
Universitat Aut̀onoma de Barcelona

Departament d’Enginyeria de la Informació i de les
Comunicacions

EFFICIENT M OBILITY AND I NTEROPERABILITY OF
SOFTWARE AGENTS

SUBMITTED TO UNIVERSITAT AUTÒNOMA DE BARCELONA

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE

DEGREE OFDOCTOR OFPHILOSOPHY IN COMPUTERSCIENCE

by Jordi Cucurull Juan

Bellaterra, September 2008

Advisers:

Dr. Joan Borrell Viader

Dr. Guillermo Navarro Arribas

c© Copyright 2008 by Jordi Cucurull Juan

I certify that I have read this thesis and that in my opinion it

is fully adequate, in scope and in quality, as a dissertationfor

the degree of Doctor of Philosophy.

Bellaterra, September 2008

Dr. Joan Borrell Viader

(Principal Adviser)

I certify that I have read this thesis and that in my opinion it

is fully adequate, in scope and in quality, as a dissertationfor

the degree of Doctor of Philosophy.

Bellaterra, September 2008

Dr. Guillermo Navarro Arribas

(Adviser)

Abstract

Mobile agents are autonomous software entities that have the ability to stop and resume

their execution in different network locations to accomplish a set of tasks. Despite

their apparent simplicity, the fact of sharing a code in different places, in most cases

heterogeneous, arises a set of issues which are far from havea simple solution. The

proof is that after several years of efforts, a wide-scale deployment of mobile agents has

not become a reality. In our opinion the main reasons which have hindered the adoption

of mobile agents are: security, interoperability, and efficiency. Security may impose

strong restrictions to the use of mobile agents. Nevertheless, enough research to satisfy

the most common applications has been done in this field. Interoperability is absolutely

indispensable to guarantee that different types of agents can run in different places and

exchange information. And efficiency is a non functional requisite which favours the

adoption of the technology.

The suitability of mobile agents for distributed and heterogeneous environments is

unique. The work presented in this thesis is motivated by this fact and comprises four

objectives to improve, in this order, the interoperability, efficiency, and security of mo-

bile agents in the context of the IEEE-FIPA standards. The first objective is the design

of a flexible agent mobility specification. The second objective is the proposal of in-

teroperability mechanisms to move and execute agents in several locations supporting

different agent middlewares, programming languages, and underlying architectures tak-

ing advantage of the previous mobility specification. The third objective is the proposal

of methods to improve the efficiency of the agent mobility andinteroperability. And

finally, the last objective is the design of some protocols todeal with specific security

issues of mobile agents.

vii

Acknowledgements

In this preface I want to acknowledge several people for their support during my PhD

studies. Since most of them are Catalan speakers I have written the rest of this section in

Catalan. Nevertheless, before switching to it, I want to thank the people from the Vrije

Universiteit (Benno, Michel, Reinier, Sander, Martijn, Thomas, Maik, Reza, Frances,

Guido) their warm welcome during the three months I spent in Amsterdam.

La vida est̀a formada per una sèrie d’etapes que, una vegada superades, solem anal-

itzar, etiquetar i classificar en funció d’on ens hagin conduit. Els estudis de doctorat

fàcilment es poden associar a una d’aquestes etapes que, a més de la feina, inclouen

tota una s̀erie de viv̀encies personals.́Es per aquest motiu que faré extensius aquests

agräıments, no tan sols a les persones que han tingut una relació directa amb el desen-

volupament d’aquesta tesi, sinó tamb́e a les persones que han estat presents en aquesta

etapa de la meva vida.

Aix ı́ en primer lloc voldria agräır als meus pares, aixı́ com a la meva faḿılia, el su-

port i l’ajuda que sempre m’han donat, especialment en moments dif́ıcils. De la mateixa

manera vull agräır als meus amics ḿes propers (Rául, Òscar i David) les estones que

hem passat, tan en moments bons com en no tan bons. Agraı̈ments tamb́e a l’Anna per la

seva aparicío del no res i per donar-me una mica de llum. També vull donar les gr̀acies

als meus companys del departament pels dinars, estones divertides i moments tan agrad-

ables que m’han fet passar (Juan, Lino, Jorge, Joanet, Fernando, Cristina, Maria, Ra-

mon, Guille, Sergi, Mari Carmen, Rosa Maria, Ian, Abraham, Carlos...). I una menció

especial al meu darrer company de despatx, en Carles, amb qui he compartit de molt a

prop el proćes de redacció tan de la seva com de la meva tesi. I agraı̈r tamb́e les estones

que hem passat als meus companys de les Jornades Doctorials.

ix

Respecte a la tesi, vull donar les gràcies en primer lloc al meu supervisor, en Joan

Borrell, per haver-me guiat en la seva escriptura i desenvolupament. Tamb́e vull fer

especial̀emfasi amb en Guille, que a més de ser un gran company ha estat un excel·lent

codirector. Vull donar les gràcies a en Ramon per les seves correccions. A en Sergi

per les seves suggerències i per dirigir el grup. I a en Joan Ametller per iniciar-me en

la mobilitat dels agents. I un agraiment també als alumnes de projectes que he tingut

(Ferran, V́ıctor i Gerard) i que han col·laborat activament en la implementació d’alguns

prototips relacionats amb la migració dels agents. Donar les gràcies, tamb́e, a en Jaume

Pujol per haver-me vingut a buscar quan encara no havia acabat la carrera. I finalment,

un agräıment a la resta de membres del departament per aportar, cadasću, el seu granet

de sorra per a qùe tot tiri endavant.

Vull fer constar, a ḿes a ḿes, que aquest treball, a excepció del qùe es deriva de

l’estada a la Vrije Universiteit, ha estat possible gràcies a la contribució ecoǹomica

que ha aportat el Departament d’Universitats, Recerca i Societat de la Informació de

la Generalitat de Catalunya mitjançant els Fons Socials Europeus. Destacar també el

finançament rebut dins del projecte Espanyol TSI2006-03481.

Acronyms

ACDS Agent Code Distribution Service

ACL Agent Communication Language

AID Agent Identifier

AM Agent Middleware

AMM Agent Mobility Manager

AMS Agent Management System

AP Agent Platform

ASIPMS AgentScape Inter-Platform Mobility Service

CAI Common Agent Interface

CGID Code Group Identifier

CID Code Identifier

CDN Content Delivery Network

DF Directory Facilitator

DHT Distributed Hash Table

EE Execution Environment

FrTP Fragmented Transfer Protocol

xi

HAP Home Agent Platform

HCID Hash Code Identifier

JIPMS JADE Inter-Platform Mobility Service

IPMA Inter-Platform Mobility Architecture

IPMS Inter-Platform Mobility Service

MA Mobile Agent

MAS Mobile Agent System

MID Migration Identifier

MMP Main Migration Protocol

ODTP On-Demand Transfer Protocol

OSAAP One-Shot Agent Authentication Protocol

P2P Peer to Peer

PCTP Push Cache Transfer Protocol

PL Programming Language

PoP Point of Presence

PS Protocol Sequences

RESTTP REST Transfer Protocol

SR Security Revision

UA Underlying Architecture

VM Virtual Machine

Contents

Abstract vii

Acknowledgements ix

Acronyms xi

1 Introduction 1

1.1 Objectives . 2

1.2 Structure . 4

1.3 Publications . 5

2 Mobile Agents 7

2.1 Definition . 7

2.2 The Agent . 9

2.2.1 Agent Identification . 9

2.2.2 Agent Components . 10

2.2.3 Agent Life Cycle . 11

2.2.4 The Mobile Agent System . 12

2.3 Agent Mobility . 13

2.3.1 Mobility Basics . 13

2.3.2 Types of Agent Mobility . 14

2.3.3 Agent Itineraries . 15

2.4 Agent Interoperability .16

2.4.1 Full Agent Interoperability . 16

xiii

2.4.2 Agent Standards . 17

2.4.3 IEEE-FIPA . 18

2.5 Agent Security . 23

2.6 Summary . 25

3 Inter-Platform Mobility Architecture 27

3.1 Introduction . 27

3.2 Related work . 28

3.3 Inter-Platform Mobility Architecture 30

3.3.1 Mobility Model . 30

3.3.2 Mobility Architecture . 33

3.3.3 Error Management . 40

3.4 Mobility Protocols . 42

3.4.1 Push Cache Transfer Protocol 44

3.4.2 On-Demand Transfer Protocol 45

3.4.3 Fragmented Transfer Protocol 48

3.4.4 REST Transfer Protocol . 50

3.4.5 Protocols usage . 54

3.5 Mobility services comparison .. 55

3.6 JADE Inter-Platform Mobility Service 59

3.6.1 JADE Introduction . 60

3.6.2 JIPMS Basics . 61

3.6.3 JIPMS Structure . 61

3.6.4 JIPMS Protocols . 65

3.6.5 JIPMS Usage . 68

3.7 AgentScape Inter-Platform Mobility Service 68

3.7.1 AgentScape introduction . 69

3.7.2 FIPA Message Transport Service 69

3.7.3 ASIPMS Structure . 71

3.7.4 Open issues . 71

3.8 Conclusions . 73

4 Performance Analysis 75

4.1 Introduction . 75

4.2 Evaluation setup . 76

4.3 Performance evaluation 1: PCTP vs ODTP 77

4.3.1 Lightweight agents . 77

4.3.2 Multi-class Heavyweight Agents 81

4.4 Performance evaluation 2: PCTP vs FrTP84

4.4.1 Scenario 1: Local Area Network 84

4.4.2 Scenario 2: Wide Area Network 90

4.4.3 Scenario 3: Metropolitan Area Network93

4.5 Performance evaluation 3: PCTP vs RESTTP 94

4.5.1 Scenario 1: Local Area Network 95

4.5.2 Scenario 2: Wide Area Network 97

4.5.3 Scenario 3: Metropolitan Area Network100

4.6 Conclusions . 100

5 Agent Code Distribution Service 103

5.1 Introduction . 103

5.2 Requirements and Roles . 104

5.3 Agent Code Distribution Service .106

5.3.1 Overview of the Architecture 106

5.3.2 Code Management . 108

5.3.3 Code Distribution . 110

5.3.4 Security Management . 111

5.3.5 Service Interface . 116

5.4 Implementation and performance .. 120

5.4.1 Service implementation . 120

5.4.2 Performance tests . 121

5.5 Related work . 133

5.5.1 Code distribution . 133

5.5.2 Content Delivery Networks 134

5.5.3 Peer to Peer networks . 134

5.5.4 Distributed Version Control systems135

5.6 Conclusions . 135

6 Interoperability 137

6.1 Introduction . 137

6.2 Background . 139

6.2.1 Single Programming Language MAS 139

6.2.2 Multiple Programming Language MAS 141

6.3 Common Agent Interface (CAI) . 143

6.3.1 Considerations toward a common agent interface 144

6.3.2 Proposed Common Agent Interface (CAI) 146

6.3.3 Comments on interface usage 150

6.3.4 Common Agent Interface considerations152

6.4 Multiple execution environments 154

6.4.1 Computer architectures . 154

6.4.2 A Multiple Execution Environment approach 154

6.5 Multiple Code Agents . 158

6.5.1 Agent data processing . 159

6.5.2 YAML agent data representation 161

6.5.3 Agents with multiple codes . 162

6.5.4 Agent mobility model considerations164

6.5.5 Inter-language mobility example165

6.6 Related Work . 167

6.7 Conclusions . 172

7 Security 175

7.1 Introduction . 175

7.2 Background . 176

7.2.1 Agent platforms . 176

7.2.2 Mobile agents . 178

7.3 Protection of agent itineraries 180

7.3.1 Properties of the Protection Protocol 182

7.4 Protection of agent itineraries with loops 183

7.4.1 Protection Protocol Modifications183

7.4.2 Loop Implementation . 186

7.4.3 Security Assessment . 187

7.5 IPMA Security Protocol . 189

7.5.1 Preliminaries . 189

7.5.2 Protocol’s operation . 191

7.6 Conclusions . 191

8 Conclusions 195

8.1 Future research lines . 198

Bibliography 198

A Inter-Platform Mobility Architecture 219

A.1 Service registration . 219

A.2 Mobility Ontology . 222

A.3 Synchronized Request Interaction Protocol 223

A.4 IPMS Ontology . 224

A.5 Push Cache Transfer Protocol Ontology 225

A.6 On Demand Transfer Protocol Ontology 225

A.7 Fragment Transfer Protocol Ontology 226

A.8 REST Transfer Protocol Ontology . 226

A.9 One-Shot Agent Authentication Protocol Ontology 227

B Common Agent Interface 243

B.1 Java CAI . 243

B.2 Python CAI . 252

List of Tables

2.1 Mobile Agent Properties. 8

2.2 FIPA ACL Message Parameters. 22

3.1 First message content. 37

3.2 RESTTP Interface. 53

3.3 Migration services comparison. .. . 59

4.1 Lightweight agents migration performance (in ms). 80

4.2 Lightweight agents migration comparison. 80

4.3 Heavyweight agents (12 classes) migration performance(in ms). 82

4.4 Heavyweight agents (12 classes) migration comparison.. 82

4.5 Heavyweight agents (32 classes) migration performance(in ms). 82

4.6 Heavyweight agents (32 classes) migration comparison.. 82

4.7 Scenario 1: Multi-size agent code migration performance (in ms). . . . 88

4.8 Scenario 1: Multi-size agent data migration performance (in ms). 89

4.9 Scenario 2A: Multi-size agent code migration performance (in ms). . . 90

4.10 Scenario 2B: Multi-size agent code migration performance (in ms). . . . 92

4.11 Scenario 3: Multi-size agent code migration performance (in ms). . . . 93

4.12 Scenario 1: Multi-size agent code migration performance (in ms). . . . 95

4.13 Scenario 1: Multi-size agent data migration performance (in ms). 97

4.14 Scenario 2A: Multi-size agent code migration performance (in ms). . . 97

4.15 Scenario 2B: Multi-size agent code migration performance (in ms). . . . 99

4.16 Scenario 3: Multi-size agent code migration performance (in ms). . . . 99

5.1 REST Interface. 119

5.2 Scenario 1: Agents moving in the same region (PCTP) (in ms). 122

xix

5.3 Scenario 1: Agents moving in the same region (REST) (in ms). 122

5.4 Scenario 2: Agents moving between different regions (nopacket loss)

(PCTP) (in ms). 125

5.5 Scenario 2: Agents moving between different regions (nopacket loss)

(RESTTP) (in ms). 125

5.6 Scenario 2: Agents moving between different regions (5%packet loss)(PCTP)

(in ms). 125

5.7 Scenario 2: Agents moving between different regions (5%packet loss) (RESTTP)

(in ms). 125

5.8 Scenario 3: Asymmetric links (PCTP) (in ms). 130

5.9 Scenario 3: Asymmetric links (RESTTP) (in ms). 130

6.1 MAS agent interfaces comparison. 153

6.2 Interoperability solutions comparison. 171

A.1 Move action Mobility Ontology . 228

A.2 Clone action Mobility Ontology . 228

A.3 Migration Description concept Mobility Ontology 228

A.4 Property concept Mobility Ontology 228

A.5 Protocols Description concept Mobility Ontology 229

A.6 Failure predicates Mobility Ontology 229

A.7 Move action IPMS Ontology . 229

A.8 Clone action IPMS Ontology . 230

A.9 Resume action IPMS Ontology . 230

A.10 Mobile Agent Description concept IPMS Ontology 230

A.11 Mobile Agent Profile concept IPMS Ontology 231

A.12 Mobile Agent System concept IPMS Ontology 231

A.13 Mobile Agent Language concept IPMS Ontology 231

A.14 Mobile Agent OS concept IPMS Ontology 231

A.15 Property concept IPMS Ontology .. 232

A.16 Refuse predicates IPMS Ontology .232

A.17 Failure predicates IPMS Ontology 232

A.18 Transfer Data State action PCTP Ontology 233

A.19 Data State concept PCTP Ontology .233

A.20 Transfer Code action PCTP Ontology 233

A.21 Code concept PCTP Ontology . 233

A.22 Inform predicates PCTP Ontology .234

A.23 Failure predicates PCTP Ontology 234

A.24 Transfer Data State action ODTP Ontology 234

A.25 Data State concept ODTP Ontology235

A.26 Resource List concept ODTP Ontology235

A.27 Resource Description concept ODTP Ontology 235

A.28 Failure predicates ODTP Ontology 235

A.29 Fetch Resource action ODTP Fetch Ontology 236

A.30 Inform predicates ODTP Fetch Ontology 236

A.31 Resource Description concept ODTP Fetch Ontology 236

A.32 Failure predicates ODTP Fetch ontology 236

A.33 Request Transfer Agent action FrTP Ontology 237

A.34 Parameters concept FrTP Ontology 237

A.35 Agree predicates FrTP Ontology .. 237

A.36 Refuse predicates FrTP Ontology .. 237

A.37 Inform predicates FrTP Ontology 238

A.38 Request Fragment action FrTP Ontology 238

A.39 Fragment Description concept FrTP Ontology 238

A.40 Failure predicates FrTP Ontology 239

A.41 Transfer Parameters action RESTTP Ontology 239

A.42 Rest Parameters concept RESTTP Ontology 240

A.43 Failure predicates RESTTP Ontology 240

A.44 X509 Agent Auth action OSAAP Ontology241

A.45 X509 Agent Auth Description concept OSAAP Ontology 241

A.46 Auth Pair concept OSAAP Ontology241

A.47 Failure predicates OSAAP Ontology 242

List of Figures

2.1 Equivalent algorithms using strong and weak mobility. 12

2.2 IEEE-FIPA Agent Management Reference Model. 19

2.3 Agent Life Cycle. 20

2.4 Agent Message Transfer. 21

2.5 FIPA Request Interaction Protocol. 23

2.6 FIPA Propose Interaction Protocol. 23

3.1 Migration model. 31

3.2 General migration process. .32

3.3 Agent Code Identification. 34

3.4 Main Migration Protocol. 38

3.5 AMM Error Management. 42

3.6 Push migration strategy. .43

3.7 Pull migration strategy. .43

3.8 Push Cache Transfer Protocol diagram. 45

3.9 Push Cache Transfer Protocol flow diagram. 46

3.10 ODTP Resource List example. 47

3.11 On-Demand Transfer Protocol diagram. 47

3.12 On Demand Transfer Protocol flow diagram. 48

3.13 Agent components fragmentation. 49

3.14 Fragmented Transfer Protocol diagram. 51

3.15 Fragmented Transfer Protocol flow diagram. 52

3.16 REST Transfer Protocol diagram. .54

3.17 REST Transfer Protocol flow diagram. 55

xxiii

3.18 The JADE agent middleware architecture. 60

3.19 Inter-Platform mobility service parts. 62

3.20 Agent Mobility Manager. 64

3.21 The AgentScape middleware architecture. 69

3.22 AgentScape FIPA MTS. 70

4.1 PCTP vs ODTP 2 Classes. 78

4.2 PCTP vs ODTP 12 Classes. 78

4.3 PCTP vs ODTP 32 Classes. 79

4.4 PCTP vs ODTP 10 Agents. 79

4.5 FrTP 1 Ag. Sc. 1 (code). 85

4.6 FrTP 10 Ag. Sc. 1 (code). 85

4.7 FrTP 1 Ag. Sc. 1 (data). 86

4.8 FrTP 10 Ag. Sc. 1 (data). 86

4.9 FrTP vs PCTP Scenario 1 (code). 87

4.10 FrTP vs PCTP Scenario 1 (data). 87

4.11 FrTP vs PCTP Scenario 2A. 91

4.12 FrTP vs PCTP Scenario 2B. 91

4.13 FrTP vs PCTP Scenario 3. 94

4.14 RESTTP vs PCTP Scenario 1 (code). 96

4.15 RESTTP vs PCTP Scenario 1 (data). 96

4.16 RESTTP vs PCTP Scenario 2A. 98

4.17 RESTTP vs PCTP Scenario 2B. 98

4.18 RESTTP vs PCTP Scenario 3. 100

5.1 Agent Code Distribution System. .106

5.2 Point of Presence (PoP). 107

5.3 Example of the use of agent code identifiers. 108

5.4 Code identifier hierarchy. 109

5.5 Example of code owner contract policy. 114

5.6 Contract Enforcement Module overview. 115

5.7 Scenario 1. 122

5.8 Performance Scenario 1 (PCTP). 123

5.9 Performance Scenario 1 (RESTTP). 123

5.10 Scenario 2. 126

5.11 Performance Scenario 2 (no packet loss) (PCTP). 127

5.12 Performance Scenario 2 (no packet loss) (RESTTP). 127

5.13 Performance Scenario 2 (5% packet loss) (PCTP). 128

5.14 Performance Scenario 2 (5% packet loss) (RESTTP). 128

5.15 Scenario 3. 130

5.16 Performance Scenario 3 (PCTP). .131

5.17 Performance Scenario 3 (RESTTP).131

6.1 Common Agent Interface. 145

6.2 Middleware Level. 155

6.3 Application Level. 155

6.4 1 Agent. 155

6.5 N Agents. 155

6.6 Multiple Execution Environments Middleware. 157

6.7 Agent data transformation. .158

6.8 YAML encoded agent data. 161

6.9 Equivalent agent codes (Python on the left, Java on the right). 163

6.10 Agent migration with YAML encoded data. 166

6.11 Standard Standardardisation. 168

6.12 Universal Middleware. 168

6.13 Agent Interface Adaptation. .. . 168

6.14 Agent Regeneration. 168

7.1 Sequence type transition. .181

7.2 Alternative type transition. .. . 181

7.3 One loop itinerary. 184

7.4 Mobile agent components. 185

7.5 External Reply Attack. 187

7.6 Single host internal replay attack. 188

7.7 Internal replay attack with collusion. 188

7.8 One-Shot Agent Authentication Protocol diagram. 192

7.9 One-Shot Agent Authentication Protocol flow diagram. 193

A.1 Synchronized Request Interaction Protocol. 224

Chapter 1

Introduction

Mobile Agents (MAs) are autonomous software entities that have the ability to stop and

resume their execution in different network locations to accomplish a set of tasks. They

live within environments called Agent Platforms (APs), which are composed of a soft-

ware called Agent Middleware (AM), that define the boundaries of available locations

and the basic functionality the agents have. This technology took its first steps with the

publication of the Jim White’s article [Whi96] in ’96.

Despite the apparent simplicity behind MAs, a lot of research efforts have been

spent along these years. The fact of sharing agent code in different locations, in most

cases heterogeneous, arises a set of issues which are far from having a simple solution.

The most common issues are related to the agent interoperability [MR00, MPD+02,

PR02, GGK+02, OdGWB06, FGR07, FIP02a, OMG97] and security [KAG98, Yee99,

JK00, Rot02, MB03, GMB+08] with quite a lot research associated. Nevertheless, after

several years of efforts, a wide-scale deployment of MAs hasnot become a reality. This

is the reason why, some time ago, several articles [Rot04, Gra04, Vig04] questioning

the future of this technology arose. These articles coincide in that security is one of the

main reasons that have hindered the adoption of MAs. But, other reasons appear, such

as the lack of a killer application, the lack of a widespread infrastructure to host the

agents which would not be created without promising applications, and so on.

In our opinion the main reasons which have prevented the adoption of MAs are se-

curity, interoperability, and efficiency. Security may impose strong restrictions to the

1

2 CHAPTER 1. INTRODUCTION

use of MAs. Nonetheless, enough research to satisfy the mostcommon applications has

been done in this field (Chapter 7). Interoperability [PR02] must be taken into account

in highly distributed heterogeneous environments. Since MAs need to interoperate with

elements and other agents present in these environments, a strong degree of interoper-

ability is absolutely indispensable to guarantee the deployment of the technology and

the new coming applications. As in security, different works exist in this area. Spe-

cially important are the standardisation efforts carried out by the OMG [OMG97] and

the IEEE-FIPA [FIP02a] organisations. And, last but not least, the efficiency of MAs is

another important issue to cope with. Theoretical technologies which once implemented

do not perform efficiently, turn into non usable technologies without suitable applica-

tions for them. One of the criticisms to MAs is, precisely, a lack of efficiency [Vig04].

Although several works in this field have been done [Gav04, BR05], they are not inte-

grated with interoperable solutions.

Currently, the deployment of MAs is limited, but new applications are constantly

coming out. For example, Gavalaset al. [GGGO02] propose an approach to deal with

the management of networks with changing conditions. Vimercati et al. [VFL06] pro-

pose the use of MAs for remote control and calibration of general purpose instrumenta-

tion, and remote measurement. Vieira-Marqueset al. [VMRC+06] propose the secure

integration of medical data using MAs. And, Marsá et al. [MMLCVN08] propose an

approach to personalise the services users access in smart environments, such as home

and offices, by using mobile personal agents.

1.1 Objectives

We are conviced that MAs are not an outdated technology. Their suitability for dis-

tributed and heterogeneous environments is unique. In our opinion their expansion will

be at the right moment, when the advantages outweigh the disadvantages, and the sur-

rounding technologies will be matured enough to support them. Our assumption is that

by improving their interoperability, efficiency, and security, a wide-scale expansion is

more probable.

1.1. OBJECTIVES 3

The main objective of this thesis, which is motivated by thisassumption, is to pro-

pose efficient mechanisms, within the context of the IEEE-FIPA standards, to guarantee

the interoperability of heterogeneous MAs and AMs. Despiteseveral works about the

interoperability of agents exist, there are no mobile agentstandards which guarantee a

complete interoperability between all types of MAs and AMs.Standardisation organisa-

tions such as OMG and IEEE-FIPA, this last the most accepted nowadays, have devised

several agent standards for AMs and for agent communication. Nevertheless, they do

not include a robust specification for mobility and execution of agents in AMs that do

not share the same profile. The main objective of the thesis has been splitted into four

smaller objectives.

The first one is the design of an efficient, flexible, and extensible agent mobility

specification to allow the migration of agents between different, and possibly heteroge-

neous, locations. This objective does not comprise the interoperability of the agent code

in terms of execution, but it only comprises its transport.

The second objective is to devise methods to allow the execution of agents in sev-

eral APs supporting different AMs, Programming Languages (PLs), and Underlying

Architectures (UAs). The interoperability of agent communication, solved by IEEE-

FIPA, and agent mobility, the previous objective, is not sufficient for a wide-scale mo-

bile agent deployment. The achievement of them allows an agent to communicate with

other agents and to visit any other location. Nevertheless,in case the visited locations

have heterogeneous AMs or UAs the agent cannot be executed there.

Another objective is the proposal of methods to improve the efficiency of the agent

mobility and interoperability. The efficiency of an agent migration is always constrained

by the fact that all the agent components (agent code, data, and state) must be sent

to the destination location. Therefore, different migration strategies for the mobility

specification of the first objective, and agent code distribution methods can be proposed.

Furthermore, the interoperability methods of the second objective must also be efficient.

As previously stated, the security of agents is also of outmost importance. Despite

several research has been done in this area, another objective of the thesis is the contri-

bution to the improvement of existing mobile agent securitymechanisms. Furthermore,

the security must be taken into account in the objectives previously detailed.

4 CHAPTER 1. INTRODUCTION

1.2 Structure

In the following paragraphs an outline of the chapters and appendices that compose this

thesis is presented.

Chapter 2 introduces the mobile agent technology. First of all a definition of MAs is

stated, then there is an introduction to agent basics, agentmobility, a discussion of the

most frequent interoperability issues and extended solutions, and a summary of the most

relevant agent security requirements and threats. More specific background is detailed

in each chapter as appropriate.

Chapter 3 explains the design, implementation, and comparison of a new mobility

model called Inter-Platform Mobility Architecture (IPMA), in the context of the IEEE-

FIPA specifications, suitable for different kinds of AMs, and focused on improving the

interoperability in the area of agent mobility. Furthermore, a set of migration trans-

fer protocols, used to transfer the agent components, for the model devised are also

explained. And finally, two implementations of the model andthe protocols are shown.

Chapter 4 presents a set of tests to evaluate the most relevantperformance differ-

ences between the migration transfer protocols proposed for IPMA: the Push Cache

Transfer Protocol (PCTP), the On-Demand Transfer Protocol (ODTP), the Fragmented

Transfer Protocol (FrTP), and the REST Transfer Protocol (RESTTP).

Chapter 5 proposes a global cache service to efficiently and securely deal with the

distribution of agent code. An implementation of the service is also presented, and a set

of agent migration performance tests demonstrate its benefits regarding the migrations

without the service enabled.

Chapter 6 presents several mobile agent interoperability proposals to achieve the

challenge of agents freely migrating in heterogeneous environments. Each of the in-

cluded proposals increase a bit the final complexity of the system, but they improve

the final solution. The chapter also includes a final comparison with other proposals

existing in the literature.

Chapter 7 introduces several existing security mechanisms and two new methods

to protect MAs. The first is a scheme to protect agent itineraries (list of locations that

an agent visits) with loops. And the second is a protocol to authenticate agents and

guarantee the integrity of their code in the mobility model proposed in Chapter 3.

1.3. PUBLICATIONS 5

Chapter 8 summarises the conclusions obtained from the objectives previously men-

tioned, and provides some future research directions on thetopics dealt with.

Finally, Appendix A contains technical details about the mobility model of Chap-

ter 3, and Appendix B contains two examples of an interface presented in Chapter 6.

1.3 Publications

The work along this thesis has produced several publications in conferences, books, and

journals:

• J. Cucurull, J. Ametller, and J. Borrell. Protocol for the protection of mobile agent

itineraries with loops (in Spanish). In Alberto Peinado Domı́nguez et al., editor,1r

Simposio sobre Seguridad Informática [SSI’2005], pages 61–68, Granada. Spain,

September 2005. CEDI 2005, Thomson.

• J. Cucurull, J. Ametller, J.A. Ortega-Ruiz, S. Robles, and J. Borrell. Protect-

ing mobile agent loops. In T. Magendanz, K. Ahmed, and I. Venieris, editors,

Mobility Aware Technologies and Applications, volume 3744 ofLecture Notes in

Computer Science, pages 74–83, Montreal, Canada, October 2005. MATA 2005,

Springer.

• J. Ametller, J. Cucurull, R. Martı́, G. Navarro, and S. Robles. Enabling mobile

agents interoperability through fipa standards. In M. Klusch, M. Rovatsos, and

T.R. Payne, editors,Cooperative Information Agents X, volume 4149 ofLecture

Notes in Artificial Intelligence, pages 388–401, Edinburgh, UK, September 2006.

CIA 2006, Springer Verlag.

• P. Vieira-Marques, S. Robles, J. Cucurull, R. Cruz-Correia, G. Navarro, and

R. Mart́ı. Secure integration of distributed medical data using mobile agents.

IEEE Intelligent Systems, 21(6):47–54, 2006.

• J. Cucurull, J. Ametller, and R. Martı́. Agent mobility. In F. L. Bellifem-

ine, G. Caire, and D. Greenwood, editors,Developing Multi-Agent Systems with

JADE, pages 115–130. Wiley, January 2006.

6 CHAPTER 1. INTRODUCTION

• J. Cucurull, R. Mart́ı, S. Robles, J. Borrell, and G. Navarro. FIPA-based interop-

erable agent mobility. InMulti-Agent Systems and Applications V, volume 4696

of LNAI, pages 319–321, Leipzig, Germany, September 2007. Springer.

• J. Cucurull, B. J. Overeinder, M. A. Oey, J. Borrell, and F. M. T. Brazier. Ab-

stract software migration architecture towards agent middleware interoperability.

In Proceedings of the International Multiconference on Computer Science and

Information Technology, pages 27–37, Wisla, Poland, October 2007.

• J. Cucurull, R. Mart́ı, G. Navarro-Arribas, S. Robles, B. J. Overeinder, and J. Bor-

rell. Agent mobility architecture based on IEEE-FIPA standards. Submitted to

Computer Communications.

• J. Cucurull, R. Mart́ı, G. Navarro-Arribas, S. Robles, and J. Borrell. Full mobile

agent interoperability in an IEEE-FIPA context. Submittedto Journal of Systems

and Software.

• J. Cucurull, G. Navarro-Arribas, R. Martı́, S. Robles, and J. Borrell. An efficient

and secure agent code distribution service. Submitted to Journal of Network and

Computer Applications.

Chapter 2

Mobile Agents

This chapter introduces the mobile agent technology. Central part of it are the definition

of mobile agents, the introduction of agent basics, the introduction to agent mobility,

the discussion of the most frequent interoperability issues and extended solutions, and

a summary of the most relevant agent security requirements and threats.

2.1 Definition

Mobile Agents (MAs) [Whi96] are a technology which has its origin on two different

disciplines. On the one hand, the artificial intelligence community created the concept

of intelligent agent [WJ95]. On the other hand, the distributed systems community, with

a more pragmatic vision of MAs, focused on the exploitation of code mobility [FPV98].

A valid definition for MAs, regarding the two mentioned disciplines, is that they are

intelligent software entities that have the ability to stopand resume their execution in

different network locations to accomplish a set of tasks. They live within environments

called agent platforms, that define the boundaries of available locations, and they are

mobile, autonomous, reactive, proactive and social (see definitions in Table 2.1).

Although there is no application that cannot be conceived without the existence of

MAs, they ease the implementation of applications which require:

• Task delegation: Due to the inherent autonomy of agents and MAs, they can be

assigned with a set of tasks which the agent performs on behalf of its owner, e.g.,

7

8 CHAPTER 2. MOBILE AGENTS

Mobility Agent ability of suspending its execution in a specific agentplatform,
and resume it in another agent platform, i.e., in another location. This
process is usually called agent migration.

Autonomy Each agent is driven according to a code specially developedto
achieve one or more goals. The agent actions are completely decided
according to this code without direct intervention of otherparties.

Reactivity Agents react to the environment changes in order to achieve their
goals.

Proactivity Agents change their environment and take several initiatives to
achieve their goals.

Sociability It is the ability of agents to interact with other agents. This is a
key feature, since some agents only can perceive their environment
through communication with other agents.

Table 2.1: Mobile Agent Properties.

in [VMRC+06] is described a medical application where the task of searching for

patients information is delegated to an specific agent.

• Asynchronous processing: Mobile agent execution is not dependent on a con-

tinuous communication with the agent owner or the home agentplatform. There-

fore, the agent can freely move through different network locations while it carries

out the assigned tasks. An example of this is nomadic computing [MMLVA06],

where agents reside in mobile devices and migrate to other locations to perform

tasks without consuming the scarce resources of the mobile device.

• Dynamic environment adaptation: Agents perceive environment changes and

react by adapting their behaviour to them. An example applied to network man-

agement can be seen in [Sat03], where a MA is reused without modifications to

manage various networks.

• Flexible interfaces: Since its ease of adaptability, agents can be used to interact

with completely different interfaces, such as it is proposed in [VFL06]. Even,

agents can be used as improvised adaptors between two kinds of interfaces.

• Fault tolerance: Because of the agents capacity to adapt to changing environ-

ments, MAs can easily deal with computer and network faults.They are specially

2.2. THE AGENT 9

suitable for hostile environments, where the agent can decide to visit alternative

locations in case of failure. An example of fault tolerance based on MAs can be

seen in [KE06].

• Parallelism: The autonomous nature of MAs, the ability to migrate to differ-

ent locations, and the capacity of interacting with other agents, make them suit-

able for parallel applications, where a coordinated group of several agents are

used. An example, which uses them as a load balancing mechanism, can be seen

in [TST+05].

• Local data processing: MAs can process data directly where it resides without

having to move it from the original location. There are two kinds of applications

which benefit from this feature. Firstly,sea-of-dataapplications where there is a

large quantity of distributed information to process and the movement of it has an

elevated cost [Gra03]. And, secondly, medical applications [VMRC+06] where

moving data from its original location is not legal.

2.2 The Agent

A MA, from an architectural point of view, is an entity composed of a unique identifier

and three main components: code, data, and state. Furthermore, an agent has a life

cycle associated to its execution state. These components are maintained in Mobile

Agent Systems (MASs) by Agent Platforms (APs). The softwarewhich implements

APs, and therefore manages agents, is called Agent Middleware (AM).

2.2.1 Agent Identification

Each MA has an associated identifier that distinguishes it individually. This identi-

fier is assigned when the agent is created, it should be immutable, and it is unique

within the scope of the agent authority. The agent identification is usually related to

the communication among agents. Although it is a well definedconcept, each AM has

its own approximation of it. In some cases the identifier is chosen by the agent de-

veloper, in other cases it is imposed by the AM, and some timesan agent can have

10 CHAPTER 2. MOBILE AGENTS

more than one identifier. For example, the Aglets [LM98] middleware identifies every

agent by using the AgletID, which is a unique identifier generated by the AM. On the

other hand, the AgentScape [OB04] AM provides each of its agents with an identifi-

cation called “agent handler”. This identification cannot be chosen by the agent devel-

oper, although more than one agent handler can be requested for each agent. And the

JADE [BCPR08, BCG06] AM uses the Agent Identifier (AID) defined by IEEE-FIPA

(Section 2.4.3), which in the case of JADE is composed of an agent name chosen by

the agent owner in addition to the name of the home agent platform. Notice that in this

last case, although the AP controls the names assigned to itsagents, the agent owner

is involved in the agent identification, therefore it has part of the responsibility for not

creating agents with duplicate names.

2.2.2 Agent Components

Theagent codeis the core component of the agent and contains the agent’s main func-

tionality. Several aspects of the agent code are important for the mobility and interoper-

ability of agents. They are discussed in the next paragraphs.

The code is developed and compiled using a Programming Language (PL) and com-

puter architecture supported by the hosting AMs. In some cases, for interoperability or

efficiency reasons, even several versions of the code are provided with the agent (this

is explained in more detail in Section 6.5), e.g., codes withthe same functionality but

developed with different PLs and/or compiled for differentcomputer architectures.

The agent code is usually interpreted code, since it must be easily separable from

its local agent platform for, later, being incorporated to aremote agent platform. This

is the main reason why most of the MASs run over an interpreteror a virtual machine,

e.g., the Java Runtime Environment. Interpreters even have been used with PLs such as

C and C++, e.g., the MAS Mobile-C [CCP06] uses the C/C++ Ch [Sof] interpreter.

An important aspect related to the agent code is how it is managed and packed.

Depending on the PL in which the code is written and the algorithm used in the agent

migration, the code can be packed and sent in different ways.In object oriented PLs

code is usually composed of many code snippets which represent each class and are

packed in a single file. Usually this file is sent to remote platforms all at once, e.g., in

2.2. THE AGENT 11

Java MASs the code is packed in JAR files. Nevertheless, thereare on-demand migra-

tion algorithms (Section 3.4) where the code snippets are individually sent, in this case

the code may not be packed in a single file. Therefore, the typeof packaging used is

highly dependent on the AM used and must be taken into accountwhen interoperability

between different MASs is pursued.

Theagent dataare the movable resources associated to the MA, i.e., all theinforma-

tion used and, maybe, produced by the agent during its life, which is moved along with

it. In object oriented systems this is usually associated tothe object instance. How this

information is encoded is completely dependent on each AM, e.g., in Java MASs the

Java Serialisation mechanism is typically used. In Section6.5 a proposal for a common

agent data encoding is presented.

The agent stateis the information associated to the agent execution from a oper-

ating system point of view. It comprises the program counter, the heap, and so forth.

Nonetheless, most of the code interpreters used in MASs do not support access to this

information. In addition to that, the agent state stresses the interoperability issues, since

the involved AMs must share the same code interpreters or virtual machines.

The solution commonly adopted when the capture of the agent state is not possible

or convenient consists of replacing part of the agent state by the agent data. In this case,

since no program counter is captured, the execution of the agent is always resumed from

the first line of code. But the agent developer can use some tricks to save part of the

execution state as agent data. An example is the use of switchcontrol flow statements

driven by a simple agent variable which is updated and saved in each agent execution.

Therefore, the execution can be approximately resumed in a specific block of code. The

use or not of the agent state leads to two different types of agent mobility,strongand

weakmobility respectively, which are explained in Section 2.3.An example of two

equivalent codes denoting these two cases is shown in Figure2.1.

2.2.3 Agent Life Cycle

MAs, as any software process, have a finite period of life. During this period they are

subject to different events such as their creation, suspension of their execution, migra-

tion, and so on. Any of these events may change the agent behaviour regarding their

12 CHAPTER 2. MOBILE AGENTS

Algorithm 1 : Strong mobil-
ity.

begin
Task A
doMove();
Task B

end

Algorithm 2 : Weak mobility.

begin
switch statedo

case0
Task A;
state = 1;
doMove();
break;

case1
Task B;
break;

end
end

Figure 2.1: Equivalent algorithms using strong and weak mobility.

environment. The possible behaviours the agent may adopt can be mapped as an agent

state (do not confuse it with the agent state component previously explained). The agent

life cycle is the set of possible states adopted by agents regarding the possible events

that may be triggered to them.

Some AMs do not have the concept of agent life cycle, e.g., Tacoma [JLvR+02],

Aglets [LM98], Tracy [BR05], and AgentScape [OB04]. In this case the most simple

agent life cycle is applied. It consists of only two states, one applied to the agent when

it is running and the other one when it is not, and two events, the agent creation and

the agent death. Other AMs that take into account the conceptof agent life cycle offer

models with more states and events, e.g., JADE [BCPR08, BCG06], SeMoA [RJS01],

Mobile-C [CCP06]. In this case, the agent life cycles can include states to indicate the

agent is migrating, or it is suspended or waiting for some event among others.

2.2.4 The Mobile Agent System

Mobile Agent Systems (MASs) are the environments where agents reside, operate, and

interact with each other. They provide the necessary infrastructure for the agents. MASs

are typically composed of one or more APs that may be distributed through several

hosts, and which are implemented by a software called AM. TheAP typically offers

2.3. AGENT MOBILITY 13

a set of basic services to agents, for example agent management, agent messaging, di-

rectory services, and so forth. The services offered are highly dependent on the AP

implementation. Nevertheless, there is no general agreement in the specific details of

MASs structure. Those which do not support agent mobility are called Multi Agent

Systems. Although they share the MAS acronym, in this thesisonly the Mobile Agent

Systems (MASs) are considered, therefore there is no confusion about it. From now

on we will consider MASs composed of a single AP residing in a specific host. The

combination of an AP and a host will be calledlocation. MAs are moved between

locations.

Since the beginnings of the mobile agent technology [Whi96] several MASs have

appeared. Describing all of them makes no sense since it is not required to understand

all the chapters of this thesis. Therefore, only a selectionof MASs are described in the

specific chapters where they are required, e.g., see Section6.2.

2.3 Agent Mobility

The main characteristic of MAs is the ability to migrate fromone location to another.

In this section there is an explanation of the mobility basics, the types of agent mobility,

and the concept of agent itinerary.

2.3.1 Mobility Basics

Agent mobility is the ability of agents to suspend their execution, move their code,

data, and state to another location, and there resume their execution. The set of actions

involved in the movement of an agent is calledmigration process. The complexity of

this process is variable and depends on the protocols and type of mobility chosen. The

essential operations of a simple migration process are outlined in the following lines:

1. Migration request: An agent decides to migrate to another location or, in some

cases, an agent requests another agent to migrate. Usually AM interfaces provide

agents with methods to request the migration.

14 CHAPTER 2. MOBILE AGENTS

2. Stop agent execution: The execution of the migrating agent is stopped, therefore

its life cycle is updated to the most appropriate state. Fromthis step the agent can

be unregistered from its local platform.

3. Collect agent components: The agent code, data, and state are collected and

packed to be sent. As it is explained in Section 2.2.2 these components and their

packaging are completely dependent on the MAS implementation.

4. Transfer agent components: The agent code, data, and state gathered in the

previous step are sent to the remote location. How they are sent is also dependent

on the MAS implementation, which in some cases can be compliant to some

agent communication standards such as the IEEE-FIPA specifications described

in Section 2.4.3.

5. Agent rebuilding: The agent is rebuilt and registered in the remote location by

using the components previously transfered.

6. Agent resumption: The agent execution is resumed, therefore its life cycle is

updated to the most appropriate state.

Although a simple migration process is not complex, real systems involve a large

quantity of factors that can enormously increase its complexity, such as mobility proto-

cols, or mobility interoperability. The analysis of these factors and their solution is one

of the contributions of this thesis.

2.3.2 Types of Agent Mobility

There are two main types of agent mobility [FPV98]:weakandstrongmobility. As it is

illustrated in Figure 2.1, the type of mobility chosen dictates the agent code development

style [CLZ00].

From a conceptual perspective, strong mobility is preferred. It allows agents to sus-

pend their execution and, then, resume it exactly at the samepoint it was suspended.

However, strong mobility is complex to implement since the execution state must be

2.3. AGENT MOBILITY 15

captured and restored in the destination location, an operation which is not always sup-

ported by PLs and/or virtual machines, e.g., the Java RuntimeEnvironment [CLZ00].

Nevertheless, there are some alternatives to implement strong mobility without having

access to the execution state. They consist of the modification of the agent code, in the

remote location, to make the next line to execute, the first line of code. This method

is used in [Yee99] and described in [HY98]. Some variants of it are also proposed

in [IKKW01, WHB01, CHB03]. Despite these solutions, there is another issue with the

strong mobility. It is the high dependence on the underlyingcomputer architectures or

virtual machines, which makes difficult to achieve a minimalinteroperability when het-

erogeneous systems are used. Some mobile agent platforms providing strong mobility

are Telescript [Whi96] and D’Agents[GCK+02] (Section 6.2.2).

Weak mobility does not capture the execution state, then thecode is always resumed

from the beginning. This is not a major issue, because using the agent data, the pro-

grammer can drive the migration to a specific part of the code,e.g., using a switch

control flow statement. This migration type is more difficultto manage by the agent de-

veloper, but it is the most flexible and portable alternative. Because of that, this type of

mobility has been widely used for example in Aglets [LM98], Grasshopper [BBCM00],

SeMoA [RJS01], and JADE [BCPR08, BCG06] (Section 6.2.1).

2.3.3 Agent Itineraries

Agent itineraries are the lists of locations that MAs visit during their life. The concept

of itinerary was firstly introduced in the Concordia [WPT+97] AM. The concept is

specially important when security is introduced to MAs (seeSection 2.5 and Chapter 7

for a more detailed essay on agent security).

Two basic types of itineraries can be distinguished. On the one hand, there are

static itineraries, which are decided when the agent is created. They comprise the set of

ordered locations that the agent will visit during its life.And, on the other hand, there

aredynamic itineraries, which are not initially preestablished and are decided during

the agent life according to its necessities. In some cases this last kind of itineraries can

be constrained to a subset of possible locations to visit.

There are also some intermediate proposals [SRM98, MB02, MB03]which are not

16 CHAPTER 2. MOBILE AGENTS

so restrictive as the static itineraries neither so open as dynamic itineraries. These pro-

posals introduce new kinds of mobile agent transitions, i.e., the point when an agent

decides the next location to visit from its itinerary. Instead of the single transition which

makes the agent move from the present location to the next one, these new transition

can make the agent to choose between visiting one from two selected locations, or visit

both in an undetermined order among others. The set of possible types of transitions

depends on the chosen scheme.

2.4 Agent Interoperability

For MAs to be deployed on Internet scale distributed systems, interoperability between

different types of AM needs to be ensured. In the case of MAs this feature is specially

important because agents must interact with other agents and different platforms.

2.4.1 Full Agent Interoperability

According to Pinsdorfet al. [PR02], two MASs are interoperable if a MA can interact

and communicate with other agents (local or remote), and if the agents of one system

can migrate to the other system, i.e., they can leave their system and resume their exe-

cution in the next interoperable system. This kind of interoperability will be calledfull

interoperabilityfrom now on. Considering Ametlleret al. [ACM+06], and, also, Pins-

dorf et al. [PR02], several areas can be inferred to cope with thisfull interoperability:

• Programming language and underlying architecture: This area is not limited

to MAs, but to any application. Since different PLs, operating systems, micro-

processors, and Underlying Architectures (UAs) exist, it is impossible to have a

unique executable code format. Some of the solutions to thisproblem exploit the

use of interpreted PLs such asPerl, Python, or Java, where a virtual machine

abstracts the code from the underlying hardware and operating systems.

• Middleware: Since agents run over AMs, there are important constraintsabout

the Application Programming Interfaces (APIs), the agent management, and the

agent life cycle model. Several solutions in the literaturepropose the use of

2.4. AGENT INTEROPERABILITY 17

adaptation layers to provide an uniform set of middleware properties to all the

agents [MPD+02], the use of wrapper mechanisms to provide voluntary interop-

erability [PR02], and the use of a high level approach based onthe concept of the

universal agent [FGR07].

• Communication: Different AMs usually implement different communication

methods for their agents. This includes the message structures used and the mes-

sage delivery methods. This problem can be solved by using well-known agent

standards like the ones defined by IEEE-FIPA (Section 2.4.3).

• Mobility : Similarly to the communication area, migrating an agent implies agree-

ment with the set of messages exchanged and with the methods of delivery used.

In addition to that, the AM must agree with the steps of the migration process and

the information exchanged in each message.

A securityarea could also be included, although it is not essential forreaching afull

interoperabilitybased on the previous definition.

