<B

Universitat Aubnoma de Barcelona

Departament d’Enginyeria de la Informagide les
Comunicacions

EFFICIENT MOBILITY AND INTEROPERABILITY OF
SOFTWARE AGENTS

SUBMITTED TO UNIVERSITAT AUTONOMA DE BARCELONA
IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE
DEGREE OFDOCTOR OFPHILOSOPHY IN COMPUTER SCIENCE

by Jordi Cucurull Juan
Bellaterra, September 2008

Advisers:
Dr. Joan Borrell Viader
Dr. Guillermo Navarro Arribas

(© Copyright 2008 by Jordi Cucurull Juan

| certify that | have read this thesis and that in my opinion it
is fully adequate, in scope and in quality, as a dissertdtion
the degree of Doctor of Philosophy.

Bellaterra, September 2008

Dr. Joan Borrell Viader
(Principal Adviser)

| certify that | have read this thesis and that in my opinion it
is fully adequate, in scope and in quality, as a dissertdtion
the degree of Doctor of Philosophy.

Bellaterra, September 2008

Dr. Guillermo Navarro Arribas
(Adviser)

Abstract

Mobile agents are autonomous software entities that havalihity to stop and resume
their execution in different network locations to accorsplia set of tasks. Despite
their apparent simplicity, the fact of sharing a code inetié#it places, in most cases
heterogeneous, arises a set of issues which are far fromahawaple solution. The
proof is that after several years of efforts, a wide-scafdajanent of mobile agents has
not become a reality. In our opinion the main reasons whiefe hindered the adoption
of mobile agents are: security, interoperability, and &fficy. Security may impose
strong restrictions to the use of mobile agents. Nevertiselenough research to satisfy
the most common applications has been done in this fieldrdpégability is absolutely
indispensable to guarantee that different types of agemtsun in different places and
exchange information. And efficiency is a non functionaluisgie which favours the
adoption of the technology.

The suitability of mobile agents for distributed and hetgneeous environments is
unique. The work presented in this thesis is motivated by fédgt and comprises four
objectives to improve, in this order, the interoperabhiléificiency, and security of mo-
bile agents in the context of the IEEE-FIPA standards. Tlsé dibjective is the design
of a flexible agent mobility specification. The second olyects the proposal of in-
teroperability mechanisms to move and execute agents araldecations supporting
different agent middlewares, programming languages, adénlying architectures tak-
ing advantage of the previous mobility specification. Thedtbbjective is the proposal
of methods to improve the efficiency of the agent mobility ameroperability. And
finally, the last objective is the design of some protocoldéal with specific security
issues of mobile agents.

vii

Acknowledgements

In this preface | want to acknowledge several people for thepport during my PhD

studies. Since most of them are Catalan speakers | havemwthitgest of this section in
Catalan. Nevertheless, before switching to it, | want to kihtie people from the Vrije

Universiteit (Benno, Michel, Reinier, Sander, Martijn, Thasn Maik, Reza, Frances,
Guido) their warm welcome during the three months | spentrimsferdam.

La vida esh formada per unaesie d’etapes que, una vegada superades, solem anal-
itzar, etiquetar i classificar en furicd’on ens hagin conduit. Els estudis de doctorat
facilment es poden associar a una d’aquestes etapes ques denta feina, inclouen
tota una érie de viencies personalsEs per aquest motiu que &aextensius aquests
agraments, no tan sols a les persones que han tingut unagelmecta amb el desen-
volupament d’aquesta tesi, 6itamle a les persones que han estat presents en aguesta
etapa de la meva vida.

Aixi en primer lloc voldria agiia als meus pares, dikom a la meva faiftia, el su-
portil'ajuda que sempre m’han donat, especialment en mtawficils. De la mateixa
manera vull agra als meus amics é&s propers (R, Oscar i David) les estones que
hem passat, tan en moments bons com en no tan bonsnsggrs tamb a I’Anna per la
seva aparid@ del no res i per donar-me una mica de llum. Tambll donar les gacies
als meus companys del departament pels dinars, estonesd#ise moments tan agrad-
ables que m’han fet passar (Juan, Lino, Jorge, Joanet, feern@ristina, Maria, Ra-
mon, Guille, Sergi, Mari Carmen, Rosa Maria, lan, Abraham, @ar). | una mendi
especial al meu darrer company de despatx, en Carles, amle goinfipartit de molt a
prop el proés de redacobitan de la seva com de la meva tesi. | &gi@mte les estones
gue hem passat als meus companys de les Jornades Doctorials.

iX

Respecte a la tesi, vull donar lesagies en primer lloc al meu supervisor, en Joan
Borrell, per haver-me guiat en la seva escriptura i desepaohent. Tamé vull fer
especiabmfasi amb en Guille, que ags de ser un gran company ha estat un ebecx!
codirector. Vull donar les gcies a en Ramon per les seves correccions. A en Sergi
per les seves suggarcies i per dirigir el grup. |1 a en Joan Ametller per iniaiae-en
la mobilitat dels agents. | un agraiment ta@érdils alumnes de projectes que he tingut
(Ferran, Mctor i Gerard) i que han cdéborat activament en la implementaci'alguns
prototips relacionats amb la migradiels agents. Donar lesagpies, també, a en Jaume
Pujol per haver-me vingut a buscar quan encara no haviadeatsrera. | finalment,
un agrament a la resta de membres del departament per aportasaadbseu granet
de sorra per a gutot tiri endavant.

WVull fer constar, a rés a nés, que aquest treball, a excepdel qwe es deriva de
'estada a la Vrije Universiteit, ha estat possibléges a la contribudi ecoromica
gue ha aportat el Departament d’Universitats, Recerca ieSdaile la Informaéi de
la Generalitat de Catalunya mitjancant els Fons Socialsfgews. Destacar tarakel
financament rebut dins del projecte Espanyol TS12006-0348

Acronyms

ACDS Agent Code Distribution Service
ACL Agent Communication Language
AID Agent Identifier

AM Agent Middleware

AMM Agent Mobility Manager

AMS Agent Management System

AP Agent Platform

ASIPMS AgentScape Inter-Platform Mobility Service
CAlI Common Agent Interface

CGID Code Group ldentifier

CID Code Identifier

CDN Content Delivery Network

DF Directory Facilitator

DHT Distributed Hash Table

EE Execution Environment

FrTP Fragmented Transfer Protocol

Xi

HAP Home Agent Platform

HCID Hash Code Identifier

JIPMS JADE Inter-Platform Mobility Service
IPMA Inter-Platform Mobility Architecture
IPMS Inter-Platform Mobility Service

MA Mobile Agent

MAS Mobile Agent System

MID Migration Identifier

MMP Main Migration Protocol

ODTP On-Demand Transfer Protocol
OSAAP One-Shot Agent Authentication Protocol
P2P Peerto Peer

PCTP Push Cache Transfer Protocol

PL Programming Language

PoP Point of Presence

PS Protocol Sequences

RESTTP REST Transfer Protocol

SR Security Revision

UA Underlying Architecture

VM Virtual Machine

Contents

Abstract Vil
Acknowledgements IX
Acronyms Xi
1 Introduction 1
1.1 Objectives e 2
1.2 Structure. e 4
1.3 Publications 5
2 Mobile Agents 7
2.1 Definition 7
22 TheAgent e 9
2.2.1 Agentldentification, 9
2.2.2 AgentComponents 10
2.2.3 AgentLifeCycle 11
2.2.4 The Mobile AgentSystem 12
2.3 AgentMobility 13
2.3.1 MobilityBasics 13
2.3.2 TypesofAgentMobility 14
2.3.3 Agentltineraries 15
2.4 Agentinteroperabilityo L. 16
2.4.1 Full AgentInteroperability 61

Xiii

24.2 AgentStandardso 17

243 IEEE-FIPA 18
2.5 AgentSecurity 23
2.6 SUMMANY e 25
Inter-Platform Mobility Architecture 27
3.1 Introduction 27
3.2 Relatedwork 28
3.3 Inter-Platform Mobility Architecture 30
3.3.1 MobilityModel 30
3.3.2 Mobility Architecture o 33
3.3.3 ErrorManagement 40
3.4 Mobility Protocols 42
3.4.1 Push Cache Transfer Protocol 44
3.4.2 On-Demand Transfer Protocol 45
3.4.3 Fragmented Transfer Protocol 48
3.4.4 REST Transfer Protocol 50
3.45 Protocolsusage 54
3.5 Mobility servicescomparison. L 55
3.6 JADE Inter-Platform Mobility Service 59
3.6.1 JADE Introduction 60
3.6.2 JIPMSBAaSICS v v i 61
3.6.3 JIPMS Structure 61
3.6.4 JIPMSProtocols 65
3.6.5 JIPMSUsage 68
3.7 AgentScape Inter-Platform Mobility Service 68
3.7.1 AgentScapeintroduction 69
3.7.2 FIPA Message TransportService 69
3.7.3 ASIPMS Structure L 71
374 OpenissueS o i i e 71

3.8 Conclusions 73

4 Performance Analysis 75

4.1 Introduction 75

4.2 Evaluationsetup. e 76

4.3 Performance evaluation 1: PCTPvsODTP 7 7
4.3.1 Lightweightagents 77
4.3.2 Multi-class Heavyweight Agents 18

4.4 Performance evaluation 2: PCTPVvsFITP 84
4.4.1 Scenariol: Local AreaNetwork 84
4.4.2 Scenario 2: Wide AreaNetwork 90
4.4.3 Scenario 3: Metropolitan Area Network Q3

4.5 Performance evaluation 3: PCTPVSRESTTP 4 9
45.1 Scenario 1: Local AreaNetwork 95
45.2 Scenario 2: Wide Area Network 97
4.5.3 Scenario 3: Metropolitan Area Network 100

4.6 CoONCIUSIONS e 100

5 Agent Code Distribution Service 103

5.1 Introduction 103

5.2 RequirementsandRoles 104

5.3 Agent Code Distribution Service 106
5.3.1 Overview of the Architecture 610
5.3.2 CodeManagement 108
5.3.3 CodeDistribution 110
5.3.4 Security Management 111
5.3.5 Servicelnterface 0. 116

5.4 Implementation and performance 120
5.4.1 Serviceimplementation 120
5.4.2 Performancetests., 121

55 Relatedwork 133
5.5.1 Codedistribution L. 133
5.5.2 Content Delivery Networks 134

553 PeertoPeernetworks. 134

5.5.4 Distributed Version Control systems

5.6 Conclusions e

Interoperability
6.1 Introduction

6.2 Background

6.2.1 Single Programming Language MAS
6.2.2 Multiple Programming Language MAS
6.3 Common Agent Interface (CAl)
6.3.1 Considerations toward a common agent interface
6.3.2 Proposed Common Agent Interface (CAIl)
6.3.3 Commentsoninterfaceusage
6.3.4 Common Agent Interface considerations
6.4 Multiple execution environments
6.4.1 Computer architectures
6.4.2 A Multiple Execution Environment approach

6.5 Multiple Code Agents

6.5.1 Agentdataprocessing
6.5.2 YAML agent data representation
6.5.3 Agents with multiplecodes
6.5.4 Agent mobility model considerations
6.5.5 Inter-language mobility example
6.6 RelatedWork
6.7 Conclusions

Security

7.1 Introduction

7.2 Background

7.2.1 Agentplatforms o o

7.22 Mobileagents.
7.3 Protection of agentitineraries L.
7.3.1 Properties of the Protection Protocol

7.4

7.5

7.6

Protection of agent itineraries withloops
7.4.1 Protection Protocol Modifications
7.4.2 LoopImplementation.
7.4.3 Security Assessment
IPMA Security Protocol
7.5.1 Preliminaries
7.5.2 Protocol'soperation
Conclusions

8 Conclusions

8.1

Future researchlines

Bibliography

A Inter-Platform Mobility Architecture

Al
A.2
A3
A4
A5
A.6
A7
A.8
A.9

Serviceregistration
Mobility Ontology
Synchronized Request Interaction Protocol
IPMSOntology,
Push Cache Transfer Protocol Ontology

On Demand Transfer Protocol Ontology
Fragment Transfer Protocol Ontology
REST Transfer Protocol Ontology

One-Shot Agent Authentication Protocol Ontology

B Common Agent Interface

B.1
B.2

Java CAl e
Python CAl

List of Tables

2.1
2.2
3.1
3.2
3.3
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
5.1

Mobile Agent Properties. o 8
FIPA ACL Message Parameters. 22
Firstmessagecontent. 7 3
RESTTP Interface. 53
Migration services comparison.o 59
Lightweight agents migration performance (inms). 80
Lightweight agents migration comparison. 80
Heavyweight agents (12 classes) migration performénges). 82
Heavyweight agents (12 classes) migration comparison. 82
Heavyweight agents (32 classes) migration performénges). 82
Heavyweight agents (32 classes) migration comparison. 82
Scenario 1: Multi-size agent code migration perfornegfmms). . . . 88
Scenario 1: Multi-size agent data migration perfornegficms). 89
Scenario 2A: Multi-size agent code migration perforogfin ms). . . 90
Scenario 2B: Multi-size agent code migration perforoegin ms). . . . 92
Scenario 3: Multi-size agent code migration perforoegfn ms). . . . 93
Scenario 1: Multi-size agent code migration perforceafm ms). . . . 95
Scenario 1: Multi-size agent data migration perforoeafn ms). 97
Scenario 2A: Multi-size agent code migration perfano@(in ms). . . 97
Scenario 2B: Multi-size agent code migration perforoegin ms). . . . 99
Scenario 3: Multi-size agent code migration perforoegfn ms). . . . 99
REST Interface. e 119

5.2 Scenario 1: Agents moving in the same region (PCTP) (in ms). . . 122

XiX

5.3 Scenario 1: Agents moving in the same region (REST) (in ms). . . 122
5.4 Scenario 2: Agents moving between different regionsp@uket loss)

(PCTP)(iNMS). o e e e s e e e e e e 125
5.5 Scenario 2: Agents moving between different regionsp@ket l0ss)
(RESTTP) (inms). e e e e 125
5.6 Scenario 2: Agents moving between different regionsggaeket loss)(PCTP)
(INMS). . . . e 125
5.7 Scenario 2: Agents moving between different regionsigaeket loss) (RESTTP)
(INMS). . . . e e 125
5.8 Scenario 3: Asymmetric links (PCTP) (inms). 130
5.9 Scenario 3: Asymmetric links (RESTTP) (inms). 130
6.1 MAS agentinterfaces comparison. 153
6.2 Interoperability solutions comparison. 171
A.1 Move action Mobility Ontology 28
A.2 Clone action Mobility Ontology 22
A.3 Migration Description concept Mobility Ontology 228
A.4 Property concept Mobility Ontology 228
A.5 Protocols Description concept Mobility Ontology 229
A.6 Failure predicates Mobility Ontology 229
A.7 Move actionIPMSOntology 229
A.8 CloneactionIPMSOntology 230
A.9 ResumeactionIPMSOntology 230
A.10 Mobile Agent Description concept IPMS Ontology 230
A.11 Mobile Agent Profile concept IPMS Ontology 231
A.12 Mobile Agent System concept IPMS Ontology 231
A.13 Mobile Agent Language concept IPMS Ontology 231
A.14 Mobile Agent OS concept IPMS Ontology 231
A.15 Property concept IPMS Ontology 232
A.16 Refuse predicates IPMS Ontology 232
A.17 Failure predicates IPMS Ontology 232

A.18 Transfer Data State action PCTP Ontology 233

A.19 Data State concept PCTP Ontology 233

A.20 Transfer Code action PCTP Ontology 33
A.21 Code concept PCTP Ontology

A.22 Inform predicates PCTP Ontology 234
A.23 Failure predicates PCTP Ontology 234
A.24 Transfer Data State action ODTP Ontology 234
A.25 Data State concept ODTP Ontology 235
A.26 Resource List concept ODTP Ontology 235
A.27 Resource Description concept ODTP Ontology 235
A.28 Failure predicates ODTP Ontology 235
A.29 Fetch Resource action ODTP Fetch Ontology236
A.30 Inform predicates ODTP FetchOntology 236
A.31 Resource Description concept ODTP Fetch Ontology 236
A.32 Failure predicates ODTP Fetchontology 236
A.33 Request Transfer Agent action FrTP Ontology 237
A.34 Parameters concept FrTPOntology 237
A.35 Agree predicates FrTPOntology 237
A.36 Refuse predicates FrTP Ontology 237
A.37 Inform predicates FrTPOntology 238
A.38 Request Fragment action FrTP Ontology238
A.39 Fragment Description concept FrTP Ontology 238
A.40 Failure predicates FrTP Ontology 239
A.41 Transfer Parameters action RESTTP Ontology 239
A.42 Rest Parameters concept RESTTP Ontology 240
A.43 Failure predicates RESTTP Ontology 240
A.44 X509 Agent Auth action OSAAP Ontology 241
A.45 X509 Agent Auth Description concept OSAAP Ontology 241
A.46 Auth Pair concept OSAAP Ontology 241

A.47 Failure predicates OSAAP Ontology 242

List of Figures

2.1 Equivalent algorithms using strong and weak mobility. 12
2.2 |EEE-FIPA Agent Management Reference Model. 19
23 AgentlLifeCycle. 20
2.4 AgentMessage Transfer. 21
2.5 FIPA Request Interaction Protocol. 23
2.6 FIPA Propose Interaction Protocol. 23
3.1 Migrationmodel. 31
3.2 General migration process. 32
3.3 Agent Code ldentification. 34
3.4 Main Migration Protocol. 83
3.5 AMM Error Management. 0oL 42
3.6 Pushmigrationstrategy. 43
3.7 Pullmigrationstrategy. 43
3.8 Push Cache Transfer Protocol diagram. 45
3.9 Push Cache Transfer Protocol flow diagram. 46
3.10 ODTP Resource Listexample. 47
3.11 On-Demand Transfer Protocol diagram. 47
3.12 On Demand Transfer Protocol flow diagram. 48
3.13 Agent components fragmentation. 49
3.14 Fragmented Transfer Protocol diagram. bl
3.15 Fragmented Transfer Protocol flow diagram. 52
3.16 REST Transfer Protocol diagram. 54
3.17 REST Transfer Protocol flow diagram. 55

XXili

3.18 The JADE agent middleware architecture. 60

3.19 Inter-Platform mobility serviceparts. 62
3.20 Agent Mobility Manager. oo 46
3.21 The AgentScape middleware architecture. 69
3.22 AgentScape FIPAMTS. 70
41 PCTPvsODTP2Classes. 78
42 PCTPvsODTP12Classes. o v it i 78
43 PCTPvsODTP32Classes. o v it 79
44 PCTPvsODTP10Agents. i iiii .. 79
45 FrTP1Ag.Sc.1(code). 85
46 FITP10Ag.Sc.1(code). i i 85
47 FTP1Ag.Sc.1l(data)., 86
48 FrTP10Ag.Sc.1(data). 86
49 FrTPvsPCTP Scenariol(code). 87
4.10 FrTPvs PCTP Scenariol (data). 7 8
4.11 FrTPvs PCTP Scenario 2A. v i i e e e 91
412 FrITPvs PCTP Scenario2B. i i 91
413 FITPvsPCTP Scenario3. o it i e 94
4.14 RESTTPvsPCTP Scenariol(code).. 96
4.15 RESTTPvs PCTP Scenariol (data). 96
4.16 RESTTP VS PCTP Scenario 2A.« . v i i i it 98
417 RESTTPvs PCTP Scenario2B. 98
418 RESTTPVvsPCTP Scenario3. 100
5.1 Agent Code Distribution System. 106

5.2 Pointof Presence (PoP). 7 10
5.3 Example of the use of agent code identifiers. 108

5.4 Code identifier hierarchy. 091
5.5 Example of code owner contract policy. 114

5.6 Contract Enforcement Module overview. 115

5.7 Scenariol. e 122

5.8 Performance Scenario1 (PCTP). 23 1

5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8

Performance Scenario 1 (RESTTP). 23 1

Scenario 2. e 126
Performance Scenario 2 (no packet loss) (PCTP). 127
Performance Scenario 2 (no packet loss) (RESTTP). 127
Performance Scenario 2 (5% packet loss) (PCTP). 128
Performance Scenario 2 (5% packet loss) (RESTTP). 128
Scenario 3. e 130
Performance Scenario3(PCTP). 131
Performance Scenario 3 (RESTTP). 131
Common Agent Interface. 145
Middleware Level. 155
ApplicationLevel. 155
TAgent. e 155
NAgents. e 155
Multiple Execution Environments Middleware. 157
Agent data transformation. 158
YAML encoded agentdata. 161
Equivalent agent codes (Python on the left, Java onghéri. 163
Agent migration with YAML encodeddata. 166
Standard Standardardisation. 168
Universal Middleware. 681
Agent Interface Adaptation. e 168
Agent Regeneration. e 168
Sequence typetransition. oL 181
Alternative type transition. 181
Oneloopitinerary. e 184
Mobile agentcomponents. 0oL 518
External Reply Attack. 187
Single host internal replay attack. 188
Internal replay attack with collusion. 188

One-Shot Agent Authentication Protocol diagram. 192

7.9 One-Shot Agent Authentication Protocol flow diagram. 193
A.1 Synchronized Request Interaction Protocol. 224

Chapter 1
Introduction

Mobile Agents (MAs) are autonomous software entities tlaaetthe ability to stop and

resume their execution in different network locations toawplish a set of tasks. They
live within environments called Agent Platforms (APs), elhiare composed of a soft-
ware called Agent Middleware (AM), that define the boundanéavailable locations

and the basic functionality the agents have. This techrydiogk its first steps with the

publication of the Jim White’s article [Whi96] in '96.

