
 
 

Escola Tècnica Superior d’Enginyeria 

Departament d’Arquitectura de Computadors 

 i Sistemes Operatius 

 

 

RADIC: A POWERFUL 

FAULT-TOLERANT 

ARCHITECTURE 

 

 

 

Thesis submitted by Angelo Amancio 

Duarte in fulfillment of the 

requirements for the degree of Doctor 

per the Universitat Autònoma de 

Barcelona. 

 

 

Bellaterra, May 2007 

 





RADIC: A POWERFUL 

FAULT-TOLERANT 

ARCHITECTURE 

 

Thesis submitted by Angelo Amancio 

Duarte in fulfillment of the 

requirements for the degree of Doctor 

per la Universitat Autònoma de 

Barcelona. This work has been 

developed in the Computer 

Architecture and Operating Systems 

department of the Universitat 

Autònoma de Barcelona and was 

advised by Dr. Dolores Isabel Rexachs 

del Rosario. 

 

 

Bellaterra, May 2007 

 

 

 

Thesis Advisor 

Dr. Dolores Isabel Rexachs del Rosario 

 

 





 

 

 

 

 

 

 

 

To Deborah, Amanda 

and Sarah, the goddesses 

who offered me all 

energy to complete this 

work. 

 

 





Acknowledgments 

It is hard to believe that almost four years have gone since the beginning of my 

Ph.D. course. Now, at the end of this journey, I remember how many people I have 

known and how important were these people to me. Although I remember all them 

with kindness, some of them made the difference. Besides helping me, these persons 

have improved me. The following lines are a tribute for them. 

To my wife Deborah and my daughters Amanda and Sarah, today the most 

important people in my life, I hope I can compensate the suffering and effort that they 

have done in the last four years. I thank them to be my emotional pillar and I thank 

the love they unconditionally give me.   

I had luck in having two great tutors in my job: Emilio Luque and Dolores “Lola” 

Rexachs. The lessons they gave me really made the difference when things did not go 

as well as I wished. Both always cared about how I was living in Spain and they gave 

me full support in my decisions. The word “tutor” has gained more significance since 

I started to work with them. 

I am very grateful to my two great Brazilian friends: Eduardo Argollo and 

Genaro Costa for teaching me most of the technical knowledge that helped me to 

develop my job. 

To my Brazilian friends Ines Martinez, Guna Santos and Christiane Dalforno, I 

thank the funny times that made the life easier when I missed my family or when the 

work was harder. 

To my Catalan friends Carlos Moreno, David Ruiz and Ana Esteves, I thank the 

lessons about the Catalunya. Because of them, I could better comprehend the Catalan 

people. 

I thank to my Argentine friends Mauricio Hanzich, Diego Mostaccio and Paula 

Fritzsche, for teaching me about Argentina and for proving that real friendship 

between Brazilian and Argentine is possible. 



viii 

Thanks to my Chinese friend Xiao Yang, from whom I have learned a lot about 

the Chinese culture (and a few Chinese words, too). Because of him, I matured many 

philosophical concepts at the “Friday's Philosophical Meetings”, mediated by our 

common friend Mauricio. It was also because of him that I ate the best Chinese food 

so far. 

I express my gratitude to all professors of the Ph.D. program at CAOS 

Department, for teaching me new matters that have helped me in my job. I also thank 

to the technicians Daniel Ruiz and Jordi Valls, for maintaining the machines working. 

Finally, I thank to Universidade Católica do Salvador (UCSal) by the financial 

support during these years. 

 

 

 

Bellaterra, June 2007 

Angelo Amancio Duarte 

 



Resumen 

La tolerancia a fallos se ha convertido en un requerimiento importante para los 

ingenieros informáticos y los desarrolladores de software, debido a que la ocurrencia 

de fallos aumenta el coste de explotación de un computador paralelo. Por otro lado, 

las actividades realizadas por el mecanismo de tolerancia de fallo reducen las 

prestaciones del sistema desde el punto de vista del usuario. 

Esta tesis presenta una arquitectura tolerante a fallos para computadores 

paralelos, denominada RADIC (Redundant Array of Distributed Fault Tolerance 

Controllers,), que es simultáneamente transparente, descentralizada, flexible y 

escalable. 

RADIC es una arquitectura tolerante a fallos que se basa un controlador 

distribuido para manejar los fallos. Dicho controlador se basa en procesos dedicados, 

que comparten los recursos del usuario en el computador paralelo. 

Para validar el funcionamiento de la arquitectura RADIC, se realizó una 

implementación que sigue el estándar MPI-1 y que contiene los elementos de la 

arquitectura. Dicha implementación, denominada RADICMPI, permite verificar la 

funcionalidad de RADIC en situaciones sin fallo o bajo condiciones de fallo. Las 

pruebas se han realizado utilizando un inyector de fallos, involucrado en el código de 

RADICMPI, de manera que permite todas las condiciones necesarias para validar la 

operación del controlador distribuido de RADIC. 

También se utilizó la misma implementación para estudiar las consecuencias de 

usar RADIC en un ambiente real. Esto permitió evaluar la operación de la 

arquitectura en situaciones prácticas, y estudiar la influencia de los parámetros de 

RADIC sobre el funcionamiento del sistema. 

Los resultados probaron que la arquitectura de RADIC funciona correctamente y 

que es flexible, escalable, transparente y descentralizada. Además, RADIC estableció 

una arquitectura de tolerancia a fallos para sistemas basados en paso de mensajes. 





Abstract 

Fault tolerance has become a major issue for computer engineers and software 

developers because the occurrence of faults increases the cost of using a parallel 

computer. On the other hand, the activities performed by the fault tolerance 

mechanism reduce the performance of the system from the user point of view. 

This thesis presents RADIC (Redundant Array of Distributed Independent Fault 

Tolerance Controllers,) a fault-tolerant architecture to parallel computers, which is 

simultaneously transparent, decentralized, flexible and scalable. 

RADIC is a fault-tolerant architecture that implements a fully distributed 

controller to manage faults. Such controller rests on dedicated processes, which share 

the user’s resources in the parallel computer. 

In order to validate the operation of RADIC, we created RADICMPI, a 

message-passing implementation that includes the elements of the RADIC 

architecture and complies with the MPI-1 standard. 

RADICMPI served for to verifying the functionality of RADIC in scenarios with 

and without failures in the parallel computer. For the tests, we implemented a fault 

injector in RADICMPI in order to create the scenarios required to validate the 

operation of the RADIC distributed controller. 

We also used RADICMPI to study the practical aspects of using RADIC in a real 

environment. This allowed us to evaluate the operation of our architecture in practical 

situations, and to study the influence of the RADIC parameters over the system 

performance. 

The results proved that the RADIC architecture operated correctly and that it is 

flexible, scalable, transparent and decentralized. Furthermore, RADIC established a 

powerful fault-tolerant architecture model for message-passing systems. 
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Chapter 1 

Introduction 

Any man made machine may fail and the computers are not an exception. Since 

the beginning of the computational science until our days, the computer designers and 

computer engineers had to deal with faults. 

As a rule of thumb, all computer engineers know that when a computer system 

becomes more complex, the system’s susceptibility to faults increases. Such rule is 

fully applicable to the parallel computers. 

The number of nodes in the parallel computers has steadily increased since the 

debut of the parallel machines in the computer’s world and, in spite of the quality 

improvement in each single component of the nodes, one may argue that, as certain as 

the sun will rise tomorrow, any current large computers will suffer some kind of 

failure. 

A fast look in the current “Top500 Supercomputer Sites” list (November/2006) 

shows that the Top100 supercomputers have more than 1000 nodes and the top 

computer has more than 130000 nodes [Top500.Org, 2006]. Currently, there is no 

signal that the current trend of increasing the number of nodes in parallel computers 

will stop. Such trend forces the computers engineers and software programmers to 

increase the amount of effort dedicated to deal with faults. 

Dealing with fault tolerance has become a major task for computer engineers and 

software developers because the occurrence of faults increases the cost of using a 

parallel computer. However, the inclusion of fault tolerance in a system increases the 

complexity of such system from the user point of view. Furthermore, the operation of 

the fault tolerance mechanism interferes in the operation of the distributed parallel 
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application and such interference often appears as a performance loss for system’s 

users. 

In this thesis, we proposed a fault tolerant architecture to parallel computers. In 

the development of such architecture, we assumed that, in order to attend the user 

expectations, a fault-tolerant architecture for modern parallel computers must 

simultaneously be transparent, decentralized, flexible and scalable. Currently no fault 

tolerance solution satisfies all these requirements simultaneously; because of this, we 

have developed the RADIC architecture. 

RADIC is the acronym for "Redundant Array of Distributed Independent Fault 

Tolerance Controllers". RADIC is a fully distributed fault tolerance architecture that 

implements a distributed controller to manage faults. The RADIC controller rests on 

dedicated processes, which run together with the parallel application processes, i.e., 

they share the resources allocated for the user in the parallel computer. Therefore, the 

RADIC controller works as a distributed parallel application. 

Since RADIC operates in a fully distributed way, without hierarchy or any global 

coordination between their processes, it is expandable and it mitigates the interference 

of the fault tolerance mechanism over the application’s scalability. 

RADIC is transparent for the system administrators, because its operation does 

not require any human intervention in order to maintain the parallel application 

execution in case of a failure in a node of the parallel computer. Furthermore, RADIC 

also does not require any change in the parallel application’s code, what make it 

completely transparent from the programmer point of view. 

RADIC is flexible because it allows different structures and relationships 

between its operational elements, facilitating the adaptation of the fault tolerance 

mechanism to the structure of the parallel computer.  The flexibility is also present in 

adjusting the RADIC parameters, which may be set individually for each process that 

is been protected, or combined for a group of processes. 

The RADIC operation bases on the classical pessimistic message-log 

rollback-recovery protocol. We choose this protocol because it allows that the fault 
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tolerance mechanism of a process operates without coordination with the fault 

tolerance mechanism of the other processes. This independence between the processes 

is the key feature of the distributed controller. 

The distributed controller for fault tolerance implemented by RADIC executes 

the major activities of a fault-tolerant architecture based on such protocol. The 

RADIC activities are: 

− it stores state information and deterministic events of the parallel application 

while the parallel computer is operating well; 

− it monitors the parallel computer nodes in order to detect faults; 

− it recovers faulty processes in a survivor node; 

− it masks faulty nodes so the processes of the parallel application are not 

affected by the recovering of a faulty process in a different node from the 

one it was originally running. 

In order to test the RADIC architecture in message-passing parallel computers, 

we implemented a prototype based on the MPI standard [Argonne National 

Laboratory, 2007a] and used it to execute a set of applications under different fault 

conditions. The RADICMPI implementation served also as a test platform to assess 

the interference of the fault tolerance mechanism on the parallel computer operation 

and to test the robustness of the RADIC concepts in a practical environment. 

1.1 The RADIC key features 

A fault-tolerant architecture driven by the modern parallel computers 

characteristics must simultaneously be transparent, decentralized, flexible and 

scalable. Now, we justify that such features are important because they attend to an 

important group of user’s expectations. 

The first user expectation is, of course, that his/her parallel application 

correctly finishes independent of faults in the parallel computer. This is obviously 

the main obligation of any fault-tolerant architecture for parallel computers and 

demands no further discussion. 
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The next requirement is that the fault-tolerant architecture must be easy to use. 

Easiness of using indicates that the fault-tolerant architecture must be as transparent 

as possible, i.e., that the user neither need to change his/her application code in order 

to use the fault-tolerant architecture nor need to concern about how the fault tolerance 

mechanism operates. 

Any user, or system administrator, wants to pay the lowest price for the best 

fault-tolerant architecture   and such price relates strictly to the efficiency of the fault-

tolerant architecture. One important feature that determines the efficiency of a fault-

tolerant architecture is the allocation of resources dedicated to implement the fault-

tolerance. Architectures that use decentralized resources are more efficient because 

they avoid the bottleneck caused by centralized resources and allow a better 

distribution of the fault tolerance activities among the elements of the parallel 

computer. 

Another interesting feature of a fault-tolerant architecture should be the 

possibility of sharing the same resources in the nodes that the user uses to compute 

his/her application, instead of requiring some dedicated or centralized nodes to 

operate. This feature would facilitate the allocation of the fault tolerance resources 

and would simplify the construction of the fault tolerance mechanism in the system. 

Furthermore, by avoiding the using of elements dedicated only to fault tolerance, the 

architecture will use the computers resources more efficiently. 

The user also wants that the fault tolerance mechanism scales as well as, or better 

than, his/her parallel application and that the fault-tolerant architecture does not 

compromise his/her application’s scalability. 

Finally, from the point of view of the system administrator, flexible fault-tolerant 

architecture must allow different combinations of their operational elements, in order 

to better adapt its operation to the parallel computer structure. Furthermore, the 

adjusting of the fault tolerance parameters is also an important requirement for 

systems administrators, since they may tune the fault-tolerant architecture to the 

system requirements of the parallel computer.  



Introduction 25 

In order to support such affirmations, let us suppose that a user needs to execute 

his/her program in a cluster. Obviously, the user expects that once s/he has started 

his/her program execution, such program will correctly finish before time bound. 

Now let us suppose that a node fails before the end of the program execution. 

Assuming that the user would detect the failure instantly (let us figure out that s/he is 

in front of her/his terminal until the end of the program), we may assume two 

scenarios: 

− Scenario 1: Once the user detects the problem, s/he simply either waits that 

someone fixes the faulty node and restart the program or re-launches the 

program with a node less. 

− Scenario 2: The user loses all his/her work because even if s/he restarts the 

program immediately after s/he detects the fault the program will not finish 

in the expected time. 

In spite of the unpredictable reaction that our “friendly” user might have in 

scenario 2, we may affirm that, in both scenarios, a single node failure has thrown 

away some working hours of the cluster. It is easy to see that a fault-tolerant 

architecture is necessary in order to mitigate the cost caused by the loss of the 

computational time. Furthermore, it is reasonable to assume that the user will prefer a 

transparent fault-tolerant architecture that does not demand any modification in 

her/his algorithm, instead of worrying about how to implement fault tolerance in 

his/hear algorithm. 

Finally, such scheme must be flexible in terms of internal structures and 

operational parameters, in order to offer a wide range of configurations. This would 

help the users and the system administrators to adjust in the system parameters in 

order to achieve the best system performance. 

1.2 RADIC fundamentals 

RADIC is a fault-tolerant architecture that uses a rollback-recovery protocol to 

assure that a parallel application running can correctly finish in spite of faults in the 



26 

nodes of the parallel computer in which it is running. The core of RADIC is a fully 

distributed fault-tolerant controller, which bases its operation on two groups of 

processes: protectors and observers. 

Protectors are processes that RADIC creates in order to implement the fault 

detection mechanism, the stable storage and the recovery mechanism required by the 

rollback-recovery protocol. There is one protector process running in every node of 

the parallel computer. Observers are processes that RADIC creates in order to 

implement checkpoint and message-log mechanisms. There is one observer process 

attached to every process of the parallel application. 

In Figure 1-1, we depict a brief example of how the elements of the RADIC 

controller work to manage faults in a parallel computer. The figure represents a draft 

of four nodes in a cluster. The Pi elements are application processes, The Ti elements 

are protectors (one for each node Ni), the Oi elements are observers (one for each 

process.) 

The Figure 1-1a depicts some nodes of a typical cluster. We can see that a 

protector Ti monitors a successor Ti+1 and is monitored by an antecessor Ti-1 (the 

arrows indicate the protection relationship). An observer Oi uses its antecessor 

protector to store checkpoints and message-logs of its process Pi. 

If a failure occurs, the antecessor of the faulty node detects it and recovery the 

faulty processes in its node. The Figure 1-1b represents cluster the after the 

completion of the recovery procedure started by the failure in node Ni+1. The node 

Ni+1 has failed; thus, Ti has detected the failure and has recovered Pi+1 in Ni. 

In Figure 1-1, we can see that application processes continue the computation 

after a failure. The RADIC controller has transparently performed all the fault 

tolerance procedures required to assure that the application will correctly finish, using 

the same resources available to the parallel application. 
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(a) (b) 

Figure 1-1: (a) A failure free cluster; (b) The same cluster after the management of a failure 
in node Ni+1. 

1.3 How RADIC increases the availability of a system 

The word availability, in terms of computer systems, is a measure of the time that 

the computer operates correctly. A simple equation serves to calculate the availability 

of a system [Marcus and Stern, 2003]: 

MTTRMTBF

MTBF
A

+

=   1  

 

In Equation 1, A is the degree of availability expressed as a percentage of the 

operation time, MTBF is the mean time between failures and MTTR is the maximum 

time to repair. 

Availability is an important measure for critical systems. A scientific user needs 

that the computer is fully available to him/her, since his/her program begins until the 

program completes. In terms of parallel computers, this means that all components of 

the system must be available for the parallel program while it is executing, i.e., an 

availability of 100%. Theoretically, there is only one way of assuring an availability 

of 100%: reducing the MTTR to zero or increasing the MTBF to infinite. 
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Since a system with infinite MTBF is unfeasible, we shall focus on the MTTR. 

We can evaluate the MTTR as the maximum time a failure will exist in the system, 

i.e., the failure’s lifetime. The lifetime of a failure has two parts: the time required 

detecting the failure and the time required fixing the failure in order to return the 

system to a full operational state. Here is where the schemes for fault tolerance play 

the major role. Does not matter in which level a fault-tolerant architecture is 

implemented, application level or system level, its more important role is to assure 

that the parallel application will correctly finishes independent of failures in the nodes 

of the parallel computer. In other words, the fault tolerance system strongly influences 

the MTTR. 

Any fault-tolerant architecture that can manage failures without human 

intervention, i.e., automatically and transparently to the user or the system 

administrator, greatly reduces the MTTR. On the other hand, the MTTR of a 

non-automatic scheme is unpredictable because it depends on some human 

intervention. 

RADIC operates automatically, i.e., without human intervention, in order to 

increase the availability by reducing the MTTR. A fault-tolerant system using RADIC 

has a MTTR lower than a fault-tolerant system using a non-transparent fault tolerance 

mechanism. Furthermore, because the RADIC mechanism bases on a group of atomic 

procedures, it is possible to calculate the MTTR of the system based on the 

specifications of the parallel computer structure. 

1.4 How RADIC interacts with the application 

Typically, there are two kinds of fault-tolerant architectures for parallel 

computers: fault tolerance in the application/algorithm level [Geist, 2002], and fault 

tolerance in the system level [Gropp and Lusk, 2004]. Other solutions mix both 

approaches, letting a part of the fault tolerance functions for the application and 

another part to the system. 

Any fault-tolerant architecture has advantages and disadvantages according to the 

target system in which it works. A fault-tolerant architecture implemented in the 
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application level is independent of the cluster structure. However, it forces the 

programmer to concern about how his/her application will manage faults and 

demands a large effort in terms of algorithm development and software engineering.  

On the other hand, fault-tolerant architectures implemented in the system level 

liberate the programmer of the concerning about fault tolerance, but such schemes 

demand a large effort to integrate them with the cluster architecture. 

RADIC uses the system implementation level in order to be fully transparent to 

the parallel application. On the other hand, since RADIC recovers the faulty processes 

in the survivor nodes of the parallel computer, the parallel application may collapse if 

the structure that remains after a fault is insufficient to attend the requirements of the 

application. 

Another interesting approach is to evaluate the Average Computational Capacity 

(ACC) of a system using RADIC, as defined by Koren and Krishna [Koren and 

Krishna, 2007]. The ACC is a function of how good the parallel application uses the 

available processors in a system. Therefore, the ACC depends on the probability Pi(t) 

that exactly i processors, from the N total processor of the parallel computer, are 

operational at time t, and of the function C(i) that defines how good the application 

adapts to  the i available processors, as described in equation 2. 

∑
=

=

N
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RADIC assures that all processes of the application will continue to execute after 

a failure, i.e., it creates a virtual machine capable to execute all process of the parallel 

applications in despite of node failures. Therefore, assuming that from the application 

point of view Pi(t)=1, the impact of the fault over the application is consequence of 

the how good the application adapts to the structure of the parallel computer after a 

failure. 
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1.5 RADIC and Message-passing 

In the world of the parallel computers applied to computational science, the 

message-passing paradigm is currently the standard paradigm used by programmers 

in order to create parallel applications. In the last recent years, the MPI standard 

[Argonne National Laboratory, 2007a] has taken the place of the PVM standard [Oak 

Ridge National Laboratory, 2007] as the message-passing standard for parallel 

programming in clusters. 

The MPI standard follows the fail-stop semantic, i.e., if any part of the parallel 

computer’s structure fails then the application will stop. Therefore, according to the 

features that we have analyzed in paragraph 1.2, in order to a parallel program using 

MPI completes the parallel computer must be 100% available during the program’s 

execution. 

Now, let us adapt the concept of availability in order to better relate this concept 

with parallel applications that use message-passing. The goal of a fault-tolerant 

architecture is to increase the availability of the parallel computer for the parallel 

application. MPI programs demands 100% of availability, what means that MTTR 

(Equation 1) must be null. Therefore, for MPI programs, any fault-tolerant 

architecture must assure that the MTTR is null. 

However, a null MTTR is unfeasible since the lifetime of a fault is never null. 

Therefore, the only way we achieve 100% parallel computer’s availability for a 

parallel MPI program is masking the fault. To mask the fault means that an automatic 

fault-tolerant architecture must manage the parallel computer’s structure in such a 

way that the parallel MPI program is not aware that the failure has occurred. 

The masking mechanism may use two strategies. The first is to regularly save 

(automatically or not) the parallel application’s state. Therefore, in case of a failure, 

the user can wait for the repairing of the parallel computer and restart the application 

from its last state saved. In this solution, the parallel application will always execute 

with all parallel computer’s structure available. However, one cannot assure how long 

the execution will take in case of a failure because the MTTR is unpredictable. 
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The second strategy is to endow the fault tolerance mechanism with the 

capability of adjust the distribution of the parallel application processes to the parallel 

computer in case of a failure. Such strategy requires an automatic mechanism in order 

to detect faults, to adapt the parallel application to the new computer’s structure and 

to assure that the parallel application correctly ends. In such strategy, the parallel 

programs never stop, but its execution takes a longer time if failures occur. 

RADIC implements a fault-masking algorithm so the RADIC processes will 

calculate the location of a recovered process. The algorithm is part of the distributed 

controller for fault tolerance implemented by RADIC.  With this algorithm, programs 

using MPI may continue their execution even if some nodes fail, because the RADIC 

architecture will assure that the faulty processes will recover in a different node and 

will resume their execution from a previous state. 

1.6 Organization of this dissertation 

This dissertation contains seven chapters. In the next chapter, we discuss the fault 

tolerance strategies for message-passing systems and explain the reasons to select the 

strategy used in RADIC. 

Chapter 3 evaluates the recent fault tolerance message-passing implementation, 

analyzing their strong and weak points. Our idea is to show that none of them is 

capable to attend simultaneously to the four fundamental features offered by the 

RADIC. 

Chapter 4 presents the concepts and describes the operation and the elements of 

the RADIC Architecture. The Chapter 5 talks about RADICMPI, a practical 

implementation of the RADIC ideas using the MPI standard. RADICMPI served as a 

test platform for the functional validation of the RADIC Architecture, which we 

describe in Chapter 6. 

Chapter 7 presents the methodology and describes the experiments conducted 

with RADICMPI in order to evaluate the practical consequences of using RADIC in a 

system. Finally, in Chapter 8 we state our conclusions and suggest future works with 

the RADIC architecture. 





  

Chapter 2 

Fault Tolerance in 

Message-Passing Systems 

Any scheme made to manage faults in parallel computers rests on some kind of 

redundancy. For message-passing systems, the traditional method used to implement 

redundancy is rollback-recovery. 

The main difference between the different rollback-recovery protocols is the 

efficiency that they present in the absence and in the presence of failures. In this 

chapter, we evaluate such protocols in order to choose one that better adjusts to the 

requirements of scalability, transparency, flexibility and decentralization. 

Rollback-recovery is a well know and mature technique used to manage faults in 

applications using message-passing and running on parallel computers. In this 

technique, when a failure is detected the application must rollback to a previous 

consistent state and restarts the execution. The rollback recovery mechanism saves all 

computation done until the moment in which the fault occurs in order to avoid that the 

application must restart from its beginning after a failure. 

Any rollback-recovery strategy requires a set of activities in order to assure that 

the system can handle faults and that the application can correctly finishes in spite of 

faults. Such set of activities differentiates the operational phases of the several 

rollback-recovery protocols. 

There are two major groups of rollback-recovery protocols for message-passing 

systems: checkpoint based and log based (Figure 2-1.) The first group uses only 

checkpoint of the application’s processes. The second group includes the log of 
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determinant events in order to improve the efficiency of the rollback-recovery 

mechanism. 

In the search of a rollback-recovery that satisfy our requirements of scalability, 

transparency, flexibility and decentralization; we first established the fundamentals of 

rollback-recovery in message-passing systems (paragraph 2.1). Next, we evaluated 

the two major protocol groups (paragraphs 2.2 and 2.3). Finally, we compared the 

protocols in order to select the one that best fulfill our requirements. 

 

Figure 2-1: Types of rollback-recovery protocol for message-passing systems 

The theoretical bases of this chapter follows the surveys made by Elnozahy 

[Elnozahy, et al., 2002] and by Kalaiselvi & Rajaraman [Kalaiselvi and Rajaraman, 

2000]. We selected these two texts because they present two complementary ways of 

describing the rollback-recovery protocols and because they have served as a basic 

reference in many publications about fault tolerance. 

When more formal approaches were necessary in order to explain some concepts, 

we used the classical books of Jalote [Jalote, 1994] and Anderson & Lee [Anderson 

and Lee, 1981]. 

2.1 Rollback-Recovery Fundamentals 

The bases of rollback-recovery rely on the periodical recording of the state of the 

parallel application (represented by the state of every process and every 
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communication channel). Upon a failure, the system “rolls back” to a previous state 

and resumes the execution. There are different strategies for deciding how to record 

the system state and how the system resumes its execution after a failure. 