2.4.2 Agent Standards

A number of organisations have initiated the development ofagent standards, at plat-

form and communication areas, in an attempt to deal with the problem of incompatibility

and interoperability. The standards have had different degrees of success, although none

of them tackle the four areas previously described.

The first organisation to deal with agent standardisation was the Object Manage-

ment Group (OMG). OMG wrote a specification document calledMobile Agent System

Interoperability Facilities (MASIF)[OMG97], which states a set of common interfaces

(MAFFinder, a naming service, and MAFAgentSystem, for management tasks) and def-

initions based on the CORBA IDL specifications. It provides possible AM and mobility

interoperability, although this cannot be achieved without the collaboration of the in-

volved MASs developers. It is not intended to deal with agentmobility between differ-

ent kinds of AM, and neither agent standard interface nor agent communication mech-

anisms are defined. Concerning security, MASIF simply addresses existing CORBA

18 CHAPTER 2. MOBILE AGENTS

security to fit within the mobile agents middleware as betteras possible. Currently,

MASIF has no activity and cannot be considered as an option innowadays AMs. This

standard was used in several AMs, such as Aglets [LM98], Grasshopper [BBCM00],

SMART [WHN+01] or SOMA [BCS01b] (Section 6.2.1).

There is a second organisation dealing with agent standardisation, theIEEE Founda-

tion for Intelligent Physical Agents (IEEE-FIPA), which is focused on the management

and communication of intelligent agents. The specifications standardised by IEEE-FIPA

define the basic components of an agent platform, an agent identification scheme, a

complete communication infrastructure, and several agentmanagement services. IEEE-

FIPA is a dynamic organisation, its members (universities,companies, research insti-

tutes, and so forth) are always actively proposing specifications for new areas of inter-

est. Therefore, the IEEE-FIPA are a set of up-to-date standards that must be considered

when implementing present AMs. IEEE-FIPA specifications are used in more recent

AMs regarding MASIF, such as JADE [BCG06] or Mobile-C [CCP06] (Section 6.2.1).

2.4.3 IEEE-FIPA

The IEEE-FIPA organisation has standardised a set of specifications to guarantee agent

interoperability in the areas of agent middleware and agentcommunication. The first

specification is the FIPA Abstract Architecture [FIP02a] which describes the basic as-

pects of a multi agent system (take into account that IEEE-FIPA does not initially

consider MAs). Nevertheless, the core of the IEEE-FIPA specifications is the FIPA

Agent Management Specification[FIP04], which defines the agent management refer-

ence model, together with the FIPA ACL Message Structure Specification [FIP02e].

The Agent Management Reference Model

The agent management reference model is the normative framework where FIPA agents

are executed. An agent platform compliant with IEEE-FIPA and, therefore, with this

model, is composed of agents, an Agent Management System (AMS), a Message Trans-

port System (MTS), and, optionally, a Directory Facilitator (DF). This is depicted in

Figure 2.2. The internals of these components are not subject to standardisation within

2.4. AGENT INTEROPERABILITY 19

IEEE-FIPA, giving developers a lot of independence to make their own implementa-

tions.

Figure 2.2: IEEE-FIPA Agent Management Reference Model.

The IEEE-FIPA agent is a computation process which is identified by an Agent

Identifier (AID), and that communicates with other agents byusing the Agent Com-

munication Language [FIP02e] (ACL). The AID includes the agent name, which is

mandatory, a set of transport addresses to reach the agent, and a set of name resolu-

tion service addresses. The agent name is an immutable globally unique identifier. No

specific format is enforced, although it is proposed the use of a simple agent name con-

catenated with the home agent platform address (the platform where the agent has been

initially created). This format is used in the JADE [BCPR08, BCG06] agent platform.

The transport addresses are the physical addresses where the agent can be reached. One

or more addresses can be provided, and they are encoded according to the URL for-

mat [BLFMa]. Finally, the name resolution service addressesare a set of agent AIDs

which offer the name resolution service (typically implemented by the AMS). This is

a service that returns an agent description for the requested AID supposing it would be

registered there.

The Agent Management System (AMS) is a mandatory component which maintains

a directory of agents with their corresponding AIDs, i.e., it is a white pages service.

Each agent must be registered to this component in order to get a valid AID. Further-

more, the AMS, on behalf of the agent platform, maintains itsagent’s life cycles. IEEE-

FIPA defines a specific agent life cycle in [FIP04]. It has six different states (active,

20 CHAPTER 2. MOBILE AGENTS

initiated, waiting, suspended, transit, andunknown) and ten possible transitions (cre-

ate, invoke, destroy, quit, suspend, resume, wait, wake up, move, andexecute), which

are used, among other things, to manage the delivery of messages to the agent. Finally,

only a single AMS exists in each agent platform.

Figure 2.3: Agent Life Cycle.

The Message Transport Service [FIP02h] (MTS) is another mandatory component

which provides local and remote agent communication. The service is offered through

the Agent Communication Channel (ACC), which is integrated within the MTS and

implements one or more Message Transport Protocols (MTP). An MTP is a physical

protocol used to transfer the agent message data, e.g., the MTP-HTTP [FIP02f], which

is based on the transfer of agent messages over the application network protocol HTTP,

or the MTP-IIOP [FIP02g], which is based on the transfer of agent messages over an

OMG IDL [OMG99] structure. According to [FIP02h] an agent can send a message to

another agent through the local and remote ACC, directly to theremote ACC or directly

to the other agent (by using proprietary mechanisms). In Figure 2.4 there is shown the

first case which is the most common.

The Directory Facilitator (DF) is an optional component that provides a directory of

services offered by agents. It is a yellow pages service. More than one DF can exist in

2.4. AGENT INTEROPERABILITY 21

Figure 2.4: Agent Message Transfer.

each agent platform.

The Agent Communication Language

The communication of agents is not only limited to the transport of messages, but to the

content and encoding of them. IEEE-FIPA has done an important effort in the defini-

tion of a standard Agent Communication Language (ACL), specified in the FIPA ACL

Message Structure Specification [FIP02e].

The FIPA ACL message is composed of a set of one or more possibleparameters

which are listed on Table 2.2. The only mandatory parameter is theperformative,

which denotes the type of communicative act (defined in [FIP02i]) associated to the

message. Usually, messages will also contain thesender, receiver, andcontent

parameters. In addition to the parameters listed on Table 2.2, user-defined parameters

can also be included in the message. Their name must always begin with the prefa-

tory string “X-”. The ACL message can be represented using different encodings, e.g.,

IEEE-FIPA defines specifications for encodings based on a Bit-Efficient representa-

tion [FIP02b], a String representation [FIP02c], and a XML representation [FIP02d].

Furthermore, the ACL message is encapsulated within a structure called envelope, which

is also encoded using a specific representation.

The type of content included in an ACL message is described by thelanguage,

encoding, andontology parameters. IEEE-FIPA does not enforce any specific

22 CHAPTER 2. MOBILE AGENTS

Parameter Category
performative Type of communicative acts
sender Participant in communication
receiver Participant in communication
reply-to Participant in communication
content Content of message
language Description of content
encoding Description of content
ontology Description of content
protocol Control of conversation
conversation-id Control of conversation
reply-with Control of conversation
in-reply-to Control of conversation
reply-by Control of conversation

Table 2.2: FIPA ACL Message Parameters.

type of content, since it is completely dependent on the agents involved. Neverthe-

less, a specific syntax and its associated semantics, based on the s-expression syntax,

are suggested as a content language for the ACL messages. It isthe Semantic Lan-

guage (SL) [FIP02l] content language. Three cumulative subsets of the FIPA SL are

defined. The FIPA SL0, the minimal subset, the FIPA SL1, with support for proposi-

tional expressions, and the FIPA SL2, with support for first order predicate and modal

logic, although restricted to ensure that it must be decidable. The FIPA SL0 is used

to encode the content of messages exchanged with the AMS according to the Agent

Management Ontology specified in [FIP04]. FIPA SL0 is also extensively used in the

Inter-Platform Mobility Architecture (IPMA), proposed inChapter 3. This subset of the

FIPA SL provides agents with support for requesting actionsand state predicates.

Usually, ACL messages are involved in agent conversations. These conversations

can be expressed in terms of interaction protocols, i.e., a protocol that defines exactly

which ACL messages must be exchanged to carry out a specific action. Although there

are several parameters related to the control of agent conversations, three are specific

for the interaction protocols. Theprotocol parameter, which specifies the interaction

protocol name in which the message is involved. Theconversation-id parameter,

which contains a non-null value assigned by the initiator entity of the protocol and which

2.5. AGENT SECURITY 23

is present in all the messages involved in the protocol. And thereply-by parameter,

which indicates the latest time by which the sending agent would like to receive the

next message of the protocol flow. IEEE-FIPA has released several specifications for

different interaction protocols, e.g., the FIPA Request Interaction Protocol Specifica-

tion [FIP02k] and the FIPA Propose Interaction Protocol Specification [FIP02j]. These

two interaction protocols are represented using the Agent UML [BMO01, OPB01] no-

tation in Figures 2.5 and 2.6 respectively.

Figure 2.5: FIPA Request Interaction
Protocol.

Figure 2.6: FIPA Propose Interaction
Protocol.

2.5 Agent Security

The security of MAs is one of the topics with more research in the area. Despite its

complexity, at the end, the security requirements desired for MAs are similar to the ones

desired for any computer system. In general some security mechanisms are expected to

prevent or, at least, detect system abuses. The most common security requirements are

listed in the following lines:

24 CHAPTER 2. MOBILE AGENTS

• Confidentiality : Data carried, sent, and used by agents must be kept confidential

regarding the other agents. Unauthorised access to this data may compromise the

agent owner, APs, and other agents. Furthermore, it is also desirable to keep agent

communications secret. Sometimes, even the message flow must be protected,

since it can hint third parties about some agent operations.

• Authenticity and integrity : This requirement guarantees that agent data and code

really belong to the entity which claims for their ownership, and that they are not

manipulated. It is important to prevent the execution of hacked agents. It is also

desirable to protect the agent results along their itinerary, preventing forgery.

• Access control: Only authorised agents must get access to a specific AP. Fur-

thermore, a specific degree of privileges, with restrictions to get access to specific

resources, must be assigned to agents. It is also usual to define which agents can

use which resources. As can be seen in the literature [NA06],the MA access

control is complex because of the distributed nature of agents, and because of the

huge number of different authorities that can represent an agent.

• Accountability : This requirement implies the registration of all the actions car-

ried out by agents, APs, and other entities participating ofthe system. Therefore,

they have to legally account for their actions.

• Availability : APs must guarantee the availability of their services, despite the

errors or denial of service attacks that may happen. Furthermore, fault tolerance

systems should be present to detect and recover from possible AP failures and

agent loses [SBS00, LCW04].

• Anonymity : In several cases, such as electronic business, the anonymity of the

agent owner must be preserved. Nonetheless, this requirement must be balanced

with the accountability requirement. Otherwise, agents would not take responsi-

bility of their actions.

In addition to the security requirements, a set of usual mobile agent security threats

are detailed in the following paragraphs. The threats listed are not exclusive of the

mobile agent technology, but can be applied to it.

2.6. SUMMARY 25

• Unauthorised information disclosure: The information from which agents are

composed (code, data, and state) can be obtained by unauthorised parties. This

also affects the information exchanged between two agents and information owned

by APs.

• Information manipulation: The information related to agents can be manipulated

by unauthorised parties. The consequences of this manipulation depend on the in-

formation modified: agent code modification changes the agent behaviour; agent

data modification changes the agent results and behaviour; agent state modifica-

tion changes the agent behaviour; agent itinerary modification changes the next

locations to visit; and agent communications modification manipulates the agent

interaction.

• Denial of service: Agents, APs, or third parties can attempt to make unavailable

the services offered by other agents and APs.

• Unauthorised access: Agents may intend to gain privileges to migrate to locations

or access resources which are forbidden to them.

• Impersonation: Agents and APs that fraudulently adopt the identity of another

agent or AP. The aim of this attack is gaining privileges of other parties or doing

things on behalf of them.

• Repudiation: Agents that deny something they have really done. This is important

to prevent, otherwise agents could commit fraud and deny itsresponsibility.

• Copy and re-execution: Agents which are copied and executed in non authorised

locations according to the agent itinerary. This is also applicable to the execution

of an agent to an AP present in its itinerary.

2.6 Summary

In this chapter the mobile agent technology has been introduced. MAs have been de-

fined and their properties have been discussed. Then, several important aspects for

26 CHAPTER 2. MOBILE AGENTS

the comprehension of the next chapters have been dealt. Firstly the agent internals have

been presented, including their identification, the components from which they are com-

posed, their life cycle, and the environments where they reside. Secondly, the mobility

of agents has been dealt, explaining the basic steps needed to move an agent, the existing

types of agent mobility, and the concept of agent itineraries. Thirdly, the interoperabil-

ity of agents has been discussed. In this section the different areas which affect the

interoperability of agents have been shown, some agent standards have been presented,

and the IEEE-FIPA specifications have been detailed from theperspective required for

the rest of the thesis. And, finally, the mobile agent security requirements and possible

threats have also been presented.

Chapter 3

Inter-Platform Mobility Architecture

This chapter presents the design, implementation, and comparison of a new mobility

model suitable for different kinds of agent middleware and focused on improving the

interoperability in the area of agent mobility.

3.1 Introduction

Agent mobility, as stated in the previous chapter, is the ability of agents to suspend

their execution, move their code, data, and state to anotherlocation, and there resume

their execution. Although the concept is simple, the designof a mobility model suitable

for different kinds of Agent Middleware (AM) and focused on achieving full agent

interoperability(Section 2.4.1) is not an easy task.

In the next sections a flexible agent migration model, strongly based on well-known

agent standards, is presented. Its main goal is dealing withinteroperability in the area

of agent mobility. The result is a flexible agent migration architecture, called Inter-

Platform Mobility Architecture (IPMA), based on the IEEE-FIPA specifications and,

therefore, conceived to be implemented at the application level of any AM with any

Programming Language (PL).

The flexibility of IPMA is a consequence of its multi-protocol design. As it is ex-

plained in Section 3.3, some tasks of the migration process can be implemented by

negotiable protocols. Therefore each migration can be different from the others. One

27

28 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

of the most relevant tasks is the transfer of the agent code, data, and state. The way

these parts of the agent are transfered depends on the migration strategy [BR05] used

in the migration process. Several migration strategies arepresented in Section 3.4 as

interchangeable protocols for IPMA: the Push Cache TransferProtocol (PCTP), the

On-Demand Transfer Protocol (ODTP), the Fragmented Transfer Protocol (FrTP), and

the REST Transfer Protocol (RESTTP).

The contribution reported in this chapter has been implemented, in order to validate

it, in the JADE AM (Section 3.6), and the AgentScape AM (Section 3.7), as the JADE

Inter-Platform Mobility Service (JIPMS) [JIPa], and the AgentScape Inter-Platform

Mobility Service (ASIPMS) [COO+07] respectively. This work in agent mobility was

preceded by a first inter-platform mobility service prototype, also implemented in the

JADE AM [CAM06], to evaluate the viability of using the mentioned IEEE-FIPA stan-

dards in agent migration [ARB03].

3.2 Related work

In this section several works related to the interoperability in the area of agent mobility

are shown. Each one is focused on a set of specific goals.

The first contribution is theMobile Agent System Interoperability Facilities (MASIF)

[OMG97] specification created by the Object Management Group (OMG). As previ-

ously explained in Section 2.4.2, MASIF defines a set of common interfaces and defini-

tions based on the CORBA IDL for mobile AMs. They merely providea set of low level

methods which developers implement in their AMs. There are no migration strategies

imposed by the specification, although they may be limited tothe possibilities offered

by the combination of the methods provided. Nevertheless MASIF is not intended to

deal with agent mobility between different kinds of AM, where different agent profiles

are supported. Nowadays, MASIF can be considered outdated,since it is no longer

adopted by new AMs.

Another contribution is theFIPA Agent Management Support for Mobility Specifi-

cation [FIP00] created by the IEEE-FIPA organisation. The specification proposes two

3.2. RELATED WORK 29

migration protocols, some changes to the standard FIPA agent life cycle, and some ad-

ditions to the FIPA Agent Management ontology. Nonetheless, this mobility proposal

is only intended to be an application level wrapper for the native mobility mechanisms

present in existing Mobile Agent Systems (MASs), i.e., it provides a set of high level

tools to coordinate the migration of agents between two platforms. Furthermore, se-

curity concerns are not addressed by the specification. Finally, since it did not have

sufficient acceptance and different independent implementations, it consequently did

not get the classification of a standard. Nevertheless, the changes to the standard FIPA

agent life cycle were finally integrated in [FIP04].

Out of the main standardisation initiatives, there are two other works which have

interoperability as part of their goals: the Kalong mobility model [BR05] and the Agent

Operating System (AOS) [vNOT+07]. Kalong is a mobility model focused on the

achievement of efficient agent migrations. It is based on theSimple Agent Transmission

Protocol (SATP), which defines a set of binary messages to support all the common mi-

gration operations (transfer of code snippets, transfer ofdata, commands to load code,

and so forth). It has the advantage that, similarly to MASIF,the combination of these

operations end up into different migration strategies (sending all the code at once or

only the parts needed among others). Their authors refer to the implementation of Ka-

long as a virtual machine for agent migration (for its ability to execute the mentioned

operations), and as a software component. Unlike the previous contributions, Kalong

was designed to be used with the Tracy AMs, although it can also be used in other AMs

as its own authors demonstrate in [PBK05].

Agent Operating System (AOS)[vNOT+07] is a specification which defines a layer

between local operating systems and high level AMs. This layer guarantees interop-

erability in the areas of communication and mobility with other AMs using the same

model. AOS is focused on security, and supports secure communication, secure agent

storage and secure migration. It is used in the AgentScape [OB04] and the Man-

sion [vNBT04] AMs.

There are two main issues with the presented standards or specifications. Firstly,

MASIF and IEEE-FIPA do not support a full mobility model, i.e., they are dependent

on elements which are not comprised within the standard or the specification. Secondly,

30 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

Kalong and AOS, despite being full mobility models, are not based on major agent

standards. These reasons have taken us to propose a new specification.

3.3 Inter-Platform Mobility Architecture

In this section a new inter-platform mobility architecturebased on a full mobility model

that uses well-known agent standards is presented.

3.3.1 Mobility Model

The mobility model described in this section is subject to the following list of require-

ments:

• Full agent mobility model: the model described must be complete, without de-

pending on middleware native migration services or other non standard facilities.

• Based on well-known agent standards: the model must not be isolated from the

existing agent technologies. Thus, the IEEE-FIPA specifications are chosen be-

cause they are the most widely used agent standards in current AMs.

• Support for different migration strategies: this must be an open model not limited

to a set of fixed migration strategies. A mechanism supporting multiple, eligible,

and negotiable migration strategies should be used.

• Application-level oriented: to ease the integration into existing AMs an application-

level oriented migration model is required. Furthermore, this philosophy con-

forms to the IEEE-FIPA specifications.

• Mobility type independence: the type of mobility, i.e., weak or strong, depends

on the availability of the agent state. The mobility model must be independent

of this. It must provide appropriate tools to support the twocases, such as agent

profiles and the ability to transfer the agent state in case ofnecessity.

3.3. INTER-PLATFORM MOBILITY ARCHITECTURE 31

• Agent middleware independence: the suitability of the model for any AM is an

essential requirement to provide interoperability in the mobility area. This is the

reason why the model presented is described in IEEE-FIPA terms.

• Extensible for future requirements: the agent technology is in constant evolution,

therefore the mobility model cannot be closed to future requirements.

Taking into account the requirements listed above, an abstract migration model has

been devised. In Figure 3.1 the general idea of the migrationmodel is depicted. The

model is designed to be implemented on top of any existing AM compliant with the

IEEE-FIPA specifications. It is based on a regular agent called Agent Mobility Manager

(AMM) which exchanges Agent Communication Language (ACL) Messages [FIP02e]

with remote AMM agents to carry out the agent migrations. Theuse of ACL messages

to migrate agents was firstly proposed in [ARB03].

Other implementations of the model without using a regular agent, such as the

AMM, were possible, but they would not totally conform to theIEEE-FIPA specifi-

cations, since IEEE-FIPA does not consider other possible interactions than agent to

agent. Furthermore, the AMM agent, as a mobility manager, can be in charge of other

future mobility related tasks, such as agent tracking and message forwarding [CFL+02],

local agent resource repository maintenance, and so on.

Figure 3.1: Migration model.

The general migration process supported by the model, from ahigh-level point of

view, is depicted in Figure 3.2, and includes the following steps:

1. The agent contacts the local AMM and requests to migrate.

2. The local AMM suspends the agent execution, and starts theACL message ex-

change with the remote AMM to agree with the next subprocesses.

32 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

Figure 3.2: General migration process.

3. The agreed subprocesses are carried out:

• optional agent authentication.

• agent transfer (including agent code+data+state).

• optional operations.

4. The remote AMM creates and registers the new agent using the code+data+state.

5. The local AMM shuts down the local agent and requests the remote AMM to start

the agent.

6. The remote AMM starts the new remote agent and informs about the success of

the process.

The migration model proposed is conceived to be implementedat the application

level, minimising or avoiding the middleware internal modifications. Thus the migra-

tion is also initiated from this level. This is the reason whythe migration of an agent

is requested by sending a specific ACL message to the AMM agent (step 1). There-

fore, the migration of an agent can be initiated by the agent itself or by another agent.

Nevertheless, complementary methods can also be supported.

The rest of the process (steps 2–6) is carried out by the two involved AMMs fol-

lowing the basic operations specified in the architecture presented in Section 3.3.2. As

3.3. INTER-PLATFORM MOBILITY ARCHITECTURE 33

the whole mobility model, the architecture is based on the exchange of ACL messages,

although some specific parts could take advantage of other technologies.

The process concludes with the migrating agent in the destination platform. This

agent is an indistinguishable copy of the one that was present in the source platform,

since the agent name is not modified by the migration process.The name of an agent

cannot be changed, as stated in the FIPA Abstract Architecture Specification [FIP02a].

Finally, notice that during almost all the process the localagent has been maintained

alive, although in a frozen state. The reason is that this mobility model is based on

several steps which may involve several negotiations that can drive the migration to fail.

In this case it is better to have the local agent ready to be resumed. The only expense

is that, at then end, a last step to kill the local agent and resume the execution of the

remote one is required. This step guarantees that only one copy of the same agent may

be running at a time.

3.3.2 Mobility Architecture

The migration model proposed in the previous section is mapped to a specification called

Inter-Platform Mobility Architecture (IPMA). The following paragraphs explain the

basic aspects of it, the agent profile and code management, the service registration, the

Main Migration Protocol (MMP), and the Protocol Sequences (PS).

Agent profile and code management

The proposed migration model claims its suitability for anyAM. Nevertheless, this

does not mean that all agents can migrate to any AM, since there may be differences in

the elements comprised by the other interoperability areas(Section 2.4.1). This is why

exists the concept ofagent profile.

The agent profile is a table with compatibility information about the migrating agent

and its code. According to this information a remote location decides to accept or refuse

an incoming agent. Included information in the IPMA agent profile refers to the MAS,

PL, and operating system where the agent should be executed (Table 3.1).

An agent, as proposed in Chapter 6, can extend its compatibility by providing several

34 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

codes suitable for different profiles. In this case, each agent profile table is associated to

one of this codes by means of Code Identifiers (CIDs). Furthermore, the order in which

agent profiles are included indicates the preferred order ofcode usage, since sometimes

more than one code can be chosen in a specific Agent Platform (AP).

The agent code is identified by the combination of several elements, the Code Group

Identifier (CGID), the Code Identifier (CID), the Security Revision (SR), and the Hash

Code Identifier (HCID). An example of it is illustrated in Figure 3.3.

Figure 3.3: Agent Code Identification.

• Code Group Identifier (CGID): Random value which uniquely identifies the

group of all codes associated to an agent (including all revisions, and different

PL codes compiled for different underlying architectures). It can help to add new

agent codes for a specific agent once it has been started, since the new code can

be bound to the existing agent.

• Code Identifier (CID): Random value which uniquely identifies an agent code

with a specific functionality, developed in a specific PL, andcompiled for a spe-

cific underlying architecture. The CID links an agent code with the specific pro-

file exchanged during the agent migration. Code security revisions do not alter

the CID.

• Security Revision (SR): Integer value which indicates the revision of the code

in terms of security bugfixes. It is used to decide which agentcode with the same

CID is more recent.

3.3. INTER-PLATFORM MOBILITY ARCHITECTURE 35

• Hash Code Identifier (HCID): Unique value created from the XOR of a MD5

cryptographic hash function applied to each code snippet. An agent code is usu-

ally composed of a package (ZIP file or Jar file among others) that contains several

smaller code snippets, e.g. classes. The HCID is used to checkthe integrity of

this agent code, in addition to be used by AP embedded cachingmechanisms.

This identifier is resilient to agent code repackaging, which is carried out by some

migration transfer protocols (Section 3.4), since it is calculated from the smallest

code snippets.

Finally, another important aspect to take into account is the way the agent data and

state are encoded. Different AMs may support different incompatible encodings. For

example, the most used data encoding algorithm in Java AMs isthe Java serialisation

mechanism, but in fact several other methods are possible (see Section 6.5.1 for a list

of them). IPMA enforces the use of only one agent data and one agent state encoding

methods for each agent. Otherwise, the agent data and state could not be shared from

one location to another (see Section 6.5 for a discussion about it).

Service registration

IPMA is designed as a service offered by the AMM agent. Such asother IEEE-FIPA

services, it is recommended to be registered in the Directory Facilitator (DF) [FIP04] of

the AP. DF is a yellow pages service optionally present in IEEE-FIPA compliant AMs.

There are two reasons for publishing the migration service in a yellow pages service:

• Easy localisation of remote destinations that support IPMA. Possible locations

can be searched in two ways. In the first way agents request remote DF agents

belonging to possible destinations to check if they supportIPMA. In the second

way agents only request their local DF agent. Therefore it isassumed that it is

federated with other DFs and it can obtain the services registered there.

• Assessment of local and remote locations support for the same migration architec-

ture protocols and agent profiles. The local migrating agentcontacts the remote

DF agent to request and compare this information. Followingthis procedure the

migration is usually led to success.

36 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

No other alternatives to publish the service are considered, since this is the only

method available within the IEEE-FIPA specifications. Technical details for the service

registration are provided in Appendix A.1.

Main Migration Protocol

An agent migration is initiated when an agent sends a specificACL message to the

AMM local to the migrating agent. An agent can request the migration of itself or

another agent. A specific ontology for this message is definedin Appendix A.2. After

this message is received the AMM initiates the Main Migration Protocol (MMP).

MMP, which is implemented by the AMM agent, manages the wholemigration pro-

cess (Figure 3.4). MMP is composed of an agent interaction protocol, which drives the

part of the process common to all the agent migrations, and the PS component. This

component is a sequence of three steps implemented by switchable migration protocols

(Section 3.4). These steps provide specific functionality and personalise each agent mi-

gration according to the protocols selected by the agent that has requested the migration.

These protocols can provide migration authentication and several ways of transferring

agents among others.

MMP starts the process with the exchange of a first message between the local and

remote AMMs involved in the migration. The information contained in this first mes-

sage includes (Table 3.1): the Migration Identifier (MID), the Agent Identifier (AID),

the CGID, the agent data and state encoding algorithms, the agent profiles (one or more

depending on the number of associated agent codes and their corresponding CIDs), the

agent version, and the migration protocols to use in the PS component. An agent mi-

gration is only possible if the two involved agent platformshave, at least, one transfer

protocol in common, they agree on the protocols to use, and there is, at least, an agent

profile supported. Otherwise, the migration process is refused. If the protocols selected

did not agree, another protocol selection can be chosen by the agent, and the migration

can be retried from scratch. The migration process concludes when all the steps are

carried out and the last message of the interaction protocolhas been sent.

MMP is implemented using a custom agent interaction protocol called Synchro-

nized Request (refer to Appendix A.3 for details), which is defined using Agent UML

3.3. INTER-PLATFORM MOBILITY ARCHITECTURE 37

Elements Description
migration-id Migration Unique Identifier (MID).

name FIPA Agent Identifier (AID).
cgid Agent code group identifier (CGID).

agent-profile cid Agent code identification associated to the profile.
system name The name of the mobile agent system environment.

major-version Major version.
minor-version Minor version.
dependencies Dependencies required.

language name The name of the mobile agent language.
major-version Major version.
minor-version Minor version.

format Code base format of the mobile agent.
filter Filter to execute over the code base before execute.

dependencies Dependencies required.
os name The name of the operating system.

major-version Major version.
minor-version Minor version.

hardware Hardware below the operating system.
dependencies Dependencies required.

data-encoding Data encoding method.
state-enconding State encoding method.
agent-version Agent version.
pre-transfer Pre-transfer protocols chosen.

transfer Transfer protocol chosen.
post-transfer Post-transfer protocols chosen.

Table 3.1: First message content.

[BMO01, OPB01]. It is based on the issue of two consecutive ACL message requests

in a single protocol, where the second request is only sent incase of the first’s success

(left side of Figure 3.4). These procedure is consistent with the model proposed in Sec-

tion 3.3.1, where the agent is transfered and, later, its execution resumed. The use of a

single interaction protocol contributes to have a compact MMP with all the mandatory

migration operations grouped altogether.

Individual agent migrations are uniquely identified, in thecontext of the two in-

volved APs, by a string called MID. The MID is included in thereply-with and in-

reply-tofields of all the ACL messages exchanged during the process (the first field is

used in the messages sent from the origin and the second in themessages sent from the

destination). In some cases the MID is also included as part of the message content.

38 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

A specific ontology defined in Appendix A.4 is used for all the ACL messages ex-

changed in MMP. The ontology defines the actions associated to the tworequestmes-

sages of MMP (move/clone and resume respectively), and several data structures.

Figure 3.4: Main Migration Protocol.

The functionality of MMP is achieved by following the process listed above, which

constitutes the immutable part of the architecture. The specific steps of the protocol can

be seen on the left side of Figure 3.4 and are detailed in the following lines:

1. A first message (Table 3.1) with the agent profile, requirements, and a list of

protocols feasible to be used within PS is sent.

2. The request may be refused or agreed by the remote AM, regarding whether the

agent requirements are satisfied and the requested protocols supported.

3. All the agreed protocols in the first message are executed in the corresponding

steps (right side of Figure 3.4) in the PS component.

4. The agent is registered in the remote platform (i.e., in the AMS agent of IEEE-

FIPA compliant AM). Then, a message is sent to the origin to notify the success

or failure of the agent registration.

3.3. INTER-PLATFORM MOBILITY ARCHITECTURE 39

5. If the agent is successfully registered, then it is removed from the local platform.

6. A message is sent to resume the agent execution in the remote platform.

7. A message is sent to the origin to notify the success or failure of this last operation.

In case of error, the process between the two involved AMMs iscancelled. This is

done by using the corresponding interaction protocols methods (refuse or failure mes-

sages) or, in case of not being possible, by using the FIPA-Cancel-Meta-Protocol defined

within the FIPA Request Interaction Protocol [FIP02k]. The error type is indicated by

the corresponding exception predicate (defined in AppendixA.4), included as content

of the message, according to Section 3.3.3.

Protocol Sequences

At the right side of Figure 3.4, there are represented the three steps that characterise

each migration: Pre-Transfer, Transfer and Post-Transfer. These steps customise the

migration process by using specific migration strategies (in the agent transfer), autho-

risation protocols, resource negotiation, or whatever kind of process agreed between

the involved platforms. They are represented as the three rectangles of the figure, and

implemented by the set of protocols chosen in the first message sent in MMP. They

are drawn inside the mentioned rectangles as dotted line boxes. Nonetheless, there is

an exception with the Transfer step. Unlike the other ones, aprotocol, and only one,

must be selected. In this case the protocol is represented asa single continuous line box

to denote its mandatory usage. Steps and selected protocolsare executed in the order

indicated by the arrows. The steps are:

• Pre-Transfer: Contains protocols that are run before the agent transfer, e.g., extra

parameters negotiation, authorisation, resource agreement, among others. They

are usually negotiation protocols.

• Transfer: Contains a protocol to transfer the agent code, data, and state. Different

protocols support different migration strategies (push, on demand, etc.). One and

only one protocol can be assigned to this step.

40 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

• Post-Transfer: Contains protocols that are run after the agent transfer, e.g., in-

tegrity check, validation of code signatures, agent results transfer, among others.

Protocols used in these steps are defined and standardised apart from the main ar-

chitecture. Each one of these protocols is characterised byhaving a well-known name;

by having a well defined functionality suitable for the associated step; by being in-

dependent from the rest; by being composed of one or more stages implemented by

interaction protocols; and by optionally using one or more message content ontologies.

In Section 3.4 several transfer protocols are presented.

3.3.3 Error Management

The migration process defined by IPMA, which is described in Section 3.3.2, might

be subject to network transmission errors, specially if unreliable network protocols are

used, e.g., protocols based on UDP. The following lines present an evaluation of the error

treatment in terms of protocol analysis at the communication and middleware levels.

The communication level deals with ACL Messages and agent interaction protocols.

In the following lines there is a review of the most common communication errors, and

the measures adopted for their treatment in the present architecture:

• Message unexpectancy: Messages with a performative and/or conversation iden-

tification that are not expected. These messages are simply ignored, since they do

not fit with the expected ones and they are not processed by anyinteraction pro-

tocol.

• Message corruption: Message corruption is detected at a higher level. Depend-

ing on the corrupted message part the effects could be different. If the message

basic information is damaged, such as the envelope or headers, the message might

be discarded. Thus, the error would be treated as a message loss. In some other

cases, if the message is not discarded, anot-understood message is issued.

On the other hand, if the message content is damaged, the migration process be-

tween the two AMMs could be cancelled.

3.3. INTER-PLATFORM MOBILITY ARCHITECTURE 41

• Message duplication: Duplicated messages are considered by the interaction pro-

tocols as unexpected messages. In case of duplication of theinitiator message (the

first sent by an interaction protocol), the duplicate is alsoaccepted by the receiver.

But in this case, it is detected at the migration architecturelevel by checking the

MID included in the message with the registers of current agent migrations.

• Message loss or delay: Lost messages, can be detected by setting an expiration

time as indicated in the FIPA Request Interaction Protocol specification [FIP02k].

The action to do in this case regards to the specific implementation. The use of

timeouts is strongly recommended, although not mandatory.Message timeout has

to be carefully chosen to avoid confusing message delay withmessage loss, and

to supply enough time to process large messages.

• Out of order delivery : Because of the nature of the interaction protocols used

in MMP, messages cannot be received out of order, since a message is not sent

without the acknowledge of the previous one. Even though, incase some specific

protocol needs to send several messages without waiting forconfirmation, the

possibility of out of order messages must be taken into account, e.g., FrTP of

Section 3.4.

The middleware level deals with exceptions thrown by some ofthe actions requested

to the remote location during the agent migration process, e.g., agent code registration,

agent platform registration, agent execution resumption,and so forth. When an ex-

ception is thrown a message with thefailure performative, which includes an error

predicate as a message content, is sent. The predicate indicates the type of error and

contains a description of it. For more information of each predicate, check the ontology

of each protocol in Appendixes A.2, A.4, A.5 and A.6. In some cases errors can also

be thrown in the local platform. Therefore the remote platform is notified that the pro-

cess is cancelled from the initiator part using the FIPA Cancel Meta Protocol described

in [FIP02k].

The complete error management is carried out by the AMM agent. Errors lead to

the interruption and cancellation of the dialog between thetwo involved AMMs. The

default policy in case of unrecoverable error is restartingthe process (MMP) carried out

42 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

by the two involved AMMs. Thus, it is responsibility of the AMM to retry the agent

migration without bothering the agent which has requested it.

In the Figure 3.5 there is an example of an agent migration that fails in its first at-

tempt. The AMM agent can be programmed to resume the local agent execution, if the

migration cannot be successfully done, after a limited number of retries. Besides, a fail-

ure message with an error description is sent to the agent which has requested the migra-

tion. According to the error description the agent might choose to change the migration

parameters and retry it on its own. A number of migration retries can be suggested in

the request message sent by the migrating agent to the AMM (Appendixes A.2).

Figure 3.5: AMM Error Management.

Notice that the AMM agent must keep a persistent copy of the migrating agent

during the whole migration process. Otherwise, in case of a failure after the agent is

killed the local agent execution could not be resumed. This approach is similar to other

ones presented in the literature [SBS00, LCW04] providing fault tolerance in the agent

migration.

3.4 Mobility Protocols

The protocols presented in this section are managed from thePS component of IPMA.

Depending on the step where a protocol belongs to (Pre-Transfer, Transfer or Post-

Transfer), different aspects of the migration process are characterised.

3.4. MOBILITY PROTOCOLS 43

The transfer protocols define the migration strategy followed in the migration. The

migration strategies of MASs characterise the way agent codes are managed in the mi-

gration process. Depending on the migration strategy the agent may have different

properties. In [BR05] two main groups of migration strategiesare distinguished: push

and pull.

• Push: all the agent code is sent together with the agent data, and state. This

strategy gives the agent the property of autonomy, since it does not depend on any

other resource present in previous locations (Figure 3.6).

• Pull: the agent code is requested from the destination location once the agent

data has reached it (Figure 3.7). This strategy has two variants, the pull-at-once,

and the pull-on-demand. The first one, the pull-at-once, requests all the agent

resources from the destination locations once the agent migration request reaches

it. The second one, the pull-on-demand, requests the agent code as needed during

the whole life of the agent. This last variant keeps the agentassociated to the

location that hosts its code. Therefore, it reduces the agent autonomy, although it

can provide better performance in some cases.

Figure 3.6: Push migration strategy.

Figure 3.7: Pull migration strategy.

44 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

The migration strategies described above are the basics to other ones. Taking them

into account several transfer protocols (PCTP, ODTP, FrTP, and RESTTP) for the PS

Transfer step of IPMA are described in the following paragraphs.

3.4.1 Push Cache Transfer Protocol

The Push Cache Transfer Protocol (PCTP), as the name states, isa protocol to transfer

the agent code, data, and state based on the push migration strategy. It supports the use

of a code caching mechanism that prevents from transferringagent code that is already

present in the destination platform. Its internal name, used to announce and select it, is

pctp-v1.

This protocol is addressed to agents that need to be independent of their home agent

platform, since all their resources (code, data, and state)are always carried with them.

Because of the ACL transport cost (Section 3.4.5), it is not indicated for agents with a

large quantity of resources.

Protocol’s operation

The process to send the agent code, data, and state is dividedin two parts (Figure 3.8).

In the first part, the agent data and state, which are always needed, are sent to the desti-

nation platform together with the MID, the CID, the SR, and the HCID. A response is

sent according to the existence or not of the agent code. If the code is present there is

no need to carry out the protocol’s second part. Then, it finalises its execution saving up

two ACL messages. Otherwise, the second part is effectively run to send the code.

The protocol is composed of two FIPA Request interaction protocols, one for each

part, and a specific ontology (Appendix A.5) that defines the associated actions to each

request and the mentioned information included in each message. Errors are managed

in the same way as in MMP (Section 3.3.3), although with specific exception predicates

regarding this protocol. An example of a typical migration in terms of ACL messages

is shown in Figure 3.9.

3.4. MOBILITY PROTOCOLS 45

Figure 3.8: Push Cache Transfer Protocol diagram.

3.4.2 On-Demand Transfer Protocol

The On-Demand Transfer Protocol (ODTP) is a protocol to transfer the agent code,

data, and state according to an on-demand pull strategy. First, only the data and state

are transfered, and when a code snippet or some other agent resource is needed, it is

individually requested to a resource server. A list of resource servers is specified by the

agent which requests the migration. Any AM may adopt the roleof an agent resource

server. The internal name of the protocol isodtp-v1.

This protocol is addressed to agents that do a partial use of their code in each visited

location. Only the agent data and state components, in addition to a list of the other

necessary resources, are sent in each migration. Then, onlythe needed code is requested

from each location. As a consequence, agents cannot be unbound from their home agent

platform or from the specific servers which maintain their code. Furthermore, since each

code request introduces a delay, the protocol is only recommended for short-distance

46 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

Figure 3.9: Push Cache Transfer Protocol flow diagram.

migrations.

Protocol’s operation

An agent is composed of several resources (classes, libraries, images, and so on). These

resources must be identified in some way, otherwise they could not be requested to

the resource server because they would be unknown. To overcome this issue, an agent

resource list is included in the first message exchanged within the transfer protocol (see

an example in Figure 3.10). The resource list contains a tuple for each agent resource.

Since this protocol is not related to a specific PL and/or system, the constraints about

resource identification regarding each PL and/or system areunknown, e.g., multiple

resources could have the same name although being different. For this reason each

tuple includes the agent resource name together with a cryptographic hash of it, e.g.,

an entry can be the name of a Java class with its correspondingMD5 hash. Therefore,

the exchange of migration strategies during the agent life is straightforward, since all

the agent resources are known and can be easily gathered, prepared, and packaged for a

different strategy, e.g., an agent that arrives to a location using the ODTP protocol, and

that leaves it using the PCTP protocol.

Two components are involved in the use of this protocol. On the one hand, there is

3.4. MOBILITY PROTOCOLS 47

Figure 3.10: ODTP Resource List example.

one component part of the PS transfer step that sends the basic agent information. And

on the other hand, there is another component running stand-alone that remains active

waiting to serve resource requests as long as they are neededby the agents. When an

agent is sent using this protocol, the first component sends the agent state, data, resource

list, list of resource servers, MID, CID, SR, and HCID (left sideof Figure 3.11). And,

when the agent needs some resource, e.g., a code snippet, it is individually requested

and served by the second component (right side of Figure 3.11). Resources are usually

requested to the home agent platform, although they may be inother locations. A list of

possible locations to request agent resources is included in the first message exchanged.

Figure 3.11: On-Demand Transfer Protocol diagram.

The protocol is also based on the IEEE-FIPA Request interaction protocol. Two spe-

cific ontologies (Appendix A.6) define the actions for the twopossible requests (transfer

the agent and fetch resources), and define the information contained within the ACL

48 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

messages. Errors are managed in the same way as in MMP (Section 3.3.3), although

with specific exception predicates regarding this protocol. An example of a typical mi-

gration in terms of ACL messages is depicted in Figure 3.12. Notice that the second

block of exchanged messages is repeated as many times as it isneeded regarding the

number of requested resources. In the example these resources are requested to the lo-

cal agent platform, although in a real system they are requested to the resource server

specified by the migrating agent.

Figure 3.12: On Demand Transfer Protocol flow diagram.

3.4.3 Fragmented Transfer Protocol

The Fragmented Transfer Protocol (FrTP) is a protocol to transfer the agent code, data,

and state over several ACL messages. It has been devised to avoid sending too much

data into a single ACL message as PCTP does. FrTP is also based onthe push migration

strategy, and it also supports code caching mechanisms. Itsinternal name isftp-v1.

This protocol, such as PCTP, is addressed to agents that need to be independent of

their home agent platform, since all their resources (code,data, and state) are always

carried with them. Nevertheless, PCTP encapsulates all the agent data, and state, and

all the agent code into two ACL messages. Since these messagesare not conceived to

transfer large quantity of data, several implementations may obtain a bad performance

as the message size increases (there are several studies of the agent communication

3.4. MOBILITY PROTOCOLS 49

performance using ACL messages, see [Cuc04] and [JJK06]). This is the reason why

in this protocol the data and code are fragmented in several snippets, with a fixed size,

which are encapsulated into different ACL messages.

Protocol’s operation

The protocol can be divided into three parts (Figure 3.14). The first of them negotiates

the parameters to transfer the agent components, sends the agent state if it is applicable,

and embraces the other two parts. In the first message exchanged there are several

parameters and the agent state (which is not fragmented). The parameters are the desired

size of the fragments used to transfer the agent code and data, the code size, the data

size, the MID, the CID, the SR, and the HCID. A response is sent refusing or accepting

the agent transference. If the remote location does not agree in one or more parameters

(agent size, fragment size, and so on) it is refused. Otherwise, it is accepted and it

is specified if the agent code is needed or not (take into account that a code caching

mechanism may exist in the destination location). If the code is present, only the agent

data fragments are sent.

Figure 3.13: Agent components fragmentation.

The second part of the protocol is the fragment’s transference. This is a simple part

where the agent data and code are sent in several fragments (Figure 3.13). Each frag-

ment, in addition to a piece of data, includes a unique identification, a type of fragment

(a string indicating if the fragment contains code or data),and the MID. The corre-

sponding messages are sent as they are produced, no acknowledgements are expected

between each message sent.

The third part is a fault tolerance mechanism to recover lostfragments. If one or

more fragments have not been received after a fixed period of time they are specifically

50 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

requested (it is like a negative acknowledge). This part only has sense if no reliable

transport protocols are used to transfer the ACL messages. Ithas the advantage of not

increasing the protocol time in most of the agent transmissions, since it is only used

when one or more messages have not been received. The information sent to request the

lost fragment is the same associated to the original one (thefragment identification, the

fragment type, and the MID). The fragment requested on demand is encapsulated in the

same type of message than the fragments previously sent. Finally, the whole protocol

finalises by sending a message informing about the success orfailure of the operation

(this message belongs to the first part of the protocol).

The protocol is composed of two FIPA Request interaction protocols, one for the first

part and another for the third part, and a specific ontology (Appendix A.7) that defines

the actions associated to each request and the mentioned information included in each

message. Errors are managed in the same way as in MMP (Section3.3.3), although with

specific exception predicates regarding this protocol. An example of a typical migration

in terms of ACL messages is illustrated in Figure 3.15.

3.4.4 REST Transfer Protocol

The REST Transfer Protocol (RESTTP), as the name states, is a protocol that transfers

the agent code, data, and state combining the Representational State Transfer (REST)

technology [FT02], which is a coordinated set of architectural constraints based on the

standard HTTP protocol, with ACL messages. It is proposed as an alternative protocol

to PCTP since REST is more suitable for the transfer of high amounts of data than the

ACL messages. The RESTTP is based on a pull-at-once migration strategy, since the

needed resources are requested by the remote location usingHTTP requests. Therefore,

the support for code caching mechanisms is implicit, if someresource is not needed it

is not requested. Its internal name isresttp-v1.

This protocol is addressed to agents that need to be independent of their home agent

platform, since all their resources (code, data, and state)are always carried with them.

Thanks to the HTTP data transport efficiency it is specially indicated for agents with a

large quantity of mandatory resources, i.e., the ones required in any location visited.

3.4. MOBILITY PROTOCOLS 51

Figure 3.14: Fragmented Transfer Protocol diagram.

52 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

Figure 3.15: Fragmented Transfer Protocol flow diagram.

3.4. MOBILITY PROTOCOLS 53

Base URL: http://server/resttp-v1/{mid}/{nonce}
Element Method Request Param. Headers Body Functionality

{nonce} GET Get the agent resource requested.

Table 3.2: RESTTP Interface.

Protocol’s operation

The process to send the agent code, data, and state is composed of two parts, one driven

by ACL messages where several parameters are exchanged, and the other driven by

HTTP requests where the agent components are transfered. The agent code, data, and

state, are served by an HTTP server under a random unique name(nonce) only valid

during the transaction. A random name is used to prevent external parties from unfairly

downloading the agent resources. Furthermore, it is recommended to remove each re-

source once it has been downloaded as means as an only once usage policy.

The protocol starts by putting the agent code, data, and state into the HTTP server,

and sending an ACL message with the random names assigned to them, in addition to

the host and port of the HTTP server, and the MID, CID, SR, and HCIDidentifiers

(Figure 3.16).

Once this message has been received, the destination location requests the agent

code, data, and state, as convenient, using several HTTP requests (one for each agent

resource, see Table 3.2).

Then, after getting the agent resources, an inform or failure ACL message is sent

from the remote location to finalise the protocol. When this message is received, the

source location removes the resources from the HTTP server (some of them may already

be removed if the only once usage policy has been applied).

The protocol is composed of one FIPA Request interaction protocol, one simple

REST interface (Table 3.2), and a specific ontology (AppendixA.8) that defines the

associated actions to the request message and the information included in each message.

Errors are managed in the same way as in MMP (Section 3.3.3), although with specific

exception predicates regarding this protocol. An example of a typical migration in terms

of ACL messages and HTTP connections is shown in Figure 3.17.

54 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

Figure 3.16: REST Transfer Protocol diagram.

3.4.5 Protocols usage

In this section four protocols have been presented. Three ofthem (PCTP, FrTP, and

RESTTP) are based on transferring all the agent components before resuming the agent

execution. The other one (ODTP) transfers the agent data andstate in advance, but

requests the agent code as needed.

Since not all the protocols are appropriate for all situations, in several cases the best

strategy is to combine them, i.e., in one agent movement use one protocol and in an-

other one use the other. An example of this is an agent with several code components

that moves through many communities with many nodes with a high network delay be-

tween them. In this case, a good strategy is to use the push migration (PCTP or FrTP) to

move between communities (moving all the agent code throughthe wide area network)

and, then, use the on-demand migration (ODTP) for agent movements within the com-

munity (requesting only the needed code in the local area network). In this example,

the number of messages exchanged between long distant locations is minimised. The

3.5. MOBILITY SERVICES COMPARISON 55

Figure 3.17: REST Transfer Protocol flow diagram.

mentioned protocols combination is technically feasible.The implementation presented

in Section 3.6 considers this possibility.

