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Dr. José Maŕıa Cela Esṕın

Doctoral Program in Civil Engineering
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Abstract

In the field of nonlinear computational solid mechanics, contact problems deal with the defor-

mation of separate bodies that interact when they come in touch. Usually, they are formulated

as constrained minimization problems that may be solved using optimization techniques such

as penalty method, Lagrange multipliers, Augmented Lagrangian method, etc. This classical

approach is based on node connectivities between the contacting bodies. These connectivities

are created through the construction of contact elements introduced for the discretization of

the contact interface, which incorporate the contact constraints in the global weak form. These

methods are well known and widely used in the resolution of contact problems in engineering

and science.

As parallel computing platforms are nowadays widely available, solving large engineering

problems on high performance computers is a concrete possibility for any engineer or researcher.

Due to the memory and compute power that contact problems require and consume, they are

good candidates for parallel computation. Industrial and scientific realistic contact problems in-

volve different physical domains and a large number of degrees of freedom, so algorithms designed

to run efficiently on high performance computers are needed. Nevertheless, the parallelization

of the numerical solution methods which arises from the classical optimization techniques and

discretization approaches presents some drawbacks that must be considered. Mainly, for general

contact cases where sliding occurs, the introduction of contact elements requires the update of

the mesh graph in a fixed number of time steps. From the point of view of the domain decompo-

sition approach for parallel resolution of numerical problems, this is a significant drawback due

to its computational expensiveness since dynamic repartitioning must be done to redistribute the

updated mesh graph to the different processors. On the other hand, some of the optimization

techniques modify the number of degrees of freedom in the problem dynamically, by introducing

Lagrange multipliers as unknowns.

In this work we introduce a Dirichlet-Neumann type parallel algorithm for the numerical

solution of nonlinear frictional contact problems, putting a strong focus on its computational

implementation. Among its main characteristics, it can be highlighted that there is no need

to update the mesh graph during the simulation, as no contact elements are used. Also, no

additional degrees of freedom are introduced into the system, since no Lagrange multipliers are

required. In this algorithm, the bodies in contact are treated separately, in a segregated way.

The coupling between the contacting bodies is performed through boundary conditions transfer

at the contact zone. From a computational point of view, this feature allows using a multicode

approach. Furthermore, the algorithm can be interpreted as a black-box method as it allows to

solve each body separately even with different computational codes. We describe the parallel

implementation of the proposed algorithm and analyze its parallel behaviour and performance

in both validation and realistic test cases executed in HPC machines using several processors.





Resumen

En el ámbito de la mecánica de contacto computacional, los problemas de contacto tratan con

la deformación que sufren cuerpos separados cuando interactúan entre ellos. Comunmente, estos

problemas son formulados como problemas de minimización con restricciones, que pueden ser

resueltos utilizando técnicas de optimización como el penalty, los multiplicadores de Lagrange, el

Lagrangiano Aumentado, etc. Este enfoque clásico está basado en la conectividad de nodos entre

los cuerpos, que se realiza a través de la construccion de los elementos de contacto que surgen

de la discretización de la interfaz de contacto, los cuales, a su vez, incorporan las restricciones

de contacto en forma débil.

Debido al consumo de memoria y a los requerimientos de potencia computacional que los

problemas de contacto requieren, resultan ser muy buenos candidatos para la paralelización

computacional. Sin embargo, la paralelización de los métodos numéricos que surgen de las

técnicas clásicas de optimización y los distintos enfoques para su discretización presentan algu-

nas desventajas que deben ser consideradas. Principalmente, en los problemas más generales de

la mecánica de contacto ocurre un deslizamiento entre cuerpos. Por este motivo, la introducción

de los elementos de contacto vuelve necesaria una actualización del grafo de la malla cada cierto

número de pasos de tiempo. Desde el punto de vista del método de descomposición de dominios

utilizado en la resolución paralela de problemas numéricos, esto es una gran desventaja debido

a su coste computacional, ya que un reparticionamiento dinámico debe ser realizado para redis-

tribuir el grafo actualizado de la malla entre los diferentes procesadores. Por otro lado, algunas

técnicas de optimización modifican dinámicamente el número de grados de libertad del problema

al introducir multiplicadores de Lagrange como incógnitas del problema.

En este trabajo presentamos un algoritmo paralelo del tipo Dirichlet-Neumann para la reso-

lución numérica de problemas de contacto con fricción no lineales, poniendo un especial énfasis

en su implementación computacional. Entre sus principales caracteŕısticas se puede destacar la

no necesidad de actualizar el grafo de la malla durante la simulación, ya que en este algoritmo

los elementos de contacto no son utilizados. Adicionalmente, ningún grado de libertad extra

es introducido al sistema, ya que los multipliadores de Lagrange no son requeridos. En este

algoritmo los cuerpos en contacto son tratados de forma separada, de una manera segregada. El

acople entre estos cuerpos es realizado a través del intercambio de condiciones de contorno en

la interfaz de contacto. Desde un punto de vista computacional, esta caracteŕıstica permite el

uso de un enfoque multicódigo. Además, este algoritmo puede ser interpretado como un método

del tipo black-box ya que permite resolver cada cuerpo por separado, aun utilizando distintos

códigos computacionales. En este trabajo describimos la implementación paralela del algoritmo

propuesto y analizamos su comportamiento y performance paralela tanto en casos de validación

como reales, ejecutados en computadores de alta performance utilizando varios procesadores.
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Chapter 1

Introduction

In this first chapter we intend to give a general context and overview of this thesis. We start by

describing from a general viewpoint the context where this thesis is situated and the main aspects

that motivate this work. Then, we give a more detailed description of the scientific background

which is used as the theorethical frame for the developments included here. Finally, we present

the objectives of this work and the outline which shows the structure followed in this manuscript.

1.1 Motivation

Contact is a complex phenomena which can be analyzed from the atomistic perspective to the

macroscopic viewpoint, and from a high-speed impact to a quasi-static interaction. The level

of detail in this analysis depends on the context, which basically responds to the problem in

hand, related to an specific area of research. However, for most contact applications in solid and

structural mechanics, a purely macroscopic viewpoint based on classical continuum formulations

is sufficient. Throughout this thesis, this is the approach that will be followed.

The kind of contact problems which will be considered in this thesis are those which deal

with the deformation of separate bodies that interact when they come in touch. Since decades

ago, contact problems have taken an important place in the computational mechanics. Because

of their relevance and complexity, many numerical procedures have been proposed in engineering

literature. What makes improved contact simulation approaches promising is the fact that the

resulting numerical algorithm can be typically employed in a very wide range of scientific and

technical areas. This allows not only to reduce costs in product development and testing but

also to a better understanding of complex systems influenced by contact phenomena.

Due to the characteristics of the contact boundary conditions, this type of problems are for-

mulated as constrained minimization problems which may be solved using different optimization

techniques such as penalty method, Lagrange multipliers, Augmented Lagrangian method and

others. From the discretization of the continuum setting, those approaches result in a mono-

lithic system of linear equations which includes all the unknowns for all the geometries of the
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mechanical system. Furthermore, the discretization of contact problems using implicit solvers

requires the construction of contact elements, contact tangent matrices and contact residual vec-

tors which incorporate the contact constraints in the global weak form. In almost all contact

problems where the contact zone is a priori unknown, the use of contact elements requires the

update of the mesh graph in a fixed number of time steps. On the other hand, some of the

optimization techniques used in contact problems increase the number of degrees of freedom in

the problem, by introducing Lagrange multipliers as unknowns. Since the number of Lagrange

multipliers depends on the active contact surface at each time step, the total unknowns of the

system can vary as the problem evolves.

As parallel computing platforms are nowadays widely available, solving large engineering

problems on high perfomance computers is a concrete possibility for any engineer or researcher.

Due to the memory and compute power that contact problems require and consume, they are

good candidates for parallel computation. Industrial and scientific realistic contact problems in-

volve different physical domains and a large number of degrees of freedom, so algorithms designed

to run efficiently in high performance computers are needed. Nevertheless, the parallelization of

the solution methods which arises from the classical optimization techniques and discretization

approaches presents some drawbacks that must be considered. In the finite element formulation

the contact element matrices are assembled in the global structural matrix of the system. This

presents some disadvantages when sliding between meshes occurs, as classical formulations are

based on nodes connectivities. Sliding is a very frequent phenomena in contact problems which

requires the modification of node connectivities between the nodes at the boundary contact zone.

Since the contact area changes during an incremental solution procedure, the data structure for

the exchange of data between processors (i.e. the mesh graph) has also to be modified. The

use of Lagrange multipliers also affects the parallel data structure, since the size of the linear

equation system changes dynamically as the problem evolves. As consequence, mesh graph up-

dating and Lagrange multipliers usage has a strong and direct impact on the performance of a

parallel solution procedure for contact problems. Under a parallel approach, the modification

of the contacting area during execution time requires a mesh repartitioning at least every time

the node connectivity of the contact elements changes. This is a computationally expensive and

inefficient task.

According to what was explained in the previous paragraphs, it can thus be advantageous to

construct an algorithm for solving contact problems that employs a strategy in which the bodies

involved in the contact problem are treated separately, in a segregated way, in order to avoid

mesh graph updating issues. Also it would be advantageous if the algorithm doesn’t need to rely

on optimization techniques and Lagrange multipliers. Yet, such segregated algorithms must be

numerical robust, accurate, efficient and flexible. As will be seen in Sec. 1.2, there exists a gap

in scientific research where those issues are not covered thoroughly, in a unified manner. The

lack of an intensive analysis regarding the parallelization of traditional contact algorithms, and

new alternatives that are best suitable for the numerical resolution of contact problems in high

performance computing environments, are the main motivation of this thesis.

2



1.2. Background

1.2 Background

This section is intended to give a brief overview of some historical remarks and the state-of-the-

art in computational contact mechanics. For a more comprehensive analysis of this topic the

reader is referred to [88, 109, 112, 142], among others.

1.2.1 Classical and modern theoretical works

The birthmark of classical contact mechanics is linked to the early work conducted by Hertz [62]

on pressure distributions between contacting spheres. He developed an analytical solution by

assuming that bodies are elastic with small deformation, frictionless and that the area of contact

is elliptic.

After Hertz’s work many researchers continued studying contact problems between elastic

bodies of different shapes, with or without friction, looking for possible analytical solutions.

Nevertheless, only a few solutions restricted to a simple geometry of the bodies, a linear elastic

material and small deformations have been found. In these solutions, the shape of the bodies is

usually rectangular or circular, axisymmetric or two-dimensional. They are summarized in [53,

76, 77, 66].

In opposition to the classical approach, non-classical contact mechanics can be defined as me-

chanics of unilateral contacts with threshold friction, adhesion or lubrication between geometrical

complicated bodies undergoing large deformations, made of elastic, viscuous or plastic materials.

As the Hertz work for the classical approach, the formulation derived by Signorini [122] for the

equilibrium of a linear elastic body in frictionless contact with a rigid foundation can be regarded

as a milestone in modern contact mechanics. The generalization and theoretical structure of the

friction law was stablished by Moreau [99].

The next important step in modern contact mechanics was made by the application of vari-

ational methods to contact and friction formulations. Because of the nature of the contact

boundary conditions, the contact problem can be mathematically interpreted as a physical sys-

tem subjected to a governing variational inequality [41, 79]. An important characteristic of such

variational inequalities is that the solution and variation spaces are constrained by the physical

constraints, which depend on the unknown solution. Consequently, the mathematical structure

of the contact problem is very different from a typical initial/boundary value problem that only

includes Dirichlet and/or Neumann boundary conditions. Additionally, the presence of friction

adds significant mathematical complications [79, 28, 101, 102].

In previous references and others, the particular case of a linear elastic solid in frictional con-

tact with a rigid obstacle (unilateral contact) has been extensively studied and can be considered

to be well characterized mathematically. Nevertheless, extension to inelastic materials and large

deformations is much more difficult and remains unsolved. Additionally, the replacement of the

rigid obstacle by a second deformable body adds extra complications to the problem that affects

its mathematical well-posedness. Those effects are still not completely understood.

3
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1.2.2 Numerical treatment of contact problems

From previous section it becomes clear that classical and modern contact mechanics give response

only to a small part of real industrial applications. For this reason, computational contact

mechanics became a relevant field of research since 1970s and 1980s, where first contributions

to the treatment of contact mechanics within the Finite Element Method can be traced back.

Works by Francavilla and Zienkiewicz [48] and Hughes et al. [72] are considered the pioneers in

this field, proposing a purely node-base approach, which requires node-matching meshes between

contacting bodies and is restricted to small deformations.

As a satisfactory general methodology for formulating contact and friction inequalities still

doesn’t exist, further developments in computational contact mechanics have gone into two

main directions. In the first direction, contact and friction conditions are stablished in the

discrete form of the problem. Constraints and linearization of the nonlinear resultant equation

are therefore limited to a particular type of discretization. Using this approach gradual progress in

solving increasingly difficult problem was made, see [138, 125, 32, 106, 140]. Nevertheless further

works in this direction have encountered serious obstacles as: limitations on the admissible

incremental motions, restrictions to rigid obstacle problems and, as mentioned before, restriction

to a particular discretization. This situation results from the lack of a continuum framework for

the large deformation frictional contact problems.

The second direction intends to overcome these obstacles putting special effort in the de-

velopment of a continuum formulation for contact problems, which intends to approach contact

mechanics from the abstract and general continuum point of view. As mentioned in Sec. 1.2.1,

the continuum formulation of contact problems includes variational inequalities leading to non-

smooth constrained minimization problems that can not be directly tackled by the finite element

method. First, they have to be expressed as variational equalities or unconstrained minimization

problems. Variational inequalities can be reformulated into a variational equality problem with

special contact terms under the assumption of knowing a priori the contact force. The form of

the contact terms depends on the method chosen to enforce the contact constraints. For con-

straint enforcement, a wide range of techniques from the optimization literature exist [92, 52].

Among them, the most used methods for constraint enforcement in the numerical treatment of

contact problems are: the penalty method [100, 30, 57, 125, 32, 140] and the classical Lagrange

multiplier method [8, 50]. Due to known drawbacks of the penalty method (see [92, 79]), Lagrange

multiplier techniques have become relevant in the domain of constrained problems. Especially

one of its extensions has gained importance in the field of computational contact mechanics: the

Augmented Lagrangian method, which combines advantages of both penalty and Lagrange mul-

tipliers methods and has been applied successfully to frictionless and frictional contact (see [54,

139, 4, 123, 110]).

The implicit numerical resolution of contact problems with the Finite Element Method re-

quires the construction of contact elements. Contact elements are used to link potentially inter-

acting surfaces and to transfer efforts from one to another. The structure of the contact elements

depends on the contact discretization method. The simplest is the node-to-node discretization [48]
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which is valid only for matching meshes and does not allow sliding between contacting bodies

or large deformations. The node-to-segment is a multipurpose discretization [73, 8, 17, 57, 88,

90, 123, 140] which is valid for non-conforming meshes, large deformation and sliding, therefore

becoming the standard procedure in computational contact mechanics. But as it is, this dis-

cretization is not stable, fails contact patch test unless a two-pass scheme is used and is valid

only for low order elements. A different discretization approach, called contact domain method

and based on the node-to-segment approach has been proposed in [103, 59]. This method has

been reported to be stable and passes the patch test, but its three dimensional implementation

is not applicable for arbitrary discretizations. The last method that may be distinguished is the

segment-to-segment discretization [125, 105, 144]. In contrast to the purely point-wise procedure

(typical of the node-to-segment methods), the segment-to-segment approach is based on a sub-

division of the contact surface into individual segments for numerical integration together with

an independent approximation of the contact pressure.

1.2.2.1 Domain decomposition approaches

Mortar element methods, originally introduced as an abstract domain decomposition technique [18,

14], are characterized by an imposition of the occurring interface constraints in a weak sense and

by the possibility to prove their mathematical optimality. In general terms, they allow for noncon-

forming decomposition of the computational domain into subregions and for the optimal coupling

of different variational approximations in different subregions. In the context of contact analy-

sis, this allows for a variationally consistent treatment of non-penetration and frictional sliding

conditions despite the inevitably non-matching interface meshes for finite deformations and large

sliding motions. Segment-to-segment discretization has been coupled with mortar methods and

applied to contact problems in early works [15, 64, 96], though limited to small deformations.

Restrictions on the mortar-based contact formulations regarding the nonlinear kinematics have

been removed, leading to the implementations given in [46, 117, 131, 118, 113].

The FETI method is an iterative substructuring method for solving systems of linear equa-

tions using Lagrange multipliers. It was introduced in [43] and is based on the decomposition

of the spatial domain into non-overlapping subdomains that are glued by Lagrange multipliers.

The FETI method can be applied without any algorithmic changes for a mortar finite element

discretization in non-matching meshes [126]. This has been reported in [39, 35] only for 3D

frictionless contact problems in linear elasticity. A more comprehensive approach for mortar

discretization and FETI methods i.e. frictional contact problems in large deformation for non-

matching meshes, is still missing in the literature. Conversely, FETI method has been applied

to elastic frictionless and frictional contact problems in matching grids for small [34, 36, 40, 37,

38] and large displacements [133].

Monotone Multigrid methods are algorithms for solving linear systems arising from the dis-

cretization of partial differential equations based on a sequence of meshes obtained by successive

refinement, having a recursive structure [82]. Despite in the literature multigrid methods are

sometimes defined as alternatives to domain decomposition methods, in the field of computa-

tional contact mechanics they are used as subdomain linear solvers. For unilateral contact prob-

5



Introduction

lems, monotone multigrid methods yield globally convergent and efficient iterative solvers [83,

84]. However, these techniques cannot be applied directly to multibody contact problems be-

cause of the non-conforming situation at the interface of the contacting bodies. In [135] a new

approach for the numerical simulation of multibody frictionless contact problems based on mono-

tone multigrid techniques and mortar methods is presented.

Alternative domain decomposition approaches for contact problems are based on formula-

tions that allow to solve problems for each body separately with certain boundary conditions

at the natural interface. A Dirichlet-Neumann algorithm for solving frictional Signorini con-

tact problems between two elastic bodies based on mortar elements and the monotone multigrid

method has been proposed and studied in the discrete setting in [85]. This algorithm consists on

solving in each iteration a linear Neumann problem for one body and a unilateral contact prob-

lem for the other by using essentially the contact interface as the boundary data transfer. The

convergence of this algorithm in the continuous setting in its frictionless form has been proved

in [10, 42] and considering friction in [12]. In [11] another improvement leading to a Neumann-

Neumann approach was proposed, in which two Neumann sub-problems are solved in order to

ensure the continuity of normal stresses and its convergence is proven in the continuous setting.

Later in [60] the authors presented various numerical implementations of this approach. Finally,

in [61] the Neumann-Neumann algorithm is extended to two-body elastic contact problems with

Tresca friction.

The Dirichlet-Neumann approach presented in the previous paragraph is the main topic of

this thesis and marks the point of origin of this work.

1.2.2.2 Parallel computational contact mechanics

Few works in the computational contact mechanics literature have been devoted to parallel

methods. The main research interest in this topic was focused on static or transient explicit

contact simulations due to its simplicity compared with implicit integrators. Several authors have

reported on their effort to parallelize this kind of problems and specially the contact detection

procedure [94, 108, 111, 7, 58].

1.3 Objectives

As mentioned in Secs. 1.1 and 1.2, computational algorithms for the solution of contact mechanics

problems between deformable bodies present some particularities which can be considered as

handicaps for their parallelization. Mainly, the following are the two most important issues:

• Penalty and Augmented Lagrangian based methods add explicit connectivities between

contacting nodes, and

• Lagrange multiplier based methods increase dinamically the number of degrees of freedom

of the resultant system matrix.
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Traditional algorithms for computational contact mechanics are based on node connectivities

for the transference of data related to the contact phenomena, through the contact elements cre-

ated for such end. General contact problems involve sliding after contact i.e. relative movement

of one body with respect to the other in a contacting situation. This implies that contact ele-

ments must be created and actualizated on the fly in each inner iteration and/or time step, what

continously changes the graph of the system. This means that connectivities between contacting

nodes are created and modified in execution time, and because of that, new contributions in the

global tangent matrices will appear.

Parallel algorithms for distributed memory machines require the partitioning of the system

graph, which is defined by the connectivities of the mesh. This is normally done as a preprocess

task, as generally the mesh does not change. Nevertheless, for contact problems where the graph

is continously being updated, this partitioning must be done in execution time everytime the

graph changes. From the viewpoint of the computational resources, this is a very demanding

procedure.

Motivated by the fact that standard contact algorithms are not a suitable alternative for

efficient parallelization and by the lack of scientific literature regarding those issues, the main

objective of this thesis is to introduce a novel contact algorithm based on domain decomposition

methods that can run efficiently in High Performance Computing (HPC) based supercomputers,

considering in a unified way: physical, numerical, algorithmic and computational aspects. This

algorithm solves numerically a nonlinear contact problem between two deformable bodies. It is

based on a nonlinear block Gauss-Seidel method as an iterative solver, which can be interpreted

as a Dirichlet-Neumann algorithm for the nonlinear contact problem. The main aspect of the

proposed algorithm is that the bodies in contact are treated separately, in a segregated way.

Then, coupling is performed through boundary conditions transfer at the contact zone. As this

approach solves each body separately, there is no need to increase the degrees of freedom of the

problem or to redefine the mesh graph at different time steps, since no contact elements are used

in the algorithm. The main advantages of the algorithm introduced in this thesis are summarized

in the following list:

• General parallel contact algorithm.

• Do not restrict the mesh partitioner.

• Do not require dynamic partitioning.

• The number of unknowns remain constant during the simulation.

• Do not affect the system matrix (no connectivities are created).

• Is suitable for large scale problems (domain decomposition approach).

• Has individual scheme solution for each problem.

• Is robust.
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• Black box. Can be coupled to any linear or nonlinear mechanics simulation code.

• Can be used with any material, damage and element model.

• Strongly favours a general computational framework of parallel multiphysics simulations

for supercomputers.

As a complementary objective, all the algorithms presented in this thesis were implemented in

Alya, the multiphysics, multiscale and massively parallel finite element code developed in-house

at the Barcelona Supercomputing Center. For a detailed description of the Alya system, please

see Appendix A, Sec. A.1.

1.4 Outline

Despite the main objective of this thesis is to present a novel algorithm for the parallel numerical

resolution of contact problems, not less important are the fundaments which justify the necessity

for the development of such algorithm. To reach a clear overview of the computational context

that motivated this work has been an important and time-demanding stage during the elaboration

of this thesis. This is why we designed its structure to give a strong technical basis of these

fundaments before introducing the new developments. Thus, the rest of this thesis is organized

as follows.

In Chapter 2, we outline the relevant governing equations of nonlinear solid mechanics and

contact mechanics. Additionally, we review the basic concepts as contact problem definition,

boundary conditions and weak formulation in a very general style. We cover also some dis-

cretization aspects. This chapter intends to set the minimal mathematical basis needed for a

comprehensive development of the following chapters.

Chapter 3 is divided in two parts. The first part is devoted to an introduction of some basics

concepts related to parallel computing. The second part, which is supported by the first part of

this chapter, describes the context and enumerates the reasons which fundament this work. In

this chapter we also introduce and enumerate the design basis for the novel algorithm proposed

in this thesis.

In Chapter 4 we present a new methodology for solving parallel unilateral frictional contact

problems in distributed memory computers. Here, we review in more detail the mathematical

formulation of unilateral contact problems and enumerate the basics of the new proposed method.

Then, we introduce the parallel strategy used for contact detection and communication and

present a detailed description of the algorithm implementation in a parallel environment. Finally,

we show some numerical experiments and present some performance studies.

In Chapter 5 we extend the methodology presented in the previous chapter to a two-body

contact problem, i.e. bilateral contact problem. Following the same procedure from Chapter 4,

we present the algorithm putting special emphasis in its parallel implementation, which is the

more distinctive part of this work. To close, we present some numerical results that illustrates

the efficiency and flexibility of our proposed method.

8



1.4. Outline

Finally, the conclusions and outlook in Chapter 6 summarize the most important results and

achievements of this thesis. Also, it points out which aspects of the proposed algorithm still have

room for improvement, establishing future lines of research.
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Chapter 2

Governing Equations for

Large Deformation Contact

By reviewing the basic concepts of continuum mechanics with an emphasis on the governing

equations for solid dynamics and contact mechanics, the goal in this chapter is to establish a basic

conceptual foundation that will serve as starting point for this thesis. Also, some discretization

aspects are covered here. Previous work exists on the exact linearization of frictionless contact

problems [138, 106] as well as two dimensional frictional problems [125, 140], but each case is

limited to a particular discretization. The mathematical framework presented in this thesis is

taken from [88, 90, 89], which includes the linearization in the continuum setting, such that no

limitations exists. This general formulation and implementation of the frictional contact problem

in a finite element setting has not been reported previously in the literature. For a more extensive

review in the field of solid and computational contact mechanics, see also [87], [137], [142] and [16].

2.1 Initial/Boundary value problems for the finite strain case

2.1.1 Problem formulation

To formulate solid mechanic problems in finite strain it is necessary to distinguish between two

distinct observer frames: the reference configuration Ω, which represents the domain occupied

by all the material points X at time t = 0, and the current configuration at a time t ∈ I, given

by application of a configuration mapping ϕt to Ω. This current configuration describes the

changed position x at a certain time t (x = ϕt(X). The absolute displacement of a material

point is then described as u(X, t) = x(X, t) −X. A common Cartesian coordinate system is

considered here for all configurations. The boundary ∂Ω of the open set Ω is decomposed into

two nonoverlapping subdomains; one in which the motions are prescribed (Γu), and one in which

the tractions are specified (Γσ), see Fig. 2.1. We assume that these regions obey:

Γu ∪ Γσ = ∂Ω,

Γu ∩ Γσ = ∅.
(2.1)
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Points in the reference (or material) description are denoted X, while points in the current

(or spatial) configuration are denoted x, such that x = ϕt(X). Consistent with the most

frequent choice in solid and structural mechanics, in the present section we aim to develop a

Total Lagrangian description of the problem, such that the independent variable of interest will

be the material points in the reference configuration X, while the unknown in the problem to

be solved will be ϕt, for all t ∈ I (or equivalenty, the displacement vector u(X, t)).

Figure 2.1: Basic notation for the finite strain boundary value problem.

Regardless of the constitutive law employed, the balance of linear momentum for a continuous

medium considering finite strains may be specified as:

∇ · P + F = ρ0A in Ω, (2.2)

where P is the first Piola-Kirchhoff stress tensor, which measures stress by referencing the

force acting on areas to the magnitude of those areas in their undeformed configuration. F is

the prescribed body force per unit reference volume in Ω, ρ0 is the reference mass density and

A is the material acceleration of the particle referred to spatial coordinates.

To complete the description of the problem, the boundary conditions and initial conditions

must be given. The prescribed values are designated by a superposed bar. The boundary

conditions are:

ϕt = ϕ̄t

P ·N = T̄

on Γu,

on Γσ,
(2.3)

whereN is the unit outward normal to ∂Ω in the reference configuration, ϕ̄t are the prescribed

displacements and T̄ the prescribed tractions.
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Since Eq. (2.2) is second order in time, two set of initial conditions are needed. Those are

expressed in terms of the displacements and velocities:

ϕ|t=0 = ϕ̄0

ϕ̇|t=0 = V̄ 0

in Ω̄,

in Ω̄,
(2.4)

where ϕ̄0 are the prescribed initial displacements, V̄ 0 the prescribed initial velocities and Ω̄

denotes the closure, or inclusion of the boundary, of the open set Ω.

2.1.2 The weak form in finite strains

In the finite element method, the entity discretized is the weak form of the differential equation.

To tacke the resolution of Eq. (2.2) using finite elements, we turn now to the development of a

weak form for the finite strain problem. This can be done by considering weighting functions
∗
ϕ,

defined on Γ̄, which are members of a weighting space V meeting the following definition:

V = { ∗ϕ : Ω̄→ Rnsd | ∗ϕ ∈ H1(Ω),
∗
ϕ = 0 on Γu} (2.5)

Additionally, we may define a solution space Ut for each t ∈ I, according to the following:

Ut = {ϕt : Ω̄→ Rnsd |ϕt ∈ H1(Ω),ϕt = ϕ̄ on Γu} (2.6)

With the solution and weighting spaces defined, the weak form is developed by dotting the

governing differential Eq. (2.2) with an arbitrary
∗
ϕ ∈ V and integrating over Ω. This operation

gives: ∫
Ω
(ρ0A−∇ · P − F )

∗
ϕ dΩ +

∫
Γσ

(P ·N − T̄ )
∗
ϕ dΓ = 0 (2.7)

Rearrangement of Eq. (2.7), use of the fact that
∗
ϕ = 0 on Γu and utilization of the boundary

condition on Γσ gives rise to the weak form of the problem:

For each t ∈ I, find ϕt ∈ Ut such that δWsb = 0 for all
∗
ϕ ∈ V,

where:

δWsb(ϕt,
∗
ϕ) :=

∫
Ω

[
ρ0
∗
ϕ ·A+ GRAD(

∗
ϕ) : P

]
dΩ

−
∫

Ω

∗
ϕ · F dΩ−

∫
Γσ

∗
ϕ · T̄ dΓ.

(2.8)

2.2 Two-body contact problem definition

The large deformation, large motion frictional contact problem involving two bodies is shown

schematically in Fig. 2.2. The reference configurations of this two bodies are represented by Ω(1)

and Ω(2). The bodies undergo motions, denoted ϕ(1) and ϕ(2), which cause them to contact and
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produce interactive forces during some portion of the time interval I = [0, T ]. These motions can

be expressed by the following mappings:

ϕ(i) : Ω̄(i) × I→ Rnsd, i = 1, 2. (2.9)

For any time t ∈ I, the configuration obtained by fixing the time argument of ϕ(i) is denoted

as ϕ
(i)
t , i = 1, 2. Quantities defined on ϕ

(i)
t (Ω(i)) are referred to as spatial objects, while quantities

defined on the reference states Ω(i) are referred to as material objects.

Figure 2.2: Basic notation for the two body large deformation contact problem.

