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Voldria agrair al grup ADAS l’haver sobreviscut en més d’un assaig de presentació
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i per fer respectar el silenci de la sala algun cop puntual.

A la gent del CVC en general i sobretot al grup amb els qui m’he fet més: Enric i
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Abstract

This work is focused on the missing data matrix factorization addressing the Structure
from Motion (SFM) problem. The aim is to decompose a matrix of feature point
trajectories into the motion and shape matrices, which contain the relative camera-
object motion and the 3D positions of the tracked feature points, respectively. This
decomposition can be found by using the fact that the matrix of trajectories has a
reduced rank. Actually, when the trajectories belong to a single object, the rank of
the matrix is at most 4. Although several techniques have been proposed to tackle
this problem, they may give undesirable results when the percentage of missing data
is very high. An iterative multiresolution scheme is presented to deal with matrices
with high percentages of missing data. The idea of the proposed scheme is to consider
submatrices with a low percentage of missing data. Then, missing data in these
submatrices are filled in, by using a factorization technique. The final goal is to
improve the results applying a factorization technique to the filled in matrix with
the proposed scheme, instead of applying it directly to the given input matrix, which
has a high percentage of missing data. Experimental results show the viability of the
proposed approach.

In the multiple objects case, factorization techniques can not be directly applied
to obtain the SFM of each of the objects, since the trajectories are not sorted into
different objects. Furthermore, another problem should be faced out: the estimation
of the rank of the matrix of trajectories. The problem is that, in this case, the rank of
the matrix of trajectories is not bounded, since any prior knowledge about the number
of objects nor about their motion is used. This problem becomes more difficult with
missing data, since the singular values can not be computed to estimate the rank. A
technique to estimate the rank of a missing data matrix of trajectories is presented.
The intuition behind the proposed technique is that, since feature point trajectories
belong to surfaces of rigid objects, the frequency spectra of the input matrix should
be preserved after recovering missing entries. Missing data are filled in by applying
a factorization technique considering different rank values. The rank of the matrix
of trajectories is estimated by using a measure of goodness that compares the fre-
quency spectra of each filled in matrix with the one of the input matrix. The good
performance of the proposed technique is empirically shown considering sequences
with both, synthetic and real data. Once the rank is estimated and the matrix of
trajectories is full, the motion segmentation of the trajectories is computed. Finally,
any factorization technique for the single object case gives the shape and motion of

iii



iv ABSTRACT

every object.

In addition to the SFM problem, this thesis also shows other applications that
can be addressed by means of factorization techniques. Several problems in which
data can be stored into a matrix and that can present missing data are studied,
searching for similarities and differences with the SFM problem. The Alternation
technique, which is used through the thesis, is adapted to address each particular
problem. The first proposed application is the photometric stereo: the goal is to
recover the reflectance and surface normals and the light source direction at each
frame, from a set of images taken under different lighting conditions. Pixels in shadow
and specularities are considered as missing data. Hence, these points do not affect
the final results. In a second application, the aim is to fill in missing data in gene
expression matrices by using the Alternation technique. These matrices are generated
taking information provided by DNA microarrays. However, missing data can occur
during the data acquisition process. Finally, the Alternation technique is adapted to
be applied in recommender systems, widely considered in E-commerce. The idea of
recommender systems is to predict the rates that a particular customer would give to
items, by using information stored in the system. This information consists of rates
provided by the current customer and also by the rest of customers that have used
the system. For each application, experimental results are given in order to show the
good performance of the proposed Alternation-based strategy.



Resum

Aquest treball es centra en la factorització de matrius per obtenir l’Estructura a
partir del Moviment (SFM). La idea és descomposar la matriu de trajectòries en la
matriu de moviment, que conté la posició relativa càmera-objecte a cada frame, i la
matriu de forma, que conté les coordenades 3D dels punts caracteŕıstics. Aquesta
factorització es pot obtenir utilitzant que la matriu de trajectòries té un rang redüıt.
En particular, si les trajectòries pertanyen a un únic objecte ŕıgid, la matriu té com a
molt rang 4. Tot i que s’han proposat diverses tècniques per tractar el problema de les
matrius amb forats, aquestes poden no donar resultats correctes quan el percentatge
de forats a la matriu és molt gran. Proposem un esquema multiresolució iteratiu
per poder tractar aquests casos amb molts elements buits a la matriu de trajectòries.
L’esquema proposat consisteix en considerar submatrius amb un percentatge de forats
redüıt. Seguidament, els forats d’aquestes matrius són emplenats aplicant un mètode
de factorització. L’objectiu final és obtenir millors resultats aplicant un mètode de
factorització a la matriu emplenada amb l’esquema que proposem, enlloc d’aplicar-
lo a la matriu inicial, que presenta un elevat percentatge de forats. Els resultats
experimentals certifiquen la validesa de l’esquema que proposem.

En el cas de matrius de trajectòries corresponents a punts caracteŕıstics que per-
tanyen a diversos objectes, les tècniques de factorització no es poden aplicar direc-
tament per obtenir el moviment i la forma de cada objecte, ja que les trajectòries
no estan ordenades per objectes. A més a més, s’ha de tenir en compte un altre
problema: l’estimació del rang de la matriu de trajectòries. El problema és que amb
forats, el rang de la matriu no pot ser calculat directament. A més a més, com que hi
ha múltiples objectes, és dif́ıcil d’estimar-lo, sense fer ús d’informació com ara nom-
bre d’objectes o del tipus de moviment d’aquests. Presentem una tècnica per estimar
el rang d’una matriu de trajectòries amb forats. La idea és que, si les trajectòries
pertanyen a objectes ŕıgids, la freqüència espectral de la matriu de trajectòries inicial
no hauria de variar un cop la matriu ha estat emplenada. Els forats de la matriu són
emplenats amb un mètode de factorització, considerant diferents valors per al rang de
la matriu. Al mateix temps, el rang de la matriu de trajectòries és estimat fent servir
una mesura que compara la freqüència espectral de cada matriu emplenada amb la de
la matriu inicial. La tècnica d’estimació del rang proposada és validada considerant
seqüències sintètiques i reals. El proper pas consisteix en segmentar les trajectòries
segons el seu moviment. Finalment, qualsevol tècnica d’Estructura a partir de Movi-
ment (SFM) per a un únic objecte pot ser aplicada per trobar el moviment i la forma
de cadascun dels objectes.
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vi RESUM

Intentem aplicar la metodologia proposada per al problema de l’Estructura a partir
de Moviment (SFM) a d’altres aplicacions, no només dins el camp de la visió per
computador. En particular, l’objectiu és adaptar els mètodes Alternats, usats al llarg
de tota la tesi, per poder aplicar-los a diferents problemes. Per a poder dur-ho a
terme, diferents problemes són estudiats, buscant les diferències i semblances amb el
problema de l’Estructura a partir de Moviment. A continuació, els mètodes Alternats
són adaptats de manera que puguin ser aplicats per poder resoldre el problema en
concret. Una de les possibles aplicacions és la fotometria: la idea és recuperar la
reflectància i les normals a la superf́ıcie i la direcció de la llum en cada imatge, a
partir d’imatges obtingudes sota diferents condicions de llum. Proposem considerar
els ṕıxels que pertanyen a una zona amb ombres o a una zona saturada com a forats
a la matriu de dades. D’aquesta manera, aquests punts no afectaran el resultat final.
En una segona aplicació, l’objectiu és adaptar els mètodes Alternats per poder omplir
els forats en una matriu de dades provinents d’expressions de gens. Aquestes matrius
són generades amb la informació que proporcionen els DNA microarrays. Aquesta
tècnica permet visualitzar tots els gens a la vegada. Finalment, els mètodes Alternats
són adaptats i aplicats a matrius de dades de sistemes de recomanació, molt usats
en E-commerce. Aquestes matrius contenen puntuacions que els usuaris han donat
a certs productes. La idea és predir les puntuacions que un usuari concret donaria
a altres productes, utilitzant la informació emmagatzemada en el sistema. Aquesta
informació ha estat proporcionada pel propi usuari i per tots els que han entrat algun
cop al sistema. En totes tres aplicacions, es presenten resultats experimentals per
validar les respetives adaptacions dels mètodes Alternats.
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Chapter 1

Introduction

Several problems can be reduced to find the closest low-rank matrix approximation
of a large matrix. Some of these problems can be found in fields so different such
as: computer vision (e.g., Structure from Motion [110, 109], optical flow estima-
tion [65]), bioinformatics (e.g., data mining [116, 5]), photometry (e.g., [9, 133]),
marketing (e.g., recommender systems [99, 15]), image compression (e.g., [127]) or
PCA (e.g., [27]). In fact, in the last case, the aim is to find the closest low-dimension
subspace, instead of the closest low-rank matrix.

This thesis is focused on the Structure from Motion (SFM) problem, which consists
in extracting the 3D object shape as well as the relative camera-object motion from
2D trajectories of tracked features. This problem can be applied in robotics, virtual
reality or generation of 3D digital models from real objects.

In computer vision context, the factorization technique, which was originally
introduced by Tomasi and Kanade [110], is a theoretically sound method addressing
the SFM problem. The idea of the factorization technique is to project a set of 3D
feature points into the image plane and to track the obtained 2D image coordinates
along various frames. These 2D image coordinates are stacked into a matrix of trajec-
tories and the aim is to factorize this matrix into the relative camera-object motion
and the object shape (3D position of the tracked feature points). That is, factoriza-
tion aims at expressing the matrix of trajectories (denoted as W ) as the product of
two unknown matrices, namely, the relative camera-object motion at each frame (M)
and the 3D object shape (S): W = MS. These matrices are referred to as motion
and shape matrices, respectively.

In the original approach [110], a rigid object is observed by an affine camera. That
camera model is also used through this thesis. The key point is that the rigidity of
the scene imposes that the matrix of trajectories lies in a low-dimensional subspace.
Therefore, the Structure from Motion problem can be reduced to find the closest
low-rank approximation to the matrix of trajectories. For instance, in the case of a
single rigid moving object, and under affine camera model, the rank of the matrix of
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2 INTRODUCTION

trajectories is at most 4. The Singular Value Decomposition (SVD) [43] is, in general,
used to obtain the best approximation in the least-squares sense when the matrix of
trajectories is full. That is, when the 2D tracked feature points are visible in all the
frames.

Fig. 1.1 presents an illustration of factorization applied to the SFM problem.
Concretely, Fig. 1.1 (a) shows several frames of a sequence considered for the example.
The camera is fixed, while the object rotates around a vertical axis. Feature point
trajectories plotted into the image plane are shown in Fig. 1.1 (b). Each feature point
trajectory is stacked into each column of the matrix of trajectories W (see Fig. 1.1 (c)).
Hence, each row of the matrix correspond to each frame of the sequence. The elements
of the matrix of trajectories are represented by means of a grey level scale. The x and y
coordinates are stacked separately: the upper part corresponds to the x–coordinates,
while the bottom part correspond to the y–coordinates. If the factorization technique
is applied to W , the decomposition given in Fig. 1.1 (d) is obtained. Notice that W̃
is the best rank-4 approximation of W . An example of the factors obtained with the
factorization is provided: the relative camera-object motion in the five studied frames
(Fig. 1.1 (e)) and the 3D positions of the tracked feature points (Fig. 1.1 (f)).

Several variants of the original factorization approach have been proposed in the
literature: some of them are based on more accurate camera models such as scaled
orthographic projection [20], weak perspective (e.g., [124, 134]), para-perspective [91]
and the purely perspective cameras (e.g., [113, 83]) (details on the different camera
models can be found in [55]); others consider non-rigid (e.g., [30, 29]) or articulated
objects (e.g, [125, 112]).

1.1 Motivation

In real situations, feature point trajectories can be incomplete or split up due to
objects occlusions, missing on the tracking or simply because some features exit the
camera field of view. It results in missing entries in the matrix of trajectories. Since
the SVD can not be directly used with missing data, other techniques should be
considered. Although several approaches have been proposed to tackle the Structure
from Motion problem through factorization of a missing data matrix, the problem
has not a closed form solution yet. Actually, some of the proposed techniques can not
deal with high percentages of missing data.

Fig. 1.2 shows an example of a sequence where some feature points are occluded,
giving missing data in the matrix of trajectories. Five frames of the considered se-
quence are depicted in Fig. 1.2 (a). The camera is fixed, while the dinosaur rotates
around a vertical axis. Feature point trajectories plotted into the image plane are
shown in Fig. 1.2 (b). The obtained matrix of trajectories, generated as in the pre-
vious example, is shown in Fig. 1.2 (c). White points correspond to unknown entries
in W . In this example, unknown entries are due to points that are self-occluded by
the object, due to the rotation. If the factorization technique is applied to W , the
decomposition given in Fig. 1.2 (d) is obtained. Fig. 1.2 (e) depicts the obtained



1.1. Motivation 3

50 100 150 200 250 300 350 400 450
-450

-400

-350

-300

-250

-200

-150

-100

-50

feature point trajectories
fram

es

X

y

mfW2

f: number of frames

m: number of feature points

factorization technique, r=4

mfmf SMW 4422
~

-20020406080
-150 -100 -50 0 50 100 150

-150

-100

-50

0

50

100

252

253

254

255

263

264

265

266

267

268

269

SM

t

(a)

(b)

(e)

(d)

(f)

(c)

X

y
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into the image plane; (c) matrix of trajectories W ; (d) obtained decomposition by
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feature points, S.
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full trajectories plotted into the image. An example of the factors obtained with the
factorization is provided: the relative camera-object motion (Fig. 1.2 (f)) and the 3D
positions of the tracked feature points (Fig. 1.2 (g)).

In the multiple objects case, further considerations should be taken into account.
First of all, factorization techniques can not be directly used to decompose the matrix
of trajectories into the shape and motion matrices; on the one hand, each object has
different motion and on the other hand, trajectories are not sorted into different
objects in the matrix of trajectories. Therefore, Structure from Motion problem
should first segment the matrix of trajectories into different objects, in order to be
able to apply a single object technique to obtain the SFM of every object. Secondly,
an additional problem should be faced out: the estimation of the rank of the matrix
of trajectories. In this case, the rank of the matrix W is not bounded as in the single
object case (where the rank is 4 at most), since any prior knowledge of the scene,
such as number of objects or kind their motion is used. This problem becomes more
difficult when the matrix of trajectories has missing data, since the singular values
can not be used to estimate the rank and it can not be directly computed.

1.2 Objective

The main objective of this thesis is to obtain the 3D shape and the relative camera-
object motion from a given matrix of trajectories that contains missing data. The
factorization technique is used to address this problem. The trajectories can belong
to a single or to multiple objects. Furthermore, this thesis also aims at adapting the
factorization technique, in particular the Alternation, to tackle other problems, apart
from SFM.

In summary, this thesis aims at:

• obtaining the SFM by factorizing trajectory matrices that have a high percent-
age of missing data. To do that, an iterative multiresolution scheme is proposed,
focused on the single object case. The underlying idea of the proposed approach
is to consider submatrices with a low percentage of missing data. Then, a fac-
torization technique can be applied to fill in missing data in these submatrices.
The goal is to improve results when a factorization technique is applied to the
filled in matrix with the proposed approach, instead of to the original matrix,
which has a high percentage of missing data.

• recovering the shape and motion from a missing data matrix of trajectories,
which belong to different rigid objects. First of all, a novel technique to estimate
the rank of the missing data matrix of trajectories is presented. Then, the
trajectories are segmented into different objects. Finally, the shape and motion
of every object contained in the scene can be recovered, by applying any single
object technique.

• applying factorization techniques to tackle problems apart from SFM. Con-
cretely, adaptation of the Alternation technique to address problems in the
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contexts of photometric stereo, bioinformatics and recommender systems are
proposed.

1.3 Thesis Outline

The remainder of this dissertation is organized as follows. Chapter 2 introduces the
problem formulation, both for the single and the multiple objects cases. Furthermore,
a detailed State of the Art of different factorization approaches focused on the SFM
problem, is provided.

Chapter 3 presents the Alternation technique in detail. Due to its simplicity and
good performance, this technique is used along all the thesis to obtain the best low-
rank approximation of a given matrix. Furthermore, different missing data structures
are presented and the performance of Alternation is studied in each case. Finally, it
is empirically shown the filtering capability of this technique.

Chapter 4 focus on the SFM problem of a single object through factorization of ma-
trices with a high percentage of missing data. First, a variant of Alternation focused
on the SFM problem is proposed: Alternation with motion constraints. It consists in
imposing the orthonormality of the camera axes at each iteration and the goal is to
obtain an Euclidean 3D reconstruction, instead of an affine one. Additionally, it is
studied the possibility of adding prior knowledge to the problem. In particular, the
smooth camera motion is considered. An iterative multiresolution scheme is proposed
in order to factorize matrices with a high percentage of missing data. The key point
is to consider submatrices with a reduced percentage of missing data. Then, missing
data in these submatrices are filled in by using Alternation with motion constraints.
It is shown that the results obtained when a factorization technique is applied to
the matrix filled in with the proposed iterative scheme are better than when applied
directly to the given input matrix, which has a high percentage of missing data.

The SFM in the multiple object case with missing data is studied in Chapter 5.
A rank estimation technique is proposed for the case of missing data matrices whose
trajectories belong to multiple objects. The intuition behind the proposed technique
is that, since feature point trajectories belong to surfaces of rigid objects, the be-
haviour of the recovered missing entries due to the movement should be similar to
the one of the initially known entries. If this movement is interpreted as signal, that
movement similarity is identified with the fact that the frequency spectra of the in-
put matrix should be preserved after recovering missing data. Different rank values
are considered and a factorization technique is applied to fill in missing entries. A
measure of goodness, which compares the frequency spectra of each filled in matrix
with the one of the input matrix, is defined. It is empirically shown the viability of
the proposed technique. Then, any motion segmentation approach can be applied in
order to segment the trajectories into different objects. Experimental results show
the significance of a correct rank estimation before applying a motion segmentation
technique. Finally, the SFM of every object is obtained by applying any technique
for the single object case.
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Chapter 6 contains several examples of applications that can be tackled with the
Alternation technique apart from the Structure from Motion (SFM) problem. First
of all, problems in which data can be stored into a matrix and that can present
missing data are selected. Then, each problem is studied, searching for similarities
and differences with the SFM problem. Finally, the Alternation is adapted to ad-
dress the particular problem, if possible. The first application consists in adapting
the Alternation technique to the photometric stereo problem. The goal is to recover
the surface normals and reflectance of an object by using intensity images obtained
under different lighting conditions. The entries corresponding to shadows and spec-
ularities are considered as missing data. These pixels have extremely low and high
image intensities and may influence wrongly the final result. In a different frame-
work, the Alternation technique is adapted to fill in missing entries in gene expression
data matrices, which are generated with information provided by DNA microarrays.
This is a technique widely used nowadays, since the information of life of any liv-
ing organism resides in the function of thousands of genes. These data can provide
fundamental understanding of life on the molecular level and may be useful in med-
ical diagnosis, treatment and drug design. Finally, an adaptation of the Alternation
technique is used in recommender systems, which are widely considered on Electronic
commerce. The main objective of recommender systems is to help customers to find
products they will probably like or dislike. The Alternation technique is adapted to
give recommendations to customers by using information stored in the system. This
information consists of rates provided by the current customer and also by all the
customers that have previously used the system. For each application, experimental
results, which include real data, are provided in order to show the viability of each
proposed adaptation.

Finally, Chapter 7 summarizes the entire work, highlighting its principal contri-
butions and proposing future lines of research.
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Chapter 2

Factorization. State of the Art

This Chapter introduces factorization problem formulation. Firstly, the original ap-
proach [110] is presented in order to provide an overview of the factorization origin.
Just as an illustration, an example of formulation for the multiple objects case [26] is
provided. Furthermore, a detailed State of the Art of factorization approaches, focused
on the SFM problem, is reported.

2.1 Problem Formulation

This Section introduces factorization formulation in order to show the underlying idea
of the technique focused on the SFM. Firstly, the single object case proposed in [110]
is presented. Then, an example of multiple objects case formulation [26] is given.

2.1.1 Single Object Case

In the original approach [110], a single static object is observed by a purely ortho-
graphic moving camera. The idea of the factorization is to project a set of 3D feature
points into the image plane and to track the obtained 2D image coordinates along
various frames. Let pj be the 3D object points expressed in the object or world
coordinate system:

pj =




Xj

Yj

Zj


 , j = 1, . . . ,m (2.1)

At each frame i = 1 . . . f they are orthographically projected onto the image
plane, which is defined, in the world coordinate system, by the vectors ii and ji.
These vectors are parallel to the rows and columns of the image respectively, and the
projection rays are parallel to ki = ii × ji. The vector from the image origin to pj

is defined by pj − C̃i, where C̃i is the origin of the image reference system in world
coordinates (see Fig. 2.1). In the image reference system, this vector is represented
as:

Ri(pj − C̃i) = Ripj + ti (2.2)

9
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Figure 2.1: coordinate systems for the Tomasi–Kanade formulation; a static object
is observed by a moving camera.

where:

Ri =




iti
jti
kt

i




The rotation matrix Ri just performs a projection of the vector into the image
axes, both expressed in the world coordinate system. Orthographic projection is then
simply achieved by discarding the third coordinate of this pj expressed in the image
reference system, that is:

uij = itipj + txi (2.3)

vij = jtipj + tyi

Tomasi and Kanade [110] propose to get rid of the translation component in the
former equations. Without loss of generality, the origin of the world coordinate system
is placed at the centroid of the m feature points, so that:

1

m

m∑

j=1

pj = 0 (2.4)

The next step consists in centering the coordinates of the features at a concrete
frame. That is, in subtracting the mean of the coordinates of all the features in the
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same frame to each of the coordinates in that frame:

ũij = uij −
1

m

m∑

j=1

uij (2.5)

ṽij = vij −
1

m

m∑

j=1

vij

Then, using equation (2.4), it is easy to verify that:

ũij = itipj + txi −
( 1

m

m∑

j=1

(itipj + txi)
)

= itipj (2.6)

ṽij = jtipj + tyi −
( 1

m

m∑

j=1

(jtipj + tyi)
)

= jtipj

The modified coordinates of the feature point trajectories are stacked into the
trajectory matrix W̃ , where each column correspond to each of the feature trajectories
and each row contains the image coordinates of all features at a given frame:

W̃ =




ũ11 ũ12 . . . ũ1m

ũ21 ũ22 . . . ũ2m

...
...

ũf1 ũf2 . . . ũfm

ṽ11 ṽ12 . . . ṽ1m

ṽ21 ṽ22 . . . ṽ2m

...
...

ṽf1 ṽf2 . . . ṽfm




=




it1
it2
...
itf
jt1
jt2
...
jtf




[p1p2 . . .pm] = R2f×3S3×m (2.7)

Notice that at this point the (slightly modified) known trajectory coordinates have
been expressed as the product of two unknown matrices: the first one representing the
camera motion respect to the object or world reference, and the second the 3D shape
of the object. Hence, the underlying principle of the factorization technique is the
affine approximation to camera imaging, as pointed out Kanatani and Sugaya [75]. It
is shown later that these two matrices can be determined by taking into account the
highly reduced rank of W̃ and the orthonormality between certain rows of R.

Once R and S are known, the first two components of ti, i = 1, . . . , f can be
readily computed from equations (2.3), (2.5) and (2.6):

txi =
1

m

m∑

j=1

uij (2.8)

tyi =
1

m

m∑

j=1

vij (2.9)

Factors computation
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Since R is 2f × 3 and S is 3 × m, in the absence of noise, the rank of W̃ is
at most 3. Cases where rank is less than 3 are called degenerated, and they occur
when the shape and/or the rotation matrix are not of full rank. This happens in the
following situations:

• feature points {p1, . . . ,pm} do not span a 3D space, i.e. they are coplanar
(rank 2), or collinear (rank 1)

• the camera rotation is not performed over its three degrees of freedom, for
instance rotates around a certain 3D vector for all frames (rank 2), or does not
rotate at all (rank 1)

As this Section is included just to introduce the simplest version of factorization,
degenerated cases are not studied. Thus, it is assumed that rank(W̃ )=3.

If 2f ≥ m the Singular Value Decomposition (SVD) of W̃ gives the following
decomposition:

W̃ = U2f×mΣm×mV t
m×m (2.10)

where Σ is a diagonal matrix containing the singular values σi sorted in decreasing
order, that is:

σ1 ≥ σ2 ≥ . . . ≥ σm−1 ≥ σm (2.11)

Actually, as the rank is 3, only the first three singular values are not zero. Thus,
all the rows and columns of Σ, except the first three ones, can be discarded:

W̃ = U2f×3Σ3×3V
t
3×m (2.12)

However, in practice, trajectories are noisy. Actually, just a very slight noise can
make W̃ full rank (m, since 2f ≥ m). An important fact that should be taken into
account is that to nullify the 4th to m singular values is equivalent to calculate the
least squares error approximation of W̃ , which has rank 3 (see [43] for details). Which

is the same, given a noisy matrix W̃ ∗ = UΣV t, its closest rank-r approximation matrix
is:

W̃ = U2f×rΣr×rV
t
r×m (2.13)

being the error:

||W̃ ∗ − W̃ ||2F = σ2
r+1 + . . . σ2

m (2.14)

where ‖ · ‖F is the Frobenius norm [43]. This is, in fact, the expression to minimize
when a matrix is approximated by a rank-r matrix.

Therefore, singular values can be used as a measure of the noise, though in some
factorization settings the issue of determining the right or best rank (when several
are feasible) is an important unsolved problem.

From the above decompositions (2.7) and (2.12), it can be deduced that:

R = U2f×3Σ
1

2 , S = Σ
1

2 V t
3×m (2.15)
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However, this decomposition is not unique, since any 3×3 invertible matrix A also
provides a valid decomposition W̃ = RAA−1S. Then:

W̃ = R̂Ŝ (2.16)

where

R̂ = RA Ŝ = A−1S (2.17)

being R and S the true rotation and shape matrices. The matrix A is computed by
imposing orthonormality between the two camera axes at each frame. That is:

R̂R̂t = I = RAA−1Rt (2.18)

being I the identity matrix.
And the following 3f non–linear equations on the terms of A hold:

itiAA−1ii = 1

itiAA−1ji = 0 (2.19)

jtiAA−1ji = 1 i = 1, . . . , f

This final step is referred to as normalization. According to [110], this is a simple
data fitting problem which, though non–linear, can be solved efficiently and reliably.

Another way to solve it, is to calculate the 6 elements of the symmetric matrix
X = AA−1, converting the former equations into a linear system of the type Bx = c
where x = [X11X12X13X22X23X33]

t. An analogous system is solved in Costeira and
Kanade’s approach [26], introduced in next Section, and also in Han and Kanade’s
algorithm [53].

Before going into details, it should be noticed that the solution is determined up
to a rotation, since only the position of the world reference system has been imposed.
One can fix its orientation by representing the different coordinate systems relative
to that of the first frame: R′i = R

−1
1 Ri, S

′ = R1S, i = 1, . . . , f .

2.1.2 Multiple Objects

The seminal approach presented by Tomasi and Kanade [110] is formulated for a single
static rigid object viewed by a moving camera. Considering scenes with multiple
objects, this approach could be applied to each of the objects separately and the
SFM of each of them could be obtained. In general, when working with multiple
objects, the trajectories of features corresponding to the same object are not sorted
accordingly. Hence, some kind of segmentation should be applied in order to group
trajectories belonging to the same object. To obtain the motion segmentation, it
should be used the fact that under affine camera model, trajectories corresponding
to the same object lie in the same linear subspace. The goal is to find each of these
linear subspaces and to reduce the matrix of trajectories to a form that enhances
them. Unfortunately, the dimensionality and dependency of these linear subspaces
are unknown. Once the clusters are obtained, any single object technique can be used
to obtain the shape and motion of each of the objects.
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As explained later in Chapter 5, when there are several objects in the scene, an
additional problem should be considered: the estimation of the rank of the matrix
of trajectories. In the case of a single rigid moving object, the rank of the matrix
of trajectories W is at most 4 (3 if the translation component is subtracted). This
rank value is used in most of the single object case approaches. In the multiple
objects case, since both the number of objects in the scene and the kind of their
movement are unknown, the rank of the matrix of trajectories can not be known a
priori. Furthermore, due to the noise in the data, if the rank is directly computed, it is
usually the number of rows or columns of W . Therefore, in the multiple objects case,
most approaches estimate first the rank of the matrix of trajectories, which depends
on the noise in the data.

This Section presents the formulation proposed by Costeira and Kanade [26],
in order to illustrate the multiple objects case. The authors suppose two or more
independently moving objects viewed by a static camera. In fact, the motion of
observed objects is relative to the camera; objects and camera can move freely in 3D
space.

Let pj , j = 1, . . . ,m be the 3D object points expressed in some arbitrary coordi-
nate system fixed to the object. At each frame i = 1 . . . f , these points are projected
into the image according to the simple orthographic camera model:

uij = itipj + txi (2.20)

vij = jtipj + tyi (2.21)

being ii, ji the camera axes and (txi, tyi) its translation. Notice that these equations
are identical to equations (2.3).

As in the original approach, all image trajectories (uij , vij) are stacked into a
2f × m measurement matrix W , which can be decomposed as the product of the
motion and shape matrices:




u11 . . . u1m

...
...

un1 . . . unm

v11 . . . v1m

...
...

vn1 . . . vnm




=




it1 tx1

...
...

itn txn

jt1 ty1

...
...

jtn tyn




[
p1 p2 . . . pm

1 1 . . . 1

]

W2f×m =
[

R2f×3 t2f×1

]
S4×m = M2f×4S4×m (2.22)

The translational component of motions can not be eliminated by placing the co-
ordinate system at the mass center of feature points, as in the seminal approach [110].
That is due to the fact that the center mass of each object can move differently. Hence,
in the absence of noise, in this case the rank of the matrix of trajectories W is at
most 4, instead of 3. The SVD decomposition W = U2f×4Σ4×4V

t
4×m yields the true

M and S but for an unknown invertible matrix A4×4: W = MS = M̂AA−1Ŝ, with
M̂ = UΣ

1

2 , Ŝ = Σ
1

2 S. Fortunately, A can be computed through the aforementioned
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normalization process by using the fact that the rows of M represent the camera
rotation axes and satisfy, for i = 1, . . . , f , the following conditions:

itiAA−1ii = 1

jtiAA−1ji = 1 (2.23)

itiAA−1ji = 0

For simplicity, the formulation for the case of only two objects is presented. The
n-objects case can be deduced analogously. Suppose that the scene contains two
objects moving independently. Suppose also that the trajectories corresponding to
each object are known. Then, their corresponding trajectory matrices, W1 and W2,
can be constructed. Then, the matrix of all trajectories sorted by object can be
represented as:

W ∗ = [W1|W2] (2.24)

It can be easily seen that W ∗ factorizes as before into the product of two block
matrices M∗ and S∗, each one containing the motion and shape submatrices of each
object:

W ∗ = [M1|M2]

[
S1 0

0 S2

]

= [M̂1|M̂2]

[
A1 0

0 A2

] [
A−1

1 0

0 A−1
2

] [
Ŝ1 0

0 Ŝ2

]

= M̂∗A∗A∗−1Ŝ∗ (2.25)

The single object case algorithm could be extended to find out the linear trans-
formation A∗ with the structure of equation (2.25).

Hence, if the scene contains p objects moving independently, each with a certain
number of features, the matrix of all trajectories sorted by object W ∗ factorizes as
before into the product of p block matrices Mk and Sk, k = 1, . . . , p. Unfortunately,
in most cases the matrix W ∗ is not known, since features are not sorted by object.
A matrix W , which is equal to W ∗ but having permuted some columns, should be
considered.

Therefore, the SFM problem in the multiple objects case should tackle first a
preprocessing step that segment the features of the scene into the different objects.
Once the segmentation is achieved, single object techniques can be applied to each of
the objects in order to obtain the shape and relative motion of each of the objects.

Costeira and Kanade [26] propose the permutations of the columns of W until the
matrix W ∗ is obtained. On of the main contributions of their method is the so called
shape interaction matrix, defined as follows:

Q∗

m×m = V ∗V ∗t (2.26)

Each row (or column) of the matrix Q∗ represents each of the feature point trajec-
tories. This symmetric matrix has an interesting block–diagonal structure: if features
i and j belong to different objects, Q(i, j)∗ = 0. Hence, the diagonal of this matrix
must be equal to 1. This property holds on even though the trajectories are not sorted
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by objects. Therefore, since W is equal to W ∗ but having permuted some columns,
so V t is equal to V ∗t only that permuting the same set of columns. Consequently, Q∗

will result by permuting rows and columns of Q in the same way.
The Structure from Motion problem for multiple moving objects has been reduced

to find out the right row and column permutations of Q such that it becomes block–
diagonal; then, the single body algorithm can be applied. However, recovering Q∗

from Q, and thus performing feature grouping (motion segmentation), is still a tough
problem because noise makes the entries of Q corresponding to features of different
objects not exactly zero. Furthermore, an important restriction of this approach,
which reduces its application, is that the objects must move independently. More
details on the algorithm to obtain the matrix Q∗ and also to find its blocks can be
found in [26].

2.2 State of the Art

Factorization approaches that tackle the SFM problem are summarized in this Section.
Its structure is based on the distinction between the single and multiple objects cases
and also between the full and missing data cases.

2.2.1 Single Object, Full Data Case

The already presented original formulation [110] considers a static object observed
by a moving camera. As detailed above, the origin of the world coordinate system
is placed at the centroid of all the feature points and the translation component
is eliminated. Thus, in the absence of noise, the rank of the matrix of trajectories
(which contains the image coordinates of the points) is at most 3. Tomasi and Kanade
consider the simplest affine camera model: the orthographic projection. Many other
approaches take advantage of the simplicity of this camera model.

However, since the camera projections are only well approximated by affine map-
pings when the distance of the object to the camera is greater than the depth varia-
tion of this object, other camera models are also introduced. Details on the different
camera models can be found in [55]. In [91], Poelman and Kanade consider the para-
persepective model and show how it approximates closely the perspective projection,
while retaining linear algebraic properties of the orthographic projection. Concretely,
the paraperspective model accounts for the scaling effect of an object as it moves to-
wards and away from the camera, as well as the different angle from which an object
is viewed as it moves in a direction parallel to the image plane. As in the original
approach, the translation vector is subtracted from the matrix of trajectories and the
rank of the resulting matrix is 3 again. Although the factorization process is similar
to the one in the orthographic case, with this camera model, the depth (which is actu-
ally not known) should be taken into account in the normalization step. Due to that
fact, the algorithm becomes more complicated. Additionally, Poelman and Kanade
present an iterative method to recover the shape and motion by using a perspective
projection model. The problem is formulated as a non-linear least squares problem in
the motion and shape variables. As in any iterative method on non-linear minimiza-
tion, the final result depends on the initialization. Poelman and Kanade propose to
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take the shape and motion provided by paraperspective factorization and refine them
alternately.

Factorization methods for perspective images have also been proposed. With the
perspective camera model, and without calibration nor metric information of the
scene, a projective reconstruction is obtained. In order to obtain it properly, a set of
projective depths must be recovered. That is, a set of projective scale factors that
represent the depth information lost during the image projection. In the affine case,
these scales are constant and are not taken into account. Sturm and Triggs [106] pro-
pose a method for recovering these projective scales, using only fundamental matrices
and epipoles estimated from the image data. Given two images, the fundamental ma-
trix and the epipoles establish a relation between the projective depths of a single 3D
point in these two images. The number of fundamental matrices and epipoles needed
to obtain a complete set of projective depths is not especified in [106]. In theory, the
more fundamental matrices are available, the better is the obtained solution. Unfor-
tunately, computing a high number of fundamental matrices and epipoles turns the
problem computationally very expensive. Once the image coordinates are rescaled
(with the computed projective depths) a measurement matrix of rank 4 is obtained
and the singular value decomposition (SVD) is applied to factorize it. Triggs presents
in [113] a similar approach, which also uses fundamental matrices and epipoles. The
main contribution is the extension of the previous method to use not only 3D points
but also 3D lines to construct the matrix of trajectories. It is concluded that line re-
construction is less stable, especially due to the presence of outliers when the cameras
are collinear or coplanar. Besides, Triggs proposes to use an approximate fixed-rank
factorization technique which runs faster than the SVD in large problems.

As pointed out in [57], the main drawback of these two algorithms is that they can
only deal with 2, 3 or 4 images and there is no generic way to extend them to more
images. Heyden et al. [57] introduce an iterative factorization algorithm for projective
structure and motion. The idea of this algorithm is to begin with a set of only a few
images and to add images in the following steps in order to update the reconstruction
and the relative depths. Their algorithm relies on subspace formulation and one of
the main advantages is that it is independent of the chosen coordinate system in the
image as well as of the ordering of the points.