The election between PCTP, FrTP, and RESTTP depends on the agent components

size, and the requirements to only use IEEE-FIPA standards in the agent transference.

The first two are not so efficient as the last one, although theyuse only these standards.

And regarding these two, FrTP is the more efficient for agentswith large components.

A detailed analysis of their performance is presented in Chapter 4.

3.5 Mobility services comparison

Several agent mobility models are implemented in the existing mobile AMs. In this

section a comparison is done between these mobility models,in most cases strongly

56 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

tightened to their middlewares, and the one presented in this chapter (IPMA).

IPMA stands out by being independent of specific AMs and/or PLs, and by relying

on the well-know IEEE-FIPA agent standards. Furthermore, it offers a flexible migra-

tion process that can be individually customised for each agent migration, providing

several agent migration strategies. It is also important tonotice that chosen migration

options are agreed or refused using the first exchanged messages. Thus, it is not possible

to send an agent without agreement of the involved parts. This is specially significant

in low bandwidth links, which might be charged according to the amount of data trans-

fered, like the General Packet Radio Service (GPRS) in cellular networks.

The rest of the section compares the mobility services of themost representative

MASs. A summary of the comparison is presented in Table 3.3 which evaluates the

following features:

• Mobility service name: The name of the mobility service.

• Mobile Agent System: The name of the reference MAS where the service is

implemented.

• Agent in the first message: It states if the agent is directly sent in the first mes-

sage exchanged or there is some kind of pre-negotiation.

• Exportable model: It indicates if the migration model is designed only for the

AM analysed or if it can be used in another ones.

• Migration strategies: The migration strategies supported by the specific imple-

mentation of the model.

• Migration initiation : It indicates who initiates the migration process.

• Mobility type : The types of mobility supported, referring to weak or strong mo-

bility.

• Language supported: The PL supported by the model.

• Transport : The underlying transport mechanism to transfer the messages or data

used in the agent migration.

3.5. MOBILITY SERVICES COMPARISON 57

• Security: The security features implemented.

• Agent standards: The agent standards used by the mobility service.

TheAglets server middleware[LM98] is an environment to execute Aglets, which

are Java Mobile Agents (MAs), developed by the IBM Tokyo Research Labs. It sup-

ports autonomous execution of Aglets, dynamic routing itineraries, and it is compliant

with the MASIF specifications. Although this AM is currentlynot active, it is described

for historical reasons and because of its complete migration system. The mobility ser-

vice is based on a protocol called Aglet Transfer Protocol (ATP), which is only used

in this AM. The protocol is similar, in structure, to the Hyper-Text Transfer Protocol

(HTTP), although the request messages are adapted to migration operations. In Aglets,

agent migrations can be initiated from the same place where the agent resides or from

another one. In this last case the process of requesting the agent return is called Aglet

Retraction. The migration strategy used is a combination of the push and pull strate-

gies. When the agent migrates the in-use agent classes and thespecified JAR files are

transfered in a single step (push). But if extra code is needed, it can be requested (pull)

on demand to the agent code base (this is a list of servers included in the agent to locate

its code). Despite the fact that the ATP protocol offers a flexible migration strategy,

since the push and pull strategies can be combined, IPMA is more open and can support

new strategies proposed in the future. Regarding the agent migration initiation, IPMA

accepts migration requests for a specific agent from any other agent, even if they are

sent from different locations. In fact, it is similar to the Aglet Retraction method.

Agent Operating System (AOS)[vNOT+07] is the mobility specification used within

the AgentScape [OB04] and Mansion [vNBT04] AMs. AgentScape isa multi-language

mobile AM designed to support scalable, secure, distributed multi-agent applications.

Agents migrate between virtual domains calledlocationsand can negotiate resource re-

quirements before migrating [MOB06]. Mansion is a mobile AM strongly focused on

security. AOS, which is the lower layer in these two AMs, provides low-level secure

communication between the high level middleware processes, between agents, and se-

cure agent mobility using a set of SunRPC methods. A pull migration strategy is used,

so all the agent data and code are requested from the destination location all at once.

PL dependent run-time environments for agents are providedthrough different agent

58 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

servers. This solution is PL independent and, even, it couldsupport strong mobility un-

der certain circumstances. Comparing the AOS mobility specification with IPMA, our

solution is not limited to one migration strategy and takes advantage of the IEEE-FIPA

well-known agent standards. Although IPMA does not provideagent resources nego-

tiation nor security, they can later be incorporated as specific protocols within the PS

steps.

Security-centric Mobile Agent server (SeMoA)[RJS01] is a runtime environment

for Java-based MAs focused on security and easy extendibility. Its migration service

provides secure agent mobility based on extensible filters that allow to sign, encrypt, or

carry out any cryptographic operation related to the agent transmission. All the agent

resources (code, data, life cycle state...) are grouped in astructure called “AgentCon-

text”, which is sent all at once over a network protocol (http, raw, raws...) that can be

chosen before migrating. If part of the code is not present inthis structure, it can be

requested to the agent code base. The migration strategy, which is the same strategy of

the Aglets AM, is a combination of a push and an on-demand pullstrategies. Although

it is not possible to change this behaviour, the migration strategy of SeMoA is more

flexible than the one presented in the previous AM, but not as much as IPMA. More-

over, the only supported PL is Java and, therefore, weak migration is the only possible

one. Our architecture, on the other hand, is not bound to a specific PL and migration

strategy. Finally, although the security features presentin SeMoA are not provided in

IPMA, they could be incorporated as specific protocols in thePS steps.

TheKalong [BR05] architecture, implemented as a software module, is focused on

providing an efficient mobility service to the Tracy [BR05] AM.Nevertheless, it is

generic enough to be used in other AMs, e.g., in the JADE AM [PBK05]. Tracy [BR05]

is a modular, component-oriented, extensible Java AM designed as a micro-kernel. The

aim behind this platform, according to its authors, was to provide a toolkit usablefor

the development of industrial-strength real-world applications. Its mobility service,

Kalong, uses the Simple Agent Transmission Protocol (SATP), which defines a set

of binary messages to support all the common migration operations (it is similar to

MASIF [OMG97], which provides a set of CORBA IDL methods to perform these

operations). The advantage of this model is that the migrating agent combines these

3.6. JADE INTER-PLATFORM MOBILITY SERVICE 59

operations making up any migration strategy. Although Kalong provides a well-defined

flexible migration system, which allows the use of differentagent migration strategies,

it has the disadvantage of being confined to the Java PL. Compared with IPMA, Kalong

has a higher performance and it is a bit more flexible. Nevertheless, IPMA is based

on consolidated agent standards (IEEE-FIPA), it is not limited to only one PL, it might

support weak and strong migration, and the migration request can be done by any agent.

Mobility service ATP AOS SeMoA Kalong IPMA
Mobile Agent
System

Aglets AgentScape,
Mansion

SeMoA Tracy, JADE JADE,
AgentScape

Agent in the first
message

Yes No Yes No No

Exportable model No Yes No Yes Yes
Migration
strategies

Push + Pull
On-Demand
combination

Pull Push + Pull
On-Demand
combination

Any
combining
SATP
messages

Any
implementable

Migration initiation Any agent Oneself Oneself Any agent Any agent
Mobility supported Weak Any Weak Weak Any
Language
supported

Java Any Java Java Any

Transport Proprietary. SunRPC Any Binary FIPA-MTP
Security Authorisation Encryption Authorisation,

Encryption,
others.

Any Any

Agent standards MASIF No No No IEEE-FIPA

Table 3.3: Migration services comparison.

3.6 JADE Inter-Platform Mobility Service

The migration architecture described in Section 3.3 and theprotocols of Section 3.4

have been implemented in the JADE AM. JADE has been the first AMchosen to test

the proposed migration model because it is the most widespread nowadays and it is

IEEE-FIPA compliant.

The service implemented provides weak inter-platform mobility, allowing agents

to migrate between different platforms. The referred implementation is published as a

development release of the JIPMS add-on [JIPa].

60 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

3.6.1 JADE Introduction

JADE [BCG06] is an IEEE-FIPA compliant AM. It provides a fully distributed system

where agents can reside and move between differentcontainers. The JADE containers

are an abstraction to spread the platform over multiple hosts (Figure 3.18). A central

main container takes care of the other ones’ management. Theagents defined by IEEE-

FIPA reside in the main container.

Figure 3.18: The JADE agent middleware architecture.

Because of the distributed nature of the platform, a complex services architecture

is used [Cai04]. This architecture, thanks to its flexible structure based on vertical and

horizontal commands, makes possible the addition of new services to the platform with-

out modifying it. Moreover, it has the benefit of allowing interaction and collaboration

between other services. This architecture is very flexible,but it is also quite complex,

because it has to manage all the platform services and coordinate all their instances

spread in the JADE containers. The underlying communication between containers is

done by using Java RMI calls.

JADE has a default mobility service, based on the JADE services architecture, that

only allows migration between containers, what is known as intra-platform mobility.

Conversely, the service implemented according to IPMA, JIPMS, allows the migration

of agents between different agent platforms, i.e., it offers inter-platform mobility. Use

of both services can be combined at any time of the agent life.

Agent tasks in JADE are implemented as behaviours. A JADE behaviour is the

abstraction used in this AM to represent agent tasks. Behaviours, once are created, are

scheduled for execution in an agent. Each agent is assigned to a Java thread which is

shared by its behaviours. The scheduling of the agent behaviours is cooperative, i.e., the

next behaviour scheduled is not executed until the previousone has finalised its task. To

prevent some behaviours from blocking the other ones, agentdevelopers can divide the

3.6. JADE INTER-PLATFORM MOBILITY SERVICE 61

tasks in several subtasks, each one individually scheduled(these tasks can be perceived

as if they were running concurrently). Nevertheless, in cases where true concurrency

is needed, the ThreadedBehavior is used. It is a special type of behaviour which has

assigned a specific thread.

3.6.2 JIPMS Basics

JIPMS [JIPa] is a complex piece of software, specially taking into account that it coex-

ists with the default JADE intra-platform mobility servicebuilt into the platform. In the

last revision of JIPMS all the agent transfer protocols proposed in Section 3.4, PCTP,

ODTP, FrTP, and RESTTP, have been included.

JIPMS has been implemented at the application level, as it isspecified by IPMA, but

taking advantage of several components included at the middleware level. The main rea-

son is that JIPMS has been developed to guarantee a perfect integration with the JADE

intra-platform mobility service and the JADE containers. Therefore, privileged access

to the AM is required. Otherwise this integration would be impossible. Nevertheless,

all the components implemented at middleware level do not require AM modifications,

thanks to the advanced JADE services architecture [Cai04].

3.6.3 JIPMS Structure

JIPMS, as previously mentioned, is implemented between themiddleware level, in the

context of the JADE services architecture, and the application level, in the context of

the AMM agent. JIPMS is composed of several components that are explained in the

following paragraphs.

At middleware level, as can be appreciated in Figure 3.19, JIPMS is composed of

three main components: the Mobility Service, the Code Manager, and the Class Anal-

ysis Library. These components are replicated in each JADE container since an inter-

platform migration can start from any of them. Between the middleware and the appli-

cation levels there is the Agent Platform Accessor component. And at the application

level there is the AMM component, which is part of IPMA. The AMM is only present in

the main container since IPMA is defined in terms of the IEEE-FIPA standards, which

62 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

Figure 3.19: Inter-Platform mobility service parts.

do not consider the JADE container abstraction. Nevertheless, the direct migration from

the other containers to another AP is possible, although in this case the ACL message

exchange is always done from the main container. The operation which is not allowed

is directly migrating an agent to a non main container of another AP.

Mobility Service

The mobility service is the JADE service component that deals with the initialisation of

JIPMS and the coordination of actions that involve several JADE containers. Most of

these actions are requested from the application level by the AMM.

Code Manager

The code manager is a generic repository where the code used by MAs is registered

and maintained. It is composed of a list that binds specific agents with their codes, and

specific managers to maintain different types of code, e.g.,there is the JarManager to

maintain codes packaged into JAR files, and the ClassManager,to maintain Java classes

individually packaged. There is another component, calledCodeLocator, in which we

have actively collaborated that belongs to the JADE platform and binds specific MAs

with their specific Java class loaders. The CodeLocator and the Code Manager make

possible the future addition of new mobility algorithms based on different ways of fetch-

ing and loading the agent code without modifying the agent platform, and guaranteeing

3.6. JADE INTER-PLATFORM MOBILITY SERVICE 63

the compatibility with the intra-platform mobility service.

Class Analysis Library

In the JADE AM the agent’s code is not packed into any specific format, and it is not

separately managed from the JADE code. On the contrary, it issimply included in the

Java class path. Agent migrations require gathering the agent code to send it to remote

locations. JIPMS provides a manual and an automatic methodsto select and package

the code of a MA.

The manual method consists of creating a JAR file with all the agent code with the

file name following the patternPackageName AgentMainClass. This file is put

into a specific folder wherefrom JIPMS retrieves it. The automatic method is based on

the Class Analysis Library (CAL), which provides several tools to analyse the agent

main class and recursively gather the agent dependent classes collection. Dependencies

are found by analysing the class constant pool tables [LY99], which include low level

class information.

CAL first searches for direct dependencies of the main agent class, then it searches

for dependencies of these direct dependencies, and so on. Several dependencies are

omitted because they are also found in remote locations, e.g., the String class. Other-

wise, unnecessary code would be sent.

Agent Platform Accessor

The Agent Platform Accessor (APA) is a component used by the AMM as a gateway

to reach the agent platform facilities, e.g., get agent code, data, and state, register an

agent, start an agent, and so forth. It preserves the AMM agent from dealing with too

many implementation details. Therefore, it is a bridge between the middleware level

components and the application level components.

Agent Mobility Manager

The Agent Mobility Manager (AMM) is the only mandatory component according to

IPMA. AMM implements all the protocols used in the migrationprocess and can be

64 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

Figure 3.20: Agent Mobility Manager.

considered as the front-end of the mobility service. All theservice code independent of

the specific AM should be implemented in the AMM agent.

In this implementation, as it is depicted in Figure 3.20, theAMM agent is com-

posed of an Agent Migration Queue, an Agent Migration Scheduler, an Agent Migra-

tion Cleaner, a Migration Initiator and a Migration Participant components, which are

implemented as JADE behaviours. Since AMM deals with several agent migrations,

some components must be replicated and require concurrency. Then, several replicated

behaviours exist. In case of components with blocking processes, which could stop the

execution of the other behaviours, they are implemented as ThreadedBehaviours.

When an agent migration is requested an entry is enqueued to the Agent Migration

Queue. The Agent Migration Scheduler is in charge of dealingwith these enqueued mi-

gration requests and assign them to a non busy Migration Initiator. Several migrations

can be concurrently attended because multiple instances ofmost of the AMM compo-

nents are instantiated. The Migration Initiator and the Migration Participant components

implement the MMP, one processing outgoing migrations and the other processing in-

coming migrations. The protocols associated to the IPMA PS (pre-transfer, transfer,

3.6. JADE INTER-PLATFORM MOBILITY SERVICE 65

and post-transfer protocols) are executed within these components. Finally, there is the

Agent Migration Cleaner, which deals with cleaning tasks of interrupted or lost migra-

tions.

3.6.4 JIPMS Protocols

According to IPMA, each migration process is driven by MMP. There are also a set of

other protocols executed within the PS component which characterise the agent migra-

tion.

These protocols are subject to change in the future and new ones can be included.

Thus, they are developed following a specific interface which facilitates their design

and integration within the service. A JIPMS protocol, according to the mentioned in-

terface, is composed of a name, a type, a set of behaviour initiators, a set of behaviour

responders, and a set of ontologies. The name is used in the selection of the protocol

and the type indicates if it is a pre-transfer, transfer, or post-transfer protocol. Behaviour

initiators and responders are matched in stages, e.g., a protocol with only one stage or

part will have one initiator behaviour and one responder behaviour. Usually these be-

haviours implement an interaction protocol. And one ore more ontologies are provided

in order to represent the content of exchanged messages.

The protocols implemented are detailed in the next paragraphs. In all the cases only

weak migration is implemented (the agent state is not sent),the agent data is encoded

according to the Java serialisation mechanisms, and all theprotocols can be combined

during the agent lifetime, allowing agents to choose the most convenient migration strat-

egy at each time.

Push Cache Transfer Protocol

The PCTP implementation is composed of two pairs of Initiator/Responder behaviours,

one ontology, the JarManager component, and the JarClassLoader. The agent code

exchanged is packed into a JAR file.

The behaviours and the ontology simply implement the process described in Sec-

tion 3.4.1. Nevertheless, this is not sufficient to deal withthe agent code transfered. It

66 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

is necessary to manage received codes and to have a class loader to load them.

The JarManager is the component which manages the code. Thiscomponent in-

dexes the code according to its unique identification, whichin this implementation is

calculated from the MD5 hash of all the agent classes. A cachemechanism based on

this identification and on a code reference counter has also been included to avoid main-

taining replicated JAR files. Other tools are implemented inthe JarManager, such as the

automation of agent code gathering using the Class Analysis Library, and the generation

of JAR files from other code managers, e.g., to make a JAR file from an agent received

by ODTP. A JAR class loader has also been implemented, which is currently integrated

with the standard distribution of JADE.

On Demand Transfer Protocol

The ODTP implementation is composed of two pairs of Initiator/Responder behaviours,

two ontologies, the ClassManager component, and the OnDemandClassLoader. The

agent code, in this case, is exchanged as single Java classes.

The behaviours and ontologies simply implement the processdescribed in Sec-

tion 3.4.2. As in the previous protocol, this is not sufficient to deal with the agent

code transfered. In this case it is necessary to have a class loader which is in charge

of requesting the code required at each moment. Furthermore, the management of this

code must also be taken into account.

The OnDemandClassLoader implements the part of the protocolthat fetches the

agent code. This code is managed by the ClassManager component. Two main func-

tionalities are associated with this component. On the one hand, it is used to serve the

agent code. Agents using ODTP can freely select any platformof their itinerary to act as

a server of all their code. Therefore, they can migrate to other locations and request their

code to one of the platforms which the agent has established as code servers. On the

other hand, the component implements a cache mechanism which maintains the classes

which have been previously fetched during a specific period of time for later reuse.

3.6. JADE INTER-PLATFORM MOBILITY SERVICE 67

Fragmented Transfer Protocol

The FrTP implementation is composed of several behaviours and an ontology. Further-

more, it takes advantage of the JarManager and JarClassLoader components developed

for PCTP. The agent code exchanged is also packed into a JAR file.

The implementation has been focused on getting the best possible performance,

rather than getting an easily understandable and comprehensible development. This

is the reason why there are four behaviours with several functions assigned to each one.

The first two deal with the first part of the protocol (Figure 3.15) and, furthermore, the

responder behaviour also deals with the treatment of lost fragments corresponding to

the third part of the protocol. The reason is that the two parts involve the treatment of

a request message, although with different actions, and it is more efficient to deal with

them from the same behaviour. The other two behaviours are incharge of sending and

receiving the code and data fragments. The responder part also takes care of controlling

the reception of all the required fragments. In case of fragment loss, this behaviour indi-

vidually requests the fragments lost (requests are attended by the first pair of behaviours

described).

Finally, minor changes have been done to the JIPMS add-on in order to optimise the

protocol performance, e.g., the agent code is directly registered using a JAR file path

instead of reloading a Java byte array with all the code.

REST Transfer Protocol

The RESTTP implementation is composed of one pair of Initiator/Responder behaviours,

one ontology, one HTTP server, one HTTP client, one REST interface, and the JarMan-

ager and JarClassLoader components used in PCTP. The agent code exchanged is also

packed into a JAR file.

The behaviours and ontology simply implement the transfer negotiation process de-

scribed in Section 3.4.4. The HTTP server and client are in charge of transferring the

agent resources using the REST interface. Regarding the REST part of the protocol, it

has been implemented using the Grizzly HTTP Web server and the Java API for REST-

ful Web Services (JAX-RS) [HS07] specification, which is implemented by the Jersey

Java project. All the data management is based on the use of Java streams, therefore it

68 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

is handled as efficiently as possible.

3.6.5 JIPMS Usage

The mobility service currently presented has been integrated with the default JADE mo-

bility service. Agents migrate between containers and between platforms by using the

doMove(location)method of the agent base class. The agent migration request through

ACL messages is not implemented yet.

The destination of an agent migration is indicated by using an object implementing

the Location interface. The type of object used determines the mobility service chosen.

The interface is implemented by the ContainerID class, if it is used for the intra-platform

migration service, and by the PlatformID class, if it is usedfor the inter-platform migra-

tion service.

In case of inter-platform mobility, moreover, the agent canselect the protocols to mi-

grate and some particular parameters regarding them. This is achieved by using several

methods provided in the Helper of the mobility service, a specific service management

class available to all the agents. Refer to [Cai04] for more information about the JADE

service architecture.

3.7 AgentScape Inter-Platform Mobility Service

The migration architecture described in [COO+07], which is a preliminary version of

IPMA described in this thesis, and a push transfer protocol have been implemented

in the AgentScape AM (Section 3.7.1) as ASIPMS. AgentScape has been selected to

do a validation test [COO+07] of the IPMA model in non IEEE-FIPA compliant AMs

(Section 3.7.2). This validation test has permitted to evaluate the general difficulties

present in this kind of AMs to implement the mentioned model (Section 3.7.4).

This implementation has been kept simple (Section 3.7.3). Only a push migration

strategy has been included. In this case the agent code and data are packed as in the pre-

vious implementation, by means of a Java JAR file and by means of the Java serialisation

mechanisms respectively. Since, also in this case, only weak migration is supported, the

agent state is not included. The referred resulting implementation is called ASIPMS.

3.7. AGENTSCAPE INTER-PLATFORM MOBILITY SERVICE 69

3.7.1 AgentScape introduction

AgentScape [OB04] is a secure multi-language mobile AM. Agents migrate between

virtual domains calledlocations(Figure 3.21). An AgentScape location consists of one

or more hosts running the AgentScape AM, typically within a single administrative

domain.

Figure 3.21: The AgentScape middleware architecture.

The default migration service of AgentScape is based on a pull-at-once migration

strategy. The interaction between the involved platforms uses a set of SunRPC methods

defined within the context of the AOS Kernel (see Section 3.5). This kernel is a secure

subsystem below the AM that manages communications and agent containers. It is

worth taking into account that in AgentScape an agent container is a special package

with the agent code, data, and other resources.

3.7.2 FIPA Message Transport Service

IPMA relies on the use of the IEEE-FIPA specifications for theimplementation of the

different protocols that compose the migration process. The AM for which the imple-

mentation is targeted should support at least a minimum set of the IEEE-FIPA standards:

• The agent naming scheme [FIP04], thus migrating agents musthave a FIPA com-

pliant identification.

• ACL messages must be supported [FIP02e], since the whole migration architec-

ture is based on the ACL message exchange.

• A Message Transport Service (MTS) to manage the ACL messages is required.

70 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

• A shared content language must be defined (e.g., SL [FIP02l])to be able to inter-

pret the data exchanged inside the ACL messages.

• Interaction protocols (Request and Propose), since they areused in several proto-

cols of the architecture.

AgentScape does not support these specifications. Therefore part of this functional-

ity has been ported from the JADE AM. Nonetheless, the Message Transport Service

(MTS) has been implemented from scratch (reusing the MTP-HTTP of JADE, imple-

mented by Expositoet al. [EARL03]).

Figure 3.22: AgentScape FIPA MTS.

The implemented MTS, as shown in Figure 3.22, is composed of three components:

the MTP-HTTP, the ACC (Agent Communication Channel), and the MessageHandler.

• MTP-HTTP : Module that encapsulates ACL messages over the HTTP protocol,

as defined in the IEEE-FIPA specification [FIP02f].

• ACC: Main core of the messaging service. It is mainly composed ofan ACL

message outgoing queue and a registry of agents.

• MessageHandler: Component used by agents to send and receive messages.

Each agent has its own instance because it contains the agent’s ACL message

incoming queue.

3.7. AGENTSCAPE INTER-PLATFORM MOBILITY SERVICE 71

The only requirement for agents using this messaging systemis to be registered to

the ACC with an IEEE-FIPA compliant name (AID). Then, they obtain a MessageHan-

dler to interact with the service.

Furthermore, the FIPA Request and FIPA Propose interaction protocols have also

been implemented. The Request and Propose interaction protocols are developed as

abstract classes, providing several methods which are triggered in reaction to each event

of the protocol. Since the concept of agent behaviour does not exist in AgentScape,

threads are used to implement some of the agent tasks.

3.7.3 ASIPMS Structure

ASIPMS is completely implemented at the application level within the AMM agent.

The AgentScape AM has not been modified at all. The AMM agent, in this case, is com-

posed of: an Agent Platform Accessor, an Agent Migration Queue, an Agent Migration

Scheduler, a Migration Initiator, a Migration Participant, and the migration protocols

(pre-transfer, transfer and post-transfer steps). There is no Class Analysis Library, since

AgentScape agents are already packed in a special structurecalled Agent Container

which includes all the agent code required by the agent. Therefore, the Class Analysis

Library functionality is not necessary.

The AMM is implemented and registered as a standard AgentScape agent. More-

over, it is registered to the IEEE-FIPA MTS to allow communication with other remote

AMM agents. Once started, the AMM remains waiting for agent requests to migrate,

and for ACL messages of other AMMs to start the reception of other agents. Migration

protocols are implemented with the IEEE-FIPA interaction protocols provided by the

IEEE-FIPA MTS previously explained.

3.7.4 Open issues

There are some open issues when IPMA, described in Section 3.3, is used in no IEEE-

FIPA compliant AMs. In the next list there are the most important issues and the adopted

solutions in this implementation:

• IEEE-FIPA compliance workaround : The set of IEEE-FIPA standards required

72 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

for the migration architecture has to be added to the AM. For simplicity reasons,

they have been integrated at the middleware application level. This option is the

least complex because it can be implemented using static libraries and agents

without modifying AM internals.

• IEEE-FIPA agent naming: Agent local naming scheme should be mapped to the

IEEE-FIPA agent naming scheme and vice versa. In case directmapping between

the two schemes were not possible, a method based on tables linking local and

IEEE-FIPA agent names had to be developed to do name translations. Currently,

there is no automatic name scheme translation implemented in AgentScape.

• Middleware local agent naming: Local agent name (name following the AM lo-

cal scheme specification) could be maintained in the destination platform, e.g., an

AgentScape agent which migrates to another AgentScape AM donot only could

keep its IEEE-FIPA name, but it could keep its AgentScape name. Nevertheless,

IPMA does not guarantee these local names. In fact, agents using a mobility ser-

vice based on this architecture always must refer to each other agents using their

IEEE-FIPA compliant names, since the other location could be a different type of

AM. Thus, in the ASIPMS implementation the local agent name is not kept.

• Agent life-cycle: The agent life-cycle shows the operational state of an agent at

a specific moment. By using it, for example, the messaging service can decide

whether deliver a message to an agent or wait to do it later. When an agent mi-

grates, its life cycle should be in a specific state (the Transit state in IEEE-FIPA).

Therefore, the agent life-cycle provided by the AM, using the migration proposed,

should be in an equivalent state regarding to the IEEE-FIPA life cycle. This might

be specially important when in a nearby future agents are migrating between dif-

ferent kinds of AM (Chapter 6).

This implementation is developed in the context of a validation test of IPMA in non

IEEE-FIPA compliant environments. Hence, only a subset of the solutions proposed

have been implemented since not all the issues are critical.Nevertheless, they have to

be taken into account for future implementations.

3.8. CONCLUSIONS 73

3.8 Conclusions

In this section an agent migration model based on the IEEE FIPA agent standards,

IPMA, has been presented. It is a complete, robust, flexible,sufficient, and minimal

model.

• The model is complete, since it supports different migration strategies and mobil-

ity types, it is independent of any specific AM and PL, and it isapplication level

oriented.

• The model is robust, since the task of migrating an agent is delegated to a spe-

cialised agent which follows a set of well-defined steps. There is no possibility

of misunderstanding, like in other migration models, such as Kalong, where the

migrating agent has the responsibility to drive the migration. Notice that the order

of the basic operations is immutable to minimise the model complexity. Another

consideration to the model robustness is that the executionof a migrating agent

is never resumed before it has been unregistered from the source location. There-

fore, the model is collision free, since an agent cannot go back to the source

location before being unregistered from there.

• The model is flexible, since the subprocesses executed in PS (Figure 3.4) vary

according to the migration protocols selected by the migrating agent. This mech-

anism is the key to obtain customised agent migrations, fromthe most simple

ones, with one transfer protocol, to the most complex ones with many other pro-

tocols in use, e.g., different migration strategies, agentauthentication, and so on.

Nevertheless, this flexibility does not compromise the model robustness in any-

way, since the migration is always managed by the AMM.

• The model is sufficient, since it covers all the needed operations to do a successful

migration. MMP and all the associated steps of PS are entirely executed in each

agent migration.

• The model is minimal, since it exchanges the minimum number of messages to

follow the migration model proposed in Section 3.3.1.

74 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

The validity of the mobility model presented has been contrasted by a theoretical

comparison with other mobility services, and by the empirical implementation in real

AMs. As a result, the JIPMS for JADE and the ASIPMS for AgentScape have been

developed. In the next chapter, the results of a set of performance tests are presented.

Several theoretical assessments regarding the migration strategies are demonstrated with

the practical results.

Chapter 4

Performance Analysis

This chapter presents a set of tests to evaluate the most relevant performance differ-

ences between the migration transfer protocols proposed for the Inter-Platform Mobil-

ity Architecture (IPMA): the Push Cache Transfer Protocol (PCTP), the On-Demand

Transfer Protocol (ODTP), the Fragmented Transfer Protocol (FrTP), and the REST

Transfer Protocol (RESTTP).

4.1 Introduction

IPMA, described in the previous chapter, is devised to support several migration strate-

gies and features. In addition to the architecture, four migration transfer protocols have

been proposed (see Section 3.4) to provide migration strategies suitable for different

environments.

In this chapter a set of tests has been carried out to compare the protocols’ perfor-

mance implemented in the JADE Inter-Platform Mobility Service (JIPMS). The chapter

has been divided in six parts. Firstly, Section 4.2 describes the evaluation setup used in

the tests. Then, Section 4.3 compares PCTP and ODTP. Section 4.4 compares PCTP

and FrTP. And, Section 4.5 compares PCTP and RESTTP. Differentscenarios are de-

scribed for each of these comparisons. Finally, in Section 4.6 a discussion and usage

recommendations for the migration protocols analysed are presented.

75

76 CHAPTER 4. PERFORMANCE ANALYSIS

4.2 Evaluation setup

The evaluation setup used to run the tests are two Pentium IV at 2 GHz, with 778

MB of RAM, and a GNU/Linux based operating system (Fedora Core 5distribution)

with kernel version 2.6.17, both with a dedicated 100 Mb/s switched Ethernet network.

The Agent Middleware (AM) used is the JADE 3.5 with the development version of

the JIPMS add-on [JIPa] and the FIPA Message Transport Protocol (MTP) HTTP. For

RESTTP the external Jersey 0.7 libraries are used. Several network environments are

simulated using the NetEm [Hem05] Linux utility over the mentioned network. For

resource consumption reasons, each Agent Mobility Manager(AMM) agent is limited

to process 20 incoming and 20 outgoing concurrent agent migrations. In case of more

migration requests, they are queued until one or more processes have finalised.

The performance tests have been carried out by using a, specifically created, agent

mobility test suite [JIPb]. It is composed of a programmableagent that creates a set of

agents which follow a specific itinerary (list of locations)a fixed number of times (called

iterations from now on). When the agents finalise their itinerary the selected number of

times, they send a message to the programmable agent notifying it. Finally, the average

time consumed by each agent migration round-trip to the AMs is calculated:

Average time=
Total time

Iterations∗ Number of agents

The concurrent migrations are processed following the philosophy of a pipeline. In

pipelines, the individual time to produce a product is longer than the average time spent

per product. Therefore, the results shown in the result tables, for the case with several

agents, must be seen as a measure of throughput for the AMs.

The itinerary performed in the next tests by the agents, which consists of two loca-

tions, is repeated ten times or one hundred times depending on the type of agent tested.

The process is repeated many times to minimise the AM and agent start-up time influ-

ence over the results. Furthermore, each test is performed five times and the final results

are product of the average outcome [MFB+07]. Usually the tests are carried out with 1,

10, or 100 agents concurrently migrating. This allows to analyse the average time that

each of these agent migrations consumes to the AM.

4.3. PERFORMANCE EVALUATION 1: PCTP VS ODTP 77

4.3 Performance evaluation 1: PCTP vs ODTP

This first part of the performance evaluation comprises the PCTP and the ODTP migra-

tion protocols. Two kinds of tests have been done, one with lightweight agents (small

code with only two Java classes), and another one with heavyweight agents (large code

with twelve or thirty-two Java classes). Each test has been performed, with 1, 10, or

100 agents running simultaneously. The LAN environment described in the evaluation

setup (Section 4.2) has been chosen to perform the tests, since it is the most appropriate

for ODTP. PCTP is latterly tested in other environments.

Therefore, the parameters modified in the tests are: the number of agent classes each

agent has, the number of iterations or round-trips each agent does, and the number of

agent instances concurrently running. It must be taken intoaccount that in PCTP the

agents’ code is encapsulated in a compressed JAR file. While inODTP the code is not

compressed and it is always served from the first location of the itinerary (therefore it

is local to one of the platforms, although it is always locally requested when the cache

mechanisms are disabled).

4.3.1 Lightweight agents

The first set of tests uses a lightweight agent to follow the itinerary between the two

locations. A lightweight agent is composed of two Java classes which weigh 4KB in

total. Since protocols implemented provide code caching mechanisms, two versions of

the tests have been performed, one with this feature enabledand the other one with it

disabled.

The results can be appreciated in Table 4.1. Several facts can be stated with the help

of Table 4.2 and Figure 4.1. First of all, the on-demand strategy with cache mechanisms

disabled consumes more time than the push strategy. In this case, with the push strategy

9 messages are used in front of the 11 messages used in the on-demand strategy (take

into account that the code is composed of two classes, and twomessages are required to

request each class). If cache mechanisms are enabled the messages used are the same,

7 messages in this case, and, therefore, the time spent is similar for both.

The use of code caching mechanisms improves the migration performance, since

78 CHAPTER 4. PERFORMANCE ANALYSIS

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

100 Agents10 Agents1 Agent

A
ve

ra
ge

 m
ig

ra
tio

n
tim

e
(m

s)

PCTP Cache Disabled 2/2 Classes Used
PCTP Cache Enabled 2/2 Classes Used

ODTP Cache Disabled 2/2 Classes Used
ODTP Cache Enabled 2/2 Classes Used

Figure 4.1: PCTP vs ODTP 2 Classes.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

100 Agents10 Agents1 Agent

A
ve

ra
ge

 m
ig

ra
tio

n
tim

e
(m

s)

PCTP Cache Disabled 12/12 Classes Used
PCTP Cache Disabled 2/12 Classes Used

ODTP Cache Disabled 12/12 Classes Used
ODTP Cache Disabled 2/12 Classes Used

Figure 4.2: PCTP vs ODTP 12 Classes.

4.3. PERFORMANCE EVALUATION 1: PCTP VS ODTP 79

 0

 500

 1000

 1500

 2000

100 Agents10 Agents1 Agent

A
ve

ra
ge

 m
ig

ra
tio

n
tim

e
(m

s)

PCTP Cache Disabled 32/32 Classes Used
PCTP Cache Enabled 2/32 Classes Used

ODTP Cache Disabled 32/32 Classes Used
ODTP Cache Enabled 2/32 Classes Used

Figure 4.3: PCTP vs ODTP 32 Classes.

 0

 200

 400

 600

 800

 1000

 1200

 1400

32 Classes12 Classes2 Classes

A
ve

ra
ge

 m
ig

ra
tio

n
tim

e
(m

s)

PCTP Cache Disabled 10 Agents All Classes Used
PCTP Cache Disabled 10 Agents Partial Classes Used

ODTP Cache Disabled 10 Agents All Classes Used
ODTP Cache Disabled 10 Agents Partial Classes Used

Figure 4.4: PCTP vs ODTP 10 Agents.

80 CHAPTER 4. PERFORMANCE ANALYSIS

Code cache? 1 Agent 10 Agents 100 Agents
Push No 142 88 97

migration Yes 142 68 79
On Demand No 170 111 154
migration Yes 116 71 83

Table 4.1: Lightweight agents migration performance (in ms).

1 Agent 10 Agents 100 Agents
PCTP Cache usage (t.decrease) 0 % 22.73% 18.56%
ODTP Cache usage (t.decrease) 31.76% 36.04% 46.10%

PCTP vs ODTP No-Cache (t.decrease)16.47% 20.72% 37.01%
PCTP vs ODTP Cache (t.decrease) -22.41% 4.23% 4.82%

Table 4.2: Lightweight agents migration comparison.

the agent code is only transfered once (there are only two locations, therefore one code

transfer is enough). The benefits of these mechanisms are more noticeable with ODTP.

The reason is that in PCTP two messages are saved up regarding ODTP, where two

messages are sent for each requested agent class. There is anexception for the case of

only one agent using PCTP. The PCTP cache mechanisms only maintain the agent code

while it is being used by at least one agent. Therefore, when there is only one agent

migrating, the code is not maintained in the cache after the agent leaves the platform,

and it cannot be reused the next time the agent arrives. This is the reason why the results

in this case are exactly the same with and without the cache mechanisms activated.

Furthermore, when the results are compared with ODTP, this last takes advantage of

the mentioned implementation drawback and gets a better average round trip time.

It can also be appreciated that one migrating agent consumes, in average, more time

than several ones (do not confuse this with the real time spent in each agent migration

from the agent perspective). The reason is that ten agents migrating simultaneously are

pipelined without having to wait for the others’ migration processes finalisation. Migra-

tion processes are parallelised. Nevertheless, when one hundred agents are launched, the

average migration time increases regarding the ten agents test. There are three reasons:

• more agents means more load in the AM and in the migration service.

• more agents means more migrations and, therefore, more messages exchanged

4.3. PERFORMANCE EVALUATION 1: PCTP VS ODTP 81

and more load in the message transport service.

• JIPMS has been set up to 20 maximum concurrently migrations,then the remain-

ing 80 migrations have to wait in a queue. Increasing this maximum means more

performance but more consumed resources too.

4.3.2 Multi-class Heavyweight Agents

The second set of tests use heavyweight agents composed of many classes to follow the

itinerary between the two locations. There are two types of agents, one with a code that

weighs 39KB and it is composed of 12 Java classes (results areshown on Table 4.3),

and another one with a code that weighs 108KB and it is composed of 32 Java classes

(results are shown on Table 4.5). Two of these classes belongto the agent core, the rest

are extra classes to increase the agent weight, each one of 3KB. Each protocol is tested

with the two mentioned types of agents (12 and 32 classes), each one with two versions,

one using all the code (12/12 and 32/32 classes) and another one using only part of them

(2/12 and 2/32 classes).

The tests are only performed with the code caching mechanisms disabled. The rea-

son is that the main difference between the protocols analysed is the way the code is

transfered. Therefore, code caching mechanisms reduce thecode transfer to only one

(the first migration). In this case the results do not presentsignificant differences be-

tween the two protocols (compare, for example, the last two rows of Table 4.2).

From Figures 4.2 and 4.3, and Tables 4.3 and 4.5, several facts can be stated. First of

all, the time spent in an agent round trip increases as the agent code size grows. Using

ODTP this is more noticeable, since more classes means not only more data to transfer,

but more messages to exchange. Furthermore, it must be takeninto account that PCTP

sends the agent code within a JAR file which is compressed, transferring only 26KB and

72KB respectively for the two agent types, but spending moreCPU time.

The next paragraphs discuss the statements got from comparing the two migration

protocols (Table 4.4 and Table 4.6). Regarding PCTP, the outcomes of tests performed

by agents using all the code, 12/12 and 32/32 classes, are only slightly different from

the ones got by agents using only part of the code, 2/12 and 2/32 classes (see first and

82 CHAPTER 4. PERFORMANCE ANALYSIS

Classes used 1 Agent 10 Agents 100 Agents
Push 12-12 394 252 276

migration 2-12 328 222 233
On Demand 12-12 483 326 696
migration 2-12 175 116 159

Table 4.3: Heavyweight agents (12 classes) migration performance (in ms).

1 Agent 10 Agents 100 Agents
PCTP part vs all code (t.decrease) 16.75% 11.90% 15.58%
ODTP part vs all code (t.decrease) 63.77% 64.42% 77.16%

PCTP vs ODTP all code (t.decrease)18.43% 22.70% 60.34%
ODTP vs PCTP part code (t.decrease)46.65% 47.75% 31.76%

Table 4.4: Heavyweight agents (12 classes) migration comparison.

Classes used 1 Agent 10 Agents 100 Agents
Push 32-32 1,787 1,114 925

migration 2-32 1,362 961 753
On Demand 32-32 1,141 805 1,855
migration 2-32 188 121 164

Table 4.5: Heavyweight agents (32 classes) migration performance (in ms).

1 Agent 10 Agents 100 Agents
PCTP part vs all code (t.decrease) 23.78% 13.73% 18.59%
ODTP part vs all code (t.decrease) 83.52% 84.97% 91.16%

PCTP vs ODTP all code (t.decrease)-56.62% -38.39% 50.13%
ODTP vs PCTP part code (t.decrease)86.20% 87.41% 78.22%

Table 4.6: Heavyweight agents (32 classes) migration comparison.

4.3. PERFORMANCE EVALUATION 1: PCTP VS ODTP 83

second rows of Table 4.4 and Table 4.6). The push migration strategy always sends all

the agent code, it does not matter whether this code is used ornot in the remote location.

Despite this, agents that only use two classes perform slightly faster migrations, since

they do not load the rest of them in the main memory.

Regarding ODTP, in case of using all the agent code (12/12 or 32/32 classes), which

is the worst case for this strategy, the results are rather higher than using PCTP. When

one hundred agents are migrating, the time spent is very high. Twelve or thirty-two

classes are requested for each agent, which means exchanging 24 and 64 messages re-

spectively just to transfer the agent code, in front of the 2 messages used in the push

migration strategy (although larger than the others). These results confirm the state-

ments of Section 3.4.1 regarding the suitability of PCTP for sending large size agent

codes if they are completely used in all the locations the agent visits. Nevertheless, no-

tice that there is a case in which this statement is not completely true. It is the case of 1

and 10 agents using all the agent code (check the third row of Table 4.6). The efficiency

of the messaging service implemented in JADE decreases as the size of the messages

which are sent increases [Cuc04, JJK06]. Therefore, in this specific case it is more effi-

cient to send the agent within several small messages than within a big one. When one

hundred agents are migrating, this is different because thenumber of messages involved

is so high that the messaging service gets rather saturated,and the average migration

time raises.

According to the result tables, agents using only part of their code take advantage of

an on-demand migration strategy, since less time is spent than using the push migration

strategy. As just the two main classes of the agent are requested, only four messages

are exchanged. The bigger the agent code is, the better is theimprovement. Notice that

the average time spent for each agent in this case is practically constant (in Figure 4.4

there are represented the different times spent for ten agents as the number of classes

increase). The results, therefore, confirm the statements described in Section 3.4.2.

84 CHAPTER 4. PERFORMANCE ANALYSIS

4.4 Performance evaluation 2: PCTP vs FrTP

This second part of the performance evaluation comprises the PCTP and the FrTP mi-

gration protocols. The aim of this evaluation is comparing the performance of the two

mentioned protocols, and establishing which are the most appropriate FrTP fragment

sizes for each situation. Since FrTP is devised to optimise the transference of weight

agent resources (agent code and data), the tests have been performed with agents of dif-

ferent code sizes and, in some cases, of different data sizes(from 5KB to 1000KB). Each

test has been done with 1 and 10 agents running simultaneously. The first case allows

to analyse the time spent by a single agent migration round-trip. And the second case

allows to analyse the average time consumed in concurrent migrations by each agent

round-trip to the AM. All these tests have been performed in three different scenarios,

since FrTP is devised for any type of network environment.

In the next tests these are the parameters modified: the size of the agent code and the

agent data, the number of iterations or round-trips (which is adjusted to 10 for agents

greater than 100KB, and to 100 for agents smaller or equal than100KB), the number of

agent instances concurrently running, and the FrTP fragment size. It must be taken into

account that in all the cases the agent code is encapsulated in uncompressed JAR files.

4.4.1 Scenario 1: Local Area Network

The first scenario considered is a Local Area Network (LAN). This is the network ex-

plained in Section 4.2. It has an associated response time ofless than 1ms, it does not

present packet loss, and it has a performance of 100 Mb/s.

Two basic sets of tests have been performed in this scenario.The first one is a set of

agents with different code sizes (see Table 4.7). The secondone is a set of agents with

different data sizes in the same environment than the previous one (see Table 4.8).

Firstly, as it is depicted in Figure 4.9 PCTP performs better than FrTP for small

agent code sizes up to 25KB. This is because this protocol is less complex than the

other, and due to the less number of messages used when the information to transfer is

relatively small. But for agents with codes equal or higher than 50KB FrTP performs

very much better than PCTP. The reason is that no weighty ACL messages are used and,

4.4. PERFORMANCE EVALUATION 2: PCTP VS FRTP 85

 0

 5000

 10000

 15000

 20000

 25000

 0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 m
ig

ra
tio

n
tim

e
(m

s)

Agent code size (KB)

FrTP 5KB Fragment 1 Agents
FrTP 10KB Fragment 1 Agents
FrTP 15KB Fragment 1 Agents
FrTP 20KB Fragment 1 Agents
FrTP 25KB Fragment 1 Agents
FrTP 50KB Fragment 1 Agents

Figure 4.5: FrTP 1 Ag. Sc. 1 (code).

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 m
ig

ra
tio

n
tim

e
(m

s)

Agent code size (KB)

FrTP 5KB Fragment 10 Agents
FrTP 10KB Fragment 10 Agents
FrTP 15KB Fragment 10 Agents
FrTP 20KB Fragment 10 Agents
FrTP 25KB Fragment 10 Agents
FrTP 50KB Fragment 10 Agents

Figure 4.6: FrTP 10 Ag. Sc. 1 (code).

86 CHAPTER 4. PERFORMANCE ANALYSIS

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 m
ig

ra
tio

n
tim

e
(m

s)

Agent data size (KB)

FrTP 5KB Fragment 1 Agents
FrTP 10KB Fragment 1 Agents
FrTP 15KB Fragment 1 Agents
FrTP 20KB Fragment 1 Agents
FrTP 25KB Fragment 1 Agents
FrTP 50KB Fragment 1 Agents

Figure 4.7: FrTP 1 Ag. Sc. 1 (data).

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 m
ig

ra
tio

n
tim

e
(m

s)

Agent data size (KB)

FrTP 5KB Fragment 10 Agents
FrTP 10KB Fragment 10 Agents
FrTP 15KB Fragment 10 Agents
FrTP 20KB Fragment 10 Agents
FrTP 25KB Fragment 10 Agents
FrTP 50KB Fragment 10 Agents

Figure 4.8: FrTP 10 Ag. Sc. 1 (data).

4.4. PERFORMANCE EVALUATION 2: PCTP VS FRTP 87

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 m
ig

ra
tio

n
tim

e
(m

s)

Agent code size (KB)

FrTP 10KB Fragment 1 Agents
FrTP 10KB Fragment 10 Agents

PCTP 1 Agents
PCTP 10 Agents

Figure 4.9: FrTP vs PCTP Scenario 1 (code).

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 m
ig

ra
tio

n
tim

e
(m

s)

Agent data size (KB)

FrTP 10KB Fragment 1 Agents
FrTP 10KB Fragment 10 Agents

PCTP 1 Agents
PCTP 10 Agents

Figure 4.10: FrTP vs PCTP Scenario 1 (data).

88 CHAPTER 4. PERFORMANCE ANALYSIS

Protocol Agents 5KB 10KB 25KB 50KB 100KB 250KB 500KB 1000KB
FrTP 1 165 189 253 368 593 1,367 2,442 4,016
5 KB 10 112 132 190 297 448 919 1,822 4,733
FrTP 1 161 204 290 444 705 1,559 3,055 4,698
10KB 10 107 150 223 356 534 906 1,548 3,065
FrTP 1 161 205 359 600 1,020 2,658 4,871 7,563
15KB 10 107 142 283 502 805 1,372 1,729 3,061
FrTP 1 161 206 424 668 1,179 3,439 5,662 8,852
20KB 10 106 143 346 572 932 1,705 2,183 3,162
FrTP 1 161 204 551 838 1,314 3,789 6,750 10,638
25KB 10 107 142 460 735 1,033 2,098 2,792 3,438
FrTP 1 161 204 530 1,629 2,868 7,632 13,908 23,343
50KB 10 107 142 414 1,339 2,426 4,532 6,034 8,147
PCTP 1 126 140 222 493 1,734 11,943 41,499 150,162

10 77 85 140 339 1,200 8,300 32,710 116,721

Table 4.7: Scenario 1: Multi-size agent code migration performance (in ms).

therefore, its associated overhead does not appear (see [Cuc04, JJK06]). According to

the results, it is easy to see that when PCTP is used, the time spent in the migration

increases exponentially as the agent code gets weightier. While it increases linearly

when FrTP is used.