The key of any rollback-recovery scheme are the checkpoints. Checkpoints are 

intermediate states of a process that are stored in some memory element. The 

checkpoints must survive to a fault in the process so such process can restart from a 

previous state (a previous checkpoint). 

One important matter in rollback-recovery is to decide about which strategy the 

system should use to take the checkpoints. For example, a fault-tolerant architecture 

based on rollback-recovery may use coordinated or uncoordinated checkpoints; each 

strategy has advantages and disadvantages according to the application behavior. 

Another important matter is how the cluster organization will interact with the fault 

tolerance strategy. For example, a system that stores all checkpoints in a central server 

will suffer more performance degradation as the number of nodes increases. 

Any rollback-recovery scheme considers a distributed system as a collection of 

application processes that communicate through a network. Each process achieves 

fault tolerance by using a stable storage device, which must survive all tolerated 

failures, to save recovery information periodically during failure-free execution. Upon 

a failure, a failed process uses its saved information to restart the computation from an 

earlier state, thereby reducing the amount of lost computation. 

A rollback-recover protocol, also called fault-tolerance protocol, manages the 

rollback-recovery functioning. In simple protocols, the recovery information can 

include only the states of the participating processes, called checkpoints. More 

sophisticated recovery protocols may require additional information, such as logs of 

the interactions with input and output devices, events that occur to each process, and 

messages exchanged among the processes. 

In this thesis, we define a distributed parallel application based message-passing 

as a collection of processes that cooperate through messages sent via some network. 

Figure 2-2 shows a symbolic representation of a parallel application with four 
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processes. In that figure, a line represents a process execution and the arrow lines 

between the processes represent messages. 

 

Figure 2-2: An example of a distributed application using message-passing 

 

Each process’s execution is a sequence of state’s intervals triggered by a 

nondeterministic event. For the sake of the parallel applications used in this thesis, 

such triggers are the messages that arrive to the process. Inside each state interval the 

execution is deterministic, i.e., if a process starts from the same state and is subjected 

to the same nondeterministic events at the same locations within the execution, it will 

always generate the same output. 

A rollback-recovery protocol should assure that the internal state of a system 

after a failure should be consistent with the observable behavior of the system before 

the failure [Strom and Yemini, 1985]. In order to satisfy this condition, a rollback-

recovery protocol must save information about internal iterations among processes to 

assure that the system restart from a consistent state after a failure.  Consistent system 

state and other important concepts follow. 

2.1.1 Consistent System State 

The state (or the global state) of a distributed system is represented by the state of 

each communication channel and each process in a given time. Therefore, one can 

model a distributed system as a sequence of system states in which some kind of 
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event triggers the transition from one state to another. Multiple events may occur in a 

given state and an event’s presence, or its absence, depends on the particular 

execution of the system. This means that even if we restart a system many times from 

the same initial state and we give to it the same inputs, the system can follow a 

different sequence of states, and each sequence is a valid execution of the system. A 

consistent system state (or consistent global state) is one that may occur during a 

failure-free correct execution, i.e., one that could occur in one of the possible 

sequences of states in the system. 

Checkpoints correspond just to processes’ states and have no information about 

the states of the communication channels. Therefore, in order to record a consistent 

global state of a process, whenever the state of any process indicates that it has sent a 

message to another process, the state of the receptor must indicate that it has received 

this message [Chandy and Lamport, 1985]. This requirement is the major condition to 

the implementation of techniques to record global states of distributed systems. 

2.1.2 Recovery Line 

Figure 2-3 shows an example of two system’s states. In this figure, the bars 

indicate the checkpoints of the processes. In Figure 2-3a, the system’s state indicates 

that process P2 has sent the message m3 but process P0 has not yet received it. In such 

situation, if P0 fails and rolls back to the state represented by the checkpoint C00, then 

the system goes to an inconsistent global state because the state of P2 indicates that it 

has sent m3 to P0 and the state of P0 does not indicate that it has received m3. 

The consistency of the global system’s state depends on how the recovery 

protocol deals with in-transit messages. If the rollback-recovery protocol assumes that 

the message channels are reliable, then the global state in Figure 2-3a is inconsistent 

and m3 is a lost message. On the other hand, if the rollback-recovery protocol assumes 

that the message channels are unreliable, this global state is consistent and m3 is an in-

transit message. 
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The example of Figure 2-3b also shows an inconsistent state because the state of 

process P0 considers that P0 has received m3 but the state of process P2 does not 

considers that P2 has sent m3. In this case, m3 is an orphan message. 

If a set of checkpoints of the system, i.e., a system global state, satisfy the 

following restrictions, then it is a recovery-line and the recovery protocol can use it as 

a recovery point [Jalote, 1994]: 

a) The set contains only one checkpoint for each process; 

b) For a given set, there is no send-event succeeding the recovery point of a 

sender process P, whose equivalent receive-event in the destination process 

Q occurs before the recovery point of Q in the set (no orphan messages).  

c) For a given set, there is no send-event preceding the recovery point of a 

sender process P, whose equivalent receive-event in the destination process 

Q occurs after the recovery point of Q in the set (no lost messages). 

 
(a) 

 
(b) 

Figure 2-3: Examples of inconsistent global system state. a) Inconsistency caused by a 
lost message ; b) Inconsistency caused by a orphan message 
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2.1.3 In-transit Messages 

In-transit messages are messages registered in the sender’s state but not in the 

receptor’s state. There are two ways to implement the rollback-recovery protocol in 

order to deal with in-transit messages. 

− An implementation based on a reliable communication protocol. In this 

case, a reliable communication protocol ensures the reliability of message 

delivery during failure-free executions, but it cannot ensure the reliability of 

message delivery in the presence of failures. For instance, a conventional 

communication protocol will generate a timeout and inform to the sender that 

it cannot deliver the message whenever an in-transit message is lost because 

the intended receiver has failed. Once the fault tolerance mechanism recovers 

the receiver process, the system must mask the timeout from the sender 

process and make the in-transit messages available to the intended receiver 

process after it recovers. 

− An implementation based on an unreliable communication channel. In 

this case, the recovery protocol need not handle in-transit messages in any 

special way. Indeed, the recovery protocol cannot distinguish the in-transit 

messages lost because of process failures from those lost because of 

communication failures in an unreliable communication channel. Therefore, 

the loss of in-transit messages due to either communication or process failure 

is an event that can occur in any failure-free, correct execution of the system. 

2.1.4 Domino Effect 

The domino effect [Randell, 1999; Russell, 1980] appears when the processes of a 

distributed application take their checkpoints in an uncoordinated manner. Figure 2-4 

shows an execution in which processes take their checkpoints (represented by red 

bars) without coordinating with each other. 

Each process starts its execution with an initial checkpoint. Suppose that process 

P0 fails and rolls back to checkpoint A. The rollback of P0 invalidates the sending of 

message m6, and so P1 must roll back to checkpoint B in order to “invalidate” the 
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receipt of the message m6. Thus, the invalidation of message m6 propagates the 

rollback of process P0 to the process P1, which in turn invalidates message m5 and 

forces P2 to roll back as well. Because of the rollback of process P2, process P3 must 

also rollback to invalidate the reception of m4. Those cascaded rollbacks may 

continue and eventually may lead to the domino effect, which forces the system to roll 

back to the beginning of the computation, in spite of all saved checkpoints.  

The amount of rollback depends on the message pattern and the relation between 

the checkpoint placements and message events. Typically, the system restarts since 

the last recovery line. However, depending on the interaction between the message 

pattern and the checkpoint pattern, the only bound for the system rollback is the initial 

state, causing the loss of all the work done by all processes. The dashed line shown in 

Figure 2-4 represents the recovery line of the system in case of a failure in P0. 

 
Figure 2-4: Domino effect 

 

2.1.5 Event Logging 

Event logging is the strategy used to avoid the domino effect caused by 

uncoordinated checkpoints. Log-based rollback-recovery protocol is family’s name of 

the protocols whose take message logs besides checkpoints. Such protocols base on 

the piecewise deterministic (PWD) assumption [Strom and Yemini, 1985]. Under this 

assumption, the rollback recovery protocol can identify all the nondeterministic 
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events executed by each process. For each nondeterministic event, the protocol logs a 

determinant that contains all needed information to replay the event should it be 

necessary during recovery. If the PWD assumption holds, a log-based rollback-

recovery protocol can recover a failed process and replay the determinants as if they 

have occurred before the failure.  

The log-based protocols require only that the failed processes roll back. During 

the recovery, the messages that were lost because of the failure are “resent” to the 

recovered process in the correct order using the message logs. Therefore, log-based 

rollback-recovery protocols force the execution of the system to be identical to the 

one that occurred before the failure. The system always recovers to a state that is 

consistent with the input and output interactions that occurred up to the fault. 

2.1.6 Stable Storage 

Rollback recovery protocols use stable storage to save checkpoints, message logs, 

and other recovery-related information. The concept of stable storage in rollback 

recovery protocols is an abstraction and should not be confused with the disk storage 

used to implement it. Stable storage must ensure that the recovery data persist through 

the tolerated failures and their corresponding recoveries. This requirement allows 

different implementation’s techniques of stable storage according to the number of 

failures a system can tolerate. A classification of such techniques according to the 

number of faults follows [Elnozahy, et al., 2002]: 

d) For only a single failure, a stable storage may consist of the volatile memory 

of another process [Borg, et al., 1989]; 

e) For an arbitrary number of transient failures, stable storage may consist of a 

local disk in each host; 

f) For non-transient failures, stable storage must consist of a persistent medium 

outside the host on which a process is running. One possibility is to 

implement this scheme using a network file system or to replicate the 

recovery information of a node into a different node. 
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2.1.7 Garbage Collection 

The amount of recovery information (checkpoints and event logs) increases as the 

application progress. Since the amount of storage required to store the recovery 

information influences the cost of the fault tolerance scheme, some strategy is 

necessary in order to reduce the amount of storage, i.e., the storage cost, consumed by 

discarding useless information. From time to time, a subset of the stored information 

becomes useless for recovery. Garbage collection is the deletion of such useless 

recovery information from the system. 

A typical approach to perform garbage collection is to identify the most recent 

recovery line, and discard all information relating to the events that occurred before 

that line. For example, processes that coordinate their checkpoints to form consistent 

states will always restart from the most recent checkpoint of each process. Therefore, 

the protocol can discard all previous checkpoints. 

Garbage collection is an important pragmatic issue in rollback-recovery protocols 

for two reasons. First, because running a special algorithm to discard useless 

information incurs an extra overhead. Second, because the garbage collection reduces 

the amount of hardware resources used by the fault tolerance mechanism as the 

parallel application runs. 

Different rollback-recovery protocols differ in the amount and nature of the 

recovery information they need to store in the stable storage. Therefore, each protocol 

differs in the complexity and invocation frequency of its garbage collection algorithm. 

2.2 Checkpoint Based Protocols 

The goal of rollback-recovery protocols based on checkpoint is to restore the 

system to the most recent consistent global state of the system, i.e., the most recent 

recovery line. Since such protocols do not rely on the PWD assumption, they do not 

care about nondeterministic events, i.e., they do not need to detect, log or replay 

nondeterministic events. Therefore, checkpoint-based protocols are simpler to 

implement and less restrictive than message-log methods. 
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The next topics explain the three categories of the checkpointing strategies used 

by the checkpoint-based protocols: uncoordinated, coordinated and 

communication-induced. 

2.2.1 Uncoordinated checkpointing 

In this method, each process has total autonomy for making its own checkpoints. 

Therefore, each process chooses to take a checkpoint when it is more convenient to it 

(for instance, when the process’s state is small) and does not care about the 

checkpoints of the other processes. Zambonelli [Zambonelli, 1998] make an 

evaluation of several uncoordinated checkpoint strategies. 

The uncoordinated strategy simplifies the checkpoint mechanism of the 

rollback-recovery protocol because it gives independence for each process manage its 

checkpoint without any negotiation with the other processes. However, such 

independence of each process comes under a cost expressed as follows: 

a) There is the possibility of domino effect and all its consequences; 

b) A process can take useless checkpoint since it cannot guarantee by itself that 

a checkpoint is part of a global consistent-state. These checkpoint will 

overhead the system but will not contribute to advance the recovery line. 

c) It is necessary to use garbage collection algorithm to free the space used by 

checkpoints that are not useful anymore. 

d) It is necessary a global coordination to compute the recovery line, what can 

be very expensive in application with frequent output commit. 

During failure-free operation, the processes calculate the interdependencies 

among theirs checkpoints using a technique explained by Bhargava and Shu-Renn 

[Bhargava and Shu-Renn, 1988]. In this technique, each process piggyback 

checkpoint information in each message sent to another process. The destination 

process uses this information to calculate the dependency between it and the sender. If 

a failure occurs, the recovering process initiates the rollback by broadcasting a 

dependency request message to collect all the dependency information maintained by 
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each process. Upon a process receives this message, it stops its execution and replies 

with the dependency information saved on the stable storage as well as with the 

dependency information, if any, that is associated with its current state. The initiator 

then calculates the recovery line based on the global dependency information and 

broadcasts a rollback request message containing the recovery line. Upon receiving 

this message, a process whose current state belongs to the recovery line simply 

resumes execution; otherwise, it rolls back to an earlier checkpoint as indicated by the 

recovery line. 

There are two similar approaches to calculate the recovery line: the 

rollback-dependency graph [Bhargava and Shu-Renn, 1988] and the checkpoint 

graph [Wang, 1997]. Both are equivalent in that they always produce the same 

recovery line. By using such methods, one can determine the most advanced recovery 

line. This greatly simplifies the implementation of the garbage collection algorithm in 

order to liberate the space used by checkpoints located before this line. 

2.2.2 Coordinated Checkpointing 

In this approach, the processes must synchronize their checkpoint in order to 

create a consistent global state. A faulty process always will restart from its most 

recent checkpoint, so the recovery is simplified and the domino effect avoided. 

Furthermore, as each process only needs to maintain one checkpoint in stable storage, 

there is no the need of a garbage collection scheme and the storage overhead is 

reduced. 

The main disadvantage is the high latency involved when operating with large 

systems. Because of this, the coordinated checkpoint protocol is barely applicable to 

large systems. 

Tamir & Sequin propose a typical scheme that uses a central coordinator in order 

to start the checkpoint mechanism [Tamir and Sequin, 1984]. In this scheme, the 

coordinator broadcasts a request asking to all other process to make a checkpoint. 

Upon receiving a checkpoint request, the process suspend its execution, takes a 

tentative checkpoint and sends an acknowledge message to the coordinator. After the 
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coordinator receives the acknowledge messages from all process it broadcast a 

commit message. Upon receiving a commit message, all processes replace the old 

checkpoint with the tentative checkpoint and resume the execution. 

Although straightforward, this scheme can yield in a large overhead. An 

alternative approach is to use a non-blocking checkpoint scheme like the proposed in 

[Chandy and Lamport, 1985] and in [Elnozahy, et al., 1992]. However, non-blocking 

schemes must prevent the processes from receiving application messages that make 

the checkpoint inconsistent. 

Another alternative is to use loosely synchronized clocks in order to facilitate 

checkpoint coordination. By using loosely synchronized clocks, all processes can 

trigger checkpoint actions at approximately the same time without a checkpoint 

initiator [Cristian and Jahanian, 1991; Tong, et al., 1992]. 

The scalability of coordinated checkpointing is weak because all processes must 

to participate in every checkpoint. A strategy to reduce the number of processes 

involved is to take new checkpoints for only those processes that have communicated 

with the checkpoint initiator either directly or indirectly since the last checkpoint 

[Koo and Toueg, 1987].  

2.2.3 Communication-Induced Checkpointing (CIC) 

The communication-induced checkpointing protocols do not require that all 

checkpoints be coordinated and do avoid the domino effect. There are two kinds of 

checkpoints for each process: local checkpoints that occur independently and forced 

checkpoints that must occur in order to guarantee the eventual progress of the 

recovery line. The CIC protocols take forced checkpoints to prevent the creation of 

useless checkpoints, i.e., checkpoints that will never be part of a consistent global 

state (and so they will never contribute to the recovery of the system from failures) 

although they consume resources and cause performance overhead. 

As opposed to coordinated checkpointing, CIC protocols do not exchange any 

special coordination messages to determine when forced checkpoints should occur; 

instead, they piggyback protocol specific information on each application message. 



46 Chapter 2 

The receiver then uses this information to decide if it should take a forced checkpoint. 

The algorithm to decide about forced checkpoints relies on the notions of Z-path and 

Z-cycle [Netzer and Jian, 1995]. For CIC protocols, one can prove that a checkpoint is 

useless if and only if it is part of a Z-cycle. 

Two types of CIC protocols exist: indexed-based coordination protocols and 

model-based checkpointing protocols.  It has been shown that both are fundamentally 

equivalent [Helary, et al., 1997a], although in practice they have some differences 

[Alvisi, et al., 1999]. 

Indexed-based coordination protocols 

These protocols assign timestamps to local and forced checkpoints such that 

checkpoints with the same timestamp at all processes form a consistent state.  The 

timestamps are piggybacked on application messages to help receivers decide when 

they should force a checkpoint [Elnozahy, et al., 2002]. An implementation can be 

found in the work of Hélary [Helary, et al., 1997b]. 

In CIC, each process has a considerable autonomy in taking checkpoint. 

Therefore, the use of efficient policies in order to decide when to take checkpoints can 

lead to a small overhead in the system. Since these protocols do not require processes 

to participate in a globally coordinated checkpoint, they can, in theory, scale up well 

in systems with a large number processes [Elnozahy, et al., 2002]. 

Model-based protocols 

These schemes prevent useless checkpoint using structures that avoid patterns of 

communications and checkpoints that could lead to useless checkpoints or Z-cycles. 

They use a heuristic in order to define a model for detecting the possibility that such 

patterns occur in the system. The patterns are detected locally using information 

piggybacked on application messages. If such a pattern is detected, the process forces 

a checkpoint to prevent that the pattern occurs [Elnozahy, et al., 2002]. 

Model-based protocols are always conservative because they force more 

checkpoints than could be necessary, once each process does not have information 

about the global system state because there is no explicit coordination between the 
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application processes. Baldoni [Baldoni, et al., 1998], Russel [Russell, 1980] and 

Wang [Wang, 1997] describe different implementation’s methods of this type 

protocol. 

2.2.4 Comparing the checkpoint protocols 

It is reasonable to say that the major source of overhead in checkpointing 

schemes is the stable storage latency. Communication overhead becomes a minor 

source of overhead as the latency of network communication decreases. In this 

scenario, the coordinated checkpoint becomes worthy since it requires less accesses to 

stable storage than uncoordinated checkpoints. Furthermore, in practice, the low 

overhead gain  of uncoordinated checkpointing do not justify neither the complexities 

of finding the recovery line after failure and performing the garbage collection nor the 

high demand for storage space caused by multiple checkpoints of each process 

[Elnozahy, et al., 2002]. 

CIC protocol, in turn, does not scale well as the number of process increases. The 

required amount of storage space is also difficult to predict because the occurrence of 

forced checkpoints at random points of the application execution. 

2.3 Log-based protocols 

These protocols require that only the failed process to roll back. During normal 

computation, the processes log the messages into a stable storage. If a process fails, it 

will recover from a previous state and the system will lose the consistency since there 

may be missed messages or orphan messages related to the recovered 

process[Elnozahy and Zwaenepoel, 1994]. During the process’s recovery, the logged 

messages will be recovered properly from the message log, so the process can resume 

its normal operation and the system will reach a consistent state again [Jalote, 1994]. 

Log-based protocols consider that a parallel-distributed application is a sequence 

of deterministic state intervals, each starting with the execution of a nondeterministic 

event [Strom and Yemini, 1985]. Each nondeterministic event relates to a unique 

determinant. In distributed systems, the typical nondeterministic event that occurs to a 
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process is the receipt of a message from another process (message logging protocol is 

the other name for these protocols.) Sending a message, however, is a deterministic 

event. For example, in Figure 2-4, the execution of process P3 is a sequence of three 

deterministic intervals. The first one is the process’ creation and the other two starts 

with the receipt of m2 and m4. The initial state of the process P3 is the unique 

determinant for sending m1. 

During failure-free operation, each process logs the determinants of all the 

received messages onto stable storage. Additionally, each process also takes 

checkpoints to reduce the extent of rollback during recovery. After a failure occurs, 

the failed processes recover by using the checkpoints and logged determinants to 

replay the corresponding nondeterministic events precisely as they occurred during 

the pre-failure execution. Because the execution within each deterministic interval 

depends only on the sequence of received messages that preceded the interval’s 

beginning, the recovery procedure reconstructs the pre-failure execution of a failed 

process up to the first received message that have a no logged determinant. 

Log-based protocols guarantee that upon recovery of all failed processes, the 

system does not contain any orphan process. A process is orphan when it does not fail 

and its state depends on the execution of a nondeterministic event whose determinant 

cannot be recovered from stable storage or from the volatile memory of a surviving 

process [Elnozahy, et al., 2002].  

The way a specific protocol implements the no-orphan  message condition affects 

the protocol’s failure-free performance overhead, the latency of output commit, and 

the simplicity of recovery and garbage collection schemes, as well as its potential for 

rolling back correct processes. These differences lead to three classes of log-based 

protocols: pessimistic, optimistic and causal. 

An implementation called K-optimistic logging protocol is proposed in [Damani, 

et al., 2003]. However, instead of a new protocol, the authors propose a new way to 

use the optimistic protocol by applying a constant K that defines a “grade of 

optimality”. By varying K, one may chose the cost-benefit relationship of the message 

log protocol in terms of overhead in failure free scenarios and in case of failure. 
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2.3.1 Pessimistic log-based protocols 

These protocols assume that a failure can occur after any nondeterministic event 

in the computation. This assumption is “pessimistic” since in reality, failures are rare. 

In their most straightforward form, pessimistic protocols log the determinant of each 

received message before the message influences in the computation. Pessimistic 

protocols implement a property often referred to as synchronous logging, i.e., if an 

event has not been logged on stable storage, then no process can depend on it 

[Elnozahy, et al., 2002]. Such condition assures that orphan processes will never exist 

in systems using pessimistic log-based protocol. 

Processes also take periodic checkpoints in order to limit the amount of work that 

the faulty process has to repeat during recovery. If a failure occurs, the process 

restarts from its most recent checkpoint. During the recovering procedure, the process 

uses the logged determinants to recreate the pre-failure execution. 

Synchronous logging enables that the observable state of each process is always 

recoverable. This property leads to four advantages at the expense of a high 

computational overhead penalty [Elnozahy, et al., 2002]: 

a) Recovery is simple because the effects of a failure influences only the 

processes that fails. 

b) Garbage collection is simple because the process can discard older 

checkpoints and determinants of received messages that are before the most 

recent checkpoint. 

c) Upon a failure, the failed process restarts from its most recent checkpoint 

what limits the extent of lost computation. 

d) There is no need of a special protocol to send messages to outside world. 

Some examples of pessimistic log-based rollback-recovery protocols are found in 

the works described in [Borg, et al., 1989; Elnozahy and Zwaenepoel, 1992; Johnson 

and Zwaenepoel, 1987; Juang and Venkatesan, 1991]. These implementations differ 

in the way they try to reduce overhead penalty under failure-free operation. 
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2.3.2 Optimistic log-based protocols 

These protocols allow the apparition of orphans because to failures in order to 

reduce the failure-free performance overhead. However, the possibility of apparition 

of orphans processes complicates the recovery, garbage collection and output commit 

[Jalote, 1994]. In optimistic protocols [Sistla and Welch, 1989; Strom and Yemini, 

1985] every process take checkpoint and message log asynchronously. Furthermore, a 

volatile log maintains each determinant meanwhile the application processes continue 

their execution. There is no concern if the log is in the stable storage or in the volatile 

memory. The protocol assumes that logging to stable storage will complete before a 

failure occurs (thence its optimism). 

If a process fails, the determinants in its volatile log will be lost, and the state 

intervals started by the nondeterministic events corresponding to these determinants 

are unrecoverable. Furthermore, if the failed process sent a message during any of the 

state intervals that cannot be recovered, the receiver of the message becomes an 

orphan process and must roll back to undo the effects of receiving the message. To 

perform these rollbacks correctly, optimistic logging protocols track causal 

dependencies during failure-free execution [Elnozahy, et al., 2002; Jalote, 1994]. 

Upon a failure, the dependency information is used to calculate and recover the latest 

global state of the pre-failure execution in which no process is in an orphan. Since 

there is now a dependency between processes, optimistic protocols need to keep 

multiple checkpoints what complicates the garbage collection policy. 

The recovery mechanism in optimistic protocol can be either synchronous or 

asynchronous. Each one is explained bellow [Elnozahy, et al., 2002] and detailed 

bellow: 

Synchronous recovery 

During failure free operation, each process updates a state interval index when a 

new state interval begins. The indexes serve to track the dependency between 

processes using two distinct strategies: direct or transitive. In synchronous recovery, 

all processes use this dependency information and the logged information to calculate 
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the maximum recovery line. Then, each process uses the calculated recovery line to 

decide if it must roll back. 

In direct tracking strategy, each outgoing message contains the state interval 

index of the sender (piggybacked in the message) in order to allow the receiver to 

record the dependency directly caused by the message. At recovery time, each process 

assemblies its dependencies to obtain the complete dependency information. 

In transitive tracking, each process maintains a size-N vector V, where V[i] is the 

current state interval index of the process Pi  itself, and V[j],  j ≠ i, records the highest 

index of any state interval of a process Pj on which Pi depends. Transitive dependency 

tracking generally incurs a higher failure-free overhead because of piggybacking and 

maintaining the dependency vectors, but allows faster output commit and recovery. 

Asynchronous recovery 

In this scheme, a recovery process broadcasts a rollback announcement to start a 

new incarnation. Every process that receives a rollback announcement checks if it has 

become an orphan because of the announcement and then, if necessary, it rolls back 

and broadcasts its own rollback announcement. 

Asynchronous recovery can produce a situation called exponential rollbacks. 

Exponential rollbacks occur when a process rolls back an exponential number of 

times because of a single failure [Sistla and Welch, 1989]. The asynchronous protocol 

eliminates exponential rollbacks by either distinguishing failure announcements from 

rollback announcements or piggybacking the original rollback announcement from 

the failed process on every subsequent rollback announcement that it broadcasts. 

