)/(ĉat − b̂at); k = 1, 2, . . . , N, (8.7)

where the uat are random values from a standard Beta(α, θ) variable.

Thus, we use transformation :

Yat = Φ−1(FGBeta(αat ,θat;bat,cat)(Xat)), (8.8)

to convert the generalized Beta random values in the set

{xat; a ∈ A; t ∈ {t0, t1, . . . , tk}}

into a set of normal values {yat; a ∈ A; t ∈ {t0, t1, . . . , tk}}.
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2. The least squares method. Since we aim at transforming the generalized Beta vari-

ables to standard Gaussians, we incorporate two more parameters, one location µat
and one scale σat, and select them in such a way that the transformed variables are

as close as possible to the standard normal variables, that is, to estimate αat, βat, µat
and σat we minimize the sum of squares:

n
∑

i=1



rin −
Φ−1

(

FB(αat ,βat)(
xat−bat

cat
)
)

− µat
σat





2

(8.9)

with respect to αat, βat, µat and σat, where FB(αat ,βat)(x) is the cdf of the Beta

distribution and

rin = Φ−1

(

i

n+ 1

)

. (8.10)

Thus, in this case our transformation becomes:

Yat =
Φ−1(FGBeta(αat ,θat;bat,cat)(Xat))− µat

σat
. (8.11)

Estimating the mean and covariance matrix

We use the maximum likelihood method. The mean matrix of the normal variables, that

should be close to the null matrix, is learnt by calculating the mean of the transformed

sample values Yat:

E[Yat] =

N
∑

k=1

ykat

N
(8.12)

and the covariance matrix of the standard Normal Bayesian network is estimated by the

covariance matrix of the same transformed sample, that is,

Cov(Yat,Yat)=

N
∑

k=1

(ykat −E[Yat])(ykat − E[Yat])
T

N
, (8.13)

where N is the sample size.

It is worth mentioning that the learning process must be dealt with only once and can

be done in advance and off line. The model parameters can be stored in a database and

used later for successive predictions. This is the data basis on which the flow evolution

predictions will be based. This process can also be updated from time to time in order

to follow the long time variation of traffic, which is not stationary. In addition, we want

to emphasize that the computational power required for predicting all links in a network

is linear (proportional) to the number of links because the number of variables involved

in a link prediction for close times depends only on the adjacent links. In other words,

the computational power to predict a link flow rate is not dependent on the network

size. Finally, the database required for local predictions includes only local information

(adjacent links). These are important facts for practical applications.
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8.4.3 Making predictions

To make a prediction of Xats at a given time t = t0 for a future time ts, where the values

of t0 and ts are in {t0, t1, . . . , tk}, we proceed as follows:

1. We select the subset of variables S = {Ya0tk ; (a0, tk) ∈ B0} where the set B0 is the

set of link-time pairs (a0, tk) such that the correlation coefficient of Yats and Ya0tk
is larger than a given threshold value threshold, say 0.05, and consider it as the

observed set.

2. We calculate the conditional expectations µats = E[Yats |Ya0tk ; (a0, tk) ∈ B0] and the

conditional variances V ar(Yats |Ya0tk ; (a0, tk) ∈ B0) using (5.15) and (5.16).

3. We calculate the confidence intervals for the prediction as

Ŷats ≡
(

E[Yats |Ya0tk ; (a0, tk) ∈ B0]± 2
√

V ar(Yats |Ya0tk ; (a0, tk) ∈ B0)
)

. (8.14)

4. We transform the random variable Yats and the corresponding confidence intervals

to the initial variable Xats by means of the transformation (inverse of transformation

(8.11)):

X̂ats = F−1
GBeta(αats ,θats ;bats ,cats)

(Φ(Ŷats))). (8.15)

5. We obtain the density fXats
(x) of Xats |Xa0tk ; (a0, tk) ∈ B0 by means of the following

expression2

fN(µats ,σats)
(Φ−1(FGBeta(αats ,θats ;bats ,cats)

(x))) ×
fGBeta(αats ,θats ;bats ,cats)

(x)

fN(0,1)(FGBeta(αats ,θats ;bats ,cats)
(x))

,

(8.16)

where fGBeta(αats ,θats ;bats ,cats)
(x), fN(µats ,σats)

(x) are the pdfs of the

GBeta(αats , θats ; bats , cats) and normal N(µats , σats) distributions, respectively.

We point out that by evaluating the correlation of a particular traffic variable with the

rest of the traffic variables and following the above procedure, the relevant traffic variables

(to predict the target variables) can be selected without the need to have any knowledge

of the network structure or paths.

8.5 Examples of application

Once we have presented our GBGN model, one question arises: is the GBGN a practical

tool for real applications based on large networks? In this section, we show that the

proposed model is applicable to very large networks because:

2This expression has been obtained using the change of variable method based on (8.15).
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1. For short or medium ahead prediction periods, the informative variables are local,

that is, link flows depend only on adjacent link flows, that is, the size of the network

is irrelevant to the complexity of the required calculations.

2. For long-term predictions, the set of influential links increases in size, but this in-

crease has nothing or practically nothing to do with the network size, but with the

difference between the prediction time and the time to be predicted.

3. The proposed methods use matrix products and inverses, that is operations that

have been optimized and do not involve very large sizes.

In this section we present three illustrative examples, two fictitious and one real. There

is an important difference between the first two examples and the third one. In the first

two, we have no data and we need to simulate them first. On the contrary, in the last

example, we have real data available.

8.5.1 Nguyen Dupuis network example

To facilitate the understanding of all the concepts introduced in the previous sections, we

consider a traffic network (N ,A) where A is a set of links and N is a set of nodes, from

which one can distinguish the subset D, of origin-destination pairs of nodes, and we use

the Nguyen-Dupuis type network, with 13 nodes and 38 links in Figure 6.2, to illustrate

the proposed methods. The paths considered are those in Table 7.4.

Since no data is available from direct measurements, we have simulated 100 days of

random incoming traffic in this network and we have utilized one of the physical-queue

representation deterministic dynamic models based on the travel time function approach

(see Szeto and Lo (2005) and Castillo et al. (2011)) to obtain the link travel time evolution

curves which are the required input to our problem. Sixty paths have been considered.

Figure 8.1 shows the plots of 100 realizations of the link travel time evolutions cor-

responding to 100 days for some selected links of the illustrative example, together with

their mean values (dashed green line). The red line (continuous thick line) corresponds to

the link travel times of one day to be predicted in the present example and the circle on

the abscissas axis indicates the time when predictions are made. The plots corresponding

to other links are similar.

The flow evolutions at the path origins were considered as the sum of two normal

densities scaled to random total volumes, and random mean time locations and standard

deviations, that is, two daily peak values were assumed.

We can see that all daily link travel times show one morning and one evening maxima,

but the trends are changing with the day. In addition, we can see how congestion varies

on a daily basis. This information is extremely valuable to predict the future behavior of

the network.
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Figure 8.1: Nguyen-Dupuis: Observed daily link travel time functions (in hours) for some

representative selected links. The dashed lines show the mean travel times and the thick

continuous line is one particular realization (one particular day).

In this example, we want to predict at time 16:00, the future link travel times when

we know the actual and the previous link travel times for all relevant links.
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Figure 8.2: Nguyen-Dupuis: Correlation coefficients of travel time for link 20 at time 16:00

with the travel times of all links at times 16:00, 15:48 and 15:36.

Figure 8.2 shows the correlation coefficients of travel time for link 20 at time 16:00

with the travel times of all links at times 16:00, 15:48 and 15:36. We can see that the

maximum correlations correspond to the same link 20 for previous times 15:48 and 15:36,

and links 36 and 18 (the links connected to link 20) for the three times. We note that

these correlations permit us to select the more informative links on which we can base

our predictions, as indicated in Section 8.4.3. The right hand side of Figure 8.2 shows

the correlation coefficients of the link 20 travel times at time 16:00 with the link 20 travel

times for future times. As expected, the correlation coefficient decreases when we move

further apart from the 16:00 prediction time.

Next, we have estimated the generalized Beta parameters for all links every 12 minutes

using the methods described in Section 8.4 and formulas (8.5) to (8.9). Figure 8.3 shows

the estimated (continuous line) generalized Beta cumulative distribution functions and the

corresponding empirical (data points) distribution functions for some selected links at time

t = 16:00. Similar results are obtained for other links and times. It can be seen that the

theoretical model reproduces the observed data fairly well, showing that the generalized

Beta provides sufficient degrees of freedom to that purpose.

One important step of the suggested procedure is the variable selection method in

which we try first to identify and later to avoid redundant information. Table 8.2 illustrates

how this identification and elimination of redundant variables is made using the method

proposed in Section 8.4.3. To this end, we show the order in which variables are selected
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Figure 8.3: Nguyen-Dupuis: Estimated generalized Beta cdf and empirical cdf of link

travel times for some selected links at time t = 16:00.

for different prediction times and time of prediction 16:00 for the cases of complete data

(upper table) and missing data {18, 20, 36} (lower table). If we want to predict the travel

time of link 20 at time 16:12, the more informative data corresponds to travel time of the

same link at the previous times 16:00, 15:48 and 15:36. However, once the information

at time 16:00 is known, the additional information reported by the other two times is

negligible, as shown in Table 8.2, where we can see that the initial variance of the travel

time to be predicted (link 20 at time 16:12) of 1.007 reduces to 0.002. Predictions of the

travel time of link 20 at time 17:00 have the same behavior. However, for the prediction of

the travel time of link 20 at time 18:00, the variance reduces to 0.329, and then knowledge

of the travel time of link 20 at time 15:48 implies an extra reduction to 0.153. It is then

when links 18, 5 and 16 allow extra reductions to 0.102, 0.092 and 0.087. Finally, further

predictions, say of the travel time of link 20 at time 21:00, involve information of links 36,

7 and 35, but with much smaller reductions in variance (from 1.005 to 0.877, 0.716 and

0.630, respectively).

The effect of missing data is illustrated in the lower part of Table 8.2 where the

corresponding information is given as in the upper part. Note that if the information

of the most relevant links (20, 18 and 36) is not available, other links (11 and 21) take its

place, but then the variance reduction is much smaller (from 1.007 to 0.915 and 0.863)

and more links must be used to reduce the variance further, though the lowest value can

be limited not necessarily to zero. Consequently, the effect of missing information can be

important if, as in this case, relevant links are included in the missing information set, but

this is small if only partial information is missed. Note that the variables contain a lot of

redundant information, which allows easily replacing the missing data links with others.
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Complete data

16:12 17:00 18:00 19:00 20:00 21:00

step link time var link time var link time var link time var link time var link time var

1 20 16:00 1.007 20 16:00 1.006 20 16:00 1.007 36 16:00 1.003 18 16:00 1.003 36 16:00 1.005

2 20 15:48 0.002 20 15:48 0.087 20 15:48 0.329 18 16:00 0.617 36 16:00 0.784 36 15:48 0.877

3 20 15:36 0.000 20 15:36 0.019 20 15:36 0.153 36 15:48 0.436 36 15:48 0.640 7 16:00 0.716

4 35 15:36 0.000 21 16:00 0.011 18 16:00 0.102 18 15:36 0.344 18 15:48 0.521 35 15:48 0.630

5 7 16:00 0.000 36 15:48 0.010 5 15:36 0.092 20 16:00 0.320 16 15:36 0.471 7 15:48 0.590

6 36 15:36 0.000 18 15:48 0.010 16 16:00 0.087 20 15:48 0.300 7 16:00 0.452 7 15:36 0.556

7 36 16:00 0.000 32 15:36 0.009 13 15:36 0.085 20 15:36 0.248 7 15:48 0.437 16 15:36 0.524

8 36 15:48 0.000 7 16:00 0.009 36 16:00 0.083 36 15:36 0.218 7 15:36 0.417 20 15:36 0.506

9 4 16:00 0.000 32 16:00 0.009 36 15:48 0.081 16 15:36 0.206 4 15:48 0.388 18 16:00 0.487

10 21 15:36 0.000 32 15:48 0.009 28 16:00 0.073 32 15:36 0.197 19 15:36 0.378 20 16:00 0.464

Missing data {18, 20, 36}

16:12 17:00 18:00 19:00 20:00 21:00

step link time var link time var link time var link time var link time var link time var

1 11 15:36 1.007 11 15:36 1.006 14 15:36 1.007 14 15:36 1.003 14 15:36 1.003 11 16:00 1.005

2 21 16:00 0.915 21 16:00 0.899 16 15:36 0.856 2 15:36 0.815 2 15:36 0.843 2 15:36 0.887

3 21 15:48 0.863 21 15:48 0.865 5 16:00 0.837 2 15:48 0.791 7 16:00 0.798 7 16:00 0.838

4 4 16:00 0.838 16 15:36 0.839 28 15:36 0.818 35 16:00 0.770 7 15:48 0.771 7 15:48 0.806

5 16 15:36 0.819 7 16:00 0.824 14 15:48 0.794 35 15:48 0.735 33 15:36 0.743 7 15:36 0.763

6 7 16:00 0.803 14 15:36 0.815 14 16:00 0.772 14 15:48 0.681 11 16:00 0.725 2 15:48 0.742

7 14 15:36 0.793 14 15:48 0.796 35 16:00 0.750 14 16:00 0.671 35 16:00 0.711 2 16:00 0.706

8 14 15:48 0.771 14 16:00 0.770 35 15:48 0.742 35 15:36 0.642 2 15:48 0.693 14 15:36 0.689

9 14 16:00 0.755 35 16:00 0.747 35 15:36 0.733 28 16:00 0.632 7 15:36 0.665 35 16:00 0.676

10 35 16:00 0.726 32 15:36 0.732 2 15:36 0.728 19 16:00 0.625 2 16:00 0.632 16 16:00 0.639

Table 8.2: Nguyen-Dupuis: Order in which variables are selected for a prediction made at

16:00 of the travel time in link 20 at different times for the cases of complete data (upper

table) and missing data {18, 20, 36} (lower table).

Next, at time 16:00 we predict the future link travel times. To this end, we use the

proposed Bayesian network and use only the link travel time information available at 16:00.

Figure 8.4 provides in blue (darkest continuous line) the predictions of the link travel times

for the different links made at time 16:00 and the corresponding 0.95 confidence intervals

(as dashed lines) for the selected links. For reference, the actual flows are indicated as a

red (lightest continuous) line. Note that the confidence intervals increase when we move

apart from the prediction time, but decreases further when we approach the final day

hours because the link travel time variances decrease for this time of the day.

Figure 8.5 shows the densities of link travel time predictions (in hours) at different

future times made at time t = 16:00 for some representative selected links of the Nguyen

Dupuis network. Note that the proposed model supplies not only confidence intervals but

full densities, which have been calculated using (8.16).
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Figure 8.4: Nguyen-Dupuis: Predicted link travel time made at time t = 16:00 and 0.95

confidence intervals for some representative selected links.

The cpu time used for a single prediction of all link travel times was 0.34 seconds using

a non-optimized computer program written in Matlab and run on a Dell Optiplex 755

computer with 4 Gb of memory and a processor Intel Core 2 Quad Q6700 (2.66 GHz,
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Figure 8.5: Nguyen-Dupuis: Densities of link travel time predictions (in hours) at time

t = 16:00 for some representative selected links at different times.

8 MB de cache L2, 1066 MHz FSB). We note that most of the cpu time required by

Equations (5.15) and (5.16) is the inversion of matrix ΣZZ , which if we use the same Z,

it is common for all link predictions, so that the difference in predicting a few and all link

travel times is small.

Table 8.3 shows the RMSE of the link travel time predictions made at time 16:00 for

all links and several times. We can see that the RMSE increases with time but decreases

later due to the small variances of link travel times at the end of the day (night time).

In order to see the effect of missing information we present in Table 8.3, the cases of
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Prediction times

Complete data Missing data {18, 20, 36}

link 16 18 20 22 24 26 28 16 18 20 22 24 26 28

1 0.0000 0.0033 0.0076 0.0023 0.0001 0.0000 0.0000 0.0000 0.0033 0.0076 0.0023 0.0001 0.0000 0.0000

2 0.0000 0.0027 0.0068 0.0016 0.0001 0.0000 0.0000 0.0000 0.0028 0.0070 0.0016 0.0001 0.0000 0.0000

3 0.0000 0.0061 0.0198 0.0213 0.0040 0.0000 0.0000 0.0000 0.0061 0.0198 0.0213 0.0040 0.0000 0.0000

4 0.0000 0.0009 0.0018 0.0004 0.0001 0.0000 0.0000 0.0000 0.0010 0.0020 0.0005 0.0001 0.0000 0.0000

5 0.0000 0.0050 0.0163 0.0033 0.0001 0.0000 0.0000 0.0000 0.0050 0.0163 0.0033 0.0001 0.0000 0.0000

6 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0001 0.0000 0.0000 0.0000 0.0000

7 0.0000 0.0014 0.0023 0.0010 0.0000 0.0000 0.0000 0.0000 0.0015 0.0025 0.0011 0.0000 0.0000 0.0000

8 0.0000 0.0023 0.0023 0.0004 0.0000 0.0000 0.0000 0.0000 0.0023 0.0023 0.0004 0.0000 0.0000 0.0000

9 0.0000 0.0008 0.0024 0.0046 0.0052 0.0023 0.0001 0.0000 0.0008 0.0024 0.0046 0.0052 0.0023 0.0001

10 0.0000 0.0004 0.0005 0.0004 0.0006 0.0004 0.0000 0.0000 0.0004 0.0005 0.0005 0.0006 0.0004 0.0000

11 0.0000 0.0036 0.0109 0.0173 0.0116 0.0000 0.0000 0.0000 0.0038 0.0115 0.0183 0.0121 0.0000 0.0000

12 0.0000 0.0015 0.0022 0.0005 0.0000 0.0000 0.0000 0.0000 0.0015 0.0023 0.0005 0.0000 0.0000 0.0000

13 0.0000 0.0013 0.0030 0.0044 0.0037 0.0004 0.0000 0.0000 0.0013 0.0031 0.0045 0.0038 0.0004 0.0000

14 0.0000 0.0055 0.0131 0.0257 0.0198 0.0002 0.0000 0.0000 0.0057 0.0134 0.0262 0.0201 0.0003 0.0000

15 0.0000 0.0020 0.0045 0.0051 0.0007 0.0000 0.0000 0.0000 0.0020 0.0045 0.0051 0.0007 0.0000 0.0000

16 0.0000 0.0020 0.0058 0.0092 0.0103 0.0040 0.0001 0.0000 0.0021 0.0060 0.0095 0.0108 0.0051 0.0002

17 0.0000 0.0019 0.0059 0.0110 0.0026 0.0001 0.0000 0.0000 0.0023 0.0066 0.0126 0.0031 0.0001 0.0000

18 0.0000 0.0033 0.0078 0.0137 0.0209 0.0100 0.0003 0.0000 0.0082 0.0097 0.0150 0.0223 0.0111 0.0003

19 0.0000 0.0023 0.0054 0.0051 0.0035 0.0005 0.0000 0.0000 0.0024 0.0058 0.0054 0.0039 0.0005 0.0000

20 0.0000 0.0018 0.0056 0.0087 0.0092 0.0062 0.0032 0.0000 0.0083 0.0096 0.0111 0.0106 0.0067 0.0034

21 0.0000 0.0052 0.0160 0.0208 0.0063 0.0001 0.0000 0.0000 0.0053 0.0163 0.0213 0.0062 0.0001 0.0000

22 0.0000 0.0022 0.0053 0.0062 0.0041 0.0018 0.0005 0.0000 0.0022 0.0053 0.0062 0.0041 0.0018 0.0005

23 0.0000 0.0009 0.0022 0.0027 0.0018 0.0005 0.0001 0.0000 0.0009 0.0022 0.0027 0.0018 0.0006 0.0001

24 0.0000 0.0006 0.0013 0.0017 0.0015 0.0004 0.0000 0.0000 0.0006 0.0013 0.0017 0.0015 0.0004 0.0000

25 0.0000 0.0027 0.0066 0.0059 0.0006 0.0000 0.0000 0.0000 0.0027 0.0066 0.0059 0.0006 0.0000 0.0000

26 0.0000 0.0010 0.0007 0.0002 0.0000 0.0000 0.0000 0.0000 0.0010 0.0007 0.0002 0.0000 0.0000 0.0000

27 0.0000 0.0007 0.0012 0.0013 0.0011 0.0002 0.0000 0.0000 0.0008 0.0013 0.0014 0.0012 0.0002 0.0000

28 0.0000 0.0009 0.0023 0.0027 0.0010 0.0004 0.0000 0.0000 0.0009 0.0023 0.0028 0.0011 0.0004 0.0000

29 0.0000 0.0030 0.0075 0.0096 0.0025 0.0003 0.0000 0.0000 0.0030 0.0075 0.0096 0.0025 0.0003 0.0000

30 0.0000 0.0001 0.0002 0.0001 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0001 0.0000 0.0000 0.0000

31 0.0000 0.0032 0.0080 0.0137 0.0174 0.0040 0.0000 0.0000 0.0033 0.0080 0.0137 0.0175 0.0040 0.0000

32 0.0000 0.0027 0.0057 0.0073 0.0048 0.0008 0.0000 0.0000 0.0027 0.0058 0.0079 0.0051 0.0009 0.0000

33 0.0000 0.0024 0.0068 0.0017 0.0003 0.0000 0.0000 0.0000 0.0024 0.0068 0.0017 0.0003 0.0000 0.0000

34 0.0000 0.0019 0.0050 0.0059 0.0045 0.0021 0.0003 0.0000 0.0018 0.0050 0.0059 0.0045 0.0021 0.0003

35 0.0000 0.0056 0.0126 0.0247 0.0271 0.0002 0.0000 0.0000 0.0062 0.0138 0.0253 0.0273 0.0002 0.0000

36 0.0000 0.0020 0.0061 0.0058 0.0037 0.0025 0.0015 0.0000 0.0071 0.0101 0.0071 0.0043 0.0028 0.0016

37 0.0000 0.0010 0.0007 0.0002 0.0000 0.0000 0.0000 0.0000 0.0011 0.0007 0.0002 0.0000 0.0000 0.0000

38 0.0000 0.0003 0.0004 0.0004 0.0002 0.0001 0.0000 0.0000 0.0003 0.0004 0.0004 0.0002 0.0001 0.0000

Table 8.3: Nguyen-Dupuis: RMSE of link travel time predictions for different links at

different times done at time 16:00. The cases of complete data and with some missing

data are considered.

missing information in links 18, 20 and 36. We can see that missing information increases

the RMSEs. The errors are induced in the proper missing links and those adjacent to

them in the path directions. An important result is that the degradation due to missing

data is not important, as long as the number and associated information of missing data

is small. This is due to the large correlations of the data for different links, which contain

a part of the information contained in the missing links.
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Figure 8.6: Ciudad Real network showing their nodes and one and two-ways links.

8.5.2 The Ciudad Real network

To demonstrate that the proposed methods can be applied to real size networks, we

consider the Ciudad Real network with 219 links and 590 paths, which is shown in Figure

8.6, where all streets (one way and two ways) are indicated.

Since we had no real data, as in the previous example, we have simulated 16 minutes

ranging from 8:00 to 8:16 for 100 different days of random incoming traffic in this network,

and measured traffic every 15 seconds. Next, using the resulting traffic flows as input, we

have utilized one of the physical-queue representation deterministic dynamic models based

on the travel time function approach (see Szeto and Lo (2005) and Castillo et al. (2011))

to obtain the required travel times. The results are similar to those in Figure 8.1 and we

do not include them due to lack of space.

Figure 8.7 shows in red (the lightest continuous line) the selected day travel time
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Figure 8.7: Ciudad Real network: Predicted link travel time for different day times made

at time t = 8:08 and 0.95 associated confidence intervals for some representative selected

links.

evolution in the corresponding links, in blue (the darkest continuous line) the predicted

link travel times made at 8:08, and in blue dashed lines the 0.95 confidence intervals of

these predictions.

The time required to make these predictions is very low. However, what takes time is

to simulate the 100 days of flow or to measure it in reality. Fortunately, this must be done

only once and the information used for predictions during many days. Nevertheless, this

information needs to be updated from time to time to reproduce the long time variations

of link travel times.

Due to the high number of links in this network and to avoid being very repetitive, we

cannot show all the data and resulting predictions and densities, but they are similar to

those already presented for the Nguyen-Dupuis example.
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Figure 8.8: Station locations of the Vermont-State data.

8.5.3 The Vermont-state case example

In this section we present an example with real data, which come from the Continuous

Traffic Count (CTC) Program of the Vermont Agency of Transportation (VTrans). There

are 85 stations, as indicated in Figure 8.8, where their exact locations and associated

names are shown. These data are available at http://www.aot.state.vt.us.

We have used the daily counts from September 2008 to July 2010 (two years) obtained

by the permanent traffic recorder stations of VTrans.