Regarding the migration concurrence, the two protocols perform better when several

migrations are done in parallel. Nevertheless, FrTP seems to be specially favoured

with it. The reason is that the transference is divided in many messages than can be

interleaved with the messages of the other migrations. Thisis specially noticeable when

large agent codes or data are transfered, where the time consumed with concurrence can

be less than a 50% with a single agent.

In these tests a metric to compare the throughput of the migration transfer protocols

is introduced. It consists of calculating the best transferdata rate achieved with each

protocol. it is calculated by dividing the amount of data transfered (in our case twice

of the agent code size, since there are two migrations in a migration round-trip) by the

time spent. Then, the best throughput of FrTP is achieved by agents of 1000KB sent in

fragments of 15KB. The throughput in this case is about 666KB/s. In the case of PCTP

the better throughput is for agent codes of 25KB, and it is about 313KB/s. In case of

using this protocol for agents of 1000KB, the throughput is only 17KB/s.

In FrTP (Figures 4.5 and 4.6) the best fragment sizes are between 5KB and 15KB

4.4. PERFORMANCE EVALUATION 2: PCTP VS FRTP 89

Protocol Agents 5KB 10KB 25KB 50KB 100KB 250KB 500KB 1000KB
FrTP 1 300 243 305 347 495 947 1,692 -
5 KB 10 128 138 186 264 397 887 1,815 -
FrTP 1 287 209 398 369 509 928 1,611 3,062
10KB 10 192 149 217 284 405 810 1,539 4,307
FrTP 1 288 206 308 521 576 935 1,594 2,962
15KB 10 185 138 222 326 448 811 1,409 3,936
FrTP 1 292 207 445 478 684 1,071 1,670 3,057
20KB 10 186 140 331 360 555 836 1,489 3,722
FrTP 1 292 208 434 567 776 1,194 1,826 3,343
25KB 10 192 139 337 408 588 1,083 1,609 4,031
FrTP 1 324 206 420 1,114 1,564 2,283 3,099 5,832
50KB 10 192 139 310 923 1,141 1,762 2,944 7,724
PCTP 1 133 148 227 499 1,760 11,546 39,869 141,939

10 81 91 160 413 1614 10,726 33,456 113,339

Table 4.8: Scenario 1: Multi-size agent data migration performance (in ms).

depending on the amount of data to transfer, and the number ofagent migrations. When

there is only one agent migration the fragment size of 5KB is the most appropriate.

While, when there are ten agents migrating, because of the higher number of messages

exchanged, the best fragment sizes are 5KB and 10KB depending on the amount of data

to transfer (usually more data performs better with 10KB fragments).

Finally, since FrTP also optimises the transfer of the agentdata, a set of tests with

agents carrying different amounts of data have been performed (see Table 4.8). The

results are similar to the previous ones, but they have some peculiarities because the

data is created by means of an agent global variable of the desired size. First of all,

the tests with 1000KB of data and fragments of 5KB cannot be performed because too

much memory is used (our agent serialisation keeps in memorythe agent instance and

the serialisation result, this is at least the double amountof data in memory). Secondly,

the time spent in agent migrations without concurrence is similar or even smaller than in

agent migrations with concurrence. The reason is that the data to transfer is in memory,

and it is more efficient to deal with it. Conversely, the agent code is kept into a secondary

storage. Furthermore, the concurrence is penalised by the extra amount of memory used.

And regarding the optimum fragment size, in this case it is more variable, and it ranges

from 5KB to 15KB (Figures 4.7 and 4.8). PCTP performs similar to the previous cases

with agents of different code sizes. In this case the difference between concurrent and

90 CHAPTER 4. PERFORMANCE ANALYSIS

Protocol Agents 5KB 10KB 25KB 50KB 100KB 250KB 500KB 1000KB
FrTP 1 2,300 2,768 3,628 5,230 8,551 18,531 35,203 68,362
10KB 10 1,742 2,244 3,122 4,630 8,031 17,966 34,599 67,833
FrTP 1 2,298 2,565 3,372 4,824 7,550 15,903 30,061 58,032
15KB 10 1,742 1,958 2,806 4,310 7,132 15,499 29,551 57,600
PCTP 1 2,017 2,264 2,719 3,423 5,216 16,496 46,232 153,689

10 1,544 1,695 2,094 2,303 2,550 9,133 33,870 112,927

Table 4.9: Scenario 2A: Multi-size agent code migration performance (in ms).

no concurrent migrations have also been reduced.

4.4.2 Scenario 2: Wide Area Network

The second scenario considered is a Wide Area Network (WAN).The network, simu-

lated with the NetEm [Hem05] Linux utility, has an associated response time of 120ms,

with a variation of 10ms, and a bandwidth of 100 Mb/s. Two different cases have

been considered, one where there is no packet loss (called Scenario 2A) and another

one where there is a 5% packet loss (called Scenario 2B). In this last case, according

to [MSM97], the maximum bandwidth is limited at the transport level by the TCP pro-

tocol because of the packet loss and retransmissions.

Only one set of tests for each of the network variants has beenconsidered. The set of

tests that analyses agent migrations with different code sizes (see Table 4.9 for Scenario

2A, and Table 4.10 for Scenario 2B). In this case only the 10KB and 15KB fragment

sizes are tested, since the cost to perform the tests in thesescenarios is higher than in

the previous ones, and in this case the fragment size comparison is not so relevant. In

the first scenario, the best fragment sizes were 5KB, 10KB, and 15KB. In this case only

the 10KB and 15KB fragment sizes have been used, since they imply less messages sent

(this is better with this scenario latency). At the end, the best results have been achieved

by the 15KB fragment size (this is the reason why the 10KB results are not represented

in the figures).

In the first case (Table 4.9, and Figure 4.11), the most relevant consequence of the

network latency rise is an important increase of the averagetime spent by the agent

migrations. The network latency does not affect the effective network bandwidth. But

the migration transfer protocols presented are victims of the message handshake delays,

4.4. PERFORMANCE EVALUATION 2: PCTP VS FRTP 91

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 m
ig

ra
tio

n
tim

e
(m

s)

Agent code size (KB)

FrTP 15KB Fragment 1 Agents
FrTP 15KB Fragment 10 Agents

PCTP 1 Agents
PCTP 10 Agents

Figure 4.11: FrTP vs PCTP Scenario 2A.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 m
ig

ra
tio

n
tim

e
(m

s)

Agent code size (KB)

FrTP 15KB Fragment 1 Agents
FrTP 15KB Fragment 10 Agents

PCTP 1 Agents
PCTP 10 Agents

Figure 4.12: FrTP vs PCTP Scenario 2B.

92 CHAPTER 4. PERFORMANCE ANALYSIS

Protocol Agents 5KB 10KB 25KB 50KB 100KB 250KB 500KB 1000KB
FrTP 1 3,285 3,959 5,333 7,817 13,065 28,031 53,966 106,269
10KB 10 2,456 3,104 4,463 6,875 12,071 27,670 53,423 10,5216
FrTP 1 3,359 3,665 4,962 7,447 11,957 25,457 48,561 93,828
15KB 10 2,462 2,738 4,129 6,515 10,942 24,426 47,469 92,693
PCTP 1 2,988 3,248 4,276 5,932 9,673 27,001 67,196 197,131

10 2,189 2,424 3,289 4,284 5,123 16,034 43,207 135,615

Table 4.10: Scenario 2B: Multi-size agent code migration performance (in ms).

highly increased because of the network latency. Nevertheless, it is surprising that the

round-trip time increase is specially noticeable with FrTP. On the one hand, it seems

to make sense that as more messages are sent more noticeable is the latency, but on

the other hand, FrTP is designed to mitigate this problem, since no acknowledgements

are expected by each data message sent. Then, the explanation is that despite the pro-

tocol does not wait for acknowledgements, the underlying transport protocol, which

is implemented by the MTP-HTTP, does. Therefore, the delay in this case is directly

proportional to the number of fragments sent. Using an MTP that did not require an

acknowledge for each message sent, such as the MTP-UDP [Cuc04], the performance

of FrTP, in such conditions, would be rather better. Regarding PCTP, although the

current network conditions also increase the average round-trip time, in migrations of

large agents the latency is concealed by the penalisation ofACL messages with high

amounts of data. Furthermore, it must be taken into account that in this case the number

of exchanged messages is much smaller than in FrTP.

Comparing the two protocols, in this scenario, FrTP performsbetter than PCTP for

agent codes equal or greater than 500KB. The best transfer data rate achieved with FrTP

is 35KB/s with the 1000KB agent and 15KB fragments. At the contrary, the best transfer

data rate achieved with PCTP is 78KB/s with the 100KB agent. Thesame protocol with

the 1000KB agent presents a transfer data rate of 18KB/s. All the cases are referred to

concurrent migrations.

In the second case (Table 4.10, and Figure 4.12) the results obtained are concep-

tually similar to the previous ones. The only difference is ageneral increase of the

average time spent for each migration round-trip (approximately a 50% more than the

4.4. PERFORMANCE EVALUATION 2: PCTP VS FRTP 93

Protocol Agents 5KB 10KB 25KB 50KB 100KB 250KB 500KB 1000KB
FrTP 1 1,169 1,524 2,001 2,859 4,695 10,181 19,327 37,589
10KB 10 935 1,149 1,652 2,499 4,329 9,795 18,870 37,053
FrTP 1 1,177 1,425 1,975 2,799 4,474 9,736 18,159 35,217
15KB 10 935 1,035 1,562 2,465 4,129 9,212 17,684 34,617
PCTP 1 1,008 1,100 1,675 2,496 5,002 19,412 56,628 177,940

10 801 882 1,253 1,493 2,714 12,205 39,581 125,591

Table 4.11: Scenario 3: Multi-size agent code migration performance (in ms).

results obtained in the previous scenario). The transfer data rate achieved in this sce-

nario with FrTP is 21KB/s with the 1000KB agent and 15KB fragments. Using PCTP

the maximum data rate achieved is 39KB/s with the 100KB agent.The same protocol

with the 1000KB agent presents a transfer data rate of 15KB/s.All the cases are referred

to concurrent migrations. Finally, it must be taken into account that in this scenario the

network bandwidth is limited because of the latency and packet loss (see [MSM97]).

Nevertheless, this limit does not affect the mentioned datatransferences because the

data rate obtained is below it.

4.4.3 Scenario 3: Metropolitan Area Network

The third scenario considered is a Metropolitan Area Network (MAN). The network,

simulated with the NetEm [Hem05] utility, is composed of two20Mb/s (downstream)

1Mb/s (upstream) ADSL links to a Digital Subscriber Line Access Multiplexer (DSLAM)

that behaves as a network hub. The response time associated to these links is around

30ms. The data exchanged between Agent Platforms (APs), since traverses two ADSL

links, can only reach 1Mb/s of bandwidth and the response time achieved is 60ms.

As in the previous scenario, only one set of tests has been considered. The set of

tests that analyses agent migrations with different code sizes (see Table 4.11). In this

case the average time spent in an agent migration round-triphas been proportionally

reduced to the latency reduction regarding the Scenario 2A.In this case, as it is shown

in Figure 4.13, FrTP performs better than PCTP for agents equal or greater than 100KB,

when there is a single agent migrating, and 250KB, for ten agents migrating. The trans-

fer data rate achieved in this scenario with FrTP is 58KB/s with the 1000KB agent and

15KB fragments. Using PCTP the maximum data rate achieved is 74KB/s with the

94 CHAPTER 4. PERFORMANCE ANALYSIS

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 m
ig

ra
tio

n
tim

e
(m

s)

Agent code size (KB)

FrTP 15KB Fragment 1 Agents
FrTP 15KB Fragment 10 Agents

PCTP 1 Agents
PCTP 10 Agents

Figure 4.13: FrTP vs PCTP Scenario 3.

100KB agent. The same protocol with the 1000KB agent presents a transfer data rate

of 16KB/s. All the cases are referred to concurrent migrations. It is worth noticing that,

despite the bandwidth limitation of the links present in this scenario, the maximum data

rate achieved does not reach a 100% usage of the link. The reason is that the effective

data rate achievable by the two protocols is limited by the latency in FrTP, and the poor

efficiency of the Agent Communication Language (ACL) messagesin JADE when they

contain high amounts of data, such as in PCTP.

4.5 Performance evaluation 3: PCTP vs RESTTP

This third part of the performance evaluation comprises thePCTP and the RESTTP

migration protocols. The aim of this evaluation is comparing the performance of both

protocols. Since RESTTP, as FrTP, is devised to optimise the transference of weight

agent resources (agent code and data), the tests have been performed with agents of

different code sizes and, in some cases, of different data sizes (usually from 5KB to

1000KB). Each test has been done, with 1, and 10 agents runningsimultaneously. All

4.5. PERFORMANCE EVALUATION 3: PCTP VS RESTTP 95

Protocol Agents 5KB 10KB 25KB 50KB 100KB 250KB 500KB 1000KB
RESTTP 1 101 102 106 109 126 160 212 311

10 71 71 73 77 87 108 145 242
PCTP 1 126 140 222 493 1,734 11,943 41,499 150,162

10 77 85 140 339 1,200 8,300 32,710 116,721

Table 4.12: Scenario 1: Multi-size agent code migration performance (in ms).

these tests have been performed in the same three scenarios used in the previous section,

since RESTTP is also devised for any type of network environment.

In the next tests these are the parameters modified: the size of the agent code and the

agent data, the number of iterations or round-trips (which is adjusted to 10 for agents

greater than 100KB, and to 100 for agents smaller or equal than100KB), and the num-

ber of agent instances concurrently running. In all the cases the agent code is also

encapsulated in uncompressed JAR files.

4.5.1 Scenario 1: Local Area Network

Two basic sets of tests have been performed in this scenario.The first is a set of agents

with different code sizes, migrating between the two locations present in the network,

and using RESTTP and PCTP (Table 4.12). The second is a set of agents with different

data sizes in the same environment than the previous one (seeTable 4.13).

Firstly, as it is depicted in Figure 4.14, RESTTP is the most efficient protocol. The

average migration round-trip time increases linearly, while using PCTP this time in-

creases exponentially as agents get weightier. PCTP can be considered usable to migrate

agents with a code size up to 50KB with regard to RESTTP. The migration concurrency

reduces the average migration time spent by the AM to a 66% of the time spent for a

single migrating agent.

The best data transference rate obtained by RESTTP is achieved by agents of 1000KB.

The throughput in this case if about 8MB/s. In the case of PCTP the better throughput

is for agent codes of 25KB, and it is about 313KB/s. In case of using this protocol for

agents of 1000KB, the throughput is only 17KB/s.

Finally, since RESTTP also optimises the transfer of the agent data, a set of tests

with agents carrying different amounts of data has been performed (Table 4.13 and

96 CHAPTER 4. PERFORMANCE ANALYSIS

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 m
ig

ra
tio

n
tim

e
(m

s)

Agent code size (KB)

RESTTP 1 Agents
RESTTP 10 Agents

PCTP 1 Agents
PCTP 10 Agents

Figure 4.14: RESTTP vs PCTP Scenario 1 (code).

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 m
ig

ra
tio

n
tim

e
(m

s)

Agent data size (KB)

RESTTP 1 Agents
RESTTP 10 Agents

PCTP 1 Agents
PCTP 10 Agents

Figure 4.15: RESTTP vs PCTP Scenario 1 (data).

4.5. PERFORMANCE EVALUATION 3: PCTP VS RESTTP 97

Protocol Agents 5KB 10KB 25KB 50KB 100KB 250KB 500KB 1000KB
RESTTP 1 102 103 106 112 130 174 240 444

10 71 72 74 79 91 123 186 330
PCTP 1 133 148 227 499 1,760 11,546 39,869 141,939

10 81 91 160 413 1,614 10,726 33,456 113,339

Table 4.13: Scenario 1: Multi-size agent data migration performance (in ms).

Protocol Agents 5KB 10KB 25KB 50KB 100KB 250KB 500KB 1000KB
RESTTP 1 2,502 2,727 3,027 3,451 3,998 5,037 6,128 7,868

10 1,315 1,365 1,527 1,758 3,590 4,743 5,822 7,558
PCTP 1 2,017 2,264 2,719 3,423 5,216 16,496 46,232 153,689

10 1,544 1,695 2,094 2,303 2,550 9,133 33,870 112,927

Table 4.14: Scenario 2A: Multi-size agent code migration performance (in ms).

Figure 4.15). The results are quite similar to the previous ones with only slight changes.

They are consequence of the different treatment that the agent data receives regarding

the agent code.

4.5.2 Scenario 2: Wide Area Network

As in the previous section, only one set of tests for each of the network variants (the

one without packet loss and the one with it) has been considered. The set of tests that

analyses migrations with different agent code sizes (see Table 4.14 for Scenario 2A, and

Table 4.15 for Scenario 2B).

In the first case (Table 4.14 and Figure 4.16), the network latency strongly penalises

protocol handshakes. Since not only does RESTTP exchange thesame number of ACL

messages than PCTP, but it even establishes two HTTP connections, RESTTP performs

worse than PCTP when a single agent with a code size between 5KBand 50KB mi-

grates. The time spent in the number of operations required to transfer such amounts

of data is too high to be recovered. In all the other cases RESTTP performs better than

PCTP. Furthermore, the migration concurrency also improvesthe average performance

results.

The best transfer data rate achieved with RESTTP is 265KB/s with the 1000KB

agent. At the contrary, the best transfer data rate achievedwith PCTP is 78KB/s with

the 100KB agent. The same protocol with the 1000KB agent presents a transfer data

98 CHAPTER 4. PERFORMANCE ANALYSIS

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 m
ig

ra
tio

n
tim

e
(m

s)

Agent code size (KB)

RESTTP 1 Agents
RESTTP 10 Agents

PCTP 1 Agents
PCTP 10 Agents

Figure 4.16: RESTTP vs PCTP Scenario 2A.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 m
ig

ra
tio

n
tim

e
(m

s)

Agent code size (KB)

RESTTP 1 Agents
RESTTP 10 Agents

PCTP 1 Agents
PCTP 10 Agents

Figure 4.17: RESTTP vs PCTP Scenario 2B.

4.5. PERFORMANCE EVALUATION 3: PCTP VS RESTTP 99

Protocol Agents 5KB 10KB 25KB 50KB 100KB 250KB 500KB 1000KB
RESTTP 1 4,382 4,656 5,033 5,505 7,160 10,760 20,019 38,209

10 2,707 2,746 2,844 3,269 4,275 11,114 20,548 37,354
PCTP 1 2,988 3,248 4,276 5,932 9,673 27,001 67,196 197,131

10 2,189 2,424 3,289 4,284 5,123 16,034 43,207 135,615

Table 4.15: Scenario 2B: Multi-size agent code migration performance (in ms).

Protocol Agents 5KB 10KB 25KB 50KB 100KB 250KB 500KB 1000KB
RESTTP 1 1,357 1,443 1,683 2,131 2,972 5,670 10,134 18,998

10 701 742 1,012 1,224 2,271 5,532 9,995 18,868
PCTP 1 1,008 1,100 1,675 2,496 5,002 19,412 56,628 177,940

10 801 882 1,253 1,493 2,714 12,205 39,581 125,591

Table 4.16: Scenario 3: Multi-size agent code migration performance (in ms).

rate of 18KB/s. All the cases are referred to concurrent migrations.

In the second case (Table 4.15, and Figure 4.17) the combination of latency and

packet loss increases the packet exchange penalisation, and the channel bandwidth. In

this case RESTTP performs better than PCTP with agent code sizes from 50KB without

concurrent migrations, and from 25KB with concurrent migrations. Migration concur-

rency reduces the latency effects, but only in the ACL messageexchange (the improve-

ment obtained because of the parallelisation is higher in small agent codes).

The transfer data rate achieved in this scenario with RESTTP is 54KB/s with the

1000KB agent. Using PCTP the maximum data rate achieved is 39KB/s with the 100KB

agent. The same protocol with the 1000KB agent presents a transfer data rate of 15KB/s.

All the cases are referred to concurrent migrations. In thiscase the maximum data rate

obtained is not only limited by the latency, but by the combination with the message

loss that, under the TCP protocol, establishes a maximum channel bandwidth. This can

be proved checking the performance results obtained by agents with large agent codes

sent with RESTTP. In these cases the time spent increases proportionally and linearly

with regard to the code size (see first and second rows of Table4.15), which means a

bandwidth limitation. In other cases, the time spent does not increase proportionally

(see first and second rows of Table 4.14).

100 CHAPTER 4. PERFORMANCE ANALYSIS

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 m
ig

ra
tio

n
tim

e
(m

s)

Agent code size (KB)

RESTTP 1 Agents
RESTTP 10 Agents

PCTP 1 Agents
PCTP 10 Agents

Figure 4.18: RESTTP vs PCTP Scenario 3.

4.5.3 Scenario 3: Metropolitan Area Network

As in the previous scenario, only one set of tests have been considered. The set of tests

that analyses agent migrations with different code sizes (Table 4.16 and Figure 4.18).

In this case RESTTP is the protocol with the best performance,with the exception of

single migrating agents with code sizes between 5KB and 25KB.

The transfer data rate achieved in this scenario with RESTTP is 106KB/s with the

1000KB agent. Using PCTP the maximum data rate achieved is 74KB/s with the 100KB

agent. The same protocol with the 1000KB agent presents a transfer data rate of 16KB/s.

All the cases are referred to concurrent migrations. In thiscase RESTTP use the 100%

of the channel bandwidth (since it is 1Mb/s and the transfer reaches 106KB/s).

4.6 Conclusions

In this chapter, through the use of the JIPMS implementation, it has been demonstrated

the versatility of IPMA. Different migration transfer protocols give rise to different

migration strategies suitable to one or more specific environments. And each of these

4.6. CONCLUSIONS 101

protocols obtain different results depending on the environment conditions. In the next

paragraphs there is a comparison of the benefits of each one taking into account the

results previously obtained.

The protocols analysed have been PCTP, ODTP, FrTP, and RESTTP.The first

three are only based on the use of IEEE-FIPA standards, whereas the last one introduces

the use of HTTP requests. PCTP, and FrTP are based on the push migration strategy,

RESTTP is based on a pull-at-once migration strategy, and ODTP in a pull-on-demand

migration strategy (see Section 3.4 for more details).

PCTP is the default protocol of JIPMS. It is the simplest one. This is the reason

why it has been chosen as the reference protocol for the comparisons. According to

the results obtained, this protocol is suitable for migrating agents with a small agent

code and small agent data (typically up to 50KB). Data transferences of more than

250KB are usually highly inefficient because of the ACL unsuitability for dealing with

large amounts of data (see [Cuc04, JJK06]). Nevertheless, when there are network

performance restrictions (high latency, packet loss, or bandwidth limitation) it may be

preferable its usage even with larger agent codes and data.

FrTP is a protocol that sends the agent code and agent data spread in several frag-

ments, with a customisable size, each one encapsulated in anACL message. This takes

advantage of the JADE messaging service suitability for dealing with huge amounts of

small ACL messages [CGK+05]. It was initially devised to substitute PCTP, since by

changing the fragment size it can be generalised to the case of PCTP, where all the

agent code is sent in a single ACL message, and all the agent data is sent in another one.

Nevertheless, according to the results, it is better to use it as a complement of PCTP,

since the complexity increase of FrTP is too high for small agents (5KB to 25KB agent

codes), where PCTP performs better. For large agent codes theperformance is quite

better. There is another disadvantage, in case of network latency the protocol is not so

efficient as initially anticipated, because of the high amount of messages which are sent.

Despite the fact that there is no acknowledgement of these messages, the MTP-HTTP

does not consider a message sent until an internal HTTP response is received. This is

the reason why the latency affects the performance of the protocol. Using another MTP

without this restriction the performance would be better inthis case.

102 CHAPTER 4. PERFORMANCE ANALYSIS

RESTTP is a protocol based on the request of the agent resources, from the remote

location, using HTTP connections. This protocol demonstrates that the data transfer-

ences based on ACL messages are not efficient. In most of the cases it takes advantage

of almost 100% of the bandwidth available. This protocol is suitable for almost all the

environments. The only disadvantages it has are the use of additional standards than the

ones dictated by the IEEE-FIPA, and that it requires establishing new connections from

the remote platform to the local platform (sometimes this may be a problem because

new ports must be opened in network firewalls).

And ODTP is a protocol that only transfers the required agentcode as it is needed.

It is devised for agents which do not use all their code in all the locations they visit.

It is intended to be used only in local area networks, since the cost of individually

requesting several code snippets can be very high in wide area networks where the

associated latency is higher. Checking the performance results, it can be seen that when

only few parts of the agent code are used, the time spent in themigrations is constant.

Then, when large agent codes are involved, and they are in theappropriate environment,

this protocol can even be more efficient than FrTP.

Finally, the better strategy to migrate agents, if only IEEE-FIPA standards can be

used, is the combination of several protocols. Each one usedin the most suitable case

for it. In case of being able to use non IEEE-FIPA standards, then the response is clear,

RESTTP is the most efficient protocol in almost all the situations. Nevertheless, it must

be said that all the given results depend on the specific implementation tested, and that

they could present some differences if other implementations and MTPs were used.

Chapter 5

Agent Code Distribution Service

This chapter proposes a global cache service to efficiently and securely deal with the

distribution of agent code. An implementation of the service is presented, and a set of

performance tests demonstrate its benefits.

5.1 Introduction

The performance of mobile agent migrations has been always penalised because of the

need of carrying the three parts from which agents are composed (code, data, and state)

to each visited location (see Section 2.2.2). The agent dataand state must always be

transfered from location to location since they dynamically change. Nevertheless, since

the agent code is static during the whole life of the agent, its management can be im-

proved, e.g., using code caches, and the penalisation associated to its transmission can

be reduced [Gav04]. Furthermore, in case several agents share the same code, a huge

quantity of network bandwidth can be saved up. Therefore, anintelligent management

of the agent code can improve the migration time of agents.

Several solutions (see Chapter 3 or [BR05]), such as the addition of code caches or

the partial transference of the agent code (code on demand),have been used in Agent

Platforms (APs) to improve the agent performance. Nevertheless, these solutions are

always local to APs. Agent codes can be better managed from a global point of view,

taking into account the code necessities everywhere.

103

104 CHAPTER 5. AGENT CODE DISTRIBUTION SERVICE

In this chapter a service called Agent Code Distribution Service (ACDS) is proposed

to manage the agent code from a global perspective. In Section 5.2 a set of requirements

for a global code manager service is detailed. Then in Section 5.3, ACDS with its secu-

rity features and its public user interface is explained. The service has been implemented

allowing the performance of several tests in different scenarios to demonstrate its bene-

fits, see Section 5.4. Then, a set of related work is compared with the service proposed

in Section 5.5. And, finally, Section 5.6 concludes the chapter.

5.2 Requirements and Roles

Regarding the nature of the service which is proposed later inthis chapter, a set of

requirements have been selected in the following lines. They are taken into account in

its design, which is explained in the next section.

• Agent middleware independence.The codes managed by the service and the inter-

action of it with APs must not be limited to a specific type of Agent Middleware

(AM).

• Programming language independence.Both, the interface to access the service

and the codes managed by it must not be restricted to a specificProgramming

Language (PL).

• Code efficiently transported.Agent code must be transfered using efficient proto-

cols. The performance should be independent of the amount ofdata transmitted.

E.g., in the JADE [BCPR08] AM the ACL messaging system performance de-

crease as the ACL messages size grows [Cuc04, JJK06].

• Code intelligently distributed and cached.Agent code must be distributed and

cached close to the APs that possibly will need it in a nearby future.

• Code distribution under contract.The parameters regarding the distribution and

maintenance of code must be associated to a code contract.

5.2. REQUIREMENTS AND ROLES 105

• Support for multiple code binaries.Each agent code must be able to include one

or more binaries developed in different PLs. This permits the support for inter-

language agents (see Chapter 6).

• Support for code updates.Agent code updates must be able to be propagated for

security purposes.

• Secure code distribution.Sensitive operations, such as removing or updating an

existing agent code, must always be authenticated. Furthermore, the agent code

integrity and authenticity must be guaranteed.

• Service transparent to agents.The fact of using a service to manage the agent

code must be transparent to agents, which are not needed to bespecifically devel-

oped to support this situation.

But not only the service requirements must be taken into account for its design. Any

service has at least two parties involved in it, the client and the server. In this case, there

are more parties that take part in it. Each one is representedwith a specific role:

• Code developer: This is the role associated to the agent developer. It has nothing

to do with the code distribution service since the service istransparent to the

agent.

• Code owner: This is the role associated to the person who has bought, or some-

times developed, the agent. It uses the agent code service tovoluntarily or invol-

untarily distribute its code.

• Code user: This is the role associated to the agent on itself and to the AMs that

use the code to run the agent.

• Code provider: This is the role associated to the code distribution service admin-

istrators.

All these roles are taken into account in the design of the service presented in the

next section.

106 CHAPTER 5. AGENT CODE DISTRIBUTION SERVICE

5.3 Agent Code Distribution Service

Figure 5.1: Agent Code Distribution System.

In this section a service to manage the distribution of agentcodes, the ACDS, is

presented. The agent code distribution is tackled from a global point of view and fulfils

the requirements presented in the previous section.

5.3.1 Overview of the Architecture

ACDS defines a network composed of several nodes, called Pointof Presences (PoPs),

which distribute and cache code through inter-networks (see Figure 5.1). The idea is

similar to the Content Delivery Networks (CDNs) [PB07], such asAkamai [DMP+02],

but focused on agent codes, where critical information, from the performance point of

view, is transported using a dedicated network belonging tothe code provider.

The service is offered over an inter-network which is divided into regions (see Fig-

ure 5.1). Each region has one or more nearby networks assigned. There is a publicly

known PoP in each region in addition to other ones for fault tolerance or load distri-

bution purposes. PoPs are interconnected with themselves,compose the core of the

5.3. AGENT CODE DISTRIBUTION SERVICE 107

system, and are the smallest independent entities of ACDS. APs interact with their clos-

est PoP for requesting agent codes. As closer is a PoP of an AP,better the performance

that is got in the code fetching. As shown in Figure 5.2, a PoP node is composed of

four basic components: the Local Code Repository (LCR), the Remote Code Manager

(RCM), the Contract Enforcement Module (CEM), and the ACDS Interface.

Figure 5.2: Point of Presence (PoP).

• Local Code Repository (LCR):It is a repository that contains all the agent codes

local to a PoP. Non present codes in this repository must be requested to other

PoP nodes.

• Remote Code Manager (RCM):It is the core of the PoP. It manages the local and

remote operations to agent codes, i.e., it serves codes to APs, and requests and

serves codes to other nodes, through the ACDS Interface.

• Contract Enforcement Module (CEM):This module enforces the rules specified

in the contract of each agent code. Some operations will not be permitted if they

are not authorised by the code contract.

• ACDS Interface:This is an interface between PoPs and clients, and PoPs and

other PoPs. Two basic kinds of operations are supported, therequest of an agent

code, carried out by APs or other PoPs, and the management of published codes,

carried out by the code owners or other PoPs. This interface is specified in Sec-

tion 5.3.5.

108 CHAPTER 5. AGENT CODE DISTRIBUTION SERVICE

Figure 5.3: Example of the use of agent code identifiers.

5.3.2 Code Management

As previously mentioned, ACDS is a system similar to a CDN. Nevertheless, dealing

with distribution and caching of code is slightly differentfrom dealing with typical web

data. Agent codes are identified by a different mechanism, sometimes they must be

immediately updated or removed from the whole network, and different versions of

their binaries might exist to support inter-language interoperability mechanisms such as

the one proposed in Chapter 6, where an agent can be composed ofseveral equivalent

codes. Agent codes can be completely different regarding several aspects:

• the PL in which they are written,

• if they are compiled or are source code,

• the architecture or interpret for which they are prepared,

• the method of packaging

The ACDS can deal with any kind of codes, included source code packages, since

the service does not interpret them. Codes are only interpreted by the AP which has

requested them. The set of identifiers described in Section 3.3.2 is used to classify

and uniquely identify codes (see also the example of Figure 5.3). Nevertheless, ACDS

arranges them in an URN-like name, following the hierarchical schema shown in Fig-

ure 5.4, as:

urn:agent-code-id:<CGID>:<CID>:<SR>:<HCID>

5.3. AGENT CODE DISTRIBUTION SERVICE 109

Figure 5.4: Code identifier hierarchy.

So, for example a given code can be identified by a name like:

urn:agent-code-id:cgid:cid-0:2:HCIDx.

This code is named following the identifier hierarchy shown in Figure 5.4, so re-

garding the code examples of Figure 5.3, the identifier:

urn:agent-code-id:1f332e209d0dc354

denotes all the code withCGID = 1f332e209d0dc354. Or the name

urn:agent-code-id:1f332e209d0dc354:22d1ccfe8a

denotes all the code revisions of the code with theCID = 22d1ccfe8a andCGID =

1f332e209d0dc354.

Furthermore, each agent code must have associated acode profilein addition to the

URN previously proposed. No specific format is enforced for the code profile, since

the service only propagates it together with the code without requiring its interpretation.

The code profile contains information, among others, of the PL in which the code is

written and the type of architecture supported. This allowsagent developers to create

new agent codes supporting different profiles for a specific agent (see Section 6.5.3)

which is already deployed. Existing agents can migrate to previously unsupported loca-

tions finding the new codes developed by using their Code GroupIdentifier (CGID), and

the code profile information available in ACDS. The CGID is associated to the agent

and represents all the agent codes suitable for this agent. Furthermore, as it is explained

in Section 5.3.4, the agent code also has associated acode distribution contract.

110 CHAPTER 5. AGENT CODE DISTRIBUTION SERVICE

5.3.3 Code Distribution

Two types of code distribution are supported by ACDS, the on demand distribution and

the a priori distribution. They are used depending on the type of service required and

the availability of a specific code.

On Demand Distribution

In the on demand distribution the code is uploaded to a specific PoP when it is needed.

This way to distribute the code is flexible, but it does not always represent an improve-

ment in the code fetching. If the code is only requested one time in each region, from

the agent point of view, this may increase the final time spentto fetch it. It also has

the disadvantage that, once the code has been spread throughseveral nodes, it is not

trivial to delete or update it. Two types of service can be offered depending on the code

provider policy.

• On the one hand, the ACDS only acts as a region cache. In this case, if a code is

requested by an AP and it is not present in the PoP, a response indicating that the

code is not found is returned. Then, it is responsibility of the AP to upload the

code, for the other’s region APs benefit, after the code is traditionally received.

• On the other hand, another more advanced type of service allows the PoP to search

for a requested agent code in other PoPs. Although differentalternatives can

be used, we propose to take advantage of a Distributed Hash Table (DHT), e.g.,

Chord [SMLN+03]. The idea is to store in a DHT the agent code contracts, which

include a list of the regions where the code is available. Therefore, each time a

code is required the contract associated to the code requested is retrieved from the

DHT, and one PoP of the list of regions is asked for the code. Ifthe contract is not

found in the DHT a code not found response is returned, and, asin the previous

case, it is responsibility of the AP to upload the code once itis got.

A Priori Distribution

In the a priori distribution the code is uploaded to a set of PoPs according to alist of re-

gionsstated in the code distribution contract. Although this method is not as flexible as

5.3. AGENT CODE DISTRIBUTION SERVICE 111

the previous alternative, it guarantees that the code is present in all the desired regions

when agents reach them. Furthermore, it allows to easily update and delete the dis-

tributed code. In case the code owner agrees, this distribution method can be combined

with the previous one.

The flexibility of this method has been enhanced by using the concept of neighbour-

hood. Each PoP includes a list of its neighbours (PoPs), which denotes the closest nodes

from a topographic point of view, that is defined by the node administrators, and it is

static, i.e., it does not frequently change. Therefore, when a code is sent to the regions

listed in the contract, each PoP associated to the region sends the code to its neighbours.

This operation is repeated a number of times, according to a parameter calledneigh-

bourhood degree, down the tree of neighbours. The parameter is an integer that can

be:

• Zero: in this case the code is not sent to any neighbour, i.e., thisis equivalent to

the original distribution method.

• Greater than zero: in this case there is a wider code distribution, while keeping

the possibility to update and delete the code from all the nodes, since the pathway

to them can be easily reconstructed.

As the neighbourhood degree increases, these processes aremore error-prone. Nev-

ertheless, depending on the average number of neighbours each node has, the neigh-

bourhood degree has a limit which has no sense to be exceeded (see the concept ofSix

degrees of separationin [Bar02]).

5.3.4 Security Management

In the business model proposed for ACDS, where the agent code is distributed a priori,

the code owner establishes a contract with the ACDS administration authority in order

to use the network to distribute its code. This contract allows the code owner to use

some of the distribution schemes available in ACDS under the stated conditions and

possible constraints. Thus, ACDS must guarantee that the code will be distributed as it

has been agreed and, furthermore, the infrastructure must provide security mechanisms

112 CHAPTER 5. AGENT CODE DISTRIBUTION SERVICE

to protect the code and the code owner operations. One of the biggest threats to ACDS

is the malicious code upload, update, or deletion by unauthorised users, so each PoP

must enforce the user contract and other possible security policies applicable.

On the other hand, once the code is distributed over the network the code user can

freely download it from the ACDS PoPs. No restrictions are initially imposed in code

downloads regarding the code user. If download restrictions must be applied, they are

stated in the initial contract by the code owner by, for instance, limiting the number of

code downloads or bandwidth used during a period of time. This also allows to improve

the code download efficiency and performance, by speeding upthe process, because it

can avoid servers saturation.

The agent code and agent code profile integrity can be guaranteed by signatures

issued by the code owner. The service does not check these signatures, only distribute

them along the agent code and agent code profile. Therefore, they can be verified by the

AP which has requested them.

Code Distribution Contract

The code distribution contract is established with the ACDS administrative authority

and states mainly what the code owner can distribute over theACDS network and how.

The main elements contained in the contract are:

• Contract issuer: the ACDS authority issuing the contract.

• Subject: the code owner allowed to distribute code (a hash of the codeowner

public key is used as user identification).

• Actions: actions allowed to the code owner. This will normally be a subset of

{upload, update, delete}.

• Object: the code to be distributed by ACDS.

• Conditions: several conditions to be met for the contract to be valid. The most

important conditions are:

– Distribution specification: kind of distribution to be performed, as described

in Section 5.3.3.

5.3. AGENT CODE DISTRIBUTION SERVICE 113

– Validity specification: validity of the contract and thus of the code distribu-

tion, which is normally expressed as a time interval.

• Signature: the contract is signed by the contract issuer.

This contract is expressed in XACML [xac05]. XACML is an OASIS standard,

which provides an XML-based language to express generic access control (or authori-

sation) policies, and standard messages for a query/response protocol. More precisely,

the contract is expressed as an XACML policy so it can be directly used in the policy

enforcement process. Figure 5.5 shows an example code ownercontract policy, where

an ACDS administrative authority establishes a contract with a given code owner, both

identified by a hash of their public key, with the following information: the code owner

(subject) can distribute code withCGID = 1f332e209d0dc354 during one year; since

no action is specified the code owner can perform all the possible actions.

Summarising, the policy specifies a target which is the code owner and provides a

set of rules. Each rule can be applied to an specific target, which narrows the policy’s

target, normally by specifying a resource or an action and describing some conditions. It

is important to note that in the previous example of Figure 5.5, we are using the XACML

3.0 administration specification to include the issuer in the policy, which is currently not

approved as a standard. The current XACML standard (version 2) does not support the

policy issuer element although it may be included apart of the XML digital signature

provided with the contract.

Contract Enforcement Module

The enforcement of the code owner contract as well as other security related policies

are provided by CEM in each PoP (see Figure 5.2). This module ismainly responsible

for the following tasks:

• Authentication of the code owner and code provider operations (upload, deletion,

modification, . . .), and the code owner contract.

• Enforcement of the code owner contract, PoP local policies,and other generic

policies (provided globally or on a region-base by ACDS).

114 CHAPTER 5. AGENT CODE DISTRIBUTION SERVICE

<Policy PolicyId=”ACDS−contrat−policy:example”
RuleCombiningAlgId=”deny−overrides”>

<PolicyIssuer>
<Attribute

AttributeId =”subject:subject−id”
DataType=”xmldsig#RSAKeyValue”>

<AttributeValue>

<RSAKeyValue>

<!−− ... −−>

</RSAKeyValue>

</AttributeValue>

</Attribute>

</PolicyIssuer>
<Target>

<Subjects>

<Subject>
<SubjectMatch MatchId=”rsakeyval−equal”>

<AttributeValue
DataType=”xmldsig#RSAKeyValue”>

<RSAKeyValue>

<!−− ... −−>

</RSAKeyValue>

</AttributeValue>

<SubjectAttributeDesignator
AttributeId = ”subject:key−info”
DataType=”xmldsig#RSAKeyValue”/>

</SubjectMatch>

</Subject>
</Subjects>

<Resources><AnyResource /></Resources>

<Actions><AnyAction/></Actions>

</Target>
<Rule RuleId=”validity period rule” Effect=”Deny”>

<Target>
<Subjects><AnySubject /></Subjects>

<Actions><AnyAction /></Actions>

<Resources>

<Resource>

<ResourceMatch
MatchId=”anyURI−equal”>

<AttributeValue
DataType=”XMLSchema#anyURI”>

urn:acds:cgid:1f332e209d0dc354
</AttributeValue>

<ResourceAttributeDesignator
DataType=”XMLSchema#anyURI”
AttributeId =”resource:resource−id”/>

</ResourceMatch>

</Resource>

</Resources>

</Target>
<Condition FunctionId=”and”>

<Apply FunctionId=”date−greater−than−or−
equal”>

<Apply FunctionId=”date−one−and−only”>
<EnvironmentAttributeSelector

DataType=”XMLSchema#date”
AttributeId =”environment:current−date”/>

</Apply>

<AttributeValue DataType=”XMLSchema#date”>
2008−01−01

</AttributeValue>

</Apply>

<Apply FunctionId=”date−less−than−or−equal”>
<Apply FunctionId=”date−one−and−only”>

<EnvironmentAttributeSelector
DataType=”XMLSchema#date”
AttributeId =”environment:current−date”/>

</Apply>

<AttributeValue DataType=”XMLSchema#date”>
2009−01−01

</AttributeValue>

</Apply>

</Condition>

</Rule>

</Policy>

Figure 5.5: Example of code owner contract policy.

5.3. AGENT CODE DISTRIBUTION SERVICE 115

These tasks are performed when a code owner requests an operation on a PoP of the

network, such asupload, update, or deletea given code. Figure 5.6 shows the main

components of CEM and their main tasks. T r u s t e dc o n t r a c t o r s

P o P l o c a lp o l i c yu s e r � p r o v i d e dc o n t r a c t
A u t h .c o m p o n e n t

C o n t r a c ta u t h e n t i c a t i o n U s e ra u t h e n t i c a t i o nC o n t e x th a n d l e r P A P
X A C M LP D PU s e rr e q u e s t

2 34 5 4
5 A C D S � g e n e r i cp o l i c i e s5R e m o t e C o d eM a n a g e r 5 5671

Figure 5.6: Contract Enforcement Module overview.

To see how this module works and its functionality we show theenforcement process

of a generic code ownerCO requesting toupload a given codeCGID0. The process

will normally consist of:

1. The module receives the code owner request, which may include the code owner

contract if it is the initial code upload.

2. If needed, the Authentication Component (PoP-AC) authenticates the code dis-

tribution contract by verifying its signature with a repository of trusted ACDS

administrative authorities keys. These keys are distributed to all nodes (normally

making use of certificates in a PKI-like fashion). The contract provides the code

owner public key, which will be used to authenticate the operation request on the

specific code.

116 CHAPTER 5. AGENT CODE DISTRIBUTION SERVICE

3. PoP-AC authenticates the code owner operation request with the hash of the pub-

lic key present in the contract as the subject.

4. The request is passed to the Context Handler component (PoP-CH). This com-

ponent formats the request as a valid XACML request message and passes the

contract to the Policy Administration Point (PoP-PAP) to beused in the XACML

based Policy Decision Point (PDP).

5. PoP-PAP combines the following XACML policies:

• Code distribution contract as provided by PoP-CH.

• PoP-local policy: each PoP may impose constraints locally on its resources,

either temporarily or permanently.

• ACDS-generic policy: PAP includes references to ACDS-generic policies

maintained by the ACDS administration authorities. These policies may

have a global or region-based applicability.

6. XACML PDP is the component that actually performs the authorisation decision.

It is a generic XACML PDP, since both, the user request and the policies are

standard XACML request and policies.

PDP outputs a response to PoP-CH. This response can be:permit (if access is

allowed),deny(if access is denied),indeterminate(if an error occurred or some

required value is missing), ornot applicable(if no policy applies to the request).

7. PoP-CH reports the result to the main PoP-RCM.

5.3.5 Service Interface

The ACDS Interface allows code users and code owners to use theservice without

knowledge of its internal details. The following sections state the requirements of the

interface and propose a specification based on the REST model [FT02].

5.3. AGENT CODE DISTRIBUTION SERVICE 117

Requirements

A set of operations must be supported by the interface in eachPoP node. These opera-

tions, which are used by code users and code owners, are boundto the CGID and Code

Identifier (CID) elements. The CGID element must accept the following operations:

• Create a CGID element with or without a specific code distribution contract.

• Get the associated code distribution contract.

• Update the associated code distribution contract.

• Get a list of available codes (CIDs) in the node.

• Remove the CGID element.

Some of these operations refer to the code distribution contract. In case no contract

is given in the CGID creation, no code owner can be assigned to the code and a specific

anonymous contract is automatically created by the service. In this case only the on-

demand type of service can be offered. Regarding the CID, the operations accepted are

the following ones:

• Upload agent code and its signature.

• Update existing agent code and its signature.

• Download agent code and its signature.

• Remove agent code.

• Get an agent code profile and its signature.

Operations that involve the publication, modification or removal of agent codes and

their properties require authentication. Nevertheless, the non authenticated publication

of agent codes is possible using the anonymous service functionality.

Since ACDS is a global service focused on an efficient distribution of agent code,

there is a set of basic requirements that must be fulfilled, specially on the interface pro-

vided to the clients. Therefore the requirements for the ACDSInterface are: simplicity,

118 CHAPTER 5. AGENT CODE DISTRIBUTION SERVICE

scalability, low latency, efficient data transference, portable interface, and support for

any type of code.

REST Interface

The ACDS Interface can be implemented using different technologies such as SOAP,

XML-RPC, and REST. Actually, several complementary interfaces can be provided.

Nevertheless, in this chapter we have focused on only one interface based on the REST

technology [FT02]. REST is a coordinated set of architectural constraints based on the

HTTP protocol. It is characterised for minimising the communication latencies, simpli-

fying the network communication, and maximising the independence and scalability of

component implementations.

Interfaces implemented with REST have a base address, a set ofelements coming

from this base address (in our case the CGID and CID), and several operations associ-

ated to each element. The REST interface which is proposed is detailed in Table 5.1.

5.3.
A

G
E

N
T

C
O

D
E

D
IS

T
R

IB
U

T
IO

N
S

E
R

V
IC

E
119

Base URL: http://server/acds/{cgid}/{cid}
Element Method Req. Param. Req. Headers Resp. Headers Body Functionality

PUT [Authorization],
[Depth]

[XACML
contract]

Creates a code group with or without an as-
signed contract. The Depth header indicates
the depth in the neighbourhood tree (it is used
to control when the code propagation reaches
the established neighbourhood degree).

cgid DELETE Authorization Removes a code group and its content, i.e.,
its codes.

GET list, contract List of codes
or XACML
contract

Get information from the code group: list of
its content and associated contract.

POST Authorization XACML
contract

Update the contract associated to the code
group.

PUT [Authorization],
SR, HCID,
Code profile,
[Code
signature],
[Code profile
signature]

Code 1.Upload a specific code (CID) with an as-
sociated profile. 2.Update a specific code.
Note: A specific Code signature and Code
profile signature headers have been included
to deal with code and profile signatures.
These headers are optional and are encoded
in Base 64.

cid DELETE Authorization Removes a specific code (CID).
GET Code profile,

[Code
signature],
[Code profile
signature]

Code Download a specific code (CID) and profile.

HEAD Code profile,
[Code profile
signature]

Get a specific code profile.

Table 5.1: REST Interface.