2.3.3 Causal log-based protocols 

These protocols avoid the creation of orphan processes by ensuring that the 

determinant of each received message, which causally precedes a process’s state, 

either is in stable storage or is available locally to that process [Elnozahy, et al., 

2002]. Such protocols dispense synchronous logging, which is the main disadvantage 

of pessimistic protocols, while maintaining their benefits (isolation of failed 
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processes, rollback extent limitation and no apparition of orphan processes). 

However, causal protocols have a complex recovery scheme. 

In order to track causality, each process piggybacks the non-stable determinants 

that are in its volatile log on the messages it sends to other processes. On receiving a 

message, a process first adds any piggybacked determinant to its volatile determinant 

log and then delivers the message to the application. 

2.4 Comparing the rollback-recovery protocols 

Table 1 summarizes the differences among the rollback-recover protocols. The 

decision about which one is best suited for a given system than another is not 

straightforward. It depends on diverse factors like probability of failures, message 

pattern among application processes, the resources consumed, etc. 

Using the four basic requirements as reference (scalability, transparency, 

decentralization and flexibility,) we compared the protocols described in Table 2-1 in 

order to choose the ones that could best attend to these requirements. We immediately 

discarded the uncoordinated, the CIC and the optimistic protocol because they allow 

the creation of orphan processes. 

We defined that, in order to be scalable, the number of computational elements of 

the parallel computer must not influence the operation of the protocol. To satisfy such 

requirement, the recovery mechanism must be independent of the number of elements 

present in the system. For this, it is necessary that the process recovering rest only on 

local information, i.e, it cannot rests on the information about other process. 

Looking again at Table 2-1, one can see that the only protocol that allows local 

decision during the recovery phase is the pessimist message-log. This protocol also 

increases the efficiency in terms of storage space because each process only needs to 

store its last checkpoint in order to recover. Additionally, this feature greatly 

simplifies the implementation of the garbage collection mechanism. 

The pessimistic rollback-recovery protocol does not restrict the other features. It 

may operate in the system level so the application is not aware about it (transparency). 
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It has an intrinsic decentralization because each process only needs local information 

to recover from faults. 

Table 2-1: Comparison between rollback recovery protocols [Elnozahy, et al., 2002] 

 Checkpointing Message logging 

 Uncoord. Coordinated CIC Pessimistic Optimistic Causal 

PWD 
assumed 

No No No Yes Yes Yes 

Checkpoint 
per process 

Several 1 Several 1 Several 1 

Domino 
effect 

Possible No No No No No 

Orphan 
processes 

Possible No Possible No Possible No 

Rollback 
extent 

Unbounded 
Last global 
checkpoint 

Possibly 
several 

checkpoints 

Last 
checkpoint 

Possibly 
several 

checkpoints 

Last 
checkpoint 

Recovery 
data 

Distributed Distributed Distributed 
Distributed 
or Local 

Distributed or  
local 

Distributed 
 

Recovery 
protocol 

Distributed Distributed Distributed Local Distributed Distributed 

Output 
commit 

Not 
possible 

Global 
coordination 
required 

Global 
coordination 
required 

Local 
decision 

Global 
coordination 
required 

Local 
decision 

 

Finally, the pessimistic message log protocol is very flexible because the 

operation of the fault tolerance mechanism is restricted to each process, allowing the 

building of several different arrangements in order to attend to the performance or 

efficiency requirements of the system. For example, each process may have its own 

checkpoint interval in order to reduce the overall cost of the checkpoint procedure. 

In this chapter, we presented the rollback-recovery protocols for message-passing 

systems and justified the pessimistic log-based protocol as the only one that 

simultaneously supports all four requirements for the modern fault tolerance schemes 

for parallel computers. In the next chapter, we present some recent fault tolerant 

message-passing implementations and show that, because of their architecture and 

rollback-recovery protocol, none of them can simultaneously to support the four key 

features that we have established for a modern fault tolerance solution. 





  

Chapter 3 

Fault Tolerant Message-passing 

Implementations 

In the last chapter, we discuss the theoretical aspects of the rollback-recovery 

protocols for fault tolerance in message-passing systems. We also justified the 

adoption of the pessimist message-log protocol as the protocol that simultaneously 

attends to scalability, transparency, flexibility and decentralization. 

Now, we are going to evaluate some legacy and current fault-tolerant message-

passing implementations in terms of the same features. We analyzed that none of 

these implementations simultaneously supports these four of features, what creates an 

opportunity to the development of a new solution. 

The message-passing paradigm is a paradigm largely used for development of 

parallel programs. The large acceptation of such paradigm has given place to the 

development of the PVM and MPI standards.  

In the last recent years, the MPI standard has become the de facto standard for the 

development of distributed parallel applications using the message-passing paradigm. 

Therefore, we focused our attention in practical MPI implementations. 

Because MPI uses a fail-stop semantic, several fault tolerance MPI 

implementations based on rollback-recovery have appeared, but we have verified that 

none of them could simultaneously attend to the four major requirements that we are 

looking for. 

In this chapter, we first discuss some practical aspects related to the operation of 

fault tolerance mechanisms in message-passing systems. Then, we present traditional 
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and current fault-tolerant MPI implementation and summarize their features in order 

to show that none of them simultaneously offers the same set of features we are 

looking for: transparency, decentralization, scalability and flexibility. 

3.1 Practical aspects 

Any fault-tolerant architecture interacts with the application and the parallel 

computer structure. Such interaction yields practical consequences we should 

consider when evaluating a fault tolerance implementation. We divided these practical 

aspects in three main groups as shown in Figure 3-1. 

 
Figure 3-1: Practical aspects of fault tolerance for message-passing systems 

3.1.1 Transparency 

An important concern is how much software development effort is necessary in 

order to enjoy the fault tolerance benefits. 

To embed fault-tolerance in the application yields the best benefits because the 

developer will have full control of how fault-tolerance will interact with the 

application and the cluster architecture. However, the cost of embedding fault 

tolerance in an application is worthy only when such application executes many times 

and when it is necessary to achieve the best possible performance for the application. 
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To embed fault-tolerance in the system is very interesting when the application 

development time is the main requisite. The common approach in such cases is to 

offer to the user, a library that implements the fault tolerance functionality in the MPI 

API. The development cost is low because the user just needs to recompile its 

applications with the library in order to gain access to the fault tolerance. The 

disadvantage of this method is that the application performance depends on the fault 

tolerance implementation and the way the fault tolerance interacts with the cluster 

architecture. 

3.1.2 Operational cost 

Any fault-tolerant architecture will have some associated costs. These costs 

relates to the resources consumed by the fault tolerance mechanism. For systems 

using fault tolerance schemes based on rollback-recovery, the following elements will 

influence the operational cost: 

Checkpoint overhead 

Checkpointing strongly contributes for computation time enlargement because of 

the cost of writing the process’ state into the stable storage. Strategies as concurrent 

checkpointing [Goldberg, 1990] in combination with incremental checkpointing 

[Plank, et al., 1995] can greatly reduce the checkpoint overhead. Furthermore, 

incremental checkpoint also reduces the storage space consumed by checkpoints. 

The problem of determining the optimal checkpointing frequency and placement 

is a kind of optimization’s problem subjected to constraints [Chandy, 1972]. 

However, the optimality of checkpoint placement is rarely an concern in practical 

systems because in practice the overhead of checkpointing is usually negligible, 

unless the checkpointing interval is relatively small, as observed by Elnozahy at 

[Elnozahy, et al., 1992]. 

Stable storage and storage space consumed 

Magnetic disks are still the preferred media used for logs and checkpoints and are 

the largest contributor for performance overheads. Communication overhead is much 

lower in comparison with the disk storage overhead. 
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The amount of space required by checkpoints and message logs strongly 

influences the efficiency of the fault tolerance scheme. The checkpoint interval and 

the application behavior (message pattern and processes state sizes) are the major 

parameters that determine the storage space consumed by the fault tolerance. 

Network bandwidth consumed 

Besides the normal application messages, many control messages will exist 

because of the rollback-recovery protocol and the fault detection scheme. 

Furthermore, taking into consideration that checkpoint and message logs of a process 

are saved outside the machine where the process is, delivering of these new elements 

also will contribute for a reduction of the total network bandwidth. 

Message latency enlargement 

Schemes using message-log increase the message latency because of the 

necessity of saving the logs into a stable storage. The total overhead will depend from 

the message-log protocol and the application’s message pattern. 

3.1.3 Adaptation to failures 

After a failure, the whole system changes to a new configuration. This new 

configuration is consequence of the new the structure of the parallel computer and 

how the parallel application will interact with such new structure. A fault directly 

influences three major system’s feature, as explained bellow. 

Structural changing 

After a node failure, the cluster configuration will depend of the remaining 

resources. The user can decide to reserve nodes for faulty node replacement; however, 

this solution can be inefficient if the probability of failures is small or if there are few 

nodes in the system, because the spare nodes do not participate in the computation. 

A common solution in practical systems is to use all available resources and to 

recover the faulty processes in the remaining nodes of the cluster. This strategy leads 

to problems of load balancing and location-independency of the distributed 

application processes. 
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Load-balancing 

The load-balancing problem depends of the ratio between the number of faulty 

nodes and the number of total nodes in the cluster. Load-balancing includes an 

additional overhead and the decision of  include it or not in the fault-tolerant 

architecture is influenced by factors such as total application runtime, cluster MTBF, 

i.e. probability of failures, and the number of nodes in the cluster. 

Migration of recovered processes 

Rollback-recovery protocols should prevent the application processes from 

acquiring dependency of any location. The system must mask the actual location of 

the process (network identity, addresses and ports) for the communication protocol. 

3.2 Recent fault-tolerant message-passing platforms 

In the last ten years, several message-passing implementations included fault 

tolerance capabilities. Because MPI has become the de-facto standard for 

message-passing systems, we focused our attention in the fault-tolerant MPI 

implementations (Table 3-1). Some of these implementations do offer the 

requirements necessary to attend the fault tolerance expectations of the modern 

parallel computers. Nevertheless, at the end of this chapter we present a comparison 

that shows that none of them attends simultaneously to the four benefits we have 

established: transparency, flexibility, scalability and decentralization. 

Table 3-1: Time line of the recent fault-tolerant MPI implementations 

1996 1999 2000 2001 

CoCheck 
Starfish and 

Egida 
FT-MPI MPI/FT 

2002 2003 2005 2006 

MPICH-V1 
MPICH-V2 and 

LA-MPI 
LAM/MPI MPICH-PCL 
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3.2.1 CoCheck 

CoCheck tuMPI [Stellner, 1996] addresses fault tolerance application level and 

was one of the first efforts to incorporate fault tolerance into MPI. CoCheck used the 

Condor [Litzkow, et al., 1988] library to checkpoint and then, if necessary, restart and 

rollback all MPI processes. Its main drawback was the need to checkpoint the entire 

application, which is prohibitively expensive in terms of time and scalability for large 

applications. 

3.2.2 Starfish MPI 

Unlike CoCheck that relies on Condor, Starfish [Agbaria and Friedman, 1999] 

uses its own distributed system to provide built in checkpointing. The main difference 

with CoCheck is that StarFish uses strict atomic group communication protocols, built 

upon the Ensemble system, in order to handle communication and manage state 

changes. This mechanism avoids the message flush protocol of CoCheck. 

3.2.3 Egida 

Egida [Rao, et al., 1999] is an object-oriented toolkit designed to support 

transparent rollback-recovery. Egida specifies a simple language that serves to 

express arbitrary rollback recovery protocols. From this specification, Egida 

automatically synthesizes an implementation of the specified protocol by gluing 

together the appropriate objects from an available library of building blocks. 

3.2.4 FT-MPI 

FT-MPI [Fagg and Dongarra, 2000] has been developed in the frame of the 

HARNESS [Micah, et al., 1999] metacomputing framework. The goal of FT-MPI is 

to offer to the end-user a communication library providing an MPI API, which 

benefits from the fault-tolerance in the HARNESS system. FT-MPI implements the 

whole MPI-1.2 specification, some parts of the MPI-2 document and extends some of 

the semantics of MPI for giving the application the possibility to recover from failed 

processes. 
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FT-MPI claims it survives the crash of n-1 processes in an n-process job. The 

processes can be re-spawn if required. However, it is still the responsibility of the 

application to recover the data-structures and the data on the crashed processes. FT-

MPI uses collective operation to assure 

FT-MPI contains the notion of two classes of participating processes within the 

recovery: Leaders and Peons. The leader tasks are responsible for synchronization, 

initiating the Recovery Phase, building and disseminating the new state atomically. 

The peons just follow orders from the leaders. In the event that a peon dies during the 

recovery, the leaders will restart the recovery algorithm. If the leader dies, the peons 

will enter an election controlled by the name service using an atomic test and set 

primitive. A new leader will restart the recovery algorithm. This process will continue 

either until the algorithm succeeds or until everyone has died [Fagg, et al., 2005]. 

3.2.5 MPI/FT 

MPI/FT [Batchu, et al., 2001] uses a centralized coordinator that manages the 

fault tolerance mechanism in a transparent way. The coordinator runs in an nMR (n-

Modular Redundancy) mode and has to monitor the application progress, act as a 

virtual channel routing every message transfer between process (much like the 

memory channels in MPICH-V1), recover faulty processes and replay messages from 

log to it until the faulty process reach a consistent state. Because of the centralized 

coordination scheme, the scalability of MPI/FT is limited. 

3.2.6 MPICH-Vx 

MPICH-V [Bouteiller, et al., 2006] is composed by a communication library 

based on MPICH and a runtime environment. MPICH-V runtime environment is a 

complex environment involving several entities: Dispatcher, Channel memories, 

Checkpoint servers, and Computing/Communicating nodes. Channel Memories are 

dedicated nodes providing a service of tunneling and repository. The architecture 

assumes neither central control nor global snapshots. The fault tolerance bases on an 

uncoordinated checkpoint protocol that uses centralized checkpoint servers to store 

communication context and computations independently.  
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MPICH-V comes in three flavors. MPICH-V1 [Bosilca, et al., 2002] is designed 

for very large scale computing using heterogeneous networks. Its fault tolerant 

protocol uses uncoordinated checkpoint and remote pessimistic message logging. 

MPICH-V1 well suited for Desktop Grids and Global computing as it can support a 

very high rate of faults, but requires a larger bandwidth for stable components to 

reach good performance. 

MPICH-V2 [Bouteiller, et al., 2003] is designed for homogeneous network large-

scale computing (typically large clusters). Unlike MPICH-V1, it requires a small 

number of stable components to reach good performance on a cluster. It uses 

uncoordinated checkpoint protocol associated with sender based pessimistic message 

logging. Instead of channel memories, MPICH-V2 uses event loggers to assure the 

correct replace of messages during recovers. The computing node now keeps the 

message-log. 

MPICH-VCL is designed for extra low latency dependent applications. It uses 

coordinated checkpoint scheme based on the Chandy-Lamport algorithm [Chandy and 

Lamport, 1985] in order to eliminate overheads during fault free execution. However, 

it requires restarting all nodes (even non-crashed ones) in the case of a single fault. 

Consequently, it is less fault resilient than message logging protocols, and is only 

suited for medium scale clusters. 

3.2.7 LA-MPI 

LA-MPI [Graham, et al., 2003] has two primary goals: network fault tolerance 

and high performance. Network fault tolerance is achieved by implementing a 

checksum/retransmission protocol. The integrity of delivered data is (optionally) 

verified at the user-level using a checksum or CRC. Data that is corrupt (or never 

delivered) is retransmitted. 

LA-MPI offers a lightweight checksum/retransmission protocol, instead of the 

classic TCP/IP protocol. Such protocol allows the use of redundant data paths in the 

network leading to a high network bandwidth since different messages and/or 

message-fragments can be sent in parallel along different paths. 
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Currently LA-MPI delivers messages in the presence of I/O bus, network card 

and wire transmission errors, supports network card and path failures and guarantees 

delivery of in-flight messages after such a failure. Therefore, LA-MPI guarantees of 

end-to-end network fault tolerance for an MPI application. The fault-tolerance of 

application processes is not a feature in the current release. 

3.2.8 LAM/MPI 

The LAM/MPI [Sankaran, et al., 2005] is an MPI implementation that allows 

MPI applications running to be checkpointed to disk and restarted later. LAM requires 

a third party single-process checkpoint/restart toolkit for actually checkpointing and 

restarting a single MPI process. Currently, LAM uses the Berkeley Labs 

Checkpoint/Restart package (Linux only) in order to implement a coordinated 

checkpoint protocol. 

The approach adopted in LAM/MPI ensures that all the MPI communication 

channels between the processes are empty when at the checkpoint time. During 

restart, all the processes resume execution from their saved states, with the 

communication channels restored to their known (empty) states. 

3.2.9 MPICH-PCL 

MPICH-PCL is a very recent fault-tolerant MPI implementation that uses 

MPICH-2 as a standard message-passing platform [Coti, et al., 2006]. MPICH-PCL 

follows the same architecture model implemented in the MPICH-Vx versions. 

Therefore, it requires the use of dedicated elements for checkpoint and messaging 

management. 

MPICH2 is the MPI-2 implementation of Argonne National Laboratory [Argonne 

National Laboratory, 2007c]. MPICH-2 provides a platform to manage dynamic 

processes in the MPI Communication World. This feature makes MPICH-2 suitable 

to implement process migration and process recovery mechanisms.  
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3.2.10 Open MPI 

Open-MPI [Gabriel, et al., 2004] is a MPI-2 compliant implementation, produced 

by the combining technologies and resources from FT-MPI, LA-MPI, LAM/MPI, and 

PACX-MPI, in order to build an open source MPI library. Open-MPI claims to offer a 

combination of the best features from each one of these platforms, including fault 

tolerance for distributed parallel applications. 

Currently, no Open-MPI distribution offers fault tolerance capabilities. The 

authors of Open MPI claim that this feature will be available in parallel projects but 

not in the trunk implementation [Open-MPI Project, 2007]. 

3.3 Comparing the fault-tolerant MPI implementations 

We compared the fault-tolerant MPI solutions present in this chapter using the 

four key features that we have elected for a modern fault tolerance scheme. Table 3-2 

presents a summary of the implementation analyzed in this chapter. We use a + signal 

to indicate that the implementation fully attends and +/- signal to indicate that it 

partially attends to a requirement.  

Table 3-2: A comparison of the recent fault-tolerant MPI solutions based on four relevant 
features required by the modern parallel computers 

Solution Scalable 
Fully 

Decentralized 
Transparent Flexible 

Cocheck   +/-  

Starfish   +/-  

Egida   +/- + 

FT-MPI +  +/-  

MPI/FT   +/-  

MPICH-V1   + + 

MPICH-V2 +  + + 

LA-MPI   +  

LAM/MPI   +  

MPICH-PCL +  + + 

     

As one can see, although all solutions are transparent to the user, none of them 

simultaneously presents the four features. Such lack of a fault-tolerant solution that 

could simultaneously present all four features has led us to the development of a new 

architecture, which we present in the next chapter. 



  

Chapter 4 

The RADIC Architecture 

In Chapter 3, we analyzed several recent fault-tolerant message-passing 

implementations. The lack of a solution that simultaneously offers scalability, 

flexibility, transparency and decentralization has guided us in the development of a 

new fault-tolerant architecture, the Redundant Array of Independent Fault Tolerance 

Controllers - RADIC. 

As any fault-tolerant solution for message-passing systems, the main goal of 

RADIC is to assure that a parallel-distributed application will correctly finish even if 

faults occur in some nodes of the parallel computer. Additionally, RADIC 

simultaneously attends to the four key features described in Table 4-1.  

In this chapter, we first present the system model of the RADIC architecture. 

Then, we describe the RADIC functional phases and functional elements that 

compose the RADIC fault tolerance distributed controller. Next, we explain the 

RADIC operation. Finally, we describe the RADIC functional parameters and 

evaluate the configuration aspects of RADIC. 

4.1 RADIC architecture model 

RADIC establishes an architecture model that defines the interaction of the fault-

tolerant architecture and the parallel computer’s structure. Figure 4-1 depicts how the 

RADIC architecture interacts with the structure of the parallel computer (in the lower 

level) and with the parallel application’s structure (in the higher level). RADIC 

implements two levels between the MESSAGE-PASSING level and the computer 

structure. The lower level implement the fault tolerance mechanism and the higher 

level implements the fault masking and message delivering mechanism. 
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Table 4-1: The key features of RADIC 

Feature How it is achieved 

Transparency 
− No human intervention is required to manage the failure 

− No change in the application code 

Decentralization 
− No central or fully dedicated resource is required. All nodes 

may be simultaneously used for computation and protection 

Scalability 
− The operation is not affected by the number of nodes in the 

parallel computer 

Flexibility 

− Fault tolerance parameters may be adjusted according to 
application requirements 

− The fault-tolerant architecture  may change for better adapting 
to the parallel computer structure and to the fault pattern 

 

The core of the RADIC architecture is a fully distributed controller for fault 

tolerance that automatically handles faults in the cluster structure. Such controller 

shares the parallel computers resources used in the execution of the parallel 

application. The controller is also capable to handle its structure in order to survive to 

failures. 

 
 

Figure 4-1: The RADIC levels in a parallel system 

The operation of RADIC relies on some operational models: the parallel 

application model, the parallel computer model and the fault pattern. These models 

establish the premises that rule the operation of the RADIC fault tolerance 

mechanism. 

Parallel Computer Structure (Fault-probable) 

RADIC Fault tolerance functions 
Message logs, checkpoints, fault detection and recovery 

 

RADIC Fault masking functions 
Message delivering 

Message-passing Standard 

Parallel Application (Fault-free) 
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4.1.1 Distributed parallel application model 

A distributed parallel application consists of a set of concurrent processes that 

cooperate with each other to perform a task. The processes communicate only using a 

message-passing standard. Therefore, since our model considers that received 

messages are the only nondeterministic event, we model each process as a sequence 

of state intervals, each interval started by a received message.  

Execution inside each interval is deterministic, i.e., if a process starts from the 

same state and receives the same sequence of messages at the same points within the 

execution, then this process will always generate the same results. 

Communication channels and process are both synchronous [Jalote, 1994]. By 

synchronous we mean that whenever an element is working correctly, it always will 

perform its intended function in a finite and known (or predictable) time bound. 

Therefore, every communication channel will have a latency bound and every process 

will execute each of their state intervals in a time bound. 

4.1.2 Parallel computer model 

The distributed parallel application has P processes, and runs in a parallel 

computer with N nodes. In failure-free executions, all the N nodes are available. The 

application will endure a maximum number of failed nodes without collapsing. 

Processes from failed nodes will recover in some survivor node. 

The communication network is fully connected, i.e., a process in a node can send 

a message to any other process. The network delivers messages in FIFO order. A 

channel represents the logical connection between two processes. A communication 

failure between two nodes is the event used to define a node failure. 

The minimum structure required to maintain the parallel application running 

defines the maximum number of failures that the system can bear. Therefore, the 

requirements of the parallel application, i.e., the user requirements, are determinant to 

decide the maximum number of failures the system will support. A typical 

requirement could be the time when the application must complete. In such cases, the 
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maximum number of faults is one that does not reduce the computational power 

beyond a minimum that neither compromises the application execution time nor 

compromises the functionality of the fault tolerance controller. 

4.1.3 Failure pattern 

We assume that the probability of failures in the nodes follows a Poisson 

distribution. This assumption is accurate if we consider that:  

− the chance that a failure occurs in a time interval is proportional to the interval 

size; 

− the probabilities of failure of each node are independent; 

− the probability of multiple failures in a given interval is much smaller than the 

probability of a single failure. 

Basing on these assumptions, we establish that if a node fails, all elements 

involved in the recovery of the failed processes will survive until the end of the 

recovery procedure. In other words, if two or more failures occur concurrently, none 

of them affects the elements implicated in the recovery of the other failures while the 

recovering procedure occurs. 

Similarly, any number of failures may occur if each failure does not affect an 

element implicated in the recovery of a previous failure. 

4.2 RADIC functional phases 

In the Chapter 2, we explained the theoretical bases that driven the adoption of 

the pessimistic log-based protocol for the RADIC rollback-recovery mechanism. 

As a transparent fault tolerance system, i.e., a system that can handle faults 

without human intervention, RADIC automatically performs a group of activities 

required by its rollback-recovery protocol. Each activity is inside one of the four 

general procedures required by an automatic fault tolerance mechanism, as described 

in Table 4-2. 
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Table 4-2: Operational phases of RADIC 

Functional phase Activity 

Sate saving 
− Storage checkpoints 
− Storage message logs 
− Garbage collection 

Failure detection 
− Monitor nodes using a heartbeat watchdog 

mechanism 

Recovering 
− Restart failed processes from their most recent 

checkpoints 
− Replay messages from the message log 

Fault masking 
− Assure that survivor processes can reach the 

recovered processes 

 

Such phases occur concurrently with the parallel application execution and do not 

interfere in its results. Actually, the RADIC implementation operates as a 

parallel-distributed application that runs concurrently and shares the same resources 

used by the user’s parallel application. 

4.3 RADIC functional elements 

The structure of the RADIC architecture uses a group of processes that 

collaborate in order to create a distributed controller for fault tolerance. There are two 

classes of processes: protectors and observers. Every node of the parallel computer 

has a dedicated protector and there is a dedicated observer attached to every parallel 

application’s process. 

4.3.1 Protectors 

There is a protector process in each node of the parallel computer. Each protector 

communicates with two neighbors: an antecessor and a successor. Therefore, all 

protectors establish a protection chain throughout the nodes of the parallel computer. 

In Figure 4-2, we depict a simple cluster built using nine nodes (N0-N8) and the 

respective protectors of each node (T0-T8). The arrows indicate the 

antecessor←successor relationship. 
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Figure 4-2: An example of Protectors (T0-T8) in a cluster with nine nodes. Green arrows 

indicate the antecessor←←←←successor communication.  