Despite the apparent simplicity behind MAs, a lot of reskagtforts have been
spent along these years. The fact of sharing agent codef@ratit locations, in most
cases heterogeneous, arises a set of issues which arenfendrong a simple solution.
The most common issues are related to the agent interopgrgiR00, MPD*02,
PR02, GGK 02, OdGWBO06, FGR07, FIP02a, OMG97] and security [KAG98, Yee99,
JK00, Rot02, MB03, GMB08] with quite a lot research associated. Nevertheless, aft
several years of efforts, a wide-scale deployment of MAstwadecome a reality. This
is the reason why, some time ago, several articles [Rot04)45Ng04] questioning
the future of this technology arose. These articles comuidhat security is one of the
main reasons that have hindered the adoption of MAs. Buty o#@sons appear, such
as the lack of a killer application, the lack of a widespre@ifdaistructure to host the
agents which would not be created without promising appbosa, and so on.

In our opinion the main reasons which have prevented thetatopf MAs are se-
curity, interoperability, and efficiency. Security may ioge strong restrictions to the

1

2 CHAPTER 1. INTRODUCTION

use of MAs. Nonetheless, enough research to satisfy thecoosnon applications has
been done in this field (Chapter 7). Interoperability [PRO2ktrhe taken into account
in highly distributed heterogeneous environments. Sinée Meed to interoperate with
elements and other agents present in these environmernteng degree of interoper-
ability is absolutely indispensable to guarantee the depént of the technology and
the new coming applications. As in security, different weekist in this area. Spe-
cially important are the standardisation efforts carriet lwy the OMG [OMG97] and
the IEEE-FIPA [FIP02a] organisations. And, last but nostethe efficiency of MAs is
another important issue to cope with. Theoretical techgiekwhich once implemented
do not perform efficiently, turn into non usable technolsgigthout suitable applica-
tions for them. One of the criticisms to MAs is, preciselyaaH of efficiency [Vig04].
Although several works in this field have been done [Gav04, BRBBy are not inte-
grated with interoperable solutions.

Currently, the deployment of MAs is limited, but new applioas are constantly
coming out. For example, Gavalasal.[GGGOO02] propose an approach to deal with
the management of networks with changing conditions. Voaget al. [VFLO6] pro-
pose the use of MAs for remote control and calibration of galngurpose instrumenta-
tion, and remote measurement. Vieira-Marqgaeal. [VMRC06] propose the secure
integration of medical data using MAs. And, Marst al. [MMLCVNOS8] propose an
approach to personalise the services users access in smaonenents, such as home
and offices, by using mobile personal agents.

1.1 Obijectives

We are conviced that MAs are not an outdated technology. r Bugability for dis-
tributed and heterogeneous environments is unique. Inmgiaran their expansion will
be at the right moment, when the advantages outweigh thdwdistages, and the sur-
rounding technologies will be matured enough to suppornth®@ur assumption is that
by improving their interoperability, efficiency, and seityra wide-scale expansion is
more probable.

1.1. OBJECTIVES 3

The main objective of this thesis, which is motivated by #gmssumption, is to pro-
pose efficient mechanisms, within the context of the IEEEARtandards, to guarantee
the interoperability of heterogeneous MAs and AMs. Desgéeeral works about the
interoperability of agents exist, there are no mobile agéartdards which guarantee a
complete interoperability between all types of MAs and Altandardisation organisa-
tions such as OMG and IEEE-FIPA, this last the most accepte@days, have devised
several agent standards for AMs and for agent communicai@vertheless, they do
not include a robust specification for mobility and exeautid agents in AMs that do
not share the same profile. The main objective of the thesidban splitted into four
smaller objectives.

The first one is the design of an efficient, flexible, and extdasagent mobility
specification to allow the migration of agents between ciffié, and possibly heteroge-
neous, locations. This objective does not comprise thedp&ability of the agent code
in terms of execution, but it only comprises its transport.

The second objective is to devise methods to allow the eietof agents in sev-
eral APs supporting different AMs, Programming Languad®ss], and Underlying
Architectures (UAs). The interoperability of agent comnuation, solved by IEEE-
FIPA, and agent mobility, the previous objective, is nofisiégnt for a wide-scale mo-
bile agent deployment. The achievement of them allows antageeommunicate with
other agents and to visit any other location. Nevertheiessase the visited locations
have heterogeneous AMs or UAs the agent cannot be execwted th

Another objective is the proposal of methods to improve ffieiency of the agent
mobility and interoperability. The efficiency of an agengmaition is always constrained
by the fact that all the agent components (agent code, dathstate) must be sent
to the destination location. Therefore, different migratstrategies for the mobility
specification of the first objective, and agent code distidioumethods can be proposed.
Furthermore, the interoperability methods of the seconeative must also be efficient.

As previously stated, the security of agents is also of ostrimoportance. Despite
several research has been done in this area, another wbjetthe thesis is the contri-
bution to the improvement of existing mobile agent securigchanisms. Furthermore,
the security must be taken into account in the objectivegiqusly detailed.

4 CHAPTER 1. INTRODUCTION

1.2 Structure

In the following paragraphs an outline of the chapters ameagices that compose this
thesis is presented.

Chapter 2 introduces the mobile agent technology. Firstl af @éfinition of MAs is
stated, then there is an introduction to agent basics, agebility, a discussion of the
most frequent interoperability issues and extended swisfiand a summary of the most
relevant agent security requirements and threats. Morafgpbackground is detailed
in each chapter as appropriate.

Chapter 3 explains the design, implementation, and congaaoga new mobility
model called Inter-Platform Mobility Architecture (IPMAN the context of the IEEE-
FIPA specifications, suitable for different kinds of AMs dalocused on improving the
interoperability in the area of agent mobility. Furthermoa set of migration trans-
fer protocols, used to transfer the agent components, Bntbdel devised are also
explained. And finally, two implementations of the model &émel protocols are shown.

Chapter 4 presents a set of tests to evaluate the most rel@@datmance differ-
ences between the migration transfer protocols proposetPMA: the Push Cache
Transfer Protocol (PCTP), the On-Demand Transfer Prot@@DIT(P), the Fragmented
Transfer Protocol (FrTP), and the REST Transfer Protocol (RES.

Chapter 5 proposes a global cache service to efficiently anutelg deal with the
distribution of agent code. An implementation of the sesvgalso presented, and a set
of agent migration performance tests demonstrate its hemefjarding the migrations
without the service enabled.

Chapter 6 presents several mobile agent interoperabildpqwals to achieve the
challenge of agents freely migrating in heterogeneousrenrients. Each of the in-
cluded proposals increase a bit the final complexity of thetesy, but they improve
the final solution. The chapter also includes a final comparisith other proposals
existing in the literature.

Chapter 7 introduces several existing security mechanisddweo new methods
to protect MAs. The first is a scheme to protect agent itinesa(list of locations that
an agent visits) with loops. And the second is a protocol tinenticate agents and
guarantee the integrity of their code in the mobility modelgosed in Chapter 3.

1.3. PUBLICATIONS S

Chapter 8 summarises the conclusions obtained from thetolgepreviously men-
tioned, and provides some future research directions otofhes dealt with.

Finally, Appendix A contains technical details about thebifity model of Chap-
ter 3, and Appendix B contains two examples of an interfaesgmted in Chapter 6.

1.3 Publications

The work along this thesis has produced several publicationonferences, books, and
journals:

e J. Cucurull, J. Ametller, and J. Borrell. Protocol for the piiton of mobile agent
itineraries with loops (in Spanish). In Alberto Peinado Doguez et al., editod,r
Simposio sobre Seguridad Infoaica [SSI'2005] pages 61-68, Granada. Spain,
September 2005. CEDI 2005, Thomson.

e J. Cucurull, J. Ametller, J.A. Ortega-Ruiz, S. Robles, and Jrdlor Protect-
ing mobile agent loops. In T. Magendanz, K. Ahmed, and |. ¥88j editors,
Mobility Aware Technologies and Applicatign®lume 3744 ot.ecture Notes in
Computer Scienggages 74—-83, Montreal, Canada, October 2005. MATA 2005,
Springer.

e J. Ametller, J. Cucurull, R. MairtG. Navarro, and S. Robles. Enabling mobile
agents interoperability through fipa standards. In M. Kihydd. Rovatsos, and
T.R. Payne, editorsCooperative Information Agents Xolume 4149 ol ecture
Notes in Artificial Intelligencgpages 388—401, Edinburgh, UK, September 2006.
CIA 2006, Springer Verlag.

e P. Vieira-Marques, S. Robles, J. Cucurull, R. Cruz-Correia, GuaiNa, and
R. Marfi. Secure integration of distributed medical data using itecdgents.
IEEE Intelligent System21(6):47-54, 2006.

e J. Cucurull, J. Ametller, and R. Mart Agent mobility. In F. L. Bellifem-
ine, G. Caire, and D. Greenwood, editobgveloping Multi-Agent Systems with
JADE, pages 115-130. Wiley, January 2006.

CHAPTER 1. INTRODUCTION

J. Cucurull, R. Maiit S. Robles, J. Borrell, and G. Navarro. FIPA-based interop-
erable agent mobility. IMulti-Agent Systems and Applicationswlume 4696
of LNAI, pages 319-321, Leipzig, Germany, September 2007. Springe

J. Cucurull, B. J. Overeinder, M. A. Oey, J. Borrell, and F. M. TaBer. Ab-

stract software migration architecture towards agent teware interoperability.
In Proceedings of the International Multiconference on Corap@&cience and
Information Technologypages 27-37, Wisla, Poland, October 2007.

J. Cucurull, R. Maiit G. Navarro-Arribas, S. Robles, B. J. Overeinder, and J. Bor-
rell. Agent mobility architecture based on IEEE-FIPA starts. Submitted to
Computer Communications.

J. Cucurull, R. Maiit G. Navarro-Arribas, S. Robles, and J. Borrell. Full mobile
agent interoperability in an IEEE-FIPA context. Submittedournal of Systems
and Software.

J. Cucurull, G. Navarro-Arribas, R. M&rS. Robles, and J. Borrell. An efficient
and secure agent code distribution service. Submittedumabof Network and
Computer Applications.

Chapter 2
Mobile Agents

This chapter introduces the mobile agent technology. Clgraraof it are the definition
of mobile agents, the introduction of agent basics, thedhction to agent mobility,
the discussion of the most frequent interoperability issared extended solutions, and
a summary of the most relevant agent security requiremewitsraeats.

2.1 Definition

Mobile Agents (MAs) [Whi96] are a technology which has itsgamion two different
disciplines. On the one hand, the artificial intelligencenonunity created the concept
of intelligent agent [WJ95]. On the other hand, the distelolgystems community, with
a more pragmatic vision of MAs, focused on the exploitatiboanle mobility [FPV98].

A valid definition for MAs, regarding the two mentioned dislnes, is that they are
intelligent software entities that have the ability to st resume their execution in
different network locations to accomplish a set of taskseyTlive within environments
called agent platforms, that define the boundaries of aMailbcations, and they are
mobile, autonomous, reactive, proactive and social (sémitilens in Table 2.1).

Although there is no application that cannot be conceivatiaut the existence of
MAs, they ease the implementation of applications whicluieq

e Task delegation Due to the inherent autonomy of agents and MAs, they can be
assigned with a set of tasks which the agent performs ontefitd owner, e.g.,

7

CHAPTER 2. MOBILE AGENTS

Mobility Agent ability of suspending its execution in a specific ageatform,

and resume it in another agent platform, i.e., in anothexation. This
process is usually called agent migration.

Autonomy | Each agent is driven according to a code specially develaped

achieve one or more goals. The agent actions are completeiget]
according to this code without direct intervention of otparties.

Reactivity | Agents react to the environment changes in order to achlesie |t

goals.

Proactivity | Agents change their environment and take several inigatito

achieve their goals.

Sociability | It is the ability of agents to interact with other agents. Slis a

key feature, since some agents only can perceive theirammient
through communication with other agents.

Table 2.1: Mobile Agent Properties.

in [VMRC*06] is described a medical application where the task othéag for
patients information is delegated to an specific agent.

Asynchronous processing Mobile agent execution is not dependent on a con-
tinuous communication with the agent owner or the home ggjatform. There-
fore, the agent can freely move through different netwociatmns while it carries
out the assigned tasks. An example of this is nomadic comg(iiMLVAOG],
where agents reside in mobile devices and migrate to otleatitms to perform
tasks without consuming the scarce resources of the mobiieel

Dynamic environment adaptationt Agents perceive environment changes and
react by adapting their behaviour to them. An example agpbenetwork man-
agement can be seen in [Sat03], where a MA is reused withodificetions to
manage various networks.

Flexible interfaces Since its ease of adaptability, agents can be used to attera
with completely different interfaces, such as it is progbse[VFL06]. Even,
agents can be used as improvised adaptors between two Kimdsréaces.

Fault tolerance: Because of the agents capacity to adapt to changing environ-
ments, MAs can easily deal with computer and network falltey are specially

2.2. THE AGENT 9

suitable for hostile environments, where the agent cardéda visit alternative
locations in case of failure. An example of fault toleranesdxd on MAs can be
seen in [KEO6].

e Parallelism: The autonomous nature of MAs, the ability to migrate to etif
ent locations, and the capacity of interacting with othexrdg, make them suit-
able for parallel applications, where a coordinated grolipeveral agents are
used. An example, which uses them as a load balancing meohacan be seen
in [TSTT05].

e Local data processing MAs can process data directly where it resides without
having to move it from the original location. There are twods of applications
which benefit from this feature. Firstlgea-of-dataapplications where there is a
large quantity of distributed information to process argrtovement of it has an
elevated cost [Gra03]. And, secondly, medical applicatipfiMRC*06] where
moving data from its original location is not legal.

2.2 The Agent

A MA, from an architectural point of view, is an entity comgalsof a unique identifier
and three main components: code, data, and state. Furtfeeram agent has a life
cycle associated to its execution state. These componsnthaintained in Mobile
Agent Systems (MASs) by Agent Platforms (APs). The softwabhéch implements
APs, and therefore manages agents, is called Agent Middée(®@aV).

2.2.1 Agent Identification

Each MA has an associated identifier that distinguishesdividually. This identi-

fier is assigned when the agent is created, it should be inbleytand it is unique
within the scope of the agent authority. The agent identificais usually related to
the communication among agents. Although it is a well defemttept, each AM has
its own approximation of it. In some cases the identifier iesgn by the agent de-
veloper, in other cases it is imposed by the AM, and some tiamagent can have

10 CHAPTER 2. MOBILE AGENTS

more than one identifier. For example, the Aglets [LM98] nhetléhre identifies every
agent by using the AgletlD, which is a unique identifier gated by the AM. On the
other hand, the AgentScape [OB04] AM provides each of its &sgeith an identifi-
cation called “agent handler”. This identification cannetdinosen by the agent devel-
oper, although more than one agent handler can be requesteddh agent. And the
JADE [BCPRO08, BCGO06] AM uses the Agent Identifier (AID) defined b E=FIPA
(Section 2.4.3), which in the case of JADE is composed of amtagame chosen by
the agent owner in addition to the name of the home agenbphatfNotice that in this
last case, although the AP controls the names assigned dgetss, the agent owner
is involved in the agent identification, therefore it hastgdithe responsibility for not
creating agents with duplicate names.

2.2.2 Agent Components

Theagent codas the core component of the agent and contains the agenitsfore-
tionality. Several aspects of the agent code are importauth&€ mobility and interoper-
ability of agents. They are discussed in the next paragraphs

The code is developed and compiled using a Programming laayggPL) and com-
puter architecture supported by the hosting AMs. In someg;dsr interoperability or
efficiency reasons, even several versions of the code awedpobwith the agent (this
is explained in more detail in Section 6.5), e.g., codes Withsame functionality but
developed with different PLs and/or compiled for differenmputer architectures.

The agent code is usually interpreted code, since it mustbiyeseparable from
its local agent platform for, later, being incorporated teemote agent platform. This
is the main reason why most of the MASSs run over an interpiatarvirtual machine,
e.g., the Java Runtime Environment. Interpreters even heme bsed with PLs such as
C and C++, e.g., the MAS Mobile-C [CCP06] uses the C/C++ Ch [Soffpméger.

An important aspect related to the agent code is how it is geohand packed.
Depending on the PL in which the code is written and the allgoriused in the agent
migration, the code can be packed and sent in different whysbject oriented PLs
code is usually composed of many code snippets which remreseh class and are
packed in a single file. Usually this file is sent to remotefplats all at once, e.g., in

2.2. THE AGENT 11

Java MASSs the code is packed in JAR files. Nevertheless, #reren-demand migra-
tion algorithms (Section 3.4) where the code snippets aidually sent, in this case
the code may not be packed in a single file. Therefore, the afpackaging used is
highly dependent on the AM used and must be taken into aceduen interoperability
between different MASs is pursued.

Theagent dataare the movable resources associated to the MA, i.e., alhtbena-
tion used and, maybe, produced by the agent during its lifégiwis moved along with
it. In object oriented systems this is usually associateti¢ambject instance. How this
information is encoded is completely dependent on each AN, & Java MASs the
Java Serialisation mechanism is typically used. In Se@&ibra proposal for a common
agent data encoding is presented.

The agent statds the information associated to the agent execution frorpea-o
ating system point of view. It comprises the program couyrter heap, and so forth.
Nonetheless, most of the code interpreters used in MASs tsupport access to this
information. In addition to that, the agent state stredsesteroperability issues, since
the involved AMs must share the same code interpreters tradimachines.

The solution commonly adopted when the capture of the aget# i not possible
or convenient consists of replacing part of the agent statedagent data. In this case,
since no program counter is captured, the execution of teetagalways resumed from
the first line of code. But the agent developer can use soniestticsave part of the
execution state as agent data. An example is the use of seatdiol flow statements
driven by a simple agent variable which is updated and savedch agent execution.
Therefore, the execution can be approximately resumedpecif&c block of code. The
use or not of the agent state leads to two different types eftagobility, strongand
weak mobility respectively, which are explained in Section 2A8n example of two
equivalent codes denoting these two cases is shown in Fglre

2.2.3 Agent Life Cycle

MAs, as any software process, have a finite period of life.ifguthis period they are
subject to different events such as their creation, suspemns their execution, migra-
tion, and so on. Any of these events may change the agent ibehaggarding their

12 CHAPTER 2. MOBILE AGENTS

Algorithm 2 : Weak mobility.

begin
switch statedo
Algorithm 1: Strong mobil- case0
ity. Task A;
begin state = 1,
Task A doM ove();
doM ove(); break;
Task B casel
end Task B;
break;
end
end

Figure 2.1: Equivalent algorithms using strong and weakihtypb

environment. The possible behaviours the agent may adogteaapped as an agent
state (do not confuse it with the agent state componentqusly explained). The agent
life cycle is the set of possible states adopted by agentydagy the possible events
that may be triggered to them.

Some AMs do not have the concept of agent life cycle, e.g.ofMac[JLVR 02],
Aglets [LM98], Tracy [BRO5], and AgentScape [OB04]. In this edbe most simple
agent life cycle is applied. It consists of only two statese applied to the agent when
it is running and the other one when it is not, and two evehis,agent creation and
the agent death. Other AMs that take into account the corufeggent life cycle offer
models with more states and events, e.g., JADE [BCPR08, BCGOBloA¢RJS01],
Mobile-C [CCPO6]. In this case, the agent life cycles can idelstates to indicate the
agent is migrating, or it is suspended or waiting for somaeaenong others.

2.2.4 The Mobile Agent System

Mobile Agent Systems (MASSs) are the environments wheretageside, operate, and
interact with each other. They provide the necessary itrfretuire for the agents. MASs
are typically composed of one or more APs that may be dig&ththrough several
hosts, and which are implemented by a software called AM. AReypically offers

2.3. AGENT MOBILITY 13

a set of basic services to agents, for example agent managesgent messaging, di-
rectory services, and so forth. The services offered arehidependent on the AP
implementation. Nevertheless, there is no general agmneeimeéhe specific details of
MASSs structure. Those which do not support agent mobiliy @lled Multi Agent
Systems. Although they share the MAS acronym, in this thasig the Mobile Agent
Systems (MASSs) are considered, therefore there is no comf@bout it. From now
on we will consider MASs composed of a single AP residing irpactfic host The
combination of an AP and a host will be call&ztation MAs are moved between
locations.

Since the beginnings of the mobile agent technology [Whi@sksal MASs have
appeared. Describing all of them makes no sense since it iqoired to understand
all the chapters of this thesis. Therefore, only a seleaifdASs are described in the
specific chapters where they are required, e.g., see Sécflon

2.3 Agent Mobility

The main characteristic of MAs is the ability to migrate frame location to another.
In this section there is an explanation of the mobility basibe types of agent mobility,
and the concept of agent itinerary.

2.3.1 Mobility Basics

Agent mobility is the ability of agents to suspend their exean, move their code,
data, and state to another location, and there resume Kemugon. The set of actions
involved in the movement of an agent is cali@igration process The complexity of
this process is variable and depends on the protocols aedfymobility chosen. The
essential operations of a simple migration process areedtin the following lines:

1. Migration request: An agent decides to migrate to another location or, in some
cases, an agent requests another agent to migrate. Usligtérfaces provide
agents with methods to request the migration.