Since there is a significant different behavior of traffic in weekdays and weekends, we

have initially selected for our example only Monday-Thursday traffic flows, and we have

removed outliers, which correspond to holidays or days where some special events have

occurred. In order to detect singular days, we have evaluated the mean traffic flow at each
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location-hour pair and calculated the number of standard deviations the actual traffic

flow differs from the mean. If this number exceeds the value 2.8 (corresponding to a

probability of 0.0025) and the maximum daily deviation in a given location is larger than

the 40% of the daily mean flow, we have removed that day considering it as an outlier. The

exterior dark (black) bands in the four graphs in Figure 8.9 represent the criterion used to

detect outliers3. The removed observations appear as dashed lines (in red color) that have

some points outside the previous bands. A simple observation to these days reveals that

they show a completely different trend. The remaining data appear in light (green) color

and occupy a central region limited by the bands. In addition, the mean curves, before

removing outliers and after removing them, appear in blue and yellow (central area lines),

respectively. Note that the differences are very small due to the relatively low number of

outliers. Finally, we have selected 46 stations (their labels appear in Figure 8.8 boldfaced)

and 66 days such that the 46 × 24 = 1104 station-time pairs have complete data (for all

66 days).

In this example we apply our GBGN model to traffic counts.

With the selected data we have estimated the generalized Beta parameters b, c, α and θ

for each location-time pair. The graphs in Figure 8.10 show the estimated generalized Beta

cumulative distribution functions and the corresponding empirical distribution functions

for some selected station-time pairs (their labels appear with a rectangular frame in Figure

8.8). Similar results are obtained for other stations and times. As can be seen, the fitting

is very reasonable, showing that the generalized Beta model reproduces the observed

data fairly well. In addition, since the data used cover many different stations and both

congested and uncongested periods, this proves that the generalized Beta model used is

adequate and reasonable in both cases.

We have used the proposed model to predict traffic flows at all stations from 8:00 to

24:00. To this end, we have used information of traffic at 8:00 and before at all stations,

and utilized the process described in subsection 8.4.3. This means that we have selected the

most informative variables and calculated the conditional means and covariance matrices

and applied the formula (8.14) to determine the 0.95 confidence intervals for each location-

time pair. The Figure 8.11 show some representative examples of predicted (in blue) and

actual (in red) traffic flows together with their corresponding 0.95 confidence bands. They

correspond to the same stations as those in Figure 8.9. It demonstrates that the traffic

predictions are good and very close to the real ones. It is important to note that we

provide confidence bands instead of point estimates and that the width of the confidence

bands is very small compared with the dispersion observed in the upper four graphs of

Figure 8.9.

In order to measure the general performance of the model when predicting flows, we

have considered the case of a prediction made at 8:00 of the traffic flow for the rest of the

3We could have used another criteria, but for illustrative purposes, we consider this a reasonable one.
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Figure 8.9: Some illustrative examples of daily traffic volume evolution in the Vermont-

State example, showing the outlier detection bands (in black), the thick continuous lines

of mean values before and after removing outliers (in blue and yellow, respectively), the

discarded days (in dashed red) and the accepted data (in green).

day. We have measured the percent RMSE/mean ratios of flow predictions for all stations

from 8:00 to 24:00. The results appear in Table 8.4. The maximum daily percent is 13.83%

with only four stations with a maximum above 10%, and 25 of a total of 46 stations with

maxima less than 5%. Since the percent RMSE/mean ratios of flow predictions are low,

this proves that the proposed method provides a practical tool to deal with real cases.

8.6 A comparison among several Bayesian network models

In this section we compare the Gaussian mixture (GM) model proposed by Sun et al.

(2006); Yu and Cho (2008), the normal Bayesian network (NBN) and the model proposed

in this chapter (GBGN).

Previously, we comment on some implementation problems we have faced in the imple-

mentation of the Gaussian mixture Bayesian network models and we indicate how them
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Figure 8.10: The Vermont-State example. Estimated generalized Beta cumulative distri-

bution functions and the corresponding empirical distribution functions for some selected

station-time pairs.

have been solved.

8.6.1 Implementation problems of the GM models

Any experienced programmer knows that implementing a given method in a computer

program usually faces many numerical problems that need to be solved. In the implemen-

tation of this models we have encountered the following problems:

1. Dealing with singular or almost singular covariance matrices. If the matrix is singu-

lar, it has no inverse, but if it is almost singular, its inverse cannot be calculated with

precision. To this end, it is very important to identify singular or almost singular

matrices. This can be done with the help of the condition number of the matrix and

its determinant. The problem is that the number of variables must be taken into

account, because the determinant depends on the matrix dimension and the variable

units being used.

The condition number of a function with respect to an argument measures the
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Figure 8.11: The Vermont-State example. Some representative examples of predicted (in

blue) and actual (in red) traffic flows together with their corresponding 0.95 confidence

bands (dashed lines).

asymptotically worst case of how much the image of the function can change in

proportion to small changes in its arguments. A problem with a low condition num-

ber is said to be well-conditioned, while a problem with a high condition number is

said to be ill-conditioned.

The condition number of a matrix is defined as the product of the norm of A and

the norm of its inverse, that is,

κ(A) = ||A||||A||−1. (8.17)

When using the determinant it must be taken into account the scale of the variables

involved, because a change in each element by a factor k implies a change in the

determinant by a factor kn, where n is the dimension of the matrix.

2. Identifying rows in the covariance matrix that are linear combinations or almost

linear combinations of other rows. To this end, it is convenient to sort the variables
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Prediction time

Station name 8 10 12 14 16 18 20 22 24

P6A018 0.00 0.47 0.81 0.09 0.69 0.29 1.86 2.34 1.34

P6A019 0.00 4.57 3.38 3.86 4.75 5.58 13.83 9.12 8.54

P6A111 0.00 2.06 0.27 1.83 0.44 0.30 0.47 1.80 0.05

P6B026 0.00 1.24 1.35 1.77 1.37 1.08 3.43 3.87 0.07

P6B379 0.00 0.74 1.90 1.20 0.56 0.25 1.17 2.38 0.11

P6C002 0.00 1.26 0.22 3.34 1.25 0.66 2.47 4.16 0.05

P6C007 0.00 2.41 1.29 1.95 2.30 2.05 4.98 3.92 8.07

P6C015 0.00 1.96 2.66 2.13 0.86 0.95 1.11 0.44 0.03

P6C043 0.00 3.20 3.11 3.48 3.79 2.22 4.92 7.11 7.24

P6D001 0.00 0.73 0.67 0.62 0.00 0.19 0.58 0.46 0.12

P6D040 0.00 0.56 1.26 0.97 0.93 0.30 1.84 1.26 0.08

P6D059 0.00 0.05 2.85 1.24 2.70 0.22 1.19 5.15 0.07

P6D091 0.00 1.27 1.10 0.16 1.40 1.32 1.46 0.57 0.01

P6D099 0.00 0.32 0.34 0.34 0.46 0.50 0.59 0.68 0.01

P6D530 0.00 0.18 0.75 0.87 0.81 0.48 1.85 0.99 0.03

P6D531 0.00 3.66 3.48 3.74 1.86 2.09 3.87 6.16 5.20

P6E131 0.00 2.12 1.40 1.94 1.67 2.28 4.60 2.43 0.04

P6F029 0.00 1.84 3.68 1.86 1.09 2.39 3.88 5.87 3.01

P6F096 0.00 1.49 1.09 0.85 1.13 0.92 0.79 2.14 0.03

P6G005 0.00 0.84 1.20 1.11 0.58 1.40 3.65 3.53 0.02

P6G025 0.00 3.17 2.31 2.31 0.31 0.78 2.47 0.92 0.04

P6L047 0.00 0.02 2.60 0.90 2.14 0.55 0.14 5.06 0.67

P6L057 0.00 7.77 4.38 1.73 3.92 4.25 10.30 3.86 0.07

P6N002 0.00 0.43 0.08 0.84 1.60 2.32 1.92 1.97 1.62

P6N151 0.00 0.49 1.80 1.65 1.27 0.82 1.25 2.03 0.02

P6P004 0.00 3.84 3.71 4.18 4.40 3.36 5.42 11.08 11.16

P6P215 0.00 0.35 0.40 0.64 0.09 1.58 0.60 0.43 0.35

P6R005 0.00 1.69 1.18 0.78 0.69 1.44 2.73 2.40 0.03

P6R022 0.00 0.48 0.84 1.28 0.79 0.73 1.06 1.18 0.04

P6R084 0.00 0.34 0.32 0.70 0.47 1.16 1.01 0.66 0.03

P6R100 0.00 1.70 3.08 2.23 2.40 2.81 6.63 6.10 6.04

P6W004 0.00 1.55 1.97 2.64 1.82 1.22 3.44 4.04 3.96

P6W024 0.00 2.12 1.22 1.47 1.23 1.88 3.25 5.18 3.71

P6W055 0.00 4.39 4.60 6.00 3.42 1.68 4.50 6.11 1.21

P6W089 0.00 1.18 0.99 1.37 1.07 1.00 0.74 1.34 0.02

P6X008 0.00 1.36 1.17 1.71 0.59 0.79 1.29 2.91 0.04

P6X027 0.00 3.16 4.94 3.24 3.11 2.70 3.86 5.82 0.04

P6X064 0.00 2.32 1.83 2.27 2.60 2.29 2.89 4.63 0.06

P6X068 0.00 3.10 3.09 2.21 2.86 3.27 7.12 8.97 0.10

P6X071 0.00 3.53 3.87 3.65 3.36 3.03 4.31 5.85 5.28

P6X072 0.00 0.57 0.57 0.56 0.22 0.54 0.83 0.83 0.02

P6X074 0.00 1.56 1.75 1.35 1.14 1.13 2.90 1.89 1.78

P6Y002 0.00 0.87 0.39 0.46 0.89 0.55 0.25 1.28 0.43

P6Y031 0.00 1.12 1.32 2.18 1.19 1.05 1.60 3.25 0.05

P6Y033 0.00 0.42 0.86 1.63 1.04 0.35 0.32 1.07 0.02

P6Y476 0.00 3.57 1.70 4.68 4.71 1.80 2.45 3.56 0.16

Table 8.4: The Vermont example. Percent of RMSE of flow predictions for different

stations at different times done at time 8:00.
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by its importance (for example, its coefficient of correlation with the variable to be

predicted) in decreasing order and maintain the variables (rows) occupying the first

places. It is also important to eliminate the same columns as rows in order to get

the covariance matrix of the most important variables.

3. The evaluation of the multi-normal density f(x;µaX ,ΣaXX) in (5.17) for large num-

ber of variables. There are three main problems here: (a) to evaluate the exponential

of a very large number in formula (5.17), (b) to evaluate with a certain precision

the determinant |Σa|, and (c) to calculate the square root of the determinant of the

covariance matrix, that due to precision problems can be null or negative (small).

In all cases it is convenient to use normalized variables (with mean zero and variance

one), which must be later transformed to their original values.

8.6.2 Comparison

To compare, we have used 30 stations of the Vermont state data set that have no missing

data in 131 common days and we have fitted the above three models in order to make

predictions at 8:00 of the traffic flows for each following hour in the day. In Figure 8.13 we

show the percent relative RMSE of the predictions corresponding to each of these models

for Station P6L057. We note that the results for the remaining stations are similar.

The three lines in the upper graph in Figure 8.13 compare the percent relative RMSE

of the flow predictions made at 08:00 for all hours in the range 09:00–24:00 for the GM

model with 3 normal components and 20 evidential variables4, and the NBN and the

GBGN using 120 evidential variables. These variables have been selected as those with

the largest correlation with the variable being predicted, no matter whether they are

colinear or not. The corresponding cpu times are shown in the legend of the graphs and

correspond to the cpu required to predict at 08:00 hours the flow of the 131 days for all

hours in the indicated range. It is interesting to compare the high cpu time (2852 seconds)

required by the GM model when compared with the other two methods NBN and GBGN

(546 and 560 seconds, respectively), even though the number of evidencial variables used

is much higher (120 instead of 20 variables). A comparison between the NBN and the

GBGN models indicates that they are practically equivalent in terms of RMSE and that

for some times the NBN is better than the GBGN, but for other times the GBGN produces

the best results. An investigation of the causes for these differences led to the conclusion

that they are due to the fact that data sets are symmetric in some cases but are not in

other cases. For the sake of illustration, we show in Figure 8.12 the pdf of the observed

flow in the P6L057 station for times 13:00 and 16:00, which are practically symmetric,

and for times 19:00 and 22:00, which are not. These four times have been indicated in

the upper graph of Figure 8.13 by the corresponding ellipses. According to the results in

4Here the evidential variables are selected station-time pairs.
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Figure 8.12: A comparison of the pdf densities of the flows at different times for station

P6L057. Note that the two upper curves are more symmetric than the lower two curves.

this figure, it appears that the NBN behaves better than the GBGN in the presence of

symmetric data, while the GBGN is the best for asymmetric data. This explains partially

why in the upper graph in Figure 8.13 the NBN model gives lower percent RMSE than

the GBGN model for times 13:00 and 16:00, and why the GBGN gives smaller percent

RMSE for times 19:00 and 22:00.

The intermediate graph in Figure 8.13 analyzes how the GBGN model improves when

the number of evidential variables increases. A comparison of the cases of 20, 60 and

120 evidential variables shows that increasing the number of them leads a very important

improvement in terms of RMSE and without no substantial penalization in terms of cpu

time.

The lowest graph in Figure 8.13 shows the effect of the number of normal components

used in the GM model on the RMSE. After a comparison of this graph with the interme-

diate one, it is clear that an increase in the number of components is much more costly in

terms of cpu than an increase in the number of evidential variables.

In summary, an analysis of the results indicates that:

1. In terms of RMSE, the three methods are satisfactory because they provide suffi-
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Figure 8.13: A comparison of the flow percent relative RMSE for the Gaussian mixture

(GM) model, the normal Bayesian network and the GBGN models.

ciently small values. However, the convenience of each one depends on the data: if

the data are unimodal and symmetric, the NBN model provides good results; if the

data are unimodal asymmetric, the GBGN model is the most appropriate; finally, for
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multimodal data, the GM model is the best, because it has more degrees of freedom

and so, it has more possibilities to fit any type of data.

2. In terms of computation cost, the NBN and GBGN models are equivalent. However,

the GM model demands much more time, because its EM learning algorithm is more

complicated and involves iterations. Thus, we recommend the GM model only when

very small errors are required. In this case, the other two models cannot compite.

3. As expected, an increase in the number of components in the GM model or an in-

crease in the number of evidential variables, in any model, implies an improvement of

the predictions, but this increment is limited by the proper variance of the stochastic

traffic process.

4. The implementations of the NBN and GBGN models are much simpler than the

implementation of the GM model. Its main difficulties include learning the normal

components and weights, some numerical problems that need to be handled in the

presence of a high number of evidential variables and colinearities among them.

8.7 Conclusions

The main conclusions drawn from this chapter are:

1. The generalized Beta variables reproduce sufficiently well the marginal densities of

the link travel times at different day times (see Figures 8.3 and 8.10). The parameters

used to fit different times and links (stations) are independent.

2. The generalized Beta variables reproduce the traffic parameters at any link (station)

and time independently of its congestion level (see Figures 8.3 and 8.10).

3. The Beta-Gaussian Bayesian network supplies very good predictions, as shown by

the resulting RMSE values in the examples.

4. The model complexity does not depend on the network size, because only the traffic

in adjacent links (stations) is relevant to predictions. Consequently, the model can

be applied to very large networks and to subnetworks, too.

5. Missing link (station) data does not have a great influence on predictions, because

the missing information is contained in other links (stations).

6. Since the required cpu times to make predictions are small, the method can be

applied to large networks.

7. A comparison of the proposed GBGN model with other existing Bayesian network

models reveals its nice performance. As the NBN model it has a low computational
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cost and small RMSE when a large number of evidential variables is used. It is clearly

superior to the NBN model when the data have asymmetries. However, when a great

precision is needed, the GM model with a high number of components must be used,

but then the associated computational cost is prohibitive.
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9.1 Conclusions

In order to organize better this section we divide the conclusions in three parts, which

correspond to Chapters 6, 7 and 8.

9.1.1 Conclusions with respect to Bayesian methods

1. We have proposed a Bayesian model that assumes the route flows to belong to the

shifted-gamma family F ≡ H(α, θ, λ) ≡ {α + Γ(θ, λ);α ≥ 0, θ > 0, λ > 0}, where
the λ parameter is the same for all routes. This is a family that has convenient

properties, such as: (a) the variables are positive, (b), it is reproductive and (c)

it has positive skewness. In addition, the mean E[X] = α + θ/λ and the variance

V ar[X] = θ/λ2 are independent parameters. So, the model has more degrees of

freedom than other models, as the Poisson, for example, which mean and variance

are dependent. In addition it shares all these nice properties, with the exception of

the positive skewness, with normal models.

219
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2. As a consequence of the assumed model F ≡ H(α, θ, λ) ≡ {α+Γ(θ, λ);α ≥ 0, θ > 0}
for routes, all random flows can be modeled by the same family, no matter whether

they are route, OD-pair, link, node or scanned flows.

3. To facilitate the use of the model we have assumed conjugate distributions, that

is, the prior and posterior families are coincident. This facilitates the updating of

parameters when new information becomes available because very simple and closed

formulas for this updating are given.

4. The difficulties in calculating the posterior means is avoided by considering posterior

modes instead, which can be easily calculated by standard optimization procedures.

5. An strictly rigorous application of Bayesian methods requires complete samples from

route, OD-pair, link or node flows, depending on the flow being estimated. Thus,

in the case of route or OD-pair flow estimation, the scanned link technique needs

to be applied, because other alternatives such as standard counting does not supply

sufficient information to obtain the corresponding route or OD-pair flow samples.

These procedures have been shown to lead to extremely good estimates of all traffic

flows due to the large amount of information associated with plate scanning.

6. Though from a theoretical point of view, the proposed Bayesian method is valid only

for uniquely determined route, OD and link flows samples, application to other flows

seems to give good results for point estimates, as the Nguyen-Dupuis and Cuenca

examples have shown.

7. In spite of all this, link count data can be sufficient to estimate (uniquely) OD and

route flows given repeated sampling. However, these methods require some strong

assumptions on the traffic generation process. Without these assumptions, link count

information is insufficient to identify origin, destinations or routes. On the contrary,

plate scanning makes this estimation possible.

8. Finally, the very low execution times required for the practical examples in this thesis

seem to indicate that this method could be very useful even for large networks.

9.1.2 Conclusions with respect to the loading dynamic network model

1. Although existing dynamic traffic models based on the hydraulic analogy explain

important features of traffic flow, they become prohibitive for intermediate or large

networks. Thus, alternative models become necessary to make them useful in engi-

neering practice.

2. As an alternative, we have proposed a continuous method that implies a reason-

able computation time and on the other hand, seems to reproduce the real traffic
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in a sufficiently close way. We assume path origin flow functions that are linear

combinations of a basic set of time functions. In particular, we can assume linear

combinations of normal densities to reproduce the time varying path flows as a rea-

sonable simplification close to the real flows. We note that the combination of these

functions leads to complex flow intensity evolution curves with a trend similar to

those observed in reality.

3. The path traffic waves propagate through the network by stretching and enlarging

according to the degree of congestion of the corresponding links and joining with

other path waves at the network nodes. Both the stretching-enlarging and the merg-

ing processes are forced to satisfy the FIFO rule within and among different path

flows.

4. The link exit-entry time functions τ−1
a (t) are approximated by monotone cubic Her-

mite splines and the quality of the approximations can be improved as much as

desired by increasing the set of basic points. The model assumes that the link travel

time is a non-linear function of the actual and the immediate downstream path link

volumes, but some corrections (queue considerations) are made in order to satisfy

the FIFO rule at the basic set. Further the use of monotone cubic splines preserving

monotonicity, guarantees that the FIFO rule is satisfied at all points.

5. The treatment of traffic congestion can be easily done by means of an iterative

process: first, traffic congestion based on the actual link travel time functions is

evaluated, and later, the link travel time functions based on congestion are updated.

The process can be started by assuming no congestion in the first iteration, and

correcting this in successive iterations. The convergence properties of the process

are good. We have obtained convergence in 3 or 4 iterations and no more than 15

iterations when high congestion is present.

6. Since the path flow intensities are used as the basic time functions, and the link and

node flow intensities are obtained from them, based on the network topology, the

conservation and propagation laws are satisfied over all the network.

9.1.3 Conclusions with respect to stochastic demand dynamic models

1. A generalized-beta Bayesian network has been proposed to reproduce the stochastic

dynamic traffic behavior in which the nodes represent traffic variables (link travel

time, traffic flow, etc.) at given location-time pairs.

2. The marginals are assumed generalized Beta variables that seem to provide enough

freedom to reproduce the densities of the traffic variables at different location-time

pairs. This model has been tested with real and simulated data.
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3. The model seems to be adequate to reproduce the traffic parameters, no matter if it

corresponds to a congested or uncongested period. In addition, the proposed model

appears to give very reasonable predictions, as is shown by the resulting values of

the RMSE of the examples provided in this thesis.

4. An interesting property of this model is that the complexity of predicting the near

future traffic conditions in a link (station) does not depend on the network size,

because only the traffic in adjacent links (stations) are relevant to such a prediction.

This has very important practical implications because the proposed model can be

applied to very large networks.

5. The proposed Bayesian network model is applicable to any sub-network. To this end,

we need to identify which are the relevant links for the given sub-network and then

observe those links to learn the parameters of the corresponding Bayesian network.

6. The Bayesian network approach presented shows a very good behavior with respect

to missing data, as long as the number of affected links is small. The high corre-

lations of the link data due to common paths seems to be the main reason for this

behavior. In other words, missing node information can be easily replaced by other

link information.

7. The observed cpu times required to make link travel time predictions are very small,

which makes the proposed method applicable to real time prediction in very large

networks.

8. The proposed Generalized Beta-Gaussian Bayesian network model compares well

with other existing Bayesian network models. With the normal Bayesian network

(NBN) model shares its low computational cost and small RMSE when using a large

number of evidential variables. It is specially recommendable and superior to the

NBN model when asymmetries of the data are present. It is only outperformed by

the GM model with a high number of components, but in this case, the associated

computational cost is almost prohibitive.

9.2 Future work

There are many possibilities for future work. In particular, we can mention the following

lines:

1. With respect to the proposed Bayesian method based on the shifted-gamma model,

it would be interesting to test it based on real measurements and samples and com-

paring it with other alternative models.
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2. In the models described in this thesis we have paid a special attention to the FIFO

rule. However, in reality, different users circulate at different speeds and overtaken

is common, specially in uncongested networks. Thus, it would be interesting to

consider different classes of users circulating to different mean speeds.

3. Though the use of monotonic splines in the proposed FIFO consistent model guaran-

tees satisfaction of the FIFO rule, it would be convenient to derive the mathematical

and statistical properties of the proposed procedure.

4. Future research is needed to reproduce the link congestion and calibrate the model.

5. Finally, we end indicating that the computer programs have been implemented in

MatLab without a sufficient optimization effort to reduce the cpu time. Thus, the

reported times can be substantially reduced if this optimization and specially other

computer languages, such as C, are used. Another alternative consists of using

parallel computing, which can be easily implemented.

9.3 Publications from this thesis
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P. (2011). FIFO rule consistent model for the continuous dynamic network load-

ing problem. IEEE Transactions on Intelligent Transportation Systems, In press

(DOI:10.1109/TITS.2011.2169668).

• Castillo, E., Menéndez, J. M., Nogal, M., Sánchez-Cambronero, S., and Jiménez, P.

(2011). Stochastic demand dynamic traffic models using generalized Beta-Gaussian

Bayesian networks. IEEE Transactions on Intelligent Transportation Systems, In
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10.1 Code for the Bayesian estimation model

This section deals with the Gams implementation of the Bayesian estimation based on

plate scanning model which has been exposed in chapter 6.