Christy and Horaud [25] describe a method for solving the Euclidean reconstruc-
tion problem with a perspective calibrated camera. The idea is to incrementally per-
form Euclidean reconstruction with either a weak or a paraperspective camera model.
Therefore, at each iteration, an affine reconstruction is obtained, which converges to a
Euclidean shape and motion parameters that are consistent with a perspective model.
They define perspective corrections, which are modified at each iteration. This method
converges in a few iterations and solves the sign ambiguity that give the affine recon-
struction. As pointed out by the authors, the method fails to converge when there
are feature points very close to the camera.

As in the aforementioned paper [113], other approaches consider features different
from the points to obtain the data. In [93], Quan and Kanade present an approach in
which the shape and motion are recovered from line correspondences with the affine
camera instead of points. The authors propose a multi-step factorization method
based on the decomposition of the shape and motion into three separate substructures,
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which can be linearly solved by factorizing the appropriate matrix of trajectories. In a
different approach, Aguiar and Moura [3] present a surface-based factorization method
which consists in tracking regions instead of tracking a large number of features.
Firstly, the unknown shape of the 3D rigid object is described by using polynomial
patches. Then, it is used the fact that the projections of these patches in the image
plane move according to parametric 2D motion models. Finally, the parameters which
describe the 3D shape and motion from the 2D motion parameters are recovered by
factorizing rank-1 matrices. Although this proposed approach is derived from the
orthographic projection model, it can be extended to the scaled-orthographic and the
paraperspective projections.

Morris and Kanade [87] propose a unified factorization algorithm for the SFM
recovery by using feature points, line segments and planes. The authors aim to
define an algorithm robust to the imprecision and small errors involved in image
registration. Their algorithm consists in adding prior information on the coplanarity
of features which provide additionally constraints for the shape recovery. A weighted
least squares motion and shape recovery problem is proposed. Directional uncertainty
measures for feature location are incorporated. In addition, an uncertainty measure
for resulting shape features is provided. Kahl and Heyden [70] present several methods
for the Structure from Motion estimation under affine camera model that use points,
lines and conic features. They propose three new tensor representations for matching
constraints approaches. However, these representations are limited only to a few
views. A factorization technique that uses the previous three-views tensor constraints
and that can handle arbitrarily views is also introduced. Furthermore, a method
based on the closure constraints [114] to handle missing data is proposed. One of the
main problems working with matching constraints is to obtain feature correspondences
between different images. In [70], these correspondences are assumed to be known.

In [6], Anandan and Irani rightly pointed out that SVD is a global solution to
the factorization problem only when the x and y positional errors in the features
are uncorrelated and identically distributed. Unfortunately, this is not always true
in real data. Uncertainty in feature position depends on the underlying spatial in-
tensity structure in the image, which has strong directionality to it. They present a
new factorization approach that minimizes the covariance-weighted squared-error. It
consists in transforming the data into a covariance-weighted data space, where the
components of noise in the different directions are uncorrelated and identically dis-
tributed. Therefore, the SVD can be applied to the transformed data. In a linear
but suboptimal second step, the shape and motion of the original data space are ob-
tained. Noisy feature correspondences with high degree of directional uncertainty can
be factorized into shape and motion. This method allows to treat corner-like points
together with points along linear structures in the image.

Aanaes and Fisker [1] present a factorization algorithm that aims at effectively
deal with errors in the tracked features: mismatched features, missing features and
noise on the individual features. Their proposed algorithm enables the use of robust
statistical techniques and arbitrary noise models for the individual features. It is
based on the aforementioned Christy-Horaud’s factorization scheme [25]. The main
idea of the proposed algorithm is to use a robust error function which is implemented
via Iteratively Reweighted Least Squares (IRLS). It is an iterative method that fits the
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model to the data by minimizing the weighted least squares of the residuals (see [100]
and [52] for more details on IRLS).

In [2], and more extensively in [4], Aguiar and Moura describe a rank 1 weighted
factorization method that uses the orthographic camera model. The weights are
defined by the inverse of the estimates error standard deviation so that the 2D mo-
tion estimates for sharper features (which are usually well-estimated) are given more
weight, while the noisier motion estimates for smoother textures are weighted less.
Aguiar and Moura [4] are the first in exploiting the freedom to choose the relative
alignment between the object and camera coordinate systems in one of the images in
the sequence and develop a method that recovers the SFM through the factorization
of a rank 1 matrix.

A different approach is introduced in [45] by Gruber and Weiss. As in [6], they
pointed out that in real situations the observed data have different directional uncer-
tainty. However, most of the proposed factorization techniques do not take it into
account. They propose to model the noise by a covariance matrix and to use the
expectation-maximization (EM) algorithm to obtain the factorization. Concretely,
the structure S whose form depends on the structure of the defined covariance ma-
trix, is recovered in the M-step of the algorithm. In addition, Gruber and Weiss
propose to add a prior on the temporal trajectory of the camera position. Namely,
they use the fact that the camera location at time t + 1 is probably similar to its
location at time t. They show how the performance of the factorization is improved
by adding this temporal prior. As commented in next Section, this approach can deal
also with missing data in the matrix of trajectories.

Huynh and Heyden [61] present a factorization approach under affine projection
that detect and eliminate outliers from the matrix of trajectories. They consider
subspaces spanned by different subsets of columns in the matrix of trajectories and
introduce a similarity measure on these subspaces. This measure is used to detect and
eliminate the outliers in the observations. Only the inliers observations are used to
factorize the matrix of trajectories. In a posterior paper [62], the same authors study
the relationship between subspace distances and reprojection errors. They pointed
out that outliers are image features that do not conform to the projection of the true
structure. Therefore, when the true structure is back projected onto the image plane,
outliers show up with large reprojection errors. Two algorithms for computing re-
projection errors for outlier detection are proposed. More recently, Huynh et al. [60]
present an outlier correction scheme that iteratively updates the elements of the ma-
trix of trajectories. Thus, the method corrects the outliers and factorizes the matrix
of trajectories simultaneously. In this iterative scheme the Alternation method, pre-
sented in next Section, is used to compute the shape and motion factors instead of the
SVD. Its computational cost is smaller than the one of the SVD and in addition, it
can handle missing entries in the matrix of trajectories, as explained in next Section.

As pointed out in [86], the factorization technique is based on a batch-type com-
putation; that is, it recovers shape and motion after all the input images are given.
Due to that fact, it is limited to off-line applications. Besides, it needs to store a
large matrix whose dimensions increase with the number of frames. In order to be
able of adding data to the matrix of trajectories, sequential algorithms have been
proposed. These methods avoid to work with large amount of missing data and allow
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to work sequentially, which is a very important fact in real-time applications. At the
same time, they take advantage of previous measurements. Morita and Kanade [86]
presents a sequential algorithm which gives estimates of shape and motion at each
input frame. A covariance-like matrix is stored, instead of feature points, and its
size remains constant as the number of frames increases. The orthogonal iteration
method [43] is used to update the three dominant eigenvectors instead of the SVD.
A different recursive factorization method is proposed in [80]. The shape space is
estimated within a mean square error (MSE) minimization framework. This method
has both a very low complexity and good performance which make it suitable for
real-time applications.

2.2.2 Single Object, Missing Data Case

In real situations, features can disappear due to object self-occlusions, or because
they are not more visible in the sequence, or simply due to failures of the tracker.
These situations give uncomplete trajectories. Several factorization approaches have
been proposed to deal with missing data in the trajectories. The SVD can not be
used when there are missing data and other methods to decompose the matrix of
trajectories into the shape and motion factors should be introduced.

In the seminal approach, Tomasi and Kanade [110] propose an initialization method
in which they first decompose the largest full submatrix by the factorization method
and then the initial solution grows by one row or by one column at a time, complet-
ing thus the missing data. The problem is that finding the largest full submatrix is a
NP-hard problem. Moreover, the solution depends on the order in which the columns
or rows are completed.

In a completely different approach, Jacobs [66] treats each column with missing
entries as an affine subspace and shows that for every r-tuple of columns, the space
spanned by all possible completions of them must contain the column space of the
completely filled matrix. Unknown entries are recovered by finding the least squares
regression onto that subspace. In order to obtain a good result, all the r-tuple affine
subspaces should be used. However, in practice, only a selection of them is considered,
which can give undesirable results. In addition, this algorithm is strongly affected by
noise on the data. Nevertheless, it gives a useful initial guess for iterative methods.

Chen and Suter [24] provide an iterative algorithm to recover the missing com-
ponents in a large noisy low-rank matrix. The algorithm begins with a complete
submatrix which grows at each iteration by one row or column, filling in the missing
entries at the same time. They present a criterion based on the SVD’s denoising
capability versus missing data in order to decide which parts of the matrix should be
used in the iterative imputation/recovery process. Given an incomplete matrix, they
define its unreliability as the ratio between the number of its independent variables
and the number of nonmissing components. The goal is to recover the most reliable
incomplete submatrix by using the iterative algorithm. Then, the other columns and
rows are projected onto it by using an imputation method. Focusing on the SFM
problem and in order to find the submatrix which has the minimal unreliability ra-
tio, the vectors which has the least nonmissing components are excluded, until the
unreliability ratio begins to increase.
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In [67], Jia et al. present an algorithm that aims the SFM recovery with noisy
and missing data. It is similar to the aforementioned one [66]. However, the authors
point out that the randomness in selecting the submatrices in [66] cannot guarantee
a consistently accurate recovery of missing data. Hence, instead of selecting several
triple columns, they propose to use the most reliable submatrix to recover the 3D
structure. They define a criterion that provides a measure of the sensitivity of a
submatrix to noise perturbation: the deviation parameter (DP). Using this criterion,
the submatrices with smallest deviation parameter are considered to construct the
final matrix. Then, the SVD of this matrix is computed. Since the DP criterion can
not guarantee the optimal selection of submatrices, the algorithm is implemented in
n different subsets of the matrix and the average of all the results gives the solution.
The performance of this approach is compared to the Jacobs’ one [66] and to the
Chen and Suter’s one [24]. Jia et al. criticize the fact that with this last approach,
the rows/columns that have more known entries are in general selected, which not
always give the best solution.

Wiberg [123] presents an algorithm that uses the Gauss-Newton method to com-
pute the principal components of a matrix of data with missing observations. The key
point is to separate the variables in two sets and compute them alternatively. Based
on that, Shum et al. [104] propose a method for 3D object modeling. In a recent
approach, Okatani and Deguchi [89] present in detail Wiberg’s algorithm focusing on
the matrix factorization problem and demonstrating its performance compared to the
Levengerg-Marquardt (LM) technique.

Wiberg’s algorithm is generally referenced in the literature (e.g., [23], [50]), as the
origin of what is called the Alternation technique. This approach uses the fact that if
one of the factors (A or B) is known, the other one can be computed by solving a least
squares problem. Concretely, the algorithm starts with an initial random matrix (A
or B) and computes alternatively each of the factors until the product AB converges
to W . Several variants of this method have been presented in the literature. Since
this technique is widely used in this thesis, a detailed study can be found in Chapter 3.

In [50], and previously in [49] and [48], Guerreiro and Aguiar introduce the Row-
Column algorithm, which is very similar to the Alternation algorithm. They study its
performance and compared it with the Expectation-Maximization (EM) algorithm.
They conclude that it performs better than the EM. Furthermore, it is more robust
to the initialization. Hartley and Schaffalitzky [54] suggest adding a normalization
step between the two factors updated at each iteration. This particular Alternation
technique is denoted as PowerFactorization. Furthermore, the authors propose an-
other variant to Alternation, focusing on the SFM problem. In this case, A and B
factors correspond to the motion and shape matrices, respectively. Hence, since B
contains the 3D feature points in homogeneous coordinates, it can be imposed that
the last row of B is equal to 1 (where 1 represents a vector of 1). Roweis [95] define
an Alternation approach within the Expectation-Maximization (EM) framework for
principal component analysis (PCA).

The papers [60] and [1] presented in Section 2.2.1 can also deal with missing data
and both use the Alternation technique to factorize the matrix.

In [23], and more extended in [22], a report of the variants of Alternation, in-
cluding their algorithm, is given. Buchanan and Fitzgibbon [23] propose the Alter-
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nation/Damped Newton Hybrid, which combines the Alternation strategy with the
Damped Newton method. The latter is fast in valleys, but not effective when far from
the minima. The goal of introducing this hybrid scheme is to give a method that has
fast initial convergence and, at the same time, has the power of non-linear optimiza-
tion. However, they conclude that second order non-linear optimization strategies
performs better than the hybrid schemes.

Gonçalves and Aguiar [44] propose a method to decide wether a region that has
become visible is a region that has been seen before. A global cost function that bal-
ances the model fidelity and complex penalization is defined. The goal is to compute
the simplest 3D rigid object that best matches the entire set of 2D image projec-
tions. Their method shows that the obtained 3D reconstruction is more accurate
when re-appearing regions are taken into account.

In [83], Martinec and Pajdla present a method to obtain the projective shape
and motion by factorization. The method proposed in [106] is used to estimate the
projective depths of image points, while missing data are filled in by using an extension
of the method proposed in [66]. The main idea of their proposed method consists of
computing first the projective depths of all known points in the matrix of trajectories.
Then, its missing entries are filled in by finding a complete matrix of rank 4 as
close as possible to it. This method provides a unique solution that can be used as
initialization of non-linear optimization such as bundle adjustment. Furthermore, it
can deal with outliers if they are few compared to the number of inliers.

Koh [108] proposes a method for estimating 3D positions of feature points that
is robust to the sensibility to noise. A comparison of this robustness to the ap-
proaches [66] and [50] is provided. The key point of that approach is to use geometrical
correlations between a 2D observation matrix and 3D shape.

Techniques for recovering the Structure from Motion with missing data that are
not purely factorization techniques have also been proposed. Some of them apply a
factorization technique in internal steps. Below, three of them are presented.

In [18], Brandt presents a closed-form maximum likelihood solution for the trans-
lation vectors and 3D coordinates of the tracked features points under missing data.
All feature points are used simultaneously. The author [18] formulates the problem
in a different way of previous factorization approaches. A cost function is defined
and the goal is to find the least-squares solution for the parameters that minimizes
it. It is pointed out how the translation parameter values must be determined af-
ter computing the reconstruction in contrast to the case when there are not missing
data. An iterative algorithm for affine reconstruction is proposed: first the Jacobs’
method [66] is used to obtain an initialization and then, an expectation maximiza-
tion (EM) algorithm gives the maximum likelihood estimation under missing data.
Other applications of this solution are that it can be used as an initial solution for
the 3D coordinates in bundle adjustment and also to identify degenerate image con-
figurations. Brandt compares the method to Jacobs’s [66] and Shum et al.’s [104]
approaches. Additionally, with synthetic data, the methods are also compared to
factorization, using only points visible in all the views.

A technique for 3D reconstruction by fitting low-rank matrices with missing data
is proposed in [84]. It consists in taking rank-four matrices of minimal size and in
combining spans of their columns in order to constraint a basis of the whole fitted
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matrix. The solution is valid for the affine and the perspective camera models and
for scenes of various types: open and closed sequences in both narrow and wide base-
line setups. This method does not try to fill in the missing data. In fact, only the
known data is used. The formulation is similar to the one presented in [66]. The main
difference is that the problem is formulated in terms of the original subspaces, while
in [66] the complementary ones are used.

Guilbert et al. [51] present a batch method from recovering Euclidian structure
and motion form sparse image data. Using closure constraints [114], the camera co-
efficients are formulated linearly in the entries of the affine fundamental matrices.
An important characteristic of the algorithm is that many constraints can be easily
imposed: camera position or orientation in a particular frame, equality or proxim-
ity between consecutive camera poses, equality of 3D points, smoothness of camera
trajectory, etc.

2.2.3 Multiple Objects, Full Data Case

This Section reports a review the state of the art in the SFM when multiple objects
and full matrices of trajectories are considered. Some of the presented approaches
focused the attention on the motion segmentation step. Once the trajectories are
clustered into different objects, any single object technique can be applied to obtain
the shape and motion of each of the objects.

Boult and Brown [12] propose to use the SVD of a matrix of trajectories to obtain
the segmentation of multiple motions. Their proposal is justified by the relation
between the SVD and the principal component analysis (PCA). Concretely, they use
the right singular vectors associated with the nonzero singular values to obtain the
motion segmenation. The problem is that due to the noise in the input data, all
the singular values are in general nonzero and a strategy to estimate the number of
nonzero singular values or, which is the same, the rank of the input matrix, is needed
to be estimated. Firstly they define an upper and a lower bound on the rank value
and secondly the logarithm of singular values beyond these bounds is computed. The
rank is approximated as the one for which the logarithm achieves maximal curvature.

In [26], Costeira and Kanade define the interaction matrix computed from the
SVD of the input matrix. This matrix gives the correct motion segmentation using
the zero product between independent trajectories. Concretely, entries corresponding
to features from different objects are zero and nonzero otherwise. This property
gives a block-diagonal structure to this matrix. One of the main drawbacks of this
technique is that the noise in the data is propagated to the interaction matrix and
entries from features of different objects may not be zero. Furthermore, the columns
of the interaction matrix must be sorted in order to obtain the desired block-diagonal
structure. Hence, all the possible rank values should be tested and the one that gives
the best block-diagonal structure of the interaction matrix is selected.

A similar formulation is presented by Han and Kanade in [53]. It is assumed that
the objects move linearly with constant speeds. In this case, not only the shape and
motion are obtained, but also the velocity of each of the feature points. One advantage
of this approach in front of the previous one is that it is not necessary to segment
the features before obtaining the shape and motion. In fact, the segmentation is
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obtained by grouping the recovered velocity values of the feature points. The rank is
at most 6 with this formulation (smaller in degenerate cases). The main drawback of
this technique is that, in order to obtain the correct velocity values, the static points
should be known and their relative velocity (notice that the camera is also moving)
should be subtracted to all the recovered velocities. Unfortunately, without previous
knowledge or assumptions, the static points are not known.

In a different approach, Ichimura and Tomita [64] introduce a method for motion
segmentation based on feature selection. The idea is to construct a basis of linear
space that represents the shape of the objects. The interaction matrix defined by
Costeira and Kanade [26] is used. Ichimura and Tomita propose to apply the SVD
and to estimate the rank of the matrix of trajectories r by studying the obtained
singular values. Then, the QR decomposition [43] of the shape interaction matrix is
used to select r features and to obtain the basis vectors of the shape space, which give
the number of objects and their segmentation. Finally, the remaining features are also
segmented by using the orthogonal projection matrix for each shape space (defined
by the basis vectors). However, if data are noisy, it will be difficult to estimate the
rank of the matrix properly.

Ichimura [63] proposes an algorithm for motion segmentation which also uses the
orthogonal projection matrix of the shape space. As before, the interaction matrix
defined in [26] is used as orthogonal projection matrix of the shape space. It is
obtained by computing the SVD of the matrix of trajectories. In order to introduce
robustness in the case of noisy data and outliers, a method for feature selection using
discriminant criterion is presented. The idea is to select the feature with the most
useful information for segmentation. Then, a group of features is extracted based
on the result of discriminant analysis for the selected feature. The same procedure
is applied recursively to remaining features to extract other groups. The rank of
the matrix of trajectories is needed to be known to apply the SVD. However, it is
difficult to estimate with the presence of noise or outliers in the data. The rank
corresponding to the segmentation result with maximum separation of entities of
orthogonal projection is selected.

Kanatani [72] reformulates the Costeira and Kanade [26] approach by defining an
interaction matrix computed from the original data. The geometric information crite-
rion (AIC) defined in [71] is used as a measure of goodness of the model. Concretely,
the AIC evaluates if two groups of points should be or not merged. One disadvan-
tage of the approach presented in [72] is that the number of independent motions is
assumed to be only two: one corresponding to the background and one to a moving
object.

In a more recent paper, Kanatani and Matsunaga [74] propose an approach that
also uses the geometric AIC to estimate the number of independent motions for mul-
tiple objects motion segmentation, when data are free of noise. At the same time, the
rank of the matrix of trajectories is estimated. A possibility for estimating the rank
of a set of vectors is to fit them with subspaces of different dimensions and adopt
the dimension of the subspace having the smallest residual (the sum of the square
distances of the data points to the fitted subspace). However, the higher the dimen-
sion of the subspace is, the smaller the residual becomes. The idea of the AIC is to
balance the increase of the residual against the decrease of the degree of freedom.
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More details can be found in [71]. In [73], Kanatani proposes a strategy that also uses
the geometric AIC to estimate the rank in the case of noise in the data.

One disadvantage of all the above techniques is that they are valid only for in-
dependent motions. In [130], Zelnik-Manor and Irani analyze the degeneracies in
multiple objects and multi-sequence factorization and present an approach to seg-
ment objects in such cases. They suggest to construct an affinity matrix by using
only the most dominant of their eigenvectors instead of taking all them. In order
to approximate the rank of the matrix of trajectories, the ratio between the sorted
singular values is studied.

Sugaya and Kanatani [107] study the geometric structure of the degeneracy of
the motion model. Concretely, the authors studied what they call the parallel 2D
plane degeneracy. Sugaya and Kanatani point out that this is a common situation in
real sequences. The key point of their proposal is to use first the degenerate motion
model and then the general 3D motion model. A comparison of the performance of
their proposed approach to other motion segmentation techniques is provided in their
paper.

Zelnik-Manor et al. [132], explore the meaning of applying multi-body factoriza-
tion to the matrix obtained by stacking the x and y coordinates of the 2D trajectories
horizontally. In most factorization approaches, the coordinates are stacked vertically.
That is, each column corresponds to each of the trajectories; the first rows correspond-
ing to the x coordinates and the last ones to the y coordinates of the trajectories. In
this novel approach, each row contains the flow of all points between a pair of frames,
typically between a reference frame and one of the other frames (more details can be
found in [65]). The obtained matrix is referred to as flow-field matrix. The authors
define the motion consistency based on temporal constraints, which consists in group-
ing feature points that have a consistent behavior over time. Besides, an algorithm
for segmenting the image into multiple objects is also presented. It applies this new
multi-body subspace (rows instead of columns) to image brightness quantities. One of
the main advantages of this approach is that it does not require prior correspondence
estimation or feature tracking.

Zelnik-Manor and Irani [131] present a similar approach that consists in obtaining
temporal segmentation. Instead of grouping points moving with consistent motions,
frames that capture consistent shapes are grouped by clustering the rows of the matrix
of trajectories. One advantage of the temporal factorization is that the temporal
clustering of frames can be obtained with only a few tracked points. Furthermore,
the dimensionality of the data is smaller than for spatial factorization. They show
how any of the existing algorithms for column segmentation can also be used for the
row segmentation.

The non-rigid case is also included in this Section, since it can be considered as a
multiple objects case. Techniques such as the Tomasi and Kanade factorization [110]
can not be used in the non-rigid case, since they are all based on the rigidity assump-
tion. As pointed out in [81], most of the proposed techniques for the non-rigid case
are based on the fact that any configuration of the shape can be explained as a linear
combination of basis shapes that define the principal modes of deformation of the
object.

In [20], Bregler et al. present an approach to recover non-rigid shape from a single
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view video sequence. The key point is that it does not require multiple views nor a
priori model as in previous approaches that also aim to obtain the non-rigid 3D shape.
They tackle the 3D shapes recovering from 2D images and the parametrization of non-
rigid shape deformation as a unique problem. The 3D non-rigid shape is recovered
under scaled orthographic projection, using the fact that the 3D shape in each frame
is a linear combination of a set of K basis shapes. Under this model, the 2D tracking
matrix is of rank 3K and can be factored into 3D pose, object configuration and 3D
basis shapes using the SVD under several factorization steps.

Brand [13] proposes an algorithm for tracking and 3D reconstructing non-rigid
surfaces that have very little texture. The idea is to make equivalent the problem of
non-rigid 3D structure from motion and the 2D optical flow estimation, yielding a
combined non-rigid structure-from-intensities problem which can be solved via matrix
decompositions. Thus, a factorization algorithm for 3D non-rigid structure and mo-
tion from video that finds 2D correspondences by enforcing 3D geometric constraints
is presented.

In [111], Torresani et al. exploit low-rank constraints for low-level tracking, pre-
diction of missing low-level features and non-rigid 3D reconstruction. The authors
introduce three techniques able to reconstruct 3D deformable steps and their motion
from 2D measurements. One drawback of the technique is that the number of ba-
sis shapes needed K is not known a priori. In their experiments, the value of K is
increased until the error is below a given threshold.

Del Bue and Agapito [29] extend existing non-rigid factorization algorithms to
the stereo camera formulation and present an algorithm to decompose the matrix of
trajectories into the 3D shape and the motion corresponding to the left and right
cameras. They use the fact that both cameras view the same structure and that the
relative orientation between them is fixed. They show that the results are improved
with the stereo approach.

In [124], Xiao et al. present a closed form solution to the problem of non-rigid
shape and motion recovery form a single camera video. In practice, the non-rigid
objects deform with certain shape basis. Many previous work (e.g., [13], [20]) use
only the rotation constraints (that is the orthonormality constraints). In this paper,
the basis constraints, which uniquely determine the shape bases, are proposed. Xiao
et al. demonstrate that, under the weak-perspective projection model, a closed-form
solution can be obtained by enforcing both the basis and the rotation constraints.

Brand [16] proposes a direct method to tackle the non-rigid structure from motion
problem. The author points out that other proposals, such as [124] breaks down when
data are noisy or the value of the rank of the basis is not correct. The approach pro-
posed by Brand directly minimizes deviation from the required orthogonal structure
of the projection/articulation matrix.

Lladó et al. [81] propose an approach for the 3D Euclidean reconstruction of de-
formable objects, under a perspective camera model with variable intrinsic parame-
ters. They use the fact that some of the points on the object behave as rigid ones. This
rigid points are used to obtain an initial estimate of the camera’s varying internal pa-
rameters and the overall rigid motion. Furthermore, with the obtained initialization,
the non-rigid structure can be upgraded to the metric space.

Kim and Hong [78] develop an approach for estimating the approximate aver-
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age shape and motion of a deforming object, solving thus the ambiguity problem in
non-rigid recovery. The authors introduce a novel concept, called Degree of Nonrigid-
ity (DoN). Based on it, an iterative reweighted factorization method is proposed.

In a recent approach, Del Bue et al. [30] evaluate an algorithm able to segment
rigid motion form non-rigid 2D trajectories obtained with a perspective camera. The
RANSAC algorithm [36] is used to estimate the fundamental matrices of each pair of
frames in the sequence and to segment the scene into rigid and non-rigid points. It is
used the notion of DoN, introduced by Kim and Hong [78], to define a score for each
trajectory. Concretely, this score is used to build a prior distribution of the conditional
probability of each point in the object to be rigid or non-rigid. The authors point out
that weak perspective effects and high proportion of non-rigid points can give a high
misclassification ratio.

Tresadern and Reid [112] present a factorization method for articulated motion.
They show how to detect articulated motion and how the rank of the matrix of
trajectories gives the type of joint between the objects. Using the fact that the
objects are connected, it is assumed that their relative depth is small compared to
their distance from the camera. Hence, the affine projection can be used. The rank
of the matrix of trajectories is approximated by finding a sharp drop in the singular
values and their ratios. A method for self-calibration of the structure and motion to
a metric space, which only uses linear constraints, is also proposed. However, that
is only a sub-optimal solution that should be refined with a non-linear optimization
technique, as point out the authors.

A different factorization approach to recovery articulated motion is proposed
in [125]. Yan and Pollefeys [125] mark out that the global motion subspace of an
articulated object is a combination of a number of intersecting rigid motion sub-
spaces of the parts. Therefore, the goal is to cluster the motion subspaces and apply
any robust reconstruction method of a rigid object to each segmented subspace. They
use the Generalized Principal Component Analysis (GPCA) ([118], [119]) to cluster
the subspaces. Thus, each group of trajectories belongs to an articulated part. Fi-
nally, the subspaces of each group of trajectories are intersected and the rank of the
intersection allows to know whether the link between two parts is an axis or a joint
(in case they are linked). In order to estimate the rank, a model selection inspired by
the one proposed in [118] is used.

In a recent paper, Wang and Wu [120] propose to add a deformation weight con-
straint to the problem of 3D reconstruction of non-rigid objects. Furthermore, they
present a constrained PowerFactorization [54] to recover the deformation structure
in affine spaces. This technique allows to work with missing data. The main idea
is to first reconstruct the object in an affine space. Then, the deformation parts
are detected and separated from the rigid ones and the solution is upgraded to the
Euclidean space.

Other techniques which are not purely factorization methods have been proposed
to obtain the motion segmentation of feature points. In [39], Gear presents an al-
gorithm for feature segmentation. It consists in computing the reduced row echelon
form of the matrix of trajectories in order to easily identify the motion subspaces and
the column vectors that lie in them. At the same time, the rank of the matrix can
also be estimated. Gear considers more important to segment correctly the points
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than to estimate the rank exactly. The reduced row echelon form can be found by ap-
plying Gauss-Jordan elimination to the rows of the matrix of trajectories with partial
pivoting. The main drawback of the algorithm is that all possible sorting columns
should be tested in order to find the best solution, giving a combinatorially large
task. Besides, results get worse if there are dependence between motions. However,
for noisy scenarios this algorithm can not guarantee correct segmentation, as pointed
out in [46].

Yan and Pollefeys [126] present an approach for motion segmentation that can deal
with different kinds of motions: independent, articulated, rigid, non-rigid, degenerate
and non-degenerate. It consists in estimating a local subspace for each feature trajec-
tory, and then compute an affinity matrix based on principal angles [43] between each
pair of these estimated subspaces. Finally, the segmentation of the feature trajectories
is obtained by applying spectral clustering [122] to this affinity matrix. Concretely,
the normalized cut criterion defined in [103] is used. Although the presented results
are promising and the approach can be used with different kinds of motions, there is
one important fact that is not clear in the paper; how the recursive 2-way clustering
is implemented. It seems that a prior knowledge about the number of objects in the
scene is used in the algorithm. One of the drawbacks of this approach is that many
parameters have to be set. For instance, the dimension of the projected space (in
other words, the rank of the matrix of trajectories) and the dimension of the local
subspaces and the number of neighbours that generate them. The authors propose
to estimate the rank of the matrix of trajectories and the dimension of the local sub-
spaces by using the model selection [71], but it is difficult to set the parameters to be
valid for any sequence.

In a recent paper, Tron and Vidal [115] present a benchmark for the comparison
of 3D motion segmentation algorithms. Concretely, they compare the performance
of the GPCA [117] (presented in next Section), a RANSAC [36] based approach, in
which the model to be fit is a subspace of a certain dimension, and the approaches
proposed in [126] and in [107]. Since only the GPCA based approach can deal with
missing data, the experiments are done with full data. The authors conclude that the
best performing algorithm is the one proposed in [126], when the dimension of the
projected subspace is 4 times the number of different motions. However, as in the
previous approach [126], the number of different motions is used before estimating it.

Goh and Vidal [41] present an algorithm for segmenting motion of different types.
The point trajectories are obtained for both affine and perspective views. They use
nonlinear dimensionality reduction (NLDR) to obtain a low-dimensional representa-
tion of the union of all manifolds (under the perspective camera model, the trajecto-
ries associated with each motion live on a manifold instead of in a linear subspace,
as in the affine camera model). In particular, an extension of the locally linear em-
bedding algorithm (LLE) [96] is proposed: the Locally Linear Manifold Clustering
Algorithm (LLMC). The LLE uses the fact that the local neighborhood of a point
on the manifold can be well approximated by the affine subspace spanned by its k
nearest neighbors. A comparison of the performances of the LLMC against other
motion segmentation algorithms is provided, showing that the LLMC matches the
performance of them.

In [79], Li et al. introduce an algorithm for segmentation of multiple rigid-body
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motions using multiple perspective views simultaneously. Their algorithm is an ex-
tension of the iterative algorithm presented in [113] to multiple motions. The idea is
to alternate between the estimation of the depths and the segmentation of the point
trajectories. The original algorithm [113] alternates between the estimation of motion
and structure and the estimation of the depths. A comparative study of the perfor-
mance of the proposed algorithm [79] with the techniques presented in [117], [126]
and [107] is given. The proposed iterative algorithm outperforms the one presented
in [107]. Compared to the other two techniques ([117] and [126]), the improvement
with the proposed algorithm is not significant, as pointed out by the authors, as affine
methods already give good results.

2.2.4 Multiple Objects, Missing Data Case

The multiple objects missing data case has not been as studied as the single object
missing data case. This Section introduces proposed approaches that consider missing
data.

Brand [14] proposes an incremental singular value decomposition that can deals
with missing data. It can be used to develop a robust tracker based on the estimation
of the subspace optical flow and also to handle missing data in non-rigid structure from
motion factorization. The technique is presented in more detail in [17]. It consists
in a novel approach for updating a rank-r SVD of a matrix by adding rows and/or
columns of data. These new rows/columns may have missing entries and/or noise.
The idea is to compute the SVD as data are added. The criterion to fill in missing
entries consists of minimizing the rank value. An important fact that is the size of the
data matrix is not known a priori. In a more recent paper [15], Brand proposes a very
similar method and demonstrate its applicability to recommender systems. Instead
of computing the rank-r SVD of a large matrix, he develops an exact rank-1 update
which provides a linear-time construction of the whole SVD. The approach begins
by sorting out the rows and columns of the data matrix so that a high density of
data is accumulated in one corner. Then this initial full submatrix grows out of this
corner by sequential updating with partial rows and columns. An imputation update
that maximizes the probability of correct generalization is used to fill in the missing
entries. One disadvantage of this technique is that the result depends on how the
data is sorted, as pointed out in [54].

A hierarchical factorization method for recovering articulated hand motion under
weak perspective projection is introduced by Zhou and Huang in [134]. In this method,
each part of the articulated object is treated as an independently moving object. In
a first step, Zhou and Huang propose to use any already presented technique in
order to fill in the missing data, in case they exist, and to segment the trajectories
into different objects. In a second step, the proposed hierarchical method aims at
guaranteeing that the end of consecutive objects are linked in the recovered motion.
Costeira and Kanade approach [26] is used to obtain the rotational component, but
kinematic hand model constraints are needed to be integrated in order to obtain
properly the translational component. One important requirement is that at least 4
non-coplanar feature points must be reliably tracked in order to recover the global
pose and to initiate the hierarchical algorithm.
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Gruber and Weiss [46] present an algorithm for multibody factorization with un-
certainty and missing data which uses the expectation-maximization (EM) technique.
As in the single object case formulation [45], prior knowledge can be easily added,
improving the results even on challenging sequences. They show how the EM frame-
work allows to place priors on both structure and motion and to deal with directional
uncertainty and missing data.

In [117], Vidal and Hartley propose an algorithm for motion segmentation with
missing data which uses PowerFactorization method [54] and the generalized princi-
pal component analysis (GPCA)( [118], [119]). In a first step, the trajectories are
projected onto a five dimensional subspace by using the PowerFactorization. This is
justified by the fact that the trajectories of a rigid moving object generate a subspace
of dimension 4 at most. Then, projecting onto a generic five-dimensional subspace
preserves the clustering of the motion subspaces. Once the missing data are filled in,
the GPCA is used to obtain the motion segmentation of trajectories. The algorithm
can handle degenerate and dependent motions. In [118], an extension of the algorithm
to low-dimensional subspaces is presented. One of the main drawbacks of the GPCA,
as pointed out in [126] and [115], is that its performance gets worse as the number of
objects in the scene increases.

In a recent paper [47], Gruber and Weiss present an extension of the aforemen-
tioned approach [46] that consists of incorporating non-motion cues into 3D motion
segmentation. Concretely, they propose a constrained factorization with priors that
uses the EM algorithm. The idea is to define an energy function that consists of two
parts: the first part is due to 3D motion and the second part is due to spatial coher-
ence. In this second part, 2D affinities between pixels, similar to the ones presented
in [103], are defined. The goal is to minimize the energy function. Although in the
case of 2 objects, it is guaranteed to find a local maximum, this is not guarantee in the
case of more objects. One important advantage of this approach is that it can deal
properly with noisy scenarios and with missing data. Furthermore, no assumptions
are made regarding the rank of the motion matrix. A comparison to the previous
approach [117] shows that spatial priors addition improve the results obtained in the
motion segmentation.

Del Bue [28] presents a method to estimate average 3D shapes from non-rigid
motion in the case of missing data. Firstly, an initial estimate of the 3D shape and
motion of the object is obtained with a power method (based on the PowerFactor-
ization technique). Secondly, this initial estimation is refined by using non-linear
optimization. As far as our knowledge, Del Bue is the first in tackling the shape from
non-rigid motion with missing data.

Tables 2.1, 2.2 and 2.3, summarize the main features of the studied factorization
techniques focused on the SFM problem.
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Table 2.1: summary of different methods of factorization I.