14 CHAPTER 2. MOBILE AGENTS

2. Stop agent executionThe execution of the migrating agent is stopped, therefore
its life cycle is updated to the most appropriate state. Rtosstep the agent can
be unregistered from its local platform.

3. Collect agent components The agent code, data, and state are collected and
packed to be sent. As it is explained in Section 2.2.2 thesgoaents and their
packaging are completely dependent on the MAS implememtati

4. Transfer agent components The agent code, data, and state gathered in the
previous step are sent to the remote location. How they aitdssalso dependent
on the MAS implementation, which in some cases can be contpitasome
agent communication standards such as the IEEE-FIPA spmins described
in Section 2.4.3.

5. Agent rebuilding: The agent is rebuilt and registered in the remote location b
using the components previously transfered.

6. Agent resumption. The agent execution is resumed, therefore its life cycle is
updated to the most appropriate state.

Although a simple migration process is not complex, reatesys involve a large
guantity of factors that can enormously increase its coriglesuch as mobility proto-
cols, or mobility interoperability. The analysis of thesetbrs and their solution is one
of the contributions of this thesis.

2.3.2 Types of Agent Mobility

There are two main types of agent mobility [FPV9®&kakandstrongmobility. As it is
illustrated in Figure 2.1, the type of mobility chosen dietathe agent code development
style [CLZ00].

From a conceptual perspective, strong mobility is preterteallows agents to sus-
pend their execution and, then, resume it exactly at the gaome it was suspended.
However, strong mobility is complex to implement since txeaition state must be

2.3. AGENT MOBILITY 15

captured and restored in the destination location, an Gparahich is not always sup-
ported by PLs and/or virtual machines, e.g., the Java Rurinvronment [CLZ00].
Nevertheless, there are some alternatives to implememtgstnobility without having
access to the execution state. They consist of the moddicafithe agent code, in the
remote location, to make the next line to execute, the fing 6f code. This method
is used in [Yee99] and described in [HY98]. Some variantst @ré also proposed
in [IKKWO01, WHBO01, CHBO03]. Despite these solutions, there is &eoissue with the
strong mobility. It is the high dependence on the underlyiomputer architectures or
virtual machines, which makes difficult to achieve a minimétroperability when het-
erogeneous systems are used. Some mobile agent platfoomdipg strong mobility
are Telescript [Whi96] and D’Agents[GCH02] (Section 6.2.2).

Weak mobility does not capture the execution state, thendHe is always resumed
from the beginning. This is not a major issue, because usiag@gent data, the pro-
grammer can drive the migration to a specific part of the cedg,, using a switch
control flow statement. This migration type is more diffidolimanage by the agent de-
veloper, but it is the most flexible and portable alternat®ecause of that, this type of
mobility has been widely used for example in Aglets [LM98taSshopper [BBCMO0],
SeMoA [RJS01], and JADE [BCPR08, BCGO06] (Section 6.2.1).

2.3.3 Agent Itineraries

Agent itineraries are the lists of locations that MAs vigiridg their life. The concept
of itinerary was firstly introduced in the Concordia [WP7] AM. The concept is
specially important when security is introduced to MAs (Seetion 2.5 and Chapter 7
for a more detailed essay on agent security).

Two basic types of itineraries can be distinguished. On the lvand, there are
static itineraries which are decided when the agent is created. They compesset of
ordered locations that the agent will visit during its lif&nd, on the other hand, there
aredynamic itinerarieswhich are not initially preestablished and are decidedndur
the agent life according to its necessities. In some casefast kind of itineraries can
be constrained to a subset of possible locations to visit.

There are also some intermediate proposals [SRM98, MB02, M&B&jh are not

16 CHAPTER 2. MOBILE AGENTS

SO restrictive as the static itineraries neither so operyaardic itineraries. These pro-
posals introduce new kinds of mobile agent transitions, itee point when an agent
decides the next location to visit from its itinerary. Iresfeof the single transition which
makes the agent move from the present location to the nexttbese new transition
can make the agent to choose between visiting one from tveateel locations, or visit
both in an undetermined order among others. The set of gedsies of transitions
depends on the chosen scheme.

2.4 Agent Interoperability

For MAs to be deployed on Internet scale distributed systameroperability between
different types of AM needs to be ensured. In the case of MAssfdature is specially
important because agents must interact with other agedtdifiarent platforms.

2.4.1 Full Agent Interoperability

According to Pinsdorgt al. [PR0O2], two MASs are interoperable if a MA can interact
and communicate with other agents (local or remote), anteifagents of one system
can migrate to the other system, i.e., they can leave thsiesyand resume their exe-
cution in the next interoperable system. This kind of inpen@bility will be calledfull
interoperabilityfrom now on. Considering Ametlleat al. [ACM *06], and, also, Pins-
dorf et al.[PR0OZ2], several areas can be inferred to cope withfthisnteroperability.

e Programming language and underlying architecture This area is not limited
to MAs, but to any application. Since different PLs, opergtsystems, micro-
processors, and Underlying Architectures (UAS) exists impossible to have a
unigue executable code format. Some of the solutions tgtioislem exploit the
use of interpreted PLs such &erl, Python or Java where a virtual machine
abstracts the code from the underlying hardware and opgraistems.

e Middleware: Since agents run over AMs, there are important constraintsit
the Application Programming Interfaces (APIs), the ageahagement, and the
agent life cycle model. Several solutions in the literatprepose the use of

2.4. AGENT INTEROPERABILITY 17

adaptation layers to provide an uniform set of middlewa@peprties to all the
agents [MPD 02], the use of wrapper mechanisms to provide voluntaryampte
erability [PR0O2], and the use of a high level approach basdtd@noncept of the
universal agent [FGRO7].

e Communication: Different AMs usually implement different communication
methods for their agents. This includes the message stescised and the mes-
sage delivery methods. This problem can be solved by usitigkwewn agent
standards like the ones defined by IEEE-FIPA (Section 2.4.3)

e Mobility : Similarly to the communication area, migrating an agemlies agree-
ment with the set of messages exchanged and with the methdévery used.
In addition to that, the AM must agree with the steps of theratign process and
the information exchanged in each message.

A securityarea could also be included, although it is not essentiakfaching dull
interoperabilitybased on the previous definition.

2.4.2 Agent Standards

A number of organisations have initiated the developmerageit standards, at plat-
form and communication areas, in an attempt to deal withtblelpm of incompatibility
and interoperability. The standards have had differentesesyof success, although none
of them tackle the four areas previously described.

The first organisation to deal with agent standardisatios the Object Manage-
ment Group (OMG). OMG wrote a specification document calledbile Agent System
Interoperability Facilities (MASIFJOMG97], which states a set of common interfaces
(MAFFinder, a naming service, and MAFAgentSystem, for ngamaent tasks) and def-
initions based on the CORBA IDL specifications. It providesgilae AM and mobility
interoperability, although this cannot be achieved withiwe collaboration of the in-
volved MASs developers. It is not intended to deal with ageability between differ-
ent kinds of AM, and neither agent standard interface nonagemmunication mech-
anisms are defined. Concerning security, MASIF simply ad@eexisting CORBA

18 CHAPTER 2. MOBILE AGENTS

security to fit within the mobile agents middleware as bedigpossible. Currently,
MASIF has no activity and cannot be considered as an optioowadays AMs. This
standard was used in several AMs, such as Aglets [LM98], shigsper [BBCMOO0],
SMART [WHN"01] or SOMA [BCSO01b] (Section 6.2.1).

There is a second organisation dealing with agent starsddroin, thd EEE Founda-
tion for Intelligent Physical Agents (IEEE-FIPAyhich is focused on the management
and communication of intelligent agents. The specificatgtandardised by IEEE-FIPA
define the basic components of an agent platform, an agemtifidation scheme, a
complete communication infrastructure, and several agamagement services. IEEE-
FIPA is a dynamic organisation, its members (universitisnpanies, research insti-
tutes, and so forth) are always actively proposing spetidica for new areas of inter-
est. Therefore, the IEEE-FIPA are a set of up-to-date stalsdhat must be considered
when implementing present AMs. |IEEE-FIPA specificatiorns ased in more recent
AMs regarding MASIF, such as JADE [BCGO06] or Mobile-C [CCPO06]¢t@ 6.2.1).

2.4.3 |EEE-FIPA

The IEEE-FIPA organisation has standardised a set of sp&iiifns to guarantee agent
interoperability in the areas of agent middleware and agentmunication. The first
specification is the FIPA Abstract Architecture [FIP0O2ajiethdescribes the basic as-
pects of a multi agent system (take into account that IEBEAFRdoes not initially
consider MAs). Nevertheless, the core of the IEEE-FIPA gations is the FIPA
Agent Management Specification[FIP04], which defines thenaghanagement refer-
ence model, together with the FIPA ACL Message Structure iSpatton [FIP02e].

The Agent Management Reference Model

The agent management reference model is the normativevirarkevhere FIPA agents
are executed. An agent platform compliant with IEEE-FIPA amerefore, with this
model, is composed of agents, an Agent Management SysterS)AdWessage Trans-
port System (MTS), and, optionally, a Directory Facilita(®F). This is depicted in
Figure 2.2. The internals of these components are not dubjstandardisation within

2.4. AGENT INTEROPERABILITY 19

IEEE-FIPA, giving developers a lot of independence to médiartown implementa-
tions.

Agent Platform (AP)

Agent
Agent Management
Service (AMS)

Directory
Facilitator (DF)

\ \ \

Message Transport Service (MTS)

A

\4
Figure 2.2: IEEE-FIPA Agent Management Reference Model.

The IEEE-FIPA agent is a computation process which is ifiedtiby an Agent
Identifier (AID), and that communicates with other agentsuling the Agent Com-
munication Language [FIP02e] (ACL). The AID includes the rageame, which is
mandatory, a set of transport addresses to reach the ageng set of name resolu-
tion service addresses. The agent name is an immutablellgloba&ue identifier. No
specific format is enforced, although it is proposed the fisesoimple agent name con-
catenated with the home agent platform address (the ptatidrere the agent has been
initially created). This format is used in the JADE [BCPRO08, BCGAgent platform.
The transport addresses are the physical addresses wbhergetht can be reached. One
or more addresses can be provided, and they are encodedliagctr the URL for-
mat [BLFMa]. Finally, the name resolution service addressesa set of agent AlDs
which offer the name resolution service (typically implertezl by the AMS). This is
a service that returns an agent description for the requiégi2 supposing it would be
registered there.

The Agent Management System (AMS) is a mandatory componiistvmaintains
a directory of agents with their corresponding AlDs, i.eisia white pages service.
Each agent must be registered to this component in ordertta gaid AID. Further-
more, the AMS, on behalf of the agent platform, maintainagsnt’s life cycles. IEEE-
FIPA defines a specific agent life cycle in [FIPO4]. It has sikedent statesdctive

20 CHAPTER 2. MOBILE AGENTS

initiated, waiting, suspendedransit, andunknowr and ten possible transitionsré-
ate invoke destroy quit, suspendresume wait, wake up move andexecutg which
are used, among other things, to manage the delivery of messa the agent. Finally,
only a single AMS exists in each agent platform.

Suspended

Unknown

Destroy/Quit ’
Create

Figure 2.3: Agent Life Cycle.

The Message Transport Service [FIPO2h] (MTS) is anotherdaiamy component
which provides local and remote agent communication. Thaaeis offered through
the Agent Communication Channel (ACC), which is integrated iwithe MTS and
implements one or more Message Transport Protocols (MTR)MAP is a physical
protocol used to transfer the agent message data, e.g.,TReHM TP [FIP02f], which
is based on the transfer of agent messages over the applicatiwork protocol HTTP,
or the MTP-IIOP [FIP02g], which is based on the transfer afragnessages over an
OMG IDL [OMG99] structure. According to [FIPO2h] an agenhcsend a message to
another agent through the local and remote ACC, directly todhmte ACC or directly
to the other agent (by using proprietary mechanisms). Inréi@.4 there is shown the
first case which is the most common.

The Directory Facilitator (DF) is an optional componentgavides a directory of
services offered by agents. It is a yellow pages service.eNtwan one DF can exist in

2.4. AGENT INTEROPERABILITY 21

Agent Platform (AP) Agent Platform (AP)
Agent Agent
Agent Communication Channel Agent Communication Channel
MTP-HTTP MTP-IIOP » MTP-IIOP MTP-HTTP

Figure 2.4: Agent Message Transfer.

each agent platform.

The Agent Communication Language

The communication of agents is not only limited to the tramspf messages, but to the
content and encoding of them. IEEE-FIPA has done an impoetéort in the defini-
tion of a standard Agent Communication Language (ACL), spetifi the FIPA ACL
Message Structure Specification [FIP02e].

The FIPA ACL message is composed of a set of one or more pogsbdaneters
which are listed on Table 2.2. The only mandatory paramettrdper f or mat i ve,
which denotes the type of communicative act (defined in [Bifp@ssociated to the
message. Usually, messages will also contaistreder ,r ecei ver, andcont ent
parameters. In addition to the parameters listed on TaBleuBer-defined parameters
can also be included in the message. Their name must always Wwéh the prefa-
tory string “X-". The ACL message can be represented usirfgrdint encodings, e.g.,
IEEE-FIPA defines specifications for encodings based on &fitient representa-
tion [FIPO2b], a String representation [FIP02c], and a XMipresentation [FIP02d].
Furthermore, the ACL message is encapsulated within a steuctlled envelope, which
is also encoded using a specific representation.

The type of content included in an ACL message is describedhéldanguage,
encodi ng, andont ol ogy parameters. IEEE-FIPA does not enforce any specific

22 CHAPTER 2. MOBILE AGENTS

Parameter Category

performative Type of communicative acts
sender Participant in communication
receiver Participant in communication
reply-to Participant in communication
cont ent Content of message

| anguage Description of content
encodi ng Description of content

ont ol ogy Description of content

pr ot ocol Control of conversation
conversation-id | Control of conversation
reply-with Control of conversation
in-reply-to Control of conversation

repl y-by Control of conversation

Table 2.2: FIPA ACL Message Parameters.

type of content, since it is completely dependent on the tagemolved. Neverthe-
less, a specific syntax and its associated semantics, basth@ g-expression syntax,
are suggested as a content language for the ACL messagesthét &mantic Lan-
guage (SL) [FIPO2I] content language. Three cumulativesstshof the FIPA SL are
defined. The FIPA SLO, the minimal subset, the FIPA SL1, withport for proposi-
tional expressions, and the FIPA SL2, with support for firsteo predicate and modal
logic, although restricted to ensure that it must be dededafbhe FIPA SLO is used
to encode the content of messages exchanged with the AM3daugdo the Agent
Management Ontology specified in [FIP04]. FIPA SLO is alsteegively used in the
Inter-Platform Mobility Architecture (IPMA), proposed @hapter 3. This subset of the
FIPA SL provides agents with support for requesting actems state predicates.
Usually, ACL messages are involved in agent conversatiomgsd conversations
can be expressed in terms of interaction protocols, i.erptopol that defines exactly
which ACL messages must be exchanged to carry out a specifimaéithough there
are several parameters related to the control of agent cxati@ns, three are specific
for the interaction protocols. Th@ ot ocol parameter, which specifies the interaction
protocol name in which the message is involved. €haver sati on-i d parameter,
which contains a non-null value assigned by the initiatditgof the protocol and which

2.5. AGENT SECURITY 23

is present in all the messages involved in the protocol. Awed epl y- by parameter,
which indicates the latest time by which the sending agentlavbke to receive the
next message of the protocol flow. IEEE-FIPA has releasedrakspecifications for
different interaction protocols, e.g., the FIPA Requesenattion Protocol Specifica-
tion [FIPO2K] and the FIPA Propose Interaction Protocol&p=tion [FIP02j]. These
two interaction protocols are represented using the Agént (BMOO01, OPBO01] no-
tation in Figures 2.5 and 2.6 respectively.

Initiator Participant

request

>

refuse

Lr [refused]
> agree < >
0

[agreed and notification
necessary]

Initiator Participant

failure

. . ropose
inform-done : inform Lob > w

[agreed]

reject-proposal

inform-result : inform <
L—gr accept-proposal 04

ACL Message —» OR Q ACL Message —» OR <>

Figure 2.5: FIPA Request Interaction Figure 2.6: FIPA Propose Interaction
Protocol. Protocol.

2.5 Agent Security

The security of MAs is one of the topics with more researchhim area. Despite its
complexity, at the end, the security requirements desoeiAs are similar to the ones
desired for any computer system. In general some securithamessms are expected to
prevent or, at least, detect system abuses. The most conenoritg requirements are
listed in the following lines:

24 CHAPTER 2. MOBILE AGENTS

e Confidentiality: Data carried, sent, and used by agents must be kept condident
regarding the other agents. Unauthorised access to tlasmat compromise the
agent owner, APs, and other agents. Furthermore, it is alsioadle to keep agent
communications secret. Sometimes, even the message flowbmysotected,
since it can hint third parties about some agent operations.

¢ Authenticity and integrity : This requirement guarantees that agent data and code
really belong to the entity which claims for their ownerstapd that they are not
manipulated. It is important to prevent the execution ofkeaicagents. It is also
desirable to protect the agent results along their itiyg@eventing forgery.

e Access control Only authorised agents must get access to a specific AP. Fur-
thermore, a specific degree of privileges, with restriditinget access to specific
resources, must be assigned to agents. It is also usual te detfich agents can
use which resources. As can be seen in the literature [NAGB]MA access
control is complex because of the distributed nature of sgamd because of the
huge number of different authorities that can represenganta

e Accountability: This requirement implies the registration of all the act@ar-
ried out by agents, APs, and other entities participatindpefsystem. Therefore,
they have to legally account for their actions.

e Availability : APs must guarantee the availability of their services pdeghe
errors or denial of service attacks that may happen. Fumtwe, fault tolerance
systems should be present to detect and recover from pessibifailures and
agent loses [SBS00, LCWO04].

e Anonymity: In several cases, such as electronic business, the angnyhthe
agent owner must be preserved. Nonetheless, this requitamest be balanced
with the accountability requirement. Otherwise, agentsldmot take responsi-
bility of their actions.

In addition to the security requirements, a set of usual fre@dgent security threats
are detailed in the following paragraphs. The threatsdistee not exclusive of the
mobile agent technology, but can be applied to it.

2.6. SUMMARY 25

e Unauthorised information disclosureThe information from which agents are
composed (code, data, and state) can be obtained by unaethparties. This
also affects the information exchanged between two agedtsmiéormation owned
by APs.

¢ Information manipulationThe information related to agents can be manipulated
by unauthorised parties. The consequences of this matiguizepend on the in-
formation modified: agent code modification changes the tdggimaviour; agent
data modification changes the agent results and behavigent atate modifica-
tion changes the agent behaviour; agent itinerary modiicathanges the next
locations to visit; and agent communications modificatianipulates the agent
interaction.

e Denial of service Agents, APs, or third parties can attempt to make unavailab
the services offered by other agents and APs.

e Unauthorised acces#®\gents may intend to gain privileges to migrate to locadion
or access resources which are forbidden to them.

e Impersonation Agents and APs that fraudulently adopt the identity of arot
agent or AP. The aim of this attack is gaining privileges t¢festparties or doing
things on behalf of them.

¢ Repudiation Agents that deny something they have really done. Thisp®itant
to prevent, otherwise agents could commit fraud and demggsonsibility.

e Copy and re-executiorAgents which are copied and executed in non authorised
locations according to the agent itinerary. This is alsdiapgple to the execution
of an agent to an AP present in its itinerary.

2.6 Summary

In this chapter the mobile agent technology has been intedluMAs have been de-
fined and their properties have been discussed. Then, sévgrartant aspects for

26 CHAPTER 2. MOBILE AGENTS

the comprehension of the next chapters have been deally fims agent internals have
been presented, including their identification, the congmb®m from which they are com-
posed, their life cycle, and the environments where thedeesSecondly, the mobility
of agents has been dealt, explaining the basic steps needexve an agent, the existing
types of agent mobility, and the concept of agent itinegarighirdly, the interoperabil-
ity of agents has been discussed. In this section the differeeas which affect the
interoperability of agents have been shown, some agerdatds have been presented,
and the IEEE-FIPA specifications have been detailed fronpénspective required for
the rest of the thesis. And, finally, the mobile agent seguetuirements and possible
threats have also been presented.

Chapter 3
Inter-Platform Mobility Architecture

This chapter presents the design, implementation, and aosgn of a new mobility
model suitable for different kinds of agent middleware aocused on improving the
interoperability in the area of agent mobility.

3.1 Introduction

Agent mobility, as stated in the previous chapter, is thditglmf agents to suspend
their execution, move their code, data, and state to anéihation, and there resume
their execution. Although the concept is simple, the desiggmnmobility model suitable
for different kinds of Agent Middleware (AM) and focused ooh&ving full agent
interoperability(Section 2.4.1) is not an easy task.

In the next sections a flexible agent migration model, styohgsed on well-known
agent standards, is presented. Its main goal is dealingimighoperability in the area
of agent mobility. The result is a flexible agent migratiocharecture, called Inter-
Platform Mobility Architecture (IPMA), based on the IEEBFA specifications and,
therefore, conceived to be implemented at the applicagwallof any AM with any
Programming Language (PL).