120 CHAPTER 5. AGENT CODE DISTRIBUTION SERVICE

Operations that require authentication take advantage of the “Authorization” header

defined in the RFC 2617 [BLFMb]. The authentication method proposed for the de-

scribed interface is based on the signature of the MD5 hash [Riv] of a string that contains

several parameters of the HTTP request:

String To Sign = HTTP Method+ “\n′′ + HTTP Request URI+ “\n′′ +

+Date+ “\n′′ + Content MD5+ “\n′′ +

+Content-Type+ “\n′′ + Interface HTTP Headers

Notice that the HTTP headers defined in the interface are alsoincluded sorted in

the appearance order. The string is encoded in UTF-8 and the result of its hashing is

encoded in Base 64. The signature is put in the “Authorization” header together with

the subject of the certificate, which is the identification ofthe certificate owner (in this

case the hash of its public key). The format of this header is:

Authorization: PublicKeyAuthcertificate-subject: signature

where the “PublicKeyAuth” states the authentication type,the certificate-subject

identifies the subject of the operation, which may be the codeowner or the code provider,

and thesignatureis the chain encoded in Base64 that contains a PKCS-7 [Lab93] with

the signature of the previously describedString to Sign. This methodology is similar to

the one used in the Amazon webservices [AWS].

5.4 Implementation and performance

5.4.1 Service implementation

A preliminary version of ACDS has been implemented [acd] to evaluate the service

proposed in this chapter. It has been developed in Java 6 taking advantage of the Java

integrated HTTP server and the Java API for RESTful Web Services (JAX-RS) [HS07],

which is implemented by the Jersey Java project.

5.4. IMPLEMENTATION AND PERFORMANCE 121

Furthermore, a Java ACDS client library has also been developed to easily integrate

the service into existing AMs. The library has been used in the Push Cache Transfer

Protocol (PCTP) and REST Transfer Protocol (RESTTP) protocolsof the Inter-Platform

Mobility Architecture (IPMA) to perform the tests explained in the next section.

5.4.2 Performance tests

A set of performance tests have been done to evaluate the advantages of ACDS using

the JADE Inter-Platform Mobility Service (JIPMS). Since the messaging system imple-

mented in the JADE AM is not devised to send much data in a single Agent Commu-

nication Language (ACL) message [Cuc04, JJK06], the tests have not been carried out

only with PCTP, but also with RESTTP which does not use large ACL messages. The

evaluation setup and test suite used to run the tests are the same of Section 4.2. Three

different scenarios, similar to the ones shown in Sections 4.4 and 4.5, have been used to

compare the migration performance with and without the ACDS enabled. The network

conditions of each scenario have been also simulated by using the NetEm [Hem05]

Linux utility, which allows the adjustment of network latency, bandwidth, and packet

loss.

A set of agents with code sizes of 5KB, 10KB, 25KB, 50KB, 100KB, 250KB,

500KB, and 1000KB packed in uncompressed JAR files have been used to perform

the tests. Each test has been done with one and, later, ten migrating agents of a specific

size in each location. As in Chapter 4 the measures shown in thetables are the average

time consumed by the agents from the AM. The itinerary of the agents only involves

two locations and it is repeated a fixed number of times (iterations or migration round-

trips). In these tests agents smaller or equal than 100KB repeat their itinerary 100 times,

while larger agents, which spend more time per migration, repeat their itinerary only 10

times. The local cache mobility mechanisms have been completely disabled, therefore

although agents only visit two real locations their behaviour can be extrapolated to the

case of agents that visit a new location in each migration. Agent codes used in the tests

are delivered to each PoP in advance.

122 CHAPTER 5. AGENT CODE DISTRIBUTION SERVICE

Protocol N.Agents 5KB 10KB 25KB 50KB 100KB 250KB 500KB 1000KB
PCTP 1 126 140 222 493 1,734 11,943 41,499 150,162

ACDS Off 10 77 85 140 339 1,200 8,300 32,710 116,721
PCTP 1 100 101 103 113 123 161 211 320

ACDS On 10 63 63 68 70 77 106 154 253

Table 5.2: Scenario 1: Agents moving in the same region (PCTP)(in ms).
Protocol N.Agents 5KB 10KB 25KB 50KB 100KB 250KB 500KB 1000KB
RESTTP 1 101 102 106 109 126 160 212 311

ACDS Off 10 71 71 73 77 87 108 145 242
RESTTP 1 104 106 107 112 131 165 217 304
ACDS On 10 69 69 70 73 84 106 152 245

Table 5.3: Scenario 1: Agents moving in the same region (REST)(in ms).

Scenario 1: Agents moving in the same region

The first scenario (see Figure 5.7) is composed of only one ACDSregion with two APs,

i.e., there is only one PoP node providing service to the APs.The response time consid-

ered between all the hosts of the region is less than 1ms, there is no loss of packets, and

there is a bandwidth of 100 Mb/s. This is a typical scenario ofa Local Area Network

(LAN).

Figure 5.7: Scenario 1.

Tables 5.2 and 5.3 show the performance results obtained in this first scenario. And

Figures 5.8 and 5.9 show a graphical representation of them.

In the case of PCTP the results are clearly favourable to the tests with the ACDS

enabled. In this specific scenario, where the access conditions to any host of the network

are the same (included the PoP), the ACDS improvement is consequence of the penalty

5.4. IMPLEMENTATION AND PERFORMANCE 123

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 m
ig

ra
tio

n
tim

e
(m

s)

Agent code size (KB)

PCTP ACDS Disabled 1 Agents
PCTP ACDS Disabled 10 Agents
PCTP ACDS Enabled 1 Agents
PCTP ACDS Enabled 10 Agents

Figure 5.8: Performance Scenario 1 (PCTP).

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 m
ig

ra
tio

n
tim

e
(m

s)

Agent code size (KB)

RESTTP ACDS Disabled 1 Agents
RESTTP ACDS Disabled 10 Agents
RESTTP ACDS Enabled 1 Agents
RESTTP ACDS Enabled 10 Agents

Figure 5.9: Performance Scenario 1 (RESTTP).

124 CHAPTER 5. AGENT CODE DISTRIBUTION SERVICE

imposed by the ACL data transmission implemented in JADE (see[Cuc04, JJK06]),

where the time spent in these agent migrations increases exponentially. Notice that

only agents with codes up to 100KB are shown, since the large average migration time

differences complicate the comparison of the results.

In the case of RESTTP, which as it is explained in Section 4.5 ismore efficient than

PCTP, the results with and without the ACDS enabled are almost the same, since the

network conditions and the technologies used are also the same.

Therefore the REST model, used in RESTTP and in ACDS, has resulted highly ef-

ficient in data transmission (as it was required in Section 5.3.5). In the best case, using

RESTTP with the ACDS enabled, there is only a difference of approximately 176ms

between the smallest and the biggest agent (codes between 5KB and 1000KB), which

means a transmission rate of approximately 11MB/sec (close to the theoretical maxi-

mum data transmission rate of the network devices used). With the ACDS enabled the

time spent in the migration increases linearly. Taking intoaccount the results presented,

in concurrent migrations with 10 agents the average time spent per agent decreases

around a 70% of the time spent with a single agent migration.

Scenario 2: Agents moving between different regions

The second scenario (see Figure 5.10) is composed of two ACDS regions with an AP

in each one, i.e., there are two PoP nodes providing service to an AP in each region.

The response time considered between all hosts in a region isless than 1ms, there is

no loss of packets and there is a bandwidth of 100 Mb/s, i.e., these are the conditions

between the AP and its correspondingly PoP. Regarding the communication between

the two regions, two cases have been simulated. The first one supposes an error free

transmission with no packet loss. In this case, the responsetime considered between

the two regions is 120ms with a variation of 10ms and a bandwidth of 100 Mb/s. The

second case supposes the same parameters with a 5% loss of thepackets transmitted.

The scenario and the two cases described are representativeof real Wide Area Networks

(WAN).

5.4. IMPLEMENTATION AND PERFORMANCE 125

Protocol N.Agents 5KB 10KB 25KB 50KB 100KB 250KB 500KB 1000KB
PCTP 1 2,017 2,264 2,719 3,423 5,216 16,496 46,232 153,689

ACDS Off 10 1,544 1,695 2,094 2,303 2,550 9,133 33,870 112,927
PCTP 1 1,604 1,587 1,629 1,663 1,705 1,836 2,076 2,483

ACDS On 10 1,086 1,083 1,086 1,090 1,095 1,102 1,139 1,248

Table 5.4: Scenario 2: Agents moving between different regions (no packet loss)
(PCTP) (in ms).

Protocol N.Agents 5KB 10KB 25KB 50KB 100KB 250KB 500KB 1000KB
RESTTP 1 2,502 2,727 3,027 3,451 3,998 5,037 6,128 7,868

ACDS Off 10 1,315 1,365 1,527 1,758 3,590 4,743 5,822 7,558
RESTTP 1 1,741 1,742 1,750 1,749 1,808 1,831 1,854 1,944
ACDS On 10 1,023 1,024 1,022 1,023 1,039 1,191 1,154 1,164

Table 5.5: Scenario 2: Agents moving between different regions (no packet loss)
(RESTTP) (in ms).

Protocol N.Agents 5KB 10KB 25KB 50KB 100KB 250KB 500KB 1000KB
PCTP 1 2,988 3,248 4,276 5,932 9,673 27,001 67,196 197,131

ACDS Off 10 2,189 2,424 3,289 4,284 5,123 16,034 43,207 135,615
PCTP 1 2,083 2,089 2,038 2,105 2,139 2,275 2,124 2,292

ACDS On 10 1,479 1,489 1,485 1,484 1,495 1,497 1,488 1,476

Table 5.6: Scenario 2: Agents moving between different regions
(5% packet loss)(PCTP) (in ms).

Protocol N.Agents 5KB 10KB 25KB 50KB 100KB 250KB 500KB 1000KB
RESTTP 1 4,382 4,656 5,033 5,505 7,160 10,760 20,019 38,209

ACDS Off 10 2,707 2,746 2,844 3,269 4,275 11,114 20,548 37,354
RESTTP 1 2,708 2,754 2,754 2,624 2,722 3,463 3,053 3,907
ACDS On 10 1,640 1,616 1,636 1,599 1,615 1,825 1,783 1,703

Table 5.7: Scenario 2: Agents moving between different regions
(5% packet loss) (RESTTP) (in ms).

126 CHAPTER 5. AGENT CODE DISTRIBUTION SERVICE

Figure 5.10: Scenario 2.

Tables 5.4 and 5.6 for PCTP, and Tables 5.5 and 5.7 for RESTTP, show the perfor-

mance results obtained in the two network environments of this second scenario. Fig-

ures 5.11 and 5.13 for PCTP, and Figures 5.11 and 5.13 for RESTTPshow a graphical

representation of them.

In the first case, the WAN without network loss (see Table 5.4), the increase of the

response time considerably changes the performance of agent migrations. An agent

migration may be up to 20 times longer than in the first scenario. Nevertheless, there

is an exception with migrations of agents with large codes using PCTP with the ACDS

disabled, in this case the time spent in each migration is similar because of the ACL

message penalisation (see Section 4.4.2). When the ACDS is enabled, since the code

request is not subject to the WAN access time, the time increase is only associated to

the ACL message handshake, e.g., see that in case of 10 migrating agents with PCTP, in

a similar way than the first scenario, there is only a difference of approximately 160ms

between the smallest and the biggest agent, i.e., the time spent in the code transmission

has not increased.

In the second case, the WAN with a loss of 5% of the packets (seeTable 5.6), the

performance of the agent migrations decrease regarding thetests presented up to now.

Compared with the previous case, the average time spent in each agent migration with

the ACDS disabled increases from a minimum of 20% to a maximum of 100% more

with PCTP, and from a minimum of 20% to a maximum of 400% more with RESTTP.

When the ACDS is enabled the time spent does not increase more than a 40% with

PCTP, and a 100% with RESTTP. Therefore, the use of ACDS is ratherappropriate

5.4. IMPLEMENTATION AND PERFORMANCE 127

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 m
ig

ra
tio

n
tim

e
(m

s)

Agent code size (KB)

PCTP ACDS Disabled 1 Agents
PCTP ACDS Disabled 10 Agents
PCTP ACDS Enabled 1 Agents
PCTP ACDS Enabled 10 Agents

Figure 5.11: Performance Scenario 2 (no packet loss) (PCTP).

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 m
ig

ra
tio

n
tim

e
(m

s)

Agent code size (KB)

RESTTP ACDS Disabled 1 Agents
RESTTP ACDS Disabled 10 Agents
RESTTP ACDS Enabled 1 Agents
RESTTP ACDS Enabled 10 Agents

Figure 5.12: Performance Scenario 2 (no packet loss) (RESTTP).

128 CHAPTER 5. AGENT CODE DISTRIBUTION SERVICE

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 m
ig

ra
tio

n
tim

e
(m

s)

Agent code size (KB)

PCTP ACDS Disabled 1 Agents
PCTP ACDS Disabled 10 Agents
PCTP ACDS Enabled 1 Agents
PCTP ACDS Enabled 10 Agents

Figure 5.13: Performance Scenario 2 (5% packet loss) (PCTP).

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 m
ig

ra
tio

n
tim

e
(m

s)

Agent code size (KB)

RESTTP ACDS Disabled 1 Agents
RESTTP ACDS Disabled 10 Agents
RESTTP ACDS Enabled 1 Agents
RESTTP ACDS Enabled 10 Agents

Figure 5.14: Performance Scenario 2 (5% packet loss) (RESTTP).

5.4. IMPLEMENTATION AND PERFORMANCE 129

when the network conditions get worse.

The penalisation imposed by the response time increase can be mitigated by the use

of concurrent migrations. Usually, these ones get a better throughput than single agent

migrations. When the ACDS is disabled, concurrent migrationsconsume approximately

a 70% of the time than single migrations. When the ACDS is enabled, concurrent

migrations consume approximately a 65% of the time with PCTP,and a 60% of the

time with RESTTP. These values slightly change depending on the agent size.

It is worth comparing the results obtained with PCTP and RESTTPprotocols with

the ACDS enabled. In the first case, no packet loss, there is no big differences, for agents

with codes of 5KB to 100KB PCTP tends to perform better with single agent migrations,

and RESTTP with concurrent ones. For larger agents this tendency is inverted. But, in

the second case, 5% packet loss, PCTP performs better in all the cases. This is because

RESTTP establishes an additional connection to retrieve theagent data, which in PCTP

is included in the first ACL message sent. Nevertheless, in case the data size was larger,

this tendency would be inverted.

Scenario 3: Asymmetric links

The third scenario (see Figure 5.15) is composed of one ACDS region with two APs, i.e.,

there is one PoP node providing service to two APs. All the APsin this scenario use

a 20Mb/s (downstream) 1Mb/s (upstream) ADSL link to the Digital Subscriber Line

Access Multiplexer (DSLAM). The response time associated to these links is around

30ms. Data exchanged between APs, since traverses two ADSL links, can only reach

1Mb/s of bandwidth and the response time is 60ms. On the otherhand, data received

from the PoP node in the APs can reach 20Mb/s of bandwidth witha response time of

30ms. Obviously, uploaded data can only reach 1Mb/s, although there is less data to

upload than to download.

Table 5.8 for PCTP and Table 5.9 for RESTTP show the performanceresults ob-

tained in the third scenario. And Figures 5.16 and 5.17, for PCTP and RESTTP re-

spectively, show the graphical representation of them. Theresults are also favourable

to the tests which have been performed with the ACDS enabled. This is because of the

higher download rate from the ACDS PoP (20Mb/s). Nevertheless, because of the new

130 CHAPTER 5. AGENT CODE DISTRIBUTION SERVICE

Figure 5.15: Scenario 3.

Protocol N.Agents 5KB 10KB 25KB 50KB 100KB 250KB 500KB 1000KB
PCTP 1 1,008 1,100 1,675 2,496 5,002 19,412 56,628 177,940

ACDS Off 10 801 882 1,253 1,493 2,714 12,205 39,581 125,591
PCTP 1 972 952 1,083 1,191 1,298 1,468 1,708 2,140

ACDS On 10 538 539 542 547 603 769 998 1,409

Table 5.8: Scenario 3: Asymmetric links (PCTP) (in ms).
Protocol N.Agents 5KB 10KB 25KB 50KB 100KB 250KB 500KB 1000KB
RESTTP 1 1,357 1,443 1,683 2,131 2,972 5,670 10,134 18,998

ACDS Off 10 701 742 1,012 1,224 2,271 5,532 9,995 18,868
RESTTP 1 1,183 1,138 1,213 1,285 1,424 1,604 1,825 2,268
ACDS On 10 540 542 566 608 724 905 1,121 1,471

Table 5.9: Scenario 3: Asymmetric links (RESTTP) (in ms).

link conditions, there are migrations which are performed 10 times slower than in the

first scenario. In this case, with the ACDS enabled, the difference between the smallest

and the biggest agent migration round-trip (in case of 10 concurrent agent migrations)

are 871ms for PCTP and 931ms for RESTTP. These results are approximately 5 times

higher than the ones obtained from the scenario 1, i.e., in this case the practical band-

width is around 2 MB/s.

The most affected part by the new link conditions are the message handshakes. See

the exchange of ACL messages to perform the agent migration ofa single agent with

PCTP. In this case, the time spent is around 1000ms for each migration round-trip. This

time is coherent with the new link conditions, which has a response time of 60ms. In

the first case of the scenario 2 the response time associated to the link was 120ms and,

therefore, the time spent exchanging ACL messages was about 2000ms. This is similar

5.4. IMPLEMENTATION AND PERFORMANCE 131

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 0 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 m
ig

ra
tio

n
tim

e
(m

s)

Agent code size (KB)

PCTP ACDS Disabled 1 Agents
PCTP ACDS Disabled 10 Agents
PCTP ACDS Enabled 1 Agents
PCTP ACDS Enabled 10 Agents

Figure 5.16: Performance Scenario 3 (PCTP).

 0

 2500

 5000

 7500

 10000

 12500

 15000

 17500

 20000

 22500

 25000

 0 100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 m
ig

ra
tio

n
tim

e
(m

s)

Agent code size (KB)

RESTTP ACDS Disabled 1 Agents
RESTTP ACDS Disabled 10 Agents
RESTTP ACDS Enabled 1 Agents
RESTTP ACDS Enabled 10 Agents

Figure 5.17: Performance Scenario 3 (RESTTP).

132 CHAPTER 5. AGENT CODE DISTRIBUTION SERVICE

with RESTTP.

In all the tests, the use of parallelism with 10 agents has meant migration times

around the 70-75% of the single agent migration time. But because of the fact that

the link with the ACDS PoP is also subject to a higher response time than the other

scenarios, the use of parallelism even obtains a greater improvement (around a 50%

of the single migration time). This is because the transmission of data can be done in

parallel with the ACL message interaction of the other migrations. In other scenarios,

although this can also be done, the data transmission time isshorter and the effect of the

migration pipeline is not so noticeable.

Regarding PCTP and RESTTP with the ACDS enabled, PCTP performs better in

all the cases. Similar to the previous scenario, this is because RESTTP establishes an

additional connection to retrieve the agent data, which in PCTP is included in the first

ACL message sent.

Conclusions

The tests performed denote that in all the cases the best results have been obtained

when the ACDS service was enabled. Furthermore, in case of unfavourable network

conditions the use of the service is also highly encouraged,since the benefits of the

code caching service are even more noticeable.

Another remarkable fact is that the use of the ACDS when concurrent agent mi-

grations take place allows an even better average migrationtime. This is because the

different mechanisms involved in the agent migration, and the mechanisms to request

the agent code to the PoP are arranged as a pipeline and can work in parallel, since they

are completely independent among each others.

Finally, regarding the use of one or another migration protocol (PCTP or RESTTP

in this case) in combination with the ACDS, in the tests presented it seems that PCTP

performs better. But this exclusively depends on the way the protocols deal with the

agent data and state.

5.5. RELATED WORK 133

5.5 Related work

In this chapter a code distribution service, initially conceived for Mobile Agents (MAs),

has been proposed. No other initiatives in the literature have been found with this ex-

act purpose and functionality, but there are some works thatcover specific areas of the

service proposed. This is the reason why the related work is presented in several cate-

gories.

5.5.1 Code distribution

The distribution of agent codes has not been already proposed as an independent service

such the one presented in this chapter. Nevertheless, as each AM has its own agent code

distribution mechanism, several works exist in the area. Nicklisch et al. [NQKA98]

states three types of code distribution:migration, push, andpull. According to their

definition, themigration distribution is the one which sends the agent code along the

agent state during an agent migration. This is the most common way to distribute the

code and it is supported by most of the AM, such as Aglets [LM98], SeMoA [RJS01],

Tracy with Kalong [BR05], and JADE with IPMA (see Chapter 3). Thepushcode dis-

tribution consists of sending the agent code to a set of locations, sometimes associated

to the agent itinerary, before the agent launch. This schemehas been used by Nick-

lisch et al. [NQKA98] in INCA and, with several improvements in the distribution list,

by Gavalaset al. [GGGO02] in their hierarchical network management solution based

on MAs. And thepull code distribution consists of downloading the code once theagent

reaches a location. This scheme, usually in combination with the migration scheme, is

rather extended. It is supported by the same AMs which have been previously listed

with the push distribution.

The service proposed in this chapter supports the push and pull schemes (see Sec-

tion 5.5.1). The difference with all the initiatives mentioned is that ACDS is a standalone

service that is not bound to any specific AM. Furthermore, it can manage several codes

per agent, which can be developed in any PL, it can deal with code profiles and code

signatures, it supports access control regarding the operations to manage the code, and

it provides a standard interface for its usage.

134 CHAPTER 5. AGENT CODE DISTRIBUTION SERVICE

5.5.2 Content Delivery Networks

A Content Delivery Network (CDN) [PB07] is a network composed ofspecific nodes,

called PoPs in this thesis, close to Internet backbones thatease the content distribu-

tion. CDNs are focused on the efficient distribution and caching of content. Usually,

there is an important hardware infrastructure behind. The performance experienced by

users that access content present in a CDN is improved, while the saturation of wide

area networks is reduced, see [RKSB05] for more details. In many cases the service is

transparent to its users, i.e., they do not notice they are using it.

There are several CDNs dedicated to different types of content. The most well-

known CDN is Akamai [DMP+02, SLBW05] for web content. Although web con-

tent can include code, such as applets, no special contract and versioning facilities are

supported. There is a CDN specifically designed to distributeapplications, the App-

Stream [App]. Nevertheless it is based on a centralised approach conceived for small

environments. There are other initiatives similar to this,such as the ASP-NG sys-

tem [BGN+05] which serves applications on demand, although it is restricted only to

J2EE applications.

5.5.3 Peer to Peer networks

Peer to Peers (P2Ps) are distributed networks that maintaininformation, usually files,

through several nodes. A decentralised model is generally used. Each node is con-

sidered an equal, and has the same properties and functionalities as others. P2Ps are

focused on file distribution, are fault tolerant in most of the cases, and can prevent

server bottlenecks. Examples of P2Ps are the well-known Gnutella [RFI02], Fast-

Track [LRW03], JXTA [Gon01], and eDonkey [Tut04]. Unfortunately, P2Ps are not

focused on offering a high performance data transmission, they do not provide version-

ing support, and they increase the general bandwidth consumption.

5.6. CONCLUSIONS 135

5.5.4 Distributed Version Control systems

Distributed Version Control systems are applications that manage and keep source code,

which is distributed through several hosts, in different revisions and branches. There-

fore, the information is usually structured in a hierarchical representation. The benefits

of these systems are that the code can be distributed and replicated through several

nodes, and that there is a clear file version maintenance policy.

Examples of them are GIT [git], Darcs [Rou05], and Mercurial [O’S]. Regarding

our purposes, these systems are too focused on source code distribution instead of their

binaries, have poor authentication methods, which are usually based on secure shells

such as the SSH, and are devised to maintain files which are continuously changing.

5.6 Conclusions

The advantage, and at the same time inconvenient, of MAs is the fact of carrying the

agent code, data, and state everywhere they go. The degree ofautonomy agents have as

a result of this characteristic is exceptional regarding other technologies. But carrying

these components may be an inconvenient when they weight considerably.

In this chapter ACDS, which aims to reduce the penalisation imposed by the men-

tioned agent structure, has been presented. ACDS distributes the agent codes to a subset

of regions in which the network is divided. The agent codes are distributed under con-

tract, i.e., agreeing several specific conditions and possibly having to pay for the service,

or anonymously without having to pay for the service. In the first case the agent code is

deployed in advance to a set of regions enforced by contract.In the second case, since

no regions to deploy the agent code are known in advance, the code is spread on-demand

to each PoP. Therefore, the service benefits are not always guaranteed in this last case.

Contracts are expressed in XACML and there is an access controlmechanism which

enforces a set of agreed restrictions to the basic ACDS operations. Therefore, it is

guaranteed that a code owned by a specific person will be distributed according to the

parameters agreed, and that no one will be able to modify thiscode or its distribution.

The code management is very flexible and it is self-administrable by each code owner.

136 CHAPTER 5. AGENT CODE DISTRIBUTION SERVICE

Regarding the interaction with the service a REST interface has been proposed. Al-

though different technologies can be used to accomplish this purpose, REST has been

chosen since: it is independent of the PLs used by the serviceand client implementa-

tions, it is standard, it is efficient, and it has been extensively tested in other applications.

Finally, the benefits of the service proposed have been demonstrated. A set of per-

formance tests comprising different scenarios which are present in the real world have

been done (a local area network, a wide area network with and without packet loss, and

a network composed of several ADSL lines).

Chapter 6

Interoperability

For mobile agents to be deployed on Internet scale distributed systems, interoperability

with different types of agent middleware needs to be ensured. This chapter presents

several proposals to achieve the challenge of agents freelymigrating in heterogeneous

environments.

6.1 Introduction

According to Pinsdorfet al. [PR02], two Mobile Agent Systems (MASs) are interop-

erable if a Mobile Agent (MA) can interact and communicate with other agents (local

or remote), and if the agents of one system can migrate to the other system, i.e., they

can leave their system and resume their execution in the nextinteroperable system. This

kind of interoperability is calledfull interoperabilityand can be tackled from the four

areas described in Section 2.4.1.

Despite the fact that there are several specific proposals for each area, a full interop-

erability mechanism general enough to cover all the possible combinations of Agent

Middlewares (AMs), Programming Languages (PLs), and Underlying Architectures

(UAs) is hardly achievable. Too many variables are involved. Nevertheless, full in-

teroperability can be reached assuming some limitations with the intended scope. The

most common limitation in the literature is the entailment to a specific PL and UA,

usually Java and its Virtual Machine (VM) [FGR07]. Another issue with the existing

137

138 CHAPTER 6. INTEROPERABILITY

mechanisms is that they do not usually support currently in-use agent standards, such as

MASIF [OMG97] or the IEEE-FIPA [FIP02a] specifications.

In order to face the shortcomings of the existing approaches, three proposals are pre-

sented in the next sections. These solutions are specifically focused on themiddleware,

andprogramming language and underlying architectureareas. A full mobile agent in-

teroperability within the IEEE-FIPA context is achieved bythe combination of these

proposals together with the Inter-Platform Mobility Architecture (IPMA) described in

Chapter 3, that covers themobility area, and the IEEE-FIPA specifications, that cover

thecommunicationand part of themiddlewareareas.

• Common Agent Interface (CAI): A common abstract agent interface is pro-

posed in Section 6.3 to deal with the interoperability in themiddleware area. The

idea behind it is to set the basis for a minimal interoperableagent compliant with

the IEEE-FIPA specifications and suitable for any PL. Agentscan be moved to

any AM supporting CAI and the specific PL in which they are developed (this

was firstly considered in [CMR+07, COO+07]). Therefore, the middleware area

of interoperability is dealt in this section.

• Multiple Execution Environments: Assuming a common agent interface such

as CAI, the idea of having multiple Execution Environments (EEs) for a selection

of PLs within an AM is discussed in Section 6.4. This allows the execution and

local interaction of agents present in the same AM, but developed in different

PLs. Therefore, the programming language and underlying architecture area of

interoperability is dealt in this section. This is an idea similar to the one applied

in [JLvR+02, GCK+02, Pei02, CCP06, OB04].

• Multiple Code Agents: Agents with several equivalent versions of their code,

each one written in a different PL, are proposed in Section 6.5. These agents

can visit any Agent Platform (AP) with support for one of the PLs of their code.

They keep and resume their state although using one different code in each visited

location. A shared data representation mechanism is proposed. Several data rep-

resentation languages are discussed to agree on a common PL independent way

6.2. BACKGROUND 139

of representing the agent data. This approach is complementary to the previous

one and deals with the same area of interoperability.

The adoption of one, two or three of the proposals implies different grades of con-

straints and complexity. Therefore, MAS developers must choose the most appropriate

ones to their needs. It is worth mentioning that these proposals are only devised to

support weak agent mobility. The use of strong mobility impose serious restrictions to

the agent interoperability because of its strong dependency with the UA [CLZ00]. See

Section 2.3.2 for more information about types of agent mobility.

Finally, the use of the these approaches in combination of IPMA and the IEEE-FIPA

specifications ends up with a full interoperable solution for MASs in the IEEE-FIPA

context. In Section 6.6 several proposals present in the literature claiming to provide

agent interoperability are discussed.

6.2 Background

Proposing a full interoperability solution for MASs is a task that comprises the study of

the most relevant mobile agent technologies and their main features. In this section are

presented several of the most known MASs which are bound to a single PL, and several

others which support many PLs.

6.2.1 Single Programming Language MAS

Grasshopper[BBCM00] is a commercial AM, no longer available, based on the Java

PL. It was the first one to support the OMG MASIF and the IEEE-FIPA agent standards.

Agents are implemented overriding one of the two super classes provided, the Station-

aryAgent and the MobileAgent, depending on the type of agentrequired. These classes

provide the methods with the agent and AM functionality, andare implemented by the

agent and AM developers respectively. The AM has a communication service with sup-

port for CORBA IIOP, Java RMI, and plain socket connections withoptional SSL. It

also incorporates a persistence service, and a security service which takes advantage of

x509 certificates, SSL and the Java security model.

140 CHAPTER 6. INTEROPERABILITY

TheAgletsserver middleware [LM98] is an environment to execute Aglets, which

are Java MAs. Although its authors considered the Aglet API as lightweight, it is in

fact quite large because of the AM extensive functionality,such as the agent creation,

migration, cloning, synchronous and asynchronous messaging, and persistence. The

agent server is based on an event-driven model. And the interaction with other agents is

accomplished by means of a proxy interface, which provides acommon and secure way

of accessing them.

Ajanta [TKA +02] is an AM for Java MAs which is focused on security and fault

tolerance. It supports RMI communications and on-demand agent mobility. Agents

are implemented from a base class that comprises several methods which implement

the functionality of the agent and the AM. Some of them are overridden by the agent

developer to react to agent events and encode its functionality. Agents have the ability to

create and kill another agents. Furthermore, Ajanta agentssupport itineraries including

several migration patterns. A specific task can be associated to each visited location.

SeMoA[RJS01] is a runtime environment for Java-based MAs focused on security

and easy extensibility. SeMoA agents only have to implementthe Java Runnable in-

terface. Services are accessed through context objects gotfrom a static method of the

service class. The advantage of this mechanism is that agents only need to know the

interfaces of the services they are planning to use.

SOMA[BCS01b, BCS01a] is a flexible and extensible programming framework for

MAs with a rich infrastructure of middleware services. It supports local communication

by using shared objects, and remote communication by the exchange of asynchronous

messages. SOMA includes a persistence service, a QoS service, and a security service,

based on PKIs, certificates, and the Java security mechanisms. Furthermore, MASIF

and the IEEE-FIPA agent standards are optionally supported.

Tracy [BR05] is a modular, component-oriented, extensible Java AM designed as a

micro-kernel. Because of their micro-kernel philosophy their agents only need to imple-

ment the Java Runnable interface. Services are accessed by using context objects, each

one with its own public interface, which can be retrieved from static classes provided

by them. Regarding the life cycle of its agents it only comprises two states: running and

waiting.

6.2. BACKGROUND 141

JADE [BCG06, BCPR08] is a Java AM compliant with the IEEE-FIPA specifica-

tions. It has a large interface that provides a complex agenttask scheduler, an agent state

management completely based on the use of multiple methods (doSuspend(), doWait()...),

and an agent event management also based on the overloading of several methods (af-

terMove(), takeDown()...). Agent states are based on the IEEE-FIPA agent life cy-

cle [FIP04].

Mobile-C [CCP06] is an IEEE-FIPA compliant AM which supports C/C++ agents

and it is based on the extensively use of XML [CLC08]. Although supporting the IEEE-

FIPA specifications, the agent life cycle state is proprietary. Its agent interface provides

methods to deal with services, communicate, and manage the agent state among others.

Agent migrations are done according to a preestablished itinerary. Agents run on top of

the Ch C/C++ interpreter.

6.2.2 Multiple Programming Language MAS

TACOMA[JLvR+02] is a framework which supports the execution of MAs developed in

different PLs (C, Tcl/Tk, Perl, Python, and Scheme) by using different VMs. Each VM

has an associated briefcase folder with the code of the agents running on it. Only weak

migration is supported and the agent developer is responsible for gathering the agent

data considered necessary in each migration. The communication model of this AM is

completely different from the others. It is based on the use of briefcases and cabinets.

Briefcases are data containers associated to a specific agentwhich can be eventually

shared with another agent to exchange information. Remote communication is carried

out by sending a copy of the agent to the remote platform and exchanging briefcases.

Therefore, it implies agent mobility. Cabinets are also datacontainers, but associated to

a specific AP. They are used to concurrently share data among the agents local to the

platform. Some of them can be secret by the assignment of large random names only

known by a few agents.

D’Agents[GCK+02] is an AM which supports multiple PLs (Tcl, Java, and Scheme).

It is composed of a server component and several EEs. Strong migration is supported.

Each EE includes an interpreter or VM for the PL considered, amodule to capture the

agent state, and a module to deal with agent security. There is a set of stub routines to

142 CHAPTER 6. INTEROPERABILITY

allow agents to invoke the functions of the AM shared library. This routines are stated

in an interface shared by all the agents which keeps the same functionality for each sup-

ported PL. Minor differences exist in some method names and parameters defined in

the specific interface used in each PL. The server component,which is the core of the

AM, manages the reception of agents injecting them to the appropriate EE. Each agent

is authenticated and limited to a specific amount of resources. For the sake of simplicity

TCL and Scheme EEs are threads within the server process, and the Java EE has its own

process.

Ara [Pei02] is an AM which supports different PLs (currently they are Tcl, C/C++,

and Java) and strong migration. It is composed of a PL independent system core and

several PL interpreters (EEs). The system core provides theminimum low level nec-

essary functionality for agents. Extended functionality must be provided by dedicated

server agents (similarly to the IEEE-FIPA philosophy). NewEEs can be easily added

since there is a well defined interface between the system core and them. The interface

is composed ofstubs, which are the calling interfaces of the core for each supported PL,

and theupcalls, which are the implementation of certain functions for the interpreters

management. Each agent is attached to a system thread. Despite supporting remote

communications, local agent communications usage is emphasised. Two methods, one

based on synchronous message passing and another based on a shared tuple space, are

provided. Ara also provides security by means of an access rights vector mechanism.

AgentScape[OB04] is a multi-language AM designed to support scalable, secure,

distributed multi-agent applications. Currently it provides an EE for Java agents. It has

a large interface mainly because of the messaging system andthe methods to interact

with the underlying Agent Operating System (AOS) [vNOT+07]. AOS is a low level

layer which provides interoperability and security facilities to AMs based on it. Another

AM based on AOS is Mansion [vNBT04].

6.3. COMMON AGENT INTERFACE (CAI) 143

6.3 Common Agent Interface (CAI)

The existence of different AMs makes the agent interoperability difficult at the middle-

ware level. Each AM has its own agent interface, therefore the interaction agent/AM

is limited to entities sharing the same interface. The main contribution of this sec-

tion is the definition of a common agent interface called CAI within the context of the

IEEE-FIPA specifications. A shared specific interpreted PL in each AM is assumed,

which currently is the most common scenario in the literature [MR00, PR02, GGK+02,

MPD+02, FGR07]. In our opinion, most of the existing full interoperability approaches

usually fail in that:

1. Widespread agent standards, such as MASIF or the IEEE-FIPA specifications, are

not taken into account. It is an important decision whether to use existing agent

standards or not in the design of a new agent interface. According to our point

of view, not using them is a serious error since it hinders theadoption of the so-

lution proposed and, also, the adoption of the agent standards. Two main agent

standardisation efforts stand up, MASIF and the IEEE-FIPA specifications (see

Section 2.4.2). MASIF is composed of several definitions andcommon middle-

ware interfaces (MAFFinder and MAFAgentSystem) for MAS. Nevertheless, no

agent standard interface neither agent communication mechanisms are defined.

IEEE-FIPA are the standards selected for our approach, since they are the most

extended agent interoperability solution nowadays. They provide good interop-

erability in the area of agent communication, but they do notdefine a common

agent interface. This is the reason why CAI is defined in this section.

2. Approaches are tightly coupled to a specific PL. Usually they only support the

Java PL and its VM. This is an important limitation, since different PLs are

appropriate for different applications. This is the reasonwhy the proposed general

interface must be the base of specific interfaces for each PL.This first approach

must guarantee interoperability with AMs that share the same PL.

3. Complex implementations and major middleware internal modifications are re-

quired. Most of the existing approaches are complex and are implemented at

144 CHAPTER 6. INTEROPERABILITY

the middleware level, except JIMAF [FGR07] which is implemented at the ap-

plication level. Many agent interfaces tend to provide unnecessary functional-

ity [GTA08]. The proposed simple agent interface, only withthe IEEE-FIPA

functionality needed, must be simple. The scheme reinforces the IEEE-FIPA phi-

losophy of using services or doing tasks in cooperation withother agents only by

means of their messaging system and not relying on complex architecture depen-

dent interfaces. Furthermore, the implementation must be able to be deployed at

the application level or at the middleware level regarding the specific necessities

in each context and the availability of the AM source code.

Our proposal is devised for IEEE-FIPA compliant AMs. Nevertheless, non compli-

ant MASs can always be adapted [GRK03, COO+07]. This approach allows the use of

different specialised AMs for specific environments such ashospitals, and laboratories

among others, which admit generic agents, such as agents based on CAI, to coexist and

interact with their native agents by means of the IEEE-FIPA communication facilities.

Furthermore, IPMA, presented in Chapter 3, is chosen as interoperability solution in

the area of mobility. The reason is that it is a flexible application level agent migra-

tion architecture independent of any AM and PL, since it is based on the IEEE-FIPA

specifications.

6.3.1 Considerations toward a common agent interface

The life of an agent takes place on top of a specific AM. Due to the fact that there are

many different AMs with different agent interfaces, there is no possibility of exchanging

their agents. CAI, which is shared by all the AMs with the same PL and UA, allows the

exchange of agents compliant with this interface.

The multi-language programming suitability desired for the proposal enforces the

definition of an abstract interface as a basis for specific interfaces for any PL (see Fig-

ure 6.1). The interface is composed of two parts, one with methods implemented by the

agent, which are the ones called by the AM, and another with methods implemented by

the AM, which are used by the agent to access the middleware functionality. How this

interface is mapped to each PL is freely left to people in charge of the standardisation

6.3. COMMON AGENT INTERFACE (CAI) 145

regarding each PL. No rules are enforced to allow getting themost appropriate specific

interface for each case.

Figure 6.1: Common Agent Interface.

Nevertheless, one may question which is the reason to establish a base interface

where specific ones inherit from it if, in fact, the agent interoperability seems to be

restricted to systems sharing the same PL and UA. There are two reasons:

• In all the cases the functionality to provide is similar, a set of primitives in the

IEEE-FIPA context. Therefore, it is reasonable to use similar interfaces avoiding

the effort of designing a new interface for each PL.

• In Section 6.5 there is a proposal of inter-language interoperability, i.e., agents

which can move to AMs that support different PLs. These agents are composed

of several equivalent codes developed according to a set of similar guidelines, the

equivalent interfaces.

Taking into account the interfaces analysed from other AMs (see Section 6.2) and

the IEEE-FIPA specifications, CAI should provide the following functionality:

• Agent management: The agent must have an IEEE-FIPA [FIP04] compliant

unique identification (AID) and life cycle state associated. Several accessors must

be provided to set/get them. No accessors are necessary for the agent mobility,

since the IPMA model is completely based on the exchange of Agent Communi-

cation Language (ACL) messages.

• Agent messaging: The exchange of IEEE-FIPA ACL messages [FIP02e] must

be supported. Taking into account the nature of ACL messages,asynchronous

146 CHAPTER 6. INTEROPERABILITY

communication is enough. Furthermore, some facilities to operate with ontologies

should be provided although not as part of CAI.

• Agent event reaction: The agent must have the capacity to react to events such

as state changes or incoming messages. Nevertheless, the use of this feature is not

mandatory and depends on the agent developer.

Although the optimisation of the agent itineraries can bring a huge improvement

to the performance of MAs [GP06], no itinerary management facilities [RB02] are di-

rectly provided, as Ajanta and Mobile-C AMs do. The reason isthat this functionality

can be easily provided as part of the agent code without compromising the agent inter-

operability. Furthermore, no security facilities are alsoprovided through the interface.

Since security is usually related to the agent mobility, IPMA is the component which

has to implement it (see Section 7.5). Moreover, as ACL messages are used to interact

with IPMA, no special methods in the agent interface are required to negotiate security

parameters with it.

6.3.2 Proposed Common Agent Interface (CAI)

One interface, some data structures, and a list of values areproposed for CAI. The

interface is expressed in terms of object oriented PLs, following the OMG IDL specifi-

cation [OMG99].

Interface

The interface is composed of two parts. On the one hand, thereis the agent interface,

which is composed of a set of methods implemented by the agentdeveloper that char-

acterise the agent functionality. On the other hand, there is the AM interface, which is

composed of a set of methods with the AM functionality that are implemented by the

AM developer. This is the same philosophy that is followed inMonads [MR00] and

JIMAF [FGR07] interoperability approaches to avoid mixing the implementation of the

two kind of methods. The agent interface is detailed in the following lines:

6.3. COMMON AGENT INTERFACE (CAI) 147

interface Agent {

void deliver(in ACL msg);

void setAgentState(in short state);

short getAgentState();

void setAID(in AID id);

AID getAID();

void run();

void setMContext(in MiddlewareContext mc);

MiddlewareContext getMContext();

}

The MiddlewareContext object referred by the agent interface is the mechanism the

agent might use to access the AM interface, which provides the methods implemented

by the AM developer. Therefore, each AM is responsible for assigning its own imple-

mentation of this interface using the “setMContext()” method. The middleware

interface is defined in the following lines:

interface MiddlewareContext {

void send(in ACL msg);

AID getAMS();

}

The interface proposed has a reduced set of methods since only the basic func-

tionality required is provided. The combination of these methods allows developers

to implement the exact required functionality for each agent. A clear example is the

agent message management, which can be as much complex as developers prefer. They

can implement the “deliver()” method to manage incoming messages in queues (as

the implementation described in Section 3.7.2), or processthem instantaneously, or in

whatever other way they consider appropriate. Other complex functionality, such as

messaging encoding is not included in the interface. Instead of this, this functionality is

delegated to the AM, which according to the language and encoding parameters selected

by the agent encodes the ACL message.

148 CHAPTER 6. INTEROPERABILITY

Data structures

There are two main data structures. They represent the IEEE-FIPA Agent Identifier

(AID) [FIP04] and the IEEE-FIPA Agent Communication Language (ACL) [FIP02e]

message. First of all the AID:

valuetype AID {

string name

sequence <string> addresses

sequence <AID> resolvers

}

And the ACL message:

valuetype Tuple {

string key

string value

}

typedef sequence <Tuple> Table;

valuetype ACL {

string performative

AID sender

sequence <AID> receivers

AID replyto

sequence <octet> binary_content

string string_content

string language

string encoding

string ontology

string protocol

6.3. COMMON AGENT INTERFACE (CAI) 149

string conversation-id

string reply-with

string in-reply-to

string reply-by

Table ud-parameters

string acl-encoding

}

Although an agent could use its own data structures to represent this information, the

proposed data structures are needed to exchange the information with the AM through

the interfaces previously defined. An example are the ACL messages, which are not en-

coded by the agent, but it is the AM that interprets the data structure previously defined

and encodes it according to the language and encoding parameters selected by the agent.

Therefore, the message must be handed in to the AM with the data structure defined.

Agent state values

In CAI, a set of integer values are associated to the IEEE-FIPAagent life cycle states

(see Section 2.4.3):

0 - Unknown

1 - Initiated

2 - Active

3 - Suspended

4 - Waiting

5 - Transit

Although the IEEE-FIPA agent life cycle states could be encoded as strings, an

integer representation is more efficient and easy to use in the agent code.

150 CHAPTER 6. INTEROPERABILITY

6.3.3 Comments on interface usage

CAI is devised to offer the maximum functionality and flexibility to agent developers

by providing a set of minimum essential methods. No attributes are enforced, giving

the agent developer the freedom to use its own ones. The following lines explain the

capabilities of the interface.

Agent management

The AID is managed by the corresponding accessors, “setAID()” and “getAID()”.

The AID does not change during the whole life of the agent, except in case of an agent

cloning. IEEE-FIPA states the agent identifier must be unique, but does not define

mechanisms to enforce it. A possibility, which does not require a central authority,

is using a large random value together with the home agent platform’s name. The

“getAMS()” method call allows to get the local Agent Management System(AMS)

identification in addition to the network addresses available in the current location. AMS

is the agent which, according to the IEEE-FIPA specifications, manages the AP. The

agent life cycle state is also managed with similar accessors: getAgentState()”

and “setAgentState()”. Notice that in our approach it is not kept by the AMS

agent as stated by the IEEE-FIPA Agent Management Specification [FIP04]. This is

because the interface proposed is devised for MAs which self-manage their state along

their itineraries, i.e., the set of locations visited during the life of an agent. The agent

execution is carried out by repeated calls to the “run()” method while the agent is in

the IEEE-FIPA Active state. The agent is killed by sending a deregistration message to

AMS, which changes the agent to the IEEE-FIPA Unknown state (according to IEEE-

FIPA only the AMS agent can finally kill agents). No methods are provided to create

or destroy agents. This functionality could be provided in anearby future by means

of specifically defined ACL messages sent to the AMS agent. Similarly, services of-

fered by other agents are used through the incorporated messaging facilities. Since the

agent migration is considered a service, it is also managed through ACL messages (see

Chapter 3) sent to the Agent Mobility Manager (AMM) agent.

6.3. COMMON AGENT INTERFACE (CAI) 151

Agent messaging

Agent messaging is one of the most flexible parts of CAI. Only two methods are

mandatory, one to send messages and another one to receive them (this is similar to

the Grasshopper [BBCM00] implementation). The “send()” method which is imple-

mented by the AM, directly sends the message passed by parameter. The other one, the

“deliver()”, is used by the AM to deliver an incoming message to the agent. How

agents manage these messages is left to agent developers. Itis suggested to implement

incoming and outgoing message queues and several methods tofilter and get messages

from them (receive, blockingReceive, and so forth). Notice that no support is provided

to deal with ontologies for the ACL message content. This is completely left open, since

the establishment of a standard way to deal with them, from the agent interface point of

view, valid for any PL is too complex. Two solutions are proposed. On the one hand

agents can include all the logic needed to create and parse their messages content. Or,

on the other hand, a common library to create and parse ontologies for each PL must

be used, e.g., the fiParse [SKW05] generic parser for the Java PL, which is a library

included in the AM to encode and parse the message content.

Agent events

There are two basic agent events to deal with, the ones comingfrom agent state changes,

and the ones coming from the messaging system. The first ones can be easily dealt with

overriding the “setAgentState()” method and taking into account the agent state

modification. This can be used, for example, to do some operations just before the

agent migrates (the state changes from Active to Transit), or just when it reaches a

new location (it changes from Transit to Active) among others. This functionality is

offered in some AMs through specific methods overloaded by the agent developer, such

asbeforeMove(), afterMove(), setup(), cleanUp(), and so forth. The messaging system

events, i.e., the reception of messages, can be dealt with overriding the “deliver()”

method, since it is asynchronously called each time a message is received.

152 CHAPTER 6. INTEROPERABILITY

6.3.4 Common Agent Interface considerations

The main characteristics of CAI, together with a comparison of regular agent interfaces

present in several AMs, are summarised in Table 6.1. Next lines show the most relevant

characteristics of it.

First of all, although CAI may seem a single interface, in fact, in Table 6.1, it is

classified as two, since one part is implemented by the agent developer and the other by

the AM developer. This is a common methodology in interoperability approaches based

on interface standardisation (see Monads [MR00] and JIMAF [FGR07] in Section 6.6).

Furthermore, it is important to mention that CAI allows an event-driven implementation

of the agent, allowing it to react to its state changes according to the agent developer

aims. Regarding the message transport and the agent life cycle, they are based on the

IEEE-FIPA specifications, therefore they use the FIPA Message Transport Protocols

(MTPs) and the FIPA agent life cycle respectively. Regardingthe agent creation, dis-

posal and mobility, CAI does not implement any specific methodfor them, since they

can be accomplished by using specific ACL messages defined in the FIPA Agent Man-

agement Specification [FIP04] and in IPMA (Section 3). As it can be seen the interface

proposed is characterised by its simplicity and flexibilitywhich makes it suitable for

different agent models and applications. Furthermore, as stated in [Gav04], having a

simple interface, i.e., simple agent classes, a reduced number of mandatory variables,

and so forth, contributes to a better performance in agent migrations.