$Title GammaPlateScanning

227
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file out/GammaPlateScanning.out/;

file out1/GammaPlateScanning1.out/;

file out2/GammaPlateScanningMathematica.out/;

file out3/GammaPlateScanningTablas.out/;

file out4/GammaPlateScanning2.out/;

put out;

OPTION nlp=CONOPT;

$onempty

$offlisting

$offupper

$offsymlist

$offsymxref

$offuellist

$offuelxref

Option limrow=0, limcol=0, solprint=off, sysout=off

SETS

LINK /1*38/

OD /1*18/

I set of nodes /1*13/

NODES(I) set of nodes

END link edges /1*2/

J maximum number of links in a path /1*6/

K maximum number of paths per origin-destination pair /1*6/

NNN sample size /1*20/

MMM prior sample size /1*10/

itersue maximum number of iterations for SUE /1*800/

NSC scanned links/1*18/

NSCA scanned links +1/1*19/

SNSC(NSC) subset of scanned links

OBSLINKS(LINK) subset of observed links

KK terms of gamma function/1*6/

CC feasible values of r/1*51/

simulation number of simulations/1*2/

cases /a,b/

validcases(cases) /a,b/

;

ALIAS(I,I1);

ALIAS(LINK,LINK1);

ALIAS(OD,OD1,OD2);

ALIAS(K,K1,K2);

ALIAS(CC,CC1)

PARAMETER

ORIGIN(OD) origin of OD
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DESTINATION(OD) destination of OD

OBSERVEDLINK(LINK)

thetasim(OD,K)

eta(OD,K) prior hyperparameter

rho(OD,K) prior hyperparameter

etapost(OD,K) posterior hyperparameter

posteriorrho(OD,K) posterior hyperparameter

BITSP(CC,NSC)

Val(OD,NSCA,cases,simulation)

mean(OD,cases) mean value of OD flows

RMSE(OD,cases) mean squared error of OD flows

COEFF(KK) Gamma funcion parameters

/1 76.18009172947146

2 -86.50532032941677

3 24.01409824083091

4 -1.231739572450155

5 0.001208650973866179

6 -0.000005395239384953/

VVOBSERVED(NSCA,CC)

VV(CC)

VVOBSERVEDSIM(NSCA,CC,simulation)

MEANCC(CC)

RMSECC(NSCA)

TOBS0(OD,K,NSCA,simulation)

TOBS(OD,K,NSCA,simulation)

TOBS1(OD,K,NSCA,simulation)

RMSET(OD,K,NSCA)

RMSET0(OD,K,NSCA)

RMSET1(OD,K,NSCA)

PREC1(OD,K,OD1,K1) precision matrix

NP(CC)

N(OD)

U1(I) abscisa of node I

/1 0

2 5

3 5

4 1

5 2

6 3

7 4

8 5

9 3

10 3

11 4

12 1

13 4/

V1(I) ordinate of node I

/1 4

2 2



230 Chapter 10. Programs codes

3 0

4 0

5 2

6 4

7 4

8 6

9 0

10 2

11 2

12 6

13 0/

TMEAN(OD,K) simulated path flows with uniform random variable

VMEAN(LINK) simulated link flow with uniform random variable

T00SIMUL(OD,cases,simulation)

TTRUE(OD,K,NNN) route flows

TTRUEME3(OD,K,NNN) route flows

TTPRIOR(OD,K,MMM)

TPRIOR(OD,K) OD flows used in ME3 and ME4 models

VPRIOR(LINK)

VTRUE(LINK) true link flows

VVLINKS(LINK,NSCA,cases)

VOBSERVED(CC)

VOBSERVED1(CC)

VOBSERVED2(CC)

RVAL(CC)

R(OD,K)

BIT(NSC)

BIT0(OD,K,NSC)

SCANNED(NSC)

T0(OD)

;

SCALAR

PrintOption /0/

lambda0 /0.4/

kkk/0.3/

epsilon1/0.000000000001/

vvv

cont

ppp

xx

mm

vm

thetapar0

mean0

std

nOD

add
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theta logit parameter/0.5/

errorsue /1/

tolsue /0.001/

rhosue relaxation factor for SUE/0.97/

iterationsue

MAXCC maximum number of combinations of observed links

nscanned number of scanned links

nscmin minimum number of scanned links /0/

nscmax maximum number of scanned links

aux

indic

nlinks

aaa/1/

;

TABLE

LINKEND(LINK,END)

1 2

1 1 5

2 1 12

3 2 8

4 2 11

5 3 11

6 3 13

7 4 5

8 4 9

9 5 1

10 5 4

11 5 6

12 5 9

13 6 5

14 6 7

15 6 10

16 6 12

17 7 6

18 7 8

19 7 11

20 8 2

21 8 7

22 8 12

23 9 4

24 9 5

25 9 10

26 9 13

27 10 6

28 10 9

29 10 11

30 11 2

31 11 3
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32 11 7

33 11 10

34 12 1

35 12 6

36 12 8

37 13 3

38 13 9

;

******************************************************************************************

* Nodes are obtained from links

******************************************************************************************

NODES(I)=no;

loop((LINK,END,I),if(LINKEND(LINK,END)=ord(I),NODES(I)=yes; ););

put "NODES"/;

loop(NODES(I),put I.tl:3:0;);put /;

******************************************************************************************

PARAMETERS

PATHFLOW(OD,K)

V0(LINK)

T00(OD)

T000(OD) OD flows

/

1 210.00

2 430.00

3 320.00

4 210.00

5 320.00

6 50.00

7 430.00

8 110.00

9 40.00

10 320.00

11 110.00

12 210.00

13 320.00

14 210.00

15 60.00

16 50.00

17 40.00

18 60.00

/

TTRUE00(OD)

Ca(LINK) free flow cost (BPR parameter)

/

1 7.000

2 9.000

3 9.000

4 9.000
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5 9.000

6 11.000

7 12.000

8 5.000

9 7.000

10 12.000

11 12.000

12 9.000

13 12.000

14 5.000

15 4.000

16 6.000

17 5.000

18 9.000

19 4.000

20 9.000

21 9.000

22 14.000

23 5.000

24 9.000

25 5.000

26 9.000

27 4.000

28 4.000

29 4.000

30 9.000

31 8.000

32 4.000

33 4.000

34 9.000

35 7.000

36 14.000

37 11.000

38 9.000

/

alpha(LINK) (BPR parameter)

/

1 1.000

2 1.000

3 1.000

4 1.000

5 1.000

6 1.000

7 1.000

8 1.000

9 1.000

10 1.000

11 1.000

12 1.000
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13 1.000

14 1.000

15 1.000

16 1.000

17 1.000

18 1.000

19 1.000

20 1.000

21 1.000

22 1.000

23 1.000

24 1.000

25 1.000

26 1.000

27 1.000

28 1.000

29 1.000

30 1.000

31 1.000

32 1.000

33 1.000

34 1.000

35 1.000

36 1.000

37 1.000

38 1.000

/

Qa(LINK) Link capacity (BPR parameter)

/

1 700.000

2 560.000

3 700.000

4 280.000

5 560.000

6 560.000

7 560.000

8 375.000

9 700.000

10 560.000

11 420.000

12 420.000

13 420.000

14 700.000

15 280.000

16 140.000

17 700.000

18 700.000

19 700.000

20 700.000
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21 700.000

22 560.000

23 375.000

24 420.000

25 280.000

26 280.000

27 280.000

28 280.000

29 700.000

30 280.000

31 560.000

32 700.000

33 700.000

34 560.000

35 140.000

36 560.000

37 560.000

38 280.000

/

gamma(LINK) (BPR parameter)

/

1 4.000

2 4.000

3 4.000

4 4.000

5 4.000

6 4.000

7 4.000

8 4.000

9 4.000

10 4.000

11 4.000

12 4.000

13 4.000

14 4.000

15 4.000

16 4.000

17 4.000

18 4.000

19 4.000

20 4.000

21 4.000

22 4.000

23 4.000

24 4.000

25 4.000

26 4.000

27 4.000

28 4.000
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29 4.000

30 4.000

31 4.000

32 4.000

33 4.000

34 4.000

35 4.000

36 4.000

37 4.000

38 4.000

/;

TABLE

PATHLINKS(OD,K,J) routes defined by links

1 2 3 4 5 6

1.1 1 11 14 18 20 0

1.2 2 35 14 18 20 0

1.3 2 36 20 0 0 0

2.1 1 11 14 19 31 0

2.2 1 11 15 29 31 0

2.3 1 12 25 29 31 0

2.4 1 12 26 37 0 0

2.5 2 35 14 19 31 0

2.6 2 35 15 29 31 0

3.1 1 11 14 18 0 0

3.2 2 35 14 18 0 0

3.3 2 36 0 0 0 0

4.1 3 21 17 13 9 0

4.2 3 21 17 16 34 0

4.3 3 22 34 0 0 0

5.1 3 21 17 13 10 0

5.2 3 21 19 33 28 23

5.3 4 33 28 23 0 0

6.1 3 21 17 16 0 0

6.2 3 22 0 0 0 0

7.1 5 32 17 13 9 0

7.2 5 32 17 16 34 0

7.3 5 33 27 13 9 0

7.4 5 33 27 16 34 0

7.5 5 33 28 24 9 0

7.6 6 38 24 9 0 0

8.1 5 33 28 23 0 0

8.2 6 38 23 0 0 0

9.1 5 32 17 16 0 0

9.2 5 33 27 16 0 0

10.1 7 11 14 18 20 0

10.2 8 25 29 30 0 0

10.3 8 25 29 32 18 20

11.1 8 25 29 31 0 0
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11.2 8 26 37 0 0 0

12.1 7 11 14 18 0 0

12.2 8 25 29 32 18 0

13.1 21 17 13 9 0 0

13.2 21 17 16 34 0 0

13.3 22 34 0 0 0 0

14.1 21 17 13 10 0 0

14.2 21 19 33 28 23 0

15.1 21 17 16 0 0 0

15.2 22 0 0 0 0 0

16.1 35 14 18 20 0 0

16.2 36 20 0 0 0 0

17.1 35 14 19 31 0 0

17.2 35 15 29 31 0 0

18.1 35 14 18 0 0 0

18.2 36 0 0 0 0 0

;

put "PATHLINKS"/;

loop((OD,K)$(PATHLINKS(OD,K,’1’)<>0), loop(J,if(PATHLINKS(OD,K,J)<>0,

put PATHLINKS(OD,K,J):3:0;););put /;);

T00(OD)=T000(OD);

put "Origin destinations flows"/;

loop(OD,put T00(OD):6:0);put /;

PARAMETER

PATHFLOW(OD,K)

Kdelta(I,I) Kronecker’s delta

DELTA(LINK,K,OD) link-route incidence matrix

PPRIOR(OD,K) prior route choice probability

P1(OD,K) route choice probability

P(OD,K)

D(OD,K,OD1,K1,LINK) one if LINK discriminates route OD-K fromn route OD1-K1 (used in model

SCANN)

;

******************************************************************************************

* Kronecker’s delta is defined

******************************************************************************************

kdelta(I,I1)=0;

kdelta(I,I1)$(ord(I)=ord(I1))=1;

******************************************************************************************

* CALCULATING DELTA MATRIX

******************************************************************************************

DELTA(LINK,K,OD)$(PATHLINKS(OD,K,’1’)<>0)=SUM(J$(ord(LINK)=PATHLINKS(OD,K,J)),1);

******************************************************************************************



238 Chapter 10. Programs codes

put "links: ";

loop(LINK,put LINK.tl:4:0;);put /;

put "delta"/;

loop((OD,K)$(PATHLINKS(OD,K,’1’)<>0),loop(LINK,put DELTA(LINK,K,OD):2:0); put /; );

******************************************************************************************

******************************************************************************************

* origins and destinations of OD are obtained

******************************************************************************************

DESTINATION(OD)=0;

loop(OD,loop(K$(PATHLINKS(OD,K,’1’)<>0),if(ord(K)=1,ORIGIN(OD)=PATHLINKS(OD,K,’1’););

loop(J,if(DESTINATION(OD)+PATHLINKS(OD,K,J)=0,DESTINATION(OD)=PATHLINKS(OD,K,J-1));

); ); );

put "ORIGINS and DESTINATIONS"/;

loop(OD,put OD.tl:3:0, ORIGIN(OD):4:0,DESTINATION(OD):4:0/;);

ORIGIN(OD)=SUM(LINK1$(ord(LINK1)=ORIGIN(OD)),LINKEND(LINK1,’1’));

DESTINATION(OD)=SUM(LINK1$(ord(LINK1)=DESTINATION(OD)),LINKEND(LINK1,’2’));

******************************************************************************************

* origins and destinations of routes are checked

******************************************************************************************

put "CHECKING PATHS"/;

loop(OD,loop(K$(PATHLINKS(OD,K,’1’)<>0),

if(SUM(LINK$(PATHLINKS(OD,K,’1’)=ord(LINK)),LINKEND(LINK,’1’))<>ORIGIN(OD),put "ERRONEOUS

ORIGIN IN PATH ",ord(K):4:0," OF OD ",ord(OD):4:0/;);

aux=0;

loop(J$(aux=0 and ord(J)>1), if(PATHLINKS(OD,K,J)=0,aux=1;

if(SUM(LINK$(PATHLINKS(OD,K,J-1)=ord(LINK)),LINKEND(LINK,’2’))<>DESTINATION(OD),

put "ERRONEOUS DESTINATION IN PATH ",ord(K):4:0," OF OD ",ord(OD):4:0/;);

else

if(SUM(LINK$(PATHLINKS(OD,K,J)=ord(LINK)),LINKEND(LINK,’1’))<>SUM(LINK$(PATHLINKS(OD,K,J-1)

=ord(LINK)),LINKEND(LINK,’2’)),put "ERRONEOUS LINK ",PATHLINKS(OD,K,J):4:0,

" IN PATH ",ord(K):4:0," OF OD ",ord(OD):4:0/;);

); ); ););

put /;

******************************************************************************************

BINARY VARIABLES

U(LINK);

VARIABLES

Z;

POSITIVE VARIABLES

V(LINK)

C(K,OD)

TKK(OD,K)

TB(OD,K)

ALPHAA(OD,K)
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lambda;

lambda.lo=0.001;

V.lo(LINK)=0.00000000001;

V.up(LINK)=5000;

EQUATIONS

z1def

z2def

z3def

VDEF

VDEF2

Cdef(K,OD)

CCC1

CCC2

zGBay

;

z1def..z=e=SUM(OD,T00(OD)*log(SUM(K$(PATHLINKS(OD,K,’1’)<>0),exp(-theta*C(K,OD)))))/theta+

SUM(LINK,V(LINK)*(Ca(LINK)*(1+ALPHA(LINK)*(V(LINK)/Qa(LINK))**GAMMA(LINK)))-

Ca(LINK)*(V(LINK)+ALPHA(LINK)*Qa(LINK)*(V(LINK)/Qa(LINK))**(GAMMA(LINK)+1)/

(GAMMA(LINK)+1)));

Cdef(K,OD)..C(K,OD)$(PATHLINKS(OD,K,’1’)<>0)=e=SUM(LINK,(Ca(LINK)*(1+ALPHA(LINK)*(V(LINK)/

Qa(LINK))**GAMMA(LINK)))*DELTA(LINK,K,OD));

MODEL SUE/z1def,Cdef/;

z2def..z=e=SUM(LINK,U(LINK));

CCC1(OD,K,OD1,K1)$(((ord(OD)<>ord(OD1)) or (ord(K)<>ord(K1))) and PATHLINKS(OD,K,’1’)<>0

and PATHLINKS(OD1,K1,’1’)<>0 and (SUM(LINK,DELTA(LINK,K,OD)*DELTA(LINK,K1,OD1))

>0))..SUM(LINK,U(LINK)*(DELTA(LINK,K,OD)+DELTA(LINK,K1,OD1))*(1-

DELTA(LINK,K,OD)*DELTA(LINK,K1,OD1)))=g=aaa;

CCC2(OD,K)$(PATHLINKS(OD,K,’1’)<>0)..SUM(LINK,U(LINK)*DELTA(LINK,K,OD))=g=1;

MODEL SCANN/z2def,CCC1,CCC2/;

z3def..z=e=SUM((OD,K)$(PATHLINKS(OD,K,’1’)<>0),sqr((TKK(OD,K)-TPRIOR(OD,K))/TPRIOR(OD,K)));

VDEF(CC)$(ord(CC)<=MAXCC)..VV(CC)-SUM((OD,K)$(PATHLINKS(OD,K,’1’)<>0 and RVAL(CC)=R(OD,K)),

TKK(OD,K))=e=0;

VDEF2(OBSLINKS(LINK))..OBSERVEDLINK(OBSLINKS)-SUM((OD,K)$(PATHLINKS(OD,K,’1’)<>0),

TKK(OD,K)*DELTA(LINK,K,OD))=e=0;

MODEL ME3/z3def,VDEF/;

MODEL ME4/z3def,VDEF2/;

zGBay..z=e=SUM((OD,K)$(PATHLINKS(OD,K,’1’)<>0),(TB(OD,K)-1)*(SUM(MMM,log(max(

TTPRIOR(OD,K,MMM),epsilon1)-ALPHAA(OD,K)))+SUM(NNN,log(max(TTRUEME3(OD,K,NNN),

epsilon1)-ALPHAA(OD,K))))-lambda*posteriorrho(OD,K)+etapost(OD,K)*(lambda*

ALPHAA(OD,K)+TB(OD,K)*log(lambda)-(-(TB(OD,K) + 5.5) + (TB(OD,K) + 0.5)*

log(TB(OD,K) + 5.5)+log(2.506628274631*(1.00000000019 + Sum(kk,Coeff(kk)/

(TB(OD,K) + ord(kk))))/max(TB(OD,K),epsilon1)))));

MODEL GammaBayes/zGBay/;
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******************************************************************************************

* THE SUBSET OF LINKS TO BE SCANNED IS DETERMINED

******************************************************************************************

* D matrix is generated ******************************************************************

D(OD,K,OD1,K1,LINK)$(PATHLINKS(OD,K,’1’)<>0 and PATHLINKS(OD1,K1,’1’)<>0)=0;

D(OD,K,OD1,K1,LINK)$(PATHLINKS(OD,K,’1’)<>0 and PATHLINKS(OD1,K1,’1’)<>0 and

DELTA(LINK,K,OD)<>DELTA(LINK,K1,OD1))=1;

******************************************************************************************

OPTION mip=BDMLP;

OPTION OPTCR=1.0E-10;

* Scann Model refers to Equation (6.1)

SOLVE SCANN USING mip MINIMIZING z;

if(SCANN.modelstat<>2 or SCANN.solvestat<>1, put "SCANN=",z.l:12:2," modelstat=",

SCANN.modelstat," solvestat=",SCANN.solvestat," resusd=",SCANN.resusd/; );

put "SUGGESTED LINKS TO BE SCANNED"/;

cont=0;

loop(LINK,if(U.l(LINK)=1,cont=cont+1;put cont:5:0," ",LINK.tl:3:0/;););

* Selected links are scanned *************************************************************

cont=0;

SCANNED(NSC)=0;

loop(LINK,if(U.l(LINK)=1,cont=cont+1;SCANNED(NSC)$(ord(NSC)=cont)= ord(LINK);););

******************************************************************************************

* OPTIMAL SET OF SCANNED LINKS TO COUNT DATA

SCANNED(NSC)=0;

SCANNED(’1’)=1;

SCANNED(’2’)=2;

SCANNED(’3’)=3;

SCANNED(’4’)=5;

SCANNED(’5’)=8;

SCANNED(’6’)=9;

SCANNED(’7’)=11;

SCANNED(’8’)=13;

SCANNED(’9’)=18;

SCANNED(’10’)=20;

SCANNED(’11’)=21;

SCANNED(’12’)=22;

SCANNED(’13’)=23;

SCANNED(’14’)=29;

SCANNED(’15’)=31;

SCANNED(’16’)=33;

SCANNED(’17’)=34;

SCANNED(’18’)=36;

loop(NSC,put SCANNED(NSC):3:0/;);
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******************************************************************************************

* SOLVES THE SUE PROBLEM BY TWO METHODS

******************************************************************************************

V.l(LINK)=100;

******************************************************************************************

* 1 - SOLVES THE SUE PROBLEM BY ITERATIONS

* looking for the solution to Equation (3.92)

******************************************************************************************

T00(OD)=T000(OD);

errorsue=1;

if(PrintOption=1,put "SOLVING BY ITERATIONS"/; );

iterationsue=0;

loop(itersue$(errorsue>tolsue),

iterationsue=iterationsue+1;

C.l(K,OD)$(PATHLINKS(OD,K,’1’)<>0)=SUM(LINK,(Ca(LINK)*(1+ALPHA(LINK)*(V.l(LINK)/Qa(LINK))

**GAMMA(LINK)))*DELTA(LINK,K,OD));

loop((OD,K)$(PATHLINKS(OD,K,’1’)<>0),if(SUM(K1$(PATHLINKS(OD,K1,’1’)<>0),exp(-C.l(K1,OD)*

theta))=0,

put "TEST ",OD.tl:4:0,K.tl:4:0,(SUM(K1$(PATHLINKS(OD,K1,’1’)<>0),exp(-C.l(K1,OD)*theta)-

C.l(K,OD))):12:8,C.l(K,OD):12:3/;); );

P(OD,K)$(PATHLINKS(OD,K,’1’)<>0)=exp(-C.l(K,OD)*theta)/SUM(K1$(PATHLINKS(OD,K1,’1’)<>0),

exp(-C.l(K1,OD)*theta));

V0(LINK)=SUM((OD,K)$(PATHLINKS(OD,K,’1’)<>0),P(OD,K)*T00(OD)*DELTA(LINK,K,OD));

errorsue=SUM(LINK,abs(V.l(LINK)-V0(LINK)));

V.l(LINK)=rhosue*V.l(LINK)+(1-rhosue)*V0(LINK);

);

put "errorsue=",errorsue:16:8, " iterationsue=",iterationsue:7:0/;

if(iterationsue>=card(itersue),put out2;put "errorsue=",errorsue:16:8," Iterations=",

card(itersue)/;); put out;

* Prints results *************************************************************************

if(PrintOption=1,

put "RESULTS AFTER SUE ITERATIONS"/;

loop(LINK,put LINK.tl:4:0,V.l(LINK):10:2,(SUM((OD,K)$(PATHLINKS(OD,K,’1’)<>0),P(OD,K)*

T00(OD)*DELTA(LINK,K,OD))):10:2/;);

put /;

put "P matrix"/;

loop(OD,loop(K$(PATHLINKS(OD,K,’1’)<>0), put P(OD,K):7:2;); put /;);

put "Costs"/;

loop(OD,loop(K$(PATHLINKS(OD,K,’1’)<>0), put C.l(K,OD):7:2;); put /;);

put /;

);

* Generates TMEAN VALUES *****************************************************************
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TMEAN(OD,K)$(PATHLINKS(OD,K,’1’)<>0)=T00(OD)*P(OD,K);

VMEAN(LINK)=V.l(LINK);

if(PrintOption=1,

put "TMEAN"/;

loop(OD,loop(K$(PATHLINKS(OD,K,’1’)<>0),put TMEAN(OD,K):12:4;);put /; );

put "VMEAN"/;

loop(LINK,put VMEAN(LINK):12:4;);

put /;

);

******************************************************************************************

* 2 - SIMULATES PRIOR values by SUE model

* using Equation (3.91)

******************************************************************************************

* We generate randomly the prior values OD matrix from the true OD flows where

* Each OD flows_i= OD flows * N(1.2, 0.1)

T00(OD)=T000(OD)*(1+normal(0.2,0.1));

* SUE Model refers to Equation (3.91)

SOLVE SUE USING nlp MINIMIZING z;

if(SUE.modelstat<>2 or SUE.solvestat<>1,put "Direct SUE 2 =",z.l:12:2," modelstat=",

SUE.modelstat," solvestat=",SUE.solvestat,SUE.modelstat," resusd=",SUE.resusd/;);

T0(OD)=SUM(K$(PATHLINKS(OD,K,’1’)<>0),exp(-C.l(K,OD)*theta));

P(OD,K)$(PATHLINKS(OD,K,’1’)<>0)=exp(-C.l(K,OD)*theta)/T0(OD);

TPRIOR(OD,K)$(PATHLINKS(OD,K,’1’)<>0)=T00(OD)*P(OD,K);

VPRIOR(LINK)=SUM((OD,K)$(PATHLINKS(OD,K,’1’)>0),DELTA(LINK,K,OD)*TPRIOR(OD,K));

put "SUE OPTIMIZACION: LINK V.l(LINK) VPRIOR(LINK)"/;

loop(LINK,put LINK.tl:4:0,V.l(LINK):7:2,VPRIOR(LINK):8:2/;);put /;

******************************************************************************************

* SOLVES SUE BY ITERATIONS

******************************************************************************************

errorsue=1;

if(PrintOption=1,put "SOLVING BY ITERATIONS"/; );

iterationsue=0;

loop(itersue$(errorsue>tolsue),

iterationsue=iterationsue+1;

C.l(K,OD)$(PATHLINKS(OD,K,’1’)<>0)=SUM(LINK,(Ca(LINK)*(1+ALPHA(LINK)*(V.l(LINK)/Qa(LINK))

**GAMMA(LINK)))*DELTA(LINK,K,OD));

loop((OD,K)$(PATHLINKS(OD,K,’1’)<>0),if(SUM(K1$(PATHLINKS(OD,K1,’1’)<>0),exp(-C.l(K1,OD)*

theta))=0,

put "TEST ",OD.tl:4:0,K.tl:4:0,(SUM(K1$(PATHLINKS(OD,K1,’1’)<>0),exp(-C.l(K1,OD)*theta)-

C.l(K,OD))):12:8,C.l(K,OD):12:3/;); );

P(OD,K)$(PATHLINKS(OD,K,’1’)<>0)=exp(-C.l(K,OD)*theta)/SUM(K1$(PATHLINKS(OD,K1,’1’)<>0),

exp(-C.l(K1,OD)*theta));
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V0(LINK)=SUM((OD,K)$(PATHLINKS(OD,K,’1’)<>0),P(OD,K)*T00(OD)*DELTA(LINK,K,OD));

errorsue=SUM(LINK,abs(V.l(LINK)-V0(LINK)));

