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Abstract 
 

Proteins are involved in almost all cell processes, with physical interaction 

between them being key to their function and dictated by its 3D structure. 

Hence, the study of protein-protein interactions and protein-protein binding 

is crucial to fully understand biological systems. In this thesis, we present V-

D2OCK, a fast and accurate data-driven docking tool for high throughput 

prediction of the structure of protein complexes. We have also studied the 

conformational space of potential encounter complexes by means of non-

specific decoys obtained by docking in order to develop BADock, an 

accurate binding affinity predictor from the unbound individual structures. 

Finally, we have published online an integrated and centralized resource 

(InteractoMIX) that allows to the research community an easy access to a 

compendium of bioinformatic web applications to study protein-protein 

interactions.  

 

Resum 
 

Les proteïnes estan implicades en gairebé tots els processos cel·lulars, amb la 

interacció física entre elles clau per la seva funció i dictada per la seva 

estructura 3D. Per tant, l’estudi de la unió i les interaccions proteïna-proteïna 

és crucial per entendre completament els sistemes biològics. En aquesta tesi, 

es presenta V-D2OCK, una eina de “docking” dirigit ràpida i precisa per 

predir l’estructura de complexes de proteïnes a gran escala. També hem 

estudiat l’espai conformacional de possibles complexes transitoris per mitjà 

de resultats de “docking” no específics per tal de desenvolupar BADock, un 

predictor d’energia d’unió a partir de les estructures individuals per separat, 

Finalment, hem publicat online un recurs integrat i centralitzat que permet a 

la comunitat investigadora l’accés fàcil a un conjunt de aplicacions web de 

bioinformàtica per l’estudi de interaccions proteïna-proteïna. 
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The central dogma of molecular biology established decades ago by Francis 

Crick (1) states that the inheritable information (genes) encoded in 

deoxyribonucleic acid (DNA) is transcribed to ribonucleic acid (RNA) and 

then translated to protein. Even thought many exceptions to this dogma are 

now known (2), such as non-coding RNAs, proteins are still considered the 

main effectors of biological activities. They are involved in virtually all cell 

processes in a living organism, from the catalysis of metabolic reactions to 

the DNA replication, including structural support, cell communication, 

signal transduction and gene regulation, which control the central dogma 

itself (3). 

 

In this introduction we will first review protein structure and the principle 

experimental and computational methods for its determination and 

prediction. Then, we will explain protein-protein interactions (PPI) from 

different level of detail (taking a special attention to structure) and the 

determination and prediction methods, focusing on protein docking. Finally, 

we will deepen into PPI by discussing about protein association and 

recognition mechanisms.  
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1.1 Protein structure 
 

It is well known that protein function is determined by its three-dimensional 

(3D) structure. Thus, determining the 3D structure of proteins is important 

to fully understand how a cell or an organism works (4). Protein structure is 

usually described hierarchically in four levels of complexity: 

 

1) The primary structure refers to the sequence of amino acids that are 

covalently linked through peptide bonds into a chain. There are 20 

different amino acids in the standard genetic code and when linked are 

referred as residues (5). 

 

2) The secondary structure of a protein is defined by regular local 

conformations established by hydrogen bonding between the amide 

groups of the backbone chain. The main two types of secondary 

structure are the alpha helices and beta strands (6,7). The flexible non-

regular regions between secondary structures are known as loops. The 

combination of few secondary structures with specific geometric 

arrangements frequently found in structures defines what is called 

structural motifs. Loops have been described to play an important role 

in folding, dynamics and function (8). 

 

3) The tertiary structure is the global three-dimensional structure that a 

protein adopts in the space. It defines the relationships between the 

residues located far away in the primary structure that held together by 

non-covalent interactions (hydrogen bonds, van der Waals, ionic 

interactions and hydrophobic packing), disulphide bonds and metal ion 

coordination. A tertiary structure can be described by domains (9), 

which are independent stable 3D units that have some degree of 

functionality and can be combined to build more complex proteins (10). 
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It has to be noted that proteins are not static and their flexibility results 

in constant small conformational changes. In fact, some proteins do not 

actually reach neither secondary nor tertiary structure. These proteins, 

known as intrinsically unstructured proteins (IUPs), have the residues 

oriented randomly and in constant movement (11). 

 

4) The quaternary structure, also known as protein complex, is the three-

dimensional conformation that adopts multiple proteins when 

interacting. Some proteins can results in significant conformational 

changes in the tertiary structure upon interaction (12). Quaternary 

structure will be addressed in more detailed in section 1.2. 

 

Figure 1.1 The four levels of protein structure.  From primary structure (top) to 

quaternary structure (down). Image obtained from 

https://en.wikipedia.org/wiki/Protein_structure. 
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1.1.1 Protein structure determination 
 

There are many experimental methods to determine the 3D structure of 

proteins. The two most successful and most used methods are the X-ray 

diffraction (13) and NMR spectroscopy (14), which cover 99% of structures 

deposited in the Protein Data Bank (PDB). The PDB is a repository created 

in the 1970s aimed to collect all protein structures in a unified format (15). 

From it, multiple database with different focus have been developed (e.g. 

SCOP (16), CATH (17), 3DID (18)) 

 

a) The X-rays diffraction is based on the scattering pattern that x-rays 

produces when interacting with the electrons. Then, the protein being 

studied can be fitted into the resulting electron density map. In order to 

obtain enough signal, multiple proteins are required to be arranged in a 

lattice forming a regular geometric pattern: a crystal.  

 

To obtain a protein crystal, high concentrations of proteins and the 

appropriate experimental conditions are required. Thus, the 

crystallization becomes a serious limitation that difficult this technic to 

be used high throughput (19).  In addition to this, the flexible regions of 

proteins such as loops may adopt different conformations in each cell in 

the lattice, causing an irregular dispersion of the x-rays resulting in a 

blurred area, leaving gaps in the 3D structure (20). 

 

b) The RNM spectroscopy is a technique based on the magnetic moment 

(nuclear spin) that some atomic nuclei (including 1H, 13C, 15N) possess, 

which give rise to different resonance frequencies in a magnetic field. 

The magnetic field is induced through short pulses of electromagnetic 

energy, which enhance the raise of the energetic level. Excited nuclei 

return to the basal state resonating in a frequency characteristic of the 
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atom environment (chemical shift). Pulses of different radio frequencies 

provide different information about the environment and allow the 

reconstruction of the 3D structure of the protein (21).  

 

NMR is applied to molecules in solution (natural environment), solving 

the problem of protein flexibility and giving a more dynamic view of the 

protein. In addition, it is less costly than X-rays diffraction since it is not 

necessary to make a crystal. On the other hand, the complexity of the 

obtained result spectra makes this technique difficult to apply to large 

proteins. 

 

c) There are also other methods to determine 3D structures of proteins. 

These includes cryo-electron tomography (22), X-ray scattering (SAXS) 

(23) and solid-state NMR (24). Cryo-electron tomography allows the 

determination of the shape of large macromolecular complexes, but not 

the atomic details (25). SAXS is applied to large proteins in solution at 

cost of resolution (26) and solid-state NMR is useful to study membrane 

proteins at high resolution (27). 

 

1.1.2 Protein structure prediction 
 

The introduction of high throughput sequencing technologies resulted in the 

determination of a vast amount of new protein sequences (28). However, the 

determination methods of protein structure, as previously described, are a 

slow and costly. Thus, there is an important difference between known 

proteins and proteins with known structure. This difference is defined as the 

sequence-structure gap. Computational methods can help to bridge this gap 

by inferring protein structure from sequence (29). These methods can be 

classified in three different groups: 

 



Introduction 

 9 

1. Homology modelling: Homology or comparative modelling is the 

preferred theoretical method to infer the tertiary structure of a protein 

from its sequence. This method is based on the principle that structure is 

more conserved than sequence (30). Hence, proteins with enough similar 

sequences (homologs) will acquire same conformation in the space. 

Therefore, homologs with known structure (templates) can be used to 

model a protein with unknown structure (query).  