The flexibility of IPMA is a consequence of its multi-protdatesign. As it is ex-
plained in Section 3.3, some tasks of the migration procassbe implemented by
negotiable protocols. Therefore each migration can berifft from the others. One

27

28 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

of the most relevant tasks is the transfer of the agent coate, dnd state. The way
these parts of the agent are transfered depends on the iongsétategy [BR0O5] used
in the migration process. Several migration strategiepegeented in Section 3.4 as
interchangeable protocols for IPMA: the Push Cache Trar3fetocol (PCTP), the
On-Demand Transfer Protocol (ODTP), the Fragmented Teaf&tocol (FrTP), and
the REST Transfer Protocol (RESTTP).

The contribution reported in this chapter has been impleeakiin order to validate
it, in the JADE AM (Section 3.6), and the AgentScape AM (SaetB.7), as the JADE
Inter-Platform Mobility Service (JIPMS) [JIPa], and the é&gScape Inter-Platform
Mobility Service (ASIPMS) [COOO07] respectively. This work in agent mobility was
preceded by a first inter-platform mobility service profmy also implemented in the
JADE AM [CAMO6], to evaluate the viability of using the mentied IEEE-FIPA stan-
dards in agent migration [ARBO3].

3.2 Related work

In this section several works related to the interopergiiti the area of agent mobility
are shown. Each one is focused on a set of specific goals.

The first contribution is th&obile Agent System Interoperability Facilities (MASIF)
[OMG97] specification created by the Object Management Gi@MG). As previ-
ously explained in Section 2.4.2, MASIF defines a set of commterfaces and defini-
tions based on the CORBA IDL for mobile AMs. They merely provedget of low level
methods which developers implement in their AMs. There arenigration strategies
imposed by the specification, although they may be limitethéopossibilities offered
by the combination of the methods provided. NeverthelessSN#As not intended to
deal with agent mobility between different kinds of AM, whkatifferent agent profiles
are supported. Nowadays, MASIF can be considered outdsiteck it is no longer
adopted by new AMs.

Another contribution is th&IPA Agent Management Support for Mobility Specifi-
cation[FIP0OO] created by the IEEE-FIPA organisation. The spedtifiz proposes two

3.2. RELATED WORK 29

migration protocols, some changes to the standard FIPAtdifgenycle, and some ad-
ditions to the FIPA Agent Management ontology. Nonetheldss mobility proposal
is only intended to be an application level wrapper for thiaveamobility mechanisms
present in existing Mobile Agent Systems (MASSs), i.e., i\pdes a set of high level
tools to coordinate the migration of agents between twdqitais. Furthermore, se-
curity concerns are not addressed by the specification. llfisince it did not have
sufficient acceptance and different independent impleatiems, it consequently did
not get the classification of a standard. Nevertheless,lthages to the standard FIPA
agent life cycle were finally integrated in [FIP04].

Out of the main standardisation initiatives, there are tWepworks which have
interoperability as part of their goals: the Kalong mokihtodel [BR05] and the Agent
Operating System (AOS) [VNOD7]. Kalong is a mobility model focused on the
achievement of efficient agent migrations. Itis based orsih®le Agent Transmission
Protocol (SATP), which defines a set of binary messages tosstpll the common mi-
gration operations (transfer of code snippets, transfelatd, commands to load code,
and so forth). It has the advantage that, similarly to MA$HE combination of these
operations end up into different migration strategies dsemall the code at once or
only the parts needed among others). Their authors reféetoriplementation of Ka-
long as a virtual machine for agent migration (for its abitib execute the mentioned
operations), and as a software component. Unlike the puswiontributions, Kalong
was designed to be used with the Tracy AMs, although it camla@sused in other AMs
as its own authors demonstrate in [PBKO05].

Agent Operating System (AOBNOT07] is a specification which defines a layer
between local operating systems and high level AMs. Thisr@uarantees interop-
erability in the areas of communication and mobility witthet AMs using the same
model. AOS is focused on security, and supports secure concation, secure agent
storage and secure migration. It is used in the AgentSca@®4pDand the Man-
sion [vNBT04] AMs.

There are two main issues with the presented standards oifisggons. Firstly,
MASIF and IEEE-FIPA do not support a full mobility model, .i.¢hey are dependent
on elements which are not comprised within the standardeosplecification. Secondly,

30 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

Kalong and AOS, despite being full mobility models, are nasdéd on major agent
standards. These reasons have taken us to propose a neficapeni

3.3 Inter-Platform Mobility Architecture

In this section a new inter-platform mobility architectin@sed on a full mobility model
that uses well-known agent standards is presented.

3.3.1 Mobility Model

The mobility model described in this section is subject @ fibllowing list of require-
ments:

e Full agent mobility modelthe model described must be complete, without de-
pending on middleware native migration services or otherstandard facilities.

e Based on well-known agent standardise model must not be isolated from the
existing agent technologies. Thus, the IEEE-FIPA spetifina are chosen be-
cause they are the most widely used agent standards in téiven

e Support for different migration strategiethis must be an open model not limited
to a set of fixed migration strategies. A mechanism suppprhaltiple, eligible,
and negotiable migration strategies should be used.

e Application-level orientedto ease the integration into existing AMs an application-
level oriented migration model is required. Furthermohaés philosophy con-
forms to the IEEE-FIPA specifications.

e Mobility type independencehe type of mobility, i.e., weak or strong, depends
on the availability of the agent state. The mobility modelstioe independent
of this. It must provide appropriate tools to support the tases, such as agent
profiles and the ability to transfer the agent state in caseoéssity.

3.3. INTER-PLATFORM MOBILITY ARCHITECTURE 31

¢ Agent middleware independendbe suitability of the model for any AM is an
essential requirement to provide interoperability in thebitity area. This is the
reason why the model presented is described in IEEE-FIRAger

e Extensible for future requirementthe agent technology is in constant evolution,
therefore the mobility model cannot be closed to future regquents.

Taking into account the requirements listed above, an attstnigration model has
been devised. In Figure 3.1 the general idea of the migratiodel is depicted. The
model is designed to be implemented on top of any existing Ahgliant with the
IEEE-FIPA specifications. It is based on a regular ageneédagent Mobility Manager
(AMM) which exchanges Agent Communication Language (ACL) 8égges [FIP02¢e]
with remote AMM agents to carry out the agent migrations. Uibe of ACL messages
to migrate agents was firstly proposed in [ARBO3].

Other implementations of the model without using a regulgerd, such as the
AMM, were possible, but they would not totally conform to tHeEE-FIPA specifi-
cations, since IEEE-FIPA does not consider other possitikractions than agent to
agent. Furthermore, the AMM agent, as a mobility manager,beain charge of other
future mobility related tasks, such as agent tracking arskage forwarding [CFLO02],
local agent resource repository maintenance, and so on.

Create agent

Move m ACLMessages
Agent AMM

| Agent middleware | | Agent middleware |

Figure 3.1: Migration model.

The general migration process supported by the model, frowgtalevel point of
view, is depicted in Figure 3.2, and includes the followiteps:

1. The agent contacts the local AMM and requests to migrate.

2. The local AMM suspends the agent execution, and starté@iemessage ex-
change with the remote AMM to agree with the next subprosesse

32 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

Agree on X
migrating with Migration

T e pree)
2 3

Agent
middleware

Agent
middleware

Agent
middleware

Agent
middleware

Request Agent
Resumption

Agent Agent
middleware 5 middleware

Figure 3.2: General migration process.

3. The agreed subprocesses are carried out:

e optional agent authentication.
e agent transfer (including agent code+data+state).

e optional operations.
4. The remote AMM creates and registers the new agent usengotthe +data+state.

5. The local AMM shuts down the local agent and requests tnete AMM to start
the agent.

6. The remote AMM starts the new remote agent and informstaheusuccess of
the process.

The migration model proposed is conceived to be implemeatdte application
level, minimising or avoiding the middleware internal miochtions. Thus the migra-
tion is also initiated from this level. This is the reason vihg migration of an agent
is requested by sending a specific ACL message to the AMM agésq (). There-
fore, the migration of an agent can be initiated by the agsetfior by another agent.
Nevertheless, complementary methods can also be supported

The rest of the process (steps 2—6) is carried out by the twavied AMMs fol-
lowing the basic operations specified in the architectuesgmted in Section 3.3.2. As

3.3. INTER-PLATFORM MOBILITY ARCHITECTURE 33

the whole mobility model, the architecture is based on tleharge of ACL messages,
although some specific parts could take advantage of otblenddogies.

The process concludes with the migrating agent in the dagtim platform. This
agent is an indistinguishable copy of the one that was ptesdahe source platform,
since the agent name is not modified by the migration procBss.name of an agent
cannot be changed, as stated in the FIPA Abstract Archiie&pecification [FIP02a].

Finally, notice that during almost all the process the l@ggnt has been maintained
alive, although in a frozen state. The reason is that thisiliyomodel is based on
several steps which may involve several negotiations gnratcive the migration to fail.
In this case it is better to have the local agent ready to hewed. The only expense
is that, at then end, a last step to kill the local agent andmesthe execution of the
remote one is required. This step guarantees that only gneafdhe same agent may
be running at a time.

3.3.2 Mobility Architecture

The migration model proposed in the previous section is redppa specification called
Inter-Platform Mobility Architecture (IPMA). The followig paragraphs explain the
basic aspects of it, the agent profile and code managemerdetliice registration, the
Main Migration Protocol (MMP), and the Protocol SequendeS)(

Agent profile and code management

The proposed migration model claims its suitability for akiyl. Nevertheless, this
does not mean that all agents can migrate to any AM, since thay be differences in
the elements comprised by the other interoperability ag8astion 2.4.1). This is why
exists the concept afgent profile

The agent profile is a table with compatibility informatidooait the migrating agent
and its code. According to this information a remote loagatiecides to accept or refuse
an incoming agent. Included information in the IPMA agerdfibe refers to the MAS,
PL, and operating system where the agent should be exediablkt 3.1).

An agent, as proposed in Chapter 6, can extend its compgtiyliproviding several

34 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

codes suitable for different profiles. In this case, eacimggefile table is associated to
one of this codes by means of Code Identifiers (CIDs). Furthesntie order in which
agent profiles are included indicates the preferred ordeodé¢ usage, since sometimes
more than one code can be chosen in a specific Agent PlatfoRh (A

The agent code is identified by the combination of severaheigs, the Code Group
Identifier (CGID), the Code Identifier (CID), the Security Rewsis(SR), and the Hash
Code Identifier (HCID). An example of it is illustrated in Figus.3.

Group Code Identifier (CGID): 1f332e209d0dc354
Code Identifier (CID) Security Revision (SR) Hash Code Identifier (HCID)
22dlccfe8a 3 ebd6c336cd3cebf83£5410a180112d41
cb3acb26ce 1 £368f50481a99b0b44b083d24e5b03d6
27de3d6279 2 225ea33d20e0185d1f4a5aa271e482a4
56a7c9daa8 1 2a51345179ead3700c8b2fecd150e222
27de3d6279 1 aff05r9767ceOdbb4e5bed7ae67518fe

Figure 3.3: Agent Code Identification.

e Code Group ldentifier (CGID): Random value which uniquely identifies the
group of all codes associated to an agent (including alkrens, and different
PL codes compiled for different underlying architecturdsgan help to add new
agent codes for a specific agent once it has been started,thimciew code can
be bound to the existing agent.

e Code Identifier (CID): Random value which uniquely identifies an agent code
with a specific functionality, developed in a specific PL, @odhpiled for a spe-
cific underlying architecture. The CID links an agent codéhwiite specific pro-
file exchanged during the agent migration. Code securitysi@vs do not alter
the CID.

e Security Revision (SR): Integer value which indicates the revision of the code
in terms of security bugfixes. It is used to decide which agede with the same
CID is more recent.

3.3. INTER-PLATFORM MOBILITY ARCHITECTURE 35

e Hash Code Identifier (HCID): Unique value created from the XOR of a MD5
cryptographic hash function applied to each code snippetagent code is usu-
ally composed of a package (ZIP file or Jar file among otheat)abntains several
smaller code snippets, e.g. classes. The HCID is used to ¢thedktegrity of
this agent code, in addition to be used by AP embedded cacheapanisms.
This identifier is resilient to agent code repackaging, Wisccarried out by some
migration transfer protocols (Section 3.4), since it isuldted from the smallest
code snippets.

Finally, another important aspect to take into accountéswhy the agent data and
state are encoded. Different AMs may support different matible encodings. For
example, the most used data encoding algorithm in Java AMwidava serialisation
mechanism, but in fact several other methods are possiéeSsction 6.5.1 for a list
of them). IPMA enforces the use of only one agent data and geetatate encoding
methods for each agent. Otherwise, the agent data and stadterot be shared from
one location to another (see Section 6.5 for a discussioutat)o

Service registration

IPMA is designed as a service offered by the AMM agent. Sucbtlasr IEEE-FIPA
services, it is recommended to be registered in the Dirgétacilitator (DF) [FIP04] of
the AP. DF is a yellow pages service optionally present inHEHEPA compliant AMs.
There are two reasons for publishing the migration servieeyellow pages service:

e Easy localisation of remote destinations that support IPNP&ssible locations
can be searched in two ways. In the first way agents requestteeDF agents
belonging to possible destinations to check if they supfRivtA. In the second
way agents only request their local DF agent. Thereforeassumed that it is
federated with other DFs and it can obtain the servicestergd there.

e Assessment of local and remote locations support for the saigration architec-
ture protocols and agent profiles. The local migrating agentacts the remote
DF agent to request and compare this information. Followtiigprocedure the
migration is usually led to success.

36 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

No other alternatives to publish the service are considesiede this is the only
method available within the IEEE-FIPA specifications. Tachl details for the service
registration are provided in Appendix A.1.

Main Migration Protocol

An agent migration is initiated when an agent sends a spebfic message to the
AMM local to the migrating agent. An agent can request theratign of itself or
another agent. A specific ontology for this message is defiméghpendix A.2. After
this message is received the AMM initiates the Main MignatRyotocol (MMP).

MMP, which is implemented by the AMM agent, manages the whabgration pro-
cess (Figure 3.4). MMP is composed of an agent interactiotopol, which drives the
part of the process common to all the agent migrations, aadP® component. This
component is a sequence of three steps implemented by aWiéchigration protocols
(Section 3.4). These steps provide specific functionatity personalise each agent mi-
gration according to the protocols selected by the agehh#sarequested the migration.
These protocols can provide migration authentication averal ways of transferring
agents among others.

MMP starts the process with the exchange of a first messagebetthe local and
remote AMMSs involved in the migration. The information caimted in this first mes-
sage includes (Table 3.1): the Migration Identifier (MICHetAgent Identifier (AID),
the CGID, the agent data and state encoding algorithms, #& agofiles (one or more
depending on the number of associated agent codes anddhesigonding CIDs), the
agent version, and the migration protocols to use in the P§ooent. An agent mi-
gration is only possible if the two involved agent platforheve, at least, one transfer
protocol in common, they agree on the protocols to use, agre tils, at least, an agent
profile supported. Otherwise, the migration process isseduIf the protocols selected
did not agree, another protocol selection can be chosenebggént, and the migration
can be retried from scratch. The migration process consludeen all the steps are
carried out and the last message of the interaction prote®been sent.

MMP is implemented using a custom agent interaction prdtoatéed Synchro-
nized Request (refer to Appendix A.3 for details), which ifirded using Agent UML

3.3. INTER-PLATFORM MOBILITY ARCHITECTURE 37

Elements Description
migration-id Migration Unique Identifier (MID).
name FIPA Agent Identifier (AID).
cgid Agent code group identifier (CGID).
agent-profile cid Agent code identification associated to the profile.
system name The name of the mobile agent system environment.

major-version| Major version.

minor-version| Minor version.

dependenciesg Dependencies required.

language name The name of the mobile agent language.
major-version| Major version.

minor-version| Minor version.

format Code base format of the mobile agent.
filter Filter to execute over the code base before execute.
dependencies Dependencies required.
0s name The name of the operating system.

major-version| Major version.
minor-version| Minor version.

hardware Hardware below the operating system.
dependencies Dependencies required.

data-encoding Data encoding method.
state-enconding State encoding method.
agent-version Agent version.
pre-transfer Pre-transfer protocols chosen.
transfer Transfer protocol chosen.
post-transfer Post-transfer protocols chosen.

Table 3.1: First message content.

[BMOO1, OPBO01]. It is based on the issue of two consecutive AClksage requests
in a single protocol, where the second request is only secdse of the first's success
(left side of Figure 3.4). These procedure is consistertt i€ model proposed in Sec-
tion 3.3.1, where the agent is transfered and, later, itswgi@ resumed. The use of a
single interaction protocol contributes to have a compaktPMwith all the mandatory
migration operations grouped altogether.

Individual agent migrations are uniquely identified, in tt@ntext of the two in-
volved APs, by a string called MID. The MID is included in theply-with andin-
reply-tofields of all the ACL messages exchanged during the procesdi(h field is
used in the messages sent from the origin and the second imgbgages sent from the
destination). In some cases the MID is also included as p#neanessage content.

38 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

A specific ontology defined in Appendix A.4 is used for all th€ElAmessages ex-
changed in MMP. The ontology defines the actions associatdettworequestmes-
sages of MMP (move/clone and resume respectively), andaelaga structures.

Initiator

REQUEST (move or clone)

Participant

1

REFUSE

Pre-Transfer Step
AGREE

Ly

————————————— >

3 Protocol Sequences

FAILURE

INFORM

Transfer Step

Post-Transfer Step

1 b2
1o 2

,,,,,,,,,,,,, >

REQUEST (resume)

FAILURE

(&)}
A A

mandatory
optional e

INFORM

7 migration
protocol n

o
o

O

Figure 3.4: Main Migration Protocol.

ACL Message —>»

The functionality of MMP is achieved by following the proedssted above, which
constitutes the immutable part of the architecture. Theifipeteps of the protocol can
be seen on the left side of Figure 3.4 and are detailed in tleviog lines:

1. A first message (Table 3.1) with the agent profile, requenetsy and a list of
protocols feasible to be used within PS is sent.

2. The request may be refused or agreed by the remote AM diegavhether the
agent requirements are satisfied and the requested prosgaborted.

3. All the agreed protocols in the first message are executélokei corresponding
steps (right side of Figure 3.4) in the PS component.

4. The agent is registered in the remote platform (i.e., mAMS agent of IEEE-
FIPA compliant AM). Then, a message is sent to the origin tifynthe success
or failure of the agent registration.

3.3. INTER-PLATFORM MOBILITY ARCHITECTURE 39

5. If the agent is successfully registered, then it is rerddwem the local platform.
6. A message is sent to resume the agent execution in theegadtorm.
7. Amessage is sent to the origin to notify the success arr&adf this last operation.

In case of error, the process between the two involved AMM=igelled. This is
done by using the corresponding interaction protocols oustt{refuse or failure mes-
sages) or, in case of not being possible, by using the FIPA€ldvieta-Protocol defined
within the FIPA Request Interaction Protocol [FIPO2Kk]. Theoetype is indicated by
the corresponding exception predicate (defined in AppeAdd, included as content
of the message, according to Section 3.3.3.

Protocol Sequences

At the right side of Figure 3.4, there are represented theetsteps that characterise
each migration: Pre-Transfer, Transfer and Post-Trandfbese steps customise the
migration process by using specific migration strategiesh@ agent transfer), autho-
risation protocols, resource negotiation, or whateved loh process agreed between
the involved platforms. They are represented as the thitarmgles of the figure, and
implemented by the set of protocols chosen in the first messagt in MMP. They
are drawn inside the mentioned rectangles as dotted linesbaXonetheless, there is
an exception with the Transfer step. Unlike the other ongsptocol, and only one,
must be selected. In this case the protocol is representediagle continuous line box
to denote its mandatory usage. Steps and selected protreoéxecuted in the order
indicated by the arrows. The steps are:

e Pre-Transfer: Contains protocols that are run before the agent transfgrextra
parameters negotiation, authorisation, resource agmgemeong others. They
are usually negotiation protocols.

e Transfer: Contains a protocol to transfer the agent code, data, ated Sidferent
protocols support different migration strategies (pushgdemand, etc.). One and
only one protocol can be assigned to this step.

40 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

e Post-Transfer. Contains protocols that are run after the agent transfgr, i@-
tegrity check, validation of code signatures, agent redtdinsfer, among others.

Protocols used in these steps are defined and standardisedram the main ar-
chitecture. Each one of these protocols is characterisddhbiyng a well-known name;
by having a well defined functionality suitable for the asated step; by being in-
dependent from the rest; by being composed of one or moresiagplemented by
interaction protocols; and by optionally using one or moessage content ontologies.
In Section 3.4 several transfer protocols are presented.

3.3.3 Error Management

The migration process defined by IPMA, which is described ect®n 3.3.2, might
be subject to network transmission errors, specially ieliable network protocols are
used, e.g., protocols based on UDP. The following linesguresn evaluation of the error
treatment in terms of protocol analysis at the communioadiod middleware levels.

The communication level deals with ACL Messages and agesgridaation protocols.
In the following lines there is a review of the most common camication errors, and
the measures adopted for their treatment in the presenteutire:

e Message unexpectancyMessages with a performative and/or conversation iden-
tification that are not expected. These messages are signayead, since they do
not fit with the expected ones and they are not processed bintargaction pro-
tocol.

e Message corruption Message corruption is detected at a higher level. Depend-
ing on the corrupted message part the effects could be eliffedf the message
basic information is damaged, such as the envelope or hreddemessage might
be discarded. Thus, the error would be treated as a messsgdhosome other
cases, if the message is not discardedpt- under st ood message is issued.
On the other hand, if the message content is damaged, thatioigprocess be-
tween the two AMMs could be cancelled.