Accordingly, material points of Ω̄(1) are denoted X, while material points of Ω̄(2) are denoted

Y . Spatial counterparts are defined as x and y, respectively. Considering the boundaries ∂Ω(i)

of Ω(i), i = 1, 2, one may define subsets Γ
(i)
c ⊂ ∂Ω(i) such that all points X (or Y ) where contact

occurs are included. Spatial counterparts of these subsurfaces are designated as γ
(i)
c = ϕ

(i)
t (Γ

(i)
c ),

i = 1, 2. It is over the surfaces Γ
(i)
c that contact constraints are defined. The remainder of the

surfaces ∂Ω(i) are assumed to be divided between portions Γ
(i)
u where motions are prescribed,

and portions Γ
(i)
σ where tractions are prescribed. Then, Γ

(i)
c , Γ

(i)
u and Γ

(i)
σ satisfy:

Γ
(i)
σ ∪ Γ

(i)
u ∪ Γ

(i)
c = ∂Ω(i), and

Γ
(i)
σ ∩ Γ

(i)
u = Γ

(i)
σ ∩ Γ

(i)
c = Γ

(i)
u ∩ Γ

(i)
c = ∅

(2.10)

for each of the bodies i.

Recalling Eq. (2.2), the momentum balance equation can be written for each body i via:
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∇ · P (i) + F (i) = ρ
(i)
0 A

(i) in Ω(i). (2.11)

Relying on the previous summary of the finite strain problem in Sec. 2.1.1, the initial and

boundary conditions imposed on each of the bodies i can be summarized as:

ϕ
(i)
t = ϕ̄t

(i)

P (i) ·N (i) = T̄
(i)

ϕ(i)|t=0 = ϕ̄0
(i)

ϕ̇(i)|t=0 = V̄ 0
(i)

on Γ(i)
u ,

on Γ(i)
σ ,

in Ω̄(i),

in Ω̄(i).

(2.12)

2.2.1 Contact constraints in large deformation

The final ingredient in the specification of a finite strain IBVP including contact is the defini-

tion of the contact conditions governing the response on Γ
(1)
c (or, alternatively, Γ

(2)
c ). In the

approach followed here, the contact conditions are considered to be parametrized by X ∈ Γ
(1)
c ,

with the opposing surface Γ
(2)
c (and its current position γ

(2)
c ) providing the additional geometric

information necessary to complete the definitions. We consider any such point X ∈ Γ
(1)
c , whose

current position, for any time t ∈ I, is given by x = ϕ
(1)
t (X). The current position for any point

Y ∈ Γ
(2)
c is similarly expressed as y = ϕ

(2)
t (Y ). The impenetrability constraint is defined for

all X, and for a given pair of motions ϕ(1)(·, t) and ϕ(2)(·, t) by first identifying a contact point

Ȳ (X, t) according to the following closest point projection in the spatial configuration:

Ȳ (X, t) = arg min
Y ∈Γ

(2)
c

‖ϕ(1)
t (X)−ϕ(2)

t (Y )‖. (2.13)

The gap function g(X, t) may then be defined as:

g(X, t) = −ν ·
(
ϕ

(1)
t (X)−ϕ(2)

t (Ȳ )
)
, (2.14)

where ν denotes the outward unit normal to γ
(2)
ct at ȳ = ϕ

(2)
t (Ȳ ) (see Fig. 2.3). Thus, for

any time t, g(X, t) is defined in terms of the closest point projection (in an Euclidean sense) of

x = ϕ
(1)
t (X) onto the opposing surface γ

(2)
c . Of course g is a function of both ϕ(1) and ϕ(2),

although for notational simplicity explicit indication of this dependence is omitted.

In considering the tractions t(i) acting on the contacting regions of Γ
(i)
c , it is important to

emphasize that Newton’s laws require these to be equal and opposite, i.e.:

t(1)(X) = −t(2)(Ȳ (X)), for allX ∈ Γ(1)
c . (2.15)

Thus, we can now quantify the tractions on the interface in terms of one traction vector only,

which we select here as t(1). The contact pressure tN acting at X, assumed to be positive in

compression, is defined by considering the component of this traction in the direction of ν:

tN (X) := t(1)(X) · ν. (2.16)
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Figure 2.3: Gap definition and basis vectors. The interior of Ω(2) is indicated by
the shaded region.

Besides, contact pressure tN can be recovered from the decomposition of the Piola traction

T at X in normal and tangential (or frictional) components via:

T (X, t) = P (X, t)N(X, t) = tNν − tTατα (2.17)

The contact conditions interrelating tN and g on the contact surface Γ
(1)
c may now be stated

in terms of Kuhn-Tucker optimality conditions (see, e.g., [79]):

tN ≥ 0, (2.18a)

g ≤ 0, (2.18b)

tN g = 0, (2.18c)

which must hold for all X ∈ Γ
(1)
c and t ∈ I.

Eq. (2.18a) refers to the fact that all contact interaction must be compressive, while Eq. (2.18b)

states the impenetrability condition. The final condition, given by Eq. (2.18c) requires that com-

pressive stress only be generated in the instance where contact is occuring, i.e. g = 0. When

g < 0, this condition requires tN to be zero, consistent with an out-of-contact condition. Fig. 2.4a

gives a simple schematic representation of the admissible combinations of g and tN corresponding

to Eqs. (2.18). Fig. 2.4b shows all the possible combinations of tN and g values for each possible

situation: out-of-contact, non-admissible penetration and contact condition.

2.2.1.1 Frictional conditions

Contact conditions given by Eqs. (2.18) are valid for frictionless contact problem definition. We

turn attention now to the introduction of frictional response into the problem description. The

frictional modeling framework used in this thesis is based on the most common of frictional

descriptions: the Coulomb friction law.

A Coulomb friction law can be stated by introducing the coefficient of friction µ, and by

requiring the following conditions to be met for all X ∈ Γ
(1)
c , in addition to the Kuhn-Tucker

conditions summarized by Eqs. (2.18):
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(a)

(b)

Figure 2.4: (a) Schematic illustration of the Kuhn-Tucker conditions governing
the frictionless contact interaction. Bold line indicates admissible combinations
of contact pressure tN and gap g. (b) Illustrative example showing all the pos-
sible situations in a two body contact problem: 1- Out-of-contact (admissible);
2- Penetration (non-admissible); 3- Contact (admissible).
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||tT || ≤ µ tN (2.19)

and

uT = λ tT , where

λ = 0, if ||tT || < µ tN ,

λ ≥ 0, if ||tT || = µ tN .
(2.20)

Eq. (2.19) requires that the magnitude of the tangential stress vector tT does not exceed the

coefficient of friction µ times the contact pressure tN . Eq. (2.20), on the other hand, represents

two important physical ideas associated with the Coulomb law: first, that the tangential slip uT

be identically zero when the tangential stress is less than the Coulomb limit; and second, that

any tangential slip that does occur be colinear with the frictional stress exerted by the sliding

point X on the opposing surface Γ
(2)
c . Fig. 2.5 graphically represents the concept in the case

corresponding to one dimensional sliding. For a more detailed description about the frictional

treatment in large deformation contact, see [87].

Figure 2.5: Schematic depiction of Coulomb friction law.

2.2.2 Weak form of the large deformation contact problem

We recall Sec. 2.1.2 and define solution and weighting spaces U (i)
t and V(i), consisting of potential

solutions ϕ(i) and admissible variations
∗
ϕ

(i)
with respect to the reference configuration of body

(i), according to:

U (i)
t = {ϕ(i)

t : Ω̄(i) → Rnsd |ϕ(i)
t ∈ H1(Ω(i)),ϕ

(i)
t = ϕ̄(i) on Γ(i)

u } (2.21)

and

V(i) = { ∗ϕ
(i)

: Ω̄(i) → Rnsd | ∗ϕ
(i)
∈ H1(Ω(i)),

∗
ϕ

(i)
= 0 on Γ(i)

u }. (2.22)

Following the same arguments given in Sec. 2.1.2, the weak form of the momentum balance

for each body (i) is given by:
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δW(i)(ϕ
(i)
t ,
∗
ϕ

(i)
) :=

∫
Ω(i)

[
ρ0
∗
ϕ

(i)
·A(i) + GRAD(

∗
ϕ

(i)
) : P (i)

]
dΩ

−
∫

Ω(i)

∗
ϕ

(i)
· F (i) dΩ−

∫
Γ
(i)
σ

∗
ϕ

(i)
· T̄ (i)

dΓ−
∫

Γ
(i)
c

∗
ϕ

(i)
· T̄ (i)

dΓ = 0,

(2.23)

which must hold for all
∗
ϕ

(i)
∈ V(i). The last two terms of Eq. (2.23) corresponds to the

virtual work of the tractions, which are specified on Γ
(i)
σ and subjected to contact restrictions on

Γ
(i)
c . The last term in particular, corresponds to the contact virtual work on body (i).

A variational statement for the two body system is obtained by adding the two weak forms

implied by Eq. (2.23). For notational convenience in what follows, we introduce the notations

ϕt and
∗
ϕ to denote the collection of the respective mappings ϕ

(i)
t and

∗
ϕ

(i)
for i = 1, 2. In other

words,

ϕt : Ω̄(1) ∪ Ω̄(2) → Rnsd ,
∗
ϕ : Ω̄(1) ∪ Ω̄(2) → Rnsd .

(2.24)

We utilize similar notations for the solution and variational spaces, such that Ut is the col-

lection of U (i)
t and V is the collection of V(i). With these ideas, the variational principle for the

entire system is expressed as:

δW(ϕt,
∗
ϕ) :=

2∑
i=1

δW(i)(ϕ
(i)
t ,
∗
ϕ

(i)
)

=
2∑
i=1

{∫
Ω(i)

[
ρ0
∗
ϕ

(i)
·A(i) + GRAD(

∗
ϕ

(i)
) : P (i)

]
dΩ

−
∫

Ω(i)

∗
ϕ

(i)
· F (i) dΩ−

∫
Γ
(i)
σ

∗
ϕ

(i)
· T̄ (i)

dΓ

}
−

2∑
i=1

{∫
Γ
(i)
c

∗
ϕ

(i)
· T (i)

c dΓ

}
= 0

(2.25)

which must hold for all
∗
ϕ ∈ V. By means of Eq. (2.8) we can rewrite Ec. (2.25) to obtain the

following expression:

δW(ϕt,
∗
ϕ) :=

2∑
i=1

δW(i)
sb (ϕ

(i)
t ,
∗
ϕ

(i)
) + δWc(ϕt,

∗
ϕ) = 0. (2.26)

where the notation

δWc(ϕt,
∗
ϕ) := −

2∑
i=1

{∫
Γ
(i)
c

∗
ϕ

(i)
· T (i)

c dΓ

}
(2.27)

represents the virtual work due to the contact forces.

Eq. (2.26) shows that the virtual work for the entire system can be expressed as a sum of the
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contributions given by the virtual work of each independent body δW(i)
sb due to internal stresses

and applied loadings, plus the contribution given by the virtual work due to the contact forces

δWc.

2.2.2.1 Contact virtual work: the contact integral

From Ec. (2.27) it can be seen that expression for δWc includes two integrals, one over each

contact surface. As all contact quantities can be parametrized by X ∈ Γ
(1)
c , δWc is now con-

verted to an expression involving only an integral over Γ
(1)
c . This is achieved by enforcing linear

momentum across the contact interface, by requiring that the differential contact force induced

on body (2) at Ȳ be equal and opposite to that produced on body (1) at X:

t
(2)
t

(
Ȳ (X)

)
dΓ(2)

c = −t(1)
t (X) dΓ(1)

c . (2.28)

Eq. (2.28) facilitates replacement of the contact contribution in Eq. (2.27) by:

δWc(ϕt,
∗
ϕ) := −

∫
Γ
(1)
c

t
(1)
t (X) ·

[
∗
ϕ

(1)
(X)− ∗ϕ

(2)
(Ȳ (X))

]
dΓ. (2.29)

Using the resolution of t(1)(X) into normal and tangential (or frictional) components in

Eq. (2.29), we obtain:

δWc(ϕt,
∗
ϕ) := −

∫
Γ
(1)
c

[tNν − tTατα]︸ ︷︷ ︸
t(1)(X)

·
[
∗
ϕ

(1)
(X)− ∗ϕ

(2)
(Ȳ (X))

]
dΓ (2.30)

Eq. (2.30) can be expressed even more compactly through consideration of appropriate lin-

earized variations of the contact kinematics (for a detailed description of this topic see [87]):

δWc(ϕt,
∗
ϕ) :=

∫
Γ
(1)
c

[tN δg + tTα δξ̄
α] dΓ (2.31)

where δg is the normal gap variation and δξ̄α is the tangential gap variation.

2.3 Discretization aspects

In this section we will introduce some basics aspects of the finite element discretization of contact

interaction. The reader can refer to [87, 137, 142] for a more detailed description of this topic.

In giving the discrete formulation of the contact problem, the idea is that one applies the

spatial discretization (Fig. 2.6) to the weak form of the governing equations. The result is a

nonlinear set of ordinary differential equations. To be more specific, one begins by considering

ϕ(i)h and
∗
ϕ

(i)h

, finite dimensional counterparts of ϕ(i) and
∗
ϕ

(i)
. Substitution of these finite

dimensional quantities into the global variational principle (Eq. (2.26)) gives a set of nonlinear

ordinary diferential equations of the form:

Md̈(t) + f int(d(t))− f ext(t) + f c(d(t)) = 0, (2.32)
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Figure 2.6: Finite element discretization of the computational domain.

subject to initial conditions on d and ḋ. In Eq. (2.32), M is the mass matrix, f int is the

internal force vector, f c is the contact force vector and f ext is the external force vector, which is

assumed to be known data. The vector d symbolically represents the solution vector, or a vector

of nodal values of the motion ϕh. Eq. (2.32) is in general highly nonlinear, mostly because of the

terms f int(d(t)) and f c(d(t)). Its quasistatic equivalent is obtained by omission of the inertial

term Md̈(t). The contact stiffness, defined as kc(d) = ∂
∂d f c(d(t)) and the contact force vector

f c(d(t)) are needed to accomplish the desired result: the numerical solution of Eq. (2.32).

2.3.1 Contact surface discretization

For the discrete contact formulation developed in previous paragraph, all development depends

only on the configurations and variations evaluated on the contact surfaces Γ
(i)
c , and not on

the values in the interior of the bodies. Thus, in considering the discretization leading to the

specification of f c(d(t)), only the restrictions of ϕ(i)h and
∗
ϕ

(i)h

to Γ
(i)h

c need to be considered.

These restrictions are considered to be collections of local mappings (denoted by superscript e),

defined over individual element surfaces (see Fig. 2.7).

Figure 2.7: Discretization of the contact surface.

For example, ϕ(1)h
e

(η), with η ∈ A(1)e , is expressed using the isoparametric interpolation as:

ϕ(1)h
e

(η) =

nnes∑
a=1

Na(η)d(1)
a (t), (2.33)

where d
(1)
a (t) is a nodal value of ϕ(1)h , and nnes is the number of nodes per element surface.
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Na(η) denotes a standard Lagrangian shape function, defined on the biunit square A(1)e for 3D

problems and on A(1)e = [−1, 1] for 2D problems. The interpolation of
∗
ϕ

(1)h

(η) is similarly

conceived, via:

∗
ϕ

(1)h
e

(η) =

nnes∑
a=1

Na(η)c(1)
a . (2.34)

Using the isoparametric interpolation scheme, one also has:

Xhe(η) =

nnes∑
a=1

Na(η)Xa. (2.35)

Analogues of Eqns. (2.33)-(2.35) are assumed to hold for body (2):

ϕ(2)h
e

(ξ) =

nnes∑
b=1

Nb(ξ)d
(2)
b (t), (2.36)

∗
ϕ

(2)h
e

(ξ) =

nnes∑
b=1

Nb(ξ)c
(2)
b , (2.37)

and

Y he(ξ) =

nnes∑
b=1

Nb(ξ)Y b, (2.38)

defined over element surface parent domains A(2)e . The contact virtual work in the discrete

setting is now written by substitution of the above discrete fields into Eq. (2.31), as:

δWc(ϕ
h
t ,
∗
ϕ
h
) :=

∫
Γ
(1)h
c

[thN δg
h + tThα δξ̄

αh ] dΓ. (2.39)

Eq. (2.39) may be written as a sum of integrals over the nsel elements surface of Γ
(1)h

c (see

Fig. 2.7):

δWc(ϕ
h
t ,
∗
ϕ
h
) :=

nsel∑
e=1

∫
Γ
(1)h

e

c

[thN δg
h + tThα δξ̄

αh ] dΓ, (2.40)

where each subintegral of Eq. (2.40) is evaluated using quadrature.

Based on Eq. (2.40), the global contact force vector f c can be expressed as:

f c =

nsel·nint

Ã
k=1

W k̃ j(ηk̃)
[
thN (ηk̃) δgh(ηk̃) + tThα (ηk̃) δξ̄α

h
(ηk̃)

]
(2.41)

where A is the standard finite element assembly operator, nint is the number of integration

points per element surface of Γ
(1)h

c , W is the quadrature weight, j is the jacobian of the trans-

formation and k̃ is a revised quadrature point index, which runs over all quadrature points in

Γ
(1)h

c .

The most relevant conclusion that can be extracted from Eq. (2.41) is that the global contact

22



2.3. Discretization aspects

force vector results from the assembly of elemental matrices which are constructed based on the

position of contacting nodes between the two surfaces. In this way, one can think of new elements

that are created between the connection of contacting nodes of both surfaces. The elemental

matrices of such elements are assembled in the global system to obtain the global contact force.

This elements are usually called contact elements.

Contact elements are kind of bridge elements between locally separated but potentially inter-

acting surfaces. Each contact element contains components of both surfaces and the composition

of these components depends upon the choice of the contact discretization. The most common

and widely used contact discretization is the node-to-segment approach (see Fig. 2.8). Each

contact element has its own vector of unknowns, residual and tangential matrix. Therefore,

contact elements are assembled to the global system matrix, together with unknowns, residual

and tangential matrices of ordinary structural elements.

Figure 2.8: Contact element - Node-to-segment discretization.

The most important practical aspect of computing the contact force is the acquisition of the

projection ȳ ∈ γ(2)h

c for a quadrature point currently at location x ∈ γ(1)h

c , see Fig. 2.9. This

projection is central to the definition of both the gap g and the tangential basis, needed for the

frictional case. Calculation of the projection is often referred to as contact detection or searching.

Figure 2.9: Projection of slave node to master segment/surface.

23





Chapter 3

Analysis of Existing Computational Methods

In this chapter we aim to expose the main drawbacks present in the parallelization of traditional

contact mechanics algorithms and to provide a strong justification for the development of the

parallel methodologies for the numerical solution of contact problems which are the main reason

of this thesis. For such end, the chapter is divided in two parts. The first part is devoted to the

introduction of some basic concepts related to parallel computing. The second part describes the

current context of computational contact mechanics and enumerates the reasons which fundament

this work. To conclude, we introduce and enumerate the design basis for the novel methodology

proposed in this thesis.

3.1 Key concepts for parallel computing. A crash introduction

The aim of this section is to present some key concepts related to parallel computing and to the

domain decomposition approach, which plays a relevant role in the motivation of this thesis.

3.1.1 Parallel computational models

Parallel computational models form a complicated structure. They can be differentiated along

multiple axes: whether the memory is physically shared or distributed, how much communication

is in hardware or software, what the unit of execution is, and so forth. The picture could be

even more confusing by the fact that software provides an implementation of any computational

model on any hardware. This section thus intends to define some terms to delimit our discussion

and usage of the message-passing interface, which is a building block of this thesis.

Although parallelism occurs in many places and at many levels in a modern computer, one of

the first cases it was made available to the programmer was in vector processors. Indeed, the vec-

tor machine began the current age of supercomputing. The vector machine’s notion of operating

on an array of similar data items in parallel during a single operation was extended to include

the operation of whole programs on collections of data structures, as in SIMD (single-instruction,

multiple-data) machines. At whatever level, the model remains the same: the parallelism comes
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entirely from the data; the program itself looks very much like a sequential program. The parti-

tioning of data that underlies this model may be done by a compiler. Nowadays, data parallelism

has made a dramatic come back in the form of Graphical Processing Units, or GPUs.

Parallelism that is not determined implicitly by data independence but is explicitly specified

by the programmer is control parallelism. One simple model of control parallelism is the shared

memory model, in which each processor has access to all of a single, shared address space at the

usual level of load and store operations (see Fig. 3.1). In a shared memory system, the processors

usually communicate implicitly by accessing shared data structures. OpenMP [128] is probably

the most well known and globally used application programming interface for multi-platform

shared memory multiprocessing programming.

Figure 3.1: Shared memory architecture.

The message-passing model assumes that a set of processes that have only local memory can

communicate with other processes by sending and receiving messages. It is a defining feature

of the message-passing model that data transfer from the local memory of one process to the

local memory of another requires communication operations to be performed by both processes.

Message-passing is used widely on parallel computers with distributed memory (see Fig. 3.2). In a

distributed memory system the memory is associated with individual processors, and a processor

is only able to address its own memory. In this context, the message-passing model is suitable

for the communication and data exchange amongst all the processors. The Message-Passing

Interface (MPI) is a standardized and portable message-passing system designed by a group

of researchers from academia and industry to function on a wide variety of parallel computing

architectures [127]. The standard defines the syntax and semantics of a core of library routines

useful to a wide range of users writing portable message-passing programs.

Current large-scale parallel computers are neither of the purely shared memory nor of the

purely distributed memory type but a mixture of both, i.e., there are shared memory building

blocks connected via a fast network. The concept has clear advantages regarding price vs.

performance. The principal hardware issue is the cost of scaling the interconnection in a shared

memory architecture. As we add processors to the communication bus amongst the CPUs,

the chance that there will be conflicts over access to the bus increase dramatically, so buses are

suitable for systems with only a few CPUs. On the other hand, distributed memory interconnects
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Figure 3.2: Distributed memory architecture.

are relatively inexpensive, and distributed memory systems with thousands of processors have

been built. Thus, distributed memory systems are often better suited for problems requiring vast

amounts of data or computation. Parallel computers with hierarchical structures as described

above are also called hybrids. The concept is more generic and can also be used to categorize any

system with a mixture of available programming paradigms on different hardware layers. For

a more detailed description of parallel computational models, parallel architectures and parallel

programming, see [55, 104, 56].

The aim of this thesis is the solution of mechanical contact problems in large scale systems,

which involves a considerable number of processors. In this context, exclusively shared memory

systems are not suitable for the purpose of this work, so distributed memory (or even hybrid)

architectures must be used. The parallelization of the solution of mechanical contact problems is

thus focused on distributed memory systems, where the MPI standard is the main tool used for

all the implementations that appear in this thesis. The extension to hybrid systems is relatively

straightforward since the parallelization at the shared memory level doesn’t change the full

workflow of the algorithm, as it only takes profit of finer grain parallelism of the workflow once

stablished. In this work we will focus on the MPI layer of parallelism.

3.1.1.1 Message passing interface (MPI)

The Message Passing Interface (MPI) [127] is a standardized specification of a set of library

subroutines for the portable and flexible development of efficient message-passing parallel pro-

grams. The standard defines the syntax and semantics of library routines and allows users to

write portable programs in the main scientific programming languages. Since its release, the

MPI specification has become the leading standard for message-passing libraries for parallel

computers. Some key points are:

• The MPI Forum is in charge of the standardization (40 participating organizations, includ-
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ing vendors, researchers, software library developers, and users).

• Revised several times, with the most recent specification being MPI-3. Actual implemen-

tations differ in the version/features of the standard they support.

• Is supported on virtually all HPC platforms. Several implementations are open source as

OpenMPI or MPICH. Commercial implementations as Intel MPI are also available.

• Provides Fortran, C, and C++ bindings.

• Has a very broad standard with a huge number of library subroutines (over 440 in MPI-3).

Fortunately, most applications merely require less than a dozen of them.

The way MPI programs are compiled and run is not fixed by the standard. Compiler and

linker need special options that specify where modules and libraries can be found. There is

a considerable variation in those locations among installations. Most MPI implementations

provide compiler wrapper scripts (e.g., mpif90) that automatically supply the required options

to the underlying native compiler. Typically a script called mpirun is provided to start a message-

passing program: processor cores have to be allocated in advance. How exactly processes are

created is entirely up to the implementation, and typically mpirun uses the batch system’s

infrastructure to launch processes.

An MPI message is defined as an array of elements of a particular MPI data type. MPI data

types can be either basic or derived. MPI derived types created by calling appropriate MPI calls.

MPI needs to know the data type of messages as it supports heterogeneous environments where

it may be necessary to perform on-the-fly data conversions. The MPI data types on sender and

receiver must match for messages to proceed.

MPI conforms the following rules:

• Single Program Multiple Data (SPMD) model: the same program runs on all processes. All

processes taking part in a parallel calculation can be distinguished by a unique identifier

called rank.

• The program is written in a sequential language like Fortran, C, C++ or Python. Data

exchange is carried out via calls to MPI library subroutines.

• All variables in a process are local to this process.

3.1.2 Domain decomposition

The meaning of the term domain decomposition depends strongly on the context. It refers to

the splitting of a partial differential equation, or to its numerical approximation, into coupled

problems on smaller subdomains forming a partition of the original domain. This decomposi-

tion may enter at the continuous level, where different physical models may be used in different

regions, or at the discretization level, where it may be convenient to employ different approx-

imation methods in different regions, or in the solution of the algebraic systems arising from
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the approximation of the partial differential equation. At first glance, these aspects seem to be

rather independent. However, all have one central idea in common: the decomposition of the un-

derlying global problem into suitable subproblems of smaller complexity. In general, a complete

decoupling of the global problem into many independent subproblems, which are easy to solve,

is not possible. Since the subproblems are very often coupled, there has to be communication

between the different subproblems. For a comprehensive and more general overview of domain

decomposition methods, see [136, 130, 120].

This thesis is entirely devoted to the third aspect of domain decomposition described in the

previous paragraph, which is the solution of the algebraic systems arising from the approxima-

tion of the partial differential equation. In practical applications, finite element method or other

discretizations reduce the problem to the solution of an often massive algebraic system of equa-

tions. Direct factorization of such systems might then not be a viable option and the use of basic

iterative methods, such as the conjugate gradient algorithm, can result in very slow convergence.

The basic idea of domain decomposition is that instead of solving one massive problem on a do-

main, it may be convenient (or necessary) to solve many smaller problems on single subdomains

a certain number of times.

Domain decomposition methods aim at parallelizing the solution process by decomposing the

computational domain in several subdomains. The problems on the subdomains are indepen-

dent, which makes domain decomposition methods suitable for parallel computing. Regarding

the computational aspects of domain decomposition, this thesis is devoted to parallelization in

distributed memory machines, based on mesh partitioning and MPI processes. This implemen-

tation strategy proves to be especially well-suited for this type of applications.

The parallelization paradigm considered in this thesis is a sub-structuring method, were a

Master-Worker interaction model between the CPUs is used. Sub-structuring methods consist

essentially in distributing the work among the Workers, leaving the Master in charge of general

tasks like I/O. In a Master-Worker interaction, the Master reads the mesh and performs the

partition of the element graph. For the pure MPI strategy, each MPI process (the Workers) is in

charge of each subdomain (i.e. the number of MPI processes equals the number of subdomains).

The Workers build the local matrices and right-hand side and are in charge of the resulting

system solution in parallel. In the assembly stage, very few communications are needed between

Workers and the scalability only depends essentially on the load balancing.

For the sake of clarity, let’s consider the example shown in Fig. 3.3. Here, a 2-dimensional

discretized domain composed of 24 quadrilateral elements and 35 nodes is partitioned in 3 iden-

tical subdomains/MPI processes P1, P2 and P3. In general, discretized domains can be split by

elements or by nodes. For the finite element discretization, which is the one considered in this

thesis, the partitioning of the domain throughout the elements is commonly the preferred choice

(see [93]). Hence, the nodes used as a reference for the domain partitioning, called interface

nodes, are repeated among contiguous subdomains. Going back to the example of Fig. 3.3, each

of these subdomains are then conformed by 8 elements and 15 nodes each. Each MPI process

handles local element and node identifiers. Suppose now that we want to solve the Poisson
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Figure 3.3: Mesh partitioning for domain decomposition approach.

equation using finite elements in parallel using the configuration shown in the previous example.

In a Master-Worker interaction, each MPI process stores/assembles a local portion Ai and fi

(i
.

= 1, 2, 3) of the global matrix/vector A and f (i.e. the portion that belongs to its subdomain).

Global matrices and vectors are never stored/assembled explicitly.

Parallel finite element assembly results in a sub-assembled (partially-summed) Ai and fi, the

portion of A and f locally assembled by MPI process Pi. Sub-assembly means that for Ai and

fi the nodal contributions at interface nodes positions are partial because they don’t take into

account the contributions from neighbour nodes located in other subdomains. To compute a

fully-summed solution (the correct solution) of the unknown vector u, nodal contributions at

interface nodes must be shared (and summed) amongst the subdomains (see Fig. 3.4).

f1

1.7 1.6 1.2 1.5 1.8

0.1 0.3 0.2 0.9 0.4

f2

0.8 0.7 0.9 0.6 0.4

1.1 1.3 1.2 1.8 1.1

f 0.9 1.0 1.1 1.5 0.8

u1

1.7 2.6 1.2 2.5 1.8

1.1 1.3 1.2 1.5 1.4

u2

1.1 1.3 1.2 1.5 1.4

2.1 2.3 2.2 2.8 2.1

u 1.1 1.3 1.2 1.5 1.4

Figure 3.4: Parallel finite element assembly of RHS vector and solution vector.

3.1.3 Mesh partitioning

A great variety of methods for the numerical solution of any physical problem, such finite ele-

ments, finite volumes or finite differences, require a discretization of the physical domain into

nodes and elements. This process is known as meshing. The main unknowns of the physical

problem are then computed for each of the nodes of the mesh. The numerical resolution of real-
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world engineering problems is a rather demanding task since meshes often have large numbers

of elements. As a result, the numerical method is usually parallelised. For the solution of a,

for instance, finite element problem in parallel using the domain decomposition method, the

usual approach is to partition the mesh into subdomains. Each subdomain can then be mapped

to each of the processors of the parallel machine allocated for the resolution of the problem.