Finally, it is worth mentioning that two realisations of CAI for the Java PL and the

Python PL have been developed. They are available in the Mobile Agent Interoperability

section of the JIPMS SourceForge project [JIPa]. The two CAI realisations for the Java

and Python PLs are also included in Appendix B.

6.3.
C

O
M

M
O

N
A

G
E

N
T

IN
T

E
R

FA
C

E
(C

A
I)

153

Interface Grass-
hopper

Aglets Ajanta SeMoA SOMA Tracy JADE Mobile-
C

Tacoma D’Agents Ara Agent
Scape

CAI

Number of Interfaces 1 + 1 2 1 n 1 n 1 1 1 1 1 1 2
Enforce agent structure Yes Yes Yes No Yes No Yes No No No No Yes Yes
Event-driven No Yes Yes No No No Yes No No No No No Optional
State change reaction No No Yes No No No Yes Yes No No Yes No Optional
Extensible Yes No No Yes Yes Yes Yes Yes No No No No ACL
Agent creation support N.A. Yes Yes No N.A. No No Yes Yes Yes Yes Yes ACL
Agent disposal support N.A. Yes Yes No N.A. No No Yes No No Yes Yes ACL
Agent state management N.A. Yes No No N.A. No Yes Yes No No Yes No Yes
Mobility support Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes ACL
Other facilities Persis-

tence,
Security

Security,
Fault
toler-
ance

Persis-
tence,
QoS,
Secu-
rity

Place,
Sur-
vival

Persis-
tence

Persis-
tence,
Security

Agent standards MASIF,
FIPA

MASIF FIPA
ACL,
KQML

MASIF,
FIPA

FIPA FIPA AOS Yes

Messaging transport CORBA
IIOP,
RMI,
sock-
ets,
FIPA-
MTP
IIOP

ATP RMI Propri-
etary

Shared
objects,
FIPA-
MTP,
CORBA-
IIOP

Propri-
etary

FIPA-
MTP

FIPA
MTP-
HTTP

Briefcase Propri-
etary

Propri-
etary

AOS
(RPC)

FIPA-
MTP

Messaging type Async.,
Syn.

Async.,
Syn.

Syn. Async. Async.,
Syn

Async. Async. Async. Async.,
Syn.

Async. Async. Async. Async.

Messaging locality Remote Remote Remote Remote Remote,
Local

Local Remote Remote Remote,
Local

Remote Remote,
Local

Remote Remote

Agent lifecycle states FIPA +
Native

2 states 6 states N.A. 2 states FIPA 6 states 2 states 2 states 3 states 2 states FIPA

Programming languages Java Java Java Java Java Java Java C/C++ Any Any Any Java
and
Others

Any

Table 6.1: MAS agent interfaces comparison.

154 CHAPTER 6. INTEROPERABILITY

6.4 Multiple execution environments

Interoperability in the area of programming languages and underlying architecture is not

completely solved. This area comprises two well differentiated parts. The PL in which

an agent is developed and the UA for which it is compiled. The main contribution of this

section is proposing an infrastructure to allow agents developed in different interpreted

PLs run in the same AP.

6.4.1 Computer architectures

Having multiple computer architectures is a problem currently dealt with the use of

interpreted PLs such as Java, and Python among others. In this case a common UA, the

one implemented by the VM, is assumed. Other techniques suchas reverse engineering

to recompile the agents or emulators have been proposed in the literature, although

with less acceptation. There is also an attempt to deal with this issue in [OdGWB06]

where agent codes are dynamically generated in each visitedlocation. Unfortunately

this approach requires too much effort for the AM developerssince a set of specific

modules of code present in each MAS must be kept updated.

If only one computer architecture existed, there would not be any problem with the

PL used in the agent, but to share a set of common dynamic link libraries. In this case

agents would be created and distributed compiled for the specific computer architecture

with independence of the high level PL used. Since this is notpossible, interpreted PL,

each one with its own associated UA (interpreter or VM), are used. This is the reason

why the solutions proposed in the chapter talk about agents developed in different PLs

instead of talking about agents compiled for specific UAs.

6.4.2 A Multiple Execution Environment approach

The approach proposed is based on the use of EEs. An EE is a container of agents which

supports a specific PL and agent interface. The EE includes the language interpreter in

which their agents are developed and takes care of their execution. One or more EEs

can be added to new or existing AMs. Each AP has the more appropriate set of EEs

6.4. MULTIPLE EXECUTION ENVIRONMENTS 155

Figure 6.2: Middleware Level. Figure 6.3: Application Level.

Figure 6.4: 1 Agent. Figure 6.5: N Agents.

considering the expected visitors. Similar approaches arefound in Tacoma, D’Agents,

and Ara (see Section 6.2.2).

The use of multiple EEs allow the maximum level of rapprochement between agents

coded in different PLs. Again the idea of agents interactinglocally by means of the

IEEE-FIPA Message Transport System (ACL message exchange) is stressed. Neverthe-

less, in this case agents may be developed with different PLsand are running in different

EEs.

In the following lines several alternatives of implementation are explained, all of

them compatible from the agent point of view, i.e., the same agent compliant with CAI

proposed in the previous section could be executed on each variant. Each alternative

is defined by the level on which it is implemented, and the number of agents that each

EE hosts. These alternatives are illustrated in Figures 6.2, 6.3, 6.4, and 6.5, where each

agent developed with a specific PL is represented with a specific shape and letter (x or

y). The levels on which the EEs and their management components can be implemented

are:

• Middleware level: This is the most common approach for AMs initially created

156 CHAPTER 6. INTEROPERABILITY

with the idea of supporting several PLs (see Figure 6.2), e.g., D’Agents [GCK+02]

and Ara [Pei02], or AMs which require an interpret for the PL used, e.g., Mobile-

C [CCP06]. In this case agents are directly created within the corresponding

EE. The use of a common interface between the core layer of theAM and the

EE is highly encouraged although not mandatory to ease the addition of new

EEs [Pei02]. Nevertheless, the really important interfacefor the agent interop-

erability is the one between the agent and the EE, i.e., the interface proposed in

Section 6.3.

• Application level: This is the most common approach in interoperability propos-

als over existing AMs (see Figure 6.3), e.g., Monads [MR00], GMAS [GGK+02],

Guest [MPD+02], and JIMAF [FGR07], since it involves a few or no modifica-

tions to the AM internals. Because of this, each agent runningwithin an EE is

usually represented by a native agent of the AM. This approach usually consumes

more system resources than the previous one.

Regarding the number of agents that an EE can host, two variants of the approach

are possible:

• Single agent: In this case there is only one interoperable agent running on each

EE (see Figure 6.4). The simplicity of implementation and the facility to securely

isolate agents from other agents (sand boxing) are two of itsmain advantages.

Combined with the application level approach, each EE is running over a middle-

ware native agent. The functionality of the EE is similar to the functionality of an

adaptor and, therefore, only one execution thread is required for each agent. An

example of its use in the application level, only for the Tcl and Scheme PLs, is the

D’Agents [GCK+02] AM. There is also the example of the GMAS [GGK+02]

interoperability approach. And an example of its use in the middleware level is

the Mobile-C [CCP06] AM.

• Multiple agents: In this case there are several interoperable agents running in

each EE (see Figure 6.5). This approach is complex to implement, although when

it is used at the middleware level is the most efficient one. Atthe contrary, at

6.4. MULTIPLE EXECUTION ENVIRONMENTS 157

the application level there must be a native agent linked to each interoperable

agent running in the external EE, and at least two threads arerequired for each

interoperable agent (see the triangular agents of Figure 6.3). Some examples of

its use at the middleware level are D’Agents [GCK+02], regarding the Java PL,

and Ara [Pei02], regarding any PL.

All the approaches and their combinations are compatible with CAI. The adoption

of one or other method only affects the performance of interoperable agents execution

and the complexity of implementation. From now on it is assumed a middleware level

approach combined with EEs hosting more than one agent (see it on Figure 6.6).

Figure 6.6: Multiple Execution Environments Middleware.

The reasons for choosing this alternative are that having one EE for each agent is

quite inefficient in terms of performance execution and resources consumed, and that

the implementation at the middleware level is a more robust and well designed option

than the implementation at the application level.

In the example of Figure 6.6 there is an AM following this approach with EEs for

the Java and Python PLs. In the figure there is an agent called AMM which, as defined

in the IPMA mobility specification of Chapter 3, is in charge ofagent migrations. See

Section 6.5.4 for an explanation of several mobility considerations motivated by the

introduction of multiple EEs. Also, notice the existence ofthe standard AMS and DF

IEEE-FIPA agents. As it is explained in Section 2.4.3, AMS isthe agent which manages

158 CHAPTER 6. INTEROPERABILITY

the agent platform and DF is a directory service.

6.5 Multiple Code Agents

In the previous sections two methods to improve the compatibility of agents with dif-

ferent AMs have been proposed. On the one hand, CAI, which allows agents to live in

different types of AM. On the other hand, the multiple EE solution, which increases the

range of supported PLs in a single AM. The effectiveness of the first method depends

on the support for the PL in which the agent is developed in each of the locations to

visit. Therefore, locations should support as many PLs as possible.

The contribution of this section is an additional approach which relaxes this state-

ment. The interface of Section 6.3 is also used. It consists of the creation of agents

composed of several equivalent codes developed in different PLs. Therefore, each time

an agent visits a new location the appropriate agent code according to the available EEs

is selected. This is called from now own inter-language interoperability, since the agent

can be transparently executed and migrated through APs which do not support the same

PL.

There are two reasons which can hinder the adoption of this approach. Firstly, the

agent developer has to provide several codes with equivalent behaviours, which may be

a complex task. And secondly, a mechanism to represent the agent data in a standard

way must be provided in all the AMs. Otherwise the agent data could not be shared with

the different agent codes. In Figure 6.7 there is represented an hypothetical multi-code

agent that moves from a Java AM to a Python AM.

Figure 6.7: Agent data transformation.

Next sections discuss the usage and implementation of agents with multiple codes,

6.5. MULTIPLE CODE AGENTS 159

and the standard representation of the agent data by using specific standard data repre-

sentation languages.

6.5.1 Agent data processing

As previously mentioned, the inter-language compatibility of agents requires a stan-

dard mechanism to represent the agent data. In this section amechanism based on the

YAML [yama] data serialisation standard is proposed.

In recent MASs, the methods to capture the agent data have notbeen object of much

discussion. Most of the PLs recently used in agent development are object oriented,

and they already include their own object serialisation or marshalling mechanisms. In

MASs where agents are represented as objects this is equivalent to capture the agent

data. Examples of these mechanisms are the Java serialisation mechanism, and the

Python marshalling mechanism, among others. Nevertheless, if compatibility beyond a

specific PL is required, the way the agent data is captured andrepresented is a matter of

concern. Therefore, the use of a standard data representation language is recommended.

Existing data serialisation mechanisms

A short analysis of data representation mechanisms is done in the next lines. Two types

exist: data binary, and data string. Data binary representation mechanisms are compu-

tationally efficient and achieve a good data size ratio, but are not human readable, and

are usually tightly coupled to a specific PL, e.g., Java serialisation, Python marshalling,

and so forth. Furthermore, sometimes they present class version compatibility issues

because non necessary internal information, which is highly version dependent, is cap-

tured. Data string representation mechanisms are human readable, but have a worst data

size ratio. Nevertheless, since they are not usually tightly coupled to a specific PL they

are preferred for our purposes. Some standard data string representation mechanisms

have been considered:

• Extensible Markup Language (XML) : XML [XML] is a specification which

allows the representation of structured data. There is no standard XML data

serialisation mechanism defined, but some specific proprietary implementations

160 CHAPTER 6. INTEROPERABILITY

with their own semantics for several PLs. The data got from these approaches

can be relatively independent of their PLs, and does not present class version

compatibility issues like their binary counterparts. Three examples of them are

XStream [XSt], which is available only for the Java PL, PyXML[PyX], only

available for the Python PL, and .NET XML serialisation [Mic08]. The first one

produces a clear XML and allows changes to adjust its dependence to the Java

class names (some aliases may be used for them), the second one has a trick-

ier semantic format and is less flexible, and the third one does not support the

serialisation of private fields. Nevertheless, there is also an alternative to the au-

tomatic object serialisation. It consists of defining a specific data structure where

the agent manually stores the data it considers necessary for the next location.

This is the alternative used in MAWS [AK06], which is a MAS approach based

on Web services.

• JavaScript Object Notation (JSON): JSON [Crob] is a lightweight language in-

dependent data-interchange format. It is a subset of the ECMA-262 standard, on

which JavaScript is based. Its availability in many PLs, itssuitability to encap-

sulate information, and its reasonable data size ratio, despite being a string based

format, are some of its advantages. Nevertheless, since some data types, data ref-

erences, and cycles are not supported, JSON is not feasible as a general agent data

serialisation mechanism.

• YAML Ain’t Markup Language (YAML) : YAML [yama] is a data serialisation

language independent of any specific PL. Its availability inmany PLs (although

not so extended as JSON), its suitability to encapsulate information, its reasonable

data size ratio, its support for generic objects of any data type, and its support for

data references and cycles, make YAML the perfect language to store the agent

data in a standard way. Several implementations are available for different PLs,

e.g., PyYAML [PyY] for Python, YAML.rb [YAMb] for Ruby (whichis currently

integrated as part of the PL) and Jvyaml [Jyy] for Java.

6.5. MULTIPLE CODE AGENTS 161

Figure 6.8: YAML encoded agent data.

6.5.2 YAML agent data representation

Our approach is to use the YAML standard data representationlanguage to establish the

basis for a standard agent data representation. Some considerations must be taken into

account because of the differences in PLs:

• There is a set of basic data types supported by YAML. Nevertheless, specific PL

data types and user-defined objects are not part of the standard. If inter-language

interoperability is needed, the use of too specific data types is not encouraged

and user-defined object classes must be accompanied by a description regarding

how to serialise/deserialise them to/from YAML. Usually the only issue with user-

defined objects is the name which maps the serialised object to its class. YAML

typically names a user-defined object with a pattern which includes the PL name,

the class package or module, and the class name, e.g., a Python ACLMessage

object in the “fipa” module would be: “!!python/object:fipa.ACLMessage”. Us-

ing the methods provided in the YAML implementation of each PL, object class

names must be replaced to a user-defined name for each shared object in the differ-

ent codes provided with the agent, e.g., the ACLMessage object can be identified

162 CHAPTER 6. INTEROPERABILITY

as “!ACLMessage”. The name assigned must be unique within theagent code.

The only needed information to serialise the agent is self-contained in each of the

included codes.

• Attribute types are not equally distinguished in all PLs. Insome cases types are

indicated by the attribute name, e.g., Python private attribute names must begin

with “ ” characters, which in another language may not be necessary. Therefore,

the use of attributes containing PL special characters is discouraged. Proper seri-

alisation/deserialisation descriptions must be providedto map different names to

an intermediate valid representation for all the PLs used.

• The default procedure in the serialisation of objects is thecapture of all the at-

tributes that belong to the main agent class. Nevertheless,sometimes there are

attributes which are not necessary in the remote location, or which can cause dif-

ficulties to the serialisation process. As in the other casesthis can be adjusted

by using the facilities provided by each YAML implementation available for each

PL. Including only the minimal required agent state information is a good practise

to improve the agent migration performance [Gav04, GTA08].

Following the explained approach with the mentioned considerations, the agent data

can be serialised in an independent representation understandable by any of the equiva-

lent agent codes. An example of YAML code produced by the serialisation of an agent,

which includes an ACL message, an AID, the IEEE-FIPA agent life cycle state and a

user-defined state is shown in Figure 6.8. This is in the context of a prototype available

in the MAI package of the JIPMS SourceForge project [JIPa]

6.5.3 Agents with multiple codes

The inter-language interoperability approach proposed inthis section is based on the

development of several agent equivalent codes, the execution of which can be stopped

from one code and resumed to another. Therefore, this approach allows the agent to

visit AMs that support different PLs. All agent codes shouldbe designed with an equiv-

alent structure, and they must use the mechanism to capture and restore the agent data

6.5. MULTIPLE CODE AGENTS 163

1 def run(self)
2
3 if self.state == 0:
4 print "Starting agent

execution."
5
6 # Do some process
7 doWhatEver()
8
9 # Request to migrate

10 doMigrate()
11
12 # Setting the next state
13 self.state = 1
14
15 print "Ending first hop"
16
17
18 if self.state == 1:
19
20 print "Ending agent

execution."
21
22 # Kill the agent
23 doKill()

1 public void run() {
2
3 switch (state) {
4
5 case 0:
6 System.out.println("

Starting agent
execution.");

7
8 // Do some process
9 doWhatEver();

10
11 // Request to migrate
12 doMigrate();
13
14 // Setting the next state
15 state = 1
16
17 System.out.println("Ending

first hop");
18 break;
19
20 case 1:
21
22 System.out.println("Ending

agent execution.");
23
24 // Kill the agent
25 doKill();
26
27 }

Figure 6.9: Equivalent agent codes (Python on the left, Javaon the right).

previously discussed. An example of two equivalent codes can be seen in Figure 6.9.

Notice that some methods are not present in CAI, since they areimplemented by the

agent using the more basic CAI methods.

Although these requirements could seem too strong, actually they are not. Equiva-

lent codes do not imply an implementation of exactly the samemethods with the same

lines of code and the same structure. In fact the only requirement is that all the agent

codes deal with the same attributes and have a similar agent life cycle (this last refer-

ring to the agent self-defined states in which the code is organised, e.g., the cases of

the switch statement in the main agent code if this agent development philosophy is

164 CHAPTER 6. INTEROPERABILITY

followed).

But beyond the development of equivalent codes for the inter-language interop-

erability, new interesting possibilities appear when multiple codes are introduced in

agents:

• Preferred code selection: When there are several compatible EEs with the agent

codes provided, different codes can be chosen when the agentreaches the AP.

Therefore, with the appropriate mechanisms, agents and their middlewares can

establish a preference in the use of their codes, e.g., to prioritise more efficient

PLs such as C++ or similar.

• Complementary codes: If the agent developer knows that certain types of tasks

are only carried out by AMs developed in a specific PL, it can provide equivalent

codes in structure, but only with the needed parts implemented. Supposing an

agent with methods A and B, where A is only used in C++ AMs and B is only

used in Java AMs, there is no need to implement A in the Java code and vice

versa. This is advantageous, since some tasks may be difficult to develop in all

the PLs (some PLs are more appropriate than others for specific tasks).

The disadvantages of this approach are the complexity growth in the development of

agents, and the increase of the migration time because of thenumber of codes that must

be currently transfered with the agent. Nevertheless, in lots of cases it is worth using

the multiple agent code approach because of the previously mentioned advantages.

6.5.4 Agent mobility model considerations

The IPMA mobility model described in Chapter 3 is based on an agent called AMM

present in all the AMs which manages agent migrations. The whole migration process

is driven by the local AMM, which interacts with the remote AMM until the finalisation

of the process. The introduction of the inter-language interoperability requires some

additional features to the original AMM, which must be able to:

• manage multiple equivalent agent codes developed in several PLs;

• deal with multiple EEs;

6.5. MULTIPLE CODE AGENTS 165

• inject agents in each corresponding EE;

• request YAML agent data capture to an EE;

• control agent execution state through AMS;

Some aspects of the IPMA specification, which in the initial proposals [CMR+07,

COO+07] were not considered, have been reinforced to deal with multiple agent codes

and different agent data representations:

• Multiple profiles for each agent, referring to each code using a unique code iden-

tifier (CID), are supported.

• Agent profiles are included in the preference order of usage.Therefore the agent

could establish a specific code preference usage just in casethe agent visits some

AMs with support for several PLs. If the destination AP does not support any

of the agent codes, the migration is cancelled. Then, the agent can decide a new

location to visit.

• The transfer of multiple codes for a specific agent must be allowed. This is easy

to achieve by creating new transfer protocols to the architecture or by modifying

the existing ones. Currently multiple codes can be transfered by using the service

described in Chapter 5.

• The representation used for the agent data is specified together with the agent

profiles (YAML, XML, Java serialisation...).

Finally, its worth mentioning that in case a secure transmission of the agent data is

required, this must be requested to the mobility service (IPMA).

6.5.5 Inter-language mobility example

This section shows the example (see Figure 6.10) of an agent migration in the context

of two different AMs taking advantage of our full interoperability proposal. In this case,

the EEs are implemented at the middleware level and run several agents. There is an

agent A1 that migrates from an AM with a Java EE to an AM with a Python EE. In

166 CHAPTER 6. INTEROPERABILITY

Figure 6.10: Agent migration with YAML encoded data.

the following lines there are detailed the steps of a migration like that, which denote the

importance of the different interoperability areas involved in the process.

1. An agent sends an ACL message to AMM to request the movement of itself or, in

other cases, the movement of another agent.

2. AMM requests AMS to suspend the migrating agent execution.

3. AMS requests the corresponding EE to suspend the agent.

4. After the first messages defined in IPMA are exchanged, the new agent is regis-

tered to the remote AMS.

5. Then the local AMM requests the serialisation of the agentdata to the AM.

6. Since the migrating agent does not reside in the native EE,the request to serialise

the agent data is forwarded to the Java EE.

7. Therefore, AMM requests the agent code to the AM.

8. In this case the agent code is managed through a local repository. Therefore the

codes are requested to it.

9. In the destination, once the codes are received, the agentcodes are registered.

10. The AM registers the agent codes to the local repository.

6.6. RELATED WORK 167

11. Therefore, the remote AMM registers the migrating agentwith the YAML agent

data previously received.

12. Since in this case the AM only supports the Python PL, the Python agent code is

selected. Then, the agent YAML state and the Python agent code are sent to the

Python EE.

13. In the local AP, AMM requests AMS to kill the migrating agent.

14. The AMS agent requests the corresponding EE to kill the agent.

15. Finally the remote AMM requests AMS to put the agent in theexecution state.

16. The remote AMS resumes the agent execution.

The complete mechanism for the depicted inter-language interoperability approach

is composed of an IEEE-FIPA compliant AM that includes several EEs, YAML parser/en-

coders suitable with each of the in-use PLs, and the IPMA mobility model.

6.6 Related Work

This section compares full interoperability approaches present in the literature with our

solutions. Most of the approaches are based on the standardisation of interfaces, uni-

versal AMs, agent interface adaptation, and agent regeneration (see Figures 6.11, 6.12,

6.13 and 6.14 respectively). A summary of the comparison canbe found in Table 6.2.

Monads[MR00] is a MAS implemented on top of other MASs using the Java PL.

The idea behind it is to define a specific interface for its agents which is used to separate

Monads agents from the underlying AM. This separation is undertaken by dividing

agents into a head, the AP independent part, and a body, the dependent part. In Monads

the agent migration and communication is coordinated through a specific agent called

Monads Agent Gateway. This approach is restricted to the Java PL and, because of the

time when it was devised, it is not based on any agent standard(despite including a first

implementation of the ACL messages defined by IEEE-FIPA). This proposal is similar

to Guestfrom Magninet al. [MPD+02], which runs on top of Java MASs following

168 CHAPTER 6. INTEROPERABILITY

Figure 6.11: Standard Standardardisation. Figure 6.12: Universal Middleware.

Figure 6.13: Agent Interface Adaptation. Figure 6.14: Agent Regeneration.

the Guest interface. The approach presented in this chapteris similar to these ones, it

is also based on a common agent interface, and the whole migration process is driven

by the specific agent AMM. Nevertheless, at the contrary of Monads and Guest, our

approach supports different PLs by using multiple EEs, and provides inter-language

interoperability by providing several equivalent codes and defining a standard agent

data representation.

Pinsdorfet al.[PR02] propose a solution integrated into their AM, SeMoA [RJS01],

based on voluntary interoperability. SeMoA provides support for interfaces used in

other AMs, such as JADE and Tracy, to deal with their agents. In fact, this is an ex-

pensive solution, in terms of maintenance costs, and it is not general enough to be

extended, since only a subset of AMs can be supported. As new AM interfaces or

newer versions of them appear, all the AMs which want to offercompatibility with

them must be updated. Furthermore, only the Java PL and its data serialisation mech-

anism is supported. In SOMA [BCS01b] a similar solution to support agents from

the Grasshopper [BBCM00] AM has been applied, although in this case the MASIF

standards are also used. The approaches proposed in this chapter do not require such

6.6. RELATED WORK 169

amount of maintenance, support several PLs, and define a standard agent data repre-

sentation. Nevertheless, there is the inconvenient that the interoperable agents must be

specifically created.

Grid Mobile Agent System (GMAS)[GGK+02] is an approach that allows the exe-

cution of native agents of a specific AM to a different one. It relies on the translation

of agent interfaces. The idea is to provide an intermediate interface supported by differ-

ent MASs on top of which are put the translators to the foreignagent interfaces. Then,

foreign agents are run above these translators. The advantage of this idea is that agent

compatibility can be granted only by creating one GMAS compliant translator which is

automatically retrieved when it is needed. Regarding the communications, the CoABS

Grid is used to handle them. Nevertheless, GMAS has two main disadvantages, on the

one hand it is quite inefficient in performance terms, and on the other hand it is restricted

to the Java PL. Proposals present in this chapter can be more efficient and support sev-

eral PLs. Nevertheless, interoperable agents must be specifically developed following

the appropriate interfaces.

Overeinderet al. [OdGWB06] is an original proposal that guarantees agent interop-

erability even in case of different AMs running on differentPLs and UA. The approach

is based on the regeneration of the agent code each time the agent migrates. The agent’s

functionality is described by means of the agent’s blueprint, an implementation indepen-

dent description which states a set of components used in thefinal agent code. These

components are implemented in each AM according to its architecture and are used

every time the agent code is regenerated. This approach has the advantage that their

agents are not constrained to a set of specific PLs and UAs. Nevertheless, the expressiv-

ity of the possible agent codes is limited to the components and their implementations

available for each possible PL and UA. Furthermore, no explicit solutions are provided

regarding the agent communication. From the interoperability point of view, this is the

most general approach, since agent developers do not have toprovide several equivalent

agent codes in different PLs, and AM developers only have to implement a set of mod-

ules. Our approach is limited in the number of PL and UA combinations, but it offers

more flexibility to agents, since they are not subject to the availability of a set of prebuilt

modules.

170 CHAPTER 6. INTEROPERABILITY

Java-based Interoperable Mobile Agent Framework (JIMAF)[FGR07] is a high-

level approach based on voluntary interoperability. The basic idea is similar to Monads,

in the sense that the agent is divided into an AM dependent andan AM independent

parts. Interoperable agents must be developed according toa specific interface. The

main advantage of this approach is that it does not require the modification of the AM

internals, but it is implemented on top of it. JIMAF is composed of several interfaces

and several wrapper agents that implement the agent communication and migration fa-

cilities. Each JIMAF agent runs on top of a middleware nativeagent which is an adap-

tor to the specific JIMAF interface. JIMAF agents are based ona generic light-weight

event model. There are two outstanding drawbacks. First of all, the approach is tightly

coupled to the Java PL. Secondly, it depends on the use of wrapper agents to interact

with native agents. The approach presented in this chapter supports different PLs (even

inter-language interoperability), different implementation possibilities (middleware and

application levels), and it is based on well-known agent standards which allow the direct

interaction with middleware native agents. Furthermore, the proposed agent interface

is flexible enough to allow agent developers to follow an event driven model for their

agents.

6.6.
R

E
LAT

E
D

W
O

R
K

171

Interoperability
solution

Monads Guest SeMoA GMAS Agent
Regeneration

JIMAF FIPA
Interoperab.

Interoperability method Standard
interface

Standard
interface

Support for
interfaces of
other MASs

Interface
adaptors

Agent
regeneration

Standard
interface

Standard in-
terface + Ex-
ecution envi-
ronments

Agent interface / toolkits AgentBody /
AgentHead

Guest API Runnable,
JADE, Tracy

Any Agent
blueprint

JIMAF CAI

Inter-language interoper-
ability support

No No No No Yes No Yes

Programming languages
supported

Java Java Java Java Any Java Any

Communication interop-
erability support

Yes No Yes Yes No Yes Yes

Communication solution Monads
Agent
Gateway

Wrapping CoABS Grid Wrapper
agents

FIPA ACL

Migration interoperabil-
ity support

Yes Yes Yes Yes Yes Yes Yes

Migration solution Monads
Agent
Gateway

N.A. SeMoA
migration

GMAS Agent
Factory

JIMAF IPMA

Agent Data/State repre-
sentation mechanism

Java
Serialization

Java
Serialization

Java
Serialization

Java
Serialization
/ SelfSerializ-
able agents

XML, RDF
or OIL

Java
Serialization

YAML

Interoperability trans-
parency

No No Yes Yes No No No

Implementation level Application
level
(middleware
parts may be
required)

Application
level

Middleware
level

Application
level

Application
level

Application
level

Application /
Middleware
levels

Table 6.2: Interoperability solutions comparison.

172 CHAPTER 6. INTEROPERABILITY

6.7 Conclusions

During the last years a large amount of different MASs have been developed. As a con-

sequence the interoperability of MAs has become a subject ofmajor concern, specially

taking into account the present tendency to technological convergence.

In this chapter a full interoperability proposal, which covers all the interoperabil-

ity areas mentioned in Section 2.4.1, is presented as a combination of the IEEE-FIPA

specifications, the IPMA mobility model (see Chapter 3), and the solutions proposed in

Sections 6.3, 6.4, and 6.5. The novelties of the proposal, regarding the existing ones de-

scribed and compared in Section 6.6, are that it is valid for any object oriented PL (and

other ones with slight modifications), it is completely integrated with the IEEE-FIPA

agent standards, it provides inter-language interoperability, and it defines a common

way of saving the agent data using the YAML standard.

The simple agent interface, proposed in Section 6.3, provides the minimal neces-

sary functionality to develop a fully functional agent in anIEEE-FIPA context. The

deployment of this approach is simple, in many cases it only consists of an extra layer

on top of the AM. Furthermore, since the interface is devisedto coexist with the native

AM interfaces, the interoperable agents can closely interact with the middleware native

agents, which usually have more specific features and properties. Nevertheless, if this

approach is the only one used, the interoperability is only guaranteed with agents and

AMs that share the same PL. An issue with the implementation of this approach is the

management of the agent messages content. A content language is used to represent the

information according to a specific ontology. AMs usually provide tools to create and

interpret it. Nevertheless, no specific codec/parsers are defined in our approach. This

functionality must be implemented in the agent’s code or must be obtained from shared

libraries. In this last case, a de facto ontology manager must be agreed for each PL.

The concept of EE, discussed in Section 6.4, allows AMs to closely host agents de-

veloped in different PLs. The advantage of using EEs is theirimplementation flexibility.

They can be implemented at the middleware level or the application level as appropriate.

Nevertheless, a disadvantage is that an EE must be developedfor each PL supported by

the AM. Therefore, only a limited number of PLs can be supported.

6.7. CONCLUSIONS 173

Finally, the method to develop inter-language compatible agents, proposed in Sec-

tion 6.5, allows agents to run into EEs that support different PLs. The advantage of this

approach is that the AM developers do not have to provide different EEs, although in this

case the agents must be composed of multiple codes. Another advantage is that having

agents with multiple codes may bring the possibility of implementing each agent task

with the most appropriate PL, always assuming the agent developer knows in advance

the supported PL in each AP. An inconvenient is the agent development complexity

increases, although using development automatisation tools it can be greatly reduced.

Furthermore, in case of using this approach to implement each task with a specific PL

the development complexity can be extremely reduced, sincesome tasks can be easier

to implement with a PL than another. As in the previous approach, a limited number

of PLs are supported, although in this case this is limited bythe agent codes available.

Nevertheless, the two approaches can be combined and the PLssupported increase.

There is an issue regarding the implementation of the agent data processing similar to

the message content issue previously explained. The fact isthat a shared YAML parser

must be available in all the AMs for each PL used, otherwise agent codes could not

specify how to serialise their data. And, finally, as mentioned in Section 6.5.3, the agent

migration time increases as a consequence of the greater number of agent codes to trans-

fer. Nonetheless, using the agent code distribution service presented in Chapter 5, this

additional load does not suppose an issue, since the code transport task is delegated to

the mentioned service and only the specific code needed in each platform is requested.

Otherwise, all the agent code versions must be carried during the whole agent itinerary.

Chapter 7

Security

Security is one of the most trying aspects in Mobile Agent Systems (MASs). In this

chapter, after a brief introduction to several security mechanisms, two methods to pro-

tect mobile agents are proposed. Firstly, a scheme to protect agent itineraries with loops

is presented. And later, a protocol to authenticate agents and guarantee their code’s

integrity in the Inter-Platform Mobility Architecture (IPMA) is proposed.

7.1 Introduction

Mobile Agents (MAs) introduce new challenges and opportunities for mischief, which

must be addressed before we can see real-world applicationsdeployed using them. Se-

curity is one of the most trying aspects in MASs, and ensuringsound protection against

external malicious parties in MA environments is still an open problem. More con-

cretely, a MA owner must have the guarantee that the agent’s code and data will be

executed without external modifications. On the other hand,the execution environment

must be protected from malicious agents. A set of basic agentsecurity requirements and

the most frequent security threats have been explained in Section 2.5.

This chapter begins showing some methods to deal with agent security attacks. Tak-

ing into account who the attacker and the victim are and according to [JK00], four

categories of attack can be established. The first one isAgent-to-platform, which refers

175

176 CHAPTER 7. SECURITY

to the set of attacks where one or more agents exploit the Agent Platform (AP) weak-

nesses. The next one is theAgent-to-agent, where agents attack other agents. In this

case it must be taken into account that some APs, such as the FIPA compliant ones,

have several components operated as agents. Therefore thiscategory might include

Agent-to-platformattacks. The next one is thePlatform-to-agent, where APs attack

agents. Usually each AP attacks its own agents since they areunder its control. This

is an attack that it is not easy to prevent because of the agentcomplete submission to

the AP. And, finally, there is theOther-to-platformcategory, where third parties, such

as APs or agents, attack an AP. In Section 7.2 several security approaches classified

according to the attacked entity (agent or AP) are detailed.

The rest of the chapter is focused on the proposal of two agentsecurity schemes, one

for agent itineraries, and the other for IPMA, presented in Chapter 3. The first scheme

is an extension of the itinerary protection scheme approachpresented in [MB03] and

described in Section 7.3. The aim of our proposal is to allow the protection of agent

itineraries with loops, which are not supported in the previous approach. This extension

is described in Section 7.4 and it has been published in [CAB05,CAOR+05]. Never-

theless, it had been discontinued by the thesis’ author, although continued within our

research group (see [GMB+08]). The second scheme, described in Section 7.5, is an

authentication protocol for MAs devised for the pre-transfer step of IPMA. This pro-

tocol checks the authenticity and integrity of the agent codes received in the migration.

Finally, the chapter is concluded in Section 7.6.

7.2 Background

In MASs the entities exposed to attacks are agents and APs. Therefore, agent security

mechanisms can be classified according to the receiver of theattack.

7.2.1 Agent platforms

The protection of APs is important since agents dwell withinthem. Therefore, an attack

to an AP can indirectly affect a huge amount of agents. Even agent’s data may be in

danger. APs are easier to protect than agents, since they fit to the conventions of a

7.2. BACKGROUND 177

traditional computer program. In the next paragraphs thereare described some of the

most relevant techniques found in the literature.

Software-Based Fault Isolation[WLAG93] is a method to execute non trusted code

developed in unsafe Programming Languages (PLs), such as C or C++. This method

consists of executing the code in a separate virtual addressspace, which has a limited

amount of resources assigned and strong restrictions to access the network and local file

systems. This technique is known assandboxingand it is integrated into the Java Virtual

Machine (VM).

The safe code interpretationis a method based on the use of interpreted PLs to

develop agents. Therefore, potential harmful instructions can be closely controlled to

guarantee the system security. Some examples of the PLs thatuse this technique are

Java and Safe Tcl, in which several APs are based on, e.g., JADE [PBK05] and Agent

Tcl [Gra96].

Thecryptographic signature of the agent codeis another technique commonly used.

Its use allows APs to verify the ownership of a specific code and its integrity. Depending

on the AP security policy and the authority which representsthe MA, a certain degree

of rights are granted to it. As can be seen in [NA06], access control in MAs is complex.

There, some solutions to relax its complexity are proposed.

The State Appraisal[FGS96] is a method used in combination with the crypto-

graphic signature of the agent code. It consists of several functions integrated in the

agent code which verify the agent is in a coherent and permitted state. Modification of

the agent code is detected through its signature, and manipulation of the agent state is

detected by these functions.

TheProof Carrying Code[NL96] mechanism is a technique based on the provision

of several formal proofs, which demonstrate the agent code fits to the security policies

required by the visited AP. This technique prevents the execution of unsafe code without

using any cryptographic mechanism. Nevertheless, it is notan easy method to put into

practise.

Another security mechanism, which is focused on the detection of agents coming

from non trusted APs, is the one based on theitinerary logging [CGH+95, Ord96,

Rot98]. Each visited AP adds a signed entry to the log which indicates its identity.

178 CHAPTER 7. SECURITY

This log is cryptographically secured to avoid manipulation. Therefore, APs can check

the locations visited by an agent before giving it rights to access the AP. The only in-

convenient is that the log gets bigger as the agent visits newlocations. This method is

also used to audit agents as it is explained in the next section.

7.2.2 Mobile agents

The protection of MAs is more complex than the protection of APs. The reasons are

that MAs and their code do not statically reside in a specific location, but dynamically

change regarding their needs, they accumulate the intermediate results obtained in the

previous locations, and they are completely subject to the AP where they are residing.

Therefore, it is not possible to prevent an attack from a hosting AP. This is the reason

why the detection of attacks is emphasised in the mechanismspresented in the next

paragraphs. These mechanisms consider the protection of one or more parts of the

agent: agent code, data, state, and itinerary (if appropriate).

The first set of mechanisms deal with the encapsulation of results generated by the

agent along their execution and itinerary. The encapsulation may imply data integrity,

confidentiality, responsibility, and authenticity. One ofthe first methods proposed was

thePartial Result Authentication Codes (PRAC)[Yee99]. It consists of the initial cre-

ation of a set of disposable random keys used to encrypt the data generated in each

location. The Home Agent Platform (HAP), which keeps a copy of all the keys, is the

only entity which can retrieve all the data generated. This method can be deceived if

the agent visits the same AP more than once, or if there are colluding APs. Therefore,

Karjothet al. [KAG98] proposed a mechanism where each entry included a hash of the

previous one and the next location to visit. With the addition of this information it is not

possible to exchange results hosted in the middle of the chain. Recently, new vulnera-

bilities, and their correspondingly solutions [CW02, MS03, YFPD04], have appeared,

such as attacks based on collusion or based on cutting out thechain and rebuilding it

with forged results.

A second type of security mechanism is based onagent audits. This mechanism

consists of monitoring and recording all the agent actions to detect possible attacks to

the agent at the end of its execution. Some of them are the modification of the agent

7.2. BACKGROUND 179

itinerary, the environment manipulation to make the agent go to a different location,

and the agent kidnapping. Several methods have been proposed. One of them [Rot98]

is based on two cooperative agents which monitor each other.This method can be

generalised for more than two agents. Later, more advanced proposals based on the

same idea have been presented [DE04]. Another approach [Sch97] is based on the use of

several replicas of the same agent and the logging of their actions. It is assumed that only

a subset of the replicas will be kidnapped or lost in case of attack. The considered final

result is the one obtained by most of the replicas executed. Finally, another approach

based on agent audit is [Vig97]. It tries to discover the agent manipulation from a set of

cryptographic traces, regarding the agent execution, keptin the APs visited by it.

APs can get privileged information of their visitor agents and the tasks they are

carrying out. This information may be used against the agent’s interest. There is no

solution to this problem, since APs must have access to agentcodes, but two tech-

niques can contribute to alleviate it. The first technique isComputing with Encrypted

Functions[ST98], which consists of encrypted functions that return encrypted results

without having to decrypt the functions, e.g., a functionf is encrypted,E(f), and in-

cluded in the agent code as a programP (E(f)). When the agent reaches its destination,

the programP (E(f)) is executed and the resultE(f(x)) is obtained. Later, in the HAP,

this result is decrypted,f(x). Notice that the destination AP has no access to the func-

tion f . The second technique is based on thecode obfuscation[Hoh98], which consists

of making the code incomprehensible to agent developers. The previous technique also

falls in the category of code obfuscation.

Since the previous mechanisms present several restrictions or limitations on their

applicability, a different approach based onsecure coprocessors[Yee94, Kar00] can

be followed to prevent this kind of information stealing. Secure coprocessors execute

agents or, at least, sensitive operations. They use cryptographic private keys and do not

allow to monitor the tasks they are processing.

Finally, another important aspect to protect against manipulation are the agent itiner-

aries (see Section 2.3.3). Cryptographic protocols, such asthe ones proposed in [CMS99,

KT01, Rot02], take advantage of key pairs to guarantee information confidentiality and

180 CHAPTER 7. SECURITY

integrity to each visited location. An example which illustrates a possible itinerary pro-

tection mechanism is shown in the next equation:

I = SO(Ek1
(m1), Ek2

(m2), ..., Ekn
(mn)) (7.1)

this is an agent itinerary (I) composed of a vector signedSO by the agent owner (O)

which contains a set of ciphered tasks (Eki
(mi)). Each task is intended to be executed

in a different location, since it is ciphered with a specific key ki associated to the lo-

cation. Nevertheless, these proposals are focused on the protection of static itineraries.

This is the reason why several proposals [SRM98, MB02, MB03] (see the following

Section) make the static itineraries more flexible by addingdifferent types of transitions

(sequence, alternative, and set). All these proposals assume security mechanisms only

involve the agent and the visited APs, but in [GRCR04, TY05] an alternative method

based on Trusted Third-Parties (TTPs) is presented. The disadvantage of this method is

the big infrastructure required. More recent works [GRB08] deal with dynamic itiner-

aries, but using only a subset of trusted nodes which belong to the agent itinerary.

7.3 Protection of agent itineraries

In this section a scheme for agent itinerary protection described in [MB03], which is

extended in the next section, is presented. That scheme is flexible enough to allow

arbitrary combinations of sequences, alternatives, and sets to specify the protected itin-

eraries over a fixed list of hosts. To protect an itinerary, its representation as a Petri net

is first constructed. This construction allows an efficient treatment of complex paths,

and provides a clear-cut specification of the transitions tobe protected.

The protection protocol is based on digital envelopes [Lab93] with the structure:

D = (Pj(ri)|Eri
(I))

whereri is the (randomly generated) envelope’s symmetric key andPj denotes the

destination host’s public key. The owner of the corresponding private key can therefore

obtainri to decipher the informationI. The protected itinerary is built as a chain of

7.3. PROTECTION OF AGENT ITINERARIES 181

digital envelopes, so that it can only be disclosed in a pre-defined order. Let us describe

how the protection protocol works.

Protection Protocol:

1 Initialisation : Itineraries are represented as a Petri net withn nodes labelledhi

for 1 ≤ i ≤ n. The agent’s owner,O, generatesn random keys,ri, and assigns one to

each node. Each node represents a host to be visited. We denote ti,j the transition from

nodei to nodej (see transition examples in Figures 7.1 and 7.2).

2 For each transition hi ⇒ hj, create ti,j:

Figure 7.1: Sequence type transition. Figure 7.2: Alternative type transition.

(a) Signature: The owner signs the address ofhi andhj, rj and a travel markt (see

Equation 7.4 below), obtaining:

S = SO(hi, hj, t, rj)

(b) Transition token: The owner ciphersS usinghj ’s public key; the transition token

ti,j is then obtained as the concatenation of this value andhj address:

ti,j = (hj, Pj(SO(hi, hj, t, rj))) (7.2)

3 Information ciphering: The agent’s owner proceeds to encipher each node’s pri-

vate information, including the next transitions, using the corresponding symmetric key

ri. This information will consist of a method or task,mi and, for alternate entries, a

condition,C (see figure 7.2). If we denote byEi the operation of enciphering with key

ri we can write the ciphered informationei, representing an alternative, as:

ei = Eri
(mi, C, ti,j, ti,k). (7.3)

182 CHAPTER 7. SECURITY

4 End : Once the above steps have been performed for each node in the Petri net,

we end up with a protected itinerary, which can be denoted asI = (e1, e2, · · · , en).

The travel markt identifies the agent, and precludes replay and cut-and-paste at-

tacks. It is defined as:

t = T ‖ H(mobile agent′s code), (7.4)

whereT is a time stamp andH a cryptographic hash function.Without this mark, a

dishonest host could change the agent’s itinerary, using anold agent’s one (belonging

to the same owner).T guarantees thatt is unique for each travel, while the agent’s code

hash binds the itinerary to its legitimate agent. Each visited host will storet only as long

as the agent owner’s signatures remain valid, so that the agent’s validity is time-limited.

7.3.1 Properties of the Protection Protocol

The protection protocol just described can be applied to itineraries created by arbitrary

combinations of sequential and alternate subpaths, and it will provide the following

guarantees [MB03]:

P1 Integrity

P2 Confidentiality

P3 Forward privacy

P4 Data verifiability

P5 Originator’s verifiability

P6 Strong identification

P7 Once entry

The P6 property, which guarantees that the agent is executedonly once in each host,

by means of its unique identification, precludes loops in theitinerary. To allow them, we

must provide a way of distinguishing legitimate re-executions (ensuing from the agent

following a closed path during its travel) from malicious replays. The following sections

show how this can be done without jeopardising the protection scheme.

7.4. PROTECTION OF AGENT ITINERARIES WITH LOOPS 183

7.4 Protection of agent itineraries with loops

In this section a method to protect agent itineraries with loops, such as the one shown in

Figure 7.3, is presented. The method is a modification of the agent itinerary protection

protocol described in the previous section.

7.4.1 Protection Protocol Modifications

The existence of closed paths, the loops, will obviously imply that the agent’s code

is executed more than once in one or more nodes of its itinerary. The challenge is to

distinguish such legitimate re-executions from maliciousones issued by an attacker.

Let N denote the vector of maximum allowed agent executions at each itinerary

node for any given time; i.e.,

N = (seq1, seq2, . . . , seqn)

whereseqi is the maximum number of times the agent can visit hosthi during the rest

of its travel. At the origin, this vector will be initialisedwith the maximum allowed

visits to each node, and, each time the agent is executed at host hi, its corresponding

counterseqi will be decremented. The key of our protocol is to include this vector in

the information that travels with the agent. Rather thanN , the agent will contain the

execution counters in ciphered form, as the vector:

vω = (Er1
(seq1), Er2

(seq2), . . . , Ern
(seqn)), (7.5)

where we have made explicit this vector’s dependency onω, the step in the agent travel.

That is, at the agent’s origin we are at stepω = 0, after visiting the first host in the

itinerary,ω = 1, and so forth until the travel ends for some valueω = ωf .

Eri
denotes the symmetric ciphering function using keyri; as mentioned, only the

agent’s owner andhi have access to the corresponding visits counter. The formerwill

initialise the counter with the maximum allowable number ofvisits to the host for a

given itinerary, while the latter will take care of checkingand decrementing it after each

visit.

184 CHAPTER 7. SECURITY

Figure 7.3: One loop itinerary.

The protection provided by the symmetric ciphering ofseqi can be further strength-

ened by adding to the counter random bits at fixed positions, which will be changed

every timeseqi’s value is recomputed in order to avoid predictability-based attacks.

In the example depicted in figure 7.3, if we wish the agent visits each internal loop

nodes twice, we would haveseqi = seqn = 1 andseqj = seqk = seql = 2, and, during

the agent’s itinerary,vω will take eight different values, i.e.,ω will run from 0 to 7.

The first time an agent visitshi the following steps will ensue:

• The host deciphersEri
(seqi) and the travel tokent. Since this is the first agent’s

visit, no record containingt will be found in the host’s database.

• A time to live, TTL, is assigned to the above values. This TTL will be greater or

equal to the agent’s expiration time, so that the agent cannot be re-executed after

the stored counters have expired (and possible deleted fromthe system).

• The tuple

ti = (t, seqi, TTL) (7.6)

is stored.

• If seqi > 0, the agent is executed, its counter decremented andvω updated ac-

cordingly.

On the other hand, every time the agent closes a loop and re-visitshi the following

process will take place:

• Extract from the vectorvω carried by the agent its current execution counter,seqi.

7.4. PROTECTION OF AGENT ITINERARIES WITH LOOPS 185

• If the agent has expired orseqi = 0, the agent will be rejected.

• Retrieve the tupleti (see Equation (7.6)) associated with this agent, usingt as a

search key.

• If agent’s execution counter,seqi, is not lesser than tuple’s (ti) associated counter,

the agent is rejected.

• Otherwise, the agent is executed.

• ti is updated substituting his counter forseqi’s agent counter.

• The agent’s data is updated subtracting one unit toseqi in vω, and the agent mi-

grates to its next destination.

A key ingredient of the above protocol is the vectorvω carried by the agent. Fig-

ure 7.4 provides a schematic view of the main agent components. If vω, as given by

Equation 7.5, would be transported without further protection, a malicious third party

could capture it and try to tamper with the system using substitution attacks (see Section

7.4.3).