The relationship between neighbor protectors exists because the fault detection 

procedure. There is a heartbeat/watchdog mechanism between two neighbor 

protectors: one has the watchdog and receives heartbeats from the other. By 

definition, the protector who has the watchdog is the antecessor and the protector who 

sends the heartbeats is the successor. 

The arrows in Figure 4-2 indicate the orientation of the heartbeat signals from the 

successor to the antecessor. Actually, each successor has a double identity because it 

acts simultaneously as a successor for a neighbor and as an antecessor for the other 
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neighbor. For example, in Figure 4-2, the protector T7 is the antecessor of the 

protector T8 and the successor of the protector T6. 

Each protector executes the following tasks related to the operation of the 

rollback-recovery protocol: 

a) It stores checkpoints and message-logs from the application processes those 

are running in its successor node; 

b) It monitors its neighbors in order to detect failures via a heartbeat/watchdog 

scheme; 

c) It reestablishes the monitoring mechanism with a new neighbor after a failure 

in one of its current neighbors, i.e., it reestablishes the protection chain; 

d) It implements the recovery mechanism. 

4.3.2 Observers 

Observers are RADIC processes attached to each application processes. From the 

RADIC operational point-of-view, an observer and its application process compose an 

inseparable pair.  

The group of observers implements the message-passing mechanism for the 

parallel application. Furthermore, each observer executes the following tasks related 

to fault tolerance: 

a) It takes checkpoints and message-logs of its application process and send 

them to a protector running in another node, namely the antecessor protector; 

b) It detects communication failures with another processes and with its 

protector; 

c) In the recovering phase, it manages the messages from the message log of its 

application process and establishes a new protector; 

d) It maintains a mapping table indicating the location of all application 

processes and their respective protectors and updates this table in order to 

mask faults. 
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4.3.3 The RADIC controller for fault tolerance 

The collaboration between protectors and observers allows the execution of the 

phases of the RADIC controller. Figure 4-3 depicts the same cluster of Figure 4-2 

with all elements of RADIC, as well as their relationships. The arrows in the figure 

represent only the communications between the fault-tolerance elements. The 

communications between the application processes does not appear in the figure 

because they relate to the application behavior. 

Each observer has an arrow that connects it to a protector, to whom it sends 

checkpoints and message logs of its application process. Such protector is the 

antecessor of the local protector. Therefore, by asking to the local protector who is the 

antecessor protector, an observer can always know who its protector is. 

Each protector has an arrow that connects it to an antecessor protector. Similarly, 

it receives a connection from its successor. A protector only communicates with their 

immediate neighbors. For example, in Figure 4-3, the protector T5 communicate only 

with T4 and T6. It will never communicate with T3, unless T4 fails and T3 becomes its 

new immediate neighbor. 

The RADIC controller uses the receiver-based pessimistic log rollback-recovery 

protocol to handle the faults in order to satisfy the scalability requirement. As 

explained in the end of Chapter 2, this protocol is the only one in which the recover 

mechanism does not demand synchronization between the in-recovering process and 

the processes not affected by the fault. Such feature avoids that the scalability suffer 

with the operation of the fault tolerance mechanism. 
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Figure 4-3: A cluster using the RADIC architecture. P0-P8 are application process. O0-O8 are 

observers and T0-T8 are protectors. O→→→→T arrows represent the relationship between 

observers and protector and T→→→→T arrows the relationship between protectors. 

Table 4-3 explains how each RADIC element acts in each functional phase of the 

RADIC fault-tolerant architecture using the receiver-based pessimistic log 

rollback-recovery protocol. 

Besides the fault tolerance activities, the observers are responsible to manage the 

message-passing mechanism. This activity rests on a mapping table that contains all 
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information required to the correct delivery of a message between two processes. 

Protectors do not participate in the message-passing mechanism. 

Table 4-3: The role of each RADIC element in the phases of fault tolerance 

 RADIC element 

Functional phase Protector Observer 

State saving 
− Receive and store checkpoints 

and message logs from observers 
− Make garbage collection 

− Take checkpoints and 
message logs of its process 
and send them to a protector 

Failure detection 

− Monitor the neighbors 
− Establish a new neighbor in case 

of failure in the current neighbor; 
Inform local observers 

− Detect failures in another 
application processes 

− Detect protector’s failure 
− Listen to warnings coming 

from the local protector 

Recovery − Recover failed processes 
− Manage the message log 

after recovering 
− Establish a new protector 

Fault masking 
− Recover the protection chain by 

reestablish the communication 
with a new neighbor 

− Manage the mapping table 

4.4 RADIC operation 

The RADIC distributed controller concurrently executes a set of activities related 

to the fault tolerance. Besides these fault tolerance activities, the controller also 

implements the message-passing mechanism for the application processes. 

4.4.1 Message-passing mechanism 

The message-passing mechanism is an observers’ attribution. The protectors do 

not play any role in this mechanism. 

In the RADIC message-passing mechanism, an application process sends a 

message trough its observer. The observer takes care of delivering the message 

through the communication channel. Similarly, all messages that come to an 

application process must first pass through its observer. The observer then delivers the 

message to the application process. Figure 4-4 clarifies this process. 
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Figure 4-4: The message-passing mechanism in RADIC. 

To discover the address of a destination process, each observer uses a routing 

table, called radictable, which relates the identification of the destination process 

inside the application level with the identification of the destination process inside the 

communication level. Table 4-4 represents a typical radictable. 

Table 4-4: An example of radictable for the cluster in Figure 4-3 

Process identification Address 

0 Node 0 

1 Node 1 

2 Node 2 

3 Node 3 

. 

. 
. 
. 

4.4.2 State saving phase 

In this phase, protectors and observers collaborate in order to save snapshots of 

the parallel application’s state. This phase is the major responsible for resources 

consumed by the fault tolerance mechanism as well as for the enlargement in the 

execution time in the absence of failures.  
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The system must supply storage space for the checkpoints and the message-logs 

required by the rollback-recovery protocol. Furthermore, the checkpoint procedure 

introduces a time delay in the computation because a process may suspend its 

operation while the checkpoint occurs. 

Additionally, the message-log interferes in the message latency, because a 

process only considers a message delivered after the message is stored in the message 

log. 

Checkpoints 

Each observer takes checkpoints of its application process, as well as of itself, 

and sends them to the protector located in its antecessor node. Figure 4-5 depicts a 

simplified scheme to clarify the relationship between an observer and its protector. 

A checkpoint is an atomic procedure and a process become unavailable to 

communicate while a checkpoint procedure is in progress. This behavior demands 

that the fault detection mechanism differentiates a communication failure caused by a 

real failure from a communication failure caused by a checkpoint procedure. We 

explain this differentiation in paragraph 4.4.3. 

 

Figure 4-5: Relation between an observer and its protector. 

The protectors operate like a distributed reliable storage. The reliability is 

achieved because the checkpoints and message logs of a process are stored in a 
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different node, similar to a RAID-1 scheme [Patterson, et al., 1988]. Therefore, if a 

process fails, all information required to recover it is in a survivor node. 

The difference between the legacy RAID-1 scheme and the redundant scheme 

implement in RADIC is that RADIC replicates processes’ states and message logs 

instead of crude data chunks.  Actually, RADIC takes care of saving the computation 

done by a process until a given time. 

Thanks to the uncoordinated checkpoint mechanism of the pessimistic 

message-log rollback-recovery protocol used by RADIC, each observer may establish 

an individual checkpoint policy for its application process. Such policy may be time-

driven or event-driven. The RADIC architecture allows the implementation of any 

combination of these two policies. 

The time-driven policy is very typical in the fault-tolerant implementations based 

on rollback-recovery. In this policy, each observer has a checkpoint interval that 

determines the times when the observer takes a checkpoint. 

The event-driven policy defines a trigger that each observer uses in order to start 

the checkpoint procedure. A typical event-driven policy occurs when two or more 

observers coordinate their checkpoints. Such policy is useful when two processes 

have to exchange many messages. In this case, because the strong interaction between 

the processes, coordinate the checkpoint is a good way to reduce the checkpoint 

intrusion over the message exchanging. 

When an observer takes a checkpoint of its process, this checkpoint represents all 

computational work done by such process until that moment. Is such computational 

work that the observer sends to the protector. As the process continues its work, the 

state saved in the protector becomes obsolete. To make possible the reconstruction of 

the process’ state in case of failure, the observer also logs in to its protector all 

messages its process has received since its last checkpoint. Therefore, the protector 

always has all information required to recover a process in case of a failure, but such 

state’s information is always older than the current process’ state. 
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Message logs 

Because the pessimistic log-based rollback-recovery protocol, each observer must 

log all messages received by its application process. As we have explained in Chapter 

2, the use of message logs together with checkpoint optimizes the fault tolerance 

mechanism by avoiding the domino effect and by reducing the amount of checkpoints 

that the system must maintain. 

The message log mechanism in RADIC is very simple: the observer resends all 

received messages to its protector, which saves it in a stable storage. The log 

procedure must complete before the sender process consider the message as delivered. 

Figure 4-6 depicts the message’s delivery mechanism and message’s log mechanism. 

The log mechanism enlarge the message latency perceived by the sender process, 

because it has to wait until the protector concludes the message log procedure in order 

to consider the message as delivered.  

ti
m
e

 

Figure 4-6: Message delivering and message log mechanism. 

Garbage collection 

The pessimistic message log protocol does not require any synchronization 

between processes. Each observer is free to take checkpoints of its process without 

caring about what is happening with other parallel application’s process. 
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This feature greatly simplifies the construction of the garbage collector by the 

protectors. Because each checkpoint represents the current state of a process, 

whenever a new checkpoint comes from an observer, the protector may discard all 

prior checkpoints and message-logs related to that process. Therefore, after a 

protector receives a new checkpoint from a process, it automatically eliminates the 

older checkpoint of this process. 

4.4.3 Failure detection phase 

The failure detection is an activity performed simultaneously by protectors and 

observers. Each one performs specific activities in this phase, according to its role in 

the fault tolerance scheme. 

How protectors detect failures 

The failure detection procedure contains two tasks: a passive monitoring task and 

an active monitoring task. Because of this, each protector has two parts: it is, 

simultaneously, antecessor of one protector and successor of other.  

There is a heartbeat/watchdog mechanism between two neighbors. The 

antecessor is the watchdog element and the successor is the heartbeat element. Figure 

4-7 represents the operational flow of each protector element. 

A successor regularly sends heartbeats to an antecessor. The heartbeat/watchdog 

cycle determines how fast a protector will detect a failure in its neighbor, i.e., the 

response time of the failure detection scheme. Short cycles reduce the response time, 

but also increase the interference over the communication channel. Figure 4-8 depicts 

three protectors and the heartbeat/watchdog mechanism between them. 

A node failure generates events in the node’s antecessor and in the node’s 

successor. If a successor detects that its antecessor has failed, it immediately starts a 

search for a new antecessor. The search algorithm is very simple. Each protector 

knows the address of its antecessor and the address of the current antecessor of its 

antecessor. Therefore, when a antecessor fails, the protector know exactly who its 

new antecessor will be. 



80 Chapter 4 

An antecessor, in turns, begins to wait for a new successor detects a failure in its 

current successor. Furthermore, the antecessor also starts the recovering procedure, in 

order to recover the faulty processes that were running in the successor node. 

 

Figure 4-7: Protector algorithms for antecessor and successor tasks 

How protectors deal with Byzantine problems 

As explained in the previous topic, when a node fails two neighbor protectors of 

the faulty node detect such failure: the antecessor and the successor of the failed node. 

Depending on the network’s topology of the parallel computer, the communication 

paths from a node to its antecessor may be distinct of the communication path from 

this node to its successor. 
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For example, in the configuration depicted in Figure 4-8, the protector TX and TZ 

will detect a failure in TY. If there is a communication problem between TY and TZ but 

the communication between TX and TY is fine, then TY and TZ will have to agree 

about the failure (Figure 4-9a.) Such situation can be treated as a Byzantine problem 

[Lamport, et al., 1982]. 

 

Figure 4-8: Four protectors (TX, TY , TZ and TW) and their relationship to detect failures. 
Successors send heartbeats to antecessors. 

To deal with such problem, when a protector detects a failure in its antecessor 

neighbor, it marks this antecessor as a suspect and contacts the suspect’s antecessor in 

order to confirm the suspect’s status. Then, according to the status received from the 

suspect’s antecessor, the protector takes one the following actions: 

a) If there is no answer, then the protector sends a suicide command to the local 

observers and then terminates, because it assumes that its node has a 

communication problem; 

b) If the suspect’s antecessor answers that the suspect is fine, then the protector 

assumes that it has a communication problem with its antecessor and does 

the same as described above in paragraph (a); 

c) If the suspect’s antecessor confirms that the suspect failed, then the protector 

fetches a new antecessor and sends a checkpoint command to the local 

observers; 

Figure 4-9a shows the communication problem between TZ and its antecessor TY, 

but each one keeps communicating with other neighbors. According to what we 

explained before, TZ commits suicide because its antecessor is fine (Figure 4-9b.) 
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Concurrently, TW fetches a new antecessor. Figure 4-10 represents the activities a 

protector performs to deal with the Byzantine problems. 

 

 
(a) 

 
(b) 

Figure 4-9: TX is the antecessor of TY , TY is the antecessor of TZ and so on. (a) 
Communication failure between TY and TZ generates a Byzantine problem. (b) TZ has 

committed suicide and TW connects to TY. 

How the observers detect failures 

Each observer relates with two classes of remote elements: its protector and the 

other application processes. An observer detects failures either when the 

communication with other application processes fails or when the communication 

with its protector fails. However, because an observer just communicates with its 

protector when it has to do a checkpoint or a message log, an additional mechanism 

shall exist to certify that an observer will quickly perceive that its protector has failed. 

RADIC provides such mechanism using a warning message between the observer 

and the local protector (the protector that is running in the same node of the observer). 

Whenever a protector detects a fail in its antecessor, such protector sends a warning 

message to all observers in its nodes because it knows that the failed antecessor is the 

protector that the local observers are using to save checkpoints and message logs. 
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When an observer receives such message, it immediately establishes a new 

protector and takes a checkpoint. 

 

Figure 4-10: How a protector deals with Byzantine problems 

How the observers confirm a failure 

There are two situations which create a communication failure between 

application processes, but that must not indicate a node failure. The first failure 

situation occurs when an observer is taking a checkpoint of its application process. 

The second occurs when a process fails and restarts in a different node. 

In this paragraph, we explain how the observers get rids of the first problem. We 

will explain how the observer gets rid of the second situation in the description of the 

Fault Masking Phase. 
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A process becomes unavailable to communicate inside the checkpoint procedure. 

Such behavior could cause that a sender process interprets the communication failure 

caused by the checkpoint procedure as a failure in the destination.  

In order to avoid this fake failure detection, before a sender observer assumes a 

communication failure with a destination process, the sender observer contacts the 

destination’s protector and asks about the destination’s status. To allow that each 

observer knows the location of the protector of the other process, the radictable now 

includes the address of the destination’s protector, as shown in Table 4-5. 

Table 4-5: The radictable of each observer in the cluster in Figure 4-3. 

Process identification Address 
Protector 

(antecessor address) 

0 Node 0 Node 8 

1 Node 1 Node 0 

2 Node 2 Node 1 

3 Node 3 Node 2 

. 

. 
. 
. 

. 

. 

 

Analyzing Table 4-5, one may see that the protector in node eight protects the 

processes in node zero, the protector in node zero protects processes in node one and 

so forth. 

Using its radictable, any sender observer may locate the destination’s protector. 

Since the destination’s protector is aware about the checkpoint procedure of the 

destination process, it will inform the destination’s status to the sender observer. 

Therefore, the sender observers can discover if the communication failure is 

consequence of a current checkpoint procedure. 

The radictable and the search algorithm 

Whenever an observer needs to contact another observer (in order to send a 

message) or an observer’s protector (in order to confirm the status of a destination), 

this observer will look for the address of the element in its radictable. However, after 
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a failure occurs, the radictable of an observer becomes outdated, because the address 

of the recovered process and their respective protectors changed. 

To face this problem, each observer uses a search algorithm for calculates the 

address of failed elements. This algorithm relies on the determinism of the protection 

chain. Each observer knows that the protector of a failed element (observer or 

protector) is the antecessor of this element. Since a antecessor is always the previous 

element in the radictable, whenever the observer needs to find an element it simply 

looks the previous line in its radictable, and finds the address of the element. The 

observer repeats this procedure until it finds the element it is looking for. 

Practical issues about the heartbeat/watchdog cycle 

The heartbeat/watchdog mechanism of RADIC transmits information throughout 

the communication channel and generates a communication traffic that affects the 

network bandwidth. The solution to reduce the traffic generated by the heartbeats is to 

enlarge the heartbeat cycle, therefore reducing the amount of information that 

watchdog/heartbeat mechanism transmits. 

However, an enlargement in the heartbeat cycle reduces the sensibility of the 

failure detection mechanism; because the watchdog will take more time to detect a 

heartbeat missing. For example, if the heartbeat cycle is three seconds, in worst case 

the watchdog will take three seconds to warn about a problem.  If we enlarge the 

cycle in order to reduce the network implication, let us say to nine seconds, the 

system will take three times more time to warn about a problem. 

4.4.4 Recovery phase 

In normal operation, the protectors are monitoring computer’s nodes, and the 

observers care about checkpoints and message logs of the distributed application 

processes. Together, protectors and observers function like a distributed controller for 

fault tolerance. 

When protectors and observers detect a failure, both actuate to reestablish the 

consistent state of the distributed parallel application and to reestablish the structure 

of the RADIC controller. 
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Reestablishing the RADIC structure after failures 

The protectors and observers implicated in the failure will take simultaneous 

atomic actions in order to reestablish the integrity of the RADIC controller’s 

structure. Table 4-6 explicates the atomic activities of each element. 

When the recovery phase is finished, the RADIC controller’s structure is 

reestablished and henceforth is ready to manage new failures. Figure 4-11 presents the 

configuration of a cluster from a normal situation until the recovery phase has 

finished. 

Recovering failed application processes 

The protector that is the antecessor of the failed node recovers the failed 

application processes in the same node in which the protector is running. Immediately 

after the recovery, each observer connects to a new protector. This new protector is 

the antecessor of the node in which the observer recovers. The recovered observer 

gets the information about its new protector from the protector in its local node. 

Indeed, the protector of any observer is always the antecessor of the node in which the 

observer is running. 

Table 4-6: Recovery activities performed by the each element implicated in a failure. 

Protectors Observers 

Successor: 

1) Fetches a new antecessor 

2) Reestablishes the heartbeat mechanism 

3) Commands the local observers to checkpoint 

Survivors: 

1) Establish a new protector 

2) Take a checkpoint 

Antecessor : 

1) Waits for a new successor 

2) Reestablishes the watchdog mechanism 

3) Recovers the failed processes 

Recovered: 

1) Establish a new protector 

2) Copy current  checkpoint and message log to the 
new protector 

3) Replays message from the message-log 
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Figure 4-11: Recovering phases in a cluster. (a) Failure free cluster. (b) Fault in node N3. (c) 
Protectors T2 and T4 detect the failure and reestablish the chain, O4 connects to T2. (d) T2 

recovers P3/O3 and O3 connects to T1. 
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Load balance after recovering from faults 

After recovering, the recovered process is running in the same node of its former 

protector. It means that the computational load increases in such node, because it now 

contains its original application processes plus the recovered processes. Therefore, the 

original load balancing of the system changes. 

RADIC make possible the implementation of several strategies to face the load 

balance problem after process recovery. A possible strategy is to implement a 

heuristic for load balance that could search a node with lesser computational load. 

Therefore, instead of recovering the faulty process in its own node, a protector could 

send the checkpoint and the message logs of the faulty processes to be recovered by a 

protector in a node with less computational load. 

4.4.5 Fault masking phase 

The fault masking is an observers’ attribution. The observers assure that the 

processes continue to correctly communicate through the message-passing 

mechanism, i.e., the observers create a virtual machine in which failures does not 

affect the message-passing mechanism. 

In order to perform this task, each observer manages all messages sent and 

received by its process. An observer maintains, in its private radictable, the address of 

all logical processes or the parallel application associated with their respective 

protectors. Using the information in its radictable, each observer uses the search 

algorithm, explained in paragraph 4.4.3, to locate the recovered processes. 

Similarly, each observer records a logical clock in order to classify all messages 

delivered between the processes. Using the logical clock, an observer easily manages 

messages sent by recovered processes. 

Table 4-7 represents a typical radictable including the logical clocks. One can see 

that the observer that owns this table has received three messages from the process 

zero and has sent two messages to this process. Similarly, the process has received 

one message and sent one message to process three. 
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Table 4-7: The radictable of an observer in the cluster in Figure 4-3.  

Process id. Address 
Protector 

(antecessor addr.) 
Logical clock for 
sent messages 

Logical clock for 
recev. messages 

0 Node 0 Node 8 2 3 

1 Node 1 Node 0 0 0 

2 Node 2 Node 1 0 0 

3 Node 3 Node 2 1 1 

… … … … … 

Locating recovered process 

When a node fails, the antecessor neighbor of the faulty node - which executes 

the watchdog procedure and stores checkpoints and message-logs of the processes in 

the faulty node – detects the fail and starts the recovering procedure. Therefore, the 

faulty processes now restart their execution in the node of the antecessor, resuming 

since their last checkpoint. 

In order to clarify the behavior of a recovered process, in Figure 4-12 we 

represent four nodes of Figure 4-3 and the final configuration after a failure in one of 

these nodes. The process P3 that was originally in the faulty node N3 is now running 

in the node N2. Therefore, all other processes have to discover the new location of P3. 

 
(a) (b) 

Figure 4-12: (a) A failure free cluster; (b) The same cluster after the management of a 
failure in node N3. 
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In the explanation of the Fault Detection Phase, we defined two situations that 

create fake fault detection. The first situation occurs when an observer is taking a 

checkpoint of its application process, making this process unavailable to 

communicate. We described the solution for this problem in the Fault Detection 

Phase. Now, we describe the second situation and the solution for it. 

After a node failure, all future communications to the processes in this node will 

fail. Therefore, whenever an observer tries to send a message to a process in a faulty 

node, this observer will detect a communication failure and start the algorithm to 

discover the new destination location. 

 

Figure 4-13: Fault detection algorithms for sender and receiver observers 

Figure 4-13 describes the algorithms used by an observer if it acts as sender or as 

a receiver. An observer uses the search algorithm only the communication fails when 

it is sending a message to another process. If the failure occurs while the process is 
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receiving a message, the observer simply aborts the communication because it knows 

that the faulty sender we restart the communication after it has recovered. 

The search algorithm used by the sender observer uses the protector of the 

receiver process to inform the status of the receiver. However, if the receiver has 

recovered from a fault, its protector now is the antecessor of its original protector, 

because the recovered observer is now running in the same node of its original 

protector. 

The example in Figure 4-12 clarifies the location of the recovered process P3 after 

a failure in node N3. The new protector of P3 is now T1, because P3 currently is 

running in the same node of its original protector T2. 

If some observer tries to communicate with the faulty process P3, such observer 

will obtain a communication error and will ask to the protector T2 about the status of 

P3. In this case, T2 informs that it is not responsible for P3 (because T1 is now the 

current protector of P3.) 

In order to find who the current protector of P3 is, the sender observer uses its 

radictable to follow the protector chain. The sender observer knows that if T2 is no 

more protecting P3, then the probable protector of P3 shall be the antecessor of T2 in 

the protector chain (because a faulty process always recover in the antecessor 

neighbor node).  

Therefore, the sender observer reads its radictable and calculates the protector 

who is the antecessor of the protector T2. In our example, the antecessor of the 

protector T2 is the protector T1. In the radictable the order of the protectors in the 

chain naturally follows the same order of the table index. Therefore, the antecessor of 

a node is always the node in the previous line of the table, as shown in Table 4-8. 

Table 4-8:  Part of the original radictable  for the processes represented in Figure 4-12a. 

Process identification Address 
Protector 

(antecessor address) 

1 Node 1 Node 0 

2 Node 2 Node 1 

3 Node 3 Node 2 

4 Node 4 Node 3 
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Now that the sender observer knows who the probable protector of the receiver 

process P3 is, it contacts such protector and asks about the status of P3. If the protector 

confirms the location of P3, the sender observer updates its radictable and restarts the 

communication process. Otherwise, the sender observer continues to follows the 

protection chain and asks for the next antecessor about P3, until it finds where the 

process P3 is. 

Table 4-9:  Part of he updated radictable of a process that has tried to communicate with 
P3 after it has recovered as shown in Figure 4-12b. 

Process identification Address 
Protector 

(antecessor address) 

1 Node 1 Node 0 

2 Node 2 Node 1 

3 Node 2 Node 1 

4 Node 4 Node 3 

 

In our example, the updated radictable of a process who tries to communicate 

with the recovered process P3 has the information presented in Table 4-9. In this 

table, the line three of the radictable (represent with bold font) represents the update 

location of process P3 together with its new protector. 

Managing messages of recovered process 

An application process recovers from its earlier checkpoint and resumes its 

execution from that point. If the process has received messages since its earlier 

checkpoint, those messages are in its current message log. The process’ observer uses 

such message log to deliver the messages required by the recovered process. 

If the recovered process resend messages during the recovery process, the 

destination observers discard such repeated messages. Such mechanism is simple to 

implement by using a logical clock. Each sender includes a logical time mark that 

identifies the message’s sequence for the receiver. The receiver compares the time 

mark of the received message against the current time mark of the sender. If the 
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received message is older than the current time mark from the specific sender, the 

receiver simply discards the message.  

The observers discard the repeated messages received from recovered processes. 

However, a recovered process starts in a different node from the ones in which it was 

before the failure. Therefore, it is necessary to make the observers capable to discover 

the recovered processes’ location. 

An observer starts the mechanism used to discover a process’s location whenever 

a communication between two processes fails. Each observer involved in the 

communication uses the mechanism according to its role in the communication. If the 

observer is a receiver, it simply waits for the sender recovering. 

On the other hand, if the observer is a sender it will have to search for the failed 

receiver in another node. The searching procedure starts by asking the receiver’s 

status to the protector of the failed receiver. When the protector answers that the 

failed receiver is ready, the sender updates the location of the failed process and 

restart the communication. 