When assembling and solving the resultant linear system each processor is then responsible for

the element matrices belonging to the elements that it owns. Furthermore, when the elements

surrounding a particular node are owned by different processors some communication is required

to obtain the global solution for the problem. Consequently, to achieve high parallel efficiency

it is important that the mesh is partitioned in such a way that workloads are well balanced

and interprocessor communication is minimised. This is achieved mainly by ensuring same node

number in each subdomain and minimizing the number of nodes on the subdomains interfaces.

An important component in mesh partitioning is the well-known graph-partitioning problem

(see Fig. 3.5). Unfortunately, this is an NP-hard optimisation problem, which makes it impossible

to find optimum solutions in polynomial time. Consequently, heuristic approaches are normally

used for mesh partitioning.

In the past two decades, graph partitioning methods have witnessed rapid development,

giving rise to many graph partitioning software packages, such as METIS [97, 78], Zoltan [23],

JOSTLE [134] and SCOTCH [121, 107]. Among these software packages the most representative

one is METIS, which is a set of serial programs for partitioning graphs and finite element meshes.

The algorithms implemented in METIS are based on the multi-level recursive-bisection, multi-

level k-way, and multi-constraint partitioning schemes. The multi-level method reduces the size

of the original graph, performs a partition on this and then finally uncoarsens the graph to find a

partition for the original graph. It can be used as a suite of standalone partitioning applications

or by linking a users own Fortran or C application to the software library. Comparing with other

widely used partitioning algorithms, METIS is faster while providing high quality partitions [78].

3.1.4 Sparse storage

A sparse matrix is a matrix in which most of the elements are zero. Large sparse matrices often

appear in scientific or engineering applications when solving partial differential equations. In

particular, the matrices which result from the finite element discretization have the particularity

of being considerably sparse. When storing and manipulating sparse matrices on a computer,

it is beneficial and often necessary to use specialized algorithms and data structures that take

advantage of the sparse structure of the matrix. Operations using standard dense-matrix struc-

tures and algorithms are slow and inefficient when applied to large sparse matrices as processing

and memory are wasted on the zeroes. Sparse data is by nature more easily compressed and thus

require significantly less storage. Very large sparse matrices are infeasible to manipulate using

standard dense-matrix algorithms.

One method for storing sparse matrices is the compress sparse row (CSR) storage method [115].

The CSR storage method uses three arrays to store the non-zero elements of a sparse matrix. The
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Figure 3.5: Mesh partitioning: (a) Sample mesh. (b) Mesh with induced graph. (c)
Graph partitioning. (d) Partitioned mesh.

first array stores contiguously the non-zero elements in each row and is called Data array. The

second array is of the same size as the Data array and stores the Column indices corresponding

to the entries in the Data array. The third array is called Row pointer and stores the locations

in the Data array that start a row.

This method of storing matrices is illustrated by a simple example. Fig. 3.6 shows a 1D mesh

composed of 5 nodes, used to discretize the Poisson equation ∇2ϕ = 0. Fig. 3.7 shows the dense

matrix which results from the finite element discretization and the arrays of the CSR format.

1 2 3 4 5

Figure 3.6: 1D mesh example.

1 -1 0 0 0

-1 2 -1 0 0

0 -1 2 -1 0

0 0 -1 2 -1

0 0 0 -1 1

1 2 3 4 5

1

2

3

4

5

1 -1 -1 2 -1 -1 2 -1 -1 2 -1 -1 1

Data values (a)

1 2 1 2 3 2 3 4 3 4 5 4 5

Column indices (ja)

0 2 5 8 11 13 Row pointers (ia)

Figure 3.7: Example of matrix storage in compress sparse row (CSR) format.

In the example shown in Fig. 3.7, the dense matrix is first constructed and then, once the
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zeroes location is known, used to build the CSR format arrays. In practice, computational codes

which exploit the advantages of sparse storage never store the matrix in its dense form. On

the contrary, they allocate only the required memory for the storage of the CSR format arrays

by looking into the mesh connectivity, i.e. how the nodes of the mesh are connected. Mesh

connectivity is what computational codes analyze to “predict” the location of zeroes without

having to assemble the dense form of the system matrix.

3.2 Contact mechanics: methods of constraint enforcement

The variational inequality that results after the enforcement of the contact boundary conditions

in the continumm equation is not appropriate for discretization. As remarked in Sec. 1.2, most

of the numerical procedures for the resolution of contact problems are based on the so-called

variational equality, which is easy to introduce in a finite element framework and can be easily

adapted to pre-existent minimization techniques, as might be found generically in [92, 52]. This

fact has been exploited historically to conceive the vast majority of the contact algorithms in

common use today.

In this section we shall discuss the most common formulations that can be applied to incorpo-

rate the contact constraints into the variational formulation, Eq. (2.26). For the sake of simplicity

we will consider here the frictionless form of the governing equations for contact mechanics. We

present here the most popular and widely used methods for constraint enforcement applied in

contact algorithms, which are: penalty, Augmented Lagrangian and Lagrange multipliers. We

introduce them by means of practical example characterized by a 1D frictionless linear example

of two beams, in a simplified way to facilitate a focus on the principal ideas, without diverting

our intentions with more complex issues which are beyond our purpose. It is remarked that

the ideas which emerge from the examples discussed below in this section are not limited to the

linear elastic case. The interpretations of the ideas that follow, however, can be appropriately

generalized to broader context.

3.2.1 Unconstrained system

We present a 1D frictionless linear example of two identical cantilever beams as shown in Fig. 3.8.

Here, we consider an equilibrium situation of no contact, where the beams are initially separated

by a gap g∗ and a force of magnitude F is applied to node u2
1.

In a non-contact situtation, as the one shown in Fig. 3.8, the last term of the governing

equation for the contact problem, Eq. (2.26), vanishes. As in this case we do not need to

impose the contact constraints, we define this configuration as an unconstrained system. This

unconstrained system can be simply modelled by the sum of the momentum balance equation

for each beam separately. From Eq. (2.26), and considering a linear example, we can write this

expression in the following algebraic way:

δW :=

2∑
i=1

δW(i)
sb = Ku− f = 0, (3.1)

33



Analysis of Existing Computational Methods

3l l

u1
2 u1

3 u1
4 u2

1

F g∗

Figure 3.8: 1D frictionless linear example.

where K is the system matrix, u is the solution vector and f are the external forces. If we

use the mesh of the Fig. 3.8 to discretize Eq. (3.1) using the finite element method, we obtain

the following linear system of equations:

E A

l


2 −1 0 0

−1 2 −1 0

0 −1 1 0

0 0 0 2



u1

2

u1
3

u1
4

u2
1

 =


0

F

0

0

 , (3.2)

where E is the Young modulus of the material of the beams, A is the cross section of both

beams, l is the characteristic length and F is the localized force applied to node u1
3, as shown in

Fig. 3.8.

Solving the linear system of equations given by Eq. (3.2), we obtain the following parametric

solution vector for node displacements:

uT =
Fl

EA
{1, 2, 2, 0}T . (3.3)

Note that as the system is uncoupled due to the existence of the gap g∗, which is explained

by the lack of relation between nodes u1
4 and u2

1. Thus, the displacement of node u2
1 is equal to

zero.

A contact situation will occur when the the gap is closed. From Eq. (3.3) we observe that

this is equivalent to the following relation:

F >
EA

2

g∗

l
. (3.4)

When Eq. (3.4) is fullfiled, we must solve a constrained problem taking into account the

contact boundary conditions, in order to properly model the contact between both beams. In

the following sections, and based on this same example, we will introduce the different available

and well-known methods in the literature of contact mechanics to solve this kind of problems.

3.2.2 Constrained system

Recalling Eq. (2.26), the virtual work for the entire system considering the contact forces can be

written as follow:
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δW :=
2∑
i=1

δW(i)
sb + δWc = 0. (3.5)

From Eq. (2.30), we can express the last term of Eq. (3.5) in the following way:

δWc :=

∫
Γ
(1)
c

[tN δg + tTα δξ̄
α] dΓ. (3.6)

As we are considering a frictionless example, then Eq. (3.6) simplifies to:

δWc :=

∫
Γ
(1)
c

tN δg dΓ. (3.7)

Eq. (3.5) together with frictionless contact conditions (see Sec. 2.2.1):

tN ≥ 0, (3.8a)

g ≤ 0, (3.8b)

tN g = 0, (3.8c)

define the boundary value problem with contact constraints.

On the other hand, the general formula for the gap g can be expressed as:

g = g∗ − (u1
4 − u2

1), (3.9)

where g∗ is the initial gap and u1
4 and u2

1 are the displacement of the contacting nodes.

Finally, the variation of the gap g can be written as follow:

δg = δu1
4 + δu2

1. (3.10)

3.2.2.1 Penalty method

In the penalty method the constrained optimization problem is converted into a unconstrained

problem by introducing an artificial penalty for violating the constraint. Specifically, for the

problem at hand, one obtains a penalty method for the frictionless contact problem by penalizing

any penetration (g > 0), by the following relation:

tN = εN 〈g〉, (3.11)

where εN > 0 is defined as the penalty parameter and the notation 〈·〉 denotes the Macauley

bracket, which simply renders the positive part of its operand via:

〈x〉 :=

x if x ≥ 0,

0 if x < 0.
(3.12)

Use of Eq. (3.11) in Eq (3.7) gives rise to the penalized form of the contact integral:
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δWc :=

∫
Γ
(1)
c

εN 〈g〉 δg dΓ. (3.13)

Combining Eqs. (3.1) and (3.13) with Eq. (3.5) we obtain the penalized algebraic form of the

contact problem:

δW = KP u− fP = 0. (3.14)

where KP is the penalized system matrix, u is the solution vector and fP are the penalized

external forces.

Going back to our base example, discretization of Eq. (3.14) for the geometry depicted in

Fig. 3.8 via the finite element method gives the following linear system of equations:
2EAl −1EAl 0 0

−1EAl 2EAl −1EAl 0

0 −1EAl 1EAl +εN −εN
0 0 −εN 2EAl +εN



u1

2

u1
3

u1
4

u2
1

 =


0

F

εN g
∗

−εN g∗

 (3.15)

From Eq. (3.15) it can be seen that due to the contact constraints, nodes u1
4 and u2

1 are now

coupled. Comparing with Eq. (3.2), this can be observed by the appearence of extra cross terms

which include the penalty parameter on Eq. (3.15).

The coupling of nodes u1
4 and u2

1 can be physically interpreted by the introduction of a new

structural element connecting both nodes, which appears due to the penalization (see Fig. 3.9).

This element has the following elementary matrix:[
εN −εN
−εN εN

](
u1

4

u2
1

)
=

(
εN g

∗

−εN g∗.

)
(3.16)

To reinforce the previous idea, it can be observed that the assembly of the elementary matrix

given by Eq. (3.16) in the unconstrained linear system given by Eq. (3.2) produces the coupled

system defined by Eq. (3.15).

u1
2 u1

3 u1
4 u1

2

F g∗

Figure 3.9: Additional structural element introduced by penalization.

3.2.2.2 Lagrange multipliers method

This method is used in optimization theory to find the extremum of a functional subjected to

constraints. In a contact situation the idea is to minimize the functional Wsb from Eq. (2.8)
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subjected to frictionless contact conditions given by Eq. (2.18). Thus, when contact is produced,

we want to solve the following problem:

min Wsb subjected to g = 0, (3.17)

where g is the gap function. The basic idea of the Lagrange multipliers method is to expand

the functional Wsb in the following way:

W(u, λ) :=Wsb(u) +Wλ(u, λ), (3.18)

where

Wλ(u, λ) :=

∫
Γ
(1)
c

λ g dΓ. (3.19)

Eq. (3.18) constitutes a saddle problem, whose solution is a maximum of W with respect to

Lagrange multipliers λ but a minimum with respect to displacements u. As Lagrange multipliers

can be physically interpreted as the contact pressure, the solution of Eq. (3.18) satisfy not only

the constraint g = 0 but also tN > 0, as stated in Eq. (2.18):

Contrary to the penalty method explained in Sec. 3.2.2.1, where the resulting functional

involves only one type of unknown, which are the displacements, the Lagrange multiplier method

introduce extra unknowns to the system. The problem is then formulated as follows:

δWsb(u, δu) + δWλ(δu, λ) = 0 (3.20a)

δWλ(u, δλ) = 0 (3.20b)

The algebraic form of Eq. (3.20) can be written as:

δW = Klm ulm − flm = 0, (3.21)

where Klm is the augmented form of the system matrix, ulm is the solution vector which

includes displacements and Lagrange multipliers, and flm are the augmented external forces.

Returning to our base example (Fig. 3.8), discretization of Eq. (3.20) with the finite element

method gives the following linear system of equations:

E A

l


2 −1 0 0 0

−1 2 −1 0 0

0 −1 1 0 −1

0 0 0 2 1

0 0 −1 1 0




u1

2

u1
3

u1
4

u2
1

λN

 =


0

F

0

0

−g∗

 (3.22)

From the discretized linear system (Eq. (3.22)) it can be observed that the Lagrange multiplier

act as intermediary for the transference of information between contacting nodes u1
4 and u2

1.

From a geometrical viewpoint, the use of the Lagrange multiplier method is equivalent to the

introduction of an extra node into the mesh which is connected to the contacting nodes. This
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interpretation is schematically represented in Fig. 3.10.

u1
2 u1

3 u1
4 u1

2

F g∗

Figure 3.10: Additional node introduced by the Lagrange multipliers method.

It is worth mentioning that we have presented a very simplified case where only one Lagrange

multiplier was needed. In a discrete system, the number of Lagrange multipliers depends on the

number of contacting nodes which must be restricted from penetration. In more complex and

realistic contact examples, the number of unknowns for the Lagrange multipliers not only can

be considerably larger than one, but also its number can be time-dependent, as the contacting

interfaces can evolve with time.

3.2.2.2.1 Mortar method for contact problems Recently, new methods, so-called mortar

methods originally proposed in [18] for mesh tying, were designed for domain decomposition in

which unstructured grids are connected within a parallel finite element solution. These methods

has also been applied to finite element contact problems for two dimensional linear kinematics [15,

64, 96] and to large deformation kinematics for curved 3D surfaces [117, 118] when the nodes

in the contact interface do not coincide. Contrary to the node-to-segment discretization, the

mortar methods are based on a segment-to-segment apporach, and they do not lock since they

are LBB stable [25]. As mortar methods for contact problems deal with the main numerical

issues that affect the robustness of the node-to-segment approach (i.e. is valid only for low

order elements, fails contact patch test unless a two-pass scheme is used and the stability test

or inf-sup condition for Lagrange multipliers fails), they are currently the most general and well

stablished methodology for numerical simulation of contact problems. As a general characteristic

of this approach, mortar methods are based on the introduction of Lagrange multipliers to weakly

enforce the contact constraints, thus increasing dynamically the number of degrees of freedom of

the linear system to solve.

3.2.2.3 Augmented Lagrangian method

As shown in Sec 3.2.2.2 within the framework of the Lagrange multipliers method, contact

conditions are exactly satisfied by the introduction of Lagrange multipliers, which increase the

number of unknowns in the linear system. The additional unknowns that this method introduces

require supplementary computational efforts. On the other hand, as seen on Sec. 3.2.2.1, the

penalty method is simpler to implement and to interpret. Nevertheless, it presents the drawback

that the contact conditions are fulfilled exactly only in the case of an infinite penalty parameter.

This results in an ill-conditioning of the numerical problem.

The main idea of the Augmented Lagrangian method [63, 114] is to combine either the

penalty method with the Lagrange multiplier method. It yields a fully unconstrained problem
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without adding extra unknowns to the problem. Also, it enables exact fulfillment of the contact

constraints while using a finite value of the penalty parameter to facilitate the iteration procedure.

Thus, for the Augmented Lagrangian method, the contact integral for a frictionless approach

(Ec. (3.7)) takes the following form:

δWc :=

∫
Γ
(1)
c

〈λ+ εN g〉δg dΓ (3.23)

The most common technique used in mechanics for the solution of the Augmented Lagrangian

problems is the method of multipliers, or Uzawa’s method. This method relies on the following

algorithm for a multiplier iteration (k) (see Fig. 3.11):

λ(k+1) = 〈λ(k) + εN g
(k)〉. (3.24)

correct multiplier

tN

gλ(0)

m=εN
λ(k)

g(1)

λ(1)

←g(2)

λ(2)

g(k+1)

λ(k+1)

Figure 3.11: Augmented Lagrangian update process.

Replacing of Eq. (3.24) in Eq. (3.23) gives the following iterative procedure for the contact

integral. This translates in an iterative procedure for the main unknown of the problem, i.e. the

displacements:

δW(k)
c :=

∫
Γ
(1)
c

〈λ(k) + εN g
(k)〉δg dΓ. (3.25)

Iterations on (k) continue until changes in the multipliers become small, or alternatively,

until the constraints are satisfied within a tolerance range.

Expansion of the terms of Eq. (3.25) gives:

δW(k)
c :=

∫
Γ
(1)
c

λ(k) δg dΓ +

∫
Γ
(1)
c

εN 〈g(k)〉δg dΓ (3.26)

It is worth mentioning that only the last term of Eq. (3.25) survives at the beginning of the

iterative procedure (initial estimate λ(0) = 0). Comparing with Eq. (3.13), it can be observed that

this term represents the penalty method contribution to the Augmented Lagrangian method. As

explained in Sec. 3.2.2.1, this term means, from a physical viewpoint, the introduction of a new
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structural element which connects the contacting nodes, as depicted in Fig. 3.9. This physical

meaning remains throughout the complete iterative procedure.

3.3 Domain decomposition and constraint enforcement methods

Let’s suppose now that we want to solve the example of Fig. 3.8 in a memory distribuited system

using a parallel finite element computational code (see Sec. 3.1). For the sake of simplicity, let’s

consider that we assign each element of the mesh to a different computational node. Firstly,

let’s assume a non-contact situation. As explained in Sec. 3.1.3, the normal procedure for any

parallel finite element computational code is to perform the mesh partitioning as a preprocess

stage, before the solution procedure. For the 1D example that we are considering, the result of

the mesh partitioning procedure is schematically represented in Fig. 3.12.

CPU 1 CPU 2 CPU 3 CPU 4
RAM RAM RAM RAM

1 1 2 2 3 4

Figure 3.12: Domain decomposition of the 1D contact example - Non-contact
situation.

Once the mesh partitioning finishes, the code enters into a numerical resolution stage. At this

stage, the linear system of equations resultant from the chosen discretization method is solved

using a domain decomposition approach (see Sec. 3.1.2).

Suppose now that during the solution procedure and due to an external input, the condition

given by Eq. (3.4) is fullfiled. We must now solve a constrained problem by considering the

contact boundary conditions, to properly model the contact between both beams. Suppose that

we decide to use the penalty method to tackle the resolution of the constrained problem, in the

way that was explained in Sec. 3.2.2.1. There, we showed that the physical interpretation of the

penalty method for contact problems is the introduction of additional structural elements which

aid to couple or relate contacting nodes, which originally were uncoupled. When this problem is

being solved in a unique computational node, where all the information is gathered in the same

memory unit, this situation doesn’t present serious challenges. But if we consider the situation

depicted in Fig. 3.13, the challenge that arises is how to deal with the new fictitious structural

element, which is usually named contact element.

CPU 1 CPU 2 CPU 3 CPU 4
RAM RAM RAM RAM

1 1 2 2 3 43 4

x x x x x

Figure 3.13: Domain decomposition of the 1D contact example - Contact element.

First, as we can not assign the contact element to a new computational node, we must decide

to which existing computational node we should assign this element in order to maintain the
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workload balance. The answer to this question seems obvious when we are dealing with only one

contact element, but it is not straightforward when we handle bigger meshes and a considerable

number of contacting nodes.

The second issue is the memory allocation and the sparse storage. As explained in Sec. 3.1.4,

in any efficient finite element code the mesh connectivity is used to predict the zeros in the

resultant system matrix. This information is used for memory allocation, which is required for

the storage of the matrix components in compressed sparse formats. As the memory allocation is

done in preprocess, the contact element components which appears in the middle of the simulation

can not be stored, as there is no memory reserved for them.

The third, and not less important issue, is related to the subdomain connectiviy. As explained

in Sec. 3.1.2, in a domain decomposition approach global matrices are never stored explicitly.

On the contrary, the solution is obtained by means of the summation of the contributions of

the interface nodes, which are shared between subdomains. For that reason, when the mesh is

partitioned, the mesh splitting algorithm constructs a list which contains the interface nodes of

each subdomain and also indicates to which of the rest of subdomains those nodes are shared

with. The creation of contact elements adds new interface nodes to the subdomain to which they

belong, thus altering the lists previously created by the mesh partitioner.

The drawbacks reported in the previous paragraphs were exemplified by using a penalty

method example, but they are still valid for Augmented Lagrangian or Lagrange mutlipliers

method. To avoid these drawbacks, the solution of contact problems in parallel environments

requires to consider any possible contact situation before partitioning. By estimation of the

probable contacting area, contact elements must be predicted (and created) before partitioning

the mesh. For completeness sake, Fig. 3.14 shows the contribution of the contact element to

the structural matrix in a 2D case for the node-to-segment (NTS) discretization. In this kind of

contact discretization, which is the most widely used, nodes from one contacting surface exchange

contact information (i.e. contact tractions) with boundary segments of the other contacting

surface.

3.3.1 Sliding

In 1D contact problems, as the one described in previous sections (Fig. 3.8), is straightforward to

identify the contact area or the contacting nodes before the contact interaction. But for 2D and

3D problems the situation is different. Consider, for example, the case illustrated in Fig. 3.15.

Here we show a block-indenter configuration, where the rounded indenter impacts the square

block. Without knowing extra information, in this problem is impossible to know a priori the

location of the contact interface.

Yet, if one considers the kinematics of the problem, it is possible to estimate a possible area

of contact. Once this area is predicted, the contact elements can be constructed (see Fig. 3.16).

Just after this stage the mesh can be partitioned. Following this procedure, one avoids the

drawbacks detailed in previous section (Sec. 3.3) for parallel contact problems.

41



Analysis of Existing Computational Methods

Figure 3.14: Contact element for a 2D case - NTS discretization.

Figure 3.15: Block-indenter 2D example.

Figure 3.16: Block-indenter 2D example - contact prediction.

Nevertheless, the procedure described in previous paragraph does not consider the case of

large sliding, i.e. the relative motion of contacting surfaces while they are in contact. Sliding is

present in the majority of realistic 2D or 3D problems which are affected by finite deformations.

If sliding occurs, one must update the contact elements on the fly, or in other words, during the
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solution procedure. This update is required because the coupling nodes for the exchange of con-

tact tractions are different than they were previously to the sliding, as will be further explained.

In a parallel approach this situation presents a major drawback, which will be described next.

Consider the 2D example shown in Fig. 3.17. Contacting surfaces are identified with slave

and master names, while their nodes are clearly identified in the figure. Fig. 3.17 shows the

contact prediction, the contact elements and the mesh partitioning, where we have considered

only two processors. In the figure one can observe which are the interior nodes that belong to

processor 1, those interior nodes which belong to processor 2 and the interface nodes. A dashed

line separates graphically both subdomains.

slave

1 2 3

master

4 5 6 7 8 9 10

P1

P2P1 nodes
interface nodes
P2 nodes

Figure 3.17: Contact elements before sliding.

Suppose now that a sliding between slave and master occurs. The sliding changes the location

of the nodes which must be coupled for the exchange of contact tractions, which translates into

a re-definition of the contact elements. This situation is as shown in Fig. 3.18.

slave

1 2 3

master

4 5 6 7 8 9 10

P1

P2P1 nodes
interface nodes
P2 nodes

Figure 3.18: Contact elements after sliding.

Because of the sliding, contact elements should now be redefined during the solution process,

and after the mesh partitioning. A feasible situation to deal with, is when new contact elements
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lie inside the same subdomain than they where before sliding. An example of this situation is the

contact element composed of nodes 1-6-7 before the sliding (see Fig. 3.17), which evolves to 1-5-6

after sliding (see Fig. 3.18). Nodes 1, 5, 6 and 7 are interior nodes of subdomain 1. Though, a

more complex case can result. It could happen that, after sliding, new contact elements need to

be defined as a connection between interior nodes of different subdomains. This is the case of

the contact element composed of nodes 3-7-8 which appears after sliding, as can be observed in

Fig. 3.18.

If due to the sliding any new contact element becomes defined by the connection of interior

nodes, there is no other option than to perform a new mesh partitioning. A new mesh partitioning

will split the mesh considering the new connectivities of the contact elements, avoiding the

situation previously described. With a new partitioning the connected nodes would transform in

interior nodes of an exclusive subdomain or, at least, in interface nodes. It is important to remark

that the repartitioning needs to be done every time the configuration of the contact elements

changes. This could occur even at each time step, which translates into a computationally high

demanding and very expensive task.

A possible workaround for this drawback would be to associate the contacting interfaces to

an specific group of processors. This would avoid repartitioning the mesh every time the contact

elements configuration changes. Despite being an acceptable alternative, this strategy conditions

the mesh partitioning algorithm, thus not ensuring the best workload balance and the minimal

communication between computational nodes.

3.4 Standard methods and the parallel world

In this chapter we have analyzed the application of standard methods based on nodes con-

nectivities for the resolution of contact problems in a parallel environment. The methods and

discretizations reviewed here are well known and widely used in the resolution of contact prob-

lems in engineering and science. Yet, they are implemented in a serialized way in the majority of

commercial and non-commercial codes, i.e.: Abaqus [1], ANSYS [5], ADINA [3], Code Aster [31],

FEAP [44], among others. During the past years, researchers have dedicated an extensive amount

of work to their study. Because of that, their behaviour is well known and most of the scientific

literature in contact mechanics is dedicated to them. The intention of this chapter is to evaluate

the direct applicability of such methods to parallel resolution strategies based on domain decom-

position approaches. This is motivated by the fact that parallel resolution strategies are a must

in large scale problems. From the topics covered here, some conclusions can be obtained.

In this chapter we showed that penalty and Augmented Lagrangian method add explicit

connections between contacting nodes, which present a serious drawback for parallel implemen-

tation. Also, Lagrange multipliers method (and the mortar approach) increases the number of

unknowns of the system, as their number depend on the contacting nodes. Even more, as the

contacting area may change with time, the number of unknowns may vary along the simulation.

This situation is incompatible for problems were the mesh partitioning is done as a preprocessing

task, thus requiring to perform dynamic partitioning during the simulation. Despite that some
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drawbacks which arise when the mesh partitioning is done in preprocessing time can be solved

by doing a contact prediction, the necessity of a dynamic partitioning becomes crucial when

sliding between contacting surfaces occurs. Nevertheless, some workarounds may be proposed

(see, for instance, [88]), but they are based on restricting the partitioning algorithm, which is

not an efficient solution. This lead us to conclude that standard contact methods present serious

disadvantages when they are extrapolated to parallel approaches based on domain decomposition

methods, as in a general case dynamic repartitioning can not be avoided.

Some previous works exist on the field of large scale, parallel methods for the solution of large

deformation contact problems [57, 95, 49], but they are limited to some particular applications

such as unilateral contact or shell structures. To the author best knowledge, no previous work

on general, bilateral parallel contact methods for 3D large deformation contact problems exist

on scientific literature.

3.5 Design basis of the proposed algorithm

Based on the analysis made on the previous section, the main motivation of this thesis is to

propose an alternative method for the numerical modelling of contact problems suitable for High

Performance Computing (HPC). This method must fulfill some general requirements, which are

adopted as the design basis for its development:

• it must be a general algorithm for the resolution of the two-body contact problem,

• it must not restrict the mesh partitioner,

• it must not require dynamic partitioning,

• it must not increase the number of unknowns of the system,

• it must not affect the system matrix, and

• it must be suitable for large scale problems.

The next two chapters (Chapters 4 and 5) are dedicated to the description of the proposed

algorithm. In Chapter 4 we propose a parallel method for unilateral contact problems, which

also serves as an intermediate step for the introduction of some concepts and ideas which are

the basis of the general two-body contact algorithm described in Chapter 5. Our objective is

to provide a comprehensive description by putting special emphasis not only on the detailed

explanation of the algorithm but also on its parallel computational implementation.
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Chapter 4

A Parallel Method for Unilateral

Contact Simulation

In this chapter we present a new methodology for solving parallel unilateral frictional contact

problems in distributed-memory HPC computers. Additionally, we describe its computational

implementation, which is one of its distinctive characteristics. The presented methodology is

based on the partial Dirichlet-Neumann method, first introduced in [141, 142]. The proposed

method allows to solve the contact interaction as a coupled problem, in a staggered way. Fur-

thermore, it can be interpreted as a black-box scheme that can be used with any parallel finite

element code. In this method, the number of unknowns remains constant. Also, the mesh parti-

tioning is only done at the beginning of the simulation, as a preprocess task, without restricting

the partitioning algorithm. For those reasons, is a suitable methodology for the parallelization

of the solution of unilateral contact problems using a domain decomposition approach. This

chapter is also an intermediate step that serves to introduce some concepts and ideas which will

be needed for the following chapter, where we present a general parallel two-body contact for-

mulation. An important part of the general two-body algorithm is based on the ideas presented

here.

In this method, each body is treated independently and the contact is solved throughout the

exchange of boundary conditions at the contact interface. The contact detection is based on an

Eulerian-Lagrangian system analogy. The geometry of the rigid body is used as reference (base

mesh) for the detection of contact. As contact is a boundary phenomena, only the boundary

nodes of the deformable body mesh are available for localization. These nodes take the role

of particles that moves in the surroundings of the base mesh. The localization of at least one

node of the deformable body mesh inside the base mesh is equivalent to detecting contact, which

triggers the data exchange at the contact zone for the solution of the contact problem.