 

Homology modelling is carried out in three steps: template 

identification, template alignment and model building. Template 

identification is the process of finding the closest homolog in a database 

of protein structures using applications such as BLAST (31) or HMMR 

(32). Once the template has been selected, depending on certain 

requirement the sequence has to be re-aligned using tools such as 

CLUSTALW (33) or T-COFFE (34). The last step creates the 3D 

structure. At this point, the structural information of the template is 

transferred to the query protein guided by the alignment (fits the target 

sequence upon the template structure) using applications such as 

MODELLER (35). Finally, the prediction obtained is refined and 

evaluated to asses de quality of the model. PROSA (36) is one of the 

most frequently used applications to evaluate the resultant models.  

 

2. Threading: Threading or fold recognition is particularly useful when no 

appropriate template is found for homology modelling. Threading is 

based on the principle that the number of protein folds is limited in 

nature and the query protein must belong to one of them (37). This 

process is performed by aligning the query protein against a database of 

protein folds (non-redundant sequences) and using a scoring function 

(based on structural features) to find the best possible template. Then, 

the atoms of the query are arranged around the backbone of the 
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template. Examples of threading tools are GenTHREADER (38) or 

Phyre (39). 

 

3. Ab Initio methods: Similarly to threading, when no homologs are found 

ab initio methods tries to elucidate the 3D structure of a protein from 

scratch. Those techniques explore the conformation space creating 

multiple candidates that are ranked using a scoring function based on 

statistical potentials or physic. One way to explore the conformational 

space is to reproduce the folding path through molecular dynamics (e.g. 

I-TASSER (40)). However, it requires a lot of computational efforts and 

is usually only applied to small peptides. Another way is to thread 

fragments of the sequence into knows structure fragments and 

subsequently assembly them (e.g. ROSETTA (41)). This approach can 

be applied to single domain proteins since it is less costly. 
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1.2 Protein-protein interactions 
 

Cells are complex biological entities whose normal function revolves around 

a delicate interplay between different biomolecules. Among them, proteins 

are fundamental to carry out most of the molecular functions, acting as 

molecular machines, sensors, transporters and structural elements (among 

others), with physical interactions between proteins being key to their 

function (42). Hence, the study of protein-proteins interactions (PPI) is 

crucial to understand cellular processes and develop new therapies for the 

treatment of human diseases.  

 

PPI networks have been used widely with different purposes, such as 

inferring protein function, identification of drug targets, identification of 

biomarkers or prioritizing disease-gene candidates in network medicine (43). 

One of the major challenges in current biomedical research is the 

determination of the whole network of PPI for a given organism (defined as 

the interactome) (44). 

 

1.2.1 Levels of detail 
 

Protein-protein interactions can be studied from different levels of details, 

depending on the research focus (3). Going from lower to higher, we 

distinguish the five different levels:  

 

1) Proteins related by co-expression or co-localization: Proteins that are 

found at the same time or same location can be used to predict 

functional relationships and to validate experimental results. 

 



Protein-Protein Interactions 

 12 

2) Proteins that belong to the same macromolecular complex: Proteins 

belonging to the same complex do not necessary have physical 

interactions, but it is said they have indirect interactions. 

 

3) Pairs of proteins that physically interact: This level recognizes physical 

interactions between two proteins (binary interactions), which can be 

used to create networks. Then, the topology of the network can be 

analysed using graph-theory algorithms. 

 

4) The determination of the interacting region: The knowledge of a binary 

complex starts by knowing the binding region, which is essential to 

understand the molecular mechanism involved in the association. 

 

5) The determination of the structural details of the PPI: The most detailed 

level of knowledge of a binary complex is obtained by focusing on the 

on the structural atomic details of the residues forming the interaction.  

 

Figure 1.2 Five level details in PPI.  A representation of each level is shown from 

low (-) to higher (+) detail. Image obtained from (3). 
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1.2.2 Protein-protein interaction determination 
 

Over the years, the number of technologies for the identification and 

characterization of binary PPI has increased dramatically. Each method has 

its own strengths and weaknesses. Thus, the selection of the appropriate 

technique depends on the goal of the study (interactome-wide or small 

defined set of PPI), the nature of the PPI studied (transient or stable 

interactions), the time/costs constraints and the specialized equipment and 

expertise (45).  

 

Protein Complementation Assays (PCA) (46) represents the group of the 

most widely used. In PCA protocols, the two proteins (bait and prey) are 

covalently linked at genetic level to incomplete fragments of a reporter 

protein. The reporter protein is usually a transcription factor that regulates a 

gene, which upon activation shows an observable phenotype. Thus, if the 

bait and prey interacts, the two fragments of the reporter are close enough to 

trigger the reporter activity. Among PCA, Yeast Two Hybrid (Y2H) remains 

one of the most popular methods. Y2H is simple, well established, low cost 

and can be used high-throughput (47). 

 

Other approaches are the proximity-based methods, such as the 

Fluorescence Resonance Energy Transfer (FRET) (48). This technique is 

based on the transfer of energy from an exited donor fluorophore to a 

nearby acceptor molecule. The Bioluminescence Resonance Energy Transfer 

(BRET) (49) is a similar method that used luciferase as donor and a 

fluorescent protein as acceptor, dismissing the strong background signal of 

FRET. Both methods are suitable to monitor short-lived real-time PPI. 

 

The previous methods involve the creation of fusion proteins, which may 

affect the binding ability of the targets. Thus, some methods use antibodies 
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to surmount this problem, such as the Proximity Ligation Assay (PLA) (50) 

or the Affinity Purification-Mass Spectrometry (AP-MS) (51). 

 

Figure 1.3 PPI detection methods. A: Yeast Two Hybrid. B: Membrane Yeast 

Two Hybrid. C: Luminescence-based Mammalian interactome mapping. D: 

Mammalian Protein-protein Interaction Trap. E: Kinase Substrate Sensor. F: 

Bimolecular Fluorescence Complementation. G: Bioluminescence/Fluorescence 

Resonance Energy Transfer. H: Affinity Purification-Mass Spectrometry. I: 

Proximity-dependent Biotin Identification Coupled to Mass Spectrometry. J: 

Proximity Ligation Assay. K: Ligand-Receptor Capture-Trifunctional 

Chemoproteomics Reagents. D: Avidity-based Extracellular Interaction Screen. 

Image obtained from (45). 
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Finally, the methods described for the determination of protein structures 

(X-rays crystallography, Nuclear Magnetic Resonance, Cryo-electron 

tomography) can also be used to detect PPI and provide further information 

about the structural details of the interaction. 

 

1.2.3 Prediction of binary interactions 
 

High-throughput experimental methods have produced a large amount of 

PPI data. However, the reliability and coverage of those techniques has been 

questioned (52). Thus, in order to improve data quality and fill the 

interactome gaps several computational methods have been developed. 

 

PPI prediction methods of binary interactions are mainly used to infer new 

protein-protein interactions (regardless of the atomic details) but also to 

validate experimental results. These methods can be categorized by the data 

they use:  

 

a) Genomic data: These methods analyse conserved operons, fusion 

domains or phylogenetic profiles, among others. Analysis of operon 

is base on the idea that genes in close proximity in the genome are 

more likely to encode proteins that interact (53). Similarly happens if 

two genes exist in a single fused gene in other species (54). 

Phylogenetic profiles identify genes pairs that tend to co-occur 

across genomes (55).  

 

b) Protein sequence: Many approaches use directly or indirectly the 

sequence for the PPI predictions. Some methods directly analyse 

know sequences in order to find patters (typically using machine 

learning algorithms) that distinguish interacting proteins from non-

interacting pairs (56,57). Other approaches use sequence homology 
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to find interologs (two proteins that interacts in one specie are more 

likely to interact in another) (58) or signatures, such as domains, 

characteristics of interactions (10). Furthermore, some signatures 

may be related to structural features, such as in iLoops method 

(59,60). Correlated mutation is also another method based on 

sequence and evolution (61). 

 

c) Protein structure: Similarly to protein sequence, structure can be 

used to do discern between interacting and non-interacting proteins 

using structural patterns or structural homology, such as in PRISM 

(62) or InterPreTS (63). Moreover, the utilization of the tertiary 

structures can be used to infer PPI through affinity predictions or 

docking techniques.  

 

d) PPI networks: New interactions may be predicted from the network 

structure of a partially known interactome, based on the principle 

that interacting proteins tend to share interaction partners (64,65). 