4.5 RADIC functional parameters 

The RADIC controller allows the setup of two time parameters: the checkpoint 

interval and the watchdog/heartbeat cycle.  

To choose the optimal checkpoint interval is a difficult task. The interaction 

between the application and the checkpoints determines the enlargement of the 

application execution time. The literature related to checkpoints contains several 

studies about how to estimate the optimal checkpoint interval in order to minimize the 

application run time in the absence of failures [Daly, 2006; Duda, 1983; Gelenbe, 

1979]. Other works investigated the checkpoints under a practical point of view 

[Mandal and Mukhopadhyaya, 2003; Plank and Thomason, 2001; Ziv and Bruck, 

1996]. 

Using the interaction between the observers and the parallel application 

processes, the RADIC controller allows the implementation of any checkpoint 
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interval policy. Each observer can calculate the optimal checkpoint interval by using a 

heuristic based in some local or distributed information. Furthermore, the observer 

may adjust the checkpoint interval during the process’ execution. 

The watchdog/heartbeat cycle, associated with the message latency, defines the 

sensitivity of the failure detection mechanism. When this cycle is short, the neighbors 

of the failed node will rapidly detect the failure and the recovery procedure will 

quickly start. However, a very short cycle is inconvenient because it increases the 

number of control messages and, consequently, the network overhead. Furthermore, 

short cycles also increase the system’s sensibility regards the network latency. 

The setting of the RADIC parameters, in order to achieve the best performance of 

the fault tolerance scheme, is strongly dependent of the application behavior. The 

application’s computation-to-communication pattern plays a significant role in the 

interference of the fault-tolerant architecture on the parallel application’s run time. 

For example, the amount and size of the messages directly define the interference of 

message log protocols. 

4.6 RADIC flexibility 

The impact of each parameter over the overall performance of the distributed 

parallel application strongly depends of the details of the specific RADIC 

implementation and the architecture of the parallel computer. Factors like network 

latency, network topology or storage bandwidth are extremely relevant when 

evaluating the way the fault-tolerant architecture affects the application. 

The freedom to adjust of the fault tolerance parameters individually for each 

application process is one of the functional features that contribute to the flexibility of 

the RADIC architecture. Additionally, two features play an important role for the 

flexibility of RADIC: the ability to support concurrent failures and the structural 

flexibility. 
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4.6.1 Concurrent failures 

In RADIC, a recover procedure is complete after the recovered process 

establishes a new protector, i.e., only after the recovered process has a new protector 

capable to recover it. In other words, the recover procedure is complete when the 

recovered process has done its first checkpoint in the new protector. 

RADIC assumes that the protector that is recovering a failed process never fails 

before the recovery completion. We have argued in paragraph 4.1.3 that the 

probability of failure of an element involved in the recovery of a previous failure in 

other element is negligible. Nevertheless, the RADIC architecture allows the 

construction of an N-protector scheme in order to manage such situation. 

In such scheme, each observer would transmit the process’ checkpoints and the 

message logs to N different protectors. If a protector fails while it is recovering a 

failed application process, another protector would assume the recovering procedure. 

For example, in the cluster of Figure 16, if the node N2 fails before the recovery 

of P3, the system will collapse. To solve this situation using a 2-protector scheme, 

each observer should store the checkpoints and message-logs of its process in two 

protectors. In Figure 16, this would mean that O3 should store the checkpoints and 

message-logs of P3 in T2 and in T1. Therefore, T1 will recover P3 in case of a failure in 

T2 while it is recovering the process P3. 

4.6.2 Structural flexibility  

Another important feature of the RADIC architecture is the possibility of 

assuming different protection schemes. Such ability allows implementing different 

fault tolerance structures throughout the nodes, in addition to the classical single 

protectors’ chain. 

Two immediate advantages of the structural flexibility of RADIC are the 

possibility of using spare nodes and the clustering of protector’s chain. In the first 

case, the parallel computer might have one or more spare nodes. Such nodes would 

assume the faulty processes in order to maintain the same number of computational 
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nodes. Therefore, the computational power remains the same the system had before 

the failure. 

In the second case, the system would have several independent chains of 

protectors. Therefore, each individual chain would function like an individual RADIC 

controller and the traffic of fault tolerance information would be restricted to the 

elements of each chain. Figure 4-14 depicts an example of using two protectors’ 

chains in our sample cluster. 
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Figure 4-14: A cluster using two protectors’ chain. 

In order to implement this feature is necessary to add one column to the 

radictable, the column that indicates the protector’s chain. An observer uses the 
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information in such column to search the protector of a faulty node inside each 

protectors' chain. The bold column in Table 4-10 exemplifies the chain information in 

a typical radictable. 

Table 4-10: The radictable of an observer for a cluster protected by two protectors’ chains 
like in Figure 4-14. 

Process id. Address 
Protector 

(antecessor addr.) 
Chain 

Logical clock 
for sent 

messages 

Logical clock 
for received 
messages 

0 Node 0 Node 3 0 2 3 

1 Node 1 Node 0 0 0 0 

2 Node 2 Node 1 0 0 0 

3 Node 3 Node 2 0 1 1 

4 Node 4 Node 8 1 2 3 

5 Node 5 Node 4 1 0 0 

6 Node 6 Node 5 1 0 0 

7 Node 7 Node 6 1 1 1 

8 Node 8 Node 7 1 0 0 

 

The RADIC architecture requires that, in order to manage at least one fault in the 

system, the minimum amount of protectors in a chain is four. This constraint occurs 

because each protector of the RADIC controller for fault tolerance requires two 

neighbors, an antecessor and a successor (see paragraph 4.3.1.) Therefore, at least 

three nodes must compose a protector’s chain. We depicted such minimal structure in 

Figure 4-15, in which each protector has an antecessor (to which it sends the 

heartbeats) and a successor (from which it receives heartbeats.) 
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Figure 4-15: The minimum structure for a protectors’ chain.  

 

If we consider that a fault takes out a node of the chain, and that a chain with 

three nodes is not capable to handle any fault, it is easy to conclude that the minimum 

number of protectors in a chain defines the maximum number of faults that such chain 

can handle. Equation 3 expresses this relation; the maximum number of faults that a 

protector chain can handle is equal to the number of protectors in the chain minus 

three (the minimum number of protectors required to form a chain.) 

MaxFaults = Number_of_Protectors - 3 3 

 

 

 

 

In this chapter, we have defined the fundamentals and explained the operation of 

the RADIC fault tolerance architecture. In the next chapter, we are going to present a 

practical implementation of the RADIC architecture, which we used to perform 

functional and experimental tests.  

 



  

Chapter 5 

An implementation of  the 

RADIC Architecture 

Now that we have presented the functional aspects of the RADIC architecture, it 

is necessary to describe the method used to validate the concepts of this architecture. 

To assure the correct operation of a fault-tolerant architecture  for 

message-passing systems in the absence of failures is a relatively easy task, because 

the tests are limited to compare the results generated by parallel applications using the 

fault-tolerant architecture  against the same parallel applications using a legacy 

message-passing implementation. 

On the other hand, to evaluate the correct operation of a fault-tolerant architecture  

in the presence of failures is a cumbersome task. Many fault scenarios are possible 

during a program execution and the exhaustive test of all these scenarios requires a 

large amount of work. Fault Injection is the best strategy to face such challenge. 

Fault injection is a strategy to inject faults in a controlled way. Once all fault 

scenarios are established, a fault injection mechanism, which can create such 

scenarios, executes inside the system together with the parallel application. With this 

mechanism, it is possible to create a specific fault scenario and monitor the behavior 

of the fault-tolerant architecture in such scenario. 

The recent literature about testing fault tolerance architectures presents some 

works devoted to test fault-tolerant systems. The FAIL-FCI framework [Hoarau and 

Tixeuil, 2005] is an example of framework for test distributed systems. FAIL is a 

fault injection language that rests on FAIL-FCI in order to evaluate message-passing 

implementations [Hoarau, et al., 2006]. Other works dedicate to testing of fault 
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tolerance schemes in Grids, like the work published by Sébastien Tixeuil in [Tixeuil, 

et al., 2006]. 

The validation of the RADIC functional requirements depended of a 

message-passing implementation that could offer a suitable platform to the supporting 

of the fault tolerance mechanisms of RADIC. 

The first issue was to define a messaging-passing paradigm. The MPI standard 

was the natural choice for our message-passing implementation, because it has 

become a widely adopted standard in the modern message-passing applications. 

At the time we started our work, all available MPI implementations had a fail-

stop behavior; therefore, we decided to create a new message-passing implementation 

that could support a node failure without stopping.  

The creation of our own MPI implementation also allowed a better the control of 

the messaging-passing mechanism. This has facilitated the implementation of the 

message-log and the recovery mechanisms. Furthermore, we saved many time in 

software development, because we avoided the typical effort required in the 

understanding and modification of softwares made by other developers. 

With these issues in mind, we developed a MPI implementation to evaluate the 

concepts of RADIC. This implementation, called RADICMPI, has served for two 

purposes: evaluate the functionality of RADIC as a fault-tolerant architecture , and 

assess the influence of the RADIC fault tolerance mechanism in practice. 

In this chapter, we present the functional tests, i.e., the tests performed in order to 

evaluate the functional requirements of RADIC. First, we explain RADICMPI and the 

implementation of the RADIC distributed controller. Next, we define the operation of 

the fault injection mechanism and our test methodology. We conclude analyzing the 

results of our tests. 

5.1 RADICMPI 

RADICMPI is a MPI implementation created to test the functional and 

experimental evaluation of the concepts of the RADIC Architecture.  
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For the development of RADICMPI, we decided to rest only on open source 

softwares. Such decision has satisfied two requirements: a) it gave us freedom to 

adapt any software feature and b) it maximized the use of software tools accepted in 

the research world.  

Because of this, our current RADICMPI implementation rests on the Linux 

operating system running on Intel IA-32 architectures. Our checkpoint mechanism 

rests on the popular BLCR, the Berkeley Labs Checkpoint/Restart library [Hargrove 

and Duell, 2006]. The message-passing mechanism and all messages exchanged 

between the RADIC elements use legacy TCP/IP sockets. 

The operation of RADICMPI should attend to the fundamental features offered 

by RADIC: transparency, flexibility, scalability and decentralization. Therefore, these 

four features drove the design of RADICMPI. 

Figure 5-1 depicts the several software levels of a parallel application using 

RADICMPI. This figure shows the transparent behavior of RADICMPI, because each 

application process relates only with a classical MPI API and has no contact with the 

RADIC API. This means that the application does not takes care of any fault tolerance 

activity. 

  
Figure 5-1: Software levels or the RADICMPI 
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In Table 5-1, we summarized all RADIC fundamental features and how 

RADICMPI implement them. 

In order to implement the transparency, we have created a software environment 

in which a programmer would only need to re-compile their application codes in order 

to use RADICMPI. The software environment has two elements: a software library 

(RADICMPI library) and an execution environment (RADICMPI scripts). 

Besides a transparent operation, RADICMPI also must comply with the other 

three features of RADIC. The operation of RADICMPI does not require any central 

or dedicated node. All RADIC functional elements, protectors and observers, which 

implement the RADIC controller for fault tolerance, execute in the same nodes where 

the processes of the parallel application are. This behavior complies with the 

decentralization requirement. 

The number of nodes in the cluster does not modify the functionality of the 

RADIC controller as well as the messaging passing mechanism. Therefore, only the 

behavior of the application determines the scalability of the system. The number of 

cluster's nodes does not compromise the scalability of RADICMPI. 

Table 5-1: How RADICMPI satisfies the RADIC features 

Feature How it is implemented by RADICMPI 

Transparency 

− A software library implements the fault tolerance and 
message-passing mechanisms 

− The programmer only has to re-compile the application code 

Decentralization 
− The protectors and observers execute in the same nodes used 

by the application processes 
− No central or special node required 

Scalability 
− The operation is not affected by the number of nodes in the 

parallel computer 

Flexibility 
− Fault tolerance parameters are defined by the user when it 

launches the parallel application 
− It is possible to implement other checkpoint policies 
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It is possible to modify checkpoint interval, the watchdog interval and the 

structure of the protection chain to comply with the user's requirements. Furthermore, 

the current RADICMPI implementation uses a typical time-driven checkpoint policy, 

but it is possible to implement other checkpoint policies, like a policy driven by the 

message-log size or by process' synchronization. 

5.2 RADICMPI library 

RADICMPI is a multithread library. Three threads will exist when we execute a 

program compiled with the RADICMPI library: the program main thread, the 

observer thread and the checkpoint thread. 

Figure 5-2 depicts the threads of RADICMPI and the relationship between them. 

The main thread executes the user program and sends communication commands to 

the observer thread, which implements the fault tolerance and the message-passing 

mechanism. The observer thread sends checkpoint commands to the BLCR thread, 

which implements the checkpoint mechanism. Because RADICMPI works 

transparently to the application program, no relation is required between the user 

program (main thread) and the checkpoint mechanism (BLCR thread),  

 
Figure 5-2: Threads of  RADICMPI and their relationship 

5.2.1 MPI API 

RADICMPI offers a subset of routines and constants defined by the MPI-1 

standard. The syntax of all RADICMPI functions strictly follows the MPI-1 

specification in order to comply with the transparency requirement. 
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The MPI API level completely isolates the application process from all message 

delivery activities. RADICMPI contains the blocking communication functions: 

MPI_Send, MPI_Recv, MPI_Sendrecv; the initialization and finalization functions 

MPI_Init, MPI_Finalize; and a group of auxiliary functions: MPI_Comm_rank, 

MPI_Comm_size, MPI_Wtime, MPI_Type_size and MPI_Get_processor_name. 

MPI_Init 

The MPI_Init creates the observer thread and the BLCR thread. This function 

also manages the arguments received by the application program in two sets of 

arguments: the application’s arguments and the observer’s arguments. 

MPI_Finalize  

The MPI_Finalize routine simply sends a finalize command to the observer. 

When the observer receives this command, it informs to the local and remote 

protector that it is going to finish and then it terminates. 

MPI_Send 

MPI_Send drive the observer to send the message stored in a buffer informed by 

the application process. The process blocks until the observer delivers the message to 

the communication channel. 

MPI_Recv 

MPI_Recv requests a message to the observer. The observer puts the message in 

the buffer allocated by the process. The function blocks until it receives the message 

from the observer. 

MPI_Sendrecv 

This function is just a sequential calling of the MPI_Send function followed by 

the MPI_Recv function. 

Auxiliary MPI routines 

MPI_Comm_rank, MPI_Comm_size, MPI_Wtime, MPI_Type_size and 

MPI_Get_processor_name execute locally, i.e., they do not require any interaction 

between the local process and other processes. 
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MPI_Comm_rank, MPI_Comm_size get their data directly from the observer.  

The observer receives this information from the RADICMPI environment, at the time 

the application starts. 

MPI_Wtime, MPI_Get_processor_name and MPI_Type_size get their 

information from the operating system. 

5.3 RADICMPI Controller for fault tolerance – 

Observer 

The RADIC library contains half of the RADIC distributed controller elements: 

the observers. Each observer works as a thread of the application process. This thread 

manages the message-passing between the parallel application processes and 

implements the fault tolerance functionalities. 

Figure 5-3 depicts the external and internal sources of the events that drive the 

observer operation, the elements in the top of the figure are the ones that generate 

external events and the elements in the figure bottom are the ones that generate 

internal events. 

External events correspond to MPI commands sent by the application process; 

messages, which comes from the remote application processes of the parallel 

application; and initialization and recovery commands. Internal events are 

consequence of the operation of the state saving phase of the fault tolerance 

mechanism (checkpoints and message logs) or of the fault detection mechanism. 
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Figure 5-3: The observer engine and the external and internal event generators in RADICMPI 

Incoming-messages (Remote application processes events) 

The RADICMPI message-passing mechanism rests on TCP/IP sockets. Each 

observer sets up a TCP server socket for accepting connections from other observers. 

The reception of a message is not associated with an MPI_Recv command. An 

observer is always ready to receive messages, unless it is performing a checkpoint of 

its process. 

After an observer accepts a connection from other observer, it first waits for a 

header that identifies the message that is about to come. The header contains the 

message logical clock (which identifies the message sequence), the sender and 

receiver identification, the MPI tag of the message and the message's size. 

The receiver than compares the logical clock of the received message against the 

logical clock that counts the messages received from the sender in this radictable. If 

the received logical clock is greater than the current counter, it means that the 

message is new. Then, it returns an ACK message to the sender and prepares to 
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receive the message. Otherwise, it returns an NAK message indicating that the 

message is old (the sender has recovered and replayed an old message). 

If the message is new, the observer receives it through the TCP socket, puts the 

message in a temporary buffer, logs the message in its protector, returns a new ACK 

message to the sender and closes the TCP socket. Then it increments the logical 

clock, the counts the messages received from the sender, in its radictable. Figure 5-4 

represents all sequence of steps followed by the observer in response to an incoming 

message event. 

In this section, for the sake of simplicity, we did not explain how the fault 

detection procedure interacts with the message-incoming procedure. We will clarify 

this interaction in the section that explains the fault detection procedure. 

 
Figure 5-4: How the observer engine deals with incoming messages (error situations are 

not represented in this diagram) 

MPI_command events 

The application process generates MPI_commands to the observer. The observer 

deals with each MPI_command as an individual event. For the application process, 
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the messaging-passing mechanism and the fault tolerance mechanism are completely 

transparent. 

− MPI_Init command 

The MPI_Init function starts the observer thread. The first task of every observer 

is to create a TCP server socket in order to accept connections of all other application 

processes. 

Next, the observer communicates with the local protector (the protector that is 

running in its node) in order to ask the information about the location of its remote 

protector. The remote protector is the one in which the observer stores checkpoints 

and message-logs of its application process, namely the neighbor antecessor of the 

node where the observer is running. After discover its remote protector, the observer 

communicates with it in order to inform that it is ready.  

Next, the observer starts the procedure to mount its radictable, which contains all 

information about the location of the other application processes and their respective 

observers. In the current RADICMPI implementation, the leader observer, i.e., the 

observer with rank equal to zero, is in charge of requesting the location information 

and the protector information from all other observers. The leader observer then 

builds a complete radictable and broadcasts it to all other application processes. At 

the end of the initialization phase, all observers have the same radictable. 

Is also in the initialization procedure that the observer starts the checkpoint thread 

using the BLCR API. In Figure 5-5, we represent the steps followed by the observer 

thread after it starts through an MPI_Init command. 

− MPI_Recv command 

The observer puts all incoming-messages in a temporary buffer. When the 

application process executes an MPI_Recv command, the observer uses the sender 

information and the MPI tag of the message to determine if the message is already in 

its buffer or not. 

If the requested message is not in the temporary message buffer (because such 

message has not arrived yet), then the observer blocks the application process until 
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the message arrives. Otherwise, it immediately delivers the message to the application 

process. Figure 5-6 depicts the steps followed by an observer after it receives an 

MPI_Recv command. 

 
Figure 5-5: How the observer engine responds to an MPI_Init command 

− MPI_Send command 

When a process executes an MPI_Send its observer looks for the destination 

address in its radictable. 

The sender observer contacts the destination and starts the transmission 

procedure. First, the sender transmits a header in order to identify the message for the 

destination. The header contains the message logical clock (which identifies the 

message sequence), the sender and receiver identification, the MPI tag of the message 

and the message's size. Then it waits for the confirmation from the destination. 

Two kinds of messages may return from the destination: an ACK message or a 

NAK message. If a NAK message returns, the sender knows that the receiver already 
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has received that message. Then, the sender observer increments the send logical 

counter related to the respective receiver in its radictable and terminates the 

MPI_Send. This avoid that a recovered observer retransmit old messages through the 

communication channel. 

 
Figure 5-6: How the observer engine responds to an MPI_Recv command 

If the destination returns an ACK message, then the sender knows that it may 

send the message. Then, it transmits the message and waits for a new ACK message 

from the destination. When the ACK comes, the sender observer increments the 

logical counter for send messages in the correspondent radictable line related to the 

destination. 

Figure 5-7 represents the steps followed because and MPI_Send command. In 

this figure, for the sake of simplicity, we do not represent the error conditions. We 

explain such conditions in the fault detection procedure. 

− Auxiliary MPI commands 

The management of MPI commands that do not involve communication is very 

simple. Some functions require the use of services from the operating system in order 

to complete the command. 

The MPI_Wtime and MPI_Get_processor_name functions are the ones that 

depend of the operating system to get the information required to complete the 

command. The observer calls the respective function of the operating system and 

manipulates the information in order to respond to the command. For example, for the 
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MPI_Wtime command, the observer accesses the wall clock of the operating system 

and adapts the information to the format required by the function. 

The MPI_Comm_size and MPI_Comm_rank use information of the RADICMPI 

environment, namely the number of process in the communicator and the id of the 

application process. 

 
Figure 5-7: How the observer engine responds to an MPI_Send command 

State saving events 

The states saving events are events created by the fault tolerance mechanism. 

They correspond to message-log events and checkpoint events. 

− Message logs 

One of the steps performed by an observer when it is dealing with 

incoming-messages is to log new received messages in its remote protector, before 

sending an ACK message to the sender in order to confirm the message reception, as 

shown in Figure 5-4. Therefore, a message log event is an internal events generated 

when the observer receives a new message. 

The communication between the observer and its protector is simpler than to the 

communication between two observers. The observer first establish a communication 
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socket with the protector, sends a message header to identify the message, sends the 

message, and then waits for an ACK message from the protector, which informs that 

the message was correctly logged. After the acknowledge message comes, the 

observer closes the TCP socket and terminate the log procedure. We depict the steps 

of the message-log procedure in Figure 5-8 without consider the error situations. Such 

situations are part of the fault detection procedure. 

 
Figure 5-8: Steps of the message log procedure 

− Checkpoint events 

Checkpoint events are internal events started by time counter in the observer. The 

interval between two checkpoints is function of the checkpoint interval defined by the 

user in the system startup. The observer initializes its counter initializes when it starts, 

when it recovers and after a checkpoint completes. 

The checkpoint mechanism is function of the BLCR checkpoint library. Because 

this library does not perform checkpoint of opened TCP sockets, a lock mechanism 

blocks the checkpoint procedure if the observer is communicating with other process. 

Similarly, the observer never initiates nor accepts communications while a checkpoint 

is occurring. 

Because the processes in the RADIC architecture do not coordinate their 

checkpoints, a fake error condition could occur if a process tries to communicate with 
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a destination that is making a checkpoint. The strategy to deal with this fake error 

condition is in the fault detection procedure. 

In the first step of the checkpoint procedure, the observer opens a TCP socket 

with its protector and informs that it is going to checkpoint. Then, the observer the 

observer close the TCP server socket that accepts communication of other observers, 

to avoid new connections from this point, and checks if there are active 

communications. If some communication is active, the observer waits until it 

concludes. This checking is necessary to assure that there are no open TCP channels 

with other observers when the checkpoint mechanism starts. 

Following the checkpoint procedures steps, the observer orders that the BLCR 

library take a checkpoint of the whole application process state, including the 

observer itself. The BLCR checkpoint functions take control of the system, execute 

the checkpoint and transmit the checkpoint to the protector via the active TCP socket. 

When the BLCR library concludes the checkpoint, it returns the control to the 

observer. Then, the observer closes the TCP socket for transmission. This activity 

signalizes to the protector that the checkpoint has finished. The protector confirms the 

correct checkpoint reception closing the socket with the observer. 

Finally, the protector reopens the TCP server socket for accept new connections 

from other observers and finalizes the checkpoint procedure. Figure 5-9 represents the 

steps of the checkpoint procedure without error conditions. 

The recovery event 

According to the operation of the RADIC architecture, the recovery procedure 

corresponds to restarting a process since its previous checkpoint. In RADICMPI, 

when the BLCR checkpoint function takes a checkpoint, the checkpoint contains the 

states of the observer and of its application process, because their threads share the 

same memory space. 

The start of recovery mechanism is not an observer attribution, because are the 

protectors who have to detect the failed nodes and restart faulty processes. The 
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recovery mechanism of RADICMPI rests on the restarting procedure of the BLCR 

library. 

 
Figure 5-9: Observer checkpoint procedure without error conditions 

When BLCR restarts a process since a checkpoint, it signalizes to the process that 

it is restarting. An observer relies on such signal in order to identify that it is restarting 

since a checkpoint, i.e., it is recovering from a fault. 

Because the process is recovering in a node different from the one in which it was 

before the fault, the first observer concern is to update the information about its 

remote protector. For this, the observer communicates with the local protector in 

order to discover who its antecessor neighbor is. 

The observer then informs to its new remote protector that it is recovering and to 

the local protector that from now on it will use another protector. It is important to 

warn to the local protector that it is not in charge of the recovered observer anymore, 

because the observer is now running in the same node. This breaks the relation 

between a recovered process and its previous protector. 
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The next step is to deal with the message log of its process. The observer copies 

all messages from the message log to temporary buffer used to store incoming 

messages. Therefore, when the application process requests those messages again, 

they already are in the reception buffer. 

The observer then gets the messages from the message log, which is present in 

the node it has recovered, and copies these messages to the buffer used to store 

incoming messages. Therefore, when the recovered process requests an old message 

(MPI_Recv), such message is already in the observer’s buffer. If the recovered 

application process tries to retransmit messages, the destination observer discards 

such as we have previously explained in the procedure that deals with incoming 

messages. 

Finally, the observer reopens the TCP server socket in order to communicate with 

other application processes and informs to its remote protector that it is again ready to 

communicate. Figure 5-10 represents the recovery procedure. Again, we do not 

represent error events because they are responsibility of the fault detection 

mechanism. 

5.3.1 How the RADICMPI observers detect and manage faults  

As we depicted in Figure 5-3, the fault detection procedures generate internal 

events to the observer engine. In RADICMPI, the fault detection procedures are 

present inside all other procedures, i.e., when the observer engine treats an event, the 

procedure who deals with the event includes the functions to detect and to deal with 

the error events. We may define the RADICMPI fault detection procedure as a 

collection of all the individual fault detection procedures inside the observer engine. 