V.l(LINK)=rhosue*V.l(LINK)+(1-rhosue)*V0(LINK);

);

put "errorsue=",errorsue:16:8, " iterationsue=",iterationsue:7:0/;

if(iterationsue>=card(itersue),put out2;put "errorsue=",errorsue:16:8," Iterations=",

card(itersue)/;); put out;

put "SUE ITERATIONS: LINK V.l(LINK) VPRIOR(LINK)"/;

loop(LINK,put LINK.tl:4:0,V.l(LINK):7:2,VPRIOR(LINK):8:2/;);put /;

T0(OD)=SUM(K$(PATHLINKS(OD,K,’1’)<>0),exp(-C.l(K,OD)*theta));

P(OD,K)$(PATHLINKS(OD,K,’1’)<>0)=exp(-C.l(K,OD)*theta)/T0(OD);

TPRIOR(OD,K)$(PATHLINKS(OD,K,’1’)<>0)=T00(OD)*P(OD,K);

VPRIOR(LINK)=SUM((OD,K)$(PATHLINKS(OD,K,’1’)>0),DELTA(LINK,K,OD)*TPRIOR(OD,K));

* Initialization of precision matrix *****************************************************

PREC1(OD,K,OD1,K1)$(PATHLINKS(OD,K,’1’)<>0 and PATHLINKS(OD1,K1,’1’)<>0)=0;

PREC1(OD,K,OD,K)$(PATHLINKS(OD,K,’1’)<>0)=1/sqr(TPRIOR(OD,K));

nscmax=card(NSC);

* Values initialization

RMSET0(OD,K,NSCA)$(PATHLINKS(OD,K,’1’)<>0)=0;

RMSET(OD,K,NSCA)$(PATHLINKS(OD,K,’1’)<>0)=0;

RMSET1(OD,K,NSCA)$(PATHLINKS(OD,K,’1’)<>0)=0;

******************************************************************************************

* Starts loop simulation

******************************************************************************************

loop(simulation,

put "Simulation=",simulation.tl:9:0/;

T00(OD)=T000(OD);

* The reference route flows are simulated from the real ones using a Gamma(TMEAN(OD,K),1)

******************************************************************************************

if(ORD(simulation)=1,

lambda0=1/(1+kkk);

put "lambda0=",lambda0:12.4," kkk=",kkk:12.4/;

loop((OD,K)$(PATHLINKS(OD,K,’1’)<>0),

thetapar0=lambda0*TPRIOR(OD,K);

thetasim(OD,K)$(PATHLINKS(OD,K,’1’)<>0)=thetapar0;

mean0=thetapar0/lambda0;

std=sqrt(thetapar0)/lambda0;

vm=(thetapar0+5*sqrt(thetapar0))/lambda0;

loop(MMM,

ppp=0;

while(uniform(0,1)>ppp,

xx=uniform(0,vm);
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ppp=exp((thetapar0-1)*log((lambda0*xx)/(thetapar0-1))-lambda0*xx-1+thetapar0);

if(ppp>1,put "ERROR ppp>1 ",ppp:12:5, " thetapar0=", thetapar0:12:5, " lambda0=",

lambda0:12:5, " xx= ",xx:12:5, " ppp= ", ppp:12:5/; put 1/(xx-xx)/;);

abort$(ppp>1) "ppp>1", ppp;

);

TTPRIOR(OD,K,MMM)=xx;

if(TTPRIOR(OD,K,MMM)<0,put "ERROR ppp>1 ",ppp:12:5, " thetapar0=", thetapar0:12:5,

" lambda0=", lambda0:12:5, " xx= ",xx:12:5, " ppp= ", ppp:12:5,

" TMEAN=",TMEAN(OD,K):12:5/;);

);

loop(MMM,if(TTPRIOR(OD,K,MMM)/TMEAN(OD,K)>3,put OD.tl:3:0,K.tl:3:0,MMM.tl:5:0,

TTPRIOR(OD,K,MMM):12:5, TMEAN(OD,K):12:5/;));

vvv=smax(MMM,TTPRIOR(OD,K,MMM)/TMEAN(OD,K));

abort$(vvv>10) "vvv>10 vvv=",vvv;

);

);

loop((OD,K)$(PATHLINKS(OD,K,’1’)<>0),

thetapar0=lambda0*TMEAN(OD,K);

thetasim(OD,K)$(PATHLINKS(OD,K,’1’)<>0)=thetapar0;

mean0=thetapar0/lambda0;

std=sqrt(thetapar0)/lambda0;

vm=(thetapar0+5*sqrt(thetapar0))/lambda0;

loop(NNN,

ppp=0;

while(uniform(0,1)>ppp,

xx=uniform(0,vm);

ppp=exp((thetapar0-1)*log((lambda0*xx)/(thetapar0-1))-lambda0*xx-1+thetapar0);

if(ppp>1,put "ERROR ppp>1 ",ppp:12:5, " thetapar0=", thetapar0:12:5,

" lambda0=", lambda0:12:5, " xx= ",xx:12:5, " ppp= ", ppp:12:5/;

put 1/(xx-xx)/;);

abort$(ppp>1) "ppp>1", ppp;

);

TTRUE(OD,K,NNN)=xx;

if(TTRUE(OD,K,NNN)<0,put "ERROR ppp>1 ",ppp:12:5, " thetapar0=", thetapar0:12:5,

" lambda0=", lambda0:12:5, " xx= ",xx:12:5, " ppp= ", ppp:12:5,

" TMEAN=",TMEAN(OD,K):12:5/;);

);

loop(NNN,if(TTRUE(OD,K,NNN)/TMEAN(OD,K)>3,put OD.tl:3:0,K.tl:3:0,NNN.tl:5:0,

TTRUE(OD,K,NNN):12:5, TMEAN(OD,K):12:5/;));

vvv=smax(NNN,TTRUE(OD,K,NNN)/TMEAN(OD,K));

abort$(vvv>10) "vvv>10 vvv=",vvv;

);

TTRUE00(OD)=SUM(K$(PATHLINKS(OD,K,’1’)>0),TTRUE(OD,K,’1’));

put out1;
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put " TMEAN TPRIOR TTRUE "/;

loop((OD,K)$(PATHLINKS(OD,K,’1’)>0),put TMEAN(OD,K):9:2,TPRIOR(OD,K):9:2,

TTRUE(OD,K,’1’):9:2/;);put /;

* LINK flows are stored ******************************************************************

VTRUE(LINK)=SUM((OD,K)$(PATHLINKS(OD,K,’1’)>0),DELTA(LINK,K,OD)*TTRUE(OD,K,’1’));

loop(LINK,OBSERVEDLINK(LINK)=VTRUE(LINK););

put out2;

put "TTRUE= {";

loop((OD,K)$(PATHLINKS(OD,K,’1’)<>0), put TTRUE(OD,K,’1’):7:1/;) ;put"};"/;

put "VTRUE={";

loop(LINK,if(ord(LINK)=1,put VTRUE(LINK):7:1; else put ",",VTRUE(LINK):7:1/;););

put "};"/;

put "TTRUE00={";

loop(OD,if(ord(OD)=1,put TTRUE00(OD):7:1; else put ",",TTRUE00(OD):7:1;);); put "};"/;

put out;

put out3;

put "\begin{table}"/;

put "\centering"/;

put "\begin{tabular}{|c|c|cccccc|}"/;

put "\hline"/;

put " OD & path & \multicolumn{6}{|c|}{Links}\\"/;

put "\hline"/;

loop((OD,K)$(PATHLINKS(OD,K,’1’)>0),put ord(OD):4:0," & ",ord(K):4:0;loop(J,

if(PATHLINKS(OD,K,J)>0,put " & ",PATHLINKS(OD,K,J):4:0;

else put " & ";););put " \\"/;);

put "\hline"/;

put "\end{tabular}"/;

put "\caption{\label{t400}Assumed paths.}"/;

put "\end{table}"//;

put out;

put out3;

put "\begin{table}"/;

put "\centering"/;

put "\begin{tabular}{|c|c|c|c|c|}"/;

put "\hline"/;

put " OD & Origin & Destination & True mean flow & Prior mean flow\\"/;

put "\hline"/;

loop(OD,put ord(OD):4:0," & ",ORIGIN(OD):4:0," & ",DESTINATION(OD):4:0," & ", T00(OD):7:2,

" & ",SUM(K$(PATHLINKS(OD,K,’1’)<>0),TPRIOR(OD,K)):7:2, " \\"/;);

put "\hline"/;

put "\end{tabular}"/;

put "\caption{\label{t400}OD pairs and corresponding flows used in the SUE model.}"/;
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put "\end{table}"//;

put out;

put out3;

put "\begin{table}"/;

put "\centering"/;

put "\begin{tabular}{|c|c|c|c|}"/;

put "\hline"/;

put "Link & Cost & True mean flow & Prior mean flow \\"/;

put "\hline"/;

loop(LINK,put LINKEND(LINK,’1’):2:0,"-",LINKEND(LINK,’2’):2:0;put " & ",(Ca(LINK)*

(1+ALPHA(LINK)*(VPRIOR(LINK)/Qa(LINK))**GAMMA(LINK))):7:2," & ",

put VMEAN(LINK):7:2," & ", VPRIOR(LINK):7:2"\\"/;);

put "\hline"/;

put "\end{tabular}"/;

put "\caption{\label{tall2}Links, link costs and link total flows resulting from the SUE

model.}"/;

put "\end{table}"//;

put out;

******************************************************************************************

* Starts loop cases *********************************************************************

loop(validcases(cases),

******************************************************************************************

* STARTS ESTIMATION OF OD FLOWS WITH DIFFERENT OBSERVATION LEVELS

******************************************************************************************

loop(NSCA$(ord(NSCA)>=nscmin+1 and ord(NSCA)<=nscmax+1),

nscanned=ord(NSCA)-1;

if(PrintOption=1,

put "nscanned=",nscanned:5:0/;

);

put out2;

put out;

SNSC(NSC)=no;

SNSC(NSC)$(ord(NSC)<=nscanned)=yes;

OBSLINKS(LINK)=no;

loop(SNSC,OBSLINKS(LINK)$(ord(LINK)=SCANNED(SNSC))=yes;);

******************************************************************************************

* CALCULATING RVAL(CC) and R(OD,K) VALUES

* Scanning tecnique

******************************************************************************************

RVAL(CC)=0;

MAXCC=0;

loop((OD,K)$(PATHLINKS(OD,K,’1’)<>0), BIT(SNSC)=0;loop((J,SNSC)$(PATHLINKS(OD,K,J)=

SCANNED(SNSC)), BIT(SNSC)=1;

);
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R(OD,K)=SUM(SNSC(NSC),BIT(SNSC)*power(2,ord(NSC)-1));

NP(CC)$(ord(CC)=MAXCC+1)=SUM(SNSC(NSC),BIT(SNSC));

BITSP(CC,SNSC)$(ord(CC)=MAXCC+1)=BIT(SNSC);

loop(SNSC,

);

add=1;

loop(CC$(ord(CC)<=MAXCC),if(RVAL(CC)=R(OD,K),add=0); );

if(add=1 and R(OD,K)<>0,MAXCC=MAXCC+1;RVAL(CC)$(ord(CC)=MAXCC)=R(OD,K););

BIT0(OD,K,NSC)=BIT(NSC);

);

loop(CC$(ord(CC)<=MAXCC),

);

loop(CC$(ord(CC)<=MAXCC),

);

put "nscanned=",nscanned:4:0," MAXCC=",MAXCC:6:0/;

******************************************************************************************

******************************************************************************************

* STORES OBSERVED SCANNED AND LINK VALUES

******************************************************************************************

VOBSERVED(CC)=0;

VOBSERVED(CC)$(ord(CC)<=MAXCC)=SUM((OD,K)$(PATHLINKS(OD,K,’1’)<>0 and RVAL(CC)=R(OD,K)),

TTRUE(OD,K,’1’));

VOBSERVED1(CC)=VOBSERVED(CC);

if(PrintOption=1,

put "VOBSERVED"/;

loop(CC$(ord(CC)<=MAXCC),

put CC.tl:9:0,RVAL(CC):10:0,VOBSERVED1 (CC):9:3/;

put "OBSERVED LINK FLOWS"/;

loop(OBSLINKS,

put OBSERVEDLINK(OBSLINKS):12:3;

);

PUT /;

******************************************************************************************

put "MAXCC=",MAXCC:8:0/;

);

);

loop(LINK,

);

VV(CC)$(ord(CC)<=MAXCC)=VOBSERVED(CC);



248 Chapter 10. Programs codes

if(PrintOption=1,

put "OBSLINKS"/;

loop(OBSLINKS, put OBSERVEDLINK(OBSLINKS):12:3/;);

put "VV(CC)"/;

loop(CC$(ord(CC)<=MAXCC),put VV(CC):12:3/;);

);

******************************************************************************************

if(ord(cases)=1,

******************************************************************************************

* PRIOR Hyperparameters are calculated

******************************************************************************************

eta(OD,K)$(PATHLINKS(OD,K,’1’)<>0)=card(MMM);

rho(OD,K)$(PATHLINKS(OD,K,’1’)<>0)=SUM(MMM,TTPRIOR(OD,K,MMM));

if(PrintOption=1,

put "PRIOR Hyperparameters"/;

loop((OD,K)$(PATHLINKS(OD,K,’1’)<>0),put eta(OD,K):12:4,rho(OD,K):12:4/;);

);

TKK.l(OD,K)$(PATHLINKS(OD,K,’1’)<>0)=TPRIOR(OD,K);

SOLVE ME3 USING nlp MINIMIZING z;

if(ME3.modelstat<>2 or ME3.solvestat<>1, put "ME3=",z.l:12:2," modelstat=",ME3.modelstat,

" solvestat=",ME3.solvestat," resusd=",ME3.resusd/; put out; );

TOBS0(OD,K,NSCA,simulation)=TKK.l(OD,K);

Val(OD,NSCA,cases,simulation)=SUM(K$(PATHLINKS(OD,K,’1’)<>0),TKK.l(OD,K));

if(PrintOption=1,

put "ROUTE flows after ME3 TKK TTRUE TPRIOR nscanned=",nscanned:5:0/;

loop((OD,K)$(PATHLINKS(OD,K,’1’)<>0),if(TKK.l(OD,K)<>0 or TTRUE(OD,K,’1’)<>0 or

TPRIOR(OD,K), put TKK.l(OD,K):12:3,TTRUE(OD,K,’1’):12:3,

TPRIOR(OD,K):12:3/;););

put /;

);

PATHFLOW(OD,K)=TKK.l(OD,K);

put out4;

put out;

loop(NNN,

VV(CC)$(ord(CC)<=MAXCC)=SUM((OD,K)$(PATHLINKS(OD,K,’1’)<>0 and RVAL(CC)=R(OD,K)),

TTRUE(OD,K,NNN));

TKK.l(OD,K)=TPRIOR(OD,K);

SOLVE ME3 USING nlp MINIMIZING z;

if(ME3.modelstat<>2 or ME3.solvestat<>1, put "ME3=",z.l:12:2," modelstat=",

ME3.modelstat," solvestat=",ME3.solvestat," resusd=",

ME3.resusd/; put out; );

TTRUEME3(OD,K,NNN)=TKK.l(OD,K);

put out4;

put out;
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);

******************************************************************************************

* POSTERIOR

******************************************************************************************

etapost(OD,K)$(PATHLINKS(OD,K,’1’)<>0)=eta(OD,K)+card(NNN);

posteriorrho(OD,K)$(PATHLINKS(OD,K,’1’)<>0)=rho(OD,K)+SUM(NNN,TTRUEME3(OD,K,NNN));

******************************************************************************************

put "GammaBayes"/;

lambda.l=1;

put out4;

put "RESULTS GammaBayes"/;

TB.l(OD,K)=thetasim(OD,K);

ALPHAA.up(OD,K)=min(smin(MMM,TTPRIOR(OD,K,MMM)),smin(NNN,TTRUEME3(OD,K,NNN)))-

epsilon1;

* GammaBayes Model refers to Equation(6.18)

SOLVE GammaBayes USING dnlp MAXIMIZING z;

if((GammaBayes.modelstat<>1 and GammaBayes.modelstat<>2)or GammaBayes.solvestat<>1,

put "GammaBayes z=",z.l:15:8," modelstat=",GammaBayes.modelstat,

" solvestat=", GammaBayes.solvestat" resusd=",

GammaBayes.resusd:12:8/;);

put out;

put "lambda.l=",lambda.l:12:4/;

TOBS(OD,K,NSCA,simulation)=ALPHAA.l(OD,K)+TB.l(OD,K)/lambda.l;

VOBSERVED(CC)=SUM((OD,K)$(PATHLINKS(OD,K,’1’)<>0 and RVAL(CC)=R(OD,K)),ALPHAA.l(OD,K)+

TB.l(OD,K)/lambda.l);

if(PrintOption=1,

loop((OD,K)$(PATHLINKS(OD,K,’1’)<>0),

put OD.tl:5:0,K.tl:3:0," e=",etapost(OD,K):8:3," TB=",TB.l(OD,K):9:3," VOBSERVED=",

(ALPHAA.l(OD,K)+TB.l(OD,K)/lambda.l):9:3,ALPHAA.l(OD,K):9:3/;

);

);

VOBSERVED2(CC)=VOBSERVED(CC);

put out2;

if(ord(NSCA)=nscmax+1,

);

put out;

if(PrintOption=1,

put "VOBSERVED AFTER GammaBayes"/;

loop(CC$(ord(CC)<=MAXCC),

put CC.tl:9:0,RVAL(CC):10:0,VOBSERVED(CC):9:3/;

);
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);

VVOBSERVED(NSCA,CC)$(ord(CC)<=MAXCC)=VOBSERVED(CC);

VVOBSERVEDSIM(NSCA,CC,simulation)$(ord(CC)<=MAXCC)=VOBSERVED(CC);

);

if(ord(cases)=2,

SOLVE ME4 USING nlp MINIMIZING z;

if(ME4.modelstat<>2 or ME4.solvestat<>1, put "ME4=",z.l:12:2," modelstat=",

ME4.modelstat," solvestat=",ME4.solvestat," resusd=",ME4.resusd/; );

TOBS1(OD,K,NSCA,simulation)=TKK.l(OD,K);

Val(OD,NSCA,cases,simulation)=SUM(K$(PATHLINKS(OD,K,’1’)<>0),TKK.l(OD,K));

);

V.lo(OBSLINKS)=0;

V.up(OBSLINKS)=5000;

if(PrintOption=1,

put "Origin destinations flows after ME3 or ME4 cases=", cases.tl:3:0, nscanned:7:0/;

put "TKK and TTRUE00(OD)"/;

loop(OD,

put SUM(K$(PATHLINKS(OD,K,’1’)<>0),TKK.l(OD,K)):8:2,TTRUE00(OD):8:2/;

);

put /;

put "Origin destinations target flows"/;

loop(OD,

put SUM(K$(PATHLINKS(OD,K,’1’)<>0),TPRIOR(OD,K)):8:2;

);

put /;

);

VVLINKS(LINK,NSCA,cases)$(ord(NSCA)=nscanned+1)=SUM((OD,K)$(PATHLINKS(OD,K,’1’)<>0),

TKK.l(OD,K)*DELTA(LINK,K,OD));

if(PrintOption=1,

put "CHECK Val TTRUE00 "/;

put "NSCA=",NSCA.tl:3:0," cases=",cases.tl:3:0," simulation=",simulation.tl:3:0/;

loop(OD,put Val(OD,NSCA,cases,simulation):9:3,TTRUE00(OD):9:3/);

);

******************************************************************************************

nscanned=nscanned+1;

);

T00SIMUL(OD,cases,simulation)=TTRUE00(OD);

);

* end loop cases *************************************************************************

RMSET0(OD,K,NSCA)$(PATHLINKS(OD,K,’1’)<>0)=RMSET0(OD,K,NSCA)+sqr(TOBS0(OD,K,NSCA,

simulation)-TTRUE(OD,K,’1’));
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RMSET(OD,K,NSCA)$(PATHLINKS(OD,K,’1’)<>0)=RMSET(OD,K,NSCA)+sqr(TOBS(OD,K,NSCA,simulation)-

TMEAN(OD,K));

RMSET1(OD,K,NSCA)$(PATHLINKS(OD,K,’1’)<>0)=RMSET1(OD,K,NSCA)+sqr(TOBS1(OD,K,NSCA,simulation

)-TTRUE(OD,K,’1’));

);

* end loop simulation ********************************************************************

RMSET0(OD,K,NSCA)$(PATHLINKS(OD,K,’1’)<>0)=sqrt(RMSET0(OD,K,NSCA)/card(simulation));

RMSET(OD,K,NSCA)$(PATHLINKS(OD,K,’1’)<>0)=sqrt(RMSET(OD,K,NSCA)/card(simulation));

RMSET1(OD,K,NSCA)$(PATHLINKS(OD,K,’1’)<>0)=sqrt(RMSET1(OD,K,NSCA)/card(simulation));

put out4;

put "max RMSE/MEAN=", smax((OD,K,NSCA)$(PATHLINKS(OD,K,’1’)<>0),sqrt(RMSET(OD,K,NSCA)/

card(simulation))/TMEAN(OD,K)):12:5/;

MEANCC(CC)$(ord(CC)<=MAXCC)=SUM((OD,K)$(PATHLINKS(OD,K,’1’)<>0 and RVAL(CC)=R(OD,K)),

TMEAN(OD,K));

RMSECC(NSCA)=sqrt(SUM(CC$(ord(CC)<=MAXCC),SUM(simulation,SQR(VVOBSERVEDSIM(NSCA,CC,

simulation)-MEANCC(CC))))/(card(simulation)*

sum(CC$(ord(CC)<=MAXCC),1)));

put "SIMULATIONS"/;

put out3;

put "\begin{table}"/;

put "\centering"/;

put "\renewcommand{\tabcolsep}{3pt}"/;

put "{\tiny"/;

put "\begin{tabular}{|c|"; loop(OD,put "c";);put "|}"/;

put "\hline"/;

put " $n$"; loop(OD,put "& $t_{",ORIGIN(OD):3:0,",",DESTINATION(OD):3:0,"}$"/;);put " \\"/;

put "\hline"/;

loop(NSCA,put (ord(NSCA)-1):3:0;

mean(OD,validcases(cases))=SUM(simulation,Val(OD,NSCA,cases,simulation))/card(simulation);

RMSE(OD,validcases(cases))=sqrt(SUM(simulation,SQR(Val(OD,NSCA,cases,simulation)-

T00SIMUL(OD,cases,simulation)))/card(simulation));

loop(validcases(cases),put "(",cases.tl:1:0,")";

loop(OD,if(abs(RMSE(OD,cases))>0.01,put "&", mean(OD,cases):6:1; else put "&{\bf ",

mean(OD,cases):6:1,"}";);); put"\\" /;

put loop(OD,if(abs(RMSE(OD,cases))<0.01,put "&{\bf ",RMSE(OD,cases):5:1,"}"; else put "&",

RMSE(OD,cases):5:1; ););put "\\"/;put "\hline"/;

);

);

put "\end{tabular}"/;

put "}"/;

put "\caption{\label{t501aa} Simulations.}"/;

put "\end{table}"//;

put out2;
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nOD=SUM(OD,1);

put "MATHEMATICA TABLE"/;

put "SIMULATIONS={"/;

loop(NSCA,put "{",(ord(NSCA)-1):3:0;

mean(OD,validcases(cases))=SUM(simulation,Val(OD,NSCA,cases,simulation))/card(simulation);

RMSE(OD,validcases(cases))=sqrt(SUM(simulation,SQR(Val(OD,NSCA,cases,simulation)-

T00SIMUL(OD,cases,simulation)))/card(simulation));

loop(validcases(cases),put ",{"; cont=0;

loop(OD,cont=cont+1;if (cont=nOD,put mean(OD,cases):7:2,"},{"; else put mean(OD,cases):7:2,

",";);); put /;

cont=0; loop(OD,cont=cont+1; if(cont=nOD,put RMSE(OD,cases):7:2,"}";

else put RMSE(OD,cases):7:2,",";);); put /;

);if(ord(NSCA)=card(NSCA),put "}}"/; else put "},"/;);