 

1.2.4 Prediction of quaternary structure 
 

Once a binary interaction is known; a more detailed level of knowledge is 

obtained studying the structural details of the residues that contributes to the 

interaction. This information can be used, for example, to estimate the effect 

of mutations and for ration drug design. However, the experimental costs for 

obtaining a protein complex are much more higher than those for 

determining a binary interaction, so the number of known interactions highly 

exceeds the number of protein complexes with known structure. Therefore, 

computation approaches have been developed to cover this gap (66).  
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There are two strategies for predicting a quaternary structure from sequence 

or structures (67). The most reliable is comparative modelling, based on the 

same principles as for individual proteins but using as a template the 

structure of an available interacting complex (interolog) (68). This method 

requires global similarity between the query and the template interactions, 

seriously limiting the applicability. This drawback can be partially overcome 

by taking into account that protein interface architectures are reused 

frequently (69). In fact, several studies suggest that the number of possible 

interfaces is smaller than the possible number of protein interactions (70). 

Thus, it is possible to model a protein complex using only the similarity of 

protein interfaces and the unbound structures of the two proteins (71). 

 

In contrast to comparative modelling methods (which are based on 

structural knowledge of the interaction), docking methods use the two 

unbound structures to sample orientations and produce several predictions 

that are ranked according to a scoring function to find near-native 

conformations (72). The docking process can be more accurate and fast if 

the interface is known, since the sampling space is reduced (73). However, 

docking remains an unresolved challenge in structural bioinformatics (74). 

 

Figure 1.4 Strategies for predicting quaternary structure. Left, docking 

approach. Right, comparative modelling approach. Image obtained from (67). 
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1.2.4.1 Interface prediction 
 

Computational methods aimed to predict the binding interface fall into two 

categories, depending on whether they require the knowledge of both 

interacting partners or not.  

 

The identification of a binding site regardless of the protein partners is 

possible due to the fact that interacting regions have specific properties 

different from the rest of the protein surface (75). For example, binding 

regions are more conserved and present different composition of amino 

acids (e.g. more hydrophobic in obligate complexes) (76). This information 

can be combined using machine learning methods to improve the binding 

site predictions (77). For example, VORFFIP is a structure-based binding 

site predictor that uses residue features and voronoi diagrams to train a two-

step random forest classifier (78). The method scores the residues and 

evaluates what regions are more likely to interact. Other structure-based 

machine learning predictors are: SPPIDER (79), PINUP (80), ProMate (81) 

and PIER (82). 

 

On the other hand, the knowledge of the interacting partners can provide 

information through co-evolution constraints (83) and structural or sequence 

patterns (84), among others. Furthermore, network topology based methods 

have been successfully used to predict the interface region (85). 

 

1.2.4.2 Docking 
 

Protein docking is a computational strategy for elucidating the structure of a 

protein complex when the unbound structures are determined (or modelled) 

and no data regarding the structure of the complex is known. These methods 

where introduced in 1978 (86). Since then, docking algorithms have 
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improved substantially. The docking process typically involves two main 

steps (87): 

 

1) Sampling: During this stage a rigid search is performed. One of the 

proteins is kept fixed (receptor) while the other (ligand) is rotated and 

translated around the first. According to the search strategies, current 

docking programs can be grouped into three categories: Fast Fourier 

Transform (FFT) or Spherical Fourier Transform (SFT), local shape 

feature matching approaches and randomized search algorithms (88). 

Some programs allow the introduction of restrictions, such as the 

maximum distance between two residues or specifying the binding sites 

of both proteins. These restrictions reduce the sampling space, which 

increase the computational speed and accuracy. 

 

2) Ranking: Rigid-body search yields a large number of output 

conformations, which includes many false positives. Thus, the different 

poses needs to be ranked typically by means of a scoring function to 

discriminate near-native structures (top best scored decoys). Finally, 

some decoys can be refined adding side chain movements and backbone 

flexibility. Examples of post-docking algorithms for flexible refinement 

are: MutiDock (89), RDOCK (90), FireDock (91), FiberDock (92,93) 

and EigenHex (94). The resultant candidates can be re-ranked and 

clustered to avoid redundant poses. 

 

Selecting the appropriate scoring function is crucial to rank near-native 

conformations at top. They can be grouped into three basic categories: force-

field based, knowledge based (statistical potentials) and empirical (67). The 

scoring function can be computed at residue or atomic level. Atomic level is 

more detailed but residue level is less sensible to small conformational 

changes. 
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Force-field scoring functions usually are atomistic-detailed and a linear 

combination of energetic terms such as Van der Waals, electrostatics, 

hydrogen bonding and desolvation energy (95). On the other side, 

knowledge-based potentials rely on the statistical analysis of specific 

properties observed in known protein-protein interactions stored in some 

database (96).  

 

In statistical potentials, the interaction between two residues can be 

statistically described by a potential of mean force (PMF). The energy score 

of the interaction is obtained by summing the potential of mean force of 

each pair of interacting residues a, b of the two proteins: 

 

𝐸 = 𝑃𝑀𝐹(𝑎, 𝑏)
𝑎,𝑏

 

 

The standard residue-pair potential of mean force (PMF) is obtained from 

the probability of finding a pair of residues (a, b) at a given distance (dab) (kB 

denote the Boltzmann constant and T the standard temperature of 300K): 

 

𝑃𝑀𝐹𝑝𝑎𝑖𝑟 𝑎, 𝑏 =  −𝑘𝐵𝑇𝑙𝑜𝑔
𝑃(𝑎, 𝑏|𝑑𝑎𝑏)

𝑃(𝑎)𝑃(𝑏)𝑃(𝑑𝑎𝑏)
  

 

In a recent work, the standard residue-pair potential is decomposed into four 

new statistical potentials that reflect different level of detail of the residue-

residue interactions (96). To do that, the surface accessibility and secondary 

structure of the residues are considered. Their success has been evaluated in 

different databases.  

 

𝜃 = (𝑆𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒, 𝑝𝑜𝑙𝑎𝑟 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟, 𝑑𝑒𝑔𝑟𝑒𝑒 𝑜𝑓 𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒 ) 
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𝑃𝑀𝐹𝑙𝑜𝑐𝑎𝑙 𝑎, 𝑏 =  𝑘𝐵𝑇𝑙𝑜𝑔
𝑃 𝑎 𝜃𝑎 𝑃 𝜃𝑎

𝑃 𝑎
+ 𝑘𝐵𝑇𝑙𝑜𝑔

𝑃 𝑏 𝜃𝑏 𝑃 𝜃𝑏

𝑃 𝑏
 

𝑃𝑀𝐹!𝐷 𝑎, 𝑏 =  𝑘𝐵𝑇𝑙𝑜𝑔 𝑃(𝑑𝑎𝑏)  

𝑃𝑀𝐹!𝐷𝐶 𝑎, 𝑏 =  𝑘𝐵𝑇𝑙𝑜𝑔
𝑃(𝜃𝑎, 𝜃𝑏|𝑑𝑎𝑏)

𝑃(𝜃𝑎, 𝜃𝑏)
 

𝑃𝑀𝐹𝑆!𝐷𝐶 𝑎, 𝑏 =  −𝑘𝐵𝑇𝑙𝑜𝑔
𝑃(𝑎, 𝑏|𝑑𝑎𝑏, 𝜃𝑎, 𝜃𝑏)𝑃(𝜃𝑎, 𝜃𝑏)
𝑃(𝑎, 𝑏| 𝜃𝑎, 𝜃𝑏)𝑃( 𝜃𝑎, 𝜃𝑏|𝑑𝑎𝑏)

 

 

Note that the statistical potential Es3dc is a refinement of the standard 

residue-pair statistical potential, since it takes into account not only the 

residues but also the condition in which each of them. 

 

Even thought the majority of the docking programs include both steps 

(sampling and ranking), these can be performed by different algorithms. In 

fact, it is common to re-rank the docking poses using different scoring 

functions (e.g. RPScore (97), ZRANK (95), PyDock (98), EMPIRE (99), 

DARS (100), DECK (101), SIPPER (102), PIE (103), etc.) and even mix 

them (96). Table 1.1 shows current docking programs along with the search 

strategy and the default scoring function implemented. 