The fault detection mechanism bases on communication failures and 

communication timeouts in order to detect a fault. Basing on such assumption, we 

may define two classes of communication failures that exist in the observer context: 

failures between two observers and failures between observers and protectors. 

Because the fault detection phase of the RADIC architecture always starts the 

fault-masking phase, in RADICMPI we coupled the fault masking functions together 
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with the fault detection functions. Therefore, whenever some procedure detects a 

failure, the fault masking procedure immediately starts to adapt the observer to the 

new cluster configuration. 

 
Figure 5-10: How observer recovers 

Failures detected when two observers are communicating 

These failures can occur in two different situations: the observer detects a 

problem before it starts a communication (valid only for the sender observer) or the 

observer detects a problem during a communication (valid for both observers 

implicated in the communication). 

− The sender observer detects a failure before it initiates the communication  

 This situation occurs when the destination does not accept the sender because 

one of the following reasons: a) the destination is checkpointing and its TCP server 

socket is closed; or b) the destination node has failed and the destination process is 

running in another node. 
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In both cases, the observer first contacts the protector of the destination process 

in order to discover what is happening. If the destination's protector answer that the 

process is checkpointing, the sender observer keeps querying the protector until it 

answer the nodes is ready. Then it tries to communicate with the destination again. 

If the protector of the destination process responds that it is not responsible by 

that process, the sender observer admits that the destination process has failed and, 

using its radictable and the algorithm explained in paragraph 4.4.5, calculates the new 

address of the destination process and retries the communication. 

− An observer detects a failure after the communication has been started 

In this case, the behavior of the observer depends of its role in the 

communication. If it is receiving the message, it simply aborts the communication 

because it knows that the sender will restart the communication again. If it is sending 

the message, it assumes that the destination has failed and uses its radictable, together 

with the algorithm explained in paragraph 4.4.5, to calculate the new address of the 

destination process in order to reestablish the communication. 

Failures detected when an observer is communicating with a protector 

As for the communication between two observers, the fault detection between a 

protector and an observer also relies on communication failures and communication 

timeouts. In this paragraph, we evaluate the mechanism since the observer view. 

The communication between an observer and a protector occurs in two different 

phases: in the state saving phase and in the fault-masking phase. Therefore, the 

operation of fault detection mechanism depends of the current operation that the 

observer is executing. 

− An observer detects a failure with its remote protector in the state saving 

phase 

In this case, the observer immediately communicates with its local protector in 

order to determine who its new protector is. Then it immediately takes a checkpoint, 

in order to reestablish the protection, and concludes the communication. 
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In RADICMPI, the observer also detects a failure in its remote protector when 

the local protector sends a special warning message to it. This mechanism protects the 

observer of being unaware that its protector has failed, because it has stayed a long 

period without needing to communicate with the protector, for example inside a 

checkpoint interval in which no message log occurred. 

− An observer detects a failure with a protector of a destination process 

This situation occurs when a sender observer detects a communication error with 

a destination process, and needs to contact the destination protector to obtain 

information about the destination status. 

In RADICMPI, the operation fail detection and fault masking functions are the 

same as with the observer detects a failure in a destination process. The observer uses 

the radictable and the search algorithm explained in paragraph 4.4.5 to calculate the 

location of the protector it needs to communicate. 

When it finds the required protector, it updates the protector information in its 

radictable and reestablishes the communication. 

5.4 RADICMPI Controller for fault tolerance - 

Protector 

The protectors are the other half of the RADIC controller for fault tolerance. 

They operate like a distributed stable storage and as a distributed fault tolerance 

detector.  

In the current implementation of RADICMPI, the protector has three main 

threads: the successor thread, the antecessor thread and the thread that deals with the 

observers. 

The protectors execute as separated programs, they do not share the memory 

space of the application processes. Figure 5-11 depicts the structure of the protectuion 

program. The antecessor and the successor threads exist while the observers that 

relates to the protector are running. In the figure, this dependency corresponds to the 
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two arrows that connect the successor thread and the antecessor threads with the 

finalization procedure. 

 
Figure 5-11: The protector program in RADICMPI 

5.4.1 Initialization 

The initialization procedure starts the all the protectors threads. Each protector 

receives the address of its neighbor antecessor and the address of its pre-antecessor 

(the antecessor of its antecessor). The user must design the protector chain and inform 

to each protector who its antecessor is and who its pre-antecessor is. 

Another parameter that user must define is the watchdog/heartbeat interval, that 

will be used by the successor and antecessor threads in order to execute the fault 

detection mechanism. 

5.4.2 Observers management thread 

This thread creates a TCP server socket exclusively to accept the observers that 

will send checkpoints and message-logs for the protector or that will query about the 

status of other processes. The protector maintains a list with the status information of 

all observers that are using it as stable storage. The protector updates the list 
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according to the activities of the observers that it is protecting. Using this list, the 

protector answers to the queries about the status of each observer it is protecting. 

All checkpoints and message logs of each observer that is using the protector as a 

stable storage are stored in the disk of the protector’s node. The pessimistic log 

protocol used by the RADIC Architecture greatly simplifies the garbage collection 

procedure. Whenever a protector receives a new checkpoint, it automatically discards 

any earlier checkpoint and message log of the application process. This occurs 

because in the pessimistic protocol every checkpoint is a snapshot of the current state 

of the application process and it is not necessary any other information besides the 

current checkpoint to recover the process to this current state. 

The observer management thread also accept connection from local observers, 

i.e., from observers that are running in the same node of the protectors. The thread 

maintains a list of these observers while they are active, and uses this list to warn the 

local observers about a failure in the antecessor protector. 

5.4.3 Antecessor thread 

The antecessor thread waits for the connection of a successor protector. This 

thread creates a TCP server socket to accept the connection of the successor protector 

and to establish the watchdog mechanism. The TCP socket between an antecessor and 

its successor is always active. It only closes in the finalization procedure. 

Once the successor has connected, the thread establishes a watchdog mechanism 

based on the heartbeat cycle. The heartbeats sent by the successor reset the watchdog. 

For each heartbeat signal received the antecessor thread returns an acknowledge 

message (ACK message) to the successor protector. 

If a heartbeat fails, the antecessor thread starts the fail confirmation function. The 

confirmation mechanism consists in wait an additional watchdog cycle to assure that 

the heartbeat is missing. 

If the heartbeat does not arrive, the antecessor thread starts another confirmation 

mechanism, the one that checks for Byzantine failures. The algorithm in RADICMPI 
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is the one explained in the Failure Detection Phase of the RADIC Architecture, which 

we depicted in Figure 4-10.  

When the antecessor thread finally confirms a failure, it takes care of recovering 

the faulty process from the faulty node. The recovery procedure is a parte of the 

BLCR library API. The protector simply calls the BLCR recovery function passing 

the name of the checkpoint file of the process that the function has to recover. 

Concurrently with the recovery mechanism, the antecessor thread waits for a new 

successor connects and then restarts the watchdog function. 

5.4.4 Successor thread 

When the successor thread starts, it immediately fetches this antecessor in order 

to start the heartbeat mechanism. It establishes a TCP socket with the antecessor and 

keeps this socket opened until it the thread completes. 

The successor threads regularly send heartbeat signals to the antecessor protector 

via the opened TCP socket in order to reset the antecessor watchdog. For each 

heartbeat sent the thread waits for an acknowledge message (ACK message). If the 

ACK message does not come, or if some communication error occurs the successor 

thread starts the fault confirmation function. 

The fault confirmation mechanism consists in retrying to send the heartbeat to the 

antecessor protector. If it fails again, successor thread starts another confirmation 

mechanism, the one that checks for Byzantine failures. The algorithm in RADICMPI 

is the one explained in the Failure Detection Phase of the RADIC Architecture, which 

we depicted in Figure 4-10. 

When the successor thread finally confirms a failure, it warns all local observers 

that the antecessor protector has failed. Then it connects to the pre-antecessor of the 

failed antecessor and reestablishes the heartbeat mechanism. The successor thread 

does not take part of the recovery procedure. 
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5.4.5 Finalization procedure 

The finalization procedure initiates when all observers that relate with a protector 

terminate, i.e., the protector only can terminates after all local observers in this node 

terminate and all observers in the successor node terminate. 

When the successor thread is ready to terminate, it sends a STOP signal to the 

antecessor protector using the heartbeat TCP socket and then terminates. Similarly, 

the antecessor thread only terminates after it receives the STOP signal in the 

watchdog TCP socket. 

angelo@aoclp9:~/radic/examples> radiccc -help 

This is a program to compile or link MPI programs using RADICMPI 

It should be used just like the usual C compiler 

For example, 

   /users/angelo/radic/bin/radiccc -c foo.c 

and 

   /users/angelo/radic/bin/radiccc -o foo foo.o 

or by combining compilation and linking in a single command 

   /users/angelo/radic/bin/radiccc -o foo foo.c 

In additional, the following special options are supported 

    -show      - Show the commands that would be used without 

                 runnning them 

    -compile-info - Show how to compile a program 

    -link-info - Show how to link a program 

    -help      - Give this help 

    -echo      - Show exactly what this program is doing. 

                 This option should normally not be used. 

 

Figure 5-12: The radiccc command  

5.5 Using RADICMPI 

Two scripts help the user to compile and to run his/her MPI applications using 

RADICMPI. These scripts have a similar syntax to their similes in the MPICH-1.2.7 

implementation. 

5.5.1 Compiling the sources 

The compilation script is radiccc. This script serves to generate binary files from 

C or C++ source codes. Radiccc compiles the application code and links it with the 

RADICMPI and the BLCR libraries in order to generate a binary file that is ready to 

use the RADIC functionalities. Figure 5-12 contains a screen copy of the exit of the 
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radiccc command using the –help option. The figure contains the instructions about 

how to compile a program and about additional options that help the user in the 

compilation task. 

5.5.2 Running the parallel program  

The execution script is radicrun. This script spawns the application processes and 

the protectors throughout the cluster nodes. 

First, it launches all protectors in order to build the protectors' chain. The current 

RADICMPI implementation uses the nodes described in the machinefile to form the 

protector’s chain. Each node antecessor is the node in previous line of the file. To 

clarify how a protector chooses its antecessor, in Figure 5-13 represents the first lines 

of the machinefile for the cluster depicted in Figure 4-3. Using this information, the 

radicrun script knows that the antecessor of Node 2 is the Node 1; the antecessor of 

Node 1 is node 0 and so on. The antecessor of Node 0 is the last node used by the 

parallel application. 

Node 0 

Node 1 

Node 2 

Node 3 

… 
Figure 5-13: Initial lines of the machinefile for the cluster in Figure 4-3 

After launches all protectors, the radicrun scripts launches the application 

processes. The binary of an application process contains the BLCR and the 

RADICMPI libraries. 

Figure 5-14 contains a screen copy of the exit of the radicrun command. The 

radicrun accepts several specific options. The –ckpt option is relate to configuring of 

the RADIC checkpoint interval. The test options where used to activate special event 

log functions used for functional and debugging purpose (-i, -olog and –tlog). 

The –justprot option make that radicrun only launches the protectors. It served 

only to debugging purposes.  The –nomlog option turns off the message log 

mechanism, in order to assess the impact of message-logs in terms of execution time. 
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angelo@aoclp9:~/radic/examples> radicrun –help 

radicrun [radicrun options...] <progname> [program options...] 

 

radicrun options: 

    -h 

            this help 

    -rsh 

            use RSH instead of SSH as remote shell 

    -machinefile <machine-file name> 

       take the list of possible machines to run from the 

       file <machine-file name>.  This is a list of all available 

       machines; use -np <np> to request a specific number of machines. 

    -machinedir <directory> 

            look for the machine files in the indicated directory 

    -nolocal 

            don't run on the local machine 

    -np <np> 

            specify the number of processors to run on 

    -t 

            testing - do not actually run, just print what would be 

executed 

 

RADIC options: 

    -ckpt <seconds> 

           activates the RADIC FT mechanism and indicates the  

           checkpoint interval 

 

Test options: 

    -justprot 

           run only the protector array 

    -nomlog 

           deactivate the RADIC message log mechanism 

    -i 

           ativate the time measure instrumentation 

    -olog 

           enable event logs for observers 

    -tlog 

           enable event logs for protectors 

 

On exit, radicrun returns a status of zero unless radicrun detects a 

problem. 

Figure 5-14: The radicrun command 

 

In this chapter, we presented and explained RADICMPI. RADICMPI is a 

practical implementation of the RADIC architecture based on the MPI message-

passing standard. We used RADICMPI to perform functional and experimental tests 

with the RADIC architecture, as we will explain in the next two chapters. 

 



  

Chapter 6 

Functional Validation of  the 

RADIC Architecture 

Now that we have presented the functional aspects of the RADIC architecture, it 

is necessary to describe the method used to validate the concepts of this architecture 

in practice. 

Testing the functionality of a fault-tolerant architecture includes two major 

phases: to evaluate the system operation in the absence of failures, and to confirm that 

the system operates correctly in the presence of failures. To assure the correct 

operation of a fault-tolerant architecture  for message-passing systems in the absence 

of failures is a relatively easy task, because the tests are limited to compare the results 

generated by parallel applications using the fault-tolerant architecture  against the 

same parallel applications using a traditional message-passing implementation. 

On the other hand, to evaluate the correct operation of a fault-tolerant architecture  

in the presence of failures is a cumbersome task. Many fault scenarios are possible 

during a program execution, and the exhaustive test of all these scenarios requires a 

large amount of work. In order to face such challenge, we had to develop a Fault 

Injection mechanism for RADICMPI. 

Fault injection is a strategy to inject faults in a controlled way. Once all fault 

scenarios are established, a fault injection mechanism, which can create such 

scenarios, executes inside the system together with the parallel application. With this 

mechanism, it is possible to create a specific fault scenario and monitor the behavior 

of the fault-tolerant architecture in this scenario. 
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In this chapter, we present the tests performed in order to evaluate the functional 

requirements of RADIC. First, we will explain the theoretical bases of the fault 

injection mechanism that we have built in order to perform the tests. Next, we define 

the operation of the fault injection mechanism and explain our test methodology and 

the tests performed. Finally, we conclude with an analysis of the tests results. 

6.1 Test platform 

Because RADIC creates a distributed controller that shares the same cluster 

structure in which the parallel application is running, failures in nodes affect the 

operation of the RADIC controller as well as affect the parallel application. Since the 

RADIC controller must continue to operate after a failure, we had to assure the proper 

operation of such controller under faults. 

Such requirement imposed an additional evaluation criterion. Now, besides we 

confirm that the RADIC controller was capable to manage faults and assure the 

correct ending of the parallel application, we must also assure that the RADIC 

controller was capable to endure faults in its own structure, and to continue its correct 

operation until the application completion. 

In order to attend to both criteria: to assure that the RADIC architecture attends to 

the functional requirements and that the RADIC controller is able to continue its 

operation after failures, we created a test platform that contains a test protocol, a fault 

injection mechanism and a test environment. 

6.1.1 Test protocol 

Using the fault injection approach, we define a test protocol to rule the test 

procedures. Such protocol defined the following steps for each test procedure, as 

depicted in Figure 6-1. The protocol defines the test parameters, the data to measure, 

and the expected test results. After the execution of the tests, we analyze the data 

measured and compare them against the expected results.  
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Figure 6-1: The test protocol for RADIC 

In all tests, we validated the correct operation of the RADIC architecture 

comparing the results of the programs using RADICMPI against the same programs 

compiled and executed using the MPICH-1.2.7 MPI implementation, available at 

Argonne National Laboratory [MPICH, 2007]. If the results were the same, this meant 

that the application correctly ended in both cases, i.e., our architecture was operating 

correctly. 

6.1.2 The Fault Injection mechanism of RADICMPI 

Fault injection is the artificial generation of faults in a system in order to observer 

the system operation under fault conditions [Kopetz, 1997]. The fault injection 

mechanism must be able to generate faults as if they occurred in a real environment so 

the system acts as it is in a normal operation environment. 

The fault injection approach is used achieve two goals: Testing and Debugging; 

and Dependability Forecast [Avresky, et al., 1992]. In testing and debugging, the goal 

is to force fault situations that otherwise will be very difficult to verify in practice 

since fault are unpredictable events. In dependability forecast, the idea is to collect 

information about the behavior of the fault-tolerant system and relate them to the 
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expected fault model (types and distribution) of the environment. Such relationship 

serves to model the dependability of the system in the envisioned environment. 

The generation of the faults may be deterministic or probabilistic. In 

deterministic testing, the tester selects the fault patterns from the domain of possible 

faults. In probabilistic testing, the tester selects the fault patterns according to the 

probabilistic distribution of the fault patterns in the domain of possible faults. The 

probabilistic distribution follows a given fault model or criteria for the system under 

test [Avizienis, et al., 2004]. 

A fault injection mechanism may physically actuate over the hardware level or 

operate into the software level. In physical fault-injection, the target system is subject 

to hardware faults or adverse environment behavior that compromises the correct 

operation of the computer hardware. In software fault-injection, a fault injection 

algorithm interferes (according to a specific fault pattern or randomly) into the state of 

the system in order to mimic the effects of hardware fault or software design faults. 

The recent literature about testing fault tolerance architectures presents some 

works that use fault injection in order to test fault-tolerant systems. The FAIL-FCI 

framework [Hoarau and Tixeuil, 2005] is an example of framework for testing 

distributed systems. FAIL is a fault injection language that rests on FAIL-FCI, a fault-

tolerant test platform for clusters, in order to evaluate message-passing 

implementations [Hoarau, et al., 2006]. Other works dedicate to testing of fault 

tolerance schemes in Grids, like the one published by Sébastien Tixeuil in [Tixeuil, et 

al., 2006]. 

The mechanism that we implemented to inject faults in RADICMPI served for 

testing and debugging. The operation of the mechanism was deterministic, i.e., we 

programmed the mechanism to force all fault situations required to test the system 

functionality. 

We implemented the mechanism in the software level. This allowed a rigorous 

control of the fault injection and greatly facilitated the construction and operation of 

the fault injection mechanism. In practice, the fault injection code is part of the code 

of the RADICMPI elements.  
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In Figure 6-3, we depict the interaction of the fault injection thread with the 

observer program. The figure shows that the fault injection mechanism operates as an 

additional thread, which executes together with the observer threads. The thread 

appears as a bold object in the figure. In the observer program, the fault injection 

thread interacts with the observer engine, in order to create the fault scenarios 

according with the events managed by the observer. 

 
Figure 6-2: The fault injection thread inside the observer program. 

In Figure 6-3, we depict the interaction of the fault injection thread with the 

protector program. The figure shows that the fault injection mechanism operates as an 

additional thread that executes together with the antecessor, successor and observer 

management threads. The thread, which appears as a bold object in the figure, 

interacts with all other threads in order to create the fault scenarios according with the 

events managed by the protector. 
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Figure 6-3: The fault injection thread inside the protector program. 

6.1.3 The internal event-log mechanism of RADICMPI 

To monitor the correct operation of the RADIC controller for fault tolerance, we 

implemented an event monitor that registered all activities of the observers and 

protectors that are the core elements of the RADIC controller. We built the internal 

event-log mechanism inside the program codes of observers and protectors, in order 

to monitor every single activity required to confirm the correct operation of the 

RADIC mechanism. 

There are two types of event log mechanisms: one for debugging purposes and 

other for time measurement purposes. The user starts these mechanisms using the 

options of the radicrun command, as described in Figure 5-14. The -i option activates 

the time log mechanism. The -olog and -tlog options activate the debug log 

mechanism for observers and protectors, respectively. 

Log Mechanism for Debugging 

As its name indicates, the debug log mechanism served to help us in the 

development of the RADICMPI software. The mechanism registers the internal 

activities in a log database stored in the local disk of each node. 
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Table 6-1 describes each field of the debug log database. The database has the 

same structure for protectors and observers (the Figure 6-4 depicts a database of a 

protector).  

Table 6-1: Fields of the debug log database 

Column Field name Description 

1 Element ID 
Indicate the rank of the element. T# elements are protectors and O# 
elements are observers 

2 Event id Identifies the event type 

3 Event time Elapsed time in seconds since the program startup 

4 Function name Name of the internal function that generate the event 

5 Event Description of the event 

 

In Figure 6-4, there is an example of a typical debug log database. Each register 

has five fields that correspond to the columns in the figure. The figure refers to the log 

base of the protector 0, identified by T0 in the first column. The following columns 

correspond to the Event ID, the Event time, the name of the function that generated 

the event and the name of the event. 

Log Mechanism for Time Measurement 

The time log mechanism registers the activities of the RADIC elements in a 

temporary database inside the volatile memory. Each field of the database represents a 

event data, as described in Table 6-2. Store the log data in the volatile memory 

reduces the interference caused by the log mechanism over the execution of the 

program, because these memories are faster than disks. 

The mechanism flushes the buffers to the program standard output immediately 

before the program ending. Figure 6-5 depicts an example of the output generated by 

the event log mechanisms. Each line corresponds to a register of the database. Each 

column corresponds to a field of the register according to the description in Table 6-2.  
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6.1.4 Clusters used in the test 

Table 6-3 describes the clusters used to execute the tests. The diversity of clusters 

served to assure that our architecture was capable to adapt to different systems. We 

present in this thesis the test results obtained with the cluster named Homogeneous II, 

because it allowed the larger one.  

T0  37      0  main                    : ANTE=aoclp24 

T0   2      0  watchdog_thread         : Thread created 

T0   2      0  heartbeat_thread        : Thread created 

T0   8      0  link2neighbour          : successor Connection refused 

T0   8      0  connect                 : successor OK 

T0   8      1  connect                 : antecessor OK 

T0  33      1  main                    : PRE_ANTE= 192.168.65.23 - 

ANTE= 15 - SUC= 1 

T0  45      1  obs_managing_thread     : Command 24 from observer 0 

T0  10      1  manage_local_observers  : + obs 0 from node -1. 1 

observers attached 

T0  45      2  obs_managing_thread     : Command 12 from observer 1 

T0  10      2  manage_observers_list   : + obs 1 from node 1. 1 

observers attached 

T0  45      4  obs_managing_thread     : Command 19 from observer 1 

T0  14      4  storage_message_log     : Logging 4500000 Bytes of 

message 0 from source 5 

T0  15      4  storage_message_log     : Total log files is now 4500032 

Bytes 

T0  36      4  obs_managing_thread     : Reception finished : 4500000 B 

/ 0.453168 s 

T0  45    172  obs_managing_thread     : Command 19 from observer 1 

T0  14    172  storage_message_log     : Logging 4500000 Bytes of 

message 0 from source 2 

T0  15    173  storage_message_log     : Total log files is now 9000064 

Bytes 

T0  36    173  obs_managing_thread     : Reception finished : 4500000 B 

/ 0.429880 s 

T0  45    185  obs_managing_thread     : Command 19 from observer 1 

T0  14    185  storage_message_log     : Logging 4500000 Bytes of 

message 1 from source 5 

T0  15    185  storage_message_log     : Total log files is now 

13500096 Bytes 

T0  36    185  obs_managing_thread     : Reception finished : 4500000 B 

/ 0.393857 s 

T0  45    302  obs_managing_thread     : Command 13 from observer 1 

T0  45    302  obs_managing_thread     : Command 18 from observer 1 

T0  45    302  obs_managing_thread     : Command 25 from observer 1 

T0   2    302  recv_ckpt_by_socket     : /tmp/angelo/radic/1.ckpt 

T0   2    302  recv_ckpt_by_socket     : Receiving checkpoint... 

T0   2    304  recv_ckpt_by_socket     : Checkpoint successfully 

received 

Figure 6-4: An example of the debug log database of a protector 
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6.1.5 Algorithms used in the tests 

To conduct the tests, we needed a collection of algorithms that could help us to 

validate the functionality of RADIC and to assess the influence of the RADIC 

controller for fault tolerance over the cluster and the parallel application. For this, the 

algorithms should attend to two requisites: 

− Have a deterministic runtime and communication-to-computation ratio, in 

order to facilitate the assessment of the influence of the RADIC parameters 

over the behavior of the parallel application.  

− Enable the control of the message pattern, in order to facilitate the 

configuration of the fault scenarios;  

Table 6-2: Fields of the debug log database 

Column Field name Description 

1 Source ID 
Rank of the source element. To differentiate observers from protectors, 
the rank of protectors appeared increased by 1000 

2 Event time Elapsed time (in seconds) since the program startup 

3 Event group 
Identifies the events that are part of an atomic operation like, for 
example, an MPI_Recv or a checkpoint.  

4 Event type Identifies the event type. 

5 Message A brief description of the event 

6 Destination ID 
Rank of the destination element. To differentiate observers from 
protectors, the rank of protectors appeared increased by 1000 

7 Event size Event size (in bytes). A -1 indicates that the field is not used 

8 Checkpoint size 
Protectors: Total size (in bytes) of all checkpoint files in the node 
Observers: Not used (always -1) 

9 Message log size  
Protectors: Total size (in bytes) of all message log files in the node 
Observers: Not used (always -1)  
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The first requirement serves to control the behavior of the parallel application in 

terms of its execution time, in order to evaluate the impacts of RADIC over the 

application performance. 

   1,  4.629484,   0,  17,RECV_FIN,   0,       4,       -1,       -1 

   1,  4.629488,   2,  16,RECV_INI,   0,      -1,       -1,       -1 

   1,  4.884998,   3,   6,MLOG_INI,1000,      -1,       -1,       -1 

   1,  5.312595,   3,  11,MLOG_FIN,1000,       4,       -1,       -1 

   1,  5.320664,   2,  17,RECV_FIN,   0, 2880000,       -1,       -1 

   1,  5.320676,   4,  16,RECV_INI,   0,      -1,       -1,       -1 

   1,  5.568334,   5,   6,MLOG_INI,1000,      -1,       -1,       -1 

   1,  5.814287,   5,  11,MLOG_FIN,1000, 2880000,       -1,       -1 

   1,  5.823356,   4,  17,RECV_FIN,   0, 2880000,       -1,       -1 

   1, 93.276664,   6,  12,SEND_INI,   0,      -1,       -1,       -1 

   1, 93.318559,   6,  15,SEND_FIN,   0,       4,       -1,       -1 

   1, 93.318563,   7,  12,SEND_INI,   0,      -1,       -1,       -1 

   1, 93.996105,   7,  15,SEND_FIN,   0, 2880000,       -1,       -1 

 Figure 6-5: A typical set of registers in the time log database of an observer 

The second requirements are necessary to configure the different experiments 

that will confirm that RADIC is capable to operate as a scalable, decentralized, 

flexible and transparent fault-tolerant architecture. 