4.1 Introduction

In the engineering practice, a wide range of contact problems can be approximated by a unilateral

contact. i.e. contact between a rigid surface and a deformable solid. In a contact scenario, forces
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are transmitted through the common area of contact. These forces have commonly two compo-

nents: a normal component which prevents interpenetration of the bodies, and the tangential

component, created by friction. The normal contact forces are prescribed by the so-called Hertz-

Signorini-Moreau conditions [137], which are geometrical boundary conditions which include

inequalities related to frictionless contact and account for the non-interpenetration condition via

variational form. With regard to the friction, the simplest and most popular frictional condi-

tion is given by the Coulombian law (see Sec. 2.2.1.1), which is in good harmony with practical

experience.

A variational inequality characterizes the solution of unilateral contact problem. As men-

tioned in Sec. 3.2, variational inequalities can be reformulated into a variational equality problem

with special contact terms under the assumption of knowing a priori the contact interface. The

form of the contact terms depends on the method chosen to enforce the contact constraints. For

constraint enforcement, a wide range of techniques exists in the optimization literature [92, 52].

Among them, the most used methods for constraint enforcement in the numerical treatment of

contact problems are: the classical Lagrange multiplier method, the penalty method and the

Augmented Lagrangian method.

An alternative methodology for the variational approach in the solution of unilateral contact

problems is proposed in [141, 142]. This methodology is based on the equivalence of the geo-

metrical constraints due to normal and frictional contact and a combination of partial Dirichlet

and Neumann boundary conditions, prescribed in a specific way on the contact boundary. This

approach simplifies the algorithm and provides an efficient framework for contact treatment on

parallel computers.

On the other hand, in order to implement a parallel finite element calculation, the mesh is

partitioned among the computational nodes to minimize interprocessor communications. Contact

can occur between surfaces which are owned by different processors. Hence, in a parallel contact

simulation, global searches across all computational nodes are required. This feature makes

the contact detection one of the most important and complex parts in computational contact

mechanics, and also, one of the major computational costs of contact algorithms.

4.2 Formulation of unilateral contact problems

4.2.1 Unilateral normal contact

Let a rigid plane be defined in a local coordinate system by n = 0, being n the normal axis of

the plane, with unit external normal ν = en. Being the plane in this position, the motion of any

body in space is then restricted to n ≥ 0 (see Fig. 4.1). We can represent this restriction by the

following displacement contact constraint:

g(x) = x · ν ≥ 0, (4.1)

where g(x) is the gap between the current point x of the body and the rigid plane. In other

words, Eq. (4.1) states that any point of the body at any time can not penetrate the rigid plane.
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4.2. Formulation of unilateral contact problems

Defining the displacement of any point of the body as u = x−X, we can express Eq. (4.1)

as:

g(u) = u · ν + g0 ≥ 0, (4.2)

where g0 = X · ν is the initial gap. If the body retains its integrity, the non-penetration

condition given by Eq. (4.2) is applied only to the surface points ∂Ω, precisely to the potential

contact zone (Γc) in the actual configuration. Γc can be splitted into two nonintersecting sets:

active contact zone Γ̄c (points which are in contact) and inactive contact zone Γc\Γ̄c (points

which are not in contact). The active contact zone in the actual configuration is defined by:

x ∈ Γ̄c if and only if g(x) = x · ν = 0, (4.3)

while for the reference configuration, the active contact zone can be defined by:

X ∈ Γ̄0
c if and only if X · ν = −u · ν. (4.4)

From the definitions in Eq. (4.3) and Eq. (4.4) we observe that the active and inactive contact

zones are a priori unknowns of the problem. Only in some specific problems, given the potential

zone we can predict a priory the active contact zone at each instant of time.

When the contact between the body and the rigid plane is produced, a contact pressure

appears in the active contact zone in order to prevent the penetration. This pressure should be

non-negative, i.e. equal to zero in inactive and negative in active contact zone:

σn ≤ 0 at Γc. (4.5)

Combining the non-penetration condition in the active zone given by Eq. (4.3) and the defi-

nition of the contact pressure (Eq. (4.5)) we get the non-penetration-non-adhesion condition:

σn g(x) = 0 at Γc. (4.6)

All together, the set of conditions expressed in Eq. (4.1), Eq. (4.5) and Eq. (4.6) form the

Hertz-Signorini-Moreau law of unilateral normal contact:

g ≥ 0, σn ≤ 0, σn g = 0. (4.7)

4.2.2 Balance of momentum including contact

The nonlinear contact problem can be written as a boundary value problem, given the following

equilibrium condition in Ω and boundary conditions on ∂Ω, which includes the Hertz-Signorini-

Moreau law for normal contact:
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Figure 4.1: Reference (Ω0) and actual (Ω) configurations of a deformable body
in unilateral contact with a rigid plane.

∇ · σ + f
v

= 0 in Ω

σ · n = σ0 on ΓN

u = u0 on ΓD

g ≥ 0, σn ≤ 0, σn g = 0, σt = 0 on ΓC

(4.8)

being σ the Cauchy stress tensor, f
v

a vector of volumetric forces, σ0 a set of prescribed

tractions and u0 a set of prescribed displacements. Over ΓC we have imposed the contact

boundary conditions: g represents the gap between contacting bodies, σn is the normal contact

pressure and σt is the tangential stress. For simplicity, on the balance of momentum given by

Eq. (4.8) we have considered a frictionless case (σt = 0).

4.2.3 Interpretation of contact Hertz-Signorini-Moreau conditions

A contact problem can be directly interpreted as finding the active contact zone and the contact

pressure which has to be applied in order to fulfill contact constraints. However, the problem

can be also interpreted from another point of view: instead of prescribing the pressure at the

active contact zone, we can impose a displacement according to the contact constraints. In what

follows, and without loss of generality, we assume a frictionless case.

The set of normal contact conditions expressed by Eq. (4.7) can be separated into two parts

for active Γ̄c and inactive Γc\Γ̄c contact zones:
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{
g = 0, σn < 0, σt = 0 at Γ̄c, (4.9a)

g > 0, σn = 0, σt = 0 at Γc\Γ̄c. (4.9b)

According to Eq. (4.2) and the definition of the active contact zone given by Eq. (4.4), the

first term of Eq. (4.9a) can be written as follows:

g = 0 ⇐⇒ ν · u = −g0 ⇐⇒ un = −g0. (4.10)

Eq. (4.10) shows that the no-penetration condition represented by Eq. (4.2) can be inter-

preted as a Dirichlet boundary condition. In contrast, the condition represented by Eq. (4.9b)

can be interpreted as a singular Neumann boundary condition σt = 0 (free boundary) for the in-

active zone. Considering the previous interpretations, we can rewrite the Hertz-Signorini-Moreau

conditions of Eq. (4.9a) and Eq. (4.9b) as:

{
un = −g0, σt = 0 for x ∈ Γ̄c, (4.11a)

σ = 0 for x ∈ Γc\Γ̄c. (4.11b)

Even more, we can rewrite Eq. (4.11a) using the condition given by Eq. (4.5) in the definition

for the active zone:

un = −g0, σt = 0 for {x | x ∈ Γc and σn(x) < 0}. (4.12)

In Eq. (4.11a) (and Eq. (4.12), which is equivalent) we have replaced the contact conditions

on the active contact zone Γ̄c by a partial Dirichlet boundary condition (un = −g0) and a partial

Neumann boundary condition (σt = 0). The non-linearity of the problem emerge because the

active contact zone is, generally speaking, unknown a priori, and its specific location is part of the

solution of the problem. On the contrary, in Eq. (4.11b) we have replaced the contact conditions

in the inactive contact zone by prescribing a full singular Neumann boundary condition (σ = 0).

Writing Hertz-Signorini-Moreau law as expressed in Eq. (4.7) in the form of Eqs. (4.11a)

and (4.11b) gives a better understanding of the normal contact boundary conditions for unilat-

eral contact problems. From a numerical or computational mechanics approach, it is easier to

prescribe in a given domain a given displacement and check for the sign of the contact pressure to

determine the active contact zone, than to prescribe an unknown contact pressure in an unknown

active contact zone, which is determined by a zero value of the normal gap.

4.2.4 Interpretation of frictional condition

This thesis is limited to the classical Coulomb’s friction law for frictional problems, already

introduced in Sec. 2.2.1.1. This friction law states that the value of the tangential stress depends

only on the normal contact pressure σt = σt(σn) by the following relation:

|σt| ≤ µ |σn|, (4.13)
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where µ is a coefficient of friction. So, in the case of frictional contact, the stress vector at

the interface contains both normal and tangential components:

σ = σnn+ σt(σn). (4.14)

From Eq. (2.20) we can identify two different possible states which are allowed by the

Coulomb’s friction law: stick, that occurs when the tangential stress vector is smaller than

the critical frictional stress:

µ|σn| − |σt| > 0, (4.15)

and slip, that occurs when the tangential force σt reaches the threshold µ|σn| imposed by

the Coulombian law:

µ|σn| − |σt| = 0. (4.16)

Similarly to the previous section, we can interpret frictional constraints. Thus, to take the

frictional resistance into account, we must analyze the stress state. In the case of stick, the partial

Dirichlet boundary conditions for normal contact must be replaced with full Dirichlet boundary

conditions to reproduce the stick state. In the case of slip, the partial Dirichlet conditions for

normal contact must be applied in combination with partial Neumann boundary conditions in

order to reproduce the tangential frictional stress.

The interpretation of geometrical constraints due to frictional contact as partial Dirichlet-

Neumann boundary conditions allows us to introduce a technique for the numerical resolution of

unilateral contact problems using the Finite Element Method. This technique was first introduced

in [141], and is called the partial Dirichlet-Neumann (PDN) method. Taking advantage of the

reformulation of the geometrical contact constraints, this technique results very advantageous

for the resolution of this kind of problems, because there is no need to evaluate residual vectors

and tangent matrices. Coupled with a Lagrange multiplier method for the exchange of boundary

conditions, this method results equivalent to a mortar method. But contrary to the mortar

method, which increases dynamically the number of unknowns of the algebraic system, the PDN

method maintains constant the number of unknowns.

4.3 Method of partial Dirichlet-Neumann boundary conditions

The main idea of this method is to replace the geometrical constraints due to normal and frictional

contact by partial Dirichlet-Neumann boundary conditions in the case of unilateral contact with

an arbitrary rigid surface. In particular, the geometrical constraints due to normal contact are

imposed by means of Multi-Point Constraints (MPC) while friction is imposed in the form of

a tangential force which is applied in the opposite direction of sliding of the node. From a

geometrical point of view, MPC can be interpreted as Dirichlet boundary conditions which allow

sliding of the contacting node only in the tangential plane. For the enforcement of MPC a chosen

degree of freedom of each contacting node –slave dof us– is written as a linear combination of
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the other dofs of the same node –master dofs uim, i = 1, . . . ,M–:

us = αiu
i
m + β, (4.17)

where αi and β are scalar coefficients, and M is the total number of master dofs. The slave

dof can be chosen arbitrarily for each contacting node but it is required that αi <∞.

4.3.1 Frictionless case

Let xi be the coordinates of a contacting node over Γc in the i-th iteration. Then, the incremental

displacement vector is given by:

ui = xi − xi−1. (4.18)

The incremental displacement of each degree of freedom is given by splitting the vector u

into the reference frame basis:

uij = ui · ej , (4.19)

where ej is a set of basis vectors.

Otherwise, any rigid surface can be described by the parametric representation:

r(u, v) = x(u, v) e1 + y(u, v) e2 + z(u, v) e3. (4.20)

Without any loss of generality, let us suppose that locally exists a function f such that:

z = f(x, y), (4.21)

where x, y and z are coordinates of the surface point in the chosen coordinate system:

x = x(u, v) e1, y = y(u, v) e2, z = z(u, v) e3. (4.22)

Then, using the definition given by Eq. (4.18), the geometrical constraint given by Eq. (4.1)

can be written in the following way:

xi3 ≥ f(xi1, x
i
2) ⇐⇒ ui3 ≥ f(xi−1

1 + ui1, x
i−1
2 + ui2)− xi−1

3 . (4.23)

We can compute the tangential plane at a given point {x∗, y∗} on Γc by the following expres-

sion:

P : z =
∂f

∂x

∣∣∣
{x∗,y∗}

(x− x∗) +
∂f

∂y

∣∣∣
{x∗,y∗}

(y − y∗) + f(x∗, y∗). (4.24)

Then, the multi-point constraint to be imposed to the point {x∗, y∗} is given by:

u3 = au1 + bu2 + c− xi−1
3 , (4.25)

where
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a =
∂f

∂x

∣∣∣
{x∗,y∗}

, b =
∂f

∂y

∣∣∣
{x∗,y∗}

, c = f(x∗, y∗). (4.26)

Fig. 4.2 shows an example of MPC boundary conditions for a 2D frictionless unilateral contact.

The nodes of the deformable body which have penetrated the rigid body are identified and

projected following an arbitrary direction to the rigid body surface. Then, a tangent line to the

contact surface of the rigid body, which contains the projection point, is computed. This allows

to determine the relation for the MPC boundary condition.

Figure 4.2: MPC boundary conditions for unilateral frictionless contact.

In addition, is necessary to check that there are no artificial traction forces in the created

contact interface. The reaction force R appearing at the contacting nodes, where the MPC have

been imposed, has to be checked: the normal contact force should point in the same direction as

the normal to the rigid surface:

R · n ≥ 0. (4.27)

Otherwise, the MPC imposed at the contacting node must be removed. Fig. 4.3 shows an

example of an iterative process for the MPC update process. Once penetrated nodes are detected,

MPC boundary conditions are imposed to such nodes. When equilibrium is reached, a search

for non-physical adhesion nodes is performed. If adhesion nodes are detected, MPC boundary

conditions are released for that nodes and the system is solved again. This procedure is repeated

until no adhesion node is found.

4.3.2 Frictional case

The idea for this case consists of, first, replacing the MPC by full Dirichlet boundary conditions

in order to fix the displacement of the node also in the tangential direction. That is, if a node x

penetrates the rigid surface, it should be returned to the penetration point x∗ by the enforcement
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Figure 4.3: Iterative process for the MPC update process. (a) Initial configura-
tion. (b) First iteration: four MPC boundary conditions are imposed at each of
the four penetrated nodes. (c) Second iteration: after equilibrium is reached,
two nodes are in adhesion to the surface of the rigid body. (d) In the third
iteration, MPC boundary conditions are released for the adhesion nodes and
equilibrium is recomputed.

of a full Dirichlet condition of the form:

u = x∗ − x. (4.28)

Afterwards, the reaction R that appears at the node should be splitted into normal Rn and

tangential Rt components, and the non-adhesion condition should be checked as well as the

stick-slip condition: ||Rt|| < µ||Rn||, stick

||Rt|| ≥ µ||Rn||, slip.
(4.29)

In the case of slip, the full Dirichlet boundary condition has to be replaced by an MPC

boundary condition to allow displacements on the tangent direction. In addition, an external

force Fe should be applied to the sliding node along the tangential direction, in the opposite

direction to the tangential reaction Rt. How this force is applied to the sliding node together

with the MPC is shown in Fig. 4.4. The magnitude of the external force Fe is given by the

Coulombian friction law, and is computed according to:

Fe = −µ ||Rn||
Rt

||Rt||
. (4.30)
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Rigid

Deformable

Figure 4.4: Representation of the external force for the frictional case.

4.4 Computational implementation

Based on the PDN method, we propose to solve the unilateral contact problem from a coupled

point of view. In this approach, each body is treated separately, using one instance of the

computational code for each body. The contact interaction is reproduced by means of the

transference of Dirichlet boundary conditions at the contact interface. It is worth remarking

that in the case of unilateral contact there is no need to solve the fully discretized system of

equations for the rigid body; only the displacement of its boundary elements must be computed

by the code instance devoted to this body. Nevertheless, its whole mesh is needed for contact

detection purposes, as will be explained in the following section. In this chapter, however, we will

consider a more general but equivalent case where the rigid body is assumed to be a deformable

body which only experiences rigid body translations. Despite not being the most efficient way

of solving a rigid body problem (since we are solving the fully discretized system of equations

for the rigid body only to obtain rigid body motions instead of solving the Euler’s equations for

the rigid body dynamics) this idea allows us to present unilateral contact as the starting point

of the bilateral formulation.

The usage of a parallel computational code allows to split each contacting body into several

subdomains. In the methodology proposed in this thesis, each body is solved independently in one

code instance. Thus, they can be treated as standalone problems with extra boundary conditions

due to contact. As a consequence, the mesh is partitioned independently in both instances at

preprocessing time, thus allowing to not restrict the mesh partitioner. The unilateral contact

condition is enforced through the transference of information from the rigid to the deformable

body. This algorithm can be treated as a black-box method, easily adaptable to any finite

element computational code. As the solution procedure for the unilateral contact problem is

performed through the exchange of boundary conditions, this algorithm can be plugged to any

parallel computational code were the link is done by exchanging specific boundary information.

To better describe the computational implementation of this parallel method, we divide the

current section into two main subsections, one for each main ingredient of the algorithm: (a) the

contact searching and (b), the contact resolution. A contact situation is produced when the gap

between the bodies is closed, so the first step of any contact algorithm is the contact detection.
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This means to detect when interpenetration between contacting bodies occurs. Is at this point

when the contact resolution is triggered, using the information obtained in the detection phase.

In a parallel environment, contacts can occur between surfaces which may be owned by dif-

ferent computational nodes, arbitrary defined by the mesh partitioner. As the surface geometries

of the contacting bodies dynamically change in the general case, to find these contacts we re-

quire frequent global searches across all the computational nodes. These global searches require

unstructured communication among the computational nodes in the parallel computer. These

features make efficient parallel contact detection a very relevant topic in the field of contact

mechanics [7].

4.4.1 Contact searching and communication: the PLE++ tool

For the localization of penetrated nodes and communication between different subdomains we

use PLE++, which is an adaptation of the Parallel Location and Exchange (PLE) library [47],

originally developed by Électricité de France (EDF) to couple the CFD code Code Saturne and

the heat transfer code Syrthes. PLE++ is a parallel 2D and 3D locator and communication

tool, used here to detect interpenetration and to communicate and transfer information between

subdomains. PLE++ is a C++ environmental library, with the capability of parallel localization

of nodes in overlapping domains and communication between parallel applications in C, C++,

Fortran or Python. In Fig. 4.5 we show an schematic representation of PLE++ localization

functionality for a 2D case. PLE++ tool allows to detect those nodes of Ω2 which have penetrated

into Ω1. As PLE++ is a parallel tool, it is possible to perform node localization even when the

meshes are splitted into several subdomains. When this is the case, the localization is performed

at the subdomain level. In the example shown in Fig. 4.5, each body represented by domains Ω1

and Ω2 is divided into two subdomains S1 and S2. PLE++ will identify those nodes of Ω2 which

have penetrated subdomain S1 of Ω1 (red) and those nodes which have penetrated subdomain

S2 of Ω1 (blue). Despite it is not shown in the figure, PLE++ will also perform the inverse

operation, identifying the nodes of Ω1 which have penetrated into subdomain S1 of Ω2 and into

subdomain S2 of Ω2. PLE++ also allows to communicate and transfer information between the

subdomains involved in the localization process.

In the next section we will describe in more detail the strategy that PLE++ follows for

localization and data exchange.

4.4.1.1 Parallel location and exchange algorithm

We will start setting the nomenclature that will be used for the description of the parallel location

algorithm of PLE++. Generally speaking, any physical domain can be divided into independent

partitions, each of them being characterized by particular type of physics i.e. fluid mechanics,

solid mechanics, heat transfer, etc. The physics inside of each partition can be solved by any

numerical technique such as finite elements, using different sets of processors. When using finite

elements or any other numerical technique, the physical domain must be discretized. The domain

discretization is the mesh, which is composed of nodes connected between them. Those nodal
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Figure 4.5: Schematic representation of PLE++ localization functionality. The
PLE++ tool is used to localize those nodes of Ω2 which have penetrated into Ω1.
Being a parallel locator, PLE++ can be used even when the meshes are divided
into several subdomains.

connectivities define the elements of the mesh. For the parallel resolution of a numerical problem

using domain decomposition, a mesh partitioning is done. Here, the mesh is splitted in small

portions called subdomains. For the rest of this thesis we will consider only that each subdomain

is associated to an unique processor, and that each processor is associated to an MPI task.

Let’s now consider the 2D example shown in Fig. 4.6. Here we sketch a discretized physical

domain formed by two non-conforming partitions Ωa and Ωb. A total of seven processors are used

to solve the whole system, distribuited in the following way: three processors are assigned to

Ωa ({Ω1
a,Ω

2
a,Ω

3
a}) and four to Ωb ({Ω1

b ,Ω
2
b ,Ω

3
b ,Ω

4
b}). As we can observe in Fig. 4.6, some boundary

nodes of subdomain Ω2
a (processor 1) match with the interface boundary of subdomains Ω1

b

(processor 3) and Ω4
b (processor 6). Thus, only processors 1, 3 and 6 are involved in the coupling

between partitions Ωa and Ωb. Hence, a localization procedure must be followed in order to look

for those matching nodes and to stablish a communication between the processors which own

those nodes. This is of crucial necessity for solving coupled problems, which are based on the

exchange of information between partitions at the boundary level.

When solving a coupled problem in a domain decomposition setting, each partition solver is

executed by a different set of processors, i.e. each physics is solved in a specific partition by a

defined set of processors. Any of these processors contain only a subdomain of such partition.

As the subdomains are independent from each other, in a distribuited memory environment the

node coordinates and its connectivities (i.e. the elements) are locally known in each subdomain

but not amongst them.

In order to establish the connections needed for the resolution of a given coupled problem, each

processor must know exactly which of its nodes (if any) are contained by any other subdomain.

On the other hand, if a given processor contains external nodes (i.e. nodes owned by external

processors), it must know the number and coordinates of those nodes. Also, that processor must
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Partitions

Partitions
+

Communications

Subdomains

Processors

mpirun -np 3 solver-a -np 4 solver-b MPMD mode
syntaxis

Figure 4.6: Example of a discretized physical domain formed by two non-
conforming partitions Ωa and Ωb. Each partition is splitted in 3 and 4 subdomains
respectively and each subdomain is assigned to one specific processor.

know which of its elements contains each of those external nodes and the processor to which

those nodes belong. All this information is provided by PLE++.

The rest of this section is dedicated to describe the algorithm used by PLE++ for the

localization of nodes and elements which participates in the coupling. This is, how PLE++

computes all the information described in the previous paragraph. This algorithm makes use of

an hierarchical searching based on geometrical properties of the partitions.

4.4.1.1.1 Global searching The global searching process is the main part of the localization

algorithm. Its aim is to provide the necessary information required for the coupling. A very

important component of all coupled problems is the transference of information between all the

subdomains which must be coupled. A crucial issue for the data exchange required in coupled

problems is to know the relation between nodes and elements located in subdomains that are

owned by different processors.

Without limiting the generality of the algorithm for the case of 3D geometries, let us sup-

pose that each partition Ωa and Ωb is divided into subdomains Ωk
a = {Ω1

a,Ω
2
a,Ω

3
a} and Ωl

b =

{Ω1
b ,Ω

2
b ,Ω

3
b ,Ω

4
b}, and that each subdomain is assigned to a unique processor pa and pb respec-
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tively, as shown in Fig. 4.6. We will have then as many processors as subdomains for each

partition. Such processors or subdomains can be classified as local or remote. The local proces-

sors are those that belong to each subdomain of a given partition, while the remote processors

belong to the rest of the subdomains of the other partitions.

For every local processor, the global searching algorithm seeks all the remote processors to

which information related to the coupling must be exchanged. Specifically, in order to stablish

the data tranference, the global searching algorithm computes for each local processor: (a)

the number and identification of its own local nodes contained by each remote processor, (b)

the number and the coordinates of the remote nodes that the local processor contains, (c) the

identification of local elements which contain each of the remote nodes, and (d) the identification

of the remote processor/processors to which those remote nodes belong.

This is done by using a Multiple Program Multiple Data (MPMD) model, where all the

processors execute the Algorithm 1 concurrently (i.e. in parallel).

Without loss of generality, in the description of Algorithm 1 we will define as local subdomains

those who belong to the partition Ωa, while remote subdomains are those who belong to partition

Ωb.

Algorithm 1 Global search/localization

1: Qka = GetBox(Ωk
a)

2: for l = {1, 2, ..., pb} do
3: Qlb = SendRecvl(Q

k
a)

4: if Qklab = Qka ∩Qlb 6= ∅ then
5: Idka = WithinBox(Rk

a, Q
k
a ∩Qlb)

6: rka = Rk
a(Id

k
a)

7: Idkac = WithinBox(Ωk
a, Q

k
a ∩Qlb)

8: ωka = Ωk
a(Id

k
ac)

9: rlb = SendRecvl(r
k
a)

10: Idrb
ac = LocateInCells(rlb,ω

k
a)

11: Idra
ac = SendRecvl(Id

rb
ac)

12: IDk
a[l] = (Idka, Id

ra
ac)

13: end if
14: end for

For each subdomain in Ωk
a and Ωl

b we can define the following bounding boxes Qka =

{Q1
a, Q

2
a, Q

3
a} and Qlb = {Q1

b , Q
2
b , Q

3
b , Q

4
b} (line 1 of Algorithm 1), as shown in Fig. 4.7 for a

2D example. A bounding box is simply a rectangle in 2D or a box in 3D which encloses a given

subdomain.

Suppose now that Algorithm 1 is being executed in a local processor. The first step of the

algorithm is to share with all the remote processors (line 2) the geometric definition of each local

bounding box Qka (line 3).

As in reality Algorithm 1 is executed concurrently by all processors, due to the SendRecv

instruction the remote subdomains Ωl
b also share its bounding boxes with local subdomains Ωk

a.

So, as a consecuence of the bi-directional SendRecv instruction, each local subdomain Ωk
a knowns
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the definition of each bounding box of the remote subdomains Ωl
b (Qlb). The same occurs in the

opposite way: each remote subdomain Ωl
b knows the position of the bounding boxes of the local

subdomains Ωk
a.

After this information is shared amongst all the subdomains, each local processor compares

its bounding box with all the bounding boxes received from the remote processors (Fig. 4.7 (a)).

Whether any pair of bounding boxes overlap Qklab = Qka ∩ Qlb 6= ∅ (Fig. 4.7 (b)), the processors

associated to these subdomains are matched for coupling (line 4).

Once this matching is done, the next step is the searching of the local node coordinates rka

which lie inside the overlapping region Qklab (Fig. 4.7 (c)). This is done by identifying, from the

list of coordinates of all local nodes Rk
a, those who lie inside the overlapping region Qklab. The

output of this step is a list of node identifiers Idka (line 5). The coordinates list rka are obtained

by matching Idka with Rk
a (line 6).

The elements identifier Idkac store those elements of the local subdomain Ωk
a which lie inside

the overlapping region Qklab (line 7). The connectivities of those elements (ωka) are given by

matching the identifiers Idkac with the list of all the connectivities of the local subdomain Ωk
a

(line 8).

Afterwards, the sub-set of local nodes rka is shared with all the remote processors of those

subdomains which fulfill the condition Qka ∩ Qlb 6= ∅ (line 9). At this point and due to the

SendRecv instruction, each local processor also knowns the coordinates of those nodes from all

the remote subdomains which are inside the overapped region Qklab (rlb).

The next step of the algorithm is to identify which of the remote nodes rlb (which by definition

lie inside the overlapped region), also lie inside the local elements ωka (line 10). This specific task

is described in the next section, Local searching.

Once all the remote nodes which lie inside the local elements are found and identified by

the local processor (Fig. 4.7 (f)), their identifiers Idrb
ac are shared with the remote processor

which owns those detected nodes (line 11). Due to the SendRecv instruction and to the fact

that Algorithm 1 is executed concurrently in all processors, at this point the local processor will

receive the identifiers of all its nodes detected by the remote processors (Idra
ac).

The last step of Algorithm 1 is the assembly of array IDk
a[l] (line 12), which contains the

main information computed by the algorithm. This array stores the local node and element

identificators Idka and Idra
ac , respectively. The position l in array IDk

a[l] represents each one of

the remote processors. So, by means of array IDk
a[l] each local processor knows: (a) which local

nodes lie inside of the subdomain owned by processor l, and (b) which local elements contain

remote nodes from processor l. Thus, once the global searching algorithm has finished and

given the fact that the global searching is executed in parallel in all processors, the available

information at each processor is: (a) a list that maps local nodes with its corresponding remote

processor/processors, and (b) the list of local elements that contain remote nodes. Finally,

by evaluating rlb(Id
rb
ac) each processor can compute the coordinates of the remote nodes from

remote processor l that are contained by any local element. The list of local elements and the
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coordinates of the remote nodes are used to perform interpolation operations between local to

remote subdomains.

The list of remote processors IDk
a[l] is used to develop a communication scheduling. Such

scheduling determines which processors are involved in the coupling and when and how the data

should be exchanged between the processors.

4.4.1.1.2 Local searching In this specific task, which is part of the global searching pro-

cedure, the identification of all of the remote nodes which lie inside each of the local elements

at the overlapped region is done. This is performed by using an octree searching algorithm as a

first approximation along with some suitable method to exactly determine whether a node is or

not inside a given element. The process of local searching is described in Algorithm 2.

Algorithm 2 Local search/localization

1: T lb = GetOctree(rlb)
2: for all ek ∈ ωka do
3: qk = GetQueryBox(ek)
4: Idlac = WithinQueryBox(T lb , qk)

5: Idrb
ac += WithinCells(Idlac , r

l
b, ek)

6: end for

Once the remote nodes rlb and the local elements ωka located at the overlapping regionQklab have

been identified (see previous paragraph, global searching), the next step consists on finding the

sub-set of remote nodes which lie inside the sub-set of local elements. Not only the identification

but also the pairing between those nodes and elements is done in this process. In order to do

that efficiently, an octree search is performed. Such octree T lb is created by using the remote

nodes rlb (line 1). The first step for the octree construction is the creation of a square in 2D or

a box in 3D which encloses all the remote nodes rlb. Then a refinement process starts, stopping

each time that a leave of the octree encloses as much as a sub-set of 3 nodes from the set of

remote nodes rlb (Fig. 4.7 (d)).