 

Program Search algorithm Scoring function 

FTDock (104) FFT-based correlation Shape complementary and 

electrostatics 

GRAMM (105) FFT-based correlation Shape complementary and 

hydrophobic match 

MolFit (106) FFT-based correlation Geometric complementary, 

hydrophobic complementarity and 

electrostatics 

DOT (107) FFT-based correlation Van der Waals and electrostatics 

ZDOCK 3.0.2 FFT-based correlation Shape complementarity, electrostatics 
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(108) and knowledge-based pair potentials 

PIPER (109) FFT-based correlation Shape complementarity, electrostatics 

and knowledge-based pair potentials 

SDOCK (110) FFT-based correlation Van der Waals attractive, geometric 

collision, electrostatics and 

desolvation energy 

F2DOCK (111) FFT-based correlation Shape complementarity and 

electrostatics 

ASPDock (112) FFT-based correlation Atomic solvation parameters 

HEX (113) SFT-based correlation Surface complementarity and 

electrostatics 

FRODOCK 

(114) 

SFT-based correlation Van der Waals, electrostatics and 

desolvation energy 

GAPDOCK 

(115) 

Local shape match 

(Genetic algorithm) 

Surface and chemical 

complementarity 

PatchDock 

(116) 

Local shape match 

(Geometric hashing) 

Geometric shape complementarity 

SymmDock 

(116) 

Local shape match 

(Geometric hashing) 

Geometric shape complementarity 

LZerD (117) Local shape match 

(Geometric hashing) 

Geometric complementarity based 

on the 3D Zernike shape descriptors 

ATTRACT 

(118) 

Randomized search 

(Monte Carlo search) 

LJ-type effective potentials and 

electrostatics 

RosettaDock 

(119) 

Randomized search 

(Monte Carlo search) 

Van der Waals, electrostatics, 

hydrogen-bonding, pair-wise 

interactions and solvation energy 

ICM-DISCO 

(120) 

Randomized search 

(Monte Carlo search) 

Van der Waals, electrostatics, 

hydrogen-bonding, hydrophobic 

potential and desolvation energy 

HADDOCK 

(121) 

Randomized search 

(Monte Carlo search) 

Van der Waals, electrostatics, BSA 

and desolvation energy 

SwarmDock 

(122) 

Randomized search 

(Swarm optimization) 

Van der Waals and electrostatics 
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AutoDock (123) Randomized search 

(Genetic algorithm) 

Empirical free energy function 

 

Table 1.1 Docking programs. Columns from left to right: name of the program 

and refs, search algorithm and scoring function. Adapted from (72) and (88). 

 

A recent work compared the success rates (the number of protein for which 

at least an acceptable solution is found in the top n decoys) for 115 scoring 

functions, yielding top 10 success rates up to 58% (figure 1.5) (74).  If we 

take into account the large number of docking poses obtained from the 

sampling stage, those scoring functions are quite successful. However, the 

reliability for practical use is still limited.    

 

 
 

Figure 1.5 Success rates for best 40 scoring functions. Acceptable, medium and 

high quality solutions are shown in yellow, orange and red respectively. Top 1, 10 

and 100 measures are in left, middle and right. Image obtained from (74). 
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1.2.5 Protein-protein interaction databases 
 

The results obtained from the PPI determination experiments and prediction 

methods are deposited in public repositories, which allows the access to the 

information available for its further analysis and utilization.  

 

Databases differ in different aspects, such as the level of detail recorded or 

the experimental/computational methods used for the acquisition. 

Moreover, reliability and completeness of the databases have been 

questioned (124,125). Therefore, the integration of such data in unified 

systems is still a challenging crucial task in biomedical research (126). 

 

The following table (table 1.2) summarizes the principal databases on PPI 

with the detail deep according to the classification shown in section 1.2.1. 

 

Databases Information Level of detail 

STRING (127) Functional relation between proteins, 

including co-localization and co-

expression. 

1,2, and 3 

BIND (128) 

IntAct (129) 

DIP (130) 

BioGRID (131) 

HPRD (132) 

MINT (133) 

MPact (134) 

MIPS (135) 

HPID (136) 

Complex composition and binary pairs 

obtained experimentally 

2 and 3 

PIPs (137) 

OPHID (138) 

POINT (139) 

Predictions of PPI obtained from 

different methods 

2 and 3 
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Domine (140) 

PSIbase (141) 

Domain-domain interactions observed 

in the PDB database 

3 and 4 

PCRPi-DB (142) 

HotRegion (143) 

HotSprint (144) 

ASEdb (145) 

Hot-spot databases (residues in the 

interface that greatly contributes to 

binding energy) 

4 

Affinity 

Benchmark (146) 

Benchmark of protein-protein affinities 

(Kd). 

4 and 5 

iPfam (147)  

3DID (148) 

SCOPPI (149) 

SCOWLP (150) 

PIBASE (151) 

InterPare (152) 

PRINT (69) 

Structurally determined domain-domain 

interactions 

5 

PDBSUM (153) 

PROTCOM (154) 

Databases of protein complexes 5 

Docking 

Benchmark (155) 

High-resolution protein complexes with 

bound and unbound structures. 

5 

InterEvol (156) Evolution of protein-protein complex 

interfaces 

4 and 5 

 

Table 1.2 PPI repositories. Columns from left to right: name of the databases, 

information regarding the nature of the data and level of detail (1-5) according to 

classification of section 1.2.1. Adapted from (3) 
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1.3 Protein-protein recognition 
 

The formation of a protein complex involves two steps: the translational and 

rotational diffusion of the proteins in the solvent environment that brings 

the interfaces to an orientation of high specificity and the conformational 

changes upon binding.  

 

From the point of view of conformational changes, the three classical 

mechanisms proposed over the last century to describe the binding process 

are the (a) lock and key, (b) induced fit and (c) conformational selection.  

 

a) The Lock and key model was first postulated in 1894 by Emil 

Fischer (157) and describe that for rigid proteins (the interface is 

nearly identical in bound and unbound states) the interaction is 

achieved through the complementarity of the binding sites. 

 

b) A second recognition model is the induced fit, which postulate that 

the binding of one protein to another induces conformational 

changes, ranging from small side-chain or surface loops movements 

to large movement of domains, which result in the bound complex 

(158). 

 

c) Finally, the third model is the conformational selection. This 

mechanism hypothesized that the unbound structures fluctuates in 

multiple conformations, the best fitting is which proceed to form 

the protein complex (159,160). 

 

Both mechanisms, induced fit and conformational selection, are not mutually 

exclusive and has been observed to occur simultaneous (161) and in a 
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sequential manner (162). In fact, the three described models have been 

observed experimentally. 

 

Figure 1.6 Basic mechanisms for protein binding. (a) Lock and Key, (b) induced 

fit, (c) conformational selection. At and Aw denote protein at bound and unbound 

conformation respectively. The chemical reactions that take place are indicated black 

arrows. Protein B does not undergo conformational changes for simplicity. Image 

obtained from (163). 

 

1.3.1 Diffusion in protein-protein association 
 

The association of protein molecules is characterized by a second order 

kinetic rate constant (kon) that typically ranges between 105 and 106 M-1s-1. 

Antibody-protein association rate constants are commonly observed in this 

narrow range. This range appears to represent the typical rate for associating 

without any special steering forces in a diffusion rate-limiting step (164). 
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When considering the steric specificity of the bonds connecting the two 

proteins, this rate seems to be very fast. For example, for two spherical 

proteins of 18 Å radius that form complex in every collision regardless of the 

orientation, the association rate constant would be given by the 

Smoluchowski rate constant: kon = 7∗109 M-1 s-1 (165). As average binding 

interface constitutes about 10-15% of total surface area (166), the probability 

of that a random collision will result in a productive orientation is extremely 

small, implying a theoretical 106 fold decrease (kon = 7∗103 M-1 s-1), 103 less 

than observed values experimentally (164). Thus, for a long time is has been 

recognised that some additional forces must be responsible for accelerating 

the macromolecular association in solution (167). 