Method camera object number missing noisy used tools
model objects data data and features

[110] orthographic rigid single yes no SVD
[91] parapersp. rigid single no no SVD

persp. iterative
SVD, fundamental

[106] perspective rigid single no no matrices
epipoles

[113] perspective rigid single no no SVD, 3D lines
[57] perspective rigid single no no iterative
[25] perspective rigid single no no affine

iterations
[93] affine rigid single no no lines
[3] orthographic rigid single no no surface-based
[87] affine rigid single no yes point, lines

planes
[70] affine rigid single yes no point, lines

conics
[6] affine rigid single no yes SVD
[1] perspective rigid single yes yes IRLS

rigid rank 1
[2] affine (piecewise single no yes weighted

planar) factorization
[4] affine rigid single no yes power

method
[45] affine rigid single yes yes temporal

prior, EM
[61] affine rigid single no yes outliers

detection
[62] affine rigid single no yes reprojec. error
[60] affine rigid single yes yes outliers

correction
[86] affine rigid single no no sequential,

SVD
[80] affine rigid single no no sequential,

SVD and RLS
[66] affine rigid single yes no r-tuple
[24] affine rigid single yes yes inputation
[67] affine rigid single yes yes DP criterion
[89] affine rigid single yes no Wiberg
[50] affine rigid single yes no Row-column
[54] affine rigid single yes no PF
[23] affine rigid single yes no Damped Newton

hybrid
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Table 2.2: summary of different methods of factorization II.

Method camera object number missing noisy used tools
model objects data data and features

[44] affine rigid single yes no global approach
two step

[83] perspective rigid single yes no combining [66]
and [106]
geometric

[108] affine rigid single yes yes correlations
2D-3D shape

[18] affine rigid single yes no EM
[84] affine, rigid single yes no rank 4

perspective submatrices
[51] affine rigid single yes no FA-closure
[12] affine rigid multiple no yes SVD
[26] affine rigid multiple no no SVD,interaction

matrix
[53] affine rigid multiple no no SVD, linear

constant speed
[64] affine rigid multiple no no SVD, QR
[63] affine rigid multiple no no SVD, QR
[72] affine rigid multiple no yes geometric

AIC
[74] affine rigid multiple no no AIC
[73] affine rigid multiple no yes AIC
[130] affine rigid multiple no yes degeneracies
[107] affine rigid multiple no yes degeneracies

trajectories
[132] affine rigid multiple no yes horitzontally

stacked
[131] affine rigid multiple no yes temporal

consistency
[20] scaled non-rigid — no no basis shapes

orthographic
[13] affine non-rigid — no no morphable
[111] affine non-rigid — no no tracking
[29] affine non-rigid — no no stereo
[124] weak-perspective non-rigid — no no basis constraints

set of rigid
[16] affine non-rigid — no yes tracking

3D surfaces
[81] perspective non-rigid — no no rigid points as

initialization
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Table 2.3: summary of different methods of factorization III.

Method camera object number missing noisy used tools
model objects data data and features

[78] affine non-rigid — no no Degree of
Nonrigidity

[30] perspective non-rigid — no yes RANSAC,
F matrix

[112] affine art. — no no SVD
[125] affine art. — no no SVD, GPCA
[120] affine non-rigid — yes no constrained PF
[39] affine rigid multiple no no row echeleton
[126] affine all — no no local subspace,

Ncuts
[115] affine all multiple yes no comparison
[41] affine, all multiple yes no LLMC,

perspective NLDR
iterative

[79] perspective rigid multiple no no extensions
of [106]

[14] affine non-rigid — yes yes incremental
SVD

[134] weak-persp. art. — yes no hierarchical
[46] affine rigid multiple yes yes EM
[117] affine rigid multiple yes no PF,

GPCA
[47] affine rigid multiple yes yes 2D nonmotion

cues
[28] affine non-rigid — yes yes PF
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Chapter 3

Alternation Technique

This Chapter presents in detail the Alternation technique, which is widely used along
the thesis to obtain the best low-rank approximation of a given missing data matrix.
This low-rank matrix approximation can be used to fill in missing entries in the data
matrix. However, in some cases, the main objective is to factorize the missing data
matrix in two factors, without considering the obtained filled in entries with their
product.

First of all, Wiberg’s algorithm [123] is introduced, since it can be considered the
origin of Alternation. Then, the Alternation algorithm is presented, both in matrix
and rows formulations. Additionally, different missing data distributions are stud-
ied, together with their influence to the performance of the technique. Finally, the
denoising capacity of the Alternation is empirically shown.

3.1 Wiberg’s Algorithm

Wiberg [123] introduces an iterative algorithm for the computation of principal com-
ponents of a data matrix with missing observations. It is based on Ruhe and Wedin’s
approach [97]. The key point of the algorithm is that variables are separated into
two sets. At each iteration, in a first step, the optimization with respect to one set
of variables is performed. Then, in a second step, the correction of the second set
of variables is carried out. The main ideas of the Wiberg’s algorithm are presented
below following its formulation.

Given a data matrix Y , which consists of observations of n individuals from a
p-variate normal distribution with mean vector µ̄ and covariance matrix Σ, the r-
component model is:

Y = eµt + Ũn×rS̃r×rṼ
t
p×r (3.1)

where S̃ = diag(σi) is an r × r diagonal matrix containing the singular values σi of
Y − eµt, being σi ≥ σi+1, µ is the maximum likelihood approximation to the mean

35
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vector µ̄ and e is a vector with all ones. The aim is to determine Ũ , S̃ and Ṽ such
that minimize the following expression:

‖Y − eµt − Ũ S̃Ṽ t‖E (3.2)

where ‖ · ‖E is the Euclidean matrix norm [43].

The singular value decomposition (SVD) of the centered data matrix Y −eµt gives
the solution to this problem when there are no missing data in Y . Unfortunately, this
method can not be used when Y has missing data. The expression to minimize in
that case is:

ϕ(µ,U, V ) =
1

2

∑

j,k

(Yjk − µk − ut
jvk)2 (3.3)

where j and k correspond to the known entries Y (j, k), and vk and uj are defined as:

U = Ũ S̃1/2 =




ut
1
...

ut
n


 , V = Ṽ S̃1/2 =




vt
1
...

vt
p


 (3.4)

Since (3.3) defines a least squares problem, any algorithm for nonlinear least
squares can be applied. The classical way to obtain a numerical solution of a nonlinear
least squares problem is the Gauss-Newton algorithm.

Rewriting the matrices from above as vectors, the minimization problem (3.3) can
be written as

ϕ =
1

2
f tf (3.5)

where
f = y − µ̂ − Fu = y − Gṽ (3.6)

being

u =




ut
1
...

ut
n


 , ṽ =




ṽt
1
...

ṽt
p


 , (3.7)

ṽk =
[

vk µk

]
, µ̂i = µk(i), (3.8)

F =
∂f

∂u
, G =

∂f

∂v
(3.9)

Since the goal is to minimize (3.5), its partial derivatives are computed:

ϕ̇ =

[
∂ϕ
∂u
∂ϕ
∂v

]
=

[
F t(Fu − (y − µ̂))

Gt(Gṽ − y)

]
(3.10)

The Gauss-Newton algorithm replaces the nonlinear problem (3.3) by a sequence
of linear ones, taking advantage of the sparse, structured derivatives of the devised
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object function ϕ (3.5). Hence, the variables are separated into two sets and the
following algorithm is obtained:

Wiberg’s algorithm: Given Yn×p a data matrix that contains observations of n
individuals from a p-variate normal distribution:

1. Initialize ṽ.

2. Compute u: u = F+(y − µ̂), where F+ is the pseudo-inverse of F [43].

3. Stop if converge.

Otherwise, compute dv such as minimizes ‖QF Gdv − QF y‖2, where QF is the
projector to the column space of F . That is: QF = I − F (F tF )−1F t.

Update ṽ: ṽ = ṽ + dv,

4. Repeat the steps 2-3 until the convergence is achieved.

Solution: u and v minimize ϕ(µ,U, V ) = 1
2

∑
j,k (Yjk − µk − ut

jvk)2

More details of the original approach can be found in [98].

Shum et al. [104] present an outline of Wiberg’s algorithm and develop a method
for 3D object modeling based on it. This is the first work on the computer vision
framework based on Wiberg’s algorithm. They show that object modeling from a
sequence of range images can be thought as a problem of principal component analysis
with missing data (PCAMD). Wiberg’s formulation is modified and generalized to
a weighted least squares (WLS) minimization which simultaneously recovers object
shape and transformation among different views.

In a recent paper, Okatani and Deguchi [89] present in detail Wiberg’s algorithm
focused on the matrix factorization problem. Their experiments show the good per-
formance of this algorithm compared to the Levenberg-Marquardt (LM) technique.
They propose to use it as a standard algorithm for some computer vision problems.
Furthermore, authors point out the misunderstanding in the computer vision com-
munity of associating some techniques to Wiberg’s approach. In order to show that,
they expose in [89] some differences between the Alternation technique, which they
call Alternated Least Squares (ALS) technique, and the Wiberg’s algorithm.

However, although the objectives and methods to solve Wiberg’s and Alternation
algorithms are different, both techniques are quite related. In some way, Wiberg’s
algorithm can be thought as Alternation origin, as considered in previous papers.
For instance, Guerreiro and Aguiar [50] mention that their algorithm is similar to
Wiberg’s one [123] and Buchanan and Fitzgibbon [23] cite Wiberg [123] as the origin
of Alternation technique. As far as we are concerned, Buchanan and Fitzgibbon are
the first in calling this technique Alternation.
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3.2 Alternation Technique’s Algorithm

This Section presents the algorithm and properties of the Alternation technique.
Given a matrix Wm×n with rank r < m,n, the aim is to find Am×r and Br×n such
that minimize the following expression:

‖W − AB‖2
F (3.11)

Working with missing data, the expression to minimize is:

‖W − AB‖2
F =

∑

i,j

|Wij − (AB)ij |2 (3.12)

where i and j correspond to the index pairs where Wij is defined.

The SVD gives the solution to this problem when the matrix W is complete [110].
The Alternation technique can also be used to solve the above problem, even if there
are missing data in W . This technique uses the fact that if one of the factors A or B is
known, the other factor can be computed by solving the least squares problem (3.12).

There is a very interesting relationship between the Alternation and the orthogonal
power iteration [43], as it is shown in [50] and [54]. This relationship is exposed below
in order to justify that the Alternation gives the closest low-rank approximation to W ,
in the least-squares sense.

The Power Method [43] is a well known technique for finding the dominant eigen-
vector of a matrix X. Starting from a random vector u0, the Power Method consists
in repeatedly applying X to u and normalizing the result:

uk+1 = Xuk/‖Xuk‖ (3.13)

The orthogonal power iteration [43] consists in extending the Power Method to
find the r-dimensional dominant subspace of a given matrix. Applying it to a sym-
metric positive semi-definite matrix WW t, it starts with a random matrix U0 with
r orthonormal columns and iteratively multiply by WW t and re-orthonormalize the
columns:

Uk = (WW t)Uk−1Nk (3.14)

where Nk is an upper triangular matrix that makes the columns of Uk orthonormal.
Actually, Nk is a normalizing matrix that is found by the Gram-Schmidt process [43],
which is equivalent to QR decomposition [43] of (WW t)Uk−1.

Using the above iteration, it can be seen that, to find the dominant space of WW t

is equivalent to the two-step algorithm presented below.

Alternation algorithm: Given a matrix Wm×n of rank r < m,n, the algorithm
starts with an initial random m × r matrix A0 (analogously with a random B0) and
repeats the steps 1-2 until the product AkBk converges to Wm×n:
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1. Compute the matrix Bk:

Bk = (At
k−1Ak−1)

−1(At
k−1W ) (3.15)

2. Compute the matrix Ak:

Ak = WBt
k(BkBt

k)−1 (3.16)

3. Stop if the product AkBk converges to W .

Otherwise, set k = k + 1 and go to step 1.

Solution: The product AkBk is the closest rank-r matrix to W , in the least-squares
sense.

If the expression (3.15) is substituted to (3.16), the following single step is ob-
tained:

Ak = WW tAk−1(A
t
k−1WW tAk−1)

−1At
k−1Ak−1 (3.17)

As pointed out Guerreiro and Aguiar [50], the above expression shows that the
two step algorithm is equivalent to apply the Power Method [43] to the matrix WW t,
where the factor (At

k−1WW tAk−1)
−1At

k−1Ak−1 corresponds to the normalization Nk

of equation (3.14). Hence, the Alternation can be seen as a generalization of the
Power Method.

Notice that, although the computation of the factors is different to that of Wiberg’s
algorithm (here the Gauss-Newton method is not used), the variables (matrix factors)
are also computed separately, in two steps. The key point is that each Bk and Ak is
the least-squares solution to a set of equations of the form W = AB and, at each step,
the expression (3.12) is minimized. One of the advantages of Alternation is that it has
a very rapid convergence if the rank of the initial matrix W is close to r, as showed
in [54] (only one iteration is needed in the full data case). Actually, the fact of solving
for each factor A (or B), while holding the other factor fixed, provides a minimum
in each direction in a single step. Moreover, since at each iteration the algorithm
consists of only matrix multiplication and inversion of small (r × r) matrices, it is a
fast algorithm. Of course, if r is large, the algorithm becomes slower.

The Alternation technique allows to obtain the two factors A and B when the SVD
can not be applied. At the same time, Alternation can also be used as an imputation
method, since missing entries can be recovered with the product of the obtained
factors A and B. For instance, in [50] the Alternation is used to find a low-rank
matrix approximation to W and the missing entries are filled with the product: AB.
This is also used in Chapter 5 and in Chapter 6, as shown later.

Unfortunately, the decomposition obtained with the Alternation is not unique, as
in the SVD case, since any r × r invertible matrix also gives a valid decomposition:
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W = AB = ÂQQ−1B̂ (3.18)

The Q matrix can be computed by imposing constraints on A or B, depending
on the nature of the factors. In the particular adaptation of Alternation to the
SFM problem, which is studied in Chapter 4, Q is computed with a normalization
step similar to the one used in the original formulation [110] (see equation (2.19), in
Section 2.1.1).

The main advantage of working with this two-step algorithm is that it can be
extended to missing data by observing a link with least-squares problems, which is
not obvious with the orthogonal iteration method. Furthermore, the updates of B
given A (analogously A given B) can be done by solving a least squares problem
for each row of B independently. Therefore, the missing entries in W correspond to
omitted equations. The Alternation algorithm considering the rows of A and columns
of B independently, instead of taking the whole matrices, is presented below.

Alternation algorithm, row-column formulation: Given a matrix Wm×n with
rank r < m,n, the algorithms starts with a random matrix of dimensions m × r, A0

(analogously with a random B0). Set k =1 and repeat the following steps until the
product AkBk converges to Wm×n:

1. Compute the rows of Bk independently:

To compute the j-column of Bk, referred to as bj hereinafter, the known en-
tries in the j-column of W are used. Concretely, for each i such as W (i, j) is
known, an equation is formulated, using the corresponding rows of the known
matrix Ak−1.

The following expression gives the solution for the j-column of Bk:

bj = (At
k−1Ak−1)

−1(At
k−1w

j) (3.19)

where wj is the j-column of W . It should be remarked that only the known
entries in this column and the corresponding rows in Ak−1 are considered.

2. Given Bk, compute Ak analogously:

To compute the i-row of Ak, ai hereinafter, each of the known entries in the
i-row of W is taken to formulate an equation using the known factor Bk. The
i-row of Ak is computed as:

ai = (wiB
t
k)(BkBt

k)−1 (3.20)

where wi is the i-row of W and only its known entries and the corresponding
columns in Bk are used.

3. Stop if the product AkBk converges to W .

Otherwise, set k = k + 1 and go to step 1.
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Solution: The product AkBk is the closest rank-r matrix to W , in the least-squares
sense.

Notice that the number of equations used to compute each row and column of each
factor A and B, depends on the number of known entries in each row/column of W .
Actually, notice also that the number of unknowns when computing each row ai and
each column bj is r, which is the length of the computed row or column. Hence, if
there is only a few missing entries in the corresponding row or column of W , a global
minimum is achieved and the factors are properly computed. However, with a high
percentage of missing data, only a few equations can be formulated and the method
may converge to a local minimum. Although in theory only r equations are needed, in
practice degenerate cases, such as linearly dependent equations, can occur and more
than r equations may be required.

It should be highlighted that not only the percentage of missing data affects the
performance of the Alternation, but also, and more remarkably, the distribution of
the missing data. In general, when the missing data is randomly distributed, the
obtained results are good, while the percentage of missing data is not very high. On
the contrary, if missing data are concentrated in some areas of the given matrix W
(e.g., banded structure in the SFM problem, see Chapter 4) the Alternation technique
could fail. A study of Alternation robustness to different missing data distributions
is presented in next Section.

3.3 Missing Data Distribution Variants

Two different missing data distributions are considered in this Section. This is an
important fact that should be taken into account, since the performance of the Alter-
nation technique depends on missing data distribution, as mentioned above.

Several Alternation-based approaches proposed in the literature present experi-
ments assuming a random distribution of the missing data. Fig. 3.1 (left) shows an
example of this distribution. The Alternation technique gives better results when the
missing data presents this distribution, which is found in some applications such as
recommender systems or DNA microarray data (studied in Chapter 6).

Unfortunately, other problems tackled with Alternation do not present such a
random distribution (e.g., SFM, see Chapter 4). An example of banded distribution
can be seen in Fig. 3.1 (right). This distribution can give columns with less than r
known elements and that will give undesirable results.

A study of the performance of the Alternation depending on the data distribution
is provided. Since the presented Alternation is not focused on any application, a
synthetic data matrix is considered for this experiment. Concretely, two matrices
Am×r and Br×n are synthetically generated with points that belong to a normal
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random

Figure 3.1: matrices with 50% of missing data; (left) random distribution;
(right) banded distribution.

distribution. The initial data matrix W is defined by the product: AB.

The number of rows m and columns n are 200 and r is set to 5, in the current ex-
periment. Taking the full matrix W , missing data matrices are generated considering
both missing data structures, in order to compare the performance of Alternation in
each case. In the case of banded structure data, given a matrix where all values are
known, different percentages of missing data are generated by automatically removing
parts of random columns. The removing process randomly selects a cell in the given
column, dividing it into two parts. One of these parts is randomly removed—in the
SFM problem, this removing process simulates features missed by the tracker or new
features detected after the first frame, respectively.

Concretely, 50 attempts are repeated and the root mean square error (rms) at
each attempt is computed. It is defined as follows:

rms =
‖W − AB‖F√

p
=

√∑
i,j |(W )ij − (AB)ij |2

p
(3.21)

where i and j correspond to the index pairs where Wij is defined and p is the number
of those pairs in W .

The results obtained considering different percentages of missing data are plotted
in Fig. 3.2. Concretely, polygonal figures enclose data in between lower and upper
quartiles (medians are represented by horizontal lines in thinner regions). It can be
seen that with low percentages of missing data, the results are similar in both cases.
When the percentage of missing data is equal or higher than 40%, the performance
with the banded missing data structure becomes worse. Notice that with a percentage
of missing data of 90%, the rms values are similar in both cases. This is due to the
fact that, with such a high percentage of missing data, a similar matrix W is obtained
with both distributions.

This is a synthetic, ideal experiment. Unfortunately, in real situations, the data
matrix can present more extreme banded structure. Notice that in this generated
banded matrix, most columns have many known values. Furthermore, data is quite
symmetric in this example. When the data matrix corresponds to a real data, even
more extreme distribution should be faced out (e.g., a column with less than r ele-
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Figure 3.2: rms in logarithmic scale considering different percentages of missing
data and for the random and banded missing data distribution.

ments).

3.4 Denoising Capability of the Alternation

This Section presents a study about the filtering (also referred to as denoising) ca-
pacity of the Alternation technique, which has already been explored in [60].

Chen and Suter [24] present a study about the denoising capacity of the SVD
versus missing data. Concretely, they point out that when the SFM is tackled through
factorization of a complete matrix, all the feature points are treated uniformly. Thus,
most of the noise can be suppressed if the size of the matrix of trajectories is large
enough. However, the accuracy of this denoising capacity degrades as the percentage
of missing data increases. Since the Alternation and the SVD give the same solution in
the full data case, it seems natural that the Alternation has also a denoising capacity.

Experimental results are carried out in order to show the filtering capacity of the
Alternation. Different levels of Gaussian noise—standard deviation σ with a value
from 1

2 to 10 and zero mean—are added to the entries of W . The obtained noisy

matrices are denoted as Ŵ . The Alternation technique is applied to each of these
matrices and the root mean square error rms is computed:

rms =
‖Ŵ − AB‖F√

p
(3.22)

where p is the number of elements in Ŵ .

Furthermore, the root mean square error is computed considering the free of noise
matrix W instead of Ŵ . This measure allows to study if noisy entries have been
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Figure 3.3: rms and rmsfree, in logarithmic scale, considering different standard
deviation values and fixing the size of the matrix; (top) size of W : 10×10 and 50×50;
(bottom) size of W : 100 × 100 and 200 × 200.

corrected (filtered). This error is referred to as rmsfree hereinafter and it is defined
as follows:

rmsfree =
‖W − AB‖F√

p
(3.23)

Notice that in case Alternation filters the noise, rmsfree should be smaller than
rms.

As before, the rank is set to 5 and for each setting, 50 attempts are repeated.
Three different experiments are carried out, depending on the studied parameters in
each case.

The first experiment consists in fixing the size of the data matrix, while varying
the standard deviation of the gaussian noise added to W . Fig. 3.3 shows the obtained
rms and rmsfree. It can be appreciated that the Alternation does not filter noise in
the case of a data matrix with a size 10×10 (Fig. 3.3 (top-left)). On the contrary,
noisy data are filtered when the size of W is larger (for any tested standard deviation).
Notice that the distance between rms and rmsfree becomes smaller as the amount of
noise increases. That is, it is more difficult to denoise matrices with a large amount
of noise.
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Figure 3.4: rms and rmsfree, in logarithmic scale, considering different matrix sizes
and fixing the standard deviation value; (top) σ = 1/2 and σ = 1; (bottom) σ = 5
and σ = 10.

A similar experiment consists in fixing the amount of noise added to W , while
taking matrices with different sizes. The obtained results are plotted in Fig. 3.4. As
in the previous experiment, the Alternation technique can not filter noisy data in the
case of a very small matrix (concretely, a matrix with only 10 rows and columns),
as it can be seen in Fig. 3.4. It should be remarked that, as the size of the matrix
increases, the rms keeps nearly constant, while the rmsfree becomes smaller. This
is due to the fact that the noise can be more easily filtered when working with large
matrices.

The above experiments take only full data matrices. An experiment that considers
different percentages of missing data in the initial matrix is also provided. Fig. 3.5
shows the rms values obtained considering different percentages of randomly distrib-
uted missing data. In this experiment, the matrix has 100 rows and columns, the
standard deviation is σ = 1 and the rms defined in equation (3.21) is used. It can
be seen that, as expected, the filtering capability of the Alternation gets worse as the
percentage of missing data increases (see increases in rmsfree). Concretely, it filters
the noise while the percentage of missing data is below 80%.
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Figure 3.5: rms and rmsfree, in logarithmic scale, considering different percentages
of randomly distributed missing data. The standard deviation is σ = 1 and the size
of the matrix W is set to 100 × 100.

3.5 Summary

This Chapter presents the algorithm and properties of Alternation technique. It
should be remarked that the Alternation can be used to factorize a missing data
matrix, but also to fill in its missing entries, with the product of the recovered factors.
Furthermore, different missing data distributions are presented and a study of the
performance of the Alternation with each distribution is provided. Concretely, random
and non-random missing data distributions are studied. Experimental results show
that a random distribution of the missing data gives better results. Finally, the
filtering capacity of this technique is empirically shown.



Chapter 4

SFM in the Single Object Case with
Missing Data

This Chapter tackles the Structure from Motion problem for the single object case
through factorization, focusing on matrices of trajectories that contain a high percent-
age of missing data.

Several techniques have been proposed for tackling the Structure from Motion prob-
lem through factorization in the case of missing data. However, when the percentage
of unknown data is high, most of them may not perform as well as expected. Focusing
on this problem, an iterative multiresolution scheme, which aims at recovering missing
entries in the original input matrix, is proposed. Information recovered following a
coarse-to-fine strategy is used for filling in the missing entries. The objective is to im-
prove the results by applying a factorization technique to the partially or totally filled
matrix instead of to the original input one. An evaluation study about the robustness
to missing and noisy data is reported. Experimental results obtained with synthetic
and real video sequences are presented to show the viability of the proposed approach.

4.1 Introduction

The Structure From Motion (SFM) problem consists in extracting the 3D shape of
a scene as well as the relative camera-object motion from trajectories of tracked fea-
tures. In the computer vision context, factorization is a theoretically sound method
addressing this problem. Since it was introduced by Tomasi and Kanade [110] many
variants have been presented in the literature (e.g. [91] for the case of paraperspective
camera model; a sequential factorization method in [86]; [26] and [53] for the multiple
object case, etc). The 2D image coordinates of a set of 3D features (points in general,
but also lines [93] and planes [87]) are stacked into a matrix of trajectories, where
every row represents a frame of the sequence and every column a given feature. Fac-

torization techniques aim at expressing this matrix of trajectories as the product of

47
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two unknown matrices, namely, the relative camera-object motion at each frame (M)
and the 3D shape (S) of the object:

W2f×p = M2f×rSr×p (4.1)

where f , p are the numbers of frames and feature points respectively and r the rank
of W . Given an input matrix W , the goal is to find the factors M and S that minimize
‖W − MS‖2

F , where ‖ · ‖F is the Frobenius matrix norm [43]. These factors can be
estimated by using the fact that W has a reduced rank and due to constraints derived
from the orthonormality of the camera axes.

The Singular Value Decomposition (SVD) gives the closed-form solution to this
problem when there are not missing entries. Unfortunately, trajectories are often
incomplete or split due to objects occlusions, missing on the tracking or simply because
they exit the camera field of view. Hence other methods need to be used in these cases.
As presented in Section 2.2.2, several factorization techniques have been proposed to
tackle the problem of missing data.

The main drawback of factorization techniques is found working with a large per-
centage of missing data; the obtained solutions get worse as the percentage of missing
data increases. In this Chapter, an iterative multiresolution scheme is presented.
It allows to fill in missing data in the matrix of trajectories. The key point of the
proposed approach is to work with submatrices, instead of with the whole matrix of
trajectories. That is, reduced sets of feature points along a few number of consecutive
frames are selected. Then, for each set (submatrix), the 3D reconstruction and the
camera motion corresponding to the used feature points are obtained by applying a
factorization technique. Concretely, the Alternation technique introduced in Chap-
ter 3 is adapted to the SFM problem. Missing entries in each selected set can be
filled in just by multiplying the recovered shape and motion matrices. One of the
main contributions over the two preliminary approaches ([68] and [69]) is that only
submatrices with a percentage of missing data below 50% are used, in order to assure
good recovered factors. Furthermore, a more extended evaluation study is reported.
On the one hand, and only in the synthetic case, the recovered factors M and S are
studied and compared to the ground truth ones. On the other hand, the goodness
of the recovered entries is studied by taking into account both the initially known
entries and also the initially missing ones. The latter is only possible when the full
matrix is known in advance.

The proposed approach should be seen as a pre-processing technique; that is,
firstly the matrix of trajectories is partially or totally filled in with the proposed
iterative multiresolution scheme. Then, any factorization technique could be applied
in order to obtain the structure and motion of the whole matrix. The final goal is
to improve results when the factorization is applied to the matrix filled in with the
proposed scheme, instead of applying it directly to the original input matrix, which
has a higher percentage of missing data.

The remainder of the Chapter is organized as follows. Section 4.2 introduces the
Alternation technique adapted to the SFM problem. This technique is used in the
iterative multiresolution scheme to fill in missing data and also, at the final step,
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to factorize the whole matrix into the motion and shape matrices. The proposed
iterative multiresolution scheme is presented in Section 4.3. An evaluation study of
the performance of the proposed scheme is provided in Section 4.4, both for synthetic
and real data. Finally, conclusions are summarized in Section 4.5.

4.2 Alternation Adapted to the SFM Problem

This Section presents the Alternation technique adapted to the SFM problem. This
technique was introduced in Chapter 3, without focusing on any application. In
this case, the A and B factors correspond to the motion M and shape S matrices,
respectively. The Alternation technique is used in the iterative multiresolution scheme
to fill in missing data and also, at the final step, to decompose the whole matrix into
the motion and shape matrices. First of all, a brief summary of several variants of the
Alternation focused on the SFM problem are reported. Then, the Alternation with
motion constraints, which consists in imposing the orthonormality of the camera axes
at each iteration of the algorithm, is presented. Furthermore, a variant that includes
constraints for imposing the smoothness camera motion is also proposed. An example
to illustrate the performance of this variant is provided.

4.2.1 Variants of Alternation Focused on SFM

Several variants of the Alternation technique have been presented in the literature.
In [23], and more extended in [22], a report of most of these variants, including their
algorithm, is given. Here, variants focused on the SFM problem are briefly exposed.

Hartley and Schaffalitzky [54] suggest adding a normalization step between the
two factors updates at each iteration. This particular Alternation technique is de-
noted as PowerFactorization. Furthermore, focusing on the SFM problem, the au-
thors propose to impose that the last row of S is equal to 1 (where 1 represents a
vector of 1). In a different approach, Huynh et al. [60] propose to add an update
of W at each iteration, once the factors have been computed. Their objective is to
correct the outlier entries in W . However, they do not consider the missing data
case. Buchanan and Fitzgibbon [23] propose the Alternation/Damped Newton Hy-
brid, which combines the Alternation strategy with the Damped Newton method. A
different Alternation approach is presented by Aanaes and Fisker in [1]. Given an
initial measurement matrix W0, the algorithm consists in computing the factors M
and S separately. Additionally, at each iteration, the measurement matrix is modified
in order to approximate a perspective camera model.

In Table 4.1, a brief summary of the studied variants of the Alternation technique
to tackle the SFM problem is given.
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Table 4.1: variants of Alternation technique to tackle the SFM problem.

Method Characteristics Objective
Hartley and PowerFactorization SFM

Schaffalitzky [54] (normalization step)
Huynh et al. [60] update W to correct outliers in W
Buchanan and Damped Newton hybrid SFM
Fitzgibbon [23]

Aanaes and modify W deal with erroneous, noisy
Fisker [1] and missing data

4.2.2 Alternation with Motion Constraints

Focusing on the SFM problem, an Alternation with motion constraints is proposed in
this Chapter. It is a variant of the Alternation similar to the one mentioned above
for the special case of SFM [54]. In that approach, they impose that the last row of
S should be equal to 1. In addition to that, the fact that M contains the relative
camera-object motion at each frame is used. Therefore, given Mk−1, and before
computing Sk, the orthonormality of the camera axes at each frame (namely the rows
of M , taking only the first three columns) is imposed. The obtained algorithm is
summarized below:

Alternation with motion constraints algorithm: The algorithm starts with an
initial random 4× p matrix S0, setting its last row to 1. The next steps are repeated
until the product MkSk converges to W2f×p:

1. Compute the matrix Mk:

Mk = WSt
k−1(Sk−1S

t
k−1)

−1 (4.2)

Define M = [ R t ], where R is a 2f × 3 matrix that contains the relative
camera-object orientation at each frame, whereas t is a 2f × 1 vector that
contains the relative camera-object position at each frame; which is the same,
R and t are the rotation and translation components of the camera, respectively.

2. Impose orthonormality of camera axes, as in the normalization step in Sec-
tion 2.1.1 (see equation (2.19)):

itiAA−1ii = 1

jtiAA−1ji = 1 (4.3)

itiAA−1ji = 0

where ii and ji are the x and y camera axes at frame i (see equation 2.7), and
i = 1, · · · , f , being f the number of frames.

Actualize Mk:
M̃k = MkA (4.4)
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3. Subtract to each column j of W (denoted as wj) the translation component of

M̃k:

w̃j = wj − t̃k, j = 1, . . . , p (4.5)

Compute the matrix Sk = [ (SR)k 1 ]:

(SR)k = ((R)t
k(R)k)−1((R)t

kW̃ ) (4.6)

4. Stop if the product MkSk converges to W .

Otherwise, set k = k + 1 and go to step 1.

Solution: The product MkSk is the closest rank-r matrix to W , in the least-squares
sense.

Due to the motion constraints added at each iteration, this Alternation variant
provides an Euclidean 3D reconstruction of the object, instead of an affine one.

Adding prior knowledge

Furthermore, the addition of priors to the formulation by using known information
is proposed. Other approaches remark the importance of adding priors in the SFM
problem formulation. For instance, Gruber and Weiss [45] use the fact that the camera
location at time t + 1 is probably similar to its location at time t. They show how
the performance of their method is improved by adding this temporal coherence prior.
Buchanan and Fitzgibbon [23] also add priors on the formulation. Concretely, they
penalize the non-orthonormality of the camera in the optimization function. They
show improvements in the results when this information is added.

In the Alternation with motion constraints presented above, the othonormality of
the camera is imposed at the normalization step. However, camera motion is not
considered. In sequences where the camera pose does not vary so much, it can be
assumed, as in [45], that the camera has a smooth motion. To do that, a constraint
that fix the rotation of the camera between consecutive frames, can be added in the
normalization step. Since the camera axes are unitary vectors, the scalar product
between consecutive camera axes give the cosine of the angle that they form. Setting
a value for that cosine, the following equations are obtained:

itiAA−1ii+1 = cos(α)

jtiAA−1ji+1 = cos(α) (4.7)

where i = 1, · · · , f−1, f is the number of frames and α is the estimated angle between
consecutive camera axes. These 2f−2 equations should be added to the linear system
generated by equations (4.3) to compute the matrix A.
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Figure 4.1: (left) first frame of the sequence; (right) initially known trajectories
plotted in the image plane.

Figure 4.2: matrix of trajectories, only the 23.08% of data is known.

Unfortunately, this constraint can only be used when it is known that the camera
has a smooth motion and, even in those cases, it is not easy to set α properly.

Example

The aim at introducing this example is to show that in particular sequences, to impose
the smooth camera motion constraints can improve the obtained results.

A well-known real sequence, previously considered in Chapter 1, is used in this
example. It is publicly available at: http://www.robots.ox.ac.uk/∼vgg/data/data-
mview.html. The first frame of the sequence is shown in Fig. 4.1 (left). The matrix
of trajectories W contains 319 feature point trajectories along 36 frames. That is,
it has a dimension of 72 × 319 and the percentage of known data is only 23.08%.
Fig. 4.1 (right) shows the trajectories plotted in the image plane. The matrix of
trajectories is shown in Fig. 4.2. White entries correspond to missing data.

Fig. 4.3 shows an example of the recovered factors obtained with the Alternation
technique. It should be remarked that the reported result has been selected from 1000
attempts: this is the best obtained result among 1000 attempts. With such amount
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Figure 4.3: (top) recovered factors: 3D shape (left) and motion (right); (bot-
tom) filled trajectories obtained by multiplying the recovered factors M and S, plot-
ted in the image plane.
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Figure 4.4: adding smooth camera motion constraints; (top) recovered factors: 3D
shape (left) and motion (right); (bottom) filled trajectories obtained by multiplying
the recovered factors M and S, plotted in the image plane.

of missing data, it is not easy to obtain a proper result with the Alternation. The
goodness of the result is measured by using the root mean square error (rms), defined
in equation (3.21), in Chapter 3. In this particular attempt, rms = 1.3905. It can
be seen that some recovered trajectories are not closed. In fact, the recovered camera
motion does not presents a closed trajectory.

Better results are obtained if smooth motion is imposed to the camera, as it can be
seen in Fig. 4.4. This result corresponds to the selected attempt in the previous case.
In this case, the rms value is 1.3732. The assumed cosine value in equations (4.7)
is 0.98, which means an angle of about 10 degrees between consecutive frames. It can
be appreciated that, in this case, the recovered 3D is more correct and the camera
motion and the trajectories are better recovered.

4.3 Iterative Multiresolution Scheme

This Section presents the iterative multiresolution scheme proposed to fill in missing
data. Essentially, the basic idea of the proposed approach is to work with submatrices
that have a reduced percentage of missing data. Then, a factorization technique is
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used to obtain the 3D shape S and motion M of each of these submatrices and
the missing data are filled in with the resulting product MS. In particular, the
Alternation with motion constraints introduced in the previous Section is used. The
proposed approach consists of two stages, which are described below.

4.3.1 Observation Matrix Splitting

Let W2f×p be the matrix of trajectories (also referred to through this Chapter as
original input matrix) of p feature points tracked over f frames containing missing
entries; it will be denoted as W . Let k be the index indicating the current iteration
number.