Table 6-3: Clusters used in RADIC validation 

Cluster Heterogeneous Homogeneous I Homogeneous II 

Nodes 6 12 16 

Processors 
Pentium-4 / Pentium-III / 

Ahtlon-XP2600+ 
Athlon-XP2600+/ 1.9GHz/ 

512KB L2 cache 
Pentium-4/ 1.8GHz/ 
512KB L2 cache 

Memory 256 / 128 / 256MB 256 MB 512MB 

Disk/node 20 / 10 / 40 GB ATA 40GB ATA 30GB ATA 

Network 100-baseTX hub 100-baseTX switch 100-baseTX switch 

Operating 
System 

Linux Fedora Core 3 
Kernel 2.6.9 

Linux Fedora Core 4 
Kernel 2.6.17 

Linux Fedora Core 2 
Kernel 2.4.18 

Compiler gcc v3.4.2 gcc v4.0.2 gcc v3.4.5 

Checkpoint 
library 

BLCR v0.4.2 BLCR v0.4.2 BLCR v0.4.2 
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Basing on these requirements, we choose three programs for performing the tests: 

a simple ping-pong program, a matrix-multiplication program using the MW 

(Master/Worker) paradigm, and a matrix-multiplication program using the SPMD 

paradigm (Cannon’s algorithm).The ping-pong program was the better program to 

evaluate the message-passing scheme, because it allows a complete control of the 

communication between the application processes. We used this program to simulate 

different message patterns, in order to confirm the correct operation of message-

passing mechanism. 

We choose the matrix-multiplication algorithms because their MW and SPMD 

algorithms generate distinct message patterns, facilitating the creation of different 

fault scenarios. As shown in Figure 6-6, the MW algorithm has a 1-to-N message 

pattern (Figure 6-6a). The master process communicates with all the worker 

processes. Each worker process only communicates with the master process. The 

SPMD algorithm has a communication mesh (Figure 6-6b). Each application process 

communicates with their neighbors. 

(a)  
 (b) 

Figure 6-6: Message patterns - a) M/W paradigm and b) SPMD paradigm. 

The MW algorithm also offered an additional control over the application 

behavior; it was possible to use two strategies to balance the computation load 

between the workers: static and dynamic. In the static strategy, the master first 

calculates the amount of data that each worker must receive. Next, the master sends 

the data slice for each worker and waits until all workers return the results. In this 

strategy, the number of messages is small but each message is large, because the 

master only communicates at the beginning, to send the matrices blocks to the 

workers; and at the end, to receive the answers. 
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In the dynamic strategy, the master slices the matrices in small blocks and sends 

pairs of blocks to the workers. When a worker answered the block multiplication’s 

results, the master consolidates the result in the final matrix and sends a new pair of 

blocks to the worker. In this strategy is easy to control the 

computation-to-communication ratio by changing the block size. Small blocks 

produce more communication and less computation. Conversely, large blocks produce 

less communication and more computation. 

6.2 Validation of the message-passing mechanism 

The first group of tests served to evaluate the behavior of the of the RADICMPI 

implementation as if it was a normal MPI implementation. For this, we used 

MPICH-1.2.7 [Argonne National Laboratory, 2007b] as the reference 

implementation. 

The current version of RADICMPI contains all ideas to the RADIC architecture 

in the form of a reduced MPI implementation and the main goal of RADICMPI was 

to test the RADIC fault tolerance functionalities in a real environment, instead of to 

operate as a new fault-tolerant MPI implementation. Although it may seem 

meaningless to test RADICMPI with its fault tolerance capabilities deactivated, these 

tests served to several purposes: 

a) To confirm the transparency of RADICMPI, using the same application 

codes in all tests; 

b) To validate the message-passing mechanism of RADICMPI; 

c) To serve as reference for calculating the time overheads caused by the 

operation of the fault tolerance mechanism; 

d) To evaluate the applications behavior; 

Tests with the master/worker matrix multiplication algorithms 

Figure 6-7 shows the execution times (in seconds) as a function of the number of 

nodes in the cluster, required to multiply two 3000x3000 matrices with double-float 

elements using the Master/Worker matrix multiplication programs with static and 

dynamic load balance. In all experiments using N nodes, there is a master and N-1 
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workers. We can see that the programs present a similar behavior. As expected, the 

execution time decreases as the number of nodes increase. 

Execution times for the M/W matrix multiplication using MPICH-1.2.7

Matrices with 3000x3000 double float elements
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Figure 6-7: Execution time of the M/W matrix multiplication programs using MPICH-1.2.7 

for 3000x3000 double element matrices. 

Analyzing the curves, we see that the program using dynamic balancing scaled 

better than the program using static load balance. This occurred because the 

communications in the static program are concentrated by master at the beginning and 

at the end of computation, causing a slow down of the whole system. 

The difference between the behaviors of the dynamic balance program using 

different computation-to-communication ratios confirms that the communication with 

the master greatly influences the scalability of the application. 

In Figure 6-8, we show the speedup curves for the programs, using the execution 

with four nodes as reference. We can see that the program using blocks with 600x600 

elements presents a better performance and a regular increase in the speedup. Blocks 

with 300x300 elements yield a computation-to-communication ratio worse than 

blocks with 600x600 elements, because there is more communication between the 

master and the workers. The master has to attend to several workers at a time, 

enlarging the communication time between the workers and the master and slowing 

down the whole system. With blocks of 600x600 elements, there is less 
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communication between the master and the workers and the communications become 

are better distributed. This reduces the communication time between the workers and 

the master and improves the system performance. 

Speed up for the M/W matrix multiplication using MPICH-1.2.7
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Figure 6-8: Speedup of the M/W matrix multiplication programs using MPICH-1.2.7 for 

3000x3000 double element matrices 

To test the programs with RADICMPI we simply compiled the same source 

codes with radicc and executed the binaries with radicrun. We confirm the 

correctness of the programs by comparing the results generated using RADICMPI 

with the results generated using MPICH-1.2.7. 

The behavior of the programs with RADICMPI, in terms of scalability, was 

completely similar to the behavior of the programs using MPICH-1.2.7. Again, and 

because the same reasons we have explained for MPICH-1.2.7, the program with 

static load balance presented the larger execution times. Similarly, the program with 

dynamic balance using blocks with 300x300 elements had a worse performance than 

the program using blocks with 600x600 elements. 

We can see the execution times of the programs using RADICMPI in Figure 6-9. 

For all M/W algorithms, the execution time (in seconds) reduces as the number of 

nodes increases, according to the same tendency presented by MPICH-1.2.7. 
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Execution times for the M/W matrix multiplication using RADICMPI with fault tolerance off
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Figure 6-9: Execution time of the M/W matrix multiplication programs using RADICMPI 

(with fault tolerance off) for 3000x3000 double element matrices. 

The similar behavior of RADICMPI with fault tolerance off and MPICH-1.2.7 is 

also observable in the speedup curves for the matrix multiplication programs. The 

curves in Figure 6-11 show the speedup for the cluster size since five until sixteen 

nodes, using the execution time with four nodes as reference. The curves present a 

similar tendency with the curves for MPICH-1.2.7 (Figure 6-8); however, there are 

differences between the performance of RADICMPI and MPICH-1.2.7.  

Comparing the curves in Figure 6-8 against the curves in Figure 6-10, one can see 

that RADIMPI with fault tolerance off presents a better scalability than MPICH-1.2.7. 

The better behavior of RADICMPI in this case, is consequence of the message 

reception engine in the observers (see the observer operation in paragraph 5.3). In the 

current RADICMPI implementation, there are three threads dedicated to receive 

messages. Each observer has a temporary buffer that keeps a received message until 

the application requires it. Therefore, this multi-thread implementation associated 

with the temporary buffer of RADICMPI, improves the communication efficiency for 

the blocking MPI functions, because until three senders may communicate with a 

single observer at same time.  
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Speed up for the M/W matrix multiplication using RADICMPI with fault tolerance off

Matrices with 3000x3000 double float elements
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Figure 6-10: Spped-up of the M/W matrix multiplication programs using RADICMPI (with 

fault tolerance off) for 3000x3000 double element matrices. 

Furthermore, because MPICH-1.2.7 is a full MPI implementation oriented to run 

in different systems. Because of this, MPICH has to execute several internal activities 

to assure its correct operation, independent of the structure of the parallel computing 

in which it runs. On the other hand, RADICMPI without fault tolerance is a partial 

MPI implementation oriented to a specific parallel computer structure. Therefore, the 

operation of RADICMPI is simpler than the operation of MPICH-1.2.7. 

Tests with the SPMD matrix multiplication algorithm 

The communication pattern of the Cannon’s algorithm (SPMD) defines a square 

mesh topology, as depicted in Figure 6-6b. Because of this restriction, the number of 

nodes is a square power of the mesh dimension. For instance, a 3-dimensional mesh 

requires nine nodes; a 4-dimensional mesh requires sixteen nodes and so on. In the 

Cannon's algorithm, each node starts with blocks of the operand matrices and finishes 

with a block of the result matrix. 

In order to assure that all blocks would have the same size, the size of the 

matrices must be an integer multiple of the block size. The number of nodes in the 

cluster and the requirements of the mesh topology, have allowed us to execute tests 
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with four, nine and sixteen nodes. Basing on these cluster sizes, we selected matrices 

with size multiple of these numbers for assuring that the blocks had the same size in 

each node. In this thesis, we present the results for matrices with 3024x3024 

elements. 

Figure 6-11 shows the results of the tests conducted with the SPMD matrix 

multiplication program using MPICH-1.2.7 and RADICMPI with the fault tolerance 

functions deactivated. The figure shows the execution times (in seconds) as a function 

of the number of nodes in the cluster. We can see that both implementations have the 

same behavior in terms of scalability. Again, the differences between the message 

reception mechanism of RADICMPI and of MPICH-1.2.7 cause that the programs 

using RADICMPI present a better performance than the programs using 

MPICH-1.2.7. 

Execution times for the SPMD matrix multiplication
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Figure 6-11: Results of the SPMD (Canon algorithm) matrix multiplication program using 

RADICMPI with fault tolerance deactivated and using MPICH-1.2.7. 

We calculated the speedup of the programs for both implementations as a 

function of the number of nodes in the cluster, using the execution with four nodes as 

reference. The results presented in Table 6-4 show that speedup for both 

implementations have the same magnitude, confirming that RADICMPI does not 

affect the behavior of the application scalability. 
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Table 6-4: Speedup for the SPMD matrix multiplication programs using MPICH-1.2.7 and 
RADICMPI with fault tolerance off 

Nodes MPICH-1.2.7 
RADICMPI 

(fault tolerance off) 

9 (3x3) 232% 270% 

16 (4x4) 400% 425% 

6.3 Functional tests without failures 

After validating RADICMPI as a common MPI implementation, we started the 

tests with the fault tolerance mechanism activated. The tests in the absence of failures, 

served to assure that: 

a) the fault-tolerant architecture satisfy to the functional requirements of 

RADIC;  

b) the operation of the fault tolerance mechanism implemented in RADICMPI 

did not interfere in the application ’s correctness; 

c) the flexibility of RADICMPI allow the configuration of different protector’s 

structures. 

Furthermore, the tests without failure offered the time references in the 

experiments that we used for studying the impact of the fault tolerance parameters 

over the system performance. We will comment about such experiments in the next 

chapter. 

To validate that all applications executed correctly using RADICMPI with the 

controller for fault tolerance activated, we compared the results obtained using 

RADICMPI against the results obtained with MPICH-1.2.7. In all cases, the 

application generated the same results, confirming that the operation of the 

RADICMPI controller for fault tolerance did not compromise the application 

correctness. 

To validate if the fault-tolerant architecture attended to the functional 

requirements of the RADIC architecture, we checked if the system accomplished each 
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individual feature of RADIC. We resume the results for transparency, decentralization 

and flexibility as the checklist presented in Table 6-5. In this checklist, we represented 

the feature and the criteria we used to confirm each feature. 

Table 6-5: Checklist for the features RADICMPI 

Feature Validation criteria 

Transparency 
Same source code used in a common MPI implementation generated the same 

application results 
Fault tolerance operation is automatic 

Flexibility 
The system allowed the use of different checkpoint intervals  and  different 

protector structures 

Decentralization 
We did use neither a central nor a dedicated node to support the fault tolerance 

activities 

In order to validate the scalability criterion, we executed the testing programs and 

observed two effects: how the operation of the fault tolerance mechanism affected the 

scalability of the system and how the RADIC controller scaled. In Figure 6-12, we 

represent the execution times of the M/W program using dynamic load balance and 

RADICMPI. In order to enlarge the execution times, we modified the algorithms to 

repeat the number of block multiplication in each node. In these experiments, each 

node multiplied each matrix block ten times. Therefore, we could better evaluate the 

effects of the number of checkpoints over the execution time.  

The Figure 6-12 contains the results for three scenarios: without fault tolerance 

and with fault tolerance using two checkpoint intervals. The enlargement in the 

execution times increases when the checkpoint interval is shorter because more 

checkpoints occur during the program execution. We may see that  
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Checkpoint Influence on the Matrix Multiplication (Dynamic  load balance)
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Figure 6-12: Execution times for the matrix multiplication M/W program using dynamic 

load balance and RADICMPI with different checkpoint intervals 

6.4 Functional tests with failures 

The main difficulty of these functional tests was to inject faults in the critical 

points of the system, because the communication’ state of a process strongly 

interferes in the behavior of the fault tolerance when the process fails. 

 Failures occur randomly. Therefore, a failure may occur during any system 

activity. To assure that RADIC can manage any kind of failure, we had to specify all 

possible failure scenarios and build a fault injection mechanism that could create each 

failure scenario. The fault injection mechanism followed the general algorithm 

described in Figure 6-13. 

For the test scenarios with faults, our unique premise was that in a scenario with 

multiple faults, a fault never occurred in an element that was involved in the recovery 

of a previous or simultaneous fault while the recovery process was in progress. In 

paragraph 4.1.3, we have argued that such premise is indeed less restrictive than it 

seems a priori.  
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Table 6-6: Fault scenarios according to the elements involved in the fault 

The fault occurs when… Scenarios 

The communication is already 
established between two elements 

An observer is transmitting a message to another process 
An observer is transmitting a checkpoint or a message log 

transmission to its protector 
A protector is receiving a checkpoint or message log from its 

observer 

An observer tries to communicate with 
another element 

An observer starts a message transmission to another 
process 

An observers starts a checkpoint or a message log 
transmission to its protector 

No communications are present 
A process is just computing 

An observer is idle 

 

We divided the tests according to the instant when a fault occurs in the system. 

There are two major types of scenarios: when two elements are communicating and 

when an observer starts a communication. We summarize these scenarios in table 

Table 6-6. 

In order to explain the tests with failure, we will consider the typical cluster 

structure depicted in Figure 4-3. This cluster contains nine nodes (N0-N8), each one 

running a RADIC protector process (T0-T8) and nine application processes (P0-P8), 

each one attached to an observer (O0-O8). The sequence depicted in Figure 4-11 is an 

example of what happens to the cluster structure if a failure occurs. 

For each scenario, we defined how the elements of the RADIC architecture 

should operate when a fault occurs, and validate the operation of the elements using 

the event-log mechanism. 
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Figure 6-13: Algorithm of the fault injection mechanism 

6.4.1 Failure when a process is just computing 

This is the simplest case because the application process is not interacting with 

any other application process in the cluster when the fault occurs.  The fault detection 

and the recovery procedure actions are:  

1. The protector of the faulty application process detects the fault and mark the 

process as recovering; 

2. The protector starts the recovering procedures for the processes that were in the 

faulty node. 

3. Every recovered observer establishes a new protector and sends the current 

message log file and checkpoint file to it. The observer now has two protectors: 
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the actual one and the new one. These two protectors mark the status of the 

application as recovering. 

4. Every recovered observer opens the message log file and, for each message 

requested from its application process during recovering time, delivers the 

messages from the log file until the application request a message that is not in 

the log. 

5. When the application requests the last message from the log, the observer 

communicates to the protectors that the recover is complete. 

6. The recovered observer reopens its communication channel. Henceforth its 

application process may receive messages from another application processes 

again. 

7. The recovery procedure terminates. The observer terminates its relationship 

with the old protector and signal to the new protector that the application 

process is ready. 

6.4.2 Failure while a process is communicating 

Since there are two observers (source and destination) affected by the fault, we 

are going to evaluate each one point of view. The destination observer simply 

discards the incomplete message that it was receiving from the faulty source. The 

destination observer “knows” that the source will recover and will try to communicate 

again in the future. 

The source observer should run the following algorithm: 

1. Look at the radictable in order to find the destination protector address; 

2. Contact the destination protector. 

3. If the communication with the protector of the destination process fails, then 

starts the algorithm to find the new protector of the faulty process and repeats 

step 2. If the communication is ok, update the radictable to replace the new 

protector of the destination process. 
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4. If the protector answers that the peer is checkpointing or recovering, then wait 

and repeat step 2; 

5. If the protector informs that the peer is ready, update the destination address in 

the radictable. 

6. Send the message. 

At the end of this procedure, the radictable of the source observer will have the 

new address of the destination process together with the address of the new protector 

of the destination process. 

6.4.3 Failure when a process starts a communication 

This scenario is similar to what happens with a source observer if a fault occurs 

when two process are communicating. The only difference is that the source observer 

will not start the communication, because the destination process is faulty.  The 

source observer will follow the same steps described in paragraph 6.4.2. 

6.4.4 Failure when an observer is checkpointing or logging a 

message 

In both cases, the watchdog of the protector must have identified that the node of 

the observer has failed. Therefore, the protector of the process will start the procedure 

to recover the observer. 

6.4.5 The protector node fails when the observer is idle 

This case occurs if no observer is communicating with a protector when it fails, 

i.e., the observer is neither receiving a message from another process (and hence the 

observer is not saving a log in the protector) nor performing a checkpoint. 

In this case, the local protector informs to the observer that its neighbor is faulty.  

When this occurs, the observer must immediately perform a checkpoint. The observer 

will follow a procedure similar to the procedure it follows when the protector fails 

during a message log or checkpoint. 
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6.4.6  The protector node fails when the observer is checkpointing 

In such case, the observer should execute the following algorithm: 

1. Use the radictable to calculate the antecessor address of this current protector. 

From now on, the observer consider this antecessor as its protector; 

2. Connect to the protector; 

3. If the connection fails because the protector is faulty, then repeat step 1 to find 

a new protector. If the protector answers, confirms it as the current protector; 

4. Transmit the pending checkpoint; 

6.4.7  The protector fails when the observer is transmitting a 

message log 

If the protector fails while an observer is logging a message, such observer 

should follow the next sequence: 

1. Use the radictable to calculate the antecessor address of this current protector. 

From now on, the observer consider this antecessor as its protector; 

2. Connect to the protector; 

3. If the connection fails because the protector is faulty, then repeat step 1 to find 

a new protector. If the protector answers, confirms it as the current protector; 

4. Take a checkpoint, such checkpoint includes the message received, and 

transmit it to the new protector; 

 

In this chapter, we validated the fundamental functionalities of the RADIC 

architecture in a real environment. We used a group of different applications that 

served to experiment the transparency, the flexibility, the decentralization and the 

scalability of the RADIC architecture. Each application had different communication-

to-computation ratios and generated different message patterns. The evaluation of all 

scenarios rested on the event-log mechanism of RADICMPI and, of course, on the 
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comparison of the results generated by the applications running in scenarios with 

failures against the results generated in scenarios without failures. 

In the next chapter, we present experiments that served to better understand the 

operation of the RADIC controller in terms of the impact of its parameters have over 

the performance of the application. 

 



  

Chapter 7 

Experiments with RADIC 

In the last chapter, we validated the RADIC architecture in terms of its functional 

requirements: decentralization, flexibility, scalability and transparency. We 

implemented in RADICMPI a fault injection mechanism and an event log 

mechanism, which helped us to assess the behavior of the system in several scenarios.  

Now we will discuss the practical aspects related to the design of RADIC 

architecture and will analyze how the RADIC parameters may affect the application’s 

behavior. For this, we focused on the impact of the operation of RADIC over the 

application performance. This impact is consequence of two factors: the reduction of 

the cluster structure caused by the resources consumed by the fault tolerance scheme, 

and the interference caused by the operation of the fault-tolerant architecture over the 

application. 

Any fault-tolerant architecture for message-passing systems consumes resources 

during its operation. For schemes based on rollback-recovery protocols, these 

resources consumed are, typically, disk storage, network bandwidth, and 

computational time. For the final user, the cost of a fault-tolerant architecture is often 

associated with the enlargement of the execution time of his/her application. On the 

other hand, for a system administrator, the requirements of disk storage or memory 

per node are also relevant. 

The operation of the RADIC controller for fault tolerance consumes the cluster’s 

resources that, originally, would be available for the parallel application. As a result, 

the application "sees" a parallel machine with fewer resources than the resources 

actually available. Such reduced machine will execute the application in a time larger 

than it would execute without fault tolerance. Additionally, the checkpoint and 

message log procedures directly interfere in the application behavior. The 
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computation of a process stops while the checkpoint procedure occurs, and the 

message log procedure increases the message latency. 

We studied the interaction between the operation of the RADIC controller and 

the application using RADICMPI, focusing on how the parameters of the controller 

could influence the system performance, i.e., how the RADIC parameters influence 

the overhead caused by the operation of the fault tolerance mechanism. 

As we have already discussed, the effect of such overhead is an enlargement in 

the execution time of the application and a reduction in the cluster capacity. In the 

RADIC architecture, the main factors that influence the overhead are: 

a) The checkpoint’s interval and the checkpoint’s cost; 

b) The application’s message pattern and the cost of message log; 

c) The interaction between checkpoints and messages with the application 

processes; 

The combination of all these factors make difficult to model a general function 

that represents the cost of the RADICMPI fault tolerance mechanism. Nevertheless, it 

is possible to study the influence of the RADIC parameters for a specific application. 

Therefore, we conducted experiments in order to evaluate the overall impact of the 

interaction between checkpoints and messages in our testing programs. 

These experiments consisted in, for a given application, to study the influence of 

each RADIC parameter over the application behavior. In RADICMPI, these 

parameters were: a) the watchdog/heartbeat cycle; b) the protector’s structure and c) 

the checkpoint interval. 

7.1 Experiments with the watchdog/heartbeat cycle 

The heartbeat mechanism of RADICMPI creates a continuous flow of short 

messages (the heartbeats) between the nodes. In Figure 4-8, we can see an example of 

how the protectors communicate using the heartbeats. 
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Because, in our testing system, these short messages passed through the same 

network structure used by the application processes to communicate, we conducted 

experiments to measure the influence of the heartbeat over the message latency and 

the network throughput. 

The tests consisted in use the ping-pong program to create several message 

patterns between the processes. Then, we execute the program in the system without 

fault tolerance and measure the message latency and network throughput for each 

message pattern. 

To assess the influence of the heartbeats, we first executed the ping-pong 

program without fault tolerance and measured the message latencies and network 

throughput. 

Next, we used the option -justprot available in the command radicrun (see Figure 

5-14.) in order to create only the protectors of the RADIC controller for fault 

tolerance. The protectors started all the threads and the watchdog/heartbeat 

mechanism, but since there are no observers active, the only network traffic generated 

by RADIC comes from the heartbeats. 

Since the literature about fault tolerance does not make any reference about what 

should be the best cycle four our architecture, we could base only in practical 

concerns to guide us in the election of a heartbeat cycle. Considering that the 

watchdog/heartbeat cycle defines how fast a protector detects a failure in its neighbor, 

we assumed that heartbeat cycle of one second would be fast enough for systems 

which intend to execute long-time applications. 

With all heartbeats active, we re-executed the ping-pong program, re-created the 

same message patterns, and measured again the message latencies and the network 

throughput for each message pattern. Finally, we compared the results obtained in the 

executions without fault tolerance against the executions with fault tolerance using 

only watchdog/heartbeat messages. 

The comparison between the results has shown that, in the testing cluster used for 

the experiments, the influence of the heartbeats over the message latency or the 
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network throughput was imperceptible. This result indicated the heartbeat messages 

created a negligible influence over the cluster structure. 

7.2 Experiments with the protectors structure 

In Chapter 6, we conducted experiments to validate that RADICMPI allowed 

different protector's structures, like in the example depicted in Figure 4-14. These 

experiments served to verify the flexibility of the RADIC architecture. 

We used the same experiments to verify if the protectors’ structure would 

influence the performance of the application or the performance of the controller for 

fault tolerance. Figure 4-14 represents an example of how it is possible to make an 

arrangement of two chains in a cluster of nine nodes. We used the same strategy to 

make four distinct structures in a cluster with sixteen nodes: a) two protectors' chains 

with eight nodes; b) three protectors' chains (two with five nodes and one with six 

nodes); c) four protectors' chains with four nodes; d) a chain with all nodes.  

In scenarios without failures, we did not perceive any influence of the protectors' 

structure over the application performance of the RADIC controller performance.  

Then, using the fault injector, we injected faults individually and simultaneously in 

the protectors of each chain in order to verify how the fault tolerance mechanism 

would operate in the different scenarios. In all tests, we respected the limit of faults 

per chain imposed by Equation 3 and, again, we did not assess any difference between 

the operations of the systems with different protector structures. 

Basing on the test results, we assessed that the protector structure does not cause 

impact over the performance of the RADIC controller. The only limit that the 

protector structure causes over the RADIC operation is the maximum number of 

failures that the system can support. 

7.3 Experiments with the checkpoint interval 

From all parameters of RADIC, the checkpoint interval was, by far, the parameter 

that has had more influence over the behavior of the system. This great influence of 
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the checkpoint over the system's behavior is consequence of the interference of the 

checkpoint over the operation of the parallel application. 