Next, for each local element ek in the sub-set of local elements ωka (line 2) a query box qk

is created (line 3). This query box is basically a bounding box which encloses each element

ek. After the query box is created, the next step is to identify those octree leaves which are

overlapped by the query box. A list of those overlapped octree leaves is stored in Idlac (line 4)

(Fig. 4.7 (e)).

The last step consists of identifying which of the remote nodes that lie inside of the octree

leaves listed in Idlac are also inside of the local element ek (line 5). For this task, any suitable

method to decide whether a point is located inside a given geometry could be used. For instance,

homogeneous barycentric coordinates are used in the case of triangles or tetrahedrons. For more

general cases, spherical barycentric coordinates can be used. The output of this step is the list

Idrb
ac which allows to identify all those remote nodes of the sub-set rlb which lie inside element ek.

Using octrees provides an efficient way to perform the local searching. This strategy is much

more adventageous than other straightforward choices, as the brute force evaluation. Brute force
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: (a) Bounding boxes Qa = {Q1
a, Q

2
a, Q

3
a} and Qb = {Q1

b , Q
2
b , Q

3
b , Q

4
b} are used

to find candidate processors to be matched for the coupling. (b) Whether two
bounding boxes overlap, the processors are matched for the coupling. (c) Iden-
tification of local node coordinates rka which lie inside the overlapping region.
(d) An octree is created using the remote nodes situated in the overlap region
Q2
a ∩ Q1

b . Such octree is used as a first approximation to find the remote nodes
that are closest to each local element. (e) When a query box and an octree
leave overlaps, barycentric coordinates are used to exactly determine if the
remote nodes enclosed by the octree leave are localized inside the local ele-
ment enclosed by the query box. (f) All the remote nodes which lie inside the
local elements are found and identified by the local processor.
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evaluation means to check one by one the remote nodes rlb and evaluate if they are inside the

local element ek. This is a very expensive strategy, which cost is considerably reduced by using

the octree method.

4.4.1.2 Exchange

The data exchange strategy only considers subdomains of different partitions with common

overlapping regions. Since each partition is independently solved, the main operations related to

the coupling as communication and interpolation take place locally. Interpolations are performed

on each processor, while communications are performed in pairs of processors, by a parallel

peer-to-peer communication approach (see Fig. 4.8 and Algorithm 3). On the other hand, it is

possible to assume that the workload across the processors has been equally distribuited by a well

known domain decomposition method, for instance METIS [78], executed independently on each

partition. The set of nodes assigned by METIS to each processor, along with their respective

connectivities (i.e. elements), forms the subdomains of each partition.

Communication
Figure 4.8: Disjoint partitions and subdomains Ωia and Ωjb. Data is only trans-
ferred between overlapping subdomains (Ωi2 with Ωj1 and Ωi3 with Ωj1). Interpola-
tion maps property values via on Ωia to values vjb on Ωjb through the coordinates
rlb (remote nodes). Exchange is done through the message passing interface.

Algorithm 3 describes briefly the data exchange strategy. The number of communications qaij
that the subdomain Ωia stablishes with the partition Ωj (and vice versa) is defined by the number

of overlaps between Ωia with each of the subdomains of partition Ωj (Ωjb). The overlapping

surface Γij = Ωi ∩ Ωj 6= ∅ defines the communication between partitions Ωi and Ωj . For

the example shown in Fig. 4.8, communication takes place between subdomains Ωi2 and Ωi3 of

partition i and subdomain Ωj1 of partition j. Interpolation of local properties via to remote nodes

rlb is done locally in each processor (line 3). Then, interpolated property vjb is communicated

to each of the processors that own remote nodes (line 4). This communication is done using the

message passing interface (MPI).
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Algorithm 3 Data exchange

1: for Ωjb = {Ωj1, ...,Ωjpb} do
2: if Ωia ∩Ωjb 6= ∅ then
3: Interpolationa(via, r

l
b) → vjb

4: Communicationab(vjb)
5: end if
6: end for

4.4.2 Implementation issues

From now on, as we are only interested in unilateral contact problems, we will consider the case

were a rigid body gets in contact with a deformable body. For simplicity, in the rest of this section

we will use 2D examples to illustrate the description of the algorithm. Nevertheless, all the ideas

introduced here are also applicable to 3D cases. As it was described in Sec. 4.4.1.1, contact

detection allows to identify the contacting nodes once they have penetrated a given domain (see

Fig. 4.5).

At each time step, contact detection is done after the displacements update of the rigid body,

but before the resolution loop of the deformable body. In other words, we use the updated mesh

of the rigid body as the base mesh for the localization of penetrated nodes of the previous time

step configuration mesh of the deformable body. At this instant, both algorithms synchronize

and the localization is executed. In Fig. 4.9 we show a temporal representation of this procedure.

The contact algorithm is triggered when at least one boundary node of the deformable body

has penetrated inside the rigid body. When this occurs, Algorithm 4 is executed concurrently

(i.e. in parallel) in all the processors which belong to the rigid body partition, just after the

localization procedure. For each of the nsend detected nodes of the deformable body (line 1), the

first task is to project each of those nodes to the rigid body’s contact boundary (line 2). This

projection is done independently by each of the processors of the rigid body partition which has

detected at least one penetrated node. So nsend variable is local to each processor and represents

the number of penetrated nodes that were detected. The direction of projection must be given

as an input by the user. The output of this computation is a normal-tangent orthonormal basis

for each of the penetrated nodes. This orthonormal basis is build in such a way that the tangent

direction passes through the projection and is tangent at this point to the contact boundary of

the rigid body. The normal distance (i.e. the distance from the point to the normal tangent line)

is also computed. This procedure is schematically represented in Fig. 4.10.

Algorithm 4 Rigid body algorithm

Require: Contact detection

1: for i = 1,nsend do

2: tangenti,normali,distancei = projection(directioni)

3: send to deformable(tangenti,normali,distancei)

4: end for

Algorithm 5 describes the parallel projection algorithm (i.e. projection function executed
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Rigid body

Deformable body

Localization

Figure 4.9: Temporal representation of the contact detection. This procedure
is repeated at each time step.

on line 2 of Algorithm 4). In a domain decomposition approach, each processor stores only the

nodes and connectivities of the associated subdomain, including the boundary information. As

each penetrated node is projected to the contact boundary of the rigid body, then each processor

must know at least the definition of the boundary segment to which the projection lies (i.e.

boundary nodes and its connectivity). The projection algorithm, executed concurrently by each

processor of the rigid body, must be general in order to consider the case where the projection

lies in a boundary segment of a different processor than the one which owns the detected node

(see Fig. 4.11). The strategy followed here is to communicate to all the processors of the rigid

body partition the information regarding to the complete contact boundary definition (lines 1

to 4). After line 4 is executed, each processor has a local copy of the coordinates of the boundary

nodes and the boundary elements connectivities for the complete contact boundary of the rigid

body. Then, for each of the detected nodes i of the deformable body (line 5) the algorithm loops

over each boundary element of the contact boundary of the rigid body j (line 6) and builds a

plane πj (or a line, in a 2D case) using the geometrical information of the boundary element

(line 7). Then, the algorithm projects the detected node i to the plane πj in a predefined direction

(line 8). Afterwards, the algorithms checks if the projection of node i to plane πj also lies inside

the boundary element j (line 9). If true, the algorithm returns the tangent vector, normal vector

and normal distance of node i to the boundary element (i.e. distance from node i to πj) (lines 10

to 12).
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RIGID

DEFORMABLE

SUBDOMAIN 1

SUBDOMAIN 2

SUBDOMAIN 3

Figure 4.10: Projection operation done by the processors which belong to the
rigid body partition. Each of the detected nodes of the deformable body which
have penetrated the rigid body are projected to the rigid’s body contact surface.
The rigid body computes the orthonomal coordinates basis system n − tg at the
projection point and the normal distance dn.

Algorithm 5 Projections algorithm (projection function)

Require: directioni

1: communicate local number of boundary elements

2: contactbou total ← get total number of boundary elements

3: communicate local boundary nodes coordinates

4: bocod total ← get all boundary nodes coordinates

5: for i = 1,nsend do

6: for j = 1,contactbou total do

7: get plane πj : ax+ by + cz + d

8: project node i to plane πj in directioni

9: if projection is inside boundary element j then

10: tangenti, normali ← compute tangent and normal vector of πj

11: distancei ← compute normal distance from node i to πj

12: return tangenti,normali,distancei

13: end if

14: end for

15: end for

After the rigid body instance has computed all the information required for each penetrated

node (orthonormal basis at the projection and normal distance), the next step is to send this data

to the deformable body, as stated in line 3 of Algorithm 4. So far, the orthonormal basis and the

normal distance computations have been performed by the processors owned by the rigid body,
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RIGID

DEFORMABLE

SUBDOMAIN 1
SUBDOMAIN 2

SUBDOMAIN 3

SUBDOMAIN 4

SUBDOMAIN 5

SUBDOMAIN 6

SUBDOMAIN 7

Figure 4.11: Penetrated nodes n1, n2 and n3 are detected by processors 2, 4 and
6 but the projection lies on boundary segments which belong to processors 1, 3
and 5 respectively.

so this information is stored in each of these processors. Given that this information is required

by the deformable body, the rigid body must transfer all of the previously computed values.

This exchange of information is done via PLE++ tool, using the builtin MPI API, as described

in Sec. 4.4.1.2. Each processor of the rigid body that has detected a penetrated node will send

the orthonormal basis and normal distance to the processor of the deformable body which owns

that node. Fig. 4.12 shows an example where the rigid body is divided in 3 subdomains while

the deformable body is divided in 5 subdomains. For the sake of clarity and without loss of

generality, we assume that the detected node and its projection are in the same processor of the

rigid body partition. Node 1 (n1), which belongs to the deformable body’s contact surface, is

detected by processor 1 (subdomain 1) of the rigid body. Once the orthonormal basis and normal

distance are computed, this information is sent to processor 4 (subdomain 1) of the deformable

body, as this is the processor/subdomain which owns that node. Same procedure is done with

node 2 (n2) and node 3 (n3). For node 2 and node 3 communication is stablished between

processors 2 and 6 and between processors 3 and 8 respectively.

The synchronization point for the exchange of information between both code instances is

placed after the execution of Algorithm 4 for the rigid body instance, and after the localization

procedure for the deformable body instance. In other words: when the localization procedure is

over and after the rigid body has finished the execution of Algorithm 4, is when the exchange

of the projection data is produced. This means that after the localization the code instance in

charge of the deformable body is on hold waiting for the rigid body instance to finish the execution

of Algorithm 4. When this happens, the exchange of data between instances is produced (i.e.

the rigid instance sends the data of the projections to the deformable instance). Then, the

execution of the rigid body code instance stops and the execution of Algorithm 6, executed by
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RIGID

DEFORMABLE

SUBDOMAIN 1
rigid

SUBDOMAIN 2
rigid

SUBDOMAIN 3
rigid

SUBDOMAIN 1
deformable

SUBDOMAIN 2
deformable

SUBDOMAIN 3
deformable

SUBDOMAIN 4
deformable SUBDOMAIN 5
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Figure 4.12: Transference of information from the rigid body to the deformable
body. Rigid body is divided in 3 subdomains while deformable body is divided in 5
subdomains. Processors 1, 2 and 3 of the rigid body partition send the orthonor-
mal basis and normal distance to processors 4, 6 and 8 of the deformable body
partiton respectively.

the deformable body instance, starts. This complete sequence is reproduced in Fig. 4.13.

Algorithm 6 Deformable body algorithm

1: for i = 1,nrecv do

2: retrieve from rigid(tangenti,normali,distancei)

3: j ← from local to global(i)

4: tag contactj = 1

5: jac rotj = create rotation matrix(tangenti,normali)

6: set displacementj(distancei)

7: end for

Algorithm 6 is executed concurrently by each processor of the deformable body partition.

Each of these processors loop over all the nrecv penetrated nodes they own (line 1). For each

penetrated node, they retrieve the normal and tangent vectors which define the orthonormal

basis and the normal distance to the tangent plane (line 2). The penetrated nodes detected

by PLE++ are a subset of nodes which belong to the set of the totality of nodes which define

the deformable body. It becomes necessary to relate the local numbering of penetrated nodes

(i.e. from one to the total number of nrecv detected nodes that belong to each processor of the

deformable body partition) with the global numbering of nodes (i.e. from one to the total number

of nodes that conform each subdomain). This relation is automatically created by PLE++ and

stored in an array which is used as described in line 3. An array used for identifying all contacting

nodes using their global numbering is also constructed for future computations (line 4). Next, a

rotation matrix is computed for each of these nodes using the information received by the rigid
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Rigid body

Deformable body

Exchange

Send projection data

Receive projection data

Localization

Localization

Localization
Exec. algorithm 4

Exec. algorithm 6

Figure 4.13: Staggered execution of rigid and deformable body algorithms. Iden-
tification of the localization and exchange points. This procedure is repeated
at each time step.

body (line 5). This rotation matrix will be used for the enforcement of the MPC. Finally, each

of the penetrated nodes store in its global numbering the normal distance to the tangent plane

(line 6), as this information will also be used for the enforcement of the MPC.

As explained in Sec. 4.3, the PDN method is based on the replacement of the geometrical

constraints due to normal and frictional contact by partial Dirichlet-Neumann boundary condi-

tions in the case of unilateral contact with an arbitrary rigid surface. The geometrical constraints

due to normal contact are imposed by means of Multi-Point Constraints (MPC) while friction is

imposed in the form of a tangential force (Neumann condition), which is applied in the opposite

direction of the sliding node. Basically, the general idea of this method is to solve the equilib-

rium of the deformable body restricting the movement of the contacting/penetrated nodes only

in the tangential plane. From a mathematical point of view, the general strategy to solve linear

systems of equations with restrictions is the usage of Lagrange multipliers. The major drawback

when using Lagrange multipliers is the introduction of extra degrees of freedom to the system of

equations which must be solved. For the particular case of contact problems, the number of La-

grange multipliers which must be introduced to the system depends on the number of contacting

nodes, which can vary with time. A time-dependent number of degrees of freedom can be very

disadvantageous for load balancing when using a parallell computer code. We propose a new

strategy for solving the restriction problem without needing to increase the number of degrees
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of freedom of the system. This strategy is based on a local rotation of the coordinates system

for each of the penetrated nodes. The first step is to associate to each of the penetrated nodes

a rotation matrix which is constructed with the normal and tangent vectors received from the

rigid body partition (line 5 of Algorithm 6). For a general case, the rotation matrix Ri for the

node i is constructed as follows:

Ri =

 nx t1,x t2,x

ny t1,y t2,y

nz t1,z t2,z

 , (4.31)

where n is the normal vector and t1 and t2 the tangential vectors associated to node i. In a

2D problem, only one tangent vector is needed.

4.4.2.1 MPC enforcement

From the point of view of the deformable body, an unilateral contact problem solved with the

PDN method can be summarized as follow: compute the equilibrium of a deformable body

restricting the displacement of some given nodes to pre-defined planes, which can be formulated

differently node by node. Fig. 4.14 shows a 2D example of the previous statement. Here, we

desire to compute the equilibrium of body B restricting the displacement of nodes A and B to

lines l1 and l2 respectively. The PDN method implies that lines l1 and l2 must be constructed

using the tangent direction of the rigid body’s contact surface at the location where the projection

of detected nodes lies (for this particular example a vertical projection is used).

Figure 4.14: Multi-point constraints applied to nodes A and B.

As already mentioned, the most common technique to solve this kind of problems is by means

of the Lagrange multipliers method. Nevertheless, introduction of Lagrange multipliers presents

several drawbacks for parallel computational codes. The proposed technique is based on a local

rotation of the reference frame for each node, and the enforcement of an homogeneous Dirichlet

boundary condition along the normal direction. The first step is to artificially locate the nodes

over each line at the closest point, which would be the normal distance from the point to the

line (see Fig. 4.15). This artificial displacement is used for the construction and assembly of the

finite element matrices for the equilibrium computation of body B.
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Figure 4.15: Artificial displacement of nodes A and B used for the assembly of
finite element matrices.

The next step is to rotate locally the reference frame of the nodes from x, y to n, t using the

rotation matrix Ri (see Eq. (4.31)), as shown in Fig. 4.16. Let’s suppose that Au = b is the

original system. Ri is the matrix which rotates the reference frame of a given node i from global

to local and Qi = R−1
i = RTi is the matrix which rotates from local to global. Then, to rotate

the reference frame of node i in the finite element matrix A, a muliplication by Ri and Qi must

be done in the following way:

A∗ =

∣∣∣∣∣∣∣
A11 . . . A1j Qi . . . A1n

RiAj1 . . . RiAjj Qi . . . RiAjn

An1 . . . Anj Qi . . . Ann

∣∣∣∣∣∣∣ , (4.32)

which is derived from the following transformation:

Au = b, (4.33)

RiAu = Ri b, (4.34)

RiA (QiRi)u = Ri b, (4.35)

RiAQi u
∗ = Ri b, (4.36)

A∗ u∗ = Ri b, (4.37)

where u∗ represents the unknowns vector in the rotated reference frame. It must be noted

that the local rotation represented by Eq. (4.32) should be repeated for each of the contact-

ing/penetrated nodes, using a different rotation matrix for each node.

The next step is to solve the system A∗ u∗ = Ri b, constraining the displacement of each

rotated node in the normal direction by means of an homogeneous Dirichlet condition. Due to

this constraint, the displacement of those nodes will only occur in the tangential direction. As a

consequence of this procedure, we will obtain a solution that is restricted to the line equations

given by the MPC (see Fig. 4.17).
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Figure 4.16: Local rotation of the reference frame for nodes A and B.

Figure 4.17: Equilibrium positions for nodes A and B.

Once the equilibrium is achieved (the solution for u∗ is obtained), the last step is to derotate

all the rotated nodes, to transform the solution to the global x-y reference frame. This is done

using the relation u = Qi u
∗.

4.4.2.2 Friction enforcement

The way in which the frictional forces are imposed is based on the idea introduced in Sec. 4.3.2.

As explained in the previous section, the enforcement of the MPC is characterized by a local

rotation of the coordinate system of each of the penetrated nodes following the rule given by

Eq. (4.32). After the MPC are enforced but before the linear system of Eq. (4.37) is solved,

the algorithm computes the reaction force at each contacting node and evaluates the condition

given by Eq. (4.29). In case of stick, the MPC is removed and a full homogeneous Dirichlet

boundary condition is applied to the corresponding node. In case of slip, the frictional force Fe

is computed according to Eq. (4.30) and applied to the tangential axis of the node as shown

in Fig. 4.18. This force takes the role of a Neumann boundary condition as its value is added

directly to the right-hand-side of the linear system at the position which corresponds to the

tangential degree of freedom of the node.
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Figure 4.18: Frictional force imposition for nodes A and B.

4.4.2.3 Nodes release

Once the MPC and the frictional forces are applied and the system is solved, the last part of the

PDN contact algorithm is intended to check if there is no traction forces in the updated contact

interface (see Sec. 4.3.1). If the contact conditions produce artificial traction forces in any of

the penetrated nodes, the algorithm must release those nodes (i.e. using a remove contact tag)

and repeat the computation enforcing the MPC and frictional forces only in those nodes where

no artificial traction forces were created. This procedure, which allows to determine the active

contact zone for each time step, must be repeated until no artifical traction force is present in

any of the penetrated nodes.

It must be remarked that the procedure described in the previous paragraph is done after

the contact searching/localization for a specific time step. This means that localization is not

repeated while the algorithm is computing the equilibrium of the system and determining the

active contact zone. For a general contact problem, the active contact zone can not be predicted

a priori, and can be interpreted as an extra result of the total computation. This explains the

iterative nature of this procedure.

The algorithm which controls the system resolution and the nodes release for the PDN method

in a parallel execution is shown in Algorithm 7. This algorithm is executed concurrently in each

processor of the deformable body partition at each simulation time step.

As detailed in Sec. 4.4.2.1, after the contact constraints enforcement the resultant linear

system of equations for the deformable body is solved. The result of this procedure is the

equilibrium configuration of the deformable body given the MPC and frictional forces imposed

by contact (lines 1 to 7 of Algorithm 7). Once the convergence is achieved, reactions are calculated

in each penetrated node (line 10). The next step is to check if any of the penetrated nodes is in

artificial adhesion (line 11). If this is the case, the multi-point constraint of the node is released

(line 12) and the system is solved again. This procedure is repeated until all penetrated nodes

in artificial adhesion are released.

In general, the nodes which are subjected to artificial adhesion are owned by only a subset of

all the processors which own the totallity of the penetrated nodes. As Algorithm 7 is executed

74



4.5. Numerical examples

Algorithm 7 Nodes release algorithm

1: update boundary conditions
2: assembly of right-hand-side and system matrix
3: set initial guess for inner iterations
4: notconverged ← 1
5: while notconverged == 1 do
6: call beta-newmark implicit scheme
7: check convergence outer iterations
8: if converged then
9: notconverged ← 0

10: compute reactions on each contact node
11: if there are nodes to release (adhesion) then
12: release nodes
13: notconverged ← 1
14: end if
15: end if
16: call mpi sum(notconverged)
17: if notconverged >= 1 then
18: notconverged ← 1
19: end if
20: end while

concurrently by all processors, this imply that the processors which own the adhered nodes will

continue the execution of the algorithm while the rest will exit the loop as they converged. As it

is necessary to keep all processors executing Algorithm 7 once adhesion nodes are detected, it is

crucial to synchronize the execution of all processors. This is done by communicating to all the

processors the convergence flag (lines 16 to 19). By doing this, it is assured that all processors

exit the loop simultaneously when no adhesion node is longer detected.

4.5 Numerical examples

4.5.1 Computational framework

The algorithm described in this chapter was implemented within an environment designed for

heterogeneous problems in computational mechanics, which is the multiphysics, multiscale and

massively parallel code Alya (see Sec. A.1 from Appendix A).

Taking profit of the flexibility and generality of the algorithm, we use a multicode scheme.

Under this scheme, the displacement field of each body (rigid and solid) is solved using different

instances of Alya, while the contact detection and the exchange of contact information between

computational instances is done by PLE++. This means that for the resolution of the unilateral

contact problem we execute two different instances of the Alya code, using two different set of

input files, one for each body. Furthermore, as Alya is a parallel code, this scheme allows to

parallelize independently each body. Additionally, as we are using different instances of the code

and different input files, we can independently define different models for each of the bodies, as

if they were in a standalone simulation. This define the black-box characteristic of the proposed
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algorithm and is one of its most distinctive features.

In the multicode approach, the parallel simulation of the example depicted in Fig. 4.19 is

executed in the following way:

$ mpirun −np 3 . / a lya b a l l : −np 5 . / a lya block

In this example, the code Alya is used for the numerical simulation of both bodies. Though,

with a proper implementation, any other simulation tool can be used. So this methodology is

not restricted to Alya code. In fact, before its implementation in Alya, the contact algorithm

was tested in Ostero (see Sec. A.2 from Appendix A). Ostero is a didactic finite element code

for the numerical simulation of solid deformable bodies. It was developed in the frame of this

thesis, to use it as a test framework for several mechanical models and problems, as it is a very

useful tool to perform proof-of-concept evaluations of contact mechanics algorithms.

On the other hand, as it was mentioned earlier, the multicode approach uses independent

input files for each body. The usage of separated input files allows to use different kind of models,

from different element types to different material and damage models. The meshes must be gen-

erated separately, so the node numbering and element definition is non-correlative. Additionaly,

mesh partitioning is also performed separately, which allows to specify independently the number

of subdomains to be used.

Figure 4.19: Multicode simulation of a parallel unilateral contact problem.

4.5.2 Test cases

We shall now present the results of application of the algorithm presented in this chapter to some

2D and 3D test cases. These test problems were selected to illustrate and validate the behaviour

of the proposed algorithm.
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4.5.2.1 Signorini problem: cylinder on a rigid foundation - 2D

We first consider a circular cylinder of radius R and length l, resting on a flat foundation, and

subjected to an uniform load along its top of intensity F/l. The cylinder is constructed of an

homogeneous, isotropic, elastic material with Young’s modulus E and Poisson’s ratio ν. Taking

that l >> R, then we can assume a problem of plane strain. No friction is assumed to exist on

the contact surface. The physical model of this problem is illustrated in Fig. 4.20.

Rigid foundation

Linear Elastic
body

Figure 4.20: Signorini problem - Physical model.

We will compare our numerical results with the Hertz solution (see e.g. [79, 27]), which yields

a contact pressure distribution of:

P =
2F

πb2l

√
(b2 − x2

1), (4.38)

where F/l is the load per unit length and b is the half-width of contact surface defined by:

b = 2

√
FR(1− ν2)

πlE
. (4.39)

For the numerical solution of the physical model shown in Fig. 4.20, we solve an equivalent

problem in which we fix the topmost node of the cylinder and move upwards the rigid foundation,

as depicted in Fig. 4.21. Taking profit of the symmetry of the problem we use a half-cylinder for

the computational domain.

We will assume a cylinder of radius R = 8m, Young modulus E = 2000N/m2 and Poisson’s

ratio ν = 0.3. The vertical displacement imposed to the rigid foundation is δ = 0.081m. Using

these values in our computational model, we obtain a contact pressure Pmax = 45.6945N/m2 for

node n0 (x1 = 0, see Fig. 4.21). By combining Eqs. (4.38) and (4.39) we can isolate the variable

F/l in order to compute b, which results in b = 0.333m. The deformed configuration of the

body, the mesh used for the numerical solution and the contact zone are shown in Fig. 4.22.

A comparison of the computed contact pressure with the Hertz solution (Eq. (4.38)) is given

in Fig. 4.23. We observe a good agreement between analytical and numerical solutions. It is

noted that we have not assumed any contact surface and pressure. They are obtained naturally

as part of the numerical solution of the problem by means of the algorithm proposed in this

chapter.
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Figure 4.21: Signorini problem - Problem setting for the numerical resolution.

(a) (b) (c)

Figure 4.22: Signorini problem - (a) Deformed configuration. (b) Mesh used for
the numerical solution. (c) Zoom in on the contact zone.

Finally, characteristics concerning the convergence of the problem are shown in Fig. 4.24.

Specifically, in Fig. 4.24a we show the relative L2 norm convergence of the displacements incre-

ment given by the Newton-Raphson method. Additionally, in Fig. 4.24b we show the convergence

of the number of contacting nodes which define the active contact zone. In both figures it can

be clearly observed how the algorithm release those nodes which are subjected to an artificial

traction.
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Figure 4.23: Signorini problem - Contact pressure distribution with Hertz solu-
tion. Comparison between numerical and analytical solution.
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Figure 4.24: Signorini problem - (a) Convergence behaviour of the contact al-
gorithm in terms of the relative L2 norm of the displacements increment. (b)
Convergence behaviour of the active contact zone.
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4.5.2.2 Indentation parallel benchmark - 2D

We now solve a 2D frictionless indentation problem which consists of a rounded-head rigid

indenter and a deformable square block. The physical model of this problem is shown in Fig. 4.25.

The dimensions of the rigid indenter are: hi = 0.5m, wi = 1.2m and ri = 0.75m, while the

vertical displacement imposed to the indenter along the vertical direction is δ = 0.15m. The

dimensions of the deformable block are hb = 0.5m and wb = 1.6m. We consider a Neo-Hookean

material model and finite strains for the block, with material properties Eb = 6.896 e+8N/m2 and

νb = 0.32. The relative position of the indenter with respect to the block is given by ax = 0.2m

and ay = 0.025m. For the bottom of the block, we fix the displacements in all directions.

indenter, rigid

block, deformable

Figure 4.25: 2D indentation problem - Physical model.

In order to show that the algorithm is capable of solving unilateral contact problems in

parallel, we solve this problem with the Alya code after partitioning the block mesh in eighteen

subdomains. The serial execution gives exactly the same results as the parallel execution and

therefore won’t be considered for the rest of this example. The block mesh and the distribution of

subdomains used in this problem are shown in Figs. 4.26a and 4.26b, respectively. To compare the

results, we solve the same problem using the same mesh with Code Aster [31], which is an open

source code for civil and structural engineering finite element analysis. It was originally developed

as an in-house code by the French company Électricité de France (EDF) and released as free

software under the terms of the GNU General Public License in October 2001. Code Aster uses

contact elements derivated from a continuum formulation for the resolution of contact problems,

by means of a monolithic scheme. As explained in previous chapters, this is a completely different

approach to the one proposed in this thesis. The continuum formulation in which Code Aster

is based is called Stabilized Lagrangian [65], which allows to recover the classical cases of the

computational contact mechanics literature (penalty, Lagrangian, Augmented Lagrangian) by a
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wise choice of its parameters. The contact resolution in Code Aster has been validated by several

test cases, especially by the Hertz problem and the NAFEMS [81] benchmark contact problems.

For this particular case, we use the Augmented Lagrangian formulation in Code Aster.

(a) (b)

Figure 4.26: 2D indentation problem - (a) Mesh used for the numerical solution.
(b) Domain decomposition of the mesh used by Alya code.

Fig. 4.27a shows the final deformed configuration obtained with Alya. On the other hand,

Fig. 4.27b shows a mesh superposition in order to compare the final deformed configurations

obtained with both codes. We observe a very good agreement in the results.

(a) (b)

Figure 4.27: 2D indentation problem - (a) Final deformed configuration ob-
tained with Alya. (b) Mesh superposition - black lines: Alya mesh; white lines:
Code Aster mesh.

In Figs. 4.28a and 4.28b we compare the results of Alya against Code Aster for the y and x

displacement of the contact boundary, respectively. In Fig. 4.28c we show a comparison of the

contact forces along the contact boundary. Considering the small scale of the vertical axis in

Fig. 4.28b, we can conclude that not only the qualitative behaviour of the contact boundary is

very well captured, but also the absolute values are very close between the two models. We would

like to emphasize that in this example we are comparing results obtained with two completely

different apporaches for the numerical resolution of contact problems. However, the small differ-

ences observed in Fig. 4.28c can be associated to the fact that Code Aster uses the Simo-Miehe

model [124] for finite strains, while Alya has implemented a Total Lagrangian formulation based

on the principle of virtual displacements (see [29, 9]). Finally, as serial and parallel results ob-

tained with Alya code perfectly match, we validate the parallel implementation of the proposed

algorithm.
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Figure 4.28: 2D indentation problem - (a) Vertical displacement of nodes along
the contact boundary. (b) Tangential displacement of nodes along the contact
boundary. (c) Contact force on each node along the contact boundary.