The aim at this first stage is to split the matrix of trajectories W in order to
obtain submatrices with a reduced percentage of missing data. This splitting process
consists of the following two steps:

• Splitting: in the first step, the original input matrix W is split into a set of
k × k non-overlapped submatrices, defined as wi

k, with a size of b 2f
k c × b p

k c and
where i = 1, ..., k2. For the sake of presentation simplicity, hereinafter the input
matrix at the current iteration level k will be referred to as Wk.

• Multiresolution approach: although the idea is to focus the process in a
small area (submatrix wi

k), which is supposed to have a reduced percentage of
missing data, recovering information from a small patch can be affected from
noisy data. Hence, in order to improve the confidence of recovered data, in this
second step, and only when k > 2, a multiresolution approach is followed. It
consists in computing four overlapped submatrices win

k , n = 1, ..., 4 (see Fig. 4.5)
with twice the size of wi

k, and for every submatrix wi
k.

The idea of this enlargement process is to study the recovered entries in wi
k when

both different size regions are considered together with their overlapped results.
The latter avoids obtaining results from small single regions. Other strategies
were tested in order to compute in a fast and robust way submatrices with a
lower percentage of missing entries (e.g., quadtrees, ternary graph structures),
but they do not give the desired and necessary properties of overlapping.

Since generating four win

k , for every wi
k, is a computationally expensive task, a

simple and more direct approach is followed. It consists in splitting the matrix
Wk in four different ways, by shifting win

k half of its size (i.e., wi
k) through rows,

columns or both at the same time. Fig. 4.6 illustrates the five partitions of
matrix W , at the sixth iteration—i.e., the one generated by all the wi

k and the
other four ones, obtained with all the win

k submatrices, generated at this sixth
iteration. When all these matrices are considered together, the overlap between
the different areas is obtained, see textured cell in Fig. 4.5 and Fig. 4.6.

Missing data at corners cells are only considered to be filled twice (wi
k and one

win

k ), while border cells three times (wi
k and two win

k ). Other missing data in

other cells are considered five times (wi
k and its four win

k ).
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4.3.2 Submatrices Processing

The objective at this stage is to recover missing data by applying an imputation
technique at every single submatrix. At the same time, initially known values could
also be modified. One important point that must be highlighted is that submatrices
with a high percentage of missing data are discarded (as mentioned above, in the
current implementation only submatrices with a percentage of missing data below
50% are considered).

As mentioned above, the Alternation with motion constraints, introduced in Sec-
tion 4.2, is used to factorize the submatrices. Other methods to decompose the matrix
of trajectories could be used. Actually, in [69], we compare the use of the Alterna-
tion with the Damped Newton technique [23] in the proposed multiresolution scheme
and show that the first is more appropriated, both from the results and from the
computational cost.

Independently of their size hereinafter submatrices will be referred to as Ws.
Therefore, given a submatrix Ws with a percentage of known data of at least 50%, its
corresponding Ms and Ss matrices are obtained by using the Alternation technique.
Then, the product MsSs is used to fill in the matrix Ws. Finally, the root mean
squared (rms) is computed as follows:

rmss =
‖Ws − MsSs‖F√

n
=

√∑
i,j |(Ws)ij − (MsSs)ij |2

n
(4.8)

where i and j correspond to the index pairs where (Ws)ij is defined and n is the
number of those pairs in Ws.

Since the rmss is generally adopted as a measure of the goodness of the recovered
data, it will be used later on as a weighting factor for merging data on overlapped
areas after finishing the current iteration. Concretely, every point of the filled Ws is
associated with a weight, defined as 1

rmss

.

In the original approach [68] and [69], a threshold ς was defined and used to
discard the recovered entries in Ws when its corresponding rmss was higher than ς.
The problem was how to tune that threshold. One of the main improvements of the
new formulation proposed in this Chapter is that, since only matrices with a reduced
percentage of missing data are used, no ς–threshold is needed to be defined.

Finally, when every submatrix Ws has been processed, recovered missing data are
used for filling in the original input matrix W . In case a missing entry has been
recovered from more than one submatrix (overlapped regions) those recovered data
are merged by using their corresponding normalized weighting factors. The average
of the initial value and the new one, obtained after the merging process, is assigned.

Once recovered missing data have been used for filling in the input matrix W , the
iterative process starts again (Section 4.3.1), splitting the new matrix W either by
increasing k by one or, in case the size of submatrices wi

k at the new iteration stage is
too small, by setting k = 2. This iterative process is applied until one of the following
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conditions is true: a) a maximum number of iterations is reached; b) at the current
iteration no missing entries were recovered; c) the matrix of trajectories is totally
filled. An outline of the algorithm can be found below; Fig. 4.7 presents an overview
of the algorithm.

Iterative multiresolution Scheme’s Algorithm

Inputs: W original input matrix of trajectories; data: percentage of known data
in W ; itmax: maximum number of iterations; minsize: submatrix minimum size.

Set k = 2, it = 1, W0 = W and repeat the following steps while: (it < itmax) and
( datak > datak−1) and ( datak < 100%)

1. Split the matrix W0 into k × k submatrices wi
k, obtaining Wk.

If size(wi
k) < minsize, set k = 2, it = it + 1 and repeat step 1.

2. Multiresolution approach: compute the four partitions of matrix Wk (generated
by win

k , n = 1, ..., 4).

3. Submatrices processing: apply Alternation with motion constraints to all the
submatrices.

4. Merge the data by using the weights and update Wk. Set W0 = Wk, k = k + 1,
it = it + 1. Go to step 1.

Solution : Wfilled = Wk, datak > data0

4.4 Evaluation Study

The aim at this stage is to study the robustness to missing and noisy data of a
factorization technique applied to the partially or totally filled matrix obtained with
the proposed iterative scheme. This study is performed by comparing the result when
the same factorization technique is applied directly to the original input matrix. In
summary, the methodology proposed to evaluate the obtained results, which is shown
in Fig. 4.8, consists in applying:

• a factorization technique over the original input matrix W ;

• a factorization technique over the matrix filled in with the iterative multireso-
lution scheme Wfilled.
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Figure 4.7: scheme of the algorithm; example of an input matrix W with only 31%
of known data. The obtained filled matrix Wfilled after 6 iterations contains 50.6%
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case are compared. In our experiments, the Alternation with motion constraints is
used as factorization technique. IT means iterative scheme. In this example, the
input matrix has only 31% of known data.
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Although any factorization technique could be tested, the Alternation with motion
constraints technique is used in the evaluation study. Actually, this technique is also
used inside the proposed scheme to fill in missing entries of submatrices. Since the
objective is to study the performance of the proposed iterative multiresolution scheme,
the smooth camera motion constraints are not imposed in the experimental results.
For the shake of simplicity, and only in the current Chapter, Alternation with motion
constraints is referred to as Alternation, hereinafter.

Experiments using both synthetic and real data are presented below. Different
amounts of missing data are considered—from 10% up to 70%. Furthermore, different
levels of Gaussian noise—standard deviation σ with a value from 1

3 to 1 and zero
mean—are added to the 2D feature point trajectories, for the synthetic case. The
obtained matrices are denoted as Ŵ . Notice that in the case of real data the original
input matrix W already contains noisy values. For each setting (amount of missing
data and level of noise) 100 attempts are repeated and the root mean square error
(rms) is computed:

rms =
‖Ŵ − MS‖F√

n
=

√∑
i,j |(Ŵ )ij − (MS)ij |2

n
(4.9)

where i and j correspond to the index pairs where (Ŵ )ij is defined and n is the

number of those pairs in Ŵ .

Furthermore, and also in the synthetic case, the recovered M and S are com-
pared to the ground truth matrices (MG and SG) with the strategy explained below
(see 4.4.1).

Given a matrix where all values are known Wall, different percentages of missing
data are generated by automatically removing parts of random columns in order to
simulate the behaviour of tracked features. The removing process selects randomly a
cell in the given column, dividing it into two parts. One of these parts is randomly
removed, simulating features missed by the tracker or new features detected after the
first frame, respectively. Different numbers of frames could be used to achieve the
percentages of missing data, but the idea is to work with matrices of the same size,
since the performance of factorization techniques is not independent of the size of the
matrix. Note that missing data could simply be obtained by randomly removing en-
tries in Wall, but it would not simulate a realistic situation. Furthermore, Alternation
technique performs better when a random missing data distribution is considered (see
Section 3.3) and it may not be appropriated for an evaluation study.

As pointed out in [24], the rms defined by the expression (4.9) could be ambiguous
and in some cases contradictory. That is because it only takes into account the
recovered values corresponding to initially known entries in the original input W ,
but it ignores how the rest of entries are filled in. Since in our experiments all the
entries are initially known in Wall, as mentioned above, the root mean square error
considering all the entries in Wall can be computed. Hereinafter, this measure will be
referred to as rmsall and it is defined as follows:
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rmsall =
‖Wall − MS‖F√

2fp
(4.10)

where 2fp is the size of the matrix Wall.

4.4.1 Motion and Shape Error Computation

One possibility to study the goodness of the recovered shape S and motion M matrices
consists in expressing the rotations relative to that of the first frame, both the ground
truth rotations and the recovered ones, as suggested in [110]. However, first of all, the
coordinate system must be at the same position. Therefore, the computed translation
vector t, is transformed so that coincides with the real one tG:

t̃ = tG − t; (4.11)

Then, the camera pose at each frame i is expressed relative to that of the first
frame:

R̃i = RiR
−1
1 (4.12)

R̃Gi
= RGi

R
−1
G1

(4.13)

where i = 1, · · · , f , being f the number of frames, and:

Ri =




iti
jti

iti × jti


 (4.14)

is the computed camera pose at frame i. Analogously for the ground truth camera
pose RGi. These matrices and the translation components t̃ and tG are used to
construct the aligned motion matrices M̃ and M̃G, respectively.

Finally, the first three rows (the last is equal to 1) of the recovered S and of the
ground truth SG should be also aligned:

S̃ = R1S (4.15)

S̃G = RG1
SG (4.16)

The following expressions are used to measure the goodness of the recovered fac-
tors:

rmsS =
‖S̃G − S̃‖F√

3p
(4.17)

rmsM =
‖M̃G − M̃‖F√

3(2f)
(4.18)
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Figure 4.9: synthetic object; (left) cylinder; (right) feature point trajectories rep-
resented in the image plane.

being S and M of sizes 4×p and 2f×4, respectively. However, since the last row of S̃G

and S̃ are equal (both contain a vector of ones) and the fourth column of M̃G and M̃
are also identical (both translation vectors are equal), the corresponding entries are
not taken into account when computing the number of elements (see the denominator
in each rms expression).

4.4.2 Synthetic Data

This Section provides results obtained with two data sets from different objects. The
first data set is generated by randomly distributing 3D feature points over the sur-
face of a cylinder, see Fig. 4.9 (left). The second data set is generated from 3D
points of a triangular mesh (nodes), representing a Beethoven sculptured surface, see
Fig. 4.17 (left). In this second object the points are not as uniformly distributed as
in the previous object. Two different sequences are obtained with these objects by
performing a rotation and a translation over each of them. At the same time, the
camera also rotates and translates. Although missing data can be obtained due to
self occlusions of the objects, all the points are considered, as mentioned above.

The first sequence is defined by 200 frames containing 300 features. The trajecto-
ries are plotted in Fig. 4.9 (right). Fig. 4.10 shows an example of recovered shape (left)
and motion ((middle) and (right)) obtained by applying the Alternation technique to
the matrix filled with the proposed iterative scheme. The original input matrix has
about 20% of missing data.

The obtained error in each attempt, considering different percentages of missing
data, is shown. The reported experiments correspond to the no noise case and to cases
with added Gaussian noise of a standard deviation (σ) of 1/3 and 1, respectively.

Fig. 4.11 (left) shows the obtained rms (in logarithmic scale) for the case of no
noise. Recall that polygonal figures enclose data in between lower and upper quartiles
(medians are represented by horizontal lines in thinner regions). Vertical lines, outside
these polygonal figures, correspond to the rest of data. It can be seen that, when the
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Figure 4.10: cylinder scene; (left) 3D reconstruction: notice that there are thicker
points which correspond to the reappearing features; (middle) recovered camera mo-
tion; (right) enlargement of the recovered camera motion.

percentage of missing data is below 50%, no improvements are obtained by using
the iterative scheme, since the Alternation performs quite well with such amount of
missing data. With more missing data, the Alternation applied to the matrix filled in
with the iterative scheme performs better than applied directly to the original input
matrix W .

As mentioned above, the rmsall, which considers all the entries in the original
input matrix instead of only the initially known ones, is also studied. Fig. 4.11 (right)
shows the obtained values in the case of no noise in the data. Notice that when the
Alternation is applied directly to the input matrix, the rmsall takes higher values
than the rms when the percentage of missing data is equal or higher than 50%. This
is due to the fact that with such amount of missing data, a global solution is not
always found and the error corresponding to initially unknown entries is higher than
the error corresponding to initially known ones.

The obtained results when a Gaussian noise with σ = 1/3 and σ = 1 is added
to the data are plotted in Fig. 4.12 and Fig. 4.13, respectively. As in the case of no
noisy data, the Alternation applied to the matrix filled in with the iterative scheme
performs better than applied directly to the original input W , while the percentage of
missing data is equal or higher than 50%. It can be seen that the difference between
the error obtained by applying Alternation to the filled in matrix with the iterative
scheme and to the original one is not as significant as in the free noise case.

The recovered factors S and M are also studied. The error is measured by com-
puting the rmsS (equation (4.17)) and rmsM (equation (4.18)), which are plotted
in Fig. 4.14 (no noise case), Fig. 4.15 (σ = 1/3 case) and Fig. 4.16 (σ = 1 case). It
can be seen that results are similar to the ones obtained with the rms: better results
are obtained when Alternation is applied to the matrix filled in with the iterative
scheme, while the percentage of missing data is equal or higher than 50%.

In the second sequence, the numbers of frames and trajectories considered are 200
and 266, respectively. Feature point full trajectories are plotted in Fig. 4.17 (right).
Fig. 4.17 (left) contains a large amount of 3D points (about 2655) in order to visualize
better the object. Fig. 4.18 shows an example of the recovered shape (left) and
motion ((middle) and (right)) obtained by applying Alternation to the matrix filled
in with the proposed iterative scheme (input matrix with 20% of missing data).
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Figure 4.11: cylinder scene, no noise case; (left) rms in logarithmic scale, for
different percentages of missing data; (right) rmsall in logarithmic scale, for different
percentages of missing data.
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Figure 4.12: cylinder scene, σ = 1/3 case; (left) rms in logarithmic scale, for
different percentages of missing data; (right) rmsall in logarithmic scale, for different
percentages of missing data.
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Figure 4.13: cylinder scene, σ = 1 case; (left) rms in logarithmic scale, for dif-
ferent percentages of missing data; (right) rmsall in logarithmic scale, for different
percentages of missing data.
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Figure 4.14: cylinder scene, no noise case; (left) rmsM in logarithmic scale, for
different percentages of missing data; (right) rmsS in logarithmic scale, for different
percentages of missing data.
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Figure 4.15: cylinder scene, σ = 1/3 case; (left) rmsM in logarithmic scale, for
different percentages of missing data; (right) rmsS in logarithmic scale, for different
percentages of missing data.
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Figure 4.16: cylinder scene, σ = 1 case; (left) rmsM in logarithmic scale, for
different percentages of missing data; (right) rmsS in logarithmic scale, for different
percentages of missing data.
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Figure 4.17: synthetic object; (left) Beethoven’s sculpture; (right) feature point
trajectories represented in the image plane.
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Figure 4.18: Beethoven’s sculpture scene; (left) 3D reconstruction; (middle) recov-
ered camera motion; (right) an enlargement of the recovered camera motion.
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Figure 4.19: Beethoven’s sculpture scene, no noise case; (left) rms in logarithmic
scale, for different percentages of missing data; (right) rmsall in logarithmic scale,
for different percentages of missing data.

The obtained rms and rmsall, in this second sequence are plotted in Fig. 4.19 (no
noise case), Fig. 4.20 (σ = 1/3) and Fig. 4.21 (σ = 1). In the case of no noisy data
(Fig. 4.19), results are similar to the previous sequence: the Alternation gives smaller
rms applied to the matrix filled in with the proposed iterative scheme than to the
original input one, while the percentage of missing data is equal or higher than 50%.
It can be seen that, for percentages of missing data below 50%, results are similar in
both cases.

When working with noisy data, for the particular case of σ = 1/3, the rms is
smaller when the Alternation is applied to the matrix filled in with the iterative
scheme, while the amount of missing data is equal or higher than 50%. However,
the difference is not as significant as in the no noise case. For the case of σ = 1, the
obtained rms applying the Alternation to the input matrix are very similar to the ones
obtained applying the Alternation to the matrix filled in with the iterative scheme.
Only in the case of 60% of missing data the rms is smaller when the Alternation
is applied to the filled in matrix with the proposed iterative scheme. The rmsall is
smaller when Alternation is applied to the filled in matrix, while the percentage of
missing data is equal or higher than 60%.

The rmsM and rmsS are shown in Fig. 4.22 (no noise case), Fig. 4.23 (σ = 1/3)
and Fig. 4.24 (σ = 1). In the three cases, both errors are smaller when the Alternation
is applied to the matrix filled in with the iterative scheme, while the percentage of
missing data is equal or higher than 50%. Therefore, although in the case of σ = 1
the obtained rms and rmsall were similar applying Alternation to the input matrix
and to the filled in one with the iterative scheme (see Fig. 4.21), the rmsS and rmsM

are smaller in the second case.

As a conclusion, it can be said that in general, the Alternation applied to the orig-
inal input matrix performs quite well, while the percentage of missing data is small
(below 50%). Therefore, it is not necessary to firstly apply the iterative multiresolu-
tion scheme in those cases. However, the results obtained with the Alternation get
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Figure 4.20: Beethoven’s sculpture scene, σ = 1/3 case; (left) rms in logarithmic
scale, for different percentages of missing data; (right) rmsall in logarithmic scale,
for different percentages of missing data.
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Figure 4.21: Beethoven’s sculpture scene, σ = 1 case; (left) rms in logarithmic
scale, for different percentages of missing data; (right) rmsall in logarithmic scale,
for different percentages of missing data.
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Figure 4.22: Beethoven’s sculpture scene, no noise case; (left) rmsM in logarithmic
scale, for different percentages of missing data; (right) rmsS in logarithmic scale, for
different percentages of missing data.
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Figure 4.23: Beethoven’s sculpture scene, σ = 1/3 case; (left) rmsM in logarithmic
scale, for different percentages of missing data; (right) rmsS in logarithmic scale, for
different percentages of missing data.
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Figure 4.24: Beethoven’s sculpture scene, σ = 1 case; (left) rmsM in logarithmic
scale, for different percentages of missing data; (right) rmsS in logarithmic scale, for
different percentages of missing data.
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Figure 4.25: (left) first object used for the real scene; (right) feature point trajec-
tories represented in the image plane.

worse as the percentage of missing data grows. Actually, the number of cases in which
the Alternation applied to the original input matrix converges to a local minimum
increases as the percentage of missing data grows. Hence, when the percentage of
missing data is high, it is better to apply the proposed multiresolution scheme as a
previous step, in order to reduce the percentage of missing data in W . The reported
results show that the Alternation applied to this partially or totally filled in matrix
gives better results than applied to the original input matrix.

4.4.3 Real Data

A procedure similar to the one applied to the synthetic data is now used with real data.
The two objects studied in these real data experiments are shown in Fig. 4.25 (left)
and Fig. 4.28 (left). For each object, a real video sequence with a resolution of
640 × 480 pixels is used and a single rotation around a vertical axis is performed.
Feature points are selected by means of a corner detector algorithm. An iterative
feature tracking algorithm has been used. More details about corner detection and
tracking algorithm can be found in [82]. As in the previous case, all the points are
initially known in Wall, because only full trajectories are considered. Missing data are
generated automatically by removing parts of random columns, as in the synthetic
data experiment. In most of the cases, the error values are larger than in the synthetic
case. The problem is that both objects do not rotate so much, as it can be seen in the
plot of the trajectories (Fig. 4.25 (right) and Fig. 4.28 (right)). Hence, the obtained
matrices of trajectories are not of full rank (4) and we have to deal with a degenerate
case.

In the first sequence, 87 points distributed over the squared-face-box are tracked
along 101 frames. Feature point trajectories are plotted in Fig. 4.25 (right). Fig. 4.26
shows an example of the recovered shape (left) and motion ((middle) and (right))
obtained by applying Alternation to the matrix filled in with the proposed iterative
scheme. In this example, the original input matrix has only about 10% of missing
data.
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Figure 4.26: first object; (left) 3D reconstruction; (middle) recovered camera mo-
tion; (right) an enlargement of the recovered camera motion.
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Figure 4.27: first object; (left) rms in logarithmic scale, for different percentages of
missing data; (right) rmsall in logarithmic scale, for different percentages of missing
data.

The resulting rms obtained for different percentages of missing data are presented
in Fig. 4.27 (left). It can be seen that the Alternation applied to the matrix filled in
with the iterative scheme performs better than applied directly to the original input
matrix, for any percentage of missing data. The rmsall, which takes into account all
the entries in the matrix W , is plotted in Fig. 4.27 (right). As in the rms, the rmsall

is smaller when the Alternation is applied to the matrix filled in with the iterative
scheme. However, notice that the difference between applying the Alternation to the
filled in matrix with the proposed scheme and to the input matrix is not as significant
as in the synthetic case.

The second sequence consists of 61 frames and 188 feature points. Feature point
trajectories are plotted in Fig. 4.28 (right). Fig. 4.29 shows an example of the recov-
ered shape (left) and motion ((middle) and (right)) obtained by applying Alternation
to the matrix filled in with the proposed iterative scheme. The original input matrix
has only about 10% of missing data.

In this second object, the error values are higher than before, as it can be seen
in Fig. 4.30. The rms (left) and the rmsall (right) are smaller when the Alternation
is applied to the matrix filled in with the iterative scheme than when applied to the
original input one, for any percentage of missing data.
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Figure 4.28: (left) second object used for the real scene; (right) feature point tra-
jectories represented in the image plane.
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Figure 4.29: second object; (left) 3D reconstruction; (middle) recovered camera
motion; (right) an enlargement of the recovered camera motion.
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Figure 4.30: second object; (left) rms in logarithmic scale, for different percentages
of missing data; (right) rmsall in logarithmic scale, for different percentages of missing
data.
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As a conclusion from the real data experiments, it can be observed that the Alter-
nation applied to the matrix filled in with the proposed iterative scheme gives better
results than applied to the original input matrix, even when the percentage of missing
data is low.

4.5 Summary

This Chapter presents an iterative multiresolution scheme for tackling the SFM prob-
lem when factorization techniques may fail due to a high ratio of missing data. The
idea of the proposed iterative multiresolution scheme is to take submatrices of the
input matrix with a low percentage of missing data, apply a factorization technique
to obtain the shape S and motion M and recover the missing entries with the prod-
uct MS. The Alternation with motion constraints technique is proposed and used
to factorize these submatrices. The goal is to improve the results obtained when a
factorization technique is applied to the matrix filled in with the iterative scheme
instead of directly to the input one, which has a lower percentage of known data.

An evaluation study of the performance of the proposed scheme is given by using
the Alternation with motion constraints. It has been shown that, when the percentage
of missing data is high, the Alternation applied to the matrix filled in with the pro-
posed iterative scheme gives better results than when applied directly to the original
input matrix W . However, when the ratio of missing data is low, the Alternation per-
forms quite well applied to the original input matrix directly and it is not necessary
to use the iterative scheme. The goodness of the results is measured with the root
mean square error (rms) and also with the rmsall, which takes into account all the
entries in the initially full matrix Wall. In the synthetic case the recovered shape and
motion matrices are also studied.

In summary, the proposed scheme can be used to obtain the shape and motion
when the factorization techniques do not perform as well as expected due to the high
percentage of missing data.
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Chapter 5

SFM in the Multiple Objects Case
with Missing Data

The Structure from Motion (SFM) problem with multiple objects is tackled in this
Chapter. It is focused on the particular case of input matrix with missing data. The
key point is firstly to segment the trajectories according to the motion of the objects
(motion segmentation) and then, apply a single object SFM technique to the trajecto-
ries of each object.

An approach that consists of two stages is proposed to tackle the motion segmenta-
tion problem with missing data. In the first stage, the main objective is to fill in empty
entries with an imputation method, without using or assuming a prior knowledge of
the objects contained in the scene—number of objects and motion. Since the rank
of the matrix of trajectories is needed to be known in order to apply the imputation
method, a novel technique to estimate the rank of a missing data matrix is proposed.
The intuition behind the proposed technique is that, since feature point trajectories
belong to surfaces of rigid objects, the frequency spectra of the input matrix of trajec-
tories should be preserved after recovering missing entries. In the second stage, motion
segmentation is obtained by using a clustering approach based on the normalized cuts
criterion.

Once the trajectories are segmented into different objects, any factorization tech-
nique for the single object case can be applied to obtain the Structure and Motion of
each of the objects. Experiments with synthetic and real data are provided in order
to empirically show the good performance of the proposed rank estimation technique
and also the significance of a good rank estimation for correct motion segmentation
results. Furthermore, the shape and motion of obtained clusters in the experiments
are computed, both for correct cases and for cases where several features are wrongly
segmented.

75
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5.1 Introduction

In the single object case, factorization techniques are widely used to decompose the
matrix of trajectories W into the shape and motion matrices. The decomposition is
obtained by using the fact that the rank of the matrix of trajectories is at most 4, in
the particular case of rigid objects and under affine camera model. Unfortunately, in
the multiple objects case, factorization techniques can not be directly used to factorize
a matrix of trajectories into the shape and motion matrices; on the one hand, each
object has different motion and on the other hand, trajectories are not sorted into
different objects in the matrix of trajectories. Working with an affine camera model,
it can be used the fact that feature trajectories corresponding to the same object lie in
the same linear subspace. Therefore, the aim is to find each of these linear subspaces
in order to reduce the matrix of trajectories to a form that allows an easy identification
of them. Hence, the Structure from Motion (SFM) problem in the multiple objects
case is reduced to firstly segment the trajectories according to the motion of the
objects (motion segmentation) and then, apply a single object SFM technique to the
trajectories of each object. More details on the multiple objects formulation can be
found in Section 2.1.2.

Another problem that should be faced out in the case of multiple objects is that
the rank of the matrix W is unknown. Furthermore, its value is not bounded as
in the single object case, since the number of objects and the kind of movement
are not known. Many approaches proposed for the motion segmentation problem
(e.g., [12, 26, 53, 72, 130, 126]) estimate the rank of the matrix of trajectories by
studying the ratio between its singular values (obtained by applying the SVD, for
instance). In [72], model selection techniques are proposed to estimate the rank of
matrices with noisy data. The problem of model selection techniques is that there are
parameters that depend on the amount of noise in the data, which are difficult to set
properly without using information about the noise. Vidal and Hartley [117] propose
to fix the rank of W to five and apply the SVD to project the point trajectories from
R

2f to R
5. Hence, it is not needed to estimate the rank of W . Then, the Generalized

Principal Component Analysis (GPCA) [119], briefly presented in Section 2.2.4, is
used to segment the trajectories. Tron and Vidal [115], presents a comparison of
several motion segmentation algorithms. Two of the studied approaches are the ones
presented in [117] and [126]. For the latter, the authors suggest to fix the rank of the
matrix of trajectories instead of using model selection techniques. In particular, they
compare the results obtained by fixing the rank to 5, which is the dimension used
in [117], and to 4N , where N is the number of motions in the scene.

In most of the aforementioned approaches it is assumed that tracked feature points
are visible along the whole video sequence, giving rise to a full matrix of trajectories.
However, trajectories are often incomplete or split up due to objects occlusions, miss-
ing on the tracking or simply because they exit the camera field of view. In this case,
the rank of W can not be estimated as in the full data case, since the singular val-
ues of a missing data matrix can not be directly computed. The approach presented
in [117] can deal with missing data. It proposes to fix the rank to 5 beforehand, for
every matrix of trajectories and the PowerFactorization [54] is used to project the
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data into R
5. Then, the GPCA is used for segmenting the trajectories. However, the

performance of the GPCA tends to be worse as the number of motions in the scene
increases. In addition, it is sensitive to outliers, as pointed out in [115].

This Chapter proposes an approach to tackle the motion segmentation problem
with missing data in W . It consists of two stages. In the first stage, a novel technique
to estimate the rank of a missing data matrix is presented. The proposed technique
estimates the rank without using any prior knowledge of the scene (i.e., number of
rigid objects, kind of motion). The intuition behind the proposed approach is that,
since feature point trajectories belong to surfaces of rigid objects, the frequency spectra
of the input matrix W should be preserved after recovering missing entries. Behind
this idea there is the assumption that the behaviour of missing data and known data,
studied as trajectories (columns of W ), is the same; therefore, both generate the
same spectral representation. The estimated rank is used for obtaining a full matrix
by applying an imputation technique. In the second stage, an approach similar to
the one presented in [126] is used to obtain the motion segmentation of the feature
trajectories. Finally, the shape and motion of each of the objects can be recovered by
using any SFM technique (e.g., [110]).

In order to show the significance of a good estimation of the rank for correct
motion segmentation results, an approach similar to the one introduced in [126] is
applied, both considering fixed rank values (as proposed in [115]) and also using the
estimated rank with the proposed approach.

This Chapter is structured as follows. Section 5.2 presents the proposed rank
estimation technique. Experimental results are provided in order to empirically show
the performance of the rank estimation technique. Section 5.3 introduces the motion
segmentation approach used in the experiments. Furthermore, a comparison of results
obtained fixing the rank of the matrix of trajectories with missing data or estimating
its value with the proposed approach is provided. Section 5.4 gives some examples of
the recovered structure and motion of the previously obtained clusters. In addition,
a study of robustness of the finally recovered structure and motion for the different
objects with respect to features wrongly classified is provided. Finally, concluding
remarks are summarized in Section 5.5.

5.2 Missing Data Matrix Rank Estimation

This Section presents the first stage of the proposed approach. The aim is to estimate
the rank of the matrix of trajectories W , which contains missing data. This rank is
used to fill in the missing entries in W with an imputation technique. In particular,
the Alternation technique is used as imputation technique. Chapter 4 shows that, in
the single object case, this technique is generally used to find the factors M2f×r and
Sr×p that minimize ‖W − MS‖2

F , where r is the rank of matrix W and ‖ · ‖F is the
Frobenius matrix norm [43]. Hence, by multiplying the resulting matrices M and S,
a filled matrix, which is the best r-rank approximation to W , is obtained. In the case
of a single rigid moving object, and under affine camera model, the rank of W is at
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Figure 5.1: (left) scene defined by three synthetic objects (two cylinders and a
Beethoven sculptured surface); (middle) feature point trajectories plotted in the im-
age plane; (right) trajectory matrix with 30% of missing data (W30%missing).

most 4.

However, when this idea is extended to the multiple objects case, without any
prior knowledge of the scene, the rank of the matrix W is not bounded. Furthermore,
due to the missing entries, it is not easy to estimate. The rank of W depends on the
number of objects contained in the scene as well as on their motion. Therefore, matrix
rank estimation becomes a chicken-egg problem, since the rank value is needed for
recovering missing entries and computing an estimation of the full matrix. Moreover,
it should be noticed that although several ranks could be tested for filling in missing
entries, there is not a direct way to measure the goodness of recovered data in order
to define which is the most appropriated rank value. Next Section presents a brief
study of results that would be obtained if only known entries in W were used for
computing its rank.

5.2.1 Partial Information versus Full Information

The importance of using some kind of information about missing entries to estimate
the rank of W is presented. This study is performed by using a data set corresponding
to a synthetic scene, defined by three rigid objects moving independently. Feature
points are distributed over the surface of the objects and tracked through several
frames. A full matrix Wfull is generated and then a trajectory matrix with a 30%
of missing data (W30%missing) is obtained by removing information, simulating the
behavior of tracked feature points (more information about experiments set up is
given in Section 5.2.3). Although this study is presented by using a single case,
several tests were considered obtaining similar conclusions (i.e., different percentages
of missing data and trajectory matrices defined by the motion of several objects).

Figure 5.1 (left) shows the synthetic scene used through this Section; feature
point trajectories, in the image plane, are presented in Fig. 5.1 (middle). Finally, a
trajectory matrix with a 30% of missing data is depicted in Fig. 5.1 (right). The half-
top of this matrix corresponds to x coordinates of feature points; while half-bottom
to y coordinates. White elements correspond to empty entries in the matrix; on the
contrary black (or grey) elements in the matrix represent known entries in the matrix.
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Figure 5.2: (left) rms as a function of the rank values for the missing data matrix
presented in Fig. 5.1 (right), when only known entries in W30%missing are considered;
(right) rmsfull as a function of the rank when all data points in Wfull are considered.

As mentioned above, the goal at this stage is to fill in empty entries by means of
an imputation method assuming different rank values (in our case, the Alternation
technique presented in Chapter 3 is used). For every assumed rank value a different
solution is obtained (i.e., empty entries in W30%missing are filled in with different
values). In this Section, it is empirically shown that if the considered criterion is
based only on known entries, the rank could not be properly estimated. The used
criterion consists in selecting the rank value of the matrix with a minimum root mean
square error(rms). That is, in the current example, the aim is to select the rank
for which the matrix obtained with the product A2f×rBr×p minimizes the following
expression:

rms = ‖W30%missing − A2f×rBr×p‖F /
√

q (5.1)

where 2f and p are the number of rows and columns in W and q is the number of
known entries in W30%missing. On the other hand, since the Wfull matrix is known,
entries filled in during the imputation are also compared with the original values by
means of:

rmsfull = ‖Wfull − A2f×rBr×p‖F /
√

q (5.2)

where q is the number of all entries in Wfull. Hence, two different rms values are
computed; the first by only taking into account known entries in W30%missing, while
the second by considering all the entries in Wfull.

The result of this comparison is presented in Fig. 5.2. It can be seen that the trend
of these plots is different. Furthermore, the minimum values are obtained at different
rank values. In the first case, when only known entries in W30%missing are used, the
best rank estimation corresponds to 15 (Fig. 5.2 (left)); while in the second case,
when all entries in Wfull are used, the best rank estimation is 11 (Fig. 5.2 (right)).
Note that the correct rank value is 12, which is quite similar to the value estimated
with the rmsfull; the correct rank value of Wfull is directly obtained by computing
its singular values [43]. Fig. 5.3 shows the 14th first singular values of Wfull. They
are plotted in logarithmic scale in Fig. 5.3 (right). However, in this example, missing
entries are filled in better considering r = 11 instead of r = 12. This can occur due
to the random initialization of Alternation.
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Figure 5.3: (left) first 14th singular values of the matrix Wfull; (right) the same
singular values, but in logarithmic scale.

The previous result can be understood by studying the way missing data in a
single trajectory are recovered, after assuming different rank values. Fig. 5.4 presents
the trajectory of a given feature point (i.e., a single column in Wfull), and also the
filled in data considering different rank values (concretely, from r = 8 up to r = 14);
thicker line corresponds to known values in W30%missing, thinner line shows original
values that were removed to generate the missing data matrix and finally, dashed
line corresponds to the filled in entries. An enlargement is presented in the cases of
r = 9, 10, 12, 13 and 14 in order to obtain a better visualization due to the high values
that take the filled in entries in the column (note that in these cases dashed lines go
out the range of plot). As illustration, the whole filled in trajectory obtained in the
case of r = 12 is also plotted. The objective of presenting Fig. 5.4 is to show the way
missing entries are filled in by assuming different rank values. It can be appreciated
that in all the examples known data are preserved. However, missing data are almost
correctly recovered when the assumed rank value is 11, as presented in Fig. 5.2 (right).

5.2.2 Proposed Approach

Having in mind that the goodness of recovered data cannot be measured, since in
general there is not a prior knowledge about those missing entries, an approach based
on the study of changes on the input matrix after recovering missing data is pro-
posed. Since the rank of W cannot be computed, different rank values (r) are tested,
obtaining a full matrix for each case. Then, by using both the initially known and
recovered missing entries in W , a novel goodness measurement is introduced. The
intuition behind the presented approach is that, since feature point trajectories be-
long to surfaces of rigid objects, the motion generated by recovered missing entries
should be similar to the one of the initial known entries. This motion similarity is
identified with the fact that the frequency spectra of the input matrix W should be
preserved after recovering missing data. In order to study the frequency content of
the matrices, the Fast Fourier Transform (FFT ) is applied to each of the columns
of the full matrices (obtained by using different rank values as presented below) and
also to those of the input matrix W (adding zeros to its missing entries). Since the
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Figure 5.4: (top–left) trajectory of a given feature point (a column in Wfull); (from
top to bottom, from left to right) filled in data (dashed line) assuming rank values
from 8 up to 14.

idea is to study the trajectories along the frames, only columns of the matrices are
considered, instead of using rows or two dimensions at the same time. Although for
a completely different problem, a methodology similar to the one presented in this
Chapter has been recently proposed in [34].