In RADICMPI, such interference comes from three factors: a) a process must 

stop during a checkpoint; b) a process cannot communicate during a checkpoint and 

c) a checkpoint increases the network traffic, and interferes on the message latency 

and on the network throughput. 

The first factor is obvious; a checkpoint is a snapshot of the process state. 

Therefore, the checkpoint procedure must stop a process in order to take a steady state 

of it. The process remains stopped until the finish of the checkpoint procedure. The 

longer the checkpoint procedure takes, the longer the enlargement in the runtime of 

the process. 

The second factor occurs because of the first one. The process’ state changes 

when a process communicates. Since a checkpoint is a snapshot of the process’s 

current state, this state may not change while a checkpoint occurs, i.e., a process may 

neither receive nor transmit messages while a checkpoint is in progress. Similarly, the 

checkpoint procedure must retard the beginning of a checkpoint if the process is 

communicating. 

Such compromise between checkpoints and messages causes a delay in the 

beginning of the checkpoint procedure if a checkpoint should starts when a process is 

communicating. Similarly, checkpoints delay message transmissions because of two 

reasons: a) they retard the process normal execution; b) a process may not receive 

messages during a checkpoint, therefore any other process that tries to communicate 

with a “in-checkpoint” process have to wait until the destination concludes its 

checkpoint. 

Finally, the third factor is consequence of the traffic naturally generated by the 

checkpoint procedure. When an observer takes a checkpoint of its process, it must 

send this checkpoint throughout the network until its neighbor protector. Therefore, 

the observers of the RADIC controller for fault tolerance generate a network traffic, 

which interferes with the messages of the parallel application. 
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In the experiments with the checkpoint interval, we fixed the 

communication-to-computation ratio and measured the enlargement in the runtime of 

the application for distinct checkpoint intervals. 

For the tests, we choose the SPMD matrix multiplication program and the 

master/worker matrix multiplication program with dynamic load balance. We choose 

these programs because they offered more flexibility to control the communication-

to-computation ratio. 

In order to enlarge the execution times, we changed the original algorithms to 

force that each node multiplied the matrices blocks more than once. This allowed us 

to take more checkpoints in each experiment. 

In Figure 7-1, we present a summary of some of these tests. The figure represents 

the execution time (in seconds) for the SPMD matrix multiplication program, 

obtained for matrices with 3000x3000 double float elements. Each node repeated ten 

times the multiplication of the matrices’ blocks. 

We used two cluster sizes: nine nodes and sixteen nodes. There are five bars for 

each cluster in the figure. Each bar corresponds to the execution time using a specific 

checkpoint interval, measured in seconds. We experiment the system with different 

checkpoint intervals (240, 300, 360, 420 and 600 seconds) and compared the results 

with the executions without fault tolerance. 

In this experiment with the SPMD program, the communication-to-computation 

ratio changed according to the cluster size. In the cluster with nine nodes, each node 

worked with blocks of 1000x1000 elements, and in the cluster of sixteen nodes, each 

node worked with blocks of 750x750 elements. 

The lower computational load assigned to each node in the large cluster yielded a 

lower cost of the fault tolerance in the cluster with sixteen nodes. This is consequence 

of two factors: a) the checkpoint sizes in the cluster with sixteen nodes were smaller 

because each process operated with less data; b) the message logs were also smaller 

because each process had to communicate less data. 
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Execution times for the SPMD matrix multiplication program using RADICMPI
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Figure 7-1: The minimum structure for a protectors’ chain.  

The combination of these two factors contributed to the different enlargements in 

the execution times. Using Equation 4, we calculate the time overheads caused by the 

operation of the fault tolerance mechanism. 

%1001(%) ×

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



−=

tolerancefaultwithouttimeExecution

tolerancefaultwithtimeExecution
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4 

 

The overheads presented in Table 7-1 shows how much the fault tolerance 

mechanism interferes in the execution time of the application process. This table 

shows the time overhead calculated with equation 4, as a function of the checkpoint 

interval, for the experiments represented in Figure 7-1. The checkpoint interval also 

defined the number of checkpoints taken during the executions, represented in the 

table together with the overhead information. 

We can see in the table that the maximum time overhead was 8,6%. Furthermore, 

we see that the overheads are not directly proportional to the checkpoint intervals. For 

example, in the cluster with 16 nodes, we see that the impact of a single checkpoint is 

very different depending on the moment in which the checkpoint occurs. 

 



158 Chapter 7 

Table 7-1: Influence of the checkpoints over the execution time. 

9 nodes 16 nodes 
Checkpoint interval 

Time overhead # checkpoints Time overhead # checkpoints 

240 s 6,5% 5 8,5% 3 

300 s 8,6% 4 2,7% 2 

360 s 4,3% 3 4,6% 2 

420 s 4,1% 3 6,6% 1 

600 s 5,7% 2 2,8% 1 

 

To analyze this behavior, we used the event log information to asses how much 

time each checkpoint took. The results confirmed that, as we have explained before, 

the interaction between checkpoints and the messages modified the communication 

times between the processes. In practice, the interaction between the checkpoints and 

the application made that some processes had to spend more time inside an 

MPI_Recv() function, creating a message pattern different from the original 

message pattern of the application. 

7.4 Experiments with faults 

In these tests, our interest was to assess the impact of failures in terms of 

execution time. The failure's cost is a combination of distinct factors: time elapsed 

until detecting the fault, time spent to recover failed processes, amount of 

computation lost because of the failure and impact of the failure on the cluster’s 

structure. 

The RADIC parameters determine the first three factors. The watchdog/heartbeat 

cycle defines how long it takes to detect a failure. The recover procedure defines how 

long it takes to recover failed processes. The instant in which the fault occurs inside 

the checkpoint interval determines how long a recovered process has to roll back, i.e., 

how much computation the process must re-execute. 

The last factor, the impact of the failure on the cluster’s structure, strongly 

depends on the application behavior. A failure causes a reduction in the number of 

cluster's nodes and creates unbalance in the computational load between the nodes 
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that has survived after the failure. The impact of such unbalance on the execution time 

depends on how good the application adapts to the cluster's heterogeneity. 

Applications that naturally balance the computational load among the processes adapt 

better to the heterogeneity. Therefore, such applications suffer lower enlargements in 

the execution time if a failure occurs. 

We have conducted experiments in order to assess the time overhead caused by 

failures. In these experiments, we defined the instant of the failure in terms of 

percentage of the total application runtime without failures. 

We focused our attention in the impact of failures on the total application 

runtime. We consider that in a system without a fault tolerance mechanism, the 

application will collapse if a failure occurs in a node. Therefore, the user loses all 

previous computations and has to re-launch the application again. Furthermore, we 

also have to consider that a user is not monitoring his/her application during all time it 

is executing, and hence the fault detection phase and the recovery phase are not 

instantaneous. 

Using such assumptions, we defined that, for a system without fault tolerance, the 

total execution time in case of a failure is expressible by Equation 5: 

 TF = Tlost + Tdet + Tre + TN-1 5 

Where: 

TF – Total execution time in case of a single failure 

Tlost – Failure time. Indicates the computational time since the 

beginning until the moment when the failure occurs. 

Tdet – Time required for failure detection 

Tre – Time required for application recovery 

TN-1 – Total execution time with N-1 nodes 
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Our test procedure consisted in measuring the application runtimes in the 

following scenarios: 

a) without fault tolerance using N and N-1 nodes; 

b) with fault tolerance, with N nodes and different checkpoint intervals, in the 

absence of failures; 

c) with fault tolerance, with N nodes and different checkpoint intervals, in 

different fault scenarios. 

We calculated the execution time for the application without fault tolerance using 

Equation 5 and compared the results against the total execution time with fault 

tolerance. The Table 7-2 presents the results of the experiments in the cluster with 15 

nodes, for the matrix multiplication program with 3000x3000 double float elements, 

using blocks with 1000x1000 float elements. 

At the bottom of the Table 7-2, we inform the execution times for the cluster with 

15 nodes in the absence of failures. The “calculated w/o FT” column corresponds to 

the theoretical execution times according to Equation 5 with T14 equals to 1207 

seconds and considering Tdet and Tre equal to zero. 

We unconsidered those times because we could not define how long the user 

would take to detect the failure and to re-start his/her program. Therefore, we 

assumed the best possible scenario, i.e., automatic instantaneous fault detection and 

program re-start. Such assumption approximates the behavior of the system without 

fault tolerance from the system with fault tolerance. 

Table 7-2: Execution times in the presence of failures for the M/W  matrix multiplication 
program (dynamic load balance) using 15 nodes (1000x1000 elements/block) 

Fault time 
calculated 

w/o FT 
 (T14=1207 s) 

ckpt 600 s ckpt 300 s ckpt 200 s 

fault at 250 s 1457 n/a n/a 1082 

fault at 350 s 1557 n/a 962 1079 

fault at 650 s 1857 1093 1089 1099 

Obs.: n/a = not applicable 

Execution time (in seconds) using 15 nodes in the absence of failures 
w/o FT ckpt 600 s ckpt 300 s ckpt 200 s 

853 884 888 917 
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Figure 7-2 depicts the impact of the failures according to the time in which the 

failure occur.  The bars in the figure represent the execution time in seconds, taller 

bars indicates larger runtimes. 

The advantage of using the RADIC architecture is evident when we compare the 

effects of failures in the system with and without fault tolerance in all cases. The bars 

in the columns “no fault” represent the execution times in the absence of failures.  We 

see that the maximum execution time with fault tolerance (917 seconds for a 

checkpoint interval of 200s) was 7.5% greater of the execution time without fault 

tolerance (853 seconds). Larger checkpoint intervals generated a lower impact over 

the execution time in the absence of failures. 

However, when failures occurred, the advantage of the fault-tolerant architecture 

becomes clear. The execution times using RADIC were always inferior to the 

execution times without fault tolerance. We can see that the best benefits of RADIC 

architecture appeared when the failure occurs near the end of the application. This 

occurs because, when the system operates without fault tolerance, if the program fails 

it wastes all computation done and it must restart since the begging. 

Influence of faults over the execution time for the 

M/W matrix multiplication program using dynamic load balance
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Figure 7-2: Impact of faults over the execution time in the M/W matrix multiplication 

program using dynamic load balancing (1000x1000 elements/block) 
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We repeated the same tests now using blocks of 600x600 elements in order to 

experiment the system with a different computation-to-communication ratio. Table 

7-3 represents the execution times (in seconds) assessed in this experiment. The new 

communication-to-computation ratio has created a different application behavior 

because now the checkpoints are lower and the number of message logs increased 

because there are more messages between processes. 

Table 7-3: Execution times in the presence of failures for the M/W  matrix multiplication 
program (dynamic load balance) using 15 nodes (600x600 elements/block) 

Fault time 
calculated 

w/o FT 
 (T14=888 s) 

ckpt 600 s ckpt 300 s ckpt 200 s 

fault at 250 s 1138 n/a n/a 970 

fault at 350 s 1238 n/a 957 928 

fault at 650 s 1538 831 954 924 

Obs.: n/a = not applicable 

Execution time (in seconds) using 15 nodes in the absence of failures 
w/o FT ckpt 600 s Ckpt 300 s ckpt 200 s 

812 855 853 879 

 

Figure 7-3 compares the total execution times for the experiment. The bars in the 

columns “no fault” represent the execution times in the absence of failures.  The 

maximum execution time with the fault tolerance (879 seconds for a checkpoint 

interval of 200 seconds) was 8.3% greater of the execution time without fault 

tolerance (812 seconds). 

Comparing the results obtained for the two experiments with the matrix 

multiplication using dynamic load balance algorithm, we notice that, when the blocks 

are smaller, the overheads caused by faults are a little greater than when the blocks 

are larger. The reason for this is the increment in the number of messages during the 

application execution. 

When we increased the number of messages two symptoms may occur. First, the 

cost of message log increased. Second, the influence of the checkpoints over the 

messages increased. The first factor is obvious, more messages generate more 

message logs and this creates more interference in the application behavior. The 

second factor is consequence of we have explained previously in this chapter.  
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Influence of faults over the execution time for the 

M/W matrix multiplication program using dynamic load balance

Matrices 3000x3000 double float elements (600x600 elements/block)
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Figure 7-3: Execution times in presence of faults for the master/worker with dynamic load 

balance using 15 nodes (blocks 600x600) 

 

In this chapter, we evaluated the design parameters of the RADIC fault tolerance 

architecture. We presented several experiments that allowed us to understand better 

the practical implications of each parameter over the application performance. 

Based on these experiments, we concluded that the watchdog/heartbeat 

mechanism had an imperceptible influence over the application execution time. We 

also concluded that the protector's structure did not interfere in the runtime of the 

application. Nevertheless, we verified that the number of protectors in a chain bounds 

the number of fault that the system may suffer without crash. 

Finally, we assessed the influence of the checkpoint interval together with the 

application communication-to-computation ratio in different fault scenarios. We 

concluded that these parameters are the critical factors that determine the impact of 

the RADIC controller for fault tolerance over the application runtime. 





  

Chapter 8 

Conclusions 

The current trend for the parallel computers indicates that the size and the 

complexity of these machines will continue to increase in the near future. In this 

scenario, users and system administrators will need tools and mechanisms that help 

them to manage failures transparently, efficiently and with as little influence as 

possible on the creation and execution of the parallel application. 

These large parallel computers require new fault-tolerant architectures that can 

manage faults transparently and with little interference over the system performance. 

Adaptability to the system’s features (like the system’s scalability) and flexibility are 

also key features that such fault-tolerant architectures must simultaneously attend. 

This thesis describes RADIC (Redundant Array of Distributed Independent Fault 

Tolerance Controllers), the fault tolerance architecture capable to face the current 

challenges of fault tolerance for the modern parallel computers. RADIC creates a 

fully distributed fault tolerance controller based on the collaboration of two types of 

processes: observers and protectors. Because protectors and observers share the same 

resources reserved to the parallel application processes, such controller automatically 

performs all activities required to implement fault tolerance in a parallel computer, 

without needing dedicated or fully stable elements. 

By putting one protector in each node reserved for the parallel application, 

RADIC creates a protection chain in which a protector monitors at least one other 

protector in its neighborhood. Therefore, the system has a fully decentralized fault 

detector in which a node can detect failures in a neighbor node. The protector's chain 

is flexible in order to allow that several protectors monitor a node. Therefore, a 

survivor protector can always detect and manage simultaneous failures that could 

affect two or more neighbor nodes. The flexibility of the protector’s chain makes 
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possible that the RADIC controller easily adapts to different parallel computer 

structures. 

The observers monitor the processes of the parallel application and communicate 

with a protector in a neighbor node, in order to save the information required by the 

rollback-recovery protocol. Since there is one observer attached to each application 

process, this structure creates a decentralized storage in which there is no central 

element involved in the operation of the fault-tolerance mechanism. 

The decentralized operation of our architecture is one of its strongest features. 

Because the fault tolerance controller does not have any central element, its operation 

does not compromise the scalability of the parallel application. Although the 

scalability suffers the interference of the rollback-recovery protocol, because of the 

overheads caused by checkpoints and message logs, RADIC minimizes such 

interference using a fully distributed structure. Our tests showed that increasing the 

number of nodes in the cluster did not influence the behavior of the fault tolerance 

mechanism. 

The implementation of RADIC in a system requires no modification in the 

parallel application. The mechanism operates as a layer between the message-passing 

mechanism and the parallel computer's structure. The parallel application does not 

have to concern about the operation of the fault tolerance mechanism; however, 

thanks to the flexibility of the architecture, it is possible to adjust the parameters of 

the fault-tolerant architecture in order to attend to particular application requirements.  

The principles and the functional model of the RADIC architecture appeared for 

the first time in ParCo 2005 conference [Duarte, et al., 2005]. For the experiments, 

we developed an implementation based on the MPI standard (RADICMPI). 

In the tests, we chose three different parallel applications and compiled their 

source codes with a legacy MPI implementation (MPICH-1.2.7) and with 

RADICMPI.  The applications generated the same results in all cases (even in the 

presence of failures) confirming the transparency of the architecture. The test bed was 

a cluster built with common off-the-shelf IBM-PC machines with no special fault 

tolerance feature. 
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After prove that the functionality of the architecture, we redesign RADIC to 

operate as a layer between the message-passing application and the parallel computer 

structure. In the 13
th

 EuroPVM/MPI, we demonstrated the results of the new 

structure [Duarte, et al., 2006b]. 

Thanks to the new structure of observers and protectors, we managed to reduce 

the overheads caused by the operation of the fault tolerance mechanism. In the 2006 

IEEE International Conference on Cluster Computing, we presented the 

performance results of our new RADICMPI implementation [Duarte, et al., 2006a].  

Because the RADIC controller works as a distributed application, sharing the 

computer’s resources with the parallel application processes, we had to design a test 

procedure in order to assure that the fault tolerance controller worked correctly in all 

possible fault scenarios. To perform the tests, we implemented a fault injection 

mechanism in RADICMPI, which created all fault scenarios required to experiment 

the system. We explained the test procedure and the failure injection mechanism in 

the 15
th

 Euromicro Conference on Parallel, Distributed and Network-based 

Processing [Duarte, et al., 2007]. 

The results obtained with different types of parallel applications using 

RADICMPI shown that that the interference of the fault tolerance operation have not 

imposed a strong overhead over the execution time in failure free executions. We 

argue that this is because of the RADIC distributed mechanism, which allows that 

fault tolerance procedures work concurrently with the parallel application. 

Nevertheless, it has become clear that the message pattern, and the communication-to-

computation ratio, of the parallel application strongly interfere on the overhead 

caused by the fault tolerance operation. 

In the presence of failures, the overhead is strongly dependent of how the parallel 

application suffers with the unbalancing caused by the reduction in the parallel 

computer's structure. Failures have low influence over the total execution time of 

parallel applications that have a dynamic computational load balancing. Conversely, 

parallel applications in which the load balance is static greatly suffer the influence of 

failures. 
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We confirmed this behavior by comparing the matrix-multiplication algorithms in 

executions with failures. In our tests, the algorithms that used static load balancing 

(Master/Work with static balancing and Canon) suffered a strong enlargement in the 

execution time after a failure. Such enlargement occurred because a process recovers 

in a node that already has another application processes. Because the load balance is 

rigid, nodes that received recovered processes become slower and the total application 

execution time enlarged. 

On the other hand, failures produced a low impact on the execution time of the 

master/worker program using dynamic balancing. This algorithm has a natural 

mechanism for balancing the computational load between the workers, because the 

master automatically distributes more workload to faster workers. Therefore, when a 

node becomes slower because it has to execute its original process together with a 

recovered process, the master will send less work for the processes that are in this 

node, balancing the workload between the faster nodes. 

8.1 Future Works 

The RADIC architecture relies on a simple and powerful idea: the complete 

distribution of the fault tolerance mechanism throughout the nodes of the parallel 

computer. In this thesis, we explained the architecture and presented a RADIC 

prototype, namely RADICMPI, which served to test the concepts of the architecture 

in practice. 

There are still many open questions. Some of them relate to theoretical aspects of 

RADIC, while others refer to the practical issues about RADICMPI. We address such 

open questions in the next paragraphs. 

8.1.1 The future of the RADIC architecture 

A major question about the RADIC architecture is how it will operate in large 

parallel computers. The elements of the fault tolerance controller interact without any 

global synchronization and are fully distributed throughout the nodes of the parallel 

computer. The decentralized operation of RADIC a priori does not compromise the 
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scalability of the system. So far, our tests indicated that the number of nodes of the 

computer does not affect the operation of the fault tolerance controller. However, it is 

necessary to keep researching about how protectors and observers will operate in 

larger and complex structures, like hypercubes or crossbar topologies. 

We have to develop some strategy to guide the protection mapping for these 

complex architectures. Because the RADIC controller is a parallel application, the 

distribution of the protectors must take into consideration the parallel computer 

structure. The network distance between two neighbor protectors must be as short as 

possible in order to minimize the effects of the network latency over the 

heartbeat/watchdog mechanism, and to reduce the traffic of heartbeats throughout the 

network. For example, processes that have large states or that receive many messages 

must be placed as near as possible from their protectors in order to reduce the 

interference of the traffic of checkpoints and message logs over the network. 

In order to study the operation of RADIC in such large and complex systems, we 

have to develop a simulator to help us in the study of the architecture in such systems. 

The simulator will is an indispensable tool for studying the interaction between 

RADIC and the system and for studying the influence of the fault tolerance 

parameters over the application performance.  

In order to build the simulator, we are developing an analytical model that 

describes the RADIC operation in terms of its functional parameters. Such model will 

relate the parameters of the three major elements of the system: the parallel computer 

(fault distribution, latency and the bandwidth networks, and disk throughputs) the 

parallel application (computation-to-communication ratio, message sizes and state 

sizes,) and RADIC (checkpoint intervals, heartbeat frequency,) in order to describe 

the impact over the system (time overheads, resources consumed). 

One important question is how to adjust the checkpoint in order to reduce the 

overhead in failure free executions without compromise the fault penalty. The 

literature about fault tolerance contains several works dedicated to the optimization of 

the checkpoint interval and we have to verify how to apply this knowledge to RADIC. 
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Another interesting question is how RADIC would operate using a different 

rollback-recovery protocol. In practice, any observer-protector or protector-protector 

relationship may exist in order to implement another rollback-recovery protocol. We 

created RADIC using the receiver-based pessimistic message log protocol because 

this is the only protocol in which the recovery process is local. Therefore, this 

protocol does not compromise the scalability, one of the major features of the RADIC 

architecture. However, we want to investigate how RADIC will function with 

protocols like causal protocols or sender-based protocols, in order to establish the 

advantage and disadvantage of these protocols in our scheme. 

We also need to generalize the concept of failures in RADIC by expanding the 

activities of protectors and observers in order to enlarge the spectrum of failures that 

the controller may detect. Currentely, the fault tolerance controller bases on 

communication failures in order to detect faults. It assumes that the only way to 

establish that an element has failed is when such element stops to communicate. 

Furthermore, if an element has failed, it is “detached” of the system. 

To generalize the fault detection, protectors and observers need to assume new 

activities as, for example, to create a protocol that manages transient failures. Such 

protocol could establish that a node is suspicious before of establishing that the node 

is faulty. Therefore, if the node begins to operate again, the system may reuse it to 

reestablish the original load balance of the application or as a spare node to recovery 

the processes that can fail in the future. 

8.1.2 The future of RADICMPI 

RADICMPI contains a small subset of MPI-1 communication's functions. The 

development of a full fault-tolerant MPI implementation demands a huge effort that 

requires a large amount of resources. Therefore, we have started negotiations with the 

developers of MPICH, namely the Laboratory for Scalable Parallel System Software 

of the Argonne National Laboratory in Chicago-USA, in order to integrate the 

RADIC concepts in the MPICH implementation. 
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Meanwhile, we continue the development of RADICMPI. Currently, we are 

working in two major lines. First, we are including more communication functions in 

order to test a larger number of parallel applications. The first set of functions are the 

nonblocking communication functions, which demands that the log protocol consider 

a new group of determinants created by the MPI_Test() function. At the future, 

we intend to include the buffered, synchronous and ready modes into the 

MPI_Send() and MPI_Recv() functions; and to implement the collective 

communication functions. 

The second line is the utilization of spares in order to mitigate the fault penalty 

caused by the reduction in the parallel computer’s structure after a failure. We know 

that the cost of a fault depends on how long the RADIC controller takes to detect the 

fault, how long it takes to recover the process and how much of computation was lost. 

This cost relates to the parameters of the fault tolerance controller, namely, the 

heartbeat cycle and the checkpoint interval.  

Additionally, the load unbalance caused by the redistribution of the recovered 

processes is another factor that determines the impact of a failure over the execution 

runtime. The effects of this factor strongly relates to how the parallel application will 

react to the new structure of the parallel computer. 

Parallel algorithms with dynamic load balance will better adapt to changes in the 

cluster structure, mitigating the cost of a fault. However, these algorithms typically 

generate more messages between the processes than their equivalents using static load 

balance. This behavior increases the impact of the message log and the checkpoint 

interval over the application execution. 

To avoid the impact of the load unbalancing, we have to include spare nodes in 

the system. Therefore, when a node fails, the process in the faulty node will recover in 

a spare node. In order to face such challenge, we are currently improving RADICMPI 

to support spare nodes that can recover faulty processes. We have presented the idea 

of using spares nodes at CACIC’2006 congress [Santos, et al., 2006]. The first 

results were promising and we believe that this strategy is crucial to satisfy the 

requirements of time-critical applications. Therefore, we kept the development of the 
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idea and obtained new results that are going to appear in the ParCo2007 congress 

[Santos, et al., 2007]. 

Additionally, in the near future we can make two improvements in RADICMPI 

for mitigating the impact of checkpoints and message logs over the application 

runtime: to implement a quasi-synchronous checkpoint protocol based on 

communication failures caused by checkpoints. 

In a quasi-synchronous protocol, whenever a sender process gets a 

communication error with a receiver process, the sender would evaluate if the error 

occurred because the receiver was in a checkpoint procedure. If the receiver is making 

a checkpoint, then the sender may decide to make a checkpoint also, instead of just 

waiting for the receiver is available again. Therefore, the sender uses the time that it 

would be waiting for the receiver to take its own checkpoint, reducing the impact of 

the checkpoints over the execution. 

Another improvement is to use multicast communications in order to reduce the 

message log cost. In such scheme, the sender observer should simultaneously send the 

message to the receiver observer and to the protector of the receiver observer, 

reducing the time of the log procedure. We believe that such multicast 

communications will be decisive in order to reduce the cost of fault tolerance for the 

MPI collective communications. 

 

The RADIC architecture debuted in this thesis and has a large future ahead. As 

we have shown in the last paragraphs, we are far from complete exploring all 

theoretical and practical aspects of the architecture. So far, RADIC has demonstrated 

its great potential as a fault-tolerant architecture for message-passing systems. 

Nevertheless, we are aware that many aspects need more investigation and that 

additional works must complement the description we have made in this thesis. In the 

future, our goal is to establish RADIC as a general fault-tolerant platform for the 

current and future message-passing implementations. We believe that this work has 

contributed to achieve this goal. 
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