);

put "RMSECC={";

loop(NSCA, if(ord(NSCA)=1,put RMSECC(NSCA):10:4/; else put ",",RMSECC(NSCA):10:4/;););

put "};"/;

put out;

if(validcases(’a’),

put out3;

put "\begin{table}"/;

put "\centering"/;

put "\renewcommand{\tabcolsep}{3pt}"/;

put "{\scriptsize"/;

put "\begin{tabular}{|c|c|c|c|c|"; loop(SNSC(NSC),put "c";);put "|}"/;

put "\hline"/;

put "&& \multicolumn{3}{|c|}{$w_r$}&\multicolumn{",card(NSC):3:0,"}{|c|}{Scanned links}\\"/;

put "\hline"/;

put "$OD$ & $r$ & prior & true & $\hat \alpha + \hat \theta/hat \lambda$ ";

loop(SNSC(NSC),put " & ",SUM(LINK$(ord(LINK)=SCANNED(NSC)),ord(LINK)):3:0;);put " \\"/;

put "\hline"/;

aux=0;

loop(OD,loop(K$(PATHLINKS(OD,K,’1’)<>0),aux=aux+1;put OD.tl:3:0," & ", aux:7:0," & ",

floor(TPRIOR(OD,K)+0.5):5:0," & ",

floor(TMEAN(OD,K)+0.5):5:0," & ",

SUM(CC$(ord(CC)=aux),floor(VOBSERVED2(CC)+0.5)):5:0;

loop(SNSC(NSC),put " & ";if(BIT0(OD,K,NSC)=1, put "X"; else put " ";););put "\\"/;

);

put "\hline"/;

);

put "\end{tabular}"/;

put "}"/;

put "\caption{\label{t502}The set of scanned link feasible observations, observed prior and

true $w_r$ flows, and associated values of $r$. The

$\hat \theta$ estimates are for $n=",card(NNN):4:0,"

$$m=",card(MMM):4:0,"$.}"/;
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put "\end{table}"//;

put out;

);

** Simulations results

******************************************************************************************

** Scanned link feasible observations with reconstruc path flows

******************************************************************************************

if(cases(’a’),

put out3;

put "\begin{table}"/;

put "\centering"/;

put "\renewcommand{\tabcolsep}{3pt}"/;

put "{\scriptsize"/;

put "\begin{tabular}{|c|c|c|c|c|c|"; loop(SNSC(NSC),put "c";);put "|}"/;

put "\hline"/;

put "&&\multicolumn{4}{|c|}{$w_r$}&\multicolumn{",card(NSC):3:0,"}{|c|}{Scanned links}\\"/;

put "\hline"/;

put "$OD$ & $r$ & mean prior & mean true & $f_r$& $\hat \theta$ "; loop(SNSC(NSC),put" & ",

SUM(LINK$(ord(LINK)=SCANNED(NSC)), ord(LINK)):3:0;);

put "\\"/;

put "\hline"/;

aux=0;

loop(OD,loop(K$(PATHLINKS(OD,K,’1’)<>0),aux=aux+1;put ORIGIN(OD):4:0,"-",

DESTINATION(OD):4:0," & ", aux:7:0," & ",

floor(TPRIOR(OD,K)+0.5):5:0," & ",

floor(TMEAN(OD,K)+0.5):5:0," & ",PATHFLOW(OD,K):5:0," & ",

SUM(CC$(ord(CC)=aux),floor(VOBSERVED2(CC)+0.5)):5:0;

loop(SNSC(NSC),put " & ";if(BIT0(OD,K,NSC)=1, put "X"; else put " ";););put "\\"/;

);

put "\hline"/;

);

put "\end{tabular}"/;

put "}"/;

put "\caption{\label{t502}The set of scanned link feasible observations, observed prior and

true $w_r$ flows, and associated values of $r$. The

$\hat \theta$ estimates are for $n=",card(NNN):4:0,"$$m=",

card(MMM):4:0,"$.}"/;

put "\end{table}"//;

put out;

);

******************************************************************************************

* DIBUJO RED CON MATHEMATICA

******************************************************************************************

put out2;
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put "Arrowpos = 0.4;"/;

put "ArrowSize = 0.025;"/;

put "FontSize1 = 12;"/;

put "Radious = 0.06;"/;

put "Points = {";

loop(I,if(ord(I)<card(I),put "{",U1(I):7:3,",",V1(I):7:3,"},"/; else put "{",U1(I):7:3,",",

V1(I):7:3,"}};"/;););

put /;

cont=0;

nlinks=SUM(LINK,1);

put "LinkNodes = {";

loop(LINK,cont=cont+1;if(cont<nlinks, put "{",LINKEND(LINK,’1’):3:0,",",

LINKEND(LINK,’2’):3:0,"},"/; else put "{",

LINKEND(LINK,’1’):3:0,",",LINKEND(LINK,’2’):3:0,"}}"/;););

put "bb = NetworkPlot[Points, LinkNodes, Arrowpos, ArrowSize, FontSize1, Radious];"/;

put "Show[bb, ImageSize -> 360, Axes -> False, AxesLabel -> None, AxesStyle -> False];"/;

mm=0;

Loop(OD,

put "OriginNode=",ORIGIN(OD):5:0,";"/;

put "DestinationNode=",DESTINATION(OD):5:0,";"/;

mm=mm+1;

cont=0;

indic=0;

nlinks=card(LINK);

loop(LINK,if(cont=0,indic=1;put "Network3DAll[Points, Potentials,LinkNodes, LinkNodes1,",

mm:5:0,",",ORIGIN(OD):5:0,",",DESTINATION(OD):5:0,"]"/;

put "LinkNodes1= {";);cont=cont+1;if(cont<nlinks,

put"{",LINKEND(LINK,’1’):3:0,",",LINKEND(LINK,’2’):3:0,"},

"/; else put "{",LINKEND(LINK,’1’):3:0,",",LINKEND(LINK,

’2’):3:0,"}};"/; ););

if(indic=1,put "a[",mm:5:0,"]=NetworkPlot1[Points, LinkNodes, LinkNodes1, Arrowpos,

ArrowSize, FontSize1, Radious];"/;

);

);

put "Show[GraphicsArray[{{a[1], a[2]}, {a[3], a[4]}}], ImageSize -> 800,Axes -> False,

AxesLabel -> None, AxesStyle -> False];"/;

put "TT={";

loop(NSCA,if(ord(NSCA)=1,put "{"; else put ",{"; );

loop(validcases(cases),if(ord(cases)=1,put "{"; else put ",{";);
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loop(OD,if(ord(OD)=1,put Val(OD,NSCA,cases,’1’):6:1; else put ",",Val(OD,NSCA,

cases,’1’):6:1);

);

put "}"/;

);

put "}"/;

);

put "};"/;

aux=0;

put "VVLINKS={";

loop(NSCA,if(ord(NSCA)=1,put "{"; else put ",{"; );

loop(validcases(cases),if(ord(cases)=1,put "{"; else put ",{";);

loop(LINK,if(aux=15,put /;aux=0;);aux=aux+1;if(ord(LINK)=1,put VVLINKS(LINK,NSCA,

cases):6:1; else put ",",VVLINKS(LINK,NSCA,cases):6:1);

);

put "}"/;

);

put "}"/;

);

put "};"/;

put "MAXCC=",MAXCC:5:0/;

put "mmm=",card(MMM):8:0/;

put "nnn=",card(NNN):8:0/;

put "VVOBSERVED={";

loop(NSCA,if(ord(NSCA)=1,put "{"; else put ",{"; );

loop(CC$(ord(CC)<=MAXCC),if(aux=15,put /;aux=0;);aux=aux+1;if(ord(CC)=1,put

VVOBSERVED(NSCA,CC):6:1; else put ",",

VVOBSERVED(NSCA,CC):6:1);

);

put "}"/;

);

put "};"/;

put "RMSET0={";

loop(NSCA,

put "{";

cont=0;

loop((OD,K)$(PATHLINKS(OD,K,’1’)<>0),cont=cont+1;if(cont=1,put RMSET0(OD,K,NSCA):9:3;

else put ",",RMSET0(OD,K,NSCA):9:3/;););

if(ord(NSCA)=card(NSCA),put "}};"/; else put "},"/; );

);

put "RMSET={";

loop(NSCA,

put "{";

cont=0;

loop((OD,K)$(PATHLINKS(OD,K,’1’)<>0),cont=cont+1;if(cont=1,put RMSET(OD,K,NSCA):9:3;
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else put ",",RMSET(OD,K,NSCA):9:3/;););

if(ord(NSCA)=card(NSCA),put "}};"/; else put "},"/; );

);

put "RMSET1={";

loop(NSCA,

put "{";

cont=0;

loop((OD,K)$(PATHLINKS(OD,K,’1’)<>0),cont=cont+1;if(cont=1,put RMSET1(OD,K,NSCA):9:3;

else put ",",RMSET1(OD,K,NSCA):9:3/;););

if(ord(NSCA)=card(NSCA),put "}};"/; else put "},"/; );

);

put "RouteMean={";

cont=0;

loop((OD,K)$(PATHLINKS(OD,K,’1’)<>0),cont=cont+1;if(cont=1,put TMEAN(OD,K):9:3;

else put ",",TMEAN(OD,K):9:3/;););

put "};"/;

put out;

******************************************************************************************

* END DIBUJO RED CON MATHEMATICA

******************************************************************************************

put "END OF PROCESS"/;

putclose out;putclose out1;putclose out2;putclose out3; putclose out4;

10.2 Code for the FIFO rule consistent dynamic model

This section deals with the Matlab implementation of the FIFO rule consistent dynamic

model which has been exposed in chapter 7.

In order to clarify the way of working of this program, Figure 10.1 shows the diagram

of the procedure dependence.

10.2.1 Main Program

clc

clear all

clear

close all

options = optimset(’UseParallel’,’always’);

global linksplotted;

global hroutesplotted;

global nodesplotted;

global nPath;
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DataIlustrative

updatesplinesFindODs

CalculateLengths

MAIN

qroute theta

GenerateXA

plotlinksN plotRouteFlowplotintensity plotroutesplotlinks plotnodes

qroute qbyroute qroutethetaqbyroute qbyroute

qroute thetaqroute theta qroute theta

Figure 10.1: Diagram of the procedure dependence in the code for the FIFO rule consistent

dynamic model

global colors;

global links;

global m;

global t;

global nnodes;

global nlinks;

global pathsLinks;

global nmaxlinks;

global alpha;

global fbeta;

global XAmax;

global plotoption;

global printoption;

global rho;

global linkroutes;

global nlinkroutes;

global nroutelinks;

global tsize1;

global tsize;

global nfigures;

global MaxIi;

global Ii;

global saturationmax;

global linksatmax;

global pp;

global routesplotted;
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global ttt;

global TA1;

global error;

global maxtime;

global correctcontrol;

global S;

global satur;

global tmax;

global increment;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% ProjectNumber=1 : Ilustrative

% ProjectNumber=2 : Nguyen Dupuis

% ProjectNumber=3 : Cuenca

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ProjectNumber=1;

nfigures=0;

tiempo0=clock;

routesplotted=[];

linksplotted=[];

hroutesplotted=[];

nodesplotted=[];

% Fixing the seed value to repeat the same random numbers

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

rand(’seed’,12345678);

% Data iterations and print

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

maxtimepermitted=5000;

nmaxnoderoutes=10;

nmaxlinkroutes=100;

nmaxnodelinks=5;

printoption=0;

plotoption=0;

itermax=100;

tol=0.1;

rho=1.0; % relax coefficient

m=2; % number of waves of the initial flow

% Data

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

switch ProjectNumber

case 1

DataIlustrative;

case 2

DataNguyenDupuis;

case 3

DataCuenca219;
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otherwise

end

t=0:increment:tmax;

tsize=length(t);

tsize1=tsize-1;

nlinks = length(links(:,1));

satur=zeros(nlinks,length(t));

% Generate random colors

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

colors=zeros(max(nPath,nlinks),3);

for i=1:max(nPath,nlinks)

colors(i,:)=[rand rand rand];

end

[NI,nmaxlinks]=size(pathsLinks);

nroutelinks=zeros(1,nPath); % number of links per route

for r=1:nPath

for j=1:nmaxlinks

if pathsLinks(r,j)>0

nroutelinks(r)=nroutelinks(r)+1;

end

end

end

[nPathOD,OD,nOD]=FindODs(links,pathsLinks);

% OD: the set of OD-pair

% nOD: index of each OD-pair

% nPathOD: per each path indicates the OD index

nnodes=max(max(links));

% prints table of route links

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for r=1:nPath

fprintf(’%3.0f ’,r);

for j=1:nmaxlinks

if pathsLinks(r,j)>0

fprintf(’& %3.0f ’,pathsLinks(r,j));

else

fprintf(’& ’);

end

end

fprintf(’\\\\\n’);

end

% Calculates the output links of each node (outputnodelinks)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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Oi=zeros(nnodes,nmaxnodelinks);

MaxOi=zeros(1,nnodes);

actualnmaxnodelinks=0;

for i=1:nnodes

kk=0;

for j=1:nlinks

if links(j,1)==i

kk=kk+1;

Oi(i,kk)=j;

if actualnmaxnodelinks<kk

actualnmaxnodelinks=kk;

end

end

end

MaxOi(i)=kk;

end

% Calculates the input links of each node (outputnodelinks)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Ii=zeros(nnodes,nmaxnodelinks);

MaxIi=zeros(1,nnodes);

for i=1:nnodes

kk=0;

for j=1:nlinks

if links(j,2)==i

kk=kk+1;

Ii(i,kk)=j;

if actualnmaxnodelinks<kk

actualnmaxnodelinks=kk;

end

end

end

MaxIi(i)=kk;

end

% Calculate the number of routes per each link (linkroutes)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

linkroutes=zeros(nlinks,nmaxlinkroutes);

nlinkroutes=zeros(nlinks,1);

for r=1:nPath

for j=1:nroutelinks(r)

l=pathsLinks(r,j);

nlinkroutes(l)=nlinkroutes(l)+1;

linkroutes(l,nlinkroutes(l))=r;

end

end

% Spline initialization

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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ttt=zeros(nlinks,tsize);

TA1=zeros(nlinks,tsize);

for i=1:tsize

TA1(:,i)=t(i); % link enter time

end

for i=1:nlinks

ttt(i,:)=t(:)+alpha(i); % initial link exit time associated to TA1

end

ppp=pchip(t,t);

pp=struct(ppp);

for ll=1:nlinks

% initial spline (exit time, enter time)

pp(ll)=pchip(ttt(ll,:),TA1(ll,:));

end

% Starts iterative program

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

S=zeros(nlinks);

for ll=1:nlinks

S(ll)=alpha(ll)*(1+fbeta(ll))/XAmax(ll);

end

error=100*tol;

iter=0;

maxtime=maxtimepermitted/2;

done=0;

while error>tol && iter<itermax && maxtime<maxtimepermitted

iter=iter+1;

updatesplines; %update the splines

if maxtime<maxtimepermitted

fprintf(’iteration = %3.0f cc=%2.0f error=%12.6f saturationmax=%8.3f

linksatmax=%5.0f cpu=%4.5g\n’,iter,correctcontrol,error,

saturationmax,linksatmax,etime(clock,tiempo0));

if plotoption==1

plotintensity;

end

else

fprintf(’The proposed flow blocks the network with maxtime=%9.2f exceeding

maxtimepermitted=%9.2f\n’,maxtime,maxtimepermitted);

done=1;

end

end

if done==0

tiempo1=clock;

fprintf(’\n Tiempo de cpu : %0.5g segundos\n’,time(tiempo1,tiempo0));

plotroutes(routesplotted); % flow at the origin of each path

plotintensity; % route start time with the link exit time of each path

plotlinks(linksplotted); % traffic flow intensity at the exit each link
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plotnodes(nodesplotted); % flow intensity at each node with the time

plotlinksN(linksplotted); % link travel time with the link enter time

plotRouteFlow; % Link flow evolution

plotNumberUsers;

fprintf(’ maximum travel time = %9.3f hours\n’,maxtime);

end

10.2.2 Data reading procedure

We show the illustrative example data only, because the other examples follow the same
scheme.

% DataIlustrative

ProjectName=’Ilustrative’;

links = int8([

1 2

1 5

1 6

1 3

2 5

6 5

3 6

5 4

6 4

]);

nlinks = length(links(:,1));

delta=ones(1,nlinks);

pathsLinks = int8([

1 5 8 0

2 8 0 0

3 9 0 0

3 6 8 0

4 7 9 0

4 7 6 8

5 8 0 0

7 6 8 0

7 9 0 0

]);

Points =100*[2.00 4.00; 0.00 3.00; 4.00 3.00;2.00 0.00; 1.00 2.00; 3.00 2.00];

tmax=32;

increment=0.2;

optionhcurves=1;

routesplotted=[1 2 3 4 5 6 7 8 9];

linksplotted=[1 2 3 4 5 6 7 8 9];
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hroutesplotted=[1; 2; 3; 4; 5; 6; 7; 8; 9];

nodesplotted=[1 2 3 4 5 6];

hfunctionsplotted=[1 2 3 4 5 6 7 8 9];

selectedroute=6;

samax=ones(1,nlinks)*100; % speed

[nPath NI]=size(pathsLinks);

m=2;

Nroutes=zeros(nPath,m); % total daily flow rate

for i=1:nPath

for j=1:m

Nroutes(i,j)=1*(rand(1,1)*800+3200);

end

end

CalculateLengths;

fbeta=ones(1,nlinks);

gamma=2;

for i=1:nlinks

% number of vehicles on link i leading to a travel time alpha(1+fbeta)

XAmax(i)=linklength(i)*100;

end

XAmax(6)=linklength(6)*25; % link 6 has 25% of XAmax for the other links

muroutes=ones(nPath,m);

for r=1:nPath

for i=1:m

% peak hour around 7:30 and 14:00 hours

muroutes(r,i)=7.5+rand(1,1)+(i-1)*(6.5+rand(1,1));

sigmaroutes(r,i)=rand(1,1)*1+1.5;

end

end

10.2.3 Splines updating (updatesplines)

function updatesplines

% Update the splines

global pp;

global nlinks;

global TA1;

global ttt;

global error;

global maxtime;

GenerateXA; % link exit time of each link (ttt)

error=0;

for ll=1:nlinks

coeff0=pp(ll).coefs;

% spline (exit time, enter time)
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pp(ll)=pchip(ttt(ll,:),TA1(ll,:));

error=error+max(max(abs(coeff0-pp(ll).coefs)));

end

maxtime=max(max(max(ttt)));

10.2.4 Calculation of the link exit time (GenerateXA)

function GenerateXA

% Calculates the link exit time of each link (ttt)

global nPath;

global t;

global nlinks;

global nroutelinks;

global pathsLinks;

global TA1;

global ttt;

global tsize;

global alpha;

global gamma;

global rho;

global XAmax;

global saturationmax;

global linksatmax;

global fbeta;

global XA;

global correctcontrol;

global S;

global satur;

global delta;

saturationmax=0;

XA=zeros(nlinks,tsize);

E=zeros(nlinks,length(t));

correctcontrol=1;

Numbercorrections=0;

for kk=1:length(t)

for ll=1:nlinks

tkk=ttt(ll,kk); % link exit time

tkk1=TA1(ll,kk); % link enter time associated to tkk

E0=0;

XA0=0;

sat=0;

for p=1:nPath

found=0;

j=1;

while j<=nroutelinks(p) && found==0

a=pathsLinks(p,j);
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if a==ll

% starting time of a user who reaches the end of link

% of a route p at time tkk

tt0=theta(ll,p,tkk);

% starting time of a user who reaches the end of link

% of a route p at time tkk1

tt1=theta(ll,p,tkk1);

%cumulative flow at origin node of the path p at tt0

[NI,c0]=qroute(p,tt0,1);

%cumulative flow at origin node of the path p at tt1

[NI,c1]=qroute(p,tt1,1);

% cumulative flow at the link exit by the time ttk

E0=E0+c0;

% number of vehicles inside the link

XA0=XA0+c0-c1;

found=1;

if j<nroutelinks(p)

% saturation of upstream links

sat=max(sat,satur(pathsLinks(p,j+1),kk));

end

end

j=j+1;

end

end

E(ll,kk)=E0;

XA(ll,kk)=XA0;

aux2=XA0/XAmax(ll); % link ll congestion ratio at time kk

satur(ll,kk)=aux2;

if saturationmax<aux2

saturationmax=aux2;

linksatmax=ll;

end

% link ll travel time for a user who enters in this link at time kk

tau=alpha(ll)*(1+fbeta(ll)*aux2^gamma+delta(ll)*sat^gamma/3);

if kk==1

Q=E(ll,kk)*S(ll);

else

% queue dissipation time at link ll at time kk

Q=(E(ll,kk)-E(ll,kk-1))*S(ll);

end

tkk=tkk1+tau; % updates the link exit time

if kk>1 && (ttt(ll,kk-1)+Q>tkk)

Numbercorrections=Numbercorrections+1;

if correctcontrol==1

fprintf(’Corrects kk=%3.0f and link=%3.0f ttt(ll,kk-1)=%8.3f

tkk=%8.3f Q=%8.3f\n’,kk,ll,ttt(ll,kk-1),tkk,Q);

correctcontrol=0;

end

% updates the link exit time with the queue dissipation term
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tkk=ttt(ll,kk-1)+Q;

end

if kk>1 && (Q<0)

fprintf(’Error kk=%3.0f and link=%3.0f ttt(ll,kk-1)=%8.3f

ttt(ll,kk)=%8.3f Q=%8.3f\n’,kk,ll,ttt(ll,kk-1),tkk,Q);

end

ttt(ll,kk)=rho*tkk+(1-rho)*ttt(ll,kk);

end

end

if Numbercorrections>0

fprintf(’Numbercorrections=%3.0f \n’,Numbercorrections);

end

for kkk=2:length(t)

for ll=1:nlinks

if ttt(ll,kkk)<TA1(ll,kkk)

fprintf(’ttt(ll,kkk)=%8.3f TA1(ll,kkk)=%8.3f\n’,ttt(ll,kkk),TA1(ll,kkk));

end

end

end

10.2.5 Calculation of the departure path time (theta)

function tt1=theta(a,p,tt)

% returns the starting time of a user who reaches the end of link of a route p at time tt

global nroutelinks;

global pathsLinks;

global pp;

found=0;

tt1=tt;

for j=nroutelinks(p):-1:1

ll=pathsLinks(p,j);

if a==ll

found=1;

end

if found==1

tt1=ppval(pp(ll),tt1);

end

end

10.2.6 Calculation of the inflow rate at the origin of path (qroute)

function [z,cumflow]=qroute(route,tt,option)

% option = 1 : calculates cumulative flow at origin node

% option = 2 : calculates flow intensity at origin node

% option > 2 : calculates both cumulative flow and flow intensity
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global Nroutes;

global muroutes;

global sigmaroutes;

global m;

z=0;

cumflow=0;

for i=1:m

if option>1

% normal distribution of the m waves

z=z+Nroutes(route,i)*normpdf(tt,muroutes(route,i),sigmaroutes(route,i));

end

if option==1 || option>2

cumflow=cumflow+Nroutes(route,i)*(normcdf(tt,muroutes(route,i),

sigmaroutes(route,i)));

end

end

10.2.7 Calculation of the flow by route (qbyroute)

function [z,totalcumflow]=qbyroute(l,tt,r1,rr,option)

% Calculates the flows of link l due to routes r1 to rr

global pathsLinks;

global nroutelinks;

eps=0.001;

z=0;

totalcumflow=0;

for r=r1:rr

for j=1:nroutelinks(r)

if pathsLinks(r,j)==l

% starting time of a user who reaches the end of link l

% of the route r at time tt

hp=theta(l,r,tt);

[aux,cumflow]=qroute(r,hp,option);

if option>1

h1p=(theta(l,r,tt+eps)-hp)/eps;

z=z+aux*h1p;

end

if option==1 || option>2

totalcumflow=totalcumflow+cumflow;

end

end

end

end
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10.2.8 Graphic representation

Starting time with the link exit time (plotintensity)

function plotintensity

% Plot the route start time with the link exit time of each path

global t;

global TA1;

global ttt;

global nroutelinks;

global nfigures;

global ProjectName;

global pathsLinks;

global colors;

global hfunctionsplotted;

ymax=max(max(TA1));

xmax=max(max(max(ttt)));

nnn=3;

[mm,nn]=size(hfunctionsplotted);

ymax=ymax*1.1;

for iii=1:mm

nfigures=nfigures+1;

figure(’Name’,strcat(’hfunction’,num2str(nfigures)));

for i=1:nn

r=hfunctionsplotted(iii,i);

if r>0

x=min(t(1),min(min(min(ttt)))):0.2:max(max(max(ttt)));

y=zeros(1,length(x));

subplot(ceil(nn/nnn),nnn,i);

plot(x,x,’LineWidth’,2);

grid on;

hold on;

axis(’equal’);

axis([t(1) ymax t(1) xmax]);

for j=nroutelinks(r):-1:1;

ll=pathsLinks(r,j);

for ii=1:length(x)

% starting time of a user who reaches the end of link

% ll of a route r at time x

y(ii)=theta(ll,r,x(ii));

end

% link exit time of each link (ttt)

xx(1:length(t))=ttt(ll,:);

plot(y,x,’LineWidth’,2,’Color’,[.2 0.4 0]);

vvv=[x(1) y x(length(x))];

uuu=[x(1) x x(length(x))];

fill(vvv,uuu,colors(ll,:));
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end

text(20,0.1*max(xx),[’Path ’ num2str(r)]);

xlabel(’\theta_a^p(t)’);

ylabel(’t’,’Rotation’,0);

end

hold off;

print(’-deps2c’,’-r600’,sprintf(’%s_%s.eps’,ProjectName,get(gcf,’Name’)))

end

end

Flow at the origin of each path (plotroutes)

function plotroutes(routesplotted)