Due to the fact that the scene contains more than a single object, an initial rank
r0 = 5 is assumed. More elaborated strategies, to find a better estimation of that
initial value, could be implemented; for instance by looking for the largest rank of a
full submatrix of W . The proposed approach works as follows:

Algorithm : set r = r0 and k = 0. First, the modulus of the FFT of the original
input matrix W is computed: F = |FFT (W )|.

1. By using the current rank r, apply an imputation technique to W to obtain
a full matrix of trajectories, Wk (in our experiments the result of Alternation
technique, presented in Chapter 3, is used to fill in missing data in W ).

2. Apply the FFT to Wk and compute its modulus: Fk = |FFT (Wk)|

3. Compute the following difference:

e(k) = ‖F − Fk‖F (5.3)

4. If k < 4, increase both: r = r + 1, k = k + 1 and go to step 1.
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Otherwise, check if x = k − 3 is a local minimum of e, that is if x verifies:

e(x) < e(x + i), i = 1, 2, 3 (5.4)

5. If e(x) is not a local minimum, increase both: r = r + 1, k = k + 1 and go to
step 1.

Solution : The Wk that gives the first local minimum of e is the best full matrix and
the corresponding r is the estimation of the rank of W we were looking for.

The three object scene presented in the previous Section is now used to empirically
show the performance of the proposed goodness measurement. The same trajectory
matrix, with a 30% of missing data, is used (W30%missing). The modulus of the FFT ,
of the obtained filled matrices considering rank values from 8 up to 14 is plotted in
Fig. 5.5. Additionally, the modulus of the original input matrix (W30%missing) is
also plotted (Fig. 5.5 (top–left)). It can be appreciated that, the most similar FFT
modulus to the one of the initial matrix (Fig. 5.5 (top–left)) is obtained in the case
of r = 11 (Fig. 5.5 (bottom–left)).

Fig. 5.6 shows the difference between the modulus of FFT (W30%missing) and each
one of the FFTk, obtained considering different rank values. Concretely, the value
obtained with equation (5.3) is plotted. It can be seen that the local minimum is
found at r = 11, which is the same that the one obtained in the previous Section
when rmsall is considered as a measure of goodness (see Fig. 5.2). Finally, it should
be noticed that the shape of the plot presented in Fig. 5.6 is quite similar to the
obtained when all data points in Wfull were considered for plotting the rmsfull as a
function of the rank, compare Fig. 5.6 with Fig. 5.2 (right).

Hence, this measure gives similar results than the one that uses all the entries in
the matrix of trajectories. The advantage is that in this case, any prior knowledge
about missing data is used.

5.2.3 Experimental Results

A study of the performance of the proposed rank estimation approach is presented
in this Section. Synthetic data are used to empirically show the viability of the
proposed rank estimation technique. Sequences with different numbers of objects and
percentages of missing data (from 10% up to 40%) are considered. For each sequence
and each percentage of missing data, 25 attempts are repeated and the obtained rank
values are given. These 25 trials are performed to avoid a wrong solution associated
with the random nature of the Alternation technique, used to fill in missing data.
Recall that it starts with an initial random A0 or B0 matrix and proceeds until the
product AkBk converges to the known values in W .

From a given full matrix, missing data are automatically generated by removing
parts of random columns, simulating the behavior of tracked features. The removing
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Figure 5.5: modulus of the FFT (logarithmic scale); (top–left) of the original
matrix W30%missing; (from top to bottom, from left to right) of the filled matrices
considering rank values from 8 up to 14.
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Figure 5.6: difference between F and each one of the Fk (see equation (5.3)); the
local minimum is found at r = 11.
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Figure 5.7: synthetic objects; (left) cylinder; (right) Beethoven’s sculpture.

process randomly selects a cell in the given column, splitting it up into two parts.
One of these parts is randomly removed, simulating features missed by the tracker
or new features detected after the first frame, respectively. Since the full matrix is
initially known, its rank can be directly computed and compared with the estimated
rank obtained with the proposed approach.

Synthetic Data

As in Chapter 4, data sets are generated by randomly distributing 3D feature points
over the surface of a cylinder (Fig. 5.7 (left)) and from the triangular mesh (nodes)
representing the Beethoven sculptured surface (Fig. 5.7 (right)). Taking these two
objects, different sequences are obtained by performing rotations and translations over
both of them. At the same time, the camera also rotates and translates. Although
self-occlusions are produced, all the points are stacked into the matrix of trajectories,
since this is a synthetic experiment. Different number of cylinders and Beethoven
sculptured surfaces and different motions are considered in order to generate sequences
with more than two objects.

Fig. 5.8 (left) shows the full trajectories obtained from a sequence with two cylin-
ders that move independently. This sequence is defined by 90 frames containing 145
features. The estimated rank values considering different percentages of missing data
are plotted in Fig. 5.8 (middle). Details on the polygonal figures can be found in
Section 3.3. The rank of the initial full matrix is 8. It can be seen that the rank value
is quite well estimated for any percentage of missing data (notice that the obtained
median is 8 in all the cases). In particular, the error in the estimation of the rank is
less than 20% of the correct value in most cases. The maximum error, which occurs
in the case of 40% of missing data, corresponds to an outlier (denoted with a cross
in the plot) and the estimated rank value is 50% higher than the correct one. Since
the input matrices contain missing data, the rms values of filled in matrices are not
useful to discern the best rank estimation (see Section 5.2.1); however it gives useful
information about how initially known values are preserved. Fig. 5.8 (right) depicts
rms values corresponding to the examples presented in Fig. 5.8 (middle). It can be
appreciated that there is a correlation between estimated rank values and corruption



5.2. Missing Data Matrix Rank Estimation 85

−400 −200 0 200 400 600 800 1000 1200
−600

−500

−400

−300

−200

−100

0

100

200

300

400

x

y

10 20 30 40
7

8

9

10

11

12

13

E
st

im
at

ed
 ra

nk

Percentage of missing data
10 20 30 40

−12

−10

−8

−6

−4

−2

0

rm
s 

in
 lo

ga
rit

hm
ic

 s
ca

le

Percentage of missing data

Figure 5.8: two cylinders, rank of full matrix 8; (left) feature point trajectories
plotted in the image plane; (middle) estimated rank values for different percentages
of missing data; (right) rms obtained with Alternation in logarithmic scale.
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Figure 5.9: two cylinders, rank of full matrix 5; (left) feature point trajectories
plotted in the image plane; (middle) estimated rank values for different percentages
of missing data; (right) rms obtained with Alternation in logarithmic scale.

of initially known data. For instance, in the cases of 30% and 40% of missing data,
it can be seen that the initially known values have been more corrupted during the
filling in process (Alternation) than in the cases of less missing data (see the larger
values of the rms). Notice that in those cases the error in the estimation of the rank
is higher.

Analogously, trajectories of a sequence with two cylinders with dependent motions
are plotted into the image plane in Fig. 5.9 (left). In this sequence, the rotation of both
objects is identical and consequently, the motion is dependent. Actually, the rank of
the matrix of trajectories is 5. The number of features is 160 and the number of frames
90. The rank is quite well estimated for any percentage of missing data, as it is shown
in Fig. 5.9 (middle). As in the previous sequence, there is a relationship between the
corruption in the initially known values (measured with the rms, Fig. 5.9 (right)) and
the error obtained in estimation of the rank.

The last example of a sequence with two objects contains a cylinder and a Bee-
thoven sculptured surface. The trajectories are plotted in Fig. 5.10 (left). In this
sequence, 451 features (185 from the cylinder and 266 from the sculptured surface)
are tracked along 50 frames and the rank of the full matrix is 8. The estimated rank
is correctly estimated while the percentage of missing data is below 30%, as it can be
appreciated in Fig. 5.10 (middle). Notice that the maximum error in the estimation
of the rank is achieved in the case of 40% of missing data; the estimated rank takes
a value 15% higher than the correct value. Again, there is a correlation between the
error obtained in the estimation of the rank and the value of rms (Fig. 5.10 (right)).
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Figure 5.10: a cylinder and a Beethoven sculptured surface, rank of full matrix 8;
(left) feature point trajectories plotted in the image plane; (middle) estimated rank
values for different percentages of missing data; (right) rms obtained with Alternation
in logarithmic scale.
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Figure 5.11: three objects, rank of full matrix 12; (left) estimated rank values
for different percentages of missing data; (right) rms obtained with Alternation in
logarithmic scale.

Figure 5.1 (left) shows an illustration of a synthetic scene defined by three objects
(two cylinders and a Beethoven sculptured surface). This sequence is defined by 100
frames containing 340 features (114 and 119 from the two cylinders and 107 from
the sculpture). Feature point trajectories are depicted in Fig. 5.1 (middle) and a
trajectory matrix, for the case of 30% of missing data, is presented in Fig. 5.1 (right).
Fig. 5.11 (left) shows the estimated rank values considering the sequence of Fig. 5.1
and different percentages of missing data (the rank of the full matrix is 12). The rank
is estimated with an error smaller than 9%, while the percentage of missing data is
below or equal to 30%. With a larger percentage of missing data, in some attempts,
the error in the estimation of the rank takes values about 16% of the correct rank
value. Only in a unique case (which corresponds to an outlier, as it can be seen in
Fig. 5.11 (left)) the error takes a value about 33% of the correct value. The rms
values are plotted in Fig. 5.11 (right). It can be appreciated that, in general, the
rms takes higher values when the percentage of missing data is about 40%, which
corresponds to the case in which the rank is estimated with more error.

Analogously, the obtained results considering sequences of 5, 7 and 9 objects are
plotted in Fig. 5.12, Fig. 5.13 and Fig. 5.14. In these sequences, the rank of each input
full matrix is 16, 20 and 25, respectively. The corresponding trajectories plotted in
the image plane can be seen in Fig. 5.12 (left), Fig. 5.13 (left) and Fig. 5.14 (left).



5.2. Missing Data Matrix Rank Estimation 87

−200 −150 −100 −50 0 50 100 150 200
−150

−100

−50

0

50

100

x

y

10 20 30 40
15

16

17

18

19

20

21

22

E
st

im
at

ed
 ra

nk

Percentage of missing data
10 20 30 40

−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

rm
s 

in
 lo

ga
rit

hm
ic

 s
ca

le

Percentage of missing data

Figure 5.12: five objects, rank of full matrix 16; (left) feature point trajectories
plotted in the image plane; (middle) estimated rank values for different percentages
of missing data; (right) rms obtained with Alternation in logarithmic scale.

The estimated rank values are plotted in Fig. 5.12 (middle), Fig. 5.13 (middle) and
Fig. 5.14 (middle). In general, the rank is quite well estimated even with a percentage
of missing data of about 40%, which is a very remarkable performance considering for
instance the large number of objects contained in the last scene—9 objects. Notice
that any kind of prior knowledge about the objects contained in the scene nor about
their motion is given. Focusing on each sequence, Fig. 5.12 (middle) shows that in
more than 75% of cases the rank is estimated with an error smaller than 7% (i.e.,
about 1) for the case of a sequence with 5 objects. This error is not significant in
applications such as motion segmentation.

For the case of the scene with 7 objects (Fig. 5.13 (middle)) the maximum error
is reached in the case of 20% of missing data; it is about 20% the correct value. Note
that in the rest of cases that error is less than 15% of the correct rank value. Some
outliers with a higher error in the estimation of the rank appear in the case of 40%
of missing data.

Finally, for the scene with 9 objects (Fig. 5.14 (middle)), the maximum error
appears when a percentage of missing data about 40% is considered. That estimated
rank value is 28% higher than the correct one. In the rest of cases the rank is estimated
with an error smaller than 20% of the correct value. It should be highlighted that the
obtained errors are always considerable smaller than if a predefined fixed value were
used (e.g., five, as in [117]).

As in the previous sequences, the rms value grows as the percentage of missing
data increases, as it can be appreciated in Fig. 5.12 (right), Fig. 5.13 (right) and
Fig. 5.14 (right) and, again, it is related to the error obtained in the estimation of the
rank.

Once the rank is estimated and the missing entries of W are filled in, the motion
segmentation of the scenes can be performed (Section 5.3).

Real Data

The same procedure applied to the synthetic data is also used to process real data.
The two objects used in Chapter 4 for the real data experiments (see Fig 5.15) are
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Figure 5.13: seven objects, rank of full matrix 20; (left) feature point trajectories
plotted in the image plane; (middle) estimated rank values for different percentages
of missing data; (right) rms obtained with Alternation in logarithmic scale.
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Figure 5.14: nine objects, rank of full matrix 25; (left) feature point trajectories
plotted in the image plane; (middle) estimated rank values for different percentages
of missing data; (right) rms obtained with Alternation in logarithmic scale.

also considered in this Section.

Full trajectory matrices corresponding to sequences of multiple objects are gener-
ated by merging different trajectory matrices of single objects, after swapping x and
y coordinates. Overlapping between objects is avoided for the sake of presentation
simplicity by applying translations. It should be noticed that, since real images usu-
ally contain noisy data, all singular values are nonzero. Therefore, the smallest ones
must be truncated in order to estimate the correct rank of W . Since it is difficult
to set the appropriated threshold, [71] proposes model selection techniques for rank
detection. Based on that, the following algorithm is used to estimate the rank of a
full matrix in presence of noise:

rm = argminr
λ2

r+1∑r
j=1 λ2

j

+ µr, (5.5)

where λi corresponds to the i-th singular value of the matrix, and µ is a parameter that
depends on the amount of noise. The r that minimizes this expression is considered
as the rank of W . The higher the noise level is, the larger µ should be—in our
experiments µ = 10−7. This algorithm is used to compute the rank of the full matrices
corresponding to real experiments. Hence, its value can be compared to the one
estimated with the proposed approach.

The first studied sequence is generated by using the first object twice. The ob-
tained full feature point trajectories are plotted in the image plane in Fig 5.16 (left);
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Figure 5.15: real scenes containing two different objects used for the experimental
results.
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Figure 5.16: first sequence, rank of full matrix 6; (left) full feature point trajectories
plotted in the image plane; (middle) estimated rank values for different percentages
of missing data; (right) rms obtained with Alternation in logarithmic scale.

it contains 174 features tracked through 101 frames. A second sequence is generated
considering both objects together; the corresponding full trajectories in this second
case are plotted in Fig 5.17 (left). It is defined by 61 frames and 275 features (87
from the first object and 188 from the second one). Finally a three object sequence
is generated by considering twice the first object together with the second object.
This third sequence contains 362 features (87, 87 and 188 from the first and second
object respectively), which are tracked through 61 frames. The obtained trajectories
are depicted in Fig 5.18 (left).

Fig. 5.16 (middle) shows the estimated rank values for the first sequence. The rank
of the full matrix of trajectories is 6; it is obtained by using (5.5) and by setting µ =
10−7. In this particular case, the objects contained in the scene define a degenerate
motion. That is, each one of them does not generate a full rank motion matrix (rank
4). In this real data experiment the error in the estimation of the rank is higher
than in the synthetic experiments. The median of the estimated rank values takes
a value near to the correct rank value in the cases of 10%, 30% and 40% of missing
data (concretely, they take a value 16% higher than the correct rank value). The
maximum error reach a value of 100% from the correct rank in the case of 20% of
missing data.

Similar results are obtained with the second sequence, in which the full matrix has
also a rank 6. Fig. 5.17 (middle) shows the estimated rank values. Again, the median
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Figure 5.17: second sequence, rank of full matrix 6; (left) full feature point tra-
jectories plotted in the image plane; (middle) estimated rank values for different
percentages of missing data; (right) rms obtained with Alternation in logarithmic
scale.
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Figure 5.18: third sequence, rank of full matrix 7; (left) full feature point tra-
jectories plotted in the image plane; (middle) estimated rank values for different
percentages of missing data; (right) rms obtained with Alternation in logarithmic
scale.

of the obtained rank values is close to the correct rank value, for any percentage of
missing data. The maximum error occurs in the case of 10% of missing data, where
the estimated rank value takes a value 100% higher than the correct rank value, in
some attempts.

Finally, results for the three object sequence are presented in Fig. 5.18 (middle).
In this case, the rank of the full matrix is 7. Although in some cases the error
between the estimated rank with the correct ones reaches about ±42%, the median
of all the rank values is equal to the correct one, while the percentage of missing data
is below 40%.

In the three sequences, the rms values, computed with the values initially known
in each case, are quite large (see Fig. 5.16 (right), 5.17 (right), 5.18 (right)), in compar-
ison with the synthetic scenes, since the real images contain noisy data. Furthermore,
although in general the rms values grow as the percentage of missing data increases,
the increase in these real data experiments is not as significant as in the synthetic
case (see for instance Fig. 5.8 or Fig. 5.12). Hence, it is more difficult to see a cor-
relation between the estimated rank and the rms, which takes similar values for any
percentage of missing data.
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5.3 Multibody Motion Segmentation

This Section presents the second stage of the proposed approach. The aim is to obtain
the motion segmentation of the feature point trajectories, once the rank of the matrix
of trajectories has been estimated and the missing data in W have been filled in.
An algorithm similar to the one proposed by Yan and Pollefeys [126] is used. This
algorithm is referred to as Local Subspace Affinity (LSA) in [115].

First of all, the LSA algorithm is briefly introduced. Then a comparison con-
sidering different rank values for filling in missing entries in W is presented. The
latter is motivated to show the significance of a good rank estimation for correct
motion segmentation results. Although preliminary results have been obtained by
using a LSA algorithm implemented in the framework of this thesis, finally the im-
plementation publicly available at http://www.vision.jhu.edu/db/ has been used in
the experiments to avoid deviation of the results due to a wrong implementation.

Hereinafter, the filled in matrix to which the LSA is applied is denoted as W to
distinguish it from the initial missing data matrix W . The missing data in W has
been filled in during the first stage of the proposed approach or with the Alternation
by setting a rank value beforehand.

5.3.1 Local Subspace Affinity (LSA)

The approach proposed in [126] consists in estimating a local subspace for each fea-
ture trajectory of the filled matrix W, and then compute an affinity matrix based on
principal angles [43] between each pair of these estimated subspaces. Finally, the seg-
mentation of the feature trajectories is obtained by applying spectral clustering [122]
to this affinity matrix, using the normalized cut criterion [103]. The steps of the
algorithm are briefly described below.

1. Rank estimation: in the first step of the algorithm, Yan and Pollefeys pro-
pose to estimate the rank of a full data matrix by using model selection tech-
niques [72]. Concretely, they use the expression (5.5) presented above to esti-
mate the rank.

2. Data transformation: if W is a 2f × p matrix, the idea is to consider each
of its p columns as a vector in R

2f and to project them onto the unit sphere
in R

r, being r the estimated rank value in the previous step.

The SVD decomposes the matrix of trajectories as W = U2f×2fΣ2f×pV
t
p×p.

In order to project the trajectories onto R
r, only the first r rows of V t are

considered: V t
r×p. Finally, the p columns of this matrix are normalized to project

them onto the unit sphere. As pointed out in [126], this data transformation
provides a dimension reduction, a normalization of the data and a preparation
for the local subspace estimation in the next step.

3. Subspace estimation: for each point α in the transformed space, its local sub-
space is computed, formed by itself and its n closest neighbours: [α, α1, · · · , αn],
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being n+1 ≥ d; where d is the highest dimension of the linear subspaces gener-
ated by each cluster. It is proposed [126] to set d = 7 in the articulated motion
and d = 4 in the rigid object case.

Since the transformed trajectories are defined on the unit sphere, the closest
neighbours are selected by using the Euclidean distance.

4. Affinity matrix: instead of computing a distance between points, the simi-
larity of each pair of the previously estimated local subspaces is computed and
stacked into the affinity matrix Ap×p, where p is the number of local subspaces.
The affinity of two points α and β is defined as the similarity of their estimated
local subspaces S(α) and S(β):

A(α, β) = e−
�

M

i=1
sin(θi)

2

, (5.6)

where θi is the i-th principal angle [43] between the subspaces S(α) and S(β)
and M the minimum of their dimensions.

From this definition it can be deduced that the entries of the affinity matrix
take positive values, with a maximum of 1. The closer to 1 is an entry A(α, β),
the more similar are the local subspaces S(α) and S(β).

5. Spectral clustering: finally, the motion segmentation is obtained by applying
spectral clustering [122] to the affinity matrix computed in the previous step.
Concretely, the normalized cut criterion, presented by Shi and Malik [103], is
used to segment the data. Their approach is related to the graph theoretic
formulation of grouping, as they pointed out in [103]. Focusing on the problem
of motion segmentation, each of the previously computed local subspaces can be
interpreted as the nodes of a graph G and the affinity A defines the weights on
the edges of the graph. That is, the weight between the node i and j is defined
by A(i, j). Let D be the degree matrix [122] of A:

D(i, i) =
∑

j

A(i, j) (5.7)

where i, j = 1 · · · p.

The generalized eigenvector yi is defined as a solution of:

(D − A)yi = λiDyi (5.8)

Shi and Malik [103] suggest thresholding the second generalized eigenvector of A
in order to cut an image into two parts, where the second generalized eigenvector
is the yi corresponding to the second smallest λi.

The authors show in [103] that the second generalized eigenvector of A is a
solution to a continuous version of a discrete problem in which the goal is to
minimize the following expression:

yt(D − A)y

ytDy
(5.9)
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subject to some constraints omitted for simplicity.

Furthermore, the solution to this discrete problem gives the segmentation that
minimizes the normalized cut, defined as:

Ncut(U, V ) =
cut(U, V )

asso(U,G)
+

cut(U, V )

asso(V,G)
(5.10)

where cut(U, V ) =
∑

i∈U,j∈V A(i, j) and asso(U,G) =
∑

j∈G

∑
i∈U A(i, j), and

analogously for asso(V,G). More details can be found in [103] and [122].

This criterion (referred to as Ncut criterion) measures both the total similarity
between the different clusters (cut(U, V )) as well as the total similarity within
the clusters (asso(U,G) and asso(V,G)). The aim is to minimize the similarity
between the different clusters cut(U, V ), maximizing, at the same time, the sim-
ilarity within the clusters. This is achieved by minimizing the expression (5.10).

With the Ncut criterion, the data (the local subspaces) are split up into two
sets. Working with more than two objects, the idea is to apply this criterion re-
cursively. One of the main drawback of this criterion is that in general it gives
over-clustering, since the number of clusters is not known a priori. Actually,
Shi and Malik [103] propose a recursive two-way Ncut algorithm. They define
a threshold which measures the stability of the cut. Hence, a current parti-
tion should be subdivided only if the stability of the cut is below the defined
threshold.

The main problem with the LSA is that many parameters have to be set: the
dimension of the projected space (in other words, the rank of W ), the dimension of the
local subspaces (d) and the number of neighbours that generate the local subspace (n).
In [126], the authors propose to estimate the rank of W and the dimension of the local
subspaces d by using model selection techniques; the number of neighbours n must
accomplish the following relation: n + 1 ≥ d.

In the current work, the dimension of the projected space r is estimated with the
rank estimation approach proposed in the previous Section, d is set to be 4 (since only
rigid objects are considered) and n is 6, while r > 6 and r−2, otherwise. In addition to
the definition of these parameters, it is quite difficult to set a threshold when trying to
use the stability measure criterion proposed in [103]. The Ncut takes different values,
depending on the percentage of missing data in the matrix of trajectories. Finally,
a recursive Ncut algorithm that uses the number of objects that are in the scene is
implemented. The idea is to segment the data into two clusters recursively until the
number of objects is achieved. Although it is not realistic to make use of the number
of objects, it is useful to study the performance of the rest of the algorithm.

In order to avoid using model selection techniques, Tron and Vidal [115] propose
to fix the rank value (concretely, in their experiments, r = 5 and r = 4N , where N
is the number of different objects in the scene). In the implementation provided
at http://www.vision.jhu.edu/db/ , the dimension of local subspaces d is 4 and the
number of neighbours is fixed to be 6. Furthermore, the number of objects that
contains the scene is also used in the implementation of a recursive Ncut algorithm.
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5.3.2 Experimental Results

This Section contains experimental results that aim at comparing results obtained
with LSA [126], when the rank of the matrix is estimated with the proposed technique,
instead of fixed beforehand.

As mentioned in the introduction, Tron and Vidal [115] propose to fix the rank
of W to 5 and to 4N when the LSA is applied; the first value is the dimension used
in other motion segmentation approach [117] and the second depends on the number
of objects in the scene (N). One disadvantage of fixing the rank of the matrix of
trajectories to 4N is that it assumes both the number of objects contained in the
scene (N) and also that all motions are independent and non-degenerate.

In the current experiments, 3 variants are compared: LSA (r = 5), LSA (r = 4N)
and LSA estimating the rank with the previously proposed approach (r = rFFT ),
which does not use any prior knowledge about the scene (such as number of objects
or kind of motion). Hence, the Alternation technique is applied considering r = 5
and r = 4N in order to fill in the missing entries in W . The results obtained applying
the motion segmentation approach [126] to the corresponding filled in matrices are
compared with the results obtained by applying the LSA to the filled matrix with
the proposed rank estimation technique in the previous stage. As mentioned above,
the LSA implementation provided at http://www.vision.jhu.edu/db/ is used in the
experiments.

Considering different percentages of missing data, 50 attempts are repeated, be-
cause the Alternation is randomly initialized. The percentage of bad-clustered fea-
tures over the total of features in W is computed in each attempt. This gives a
measure of error in the clustering.

Firstly, experiments with synthetic data are carried out. Sequences with 2, 3,
5, 7 and 9 objects generated in the previous Section are used. Secondly, for the
real data experiments, two of the sequences with real data presented in the previous
Section are studied. Furthermore, sequences from the benchmark presented in [115]
are also tested. It consists of a database of 155 video sequences of indoor and out-
door scenes containing two or three motions. These sequences contain degenerate
and non-degenerate motions, independent and partially dependent motions, articu-
lated motions and nonrigid motions. The tracked feature point trajectories are full.
Based on the content of the video and the type of motion, the sequences can be
categorized into three main groups: checkerboard sequences, traffic sequences and
articulated/nonrigid sequences. A total of 78 sequences from the first two groups are
selected for the experiments: 52 of the checkerboard sequences and 26 of the traffic
sequences. Articulated and nonrigid sequences are not studied in this thesis.

As in the previous Section, given a full matrix, the missing data are generated by
automatically removing parts of random columns in order to simulate the behaviour
of tracked features. Non-filled columns correspond to features missed by the tracker
or to new features detected after the first frame (see Section 4.4 for details).
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Figure 5.19: 2 cylinders; error obtained in the clustering considering different per-
centages of missing data and different rank values: the estimated rank r = rFFT ,
r = 4N and r = 5; (left) independent motion; (right) dependent motion.

Synthetic Data

The motion segmentation of the sequences with synthetic data generated in the pre-
vious Section are computed. Fig. 5.19 (left) shows the error obtained in the clustering
in the case of a sequence where two cylinders move independently. As mentioned in
the previous Section, the rank of the initially full matrix is 8. It can be seen that the
obtained error when the rank is estimated with the proposed technique is similar to
the one obtained when it is fixed to 4N , where N is the number of different objects
in the scene. Notice that in this case, 4N = 8, which is the rank of W (and the one
estimated with the proposed rank estimation approach). Therefore, similar results are
obtained in both cases. If the rank is fixed to 5, the obtained error in the clustering
is very high.

Fig. 5.19 (right) shows the results obtained in a sequence where two cylinders have
dependent motions. As mentioned in Section 5.2.3, the rotation of both objects is
identical. In this case, the rank of the initially full matrix is 5. The error obtained
when the rank is the estimated with the proposed approach is similar to the error
obtained in the previous sequence. In this case, the error obtained assuming r = 4N
is higher than considering r = rFFT (4N = 8, which is higher than 5). If the rank
is set to 5, the obtained error is close to zero, while the percentage of missing data
is 10%. With more percentage of missing data, although the median of the error is
close to zero, the error takes large values in some attempts.

Analogously, with a sequence that contains a cylinder and a Beethoven sculptured
surface (the rank of the initially full matrix is also 8). Fig. 5.20 shows the computed
error in the clustering. Again, since 4N = 8, the error setting r = 4N is similar to
the one obtained considering the estimated rank value.

The obtained error in the clustering in a sequence that contains 3 objects is shown
in Fig. 5.21. In this case, the rank of the matrix of trajectories is 12. It can be seen
that the error obtained when the rank is estimated with the proposed technique, is
similar to the one obtained when its value is set beforehand to r = 4N (4N = 12, in
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Figure 5.20: a cylinder and a Beethoven sculpture’s surface; error obtained in the
clustering considering different percentages of missing data and different rank values:
the estimated rank r = rFFT , r = 4N and r = 5.

this case). The error obtained in the case of r = 5 is very high.

For the cases of 5 and 7 objects, plotted in 5.22 and 5.23 respectively, the error
obtained in the clustering is in general smaller when the rank is estimated with the
proposed technique. However, the error values are quite similar to the one obtained
when the rank is fixed to 4N .

Finally, Fig. 5.24 shows the error obtained in the clustering when a sequence with
9 objects is considered. It can be seen that similar results are obtained when the rank
is estimated with the proposed technique and when it is fixed to 4N .

Notice that the error obtained when the rank is set to 5 is very high in sequences
with more than two objects. As mentioned in the previous Section, the rank of the
full matrix in the cases of 3, 5, 7 and 9 objects are 12, 16, 20 and 25, respectively
(values very far from 5).

Real Data

The same procedure applied to the synthetic data is now used with real data. As
mentioned above, the motion segmentation of two of the sequences generated in the
previous Section are computed. Furthermore, sequences from the benchmark pre-
sented in [115] are also tested.

Fig. 5.25 shows the error obtained in the clustering in the first sequence, consid-
ering different percentages of missing data. It can be seen that the smallest error
is achieved considering r = 4N , where N is the number of objects in the scene (2
in this case). However, similar results are obtained when the rank is estimated with
the proposed technique (r = rFFT ) and without using any prior knowledge (such as
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Figure 5.21: 3 objects; error obtained in the clustering considering different per-
centages of missing data and different rank values: the estimated rank r = rFFT ,
r = 4N and r = 5.
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Figure 5.22: 5 objects; error obtained in the clustering considering different per-
centages of missing data and different rank values: the estimated rank r = rFFT ,
r = 4N and r = 5.



98 SFM IN THE MULTIPLE OBJECTS CASE WITH MISSING DATA

10 20 30
0

10

20

30

40

50

60

70

E
rr

or
 c

lu
st

er
in

g

Percentage of missing data

 

 

rFFT
r4N
r5

Figure 5.23: 7 objects; error obtained in the clustering considering different per-
centages of missing data and different rank values: the estimated rank r = rFFT ,
r = 4N and r = 5.
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Figure 5.24: 9 objects; error obtained in the clustering considering different per-
centages of missing data and different rank values: the estimated rank r = rFFT ,
r = 4N and r = 5.
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Figure 5.25: first sequence; error obtained in the clustering considering different
percentages of missing data and different rank values: the estimated rank r = rFFT ,
r = 4N and r = 5.

number of objects). The error obtained considering r = 5 is very high.

The results obtained with the second sequence are plotted in Fig. 5.26. In this case,
similar results are obtained when the rank is estimated with the proposed approach
(r = rFFT ) and with r = 4N . Again, the error is very high when the rank is set to 5.

Finally, sequences from the benchmark presented in [115] are considered. As men-
tioned above, these sequences can be separated into two main groups: checkerboard
and traffic sequences. As example, Fig. 5.27 (left) shows the first frame of two se-
quences from the two groups. The obtained trajectories in each case are plotted in
the image plane (Fig. 5.27 (right)).

Fig. 5.28 shows the error obtained in the clustering in the case of the checkerboard
sequences. Concretely, Fig. 5.28 (left) and Fig. 5.28 (right) show the obtained error
considering sequences with 2 and 3 objects, respectively. It can be seen that, in
general, the error in the clustering is smaller when the rank is estimated with the
proposed approach (r = rFFT ). Only in the case of 10% of missing data and for
sequences containing 3 objects, the median of the error obtained when r = 4N is
smaller than when the rank is estimated with the proposed technique. If the rank is
set to r = 5, the error is very high, for any percentage of missing data. The obtained
error is higher in the sequences with 3 objects, for any rank value and for a percentage
of missing data higher than 10%.

Results obtained with traffic sequences are shown in Fig. 5.29. It can be seen
that in the case of sequences with 2 objects (Fig. 5.29 (left)), the error obtained in
the clustering is smaller when the rank is estimated with the proposed technique,
while the percentage of missing data is higher than 10%. If the percentage of missing
data is 10%, the smallest error is obtained with r = 4N , although similar results
are obtained with r = rFFT . Furthermore, any prior knowledge about the scene is
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Figure 5.26: second sequence; error obtained in the clustering considering different
percentages of missing data and different rank values: the estimated rank r = rFFT ,
r = 4N and r = 5.
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Figure 5.27: (left) first frame of two sequences (feature points are marked);
(rigth) trajectories of tracked feature points plotted in the image plane ; (top) checker-
board sequence example; (bottom) traffic sequence example.
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Figure 5.28: checkerboard sequences; error obtained in the clustering considering
different percentages of missing data and different rank values: the estimated rank
r = rFFT , r = 4N and r = 5; (left) sequences containing 2 objects; (right) sequences
containing 3 objects.
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Figure 5.29: traffic sequences; obtained error in the clustering considering different
percentages of missing data and different rank values: the estimated rank rFFT ,
r = 4N and r = 5; (left) sequences containing 2 objects; (right) sequences containing
3 objects.

used with the proposed rank estimation technique. In the case of sequences with
3 objects (Fig. 5.29 (right)), the smallest error is obtained when r = rFFT , while
the percentage of missing data is below 30%. When the percentage of missing data is
30%, the smallest error is obtained with r = 4N , although similar results are obtained
considering other rank values.

5.4 Structure and Motion of Each of the Clusters

This Section presents examples of recovered structure and motion of the previously
obtained clusters. The idea is to apply a single object SFM technique to the trajecto-
ries corresponding to each of the clusters. Concretely, the shape and motion of each
object are recovered by applying the iterative multiresolution scheme, presented in
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Chapter 4, to the initially missing data matrix, considering the columns corresponding
to each cluster.

The experiments are focused on the case of 2 objects. However, analogous ex-
periments could be carried out in the case of 3 or more objects. The results would
be similar, but with more clusters to study. The goal at this Section is to study the
robustness of the recovered factors to wrongly classified features. Although many
approaches have been proposed for the motion segmentation problem, as far as we
are concerned, none of them present a similar study.

5.4.1 Experimental Results

Synthetic Data

As mentioned above, the shape and motion of each obtained cluster is computed. In
the synthetic data experiments, three different plots are presented in each example:
the ground truth shape and motion factors, the recovered ones and the overlapping
between them. In the case of the motion, three different plots are provided. On the
one hand, the evolution of the x and y vectors of the camera along the sequences
are plotted separately. Notice that the x and y vectors at frame i, correspond to the
unitary camera axes ii and ji (see formulation in Section 2.1.1). On the other hand,
the 2D relative camera-object translation, which correspond to the last column of the
motion matrix (see Section 2.1.1), is also plotted. In order to be able to compare
the recovered factors and ground truth ones, a process similar the the one proposed
in Section 4.4.1 is used. Hence, the ground truth factors are expressed in the same
reference system as the recovered ones.

Fig. 5.30 and Fig 5.31 show the recovered shape and motion of a cylinder and Bee-
thoven sculptured surface contained in a sequence presented in Section 5.2.3. This
example corresponds to a case with 20% of missing data. The error obtained in the
clustering is 0. That is, feature point trajectories are correctly segmented into the dif-
ferent objects. It can be seen that, for both clusters, the shape and motion, plotted in
Fig. 5.30 (middle) and Fig 5.31 (middle), respectively, are correctly recovered. Notice
that the recovered and the ground truth factors overlap exactly (see Fig. 5.30 (bot-
tom) and Fig 5.31 (bottom)). Actually, the rmsS (eq. 4.17) and rmsM (eq. 4.18) are
zero.