3.3. INTER-PLATFORM MOBILITY ARCHITECTURE 41

e Message duplication Duplicated messages are considered by the interactien pro

tocols as unexpected messages. In case of duplication iniitlaéor message (the
first sent by an interaction protocol), the duplicate is alscepted by the receiver.
But in this case, it is detected at the migration architeclewel by checking the

MID included in the message with the registers of currenhagegrations.

e Message loss or delayLost messages, can be detected by setting an expiration

time as indicated in the FIPA Request Interaction Protocet#igation [FIP02K].
The action to do in this case regards to the specific impleatient The use of
timeouts is strongly recommended, although not mandakbegsage timeout has
to be carefully chosen to avoid confusing message delaywibsage loss, and
to supply enough time to process large messages.

e Out of order delivery: Because of the nature of the interaction protocols used

in MMP, messages cannot be received out of order, since aagess not sent
without the acknowledge of the previous one. Even thougbage some specific
protocol needs to send several messages without waitingdiaiirmation, the

possibility of out of order messages must be taken into adgcaug., FrTP of

Section 3.4.

The middleware level deals with exceptions thrown by sonte@hctions requested
to the remote location during the agent migration procesgs, @jent code registration,
agent platform registration, agent execution resumptéon so forth. When an ex-
ception is thrown a message with thai | ur e performative, which includes an error
predicate as a message content, is sent. The predicatateslithe type of error and
contains a description of it. For more information of eacbdicate, check the ontology
of each protocol in Appendixes A.2, A.4, A.5 and A.6. In somases errors can also
be thrown in the local platform. Therefore the remote platfas notified that the pro-
cess is cancelled from the initiator part using the FIPA Chiiega Protocol described
in [FIPO2K].

The complete error management is carried out by the AMM ageénbrs lead to
the interruption and cancellation of the dialog betweentife involved AMMs. The
default policy in case of unrecoverable error is restartimegprocess (MMP) carried out

42 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

by the two involved AMMSs. Thus, it is responsibility of the AMto retry the agent
migration without bothering the agent which has requested i

In the Figure 3.5 there is an example of an agent migrationf#ila in its first at-
tempt. The AMM agent can be programmed to resume the local &yecution, if the
migration cannot be successfully done, after a limited nematbretries. Besides, a fail-
ure message with an error description is sent to the agectwiais requested the migra-
tion. According to the error description the agent mightageto change the migration
parameters and retry it on its own. A number of migrationiestcan be suggested in
the request message sent by the migrating agent to the AMIdeigiixes A.2).

Remote AMM

‘ Agent A ‘

Local AMM ‘

‘ Agent A’ ‘

REQUEST (move)

Migration Process

S

Migration Process

INFORM (ok)

P

ACL Message —>»

Figure 3.5: AMM Error Management.

Notice that the AMM agent must keep a persistent copy of thgraing agent
during the whole migration process. Otherwise, in case @ilare after the agent is
killed the local agent execution could not be resumed. Tg@ach is similar to other
ones presented in the literature [SBS00, LCW04] providingtfalérance in the agent
migration.

3.4 Mobility Protocols

The protocols presented in this section are managed frolR$heomponent of IPMA.
Depending on the step where a protocol belongs to (Pre-fenankransfer or Post-
Transfer), different aspects of the migration process hagacterised.

3.4. MOBILITY PROTOCOLS 43

The transfer protocols define the migration strategy foldwn the migration. The
migration strategies of MASs characterise the way agené€ade managed in the mi-
gration process. Depending on the migration strategy tlemtagiay have different
properties. In [BR0O5] two main groups of migration strategies distinguished: push
and pull.

e Push all the agent code is sent together with the agent data, t@tel. sThis
strategy gives the agent the property of autonomy, sinaeeis thot depend on any
other resource present in previous locations (Figure 3.6).

e Pull: the agent code is requested from the destination locatime ¢the agent
data has reached it (Figure 3.7). This strategy has twontarighe pull-at-once,
and the pull-on-demand. The first one, the pull-at-onceyests all the agent
resources from the destination locations once the agematiog request reaches
it. The second one, the pull-on-demand, requests the agdatas needed during
the whole life of the agent. This last variant keeps the agssbciated to the
location that hosts its code. Therefore, it reduces thetaggnnomy, although it
can provide better performance in some cases.

Source Destination

Code + Data + State

Agent Middleware > Agent Middleware

Figure 3.6: Push migration strategy.

Source Destination

Data + State
Agent Middleware > Agent Middleware

Fetch agent resources
during runtime

Figure 3.7: Pull migration strategy.

44 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

The migration strategies described above are the basidhéo anes. Taking them
into account several transfer protocols (PCTP, ODTP, FriiB,RESTTP) for the PS
Transfer step of IPMA are described in the following parapsa

3.4.1 Push Cache Transfer Protocol

The Push Cache Transfer Protocol (PCTP), as the name statgm,asocol to transfer
the agent code, data, and state based on the push migratitegyt It supports the use
of a code caching mechanism that prevents from transfeagregt code that is already
present in the destination platform. Its internal namegduseannounce and select it, is
pct p-v1.

This protocol is addressed to agents that need to be indepeattheir home agent
platform, since all their resources (code, data, and staealways carried with them.
Because of the ACL transport cost (Section 3.4.5), it is nacated for agents with a
large quantity of resources.

Protocol’s operation

The process to send the agent code, data, and state is dinitled parts (Figure 3.8).
In the first part, the agent data and state, which are alwagdatk are sent to the desti-
nation platform together with the MID, the CID, the SR, and thi@lBl. A response is
sent according to the existence or not of the agent codee I€tidle is present there is
no need to carry out the protocol’s second part. Then, itifaalits execution saving up
two ACL messages. Otherwise, the second part is effectiveya send the code.

The protocol is composed of two FIPA Request interactionquais, one for each
part, and a specific ontology (Appendix A.5) that defines gmaiated actions to each
request and the mentioned information included in each agessErrors are managed
in the same way as in MMP (Section 3.3.3), although with dmeexception predicates
regarding this protocol. An example of a typical migratiortérms of ACL messages
is shown in Figure 3.9.

3.4. MOBILITY PROTOCOLS 45

Send agent data and state

v

Ask for the agent code existence

1st part
Exists?

Send agent code

2nd part

End

Figure 3.8: Push Cache Transfer Protocol diagram.

3.4.2 On-Demand Transfer Protocol

The On-Demand Transfer Protocol (ODTP) is a protocol todiemthe agent code,
data, and state according to an on-demand pull strategst, Binly the data and state
are transfered, and when a code snippet or some other agewntrce is needed, it is
individually requested to a resource server. A list of resewservers is specified by the
agent which requests the migration. Any AM may adopt the oblen agent resource
server. The internal name of the protocobidt p- v1.

This protocol is addressed to agents that do a partial usefdode in each visited
location. Only the agent data and state components, iniaddi a list of the other
necessary resources, are sent in each migration. Thenhenteeded code is requested
from each location. As a consequence, agents cannot be nehfrom their home agent
platform or from the specific servers which maintain theal€oFurthermore, since each
code request introduces a delay, the protocol is only recemaied for short-distance

46 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

Local Remote
Platform Platform

Request (transfer-data-state (Data + State + CID + SR + HCID))

Inform (predicate) / Failure (predicate) Ist Part
<
Request (transfer-code (CID + CR + HCID))
> 2nd Part
Inform / Failure (predicate) (optional)
<

Figure 3.9: Push Cache Transfer Protocol flow diagram.

migrations.

Protocol’s operation

An agent is composed of several resources (classes, ébramages, and so on). These
resources must be identified in some way, otherwise theydcool be requested to
the resource server because they would be unknown. To owerttus issue, an agent
resource listis included in the first message exchangednitie transfer protocol (see
an example in Figure 3.10). The resource list contains atigeleach agent resource.
Since this protocol is not related to a specific PL and/oresysthe constraints about
resource identification regarding each PL and/or systenuakeown, e.g., multiple
resources could have the same name although being diffefemt this reason each
tuple includes the agent resource name together with aagyggphic hash of it, e.g.,
an entry can be the name of a Java class with its correspoMilighash. Therefore,
the exchange of migration strategies during the agentdifgraightforward, since all
the agent resources are known and can be easily gatherpdrgaeand packaged for a
different strategy, e.g., an agent that arrives to a lonaiging the ODTP protocol, and
that leaves it using the PCTP protocol.

Two components are involved in the use of this protocol. @nathe hand, there is

3.4. MOBILITY PROTOCOLS 47

Hash Algorithm: md5

Resource Name Resource Hash

jipms.test.MobileAgent 2a6cdf4c817d1567f10acef26c161009

jipms.test.MobileAgent$Behaviour 58322f88787dlece7df4f309d45744a

jipms.test.AgentGUI 46909c0978614e8d5df9a6384e1d83db
jipms.test.AgentItinerary 355554767010531a33a1172242a086b2
jipms.test.AgentlLocation 4ac00a67400b5dc3191e017889032b01

Figure 3.10: ODTP Resource List example.

one component part of the PS transfer step that sends tredapsit information. And
on the other hand, there is another component running stimed- that remains active
waiting to serve resource requests as long as they are nbgdbd agents. When an
agent is sent using this protocol, the first component séradadent state, data, resource
list, list of resource servers, MID, CID, SR, and HCID (left smfeFigure 3.11). And,
when the agent needs some resource, e.g., a code snipgandividually requested
and served by the second component (right side of Figure.3Rl&sources are usually
requested to the home agent platform, although they may &i@r locations. A list of
possible locations to request agent resources is includine ifirst message exchanged.

(Start ’
h 4 ‘ Start ’
Send agent data and/or state

A

Fetch agent resource
(generally code)

Agent deserialization
or resource need

y
h 4 End

End

Figure 3.11: On-Demand Transfer Protocol diagram.

The protocol is also based on the IEEE-FIPA Request interaptiotocol. Two spe-
cific ontologies (Appendix A.6) define the actions for the passible requests (transfer
the agent and fetch resources), and define the informatintaio@d within the ACL

48 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

messages. Errors are managed in the same way as in MMP {58a@i8), although
with specific exception predicates regarding this protodol example of a typical mi-
gration in terms of ACL messages is depicted in Figure 3.12ticHdhat the second
block of exchanged messages is repeated as many times ase#&dsd regarding the
number of requested resources. In the example these resanerequested to the lo-
cal agent platform, although in a real system they are regdde the resource server
specified by the migrating agent.

Local Remote
Platform Platform

Request (transfer-data-state (Data + State + Resource List +

+ Resource Server List + MID + CID + SR))
> Transfer

protocol

Inform / Failure (predicate)

Request (fetch-resource (hash + algorithm))

A

. On Demand
n times

Inform (predicate (resource)) / Failure (predicate) RT:SOUrzce
> etc

Figure 3.12: On Demand Transfer Protocol flow diagram.

3.4.3 Fragmented Transfer Protocol

The Fragmented Transfer Protocol (FrTP) is a protocol tasfiexr the agent code, data,
and state over several ACL messages. It has been deviseditbsavaling too much
data into a single ACL message as PCTP does. FrTP is also batsslush migration
strategy, and it also supports code caching mechanismatdtaal name it p- v1.
This protocol, such as PCTP, is addressed to agents that méedridependent of
their home agent platform, since all their resources (cddé&, and state) are always
carried with them. Nevertheless, PCTP encapsulates allgbet alata, and state, and
all the agent code into two ACL messages. Since these mesaagast conceived to
transfer large quantity of data, several implementatioag obtain a bad performance
as the message size increases (there are several studhes ajent communication

3.4. MOBILITY PROTOCOLS 49

performance using ACL messages, see [Cuc04] and [JJKO6]k iFhine reason why
in this protocol the data and code are fragmented in seveigbests, with a fixed size,
which are encapsulated into different ACL messages.

Protocol’s operation

The protocol can be divided into three parts (Figure 3.14he first of them negotiates
the parameters to transfer the agent components, sendgahiessate if it is applicable,
and embraces the other two parts. In the first message exathdhgre are several
parameters and the agent state (which is not fragmented)pdiameters are the desired
size of the fragments used to transfer the agent code andttataode size, the data
size, the MID, the CID, the SR, and the HCID. A response is seasiegd or accepting
the agent transference. If the remote location does noeagrene or more parameters
(agent size, fragment size, and so on) it is refused. Otlserwi is accepted and it
is specified if the agent code is needed or not (take into axtdbat a code caching
mechanism may exist in the destination location). If theecisdoresent, only the agent
data fragments are sent.

Agent Data Agent Code

v

Frag #1 Frag #2 Frag #3 Frag #4 Frag #5
Type: data Type: data Type: code Type: code Type: code

Figure 3.13: Agent components fragmentation.

The second part of the protocol is the fragment’s transtegefhis is a simple part
where the agent data and code are sent in several fragmeégisgB.13). Each frag-
ment, in addition to a piece of data, includes a unique ifieation, a type of fragment
(a string indicating if the fragment contains code or datend the MID. The corre-
sponding messages are sent as they are produced, no ackgemlkents are expected
between each message sent.

The third part is a fault tolerance mechanism to recoverflagiments. If one or
more fragments have not been received after a fixed periathefthey are specifically

50 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

requested (it is like a negative acknowledge). This pary twals sense if no reliable
transport protocols are used to transfer the ACL messagéss lthe advantage of not
increasing the protocol time in most of the agent transmimssi since it is only used
when one or more messages have not been received. The itifomeent to request the
lost fragment is the same associated to the original ondr@lgenent identification, the
fragment type, and the MID). The fragment requested on ddnsaencapsulated in the
same type of message than the fragments previously serdlly-ithe whole protocol
finalises by sending a message informing about the succdaguse of the operation
(this message belongs to the first part of the protocol).

The protocol is composed of two FIPA Request interactionqmals, one for the first
part and another for the third part, and a specific ontologyp@adix A.7) that defines
the actions associated to each request and the mentiormethatfon included in each
message. Errors are managed in the same way as in MMP (S8@&i8i, although with
specific exception predicates regarding this protocol. ¥angle of a typical migration
in terms of ACL messages is illustrated in Figure 3.15.

3.4.4 REST Transfer Protocol

The REST Transfer Protocol (RESTTP), as the name states, @@cpl that transfers
the agent code, data, and state combining the Represeaidfitate Transfer (REST)
technology [FT02], which is a coordinated set of architeitaonstraints based on the
standard HTTP protocol, with ACL messages. It is proposedasdtarnative protocol
to PCTP since REST is more suitable for the transfer of high amsoof data than the
ACL messages. The RESTTP is based on a pull-at-once migrataegy, since the
needed resources are requested by the remote locationHiEirg requests. Therefore,
the support for code caching mechanisms is implicit, if ssesdurce is not needed it
is not requested. Its internal name isst t p- v1.

This protocol is addressed to agents that need to be indepeatitheir home agent
platform, since all their resources (code, data, and staealways carried with them.
Thanks to the HTTP data transport efficiency it is specialtjicated for agents with a
large quantity of mandatory resources, i.e., the ones medjin any location visited.

3.4. MOBILITY PROTOCOLS

Send fragmented transfer
parameters and agent state

1st part

Is there
agreement with
parameters?

no

Send agent data fragments

Is the code
needed?

2nd part

Send agent code fragments

Has some
fragment been
lost?

no

3rd part

Send lost fragment

Figure 3.14: Fragmented Transfer Protocol diagram.

51

CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

Local Remote
Platform Platform

Request (transfer-agent (FragmentSize + CodeSize + DataSize
+ State + CID + SR + HCID))

1st Part
> (beginning)
Agree (predicate) / Refuse (predicate)
[
; Inform (fragment (content, id, type, mid))
n times > 2nd Part
Request (request-fragment (id, type, mid))
. -
n times 3rd Part

Inform (fragment (content, id, type, mid) / Failure (predicate)

Inform / Failure (predicate
e P) 1st Part

(ending)

Figure 3.15: Fragmented Transfer Protocol flow diagram.

3.4. MOBILITY PROTOCOLS 53

Base URL: | http://server/resttp-vimid}/{nonce
Element | Method | Request Param. | Headers | Body Functionality
{nonce GET Get the agent resource requested.

Table 3.2: RESTTP Interface.

Protocol’s operation

The process to send the agent code, data, and state is cahgida® parts, one driven
by ACL messages where several parameters are exchangedheanthér driven by
HTTP requests where the agent components are transferedagemt code, data, and
state, are served by an HTTP server under a random unique (mameg only valid
during the transaction. A random name is used to preventredtparties from unfairly
downloading the agent resources. Furthermore, it is recamded to remove each re-
source once it has been downloaded as means as an only ogespadiay.

The protocol starts by putting the agent code, data, ane sttt the HTTP server,
and sending an ACL message with the random names assigneshtoithaddition to
the host and port of the HTTP server, and the MID, CID, SR, and Hiddntifiers
(Figure 3.16).

Once this message has been received, the destinationolocatjuests the agent
code, data, and state, as convenient, using several HTTiRestEqg(one for each agent
resource, see Table 3.2).

Then, after getting the agent resources, an inform or RIACL message is sent
from the remote location to finalise the protocol. When thissage is received, the
source location removes the resources from the HTTP seswerg of them may already
be removed if the only once usage policy has been applied).

The protocol is composed of one FIPA Request interactionopodt one simple
REST interface (Table 3.2), and a specific ontology (Appe®dB) that defines the
associated actions to the request message and the infomratiuded in each message.
Errors are managed in the same way as in MMP (Section 3.3t3pugh with specific
exception predicates regarding this protocol. An exampéetgpical migration in terms
of ACL messages and HTTP connections is shown in Figure 3.17.

54 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

Calculate agent code, data, and state
random identificators and submit to the HTTP server.

v

Send agent code, data, and state
random unique identificators

v

Request agent code, data and state
as convenient by the remote location

v

Remove agent resources
from the HTTP server.

Figure 3.16: REST Transfer Protocol diagram.

3.4.5 Protocols usage

In this section four protocols have been presented. Threkewh (PCTP, FrTP, and
RESTTP) are based on transferring all the agent componefaiebesuming the agent
execution. The other one (ODTP) transfers the agent datsstael in advance, but
requests the agent code as needed.

Since not all the protocols are appropriate for all situzjan several cases the best
strategy is to combine them, i.e., in one agent movement negmtocol and in an-
other one use the other. An example of this is an agent witerakeode components
that moves through many communities with many nodes witlyh hetwork delay be-
tween them. In this case, a good strategy is to use the pushtinig(PCTP or FrTP) to
move between communities (moving all the agent code thrdlglvide area network)
and, then, use the on-demand migration (ODTP) for agent mewmés within the com-
munity (requesting only the needed code in the local areaarkj. In this example,
the number of messages exchanged between long distanblec#é minimised. The

3.5. MOBILITY SERVICES COMPARISON 95

Local Remote
Platform Platform

Request (transfer-parameters (CodeNonce + DataNonce +
StateNonce + SSLEnabled + MID + CID + SR + HCID))

Y

GET (CodeNonce)

A

OK (Code) / ERR (Error number)

Y

GET (DataNonce)

A

OK (Data) / ERR (Error number)

Y

GET (StateNonce)

OK (State) / ERR (Error number)

Y

Inform (predicate) / Failure (predicate)

A

ACL HTTP HTTP ACL
interaction interaction interaction interaction

Figure 3.17: REST Transfer Protocol flow diagram.

mentioned protocols combination is technically feasifblee implementation presented
in Section 3.6 considers this possibility.

The election between PCTP, FrTP, and RESTTP depends on thecagemonents
size, and the requirements to only use IEEE-FIPA standartisei agent transference.
The first two are not so efficient as the last one, although tiseyonly these standards.
And regarding these two, FrTP is the more efficient for ageuits large components.
A detailed analysis of their performance is presented in @nap

3.5 Mobility services comparison

Several agent mobility models are implemented in the exgsthobile AMs. In this
section a comparison is done between these mobility moaelsost cases strongly

56

CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

tightened to their middlewares, and the one presentedsrctiapter (IPMA).

IPMA stands out by being independent of specific AMs and/as,RInd by relying
on the well-know IEEE-FIPA agent standards. Furthermadreffers a flexible migra-
tion process that can be individually customised for eadnagigration, providing

several agent migration strategies. It is also importamtatice that chosen migration

options are agreed or refused using the first exchanged gesssEhus, it is not possible

to send an agent without agreement of the involved partss iShspecially significant

in low bandwidth links, which might be charged accordinghte amount of data trans-
fered, like the General Packet Radio Service (GPRS) in celhdtworks.

The rest of the section compares the mobility services oitbst representative
MASs. A summary of the comparison is presented in Table 3.Blwavaluates the

following features:

Mobility service name: The name of the mobility service.

Mobile Agent System The name of the reference MAS where the service is
implemented.

Agent in the first message It states if the agent is directly sent in the first mes-
sage exchanged or there is some kind of pre-negotiation.

Exportable model: It indicates if the migration model is designed only for the
AM analysed or if it can be used in another ones.

Migration strategies: The migration strategies supported by the specific imple-
mentation of the model.

Migration initiation : It indicates who initiates the migration process.

Mobility type : The types of mobility supported, referring to weak or styomo-
bility.

Language supported The PL supported by the model.

Transport: The underlying transport mechanism to transfer the messagdata
used in the agent migration.

3.5. MOBILITY SERVICES COMPARISON 57

e Security: The security features implemented.

e Agent standards The agent standards used by the mobility service.