% Plot the flow at the origin of each path with the time

global nfigures;

global ProjectName;

global colors;

[mm,nn]=size(routesplotted);

x=0:0.2:24;

maxx=max(x);

y=x;

maxyy=0;

for ii=1:mm

for i=1:nn

r=routesplotted(ii,i);

if r>0

for j=1:length(x)

% flow intensity at origin node

y(j) = qroute(r,x(j),2);

end

maxy=max(y);

maxyy=max(maxy,maxyy);

end

end

end

maxyy=1.1*maxyy;

for ii=1:mm

nfigures=nfigures+1;

figure(’Name’,strcat(’paths’,num2str(nfigures)));

for i=1:nn

r=routesplotted(ii,i);

if r>0

for j=1:length(x)

% flow intensity at origin node

y(j) = qroute(r,x(j),2);

end
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subplot(ceil(nn/2),2,i);

plot(x,y,’LineWidth’,2.0);

fill(x,y,colors(r,:));

text(maxx-7,0.8*maxyy,[’Path ’ num2str(r)]);

axis([0 maxx 0 maxyy]);

xlabel(’t’);

ylabel(’h_p(t)’,’Rotation’,0);

hold on;

end

end

hold off;

print(’-deps2c’,’-r600’,sprintf(’%s_%s.eps’,ProjectName,get(gcf,’Name’)))

end

Flow intensity at the exit each link (plotlinks)

function plotlinks(linksplotted)

% Plot traffic flow intensity at the exit each link

global nPath;

global pathsLinks;

global t;

global nroutelinks;

global nfigures;

global ProjectName;

global colors;

global routesplotted;

nnn=2;

[mm,nn]=size(linksplotted);

x=t;

maxx=max(x);

y=x;

ymax=0;

for ii=1:mm

for i=1:nn

l=linksplotted(ii,i);

if l>0

toplot=0;

for rr=nPath:-1:1

jj=1;

while jj<=nroutelinks(rr) && toplot==0

if pathsLinks(rr,jj)==l

toplot=1;

end

jj=jj+1;

end

if toplot==1
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for j=1:length(x)

% flows of link l due to routes 1 to rr at time x

[y(j),NI] = qbyroute(l,x(j),1,rr,2);

end

ymax=max(ymax,max(y));

end

end

end

end

end

for ii=1:mm

nfigures=nfigures+1;

figure(’Name’,strcat(’Flowexitinglinks’,num2str(nfigures)));

for i=1:nn

l=linksplotted(ii,i);

if l>0

subplot(ceil((nn+1)/nnn),nnn,i);

grid on;

hold on;

toplot=0;

for rr=nPath:-1:1

jj=1;

while jj<=nroutelinks(rr) && toplot==0

if pathsLinks(rr,jj)==l

toplot=1;

end

jj=jj+1;

end

if toplot==1

for j=1:length(x)

% flows of link l due to routes 1 to rr at time x

[y(j),NI] = qbyroute(l,x(j),1,rr,2);

end

plot(x,y);

uuu=[x(1) x x(length(x))];

vvv=[0 y 0];

fill(uuu,vvv,colors(rr,:));

hold on;

axis([t(1) maxx 0 ymax]);

xlabel(’t’);

ylabel(’g_a(t)’,’Rotation’,0);

end

end

text(maxx-3,0.8*ymax,[’Link ’ num2str(l)]);

hold on;

end

end

mom=length(routesplotted);
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beta=3.5;

ll=1;

ym=2.5*ll;

xm=max(beta*ym,ll*(3*mom+1)/2);

ss=(xm-mom*ll)/(mom+1);

subplot(ceil((nn+1)/nnn),nnn,nn+1);

xxx=ss;

for jjj=1:mom

rectangle(’Position’,[xxx ll/2 ll ll],’FaceColor’,

colors(routesplotted(jjj),:));

if mom>7

text(xxx+ll/2,2*ll,[’R ’ num2str(routesplotted(jjj))],

’HorizontalAlignment’,’center’,’FontSize’,6);

else

text(xxx+ll/2,2*ll,[’Route ’ num2str(routesplotted(jjj))],

’HorizontalAlignment’,’center’,’FontSize’,6);

end

xxx=xxx+ss+ll;

end

hold on;

axis([t(1) xm 0 ym]);

axis(’equal’);

axis(’off’);

hold off;

print(’-deps2c’,’-r600’,sprintf(’%s_%s.eps’,ProjectName,get(gcf,’Name’)))

end

Flow intensity at each node (plotnodes)

function plotnodes(nodesplotted)

% Plot flow intensity at each node with the time

global links;

global nPath;

global pathsLinks;

global t;

global nroutelinks;

global nfigures;

global MaxIi;

global Ii;

global ProjectName;

global colors;

global routesplotted;

nnn=2;

[mm,nn]=size(nodesplotted);

x=min(min(min(t))):0.2:max(max(max(t)));

maxx=max(x);

minx=min(x);
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y=x;

u=zeros(1,length(x));

ymax=0;

for ii=1:mm

for i=1:nn

for j=1:length(x)

y(j)=0;

end

node=nodesplotted(ii,i);

if node>0

for kk=1:MaxIi(node)

l=Ii(node,kk);

for j=1:length(x)

% flows of link l due to all routes

y(j)=y(j)+ qbyroute(l,x(j),1,nPath,2);

end

ymax=max(ymax,max(y));

end

for rr=nPath:-1:1

jj=1;

toplot=0;

while jj<=nroutelinks(rr) && toplot==0

l=pathsLinks(rr,jj);

if links(l,2)==node

toplot=1;

end

jj=jj+1;

end

if toplot==1

for j=1:length(x)

% flows of link l due to each route

y(j)=qbyroute(l,x(j),rr,rr,2);

end

end

end

end

end

end

for ii=1:mm

nfigures=nfigures+1;

figure(’Name’,strcat(’Flowenteringnodes’,num2str(nfigures)));

for i=1:nn

for j=1:length(x)

y(j)=0;

end

node=nodesplotted(ii,i);

if node>0

subplot(ceil((nn+1)/nnn),nnn,i);
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for kk=1:MaxIi(node)

l=Ii(node,kk);

for j=1:length(x)

% flows of link l due to all routes

y(j)=y(j)+ qbyroute(l,x(j),1,nPath,2);

end

u=y;

end

plot(x,u);

grid on;

hold on;

axis([minx maxx 0 ymax]);

done=0;

for rr=nPath:-1:1

jj=1;

toplot=0;

while jj<=nroutelinks(rr) && toplot==0

l=pathsLinks(rr,jj);

if links(l,2)==node

toplot=1;

end

jj=jj+1;

end

if toplot==1

for j=1:length(x)

% flows of link l due to each route

y(j)=qbyroute(l,x(j),rr,rr,2);

end

uuu=[x(1) x x(length(x))];

vvv=[0 u 0];

if done==0

fill(uuu,vvv,colors(rr,:));

hold on;

done=1;

u(:)=u(:)-y(:);

else

plot(x,u);

fill(uuu,vvv,colors(rr,:));

hold on;

u(:)=u(:)-y(:);

end

end

end

text(maxx-3,0.8*ymax,[’Node ’ num2str(node)]);

xlabel(’t’);

ylabel(’r_n(t)’,’Rotation’,0);

hold on;

end

end
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mom=length(routesplotted);

beta=3.5;

ll=1;

ym=2.5*ll;

xm=max(beta*ym,ll*(3*mom+1)/2);

ss=(xm-mom*ll)/(mom+1);

subplot(ceil((nn+1)/nnn),nnn,nn+1);

xxx=ss;

for jjj=1:mom

rectangle(’Position’,[xxx ll/2 ll ll],’FaceColor’,

colors(routesplotted(jjj),:));

if mom>7

text(xxx+ll/2,2*ll,[’R ’ num2str(routesplotted(jjj))],

’HorizontalAlignment’,’center’,’FontSize’,6);

else

text(xxx+ll/2,2*ll,[’Route ’ num2str(routesplotted(jjj))],

’HorizontalAlignment’,’center’,’FontSize’,6);

end

xxx=xxx+ss+ll;

end

hold on;

axis([0 xm 0 ym]);

axis(’equal’);

axis(’off’);

hold off;

print(’-deps2c’,’-r600’,sprintf(’%s_%s.eps’,ProjectName,get(gcf,’Name’)))

end

Link travel time (plotlinksN)

function plotlinksN(linksplotted)

% For each link, plot the link travel time with the link enter time

global t;

global nfigures;

global ProjectName;

global colors;

global ttt;

global pp;

global maxtime;

nnn=2;

[mm,nn]=size(linksplotted);

x=min(t):0.2:max(t);

y=x;

maxx=max(max(x),maxtime);

ymax=0;

for ii=1:mm
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for i=1:nn

l=linksplotted(ii,i);

if l>0

x=ttt(l,1):0.2:ttt(l,length(ttt(l,:)));

y=x;

for iii=1:length(x)

y(iii)=x(iii)-ppval(pp(l),x(iii));

end

ymax=max(ymax,max(y));

end

end

end

ymax=1.1*ymax;

for ii=1:mm

nfigures=nfigures+1;

figure(’Name’,strcat(’Flowexitinglinks’,num2str(nfigures)));

for i=1:nn

l=linksplotted(ii,i);

if l>0

subplot(ceil((nn+1)/nnn),nnn,i);

grid on;

hold on;

x=ttt(l,1):0.2:ttt(l,length(ttt(l,:)));

y=x;

for iii=1:length(x)

y(iii)=x(iii)-ppval(pp(l),x(iii));

end

plot(x,y,’LineWidth’,2.0);

uuu=[x(1) x x(length(x))];

vvv=[0 y 0];

fill(uuu,vvv,colors(l,:));

text(maxx-3,0.95*ymax,[’Link ’ num2str(l)]);

axis([t(1) maxx 0 ymax]);

xlabel(’t’);

ylabel(’D_a(t)’,’Rotation’,0);

hold on;

end

end

mom=length(linksplotted);

beta=3.5;

ll=1;

ym=2.5*ll;

xm=max(beta*ym,ll*(3*mom+1)/2);

ss=(xm-mom*ll)/(mom+1);

subplot(ceil((nn+1)/nnn),nnn,nn+1);

xxx=ss;

for jjj=1:mom

rectangle(’Position’,[xxx ll/2 ll ll],’FaceColor’,colors(linksplotted(jjj),:));
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if mom>7

text(xxx+ll/2,2*ll,[’L ’num2str(linksplotted(jjj))],’HorizontalAlignment’,

’center’,’FontSize’,6);

else

text(xxx+ll/2,2*ll,[’Link ’ num2str(linksplotted(jjj))],

’HorizontalAlignment’,’center’,’FontSize’,6);

end

xxx=xxx+ss+ll;

end

hold on;

axis([0 xm 0 ym]);

axis(’equal’);

axis(’off’);

hold off;

print(’-deps2c’,’-r600’,sprintf(’%s_%s.eps’,ProjectName,get(gcf,’Name’)))

end

Link flow evolution (plotRouteFlow)

function plotRouteFlow

% Route flow at origin and corresponding link flow evolution

global ProjectName;

global selectedroute;

global colors;

global pathsLinks;

global nroutelinks;

global nfigures;

global maxtime;

xmax=maxtime;

ymax=0;

rr=selectedroute;

x=0:0.2:xmax;

y=zeros(1,length(x));

for i=1:length(x)

% flow intensity at origin node

y(i)=qroute(rr,x(i),2);

end

ymax=max(ymax,max(y));

for j=1:nroutelinks(rr)

l=pathsLinks(rr,j);

if l>0

for i=1:length(x)

% flows of link l due to the last route at time x

y(i)=qbyroute(l,x(i),rr,rr,0);

end

end

end
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nfigures=nfigures+1;

figure(’Name’,strcat(’RouteFlowEvolution’,num2str(nfigures)));

subplot(nroutelinks(rr)+1,1,1);

for i=1:length(x)

% flow intensity at origin node

y(i)=qroute(rr,x(i),2);

end

plot(x,y,’LineWidth’,2.0);

fill(x,y,colors(rr,:));

xmax=max(xmax,max(x));

text(1,0.8*ymax,[’Path ’ num2str(rr)]);

xlabel(’t’);

ylabel(’h_p(t)’,’Rotation’,0);

grid on;

hold on;

for j=1:nroutelinks(rr)

l=pathsLinks(rr,j);

if l>0

for i=1:length(x)

% flows of link l due to the last route at time x

y(i)=qbyroute(l,x(i),rr,rr,2);

end

ymax=max(ymax,max(y));

end

end

for j=1:nroutelinks(rr)

l=pathsLinks(rr,j);

if l>0

for i=1:length(x)

% flows of link l due to the last route at time x

y(i)=qbyroute(l,x(i),rr,rr,2);

end

subplot(nroutelinks(rr)+1,1,j+1);

plot(x,y,’LineWidth’,2.0);

fill(x,y,colors(rr,:));

ymax=max(ymax,max(y));

text(1,0.8*ymax,[’Link ’ num2str(l)]);

xlabel(’t’);

ylabel(’g_a(t)’,’Rotation’,0);

grid on;

hold on;

end

end

ymax=ceil(ymax/100)*110;

axis([0 xmax 0 ymax]);

print(’-deps2c’,’-r600’,sprintf(’%s_%s.eps’,ProjectName,get(gcf,’Name’)))
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10.2.9 Other procedures

Finding the OD-pair (FindODs)

function [nPathOD,OD,nOD]=FindODs(links,pathsLinks)

% OD: the set of OD-pair

% nOD: index of each OD-pair

% nPathOD: per each path indicates the OD index

[nPath nmaxj]=size(pathsLinks);

PathOD=zeros(nPath,2);

nPathOD=zeros(nPath,1);

nOD=0;

OD=[];

for i=1:nPath

if pathsLinks(i,1)>0

PathOD(i,1)=links(pathsLinks(i,1),1);

PathOD(i,2)=links(pathsLinks(i,1),2);

for j=2:nmaxj

if pathsLinks(i,j)>0

PathOD(i,2)=links(pathsLinks(i,j),2);

end

end

end

done=0;

j=1;

while j<=i-1 && done==0

if PathOD(i,1)==PathOD(j,1) && PathOD(i,2)==PathOD(j,2)

done=1;

nPathOD(i)=nPathOD(j);

end

j=j+1;

end

if j==i && done==0

nOD=nOD+1;

nPathOD(i)=nOD;

OD=[OD; PathOD(i,:)];

end

end

Calculation of the link length y free-flow speed (CalculateLengths)

function CalculateLengths

% Calculates the link length and the free flow link travel time

global linklength;

global links;

global nlinks;

global Points;

global samax;
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global alpha;

linklength=zeros(1,nlinks);

for i=1:nlinks

linklength(i)=sqrt((Points(links(i,1),1)-Points(links(i,2),1))^2+

(Points(links(i,1),2)-Points(links(i,2),2))^2);

if linklength(i)==0

fprintf(’Link %4.0f has length %8.3f %5.0f -- %5.0f\n’,i,linklength(i),

links(i,1),links(i,2));

end

alpha(i)=linklength(i)/samax(i); % free flow link time

end

10.3 Code for the G. Beta-Gaussian Bayesian network

model

This section deals with the Matlab implementation of the Generalized Beta-Gaussian

Bayesian network model which has been exposed in chapter 8.

10.3.1 Main Program

clc

clear all

clear

close all

global ProjectName;

global ProjectNumber;

global StationNames;

global todasfechas;

global DATA;

global fecha;

global nstations;

global ndays;

global ntimes;

global simulationoption;

global nfigures;

global increment;

global TimesCDF;

global selectedlinks;

global dataplot;

global t;

global Removethreshold;

global Datapreprocessed;

global selectedsimulation1;

global nstationLatexTable;
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global MarkovOrder;

%General data

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ProjectName=’Vermont’;

ProjectNumber=’1’;

dataplot=0;

nfigures=0;

Removethreshold=40;

t=0:23;

selectedlinks=[1,2,3,4];

TimesCDF=[10:1:16];

increment=1;

Datapreprocessed=0;

MarkovOrder=3;

simulationoption=0;

selectedsimulation1=1;

nstationLatexTable=3;

% Reads data from file

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if Datapreprocessed==1

fid1=fopen(’DATOSVERMONT1.dat’,’r’);

fprintf(’Preprocessing data\n’);

nstations=84;

ndays=365;

ntimes=24;

% Allocates memory for variables

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

StationNames=cell(1,nstations);

todasfechas=cell(1,ndays);

DATA=zeros(nstations,ndays,ntimes);

fecha=cell(nstations,ndays);

% Initializes dates to ’missing’

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=1:nstations

for j=1:ndays

fecha{i,j}=’missing’;

end

end

nstations=0;

ntodasfechas=0;

% Reads line by line

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

tline = fgetl(fid1);

while ischar(tline)
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% Reads one line of data

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

CC = textscan(tline, ’%s %s %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d

%d %d %d %d %d %d ’);

% identifies a change in station

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if strcmp(CC{1},’Station’)

stat=CC{2};

% Looks for station name in StationNames list

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

nstation=findStationNumber(StationNames,stat);

% If station name is not in list adds it to the list

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if nstation==0

nstations=nstations+1;

StationNames(nstations)=stat;

nstation=nstations;

end

else

% Concatenates date and day of week

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

date=strcat(CC{1},CC{2});

% Identifies day of week

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if strcmp(CC{2},’Mon’)

col=1;

elseif strcmp(CC{2},’Tue’)

col=2;

elseif strcmp(CC{2},’Wed’)

col=3;

elseif strcmp(CC{2},’Thu’)

col=4;

elseif strcmp(CC{2},’Fri’)

col=5;

elseif strcmp(CC{2},’Sat’)

col=6;

elseif strcmp(CC{2},’Sun’)

col=7;

end

% If Mon throughout Thu stores data

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if col<5
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% Locates date in list of dates

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

nfecha=findStationNumber(todasfechas,date);

% If not in list adds it to the list

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if nfecha==0

ntodasfechas=ntodasfechas+1;

todasfechas(ntodasfechas)=date;

nfecha=ntodasfechas;

end

% Reads day data

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for k=1:ntimes

DATA(nstation,nfecha,k)=CC{k+2};

end

fecha(nstation,nfecha)=date;

end

end

% Reads a new line of data

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

tline = fgetl(fid1);

end

% Closes file

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fclose(fid1);

% Stores actual values of nstations and ndays

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

nstations=nstation;

ndays=ntodasfechas;

fprintf(’After initial filtering (Mon-Thu), we have registered %5.0f stations and

%5.0f days\n’,nstations,ndays);

% Stores Matlab data variables

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

save([ProjectName ’StationNames.mat’],’StationNames’);

save([ProjectName ’todasfechas.mat’],’todasfechas’);

save([ProjectName ’DATA.mat’],’DATA’);

save([ProjectName ’fecha.mat’],’fecha’);

save([ProjectName ’mixture.mat’],’nstations’,’ndays’,’ntimes’);

else

% reads Matlab data variables

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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load([ProjectName ’StationNames.mat’],’StationNames’);

load([ProjectName ’todasfechas.mat’],’todasfechas’);

load([ProjectName ’DATA.mat’],’DATA’);

load([ProjectName ’fecha.mat’],’fecha’);

load([ProjectName ’mixture.mat’],’nstations’,’ndays’,’ntimes’);

end

tt=1:24;

aux=zeros(1,24);

for nstation=1:nstations

nfigures=nfigures+1;

figure(’Name’,strcat(’predictions’,num2str(nfigures)));

for simul=1:ntimes

aux(:)=DATA(nstation,simul,:);

plot(tt,aux,’-b’,’LineWidth’,0.001);

hold on;

end

grid on;

hold off;

end

GenerateRandomColors(nstations);

% Detects and removes outliers

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Removeoutliers;

% Transforms initial data to generalized beta and standard multivariate normal variables

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

TransformstoGBetaandNormal

% Calculates mean matrix

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

CalculatesMeans

% Make predictions

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

MakePredictions;

10.3.2 Removing outliers procedure (Removeoutliers)

function Removeoutliers

% Detects and removes outliers

global ProjectName;

global StationNames;

global DATA;

global fecha;

global nstations;

global ndays;

global ntimes;
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global dataplot;

global nfigures;

global t;

global Removethreshold;

% Calculates means and standard deviations of each station-hour pair

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mean=zeros(nstations,ntimes);

sigma=zeros(nstations,ntimes);

for i=1:nstations

for k=1:ntimes

ndata=0;

for j=1:ndays

if ~strcmp(fecha{i,j},’missing’)

ndata=ndata+1;

mean(i,k)=mean(i,k)+DATA(i,j,k);

end

end

mean(i,k)=mean(i,k)/ndata;

for j=1:ndays

if ~strcmp(fecha{i,j},’missing’)

sigma(i,k)=sigma(i,k)+power(DATA(i,j,k)-mean(i,k),2);

end

end

sigma(i,k)=sqrt(sigma(i,k)/ndata);

end

end

% Marks outlier data with ’miss’ date

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

error=zeros(1,nstations);

u=zeros(1,ntimes);

v=zeros(1,ntimes);

for i=1:nstations

for j=1:ndays

if ~strcmp(fecha{i,j},’missing’)

error(i)=0;

u(:)= DATA(i,j,:);

for k=1:24

v(k)=abs((u(k)-mean(i,k))/sigma(i,k));

error(i)=error(i)+v(k);

end

error1=max(v);

if error(i)>Removethreshold || error1>4

fecha{i,j}=’miss’;

fprintf(’eliminates station %5.0f and day %5.0f: %s\n’,i,j,fecha{i,j});

end

end

end
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end

% Calculates new means and standard deviations of each station-hour pair

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mean1=zeros(nstations,ntimes);

for i=1:nstations

for k=1:ntimes

ndata=0;

for j=1:ndays

if ~strcmp(fecha{i,j},’missing’) && ~strcmp(fecha{i,j},’miss’)

ndata=ndata+1;

mean1(i,k)=mean1(i,k)+DATA(i,j,k);

end

end

mean1(i,k)=mean1(i,k)/ndata;

end

end

% Removes outliers

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for i=1:nstations

for j=1:ndays

if strcmp(fecha{i,j},’miss’)

fecha{i,j}=’missing’;

end

end

end

% Plots data and removes outliers

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if dataplot==1

for i=1:nstations

nfigures=nfigures+1;

figure(’Name’,strcat(’Data’,num2str(nfigures)));

minu=999999;

maxu=0;

for j=1:ndays

if ~strcmp(fecha{i,j},’missing’)

u(:)= DATA(i,j,:);

if ~strcmp(fecha{i,j},’miss’)

plot(t,u,’LineWidth’,4,’color’,[105 200 92]/255);

else

plot(t,u,’--’,’LineWidth’,4,’color’,’red’);

end

minu=min(minu,min(u));

maxu=max(maxu,max(u));

hold on;

end

end
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plot(t,mean(i,:),’LineWidth’,4,’color’,’blue’);

plot(t,mean1(i,:),’LineWidth’,2,’color’,’yellow’);

text(11,0.95*minu+0.05*maxu,strcat(StationNames(i),’-’,’Station’),’FontSize’,18);

print(’-deps2c’,’-r600’,sprintf(’%s_%s.eps’,ProjectName,get(gcf,’Name’)));

hold off;

end

end

save([ProjectName ’fecha.mat’],’fecha’);

10.3.3 Transformation to GBeta & N(µ, σ) (TransformstoGBetaandNor-

mal)

function TransformstoGBetaandNormal

% Transforms initial data to generalized beta and standard multivariate normal variables

global ProjectName;

global DATA;

global fecha;

global nstations;

global ndays;

global ntimes;

global nfigures;

global increment;

global Nsimulations;

global TimesCDF;

global selectedlinks;

global DATANormal;

global dmin;

global dmax;

global alpha;

global beta;

global indices;

global Datapreprocessed;

if Datapreprocessed==1

TimesCDF1=TimesCDF;

% Alocates memory for variables

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

alpha=zeros(nstations,ntimes);

beta=zeros(nstations,ntimes);

dmin=zeros(nstations,ntimes);

dmax=zeros(nstations,ntimes);

indices=ones(nstations,ntimes);

val1=zeros(1,ndays);

DATANormal=zeros(nstations,ndays,ntimes);

for i=1:ndays

proba1(i)=i/(ndays+1);
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end

val2=zeros(1,ndays);

for nstation=1:nstations

for time=1:ntimes

val2=zeros(1,ndays);

ndays1=0;

for day=1:ndays

if ~strcmp(fecha(nstation,day),’missing’)

ndays1=ndays1+1;

val2(ndays1)=DATA(nstation,day,time);

end

end

val=zeros(1,ndays1);

val(:)=val2(1:ndays1);