In a second example, the sequence used in the previous experiment is consid-
ered, but a Gaussian noise with a standard deviation σ = 1 is added to the coor-
dinates of the feature point trajectories. Again, the percentage of missing data is
20%. Fig. 5.32 (left) and Fig. 5.32 (right) depict the obtained clusters. It can be
appreciated that 7 features are wrongly segmented in the first cluster; in fact, the
error obtained in the clustering is of about 2.76. In the second cluster, the number of
wrongly classified features are 2. Due to those errors and also due to the noise in the
data, the shape and the motion are not exactly recovered as it can be appreciated in
Fig. 5.33 (middle) and Fig. 5.34 (middle). Notice that the wrongly segmented features
(7 in the case of the cylinder and 2 in the case of the Beethoven sculptured surface)
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Figure 5.30: cluster corresponding to the cylinder; (top) ground truth factors: 3D
shape and relative camera-object motion (3 different plots are provided: evolution of
the x and y vectors of the camera along the sequence and 2D relative camera-object
translation); (middle) recovered factors; (bottom) ground truth and recovered factors
overlapped.
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Figure 5.31: cluster corresponding to the Beethoven sculptured surface;
(top) ground truth factors: 3D shape and relative camera-object motion (3 dif-
ferent plots are provided: evolution of the x and y vectors of the camera along
the sequence and 2D relative camera-object translation); (middle) recovered factors;
(bottom) ground truth and recovered factors overlapped.
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Figure 5.32: clusters obtained in the case of 20% of missing data and σ = 1;
(left) cylinder cluster; (right) Beethoven sculptured surface cluster.

are recovered very far from the others. For both clusters, the ground truth factors and
the recovered ones do not overlap (see Fig. 5.33 (bottom) and Fig. 5.34 (bottom)).
In this example, the obtained rmsS and rmsM are 1.33 and 0.28 for the first cluster
and 0.47 and 0.18 for the second cluster.

Real Data

In the real data experiments, only the recovered factors are shown, since the ground
truth ones are not known. The sequence used in these experiments corresponds to
one of the sequences of the benchmark presented in [115]. In particular, two objects
are considered: the first one is defined by the red feature points over the tubular
object on the bottom-left of Fig. 5.35 (left) and the second one is defined by the
background feature points (yellow feature points). The first object rotates on one
axis and translates on the plane orthogonal, very near to the camera and the camera
rotates around its z axis. The sequence consists of 378 points tracked over 29 frames
and the considered percentage of missing data is about 10%. The first frame of the
sequence is shown in Fig. 5.35 (left) and the feature point trajectories are plotted
in Fig. 5.35 (right). In order to obtain the shape and motion of each cluster, the
iterative multiresolution scheme presented in Chapter 4 could be applied to the matrix
of trajectories corresponding to each obtained cluster. However, with only 29 frames,
only a few partitions can be done in the matrix (see Section 4.3 for details) and results
would be similar to the ones obtained with the Alternation. Therefore, this technique
is used in the experiments with this sequence.

In a first experiment, the error obtained in the clustering is 0. The recovered shape
and motion for each cluster are plotted in Fig. 5.36 and Fig. 5.37, respectively. Al-
though in the real case there is no ground truth, it can be seen in Fig. 5.36 (top-right)
and Fig. 5.37 (top-right) that the 3D shape of both objects is quite correctly recov-
ered. The recovered motion is plotted in Fig. 5.36 (bottom) and Fig. 5.37 (bottom),
for each cluster. Notice that, as in the experiments with synthetic data, three plots
are provided to show the recovered camera-object motion: the first and second plots
correspond to the x and y camera axes respectively, while the third one corresponds
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Figure 5.33: cluster corresponding to the cylinder; (top) ground truth factors: 3D
shape and relative camera-object motion (3 different plots are provided: evolution of
the x and y vectors of the camera along the sequence and 2D relative camera-object
translation); (middle) recovered factors; (bottom) ground truth and recovered factors
overlapped.
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Figure 5.34: cluster corresponding to the Beethoven sculptured surface;
(top) ground truth factors: 3D shape and relative camera-object motion (3 dif-
ferent plots are provided: evolution of the x and y vectors of the camera along
the sequence and 2D relative camera-object translation); (middle) recovered factors;
(bottom) ground truth and recovered factors overlapped.
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Figure 5.35: (left) first frame of the studied sequence; (right) feature point trajec-
tories plotted into the image plane.

to the translation component.

In a second experiment with real data, the same sequence is considered, but in
this case the error obtained in the clustering is about 0.57. The trajectories belonging
to each of the clusters are plotted separately in Fig. 5.38 (top-left) and Fig. 5.39 (top-
left). In particular, two feature points that belong to the second object are clustered
erroneously with the first cluster (see the two trajectories separately from the others
in Fig. 5.38 (top-left)). The recovered factors for each obtained cluster are plotted
in Fig. 5.38 and Fig. 5.39, respectively. Notice that the 3D shape of the first cluster
is not correctly recovered (Fig. 5.38 (top-right)). However, the motion is quite well
recovered, as it can be seen in Fig. 5.38 (bottom). On the other hand, the 3D shape
of the second cluster is correctly recovered (Fig. 5.39 (top-right)) and also the motion
of the camera, as it can be appreciated in Fig. 5.39 (bottom).

5.5 Summary

This Chapter presents an approach to tackle the motion segmentation problem with
missing data in the matrix of trajectories. It consists of two stages.

In the first stage, a novel technique to estimate the rank of a given trajectory
matrix with missing data is proposed. It is based on the study of the frequency
spectra of the input matrix W . The intuition behind the proposed approach is that,
since feature points belong to surfaces of rigid objects, the frequency content of W
should be preserved after filling in missing entries. In other words, the recovered filled
matrix should contain a frequency spectra similar to the one of the input matrix. The
good performance of the proposed approach is empirically shown, considering scenes
with different numbers of objects and different percentages of missing data. From
the synthetic scene experiments (no noisy data) it can be concluded that in general,
the rank of the input matrix is well estimated, even with percentages of missing data
of about 40%. The estimated rank is used to fill in missing data in W by applying
the Alternation technique. The rms obtained with Alternation is also analyzed in



5.5. Summary 109

0 50 100 150 200 250 300 350
−450

−400

−350

−300

−250

−200

−150

−100

x

y

−100

0

100

200

300

−100
0

100
200

300

−100

−50

0

50

100

x
y

z

x vector camera y vector camera translation

0.5 0.55 0.6 0.65
−0.7

−0.65
−0.6−0.95

−0.9

−0.85

−0.8

−0.75

y
x

z

0.2
0.3

0.4
0.5

0.6

0.3

0.4

0.5

0.6

0.7

−1.5

−1.45

−1.4

−1.35

−1.3

xy

z

140 150 160 170 180 190 200 210 220 230

270

280

290

300

310

320

330

340

x

y

Figure 5.36: (top-left) feature point trajectories corresponding to the first object
(red feature points in Fig. 5.35 (left)), plotted into the image plane; (top-right) re-
covered 3D shape; (bottom) recovered motion: evolution of the x and y vectors of
the camera along the sequence and 2D relative camera-object translation.



110 SFM IN THE MULTIPLE OBJECTS CASE WITH MISSING DATA

0 100 200 300 400 500 600 700
−500

−450

−400

−350

−300

−250

−200

−150

−100

−50

0

x

y

−1000100200−200−1000100200300
−300

−250

−200

−150

−100

−50

0

50

100

150

x
y

z

x vector camera y vector camera translation

0.25
0.3

0.35

0.6

0.65

0.7

0.75

0.8

0.7

0.75

0.8

0.85

x
y

z

0.040.060.080.10.12
−0.7

−0.65
−0.6

−0.55

0.7

0.75

0.8

0.85

0.9

x
y

z

295 300 305 310 315 320 325 330

145

150

155

160

165

170

x

y

Figure 5.37: (top-left) feature point trajectories corresponding to the second object
(yellow feature points in Fig. 5.35 (left)), plotted into the image plane; (top-right) re-
covered 3D shape; (bottom) recovered motion: evolution of the x and y vectors of
the camera along the sequence and 2D relative camera-object translation.
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Figure 5.38: (top-left) feature point trajectories corresponding to the first cluster,
plotted into the image plane; (top-right) recovered 3D shape; (bottom) recovered
motion: evolution of the x and y vectors of the camera along the sequence and 2D
relative camera-object translation.
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Figure 5.39: (top-left) feature point trajectories corresponding to the second cluster,
plotted into the image plane; (top-right) recovered 3D shape; (bottom) recovered
motion: evolution of the x and y vectors of the camera along the sequence and 2D
relative camera-object translation.
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order to study the error added to the data during the filling in process. Real data
experiments show that the proposed technique is also able to deal with noisy images.
It should be highlighted that the proposed rank estimation approach does not require
the prior knowledge of the objects contained in the scene, nor assumption about their
motion.

In the second stage, given a full matrix of trajectories, an approach similar to the
one proposed in [126] is used to obtain the motion segmentation. In order to show
the significance of a good rank estimation for correct motion segmentation results, a
comparison considering different rank values for filling in the missing data matrix is
performed. It has been shown that the obtained error in the clustering is in general
smaller when the rank is estimated with the rank estimation technique proposed in the
previous Section, instead of fixing it beforehand. In some cases, the error is equal or
a little higher than when the rank is fixed to be 4N , but with the proposed approach,
no prior information about the scene (such as number of objects or kind of motion)
is used.

Finally, the shape and motion of every obtained cluster are computed, both for
cases where the error obtained in the clustering is null and for cases where there
are wrongly segmented features. The experiments show that the correctness of the
recovered factors depends on the correctness of the obtained clusters. In the exam-
ples, with only a few wrongly segmented features, the shape and the motion are not
correctly recovered.
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Chapter 6

Applications

The aim at this Chapter is to show that the Alternation technique can be used in other
applications apart from the Structure from Motion (SFM) problem. Concretely, three
different applications are considered. An introduction is provided for every proposed
application, in order to set the problem to tackle. Then, the Alternation is adapted to
the particular application and finally, experimental results that include real data are
given.

6.1 Introduction

As mentioned in Chapter 1, several problems can be reduced to find a low-rank
matrix approximation of the data matrix: sequences alignment [129], faces decom-
position [121], optical flow estimation [65], motion segmentation [126], photometric
stereo [56] and data mining [116]. In the SFM problem, for instance, it is shown in
Chapter 4 that the trajectory matrix can be approximated by a matrix of rank 3 or 4
(or even higher), depending on the hypothesis of the problem. The SVD can be used
to find this low-rank matrix approximation when the data matrix is full, but SVD
method can not be used with missing data matrices. In those cases, the Alternation
gives the best low-rank approximation matrix in the least squares sense. In some
cases, the final goal is to compute the factors, while in others the objective is to fill
in missing entries in the given matrix with the product of those factors. The aim at
this Chapter is to apply the approaches proposed along the thesis to other problems,
different from the SFM. First of all, different problems in which data can be stored
into a matrix and that can present missing data are selected. Then, each problem is
studied, searching for similarities and differences with the SFM problem. Finally, the
Alternation is adapted to tackle each of the studied problems.

The first application proposed in this Chapter consists in applying the Alterna-
tion technique to tackle the photometric stereo problem. The goal is to recover the
surface normals and reflectance of an object by using intensity images obtained under
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different lighting conditions. Furthermore, the initial images can be approximated by
multiplying these obtained factors. The grey intensities of the images are stacked into
a measurement matrix. Concretely, each row of this matrix corresponds to a given
pixel in the different images, while each column corresponds to a single image. Hence,
data matrices have in general a large number of rows. This matrix can be factorized
into the surface matrix (which contains the normals and reflectance of the surface)
and the lighting source matrix (which contains the light source directions and intensi-
ties). These recovered factors allow to represent the object in any lighting condition,
which can be very useful in object detection or recognition tasks, for instance. The
key point is that the set of images of a Lambertian object can be approximated by
a low-dimensional linear subspace. In particular, if the images do not have shadows
nor specularities, the measurement matrix can be approximated by a rank-3 matrix.
Otherwise, a larger rank is needed. In fact, when working with real images, shadows
and specularities are quite common. Furthermore, there is usually an ambient back-
ground illumination that affect image intensities. In order to tackle these situations, a
rank-4 formulation, which includes an ambient illumination term, is introduced. En-
tries that correspond to specularities or to pixels in shadow are considered as missing
data. Hence, they do not affect the final result. Missing data do not follow a random
distribution, since they are generated by considering upper and lower thresholds of
intensity values.

In a different framework, an Alternation-based strategy is applied in order to fill
in missing entries in a matrix of gene expression data. The data matrix contains
the log-transformed ratios of expression levels of genes under different experimen-
tal conditions. These ratios are computed with the information provided by DNA
microarrays. This technology allows the whole genome to be monitored on a single
chip so that a better picture of the interactions among thousands of genes can be
observed simultaneously. Missing values may be due to insufficient resolution, image
corruption, dust or scratches on the slide, or simply as a result of the robotic meth-
ods used to create them. The data are stacked into a data matrix in which the rows
correspond to each of the studied genes, while the columns correspond to each of the
experiments. In general, a large amount of genes under a few different experiments
are studied. Corrupted entries are manually or automatically considered as missing
data, since they may influence wrongly the final results. The structure of the missing
data is a combination of random missing and what is called line-missing data. This
last structure occurs when entries corresponding to a concrete gene are missing nearly
in all the experiments. One possible solution to avoid missing data could be to repeat
the experiment, but it would be a very expensive task. The main drawback in this
application is that the rank of the data matrix is equal to the number of columns.
Due to that fact, when working with missing data, results obtained with the Alter-
nation are not good as expected. The proposed Alternation-based strategy consists
in applying the Alternation considering r = 1, filling in the missing data. Then, the
filled matrix is projected onto a (r + 1)-dimensional subspace. This process is re-
peated till r is equal to the number of columns. Thus, both the initially missing and
known entries are well recovered. Although the proposed strategy does not always
outperforms current state of the art in this field, a novel field where the Alternation
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can be used is shown.

Finally, the Alternation is adapted to be used in recommender systems. The main
objective of recommender systems is to help customers to find products they will
probably like or dislike. These systems are widely used on Electronic commerce, com-
monly known as e-commerce, which consists in buying and selling products or services
over electronic systems such as Internet and other computer networks. In many cases,
these systems use collaborative filtering techniques in order to give recommendations
to the customers. These techniques use the information given by similar customers
to recommend or predict rates of the current customer. A similarity measure should
be defined in order to find neighbour customers. However, this measure can be not
significant when the customers do not have common rated items or have only a few.
As other proposed approaches, the Alternation uses all the information stored in the
system to find the predictions. The data matrix contains rates that customers (rows)
give to some products (columns). In general, there is a wide variety of products and a
large number of customers. Consequently, data matrices are very large. In addition,
these matrices tends to be very sparse, since each customer rates only a few items.
One advantage that should be used in this particular application is that the range
of the rates values is known. Therefore, in order to improve the final results, the
Alternation is modified by imposing the range of values in the computed predictions
(i.e., the range of the filled in entries).

Unfortunately, in these applications, the dimensions of the data matrix make dif-
ficult to apply the iterative multiresolution scheme proposed in Chapter 4. Further-
more, only in the last application the data matrix has a high percentage of missing
data, which is a necessary condition to obtain remarkable improvements with the
proposed iterative scheme.

6.2 Photometric Stereo

The image of an object depends on many factors such as lighting conditions, view-
point, geometry and albedo of the object, etc. Small changes in lighting conditions
can cause large changes in appearance. Hence, if a general description of the object is
required, it is necessary to design a representation that capture all the image variation
caused by those factors. Then, it could be used for object detection and recognition,
for instance.

Photometric stereo aims at estimating the surface normals and reflectance of an
object by using several intensity images obtained under different lighting conditions.
The general assumptions are that the projection is orthographic, the camera and
objects are fixed and the moving light source is distant from the objects. Hence, it
can be assumed that the light shines on each point in the scene from the same angle
and with the same intensity.

The starting point (as pointed out in [8]) is that the set of images produced by a
convex Lambertian object, under arbitrary lighting, can be well approximated by a
low-dimensional linear subspace of images. In [102], it is shown that in the absence of
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shadows, a Lambertian object produces a 3D subspace of images. Basri et al. [7] show
that higher dimensional subspaces should be used to account for the effects of attached
shadows, which correspond to points in which the angle between the surface normal
and the direction of the light source is obtuse (i.e., higher than 90 degrees). This
linear property suggests to use factorization techniques to model the image formation
and obtain each of the factors that contribute to it. The intensity of the pixels of the
image are stacked into a measurement matrix, whose rows and columns correspond to
each of the pixels and images, respectively. Since the number of pixels is larger than
the number of images, the measurement matrix has a larger number of rows than
columns.

One common assumption in most photometric stereo approaches is that the images
do not have shadows nor specularities (e.g., [133]), which correspond to points with
very low and high intensities values, respectively. This is due to the fact that these
points do not follow a Lambertian model. Although if there are only a few of them
the Lambertian model is a good approximation, their presence can bias the obtained
results. Hence, some approaches propose methods to reject them or tend to reduce
their influence on the results.

Hayakawa [56] presents a photometric stereo approach for estimating the surface
normals and reflectance of objects, which is similar to the factorization method pre-
sented in [110] for the shape and motion estimation. Assuming that the object’s
surface is Lambertian, the surface normals, the surface reflectance, the light-source
direction and the light-source intensity are determined simultaneously. This approach
is based on SVD and, in order to obtain a unique decomposition, it uses one of the
following constraints: 1) at least six known pixels have constant or known reflectance;
2) the light source intensity value is constant or known in at least six known images.
However, in practice it is needed to know the value of the reflectance in those pixels
or the intensity values in those images, respectively. Otherwise, the intensity and
reflectance values are recovered only up to scale. Hayakawa proposes a strategy to
deal with shadows. First of all, shadows and illuminated data are classified, by using
an intensity threshold. The idea is to select an initial submatrix, whose entries do
not correspond to pixels in shadow. Then, the surface normals and reflectance of
pixels in shadow are estimated by growing a partial solution obtained from the initial
submatrix. Unfortunately, to sort the matrix and find a submatrix without shadows
is in general a very costly task. Furthermore, the SVD has a high computational cost
when dealing with big matrices, which are common in this application.

Epstein et al. [33] present an approach for learning models of the surface geometry
and albedo of objects and that is based on Hayakawa’s approach [56]. Concretely, they
propose four different schemes that are used depending on the information available
in each case. The first scheme uses the knowledge of the light source direction. In
this case, shadows and specularities are not taken into account in the optimization
process. The other schemes are based on the SVD and shadows and specularities can
not be removed. Epstein et al. point out that in [56] the obtained reflection and
light directions are recovered up to a rotation. In order to solve that ambiguity, they
propose the surface integrability.
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Yuille et al. [128] propose and extension of [33] in which the SVD is used to obtain
the shape and albedo of objects under different unknown illumination. In this case,
no prior information is used. Furthermore, the authors propose a generalization of
the SVD formulation that allows to recover the ambient illumination. It is shown
that if several variant light directions are used, specularities do not affect the results.
Unfortunately, there is not always a variety of illuminations in the given images. They
also propose a method to locate and reject shadows. It consists of an iterative process
whose initialization is the result given by the SVD. The idea is to consider shadows
as outliers and remove them of the function to minimize.

Basri et al. [8] also use the photometric stereo to recover the shape and reflectance
properties of an object. The main advantage of this recent approach is that it allows
arbitrary lighting, including any combination of point sources and diffuse lighting.
They use spherical harmonics [7], which form an orthonormal basis for describing
functions on the surface of a sphere. In particular, Basri et al. present two methods,
the first one uses a first order harmonic approximation (a 4D space), while the second
one uses a second order harmonic approximation (a 9D space). Although the last
gives better results, it involves an iterative optimization and requires at least nine
images. They propose to remove unreliable pixels, such that saturated pixels, and to
fill in the missing data by using Wiberg’s algorithm [123].

This thesis proposes to use the Alternation technique to decompose the measure-
ment matrix, which contains the intensity images, into the surface and light source
matrices. On the one hand, shadows and specularities are considered as missing data.
Thus, the results do not depend on those pixels, which in general influence the final re-
sults. On the other hand, a rank-4 formulation that includes an ambient illumination
term is introduced.

This Section is structured as follows. First of all, the image generation process
in the case of a Lambertian surface is introduced. Then, the formulation used along
the Section and the Alternation technique adapted to the photometric stereo are
exposed. Experimental results both with synthetic and real images are given. Finally,
concluding remarks are summarized.

6.2.1 Lambertian Model

The image intensity at the pixel (x, y) depends on the optical properties of the surface
material (albedo), the surface structure and the spectral distribution of the incident
illumination. As pointed out in [56], for many surfaces the fraction of incident il-
lumination reflected in a particular direction depends only on the surface normal.
The reflectance characteristics of such a surface can be represented as a reflectance
function φ of the three unit vectors: surface normal n = (nx, ny, nz)

t, light-source
direction m = (mx,my,mz)

t, and the viewer direction v = (vx, vy, vz)
t. Fig. 6.1

shows the geometric reflectance model for image generation in the viewer-oriented
coordinate system. Using the reflectance function φ, the following equation describes
the image-generation process:
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Figure 6.1: geometric reflectance model for image generation in the viewer-oriented
coordinate system.

i = tφ(n,m,v) (6.1)

where t contain the light source intensity at each image.

Assuming that the image projection is orthographic and that there is only a distant
point light source, the viewer direction and the light source direction can be considered
to be constant over the image plane.

The most used reflectance model is the Lambertian model, which states that ma-
terials absorb light and reflect it uniformly in all directions. This model is given by
the following equation:

I(x, y) = r(x, y)n(x, y)tm (6.2)

where r(x, y) is the albedo at the (x, y) pixel, n(x, y) is its surface normal and m

contain the light direction at each image. The albedo at each point on the object
r(x, y), describes the fraction of light reflected at that point. Or, which is the same,
it describes how much light is reflected by each surface normal. It is important to
remark that the amount of light reflected depends on the surface normal at that point,
and it does not depend on its spatial position.

6.2.2 Formulation

A measurement matrix I contains the grey-level intensity image data at p pixels
through f frames in which only the light source is moving. In particular, the kth-row
of I corresponds to the intensities of the kth-pixel in each of the images. At the
same time, the jth-column of I corresponds to the intensities of all the pixels of the
jth-frame. Hence, the matrix I is defined as:



6.2. Photometric Stereo 121

Ip×f =




i11 . . . i1f

...
...

ip1 . . . ipf


 (6.3)

The space of images of the object obtained by varying the light source direction
spans a three dimensional space [102], if there are not shadows or specularities. There-
fore, it can be assumed that the rank of I is 3. Assuming a Lambertian reflectance
model, this matrix can be factorized as:

I = RNMT (6.4)

where

Rp×p =




r1 0
. . .

0 rp


 (6.5)

is the surface reflectance matrix (being r the surface reflectance at each pixel),

Np×3 =
[

n1 . . .np

]t
=




n1x n1y n1z

...
...

...
npx npy npz


 (6.6)

is the surface matrix (n represents the surface normal at each pixel),

M3×f =
[

m1 . . .mf

]
=




mx1 . . . mxf

my1 . . . myf

mz1 . . . mzf


 (6.7)

is the light-source direction matrix (m represents the light-source direction at each
frame), and

Tf×f =




t1 0
. . .

0 tf


 (6.8)

is the light-source intensity matrix (t represents the light-source intensity at each
frame).

Using the above definitions, the surface matrix S and the light-source matrix L
are defined as follows:

Sp×3 =
[

s1 . . . sp

]t
=




s1x s1y s1z

...
...

...
spx spy spz


 = RN (6.9)
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L3×f =
[

l1 . . . lf
]t

=




lx1 . . . lxf

ly1 . . . lyf

lz1 . . . lzf


 = MT (6.10)

Therefore, the measurement matrix can be decomposed as:

I = SL (6.11)

Hence, the surface matrix S and the light-source matrix L can be recovered from
the intensity images obtained under varying illumination. Furthermore, and once the
factors are obtained, synthetic images can be generated, considering arbitrarily light
positions and substituting them to the expression (6.11). Therefore, images obtained
under different light illumination can be simulated.

6.2.3 Alternation Adapted to the Photometric Stereo Problem

The problem presented above could be tackled by any factorization technique. In
general, Singular Value Decomposition (SVD) is used to compute the S and L factors
from a measurement matrix I; however, if entries of I corresponding to pixels in
shadow or saturated regions (also denoted as specularities) are considered as missing
data, SVD can not be applied. In this section, an adaptation of Alternation [54],
which is able to deal with missing data, is proposed to factorize the matrix I. The
algorithm is summarized below for the rank 3 case, the extension to the rank 4 case
is presented in the next Section.

Algorithm :

1. Set a lower and an upper threshold to define the shadows and specularities,
respectively. The lower threshold depends on the intensity values in each set of
images, while the upper threshold is, in general, 255.

2. Consider the entries corresponding to shadows and specularities as missing data
in I.

3. Apply the Alternation technique to I. The algorithm starts with an initial
random p× 3 matrix S0 (analogously with a 3× f random L0) and repeats the
next two steps until the product SkLk converges to I:

• Compute L1:
Lk = (St

k−1Sk−1)
−1(St

k−1I) (6.12)

• Compute S1:
Sk = ILt

k(LkLt
k)−1 (6.13)

1These products are computed only considering known entries in I.



6.2. Photometric Stereo 123

Solution : S contains the surface normals and reflectance, L contains the light source
direction and intensities and its product SL is the best rank-3 approximation to I.

However, as in the SVD case, the obtained decomposition is not unique, since any
invertible matrix Q with size 3 × 3 gives the following valid decomposition:

I = SL = ŜQQtL̂ (6.14)

Therefore, at the end of the algorithm, one of the constraints proposed in [56] is
used to determinate the matrix Q:

1. The relative value of the surface reflectance is constant or known in at least six
pixels. The matrix Q can be computed with the following system of p equations:

ŝkQQtŝt
k = 1, k = 1, · · · , p (6.15)

where ŝk is the kth-vector of Ŝ.

2. The relative value of the light-source intensity is constant or known in at least
six frames. Here Q can be obtained by solving the following system:

l̂tkQQt l̂k = 1, k = 1, · · · , f (6.16)

where l̂k is the kth-vector of L̂.

If the value of the reflectance or the value of the light intensity is known, it is
substituted to the corresponding above equation. Actually, if the value is not known,
the reflectance and the light intensity are recovered only up to scale.

In our experiments, the second constraint is used and a total of f equations (the
number of available images) are considered instead of only six.

The recovered normal vectors N and the light source directions M are represented
in an arbitrary coordinate system. However, they can be represented in the viewer-
oriented coordinate system if at least three surface normals or three light source
directions are known. Then, N and M can be aligned to the viewer coordinate
system.

6.2.4 Generalization to the Rank 4 Case

This Section proposes a generalization of the previously presented formulation to the
rank-4 case. It includes a term corresponding to the ambient background illumination.
With this new formulation, the equation (6.11) is transformed as:

Ip×f = Sp×3L3×f + ap×1 (6.17)
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where ap×1 is the ambient illumination, which does not depend on the light source
direction. It could take a different value at each pixel.

In matrix formulation, this equation can be expressed as:

Ip×f =
[

S a
] [

L
1

]
(6.18)

Notice that each of the factors can be of rank 4 at most. Therefore, in this case, the
Alternation technique is applied considering r = 4 and the following decomposition
is obtained:

Ip×f = Ãp×4B̃4×f (6.19)

At each step of the Alternation technique, it is imposed that the last row of B̃ is a
vector of ones, in a similar way than in the SFM problem. As in the rank-3 case, some
constraints should be imposed in order to obtain a unique decomposition. Actually,
the same constraints are imposed, but the formulation is generalized as follows:

I =
[

S a
] [

L
1

]
= Ãp×4B̃4×f = Ap×4Q4×4Q

t
4×4B4×f (6.20)

The linear transformation Q4×4 can be computed using one of the aforementioned
constraints, depending on the conditions of the problem. In order to compute it more
easily, this matrix is separated into two different matrices: Q1 and Q2 with dimensions
4 × 3 and 4 × 1, respectively. That is,

I = AQQtB = A
[

Q1 Q2

] [
Qt

1

Qt
2

]
B =

[
AQ1 AQ2

] [
Qt

1B
Qt

2B

]
(6.21)

If the surface reflectance is constant or known in every pixel, the matrix Q is
computed by solving the linear systems defined by the equations:

akQ1Q
t
1a

t
k = 1, k = 1, · · · , p (6.22)

where ak is the kth-vector of the first factor A, and

a = AQ2 (6.23)

On the contrary, if the intensity of the light source is constant or known in every
image, the matrix Q is computed by solving the linear systems defined by:

bt
kQ1Q

t
1bk = 1, k = 1, · · · , p (6.24)

where bk is the kth-vector of the second factor B, and
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1 = Qt
2B (6.25)

Finally, the Q matrix is used to obtain the final factors:

Ã = AQ, B̃ = QtB (6.26)

6.2.5 Experimental Results

The aim at this Section is to show that results are improved when pixels in shadow and
specularities are considered as missing entries in I. Hence, results obtained taking the
full image intensity matrix are compared with the ones obtained when those particular
entries are considered as missing data.

The goodness of the results is studied showing the recovered factors. In the exper-
iments with synthetic data, the recovered factors can be compared with the ground
truth ones by computing the rms of each of the factors. The following expressions
are used as measures of goodness:

rmsR =
‖Rgt − R‖F√

p
(6.27)

rmsN =
‖Ngt − N‖F√

3p
(6.28)

rmsM =
‖Mgt − M‖F√

3f
(6.29)

rmsT =
‖Tgt − T‖F√

f
(6.30)

where the ground truth factors are denoted by the subindex gt.

Unfortunately, in the experiments with real data the ground truth factor is not
known in general and it is difficult to compare different results. However, in the
current experiments with real data, the light source direction at each frame is known.
This information can be used to align L and N with the viewer-coordinate system.

Synthetic Images

In this first experiment, a synthetic sphere is generated. There is not an ambient
component nor noise in the data. The light source directions are generated by simu-
lating a trajectory on a sphere and avoiding positions of the light source behind the
objects. A total of 66 images with a size of 71×71 pixels are generated. Therefore,
the size of the measurement matrix is 5,041×66. Finally, the matrix used into the
process has a size of 1,941 × 66, since only the pixels that are not background are
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used. Several negative intensity images are obtained due to attached shadows. That
is, pixels in which the normal and light-source direction vectors form an obtuse angle.
Since the intensities can not be negative in real situations, they are set to 0 in the
experiment.

Table 6.1 summarize the results obtained with the synthetic images. Concretely,
the results obtained when the negative intensities are set to 0 are shown in Ta-
ble 6.1 (a).

Table 6.1: results case synthetic images.

experiment rmsR rmsN rmsM rmsT

(a) if I(x, y) < 0, 0.053 0.17 0.094 1.06
I(x, y) = 0

(b) 30% missing 3.10 ×10−16 4.07 ×10−16 3.59 ×10−16 9.52 ×10−15

and Alternation
(c) 61.05% missing 88.15 4.84 0.092 2.60
and Alternation

(d) 61.05% missing,
iterative multires. 0.015 0.043 0.042 0.72
scheme and Alt.

If data in shadow are considered as missing entries, that is, entries corresponding
to pixels which have negative intensities, the measurement matrix has a percentage
of missing data of about 30%. The results obtained in this case are shown in Ta-
ble 6.1 (b). Notice that the error of all the recovered factors is very close to zero.
Fig. 6.2 shows the recovered factors in this case. It can be seen in Fig. 6.2 (top) that
the surface normals and reflectance are correctly recovered. This is an ideal situation
and the light source position is recovered exactly (see Fig. 6.2 (bottom)). Therefore,
the recovered images are identical to the original ones used to estimate the factors,
as it can be appreciated in Fig. 6.3.

If the images contain large regions in shadow, the percentage of missing data
can be very high and the results obtained with the Alternation can be worse than
expected. In those cases, the iterative scheme presented in Chapter 4 could be used to
improve final results. As an example, a high percentage of missing data is generated in
the current measurement matrix, by setting a threshold of 5 (the maximum intensity
value in this particular matrix is 10). That is, pixels with an intensity image below 5
are considered as missing data, giving a measurement matrix I with a percentage of
missing data of 61.05%. The results obtained when the Alternation is applied to this
matrix are shown in Table 6.1 (c). It can be seen that the error is higher than the
obtained in previous cases. If the iterative scheme presented in Chapter 4 is applied
to the matrix I, which has a percentage of known data of only 38.95%, a matrix
with a percentage of known data of 84.55% is obtained. The Alternation applied to
this filled matrix gives the results shown in Table 6.1 (d). Notice that the error is
smaller than in the previous experiment. However, it is higher than the obtained in
the second experiment. This is only an example to show that the iterative scheme
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Figure 6.2: synthetic sphere images, pixels in shadow are considered as missing
data, given a matrix with 30% of missing data; (top) x,y and z components of the
recovered surface normals and recovered reflectance (d); (bottom) ground truth (e)
and recovered light position (f).

Figure 6.3: (top) a set of the original images synthetically generated; (bottom) im-
ages recovered by projecting the original ones onto a three dimensional subspace,
considering the pixels in shadow as missing data.
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can be used in cases with high percentage of missing data.

POV-Ray Images

This second experiment, looking for more realistic simulation, uses the POV-Ray
software to generate images that contain a sphere. In this case, there is background
ambient illumination in the scene. The light source directions generated in the pre-
vious experiment are used. The images are of 120×120 pixels, given rise to a mea-
surement matrix of 14,400 × 66 elements. Since only the entries corresponding to
non-background pixels are considered, the final resulting matrix contains 7,499×66
elements.

Fig. 6.4 shows the recovered factors in the case of non-missing data. It can be
seen in Fig. 6.4 (a) that the reflectance is constant in all the points of the surface.
Fig. 6.4 (c), Fig. 6.4 (d) and Fig. 6.4 (e) show each of the coordinates of the recovered
surface normals. Notice that there are points on the boundaries of the visible surface
in which the normal values are not properly recovered (see the enlargement provided
in the case of the z-coordinate, Fig. 6.4 (e-right)). This is due to the fact that these
points correspond to shadow pixels in several images.

Fig. 6.5 provides a comparison of some original images with the recovered ones,
when projecting to a rank-4 subspace. The first row in Fig. 6.5 shows five of the
initial images. The second row contains the images obtained with the product of
the recovered factors S and L, while the third row consists of these images plus the
ambient term. Notice that pixels corresponding to regions in shadow are also in
shadow in the recovered images.

In order to correct the recovered regions in shadow (see Fig. 6.5 (bottom) and
those incorrectly recovered values in the normals, shadows are considered as missing
data. Concretely, the pixels whose intensity is lower than 120 are considered as
missing data. With such a high threshold, a percentage of missing data of about 57%
is obtained. Fig. 6.6 shows the results corresponding to this missing case. Here, the
normal components do not present incorrect values in the boundaries.

The recovered images obtained in this case are shown in Fig. 6.7. In this case,
the areas corresponding to pixels in shadow in the original images are not as marked
as in the previous experiment, as it can be appreciated in the third row in Fig. 6.7.
Therefore, the results are improved considering the pixels in shadow as missing data,
even with a high percentage of missing data.

The proposed iterative scheme is not used, since the size of the matrix is very
high. Therefore, the partitions proposed in the iterative multiresolution scheme to
obtain overlapping among the filled in regions could not be achieved here. Actually,
only the rows would be partitioned. Furthermore, the method would have a high
computational cost due to the large number of rows.
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Figure 6.4: sphere images obtained from data generated with POV-Ray ; (a) recov-
ered reflectance; (b) recovered ambient illumination; (c) x-coordinate of the recovered
surface normals; (d) y-coordinate of the recovered surface normals; (e) z-coordinate
of the recovered surface normals. An enlargement is presented in order to obtain
a better visualization of the points on the boundary; (f) ground truth of the light
position; (g) recovered light position.
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Figure 6.5: (top) a set of the original images generated with the POV-Ray; (mid-
dle) images recovered by projecting the original ones onto a four-dimensional sub-
space; (bottom) images of the middle, adding the ambient component.

Real Images

Images from the Yale data base (http://cvc.yale.edu) are used in the experiments
with real data. All data sets have been generated under controlled light. Concretely,
images are captured using a purpose-built illumination rig. This rig is fitted with
64 computer controlled strobes. The 64 images of an object in a particular pose are
acquired at camera frame rate (30 frames/second) in about 2 seconds. The extreme
cases, in which almost all the pixels of the image are in shadow, are not considered in
these experiments. At the end, only 49 images are taken to construct the measurement
matrix. In particular, two different data sets are used; a scene containing: i) a ball;
ii) a sculptured bust.

Ball Images

These images contain many regions of specular reflection, that is saturated pixels
with an intensity of 255 (see examples in the first row in Fig. 6.9). The images have
a size of 294×294 pixels, which give a measurement matrix of 66,921 rows and 49
columns. If the background pixels were considered, the matrix would have 86,436
rows.

Fig. 6.8 shows the results obtained taking all the intensity values. The surface
normals of some background pixels, which are not studied, can be appreciated in
Fig. 6.8 (c), Fig. 6.8 (d) and Fig. 6.8 (e).