 

The first mechanism to explain this discrepancy was proposed by Sommer et 

al. and was called the “lengthy collisions between proteins” (168). The 

hypothesis suggested that interacting partners form weakly bonded 

nonspecific complexes, which are held closely for a long time together but 

are free to rotate. Consequently, the rotational diffusion would eventually 

bring the binding regions in contact. However, this hypothesis is not 

supported experimentally since the nonspecific complexes would have a 

Kd=10-4 and a lifetime of microseconds, 100 times larger than observed. 

 

In 1985, Berg further developed these hypotheses (169). He proposed that 

the proteins sustain multiple collisions that upon dissociation of an 

unproductive complex the dissociated proteins would remain spatially 

arranged increasing the chance to a second productive collision. Further 

Brownian dynamics studies provided a quantitative description of this rate 

enhancement mechanism (164). It was shown that two neutral spherical 

proteins surrounded by water undergo multiple collisions and rotational 

reorientations before they separate caused by a diffusive entrapment effect. 

This studies concluded that in the absent of any biasing force, the “basal” 
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value of kon ranges between 105 and 106 M-1s-1 in agreement with the typical 

association rates observed experimentally. 

 

Figure 1.7 Brownian diffusion through liquids. Macromolecule pushed by water 

moving in a Brownian way. When it collides with another molecule (a wall in the 

schema) water push against the other molecule. Image obtained from (170). 

 

1.3.2 Electrostatic rate enhancement in protein-protein 
association 
 

Many protein associations occur at much higher rate than basal estimations 

of 106 M-1s-1 (arriving up to >109 M-1s-1), suggesting that intermolecular 

forces must be present in order to extend the time that proteins remains 

spatially close (171). This rate enhancement is crucial in a wide range of 

biological processes. For example, rapid binding of cytotoxic nucleases with 

inhibitors is essential to avoid damage in the host cell. 

 

Site-directed mutagenesis and Brownian dynamics simulations have 

suggested that long-range electrostatic interactions greatly enhance 

association rates (172). Indeed, proteins with high complementary 

electrostatic surfaces have been observed in transient complexes with fast 

association rate constants (173). Furthermore, studies in protein design 

shown that association rate can be enhanced by optimizing the electrostatic 

attraction between proteins (174). Figure 1.7 shows the example of the 
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interaction between TEM1 β-lactamase and its protein inhibitor BLIP. In 

this example, 6 mutations were introduces in BLIP to increase the 

electrostatic complementary between specific surface patches (outside but 

near the interface), resulting in a 200-fold increase of the association 

constant. 

 

Figure 1.8 Design of a superactive BLIP inhibitor. Electrostatic potentials on 

the TEM1 wt, BLIP wt and BLIP enhanced mutant surfaces (blue for positive and 

red for negative charge). Green patch denotes the binding interface. Image obtained 

from (174). 

 

1.3.3 Encounter complex 
 

The complete ensemble of collisions happening during the rotational search 

is commonly called the “encounter complex”. Recent studies using 

paramagnetic relaxation enhancement RMN allowed the visualization of the 
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encounter complexes for relatively week protein-protein complexes 

(175,176). These studied have confirmed that the formation of encounter 

complexes is predominantly driven by weak non-specific electrostatic 

attractions. Moreover, the non-specific interfaces are more planar and small 

than the stereospecific complex (the buried surface area is an order of 

magnitude smaller), indicative of the absence of lock and key binding (175).  

 

Once the non-specific encounter complex is formed by electrostatic 

interactions, both proteins carry out a two-dimensional search on the 

surface, eventually falling into a narrow energy funnel that leads directly to 

the stereospecific complex. Figure 1.8 shows of the encounter complexes 

between the amino-terminal domain of enzyme I (EIN) and the 

phosphocarrier protein HPr. It has to be noted that the region on EIN 

comprising the specific interaction surface for HPr is only minimally 

occupied by encounter complexes, suggesting that once he HPr reaches this 

region the formation of the stereospecific complex occurs with high 

probability. 

 

It is becoming clear that the formation of an encounter complex is crucial to 

reduce the time necessary for formation of the productive complex (170). 

This means that the residues outside the binding site but relevant for the 

encounter complex may well have been optimized by evolution. Only by 

studying both the productive complex and the dynamic encounter complex 

will it be possible to fully understand protein complexes. 

 



Protein-Protein Recognition 

 32 

 

Figure 1.9 Visualization of EIN-HPr encounter complexes. Left, atomic 

probability density map (green) of HPr on the surface of EIN. The stereospecific 

complex is shown in blue. Right, electrostatic potential isosurface of EIN. 

Histograms of BSA and gap index distributions of the encounter complexes. Red 

line indicates the values for the stereospecific complex. Image obtained from (175). 
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1.3.4 Transition state 
 

Association rates also occur at slower rates than basal (kon = <105 M-1s-1), 

suggesting that in some proteins energy obstacles limits the association 

process. Some studies suggest that large conformational changes upon 

binding (the induced-fit process) require the proteins to pass over a 

transition state that can act as an energy barrier (177). 

 

To better understand this phenomenon it is useful to consider the 

association process as going through three steps. First of all, the encounter 

complexes are formed very fast from the free proteins in solution. Then, the 

two-dimensional search of both surfaces results in a transient complex that 

can lead to the naïve complex through conformational rearrangements (178). 

Figure 1.9 shows the formation of a productive protein through the three-

step model, being the last step the transition state. 

 

Figure 1.10 Three-step complex formation. From the left to the right: Proteins in 

solution, encounter complex, transient complex and native complex. Image obtained 

from (178). 

 

In figure 1.10 3D funnel energy diagrams are shown to illustrate various 

association regimes for two proteins that interact (170). Left funnel shows 

proteins highly transient and dynamic that does not achieve high specificity, 

such as electron transfer complexes. In the middle, all the encounter 

complexes proceed to produce the productive complex, being the diffusion 

the limiting step. Conversely, on the right, many encounter complexes 
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dissociate before the productive complexes is formed. Therefore, for these 

complexes the kon is limited by the transition state. 

 

Figure 1.11 Energy diagrams. From the left to the right: Proteins with low 

specificity, proteins limited by diffusion, proteins limited by transient state. Image 

obtained from (170). 

 

In fact, a simple classification for the wide spectrum of experimental 

association rate constants has been recently reported (171,177). This study 

describes two limiting regimes: the conformational change-limiting regime 

(below basal kon = 105 M-1s-1) and the diffusion-limiting regime. If there is no 

long-range force to bias the kon, it falls between 105 and 106 M-1s-1. Proteins 

with complementary electrostatic surfaces can enhance association to > 106 

M-1s-1.  

 

Figure 1.12 Association rate limiting mechanisms. Vertical line separates the rate 

limiting regimes. Green region shows the basal kon. Four complexes with higher rate 

constants are shown with the electrostatic surfaces (blue for positive and red for 

negative charge). Image obtained from (171) 
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It is worth highlighting that recent proteomic studies in protein-protein 

association show that the variation in basal rates is wider and larger than was 

estimated previously, from 104 M-1s-1 to 107 M-1s-1 (179). Hence, the emerging 

picture is that electrostatics has a limited role in dictating association in most 

complexes, increasing their rate by up to 100-fold. Only in a few extreme 

cases, electrostatic has a major role. The basal rates were slightly correlated 

with the size of the protein and the shape of the interface. However, a 

second and unknown mechanism should be present to explain these high 

basal rates. Some studies suggest that short-range electrostatics and 

desolvation defines weakly specific pathways leading to a low free energy 

attractor embedded in a repulsive environment guiding the proteins towards 

well oriented kinetic intermediates (180). Nevertheless, more work has to be 

done to study this phenomenon. 
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1.4 Binding affinity 
 

The binding between two proteins can be viewed as a reversible and rapid 

process in an equilibrium that is governed by the law of mass action. The 

strength of the interaction is defined as the binding affinity and may be 

influenced by temperature, ionic strength, pH and posttranslational 

modifications (163). Binding affinity spans more than 10 orders of 

magnitude, from high µM to fM, and changes caused by mutations or post-

traductional modification may be responsible of many protein dysfunctions 

and disease (181,182). 