% Calculates minimum and maximum values

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

valmin=min(val);

valmax=max(val);

% Corrects constant day data

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if valmax-valmin<0.05

indices(nstation,time)=0;

end

% If small or null range small range values are simulated

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if abs((valmin-valmax)/valmax)<0.00001

val=val+valmax/100000*rand(Nsimulations,1);

% Updates minimum and maximum values

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

valmin=min(val);

valmax=max(val);

end

val1=val;

% Extends ranges in both directions

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

dmin(nstation,time)=1.001*valmin-0.001*valmax;

dmax(nstation,time)=1.05*valmax-0.05*valmin;

% Reduces variable to [0,1] interval

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

val=(val-dmin(nstation,time))/(dmax(nstation,time)-dmin(nstation,time));

% Estimates beta paramaters based on val data
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

param=betafit(val);

% Stores beta parameters

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

alpha(nstation,time)=param(1);

beta(nstation,time)=param(2);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Plots observations and generalized beta model cdf

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

doplot=0;

for i=1:length(TimesCDF1)

if time==TimesCDF1(i)

doplot=1;

end

end

doplot1=0;

for i=1:length(selectedlinks)

if nstation==selectedlinks(i)

doplot1=1;

end

end

doplot=doplot*doplot1;

if doplot==1

nfigures=nfigures+1;

figure(’Name’,strcat(’CDF’,num2str(nfigures)));

val1=sort(val1);

proba1=zeros(ndays1,1);

for i=1:ndays1

proba1(i)=i/(ndays1+1);

end

plot(val1, proba1,’o’);

proba=zeros(ndays1,1);

for ii=1:ndays1

val1(ii)=dmin(nstation,time)+(dmax(nstation,time)-dmin(nstation,time))*

proba1(ii);

proba(ii)=betacdf(proba1(ii),param(1),param(2));

end

hold on;

plot(val1, proba,’-’,’LineWidth’,4);

text(0.02*dmax(nstation,time)+0.98*dmin(nstation,time),0.9,[’Link ’

num2str(nstation) ’ Time ’ num2str(time*increment)]);

hold off

print(’-deps2c’,’-r600’,sprintf(’%s_%s.eps’,ProjectName,get(gcf,’Name’)));

end

% Transform beta values to standard normal values

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%



290 Chapter 10. Programs codes

if max(val)>1 || min(val)<0

PrintMatrix(’val1’,val,’%8.3f’)

end

for iii=1:length(val)

aaaa=betacdf(val(iii),param(1),param(2));

val(iii)=Norminv1(aaaa,0,1);

end

DATANormal(nstation,1:length(val),time)=val(:);

end

end

% Stores matlab variables

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

save([ProjectName ’DATANormal.mat’],’DATANormal’);

save([ProjectName ’dmin.mat’],’dmin’);

save([ProjectName ’dmax.mat’],’dmax’);

save([ProjectName ’alpha.mat’],’alpha’);

save([ProjectName ’beta.mat’],’beta’);

save([ProjectName ’indices.mat’],’indices’);

else

% Stores matlab variables

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

load([ProjectName ’DATANormal.mat’],’DATANormal’);

load([ProjectName ’dmin.mat’],’dmin’);

load([ProjectName ’dmax.mat’],’dmax’);

load([ProjectName ’alpha.mat’],’alpha’);

load([ProjectName ’beta.mat’],’beta’);

load([ProjectName ’indices.mat’],’indices’);

end

Calculation of the normal cdf (Norminv1)

function u=Norminv1(x,mu,sigma)

% Calculates normal inverse cumulative distribution function, but correcting the extremes

if x>0.999940941

u=mu+3.85*sigma;

elseif x<5.9059e-005

u=mu-3.85*sigma;

else

u=norminv(x,mu,sigma);

end

10.3.4 Calculation of mean (CalculatesMeans)

function CalculatesMeans

% Calculates the mean matrix and allocates in memory
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global ProjectName;

global DATANormal;

global fecha;

global nstations;

global ndays;

global ntimes;

% Allocates memory for variables

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Means=zeros(nstations,ntimes);

% Calculates mean matrix

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for nstation=1:nstations

daysavailable=0;

for nday=1:ndays

if ~strcmp(fecha(nstation,nday),’missing’)

daysavailable=daysavailable+1;

for time=1:ntimes

Means(nstation,time)=Means(nstation,time)+DATANormal(nstation,nday,time);

end

end

end

Means(nstation,:)=Means(nstation,:)/daysavailable;

end

save([ProjectName ’Means.mat’],’Means’);

10.3.5 Making predictions procedure (MakePredictions)

function MakePredictions

global ProjectName;

global increment;

global plotoption;

global simulationoption;

global timevaluesLatexTable;

global varLatexTableData;

global nstationLatexTable;

global t1;

global MarkovOrder;

global selectedsimulation1;

global selectedsimulation;

global n1;

global n2;

global nnn;

global maxlink;

global minlink;

global covar1;
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global actualvaluenormal;

global corre;

global predictedvalue;

global std;

global SampleSize;

global PredictionsErrors;

global std1;

global indexZZ;

global mean;

global Means;

global nstations;

global ndays;

global ntimes;

% Memory allocation for data in Latex Table

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

varLatexTableData=zeros(100,3,length(timevaluesLatexTable));

% Reads indices to avoid singular matrix

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

load([ProjectName,’indices.mat’],’indices’);

% Reads Project Data

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

ReadData;

% Initializes variables and allocates memory for them

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

PredictionsErrors=zeros(ndays,nstations,ntimes);

SampleSize=zeros(ntimes,1);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% n1=Number of evidential variables

% n2=number of predicted variables

% nnn=n1+n2 total number of variables involved

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

n1=nstations*MarkovOrder;

n2=ntimes-t1;

nnn=n1+n2;

% Clock initialization

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

tiempo00=clock;

% Defines range of the simulation for cycle

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if simulationoption==1

daymin=1;

daymax=ndays;

else
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daymin=selectedsimulation1;

daymax=selectedsimulation1;

end

% Allocates memory for variables

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

std1=zeros(1,n2);

% Performs simulation for cycle

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for selectedsimulation=daymin:daymax

% Evaluates cpu time

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

tiempo1=clock;

fprintf(’Simulation =%5.0f cputime=%12.5g segundos\n’,selectedsimulation,etime

(tiempo1,tiempo00));

% Performs nstation cycle

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for nstation=1:nstations

tiempo0=clock;

% Calculates mean and covar matrices

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

CalculateMeanVar(nstation);

if nstationLatexTable==nstation && selectedsimulation==selectedsimulation1

% Plots means for nstation and all times

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

PlotCurve(mean,strcat(’mean’,num2str(nstation)),0,0);

% Select optimal variables to predict nstation value at given time

% predictedtime

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

OptimalVarSelection;

tiempo1=clock;

fprintf(’\n Tiempo de cpu:%0.5g segundos nstation=%6.0f\n’,etime(tiempo1,

tiempo0),nstation);

end

predictedtime=n1+1;

% Calculates row of correlation matrix associated with column predictedtime

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

CalculatesRowCorrelMatrix(predictedtime);

% Plots correlation coefficient for variable predictedtime

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if nstation==nstationLatexTable && selectedsimulation==selectedsimulation1
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PlotCurve(corre,strcat(’corre’,num2str(nstation)),1,0.2);

end

% Performs initial selection of variables

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

InitialVarSelection;

% Calculates mean and covariance matrix given the evidence Z

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

OptimalVarSelection;

indexY=n1+1:nnn;

indexZ=indexZZ;

UpdateMeanVar(indexY,indexZ);

% Calculates semiamplitude confidence interval

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for iii=1:n2

std1(iii)=2*sqrt(covar1(iii,iii));

end

std=[0 std1];

% Plots generalized Beta densities

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

PlotGBeta(nstation);

% Accumulates prediction errors

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

aux=Transformtobeta([actualvaluenormal(1,1) predictedvalue’],nstation,t1);

actualvalue=Transformtobeta(actualvaluenormal,nstation,t1);

for sss=1:n2+1

time=t1+sss-1;

PredictionsErrors(selectedsimulation,nstation,time)=(aux(sss)-actualvalue(sss))

/Means(nstation,time);

SampleSize(time)=SampleSize(time)+1;

end

% Plots real and predicted flows with 0.95-confidence bands

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if plotoption==1

PlotRealPredicted(nstation,actualvalue,aux);

end

end

% Calculates and Prints RMSE tables

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

CalculateandPrintRMSE;

end

close all;
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% Plots flow data used in the statistical analysis

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if plotoption==1

minlink=ones(nstations,1)*999999;

maxlink=zeros(nstations,1);

for nstation=1:nstations

if nstation==1

for jj=1:ntimes

y(jj)=(jj-1)*increment;

end

end

% Plot the observed Generalized Beta variables

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

PlotData(nstation,y);

end

end

Data reading procedure (ReadData)

function ReadData

% Read the initial values and write on screen a summary

global ProjectNumber;

global ProjectName;

global TimesCDF;

global selectedlinks;

global t1;

global MarkovOrder;

global selectedsimulation1;

global timevaluesLatexTable;

global linkvarLatexTable;

global Missingdata;

global Nsimulations;

global nlinks;

global nPath;

global tmax;

global increment;

global optionhcurves;

global routesplotted;

global linksplotted;

global hroutesplotted;

global nodesplotted;

global hfunctionsplotted;

switch ProjectNumber

case 1

DataVermont;
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ProjectName=’Vermont’;

case 2

DataNguyenDupuis;

ProjectName=’NguyenDupuis’;

case 3

DataCuenca219;

ProjectName=’Cuenca219’;

otherwise

end

fprintf(’******************************************************\n’);

fprintf(’ProjectName= %s \n’,ProjectName);

fprintf(’******************************************************\n’);

fprintf(’MarkovOrder= %4.0f \n’,MarkovOrder);

fprintf(’Nsimulations= %4.0f \n’,Nsimulations);

fprintf(’linkvarLatexTable= %4.0f \n’,linkvarLatexTable);

fprintf(’selectedsimulation1= %4.0f \n’,selectedsimulation1);

fprintf(’t1= %4.0f \n’,t1);

fprintf(’nlinks= %4.0f \n’,nlinks);

fprintf(’nPath= %4.0f \n’,nPath);

PrintMatrix(’selectedlinks’,selectedlinks,’%4.0f’);

PrintMatrix(’TimesCDF’,TimesCDF,’%4.0f’);

PrintMatrix(’timevaluesLatexTable’,timevaluesLatexTable,’%4.0f’);

fprintf(’tmax= %6.0f \n’,tmax);

fprintf(’increment= %8.2f \n’,increment);

fprintf(’optionhcurves= %4.0f \n’,optionhcurves);

PrintMatrix(’routesplotted’,routesplotted,’%4.0f’);

PrintMatrix(’linksplotted’,linksplotted,’%4.0f’);

PrintMatrix(’hroutesplotted’,hroutesplotted’,’%4.0f’);

PrintMatrix(’nodesplotted’,nodesplotted,’%4.0f’);

PrintMatrix(’hfunctionsplotted’,hfunctionsplotted,’%4.0f’);

PrintMatrix(’Missingdata’,Missingdata,’%4.0f’);

fprintf(’******************************************************\n’);

Calculation of mean and covariance (CalculateMeanVar)

function CalculateMeanVar(link)

% Calculates mean and covar matrices

global ProjectName;

global nlinks;

global hh;

global t1;

global Nsimulations;

global MarkovOrder;

global n1;

global nnn;

global maxlink;

global minlink;
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global covar;

global mean;

global Z0;

global Z;

global selectedsimulation;

global meanindices;

% Opens file

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

filename=[ProjectName,’NORMAL.dat’];

fid=fopen(filename,’r’);

% Reads heading data

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

nlinks=fread(fid,1,’integer*4’);

hh=fread(fid,1,’integer*4’);

Nsimulations=fread(fid,1,’integer*4’);

A=zeros(nlinks,hh);

% Stores the link numbers of flow time data used

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

meanindices=[];

for ii=MarkovOrder:-1:1

meanindices=[meanindices 1:nlinks];

end

for ii=1:hh-t1+1

meanindices=[meanindices link];

end

% Calculates means

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mean=zeros(1,nnn);

for j=1:Nsimulations

for ii=1:nlinks

A(ii,:)=fread(fid,hh,’real*4’);

end

for ii=MarkovOrder:-1:1

low=(ii-1)*nlinks+1;

up=ii*nlinks;

mean(low:up)=mean(low:up)+A(1:nlinks,t1-ii+1)’;

end

low=n1+1;

up=n1+hh-t1;

mean(low:up)=mean(low:up)+A(link,t1+1:hh);

% Updates minima and maxima

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

maxlink(link)=max([maxlink(link) max(A(link,:))]);
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minlink(link)=min([minlink(link) min(A(link,:))]);

end

mean=mean/Nsimulations;

% Rewinds file

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

frewind(fid);

% Reads heading data

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

nlinks=fread(fid,1,’integer*4’);

hh=fread(fid,1,’integer*4’);

Nsimulations=fread(fid,1,’integer*4’);

% Calculates covariance matrix

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

B=zeros(1,nnn);

covar=zeros(nnn,nnn);

for j=1:Nsimulations

for ii=1:nlinks

A(ii,:)=fread(fid,hh,’real*4’);

end

% Real flow data and evidences must be transformed to normal N(0,1)

% data

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for ii=MarkovOrder:-1:1

low=(ii-1)*nlinks+1;

up=ii*nlinks;

B(low:up)=A(1:nlinks,t1-ii+1)’;

end

low=n1+1;

up=n1+hh-t1;

B(low:up)=A(link,t1+1:hh);

if j==selectedsimulation

Z0= A(link,t1:hh)’;

Z=B(1:n1)’;

end

aaaux=B-mean;

covar=covar+aaaux’*aaaux;

end

covar=covar/Nsimulations;

fclose(fid);

Selection of optimal variables (OptimalVarSelection)

function OptimalVarSelection
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% Select optimal variables to predict link value at given time tcenter

global stdcenterthreshold;

global timevaluesLatexTable;

global t1;

global n1;

global covar;

global cofcorr;

global index;

global stdcenter;

global covar1;

global tcenter;

global indexZZ;

for tttt=1:length(timevaluesLatexTable)

tcenter=n1+timevaluesLatexTable(tttt)-t1;

% Calculates row of correlation matrix

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

CalculatesRowCorrelMatrix(tcenter);

% Calculates mean and covariance matrix given the evidence Z

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

InitialVarSelection;

indexZ=[];

varZ=[covar(tcenter,tcenter)];

done=0;

stdcenter=sqrt(covar(tcenter,tcenter));

while done==0 && length(cofcorr)>2 && stdcenter>stdcenterthreshold

[cofcorr ibb]=sort(cofcorr,’descend’);

index=index(ibb);

if cofcorr(1)<0.05

done=1;

else

indexZ=[indexZ index(1)];

index=index(2:end);

indexY=[tcenter index];

UpdateMeanVar(indexY,indexZ);

varZ=[varZ covar1(1,1)];

stdcenter=sqrt(covar1(1,1));

aauu=diag(covar1);

if min(aauu)<0.000001

done=1;

indexZ=indexZ(1:length(indexZ)-1);

indexY=[indexY indexZ(end)];

else

cofcorr=abs(covar1(1,:)/sqrt(aauu(1)));

cofcorr=cofcorr./sqrt(aauu’);
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cofcorr=cofcorr(2:end);

end

end

end

% Stores (link, time, variance) to be printed

interpret1(indexZ,tttt,varZ);

end

% Writes a latex table: Order in which variables are selected for different prediction

%times

dovarLatexTable;

indexZZ=indexZ;

Calculation correlation matrix (CalculatesRowCorrelMatrix)

function CalculatesRowCorrelMatrix(tcenter)

% Calculates row of correlation matrix associated with column tcenter

global covar;

global corre;

aux=1./diag(covar);

corre=abs(covar(tcenter,:))*sqrt(aux(tcenter));

corre=corre.*sqrt(aux’);

Selection of the initial variables (InitialVarSelection)

function InitialVarSelection

%Among the no-missing data, only selects variables with a correlation bigger than 0.10

global nlinks;

global cofcorr;

global indices;

global Missingdata;

global MarkovOrder;

global corre;

global index;

global indexgood;

global t1;

nmissing=length(Missingdata);

index=[];

cofcorr=[];

for mm=1:nlinks

if indices(mm,t1)==1

insert=1;

for rrr=1:nmissing

if mm==Missingdata(rrr)

insert=0;

end
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end

if insert==1

for ii=MarkovOrder:-1:1

jj=(ii-1)*nlinks+mm;

if corre(jj)>0.10

index=[index jj];

cofcorr=[cofcorr corre(jj)];

end

end

end

end

end

indexgood=index;

Updating mean and covariance procedure (UpdateMeanVar)

function UpdateMeanVar(indexY,indexZ)

%Updates the mean and covariance matrix

global covar;

global Z;

global EYZ;

global covar1;

global mean;

EY=mean(indexY);

EZ=mean(indexZ);

SYY=covar(indexY,indexY);

SYZ=covar(indexY,indexZ);

SZZ=covar(indexZ,indexZ);

SZZ1=inv(SZZ);

EYZ=EY’+SYZ*SZZ1*(Z(indexZ)-EZ’);

covar1=SYY-SYZ*SZZ1*SYZ’;

Transformation to G. Beta (Transformtobeta)

function x=Transformtobeta(y,nstation,torigin)

% Transforms the normal variables to Generalized Beta

global dmin;

global dmax;

global alpha;

global beta;

global muT;

global sigmaT;

global criticalnormal;

n=length(y);

for i=1:n
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dmin1=dmin(nstation,torigin+i-1);

dmax1=dmax(nstation,torigin+i-1);

alpha1=alpha(nstation,torigin+i-1);

beta1=beta(nstation,torigin+i-1);

muT1=muT(nstation,torigin+i-1);

sigmaT1=sigmaT(nstation,torigin+i-1);

y1=sigmaT1*y(i)+muT1;

if y1<-criticalnormal

aux=normcdf(-criticalnormal,0,1);

elseif y1>criticalnormal

aux=normcdf(criticalnormal,0,1);

else

aux=normcdf(y1,0,1);

end

aux1=betainv(aux,alpha1,beta1);

x(i)=dmin1+(dmax1-dmin1)*aux1;

end

Calculation of RMSE (CalculateandPrintRMSE)

function CalculateandPrintRMSE

% Calculates and Prints RMSE tables

global nlinks;

global increment;

global hh;

global t1;

global Nsimulations;

global selectedsimulation;

global SampleSize;

global PredictionsErrors;

ppp=t1:1:24;

PredictionRMSE=zeros(nlinks,hh);

for i=1:nlinks

for j=1:hh

for selectedsimulation=1:Nsimulations

PredictionRMSE(i,j)=PredictionRMSE(i,j)+PredictionsErrors(selectedsimulation,i,

j)^2;

end

end

end

for j=1:hh

if SampleSize(j)>0

PredictionRMSE(:,j)=sqrt(PredictionRMSE(:,j)/SampleSize(j));

end

end

qqq=PredictionRMSE(:,ppp);
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LatexPrint(ppp*increment,qqq,t1*increment);

10.3.6 Example of data file (DataVermont)

We show the Vermont-State example data.

function DataVermont

global ProjectName;

global optionhcurves;

global linksplotted;

global hfunctionsplotted;

global nlinks;

global fbeta;

global delta;

global tmax;

global increment;

global TimesCDF;

global selectedlinks;

global t1;

global MarkovOrder;

global selectedsimulation1;

global timevaluesLatexTable;

global linkvarLatexTable;

global Missingdata;

global Nsimulations;

global nfigures;

global dataplot;

global readsDataVermont;

% readsDataVermont=1;

ProjectName=’Vermont’;

nstations=84;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% FACTOR used to divide data values

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

FACTOR=1;

selectedlinks=[1,2,3,4];

TimesCDF=[10:1:16];

Nsimulations=16;

tmax=23;

optionhcurves=1;

linksplotted=[1 2 3 4 5 6 7 8 9];

hfunctionsplotted=[1 2 3 4 5 6 7 8 9];

increment=1;

timeincrement=increment;

t=0:23;

x=min(t):timeincrement:max(t);

u=x;
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if readsDataVermont==1

DATA=zeros(nstations,24,10);

StationData=zeros(1,nstations);

StationNames=cell(size(StationData));

% Opens file to write data

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

filename=[ProjectName,’.dat’];

fid=fopen(filename,’w+’);

% Opens file to read data

fid1=fopen(’DATOSVERMONT1.dat’,’r’);

% Reads heading data

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

tline = fgetl(fid1);

nstation=1;

store=0;

j=0;

nstations=0;

while ischar(tline)

disp(tline);

CC = textscan(tline, ’%s %s %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d %d

%d %d %d %d %d %d ’);

if strcmp(CC{1},’Station’)

stat=CC{2};

if store==1

StationData(nstation)=j;

end

store=1;

nstation=findStationNumber(StationNames,stat);

if nstation==0

nstations=nstations+1;

StationNames(nstations)=stat;

nstation=nstations;

end

j=StationData(nstation);

else

if strcmp(CC{2},’Mon’)

col=1;

elseif strcmp(CC{2},’Tue’)

col=2;

elseif strcmp(CC{2},’Wed’)

col=3;

elseif strcmp(CC{2},’Thu’)

col=4;

elseif strcmp(CC{2},’Fri’)

col=5;
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elseif strcmp(CC{2},’Sat’)

col=6;

elseif strcmp(CC{2},’Sun’)

col=7;

end

% Elliminates Fri, Sat and Sun

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

if col<5

j=j+1;

for k=1:24

DATA(nstation,k,j)=CC{k+2}/FACTOR;

u(k)= DATA(nstation,k,j);

end

end

end

tline = fgetl(fid1);

end

StationData(nstation)=j;

% Filtering data

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mean=zeros(nstations,24);

sigma=zeros(nstations,24);

for i=1:nstations

for k=1:24

for j=1:StationData(i)

mean(i,k)=mean(i,k)+DATA(i,k,j);

end

mean(i,k)=mean(i,k)/StationData(i);

for j=1:StationData(i)

sigma(i,k)=sigma(i,k)+power(DATA(i,k,j)-mean(i,k),2);

end

sigma(i,k)=sqrt(sigma(i,k)/StationData(i));

end

end

% Plots data and calculates ndata, the number of valid data in each station

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

valido=zeros(nstations,max(StationData));

ndata=zeros(1,nstations);

error=zeros(1,nstations);

incompletestations=[];

incompletedays=[];

for i=1:nstations

if dataplot==1

nfigures=nfigures+1;

figure(’Name’,strcat(’Data’,num2str(nfigures)));
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end

minu=min(min(DATA(i,:,1:StationData(i))));

maxu=max(max(DATA(i,:,1:StationData(i))));

for j=1:StationData(i)

error(i)=0;

for k=1:24

u(k)= DATA(i,k,j);

error(i)=error(i)+abs((u(k)-mean(i,k))/sigma(i,k));

end

if error(i)<40

valido(i,j)=1;

ndata(i)=ndata(i)+1;

if dataplot==1

plot(t,u,’LineWidth’,4,’color’,[105 200 92]/255);

end

else

incompletestations=[incompletestations i];

incompletedays=[incompletedays j];

fprintf(’eliminates data %5.0f of station %5.0f\n’,j,i);

if dataplot==1

plot(t,u,’--’,’LineWidth’,4,’color’,’red’);

end

end

hold on;

end

if dataplot==1

plot(t,mean(i,:),’LineWidth’,4,’color’,’blue’);

text(11,0.95*minu+0.05*maxu,strcat(StationNames(i),’-’,’Station’),’FontSize’,

18);

print(’-deps2c’,’-r600’,sprintf(’%s_%s.eps’,ProjectName,get(gcf,’Name’)));

hold off;

end

end

sort(ndata)

incompletestations=sort(union(incompletestations,incompletestations));

incompletedays=sort(union(incompletedays,incompletedays));

PrintMatrix(’incompletestations’,incompletestations,’%4.0f’);

PrintMatrix(’incompletedays’,incompletedays,’%4.0f’);

close all;

[nstations,ntimes,Nsimulations]=size(DATA);

tt=1:24;

for nstation=1:floor(nstations/10):nstations

nfigures=nfigures+1;

figure(’Name’,strcat(’predictions’,num2str(nfigures)));

for simul=1:Nsimulations

if valido(nstation,simul)

plot(tt,DATA(nstation,:,simul),’-b’,’LineWidth’,4);
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else

plot(tt,DATA(nstation,:,simul),’-r’,’LineWidth’,4);

end

hold on;

end

grid on;

hold off;

end

Nsimulationsmin=100;

nlinks=0;

for i=1:nstation

if ndata(i)>=Nsimulationsmin

nlinks=nlinks+1;

end

end

% Generate random colors

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

GenerateRandomColors(nlinks)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

delta=ones(1,nlinks);

fbeta=ones(1,nlinks);

for i=1:nstation

fprintf(’i=%6.0f sum=%8.0f\n’,i,sum(valido(i,:)));

end

save([ProjectName,’valido.mat’],’valido’);