Fig. 6.9 gives a comparison between the original images and the recovered ones
with the product of the obtained factors, without the background ambient term (sec-
ond row) and with the ambient term (third row). It can be seen that the specular
regions keep quite specular in the recovered images.
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Figure 6.6: sphere images obtained from data generated with POV-Ray, shadows
are considered as missing data, given a matrix with 57% of missing data; (top) re-
covered reflectance (a) and ambient illumination (b); (middle) x,y and z components
of the recovered surface normals; (bottom) ground truth (f) and recovered (g) light
position.
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Figure 6.7: (top) a set of the original images generated with the POV-Ray, shadows
are considered as missing data, given a matrix with 57% of missing data; (middle) im-
ages recovered by projecting the original ones onto a four-dimensional subspace; (bot-
tom) images of the middle, adding the ambient term.

If the specular pixels (those for which the image intensity is equal to 255) are
considered as missing data, the measurement matrix I has a percentage of missing
data of about 28%. Fig. 6.10 shows the obtained results in this case. It can be seen
that the ambient, reflectance and normals are considerably less specular than the
recovered ones when considering 100% of data.

The difference between the full and the missing data case can be appreciated in
Fig. 6.11. The recovered images are not as specular as the obtained in the full data
case (Fig. 6.9).

Just as an illustration, Fig. 6.12 shows five images obtained by considering random
positions of the light source. The normal surface matrix (S) obtained in the previous
case (28% of missing data) is multiplied by each of the new light positions. The
ambient term is added, in order to give more realistic images. This can be very
useful, for instance in object recognition, industrial inspection, etc. Any desired light
position can be taken, providing thus a wide range of different images.

Sculptured Bust Images

The images of this second real data set also contains saturated pixels (see examples
in the first row in Fig. 6.14). The images have a size of 404×260 pixels and only 49
images are considered, given a measurement matrix of 65,246×49 elements. If the
background pixels were also considered, the matrix would have 105,040 rows.

The obtained results with this data set are shown in Fig. 6.13. Some initial and
recovered images are shown in Fig. 6.14. The original specular regions are a little
specular in the recovered images. Actually, the saturated points influence more the
results than the pixels in shadow, which are also present in these images.
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Figure 6.8: ball images; (top) recovered reflectance and ambient illumination; (mid-
dle) x,y and z components of the recovered surface normals; (bottom) ground truth
and recovered light position.
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Figure 6.9: (top) a set of the original images of the ball; (middle) images recovered
by projecting the original ones onto a four-dimensional subspace; (bottom) images
of the middle, adding the ambient component.

If the saturated points are considered as missing data, the measurement matrix
has a percentage of missing data of about 16%. Fig. 6.15 shows the obtained results in
this case. The ambient (Fig. 6.15 (a)) and reflectance (Fig. 6.15 (b)) are less saturated
than in the full data case.

Analogously, the recovered images are considerably less saturated than in the full
data case, as it can be seen in the third row in Fig. 6.16.

6.2.6 Conclusions

This Section proposes the Alternation technique together with the corresponding
adaptation to tackle the photometric stereo problem. The goal is to obtain the surface
normals and reflectance of an object from a given set of images obtained under varying
illumination. On the one hand, it is proposed to consider the entries of the matrix that
correspond to saturated points or pixels in shadow in the image as missing data. On
the other hand, a rank-4 formulation that allows to recover the ambient illumination
is introduced. Experimental results with synthetic and real data show the viability of
the proposed adapted Alternation approach. Furthermore, results are improved when
shadows and specularities are considered as missing data.

The fact of working with matrices with large number of rows, makes it difficult to
apply the iterative multiresolution scheme presented in Chapter 4. It would allow to
deal with higher percentages of missing data.
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Figure 6.10: ball images, specularities are considered as missing data giving a
percentage of missing of about 28%; (top) recovered reflectance and ambient illu-
mination; (middle) x,y and z components of the recovered surface normals; (bot-
tom) ground truth and recovered light position.
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Figure 6.11: (top) a set of the original images of the ball, specularities are consid-
ered as missing data, giving a percentage of missing of about 28%; (middle) images
recovered by projecting the original ones onto a four-dimensional subspace; (bot-
tom) images of the middle, adding the ambient component.

Figure 6.12: images synthesized by considering random light source positions.
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Figure 6.13: sculptured bust images; (top) recovered reflectance and ambient il-
lumination; (middle) x,y and z components of the recovered surface normals; (bot-
tom) ground truth and recovered light position.



138 APPLICATIONS

Figure 6.14: (top) a set of the original images of the sculpture; (middle) images
recovered by projecting the original ones onto a four-dimensional subspace; (bot-
tom) images of the middle, adding the ambient component.
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Figure 6.15: sculptured bust images, specularities are considered as missing, giving
a percentage of missing data of about 16%; (top) recovered reflectance and ambi-
ent illumination; (middle) x,y and z components of the recovered surface normals;
(bottom) ground truth and recovered light position.
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Figure 6.16: (top) a set of the original images of the sculptured bust, specularities
are considered as missing data, giving a percentage of missing data of about 16%;
(middle) images recovered by projecting the original ones onto a four-dimensional
subspace; (bottom) images of the middle, adding the ambient component.
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6.3 Missing Data Recovery in DNA Microarrays
Using the Alternation Technique

As pointed out in [58], the mystery of life for a living organism resides in the func-
tion of thousands of genes. Traditional methods of analyzing gene expressions work
studying a gene at a time, which is time consuming and costly. The DNA2 microar-
ray technology allows the whole genome to be monitored on a single chip so that
a better picture of the interactions among thousands of genes can be observed si-
multaneously [19]. DNA microarrays are microscopic arrays of large sets of DNA
immobilized on solid substrates. The data provided by DNA microarrays can provide
fundamental understanding of life on the molecular level and may be useful in med-
ical diagnosis, treatment and drug design [5]. However, as marked in [19], genome
projects simply transfer digital information from DNA to computer files and that
does not mean that everything about the molecular life can easily be known. The
aim of the functional genomics science is to understand how the genome functions
by controlling the expression of genes. Mathematical tools capable to deal with large
amount of data, while reducing its complexity are required.

One of the methods used to obtain the gene expression is briefly described in [21]:
arrays of thousands of discrete DNA sequences are printed on glass microscope slides
using a robotic ’arrayer’. To compare the relative abundance of each of these gene
sequences in two DNA or RNA3 samples (for example, the total mRNA4 isolated
from two different cell populations), the two samples are first labelled using different
fluorescent dyes (say, a red dye and a green dye). They are then mixed and hybridized
with the arrayed DNA spots. After hybridization, fluorescence measurements are
made with a microscope that illuminates each DNA spot and measures fluorescence
for each dye separately; these measurements are used to determine the ratio, and in
turn the relative abundance, of the sequence of each specific gene in the two mRNA or
DNA samples. There are other microarray systems and methods that differ in many
details, but they share the essential simplicity of this experimental design. Finally,
the ratios are log-transformed (base 2) and stacked into large tables (matrices) of
expressions levels of genes (rows) under different experimental conditions (columns).
More information about the DNA microarray analysis can be found in [32].

Analysis of gene expression data aims at identify and cluster genes with similar
expression patterns (e.g. [90], [5], [77]). The problem is that missing data are common
in this kind of experiments and most of the developed clustering methods require a
full matrix of gene expression values. The missing values may be due to insufficient
resolution, image corruption, dust or scratches on the slide, or simply as a result
of the robotic methods used to create them. The corrupted spots are manually or

2DNA: Deoxyribonucleic Acid. It is a nucleic acid that contains the genetic instructions used in

the development and functioning of all known living organisms.
3RNA: Ribonucleic Acid. It is a nucleic acid consisting of many nucleotides that form a poly-

mer. RNA plays several important roles in the processes of translating information from DNA into

proteins.
4mRNA: Messenger Ribonucleic Acid. It is a molecule of RNA encoding a chemical ”blueprint”

for a protein product.
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automatically flagged and corresponding signals are considered as missing, since they
may influence wrongly the final results. Several algorithms for gene expression data
analysis require a complete data matrix. Therefore, to impute the missing entries in
the gene data matrix is a necessary pre-processing step. Furthermore, it is important
to obtain correct imputed values. Otherwise, the analysis of the complete data could
give incorrect or even contradictory conclusions.

Ignoring missing values is the simplest method to avoid working with missing data,
and it is frequently applied. In most data sets, it supposes to reduce significantly the
amount of data, and consequently, the quality of the analysis results. One possible
solution to the missing data problem is to repeat the experiment, but this is a very
expensive strategy. Other approaches consist in replacing the missing data by zeros or
by an average expression over the row. Troyanskaya et al. [116] pointed out that these
approaches do not consider the correlation structure of the data. Focusing on that
problem, they present two different methods to estimate the missing values in the data
matrix. The first one is based on the K Nearest Neighbour (KNN) and the second
one is based on the singular value decomposition (SVD). They demonstrate the better
performance of these two methods over the row average method and concretely, they
conclude that the KNN-based method is more appropiated than the SVD-based one
for recovering the missing values. In the KNN-based method, given a gene (denoted
as target gene) with missing entries, K similar genes are selected. Then, each missing
value in the target gene is estimated as the average of the corresponding entries in the
selected K genes, weighted by a similarity measure (the Euclidean distance) between
the target gene and each of the K selected genes. One drawback of this approach is
that the number of neighbours (K) must be estimated. Oba et al. [88] propose an
approach based on the Bayesian principal component analysis (BPCA). One of the
main advantages of this approach is that no parameter is needed to be estimated.
Friedland et al. [37] criticize the aforementioned iterative SVD-based approach, since
its convergence is not guaranteed. They propose a method to estimate simultaneously
all the missing entries in a gene expression matrix. That is, the estimation of one
missing entry influences the estimation of the other missing ones. They define an
optimization problem and present the fixed rank approximation algorithm (FRAA)
to solve it. In a first step, the missing entries are filled in with zeros. Then, the
solution is iteratively updated using SVD. In this case, the number of eigenvalues
is needed to be estimated. Kim et al. [76] propose an imputation method based on
the least squares formultation (LLSi). The missing values of a particular gene, which
corresponds to a row in the data matrix, are estimated as a linear combination of
values of other genes using standard least square regression. Two similarity measures
are defined in order to select the most similar genes: the L2-norm and the Pearson
correlation coefficient. As in the KNN approach, the number of similar genes must
be known. In a more recent approach, Friedland et al. [38] propose the improved
fixed rank approximation algorithm (IFRAA), which is a combination of FRAA and a
clustering algorithm. Firstly, FRAA is applied to fill in the missing values in the gene
data matrix. Then, a clustering algorithm is applied in order to group similar genes.
Finally, FRAA is applied to each of these groups of genes individually. In [101], Scheel
et al. propose to study the influence of imputation on the detection of differentially
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expressed genes from microarray data (instead of computing the nrms, defined later)
to measure the goodness of the imputed data. Furthermore, the authors propose a new
method for imputation (LinImp), which consists in fitting a simple linear model for
each channel (red and green) separately. Hu et al. [59] propose a method to improve
the results obtained with LLSi and KKN. The key point is to incorporate information
from multiple reference microarray datasets to improve missing value estimation.

This section propose to adapt the Alternation technique, introduced in Chapter 3,
to impute missing data in gene expression data matrices. In particular, given a
gene data matrix W , the product of the obtained factors A and B, are used as
imputation: Wimputed = AB. Hence, initially known data are modified and, at the
same time, missing data are recovered. This does not occur in the aforementioned
approaches proposed for DNA microarray imputation, in which initially known data
do not change. Although Alternation is not a novel technique, it has not been applied
to fill in missing entries in DNA microarray, as far as we are concerned. Other
factorization approaches have been used to study the expression levels of genes. For
instace, in [77] the non-negative matrix factorization is applied to a full gene data
matrix in order to obtain clusters of similar genes.

The Alternation aims at obtaining the best rank-r approximation of a given ma-
trix, being r smaller than the dimensions of this matrix. However, in the current
problem, the main drawback of applying the Alternation technique is that, in gen-
eral, the rank of the gene data matrix is the number of its columns. In that case,
the initially missing entries can be not properly recovered, as explained later. An
Alternation-based strategy is proposed in order to obtain, on the one hand good re-
covered missing data and, on the other hand similar values to the original ones in the
case of initially known data.

This Section is structured as follows. First, the proposed Alternation-based strat-
egy, focused on the problem of imputing missing data in DNA microarray, is pre-
sented. Then, the data sets used in the experiments are introduced. In order to show
the performance of the Alternation-based strategy, experimental results are provided.
Finally, concluding remarks are summarized.

6.3.1 Alternation-based Strategy for Filling in Missing Data
in DNA Microarrays

As detailed in Chapter 3, given an input matrix Wn×p, the Alternation technique
aims at finding the best r-rank approximation matrix to W , being r < n, p. In fact,
the goal is to find An×r and Br×p such that minimizes: ‖W − AB‖2

F . Working with
missing data, the expression to minimize is:

‖Wij − (Wimputed)ij‖2
F (6.31)

where Wimputed = AB and i and j correspond to known entries in W .

The algorithm converges rapidly if W is close to a rank-r matrix. Furthermore,
it converges to a global minimum in the complete data case and in the case of a low
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Figure 6.17: singular values of the initial matrix.

percentage of missing data [54]. With a large amount of missing entries in W , the
algorithm may fail to converge, or converges very slowly.

An important fact that should be taken into account is that matrices containing
gene expression data have, in general, the maximum rank, which is the number of
columns of Wn×p (p < n, normally). In other problems, such as SFM, the rank of W
is also the maximum due to the noise in the data. However, since many singular values
are close to zero, a real rank smaller than p can be estimated. In the current problem,
the singular values are not close to zero. An example of the singular values obtained
from a full gene data matrix of size 4489×18 is plotted in Fig. 6.17. It can be seen
that only the last singular value is negligible (its value is 0.21). This characteristic of
gene data matrices makes difficult to obtain good results with the Alternation, as it
is explained below.

The Alternation technique gives a good rank-r approximation to W , while the
number of known entries at each row/column is at least r. Otherwise, the initially
missing entries are wrongly estimated. This is due to the fact that, at each step of
the Alternation algorithm, the number of unknown entries (each row of A or column
of B) is r (see Chapter 3 for details). The number of equations to compute these
unknowns (referred to as ne from now on) is the number of known elements in the
corresponding row of Wn×p if A is computed (or corresponding column when B is
computed). If r = p (as in the studied gene data matrices), with only a few missing
entries, the number of equations is smaller than the number of unknowns (ne < r)
and the algorithm may not converge to a global minimum. Therefore, the obtained
p-rank approximation to W might not be correct. Concretely, the initially missing
entries may be quite different from the correct ones.

One possible solution would be to approximate W by a r′-rank matrix, with r′ < r.
Thus, if ne ≥ r′, the unknown entries would be well estimated. Unfortunately, if
r′ < r, the initial known entries would not be as well approximated as taking full
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rank. Hence, it is difficult to minimize the error corresponding to the estimation
of missing entries (r should be smaller than p) and, at the same time, the error
corresponding to initially known data (r should be equal to p).

In order to tackle this problem, an Alternation-based strategy is proposed. It
consists in applying the Alternation to the matrix with missing data, taking r = 1.
With this very low rank value, only one known entry per row/column of W is required
in order to obtain properly recovered missing data. However, the initially known
entries are not correctly recovered, since the rank is far from the real value (p). Next
step consists in applying the Alternation to the initial matrix again, but taking r = 2
and replacing the missing data with the corresponding recovered data in the previous
step. Hence, there are missing data only in the first step. The initially missing entries
are better estimated as r increases, since the rank gets closer to the correct value.
This process is repeated until the rank reaches the number of columns (p), in which
case the error computing the initially known entries is close to zero. The proposed
strategy is summarized below.

Alternation-based strategy : given a matrix with missing data Wn×p, two weight
matrices that contains only ones and zeros are defined: the first matrix, denoted as
M, represents the missing entries positions in W . Concretely, the ones and zeros
in M correspond to the missing and known entries in W , respectively. The second
matrix, denoted as K, represents the known entries positions in W . In this case, the
ones and zeros in K correspond to the known and missing entries in W , respectively.

Set r = 1, W0 = W and repeat the following steps until r = p:

1. Apply the Alternation technique to W0, taking the current rank r. A full matrix
is obtained with the product of the recovered factors: Wimputed = AB

2. If r < p, define:
Wr = M � Wimputed + K � W (6.32)

where � is the Hadamard product5. That is, with the first summand (M �
Wimputed), only the entries of Wimputed corresponding to missing entries in W
are selected. The rest of the entries are equal to zero. In the second summand
(K � W ), only the entries corresponding to the known entries positions in W
are selected. Thus, entries corresponding to missing data in W0 are replaced
by the imputed values in the corresponding positions and the initially known
entries do not vary. Set W0 = Wr and r = r + 1.

Otherwise, Wr = Wimputed is the complete matrix obtained with the Alternation-
based strategy.

Solution : Wr, for r = p. On the one hand, the known entries in Wr are very close
to the initially known values in W , since r = p. On the other hand, the best values

5R = P � Q ⇐⇒ rij = pijqij
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for the missing entries are obtained. The key point of this strategy is that there are
missing data only in the first step of the algorithm. Therefore, there is no problem
about the number of known entries in each row/column.

6.3.2 Data Sets

As in the SVD-based [116] and BPCA-based [88] approaches, in the Alternation tech-
nique it is assumed the existence of a covariance structure among all the genes or
samples in the data matrix. Hence, these three methods are more suitable for data
sets with strong global correlation, such as time-series data sets.

Therefore, time-series data sets are used in our experiments. Concretely, three
different data sets are considered. The first data set is the one presented in [105],
where Spellman et al. aim at creating a catalog of yeast genes. It is publicly available
at: http://cellcycle-www.stanford.edu/. The authors present results of a series of
experiments, focused on identifying all protein-encoding transcripts in the genome of
the yeast Saccharomyces cerevisiae. This data set consists of log-transformed (base
2) ratios of the intensities obtained in the hybridization process and it is also used
in [116], [88], [76], [37] and [59]. Two different groups, which give two different data
matrices, are obtained from this data set: Walpha and Welu. The alpha part consists of
6178 genes (18 samples). However, if only genes without missing data are considered,
a total of 4489 genes are selected. The elutriation part contains 6178 genes and 14
samples, although only 5766 genes do not present missing data in the experiments.

The second data set is an exploration of temporal gene expression during the
metabolic shift from fermentation to respiration in Saccharomyces cerevisiae [31]. It
is available at: http://derisilab.ucsf.edu/data/hotspots/. It is also used in [116] and
[59]. In this case, data are the ratios of the intensities and the obtained matrix
contains 6183 gens and 7 experiments.

Finally, the third data set is the one studied in [40]. Again, the genome of Saccha-
romyces cerevisiae is studied. It consists of the obtained intensities in the hybridiza-
tion process, instead of the log-transformed ratios and it is publicly available at:
http://cmgm.stanford.edu/pbrown/explore/index.html/. Three different data matri-
ces can be generated: the matrix that contains the intensities, the matrix of the ratios
of these intensities and the matrix of the log-transformed (base 2) ratios. The goal
is to study if the results depend on way the data are represented (intensities, ratios
or log-transformed ratios). These matrices consist of 6153 genes and 7 experiments.
Only the first 5000 genes are considered in the experiments, for simplicity.
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6.3.3 Experimental Results

This Section contains the experimental results. Although several approaches have
been proposed in he literature, only the most recent and remarkable ones are used
to compare with the proposed strategy. Concretely, the performance of the pro-
posed Alternation-based strategy (referred to as ALT hereinafter) is compared with
the KNN-based approach presented in [116], the BPCA [88], the LLSi [76] and the
FRAA [37]. KNN is the classic approach and it is studied in most of the papers. BPCA
and LLSimpute approaches are also studied in the literature and give, in general, good
results. Furthermore, publicly available implementations of both algorithms are pro-
vided at: http://hawaii.aist-nara.ac.jp/∼shige-o/tools/ , in the case of BPCA [88]
and at http://www.cs.umn.edu/∼hskim/tools.html , in the case of LLSi [76]. Finally,
FRAA is one of the most recent proposals and the Matlab code of the algorithm is
provided in [37].

Other approaches proposed in the literature are not tested: a) SVDimputation,
presented in [116], is not studied, since posterior approaches outperform it; b) to
implement the approach presented in [59] it is considered no necessary, since the KNN
and the LLSi performs better than [59]; c) finally, the approach proposed in [38] is
not tested since the clustering of genes is out of the scope of this work.

Although in some cases the original data matrix Woriginal has missing data, a
complete matrix Wfull is considered in order to study the goodness of the recovered
data. Missing entries are generated artificially as detailed in short. In most presented
approaches the original known data do not vary. That is, missing data are recovered,
but known data do not change. The most common measure of goodness used in DNA
is the normalized root mean squared error (nrms), which is defined as follows:

nrms = rmsmissing/
√

variance((Wfull)ij) (6.33)

where i and j correspond to the index pairs where Wij has missing data and the root
mean squared error (rmsmissing) is defined as:

rmsmissing =
‖Wfull − Wimputed‖F√

n
=

√∑
i,j |(Wfull)ij − (Wimputed)ij |2

n
(6.34)

Notice that Wfull represents the complete matrix and Wimputed represents the
filled in matrix with an imputation technique. It should be remarked that this measure
is different to the usually defined rms (e.g., equation (4.9) , in Chapter 4), in which
only the initially known entries are considered, instead of the initially missing ones.

Different percentages of missing data are considered. Concretely, the studied
missing percentages are 1%, 5%, 10%, 15% and 20%. In most approaches proposed for
missing data imputation in DNA microarrays, missing data are generated following
a random distribution (e.g., [116], [76], [37], [59]). Although most of the literature
does not take it into account, the missing data can be not at random, as pointed
out in [88] and [101]. As an example, some signals could not be distinguished from
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the background or have a too irregular form because the signal itself is too low. In
these cases the missing data structure depends on the signal intensity, which can
follow a non-random distribution. Actually, the most common situation is a mixture
of random and non-random distributions. Different proposals have been presented in
the literature, in order to study more realistic situations.

Oba et al. [88] propose a histrogram-based way of obtaining the missing data. They
study the histogram of column-wise numbers of missing entries in the original matrix.
Then, data are removed from the complete matrix (obtained by discarding the genes
with missing data) so that the histogram of the artificial missing entries is similar to
the histogram of the original missing entries. This is not easy to reproduce when the
reduced complete matrix has very small dimensions compared to the original matrix.

Scheel et al. [101] consider as missing entries the values corresponding to low
intensities. Notice that they work with intensities instead of with log-transformed
ratios. They propose to sort the signals and consider a percentage of the lowest
intensities. Then, a smaller percentage of this first set is removed randomly.

Friedland et al. [38] propose to create the missing data by taking the original
missing data positions and consider as missing entries the corresponding positions
in the full data matrix. Unfortunately, as far as we are concerned, this strategy is
only possible if the complete matrix is very large. However, even in that case, the
exact positions of the missing data do not correspond to the same positions in the
complete matrix, which has smaller dimensions. Actually, the obtained matrix has a
percentage of missing data higher than the original one.

In the current experiments, two different missing data structure are studied. On
the one hand, random missing data are considered. On the other hand, a combination
of random missing and line-missing, which is common in real situations, is proposed.
This concrete structure of missing data is referred to as non-random missing from
now on. In real data, it is common to find a gene that has missing entries nearly
in all the experiments. For instance, when a gene presents a missing entry due to
low intensities, the same gene presents several missing entries, given rise to a nearly
empty row in the data matrix. This is what we call line-missing. In Fig. 6.18 (left),
a real example of a missing data matrix is shown. Missing data are represented
as white entries. Notice that there are genes (rows in the matrix) that have many
missing entries. Fig. 6.18 (middle) and Fig. 6.18 (right) show two examples of gene
data matrices where a 10% of missing has been obtained following the random and
non-random procedures mentioned above.

Random Missing

The results corresponding to the first data set are shown in Fig. 6.19 for the ma-
trix Walpha and Fig. 6.20 for the matrix Welu. It can be seen that, in general, the
smallest error is obtained with the BPCA approach. The LLSi gives similar nrms
values to the ones given by BPCA, even smaller when the percentage of missing data
is below 5%. However, when the LLSi is applied, a problem should be faced out:
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Figure 6.18: (left) real missing data in a gene data matrix; (middle) gene data
matrix with 10% of random missing data; (right) gene data matrix with 10% of
non-random missing data.

the number of similar genes used (K) is needed to be estimated. The same problem
is found in the KNN approach: the number of neighbours (K) used to estimate the
missing entries is needed to be known. Finally, with the FRAA approach, a differ-
ent parameter must be estimated: the number of significant eigenvalues (L) in the
gene data matrix. The nrms values obtained with ALT are similar to the KNN, a
little smaller with percentages of missing data below 15%. The advantage is that any
parameter has to be estimated with ALT.

It should be remarked that several possible K (and analogous for L) values are
considered in the experiments and the one for which the nrms is smaller is plot-
ted. However, in this parameter selection process, the unknown data values are
used. Notice that this can be done, because the missing is artificially generated.
In real situations, these missing values are really unknown and the parameters should
be fixed beforehand. As illustration, the nrms values obtained considering differ-
ent parameter values and with a percentage of missing data of 5%, are plotted in
Fig. 6.19 (right) and Fig. 6.20 (right). The results of the approaches that do not
depend on any parameter (BPCA and ALT) are shown on the y-axis (a similar plot
is presented in [76]). Notice that although LLSi outperforms the proposed technique
(see Fig. 6.19 (left) and Fig. 6.20 (left)) it is quite sensitive to the user defined para-
meter (K) (see Fig. 6.19 (right) and Fig. 6.20 (right)). In the KNN case, the results
are not as sensitive to the K value as in the LLSi, as it can be seen in Fig. 6.19 (right)
and Fig. 6.20 (right). The highest nrms is obtained with the FRAA approach, in
both examples. As it can be appreciated in Fig. 6.19 (right) and Fig. 6.20 (right),
the smallest nrms is obtained when L = 5. The nrms becomes higher as the L value
increases.

Fig. 6.21 shows the nrms obtained with the second data set. Recall that in this
case the data matrix consists of ratios of intensities obtained in the hybridization
process. The LLSi gives in general the smallest nrms, although similar results are
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Figure 6.19: Walpha; (left) nrms for different percentages of random missing data;
(right) nrms for different tested parameters: K in the case of KNN and LLSi, and
L in the case of FRAA. The percentage of random missing data is 5%.
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Figure 6.20: Welu; (left) nrms for different percentages of random missing data;
(right) nrms for different tested parameters: K in the case of KNN and LLSi, and
L in the case of FRAA. The percentage of random missing data is 5%.
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Figure 6.21: second data set; nrms for different percentages of random missing
data.

obtained with BPCA and ALT. This is due to the fact that, as pointed out in [76], this
approach is the most appropriated working with only a few experiments (number of
columns in the gene data matrix). In this case, there are only 7 different experiments.
The nrms obtained with the KNN grows as the percentage of missing data increases.
In particular, the highest nrms is obtained with the FRAA, while the percentage of
missing data is below 15%, and with the KNN with more missing data.

The nrms values obtained with the third data set are plotted in Fig. 6.22 and
Fig. 6.23. As in the previous example, the LLSi gives in general the smallest nrms.
Again, the gene data matrix has only 7 experiments. Fig. 6.22 shows the obtained
nrms in the case of the data matrix containing the intensities. The LLSi, BPCA
and ALT give similar nrms values, while the FRAA gives higher nrms values. As
in the previous example, the nrms values in the KNN case grows remarkably as the
percentage of missing data increases.

The results obtained considering a matrix of ratios are plotted in Fig. 6.23 (left).
On the other hand, Fig. 6.23 (right) shows the obtained results when the log-transfor-
med ratios are considered. The nrms values obtained with the ALT are a little higher
than those ones obtained with the BPCA and LLSi. In both cases, the BPCA gives
smaller nrms than the LLSi when the percentage of missing data is higher than 10%.
Again, the nrms obtained with the KNN grows as the percentage of missing data
increases. The FRAA gives, in general, high nrms values, but it is not as sensitive
as the KNN to the percentage of missing data.

It should be noticed that the nrms values increase, in general with any method,
with the matrix of ratios and also with the log-transformed ratios matrix. This is
due to the fact that the matrix containing the intensities has a high variance, giving
a small nrms. On the contrary, the variance of the matrix of ratios and the one of
the log-transformed ratios is very small (smaller than 1) and the resulting nrms is
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Figure 6.22: third data set, matrix of intensities; nrms for different percentages of
random missing data.
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Figure 6.23: third data set, nrms for different percentages of random missing data;
(left) matrix of ratios; (right) matrix of log-transformed ratios.

higher. Notice that, in the case of ALT, this increase is more marked.

Non-random Missing

The results obtained with the first data set are plotted in Fig. 6.24. Notice that,
as in the random missing case, several possible K (and analogous for L) values are
considered in the experiments and the one for which the nrms is smaller is plotted.
The BPCA gives the smallest nrms, for both Walpha (Fig. 6.24 (left)) and Welu

(Fig. 6.24 (right)). Although the nrms is higher than in the random missing case
for all the methods, the increase is more significant in ALT and, even more in the
KNN approach. In fact, in this last case, the KNN gives higher nrms than the
FRAA approach. Hence, these two approaches are more sensitive to the distribution
of missing data than the other approaches.
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Figure 6.24: (left) Walpha; nrms for different percentages of non-random missing
data; (right) Welu; nrms for different percentages of non-random missing data.
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Figure 6.25: second data set; nrms for different percentages of non-random missing
data.

Fig. 6.25 shows the nrms obtained with the second data set. The obtained nrms
values are similar to the ones obtained with the random missing data case. As be-
fore, the smallest error is obtained with the LLSi and similar results are obtained
with BPCA and ALT. The nrms values obtained with the KNN are very high (even
selecting the K value that gives the smallest nrms).

The obtained nrms in the third data set are plotted in Fig. 6.26 and Fig. 6.27.
In the particular case of the matrix of intensities (see Fig. 6.26), the nrms values are
similar to the ones obtained with a random missing data distribution. The smallest
nrms is obtained with the LLSi. However, similar results are obtained with the BPCA
and the ALT. Again, the highest error is obtained with the KNN.

Fig. 6.27 (left) shows the results obtained in the case of the matrix of ratios.
The nrms values are again similar to the ones obtained in the random missing data
case. When the matrix of log-transformed ratios is considered (Fig. 6.27 (right)), the
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Figure 6.26: third data set, matrix of intensities; nrms for different percentages of
non-random missing data.
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Figure 6.27: third data set, nrms for different percentages of non-random missing
data; (left) matrix of ratios; (right) matrix of log-transformed ratios.

obtained nrms values are in general higher than the ones obtained in the random
missing data case.

As in the random missing case, the nrms values obtained with the matrices of
ratios and log-transformed ratios are higher than the obtained with the intensity
matrix. Again, the difference among the nrms values corresponding to different
approaches is more significant in the case of the ALT.

6.3.4 Conclusions

The use of an Alternation-based strategy is proposed for imputing missing entries in
DNA microarray data. Although the Alternation is not a novel approach, it has not
been used to tackle this problem, as far as we are concerned. Working with missing
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data, it is difficult to obtain results that minimize the error corresponding to the
initially known entries and, at the same time, the error corresponding to the initially
missing ones, since the gene data matrices are in general of full rank.

Comparatives of the performance of the proposed Alternation-based strategy and
other methods are given. It is shown that, in most cases, other existing methods,
such as BPCA and LLSi, outperforms the Alternation-based strategy. Concretely,
LLSi performs better than the BPCA when the number of experiments is very small.
However, with the LLSi, it is necessary to estimate the number of similar genes used
to complete the missing entries, K. Furthermore, LLSi is quite sensitive to K selec-
tion. If the number of experiments is not small, the BPCA-based approach performs
better than the other approaches. Furthermore, it is not necessary to estimate any
parameter. On the other hand, the FRAA gives the highest errors in most of the
experiments. In addition, a parameter (number of significant eigenvalues) must be
known. The KNN gives errors higher than the BPCA, LLSi, and, working with only
a few experiments, also higher than the FRAA. Besides, the number of neighbours K
needs to be estimated. One advantage of this approach is that it is not as sensitive to
the number of neighbors as the LLSi. Furthermore, the error value does not depends
so much on the percentage of missing data.

The Alternation-based strategy, gives in general better results than the FRAA
and the KNN, but not as good results as the BPCA and the LLSi. One advantage of
the Alternation-based strategy, is that it is not necessary to estimate any parameter
(not even the rank of the data matrix). Another advantage of the Alternation-based
approach with respect to the other proposed techniques is that it gives two factors
that contain the eigen-genes and the eigen-experiments. Other approaches aim to
obtain this decomposition by applying the SVD and use it to cluster similar genes or
experiments. This problem has not been tackled in this work.

Unfortunately, in this current application, each experiment is independent from
the others and the matrix has a full rank. One possible strategy to obtain a non-full
rank matrix could be to enlarge the matrix with linearly dependent columns. For
instance, repeating the experiments would give dependent columns and the missing
entries would probably be in other rows. The problem is that this solution would be a
very expensive task. Furthermore, it would have no sense, since the results obtained
with other approaches, such as BPCA, are acceptable. Therefore, as a conclusion, we
think that the Alternation is a method more appropriated for problems with smaller
dimension.

The iterative multiresolution scheme proposed in Chapter 4 is not used. The main
reason is that it is an approach useful when there is a high percentage of missing data.
In gene data matrices, the percentage of missing data is in general of 20% at most.
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6.4 The Alternation Technique Applied to Recom-
mender Systems

It is well known that the amount of information available on the Web increases con-
stantly. Due to that fact, sometimes it becomes difficult to search for interesting
information, while discarding useless content. Therefore, there is a clear demand for
methods that give information with respect to users’s preferences. At the same time,
the number of queries is also increasing. For instance, information about a wide variety
of preferences is available. This information can be used to provide recommendations
to new users. This is the goal of recommender systems: they aim at helping users to
find items they would probably like or dislike using only a few given preferences. That
is, users give rates only to some items and the system is capable of predicting their
punctuation to the rest of items (this is called prediction task). Furthermore, it can
also recommend them the products they would probably like most (recommendation
task). These two powerful tools are widely used on e-commerce Web sites. Since their
introduction in 1990s, the recommender systems have been used to filter information
on the Web and to provide recommendations about books, CDs, movies, news, elec-
tronics, financial services, travel, etc. One of the most popular recommender system
is the one used at: http://www.amazon.com. The customer rates some books and
the system suggests him other books using information from other customers. An-
other recommender system can be found at: http://www.cdnow.com. In this case,
the recommended products are CDs instead of books. One different recommender
system is used at: http://www.everyonesacritic.net, where users give their opinion
about movies and the system makes recommendations from people who share similar
tastes. One last example (www.gnomoradio.org) consists of a music recommender
system. The user can rate the music and the program tries to build a listening profile
based on the user’s ratings. In addition, it recommends music that other users with
similar profiles like. In fact, in most cases, the main goal of the recommender systems
is to discover which products will like a customer at most, in order to increase the
sales and therefore, the benefits. Of course this helps also the customer, who will find,
in theory, something useful to him.

In recommender systems, data are stored into a large table of users (also denoted as
customers) and items (or products). Actually, the information is stored into a matrix
of data, whose rows and columns correspond to each user and item respectively, and
whose entries correspond to the rates that customers give to items. In real problems,
there is a wide set of both customers and items. Hence it is necessary to deal with
large matrices. Furthermore, since each user only rates a subset of the large set of
items, most entries of the data matrix are empty and the matrix tends to be very
sparse.

One technique widely used in recommender systems is the collaborative filtering
(e.g., [94], [135], [42]), which is usually based on finding neighbourhoods of similar
customers that are obtained by computing the correlation between their opinions.
The similarity function is different in each approach. Although this technique is
useful in many domains, it has a high computational cost and has limited prediction
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when dealing with very sparse data, as pointed out in [99] and [15]. In fact, Billsus
et al. [11] identify two important limitations in the collaborative filtering techniques.
The first one is that the correlation between two users rates can only be computed on
items that both users have rated. Since, in general, there are thousands of items to
rate, the number of overlapped items is small in most cases and the similarity measure
is based on the correlation of only a few items. The second problem is that with this
similarity measure, two users can only be similar if there is overlap among the rated
items. As mentioned above, when the number of items to rate is large, it is difficult
to obtain overlap among the rates.

Billsus et al. [11] present collaborative filtering in a machine learning framework
to tackle the aforementioned limitations. Their proposed approach is based on the
Singular Value Decomposition (SVD) [43]. Other recommender systems used the
SVD (e.g., [92], [10], [99]) to reduce the data representation and give predictions using
linear regression. The main advantage of the SVD is that, not only the information
of correlated customers are used, but also the obtained from users whose ratings are
not correlated, or who have not even rated anything in common. The SVD allows
to project user ratings and rated items into a lower dimensional space. Thus, some
users become predictors for other users’s preferences even without any overlap of
rated items. Unfortunately, computing the SVD of a large matrix requires a high
computational cost. Furthermore, all the data must be known. Therefore, in order to
be able to apply SVD, the missing data must be filled in. Some approaches add zeros
in the missing entries, while others fill them with the corresponding row or column
average (e.g., [99]). Then, these previously filled in missing entries are actualized with
the SVD.