The Aglets server middlewarg.M98] is an environment to execute Aglets, which
are Java Mobile Agents (MAs), developed by the IBM Tokyo Reded&@abs. It sup-
ports autonomous execution of Aglets, dynamic routingeiamies, and it is compliant
with the MASIF specifications. Although this AM is currentipt active, it is described
for historical reasons and because of its complete migraystem. The mobility ser-
vice is based on a protocol called Aglet Transfer ProtocdlR)} which is only used
in this AM. The protocol is similar, in structure, to the HypEext Transfer Protocol
(HTTP), although the request messages are adapted to iogogerations. In Aglets,
agent migrations can be initiated from the same place wineragent resides or from
another one. In this last case the process of requestinggtre eeturn is called Aglet
Retraction. The migration strategy used is a combinatiomefpush and pull strate-
gies. When the agent migrates the in-use agent classes aspetiéed JAR files are
transfered in a single step (push). But if extra code is nedtledn be requested (pull)
on demand to the agent code base (this is a list of serverglieglin the agent to locate
its code). Despite the fact that the ATP protocol offers ailflexmigration strategy,
since the push and pull strategies can be combined, IPMA is mymen and can support
new strategies proposed in the future. Regarding the aggmatian initiation, IPMA
accepts migration requests for a specific agent from anyr aitpent, even if they are
sent from different locations. In fact, it is similar to thgl&t Retraction method.

Agent Operating System (AQ8NOT*07] is the mobility specification used within
the AgentScape [OB04] and Mansion [vNBT04] AMs. AgentScaerulti-language
mobile AM designed to support scalable, secure, distributelti-agent applications.
Agents migrate between virtual domains callecationsand can negotiate resource re-
quirements before migrating [MOBO0G6]. Mansion is a mobile Atvbagly focused on
security. AOS, which is the lower layer in these two AMs, pdas low-level secure
communication between the high level middleware procedsdween agents, and se-
cure agent mobility using a set of SUNRPC methods. A pull nimmastrategy is used,
so all the agent data and code are requested from the destihatation all at once.
PL dependent run-time environments for agents are providexigh different agent

58 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

servers. This solution is PL independent and, even, it ceupigbort strong mobility un-
der certain circumstances. Comparing the AOS mobility $pation with IPMA, our
solution is not limited to one migration strategy and takegaatage of the IEEE-FIPA
well-known agent standards. Although IPMA does not proadent resources nego-
tiation nor security, they can later be incorporated asifipgmotocols within the PS
steps.

Security-centric Mobile Agent server (SeMdR)JS01] is a runtime environment
for Java-based MAs focused on security and easy exterdibits migration service
provides secure agent mobility based on extensible filtexsallow to sign, encrypt, or
carry out any cryptographic operation related to the agamtstnission. All the agent
resources (code, data, life cycle state...) are groupedstruature called “AgentCon-
text”, which is sent all at once over a network protocol (htgw, raws...) that can be
chosen before migrating. If part of the code is not presenhim structure, it can be
requested to the agent code base. The migration strategh) vglthe same strategy of
the Aglets AM, is a combination of a push and an on-demandspigtegies. Although
it is not possible to change this behaviour, the migratiosategy of SeMoA is more
flexible than the one presented in the previous AM, but not ashnas IPMA. More-
over, the only supported PL is Java and, therefore, weakatmgr is the only possible
one. Our architecture, on the other hand, is not bound to efs&pPL and migration
strategy. Finally, although the security features prese®eMoA are not provided in
IPMA, they could be incorporated as specific protocols inRBesteps.

TheKalong[BRO5] architecture, implemented as a software module, isded on
providing an efficient mobility service to the Tracy [BR05] AM\Nevertheless, it is
generic enough to be used in other AMs, e.g., in the JADE AM [PBIKTracy [BRO5]
is a modular, component-oriented, extensible Java AM desigs a micro-kernel. The
aim behind this platform, according to its authors, was tvgle a toolkit usabldor
the development of industrial-strength real-world applioas. Its mobility service,
Kalong, uses the Simple Agent Transmission Protocol (SAWP)ch defines a set
of binary messages to support all the common migration ¢ipesa (it is similar to
MASIF [OMG97], which provides a set of CORBA IDL methods to merh these
operations). The advantage of this model is that the migyadigent combines these

3.6. JADE INTER-PLATFORM MOBILITY SERVICE 59

operations making up any migration strategy. Although Kglprovides a well-defined
flexible migration system, which allows the use of differagent migration strategies,
it has the disadvantage of being confined to the Java PL. Cedpath IPMA, Kalong
has a higher performance and it is a bit more flexible. Neetzts, IPMA is based
on consolidated agent standards (IEEE-FIPA), it is notteohto only one PL, it might
support weak and strong migration, and the migration requssbe done by any agent.

Mobility service ATP AOS SeMoA Kalong IPMA
Mobile Agent Aglets AgentScape, | SeMoA Tracy, JADE | JADE,
System Mansion AgentScape
Agent in the first| Yes No Yes No No
message
Exportable model | No Yes No Yes Yes
Migration Push + Pull| Pull Push + Pull| Any Any
strategies On-Demand On-Demand | combining implementable
combination combination | SATP
messages

Migration initiation | Any agent Oneself Oneself Any agent Any agent
Mobility supported | Weak Any Weak Weak Any
Language Java Any Java Java Any
supported
Transport Proprietary. | SunRPC Any Binary FIPA-MTP
Security Authorisation | Encryption Authorisation,| Any Any

Encryption,

others.
Agent standards MASIF No No No IEEE-FIPA

Table 3.3: Migration services comparison.

3.6 JADE Inter-Platform Mobility Service

The migration architecture described in Section 3.3 andptio¢éocols of Section 3.4
have been implemented in the JADE AM. JADE has been the firstchbken to test
the proposed migration model because it is the most widadpnewadays and it is
IEEE-FIPA compliant.

The service implemented provides weak inter-platform ritgbiallowing agents
to migrate between different platforms. The referred impatation is published as a
development release of the JIPMS add-on [JIPa].

60 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

3.6.1 JADE Introduction

JADE [BCGO06] is an IEEE-FIPA compliant AM. It provides a fullystributed system
where agents can reside and move between diffe@mtainers The JADE containers
are an abstraction to spread the platform over multiplesh@sgure 3.18). A central
main container takes care of the other ones’ managementgdérds defined by IEEE-
FIPA reside in the main container.

D DOC

Contalner MTS <

Main-Container

\4

Figure 3.18: The JADE agent middleware architecture.

Because of the distributed nature of the platform, a compéexicses architecture
is used [Cai04]. This architecture, thanks to its flexibledire based on vertical and
horizontal commands, makes possible the addition of nevicserto the platform with-
out modifying it. Moreover, it has the benefit of allowingenaction and collaboration
between other services. This architecture is very flexin,it is also quite complex,
because it has to manage all the platform services and cabedall their instances
spread in the JADE containers. The underlying communiodigtween containers is
done by using Java RMI calls.

JADE has a default mobility service, based on the JADE sesvarchitecture, that
only allows migration between containers, what is knownrasatplatform mobility.
Conversely, the service implemented according to IPMA, R &lows the migration
of agents between different agent platforms, i.e., it afiater-platform mobility. Use
of both services can be combined at any time of the agent life.

Agent tasks in JADE are implemented as behaviours. A JADEwebr is the
abstraction used in this AM to represent agent tasks. Betesjionce are created, are
scheduled for execution in an agent. Each agent is assigneddva thread which is
shared by its behaviours. The scheduling of the agent beteis cooperative, i.e., the
next behaviour scheduled is not executed until the prevooeshas finalised its task. To
prevent some behaviours from blocking the other ones, atgmiopers can divide the

3.6. JADE INTER-PLATFORM MOBILITY SERVICE 61

tasks in several subtasks, each one individually schedtliede tasks can be perceived
as if they were running concurrently). Nevertheless, iresaghere true concurrency
is needed, the ThreadedBehavior is used. It is a special tiypehaviour which has
assigned a specific thread.

3.6.2 JIPMS Basics

JIPMS [JIPa] is a complex piece of software, specially tghkitio account that it coex-
ists with the default JADE intra-platform mobility servibeilt into the platform. In the
last revision of JIPMS all the agent transfer protocols pegal in Section 3.4, PCTP,
ODTP, FrTP, and RESTTP, have been included.

JIPMS has been implemented at the application level, asjigsified by IPMA, but
taking advantage of several components included at thelewdde level. The main rea-
son is that JIPMS has been developed to guarantee a petigation with the JADE
intra-platform mobility service and the JADE containerdefefore, privileged access
to the AM is required. Otherwise this integration would beassible. Nevertheless,
all the components implemented at middleware level do roptire AM modifications,
thanks to the advanced JADE services architecture [Cai0O4].

3.6.3 JIPMS Structure

JIPMS, as previously mentioned, is implemented betweemilddleware level, in the
context of the JADE services architecture, and the appdicdevel, in the context of
the AMM agent. JIPMS is composed of several components tieagxplained in the
following paragraphs.

At middleware level, as can be appreciated in Figure 3.18M38 is composed of
three main components: the Mobility Service, the Code Managel the Class Anal-
ysis Library. These components are replicated in each JA@Eamer since an inter-
platform migration can start from any of them. Between thedi@@are and the appli-
cation levels there is the Agent Platform Accessor compbng&nd at the application
level there is the AMM component, which is part of IPMA. The AMMs only presentin
the main container since IPMA is defined in terms of the IEEBAFRstandards, which

62 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

l Container-n

I Container-1
Main-Container ACL
Agent \Messages
Class . Ly Mobility
Analysis > Code | | Mobility |g— Manager

Library Manager Service

| Agent Platform Accessor |

Main-Container

Figure 3.19: Inter-Platform mobility service parts.

do not consider the JADE container abstraction. Neversisetbe direct migration from
the other containers to another AP is possible, althoughighdase the ACL message
exchange is always done from the main container. The operatnich is not allowed
is directly migrating an agent to a non main container of heoAP.

Mobility Service

The mobility service is the JADE service component thatsleadth the initialisation of
JIPMS and the coordination of actions that involve seveA&&lB containers. Most of
these actions are requested from the application leveldANMM.

Code Manager

The code manager is a generic repository where the code yskthAb is registered
and maintained. It is composed of a list that binds specifenegwith their codes, and
specific managers to maintain different types of code, &hgre is the JarManager to
maintain codes packaged into JAR files, and the ClassMartagegintain Java classes
individually packaged. There is another component, calledeLocator, in which we
have actively collaborated that belongs to the JADE platfand binds specific MAs
with their specific Java class loaders. The CodelLocator amCtide Manager make
possible the future addition of new mobility algorithms éasn different ways of fetch-
ing and loading the agent code without modifying the ageatf@tm, and guaranteeing

3.6. JADE INTER-PLATFORM MOBILITY SERVICE 63

the compatibility with the intra-platform mobility senac

Class Analysis Library

In the JADE AM the agent’s code is not packed into any speaifimat, and it is not
separately managed from the JADE code. On the contrarysitriply included in the
Java class path. Agent migrations require gathering thetagele to send it to remote
locations. JIPMS provides a manual and an automatic metiwoskslect and package
the code of a MA.

The manual method consists of creating a JAR file with all tyendcode with the
file name following the patterRackageNane_Agent Mai nCl ass. This file is put
into a specific folder wherefrom JIPMS retrieves it. The audtic method is based on
the Class Analysis Library (CAL), which provides several totw analyse the agent
main class and recursively gather the agent dependenéslasection. Dependencies
are found by analysing the class constant pool tables [LYi®B8jch include low level
class information.

CAL first searches for direct dependencies of the main agassgcthen it searches
for dependencies of these direct dependencies, and so merabdependencies are
omitted because they are also found in remote locations, tegyString class. Other-
wise, unnecessary code would be sent.

Agent Platform Accessor

The Agent Platform Accessor (APA) is a component used by thiMAas a gateway
to reach the agent platform facilities, e.g., get agent cddéa, and state, register an
agent, start an agent, and so forth. It preserves the AMMtdgam dealing with too
many implementation details. Therefore, it is a bridge leetwthe middleware level
components and the application level components.

Agent Mobility Manager

The Agent Mobility Manager (AMM) is the only mandatory conm@mt according to
IPMA. AMM implements all the protocols used in the migratiprocess and can be

64 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

Agent Mobility Manager

Agent -
Migration [€—_ILITTITTTTTIITHI
Scheduler Agent Migration Queue

| 4 [

Migration Initiator Migration Participant

| Pre-Transfer Protocols |

| Pre-Transfer Protocols I_IJ

| Transfer Protocols |

I
| Transfer Protocols

| Post-Transfer Protocols |

)
;)

| Post-Transfer Protocols

Agent Migration
Cleaner

| Agent Platform Accessor |

Figure 3.20: Agent Mobility Manager.

considered as the front-end of the mobility service. All $kevice code independent of
the specific AM should be implemented in the AMM agent.

In this implementation, as it is depicted in Figure 3.20, &M agent is com-
posed of an Agent Migration Queue, an Agent Migration Sclexdan Agent Migra-
tion Cleaner, a Migration Initiator and a Migration Parti&i components, which are
implemented as JADE behaviours. Since AMM deals with sésgant migrations,
some components must be replicated and require concurré€hey, several replicated
behaviours exist. In case of components with blocking mses, which could stop the
execution of the other behaviours, they are implementechasatiedBehaviours.

When an agent migration is requested an entry is enqueued tagdnt Migration
Queue. The Agent Migration Scheduler is in charge of dealiitly these enqueued mi-
gration requests and assign them to a non busy Migratiomtoit Several migrations
can be concurrently attended because multiple instance®sf of the AMM compo-
nents are instantiated. The Migration Initiator and thefgigpn Participant components
implement the MMP, one processing outgoing migrations aedther processing in-
coming migrations. The protocols associated to the IPMA B8-{ransfer, transfer,

3.6. JADE INTER-PLATFORM MOBILITY SERVICE 65

and post-transfer protocols) are executed within thesepooents. Finally, there is the
Agent Migration Cleaner, which deals with cleaning taskstéiirupted or lost migra-
tions.

3.6.4 JIPMS Protocols

According to IPMA, each migration process is driven by MMmeTe are also a set of
other protocols executed within the PS component whichatherise the agent migra-
tion.

These protocols are subject to change in the future and new @am be included.
Thus, they are developed following a specific interface Whaxilitates their design
and integration within the service. A JIPMS protocol, adiog to the mentioned in-
terface, is composed of a name, a type, a set of behavioiatorg, a set of behaviour
responders, and a set of ontologies. The name is used inldatige of the protocol
and the type indicates if it is a pre-transfer, transfer,astgransfer protocol. Behaviour
initiators and responders are matched in stages, e.g.t@ptavith only one stage or
part will have one initiator behaviour and one respondembeur. Usually these be-
haviours implement an interaction protocol. And one oreermntologies are provided
in order to represent the content of exchanged messages.

The protocols implemented are detailed in the next par&grdp all the cases only
weak migration is implemented (the agent state is not sth#)agent data is encoded
according to the Java serialisation mechanisms, and afirtttecols can be combined
during the agent lifetime, allowing agents to choose thetmmsvenient migration strat-
egy at each time.

Push Cache Transfer Protocol

The PCTP implementation is composed of two pairs of Initi&&esponder behaviours,
one ontology, the JarManager component, and the JarCladst.odhe agent code
exchanged is packed into a JAR file.

The behaviours and the ontology simply implement the podescribed in Sec-
tion 3.4.1. Nevertheless, this is not sufficient to deal \ilith agent code transfered. It

66 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

IS necessary to manage received codes and to have a classtioémhd them.

The JarManager is the component which manages the code.cdimgonent in-
dexes the code according to its unique identification, wimictihis implementation is
calculated from the MD5 hash of all the agent classes. A casfehanism based on
this identification and on a code reference counter has also included to avoid main-
taining replicated JAR files. Other tools are implementetthénJarManager, such as the
automation of agent code gathering using the Class Analyisiatly, and the generation
of JAR files from other code managers, e.g., to make a JAR 6la fain agent received
by ODTP. A JAR class loader has also been implemented, whictrrently integrated
with the standard distribution of JADE.

On Demand Transfer Protocol

The ODTP implementation is composed of two pairs of Initidl®esponder behaviours,
two ontologies, the ClassManager component, and the OnDodhasslLoader. The
agent code, in this case, is exchanged as single Java classes

The behaviours and ontologies simply implement the prodessribed in Sec-
tion 3.4.2. As in the previous protocol, this is not sufficiém deal with the agent
code transfered. In this case it is necessary to have a dadsrl which is in charge
of requesting the code required at each moment. Furthert@enanagement of this
code must also be taken into account.

The OnDemandClassLoader implements the part of the protbetlfetches the
agent code. This code is managed by the ClassManager contpdmenmain func-
tionalities are associated with this component. On the @melhit is used to serve the
agent code. Agents using ODTP can freely select any platbétheir itinerary to act as
a server of all their code. Therefore, they can migrate terdtitations and request their
code to one of the platforms which the agent has establishedde servers. On the
other hand, the component implements a cache mechanisrh wiaititains the classes
which have been previously fetched during a specific perfdoine for later reuse.

3.6. JADE INTER-PLATFORM MOBILITY SERVICE 67

Fragmented Transfer Protocol

The FrTP implementation is composed of several behavimdsa ontology. Further-
more, it takes advantage of the JarManager and JarClasslaadponents developed
for PCTP. The agent code exchanged is also packed into a JAR file

The implementation has been focused on getting the besibpogserformance,
rather than getting an easily understandable and compsidierdevelopment. This
is the reason why there are four behaviours with severalifumeassigned to each one.
The first two deal with the first part of the protocol (Figuré®. and, furthermore, the
responder behaviour also deals with the treatment of laginfients corresponding to
the third part of the protocol. The reason is that the twospamtolve the treatment of
a request message, although with different actions, asdtore efficient to deal with
them from the same behaviour. The other two behaviours atkdrge of sending and
receiving the code and data fragments. The responder partades care of controlling
the reception of all the required fragments. In case of fragitoss, this behaviour indi-
vidually requests the fragments lost (requests are attbloygléhe first pair of behaviours
described).

Finally, minor changes have been done to the JIPMS add-omer to optimise the
protocol performance, e.g., the agent code is directlysteggd using a JAR file path
instead of reloading a Java byte array with all the code.

REST Transfer Protocol

The RESTTP implementation is composed of one pair of InitiResponder behaviours,
one ontology, one HTTP server, one HTTP client, one RESTfanter and the JarMan-
ager and JarClassLoader components used in PCTP. The agereabinged is also
packed into a JAR file.

The behaviours and ontology simply implement the transégotiation process de-
scribed in Section 3.4.4. The HTTP server and client are arggh of transferring the
agent resources using the REST interface. Regarding the RES®T plae protocol, it
has been implemented using the Grizzly HTTP Web server andaa API for REST-
ful Web Services (JAX-RS) [HS07] specification, which is implented by the Jersey
Java project. All the data management is based on the useaséttaams, therefore it

68 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

is handled as efficiently as possible.

3.6.5 JIPMS Usage

The mobility service currently presented has been intedraith the default JADE mo-
bility service. Agents migrate between containers and betwplatforms by using the
doMove(location)nethod of the agent base class. The agent migration reduesgh
ACL messages is not implemented yet.

The destination of an agent migration is indicated by usmglgect implementing
the Location interface. The type of object used determinesrtobility service chosen.
The interface is implemented by the ContainerID class, #fitded for the intra-platform
migration service, and by the PlatformID class, if it is ugadhe inter-platform migra-
tion service.

In case of inter-platform mobility, moreover, the agent salect the protocols to mi-
grate and some particular parameters regarding them. § hhieved by using several
methods provided in the Helper of the mobility service, acHfeservice management
class available to all the agents. Refer to [Cai04] for morermftion about the JADE
service architecture.

3.7 AgentScape Inter-Platform Mobility Service

The migration architecture described in [CO@], which is a preliminary version of
IPMA described in this thesis, and a push transfer protoeskhbeen implemented
in the AgentScape AM (Section 3.7.1) as ASIPMS. AgentScasebeen selected to
do a validation test [CO®07] of the IPMA model in non IEEE-FIPA compliant AMs
(Section 3.7.2). This validation test has permitted to wst# the general difficulties
present in this kind of AMs to implement the mentioned mo&edtion 3.7.4).

This implementation has been kept simple (Section 3.7.3)ly @ push migration
strategy has been included. In this case the agent code tndrdgpacked as in the pre-
vious implementation, by means of a Java JAR file and by mefghe dava serialisation
mechanisms respectively. Since, also in this case, onlk wegration is supported, the
agent state is not included. The referred resulting impteat®n is called ASIPMS.

3.7. AGENTSCAPE INTER-PLATFORM MOBILITY SERVICE 69

3.7.1 AgentScape introduction

AgentScape [OB04] is a secure multi-language mobile AM. Agenigrate between
virtual domains calledbcations(Figure 3.21). An AgentScape location consists of one
or more hosts running the AgentScape AM, typically withiniegke administrative

() ()

domain.

Host Agent Location Host Agent WS
Manager Server Manager Manager Server Gateway
AOS kernel <> AOS kernel

Figure 3.21: The AgentScape middleware architecture.

The default migration service of AgentScape is based on lagpaince migration
strategy. The interaction between the involved platforsesia set of SUNRPC methods
defined within the context of the AOS Kernel (see Section.3B)s kernel is a secure
subsystem below the AM that manages communications and agetainers. It is
worth taking into account that in AgentScape an agent coetds a special package
with the agent code, data, and other resources.