% Calculates Means

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

MeanAll=zeros(1,nstations*24);

k=0;

for nstation=1:nstations

for time=1:24

k=k+1;

ndata1=0;

for simul=1:Nsimulations

if valido(nstation,simul)

ndata1=ndata1+1;

MeanAll(k)=MeanAll(k)+DATA(nstation,time,simul);

end

end

MeanAll(k)=MeanAll(k)/ndata1;

end

end

save([ProjectName,’MeanAll.mat’],’MeanAll’);

h=1;
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% Calculates covar matrix

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

CovarAll=zeros(nstations*24,nstations*24);

mdata=zeros(nstations*24,nstations*24);

k1=0;

for nstation1=1:nstations

fprintf(’nstation1=%5.0f of %5.0f\n’,nstation1,nstations);

for time1=1:24

k1=k1+1;

k2=0;

for nstation2=1:nstations

for time2=1:24

k2=k2+1;

if k1>=k2

for simul=1:Nsimulations

if valido(nstation1,simul) && valido(nstation2,simul)

mdata(k1,k2)=mdata(k1,k2)+1;

CovarAll(k1,k2)=CovarAll(k1,k2)+(DATA(nstation1,time1,

simul)-MeanAll(k1))*(DATA(nstation2,time2,simul)-

MeanAll(k2));

end

end

end

end

end

end

end

CovarAll=CovarAll./mdata;

for k1=1:nstations*24-1

for k2=k1+1:nstations*24

CovarAll(k1,k2)=CovarAll(k2,k1);

end

end

eig(CovarAll);

save([ProjectName,’CovarAll.mat’],’CovarAll’);

save([ProjectName,’DATACovarAll.mat’],’DATA’);

% Initializes Means

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

meanvalues=zeros(nstations,24);

% Writes heading data

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fwrite(fid,nlinks,’integer*4’);

fwrite(fid,length(x),’integer*4’);

fwrite(fid,Nsimulations,’integer*4’);

fprintf(’Stored format\n’);

countnlinks=ones(1,nstation);
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% Calculates mean values

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for j=1:Nsimulations

ii=0;

for i=1:nstations

if ndata(i)>=Nsimulationsmin

while valido(i,countnlinks(i))==0

countnlinks(i)=countnlinks(i)+1;

end

ii=ii+1;

for k=1:24

fwrite(fid,DATA(i,k,countnlinks(i)),’real*4’);

end

meanvalues(ii,:)=meanvalues(ii,:)+DATA(i,:,countnlinks(i));

countnlinks(i)=countnlinks(i)+1;

end

end

end

meanvalues=meanvalues/Nsimulations;

% Saves mean data

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

filename8=[ProjectName,’Means.mat’];

save(filename8,’meanvalues’);

PrintMatrix(’valido’,valido,’%2.0f’);

% Prints station names

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

fprintf(’Station Names:\n’);

for i=1:nstation

if ndata(i)>=Nsimulations

fprintf(’%7.0f %s counts=%8.0f\n’,i,StationNames{i},countnlinks(i));

end

end

fclose(fid);

fclose(fid1);

end

% Point where prediction is to be done (multiplied by increment provides

% the corresponding time)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

t1=3;

% Number of previous time increments from which prediction is to be based

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

MarkovOrder=3;
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% Number of simulation used to predict flows (reference case)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

selectedsimulation1=1;

% Prediction time points for which the optimal selection of variables is done

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

timevaluesLatexTable=[16,18,20,22,24];

% Link for which the optimal selection of variables is done

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

linkvarLatexTable=1;

% Links that are missing

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Missingdata=[];

10.3.7 Graphic representation

General data (PlotCurve)

function PlotCurve(data,Name1,option,threshold)

% Plots the given data when they are bigger than a threshold

global ProjectName;

global nfigures;

global meanindices;

nfigures=nfigures+1;

figure(’Name’,Name1);

plot(1:length(data),data,’-o’);

hold on

if option==1

for i=1:length(data)

if data(i)>threshold

text(i,1.03*data(i),num2str(meanindices(i)));

end

end

end

hold off;

print(’-deps2c’,’-r600’,sprintf(’%s_%s.eps’,ProjectName,get(gcf,’Name’)));

Generalized Beta densities (PlotGBeta)

function PlotGBeta(link)

% Plots generalized Beta densities

global ProjectName;

global increment;

global dmin;
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global dmax;

global alpha;

global beta;

global nfigures;

global TimesCDF;

global t1;

global Z0;

global colors;

global EYZ;

global std;

global selectedlinks;

global plotoption;

global Missingdata;

doplot=0;

for i=1:length(selectedlinks)

if link==selectedlinks(i)

doplot=1;

end

end

minx=99999999;

maxx=0;

maxy=0;

if doplot==1 && plotoption==1

nfigures=nfigures+1;

if isempty(Missingdata)

figure(’Name’,strcat(’GBeta’,num2str(link)));

else

figure(’Name’,strcat(’GBetaM’,num2str(link)));

end

mus=[Z0(1,1) EYZ’];

stds=std/2;

% Allocates memory

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

xborderline=zeros(length(TimesCDF),1);

yborderline=zeros(length(TimesCDF),1);

aborderline=zeros(length(TimesCDF),1);

bborderline=zeros(length(TimesCDF),1);

for i=1:length(TimesCDF)

time=TimesCDF(i);

tt=time-t1+1;

a=dmin(link,t1+tt-1);

b=dmax(link,t1+tt-1);

alpha1=alpha(link,t1+tt-1);

beta1=beta(link,t1+tt-1);

mu=mus(tt);

sigma=stds(tt);



312 Chapter 10. Programs codes

xx=a+(b-a)/10000:(b-a)/5000:b;

yy=zeros(1,length(xx));

for jjj=1:length(xx)

% Calculates the Generalized Beta densities given the normal distributions

yy(jjj)=varchange(a,b,alpha1,beta1,mu,sigma,xx(jjj));

end

yy1=yy>0.01;

yy=yy(yy1);

xx=xx(yy1);

minx=min([minx min(xx)]);

maxx=max([maxx max(xx)]);

maxy=max([maxy max(yy)]);

zz=ones(length(xx),1)*TimesCDF(i)*increment;

plot3(zz,xx,yy,’-’,’LineWidth’,3,’Color’,colors(i,:))

grid on

hold on;

[aaa,bbb]=max(yy);

yborderline(i)=aaa;

xborderline(i)=xx(bbb);

aborderline(i)=xx(1);

bborderline(i)=xx(end);

end

hold on;

view([-45 15]);

hold on;

xyz=[TimesCDF’*increment xborderline yborderline]’;

fnplt(cscvn(xyz),’black’,4)

xyz=[TimesCDF’*increment xborderline yborderline*0]’;

fnplt(cscvn(xyz),’black’,2,’--’)

xyz=[TimesCDF’*increment aborderline yborderline*0]’;

fnplt(cscvn(xyz),’black’,2)

xyz=[TimesCDF’*increment bborderline yborderline*0]’;

fnplt(cscvn(xyz),’black’,2)

axis([TimesCDF(1)*increment TimesCDF(end)*increment minx maxx 0 1.06*maxy]);

xlabel(’Time’);

ylabel(strcat(’Link ’,’ ’,num2str(link),’ travel time’));

zlabel(’Density f(x)’);

hold on;

print(’-deps2c’,’-r600’,sprintf(’%s_%s.eps’,ProjectName,get(gcf,’Name’)));

hold off

end

Real and predicted flows (PlotRealPredicted)

function PlotRealPredicted(link,actualvalue,aux)

% Plots real and predicted flows with 0.95-confidence bands

global ProjectName;
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global nfigures;

global t1;

global predictedvalue;

global std;

global std1;

global increment;

global n2;

global Missingdata;

y=zeros(n2+1,1);

for jj=1:n2+1

y(jj)=(t1-1+jj)*increment;

end

nfigures=nfigures+1;

if isempty(Missingdata)

figure(’Name’,strcat(’Real&Predicted’,num2str(nfigures)));

else

figure(’Name’,strcat(’Real&PredictedM’,num2str(nfigures)))

end

plot(y, aux,’-b’,’LineWidth’,6);

hold on;

auxlo=Transformtobeta([actualvalue(1,1) predictedvalue’]-std,link,t1);

plot(y,auxlo,’--b’,’LineWidth’,2);

hold on;

auxup= Transformtobeta([actualvalue(1,1) predictedvalue’]+std,link,t1);

plot(y,auxup,’--b’,’LineWidth’,2);

hold on;

grid on;

plot(y,actualvalue ,’-r’,’LineWidth’,4);

aux=Transformtobeta(predictedvalue’-std1,link,t1);

axis([min(y) max(y) min(0,min(aux)) 1.1*max([max(auxup) max(actualvalue)])]);

text(0.9*min(y)+0.1*max(y),0.1*max([max(auxup) max(actualvalue)]),[’Link ’ num2str(link)]);

hold off;

print(’-deps2c’,’-r600’,sprintf(’%s_%s.eps’,ProjectName,get(gcf,’Name’)));

Observed Generalized Beta variables (PlotData)

function PlotData(link,y)

% Plot the observed Generalized Beta variables

global ProjectName;

global nlinks;

global nfigures;

global hh;

global t1;

global Nsimulations;

global selectedsimulation;

global maxlink;
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global minlink;

% Opens the file

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

filename=[ProjectName,’NORMAL.dat’];

fid=fopen(filename,’r’);

nfigures=nfigures+1;

figure(’Name’,strcat(’LinkTravelTimeF’,num2str(nfigures)));

nlinks=fread(fid,1,’integer*4’);

hh=fread(fid,1,’integer*4’);

Nsimulations=fread(fid,1,’integer*4’);

A=zeros(nlinks,hh);

meanlink=zeros(nlinks,hh);

for j=1:Nsimulations

for ii=1:nlinks

A(ii,:)=fread(fid,hh,’real*4’);

end

if j==selectedsimulation

AA=A(link,:);

minlink(link)=min([minlink(link) Transformtobeta(A(link,:),link,1)]);

maxlink(link)=max([maxlink(link) Transformtobeta(A(link,:),link,1)]);

else

% Plots observed data of link

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

plot(y,Transformtobeta(A(link,:),link,1),’-b’,’LineWidth’,2);

hold on;

end

minlink(link)=min([minlink(link) Transformtobeta(A(link,:),link,1)]);

maxlink(link)=max([maxlink(link) Transformtobeta(A(link,:),link,1)]);

% Plots mark where observations are taken

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

plot(y(t1),minlink(link),’o’,’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’r’,’MarkerSize’,

16);

hold on;

meanlink=meanlink+A;

end

% Plots real data

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

plot(y, Transformtobeta(AA,link,1),’-r’,’LineWidth’,6);

meanlink=meanlink/Nsimulations;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

plot(y, Transformtobeta(meanlink(link,:),link,1),’--g’,’LineWidth’,6);

text(5,0.9*maxlink(link)+0.1*minlink(link),[’Link ’ num2str(link)]);
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xlabel(’t’);

ylabel(’D_a(t)’,’Rotation’,0);

% Adjusts axis

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

axis([min(y) max(y) minlink(link) maxlink(link)]);

hold off;

print(’-deps2c’,’-r600’,sprintf(’%s_%s.eps’,ProjectName,get(gcf,’Name’)));

fclose(fid);

10.3.8 Other procedures

Selected variables for prediction in LATEX(dovarLatexTable)

function dovarLatexTable

% Writes a latex table: Order in which variables are selected for different prediction

% times

global ProjectName;

global timevaluesLatexTable;

global varLatexTableData;

global increment;

global Missingdata;

[m n p]=size(varLatexTableData);

if isempty(Missingdata)

filename=[’Latex’,ProjectName,’Var.dat’];

else

filename=[’Latex’,ProjectName,’VarM.dat’];

end

fid=fopen(filename,’w’);

fprintf(fid,’\\begin{table}\n’);

fprintf(fid,’\\centering\n’);

fprintf(fid,’{\\tiny\n’);

fprintf(fid,’\\renewcommand{\\tabcolsep}{1mm}\n’);

fprintf(fid,’\\renewcommand{\\arraystretch}{1.0}\n’);

fprintf(fid,’\\begin{tabular}{|c’);

for k=1:p

fprintf(fid,’|c|c|c’);

end

fprintf(fid,’|}\n’);

fprintf(fid,’\\hline\n’);

for k=1:p

fprintf(fid,’& \\multicolumn{3}{|c|}{’);

aux=timevaluesLatexTable(k)*increment;

aa=floor(aux);

bb=(aux-aa)*60;
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if bb==0

fprintf(fid,’%2.0f:00}’,aa);

else

fprintf(fid,’%2.0f:%2.0f}’,aa,bb);

end

end

fprintf(fid,’ \\\\\n’);

fprintf(fid,’\\hline\n’);

fprintf(fid,’i ’);

for k=1:p

fprintf(fid,’&link&time&var’);

end

fprintf(fid,’ \\\\\n’);

fprintf(fid,’\\hline\n’);

for i=1:m

if varLatexTableData(i,1,k)>0

fprintf(fid,’%3.0f’,i);

for k=1:p

aux=varLatexTableData(i,2,k);

aa=floor(aux);

bb=(aux-aa)*60;

if bb==0

fprintf(fid,’ & %3.0f & %2.0f:00 & %6.3f ’,varLatexTableData(i,1,k),aa,

varLatexTableData(i,3,k));

else

fprintf(fid,’ & %3.0f & %2.0f:%2.0f & %6.3f ’,varLatexTableData(i,1,k),aa,

bb,varLatexTableData(i,3,k));

end

end

fprintf(fid,’ \\\\\n’);

end

end

fprintf(fid,’\\hline\n’);

fprintf(fid,’\\end{tabular}\n’);

fprintf(fid,’\\caption{\\label{t683}Order in which variables are selected for different

prediction times and time of prediction $12$:$00$.}}\n’);

fprintf(fid,’\\end{table}\n\n’);

fclose(fid);

Storage of variables (interpret1)

function interpret1(indexZ,tt,varZ)

%Stores (link, time, variance) to be printed

global varLatexTableData;

global increment;

global t1;

global nlinks;
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for i=1:length(indexZ)

n=indexZ(i);

m=floor((n-1)/nlinks);

aux=(t1-m)*increment;

varLatexTableData(i,1,tt)=n-m*nlinks;

varLatexTableData(i,2,tt)=aux;

varLatexTableData(i,3,tt)=varZ(i);

end

Calculation of Generalized Beta densities (varchange)

function [z]=varchange(a,b,alpha,beta,mu,sigma,x)

% Calculates the Generalized Beta densities given the normal distributions

aux=max(normpdf(norminv(betacdf((x-a)/(b-a),alpha,beta),0,1),0,1),0.000000001);

z=normpdf(norminv(betacdf((x-a)/(b-a),alpha,beta),0,1),mu,sigma)*betapdf((x-a)/

(b-a),alpha,beta)/((b-a)*aux);

Printing in matricial format (PrintMatrix)

function PrintMatrix(s0,A,s)

[nn mm]=size(A);

fprintf(s0);

fprintf(’\n’);

for i=1:nn

for j=1:mm

fprintf(s,A(i,j));

end

fprintf(’\n’);

end

Generate a set of random colors (GenerateRandomColors)

function GenerateRandomColors(n)

% Generate random colors

global colors;

colors=zeros(n,3);

for i=1:n

colors(i,:)=[rand rand rand];

end

Searching the station name (findStationNumber)

function nstation=findStationNumber(StationNames,stat)



318 Chapter 10. Programs codes

% Looks for station name in StationNames list

n=length(StationNames);

i=1;

nstation=0;

while i<=n && nstation==0

if strcmp(stat,StationNames(i))

nstation=i;

else

i=i+1;

end

end



Notation

α parameter of the statistical function.

αa free-flow travel time of link a.

ᾱpi vector of parameters associated with path p.

β(α, θ) Beta function with parameters α and θ.

βa parameter of the travel cost function associated with link a.

βij regression coefficient of Xj in the regression of Xi on their parents.

δa parameter of the travel time function associated with link a.

δra terms of the path-link incidence matrix, where r denotes the path and

a, the link.

δpqr parameter of the Gumbel distribution associated with route r with

origin-destination p-q.

ǫrs active hyperparameter of the shifted-Gamma function corresponding

to route r and the s element in the sample.

ǫ̂rs posterior active hyperparameter of the shifted-Gamma function

corresponding to route r.

ηa(t) link a travel time associated with a vehicle that leaves link a at time t.

ηr active hyperparameter of the shifted-Gamma function corresponding

to route r.

η̂r posterior active hyperparameter of the shifted-Gamma function

corresponding to route r.

ηpq dual variable associated with the origin-destination p-q.

γ parameter of the travel cost function.

Γ(α) Gamma function.

γe Euler constant.

γijpq parameters of calibration of the maximum entropy problem.

Λ total number of queued vehicles at the link exit node.

λ parameter of the shifted-Gamma model.

λa dual variable. Travel cost associated with link a.

µ mean.

µpi mean parameter of the ith component of path p.
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µpqr dual variable. Over-cost associated with route r with origin-

destination p-q.

νi parameter of the shifted-Gamma function associated to the number of

users traveling through the OD-pair i.

Φ cumulative distribution function of the standard normal random

variable.

φ̂pqr(h, ω) worst-case travel cost between the OD-pair p-q through the route r

associated with the worst case demand d̂pq.

φ∗pqr stochastic minimum travel cost associated with route r with origin-

destination p-q.

φpqr(h, ω) travel cost between the OD-pair p-q through the route r associated

with stochastic demand dpq(ω) or link capacity qa(ω).

Πi set of parents of node Xi in a directed acyclic graph.

πi parent of node i.

πpq equilibrium travel cost to travel from origin p to destination q.

ψ2
i conditional variance of Xi given Πi = πi.

ρ traffic density.

ρ∗ dimensionless density.

ρc critical density.

ρ∗c dimensionless critical density.

ρj jam traffic density.

ρr active hyperparameter of the shifted-Gamma function corresponding

to route r.

ρ̂r posterior active hyperparameter of the shifted-Gamma function

corresponding to route r.

ρiq minimum costs to go from node i to node q.

ρi location parameter of the shifted-Gamma function associated to the

number of users traveling through the OD-pair i.

ρai location parameter of the shifted-Gamma function associated to the

number of users using link a and traveling the OD-pair i.

Σ variance-covariance matrix.

σ2 variance.

σpi standard deviation parameter of the ith component of path p.

ΣY Y variance-covariance matrix of Y .

ΣY Z covariance matrix of Y and Z.

σzz variance of Z.

τ(t) delay function.

τ−1
a (t) entry time of a user that exits link a at time t.

τa(t) link traversal time for a vehicle entering the link a at time t.

Θ domain of definition of the θ parameter.
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θ parameter of the statistical function.

θpai(t) departure time from the origin of path p of a user who exits the ith

link ai of path p at time t.

θai parameter of the shifted-Gamma function associated to the number of

users using link a and traveling the OD-pair i.

θpq parameter of the Gumbel distribution associated with origin-

destination p-q.

ξpqr random error term associated with the route r with origin-destination

p-q.

a link.

A(x, t) cumulative flow past any point x by time t.

aij link between nodes i and j.

b lower end of the generalized Beta variable.

b̂at estimated Beta parameter of the random variable Xat of link a at time

t.

c upper end of the generalized Beta variable.

ĉat estimated Beta parameter of the random variable Xat of link a at time

t.

C∗
pqr least travel cost corresponding to route r with origin-destination p-q.

ca travel cost function associated with link a.

ca0 free-flow conditions cost associated with link a.

Ca integral of the travel cost function associated with link a.

Cij integral of travel cost function associated with link aij.

cij travel cost function associated with link aij .

cij(t) travel cost to go from the initial node i to the final node j associated

with the departure time t.

Cir set of links in route r of OD-pair i.

Cpqr perceived travel cost associated with route r with origin-destination

p-q.

cpqr travel cost function associated with route r with origin-destination p-q.

costij minimum trip cost between any pair of nodes (i, j).

D abscissa coordinate of a given point.

D∗ dimensionless abscissa coordinate of a given point.

Da(t) lower bound of link travel time for vehicles entering link a at time t.

dpq demand for the flows from origin p to destination q.

d̂pq worst case demand associated with the origin p to destination q at

time t.

E set of evidential nodes.

Ea(t) cumulative inflow up to time t for link a.

ea(t) inflow rate for link a at time t.
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Fr random amount of users choosing route r.

fr path flows.

f̂r reconstructed path flows.

fN(µ,σ)(t) probability density function (pdf) of the normal distribution with

mean µ and standard deviation σ.

f0r prior path flows.

G(·) survival function of a cumulative distribution function.

Ga(t) cumulative flow associated with the exit of link a by time t.

ga(t) outflow rate for link a at time t.

gpa(t) outflow rate of link a at time t due to path p.

GBeta(α, θ; b, c) generalized Beta function with parameters α, θ, b and c.

Hp(t) cumulative inflow rate at the origin of path p at time t.

hp(t) inflow rate at the origin of path p at time t.

hpi coefficients of the linear combination to generate hp(t).

hpqr flow on route r with origin-destination p-q.

h∗pqr(t) route inflows in a dynamic user equilibrium state.

Iβ(x;α, θ) incomplete Beta function.

k observation.

L link length.

n number of nodes in a Bayesian network.

n(r;SC) number of routes that can be distinguished from route r using the set

SC of scanned links.

n0 size of the virtual prior sample.

Ni(t) maximum number of vehicles that can be inside cell i at time t (cell

capacity).

ni(t) number of vehicles in cell i at time t.

np number of function components.

nr sample size corresponding to route r.

nlinks number of network links.

nc number of scanned links.

p path.

Ppqr share of drivers choosing a route r with origin-destination p-q.

ppqr probability of a user to select path r of OD-pair p-q.

q traffic flow.

q(t; ᾱpi) parametric family of probability density functions with parameter ᾱpi.

q∗ dimensionless flow.

qa constant measuring the flow producing a given congestion level in the

link a.

qa(ω) stochastic link capacity.

Qi(t) maximum flow in cell i at time t.
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qm maximum flow.

Qak queue dissipation time at link a at time tk.

r route.

rn(t) flow intensity at node n and time t.

Rpq set of routes with origin-destination p-q.

S subset of variables.

sa(t) link a congestion ratio.

t time.

t∗ dimensionless time.

t0 time of prediction.

Ta(t) link a entry time associated with a vehicle that leaves link a at time t.

Ti number of users traveling through the OD-pair i.

ti OD-pair i flows.

tk set of discrete times to be considered for k = 1, . . . , n.

tm discrete time value.

ts predicted time.

touta link exit time of a user who enters link a at time t.

u traffic velocity.

U(0, 1) standard uniform random variable.

u∗ dimensionless velocity.

u0 free-flow speed.

uc critical velocity.

uw shock wave speed.

uat random value from a standard Beta(α, θ) variable.

v̂ observed flow.

v∗ link flows resulting from an assignment problem.

va flow on link a.

v̂a link count information.

Vai number of users using link a and traveling the OD-pair i.

Va number of users using link a.

vijpq flow through link aij going from origin node p to destination node q.

vijq flow on link aij with destination q.

vij total flow through link aij.

wijp flow coming from a given origin node p and using link aij .

ŵr flow associated to route r observed by plate scanning technique.

Ws number of users passing through and only through a given subset As

of links.

X̂ estimate of variable X.

x abscissa coordinate.

x∗ dimensionless abscissa coordinate.
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x0rs s element in a virtual sample.

x0 abscissa associated with the initial time.

x∗0 dimensionless abscissa associated with the initial time.

xa(t) number of vehicles on link a at time t (link traffic volume).

xmax
a number of vehicles on link a leading to a travel time αa(1 + βa).

xi value of the random variable associated with node i in a Bayesian

network.

Xat generalized Beta random variable associated with link a and time t.

xkat observation k of the random variable x of link a at time t.

xmax maximum number of vehicles in a link. Capacity.

yi(t) maximum flow in cell i and the number of vehicles that coming from

cell i− 1 can enter cell i during the time interval (t, t+ 1).

Yat standard normal random variable associated with link a and time t.

ykat standard normal variable value corresponding to observation k in link

a at time t.

Ypqr(t) cumulative number of vehicles entering the network at origin p and

exiting at destination q over route r at any time t.

ypqr(t) instantaneous flows that arrives at destination q from origin p at time

t.

zipq flow going from origin node p to destination node q and passing

through node i.

A set of links of a traffic network.

A(n) set of links entering node n.

As subset of observed links.

B0 set of link-time pairs.

D set of origin-destination pairs of nodes.

F feasible set of scanned links observations.

H(α, θ, λ) shifted-Gamma family of densities.

N set of nodes of a traffic network.

P(a) set of paths containing link a.

R set of routes.

Ri set of paths of each OD pair i.

S(a) set of all links downstream link a in all its paths.

SC set of links to be scanned.
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