A different approach, based also in the SVD, is proposed by Brand in [15]. Actu-
ally, it is an imputation method developed in [14] to predict the position of occluded
features in computer vision problems. In [15], it is used in data mining tasks. Con-
cretely, Brand presents a method for adding data to a thin SVD6 data model, which
is significantly quicker and economical than full SVD. Instead of computing the SVD
of a large matrix, he develops an exact rank-1 update which provides a linear-time
construction of the whole SVD. The approach begins by sorting out the rows and
columns of the data matrix so that a high density of data is accumulated in one cor-
ner. Then this initial full submatrix grows out of this corner by sequential updating
with partial rows and columns. An imputation update that maximizes the probability
of correct generalization is used to fill in the missing entries. Furthermore, they give
a very interesting interpretation of the factors obtained with the SVD. In particular,
these obtained factors are the r dimensional representations of the customers and the
items, respectively. These two representations can be very useful for grouping cus-
tomers who like/dislike the same items, or grouping factors by the sorts of customers
who like them, etc. Many interesting applications for marketing could be derived
from this subspaces’ interpretation. One disadvantage of this technique is that, as
pointed out in [54], the result depends on how the data are sorted.

6Given a matrix Wm×n, being n � m, the thin SVD consists in computing only the n column

vectors of U corresponding to the row vectors of V t. That is: Wm×n = Um×nΣn×nV t
n×n. The

remaining columns of U are not computed
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In addition to the aforementioned limitations, one problem of the collaborative
filtering and most recommender systems in general, is that they do not model properly
a human-to-human interaction, where the user and the adviser interact. Focusing
on this problem, conversational recommender system have been recently proposed
(e.g., [35], [85]). These systems provide dialogues supporting the customer in the
selection process. Thus, by adding user feedbacks, the system can make a better
idea of the type of product the user may be interested in. This kind of recommender
systems is out of scope of this work.

This Section presents an approach that, as the SVD-based approaches, uses the
information from all the users, not only from the correlated ones. Notice that the
prediction task in recommender systems can be seen as a way of filling in the missing
entries in the data matrix. As in Section 6.3, an adaptation of Alternation technique
is proposed as imputation method. In this case, it is adapted to the problem of
recommender systems. Hence, missing rates are predicted and the dimension of the
data is reduced. One of the advantages of the Alternation technique over the SVD
is that, since it can deal with missing data, it is not necessary to fill in the missing
rates with zeros or averages before applying it. On the other hand, its computational
cost is not as high as in the case of the SVD. The proposed approach is focused on
the prediction (not recommendation) and its performance is compared with one of
the method proposed in [99].

This Section is structured as follows. First of all, the approach proposed in [99]
is briefly introduced. Then, the proposed adaptation of the Alternation technique to
the problem of prediction task in recommender systems is presented. Data sets and
experimental results are provided. Finally, concluding remarks are summarized.

6.4.1 A SVD-based Approach: Sarwar et al.’s Proposal

Since the proposed adaptation of Alternation technique to recommender systems is
compared later to the Sarwar et al.’s [99] approach, this Section presents briefly their
proposal.

For the shake of simplicity, it will be referred to as Sarwar’s approach hereinafter.
As mentioned above, this approach is based on the SVD. Hence, first of all, given a
matrix of rates W that contains missing data, its missing entries must be filled in.

Sarwar et al. [99] propose to fill in the missing data with the corresponding column
average. Then, the entries are normalized by subtracting the corresponding row
average. Once the data matrix W has not missing entries, the SVD is computed, given
the decomposition: W = UΣV . The best rank-r approximation to W is obtained by
keeping only the r largest singular values of S, giving Σr. Accordingly, the dimensions
of U and V are also reduced and the matrix: Wr = UrΣrV

t
r is the closest rank-r matrix

to W .

Finally, the products of the factors UrΣ
1/2
r and Σ

1/2
r V t

r are used to obtain the
predictions. Concretely, the predicted rate W (i, j) of the customer i to the product j
is obtained with the following expression:
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W (i, j) = wj + (UrΣ
1/2
r )(i)(Σ1/2

r V t
r )(j) (6.35)

where wj is the jth-column average.

One disadvantage of this approach is that the computational cost is very high. Due
to that fact, with concrete data sets, the number of customers and products must be
reduced. In this thesis, this approach is implemented by using the aforementioned
thin SVD, in order to reduce its computational cost.

6.4.2 Adaptation of the Alternation Technique to Recommender
Sytems

This Section proposes a variant of the Alternation technique, adapted to the prediction
task in the recommender systems.

One fact that should be highlighted is that the distribution of missing data in this
particular problem is random, which in general allows to obtain good results with the
Alternation, even with high percentages of missing data.

Given a matrix of rates Wc×p, the goal of the Alternation technique is to find the
factors Ac×r and Br×p such that minimizes the expression ‖Wc×p − Ac×rBr×p‖2

F ,
where r is the rank of the data matrix. The product AB is the best rank-r approx-
imation of the matrix W in the sense of the Frobenius norm [43]. Although the aim
is the same as the one of the SVD, the Alternation allows to deal with missing data
and additionally, it has a far smaller computational cost. As in the case of the SVD,
A and B are r dimensional representations of customers and products, respectively.

Recall that the Alternation technique is a two-step algorithm, which starts with
one random factor (A0 or B0) and compute one factor at a time, until the product of
the factors AB converge to W . A filled matrix Wimputed is obtained with the product
of these factors: Wimputed = AB. Focusing on the recommender systems, it can be
used the fact that the entries in W take values in a known interval: [m,M ], where m
and M are the minimum and the maximum rate values, respectively. The idea is to
enforce that the range of values of the entries in Wimputed lies in this known interval.
This is tackled later.

First of all, at each step of the Alternation algorithm, the rows of A (B respec-
tively) are normalized. The proposed variant of the Alternation is summarized in the
following steps:

Algorithm: Given a data matrix Wc×p, which contains the rates given by different
customers:

1. Take a random matrix A0, normalize its rows.
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2. Compute Bk from Ak−1:

Bk = (At
k−1Ak−1)

−1At
k−1W (6.36)

3. Normalize the rows of Bk.

4. Compute Ak from Bk−1:

Ak = WBt
k(BkBt

k)−1 (6.37)

5. Normalize the rows of Ak.

6. Repeat the steps 2-5 until the product Wimputed = AkBk converges to W .

Solution: Wimpute contains the prediction rates values.

Notice that the classical Alternation algorithm consists in applying repeatedly the
steps 2 and 4 from above until the convergence is achieved.

Hence, with the normalization steps added to the algorithm, each entry of the
imputed matrix Wimputed(i, j) is the scalar product between the ith–unitary row of
A and the jth–unitary column of B. That is:

Wimputed(i, j) = ai · bj = cos(αij) (6.38)

where ai and bj are the ith–unitary row of A and jth–unitary column of B, respec-
tively and αij could be interpreted as the angle between them (if they are considered
as vectors).

Therefore, if no restrictions are added, the entries of Wimputed would take values
in the interval [−1, 1]. However, as mentioned above, the aim is to achieve that the
values in Wimputed lie in the interval [m,M ]. Hence, the values of the entries in
Wimputed should be transformed. One possibility is to transform them directly by
using a linear transformation. The problem is that the cosine function is not linear.
Instead of the cosine, the angles are studied. This means that the arccosine must
be applied to obtain the angles. Therefore, an interval where the cosine is invertible
should be defined: the initial punctuation ratings must be transformed in order to
take values in the interval [0, 1] instead of [−1, 1].

In addition, and in order to weight equally all the possible values, instead of
considering values in [m,M ], the interval [m − 0.5,M + 0.5] is taken (otherwise, the
values m and M are not considered as the rest of values).

The following steps summarize the transformation that gives the initial values
from the interval [m,M ] to [0, 1]:

1. W̃ = (W−m)
∆ , where ∆ = M − m, W̃ (i, j) ∈ [0, 1]
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2. W̃ = πW̃ , W̃ (i, j) ∈ [0, π]

3. W̃ = cos(W̃ ), W̃ (i, j) ∈ [0, 1]

The Alternation technique is applied to the transformed matrix W̃ and a filled
matrix of prediction rates W̃imputed is obtained. Finally, the above transformations
must be undone:

Wimputed =
arccos(W̃imputed)

π
∆ + m (6.39)

Hence, the values in Wimputed lie in [m,M ], as the values in the initial missing
data matrix W . Notice that the arccosine can be applied because it is invertible in
the interval [0, π].

6.4.3 The r Selection

The rank used to obtain the best predicted rates depends on the approach used in
the prediction task.

Unfortunately, the rank of the matrix is not known a priori and it can not be
directly computed, when working with missing data. Hence, the problem of estimating
the rank of a missing data matrix W should be faced out. It is shown in Chapter 4 that
in the single object case in the SFM problem, the rank of the matrix of trajectories
is at most 4. Recall that it is due to the dimensions and the nature of the factors
obtained in the decomposition: the Motion and Shape matrices, both of rank 4 at
most, are recovered. In the particular problem of recommender systems, the obtained
factors have not a similar interpretation.

Sarwar et al. [99] point out that it is important to choose the optimal r in order
to obtain good predicted values. They search for a r-value large enough to capture
all the important information in the matrix, while small enough to avoid overfitting
errors. However, the results do not vary so much considering different rank values.

In the incremental SVD presented by Brand [15], it is proposed to use the rank
value as a measure of complexity of the model. The objective is to maximize the
probability of correct generalization, while minimizing the complexity of the model.
Furthermore, Brand points out that users ratings data have poor repeatability from
day to day. Therefore, a good low-rank approximation of the data has higher prob-
ability of generalization than a medium-rank model that perfectly reconstructs the
data. His experiments show that the incremental SVD, with rank 4 or 5, predicts
the missing rates better than matrices with higher rank. Brand points out that the
higher the singular values are, the more constrained the imputation is by previous
inputs, and therefore, the better the estimated SVD. With only a few rated items,
the SVD has small singular values. In general, in those cases, a smaller rank will give
better predicted rates.
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It is shown in Chapter 5 that, if W has rank r and the Alternation technique is used
to approximate it by a rank r̃ matrix, being r̃ > r, noise is added to the data during
the process, in order to achieve a higher rank matrix. Consequently, the missing
entries are wrongly filled in. On the contrary, if the matrix is approximated by a
rank-r̃ matrix, with r̃ < r, information is lost during the process. The missing entries
are again wrongly filled in. Hence, the goodness of the predicted values obtained with
the Alternation depends on the rank value used. In Section 6.4.5, it will be shown
that using the proposed adaptation of the Alternation for recommender systems, the
best predicted rates are obtained, in general, for r = 4 or r = 5, as in [15]. In extreme
cases, with large amount of missing data, r = 3 or r = 2 are enough.

Having in mind the importance of a proper rank selection, our experimental results
and comparisons have been performed considering a range of different rank values.
The error considering each rank value is computed. Finally, the smallest rank for
which a minimum error is obtained is selected. Actually, a similar procedure is carried
out in the aforementioned approaches. The case r = 1 is not considered, for any
approach, since it makes no sense to project the data onto a 1-dimensional subspace.

6.4.4 Data Sets

Data sets used in the experiments are introduced in this Section. Concretely, three
different public data sets are considered.

The first data set is the one provide by the MovieLens recommender system
(http://www.movielens.umn.edu), which is a Web-based research recommender sys-
tem. One of the data sets they give consists of 100,000 ratings (discrete values from
1 up to 5) from 943 users and 1,682 movies. A user-movie matrix W , formed by
943 rows and 1,682 columns, is constructed. Each entry W (i, j) represents the rating
(from 1 up to 5) of the ith-user on the jth-movie. This data set is also used in [99] and
[15]. Since the goal is to study the goodness of the obtained predicted values, some
entries are randomly removed and used to study their recovered values. These entries
form the test data set. The rest of the entries used to recover the data are the train
data set. Concretely, five different train and test data sets, split into 80,000 train and
20,000 test cases, are also given at: http://www.movielens.umn.edu. The initial data
matrix has 93.69% of missing data, while using any train data set, a matrix of 94.95%
of missing data is obtained.

The second data set is the one obtained from BookCrossing, a service where book
lovers exchange books all around the world and share their experiences with oth-
ers (http://www.bookcrossing.com). Ziegler et al. [135] collect data from 278,858
members of BookCrossing, referring to 271,379 different books. A total of 1,157,112
rates are provided. These rates take implicit (0) and explicit (from 1 up to 10) dis-
crete values. The data set used in [135] is available at: http://www.informatik.uni-
freiburg.de/∼cziegler. Ziegler at al. pointed out that in many recommender systems,
the suggested items are similar to the ones rated by the user. For instance, in some
cases, the obtained list is very similar respect to author, genre or topic (if the items
are books). This kind of lists are not very useful to the users, since they do not
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give new information to them. Ziegler et al. [135] propose the topic diversification in
order to increase the diversity of a top-N list recommended products. The idea is to
study the user’s extent of interest in specific topics. It is proposed a new intra-list
similarity metric, which measure the diversity in the given recommended list. If all
available data is used, the obtained data matrix is extremely sparse (concretely, it
has a percentage of missing data of about 99.9968%). In our experiments, a smaller
matrix with a higher density of known data, is considered. In particular, it is required
that each user rates a minimum of books. At the same time, only the books that have
been rated by a minimum of users are considered. Different minimum values will be
considered in the experiments, as presented in Section 6.4.5.

Finally, the last data set used in the experiments is obtained from Jester, an online
joke recommender system: http://eigentaste.berkeley.edu. The complete data set is
publicly available at: http://www.ieor.berkeley.edu/∼goldberg/jester-data/ . Con-
cretely, 4.1 million continuous rating (from -10 up to 10) of 100 jokes from 73,421
users are provided. In this case, different users (rows) are selected randomly, given a
matrix with smaller dimensions. The data set is presented in [42], where Goldberg et
al. present a collaborative filtering algorithm based on the principal component analy-
sis (PCA) to obtain the predictions in the Jester recommender system. In particular,
the authors propose to project the data into the eigenplane with the PCA. Then,
the projected data are clustered by using a recursive rectangular clustering. When a
new user ask for recommendations, first, the rates the user gives are projected onto
the eigen plane. Then, the representative cluster of the user is found. Finally, the
recommendations are computed from the rates collected in the cluster.

6.4.5 Experimental Results

As mentioned above, this work is focused on the prediction task in recommender
systems. The performance of our approach is compared with the one of the method
presented in [99]. For the comparison, the Mean Absolute Error (MAE ) is used as a
measure of goodness of the recovered values. This is the measure of goodness used in
most proposed approaches for recommender systems and it is defined as follows:

MAE =
1

N

∑

i,j

|Pij − Wij | (6.40)

where i, j correspond to the indexes of the artificially removed entries in W (test
data set), N is the number of these removed entries and Pij is the obtained predicted
value for the entry Wij .

Due to the different nature of the data in each data set, different experiments are
carried out with each one and the obtained results are presented separately in every
data set. For instance, the percentage of available data and the size o the matrices are
different in each data set. Another characteristic that should be taken into account
is that the rates can take discrete or continuous values.



164 APPLICATIONS

MovieLens Data Sets

In this data set, rates take integer values from 1 up to 5 and the percentage of missing
data is about 94.05%. With such amount of missing data, experiments considering
different percentages of missing data would not give significant conclusions. Five
different train/test sets are used in the experiments and the mean of all the train/test
sets are given.

Testing different rank values

Different r-dimension values (equivalently, r-rank values) are tested (from 2 up to
20) and the one for which the MAE is minimum is chosen.

In Fig. 6.28, the mean of the obtained results in the five test/train data sets, for
each rank value, is plotted. The minimum error (MAE ) obtained with the proposed
approach (denoted as ALT in the plots) is smaller than the one obtained with the
approach proposed in [99] (denoted as Sarwar’s approach and as SVD in the plots),
as it can be seen in Fig. 6.28 (top-left). Concretely, with the Alternation-adapted
approach, the smallest MAE value is obtained in the rank-4 case and its value is
0.7703. With Sarwar’s approach, the minimum error (MAE = 0.7772) is obtained
in the rank-16 case. The results presented in [99] are a little different: the obtained
MAE is about 0.7400 for the rank-14 case. This difference is possibly due to different
test/train splits. Notice that, in both approaches, a MAE with this value means an
error of about ± 1 in the prediction task. As pointed out in [15], this is very accurate,
since difference may reach ± 2 values if the user is asked in different days.

From our results, it can be concluded that the data space can be reduced to a 4-
dimensional subspace, as it is also concluded in [15], where this data set is also studied.
Unfortunately, open source of that algorithm is not available for a fair comparison.
Sarwar et al. [99], found that a 14-dimensional subspace is needed in order to capture
all the variance in the data. In fact, in their approach, the MAE does not change
much considering different dimensions, as it is shown in Fig. 6.28 (top-left).

The standard deviation σ (STD) of the error is also computed (Fig. 6.28 (top-
right)). With our approach and for the rank-4 case σ = 0.9796, while with Sarwar’s
approach σ = 0.9858, for the rank-16 case.

The computational cost for both approaches is depicted in Fig. 6.28 (bottom-left).
Our method is clearly faster, for all the tested rank values.

Although the initially known values will not be modified, since only the predicted
values are required, in Fig. 6.28 (bottom-right), and only as an illustration, it is shown
the obtained rms error computed by taking the train data set. That is, by considering
only the initially known data. Using our proposed approach, the rms takes values
below 0.5, while the rank value is higher than 2. Hence, the initially known rates
would not be changed with our proposed technique if the results would be rounded
to the nearest integer. In the case of Sarwar’s approach, the rms takes values higher
than 0.8 for any rank value. In this case, the rates would be modified if the results
would be rounded to the nearest integer.
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Figure 6.28: performance study, testing different r values.

Imposing a minimum of known entries in rows/columns

Although other approaches do not take it into account, it makes sense to impose
a minimum of known elements in each row/column of the data matrix. In this second
experiment, a minimum number of movies rated by each customer and also a minimum
number of customers that rate each movie are required.

A study of the obtained results imposing a different number of minimum known
entries in each row/column (n hereinafter) is presented in Fig. 6.29. The previous
experiment corresponds to the n = 0 case. For every n, different rank values are con-
sidered and the one for which the MAE is minimum is plotted. In particular, the rank
that gives the minimum MAE is in general 4 or 5 with our approach, while it takes
different values (higher than 5) in the case of Sarwar’s approach (Fig. 6.29 (bottom-
left)).

For all studied parameters, results are better as n increases. This is due to the
fact that, as n increases, both the size of the studied data matrix and the percentage
of missing data decrease.

It can be seen in Fig. 6.29 (top-left), that the MAE decreases as n increases for
both approaches and it is smaller with our approach. Concretely, the plot corresponds
to the rank value that gives the minimum MAE. Fig. 6.29 (top-right) shows that the
STD value decreases as n increases for both approaches. It takes smaller values with
the Sarwar’s approach, in general.
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Figure 6.29: performance study, considering different n values (minimum known
elements per row and column).

The computational cost of both approaches is shown in Fig. 6.29 (bottom-right).
Notice that it is always smaller with our approach and it decreases as n increases in
both approaches.

Rounding results

Finally, and specially for applications with integer rates values, the obtained pre-
dictions could be rounded. In this case, rounding the values obtained in Wimputed,
they take discrete values {1, · · · , 5}.

The obtained results, which are analogous to the ones of the previous experiment
(plotted in Fig. 6.29), are showed in Fig. 6.30. With our approach, the minimum
MAE is achieved again in the case of rank-4 as before and its value is 0.7390. With
Sarwar’s approach, the minimum is obtained for the rank-17 case and its value is
0.7458.

BookCrossing Data Set

The matrix obtained with this data set is very sparse. Concretely, the matrix has
a percentage of missing data of about 99.9968%. In order to obtain a matrix with
more density of data, the users that have rated less than 20 books are discarded,
while at the same time, only the books that have been rated by at least 200 users
are considered. Since books and users are discarded at the same time, the above
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Figure 6.30: performance study by rounding the obtained predictions, case n = 0.

conditions do not means that every row and column have more than 20 and 200 known
entries, respectively. In fact, with this two conditions, the number of considered users
(rows) and books (columns) are 17,197 and 193, respectively and the percentage of
missing data is about 98.5094%. Again, 5 different test/train data sets are generated.
Concretely, the test data set contains 0.4906% of known data, while the train data
set only 1% of known data.

Fig. 6.31 (left) shows the obtained MAE values, considering different rank values.
It can be seen that the minimum error is obtained with the Alternation, for r = 2.
Concretely, MAE = 3.5811. With Sarwar’s approach, the minimum error is also
achieved for r = 2 and MAE = 3.7535. With only a percentage of 1% of known data,
a 2-rank matrix predicts better the missing rates than a matrix with a higher rank.

Notice that the error in this case is larger than in the experiments with the Movie-
Lens data set. However, since the ratings lie in different ranges, another measurement
should be defined. Goldberg et al. [42] propose to use the Normalized Mean Absolute
Error (NMAE) in order to compare errors obtained from different data sets. The
NMAE is defined as:

NMAE =
MAE

M − m
(6.41)

where M and m are the maximum and minimum value in the range of rates, re-
spectively. Using this new measure of error, the results obtained with the proposed
approach and both data sets can be compared: in the case of the MovieLens data set,
MAE = 0.7704, which gives NMAE = 0.1926, while in the case of BookCrossing
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Figure 6.31: obtained MAE considering different rank values; (left) the data matrix
has 98.5094% of missing data; (right) the data matrix has 99.0465% of missing data.

data set, the MAE obtained is 3.5811, which gives NMAE = 0.3581. Effectively, the
error with this second data set is higher than with the MovieLens’ one. Recall that
with this second data set, the percentage of missing data is higher.

In order to test different data matrices, a similar experiment is carried out, requir-
ing a smaller number of rates per book. Concretely, books from the original matrix
that have been rated by less than 150 users are discarded. With these two conditions,
the number of considered users and books are 21,026 and 354, respectively and the
percentage of missing data is about 99.0465%. Hence, the obtained matrix has larger
dimensions and more missing data. Concretely, test data set contains 0.1535% of
data, while the train data set contains only 0.8% of data.

The obtained MAE values in this case are plotted in Fig. 6.31 (right). Notice that
the minimum MAE is obtained with the Alternation, for r = 2. Its value is 3.4051.
With the Sarwar’s approach, the MAE = 3.7215 and it is obtained for r = 12.
However, similar results are obtained for any rank value.

Jester Data Sets

The rates in this data set take continuous values from -10 up to 10. The obtained
matrix contains the rates given by 73,421 users to 100 jokes and the percentage of
known data is about 48%.

Testing different percentages of missing data

Different percentages of missing data are generated by randomly removing data
(concretely, 60%, 70%, 80% and 90%). The removed entries form the test data set,
while the rest of the data form the train data set. Again, 5 different train/test data
sets are considered at each experiment. Only 18,000 users from the total of 73,421
are randomly selected for the experiments, as in [42].

Fig. 6.32 shows the error (MAE ) value obtained considering different percentages
of missing data and different rank values (from 2 up to 20). It can be seen that in
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the case of Sarwar’s approach, the obtained MAE is quite similar for any rank value.
Concretely, the minimum MAE is achieved with r = 14 and r = 12, with 60% and
70% of missing data. With percentages of missing data of about 80% and 90%, the
minimum MAE is obtained with r = 3 and r = 2, respectively. In the case of the
Alternation, the MAE value does depend on the rank value, as it can be appreciated
in Fig. 6.32. The minimum MAE is obtained for r = 5, while the percentage of
missing data is below 90%, in which case, the minimum MAE is obtained with r = 4.

The minimum MAE obtained with each percentage of missing data is plotted in
Fig. 6.33, considering the rank that gives the minimum value. It is shown that, the
minimum MAE is achieved with the Alternation approach, for any percentage of
missing data.

The obtained MAE values are similar to the ones presented in [42], which studies
the same data set. Unfortunately, no comparison can be performed with [42], since
the authors do not provide an accurate information about the percentage of missing
data they consider, nor the used rows (they select 18,000 rows randomly).

Although the obtained MAE seems to be higher than the obtained with the
MovieLens data set, the ratings lie in different ranges. If the NMAE proposed by
Goldberg et al. [42] is used, it can be seen that the results are similar with both data
sets. In the case of the MovieLens data set, the values obtained with the proposed
approach are as follows: MAE = 0.7704, which gives NMAE = 0.1926, while in the
case of Jester data set, the MAE obtained with 90% percentage of missing data is
3.8959, which gives NMAE = 0.1948. Therefore, the goodness of the predicted rates
is quite similar in both cases.

6.4.6 Conclusions

The Alternation technique is adapted to tackle the prediction task in recommender
systems. Concretely, a variant of this technique, which uses the fact that the rates take
values in a known interval, is presented. As in the SVD-based approaches, not only
the correlated customers are used in the prediction task, but also the non correlated
ones.

The variant of the Alternation is compared to the one presented in [99]. Three
different public data sets, obtained from three different recommender systems, are
studied. Experimental results show that the proposed approach performs better than
the SVD used in [99], both regarding the error value and also the computational cost.
It can be concluded that the data space can be reduced to a low-dimensional subspace,
in most cases, with the proposed approach.

It should be highlighted the good results obtained with the Alternation, even with
percentages of missing data of more than 90%. This is due to the fact that the missing
data in the data matrix present a random distribution.

The iterative multiresolution scheme is not used, since the idea in this application
is to use all the available data and not only the local one. It would have no sense to
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Figure 6.32: obtained MAE values for different rank values and different percent-
ages of missing data; (top) 60% and 70%; (bottom) 80% and 90%.
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Figure 6.33: obtained MAE values for different percentages of missing data, con-
sidering the rank value that gives the minimum MAE.
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search for prediction values considering rates from a few users, not even users that
have similar tastes.

6.5 Summary

This Chapter shows different applications in which the Alternation technique can
be applied. One of the proposed applications is in the computer vision framework,
while the other two are in the bioinformatics (DNA microarray data) and marketing
(recommender systems) contexts.

For each application, an introduction is provided in order to introduce the context.
An adaptation of the Alternation technique is presented to tackle the particular prob-
lem. Finally, experimental results are given in order to show the good performance
of each Alternation-adaptation proposed. Real data are used in all the cases.

As a conclusion, although the Alternation technique has been considered in this
thesis to tackle the SFM problem, it is shown that it can be useful in other applica-
tions.
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Chapter 7

Summary and Contributions

This Chapter summarizes the main contributions and conclusions exposed in previous
Chapters. Future lines of research are also included here.

7.1 Summary

The Structure from Motion (SFM) problem consists in extracting the 3D object shape
as well as the relative camera-object motion from 2D coordinates of tracked features.
In computer vision context, factorization technique is a method that can address
this problem. The idea of the factorization is to decompose the matrix of trajectories,
which contains 2D coordinates of tracked feature points, into the motion and shape
matrices. The motion matrix contains the relative camera-object motion, while the
shape matrix contains the 3D coordinates of the feature points. These matrices can
be computed by using the fact that the matrix of trajectories has a reduced rank.
Concretely, in the case of a single rigid moving object, the rank is at most 4. Hence,
the matrix of trajectories can be approximated by a rank-4 matrix.

If the trajectories are full, the SVD gives the best rank-4 matrix approximation of
the matrix of trajectories. The problem is that if the matrix of trajectories contains
missing data, the SVD can not be applied. Several techniques have been proposed to
deal with missing data, but a closed solution has not been found yet. Actually, some
of these proposed techniques can not deal with high percentages of missing data. This
thesis is focused on the missing data matrix factorization to tackle the SFM problem.
Concretely, the Alternation technique, whose properties and algorithm are presented,
is used through the thesis. A detailed State of the Art of factorization techniques
focused on the Structure from Motion problem is reported.

One of the goals of this thesis is to present a method that allows to deal with high
percentages of missing data. The idea is to fill in (partially or totally) missing data in
the input matrix and apply a factorization technique to this filled in matrix instead

173
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to the input one, which has a high percentage of missing data.

In the multiple objects case with missing data, the factorization technique can not
be directly applied to recover the shape and motion of each object. This is due to
the fact that trajectories are not sorted into different objects. The idea is to compute
the motion segmentation of the trajectories and apply a single object technique to
obtain the shape and motion of each of the objects. However, another problem should
be faced out: the estimation of the rank of the matrix of trajectories. It can not be
directly computed by using the SVD, since there are missing data. Furthermore, it
is difficult to estimate without using any prior information about the scene, such as
number of objects or kind of motion. Different rank values are considered and a
factorization technique is used to fill in missing data. A measure of goodness should
be defined in order to choose the best rank value. Therefore, missing data would
be filled in with the factorization technique and, at the same time, rank would be
estimated. Once a full matrix has been obtained, a motion segmentation approach
could be applied and the SFM of each object could be computed.

This thesis is centered on the SFM problem through factorization. However, the
idea is to adapt this technique, in particular the Alternation technique, to different
applications, not only in the computer vision context. Several problems have been
analyzed, searching for similarities and differences with the SFM problem. For each
studied problem, an adaptation of the Alternation technique is proposed to tackle
it. Concretely, the studied problems are: photometric stereo, missing data in DNA
microarrays (in the bioinformatics context) and prediction task in recommender sys-
tems.

7.2 Contributions

This thesis proposes different approaches concerning the SFM with missing data for
the single and multiple objects cases. Furthermore, adaptations of the Alternation
technique to several applications, apart from the SFM, have also been presented. The
main contributions of this thesis are summarized below.

7.2.1 Alternation Technique

• Different missing data distributions are presented and the performance of
the Alternation with each distribution is compared. Concretely, a random and
non-random distribution are studied. It is shown that the Alternation performs
better with a random distributions of the missing data.

• The filtering capability of the Alternation technique is also studied. Ex-
perimental results show that, in general, the Alternation filters the noise in the
data. Only in cases with a high percentage of missing data or when working
with a very small matrix, the Alternation can not filter the noise.
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7.2.2 SFM in the Single Object Case with Missing Data

• It is presented a variant of the Alternation technique: the Alternation

with motion constraints. It consists in imposing the orthonormality of the
camera axes at each iteration of the algorithm. The advantage of this variant of
Alternation is that an Euclidean reconstruction is obtained. Furthermore, the
possibility of adding prior knowledge to the problem is proposed. In particular,
the smooth camera motion can be imposed, by fixing the angle between
camera axes of consecutive frames.

• In order to deal with matrices that contain a high percentage of missing data,
an iterative multiresolution scheme is proposed. The objective is to fill
in (partially or totally) the input matrix considering submatrices with a low
percentage of missing data. The Alternation technique is applied to each of
these submatrices, filling in missing data with the product of the obtained fac-
tors. The final goal is to improve the results when a factorization technique is
applied to the matrix filled in with the proposed scheme, instead of applying it
directly to the input matrix, which has a high percentage of missing data. An
evaluation study of the proposed scheme is carried out. It is shown that, when
the percentage of missing data is high, a factorization technique applied to the
matrix filled in with the proposed scheme gives better results than when it is
applied directly to the input matrix. However, when the percentage of missing
data is low, the factorization technique performs quite well applied to the input
matrix directly.

• The most common measure of goodness to study the performance of a fac-
torization technique is the root mean square error rms, which studies how well
the initially known data are approximated. This measure does not take into ac-
count how the missing data are filled in. If all the entries in the input matrix are
initially known, the rmsall, which studies how the missing data are recovered,
is also computed. This is not a realistic situation, but it allows to study the
goodness of the recovered data. Furthermore, in the experiments with synthetic
data in which the shape and motion ground truth are known, the rmsM and
rmsS are also computed. These errors measure the goodness of the recovered
motion and shape matrices, respectively.

7.2.3 SFM in the Multiple Objects Case with Missing Data

• A novel technique for rank estimation of a missing data matrix of

trajectories, corresponding to multiple rigid moving objects, is proposed. The
underlying idea of the proposed technique is that, since feature points belong to
rigid objects, the behaviour of the recovered missing entries due to the movement
should be similar to the one of the initially known entries. If this movement
is interpreted as a signal, the movement similarity is identified with the fact
that the frequency spectra of the input matrix should be preserved after re-
covering missing data. The proposed technique consists in considering different
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rank values and applying the Alternation technique to fill in missing data. A
measure of goodness, which compares the frequency spectra of each filled in
matrix with the one of the input matrix, is defined. The good performance
of the proposed technique considering sequences with both, synthetic and real
data, is empirically shown. Concretely, from the sequences with synthetic data
it can be concluded that the rank of the input matrix is well estimated, even
with high percentages of missing data. Real data experiments show that the
proposed technique is able to deal with noisy data.

• A well-known motion segmentation approach is implemented and the proposed
rank estimation approach is tested. Sequences with synthetic data, which
contain several objects (from two up to nine), are generated. Additionally, real
sequences from a publicly available data set are also tested. A comparative
of the performance of the motion segmentation approach, considering different
rank values, is carried out. It is shown that the obtained error in the clustering
is, in general, smaller when the rank is estimated with the proposed technique.
Hence, the significance of a correct rank estimation before applying a
motion segmentation approach is shown.

• Once the trajectories have been segmented into different objects, a single object
factorization technique is applied, in order to obtain the 3D shape and the
relative camera-object motion of each of the objects. Furthermore, examples of
the recovered factors, obtained when there are some errors in the segmentation,
are provided. It is shown that results become worse as the number of

wrongly clustered features increases.

7.2.4 Applications

• The Alternation technique is adapted to tackle the photometric stereo

problem. The goal is to obtain the surface normals and reflectance of an object
from a given set of images obtained under varying illumination. The grey inten-
sities of the images are stacked into a measurement matrix. The fact that the
set of images of a Lambertian object can be approximated by a low-dimensional
linear subspace is used. Concretely, if the images do not have shadows nor spec-
ularities, the measurement matrix can be approximated by a rank-3 matrix.
However, in real images there are usually shadows, specularities and an ambi-
ent background illumination. Therefore, a rank-4 formulation, which includes
an ambient term, is introduced. The entries corresponding to shadows

and specularities are considered as missing entries. Hence, they do not
affect the final result. The proposed Alternation-based approach is used to fill
in those missing entries. Experimental results show improvements when those
entries are considered as missing data.

• In a different application, Alternation is adapted in order to fill in missing

entries in DNA microarray gene expression data. The main drawback in
this particular application is that the data matrix has a full rank. That is, the
rank is equal to the number of columns (which is in general a small number).
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Hence, with only a few missing data, the Alternation can not give as good re-
sults as expected. Due to that fact, an Alternation-based strategy is proposed.
A comparative of the Alternation-based strategy with several approaches pre-
sented in the literature is provided. It is shown that results obtained with

Alternation are similar to the ones of the best methods proposed in

this field. Furthermore, no parameter needs to be estimated with the Alter-
nation technique. Although, in general, the Alternation-based strategy does
not outperforms those methods, a novel field where Alternation can be used is
proposed.

• The Alternation is adapted to be used in recommender systems. The
idea is to predict the rate values that a customer would give to different items,
using all information stored in the system. In particular, this information is
provided by the current customer and also by all the customers that have used
the system. Different rank values are considered and, the one for which the
obtained error is smaller, is chosen. In general, the best prediction rates are
achieved with a rank value of 4 or 5. If the percentages of missing data is very
high, a rank of 2 or 3 is enough. Experimental results with real data sets, used
in real recommender systems, show the good performance of the proposed

approach compared to a technique based on SVD.

7.3 Future Lines of Research

Throughout this dissertation, several future lines of research have been identified.
Some of them are summarized below.

• A closed form solution for the case of missing data has not been found yet. In
the full data case, the SVD gives a closed solution to the SFM problem through
factorization.

• More elaborated camera models could be tested (e.g., perspective, or weak-
perspective). The affine camera model is used through the thesis.

In the single objects case, when trying to add priors:

• Constraints about the smoothness of the camera motion could be added to the
formulation by using a non-linear approach, instead of imposing a concrete
increment of the rotation angle between frames.

With respect to the multiple objects case:

• An analytic demonstration of the convergence of the proposed rank esti-

mation technique could be studied in order to support this approach.

Finally, concerning the applications:
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• The factors obtained with the Alternation-based strategy in DNA

microarray could be studied. Some techniques based on SVD use these
factors to find clusters of genes, which can set useful relationships between
genes.

• Analogously, factors obtained with the Alternation-adapted to recom-

mender systems could be exploited. They could be very useful in marketing
applications. For instance, to obtain clusters of similar customers or of similar
products.

• Other applications could be studied by using the corresponding Alternation-
adapted technique.
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• C. Julià, A.D. Sappa, F. Lumbreras, J. Serrat, A. López, Factorization with
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