3.7.2 FIPA Message Transport Service

IPMA relies on the use of the IEEE-FIPA specifications for itin@lementation of the
different protocols that compose the migration process ANl for which the imple-
mentation is targeted should support at least a minimun¥ sle¢ ®EEE-FIPA standards:

e The agent naming scheme [FIP04], thus migrating agents mawsta FIPA com-
pliant identification.

e ACL messages must be supported [FIP02e], since the wholetwgrarchitec-
ture is based on the ACL message exchange.

e A Message Transport Service (MTS) to manage the ACL messagegquired.

70 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

e A shared content language must be defined (e.g., SL [FIP@2bg able to inter-
pret the data exchanged inside the ACL messages.

e Interaction protocols (Request and Propose), since theysaein several proto-
cols of the architecture.

AgentScape does not support these specifications. Thenedot of this functional-
ity has been ported from the JADE AM. Nonetheless, the MesJagnsport Service
(MTS) has been implemented from scratch (reusing the MTH®f JADE, imple-
mented by Expositet al.[EARLO3]).

ACL

MessageHandler ACC

Registered
agents

getAID()
send() Incoming
receive() Queue

blockingReceive()
ACL

Outgoing
Queue

Incoming
messages

ACL

ACL ACL

HTTP €—> MTP-HTTP

Figure 3.22: AgentScape FIPA MTS.

The implemented MTS, as shown in Figure 3.22, is composedureétcomponents:
the MTP-HTTP, the ACC (Agent Communication Channel), and theddgeHandler.

e MTP-HTTP : Module that encapsulates ACL messages over the HTTP pilptoco
as defined in the IEEE-FIPA specification [FIPO2f].

e ACC: Main core of the messaging service. It is mainly composednACL
message outgoing queue and a registry of agents.

e MessageHandler Component used by agents to send and receive messages.
Each agent has its own instance because it contains the'sag€lit message
incoming queue.

3.7. AGENTSCAPE INTER-PLATFORM MOBILITY SERVICE 71

The only requirement for agents using this messaging systémbe registered to
the ACC with an IEEE-FIPA compliant name (AID). Then, theyaibta MessageHan-
dler to interact with the service.

Furthermore, the FIPA Request and FIPA Propose interactiotogols have also
been implemented. The Request and Propose interactioncptetare developed as
abstract classes, providing several methods which aigetrégl in reaction to each event
of the protocol. Since the concept of agent behaviour doéexist in AgentScape,
threads are used to implement some of the agent tasks.

3.7.3 ASIPMS Structure

ASIPMS is completely implemented at the application levéhin the AMM agent.
The AgentScape AM has not been modified at all. The AMM agerthis case, is com-
posed of: an Agent Platform Accessor, an Agent Migrationu@yuan Agent Migration
Scheduler, a Migration Initiator, a Migration Participaahd the migration protocols
(pre-transfer, transfer and post-transfer steps). Tlsane Class Analysis Library, since
AgentScape agents are already packed in a special struzlieel Agent Container
which includes all the agent code required by the agent. efbes, the Class Analysis
Library functionality is not necessary.

The AMM is implemented and registered as a standard AgeptSagent. More-
over, it is registered to the IEEE-FIPA MTS to allow commuation with other remote
AMM agents. Once started, the AMM remains waiting for agemjuests to migrate,
and for ACL messages of other AMMs to start the reception oéioigents. Migration
protocols are implemented with the IEEE-FIPA interactioatpcols provided by the
IEEE-FIPA MTS previously explained.

3.7.4 Open issues

There are some open issues when IPMA, described in Secois3ised in no IEEE-
FIPA compliant AMs. In the next list there are the most impattissues and the adopted
solutions in this implementation:

e |IEEE-FIPA compliance workaround: The set of IEEE-FIPA standards required

72 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

for the migration architecture has to be added to the AM. Kapkcity reasons,

they have been integrated at the middleware applicaticel.I&his option is the

least complex because it can be implemented using stataris and agents
without modifying AM internals.

e |I[EEE-FIPA agent naming: Agent local naming scheme should be mapped to the
IEEE-FIPA agent naming scheme and vice versa. In case dira&gping between
the two schemes were not possible, a method based on tatitesyliocal and
IEEE-FIPA agent names had to be developed to do name tramslaCurrently,
there is no automatic name scheme translation implementadentScape.

e Middleware local agent naming Local agent name (name following the AM lo-
cal scheme specification) could be maintained in the degtmplatform, e.g., an
AgentScape agent which migrates to another AgentScape AMbtonly could
keep its IEEE-FIPA name, but it could keep its AgentScapeenadevertheless,
IPMA does not guarantee these local names. In fact, ageims asnobility ser-
vice based on this architecture always must refer to eadr atipents using their
IEEE-FIPA compliant names, since the other location coeld blifferent type of
AM. Thus, in the ASIPMS implementation the local agent nasweat kept.

e Agent life-cycle The agent life-cycle shows the operational state of antagfen
a specific moment. By using it, for example, the messagingaeoan decide
whether deliver a message to an agent or wait to do it later.ivéneagent mi-
grates, its life cycle should be in a specific state (the Titataste in IEEE-FIPA).
Therefore, the agent life-cycle provided by the AM, usingthigration proposed,
should be in an equivalent state regarding to the IEEE-Fié&ycle. This might
be specially important when in a nearby future agents areating between dif-
ferent kinds of AM (Chapter 6).

This implementation is developed in the context of a valaatest of IPMA in non
IEEE-FIPA compliant environments. Hence, only a subsetefdolutions proposed
have been implemented since not all the issues are critimtertheless, they have to
be taken into account for future implementations.

3.8. CONCLUSIONS 73

3.8 Conclusions

In this section an agent migration model based on the IEER Rigent standards,
IPMA, has been presented. It is a complete, robust, flexgl#jcient, and minimal
model.

e The model is complete, since it supports different migrastvategies and mobil-
ity types, it is independent of any specific AM and PL, and ajpplication level
oriented.

e The model is robust, since the task of migrating an agentlegydéed to a spe-
cialised agent which follows a set of well-defined steps. réhe no possibility
of misunderstanding, like in other migration models, susliKalong, where the
migrating agent has the responsibility to drive the migmatiNotice that the order
of the basic operations is immutable to minimise the modeimexity. Another
consideration to the model robustness is that the execafianmigrating agent
is never resumed before it has been unregistered from thieestmcation. There-
fore, the model is collision free, since an agent cannot gik ta the source
location before being unregistered from there.

e The model is flexible, since the subprocesses executed iFig8r¢ 3.4) vary
according to the migration protocols selected by the miggeigent. This mech-
anism is the key to obtain customised agent migrations, fileenmost simple
ones, with one transfer protocol, to the most complex onés nvany other pro-
tocols in use, e.g., different migration strategies, agetihentication, and so on.
Nevertheless, this flexibility does not compromise the nhodleustness in any-
way, since the migration is always managed by the AMM.

e The model is sufficient, since it covers all the needed omeraito do a successful
migration. MMP and all the associated steps of PS are eptpadcuted in each
agent migration.

e The model is minimal, since it exchanges the minimum numibenessages to
follow the migration model proposed in Section 3.3.1.

74 CHAPTER 3. INTER-PLATFORM MOBILITY ARCHITECTURE

The validity of the mobility model presented has been catéch by a theoretical
comparison with other mobility services, and by the emplrimplementation in real
AMs. As a result, the JIPMS for JADE and the ASIPMS for AgemgSe have been
developed. In the next chapter, the results of a set of pagnce tests are presented.
Several theoretical assessments regarding the migrataiegies are demonstrated with
the practical results.

Chapter 4
Performance Analysis

This chapter presents a set of tests to evaluate the mosamelperformance differ-
ences between the migration transfer protocols propogsettiédnter-Platform Mobil-
ity Architecture (IPMA): the Push Cache Transfer ProtocdC{P), the On-Demand
Transfer Protocol (ODTP), the Fragmented Transfer Prét@e@d P), and the REST
Transfer Protocol (RESTTP).

4.1 Introduction

IPMA, described in the previous chapter, is devised to stipg@veral migration strate-
gies and features. In addition to the architecture, fouratign transfer protocols have
been proposed (see Section 3.4) to provide migration giestesuitable for different
environments.

In this chapter a set of tests has been carried out to comipangrotocols’ perfor-
mance implemented in the JADE Inter-Platform Mobility See(JIPMS). The chapter
has been divided in six parts. Firstly, Section 4.2 dessribe evaluation setup used in
the tests. Then, Section 4.3 compares PCTP and ODTP. Secdlimodpares PCTP
and FrTP. And, Section 4.5 compares PCTP and RESTTP. Diffsoemarios are de-
scribed for each of these comparisons. Finally, in Sectiéreddiscussion and usage
recommendations for the migration protocols analysed ereegmted.

75

76 CHAPTER 4. PERFORMANCE ANALYSIS

4.2 Evaluation setup

The evaluation setup used to run the tests are two Pentiunt B/@Hz, with 778
MB of RAM, and a GNU/Linux based operating system (Fedora Codestibution)
with kernel version 2.6.17, both with a dedicated 100 Mb/gcdved Ethernet network.
The Agent Middleware (AM) used is the JADE 3.5 with the depat@nt version of
the JIPMS add-on [JIPa] and the FIPA Message Transport €&lofMTP) HTTP. For
RESTTP the external Jersey 0.7 libraries are used. Sevdvebrkeenvironments are
simulated using the NetEm [HemO5] Linux utility over the rtiened network. For
resource consumption reasons, each Agent Mobility ManggdiM) agent is limited
to process 20 incoming and 20 outgoing concurrent agentatmgs. In case of more
migration requests, they are queued until one or more psesdwve finalised.

The performance tests have been carried out by using afispégicreated, agent
mobility test suite [JIPb]. It is composed of a programmadgient that creates a set of
agents which follow a specific itinerary (list of locatiorsfixed number of times (called
iterations from now on). When the agents finalise their itimgthe selected number of
times, they send a message to the programmable agent ngtifyFinally, the average
time consumed by each agent migration round-trip to the Ad=alculated:

Total time
Iterationsx Number of agents

Average time=

The concurrent migrations are processed following theogbphy of a pipeline. In
pipelines, the individual time to produce a product is lartpan the average time spent
per product. Therefore, the results shown in the resuletlibr the case with several
agents, must be seen as a measure of throughput for the AMs.

The itinerary performed in the next tests by the agents, vbansists of two loca-
tions, is repeated ten times or one hundred times dependitigedype of agent tested.
The process is repeated many times to minimise the AM anct atgent-up time influ-
ence over the results. Furthermore, each test is perfornetifies and the final results
are product of the average outcome [MAF]. Usually the tests are carried out with 1,
10, or 100 agents concurrently migrating. This allows toys®athe average time that
each of these agent migrations consumes to the AM.

4.3. PERFORMANCE EVALUATION 1: PCTP VS ODTP I

4.3 Performance evaluation 1: PCTP vs ODTP

This first part of the performance evaluation comprises th&fPand the ODTP migra-
tion protocols. Two kinds of tests have been done, one wgthtweight agents (small
code with only two Java classes), and another one with heasighwagents (large code
with twelve or thirty-two Java classes). Each test has begfopned, with 1, 10, or

100 agents running simultaneously. The LAN environmentudesd in the evaluation

setup (Section 4.2) has been chosen to perform the tests,isia the most appropriate
for ODTP. PCTP is latterly tested in other environments.

Therefore, the parameters modified in the tests are: the auofilagent classes each
agent has, the number of iterations or round-trips eachtafyes, and the number of
agent instances concurrently running. It must be takenantmunt that in PCTP the
agents’ code is encapsulated in a compressed JAR file. Whd®IRP the code is not
compressed and it is always served from the first locatiom@ftinerary (therefore it
is local to one of the platforms, although it is always loga#quested when the cache
mechanisms are disabled).

4.3.1 Lightweight agents

The first set of tests uses a lightweight agent to follow theerary between the two
locations. A lightweight agent is composed of two Java @asghich weigh 4KB in
total. Since protocols implemented provide code cachinghaeisms, two versions of
the tests have been performed, one with this feature enabl@dhe other one with it
disabled.

The results can be appreciated in Table 4.1. Several factsecatated with the help
of Table 4.2 and Figure 4.1. First of all, the on-demand sgyatvith cache mechanisms
disabled consumes more time than the push strategy. Inabés with the push strategy
9 messages are used in front of the 11 messages used in tleeamd strategy (take
into account that the code is composed of two classes, anthiegsages are required to
request each class). If cache mechanisms are enabled tsagessised are the same,
7 messages in this case, and, therefore, the time spentilarsion both.

The use of code caching mechanisms improves the migratidorpence, since

78

Average migration time (ms)

Average migration time (ms)

180

160

140

120

100

80

60

40

20

900

800

700

600

500

400

300

200

100

CHAPTER 4. PERFORMANCE ANALYSIS

PCTP Cache'DisabIed 2/2 Classes'U::l
PCTP Cache Enabled 2/2 Classes Uggzsss
ODTP Cache Disabled 2/2 Classes U s

SSes2oS
s

«\%Xg\io
SO

R
s

L0208

O

S0
R
(IOXIONSS
SRR,

&

OIS
sRense
O

o

S

100 Agents

Figure 4.1: PCTP vs ODTP 2 Classes.

PCTP Cache Disabled 12/12 Classes U_———
PCTP Cache Disabled 2/12 Classes Uggssss
ODTP Cache Disabled 12/12 Classes Ugsuumm |

ODTP Cache Disabled 2/12 Classes Ug=ii

Figure 4.2: PCTP vs ODTP 12 Classes.

4.3. PERFORMANCE EVALUATION 1: PCTP VS ODTP

Average migration time (ms)

Average migration time (ms)

2000

1500

1000

500

1400

1200

1000

800

600

400

200

0

PCTP Cache Di'sabled 32/32 Classes'U::
PCTP Cache Enabled 2/32 Classes Uzssiss
ODTP Cache Disabled 32/32 Classes Ugsusmm

r ODTP Cache Enabled 2/32 Classes ULy
& _
. =
1 Agent 10 Agents 100 Agents
Figure 4.3: PCTP vs ODTP 32 Classes.
PCTP Cache Disabled 10 Agents All Classes Used—
PCTP Cache Disabled 10 Agents Partial Classes Used--
L ODTP Cache Disabled 10 Agents All Classes Used - |
ODTP Cache Disabled 10 Agents Partial Classes Used
2 Classes 12 Classes 32 Classes

Figure 4.4: PCTP vs ODTP 10 Agents.

79

80 CHAPTER 4. PERFORMANCE ANALYSIS

Code cache? 1 Agent| 10 Agents| 100 Agents
Push No 142 88 97
migration Yes 142 68 79
On Demand No 170 111 154
migration Yes 116 71 83

Table 4.1: Lightweight agents migration performance (i).ms

1 Agent| 10 Agents| 100 Agents
PCTP Cache usage (t.decrease) 0% 22.73% 18.56%
ODTP Cache usage (t.decrease) | 31.76% 36.04% 46.10%

PCTP vs ODTP No-Cache (t.decrease)16.47% 20.72% 37.01%

PCTP vs ODTP Cache (t.decrease) -22.41% 4.23% 4.82%

Table 4.2: Lightweight agents migration comparison.

the agent code is only transfered once (there are only tvatitots, therefore one code
transfer is enough). The benefits of these mechanisms aeemtceable with ODTP.
The reason is that in PCTP two messages are saved up regarDifig, Where two
messages are sent for each requested agent class. Theexieption for the case of
only one agent using PCTP. The PCTP cache mechanisms onlyamalmt agent code
while it is being used by at least one agent. Therefore, wheretis only one agent
migrating, the code is not maintained in the cache after gentleaves the platform,
and it cannot be reused the next time the agent arrives. Jthig reason why the results
in this case are exactly the same with and without the cachehamésms activated.
Furthermore, when the results are compared with ODTP, #isistakes advantage of
the mentioned implementation drawback and gets a betteageeound trip time.

It can also be appreciated that one migrating agent consumagrage, more time
than several ones (do not confuse this with the real timetspexach agent migration
from the agent perspective). The reason is that ten agegtaitimg simultaneously are
pipelined without having to wait for the others’ migratioropesses finalisation. Migra-
tion processes are parallelised. Nevertheless, when ortduliagents are launched, the
average migration time increases regarding the ten agesitshhere are three reasons:

e more agents means more load in the AM and in the migrationceerv

e more agents means more migrations and, therefore, moreagessgxchanged

4.3. PERFORMANCE EVALUATION 1: PCTP VS ODTP 81

and more load in the message transport service.

¢ JIPMS has been set up to 20 maximum concurrently migrattbes, the remain-
ing 80 migrations have to wait in a queue. Increasing thisimasnh means more
performance but more consumed resources too.

4.3.2 Multi-class Heavyweight Agents

The second set of tests use heavyweight agents composedhpithaases to follow the
itinerary between the two locations. There are two typegehss, one with a code that
weighs 39KB and it is composed of 12 Java classes (resultsharen on Table 4.3),
and another one with a code that weighs 108KB and it is congpok82 Java classes
(results are shown on Table 4.5). Two of these classes b&bahg agent core, the rest
are extra classes to increase the agent weight, each oneBofE2(¢h protocol is tested
with the two mentioned types of agents (12 and 32 classead),@@ with two versions,
one using all the code (12/12 and 32/32 classes) and anathersing only part of them
(2/12 and 2/32 classes).

The tests are only performed with the code caching mechamissabled. The rea-
son is that the main difference between the protocols aedlisthe way the code is
transfered. Therefore, code caching mechanisms reduamtieetransfer to only one
(the first migration). In this case the results do not presegriificant differences be-
tween the two protocols (compare, for example, the last tmsrof Table 4.2).

From Figures 4.2 and 4.3, and Tables 4.3 and 4.5, severaldactbe stated. First of
all, the time spent in an agent round trip increases as thet agde size grows. Using
ODTP this is more noticeable, since more classes means lyotname data to transfer,
but more messages to exchange. Furthermore, it must beitgkeaccount that PCTP
sends the agent code within a JAR file which is compressedsfeaing only 26KB and
72KB respectively for the two agent types, but spending n@é& time.

The next paragraphs discuss the statements got from camggae two migration
protocols (Table 4.4 and Table 4.6). Regarding PCTP, the mésmf tests performed
by agents using all the code, 12/12 and 32/32 classes, ayeslagthtly different from
the ones got by agents using only part of the code, 2/12 artic?43ses (see first and

82 CHAPTER 4. PERFORMANCE ANALYSIS

Classes used 1 Agent | 10 Agents| 100 Agents

Push 12-12 394 252 276
migration 2-12 328 222 233
On Demand 12-12 483 326 696
migration 2-12 175 116 159

Table 4.3: Heavyweight agents (12 classes) migration padoce (in ms).

1 Agent | 10 Agents| 100 Agents
PCTP part vs all code (t.decrease) 16.75% 11.90% 15.58%
ODTP part vs all code (t.decrease) 63.77% 64.42% 77.16%

PCTP vs ODTP all code (t.decrease)18.43% 22.70% 60.34%

ODTP vs PCTP part code (t.decrease}6.65% 47.75% 31.76%

Table 4.4: Heavyweight agents (12 classes) migration casgra

Classes used 1 Agent | 10 Agents| 100 Agents

Push 32-32 1,787 1,114 925
migration 2-32 1,362 961 753
On Demand 32-32 1,141 805 1,855
migration 2-32 188 121 164

Table 4.5: Heavyweight agents (32 classes) migration padaoce (in ms).

1 Agent | 10 Agents| 100 Agents
PCTP part vs all code (t.decrease) 23.78% 13.73% 18.59%
ODTP part vs all code (t.decrease) 83.52% 84.97% 91.16%

PCTP vs ODTP all code (t.decrease)-56.62% | -38.39% 50.13%

ODTP vs PCTP part code (t.decrease)36.20% 87.41% 78.22%

Table 4.6: Heavyweight agents (32 classes) migration cosga

4.3. PERFORMANCE EVALUATION 1: PCTP VS ODTP 83

second rows of Table 4.4 and Table 4.6). The push migratratesgty always sends all
the agent code, it does not matter whether this code is ugsat or the remote location.
Despite this, agents that only use two classes performtiligster migrations, since
they do not load the rest of them in the main memory.

Regarding ODTP, in case of using all the agent code (12/12/8232asses), which
is the worst case for this strategy, the results are ratlggrehnithan using PCTP. When
one hundred agents are migrating, the time spent is very. higrelve or thirty-two
classes are requested for each agent, which means exch@4gand 64 messages re-
spectively just to transfer the agent code, in front of theessages used in the push
migration strategy (although larger than the others). &hesults confirm the state-
ments of Section 3.4.1 regarding the suitability of PCTP fmding large size agent
codes if they are completely used in all the locations thentagsits. Nevertheless, no-
tice that there is a case in which this statement is not caedgleue. It is the case of 1
and 10 agents using all the agent code (check the third rowld&™®.6). The efficiency
of the messaging service implemented in JADE decreasesaszd of the messages
which are sent increases [Cuc04, JJKO06]. Therefore, in gf@siBc case it is more effi-
cient to send the agent within several small messages thithimwi big one. When one
hundred agents are migrating, this is different becauseuh®er of messages involved
is so high that the messaging service gets rather saturateldthe average migration
time raises.