Figure 7.4: Mobile agent components.

To avoid substitution attacks, the execution counter vector will be ciphered so that

it can only be read by the next node in the agent’s itinerary. In addition, the receiving

node should be able to check the legitimacy of the agent’s sender (i.e., the previous host

in the itinerary, which was the lastvω modifier). These goals can be met by storing in

the agent, instead ofvω, the following quantity:

pi = Pj(Si(vω, H(ti,j))), (7.7)

186 CHAPTER 7. SECURITY

wherei is the sending host,j the receiver andti,j the transition given by Equation 7.2.

Since the vector is ciphered using the receiver node’s public key (this ciphering being

denoted by the functionPj() above), only the receiver can access it. The digital signa-

tureSi provides verifiability ofpi’s creator identity. Finally, the hash functionH binds

pi to the corresponding transition.

This completes our new protocol definition. Note that the creation ofpi should be

fully automated, avoiding the agent to directly deal with the private keys of the visited

APs. To that end, the cryptographic services scheme proposed in [AROR04] can be

used.

7.4.2 Loop Implementation

Our new protocol can be implemented, in a manner analogous tothat of alternatives, in

systems using itinerary protection mechanisms of the kind described in Section 7.3.

For instance, to implement the loop depicted in Figure 7.3, we just need two ad-

ditional transitions: one from the final host to the initial host (tl,j) and one between

the final and next hosts (tl,n), which exits the loop. Both transitions will be signed by

the agent’s owner and ciphered for the corresponding destination node (as described in

[MB03]):

tl,j = (hj, Pj(SO(hl, hj, t, rj))), (7.8)

tl,n = (hn, Pn(SO(hl, hn, t, rn))), (7.9)

In addition, these transitions will be contained in the digital envelope assigned to the

last node in the loop, with the same format used for an alternative, namely:

el = Erl
(ml, C, tl,j , tl,n), (7.10)

whereC denotes the guard condition to be fulfilled for the transition to the initial node

to take place.

Finally, the execution counters will be initialised at origin with the corresponding

values for the maximum number of allowed executions in each host.

7.4. PROTECTION OF AGENT ITINERARIES WITH LOOPS 187

7.4.3 Security Assessment

This section examines our proposed protocol resilience against external attacks.

External Itinerary Replay

In replay attacks, as depicted in Figure 7.5, a malicious external entity captures roaming

agents and tries to modify and execute them at hosts on times different to the intended

ones. Agents can be captured by network sniffing or collusionwith a host in the agent’s

itinerary.

Figure 7.5: External Reply Attack.

The use of a Public Key Infrastructure (PKI) and the associated encryption, and the

use of verification services, such as the comparison of the sequence number stored in

the AP with the one provided by the agent, precludes this kindof attacks in our protocol.

These techniques are used also in the original itinerary protection protocols, so that both

the static and dynamic parts (see Figure 7.4) of our agents are protected. As mentioned,

the use of public key encryption and digital signatures to protect this data avoids any

impersonation risks (a third party trying to play the part ofa legitimate host).

Substitution attacks will also be detected. In this case, the attacker would try to send

her own agent to resume the captured agent’s itinerary. A newexecution counter vector

could be constructed with the correct structure, but it would nevertheless be detected as

bogus when trying to get the agent counters, because symmetric keys will be different.

Internal Itinerary Replay

In this scenario, the attack is conducted by a dishonest hostin the agent’s itinerary,

which tries to re-execute the agent in another node to the host’s advantage (e.g., to make

188 CHAPTER 7. SECURITY

it buy more items than planned at the host’s electronic shop). As shown in Figures 7.6

and 7.7 this attack can be attempted either by an isolated host or in collusion with other

hosts in the itinerary.

Figure 7.6: Single host internal replay
attack.

Figure 7.7: Internal replay attack with
collusion.

Single host It can be easily seen that this attack has no chance of success. Despite

having access tovω, the dishonest host cannot alter the execution counter of any

other host in the itinerary, for it has no access to the symmetric key of the attacked

host.

Colluding hosts In this attack, two dishonest nodes collude to cause unauthorised agent

executions on a third honest host (see Figure 7.7). When the MAreaches the sec-

ond dishonest host, this host sendsvω to the colluding AP (both of them will have

access to its contents, via their private keys). The receiver will inject this new vec-

tor in a copy of the agent (which had visited the AP in a previous itinerary step),

appropriately signed and ciphered, and it will resend the agent to the attacked host.

The latter will have no way of detecting the fraud, and will re-execute the agent.

In this way, unintended agent executions can be provoked andgo undetected: our

protocol cannot cope with collusion.

Internal Host Replay

In this attack, a dishonest host re-executes the agent as many times as it sees fit, disre-

garding the execution counter. As noted in the literature [TY05], this kind of attack is

unavoidable, due to the fact that it is not observable from the outside.

7.5. IPMA SECURITY PROTOCOL 189

Loop Iteration Replay

A final security breach arises when the host that decides whena loop needs to be iterated

is dishonest. Such a host has a privileged role, and can provoke as many iterations of

a closed loop as desired, unless the number of iterations is constant and can be fixed

beforehand, and the loop is composed of more nodes. In the latter case, the maximum

number of executions set at the agent’s origin will also be the total number of executions

for any legitimate itinerary traversal, and the attack would be detected. In itineraries

where the actual number of loop iterations is dynamically determined by the agent, the

only solution is to ensure the critical host’s honesty by external means.

7.5 IPMA Security Protocol

Agent security solutions presented in previous sections are not bound to a specific AP

or agent migration architecture. They are general enough tobe implemented in any of

them. On the contrary, in this section a security solution regarding the agent authentica-

tion specifically designed for IPMA, presented in Chapter 3, is proposed.

This solution is implemented as an IPMA pre-transfer protocol called One-Shot

Agent Authentication Protocol (OSAAP). It is an authentication protocol, which is

based on the exchange of Agent Communication Language (ACL) messages, that identi-

fies MAs with X.509 certificates [Croa], and that guarantees the ownership and integrity

of the agent and their codes using digital signatures. A secure channel to exchange the

ACL messages of the whole migration protocol is assumed, therefore no manipulation

of the Migration Identifier (MID) is possible.

7.5.1 Preliminaries

Before explaining the protocol there are two kinds of preliminaries to deal with: cryp-

tography, and agent code organisation.

Firstly, the aim of this protocol is to authenticate agents and assure their code in-

tegrity and authenticity. This can be achieved by means of the cryptographic signature

operation. This operation requires to deal with certificates and signatures. The X.509

190 CHAPTER 7. SECURITY

standard [Croa] has been chosen to represent the certificate of the agent owner (O). The

PKCS-7 cryptographic data structure [Kal] has been chosen toencapsulate the men-

tioned certificate and the signatures done with it. Furthermore, it is worth noting that

required signatures are calculated in advance by the agent owner when the agent is cre-

ated. Sometimes, new codes can be developed and signed later. No method is enforced

to deal with private keys since they are only used by the agentowner (O).

The agent code organisation, see Section 3.3.2, imposes several restrictions to the

way agents are authenticated. Since new agent codes can be added to a specific agent

after its creation, it is not possible to include all the codesignatures in advance with

the agent. Therefore, two kinds of signatures are distinguished: theagent signature,

and thecode signature. Theagent signature(see Equation 7.11) is created through the

signature of a string containing the agent name (aname) and the Code Group Identifier

(CGID), which binds the agent with a group of codes, separatedby the colon character.

A PKCS-7 structure encapsulates the agent signature and the certificate of the agent

owner (O). And thecode signature(see Equation 7.12) is built by signing a URN, such

as the one proposed in Section 5.3.2, which uniquely identifies each code and binds it

with its CGID, Code Identifier (CID), Security Revision (SR), and Hash Code Identifier

(HCID). It is also encapsulated in a PKCS-7 data structure, although no certificate is

included in this case.

Each agent includes anagent signature. And each agent code has acode signature

associated. Agent codes which are obtained from external code distribution services,

such as the Agent Code Distribution Service (ACDS) presented in Chapter 5, must be

accompanied by acode signature. Therefore, new codes compliant with this security

mechanism can be created and distributed for already existing and deployed agents.

agent signature = SO(aname + CGID) (7.11)

code signature = SO(codeurn) (7.12)

codeurn = urn : agent − code − id :< CGID >:< CID >:< SR >:< HCID >

(7.13)

7.6. CONCLUSIONS 191

7.5.2 Protocol’s operation

The authentication process consists of two parts (see Figure 7.8), one carried out in the

pre-transfer step and the other one in the transfer step. Firstly, an X.509 certificate iden-

tifying the agent owner (O) and a set of signatures are sent. Checking this certificate,

and the possible chain of certificates behind it, remote APs decide whether to accept an

agent or not depending on the authorities they trust. The agent is bound to the certificate

presented by theagent signature(see Equation 7.11).

Secondly, OSAAP also takes part indirectly in the transfer step. There, thecode

signature(see Equation 7.12) is validated against the code received.If the code can-

not be validated an error is climbed up to the transfer protocol. Although seems that

this affects other protocols, since code validation failures are forwarded by the transfer

protocols, this is only an implementation challenge. From the transfer protocol point of

view this implies sending a normative failure message with the the description returned

by the OSAAP implementation. It is also important to take into account that not all the

combinations of the authentication and transfer protocolsare available. It depends on

the developer’s decisions and it is announced by the Directory Facilitator (DF) agent

(see Section 3.3.2).

The protocol is composed of one FIPA Request interaction protocol, and a specific

ontology (see Appendix A.9) that defines the associated action to the request and the

mentioned information included in it. Errors are managed inthe same way as in MMP

(see Section 3.3.3), although with specific exception predicates regarding this protocol.

An example of a typical authentication in terms of ACL messages is shown in Figure 7.9.

7.6 Conclusions

Security of MAs is one of the most discussed issues of this technology. If agents cannot

offer enough security to their users, then their deploymentis difficult. Nevertheless, if

they are not enough spread, it is difficult to know which are the most important secu-

rity problems to deal with. In this chapter a summary and a classification of the most

common security problems present in MASs have been shown. Therefore, two specific

security issues have been analysed and two solutions have been proposed.

192 CHAPTER 7. SECURITY

Verify agent signature

Is it valid?

End

Verify corresponding
code signature

Pre-Transfer part

Transfer part

no

yes

Start

Send X509 certificate, agent signature,
and code signatures

Agent is transfered
by the chosen transfer protocol

Is it valid? Cancel
migration

no

yes

Figure 7.8: One-Shot Agent Authentication Protocol diagram.

7.6. CONCLUSIONS 193

Figure 7.9: One-Shot Agent Authentication Protocol flow diagram.

Firstly, a method [MB03] to protect agent itineraries has been studied. The method

fails in protecting the itineraries which contain loops. Therefore, a protocol, which is an

improvement of the previous one, to support the existence ofloops is presented.

Finally, in the context of IPMA, a new security protocol to authenticate agents and

guarantee their code integrity has been devised. This is an example of agent authenti-

cation based on X.509 certificates. Certificates identify agent owners, in which agent

platforms decide if they trust or not, and a set of digital signatures prove that agents and

their codes really belong to their agent owners and they havenot been modified.

Chapter 8

Conclusions

As explained in the introduction of this thesis, great progress has been made in the

mobile agent technology since its creation. Nevertheless,despite the research efforts, a

wide-scale adoption of the technology has not been produced. There are several reasons

about that, but the most important one nowadays is focused onthe interoperability of

Mobile Agents (MAs). Furthermore, the efficiency and security are also important.

In order to deal with the interoperability of mobile and non mobile agents several ini-

tiatives arise. The most widespread initiatives are the IEEE-FIPA specifications, which

are focused on the management and communication of agents. Nevertheless, they do

not take into account their mobility. Another initiative specifically created for MAs

is MASIF, but it is not currently in use, and it requires the active collaboration of the

Agent Middleware (AM) developers to achieve migration interoperability between dif-

ferent AMs.

The first objective of the thesis has been the design of an agent mobility specifica-

tion to complement the existing IEEE-FIPA standards. The resulting specification has

been described in Chapter 3. It is the Inter-Platform Mobility Architecture (IPMA), an

efficient, flexible, and extensible migration architecturewhich is completely based on

the use of the IEEE-FIPA specifications. Several protocols can be incorporated to the

mentioned architecture in order to provide customisable agent migrations. Thus, a set

of protocols with different migration strategies, i.e., different ways of transferring the

agent components, have also been proposed in the same chapter. The research of this

195

196 CHAPTER 8. CONCLUSIONS

chapter has been published in several conferences [ACM+06, CMR+07, COO+07] and

it has been submitted to a journal [CMNA+08]. Furthermore, IPMA has been imple-

mented in two AMs. There is a first implementation, the JIPMS add-on for the JADE

AM, which has a project associated to the SourceForge website [JIPa]. And, further-

more, there is the ASIPMS for the AgentScape AM, which can be obtained directly

from the author. The first implementation is considered the default inter-platform mo-

bility service of JADE, this is the reason why it motivated a chapter [CAM06] in the

book written by the JADE developers. Finally, an extensive performance analysis of the

JIPMS implementation with all the protocols proposed has been shown in Chapter 4.

The aim of this analysis has been demonstrating the flexibility and efficiency of the

architecture presented, this last depending on the migration protocols used.

Another objective of this thesis was the proposal of efficient methods to distribute

agent code. Since the agent code is usually static during thewhole life of an agent, and

sometimes is shared with several agents, having a specific service that deal with it can

highly improve the agent migration performance. In Chapter 5there is a proposal of a

distribution service called Agent Code Distribution Service (ACDS). In the literature

exists some proposals to distribute agent codes [GGGO02, BR05], but all of them are

tightly coupled to a specific type of code (Java code). ACDS is valid for any type of ex-

isting or future agent code, introduces the concept of code contract based on XACML to

specify the code distribution parameters and restrictions, and have an standard and sim-

ple interface based on REST. A migration performance comparison with and without the

service enabled has been carried out in the same chapter. Therefore, the improvement

that the service proposed implies has been demonstrated. The research of this chapter

has been submitted to a journal [CNAM+08]. Furthermore, a prototype [acd] has been

implemented.

Coming back to the interoperability of MAs, with the introduction of IPMA de-

scribed in Chapter 3 it is possible to send MAs between different types of AM. Nev-

ertheless, since no interoperability exists at the middleware level regarding the agent

design, it is not possible to execute the incoming agent if itis not compatible with the

destination AM. Despite several proposals exist, there is no agreement in the literature

to face this problem. The deployment of these proposals is not easy, since they are not

197

integrated with existing agent standards and, moreover, they are usually focused on only

one specific Programming Language (PL).

This is the reason why the third objective of this thesis was proposing methods to

guarantee the interoperability of agents at the middlewarelevel, taking into account the

possibility of different PLs and Underlying Architectures(UAs). Therefore, in the end,

three methods have been proposed in Chapter 6. The combination of them with the

IEEE-FIPA standards and IPMA allows agents to move and resume their execution in

a location with a different type of AM. Each of the methods proposed is an improve-

ment over the degree of interoperability reached. The first method proposes a common

agent interface that provides the agent with all the IEEE-FIPA functionality. The sec-

ond method defines the concept of execution environment, which is a way to structure

AMs in order to cope with agents developed with different PLsand UAs. And the third

method propose the creation of agents supporting differentPLs and UAs by carrying

several versions of their code. These last method also defines a standard way to share

the agent data using the YAML language. As this last method can be expensive in terms

of the agent code transmission, the ACDS service usage is recommended. The interop-

erability research detailed in this chapter has been submitted to a journal [CMNA+].

Finally, although it has not been the main objective of the thesis, the security of

agents has also been discussed. Two different aspects of theagent security have been

dealt with in Chapter 7. First of all, the security of agent itineraries (list of locations

that an agent visits). In this part a proposal to protect preestablished agent itineraries

that includes loops has been presented. This work starts from a protocol to protect

agent itineraries proposed in [MB03]. This research has beenpublished in two confer-

ences [CAB05, CAOR+05]. The second aspect dealt with is the access control of agents

and the authentication and integrity of their codes within IPMA. In this case a protocol

for the migration architecture has been proposed. This protocol checks, during the mi-

gration of an agent, the identity of the agent to decide if it is accepted in the destination.

Furthermore it checks the authenticity and integrity of their code. This solution can be

combined with ACDS, since this last supports the distribution of the code signatures

required to authenticate the agent codes.

Therefore, as a final conclusion it can be stated that the workdone during this thesis

198 CHAPTER 8. CONCLUSIONS

allows MAs to efficiently migrate between different types ofAM, with different PLs

and UAs, and with some security measures.

8.1 Future research lines

The future directions of the research presented in this thesis are detailed in the next

paragraphs. First of all, regarding IPMA, a more complete security analysis to guarantee

the robustness of the architecture against migration attacks should be considered. And

a study of new fault tolerance techniques may also be convenient. Furthermore, new

migration protocols to integrate in the architecture can beproposed in the future. These

protocols can include security mechanisms for the agent migration, such as the one

detailed in Chapter 7.

In ACDS, three ideas can be considered. Firstly, since currently the agent code

distribution is only based on the code owner instructions (alist of regions), then a pre-

dictive method to distribute the agent code, based on collected statistics of code usage

can be studied. Secondly, the service is used through a REST interface, then additional

interfaces can be devised to ease developers the service integration into their products.

And thirdly, a solution to distribute portable source code and serve it compiled on the

fly for the required UAs would allow the deployment of agents developed with highly

efficient PLs, such as C or C++, over almost any architecture supported by the service.

Finally, future research in the interoperability must be focused on the deployment of

the solutions presented in the whole thesis, such as the combination of the IEEE-FIPA

standards together with IPMA and the methods proposed in Chapter 6, in different types

of AM with different PLs and UAs. The results and experiencesobtained from these

deployments will allow a final adjustment of the solutions proposed.

Bibliography

[acd] Agent Code Distribution Service 0.1. http://tao.uab.cat/acds.

[ACM+06] J. Ametller, J. Cucurull, R. Martı́, G. Navarro, and S. Robles. Enabling

mobile agents interoperability through fipa standards. In M. Klusch,

M. Rovatsos, and T.R. Payne, editors,Cooperative Information Agents

X, volume 4149 ofLecture Notes in Artificial Intelligence, pages 388–

401, Edinburgh, UK, September 2006. CIA 2006, Springer Verlag.

[AK06] Hassan Artail and Elie Kahale. Maws: a platform-independent frame-

work for mobile agents using web services.J. Parallel Distrib. Com-

put., 66(3):428–443, 2006.

[App] Appstream. http://www.appstream.com/.

[ARB03] J. Ametller, S. Robles, and J. Borrell. Agent Migration over FIPA

ACL Messages. InMobile Agents for Telecomunication Applications

(MATA, volume 2881 ofLecture Notes in Computer Science, pages

210–219. Springer Verlag, 2003.

[AROR04] J. Ametller, S. Robles, and J. A. Ortega-Ruiz. Self-protected mobile

agents. InAAMAS ‘04: Proceedings of the Third International Joint

Conference on Autonomous Agents and Multiagent Systems, pages

362–367, Washington, DC, USA, 2004. IEEE Computer Society.

[AWS] Amazon Web Services. http://aws.amazon.com/resources.

199

200 BIBLIOGRAPHY

[Bar02] Albert-Lászĺo Barab́asi. Linked: The New Science of Networks.

Perseus Publishing, April 2002.

[BBCM00] C. Baumer, M. Breugst, S. Choy, and T. Magedanz. Grasshopper: a

universal agent platform based on omg masif and fipa standards, 2000.

[BCG06] F. L. Bellifemine, G. Caire, and D. Greenwood.Developing Multi-

Agent Systems with JADE. Wiley, January 2006.

[BCPR08] Fabio Bellifemine, Giovanni Caire, Agostino Poggi, andGiovanni Ri-

massa. Jade: A software framework for developing multi-agent appli-

cations. lessons learned.Information and Software Technology, 50:10–

21, 2008.

[BCS01a] P. Bellavista, A. Corradi, and C. Stefanelli. Mobile agent middleware

for mobile computing.Computer, 34(3):73–81, Mar 2001.

[BCS01b] Paolo Bellavista, Antonio Corradi, and Cesare Stefanelli. Middleware

services for interoperability in open mobile agent systems. Micropro-

cessors and Microsystems, 25(2):75–83, April 2001.

[BGN+05] Ch. Bouras, A. Gkamas, I. Nave, D. Primpas, A. Shani, O. Sheory,

K. Stamos, and Y. Tzruya. Application on demand system over the

internet. Journal of Network and Computer Applications, 28(3):209–

232, August 2005.

[BLFMa] T. Berners-Lee, R. Fielding, and L. Masinter. RFC 2396:

Uniform resource identifiers (uri): Generic syntax.

http://www.ietf.org/rfc/rfc2396.txt.

[BLFMb] T. Berners-Lee, R. Fielding, and L. Masinter. RFC 2617:

Http authentication: Basic and digest access authentication.

http://www.ietf.org/rfc/rfc2617.txt.

[BMO01] Bernhard Bauer, J̈org P. Müller, and James Odell. Agent UML: A for-

malism for specifying multiagent software systems. InAgent-Oriented

BIBLIOGRAPHY 201

Software Engineering: First International Workshop, AOSE 2000, Lim-

erick, Ireland, volume 1957 ofLNCS, pages 109–120. Springer-Verlag,

2001.

[BR05] P. Braun and W. R. Rossak.Mobile Agents: Basic Concepts, Mobility

Models, and the Tracy Toolkit. Morgan Kaufmann, Heidelberg, Ger-

many, 2005.

[CAB05] J. Cucurull, J. Ametller, and J. Borrell. Protocol for the protec-

tion of mobile agent itineraries with loops (in Spanish). InAlberto

Peinado Doḿınguez et al., editor,1r Simposio sobre Seguridad In-

formática [SSI’2005], pages 61–68, Granada. Spain, September 2005.

CEDI 2005, Thomson.

[Cai04] G. Caire. Jade: The new kernel and last developments. Techni-

cal report, Telecom Italia, 2004. http://jade.tilab.com/papers/Jade-the-

services-architecture.pdf.

[CAM06] J. Cucurull, J. Ametller, and R. Martı́. Agent mobility. In F. L.

Bellifemine, G. Caire, and D. Greenwood, editors,Developing Multi-

Agent Systems with JADE, pages 115–130. Wiley, January 2006.

[CAOR+05] J. Cucurull, J. Ametller, J.A. Ortega-Ruiz, S. Robles, and J. Borrell.

Protecting mobile agent loops. In T. Magendanz, K. Ahmed, and I. Ve-

nieris, editors,Mobility Aware Technologies and Applications, volume

3744 ofLecture Notes in Computer Science, pages 74–83, Montreal,

Canada, October 2005. MATA 2005, Springer.

[CCP06] Bo Chen, Harry H. Cheng, and Joe Palen. Mobile-c: a mobile agent

platform for mobile c/c++ agents.Softw., Pract. Exper., 36(15):1711–

1733, 2006.

[CFL+02] Jiannong Cao, Xinyu Feng, Jian Lu, Henry Chan, and Sajal K. Das.

Reliable message delivery for mobile agents: Push or pull.icpads,

00:314, 2002.

202 BIBLIOGRAPHY

[CGH+95] Davis Chess, Benjamin Grosof, Colin Harrison, David Levine, Colin

Parris, and Gene Tsudik. Itinerant Agents for Mobile Computing. IEEE

Personal Communications, 2(5):34–49, 1995.

[CGK+05] Krzysztof Chmiel, Maciej Gawinecki, Pawel Kaczmarek, Michal

Szymczak, and Marcin Paprzycki. Efficiency of jade agent platform.

Sci. Program., 13(2):159–172, 2005.

[CHB03] Arjav J. Chakravarti, Xiaojing Wang; Jason O. Hallstrom, and Gerald

Baumgartner. Implementation of strong mobility for multi-threaded

agents in java. InParallel Processing, 2003. Proceedings. 2003 Inter-

national Conference on. IEEE, 2003.

[CLC08] Bo Chen, David D. Linz, and Harry H. Cheng. XML-based agentcom-

munication, migration and computation in mobile agent systems.Jour-

nal of Systems and Software, 91(9):1364–1376, 2008.

[CLZ00] Giacomo Cabri, Letizia Leonardi, and Franco Zambonelli. Weak and

strong mobility in mobile agent applications. InProceedings of the 2nd

International Conference and Exhibition on The Practical Application

of Java, Manchester (UK), April 2000.

[CMNA+] J. Cucurull, R. Mart́ı, G. Navarro-Arribas, S. Robles, and J. Borrell.

Full mobile agent interoperability in an IEEE-FIPA context. Submitted

to Journal of Systems and Software.

[CMNA+08] J. Cucurull, R. Mart́ı, G. Navarro-Arribas, S. Robles, B. J. Overein-

der, and J. Borrell. Agent mobility architecture based on IEEE-FIPA

standards. 2008. Submitted to Computer Communications.

[CMR+07] J. Cucurull, R. Mart́ı, S. Robles, J. Borrell, and G. Navarro. FIPA-based

interoperable agent mobility. InMulti-Agent Systems and Applications

V, volume 4696 ofLNAI, pages 319–321, Leipzig, Germany, Septem-

ber 2007. Springer.

BIBLIOGRAPHY 203

[CMS99] A. Corradi, R. Montanari, and C. Stefanelli. Mobile agents protection

in the internet environment. In23rd Annual International Computer

Software and Applications Conference, 1999.

[CNAM+08] J. Cucurull, G. Navarro-Arribas, R. Martı́, S. Robles, and J. Borrell.

Agent mobility architecture based on IEEE-FIPA standards.2008. Sub-

mitted to Journal of Network and Computer Applications.

[COO+07] J. Cucurull, B. J. Overeinder, M. A. Oey, J. Borrell, and F. M.T. Bra-

zier. Abstract software migration architecture towards agent middle-

ware interoperability. InProceedings of the International Multiconfer-

ence on Computer Science and Information Technology, pages 27–37,

Wisla, Poland, October 2007.

[Croa] D. Crockford. ITU-T Recommendation X.509. Informationtechnol-

ogy - Open Systems Interconnection - The Directory: Public-key and

attribute certificate frameworks.

[Crob] D. Crockford. RFC 4627: The application/json media typefor

javascript object notation (JSON). http://www.ietf.org/rfc/rfc4627.txt.

[Cuc04] J. Cucurull. JADE MTP-TFTP. Technical report, Universitat

Autònoma de Barcelona, June 2004.

[CW02] J.S.L. Cheng and V.K. Wei. Defenses against the truncation of com-

putation results of free-roaming agents. In R. Deng, S. Qing,F. Bao,

and J. Zhou, editors,Information and Communications Security: 4th

International Conference, ICICS 2002, volume Volume 2513 ofLec-

tures Notes in Computer Science, pages 1–12. Springer-Verlag GmbH,

January 2002.

204 BIBLIOGRAPHY

[DE04] Asnat Dadon-Elichai. Rds: Remote distributed scheme for protect-

ing mobile agents. InAAMAS ’04: Proceedings of the Third Inter-

national Joint Conference on Autonomous Agents and Multiagent Sys-

tems, pages 354–361, Washington, DC, USA, 2004. IEEE Computer

Society.

[DMP+02] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, andB. Weihl.

Globally distributed content delivery. Internet Computing, IEEE,

6(5):50–58, Sep/Oct 2002.

[EARL03] J.A. Exposito, J. Ametller, S. Robles, and N. Lhuillier. How to use the

new HTTP MTP with JADE. Technical report, Universitat Autònoma

de Barcelona, 2003.

[FGR07] Giancarlo Fortino, Alfredo Garro, and Wilma Russo. Achieving mobile

agent systems interoperability through software layering. Information

and Software Technology, 2007. doi:10.1016/j.infsof.2007.02.016.

[FGS96] William M. Farmer, Joshua D. Guttman, and Vipin Swarup. Security

for mobile agents: Authentication and state appraisal. InProceedings

of the Fourth European Symposium on Research in Computer Security,

pages 118–130, Rome, Italy, 1996.

[FIP00] FIPA. FIPA agent management support for mobility specification,

2000. http://www.fipa.org/specs/fipa00087/index.

html.

[FIP02a] FIPA. FIPA abstract architecture specification, 2002. http://www.

fipa.org/specs/fipa00001/index.html.

[FIP02b] FIPA. FIPA acl message representation in bit-efficient specification,

2002. http://www.fipa.org/specs/fipa00069/index.

html.

[FIP02c] FIPA. FIPA acl message representation in string specification, 2002.

http://www.fipa.org/specs/fipa00070/index.html.

BIBLIOGRAPHY 205

[FIP02d] FIPA. FIPA acl message representation in xml specification, 2002.

http://www.fipa.org/specs/fipa00071/index.html.

[FIP02e] FIPA. FIPA ACL message structure specification, 2002. http://

www.fipa.org/specs/fipa00061/index.html.

[FIP02f] FIPA. FIPA agent message transport protocol for http specification,

2002. http://www.fipa.org/specs/fipa00084/index.

html.

[FIP02g] FIPA. FIPA agent message transport protocol for iiop specification,

2002. http://www.fipa.org/specs/fipa00075/index.

html.

[FIP02h] FIPA. FIPA agent message transport service specification, 2002.

http://www.fipa.org/specs/fipa00067/index.html.

[FIP02i] FIPA. FIPA communicative act library specification, 2002. http:

//www.fipa.org/specs/fipa00037/index.html.

[FIP02j] FIPA. FIPA propose interaction protocol specification, 2002.http:

//www.fipa.org/specs/fipa00036/index.html.

[FIP02k] FIPA. FIPA request interaction protocol specification, 2002. http:

//www.fipa.org/specs/fipa00026/index.html.

[FIP02l] FIPA. FIPA SL content language specification, 2002. http://www.

fipa.org/specs/fipa00008/index.html.

[FIP04] FIPA. FIPA agent management specification. Internet, 2004.

http://www.fipa.org/specs/fipa00023/index.html.

[FPV98] Alfonso Fuggetta, Gian Pietro Picco, and Giovanni Vigna. Understand-

ing code mobility.IEEE Trans. Softw. Eng., 24(5):342–361, 1998.

[FT02] Roy T. Fielding and Richard N. Taylor. Principled design of the modern

web architecture.ACM Trans. Interet Technol., 2(2):115–150, 2002.

206 BIBLIOGRAPHY

[Gav04] Damianos Gavalas. Mobile agent platform design optimisations

for minimising network overhead and latency in agent migrations.

In Global Telecommunications Conference, 2004. GLOBECOM ’04.

IEEE, volume 2, pages 605–609, 2004.

[GCK+02] Robert S. Gray, George Cybenko, David Kotz, Ronald A. Peterson, and

Daniela Rus. D’agents: Applications and performance of a mobile-

agent system.Softw., Pract. Exper., 32(6):543–573, 2002.

[GGGO02] Damianos Gavalas, Dominic Greenwood, Mohammed Ghanbari, and

Mike O’Mahony. Hierarchical network management: a scalable

and dynamic mobile agent-based approach.Computer Networks,

38(6):693–711, 2002.

[GGK+02] Arne Grimstrup, Robert Gray, David Kotz, Maggie Breedy, Marco Car-

valho, Thomas Cowin, and Daria Chacón. Toward interoperability of

mobile-agent systems. InMobile Agents, volume 2535 ofLNCS, pages

106–120. Springer Berlin / Heidelberg, January 2002.

[git] GIT - Fast Version Control System. http://git.or.cz/.

[GMB+08] C. Garrigues, N. Migas, W. Buchanan, S. Robles, and J. Borrell. Pro-

tecting mobile agents from external replay attacks.Journal of Systems

and Software, 2008.

[Gon01] Li Gong. Jxta: a network programming environment.Internet Com-

puting, IEEE, 5(3):88–95, May/Jun 2001.

[GP06] Damianos Gavalas and Christina Tanya Politi. Low-cost itineraries for

multi-hop agents designed for scalable monitoring of multiple subnets.

Computer Networks, 50(16):2937–2952, November 2006.

[Gra96] R. S. Gray. Agent Tcl: A flexible and secure mobile-agent system. In

M. Diekhans and M. Roseman, editors,Fourth Annual Tcl/Tk Work-

shop (TCL 96), pages 9–23, Monterey, CA, 1996.

BIBLIOGRAPHY 207

[Gra03] Jim Gray. Distributed computing economics. In Andrew Herbert

and Karen Sp̈arck Jones, editors,Computer Systems: Theory, Technol-

ogy and Applications, pages 93–101. Springer, December 2003. Also

MSR-TR-2003-24, March 2003.

[Gra04] R.S. Gray. Mobile agents: overcoming early hype and abad name.Mo-

bile Data Management, 2004. Proceedings. 2004 IEEE International

Conference on, pages 302–303, 2004.

[GRB08] C. Garrigues, S. Robles, and J. Borrell. Securing dynamicitineraries

for mobile agent applications.Journal of Network and Computer Ap-

plications, 31(4):487–508, November 2008.

[GRCR04] M. Giansiracusa, S. Russell, A. Clark, and V. Roth. Macro-level atten-

tion to mobile agent security: Introducing the mobile agentsecure hub

infrastructure concept. InInformation and Communications Security:

6th International Conference, ICICS 2004, volume 3269 ofLecture

Notes in Computer Science, pages 343–357. Springer Verlag, 2004.

[GRK03] Christos Georgousopoulos, Omer F. Rana, and Anthony Karageorgos.

Supporting fipa interoperability for legacy multi-agent systems. InPro-

ceedings of the Agent-Oriented Software Engineering IV, number 2935

in LNCS, pages 361–379. Springer, 2003.

[GTA08] Damianos Gavalas, George E. Tsekouras, and ChristosAnag-

nostopoulos. A mobile agent platform for distributed network

and systems management. Journal of Systems and Software,

doi:10.1016/j.jss.2008.06.034, 2008.

[Hem05] Stephen Hemminger. Network emulation with netem. Linux Conf Au,

2005.

[Hoh98] Fritz Hohl. Time limited blackbox security: Protecting mobile agents

from malicious hosts. InMobile Agents and Security, pages 92–113,

London, UK, 1998. Springer-Verlag.

208 BIBLIOGRAPHY

[HS07] March Hadley and Paul Sandoz. Jax-rs 1.0 early draft review specifi-

cation, October 2007. Sun Microsystems, Inc.

[HY98] Matthew Hohlfeld and Bennet Yee. How to migrate agents, August

1998. unpublished.

[IKKW01] Torsten Illmann, Tilman Krueger, Frank Kargl, and Michael Weber.

Transparent migration of mobile agents using the java platform debug-

ger architecture. InMobile Agents: 5th International Conference, vol-

ume 2240 ofLecture Notes in Computer Science, page 198. Springer

Verlag, December 2001.

[JIPa] JADE Inter-Platform Mobility Service. http://jipms.sourceforge.net.

[JIPb] JADE Inter-Platform Mobility Service Performance Test Suite.

http://jipms.sourceforge.net.

[JJK06] Kresimir Jurasovic, Gordan Jezic, and Mario Kusek.A performance

analysis of multi-agent systems.International Transactions on Systems

Science and Applications, 1(4):335–342, 2006.

[JK00] W. Jansen and T. Karygiannis. Nist special publication 800-19 - mobile

agent security, 2000.

[JLvR+02] Dag Johansen, Kåre J. Lauvset, Robbert van Renesse, Fred B.

Schneider, Nils P. Sudmann, and Kjetil Jacobsen. A tacoma retrospec-

tive. Softw. Pract. Exper., 32(6):605–619, 2002.

[Jyy] Jvyaml. https://jvyaml.dev.java.net/.

[KAG98] G. Karjoth, N. Asokan, and C.A. G̃A 1

4
lcÃ 1

4
. Protecting the computa-

tion results of free-roaming agents. InMA ’98: Proceedings of the Sec-

ond International Workshop on Mobile Agents, pages 195–207, Lon-

don, UK, 1998. Springer-Verlag.

[Kal] B. Kaliski. RFC 2315: PKCS #7: Cryptographic message syntax.

http://www.ietf.org/rfc/rfc2315.txt.

BIBLIOGRAPHY 209

[Kar00] G. Karjoth. Secure mobile agent-based merchant brokering in dis-

tributed marketplaces. In D. Katz and F. Mattern, editors,Second

Joint Symposium on Agent Systems and Applications / Mobile Agents

(ASA/MA 2000), number 1882 in LNCS, pages 44–56. Springer, 2000.

[KE06] Gu Su Kim and Young Ik Eom. Domain-based mobile agent fault-

tolerance scheme for home network environments. InInformation Se-

curity Practice and Experience, LNCS, volume 3903 ofLNCS, pages

269–277, February 2006.

[KT01] Neeran M. Karnik and Anand R. Tripathi. Security in theAjanta mobile

agent system.Software Practice and Experience, 31(4):301–329, 2001.

[Lab93] R. Laboratories. PKCS 7: Cryptographic message syntaxstandard,

1993.

[LCW04] M. R. Lyu, X. Chen, and T. Y. Wong. Design and evaluation ofa fault-

tolerant mobile-agent system.IEEE Intelligent Systems, 19(5):32–38,

Sept.-Oct. 2004.

[LM98] Danny B. Lange and Oshima Mitsuru.Programming and Deploying

Java Mobile Agents Aglets. Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA, 1998.

[LRW03] N. Leibowitz, M. Ripeanu, and A. Wierzbicki. Deconstructing the

kazaa network.Internet Applications. WIAPP 2003. Proceedings. The

Third IEEE Workshop on, pages 112–120, June 2003.

[LY99] Tim Lindholm and Frank Yellin.Java Virtual Machine Specification.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,

1999.

[MB02] J. Mir and J. Borrell. Protecting general flexible itineraries of mobile

agents. InProceedings of ICISC 2001, LNCS. Springer Verlag, 2002.

210 BIBLIOGRAPHY

[MB03] J. Mir and J. Borrell. Protecting mobile agent itineraries. InMobile

Agents for Telecommunication Applications (MATA), volume 2881 of

Lecture Notes in Computer Science, pages 275–285. Springer Verlag,

October 2003.

[MFB+07] J.D. Meier, Carlos Farre, Prashant Bansode, Scott Barber, and Dennis

Rea. Performance Testing Guidance for Web Applications. Microsoft

patterns & practices. Microsoft Press, 2007.

[Mic08] Microsoft. .NET Framework Developer’s Guide, 2008. XML and

SOAP Serialization.

[MMLCVN08] Iv án Marśa-Maestre, Miguel A. Ĺopez-Carmona, Juan R. Velasco, and

Andrés Navarro. Mobile agents for service personalization in smart

environments.Journal of Networks, 3(5):30–41, May 2008.

[MMLVA06] I. Mars á-Maestre, M.A. Ĺopez, J.R. Velasco, and A.Navarro. Mobile

personal agents for smart spaces. InACS/IEEE International Confer-

ence on Pervasive Services, pages 299–302, 2006.

[MOB06] D. G. A. Mobach, B. J. Overeinder, and F. M. T. Brazier. WS-

Agreement based resource negotiation framework for mobileagents.

Scalable Computing: Practice and Experience, 7(1):23–36, 2006.

[MPD+02] L. Magnin, T. Viet Pham, A. Dury, N. Besson, and A. Thiefaine. Our

guest agents are welcome to your agent platforms. InSeventeenth ACM

Symposium on Applied Computing (SAC), pages 107–114, 2002.

[MR00] P. Misikangas and K. Raatikainen. Agent migration between incompat-

ible agent platforms.Distributed Computing Systems, 2000. Proceed-

ings. 20th International Conference on, pages 4–10, 2000.

[MS03] Paolo Maggi and Riccardo Sisto. A configurable mobile agent data

protection protocol. InAAMAS ’03: Proceedings of the second interna-

tional joint conference on Autonomous agents and multiagent systems,

pages 851–858, New York, NY, USA, 2003. ACM Press.

BIBLIOGRAPHY 211

[MSM97] Matthew Mathis, Jeffrey Semke, and Jamshid Mahdavi. The macro-

scopic behavior of the tcp congestion avoidance algorithm.SIGCOMM

Comput. Commun. Rev., 27(3):67–82, 1997.

[NA06] G. Navarro-Arribas. Access Control and Authorisation Management

in Mobile Agent Systems. PhD thesis, Universitat Autonoma de

Barcelona, 2006.

[NL96] George C. Necula and Peter Lee. Safe kernel extensionswithout run-

time checking. In USENIX, editor,2nd Symposium on Operating Sys-

tems Design and Implementation (OSDI ’96), October 28–31, 1996.

Seattle, WA, pages 229–243, Berkeley, CA, USA, 1996. USENIX.

[NQKA98] Jan Nicklisch, J̈urgen Quittek, Andreas Kind, and Shinya Arao. Inca:

an agent-based network control architecture. InIATA ’98: Proceedings

of the second international workshop on Intelligent agents for telecom-

munication applications, pages 142–155, London, UK, 1998. Springer-

Verlag.

[OB04] B. J. Overeinder and F. M. T. Brazier. Scalable middleware environ-

ment for agent-based Internet applications. InProceedings of the Work-

shop on State-of-the-Art in Scientific Computing (PARA’04), pages

675–679, Copenhagen, Denmark, June 2004. Published in Applied

Parallel Computing, LNCS 3732, Springer, Berlin, 2006.

[OdGWB06] B. J. Overeinder, D. R. A. de Groot, N. J. E. Wijngaards,and F. M. T.

Brazier. Generative mobile agent migration in heterogeneous environ-

ments. Scalable Computing: Practice and Experience, 7(4):89–99,

December 2006.

[OMG97] OMG Mobile Agent Systems Interoperability Facilities Specification

(MASIF), OMG TC Document ORBOS/97-10-05 , 1997.

[OMG99] OMG. The common object request broker: Architecture and specifica-

tion. Technical report, OMG, 1999.

212 BIBLIOGRAPHY

[OPB01] James J. Odell, H. Van Dyke Parunak, and Bernhard Bauer.Represent-

ing agent interaction protocols in UML. InAgent-Oriented Software

Engineering: First International Workshop, AOSE 2000, Limerick, Ire-

land, volume 1957 ofLNCS, pages 201–218. Springer-Verlag, 2001.

[Ord96] J. J. Ordille. When agents roam, who can you trust? InFirst Confer-

ence on Emerging Technologies and Applications in Communications

(etaCOM), Portland, OR, 1996.

[O’S] Bryan O’Sullivan. Distributed revision control with mercurial.

[PB07] Mukaddim Pathan and Rajkumar Buyya. A taxonomy and survey of

content delivery networks. Technical report, Grid Computing and Dis-

tributed Systems Laboratory, The University of Melbourne,Australia,

2007. GRIDS-TR-2007-4.

[PBK05] D. Trinh P. Braun and R. Kowalczyk. Integrating a new mobility ser-

vice into the jade agent toolkit. In K. Ahmed T. Magendanz andI. Ve-

nieris, editors,Mobility Aware Technologies and Applications, volume

3744 ofLecture Notes in Computer Science, pages 354–363, Montreal,

Canada, October 2005. MATA 2005, Springer.

[Pei02] Holger Peine. Application and programming experience with the ara

mobile agent system.Softw., Pract. Exper., 32(6):515–541, 2002.

[PR02] U. Pinsdorf and V. Roth. Mobile Agent InteroperabilityPatterns and

Practice. InProceedings of Ninth IEEE International Conference and

Workshop on the Engineering of Computer-Based Systems, pages 238–

244. IEEE Computer Society Press, 2002.

[PyX] Pyxml. http://pyxml.sourceforge.net/.

[PyY] Pyyaml. http://pyyaml.org/.

BIBLIOGRAPHY 213

[RB02] Emmanuel Reuter and FranÃ§oise Baude. System and network man-

agement itineraries for mobile agents. InMobile Agents for Telecom-

munication Applications, volume 2521 ofLecture Notes in Computer

Science, pages 227–238, 2002.

[RFI02] M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping the gnutella net-

work: Properties of large-scale peer-to-peer systems and implications

for system design.IEEE Internet Computing Journal, 6(1), 2002.

[Riv] R. Rivest. RFC 1321: The md5 message-digest algorithm.

http://www.ietf.org/rfc/rfc1321.txt.

[RJS01] Volker Roth and Mehrdad Jalali-Sohi. Concepts and architecture of a

security-centric mobile agent server. InISADS ’01: Proceedings of the

Fifth International Symposium on Autonomous Decentralized Systems,

page 435, Washington, DC, USA, 2001. IEEE Computer Society.

[RKSB05] Hariharan Rahul, Mangesh Kasbekar, Ramesh Sitaraman,and Arthur

Berger. Towards realizing the performance and availabilitybenefits of

a global overlay network. Technical report, MassachusettsInstitute of

Technology Computer Science and Artificial Intelligence Laboratory,

November 2005.

[Rot98] Volker Roth. Secure recording of itineraries throughco-operating

agents. InECOOP Workshops, pages 297–298, 1998.

[Rot02] V. Roth. Empowering mobile software agents. InProc. 6th IEEE Mo-

bile Agents Conference, volume 2535 ofLecture Notes in Computer

Science, pages 47–63. Spinger Verlag, 2002.

[Rot04] V. Roth. Obstacles to the adoption of mobile agents.Mobile Data

Management, 2004. Proceedings. 2004 IEEE International Conference

on, pages 296–297, 2004.

214 BIBLIOGRAPHY

[Rou05] David Roundy. Darcs: distributed version managementin haskell. In

Haskell ’05: Proceedings of the 2005 ACM SIGPLAN workshop on

Haskell, pages 1–4, New York, NY, USA, 2005. ACM.

[Sat03] I. Satoh. Building reusable mobile agents for network management.

Systems, Man and Cybernetics, Part C: Applications and Reviews,

IEEE Transactions on, 33(3):350–357, Aug. 2003.

[SBS00] L.M. Silva, V. Batista, and J.G. Silva. Fault-tolerant execution of mo-

bile agents. InDependable Systems and Networks, 2000. DSN 2000.

Proceedings International Conference on, pages 135 – 143, New York,

NY, June 2000.

[Sch97] Fred B. Schneider. Towards fault-tolerant and secure agentry. Technical

report, Cornell University, Ithaca, NY, USA, 1997.

[SKW05] Markus B. S̈ollner, Sven Kaffille, and Guido Wirtz. fiParse - a generic

parser for FIPA-compliant agent communication. In Peter Kokol, ed-

itor, IASTED Conf. on Software Engineering, pages 331–336. IAST-

ED/ACTA Press, 2005.

[SLBW05] Alex Sherman, Philip A. Lisiecki, Andy Berkheimer, and Joel Wein.

Acms: the akamai configuration management system. InNSDI’05:

Proceedings of the 2nd conference on Symposium on Networked Sys-

tems Design & Implementation, pages 245–258, Berkeley, CA, USA,

2005. USENIX Association.

[SMLN+03] Ion Stoica, Robert Morris, David Liben-Nowell, David Karger,

M. Frans Kaashoek, Frank Dabek, and Hari Balakrishnan. Chord:A

scalable peer-to-peer lookup service for internet applications. IEEE

Transactions on Networking, 11, February 2003.

[Sof] SoftIntegration. Ch interpreter.

[SRM98] M. Straßer, K. Rothermel, and C. Maiı̈¿1

2
fer. Providing Reliable Agents

for Electronic Commerce. InProceedings of the International IFIP/GI

BIBLIOGRAPHY 215

Working Conference, volume 1402 ofLecture Notes in Computer Sci-

ence, pages 241–253. Springer-Verlag, 1998.

[ST98] Tomas Sander and Christian F. Tschudin. Protecting mobile agents

against malicious hosts. InMobile Agents and Security, pages 44–60,

London, UK, 1998. Springer-Verlag.

[TKA +02] Anand R. Tripathi, Neeran M. Karnik, Tanvir Ahmed, Ram D. Singh,

Arvind Prakash, Vineet Kakani, Manish K. Vora, and Mukta Pathak.

Design of the Ajanta system for mobile agent programming.Journal

of Systems and Software, 62(2):123–140, 2002.

[TST+05] H.A. Thant, Khaing Moe San, Khin Mar Lar Tun, T.T. Naing, and

N. Thein. Mobile agents based load balancing method for parallel ap-

plications. Information and Telecommunication Technologies, 2005.

APSITT 2005 Proceedings. 6th Asia-Pacific Symposium on, pages 77–

82, November 2005.

[Tut04] Kurt Tutschku. A measurement-based traffic profile of the edonkey file-

sharing service. InPassive and Active Network Measurement, volume

3015 ofLNCS, pages 12–21, 2004.

[TY05] Y. Tsipenyuk and B. Yee. Detecting external agent

replay and state modification attacks. http://www-

cse.ucsd.edu/˜ytsipeny/home/research/paper.pdf, February 2005.

[VFL06] S. De Capitani Di Vimercati, A. Ferrero, and M. Lazzaroni. Mobile

agent technology for remote measurements.IEEE Transactions on In-

strumentation and Measurement, 55(5):1559–1565, October 2006.

[Vig97] G. Vigna. Protecting mobile agents through tracing. In Third Workshop

on Mobile Object Systems, 1997.