 

The binding equilibrium dissociation constant (Kd) is a function of the rates 

of association (kon) and dissociation (koff), with the simple relation: 

 

Kd=koff/kon 

 

The rate constants kon and koff determine the timescale of association and 

dissociation, providing a “dynamic” view of the protein complex. This 

kinetic nature is a crucial aspect in diverse biological processes (171). For 

example, for proteins involved in cell signalling slow dissociation is not a 

good option since it implies a long-lasting bound state and a permanent on 

switch. Thus, fast dissociation is partially compensated through fast 

association. 

 

The dissociation equilibrium constant can be empirically translated into the 

Gibbs free energy of binding:  

 

ΔGd = -RTlnKd = ΔHd-ΔTSd 
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R is the gas constant (8.3144 J K-1 mol-1 equal to 1.9872 cal K-1 mol-1) and T 

the absolute temperature in kelvin.  

 

The free energy reflects all the chemical and energetic factors involved in the 

binding reaction. These factors can be decomposed between chemical forces 

acting on the two proteins mainly through non-covalent bonds (analogous to 

enthalpy) and entropy changes (183).  

 

A clear distinction between forces affecting kon and koff has been observed 

(184). Dissociation is a first order reaction whose rate is dictated by the 

strength of short-range interactions between proteins (van der Waals 

interactions, hydrogen bonds, hydrophobic interactions and salt bridges). 

Conversely, association rate is dictated by long-range electrostatic forces 

along the protein surface, as we described previously. 

 

1.4.1 Binding affinity determination 
 

For the determination of the binding affinity of a biological reaction between 

two proteins several methods have been developed (185). Overall, these 

methods can be categorized in two general classes: separative (direct) or non-

separative (indirect) (186). 

 

a) Direct methods measure the actual concentration of the bound and 

free proteins. These methods are only appropriate for proteins 

exhibiting slow dissociation rates, since the process of separating the 

bound and unbound proteins might disturb the equilibrium if the 

dissociation and separation occur on similar time-scales. Gel 

filtration, ultracentrifugation, ultrafiltration and equilibrium dialysis 

are examples of direct methods. 
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b) Indirect methods infer the concentration of the bound and free 

proteins from an observed signal. Optical methods such as 

absorbance, resonance or fluorescence spectroscopy techniques 

belong to this class, where the measured signal is proportional to the 

concentration of the product. 

 

The current three most frequently used methods to experimentally determine 

the binding affinity between two proteins are: the isothermal titration 

calorimetry (ITC) (187), the surface plasmon resonance (SPR) (188) and the 

flurocence-based methods (189). 

 

1.4.2 Binding affinity prediction 
 

Experimental techniques for measuring binding affinity (ΔGd) are expensive 

and time-consuming. For this reason, many computational methods have 

been developed for more than 20 years to predict the binding affinity (190–

199). Those approaches usually consider properties of the complex interface 

and calculate empirical scoring functions based on statistical potentials, 

thermodynamic equations and scoring functions used in docking. Thus, 

these methods are based on the energetic forces affecting koff. Recently, few 

methods also incorporate properties of the non-interacting surface into the 

predictive models (200). However, most of them still have poor performance 

when tested against large datasets (201). Moreover, the applicability of those 

methods is limited to the determination of the quaternary structure of the 

interaction.  

 

It is noteworthy to mention the Buried Surface Area (BSA), since was the 

primary descriptor to be related to binding affinity (183). BSA is a 

macroscopic descriptor for the hydrophobic interactions and expresses the 

gain of entropy of the water molecules upon binding. Its magnitude has been 



Introduction 

 39 

estimated to be 0.025 kcal mol-1 per 1 Å2 of hydrophobic surface removed 

from contact with water. All the other non-covalent interactions are 

theorized as negligible, sine proteins are highly solvated when unbound. 

However, interface ions, hydrogen bonds and van der Waals must be 

complementary to avoid complex destabilization. This model falls when 

explaining hot-spots (residues that destabilize the bound state by more than 

2 kcal mol-1 when mutating to alanine) (202). Thus, hydrophobic interactions 

are not the absolute determinants for the binding process.  
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1.5 Thesis motivation 
 

Bioinformatics is an interdisciplinary scientific field aimed to develop 

software for storing and analysing biological data. As we have previously 

described, in structural bioinformatics is of great relevance the development 

of predictive tools to bridge the sequence-structure gap, either for single 

protein or for protein-protein interactions. In fact, several community-wide 

experiments in modelling structures, such as CASP (for tertiary structure) or 

CAPRI (for protein docking), take place regularly to deliver an assessment of 

the state of the art to the research community (203–206). Most docking tools 

are computationally costly and result in a large amount of false positives. 

Thus, it is important to develop new tools to improve speed and accuracy in 

order to make it useful and affordable even for high throughput. In this 

thesis we address this problem by developing V-D2OCK (73). 

 

In addition, the determination of the binding affinity and association 

mechanisms is key for understanding association and dysfunction of protein 

complexes. Nowadays, the binding affinity predictors rely on the quaternary 

structure to develop scoring functions based on the characteristics of the 

interface. Despite all the efforts regarding the development of accurate 

docking programs, the reliability of those methods is still limited. Thus, 

current binding affinity predictors can only be applied to few cases. Here, we 

present a novel strategy to predict binding affinity of soluble globular 

proteins from the unbound individual protein structures, increasing the 

applicability over the existent methods. This strategy is based on the study of 

non-specific poses obtained by docking to scout the conformational space of 

potential encounter complexes formed during the association process, which 

contributes to the binding affinity. 
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Finally, the integration of computational programs in centralized resources is 

vital to collect and put into value all these tools. In this thesis we present 

InteractoMIX (207), a website that not only allows an easy access to a 

compendium of bioinformatics web applications to exploit interactomes, but 

also allows a better understanding of the connectivity and relations between 

them. 
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This PhD thesis aims to fulfil the following objectives: 

 

a. Develop and analyse a new data-driven docking strategy with 

improved speed and accuracy for high-throughput, genome wide, 

protein docking. 

 

b. Study the non-specific decoys obtained by docking (potential 

encounter complexes) to develop a binding affinity predictor for 

globular soluble proteins from the unbound proteins structures 

(unknown quaternary structure). 

 

c. Describe and develop a complete, integrated and centralized 

resource (i.e. a web site) to facilitate the access to a compendium of 

web applications for the analysis of protein-protein interactions and 

interactomes at both sequence and structure level. 

 

The first objective (a) has been addressed by contributing to develop V-

D2OCK, a fast and accurate data-driven protein docking strategy. V-D2OCK 

publication is presented in section 3.1.  The second objective (b) is 

accomplished by developing a novel strategy to predict the binding affinity 

of globular protein-protein interactions from non-specific docking poses. 

The manuscript of this work (in preparation) and is presented in section 3.2. 

Finally, the third objective (c) is achieved by developing InteractoMIX, a 

suite of computational tools to exploit interactomes in biological and clinical 

research. It is worth mentioning that V-D2OCK is included in InteractoMIX. 

This resource is published in a scientific journal and constitutes section 3.3.  

 

In the appendix, I present several published works I was involved during the 

PhD that are related to the objectives of this thesis.
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3.1 VORFFIP-Driven Dock: V-D2OCK, a Fast and 
Accurate Protein Docking Strategy 

Large-scale interactomic experiments usually do not provide atomic details, 

resulting in an expanding gap between interactomic data and determined 

structures of protein-protein interactions. Protein docking is a 

computational approach aimed to derive structural models of protein 

complexes. Docking can be data-driven to restrict the sampling to selected 

regions. In this paper we present V-D2OCK, a data-driven docking 

strategy that uses functional sites predicted by VORFFIP to direct 

the sampling process using PacthDock. The resultant docking 

candidates are clustered to remove redundant poses and ranked 

according to several scoring functions, including the new ES3DC statistical 

potential. The results obtained shows that V-D2OCK efficiently samples 

the docking space finding poses near to native, performing similar, or 

even better in flexible cases (using ES3DC), to other state-of-art methods 

(ZDOCK) in a faster way. Thus, the speed and accuracy justify the usage of 

this application for high throughput. V-D2OCK web server is accessible 

at: 

http://www.bioinsilico.org/cgi-bin/VD2OCK/staticHTML/home. 