As explained in Sec. 4.4.2.1, the unilateral contact algorithm projects the penetrated nodes

of the deformable body to the rigid body’s contact boundary in a specific direction. In a quasi-

static or dynamic evolution, the projected nodes are those which correspond to the deformed

configuration of the previous time step, as Multi-Point Constraints are enforced in the deformed

configuration. The direction of projection can be a fixed or a particular value for each node. From

a general viewpoint, the sensibility of the algorithm to this value depends mainly on the time step

which determines the displacement increments and also, on the curvature and refinement of the

contact boundary of the deformable body. In order to evaluate the sensibility of the algorithm to

the direction of projection, we solve this example as a quasi-static evolution, in which we apply

40 equispaced displacement increments until reaching the desired total displacement δ. We test

three different alternatives for the direction of projection: 0o, 25o and 45o, where these angles

are measured with respect to the vertical axis y. These are fixed values for each contacting node.

In Fig. 4.29 we show the tangential displacement of nodes along the contact boundary obtained

with each of these directions. On the other hand, for the vertical displacement and contact forces
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we do not observe any appreciable differences.
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Figure 4.29: 2D indentation problem - Tangential displacement of nodes along
the contact boundary for different directions of projection.
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4.5.2.3 Frictional case: uniaxial compression test - 2D

In this example we consider a simple 2D frictional problem where a rigid punch compresses a

rectangular shaped deformable body. The bottom part of the deformable body is fixed to the

rigid foundation. Only its upper part is able to move tangentially along the rigid punch. Fig. 4.30

shows the physical model for this problem.

foundation, rigid

punch, rigid

block, deformable

Figure 4.30: Frictional case 2D - Physical model.

We assume an isotropic linear elastic model for the deformable block of dimensions hb = 0.5m

and wb = 0.4m, and material properties E = 6.896 e+8N/m2 and ν = 0.32. The total vertical

displacement imposed to the rigid punch is δ = 0.09m. We solve this contact problem for four

different frictional situations (µ = 0.0, µ = 0.08, µ = 0.09 and µ = 0.1) between the deformable

block and the rigid punch. For comparison purposes we solve the same set of problems using

Code Aster.

In Fig. 4.31 we compare the x (tangential) displacement of the nodes located at the contact

boundary of the deformable block and the rigid punch. Fig. 4.31a shows the x displacements for

a frictionless case (µ = 0.0) and a frictional case with µ = 0.08. On the other hand, Fig. 4.31b

shows the x displacement for two different frictional cases with µ = 0.09 and µ = 0.1, respectively.

Finally, in Fig. 4.32 we show the final deformation state for the frictionless case and for a

frictional case with µ = 0.1. We note that the contact algorithm implemented in Alya is able

to capture the behaviour of the contact boundary with high senstivity, as it is observed in the

comparisons of the several frictional cases that were evaluated in this example.
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Figure 4.31: Frictional case 2D - (a) Comparison of tangential displacements
along the contact boundary of the frictionless case and a frictional case with
µ = 0.08. (b) Comparison of tangential displacements along the contact boundary
of two frictional cases with µ = 0.09 and µ = 0.1 respectively.

(a) (b)

Figure 4.32: Frictional case 2D - (a) Final deformation state of the frictionless
case (µ = 0.0). (b) Final deformation state of the frictional case for µ = 0.1.
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4.5.2.4 Hertzian contact: sphere on a flat rigid plate - 3D

In this example we solve the 3D Hertz contact problem which consists of an elastic ball that

contacts with a rigid planar foundation. We consider an sphere of radius R = 8m and material

properties E = 200N/m2 and ν = 0.32. The topmost node of the sphere is fixed while an

upwards displacement δ = 0.05m is applied to the rigid foundation. As the implementation

of the algorithm fully considers all nonlinearities, we choose the magnitude of the displacement

imposed to the rigid foundation to be small in order to assume a small deformation hypotesis

for the deformable body. The contact interaction is produced at the bottom part of the sphere

and is assumed to be frictionless. The physical model for this example is shown in Fig. 4.33.

Additionally, the problem setup, an exemplary mesh and an exemplary numerical solution for

this problem are illustrated in Fig. 4.34.

Rigid foundation

Linear Elastic
sphere

Figure 4.33: Hertzian contact 3D - Physical model.

(a) (b) (c)

Figure 4.34: Hertzian contact 3D - (a) Problem setup and exemplary finite element
mesh. (b) Exemplary mesh refinement at the contact zone. (c) An eighth of the
deformed geometry and schematic normal stresses solution.

Analytical solutions for the contact traction distribution are well-known for Hertzian elastic

contact problems. For this particular problem, the analytical solution is characterized via the
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contact radius a:

a =
3

√
3Fd

8

(1− ν2)

E
, (4.40)

where F is the reaction force at the fixed node and d is the diameter of the sphere, and the

maximum normal contact traction Pmax given by [27, 13]:

Pmax =
3F

2πa2
. (4.41)

We solve the contact problem and compute numerically the reaction force F at the fixed node

nf (see Fig. 4.33). This result is illustrated in Fig. 4.35 for different mesh sizes. On the x axis

we represent the mesh size multiplication factor. The starting point for the resolution of this

problem is a reference mesh of 32198 elements while the finer mesh used here has approximately

14.5 times more elements (465603).
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Figure 4.35: Hertzian contact 3D - Reaction force F at node nf for different
mesh sizes.

Using the converged value of F (F = 0.913N) in Eqs. (4.40) and (4.41), we compute the

analytical solutions for a and Pmax to obtain a = 0.292m and Pmax = 5.11N/m2. In Fig. 4.36

we graphically compare the analytical solution for the contact radius and the contact zone de-

termined by the simulation with the finer (converged) mesh. Despite the irregular discretization,

it can be clearly observed the well-resolved circular shape of the contact zone. Furthermore, a

good agreement of the numerical solution with the analytical solution for the contact radius a is

visually confirmed.

Finally, in Fig. 4.37 we show the simulated contact pressure distribution at the contact zone

for the converged mesh (see Fig. 4.36b). As expected, the point of maximum contact pressure is

located at the bottom part of the sphere, on the axis of rotation. The contact pressure at this

node gives Psimmax = 5.10N/m2, which differs from the analytical value in 0.2%.
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(a) (b)

Figure 4.36: Hertzian contact 3D - (a) Vertical view of the sphere and the zoom
area. (b) Zoom in on the contact zone. Comparison of analytical (green line)
and numerical solutions for the contact radius a - converged mesh.
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Figure 4.37: Hertzian contact 3D - Simulated contact pressure distribution at
the contact zone - converged mesh.
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4.5.2.5 Indentation parallel benchmark - 3D

This example problem solves a 3D frictionless indentation test, which consists of a rounded-head

rigid indenter and a deformable beam. The physical model for this problem is shown in Fig. 4.38.

The rigid indenter is characterized by ri = 1m and di = 0.5m, and the deformable beam by

hb = 0.25m, wb = 1.5m and db = 0.3m. The relative position of the indenter with respect to

the beam is given by ax = 0.25m and az = 0.1m. We consider a Neo-Hookean material model

and finite strains for the beam, with material properties Eb = 6.896 e+8N/m2 and ν = 0.32.

The vertical displacement imposed to the indenter along the vertical y axis is δ = 0.1m, while

the bottom part of the beam is fixed in all directions. We assume that there is no separation

between the indenter and the beam (gap = 0m) at the beginning of the simulation (t = 0 s).

indenter, rigid

beam, deformable

Figure 4.38: 3D indentation problem - Physical model.

To test the 3D parallel behaviour of the algorithm we solve this problem with the Alya

code after partitioning the beam mesh in 12 subdomains. These results are equivalent to those

obtained in a serial execution, thus showing a proper implementation of the parallel method

for the 3D case. The block mesh and the domain decomposition of the mesh are shown in

Figs. 4.39a and 4.39b, respectively. It is important to remark that the contact zone shares

several subdomains.

(a) (b)

Figure 4.39: 3D indentation problem - (a) Mesh used for the numerical solution
and paths used for post-process of results. (b) Domain decomposition of the mesh
used for this problem.

In Figs. 4.40a and 4.40b we show the final deformed configuration computed with Alya.

To compare our results we solve the same problem with Code Aster. Figs. 4.41a and 4.41b

shows a comparison of the vertical and tangential displacement of the nodes located along a

path which goes from (−0.75;−0.02; 0.25) to (0.75;−0.02; 0.25), which corresponds to the central
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(a) (b)

Figure 4.40: 3D indentation problem - (a) Final deformed configuration: beam-
indenter system. (b) Final deformed configuration: beam.

longitudinal axis of the beam at the contact surface (path a in Fig. 4.39a). Fig. 4.41c shows a

comparison of the contact forces at each node of this path.

On the other hand, Fig. 4.42a shows a comparison of the tangential displacement of the nodes

located along a path which goes from (0.0;−0.02; 0.1) to (0.0;−0.02; 0.3) (path b in Fig. 4.39a)

while Fig. 4.42b shows a comparison of the contact forces at each node of this path.

In overall, we observe a very good agreement of the results. Taking into account that we are

comparing two completely different approaches for the resolution of unilateral contact problems

which can explain the small differences observed in Figs. 4.41b and 4.42a, the behaviour of the

contact boundary is very well captured with the proposed parallel algorithm. Furthermore, small

differences observed in Figs. 4.41c and 4.42b can be associated to the different formulations used

in Alya and Code Aster for finite strains, as mentioned in Sec. 4.5.2.2.

Trace analysis Execution traces are one of the main solutions for measurement and analysis

of program performance on parallel computers. Traces are basically space-time diagrams that

show how a parallel execution unfolds over time. They are analyzed post-mortem, as they are

built based on the information gathered during the program execution. In a trace, time lines for

different MPI processes are stacked top to bottom. A MPI process activity over time unfolds left

to right. Each time line is composed of several colored segments, where each distinct color rep-

resent a different procedure, function or subroutine. Space-time visualization of MPI execution

traces are very useful for spotting and understanding the temporal behaviour of the program, as

they allow to graphically observe the work load balance among the different processors, the idle

time for each processor, the time consumed for the execution of a given subroutine, the impact

of inter-process communications, etc [129].

In Fig. 4.43 we observe the trace generated with the HPCToolkit [71] suite of an execution

on MareNostrum IV supercomputer of the indentation parallel problem presented before. For

the generation of this trace we have refined the beam mesh up to 224.600 elements. Also, 32

processors were employed for this simulation, each of them executing one MPI task: 1 processor is
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Figure 4.41: 3D indentation problem - (a) Vertical displacement of nodes at path
a. (b) Tangential displacement of nodes at path a. (c) Contact force of nodes at
path a.

dedicated to the rigid indenter while the 31 remaining processors are dedicated to the deformable

beam. 5 time steps complete the full simulation.

Casual inspection of this trace shows five complete repetitons of a pattern, which represents

a time step of the simulation. Therefore, matching this observation with the ideas introduced in

Sec. 4.4.2 we can deduce that, from bottom to top, the first processor corresponds to the rigid

indenter while the rest of the processors correspond to the deformable beam.

The orange color segments observed in the trace represent a running processor. More pre-

cisely, this means that the processor is solving the deformation of the body given the boundary

conditions for that time step. On the other hand, the green color means that the processor is

idle or executing another task non-related to the solution of the finite element problem as, for

instance, the contact detection. The block/segregated execution observed in the trace (first the

rigid body, then the deformable body) is, in fact, a reproduction of the Gauss-Seidel strategy

adopted for the contact algorithm, which forces the processor dedicated to the rigid indenter to
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Figure 4.42: 3D indentation problem - (a) Tangential displacement of nodes at
path b. (b) Contact force of nodes at path b.
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Figure 4.43: 3D indentation problem - Trace generated for the full simulation
(5 time steps) - 32 processors, beam mesh of 224600 elements.

be idle when the remaining processors dedicated to the deformable beam are computing, and

viceversa. From the observation of the trace we can also deduce that the work load is well bal-

anced among the group of processors which belong to the deformable beam, as they start and

finish its execution in a coordinated way. This means that all the computational resources are

being used in an efficient way, as there is no waiting or idle time between processors when the

deformable beam is computing.

In Fig. 4.44 we show a zoom in on the complete trace restricted to one time step. As

mentioned in the previous paragraph, the orange color represents the solution procedure, which
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doesn’t take into account the localization task for contact detection performed by PLE++. As

we can observe in Fig. 4.44, for this particular example the localization task has a small impact

in the overall execution time, since the orange lines for the rigid indenter and the deformable

beam processors seems to exactly match. Only a zoom in on the interval where the localization

occurs allows to distinguish how the localization task affects the execution trace (see Fig. 4.45).

As mentioned before, the fact that the localization has a negligible impact in the total simulation

time can’t be generalized without further analysis and it should be restricted only to the context

of this particular example, as this impact strongly depends on the number of used processors. An

increase in the number of processors involved in the localization implies more communications and

operations, which can affect the execution time of the localization process. How the localization

time impacts the overall simulation time as the number of processors increase is a key issue for

further analysis.

localization

rigid deformable

Figure 4.44: 3D indentation problem - Zoom in on the trace: only one time step
is shown.
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localization - contact detection

Figure 4.45: 3D indentation problem - Zoom in on the trace: time interval where
the localization occurs.
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4.5.2.6 Frictional case: sliding of a cube on a rigid plane - 3D

A frictional sliding of a deformable cube on a rigid plane is solved in this example. We assume

a Saint Venant-Kirchhoff material model for the deformable cube of side l = 1m with material

properties E = 210N/m2 and ν = 0.3. The physical model and the mesh used for this problem

are shown in Fig. 4.46. The cube is moved towards the rigid plane along the vertical axis z

and afterwards is moved along the plane, in the x-axis direction. Three different coefficients

of friction between the cube and the plane are considered in this example: µ = 0.2, 0.5, 0.8.

Boundary conditions applied to the cube are defined by the following relations:

• δz = −0.05m · t, 0 < t ≤ 1; δz = −0.05m, 1 < t ≤ 3

• δx = 0m, 0 < t ≤ 1; δx = −1/6(t− 1)m, 1 < t ≤ 3

rigid plane

deformable cube

(a) (b)

Figure 4.46: Frictional case 3D - (a) Physical model. (b) Cube mesh.

Deformed configurations and the corresponding shear stress σxz distributions are shown in

Fig. 4.47 for the three considered coefficients of friction and time steps t = 1, 2, 3. We observe

an expected qualitative behaviour, as the shear stresses increase for higher values of µ. Also, we

observe further detachment of the contact surface for higher values of coefficients of friction and

simulation time, as a consequence of higher frictional forces which oppose to the sliding of the

cube. This detachment is observed in Fig. 4.48, where the deformed configuration of the contact

surface for the different values of µ at t = 2 and t = 3 is shown. Finally, in Fig. 4.49 we show

the frictional force Fµx distribution along the path (-0.5;0.0;0.0) – (0.5;0.0;0.0) for t = 2 and

t = 3. We observe here that, as expected, frictional forces increase with the coefficient of friction

µ. Additionally, for a given µ, we observe a reduction of the magnitude of the fricional forces

as time evolves. This can be interpreted as a consequence of stress redistribution in the contact

interface due to detachment.
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(a) (b) (c)

Figure 4.47: Frictional case 3D - Contour plots of shear stress σxz for different
friction coefficients: µ = 0.2 (top), µ = 0.5 (middle), µ = 0.8 (bottom) and time
steps: (a) t = 1, (b) t = 2, (c) t = 3.
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Figure 4.48: Frictional case 3D - Contact surface at (a) t = 2, (b) t = 3.
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Figure 4.49: Frictional case 3D - Frictional force along path (-0.5;0.0;0.0) –
(0.5;0.0;0.0) at (a) t = 2, (b) t = 3.
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4.5.2.7 Expansion of a tube and a rounded frame - 3D

This last example aims to demostrate that the proposed algorithm is able to manage more

complex contact situation and is also able to capture non-constant displacements of the contact

interface. The tailor-made example introduced here consists of a tube and a rounded frame, as

shown in Fig. 4.50. The tube is fixed in one end while an inner pressure is applied in order to

produce its expansion. On the other hand, the frame is situated closer to the non-fixed end of

the tube and its base is fixed to the ground. No additional boundary condition is applied to

the frame. For this problem we will consider four different scenarios for the contact interface

between the tube and the frame: (a) frictionless, (b) µ = 0.03, (c) µ = 0.04 and (d) µ = 0.08. We

assume a Saint Venant-Kirchhoff material model for both tube and frame. In order to consider

an unilateral contact problem, we suppose that the tube is much more rigid than the frame:

Et >> Ef , being Et and Ef the Young’s modulus of the tube and frame respectively. The

dimensional parameters which characterize the model are the following: Et = 6.896 e+7N/m2,

νt = 0.32, Ef = 210N/m2, νf = 0.3, pi = 7.0 e+5N/m2, rt = 1m, tt = 0.1m, ht = 1.625m,

tf = 0.12m, dt1 = 0.2m, df = 0.2m and dt2 = 0.6m.

Figure 4.50: Expansion of a tube - Physical model.

In Fig. 4.51 we show the deformed configuration of the tube-frame system for four different

time steps assuming a frictionless contact interface. Due to the initial position of the frame with

respect to the tube, we observe that the frame slides along the tube while bending backwards.

We also observe that this sliding is not constant, reaching its highest rate between t = 6 s and

t = 10 s. Fig. 4.52 shows the displacement along the axial direction (z-axis) of the uppermost

nodes of the rounded frame over time for all the frictional situations considered in this example.

As expected, we observe that the total sliding/displacement decreases when the coefficient of

friction increases. Nevertheless, this relation is not linear. We also observe the sharp change in

the rate of sliding mentioned previously between t = 6 s and t = 10 s. It is worth remarking that

the highest sliding rate seems to be equal, instead of smoother, for the frictionless and frictional
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cases µ = 0.03 and µ = 0.04 but in different periods of time. We assume that this occurs due

to a stress release or redistribution when the frame starts to slide at a higher rate. Finally, we

observe that a threshold is reached at µ = 0.08, where small sliding occurs. For bigger values of

friction, the frame remains sticked to the tube along the complete simulation.

(a) t = 2 s (b) t = 6 s

(c) t = 8 s (d) t = 10 s

Figure 4.51: Expansion of a tube - Deformed configuration - Frictionless case.
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Figure 4.52: Expansion of a tube - Axial displacement of the rounded frame’s
uppermost nodes vs. time.
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Chapter 5

A Parallel Method for the

Two-Body Contact Problem

This chapter is devoted to the description of the proposed methodology for the parallel resolution

of two-body contact problems and its numerical implementation. This novel methodology for

solving contact problems in parallel arises as a combination of the Method of partial Dirichlet–

Neumann boundary conditions (PDN) proposed in [142] and introduced in the previous chapter,

and the Contact algorithm of Dirichlet-Neumann type (CDN), developed in [84] and [85] and

commented in [137]. The main idea of the PDN method is to impose partial Dirichlet-Neumann

boundary conditions in order to enforce the geometrical and mechanical constraints given by

the normal and frictional contact (i.e. contact conditions). Due to its nature, the PDN method

can be integrated seamlessly in a parallelized finite element code. On the other hand, the CDN

method employs a strategy in which the bodies coming into contact are treated separately. It

is based on a nonlinear block Gauss–Seidel method as an iterative solver. From the engineering

point of view, it can be interpreted as a Dirichlet-Neumann algorithm for the nonlinear contact

problem. The basic idea in the CDN algorithm is that one applies on one body, which we call

B1, the surface tractions which were computed from a unilateral contact problem for the other

body, called B2, with a fixed deformed state of body B1. This idea will be further detailed in the

following paragraphs.

5.1 Introduction

As explained in Sec. 4.1, the PDN method was introduced as a solution strategy for unilateral

contact problems, i.e. a contact between a rigid surface and a deformable body. This method

presents one relevant advantage in comparison with the standard formulations that uses penalty,

Lagrange multipliers or Augmented Lagrangian method to impose the contact constrains: in the

PDN method there is no need to evaluate the residual vectors and the tangent matrices for the

implicit resolution scheme. Moreover, Lagrange multipliers and Augmented Lagrangian method

increase the number of degrees of freedom by introducing Lagrange multipliers as dual unknowns.
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In this sense, another advantage of the PDN method is the reduction of the number of unknowns,

even compared with the penalty method, because the nodes over the contact surface are treated

as Dirichlet or Newmann boundary nodes, where the boundary conditions are applied.

The CDN method was originally introduced as a new algorithm for the numerical solution of

2D contact problems between linear elastic bodies. The boundary data transfer at the contact

zone is essential for the algorithm. In [85] the authors propose to apply a nonlinear block

Gauss–Seidel method as an iterative solver which can be interpreted as a Dirichlet-Neumann

type algorithm for the contact problem. In each iteration step, a linear Neumann problem and

a Signorini problem (i.e. unilateral linear elastic contact) are solved (see Fig. 5.1). For the

solution of the Neumann problem, the authors propose to use a standard multigrid technique.

For the Signorini problem, as linear elasticity and small deformations are considered, the authors

propose a novel monotone multigrid method where the boundary stress is formally introduced

as a Lagrange multiplier.

The algorithm that we introduce in this chapter is based on a combination of the PDN

and CDN methods and it is extended to nonlinear, 3D and parallel problems. Contrary to

the strategy proposed in [85], where the authors employ a monotone multigrid method for the

solution of the linear elastic Signorini problem, we use the PDN algorithm for the solution of

the unilateral contact problem. The Neumann problem is solved using a standard iterative

algorithm. Additionally, instead of using a dual basis Lagrange multiplier space for the coupling

of the different bodies, we use PLE++ tool for the information exchange between the contacting

bodies. This results in a general and robust contact algorithm, capable of solving linear or

nonlinear problems and suitable for parallel computing. The use of PLE++ allows to solve

each body separately, using different computational instances, as the transference of information

is done through MPI. Furthermore, this algorithm can be employed as a black-box strategy,

as it allows to solve each body separately even with different computational codes. This last

feature allows to use different material models, element technology, damage models, etc, for each

contacting body. From the parallel point of view, it avoids dynamic repartitioning due to sliding

as no contact elements are used.

Figure 5.1: Dirichlet-Neumann coupling.
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5.2 Contact algorithm of Dirichlet-Neumann type

As shown in Sec. 2.2, the contact problem can be written as a boundary value problem. Eq. (2.12)

and the normal contact constraints in Eq. (2.18) can be particularized for the case of linear

elasticity in small deformations. Thus, in addition to the equilibrium conditions in B1 and B2

and the boundary conditions on ∂B:

− σij(u), j = fi

u = 0

σij(u) · nj = σn(u) = pi

in B1 ∪ B2,

on Γu,

on Γσ,

(5.1)

we have the linearized normal contact conditions on Γc:

t ≥ (u1)n + (u2)n,

0 = ((u1)n + (u2)n − t) · σn(u1),
(5.2)

where σij is the Cauchy stress tensor, fi are the external loads, u is the displacements field, pi

represents an external pressure and the function t : Γc ∈ Rd → R is the distance between the two

bodies in normal direction taken with respect to the reference configuration [22]. Additionally,

assuming a frictionless situation, we have the following equilibrium conditions at the contact

interface (action-reaction principle or formally Newton’s third law):

σn(u1) = σn(u2) ≤ 0, (5.3a)

σt(u1) = σt(u2) = 0. (5.3b)

Eq. (5.3a) enforces the continuity of the projection of the stress tensor in the surface normal

direction. On the other hand, Eq. (5.3b) imposes the non-frictional condition.

The discretization of the equilibrium conditions given by Eq. (5.1) for the complete system

B1 ∪ B2 using the Finite Element Method, gives the following linear system of equations for the

nodal displacements u (see [145] for more details):

K u = P, (5.4)

where K is the stiffness matrix and P is the load vector of the system B1 ∪ B2.

The contact algorithm of Dirichlet-Neumann type developed in [85] is described in Algo-

rithm 8 for the case of a linear elasticity problem with constant stiffness matrices K1 and K2,

and given load vectors P1 and P2 for bodies B1 and B2, respectively. This algorithm is taken as

a frame of reference for the methodology introduced in this chapter.
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Algorithm 8 Dirichlet-Neumann type contact algorithm

1: set initial values: v0 = 0, t0 = 0

2: for m = 1,2,..., until convergence do

3: solve Neumann problem: K1 u1
m+1 = P1 − tm

4: transfer displacements: vm+1 = (1− ωD) vm + ωD Q u1
m+1

5: solve unilateral contact problem: 1
2u2T

m+1 K2 u2
m+1 − u2T

m+1 P2 → MIN

6: subject to: N1(vm+1) u2
m+1 + G1

X(vm+1) ≥ 0

7: compute residual: R2
m+1 = K2

m+1 u2
m+1 −P2

8: transfer boundary tractions: tm+1 = (1− ωN ) tm + ωN QT R2
m+1

9: end for

In [85] the authors have used fixed parameters for ωD and ωN , which represents the damping

or relaxation coefficients for the Dirichlet and Neumann parts, respectively. The constraint

condition N1(vm+1) u2
m+1 + G1

X(vm+1) ≥ 0 for the unilateral contact problem solved in B2 is

formulated with respect to the deformed surface of body B1. This shows the dependency of

N1 (matrix of normal vectors) and G1
X (initial gap vector) on the current displacement vm+1.

Matrix Q transfers the boundary displacement and surface tractions from the surface mesh of

body B1 to the mesh of B2. The structure of matrix Q depends on the applied discretization

scheme. As the physical correspondence of the residual R at each contact node is the reaction

force (see [130, 69]), this magnitude is transferred from B2 to B1 in order to ensure equilibrium

condition (5.3a). The iterative behaviour of Algorithm 8 is illustrated in Fig. 5.2.

Figure 5.2: Iterative evolution of contact configuration.

5.2.1 Nonlinear parallel extension

Using the ideas and tools introduced in Chapter 4, we can adapt Algorithm 8 to solve nonlinear

contact problems in a parallel way. The multicode approach is now used to solve the nonlinear

Neumann problem and the unilateral contact problem in finite strains: different code instances

are used to solve each problem, while the contact detection and the transference of displacements

and boundary reactions are done with PLE++ library. With these concepts in mind we can write

the workflow of the proposed algorithm using Algorithm 8 as reference:
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Algorithm 9 Multicode Dirichlet-Neumann type contact algorithm

1: definitions: A1: code instance 1, A2: code instance 2

2: for m = 1,2,..., until convergence do

3: A1 receives boundary tractions from A2.

4: A1 relaxes (ωN ) and enforces the received boundary tractions to body B1.

5: A1 solves Neumann problem for body B1.

6: A1 transfers updated mesh position of B1 to A2.

7: A2 receives and relaxes (ωD) updated mesh position of B1.

8: A2 solves unilateral contact problem for B2 using updated B1 as rigid body.

9: A2 computes residual (reactions) for B2 at the contact interface.

10: A2 transfers boundary contact tractions of B2 to A1.

11: end for

Fig. 5.3 graphically shows some iteration steps of Algorithm 9: the transference and enforce-

ment of contact tractions in body B1 (lines 3 and 4), the solution of the Neumann problem for

body B1 (line 5) and the solution of the unilateral contact problem for body B2 using the updated

configuration of B1 as a rigid body (line 8). It is important to remark that by contact tractions

we mean the reaction forces of body B2 that appear at the contact interface due to the contact

interaction.

Figure 5.3: Iteration steps of the multicode Dirichlet-Neumann type contact
algorithm. (a) Transference and enforcement of contact tractions in body B1.
(b) Solution of the Neumann problem for body B1. (c) Solution of the unilateral
contact problem for body B2.

With respect to the workflow described in Algorithm 9 some key issues which characterize

the originallity of the proposed method are worth remarking. As already mentioned, each code

instance can be interpreted as a standalone execution of the code, with its own set of input

and mesh files. At this point is important to note that the mesh connectivity is not correlative

between instances. In the proposed multicode algorithm, one code instance solves the Neumann

problem and the other, the unilateral contact problem. As a result of this approach, the mesh

partitioning is done independently in each instance at the beginning of the simulation, as a

preprocess task. The transference of information between the instances specified in lines 6 and 10

of Algorithm 9 is done by means of PLE++ library, as explained in Sec. 4.4.1. Algorithm 9 can
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also be interpreted as a nonlinear block method used as an iterative solver for the solution of

the contact problem. The first block is the Neumann problem (line 5), that is solved for body

B1 by instance A1. This block uses as input the reaction forces received from instance A2,

which are damped and enforced at the contact interface of B1 (line 4) together with additional

boundary conditions that are imposed to B1. It should be remarked that the way in which the

Neumann problem is solved is only determined by the characteristics of the code instance A1.

If A1 is a parallel nonlinear solver for solid mechanics (as Alya), this problem can be solved

that way. On the other hand, the unilateral contact problem is solved by instance A2 (line 8).

Chapter 4 gives an exahustive explanation on how the resolution of this problem is tackled.

The distinctive characteristic here is that the updated configuration of body B1 is considered

as a rigid body for the resolution of the unilateral contact problem for B2. Also, the algorithm

considers the possibility of using a damped/relaxed configuration of body B1 for the unilateral

contact problem. Once the unilateral contact problem is solved, the loop is closed by computing

the contact reaction forces at the contact interface of B2 and transferring that information back

to instance A1. Algorithm 9 is executed at each time step and repeated until convergence in the

displacements and forces is reached for bodies B1 and B2.

5.2.2 Fixed-point solver analogy - convergence issues

The Dirichlet-Neumann type contact algorithm described in Algorithm 9 can be interpreted and

stated as a general fixed-point solver for the solution of interface problems. This generalization

allows us to extrapolate techniques that exist in the field of Fluid-Structure Interaction (FSI)

regarding convergence ensurance and acceleration [86, 45, 51] to the field of contact problems. Let

us assume the existence of an interface operator associated with the Neumann problem solution

(line 5) that maps given interface forces fn+1
Γ to the interface displacement dn+1

Γ as follows:

dn+1
Γ = NEU

(
fn+1
Γ

)
. (5.5)

On the other hand, let us assume the existence of an interface operator associated with the

unilateral contact problem solution (line 8) that maps a given interface displacement dn+1
Γ into

interface forces fn+1
Γ as follows:

fn+1
Γ = UNI

(
dn+1

Γ

)
. (5.6)

Thus, interface operators given by Eqs. (5.5) and (5.6) can be used to define one cycle of

Algorithm 9 inside the coupling iteration:

f̃n+1
Γ,i+1 = UNI

(
NEU

(
fn+1
Γ,i

))
, (5.7)

where i indicates the iteration counter.