[Vig04] G. Vigna. Mobile agents: ten reasons for failure.Mobile Data Man-

agement, 2004. Proceedings. 2004 IEEE International Conference on,

pages 298–299, 2004.

216 BIBLIOGRAPHY

[VMRC+06] P. Vieira-Marques, S. Robles, J. Cucurull, R. Cruz-Correia, G. Navarro,

and R. Mart́ı. Secure integration of distributed medical data using mo-

bile agents.IEEE Intelligent Systems, 21(6):47–54, 2006.

[vNBT04] G.J. van’t Noordende, F.M.T. Brazier, and A.S. Tanenbaum. Security

in a mobile agent system.Multi-Agent Security and Survivability, 2004

IEEE First Symposium on, pages 35–45, 30-31 Aug. 2004.

[vNOT+07] Guido van’t Noordende, Benno Overeinder, Reinier Timmer,Frances

M. T. Brazier, and Andrew Tanenbaum. A common base for build-

ing secure mobile agent middleware systems. InProceedings of the

International Multiconference on Computer Science and Information

Technology, pages 13–25, Wisla, Poland, October 2007.

[WHB01] Xiaojin Wang, Jason Hallstrom, and Gerald Baumgartner. Reliability

through strong mobility. The Ohio State University, June 2001.

[Whi96] James E. White. Telescript technology: Mobile agents. In Jeffrey Brad-

shaw, editor,Software Agents. AAAI Press/MIT Press, Menlo Park,

CA, 1996.

[WHN+01] Johnny Wong, Guy Helmer, Venkatraman Naganathan, Sriniwas

Polavarapu, Vasant Honavar, and Les Miller. Smart mobile agent facil-

ity. Journal of Systems and Software, 56:9–22, 2001.

[WJ95] Michael Wooldridge and Nicholas R. Jennings. Intelligent agents:

Theory and practice.Knowledge Engineering Review, 10(2):115–152,

1995.

[WLAG93] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Gra-

ham. Efficient software-based fault isolation.ACM SIGOPS Operating

Systems Review, 27(5):203–216, December 1993.

BIBLIOGRAPHY 217

[WPT+97] D. Wong, N. Paciorek, T.Walsh, J. DiCelie, M. Young, and B. Peet.

Concordia: An infrastructure for collaborating mobile agents. In Pro-

ceedings of the First International Workshop on Mobile Agents (Berlin,

Germany), volume 1219 ofLNCS. Springer-Verlag, April 1997.

[xac05] eXtensible Access Control Markup Language (XACML) Version 2.0,

February 2005. T. Moses (ed.).

[XML] Extensible markup language (xml) 1.0. http://www.w3.org/TR/xml.

[XSt] Xstream. http://xstream.codehaus.org/.

[yama] YAML Ain’t Markup Language Version 1.1.

http://www.yaml.org/spec/1.1/.

[YAMb] Yaml.rb. http://yaml4r.sourceforge.net/.

[Yee94] Bennet Yee.Using secure coprocessors. PhD thesis, Carnegie Mellon

University, May 1994.

[Yee99] Bennet S. Yee. A sanctuary for mobile agents. InSecure Internet

Programming, pages 261–273, 1999.

[YFPD04] M. Yao, E. Foo, K. Peng, and E. Dawson. An improved forward in-

tegrity protocol for mobile agents. In Moti Yung Kijoon Chae,editor,

Information Security Applications, volume Volume 2908 ofLectures

Notes in Computer Science, pages 272–285. Springer-Verlag GmbH,

January 2004.

Appendix A

Inter-Platform Mobility Architecture

This appendix contains technical details about IPMA. Firstof all, there is the ontology

used to request the mobility services, then an interaction protocol used in Main Migra-

tion Protocol (MMP) of IPMA, and, finally, several ontologies used within the migration

architecture, and the different migration protocols proposed along the thesis. These on-

tologies have been kept as simple as possible in order to reduce the data overhead they

may represent in an agent migration [Gav04].

A.1 Service registration

The migration architecture, as explained in Section 3.3.2,is registered as a service in

the FIPA Directory Facilitator [FIP04], which is implemented by thedf agent. A

service-description concept is fulfilled, and sent to this agent. The concept is

encapsulated within theservices field of thedf-agent-description concept,

which, in turn, is put inside aregister action. All the protocols, languages, and

ontologies supported by the service must be listed in the appropriate fields of the

service-description in addition to thedf-agent-description.

The architecture is registered as anamm agent service. Its name and type areipms

andmobility. The interaction protocol supported by the service is the

synchronized-request. The supported ontologies are themobility-ontology,

and theipms-ontology. And the content language is thefipa-sl0. Furthermore,

219

220 APPENDIX A. INTER-PLATFORM MOBILITY ARCHITECTURE

other interaction protocols and ontologies must be added depending on the migration

protocols used in the Protocol Sequencess (PSs) part of IPMA, e.g. thefipa-request

interaction protocol, and thepctp-ontology for the Push Cache Transfer Protocol

(PCTP).

The supported profiles and available migration protocols for the PS must be included

in theservice-description concept. Two properties within theproperties

field are used. The first property is calledagent-profiles, and includes the set of

supported agent profiles by the AM. Themobile-agent-profile concept, part of

theipms-ontology, is used.

The second property is calledprotocols, and includes the the protocols sup-

ported by the middleware in the PS. A specially createdprotocols-description

concept of themobility-ontology is used (see Table A.5). This concept contains

five fields. The first three fields, which are calledpre-transfer, transfer, and

post-transfer, are sets ofstring with the migration protocol names. And the

other two fields are theuse-preference and therelations, which establish a

set of rules and constrains regarding the accepted migration protocols.

• The first field,relations, is a set of tuples with protocols that must be executed

together, i.e. if one of them is selected, the others presentin the tuple should be

selected too. It is structured as a set ofterm which contain sets ofstring that

compose the mentioned tuples.

• And, finally, theuse-preference field defines protocol rules to establish pro-

tocol priority or obligation of use. The property value is a set of term which

contains sequences ofstring. Sequences with only one element define the

mandatory protocols. In case of sequences with several elements, only one of the

protocols of the sequence is mandatory, taking into accountthat the first is pre-

ferred in front of the second, and so on. In case the only aim would be suggesting

a preference, the last must be the reserved valuenone. Then, one must choose

one of the protocols or none of them.

These two last properties allow the agent middleware to express that some protocols

A.1. SERVICE REGISTRATION 221

are preferred in front of others, e.g. authentication method 1 can be preferred to authen-

tication method 2; and that some protocols must be executed together with others, e.g.

authentication method 1 must be used together with a resource negotiation.

In the next lines there is an example of a registration message sent from the Agent

Mobility Manager (AMM) agent to the DF agent. The message requests the register of

the Inter-Platform Mobility Service (IPMS) including PCTP,the On-Demand Transfer

Protocol (ODTP), and the One-Shot Agent Authentication Protocol (OSAAP) protocols.

In this case it has been specified that PCTP or ODTP must be used,and that, in case of

using PCTP it must be used together with OSAAP.

(request

:sender

(agent-identifier

:name amm@foo.com

:addresses (sequence http://foo.com:7778/acc))

:receiver (set

(agent-identifier

:name df@foo.com

:addresses (sequence http://foo.com:7778/acc)))

:language fipa-sl0

:protocol fipa-request

:ontology fipa-agent-management

:content

"((action

(agent-identifier

:name df@foo.com

:addresses (sequence http://foo.com:7778/acc))

(register

(df-agent-description

:name

(agent-identifier

:name amm@foo.com

:addresses (sequence http://foo.com:7778/acc))

:protocols (set synchronized-request fipa-request)

:ontologies (set mobility-ontology ipma-ontology pctp-ontology

)
:languages (set fipa-sl0)

222 APPENDIX A. INTER-PLATFORM MOBILITY ARCHITECTURE

:services (set

(service-description

:name ipms

:type mobility

:protocols (set synchronized-request fipa-request)

:ontologies (set meeting-scheduler)

:languages (set fipa-sl0)

:properties (set

(property

:name agent-profiles

:value (set (mobile-agent-profile (...)))

(property

:name protocols

:value

(protocols-description

:pre-transfer (set osaap-v1)

:transfer (set pctp-v1 odtp-v1)

:post-transfer

:use-preference (set (set (osaap-v1 pctp-v1)))

:relations (set (set (pctp-v1 odtp-v1)))))))))))))")

A.2 Mobility Ontology

The mobility ontology is used in the exchange of messages between ordinary agents and

the AMM. Its main purpose is providing the appropriate semantics to regular agents for

requesting agent migrations and agent clonning.

Its name ismobility-ontology, it is composed of two actions:move and

clone (see Table A.1 and Table A.2); two concepts:migration-description

andproperty (see Table A.3 and Table A.4 respectively); and one predicate for the

failure message (Table A.6). Furthermore, there is theprotocols-description

concept (see Table A.5) used to register the service (see Appendix A.1).

The migration of an agent is requested by sending an ACL request message with

the action to perform. The action includes themigration-description concept.

This concept contains the agent identification, the migration protocols to use, some

A.3. SYNCHRONIZED REQUEST INTERACTION PROTOCOL 223

specific properties of them (in this case theproperty concept is used), and the number

of suggested migration retries AMM should do before considering a migration failed.

Furthermore, a remote agent identification can be provided to choose the agent name in

case of clonning.

After sending the request, the agent should wait for a response of the migration or

cloning success (inform or failure message). Notices that the failure message contains

an exception predicate (see Table A.6). This message is always received from the local

AMM regarding the requester agent location (steps 1 and 6 of Figure 3.2 depict these

exchanged messages in case of a successful migration). Notethat no interaction pro-

tocols are used since the only essential message is the first one, and responses are not

always received from the same AMM.

A.3 Synchronized Request Interaction Protocol

Sometimes there are processes or actions that must be preceded by other ones. One

common case is when two consecutive actions must be done. This is the model required

in the IPMA MMP. Since there were no agent interaction protocols which allowed this,

a new one has been proposed.

The new interaction protocol is identified by the tokensynchronized-request,

which is used in theprotocol parameter of the ACL message. The interaction proto-

col, as it is shown in Figure A.1, starts like the IEEE-FIPA Request Interaction Protocol.

The main difference is that when the action requested has successfully terminated, an-

other one is immediately requested within the same protocol. In case of the first action

failure, the second one is not requested. Notice, that an optional agree or refuse

message can be sent after the first request.

Since the protocol uses two messages with a repeated performative, one of them

correspondingly to the first message sent, they must be appropriately distinguished.

The user-defined message parameterX-Action-Order is used. In the first request

message exchanged its value is the stringfirst, whereas in the second one it is the

stringsecond. Finally, all the other rules, such as the conversation-id,cancellation

224 APPENDIX A. INTER-PLATFORM MOBILITY ARCHITECTURE

Figure A.1: Synchronized Request Interaction Protocol.

methods, among others, are the same specified for the FIPA Request Interaction Proto-

col [FIP02k].

A.4 IPMS Ontology

The IPMS ontology is used in the exchange of messages betweenAMMs of the dif-

ferent locations involved in an agent migration. Its main purpose is to allow AMMs to

coordinate the operations of the MMP to perform the agent migration.

Its name isipms-ontology, it is composed of three actions:move, clone

and resume (see Table A.7, Table A.8 and Table A.9 respectively); six concepts:

mobile-agent-description, mobile-agent-profile,

A.5. PUSH CACHE TRANSFER PROTOCOL ONTOLOGY 225

mobile-agent-system, mobile-agent-language, mobile-agent-os,

andproperty (see Table A.10, Table A.11, Table A.12, Table A.13, Table A.14 and

Table A.15 respectively); and two predicates for the refuseand failure messages (see

Table A.17 and Table A.16).

The migration process between two AMMs is started by issuingan ACL message

which contains the action to perform (move or clone). The action includes a descrip-

tion of the migrating agent within themobile-agent-description concept. Fur-

thermore this concept includes one or more agent profiles that are composed of all the

other concepts mentioned. Once the agent has been transfered and registered into the

destination location, a request message with theresume action is sent to request its

resumption.

A.5 Push Cache Transfer Protocol Ontology

The ontology presented in this section is used in the exchange of messages between

AMMs performing agent migrations with PCTP. Its main purposeis the coordination

of the protocol and the encapsulation of the agent code, dataand state.

Its name ispctp-ontology, it is composed of two functions:

transfer-data-state andtransfer-code (see Table A.18 and Table A.20

respectively); two predicates to state if the agent code is needed (see Table A.22); and

two concepts:pctp-data-state, pctp-code (see Table A.19, and Table A.21)

to encapsulate the agent code, data, and state; and several predicates for the failure

message (see Table A.23).

A.6 On Demand Transfer Protocol Ontology

The ontologies presented in this section are used in the exchange of messages between

AMMs performing agent migrations with ODTP. Two ontologiesare used, one for

transferring the agent data and state, and the other to support the on demand code fetch-

ing.

226 APPENDIX A. INTER-PLATFORM MOBILITY ARCHITECTURE

The main purpose of the first one is the coordination of the protocol and the en-

capsulation of the agent data and state. Its name isodtp-ontology, it is com-

posed of one function:transfer-data-state (see Table A.24); three concepts:

data-state,resource-list, andresource-description (see Table A.25,

Table A.26, and Table A.27); and several predicates for the failure message (see Ta-

ble A.28).

The main purpose of the second ontology is the coordination of the agent resource

fetching and the encapsulation of each one. Its name isodtp-fetch-ontology,

it is composed of one function:fetch-resource (see Table A.29); one predicate:

resource-fetched (see Table A.30); one concept:resource-description

(see Table A.31); and several predicates for the failure message (see Table A.32).

A.7 Fragment Transfer Protocol Ontology

The ontology presented in this section is used in the exchange of messages between

AMMs performing agent migrations with the Fragmented Transfer Protocol (FrTP). Its

main purpose is the coordination of the protocol and the encapsulation of the agent code,

data and state in several fragments.

Its name isftp-ontology, it is composed of two functions:transfer-agent

andrequest-fragment (see Table A.33 and Table A.38 respectively); two predi-

cates to state if the agent code is needed (see Table A.35); one predicate to encapsulate

each fragment,fragment (see Table A.37); two concepts, one to negotiate the trans-

ference parameters,parameters (see Table A.34), and the other to transport and

request specific fragments,fragment-description (see Table A.39); and several

predicates to state the possible errors during the transference (see Tables A.36 and A.40).

A.8 REST Transfer Protocol Ontology

The ontology presented in this section is used in the exchange of messages between

AMMs performing agent migrations with the REST Transfer Protocol (RESTTP). Its

main purpose is the coordination of the protocol to transferthe agent code, data, and

A.9. ONE-SHOT AGENT AUTHENTICATION PROTOCOL ONTOLOGY 227

state using an HTTP request.

Its name isresttp-ontology, it is composed of one function, the

transfer-parameters (see Table A.41); one concept:rest-parameters (see

Table A.42), and several predicates to represent the protocols errors (see Table A.43).

A.9 One-Shot Agent Authentication Protocol Ontology

The ontology presented in this section is used in the exchange of messages between

AMMs performing agent migrations with the One-Shot Agent Authentication Protocol

(OSAAP). Its main purpose is the coordination of the protocol, and the encapsulation

of the agent owner certificate and agent, and code signatures.

Its name isosaap-ontology, it is composed of one function:x509-agent-auth

(see Table A.44) and two concepts:x509-agent-auth-description, and

auth-pair (see Table A.45, and Table A.46). Furthermore, several predicates are

provided to represent the possible authentication negative responses (see Table A.47).

228 APPENDIX A. INTER-PLATFORM MOBILITY ARCHITECTURE

Function move
Ontology mobility-ontology
Supported by amm
Description An agent issues amove request to start an agent migration process to

a remote platform.
Domain migration-description
Arity 1

Table A.1: Move action Mobility Ontology

Function clone
Ontology mobility-ontology
Supported by amm
Description An agent issues aclone request to start an agent clone process to a

remote platform.
Domain migration-description
Arity 1

Table A.2: Clone action Mobility Ontology

Frame migration-description
Ontology mobility-ontology
Parameter Description Presence Type
local-aid Name of the agent to migrate. Mandatory agent-identifier
remote-aid Name assigned to the agent in

the remote location.
Optional agent-identifier

pre-transfer Pre-transfer protocols to use. Optional Set ofstring
transfer Transfer protocols to use. Optional string
post-transfer Post-transfer protocols to use.Optional Set ofstring
properties Migration properties. Optional Set ofproperty
retries Suggested migration retries. Optional integer

Table A.3: Migration Description concept Mobility Ontology

Frame property
Ontology mobility-ontology
Parameter Description Presence Type
name Property name. Mandatory string
value Value. Mandatory term

Table A.4: Property concept Mobility Ontology

A.9. ONE-SHOT AGENT AUTHENTICATION PROTOCOL ONTOLOGY 229

Frame protocols-description
Ontology mobility-ontology
Parameter Description Presence Type
pre-transfer Pre-transfer protocols to use. Optional Set ofstring
transfer Transfer protocols to use. Optional string
post-transfer Post-transfer protocols to use.Optional Set ofstring
relations Relations between protocols. Optional Set ofterm
use-preference Execution protocols prefer-

ences.
Optional Set ofterm

Table A.5: Protocols Description concept Mobility Ontology

Communicative Act failure
Ontology mobility-ontology
Predicate symbol Arguments Description
agent-already-present string Agent is already present in the remote location.
protocols-not-supported Set of

string
Not supported protocols.

protocols-not-allowed Set of
string

Not allowed protocols.

protocols-needed Set ofterm Mandatory protocols.
protocol-combination Set ofterm Protocols on the list are the combinations allowed.
ma-system-not-supported string Mobile agent system not supported.
ma-os-not-supported string Mobile agent operating system not supported.
ma-language-not-supported string Mobile agent language not supported.
protocol-error string Error with the indicated protocol.
registration-error string Error registering agent to the remote location.
resumption-error string Error resuming agent in the remote location.
message-error string Semantic error in the message received.
interaction-protocol-error string Interaction protocol error.
unknown-error string Unknown error.

Table A.6: Failure predicates Mobility Ontology

Function move
Ontology ipms-ontology
Supported by amm
Description The local AMM issues amove request to a remote AMM to start an

agent migration process to a remote platform.
Domain migration-description
Arity 1

Table A.7: Move action IPMS Ontology

230 APPENDIX A. INTER-PLATFORM MOBILITY ARCHITECTURE

Function clone
Ontology ipms-ontology
Supported by amm
Description The AMM issues aclone request to a remote AMM to start an

agent migration process to a remote platform which ends up with two
agents.

Domain migration-description
Arity 1

Table A.8: Clone action IPMS Ontology

Function resume
Ontology ipms-ontology
Supported by amm
Description The AMM issues aresume request to the remote AMM to resume

the agent execution in the remote platform.
Domain migration-description
Arity 1

Table A.9: Resume action IPMS Ontology

Frame mobile-agent-description
Ontology ipms-ontology
Parameter Description Presence Type
mid Unique migration identifier

between the two involved
agent middleware

Mandatory string

name The unique agent identifier Mandatory agent-identifier
agent-profile Agent requirements for each

provided agent code.
Mandatory Sequence of

mobile-agent-profile
cgid Agent code group identifica-

tion.
Mandatory string

data-encoding Agent data encoding mecha-
nism.

Mandatory string

state-encoding Agent state encoding mecha-
nism.

Optional string

agent-version Agent version. Optional string
pre-transfer Pre-transfer protocols chosen Optional Sequence ofstring
transfer Transfer protocols chosen Mandatory string
post-transfer Post-transfer protocols chosenOptional Sequence ofstring

Table A.10: Mobile Agent Description concept IPMS Ontology

A.9. ONE-SHOT AGENT AUTHENTICATION PROTOCOL ONTOLOGY 231

Frame mobile-agent-profile
Ontology ipms-ontology
Parameter Description Presence Type
cid Agent Code Identification. Mandatory string
system Mobile agent system environ-

ment.
Mandatory mobile-agent-system

language Language environment. Optional mobile-agent-language
os Operating system environ-

ment.
Optional mobile-agent-os

Table A.11: Mobile Agent Profile concept IPMS Ontology

Frame mobile-agent-system
Ontology ipms-ontology
Parameter Description Presence Type
name Mobile agent system name. Mandatory string
major-version Major version. Mandatory string
minor-version Minor version. Optional string
dependencies Dependencies required. Optional Set ofproperty

Table A.12: Mobile Agent System concept IPMS Ontology

Frame mobile-agent-language
Ontology ipms-ontology
Parameter Description Presence Type
name Mobile agent PL name. Mandatory string
major-version Major version. Mandatory string
minor-version Minor version. Optional string
format Code base format. Optional string
filter Filter to execute over the code

base before execute.
Optional string

dependencies Language dependencies. Optional Set ofproperty

Table A.13: Mobile Agent Language concept IPMS Ontology

Frame mobile-agent-os
Ontology ipms-ontology
Parameter Description Presence Type
name Operating system name. Mandatory string
major-version Major version. Mandatory string
minor-version Minor version. Optional string
hardware Hardware below operating

system.
Optional string

dependencies Dependencies required. Optional Set ofproperty

Table A.14: Mobile Agent OS concept IPMS Ontology

232 APPENDIX A. INTER-PLATFORM MOBILITY ARCHITECTURE

Frame property
Ontology ipms-ontology
Parameter Description Presence Type
name Property name. Mandatory string
value Value. Mandatory term

Table A.15: Property concept IPMS Ontology

Communicative Act refuse
Ontology ipms-ontology
Predicate symbol Arguments Description
in-use-mid string The selected MID it is being used in another mi-

gration transaction.
agent-already-present string Agent is already present in the remote location.
protocols-not-supported Set of

string
Protocols on the list are not supported.

protocols-not-allowed Set of
string

Protocols on the list are not allowed.

protocols-needed Set ofterm Protocols on the list are mandatory.
protocol-combination Set ofterm Protocols combination not supported. Protocols

on the list are the combinations allowed.
ma-system-not-supported string Mobile agent system is not supported.
ma-os-not-supported string Mobile agent operating system is not supported.
ma-language-not-supported string Mobile agent language is not supported.

Table A.16: Refuse predicates IPMS Ontology

Communicative Act failure
Ontology ipms-ontology
Predicate symbol Arguments Description
protocol-error string Protocol error in the indicated one.
registration-error string Error registering agent to the remote location.
resumption-error string Error resuming agent execution in the remote lo-

cation.
message-error string Semantic error in the message received.
interaction-protocol-error string Interaction protocol error.
unknown-error string Unknown error.

Table A.17: Failure predicates IPMS Ontology

A.9. ONE-SHOT AGENT AUTHENTICATION PROTOCOL ONTOLOGY 233

Function transfer-data-state
Ontology pctp-ontology
Supported by amm
Description The AMM issues atransfer-data-state request to transfer

the agent data and state to the remote platform.
Domain data-state
Arity 1

Table A.18: Transfer Data State action PCTP Ontology

Frame data-state
Ontology pctp-ontology
Parameter Description Presence Type
mid Unique migration identifier

between the two involved
agent middleware

Mandatory string

cid Agent code identification. Mandatory string
sr Agent code security revision. Mandatory string
hcid Agent code hash. Mandatory string
data Agent data. Mandatory byte-stream
state Agent state. Optional byte-stream

Table A.19: Data State concept PCTP Ontology

Function transfer-code
Ontology pctp-ontology
Supported by amm
Description The AMM issues atransfer-code request to to transfer the agent

code to the remote platform.
Domain code
Arity 1

Table A.20: Transfer Code action PCTP Ontology

Frame code
Ontology pctp-ontology
Parameter Description Presence Type
mid Unique migration identifier

between the two involved
agent middleware

Mandatory string

cid Agent code identification. Mandatory string
sr Agent code security revision. Mandatory string
hcid Agent code hash. Mandatory string
code Agent code. Mandatory byte-stream

Table A.21: Code concept PCTP Ontology

234 APPENDIX A. INTER-PLATFORM MOBILITY ARCHITECTURE

Communicative Act inform
Ontology pctp-ontology
Predicate symbol Arguments Description
code-is-needed The agent code is not present in the remote plat-

form and it must be sent.
code-is-not-needed The agent code is already present in the remote

platform and it does not have to be sent.

Table A.22: Inform predicates PCTP Ontology

Communicative Act failure
Ontology pctp-ontology
Predicate symbol Arguments Description
invalid-mid string The Migration Identifier (MID) is not valid.
not-enough-space string There is not enough space in the remote location.
data-error string Error in the provided data.
state-error string Error in the provided state.
code-error string Error in the provided code.
message-error string Semantic error in the message received.
interaction-protocol-error string Interaction protocol error.
unknown-error string Unknown error.

Table A.23: Failure predicates PCTP Ontology

Function transfer-data-state
Ontology odtp-ontology
Supported by amm
Description The AMM issues atransfer-data-state request to transfer

the agent data and state to the remote platform.
Domain data-state
Arity 1

Table A.24: Transfer Data State action ODTP Ontology

A.9. ONE-SHOT AGENT AUTHENTICATION PROTOCOL ONTOLOGY 235

Frame data-state
Ontology odtp-ontology
Parameter Description Presence Type
mid Unique migration identifier

between the two involved
agent middleware

Mandatory string

cid Agent code identification. Mandatory string
sr Agent code security revision. Mandatory string
hcid Agent code hash. Mandatory string
data Agent data. Mandatory byte-stream
state Agent state. Optional byte-stream
resource-list List of agent resources. Mandatory resource-list
resource-servers List of resource servers. Mandatory Sequence ofstring

Table A.25: Data State concept ODTP Ontology

Frame resource-list
Ontology odtp-ontology
Parameter Description Presence Type
resources List of agent resources. Mandatory Sequence of

resource-description
hash-algorithm Hash algorithm used in each

resource.
Mandatory string

Table A.26: Resource List concept ODTP Ontology

Frame resource-description
Ontology odtp-ontology
Parameter Description Presence Type
name Resource name. Mandatory string
hash Resource hash. Mandatory string

Table A.27: Resource Description concept ODTP Ontology

Communicative Act failure
Ontology odtp-ontology
Predicate symbol Arguments Description
invalid-mid string The MID is not valid.
incorrect-resource-list string Incorrect resource list.
incorrect-resource-server string Incorrect resource server.
not-enough-space string There is not enough space in the remote location.
data-error string Error with the data provided.
state-error string Error with the state provided.
message-error string Semantic error in the message received.
interaction-protocol-error string Interaction protocol error.
unknown-error string Unknown error.

Table A.28: Failure predicates ODTP Ontology

236 APPENDIX A. INTER-PLATFORM MOBILITY ARCHITECTURE

Function fetch-resource
Ontology odtp-fetch-ontology
Supported by amm
Description The AMM issues afetch-resource request to ask for an agent

resource in the agent resources middleware.
Domain resource-description
Arity 1

Table A.29: Fetch Resource action ODTP Fetch Ontology

Communicative Act inform
Ontology odtp-fetch-ontology
Predicate symbol Arguments Description
resource-fetched byte-stream Contains the requested result.

Table A.30: Inform predicates ODTP Fetch Ontology

Frame resource-description
Ontology odtp-fetch-ontology
Parameter Description Presence Type
hash Resource hash. Mandatory string
algorithm Algorithm used for the re-

source hash.
Mandatory string

Table A.31: Resource Description concept ODTP Fetch Ontology

Communicative Act failure
Ontology odtp-fetch-ontology
Predicate symbol Arguments Description
resource-not-found string Requested resource not found.
message-error string Semantic error in the message received.
interaction-protocol-error string Interaction protocol error.
unknown-error string Unknown error.

Table A.32: Failure predicates ODTP Fetch ontology

A.9. ONE-SHOT AGENT AUTHENTICATION PROTOCOL ONTOLOGY 237

Function transfer-agent
Ontology ftp-ontology
Supported by amm
Description The AMM issues arequest-transfer-agent request to trans-

fer the agent to the remote platform
Domain parameters
Arity 1

Table A.33: Request Transfer Agent action FrTP Ontology

Frame parameters
Ontology ftp-ontology
Parameter Description Presence Type
fragment-size The fragment size which the

origin platform wants to apply
in the migration process

Mandatory integer

code-size The agent code size Mandatory integer
data-size Agent instance size Mandatory integer
state Agent state Optional byte-stream
cid Agent code identification. Mandatory string
sr Agent code security revision. Mandatory string
hcid Agent code hash. Mandatory string

Table A.34: Parameters concept FrTP Ontology

Communicative Act agree
Ontology ftp-ontology
Predicate symbol Arguments Description
code-is-needed The agent code is not present in the remote plat-

form and it must be sent.
code-is-not-needed The agent code is already present in the remote

platform and it does not have to be sent.

Table A.35: Agree predicates FrTP Ontology

Communicative Act refuse
Ontology ftp-ontology
Predicate symbol Arguments Description
not-enough-space string There is not enough space in the remote platform.
agent-too-big string Agent size is too big and can not be accepted in

the remote platform.
reject-fragment-size string Fragment size is not suitable.

Table A.36: Refuse predicates FrTP Ontology

238 APPENDIX A. INTER-PLATFORM MOBILITY ARCHITECTURE

Communicative Act inform
Ontology ftp-ontology
Predicate symbol Arguments Description
fragment fragment-description Message filled with agent fragment.

Table A.37: Inform predicates FrTP Ontology

Function request-fragment
Ontology ftp-ontology
Supported by amm
Description The AMM issues arequest-fragment request to transfer a lost

fragment to the remote platform
Domain fragment-description
Arity 1

Table A.38: Request Fragment action FrTP Ontology

Frame fragment-description
Ontology ftp-ontology
Parameter Description Presence Type
content Agent code or data snippet

which fits to the fragment.
Optional byte-stream

id Fragment number that identi-
fies it in the migration.

Mandatory integer

type Indicates the type of frag-
ment:data or code

Mandatory string

mid Migration transaction in
which the fragment is associ-
ated.

Mandatory string

Table A.39: Fragment Description concept FrTP Ontology

A.9. ONE-SHOT AGENT AUTHENTICATION PROTOCOL ONTOLOGY 239

Communicative Act failure
Ontology ftp-ontology
Predicate symbol Arguments Description
instance-size-error string Error instance size not found.
code-size-error string Error code size not found.
fragment-size-error string Error fragment size not found.
cid-error string Error cid not found.
bad-formed-msg-error string Message received not properly created.
extracting-content-error string Error extracting message content.
registration-error string Error registering agent to the remote location.
action-error string Action received is not valid.
null-action-error string Null action received.
protocol-error string Migration protocol is not valid.
agent-entry-error string Agent entry not found to the remote location.
migration-service-error string Error contacting migration service to notice fail-

ure.
out-of-sequence-error string Message received is out of sequence.
fragment-id-error string Not valid fragment number identifier.
fragment-aid-error string Not valid agent unique identifier.
fragment-type-error string Not valid fragment type.
message-error string Semantic error in the message received.
interaction-protocol-error string Interaction protocol error.
unknown-error string Unknown error.

Table A.40: Failure predicates FrTP Ontology

Function transfer-parameters
Ontology resttp-ontology
Supported by amm
Description The AMM agent issues atransfer-parameters request to

transfer the parameters required by the remote location to fetch the
agent code, data and state.

Domain rest-parameters
Arity 1

Table A.41: Transfer Parameters action RESTTP Ontology

240 APPENDIX A. INTER-PLATFORM MOBILITY ARCHITECTURE

Frame rest-parameters
Ontology resttp-ontology
Parameter Description Presence Type
mid Unique migration identifier

between the two involved
agent middleware

Mandatory string

host HTTP server hostname. Mandatory string
port HTTP server port. Mandatory string
ssl-enabled Enables the use of SSL in the

HTTP request.
Optional boolean

code-nonce Agent code identification. Mandatory string
data-nonce Agent data identification. Mandatory string
state-nonce Agent state identification. Optional string
cid Agent code identification. Mandatory string
sr Agent code security revision. Mandatory string
hcid Agent code hash. Mandatory string

Table A.42: Rest Parameters concept RESTTP Ontology

Communicative Act failure
Ontology resttp-ontology
Predicate symbol Arguments Description
invalid-migration-id string Migration ID is not valid.
not-enough-space string There is not enough space in the remote location.
data-error string Error with obtained data.
state-error string Error with obtained state.
code-error string Error with obtained code.
data-not-available string Error getting data.
state-not-available string Error getting state.
code-not-available string Error getting code.
ssl-error string SSL not supported by the HTTP server.
message-error string Semantic error in the message received.
interaction-protocol-error string Interaction protocol error.
unknown-error string Unknown error.

Table A.43: Failure predicates RESTTP Ontology

A.9. ONE-SHOT AGENT AUTHENTICATION PROTOCOL ONTOLOGY 241

Function x509-agent-auth
Ontology osaap-ontology
Supported by amm
Description The AMM agent issues ax509-agent-auth request to authenti-

cate the agent in the remote platform.
Domain x509-agent-auth-description
Arity 1

Table A.44: X509 Agent Auth action OSAAP Ontology

Frame x509-agent-auth-description
Ontology osaap-ontology
Parameter Description Presence Type
migration-id Unique migration identifier

between the two involved
agent middleware

Mandatory string

agent-signature Agent owner certificate and
agent signature encapsulated
in a PKCS7 data structure

Mandatory byte-stream

code-signatures Set of code signatures encap-
sulated in a PKCS7 data struc-
tures.

Optional Set ofauth-pair

Table A.45: X509 Agent Auth Description concept OSAAP Ontology

Frame auth-pair
Ontology osaap-ontology
Parameter Description Presence Type
key Identifier of the signed entity. Mandatory string
signature Signature encapsulated in a

PKCS7 data structure.
Mandatory byte-stream

Table A.46: Auth Pair concept OSAAP Ontology

242 APPENDIX A. INTER-PLATFORM MOBILITY ARCHITECTURE

Communicative Act failure
Ontology osaap-ontology
Predicate symbol Arguments Description
invalid-mid string Migration ID is not valid.
certificate-not-found string The agent owner certificate is not included in the

message and cannot be found anywhere.
corrupted-certificate string The agent certificate is corrupted.
invalid-agent-signature string The agent signature does not validate.
corrupted-agent-signature string The agent signature is corrupted.
corrupted-code-signatures string The code signatures are corrupted.
message-error string Semantic error in the message received.
interaction-protocol-error string Interaction protocol error.
unknown-error string Unknown error.

Table A.47: Failure predicates OSAAP Ontology

Appendix B

Common Agent Interface

This appendix contains two specific realisations of the Common Agent Interface (CAI)

for the Java and Python Programming Languages (PLs). The twoof them can be used

to develop equivalently structured agent codes that can help in challenge of providing

full agent interoperability.

B.1 Java CAI

1 package fipa.api;

2

3 public abstract class Agent implements Serializable {

4

5

6 // METHODS IMPLEMENTED BY DEFAULT

7 public Agent(AID aid) {

8 this.aid = aid;

9 }

10

11 public abstract void deliver(ACL m);

12

13 public void setAgentState(int s) {

14 state = s;

15 }

243

244 APPENDIX B. COMMON AGENT INTERFACE

16

17 public int getAgentState() {

18 return state;

19 }

20

21 public void setAID(AID a) {

22 aid = a;

23 }

24

25 public AID getAID() {

26 return aid;

27 }

28

29 public abstract void run();

30

31 public void setMContext(MiddlewareContext ac) {

32 aContext = ac;

33 }

34

35 public MiddlewareContext getMContext() {

36 return aContext;

37 }

38

39 // API ATTRIBUTES (Subject to serialization)

40 private int state;

41

42 private AID aid;

43

44 // NON-API ATTRIBUTES

45 private transient MiddlewareContext aContext;

46

47 }

48

49

50 public interface MiddlewareContext {

51

52 public void send(ACL m);

53

B.1. JAVA CAI 245

54 public AID getAMS();

55

56 }

57

58

59 public class AID {

60

61 public AID() {

62

63 }

64

65 public AID(String name) {

66 this.name = name;

67 addresses = new Vector<String>();

68 resolvers = new Vector<AID>();

69 }

70

71 public String getName() {

72 return name;

73 }

74

75 public void addAddress (String a) {

76 addresses.add(a);

77 }

78

79 public Iterator<String> getAllAddresses() {

80 return addresses.iterator();

81 }

82

83 public boolean removeAddress(String a) {

84 return addresses.remove(a);

85 }

86

87 public void clearAddresses() {

88 addresses.clear();

89 }

90

91 public void addResolver(AID r) {

246 APPENDIX B. COMMON AGENT INTERFACE

92 resolvers.add(r);

93 }

94

95 public Iterator<AID> getAllResolvers() {

96 return resolvers.iterator();

97 }

98

99 public boolean removeResolver(AID r) {

100 return resolvers.remove(r);

101 }

102

103 public void clearResolvers() {

104 resolvers.clear();

105 }

106

107

108

109 public String name;

110

111 public Vector<String> addresses;

112

113 public Vector<AID> resolvers;

114

115 }

116

117

118 public class ACL {

119

120

121 // FIPA PERFORMATIVES

122 public static final String ACCEPT_PROPOSAL = "accept-proposal";

123 public static final String AGREE = "agree";

124 public static final String CANCEL = "cancel";

125 public static final String CALL_FOR_PROPOSAL = "cfp";

126 public static final String CONFIRM = "confirm";

127 public static final String DISCONFIRM = "disconfirm";

128 public static final String FAILURE = "failure";

129 public static final String INFORM = "inform";

B.1. JAVA CAI 247

130 public static final String INFORM_IF = "inform-if";

131 public static final String INFORM_REF = "inform-ref";

132 public static final String NOT_UNDERSTOOD = "not-understood";

133 public static final String PROPAGATE = "propagate";

134 public static final String PROPOSE = "propose";

135 public static final String PROXY = "proxy";

136 public static final String QUERY_IF = "query-if";

137 public static final String QUERY_REF = "query-ref";

138 public static final String REFUSE = "refuse";

139 public static final String REJECT_PROPOSAL = "reject-proposal";

140 public static final String REQUEST = "request";

141 public static final String REQUEST_WHEN = "request-when";

142 public static final String REQUEST_WHENEVER = "request-whenever

";

143 public static final String SUBSCRIBE = "subscribe";

144

145

146 public ACL() {

147 receivers = new Vector<AID>();

148 ud_parameters = new Hashtable<String,String>();

149 }

150

151 // API METHODS

152 public void setPerformative(String p) {

153 performative = p;

154 }

155

156 public String getPerformative() {

157 return performative;

158 }

159

160 public void setSender(AID aid) {

161 sender = aid;

162 }

163

164 public AID getSender() {

165 return sender;

166 }

248 APPENDIX B. COMMON AGENT INTERFACE

167

168 public void addReceiver(AID r) {

169 receivers.add(r);

170 }

171

172 public Iterator<AID> getAllReceivers() {

173 return receivers.iterator();

174 }

175

176 public boolean removeReceiver(AID r) {

177 return receivers.remove(r);

178 }

179

180 public void clearReceivers() {

181 receivers.clear();

182 }

183

184 public void setReplyTo(AID aid) {

185 replyto = aid;

186 }

187

188 public AID getReplyTo() {

189 return replyto;

190 }

191

192 public void setStringContent(String c) {

193 string_content = c;

194 binary_content = null;

195 }

196

197 public String getStringContent() {

198 return string_content;

199 }

200

201 public void setBinaryContent(byte[] c) {

202 binary_content = c;

203 string_content = null;

204 }

B.1. JAVA CAI 249

205

206 public byte[] getBinaryContent() {

207 return binary_content;

208 }

209

210 public void setLanguage(String l) {

211 language = l;

212 }

213

214 public String getLanguage() {

215 return language;

216 }

217

218 public void setEncoding(String e) {

219 encoding = e;

220 }

221

222 public String getEncoding() {

223 return encoding;

224 }

225

226 public void setOntology(String o) {

227 ontology = o;

228 }

229

230 public String getOntology() {

231 return ontology;

232 }

233

234 public void setProtocol(String p) {

235 protocol = p;

236 }

237

238 public String getProtocol() {

239 return protocol;

240 }

241

242 public void setConversationId(String cid) {

250 APPENDIX B. COMMON AGENT INTERFACE

243 conversation_id = cid;

244 }

245

246 public String getConversationId() {

247 return conversation_id;

248 }

249

250 public void setReplyWith(String rw) {

251 reply_with = rw;

252 }

253

254 public String getReplyWith() {

255 return reply_with;

256 }

257

258 public void setInReplyTo(String irt) {

259 in_reply_to = irt;

260 }

261

262 public String getInReplyTo() {

263 return in_reply_to;

264 }

265

266 public void setReplyBy(String rb) {

267 reply_by = rb;

268 }

269

270 public String getReplyBy() {

271 return reply_by;

272 }

273

274 public void addUserDefinedParameter(String name, String value)

{

275 ud_parameters.put(name, value);

276 }

277

278 public String getUserDefinedParameter(String name) {

279 return ud_parameters.get(name);

B.1. JAVA CAI 251

280 }

281

282 public String removeUserDefinedParameter(String name) {

283 return ud_parameters.remove(name);

284 }

285

286 public void setACLEncoding(String e) {

287 acl_encoding = e;

288 }

289

290 public String getACLEncoding() {

291 return acl_encoding;

292 }

293

294 public ACL createReply() {

295

296 ACL acl = new ACL();

297

298 acl.acl_encoding = this.acl_encoding;

299 acl.binary_content = this.binary_content;

300 acl.string_content = this.string_content;

301 acl.conversation_id = this.conversation_id;

302 acl.encoding = this.encoding;

303 acl.in_reply_to = this.reply_with;

304 acl.language = this.language;

305 acl.ontology = this.ontology;

306 acl.receivers.add(this.sender);

307

308 return acl;

309 }

310

311 // API ATTRIBUTES

312 public String performative;

313 public AID sender;

314 public Vector<AID> receivers;

315 public AID replyto;

316 public byte[] binary_content;

317 public String string_content;

252 APPENDIX B. COMMON AGENT INTERFACE

318 public String language;

319 public String encoding;

320 public String ontology;

321 public String protocol;

322 public String conversation_id;

323 public String reply_with;

324 public String in_reply_to;

325 public String reply_by;

326 public Hashtable<String,String> ud_parameters;

327 public String acl_encoding;

328

329

330 }

B.2 Python CAI

1

2 import yaml

3

4

5 class Agent:

6

7 "FIPA agent base class"

8 def __init__(self, aid): abstract()

9

10

11

12 """ API methods """

13 def run(self): abstract()

14

15 def deliver(self, msg): abstract()

16

17 def setMContext(self, ac): abstract()

18

19 def getMContext(self): abstract()

20

B.2. PYTHON CAI 253

21 def setAgentState(self, state): abstract()

22

23 def getAgentState(self): abstract()

24

25 def getAID(self): abstract()

26

27 """ Non-API methods """

28 def __abstract():

29 import inspect

30 caller = inspect.getouterframes(inspect.currentframe())[1][3]

31 raise NotImplementedError(caller + ’ must be implemented in

subclass’)

32

33

34 class MiddlewareContext:

35

36 """def blockingReceive(self,timeout,template): abstract()

37

38 def receive(template): abstract()

39

40 def doSuspend(): abstract()

41

42 def doWait(): abstract()"""

43

44 def send(message): abstract()

45

46 def getAMS(): abstract()

47

48

49 """ Non-API methods """

50 def __abstract():

51 import inspect

52 caller = inspect.getouterframes(inspect.currentframe())[1][3]

53 raise NotImplementedError(caller + ’ must be implemented in

subclass’)

54

55

56 class AID(yaml.YAMLObject):

254 APPENDIX B. COMMON AGENT INTERFACE

57

58 yaml_tag = u’!AID’

59 def __init__(self, agent_name):

60 self.name = agent_name

61 self.addresses = []

62 self.resolvers = []

63

64 def getName(self):

65 return self.name

66

67 def addAddress(self, address):

68 self.addresses.append(address)

69

70 def getAllAddresses(self):

71 return self.addresses

72

73 def removeAddress(self, address):

74 return (self.addresses.pop(address)==address)

75

76 def clearAddresses(self):

77 self.addresses = []

78

79 def addResolver(self, resolver):

80 self.resolvers.add(resolver);

81

82 def getAllResolvers(self):

83 self.resolvers

84

85 def removeResolver(self, resolver):

86 return (self.resolvers.remove(resolver)==resolver)

87

88 def clearResolvers():

89 self.resolvers = []

90

91

92 class ACL(yaml.YAMLObject):

93

94

B.2. PYTHON CAI 255

95 """ FIPA PERFORMATIVES """

96 ACCEPT_PROPOSAL = "accept-proposal";

97 AGREE = "agree";

98 CANCEL = "cancel";

99 CALL_FOR_PROPOSAL = "cfp";

100 CONFIRM = "confirm";

101 DISCONFIRM = "disconfirm";

102 FAILURE = "failure";

103 INFORM = "inform";

104 INFORM_IF = "inform-if";

105 INFORM_REF = "inform-ref";

106 NOT_UNDERSTOOD = "not-understood";

107 PROPAGATE = "propagate";

108 PROPOSE = "propose";

109 PROXY = "proxy";

110 QUERY_IF = "query-if";

111 QUERY_REF = "query-ref";

112 REFUSE = "refuse";

113 REJECT_PROPOSAL = "reject-proposal";

114 REQUEST = "request";

115 REQUEST_WHEN = "request-when";

116 REQUEST_WHENEVER = "request-whenever";

117 SUBSCRIBE = "subscribe";

118

119 yaml_tag = u’!ACL’

120 def __init__(self):

121

122 """ API ATTRIBUTES """

123 self.receivers = []

124 self.ud_parameters = {}

125 self.performative = ""

126 self.sender = []

127 self.replyto = ""

128 self.binary_content = ""

129 self.string_content = ""

130 self.language = ""

131 self.encoding = ""

132 self.ontology = ""

256 APPENDIX B. COMMON AGENT INTERFACE

133 self.protocol = ""

134 self.conversation_id = ""

135 self.reply_with = ""

136 self.in_reply_to = ""

137 self.reply_by = ""

138 self.acl_encoding = ""

139

140

141 """ API METHODS """

142 def setPerformative(self, perf):

143 self.performative = perf

144

145 def getPerformative(self):

146 return self.performative

147

148 def setSender(self, aid):

149 self.sender = aid

150

151 def getSender(self):

152 self.sender

153

154 def addReceiver(self, receiver):

155 self.receivers.append(receiver)

156

157 def getAllReceivers(self):

158 return self.receivers

159

160 def removeReceiver(self, receiver):

161 return receivers.pop(r);

162

163 def clearReceivers(self):

164 self.receivers = []

165

166 def setReplyTo(self, aid):

167 self.replyto = aid;

168

169 def getReplyTo(self):

170 return self.replyto;

B.2. PYTHON CAI 257

171

172 def setStringContent(self, content):

173 self.string_content = content

174 self.binary_content = None

175

176 def getStringContent(self):

177 return self.string_content

178

179 def setBinaryContent(self, content):

180 self.binary_content = content

181 self.string_content = None

182

183 def getBinaryContent(self):

184 return self.binary_content

185

186 def setLanguage(self, language):

187 self.language = language

188

189 def getLanguage(self):

190 return self.language

191

192 def setEncoding(self, encoding):

193 self.encoding = encoding

194

195 def getEncoding(self):

196 return self.encoding

197

198 def setOntology(self, ontology):

199 self.ontology = ontology

200

201 def getOntology(self):

202 return self.ontology

203

204 def setProtocol(self, protocol):

205 self.protocol = protocol

206

207 def getProtocol(self):

208 return self.protocol

258 APPENDIX B. COMMON AGENT INTERFACE

209

210 def setConversationId(self, cid):

211 self.conversation_id = cid

212

213 def getConversationId(self):

214 return self.conversation_id;

215

216 def setReplyWith(self, reply_with):

217 self.reply_with = reply_with

218

219 def getReplyWith():

220 return self.reply_with

221

222 def setInReplyTo(self, in_reply_to):

223 self.in_reply_to = irt

224

225 def getInReplyTo(self):

226 return self.in_reply_to

227

228 def setReplyBy(self, reply_by):

229 self.reply_by = reply_by

230

231 def getReplyBy(self):

232 return self.reply_by

233

234 def addUserDefinedParameter(self, name, value):

235 self.ud_parameters.put[name] = value

236

237 def getUserDefinedParameter(self, name):

238 return self.ud_parameters[name]

239

240 def removeUserDefinedParameter(self, name):

241 return self.ud_parameters.pop(name)

242

243 def setACLEncoding(self, encoding):

244 self.acl_encoding = encoding;

245

246 def getACLEncoding(self):

B.2. PYTHON CAI 259

247 return self.acl_encoding

248

249 def createReply():

250

251 acl = ACL()

252

253 acl.acl_encoding = self.acl_encoding;

254 acl.binary_content = self.binary_content;

255 acl.string_content = self.string_content;

256 acl.conversation_id = self.conversation_id;

257 acl.encoding = self.encoding;

258 acl.in_reply_to = self.reply_with;

259 acl.language = self.language;

260 acl.ontology = self.ontology;

261 acl.receivers.add(self.sender);

262

263 return acl;

Jordi Cucurull Juan

Bellaterra, September 2008

260