Contribution: In this project I performed the experimental part regarding 
the implementation of the scoring function ES3DC. I also contribute to analyse the 
data (making the success rate curves and examples) and writing the article.  

Segura J, Marín-López MA, Jones PF, Oliva B, Fernandez-Fuentes N. VORFFIP-
Driven Dock: V-D2OCK, a Fast and Accurate Protein Docking Strategy. PLoS One. 
2015 Mar 12;10(3):e0118107. DOI: 10.1371/journal.pone.0118107

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0118107
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3.2 On the mechanisms of protein-protein 
binding: predicting their affinity from unbound 
tertiary structures 

Binding affinity (BA) is what defines if two proteins will interact or not and 

the strength of the interaction. Therefore, determining and predicting the BA 

of protein complexes is key for comprehending protein association and 

dysfunction caused by mutations or post-transcriptional modifications. 

Currently, most BA predictors rely on the atomic details of the complex 

interface, reducing the applicability of those methods to proteins with a 

quaternary structure elucidated. In this work, we present a novel strategy for 

predicting the binding affinity of soluble globular proteins from individual 

protein structures, partially solving the coverage problem. This strategy 

exploits the non-specific decoys obtained from docking to scout the 

conformational space of potential encounter complexes. These complexes 

are formed during the association process contributing to the binding 

affinity. Our results show that the developed method performs comparable 

to other state-of-art methods that require the native structure. In addition, 

our analysis of the non-specific docking poses shows a recognition path 

from non-productive poses to native and suggests that docking is a suitable 

method for studying the encounter complex. The manuscript of this work is 

in preparation. A web application implementing this strategy is 

available at: http://

sbi.upf.edu/BADock

Contribution: In this project I contribute to conceive and coordinate the 

integration process. I also contribute to write the article.  

Marín-López MA, Planas-Iglesias J, Aguirre-Plans J, Bonet J, Garcia-Garcia J, 

Fernandez-Fuentes N, et al. On the mechanisms of protein interactions: 

predicting their affinity from unbound tertiary structures. Bioinformatics. 2018 

Feb 15;34(4):592–8. DOI: 10.1093/bioinformatics/btx616

https://academic.oup.com/bioinformatics/article/34/4/592/4259190?searchresult=1
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3.3 InteractoMIX: a suite of computational tools 
to exploit interactomes in biological and clinical 
research 

In the post-genomic era the new high throughput technologies resulted in an 

exponential increase of biological data. Computational tools, in combination 

with experimental data, are crucial to analyse these data in order to better 

understand biological systems. In this paper, we describe 11 published tools 

and databases for the analysis of protein-protein interactions (PPI). These 

tools have been integrated and centralized in a website: InteractoMIX, 

providing a comprehensive and easy access to the different tools. 

InteractoMIX is organized in two level of detail (interactomic and atomic 

level) indicating a workflow that can be followed for a particular study 

involving PPI. Interactomic-level tools are: BIANA for the integration 

interactomic data; iLoops and BIPS for the prediction of PPI and GUILDify 

for discovering new disease-related genes. Atomic-level tools are: ModLink+ 

for structure modelling; VORFFIP and M-VORFFIP for predicting 

functional sites in protein structures; V-D2OCK for data-drive docking; 

PCRPi for predicting critical residues in protein interfaces and PiPreD for 

modelling orthosteric peptides. InteractoMIX is available 

at http://interactomix.com.

Contribution: In this project I conceived, designed and performed all the 

experiment. I also analyse the data and write the article. 

Poglayen D, Marín-López MA, Bonet J, Fornes O, Garcia-Garcia J, Planas-

Iglesias J, et al. InteractoMIX: a suite of computational tools to exploit 

interactomes in biological and clinical research. Biochem Soc Trans. 2016 Jun 

15;44(3):917–24. DOI: 10.1042/BST20150001

http://www.biochemsoctrans.org/content/44/3/917
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4.1 The docking problem 

Protein-Protein docking algorithms have been developed to assist 

experimentalist in investigating how two proteins of known structure interact 

and form a three-dimensional complex. Ab initio docking is currently used to 

predict the quaternary structure of proteins when no data regarding their 

complex is known, so we can go beyond homology modelling (the preferred 

method) to theoretically predict the structure of all known protein 

complexes. Paradoxically, in this thesis (section 3.2) we present a binding 

affinity predictor whose main advantage is precisely that do not need the 

quaternary structure to predict the free energy. This seems contradictory; if 

docking is a valid and widely used approach to predict the structure of 

protein complexes it should be correct to rely binding affinity predictors on 

quaternary structure predictions. The answer to this issue is the large amount 

of false positives resulted from exploring the whole conformational space 

that hinders its practical use, especially as input for other predictor methods 

that requires reliable atomic details. Therefore, how good is docking? Can we 

consider the problem solved?  

Docking is usually evaluated using success rate curves. These curves illustrate 

the percentage of benchmark cases with at least a near-native solution (the 

RMSD of the ligand is lower than 10Å) among the top N predictions. State 

of the art docking algorithms, such as ZDOCK, provides usually a ~10%, 

~20% and ~30% success rate at top 1, 10 and 100 solutions respectively 

(figure 4.1). If we take into account the large number of docking candidates 

obtained from the conformational search step (54.000 using ZDOCK 6 

degree sampling), the results are pretty accurate. However, if we select the 

top, top 10 or even top 100 solutions only for between 10% and 30% of 

cases we will obtain a near-native solution. That is a clear limitation in many 

research projects where precise atomic details are required.  Thus, despite ab 
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initio docking is better than nothing in many cases; it must be improved to be 

really useful for scientific community. 

Figure 4.1 ZDOCK success rates.  Success rates are shown for different versions 

and sampling degrees of ZDOCK (obtained from: 

https://zlab.umassmed.edu/zdock/perf_decoys.shtml). 

Even thought ab initio docking is moving ahead at staggering speed, there is a 

trend to incorporate experimental information in the docking procedure in 

order to improve the accuracy. This information can be used either a priori, 

to drive the process, or a posteriori, to filter the obtained solutions. In 

addition, the a priori methods take advantage of the dramatic reduction the 

conformational space to be sample to increase the speed of the procedure. In 

this thesis have presented V2DOCK, a data-driven docking tool that use the 

binding site predictions obtained by VORFFIP to drive the docking 

application PatchDock, increasing the speed of the process making it 

affordable for large-scale analysis.  

The principal characteristic of V2DOCK is the usage of binding site 

predictions, instead of experimental information. The main advantage of that 

feature is that we do not need previous knowledge about the protein 
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complex. However, the first concern we arise is: how can affect the reliability 

of the predictions to the accuracy of the method? If we fail predicting the 

residues involved in binding site it won’t be possible to find near-native 

solutions, even a worse approach that using ab initio docking. Therefore, it is 

crucial to keep enough sensitivity to allow the docking program to explore 

the interface while maximizing specificity. The analysis of V2DOCK shows 

that beyond 20% of correct binding site residues predicted, PatchDock is 

able to find near-native solutions. Thus, it is not necessary to fully predict the 

binding site. The success rates of V2DOCK show similar performance, or 

even better for flexible cases using the statistical potential ES3DC, to the 

state-of-art ab initio docking ZDOCK, so VORFFIP predictions are sensible 

enough. This validates V2DOCK as a fast docking tool that can be used not 

only when speed is required, such as for high-throughput docking, but also 

as a good substitute to traditional ab initio methods.  In addition, as 

V2DOCK key value proposal is in the search step, this method can be 

improved as new and better scoring functions are developed. 

 

4.2 Protein-protein binding mechanisms: lessons 
from iLoops and docking 
 

During the research period of the PhD I collaborated in the iLoops project 

(Appendix 6.3 and 6.4), a protein-protein prediction method based on local 

structural features (group of super-secondary structures) defining 

characteristic patterns of interaction or non-interaction (positive and 

negative interaction signatures) by combining groups of structural features 

from both proteins. A notable trait of this system is that interaction 

signatures can be distributed along the protein surface, not only in the 

protein-protein interface, supporting previous works showing that not only 

the binding region is involved in the interaction process.  
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Hence, we used such features in order to study the differences between the 

binding interface and the rest of the protein surface in known protein-

protein interactions (the PRISM database). Particularly, we study three 

different groups of protein-protein interfaces: i) Native interfaces (the actual 

binding patches of the interacting pairs), referred as Face-Face in the 

manuscript of section 3.2; ii) Partial interfaces (the putative interfaces 

between the binding patch of one protein and a non-interacting patch of the 

interacting partner), referred as Face-Back in the manuscript of section 3.2, 

and iii) Back-Back interfaces (the putative interfaces between non-interacting 

patches for both of the interacting proteins).  To do so, we classify the 

interacting signatures into these three categories depending the on the origin 

(inside or outside the interface) of each super-secondary structures (see 

Figure 4.2). 