In order to ensure and accelerate convergence of the iteration, a relaxation step is needed

after each contact cycle (Eq. (5.7)):

fn+1
Γ,i+1 = fn+1

Γ,i + ωi r
n+1
Γ,i+1, (5.8)
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with a relaxation parameter ωi. The magnitude rn+1
Γ,i+1 is defined as the interface residual:

rn+1
Γ,i+1 = f̃n+1

Γ,i+1 − fn+1
Γ,i . (5.9)

With help of Eq. (5.9) we can rewrite Eq. (5.8) as follows:

fn+1
Γ,i+1 = ωi f̃

n+1
Γ,i+1 + (1− ωi) fn+1

Γ,i . (5.10)

Hence, the fixed-point algorithm to solve contact problems consists of the relaxed cycle given

by Eq. (5.10) with appropriate relaxation parameters and convergence criteria.

Taking one further step, by means of the interface residual of Eq. (5.9) it is possible to define

the interface Jacobian:

JΓ =
∂rΓ

∂dΓ
. (5.11)

In that case, the relaxation step given by Eq. (5.10) is replaced by the solution of:

JΓ ∆fn+1
Γ,i+1 = −rn+1

Γ,i+1, (5.12)

and the update step:

fn+1
Γ,i+1 = fn+1

Γ,i + ∆fn+1
Γ,i+1. (5.13)

5.2.2.1 Fixed relaxation parameter

The simplest but most ineffective method is to choose a fixed relaxation parameter ω for all

iteration steps. The optimal value ω is problem specific and not known a priori. This value

has to be small enough to keep the iteration from diverging but large enough to use as much of

the new solution as possible and to avoid unnecessary coupling iterations. When the relaxation

parameter is fixed, even the optimal value will lead to more iterations than a suitable dynamic

relaxation parameter.

5.2.2.2 Aitken dynamic relaxation

FSI problems have already been solved using a Dirichlet-Neumann partitioned approach com-

bined with a fixed-point solver based on the Aitken method [98] . The central idea of Aitken’s

method is to use values from two previous iterations to improve the current solution, by means

of the computation of a new relaxation parameter at each iteration step. This method has

proven to be astonishingly simple and efficient. Aitken relaxation method was firstly proposed

for computational use in [74]. For a more comprehensive review of this method, including some

FSI numerical examples and topics for its numerical implementation, see [86].
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5.2.2.3 Quasi-Newton algorithms

As the interface Jacobian given by Eq. (5.11) is not easily available, this value is generally

approximated. The different possible strategies for the approximation of the Jacobian are the

essence of the so-called quasi-Newton methods. In fact, the Aitken method can be understood as

a quasi-Newton scheme where the Jacobian is enforced to be a scalar matrix which is updated at

each iteration. On the contrary, using a fixed relaxation parameter would be the same to assume

a Jacobian which is equal to a scalar matrix that remains constant the complete simulation.

We refer to [21, 91, 19] among others for a more detailed description on quasi-Newton schemes

applied to FSI problems and their numerical implementation.

5.3 Computational implementation

Fig. 5.4 shows a block of the iterative scheme of Algorithm 9, which is executed in a staggered

way by instances A1 and A2. Due to the generality of the algorithm, no differences are made

if instances A1 and A2 are executed in a serial or parallel way. This block is repeated inside

each time step until convergence in displacement and forces is achieved for bodies B1 and B2.

We can clearly distinguish two parts: one for the unilateral contact problem solution, whose

parallel computational implementation was exhaustively explained in Sec. 4.4, and the other for

the Neumann problem solution. In the remainder of this chapter we will describe the general

parallel algorithm with a focus on the Neumann part. For the case of the unilateral contact

problem the ideas introduced in Chapter 4 are directly used here without any modification.

The iterative block starts with the execution of instance A1, which is in charge of the solution

of the Neumann problem for body B1. Once the instance A1 has finished with the computation

of displacements for body B1, the unilateral contact part starts. A unilateral contact problem is

solved for body B2 by instance A2 using the updated geometry of B1 as if it were a rigid body.

This is accomplished by doing the localization after the Neumann problem is solved. Up to this

point, no difference is observed with respect to the procedure explained in Chapter 4. When

instance A2 has finished with the computation of the unilateral contact problem, the Neumann

part starts. A new localization is the first task of this part, which is done to account for the

updated geometry of body B2. This localization is used to identify the actual contact interface,

which is required for the computation, interpolation and transference of the the contact tractions

from instance A2 to A1. This latter sequence is represented by Algorithm 10, which is executed

concurrently by each processor of instance A2 after the localization procedure.

Algorithm 10 Neumann part, A2 instance

1: for i = 1,nrecv do
2: contact traction B2

i ← compute contact traction(i)
3: end for
4: for j = 1,nsend do
5: contact traction B1

j ← interpolate(contact traction B2,j)
6: end for
7: send to A1(contact traction B1)
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Unilateral contact part

ExchangeSend projection data

Receive projection data

Localization LocalizationLocalization

Exec. algorithm 4

Exec. algorithm 6

Localization

Localization

Localization

Receive and enforce
contact tractions

Exchange

Compute, 
interpolate and 

send contact tractions

Neumann part

Figure 5.4: Staggered execution of the multicode Dirichlet-Neumann type con-
tact algorithm. Identification of the localization and exchange points. We show
here only one block of the iterative scheme. This block is repeated inside each
time step until convergence is achieved.

Each processor of instance A2 who owns boundary nodes located at the contact interface of

body B2 computes the contact tractions for each of those nodes (line 2). The contact tractions,

or in other words, the reaction forces at the contact interface, are directly obtained from the

residual of the Newton-Raphson iterative scheme, which is used for the solution of the nonlinear

Neumann and unilateral contact problems. See Appendix B for a detailed description of this

topic. Then, each processor interpolates the contact tractions to the detected nodes that belong

to the contact interface of body B1 (line 5). This procedure is graphically exemplified in Fig. 5.5

for a 2D case. In the next section we give further details on how the interpolations are done.

Finally, those interpolated values are transferred to the corresponding processors of instance

A1 which owns each of the detected nodes (line 7). Fig. 5.6 graphically represents the situation

of a 2D case where the processors of instance A2 (p1, p2 and p3) transfers the interpolated values

to the detected nodes owned by instance A1 (processors p4, p5, p6 and p7). The localization and

exchange of information is done by means of PLE++ library (see Sec. 4.4.1.1).

On the other hand, the algorithm executed concurrently by each processor of instance A1

is represented by Algorithm 11. Each processor (p4, p5, p6 and p7 in Fig. 5.6) receives the

interpolated contact tractions for each of the contacting nodes that it owns (line 1). Finally, for
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- contact interface nodes owned by processors 

- contact interface nodes detected by processors 

interpolation 
of contact tractions

- contact tractions

Figure 5.5: Computation and interpolation of contact tractions at the contact
interface from body B2 to body B1 (2D). This task is performed by instance A2.

Figure 5.6: Transference of interpolated values from instance A2 (processors p1,
p2 and p3) to instance A1 (processors p4, p5, p6 and p7) - 2D case.

each of those nodes it enforces the received values as a typical Neumann boundary condition for

the next iteration of the block (line 3).

Please note that the localization and exchange of information between instances are synchro-

nization points of the algorithm. This means that when any instance reach any of these points, it

remains idle until the other instance reaches the same correlative point and the synchronization

occurs.

5.3.1 Interpolation of contact tractions. Load transference.

In the 2D examples shown in Figs. 5.5 and 5.6 we considered the most general possible situation

in which the meshes of bodies B1 and B2 are nonconforming, i.e. that the boundary nodes of

both meshes at the contact interface do not match. The same is valid for 3D. An example of this

110



5.3. Computational implementation

Algorithm 11 Neumann part, A1 instance

1: receive from A2(contact traction B1)
2: for i = 1,nrecv do
3: enforce Neumann BCi(contact traction B1

i )
4: end for

situation is also shown in Fig. 5.7. This means that for the transference of the contact tractions

from the contact surface of body B2 to B1 interpolations must be done.

Figure 5.7: 2D example of two nonconforming meshes at the contact interface:
nonmatching discretization of the same physical interface Γ.

As mentioned in the previous section, the interpolation of contact tractions is done by each

processor of instance A2 which owns nodes at the contact interface. In this procedure, the contact

tractions at each of these nodes are interpolated to the detected nodes of body B1 by each of

these processors (see Fig. 5.5).

To gather the required information for the interpolations, a new localization is needed at the

beginning of the Neumann part. At first, this localization allows instance A2 to determine which

nodes (and the respective owner processors) of body B2 belong to the contact interface at the

current iteration step of the algorithm, i.e. those nodes of B2 that are in contact with B1 at

that iteration step. Once the localization is finished, A2 computes for each of those nodes the

contact tractions. As a result of the localization procedure, each processor of instance A2 also

knows which are the contacting (detected) nodes of body B1, its owner processors of instance

A1 and its relative position with respect to body B2. Then, a linear interpolation using shape

functions of elements is performed by the corresponding processors of instance A2, in which each

contacting node of B1 receives a fraction of the contact tractions from its first neighbours nodes

that belong to the contact interface of B2. Fig. 5.8 schematically shows the interpolation strategy

for a 2D case, where the interface variables are interpolated using shape functions of elements.

This strategy is also employed for 3D cases.

Finally, once the interpolation has finished, the last step is to transfer the interpolated values

of the contact tractions to the corresponding processors of instance A1, in the way that was

explained in the previous section. These values are then directly enforced to the contacting

nodes of B1 following the normal procedure of any typical solid mechanics problem for the

enforcement of external loads. As this transference is done at the end of the current iteration
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Figure 5.8: Schematic representation of the interpolation procedure - 2D case.

block, the interpolated contact tractions are available to be used at the beginning of the next

iteration, when the instance A1 that solves the Neumann problem starts its execution.

5.4 Numerical examples

5.4.1 Computational framework

The multicode Dirichlet-Neumann contact algorithm described in this chapter was implemented

in two stages. In the first stage, the implementation of the Neumann and the unilateral contact

problem resolution was done within a simplified finite element code called Ostero (see Sec. A.2

from Appendix A), which was developed in the frame of this thesis. Ostero was coupled with

PLE++ library to perform proof-of-concept tests in order to evaluate the feasibility of the con-

tact algorithm. Once its feasibility was confirmed and the algorithm was validated, the second

stage consisted on its implementation in the massively parallel code Alya (see Sec. A.1 from

Appendix A).

Ostero or Alya can be used for the simulation of contact problems in a multicode scheme,

where one instance of the code is in charge of the resolution of the Neumann problem while

the other is in charge of the resolution of the unilateral contact problem. Using different code

instances, each one of them having its own set of input files, allows to use for each body differ-

ent mesh types, different material models, different time integration schemes, different types of

solvers and preconditioners, different number of subdomains, etc (see Fig. 5.9). For instance, the

Neumann problem can be solved explicitly while the unilateral contact problem can be solved

implicitly. Even more, the Neumann problem can be solved dynamically using a Conjugate

Gradient solver with an Algebraic Multigrid preconditioning, and the unilateral contact problem

can be solved implicitly as a quasi-static evolution using GMRES solver with a RAS precondi-

tioner [93, 80]. In summary, this approach allows to solve each body separately, as if they were in

a standalone simulation. This is possible because the contact interaction is modelled as a coupled

problem, where the coupling of contacting bodies is done by the exchange and enforcement of
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Dirichlet and Neumann boundary conditions only at the contact interface.

Neumann problem Unilateral contact problem Contact tractions

Mesh position

Input files:
Mesh
Material model
Time integration scheme
Solver options
Postprocessing options
etc.

Input files:
Mesh
Material model
Time integration scheme
Solver options
Postprocessing options
etc.

CPU1 CPU2 CPU3 CPUM CPU1 CPU2 CPU3 CPUN

Figure 5.9: Instance composition: each instance is executed as a standalone prob-
lem and the connection is done through the transference and enforcement of
boundary conditions. Each instance can be parallelized independently and uses
independent sets of input files.

Though, this algorithm is not only restricted to Alya and Ostero. With a proper imple-

mentation, any other simulation tool can be used. Even more, this multicode scheme and the

black-box approach of the proposed algorithm gives the possibility to use and couple different

computational codes for the Neumann and unilateral contact problem solution. The contact

algorithm can be interpreted and implemented as a black-box that connects same or different

computational codes by the transference and enforcement of specific boundary conditions at each

contact interface. It must be remarked that for the parallel resolution of both individual prob-

lems, parallel codes (as Alya) must be used. As a general aspect of this algorithm, the contact

detection and the transference of data between both instances is done by PLE++ (see Sec. 4.4.1).

Nevertheless, even this procedure can be replaced by any other suitable tool which has the same

functionality.

Let us consider the parallel example problem shown in Fig. 5.10, where both meshes are

partitioned in 3 and 5 subdomains, respectively. Similarly to what was explained for the unilateral

contact part in Sec. 4.5.1, the multicode simulation of this example and the test cases presented

in the following section are done in the following way:

$ mpirun −np 3 . / code i n s t anc e 1 b a l l : −np 5 . / code i n s t anc e 2 block

where code instance 1 and code instance 2 represents the computational codes used for

the solution of the governing equations of the mechanical problem (Ostero, Alya, etc). For this

particular case we use 3 processors for the parallel resolution of the ball and 5 processors for the

resolution of the block. The assignment of the processors is done with the -np instruction.
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Ball, deformable, Neumann problem

Block, deformable, unilateral contact problem

Figure 5.10: Multicode simulation of a two-body contact problem.

5.4.2 Test cases

We shall now present the results of application of the algorithm presented in this chapter to some

2D and 3D test cases. These test problems were selected to illustrate and validate the behaviour

of the proposed algorithm. All the results shown below were obtained using Alya code. It is

worth mentioning that for each numerical example, in the multicode execution Neumann and

unilateral contact parts are solved using exactly the same Alya binary.

5.4.2.1 Hertz contact between two hemispheres - 2D

Hertz problem is often used as a reference for the numerical validation process of contact me-

chanics algorithms. It consists on the computation of the mechanical state of two infinite long

cylinders which contact along their generatrix due to the effect of a concentrated uniform force

F , as shown in Fig. 5.11. This problem allows to verify if the resolution method is able to

correctly evaluate the contact boundary conditions, even if we only know the boundaries in its

approximated form. The analytical solution to this problem, proposed by Hertz in 1882 [62], is

only valid if we assume an elastic behaviour of the bodies, no friction at the contact interface,

small deformations and a small contact length with respect to the radius of the cylinders.

For the numerical resolution of this example we employ identical cylinders with same dimen-

sions r and material properties E and ν. As the cylinders are infinite long, we consider a 2D

simplification under the assumption of plane strain. Furthermore, due to symmetry the problem

can be reduced to the modellization of two quarters of cylinders. In order to solve the same

problem, we enforce a displacement δ/2 on the boundaries that are parallel to the contact zone.

The computational setting for this problem is depicted in Fig. 5.12.

Assuming a frictionless contact and a small contact length b in comparison to the cylinders
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Figure 5.11: Hertz contact - Hertz contact problem, cylinder on cylinder.

Figure 5.12: Hertz contact - Computational setting.

radius r (b << r), the contact pressure distribution at the contact interface is given by [27]:

P =
2F

πb2l

√
(b2 − x2

1) = Pmax

√(
1− x2

1

b2

)
, (5.14)

where F/l is the load per unit length. The contact length b can be computed by:

b = 2

√
Fr(1− ν2)

πlE
. (5.15)

It is worth to note the equality between Eqs. (5.14) and (4.38) and Eqs. (5.15) and (4.39).

For the numerical solution of this problem we set E = 20000N/m2, ν = 0.3, r = 50 cm

and δ = 0.767 cm. Using these values in our computational model, we obtain for nodes Ct

and Cb maximum values of contact pressure equal to Pmaxt = 7147 kPa and Pmaxb = 7142 kPa

respectively. Taking an average value Pmax = 7144.5 kPa and by combining Eqs. (5.14) and (5.15)

we can isolate the variable F/l in order to compute b, which results in b = 3.25 cm. The deformed

configuration of the cylinders, the mesh used for the numerical solution and the contact zone are

shown in Fig. 5.13.
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(a) (b) (c)

Figure 5.13: Hertz contact - (a) Deformed configuration. (b) Mesh used for the
numerical solution. (c) Zoom in on the contact zone.

A comparison of the computed contact pressure distribution for both cylinders with the Hertz

solution (Eq. (5.14)) is shown in Fig. 5.14. We observe that contact pressure distribution and

contact length are very well captured by the proposed algorithm. This translates into a good

agreement between analytical and numerical results. It is noted that we have not assumed any

contact surface and pressure distribution. They are obtained naturally as part of the numerical

solution of the problem by means of the algorithm proposed in this chapter.
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Numerical solution, bottom cylinder

Numerical solution, top cylinder

Figure 5.14: Hertz contact - Contact pressure distribution with Hertz solution.
Comparison between numerical and analytical solutions for both cylinders.

To evaluate the convergence of the contact algorithm we solve this example as a quasi-static

evolution. Small displacement increments are applied at each time step until reaching the desired

116



5.4. Numerical examples

total displacement. We analyze two different cases to explore the convergence of the solution:

in one of them we solved the problem with a fixed relaxation parameter ω = 0.5 (see Sec. 5.2.2)

while in the other we use the Aitken’s method [86] to compute a dynamic relaxation factor at

each iteration step. In Fig. 5.15a we show the evolution of the coupling residual with respect to

the total number of iterations done by the algorithm. The coupling residual is computed as the

difference between previous and actual force received by the Neumann body. For visualization

purposes we limit to 100 the total number of iterations to display. On the other hand, in

Fig. 5.15b we show the total number of coupling iterations for each time step. We observe that

in this particular example Aitken’s method does not accelerate the convergence of the problem. A

simplified statistical analysis shows that the number of average iterations for the fixed relaxation

parameter case is nitfix = 4.69± 1.01 while for the Aitken’s method is nitait = 4.73± 1.31.
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Figure 5.15: Hertz contact - (a) Convergence behaviour of the contact algorithm
in terms of the relative L2 norm of the coupling residual. (b) Coupling iterations
for each time step.
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5.4.2.2 Indentation parallel benchmark - 2D

In this example we solve a 2D frictionless indentation problem which consists of a rounded-

head deformable indenter and a deformable square block. The physical model of this problem is

shown in Fig. 5.16. The dimensions of the indenter are: hi = 0.5m, wi = 1.2m and ri = 0.75m,

while the vertical displacement imposed to the indenter along the vertical direction is δ = 0.1m.

The dimensions of the block are hb = 0.5m and wb = 1.6m. We consider a Neo-Hookean

material model and finite strains for the indenter and the block, with material properties Ei =

6.896 e+9N/m2, νi = 0.32, Eb = 6.896 e+8N/m2 and νb = 0.32. The relative position of the

indenter with respect to the block is given by ax = 0.2m and ay = 0.025m. For the bottom of

the block, we fix the displacements in all directions.

indenter, deformable

block, deformable

Figure 5.16: 2D indentation problem - Physical model.

We solve this problem with Alya code after partitioning the indenter mesh in eight subdomains

and the block mesh in eighteen subdomains. Indenter and block meshes and the distribution of

subdomains used in this example are shown in Figs. 5.17a and 5.17b, respectively. To compare

results, we solve the same problem with Code Aster [31] using the same meshes and only one

domain for the complete system.

Fig. 5.18a shows the final deformed configuration obtained with Alya. On the other hand,

Fig. 5.18b shows a mesh superposition in order to compare the final deformed configurations

obtained with both codes. We observe a very good agreement in the results.

In Figs. 5.19a and 5.19b we compare the results of Alya against Code Aster for the y and

x displacement of those nodes which belong to the contact boundary of the block, respectively.

In Fig. 5.19c we show a comparison of the contact forces along the same contact boundary.

Considering the small scale of the vertical axis in Fig. 5.19b, we can conclude that not only

the qualitative behaviour of the contact boundary is very well captured, but also the absolute
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(a) (b)

Figure 5.17: 2D indentation problem - (a) Mesh used for the numerical solution.
(b) Domain decomposition of the mesh used by Alya code.

(a) (b)

Figure 5.18: 2D indentation problem - (a) Final deformed configuration ob-
tained with Alya. (b) Mesh superposition - black lines: Alya mesh; white lines:
Code Aster mesh.

values are very close between the two models. We would like to emphasize that in this example

we are comparing results obtained with two completely different apporaches for the numerical

resolution of contact problems. These results also allow to verify the parallel implementation of

the proposed algorithm.

This example is solved as a quasi-static evolution: we apply a small displacement at each time

step and solve a static problem until reaching the desired total displacement. For the solution of

the linear system of equations resulting at each Newton-Raphson iteration, we employ an iterative

GMRES solver with diagonal preconditioning. In this context we evaluate the convergence of the

contact algorithm using two sets of values for the relaxation parameter: ω = 0.5 and ω = 0.6,

and the Aitken’s method. In Fig. 5.20a we show the evolution of the coupling residual with

respect to the total number of block iterations. In Fig. 5.20b we show the the total number of

iterations for each time step. Finally, in Fig. 5.20c we show the total solver iterations for each
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Figure 5.19: 2D indentation problem - Magnitudes along the contact boundary of
the block: (a) Vertical displacement. (b) Tangential displacement. (c) Contact
force.

time step. It is clearly observed how the Aitken’s method allows to accelerate the convergence

of the solution, as the total number of iterations for the complete simulation is reduced. It is

worth mentioning that for a fixed relaxation parameter equal to ω = 0.9, the solution diverges.

Thus, Aitken’s method proves to be a suitable choice to ensure and accelerate the convergence

of this problem.

120



5.4. Numerical examples

accumulated iteration number

re
la

ti
v
e
 L

2
 n

o
rm

 o
f 

co
u
p

lin
g

 r
e
si

d
u
a
l

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

0 20 40 60 80 100 120

Fixed relaxation - 0.5
Fixed relaxation - 0.6

Aitken dynamic relaxation

time step

co
u
p

lin
g

 i
te

ra
ti

o
n
s

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16 18

Fixed relaxation - 0.5
Fixed relaxation - 0.6

Aitken dynamic relaxation

(a) (b)

5000

10000

15000

20000

25000

30000

35000

40000

0 2 4 6 8 10 12 14 16 18

Fixed relaxation - 0.5
Fixed relaxation - 0.6

Aitken dynamic relaxation

time step

to
ta

l 
so

lv
e
r 

it
e
ra

ti
o
n
s

(c)

Figure 5.20: 2D indentation problem - (a) Convergence behaviour of the contact
algorithm in terms of the relative L2 norm of the coupling residual. (b) Coupling
iterations for each time step. (c) Total solver iterations for each time step

121



A Parallel Method for the Two-Body Contact Problem

5.4.2.3 Bouncing ball - 2D

We solve here a simple problem which consists of a very rigid ball which falls due to gravity and

impacts on an elastic deformable membrane, which is fixed at both ends (see Fig. 5.21). We

assume an isotropic linear elastic material model and finite strains for the ball and membrane.

The physical and material parameters arbitrary chosen for this example are: rb = 0.1m, ax =

0.5m, ay = 0.07m, hp = 0.05m, wp = 1.2m, ρb = 2.0 e+5 kg/m3, Eb = 6.896 e+10N/m2,

νb = 0.32, Ep = 6.896 e+8N/m2 and νp = 0.32.

ball

membrane

Figure 5.21: Bouncing ball - Physical model.

In order to show the flexibility of the algorithm, we take profit of the low velocity of impact

(≈ 1.2m/s). So, in this example we solve the ball using a transient implicit solver, while the

membrane is solved quasi-statically, i.e. we do not consider inertial effects. The mesh used for

the numerical solution is shown in Fig. 5.22.

Figure 5.22: Bouncing ball - Mesh used for the numerical solution.

We solve this problem for a real time lapse of 3.2 s. Fig. 5.23 shows the evolution of the

deformed configuration of the ball-membrane system for four different time steps, while Fig. 5.24

shows a zoom in at the contact interface.

Fig. 5.25 shows the evolution of the total displacement of the rigid ball along the vertical axis

y. As we are not considering any source of energy dissipation, the bouncing effect is perfectly

elastic.
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(a) t = 0.20 s (b) t = 0.23 s

(c) t = 0.26 s (d) t = 0.28 s

Figure 5.23: Bouncing ball - Evolution of the deformed system.

Figure 5.24: Bouncing ball - Zoom in at the contact zone, t = 0.28 s.
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Figure 5.25: Bouncing ball - Total displacement of the rigid ball vs. time.
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5.4.2.4 Ironing example - 3D

In this example we study the finite deformation contact of a half-cylindrical elastic die (Neo-

Hookean model, Ed = 1000, νd = 0.3) which is pressed into an elastic beam (Neo-Hookean

model, Eb = 1, νb = 0.3) and then slided over the surface. This problem is commonly referred

to as ironing example. Similar analysis using a mortar segment-to-segment contact method have

been made in [112, 116], where also further details can be found. The physical model and an

exemplary finite element mesh are shown in Fig. 5.26. The geometrical parameters chosen for

this example are: rd = 3, dd = 5.2, wb = 9, hb = 3, db = 4, ax = 0.2 and az = 0.6. An initial

gap of 0.003 between die and beam is considered. The die is first pressed into the beam by

prescribing a displacement of -0.9 units in y-direction within 13 quasi-static time steps. Then it

slides along the beam 2.6 units in 7 further time steps. Finally, the die returns to its vertical

position by moving 0.9 units in y-direction in 10 time steps. The beam is fixed to the ground.

die, deformable

beam, deformable

Figure 5.26: Ironing example - Physical model and finite element mesh.

Fig. 5.28 shows the deformation state of the elastic die-beam system for three different time

steps. In this example, the numerical efficiency of the proposed contact algorithm in 3D finite

deformation situations is evaluated by monitoring the total coupling residual norm during the

nonlinear coupling or block iterations. Fig. 5.27a shows the evolution of the coupling residual with

respect to the accumulated number of coupling iterations. We observe that for fixed relaxation

values of 0.7, 0.9 and 1.0 the simulation diverges at different time steps. Fig. 5.27b shows the

number of coupling iterations at each time step for the converged simulation. We observe that

only the Aitken dynamic relaxation is able to ensure convergence to the solution for the complete

simulation in a reasonable number of coupling iterations.

Trace analysis To study the parallel behaviour of the general contact algorithm we have

generated an execution trace of the ironing example using 16 processors for the Neumann part

(elastic die, 100k elements) and 32 processors for the unilateral contact part (elastic beam, 70k

elements) for 3 time steps. A similar analysis was done in Sec. 4.5.2.5 for the case of an unilateral

contact problem. The trace for this example, executed on MareNostrum IV supercomputer, is

shown in Fig. 5.29. This trace was obtained using the HPCToolkit [71] suite.

Light blue color represents running processors while dark blue color represents idle processors.

In Fig. 5.29 we clearly observe the staggered execution of the proposed contact algorithm. Each

time step starts with the execution of the code instance assigned to the solution of the Neumann
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Figure 5.27: Ironing example - (a) Convergence behaviour of the contact algo-
rithm in terms of the relative L2 norm of the coupling residual. (b) Coupling
iterations for each time step.

(a) t = 0.65 s (b) t = 0.8 s

(c) t = 1 s

Figure 5.28: Ironing example - Results for three time steps. The elastic die is
fully lowered at (a) and then slid across the beam over the remaining time until
(c). For simplicity, a time step of 0.05 s is considered.

problem (A1). While this instance is running, the processors assigned to the unilateral contact

problem (instance A2) remain idle. Once the solution at A1 has converged, instance A2 starts.

At this time, while A2 is running, the processors assigned to A1 remain idle. This staggered

execution represents the coupling or block iteration depicted in Fig. 5.4 and is repeated along

the complete simulation. In Fig. 5.29 we also observe that the work load is well balanced among
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17 to 48
unilateral
contact
problem
(beam)

1 to 16
Neumann
problem

(die)

Figure 5.29: Ironing example - Trace generated for the full simulation (3 time
steps) - beam mesh of 70k elements, die mesh of 100k elements.

the group of processors of both instances, as they start and finish its execution in a coordinated

way. For this particular example we also observe that at each block iteration, instance A1 takes

more than double of time to converge than instance A2. One reason for this behaviour is that

we are using twice of processors for the beam mesh, which is 30% smaller than the die mesh.

Moreover, this simplified analysis gives us insight into how we could redistribute the total number

of available processors (48) between the two instances in order to improve the performance of

the parallel execution. Finally, Fig. 5.30 shows a zoom in on the trace for the first time step,

where the coupling iterations can be clearly identified.
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Figure 5.30: Ironing example - Zoom in on the trace: only one time step is shown.
Coupling iterations can be clearly distinguished.
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5.4.2.5 Impact problem - 3D

In this example we solve a low velocity impact, where a plate is impacted with an hemispherical

rigid impactor. We consider an impact energy level of 1.6 J . The diameter of the impactor is

16mm and its mass is 2 kg. The dimensions of the plate are 100×150×4.16mm and it is simply

supported (ux = uy = uz = 0) along all four edges as shown in Fig. 5.31 (right), leaving an

inner region of 75× 125mm. The plate is modelled as a T700/M21 unidirectional carbon/epoxy

laminate with stacking sequence of [02/452/902/− 452]S . The material properties of T700/M21

used in this problem were extracted from [2] and are listed in Table 5.1. For the impactor, we

assume an isotropic linear elastic material and for the plate, we consider a transversally isotropic

material and no damage. The boundary conditions and impact set-up for this problem are based

on ASTM D7136/D7136M-05 standard [6]. Similar numerical and experimental analysis have

been made in [2, 67].

For the numerical solution of this problem we use a mesh composed of approximately 8k

elements for the impactor and 100k elements for the plate. The meshes are generated in order

to enforce the best node-matching situation at the contact interface. A global overview of the

meshes is shown in Fig. 5.31. We run this problem with Alya code in parallel using 8 processors

for the impactor and 40 processors for the plate.

simply supported edge

(ux = uy = uz = 0)

Figure 5.31: Impact problem - Impact set-up: 3D view (left), backview (right).

Property Values

E11 Longitudinal Young’s modulus 130GPa
E22 = E33 Transverse Young’s modulus 7.7GPa
ν12 = ν13 Poisson’s ratio 0.33
ν23 Poisson’s ratio 0.45 (assumed)
G12 = G13 Shear modulus 4.8GPa
G23 Shear modulus 2.655GPa

Table 5.1: Impact problem - Material properties of T700/M21 [2].

For low velocity impact, the inertia effects are relatively small [143], and hence an implicit

quasi-static solver can be used to solve such problems. To compare the results obtained with

Alya, we solve the same problem using the comercial code Abaqus [1]. Abaqus solves the con-

tact problem using a general implicit dynamic contact algorithm based on the node-to-segment
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discretization of the contact interface and the introduction of a penalty parameter for the enforce-

ment of contact constraints. As mentioned in previous chapters, this is a completely different

approach that the one proposed in this work.

In Fig. 5.32 we show the typical curves for low velocity impact tests: (a) contact force-

displacement, (b) impactor energy-time, (c) contact force-time and, (d) impactor velocity-time.

By comparing the results of the present study with the ones obtained with Abaqus, one can

note that the qualitative behaviour is very well captured (see Fig. 5.32). At the beginning of the

impact, Alya and Abaqus predictions agree well: see Fig. 5.32a until an indentation of 0.4mm and

Fig. 5.32c until a contact time of 0.5ms. However, for larger values of indentation and contact

time, the absolute values do not exactly match. From the impactor energy-time curve (Fig. 5.32b)

we observe that this magnitude is not perfectly conserved for the solution obtained with our

contact algorithm. Based on this matter, qualitative behaviour and quantitative differences in

Fig. 5.32 may stem from the fact that, at the beginning of impact, impactor and plate meshes

practicaly match at those nodes that are in contact. This conformity results in a good load

(reaction forces) transference between plate and impactor. As impact goes on, the meshes lose

their conformity, thus affecting the load transference from the plate to impactor. See Appendix C

for a more detailed analysis.

It is worth to mention that these are preliminary results, intended to evaluate the impact

response of the algorithm for non-conforming meshes and further development is required. This

problem evidences the importance of a conservative transference of loads in Dirichlet-Neumann

type contact algorithms for impact problems. For fixed interfaces, as in the case of fluid-structure

interaction problems, several methods based on conservative load interpolation schemes that can

deal with the information transfer between non-matching meshes have been proposed (see [75,

20], among others). However, to the best of our knowledge, the extension of such methods to

moving interfaces has not been yet reported, and their implementation in a parallel computational

code is not straightforward and requires additional development. This key issue is left for future

work.
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Figure 5.32: Impact problem - (a) Impact force vs. displacement. (b) Impactor
energy vs. time. (c) Impact force vs. time. (d) Impactor velocity vs. time.
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Chapter 6

Conclusions and Outlook

We dare say that any research work, including a PhD. thesis, is something that never truly

ends. Its completion is simply determined by a matter of schedules, solely delimited by time.

Nevertheless, summaries are essential as they serve as milestones that help to wrap up all that has

been done and to discern which steps should be taken next. In this final chapter we recapitulate

all the work done in this thesis, which allows to identify the goals achieved and to establish the

potential future lines of development and improvement for this research.

6.1 Summary

This thesis was born by the necessity of solving industrial nonlinear frictional contact problems in

parallel, by algorithms capable of executing in HPC-based machines. The computational platform

required to be used for the implementation and execution of these algorithms is Alya, which is

the Barcelona Supercomputing Center simulation code for multi-physics problems, specifically

designed to run efficiently in supercomputers. To reach this objective, several milestones were

achieved and passed during the development of this work. It is worth to mention that these

milestones were taken as a reference to give structure to this manuscript. In the following list

we enumerate in order of accomplishment the most significant of them:

• Reach a comprehensive overview of the state-of-the-art in computational contact mechanics

and a clear understanding of the governing equations and the classical methods used for

the numerical resolution of these type of problems.

• Understand the workflow of a high-performance parallel computational code as Alya, and

the way that domain decomposition is applied for the resolution of parallel nonlinear solid

mechanics problems.

• Identify and analyze the strengths and weakness of classical methods in computational

contact mechanics, together with the feasibility for they parallel implementation in a high

performance computational code, considering the design basis established for such end.

131



Conclusions and Outlook

• In response to the fact that standard contact algorithms are not a suitable alternative for

efficient parallelization, propose a novel methodology for the parallel numerical resolution

of frictional contact problems between deformable bodies, which also suits the design basis

previously established.

• Develop from scratch a nonlinear finite element code to be used as a framework for a proof

of concept study of the proposed algorithm.

• Describe and implement the parallel contact algorithm in Alya code, for both 2D and 3D

frictional contact problems.

• Validate and test the parallel implementation with benchmark test cases and real numerical

problems.

6.2 Contributions

Motivated by the fact that standard contact algorithms are not a suitable alternative for efficient

parallelization and the lack of scientific literature regarding those issues, the main result of

this thesis is the introduction of a novel general parallel contact algorithm based on domain

decomposition methods which can run efficiently in HPC-based supercomputers, considering in

a unified way: physical, numerical, algorithmic and computational aspects. In this sense, we

can remark the three most important contributions of this work: (1) we have idenfied, analyzed

and enumerated the drawbacks that standard methods present when they are implemented in

parallel environments under a domain decomposition approach, (2) we have proposed a novel

methodology for the parallel solution of frictional contact problems, explicitly designed to meet

the requeriments of the state-of-the-art HPC-based systems, and (3) we have described in detail

the parallel computational implementation of the algorithm, which has been validated and tested

with benchmark test cases and real numerical problems.

Several features of the multicode Dirichlet-Neumann type contact algorithm introduced in

this work can be highlighted, which define the uniqueness and originality of the proposed method:

• The bodies in contact are treated separately, in a segregated way. From a computational

point of view this feature allows to use a multicode apporach, which means to use different

computational code instances for each of the contacting bodies.

• It makes use of a completely new approach for the contact detection and for the enforcement

of the contact constraints. The contact detection is done by means of a parallel location

and exchange library (PLE++), which allows to detect the penetrated nodes even when

they are distribuited among different processors.

• The contact is treated as a coupled problem, where the coupling of the contacting bodies

is done through Dirichlet and Neumann boundary conditions transfer at the contact zone.

The transference of the boundary conditions is also accomplished by the PLE++ library,

which relies on the Message Passing Interface (MPI) for parallel communication.
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• It can be explained as a black-box parallel solver for frictional contact problems, as it allows

to solve each body separately, even with different computational codes. The algorithm can

be interpreted as a black-box which detects contact, transfers and enforce the contact

boundary conditions at the contact interface of each body.

• In addition, the contact algorithm proposed in this thesis can also be formulated as a general

fixed-point solver for the solution of interface problems. This generalization gives us the

theoretical basis to extrapolate and implement numerical techniques that were already

developed and widely tested in the field of Fluid-Structure Interaction (FSI) problems,

especially those related to conservative interpolation schemes and convergence ensurance

and acceleration.

• For the enforcement of the Multi-Point Constraints (MPC) which restricts the movement of

the node only in the tangential plane, we propose to use a novel solution where we rotate

the local frame of reference for each of the contacting nodes, instead of using Lagrange

multipliers, which adds extra unknowns to the system.

• The size of the linear system of equations to be solved at each time step remains fixed,

since no Lagrange multipliers are used.

• As the algorithm does not rely on contact elements for the discretization of the contact

interface, there is no need to update the mesh graph on run time. The mesh partitioning

is done at the beginning of the simulation, as a preprocessing task, independently on each

body and without restricting the mesh partitioner.

• The multicode approach of the algorithm allows to treat each body independently, as the

contact coupling is done only through the transference of boundary conditions at the contact

zone. This gives a great flexibility since different inputs files can be used. Different mesh

types, material models, damage models, time integration schemes, solvers, preconditioners,

etc, can be defined for each body, as if they were in a standalone simulation.

6.3 Future research perspectives

Despite the fact that this work offers a comprehensive solution for the numerical parallel solution

of industrial contact problems, is only a first step towards the parallel modelling of this type of

problems in a very robust and efficient way. As parallel computing platforms became of general

access to the scientific and engineering community only few years ago, there is a considerable

lack of scientific literature on parallel contact algorithms. All those years the trend in the

computational contact mechanics field seems to have been the adaptation of existing classical

methodologies to parallel environments instead of developing from scratch new strategies fully

consistent with these new architectures. This thesis intends to take a first step towards this

direction. Having said that, a wide range of possibilities for further improvement or development

arise as a natural continuation of this work. Based on what we have presented here and the

topics which were only marginally covered or not addressed at all, some suggestions for future

research lines are presented below:
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• We have developed and implemented and algorithm for deformable two-body contact prob-

lems. Following the same ideas, the extension to self-contact or multi-body contact prob-

lems is an interesting topic to be covered.

• We did not implement a frictional model in the bilateral contact algorithm. Nevertheless,

for certain types of bilateral contact problems, friction is crucial and must be considered

in the contact resolution. Friction is an interesting but complex phenomena, and an open

line of research in the field of computational contact mechanics.

• We have proposed an staggered algorithm, in which one code instance is idle while the

other is solving, and viceversa (known as Gauss-Seidel scheme). Despite the fact that

this apporach is more robust than if the two bodies were executed simultaneously (Jacobi

scheme), is not optimal in terms of the exploitation of the computational resources. The

implementation of a simultaneous scheme and its comparison with the staggered scheme

is an interesting task to be performed in order to compare robustness, execution time,

efficiency, etc, of both strategies.

• We noted that MPC impact negatively on the speed of convergence to the solution. This

becomes more evident as the number of nodes on the active contact zone increase. Mo-

tivated by this fact, the issue of tailored iterative solvers or preconditioning techniques

that help to accelerate the convergence of the resulting linear system of equations in each

solution step has a lot of room for improvement.

• All the implementations and numerical examples in this work has been done with linear

elements. Higher order elements, or even the smooth interpolation of contact surfaces

with large curvatures will provide improved definition of the contacting surfaces. Among

several issues related with the lack of a smooth definition at the contact boundary one may

find: inaccurate prediction of the traction distribution or other relevant contact-related

quantity, spurious oscillations, inexact contact detection and even convergence problems of

the nonlinear solution scheme.

• Load transfer between nonconforming interfaces is one of the key areas of challenges in

partitioned approaches as the one presented in this thesis. The level of the accuracy in the

load transference have significant impact on the solution of the coupled system. In this

thesis we did not evaluate the performance of the algorithm with different load transfer

schemes. Due to the impact that this issue has on the performance of the algorithm is

worth to be considered for analysis in a next future.

• We have observed that the performance of Dirichlet-Neumann contact algorithm is strongly

determined by the relaxation strategy. The calculation of a specific relaxation parameter in

each iteration step proved to be crucial. Due to this observations, special emphasis should

be put in future works on developing optimal dynamic relaxation strategies. We believe

that a deeper analysis in this subject and more comparisons with available Newton field

solvers for the interface problem such as Interface Quasi-Newton (IQN) [33] or Broyden [26]
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methods are worth to be done in order to gain more insight on efficient techniques for the

resolution of contact problems using Dirichlet-Neumann partitioned algorithms.

• The applicability of the developed computational approach to more realistic scenarios has

to be proven with further large-scale simulations, including impact analysis considering

cohesive materials and damage models.

• Scalability tests in even bigger scenarios are worth to be analyzed and strong efforts for

improving the code scalability will have favourable consequences in several aspects which

range from faster simulations to efficiency in the exploitation of computational resources.

• Ostero code have proven to be a very useful didactic tool for testing algorithms before

they are implemented in more complex computational codes of industrial scale, as Alya.

This previous step allows to reduce the source of errors due to the larger input files that

bigger codes have and facilitates the debugging of the new segments of code. Ostero is not

a finished work, still few improvements must be done. In special, its extension to 3D and

parallelization.
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Computational Environment

A.1 Alya

The algorithms described in Chapters 4 and 5 were implemented within a computational envi-

ronment designed for heterogeneous problems in computational mechanics. This framework is

called Alya. It is fully developed at the Barcelona Supercomputing Center, within the department

of Computer Applications for Science and Engineering (CASE). Alya is not a born-sequential

simulation code which was parallelized afterwards. Instead, it was designed from scratch as a

multi-physics parallel code. The efficient solution of large problems on massively parallel com-

puters was the driving justification behind its development. This section describes its main

features.

Alya is a multi-physics, three-dimensional modular code for high performance computational

mechanics. It solves discretized partial differential equations (PDEs), prefering variational meth-

ods (particularly Finite Elements). It is capable of solving different physics problems, each one

with its own modelling characteristics, in a coupled way. Alya runs efficiently in Marenostrum,

the most powerful supercomputer in Spain, hosted by the Barcelona Supercomputing Center.

Alya has shown high parallel efficiency up to several thousands of cores for different physical

problems [29, 68, 70, 119]. Its scalability was benchmarked on different architectures such as

Intel Nehalem, Sandy Bridge, Xeon Phi and IBM PPC. In Blue Waters, the supercomputer

hosted in the National Center for Supercomputing Applications (NCSA), Alya code presented a

performance up to 100000 cores, achieving more than 85% parallel efficiency [132].

Alya’s architecture is modular, being organized into three main blocks: kernel, services and

modules, which can be separately compiled and linked. Each module represents a single set of

partial differential equation for a given physical model (e.g. solid mechanics, fluid mechanics, heat

transference, etc) and manages the respectively boundary conditions. Therefore, to solve a multi-

physics problem, all the required modules must be active and interacting following a well defined

workflow. Alya’s kernel controls the run: it contains the solvers, the input-output workflow
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and all the tools related to the mesh and geometry management. Is responsible for the control

of the code’s workflow by management of the interconnections between the modules, services

and itself. Algorithmically speaking, the most important tasks of the kernel are: reading of the

computational mesh and arrangement of the mesh data for domain splitting; construction of the

finite element tools to be used by each module (e.g. basis functions) and solving the linear system

of equations that results from the finite element approximation. The kernel and the modules

allows a given physical problem to be completely solved. The services are supplementary tools,

as the parallelization service or the HDF5 format writer. Kernel, modules and services have well

defined interfaces and connection points.

The parallelization of Alya is a service implemented in the source code and is based on mesh

partitioning (for instance unsing METIS [78]) and MPI tasks, which is specially well-suited for

distribuited memory machines and it uses a Master-Slave strategy. Based on the Master-Slave

strategy, the master is in charge of reading the mesh, performing the mesh partitioning and

writing the output files. Each slave is in charge of an specific subdomain and its main tasks are

the construction of the local right-hand side, the local system matrices and the solution of the

resulting system. Each slave is administrated by one computational process, thus conforming

the relation between slave, subdomain and computational process. In the assembling tasks, no

communication is needed between the slaves. Therefore, in this instance, the scalability only

depends on the load balance. Due to the necessity of communications, the solution of the linear

system the scalability depends on the interfaces (which are minimized by METIS), and the

communication scheduling. All the details on the parallelization of Alya can be found in [68].

In Fig. A.1 we show a schematic flowchart for the execution of a parallel simulation using

Alya. The tasks executed by the master process are shown on the left side of the same figure with

grey background. As explained in previous paragraph, the master performs the first steps of the

execution, namely reading the file and partitioning the mesh. Afterwards, the master sends the

corresponding subdomain information to the slave processes. Next, the master and slaves enter

into the time and linearization loops. Along with the execution of the iterative solvers carried

out by the slaves, two types of communications are required to exchange interface information

with the neighbour nodes of each subdomain. The exchange of the interface information is

performed using the MPI functions MPI Sendrecv, used for the sparse matrix-vector products

and MPI Allreduce, used to compute residual norms and scalar products.

A.1.1 Numerical issues - solid mechanics module

The computational solid mechanics problem is solved using a standard Galerkin method for a

large deformation framework and a generalized Newmark time integration scheme. This frame-

work is developed in a Total Lagrangian formulation. A large database of element types is

available for the solid mechanics module together with explicit and implicit solvers for the non-

linearity. The implicit solver is based on the Newton-Raphson method. Well known constitutive

equations for large deformation elasticity constitutive models, such as the neo-Hookean or specific

hyperelastic models, are also available.
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Figure A.1: Parallel flowchart of Alya. Master (grey) and slaves (white).

Fig. A.2 shows a flowchart of the solidz module. All the geometrical and physical data of

the problem are introduced as input files. Once the input files are read, Alya initializes the

computation within the solidz module, either in serial or parallel mode. The parallel service

must be specified in the input files.

Figure A.2: solidz module structure in Alya code.
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A.2 Ostero

The aim of this section is to do a briefly presentation of Ostero. Ostero is a didactic finite element

code for the numerical simulation of solid deformable bodies. It was developed as part of this

thesis, to use it as a test framework for several mechanical models and problems. It is a very

useful tool to perform proof-of-concept evaluations of contact mechanics algorithms and damage

models before implementing them in the BSC’s Alya code, which is a bigger, powerful but more

complex code. Ostero was successfully used for the proof-of-concept and beta-testing of all of

the algorithms proposed in this thesis. Ostero was also succesfully used by PhD. students at the

Barcelona Supercomputing Center and by BSc. students at the Universidad de Buenos Aires. As

a general fact, Ostero was designed in order to first: provide the user a clear idea of the structure

that usually a finite element code for linear and nonlinear mechanics has, and second: to allow

the user to use Ostero as a workbench for personal tests. For further information the reader

is refered to the hosting web page of Ostero https://bitbucket.org/matrivero/ostero, where the

source code and the user manual are freely available.

A.2.1 Description

Ostero is an open source finite element code that solves the continumm equation which governs

the mechanics of a deformable body subjected to external forces, Dirichlet and/or Neumann

boundary conditions. In other words, Ostero allows to determine the response of a deformable

solid body to an applied external load or displacement. Ostero allows to solve a mechanical

problem considering geometric linearity or non-linearity. For geometric non-linearity it uses a

Total Lagrangian formulation. For the specific case of the geometrical nonlinear model, Ostero

uses an implicit scheme based on the Newton-Raphson method, while the update of tangent

matrix is performed at each time step. When a given problem is solved using a geometrically

linear setting, the equations of equilibrium are formulated in the undeformed state, and are not

updated with the deformation. In some engineering problems, as the deformations are considered

small and the deviation from the original geometry is not perceptible, the use of a geometrically

linear setting is a very good approximation to the nonlinear model. The mathematical com-

plexity generated by a more realistic theory and the associated increment of the computation

time does not compensate the small error introduced by ignoring the update of deformations

in the equilibrium equations. But in the engineering field there are also a number of problems

where the deformation (large strains and/or large rotations) cannot be ignored. In those cases

a geometrically nonlinear model should be used in Ostero to account for the large deformations.

It is part of the engineering criteria to choose which model, linear or nonlinear, could be use.

Ostero is based on the solid mechanics module of the Alya code. It can solve quasi-static or

transient problems using triangles or quadrilateral linear elements. For the time integration it

uses a generalized Newmark integration scheme. The geometrically nonlinear module includes the

isolinear (or Kirchhoff) material model and several formulations of the hyperelastic neo-Hookean

material model. Recently, a simple damage model was also added to the code.

Ostero intends to be a didactic code, and its main objective is to allow the user to understand
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the very basic structure of a linear and nonlinear mechanics finite element code. Also intends to

provide a framework for beta testing of different models such as elastic material models, contact,

plasticity, fracture, etc.

Ostero was also designed to interact seamlessly with open source meshing and post-processing

tools. In that sense, Ostero reads mesh files generated using the open source meshing tool Gmsh,

without need of additional conversions to adapt the mesh file format to the input requested by

Ostero. On the other hand, Ostero writes outputs in Vtk ASCII format, which can be easily

postprocessed using the open source post-processing tool ParaView.

Ostero was written in Python and Fortran to exploit the main advantages and properties

of each programming language. The parsing of the input parameters, boundary conditions and

other options is done in the main program, coded in Python. The way that Ostero manages

the user input is through the usage of dictionaries in Python. For didactic purposes this coding

strategy is a convenient choice. From the developer’s viewpoint it allows a tidy and understand-

able programming. On the other hand, from the user perspective, it allows to write very flexible

and lexical inputs. The main program also includes the main execution loop, which calls the

subroutines that performs the elementary matrix calculations and the assembly operations from

the Fortran module. This external Fortran module is imported in the main program as an exter-

nal library. For the resolution of the linear system of equations resulting from the finite element

discretization, Ostero uses NumPy, which is the fundamental package for scientific computing

with Python.

Algorithm 12 shows the workflow of Ostero. Next to each task we identify which part of the

code is in charge of each operation. For efficiency matters, all those operations such as derivatives

computation and matrix assembly which involves a large amount of iterations, are performed by

the external pre-compiled Fortran subroutine, while the parsing of the input files and the main

loop control is done by the main Python script. The output is written in Vtk format by an

external Python function.

Algorithm 12 Ostero workflow

1: read main input file . (main python program)

2: read mesh file . (main python program)

3: read boundary conditions file . (main python program)

4: compute jacobian and derivatives . (fortran external lib)

5: for time = 1 to total time do . time loop

6: impose boundary conditions . (main python program)

7: while not converged do . nonlinear iterations

8: matrix assembly . (fortran external lib)

9: solve linear system . (main python program, Numpy)

10: end while

11: write output . (vtk python external lib)

12: end for
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A.2.2 How to get Ostero

Ostero is hosted in my personal Bitbucket space: https://bitbucket.org/matrivero/ostero. The

source code and user manual can be downloaded there. Bitbucket is a web-based hosting service

for projects that use Mercurial or Git revision control systems. Bitbucket is similar to GitHub

(which primarily uses Git), but the main difference is that Bitbucket allows free private reposi-

tories, while in GitHub only public repositories are available for free users. Besides being hosted

in Bitbucket server, Ostero is under Git revision control, which provides a perfect framework

for collaborative development. Git is a free and open source distributed version control system,

which allows to manage changes in the code in a very efficient way. Is an essential tool for

collaborative projects, but also very useful for individual programmers. Git takes a peer-to-peer

approach to version control, as opposed to the client-server approach of centralized systems, as

SVN. Rather than a single, central repository on which clients synchronize, in Git each peer’s

working copy is the complete repository which includes the complete history information of the

codebase.
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Appendix B

Physical Interpretation of the

Newton’s Method Residual

The discrete momentum equation at time step n + 1 in a form applicable to both equilibrium

and dynamic problems is:

0 = r(dn+1, tn+1) = sDMan+1 + f int(dn+1, tn+1)− f ext(dn+1, tn+1), (B.1)

where sD is a switch which is set by: sD = 0 for a static (equilibrium) problem, and sD = 1

for a dynamic (transient) problem. The vector r(dn+1, tn+1) is called a residual. The discrete

equations for both the implicit update of the equations of motion and the equilibrium equations

are nonlinear algebraic equations in the nodal displacements, dn+1.

The most widely used and most robust method for the solution of nonlinear algebraic equa-

tions is Newton’s method. The method is often called Newton-Raphson method in computational

mechanics. The solution of Eq. (B.1) by Newton’s method is an iterative procedure. The iter-

ation number is indicated by Greek subscript: dn+1
ν ≡ dν is the displacement in iteration ν at

time step n+ 1; the time step number n+ 1 will be omitted in the following.

To begin the iterative procedure, a starting value for the unknown must be chosen; usually

the solution dn for the previous time step is selected, so d0 ≡ dn. A Taylor expansion of the

residual about the current value of the nodal displacement dν and setting the resulting residual

equal to zero gives:

0 = r(dν+1, t
n+1) = r(dν , t

n+1) +
∂r(dν , t

n+1)

∂d
∆d +O(∆d2), (B.2)

where

∆d = dν+1 − dν . (B.3)

If the terms which are higher order than linear in ∆d are dropped, then Eq. (B.2) gives a

linear equation for ∆d:
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Physical Interpretation of the Newton’s Method Residual

0 = r(dν , t
n+1) +

∂r(dν , t
n+1)

∂d
∆d. (B.4)

The above is called a linear model or linearized model of the nonlinear equations. The linear

model is tangent to the nonlinear residual function. Note that in the Taylor expansion, the

residual is written in terms of the time tn+1. The time-dependence of the residual is usually

explicitly given. For example, the tractions and body forces are usually given as functions of

time, and any change in the external load forces is due to changes in the nodal displacements.

Therefore the residual is ordinarily computed using the load at time tn+1 and the latest value of

the nodal displacements.

Solving this linear model for the incremental displacements gives:

∂r(dν , t
n+1)

∂d
∆d = −r(dν , t

n+1) =⇒ ∆d = −
(∂r(dν , t

n+1)

∂d

)−1
r(dν , t

n+1). (B.5)

In the Newton procedure, the solution to the nonlinear equation is obtained by iteratively

solving a sequence of linear models given by Eq. (B.5). The new value for the unknown in each

step of the iteration is obtained by rewriting Eq. (B.3) as:

dν+1 = dν + ∆d. (B.6)

The process is continued until the solution is obtained with the desired level of accuracy.

In a Total Lagrangian formulation, the residual r(dν , t
n+1) can be expressed in absence of

exterior forces using index notation as (see [16]):

rbi =

∫
Ω0

PiJ
∂N b

∂XJ
dΩ0, (B.7)

where PiJ is the first Piola-Kirchhoff stress tensor, ∂N b/∂XJ are the shape function deriva-

tives with respect to the reference frame coordinates and Ω0 corresponds to the reference domain.

From now on we will suppose, without loss of generality and in order to save notation, that the

following volumetric integrals are done at the elementary level (Ω→ Ωe).

The two-point first Piola-Kirchhoff stress tensor PiJ can be related to the Cauchy’s stress

tensor σik, which is fully expressed in the deformed configuration (see [24]):

PiJ = Jσik(F
−1)Jk, (B.8)

where F is the deformation gradient and J the transformation jacobian. Then, we can rewrite

Eq. (B.7) using relation of Eq. (B.8) as follows:

rbi =

∫
Ω0

PiJ
∂N b

∂XJ
dΩ0 =

∫
Ω0

Jσik(F
−1)Jk

∂N b

∂XJ
dΩ0. (B.9)

As reference and deformed configurations are related by the transformation JdΩ0 = dΩ, then:
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rbi =

∫
Ω
σik(F

−1)Jk
∂N b

∂XJ
dΩ. (B.10)

Furthermore, as (F−1)Jk =
∂XJ

∂xk
, then:

rbi =

∫
Ω
σik

∂XJ

∂xk

∂N b

∂XJ
dΩ, (B.11)

which is equivalent to:

rbi =

∫
Ω
σik

∂N b

∂xk
dΩ. (B.12)

Please note that Eq. (B.12) allows to compute the residual using only measures which are

expressed in the deformed configuration. If we multiply Eq. (B.12) at both sides by the displace-

ments vector ubi , then:

rbi u
b
i =

∫
Ω
σik

∂N b

∂xk
dΩubi . (B.13)

As ubi does not depend on the system coordinates, we can include it inside of the integral of

Eq. (B.13):

rbi u
b
i =

∫
Ω
σik

∂N b

∂xk
ubi dΩ =

∫
Ω
σik εik dΩ, (B.14)

where εik is the Cauchy’s strain tensor. Rewriting Eq. (B.14) in vectorial form gives:

(Rb)T ub =

∫
Ω
εT σ dΩ. (B.15)

Right-hand side of Eq. (B.15) represents the work done by the internal forces of Ω. Thus,

residual vector Rb equals to the forces at each node b of element e. For those nodes subjected to

Dirichlet-type boundary conditions these forces correspond to the reactions.
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Appendix C

Load Transference Analysis

We apply here a simple methodology to address the accuracy of the interpolation strategy used in

this work across similar but non-matching contact interfaces. In the adopted strategy the inter-

face variables (reaction forces) are interpolated using shape function of elements. See Sec. 5.3.1

for further details.

We consider a test set-up, which consists of two blocks with slightly non-matching meshes

and a plane contact interface, as shown in Fig. C.1. The upper and lower blocks have dimensions

of 3.8× 3.8× 2.85 and 6× 6× 2 units, respectively. We assume a frictionless contact.

Figure C.1: Finite element meshes used in this analysis.

We employ a Neo-Hookean material law for both bodies. For the upper block we assign a

Young’s modulus E = 10000 and Poisson’s ratio ν = 0.3, while for the lower block we assign

E = 100 and ν = 0.3. In this tailor-made test the lower block is fixed in all directions at its

bottom surface, while a total vertical displacement of -0.5 units (y-direction) is applied to the

top surface of the upper block. This problem is solved as a quasi-static evolution using 20 time

steps. The final deformed state for both bodies is shown in Fig. C.2.
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Load Transference Analysis

(a) (b)

Figure C.2: Deformed state at last time step. (a) Upper block. (b) Lower block.

To evaluate the load transference due to contact, we compute at each time step the total

reaction force at the top surface of the upper block and at the bottom surface of the lower

block. Due to Newton’s third law, in the case of a perfect load transference both total reaction

forces should be exactly equal at each time step. Fig. C.3 shows a comparison of the computed

magnitudes for all the simulation time. We observe that curves exactly match at the beginning.

However, they apart as the simulation advances, which indicates that at those instants of time

forces are not exactly transferred. This can be explained due to the effect of loss of conformity

between meshes. At the beginning, meshes are slightly non-matching. Nevertheless, as time

advances, the lower block suffers a bigger deformation than the upper block, which affects the

initial configuration of the meshes at the contact interface. As meshes lose their similarity, the

effects of the non-conservativeness of the load transference become relevant.
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Upper block, total reaction force
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Figure C.3: Total reaction force at each time step. Forces are measured at the
top surface of upper block and at the bottom surface of lower block.
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