 

Figure 4.2 Interaction signatures classification. Native: white-white super-

secondary structures; Partial: white-black super-secondary structures; Back-Back: 

black-black super-secondary structures. 

 

We calculate the score of each class by averaging the minus logarithm of the 

p-value of the interacting signatures within the class for a given protein. In 

Figure 4.3 (left boxplots) we show the comparison of the distributions of the 

positive and negative interacting signatures for each class. We can observe 



Discussion 

121 

that native and back-back classes have a better score distributions in positive 

signature than for negative (not in partial). Native class is a productive class, 

so this result was expected. Nevertheless, it was a surprising the difference 

between back-back and partial. We hypothesise that back-back interfaces 

preserve the exposure of both binding sites, while in a partial interface one 

interacting patch is sequestered and becomes unavailable to form a native 

interaction. According to this reasoning, partial interfaces represent a major 

obstacle in the formation of the real interaction. In comparison, although 

back-to-back interfaces also represent a wrong interacting conformation, 

they still expose the binding patches of both interacting partners and may 

represent an opportunity for the native conformation to occur.  

We perform the same procedure between domains in proteins consisting of 

two domains from SCOP. In Figure 4.3 we can observe that we loose the 

previous pattern (right boxplots), back-back and partial shows the same 

profile. We suggested that since domains are connected by a linker, the 

previous reasoning do not apply. Thus, these results supported the previous 

hypothesis.  

Figure 4.3 Boxplots for each interface class. Left figure: PRISM protein 

complexes; right figure: SCOP two domain proteins. Solid boxes show the 

distribution of the average of the -log(p-values) of the positive interacting signatures, 

(dashed boxes for negative signatures). Green: Native; yellow: Back-Back, red: 

Partial. 
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From here, we decided to use PatchDock and the Docking Benchmark 5.0 

to work with real docking poses in order to validate the previous hypothesis 

in soluble globular proteins. However, as can be observed from BADock 

(section 3.2), we obtained the contrary results: partial (or face-back) was 

better than back-back. As expected from previous works about the 

encounter complex, we find high correlations between electrostatic energies 

and binding affinity for non-productive docking poses, whereas productive 

candidates better correlate with shape and Van der Waal forces. Thus, these 

experiments supported the theory of the 2D search of both surfaces 

(rotational diffusion) upon a collision of the protein partners. Moreover, we 

suggested that proteins move from back-back to face-back and then to 

productive conformations. Finally, we used these finding to create a binding 

affinity predictor from non-specific decoys, allowing us to perform the 

prediction without any knowledge regarding the native complex structure. 

 

We know from recent proteomic studies that there is a high variability of 

association rate constants in absence of electrostatic forces. So, additional 

mechanism should exist in order to enhance association rate. Is the 

mechanisms observed with iLoops a secondary mechanisms that affects 

proteins without electrostatic forces? The high variability between types of 

proteins (high-low charged, permanent-transient, membrane-soluble, fast-

slow dissociation, etc.) allows the coexistence different association enhancing 

mechanisms. Further work must be done to elucidate for each type of 

protein what are the mechanisms involved in their binding. 

  

4.3 Developing bioinformatics tools  
 

Currently, one of the main objectives of bioinformatics is the development 

of computational tools to store and analyse biological data. Most of these 

tools are implemented in web services and web applications, so the user does 
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not need to install the software and all the dependencies and allows non-

expert users to use these tools in an easy and friendly way. However, 

bioinformatics servers have many drawbacks: computational resource 

limitations, privacy, and usually after few years of the publication the web 

application stop working because lack of maintenance.  

Another important issue about computational tools is the ever-growing 

number and redundant applications dispersed through different publications. 

Thus, it is very difficult for scientist to have a wide picture about the 

available tools for a specific problem. A suitable solution is to create web 

portals that aggregate available servers, so scientist just have to know the 

name of those resources in order to explore what is available. In addition, 

web portals can be designed to better comprehend the relation between the 

different tools. 

In this thesis we have developed InteractoMIX (www.interactomix.com), a 

web portal that integrates 11 bioinformatics web applications. InteractoMIX 

interface is a bullseye that indicates a possible pipeline for the analysis of 

protein-protein interactions, so user can start at any position and follow the 

pipeline and exit when the desired results are obtained. InteractoMIX has 

demonstrated in our lab that helps new members to catch up faster about 

what tools have been previously developed and understand its functionality. 
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This section summarizes the main contributions presented in this thesis: 

 

a) We developed a new data-driven docking approach with improved 

speed and accuracy using binding site predictions and several 

scoring functions. 

 

b) We demonstrate that ES3DC statistical potential is an accurate score 

that can be used to rank docking poses with conformational changes 

upon binding (difficult cases). 

 

c) We were able to use non-specific docking poses to explore the 

conformational space of potential encounter complexes and relate 

the different energetic components of productive and non-

productive decoys with the binding affinity. 

 

d) We show that non-productive decoys can be classified into two 

classes with different characteristics: Face-Back and Back-Back 

 

e) We suggest a new recognition model in which globular proteins 

move towards to contact their binding sites (first one binding site 

and then the other) following a subtle energy funnel. 

 

f) We can use the non-specific decoys to predict the binding affinity of 

two globular proteins, so we do not need the complex structure. We 

implemented this strategy using the ES3DC statistical potential with 

comparable results to other state-of-art methods. 

 

g) We developed InteractoMIX, a new centralized resource that put 

into context 11 computational web applications for studying 
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protein-protein interactions that facilitates its access and 

comprehension. 
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6. APPENDIX



Planas-Iglesias J, Bonet J, Marín-López MA, Feliu E, Gursoy A, 
Oliva B. Structural Bioinformatics of Proteins: Predicting the 
Tertiary and Quaternary Structure of Proteins from Sequence. 
In Cai W. Protein-Protein Interactions - Computational and 
Experimental Tools. Intech; 2012

https://www.intechopen.com/books/protein-protein-interactions-computational-and-experimental-tools/structural-bioinformatics-of-proteins-predicting-the-tertiary-and-quaternary-structure-of-proteins-f


Bonet J, Planas-Iglesias J, Garcia-Garcia J, Marín-López MA, 
Fernandez-Fuentes N, Oliva B. ArchDB 2014: structural 
classification of loops in proteins. Nucleic Acids Res. 2014 
Jan;42(Database issue):D315-9. DOI: 10.1093/nar/gkt1189

https://academic.oup.com/nar/article/42/D1/D315/1058746?searchresult=1


Planas-Iglesias J, Bonet J, García-García J, Marín-López MA, 
Feliu E, Oliva B. Understanding Protein–Protein Interactions 
Using Local Structural Features. J Mol Biol. 2013 Apr 
12;425(7):1210–24. DOI: 10.1016/j.jmb.2013.01.014

https://www.sciencedirect.com/science/article/pii/S0022283613000302?via%3Dihub


Planas-Iglesias J, Marin-Lopez MA, Bonet J, Garcia-Garcia J, 
Oliva B. iLoops: a protein–protein interaction prediction server 
based on structural features. Bioinformatics. 2013 Sep 
15;29(18):2360–2. DOI: 10.1093/bioinformatics/btt401

https://academic.oup.com/bioinformatics/article/29/18/2360/240642?searchresult=1


Sieberts SK, Zhu F, García-García J, Stahl E, Pratap A, Pandey G, 
et al. Crowdsourced assessment of common genetic contribution 
to predicting anti-TNF treatment response in rheumatoid 
arthritis. Nat Commun. 2016 Aug 23;7:12460. DOI: 10.1038/
ncomms12460

https://www.nature.com/articles/ncomms12460
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