According to the result tables, agents using only part df texle take advantage of
an on-demand migration strategy, since less time is spantuking the push migration
strategy. As just the two main classes of the agent are respesnly four messages
are exchanged. The bigger the agent code is, the betterimpmevement. Notice that
the average time spent for each agent in this case is prifcticastant (in Figure 4.4
there are represented the different times spent for tentag@srthe number of classes
increase). The results, therefore, confirm the statemestsitbed in Section 3.4.2.

84 CHAPTER 4. PERFORMANCE ANALYSIS

4.4 Performance evaluation 2: PCTP vs FrTP

This second part of the performance evaluation comprise®@irP and the FrTP mi-
gration protocols. The aim of this evaluation is comparimg performance of the two
mentioned protocols, and establishing which are the mgstogpiate FrTP fragment
sizes for each situation. Since FrTP is devised to optintiegransference of weight
agent resources (agent code and data), the tests have bfempd with agents of dif-
ferent code sizes and, in some cases, of different data(§iaes5KB to 1000KB). Each
test has been done with 1 and 10 agents running simultaryeduse first case allows
to analyse the time spent by a single agent migration rotipd-And the second case
allows to analyse the average time consumed in concurregrations by each agent
round-trip to the AM. All these tests have been performedieé different scenarios,
since FrTP is devised for any type of network environment.

In the next tests these are the parameters modified: thefdize agent code and the
agent data, the number of iterations or round-trips (whechdjusted to 10 for agents
greater than 100KB, and to 100 for agents smaller or equalt@@KB), the number of
agent instances concurrently running, and the FrTP fragsiee. It must be taken into
account that in all the cases the agent code is encapsutatedompressed JAR files.

4.4.1 Scenario 1: Local Area Network

The first scenario considered is a Local Area Network (LAN)isTis the network ex-
plained in Section 4.2. It has an associated response tines®than 1ms, it does not
present packet loss, and it has a performance of 100 Mb/s.

Two basic sets of tests have been performed in this sceddrefirst one is a set of
agents with different code sizes (see Table 4.7). The seaoads a set of agents with
different data sizes in the same environment than the puswoe (see Table 4.8).

Firstly, as it is depicted in Figure 4.9 PCTP performs bett@ntFrTP for small
agent code sizes up to 25KB. This is because this protocokgssdemplex than the
other, and due to the less number of messages used whendheatibn to transfer is
relatively small. But for agents with codes equal or high@ntbOKB FrTP performs
very much better than PCTP. The reason is that no weighty AClsages are used and,

4.4. PERFORMANCE EVALUATION 2: PCTP VS FRTP

Average migration time (ms)

Average migration time (ms)

25000

20000

15000

10000

5000

FrTP 5KB Fragment 1 Agents———
FrTP 10KB Fragment 1 Agents-—<----~
FrTP 15KB Fragment 1 Agents =*--
FrTP 20KB Fragment 1 Agents-a i
FrTP 25KB Fragment 1 Agents——=--
FrTP 50KB Fragment 1 Agents- o- -

O 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
Agent code size (KB)
Figure 4.5: FrTP 1 Ag. Sc. 1 (code).
9000 T T T T T T T T
FrTP 5KB Fragment 10 Agents——

8000 | FrTP 10KB Fragment 10 Agents-—<— 4
FrTP 15KB Fragment 10 Agents-—»--
FrTP 20KB Fragment 10 Agents—a

7000 | FrTP 25KB Fragment 10 Agents-—=—- 1
FrTP 50KB Fragment 10 Agents- o- -

6000 | o 1

5000 | 1

4000

3000

2000

1000

100 200 300 400 500 600 700 800 900 1000
Agent code size (KB)

Figure 4.6: FrTP 10 Ag. Sc. 1 (code).

85

86

Average migration time (ms)

Average migration time (ms)

CHAPTER 4. PERFORMANCE ANALYSIS

6000 T T T T T T T T T
FrTP 5KB Fragment 1 Agents——— -
FrTP 10KB Fragment 1 Agents--—x—-
FrTP 15KB Fragment 1 Agents--
5000 - FrTP 20KB Fragment 1 Agents--=
FrTP 25KB Fragment 1 Agents-—=--
FrTP 50KB Fragmentl Agents--o--
4000 - 8
3000 | s L
- @]
2000 L i
1000 8
o 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
Agent data size (KB)
Figure 4.7: FrTP 1 Ag. Sc. 1 (data).
8000 T T T T T T T T
FrTP 5KB Fragment 10 Agents—— |
FrTP 10KB Fragment 10 Agents--x-->"
7000 | FrTP 15KB Fragment 10 Agents--*—--]
FrTP 20KB Fragment 10 Agents™e
6000 - FrTP 25KB Fragment 10 Agents—=-- |
FrTP 50KB Fragment 10 Agents---
5000 /]
4000
3000 o’
2000
1000 8
0 1 1 1 1

0 100 200 300 400 500 600 700 800 900 1000
Agent data size (KB)

Figure 4.8: FrTP 10 Ag. Sc. 1 (data).

4.4. PERFORMANCE EVALUATION 2: PCTP VS FRTP

160000 T T T T T T T T T
FrTP 10KB Fragment 1 Agents——
FrTP 10KB Fragment 10 Agents-—<--—- .-
140000 PCTP 1 Agents—* 7]
> PCTP 10 Agents - &
E 120000t -
Q
S
= 100000 g
c
R
3
5 80000 g
S
> 60000 - g
o
()
Z 40000 X 1
g
20000 g
oz
0 2 e e = 9

0 100 200 300 400 500 600 700 800 900 1000
Agent code size (KB)

Figure 4.9: FrTP vs PCTP Scenario 1 (code).

160000 . ; : : : . . .
FrTP 10KB Fragment 1 Agents——
FrTP 10KB Fragment 10 Agents--x---
140000 PCTP 1 Agents-—--- .7
‘@ PCTP 10 Agents-=-
E 120000+]
Q
1S
* 100000 1
jo
2
©
5 80000 1
£
g 60000 |
o
[)
Z 40000 'y]
s
20000 - L 1
ﬁ
0 tme= - =S — T]

0 100 200 300 400 500 600 700 800 900 1000
Agent data size (KB)

Figure 4.10: FrTP vs PCTP Scenario 1 (data).

88 CHAPTER 4. PERFORMANCE ANALYSIS

Protocol | Agents| 5KB | 10KB | 25KB | 50KB | 100KB | 250KB | 500KB | 1000KB
FrTP 1 165 189 253 368 593 | 1,367 | 2,442 4,016
5KB 10 112 132 190 297 448 919 | 1,822 4,733
FrTP 1 161 204 290 444 705| 1,559| 3,055 4,698
10KB 10 107 150 223 356 534 906 | 1,548 3,065
FrTP 1 161 205 359 600 | 1,020 2,658| 4,871 7,563
15KB 10 107 142 283 502 805| 1,372 1,729 3,061
FrTP 1 161 206 424 668 | 1,179| 3,439| 5,662 8,852
20KB 10 106 143 346 572 932 | 1,705| 2,183 3,162
FrTP 1 161 204 551 838 | 1,314| 3,789| 6,750| 10,638
25KB 10 107 142 460 735| 1,033 2,098| 2,792 3,438
FrTP 1 161 204 530 | 1,629| 2,868| 7,632| 13,908| 23,343
50KB 10 107 142 414 | 1,339 | 2,426| 4,532| 6,034 8,147
PCTP 1 126 140 222 493 | 1,734 11,943| 41,499| 150,162

10 77 85 140 339 | 1,200 8,300| 32,710| 116,721

Table 4.7: Scenario 1: Multi-size agent code migrationqranince (in ms).

therefore, its associated overhead does not appear (se@4ClLiK06]). According to
the results, it is easy to see that when PCTP is used, the tieré spthe migration
increases exponentially as the agent code gets weightieile \Wlncreases linearly
when FrTP is used.

Regarding the migration concurrence, the two protocoloperbetter when several
migrations are done in parallel. Nevertheless, FrTP seense tspecially favoured
with it. The reason is that the transference is divided in ynaessages than can be
interleaved with the messages of the other migrations. iltsigecially noticeable when
large agent codes or data are transfered, where the timaroeadswith concurrence can
be less than a 50% with a single agent.

In these tests a metric to compare the throughput of the trogreransfer protocols
is introduced. It consists of calculating the best trandfga rate achieved with each
protocol. it is calculated by dividing the amount of datansfered (in our case twice
of the agent code size, since there are two migrations in aatiog round-trip) by the
time spent. Then, the best throughput of FrTP is achieved)byta of 1000KB sent in
fragments of 15KB. The throughput in this case is about 666KIB/the case of PCTP
the better throughput is for agent codes of 25KB, and it is aB&BKB/s. In case of
using this protocol for agents of 1000KB, the throughput ity &TKB/s.

In FrTP (Figures 4.5 and 4.6) the best fragment sizes areceetwKB and 15KB

4.4. PERFORMANCE EVALUATION 2: PCTP VS FRTP 89

Protocol | Agents| 5KB | 10KB | 25KB | 50KB | 100KB | 250KB | 500KB | 1000KB
FrTP 1 300 243 305 347 495 947 | 1,692 -
5KB 10 128 138 186 264 397 887 | 1,815 -
FrTP 1 287 209 398 369 509 928 | 1,611 3,062
10KB 10 192 149 217 284 405 810 | 1,539 4,307
FrTP 1 288 206 308 521 576 935 | 1,594 2,962
15KB 10 185 138 222 326 448 811 | 1,409 3,936
FrTP 1 292 207 445 478 684 | 1,071| 1,670 3,057
20KB 10 186 140 331 360 555 836 | 1,489 3,722
FrTP 1 292 208 434 567 776 | 1,194| 1,826 3,343
25KB 10 192 139 337 408 588 | 1,083| 1,609 4,031
FrTP 1 324 206 420 | 1,114 1,564 | 2,283| 3,099 5,832
50KB 10 192 139 310 923 | 1,141 1,762| 2,944 7,724
PCTP 1 133 148 227 499 | 1,760 | 11,546| 39,869| 141,939

10 81 91 160 413 1614 | 10,726 | 33,456 | 113,339

Table 4.8: Scenario 1: Multi-size agent data migrationgrenance (in ms).

depending on the amount of data to transfer, and the numlagyenit migrations. When

there is only one agent migration the fragment size of 5KBhé&s host appropriate.

While, when there are ten agents migrating, because of thehigumber of messages
exchanged, the best fragment sizes are 5KB and 10KB depeadithe amount of data

to transfer (usually more data performs better with 10KByfin@nts).

Finally, since FrTP also optimises the transfer of the agetd, a set of tests with
agents carrying different amounts of data have been peeibrisee Table 4.8). The
results are similar to the previous ones, but they have saualigrities because the
data is created by means of an agent global variable of theedesize. First of all,
the tests with 1000KB of data and fragments of 5KB cannot bfopaed because too
much memory is used (our agent serialisation keeps in metherggent instance and
the serialisation result, this is at least the double amotidata in memory). Secondly,
the time spent in agent migrations without concurrencenislar or even smaller than in
agent migrations with concurrence. The reason is that tteetddransfer is in memory,
and it is more efficient to deal with it. Conversely, the agemteis kept into a secondary
storage. Furthermore, the concurrence is penalised bytreeaanount of memory used.
And regarding the optimum fragment size, in this case it isanariable, and it ranges
from 5KB to 15KB (Figures 4.7 and 4.8). PCTP performs simitattte previous cases
with agents of different code sizes. In this case the diffeeebetween concurrent and

90 CHAPTER 4. PERFORMANCE ANALYSIS

Protocol | Agents| 5KB | 10KB | 25KB | 50KB | 100KB | 250KB | 500KB | 1000KB

FrTP 1 2,300 | 2,768 | 3,628 | 5,230 | 8,551 | 18,531| 35,203| 68,362
10KB 10 1,742 | 2,244 | 3,122 | 4,630| 8,031| 17,966| 34,599 | 67,833
FrTP 1 2,298 | 2,565| 3,372 | 4,824 | 7,550| 15,903| 30,061| 58,032

15KB 10 1,742 | 1,958 | 2,806 | 4,310 | 7,132| 15,499| 29,551| 57,600
PCTP 1 2,017 | 2,264 | 2,719| 3,423 | 5,216 | 16,496| 46,232| 153,689
10 1544 | 1,695| 2,094 | 2,303 | 2,550| 9,133| 33,870| 112,927

Table 4.9: Scenario 2A: Multi-size agent code migratiorfgrenance (in ms).

no concurrent migrations have also been reduced.

4.4.2 Scenario 2: Wide Area Network

The second scenario considered is a Wide Area Network (WANg. network, simu-
lated with the NetEm [HemO05] Linux utility, has an assoaiatesponse time of 120ms,
with a variation of 10ms, and a bandwidth of 100 Mb/s. Two etéint cases have
been considered, one where there is no packet loss (callsth8c 2A) and another
one where there is a 5% packet loss (called Scenario 2B). $naki case, according
to [MSM97], the maximum bandwidth is limited at the tranddevel by the TCP pro-
tocol because of the packet loss and retransmissions.

Only one set of tests for each of the network variants has beesidered. The set of
tests that analyses agent migrations with different cazksgisee Table 4.9 for Scenario
2A, and Table 4.10 for Scenario 2B). In this case only the 10K8 85KB fragment
sizes are tested, since the cost to perform the tests in stes@rios is higher than in
the previous ones, and in this case the fragment size cosgpais not so relevant. In
the first scenario, the best fragment sizes were 5KB, 10KB, &K@ 1In this case only
the 10KB and 15KB fragment sizes have been used, since thgy less messages sent
(this is better with this scenario latency). At the end, thstlvesults have been achieved
by the 15KB fragment size (this is the reason why the 10KBItesue not represented
in the figures).

In the first case (Table 4.9, and Figure 4.11), the most retes@ansequence of the
network latency rise is an important increase of the avetage spent by the agent
migrations. The network latency does not affect the effeatietwork bandwidth. But
the migration transfer protocols presented are victimbeihhessage handshake delays,

4.4. PERFORMANCE EVALUATION 2: PCTP VS FRTP

Average migration time (ms)

Average migration time (ms)

160000

140000

120000

100000

80000

60000

40000

20000

200000
180000
160000
140000
120000
100000
80000
60000
40000
20000
0

FrTP 15KB Fragment 1 Agents——— |
FrTP 15KB Fragment 10 Agents-—»-—-"
PCTP 1 Agents-—*:-- 7
PCTP 10 Agents-®

0 100 200 300 400 500 600 700 800 900 1000
Agent code size (KB)

Figure 4.11: FrTP vs PCTP Scenario 2A.

FrTP 15KB Fragment 1 Agents——— .~
FrTP 15KB Fragment 10 Agents-—<— |
PCTP 1 Agents—x"
PCTP 10 Agents-@

0 100 200 300 400 500 600 700 800 900 1000
Agent code size (KB)

Figure 4.12: FrTP vs PCTP Scenario 2B.

91

92 CHAPTER 4. PERFORMANCE ANALYSIS

Protocol | Agents| 5KB | 10KB | 25KB | 50KB | 100KB | 250KB | 500KB | 1000KB

FrTP 1 3,285| 3,959 5,333| 7,817 | 13,065| 28,031| 53,966 | 106,269
10KB 10 2,456 | 3,104 | 4,463| 6,875| 12,071| 27,670| 53,423 | 10,5216
FrTP 1 3,359 | 3,665| 4,962 | 7,447 | 11,957 | 25,457| 48,561| 93,828

15KB 10 2,462 | 2,738 | 4,129| 6,515| 10,942 | 24,426| 47,469| 92,693
PCTP 1 2,988 | 3,248| 4,276| 5932| 9,673| 27,001| 67,196| 197,131
10 2,189 | 2,424 | 3,289 | 4,284 | 5,123 | 16,034| 43,207 | 135,615

Table 4.10: Scenario 2B: Multi-size agent code migratiorigrgerance (in ms).

highly increased because of the network latency. Never$iseit is surprising that the
round-trip time increase is specially noticeable with Fri®h the one hand, it seems
to make sense that as more messages are sent more noticetiigdatency, but on
the other hand, FrTP is designed to mitigate this problentesho acknowledgements
are expected by each data message sent. Then, the expilasdtiat despite the pro-
tocol does not wait for acknowledgements, the underlyimaggport protocol, which
is implemented by the MTP-HTTP, does. Therefore, the delapis case is directly
proportional to the number of fragments sent. Using an MT& d¢lid not require an
acknowledge for each message sent, such as the MTP-UDP [Ctiu®$¢erformance
of FrTP, in such conditions, would be rather better. Regard#&CTP, although the
current network conditions also increase the average roryméime, in migrations of
large agents the latency is concealed by the penalisatidxCbaf messages with high
amounts of data. Furthermore, it must be taken into accbantrt this case the number
of exchanged messages is much smaller than in FrTP.

Comparing the two protocols, in this scenario, FrTP perfooetser than PCTP for
agent codes equal or greater than 500KB. The best transéeratatachieved with Fr'TP
is 35KB/s with the 1000KB agent and 15KB fragments. At the eyt the best transfer
data rate achieved with PCTP is 78KB/s with the 100KB agent.skinee protocol with

the 1000KB agent presents a transfer data rate of 18KB/shAltases are referred to
concurrent migrations.

In the second case (Table 4.10, and Figure 4.12) the reshiihéned are concep-
tually similar to the previous ones. The only difference igemeral increase of the
average time spent for each migration round-trip (apprexéty a 50% more than the

4.4. PERFORMANCE EVALUATION 2: PCTP VS FRTP 93

Protocol | Agents| 5KB | 10KB | 25KB | 50KB | 100KB | 250KB | 500KB | 1000KB
FrTP 1 1,169| 1,524 | 2,001 | 2,859 | 4,695| 10,181 | 19,327 | 37,589
10KB 10 935| 1,149| 1,652| 2,499| 4,329| 9,795| 18,870| 37,053
FrTP 1 1,177 | 1,425| 1,975| 2,799 | 4,474| 9,736| 18,159| 35,217
15KB 10 935| 1,035| 1,562 | 2,465| 4,129| 9,212| 17,684| 34,617
PCTP 1 1,008 | 1,100| 1,675| 2,496 | 5,002 | 19,412| 56,628| 177,940

10 801 882 | 1,253 | 1,493 | 2,714| 12,205| 39,581 | 125,591

Table 4.11: Scenario 3: Multi-size agent code migratiorigrarance (in ms).

results obtained in the previous scenario). The transfex idde achieved in this sce-
nario with FrTP is 21KB/s with the 1000KB agent and 15KB fragmse Using PCTP
the maximum data rate achieved is 39KB/s with the 100KB agEin¢ same protocol
with the 1000KB agent presents a transfer data rate of 15kf/the cases are referred
to concurrent migrations. Finally, it must be taken intoaet that in this scenario the
network bandwidth is limited because of the latency and etldss (see [MSM97]).

Nevertheless, this limit does not affect the mentioned tlaiasferences because the
data rate obtained is below it.

4.4.3 Scenario 3: Metropolitan Area Network

The third scenario considered is a Metropolitan Area NektwiAN). The network,
simulated with the NetEm [HemO05] utility, is composed of t@@Mb/s (downstream)
1Mb/s (upstream) ADSL links to a Digital Subscriber Line &ss Multiplexer (DSLAM)
that behaves as a network hub. The response time asso@atseist links is around
30ms. The data exchanged between Agent Platforms (APsg s@wverses two ADSL
links, can only reach 1Mb/s of bandwidth and the response &ohieved is 60ms.

As in the previous scenario, only one set of tests has beesidmed. The set of
tests that analyses agent migrations with different codessjsee Table 4.11). In this
case the average time spent in an agent migration roundidispbeen proportionally
reduced to the latency reduction regarding the Scenaridr2this case, as it is shown
in Figure 4.13, FrTP performs better than PCTP for agentsl eqgmeater than 100KB,
when there is a single agent migrating, and 250KB, for tentsgaigrating. The trans-
fer data rate achieved in this scenario with FrTP is 58KB/&wie 1000KB agent and
15KB fragments. Using PCTP the maximum data rate achievedK®8/5 with the

94 CHAPTER 4. PERFORMANCE ANALYSIS

180000 T T T T T T T T E
FrTP 15KB Fragment 1 Agents—— -
| FrTP 15KB Fragment 10 Agents-—<— |
160000 PCTP 1 Agents-—*
- PCTP 10 Agents:-»
= 140000} g
()
§S 120000 1
c
2 100000 1
I
(=]
€ 80000 1
3
© 60000 - W i
&
< 40000 = 1
20000 | e 1
O /| ! ! ! ! ! ! !

0 100 200 300 400 500 600 700 800 900 1000
Agent code size (KB)

Figure 4.13: FrTP vs PCTP Scenario 3.

100KB agent. The same protocol with the 1000KB agent preseitansfer data rate
of 16KB/s. All the cases are referred to concurrent migratidnis worth noticing that,
despite the bandwidth limitation of the links present irsthtenario, the maximum data
rate achieved does not reach a 100% usage of the link. Therréathat the effective
data rate achievable by the two protocols is limited by tieney in FrTP, and the poor
efficiency of the Agent Communication Language (ACL) messagdaDE when they
contain high amounts of data, such as in PCTP.

4.5 Performance evaluation 3: PCTP vs RESTTP

This third part of the performance evaluation comprisesRREP and the RESTTP
migration protocols. The aim of this evaluation is compgrine performance of both
protocols. Since RESTTP, as FrTP, is devised to optimisertimsterence of weight
agent resources (agent code and data), the tests have héamped with agents of
different code sizes and, in some cases, of different da&s gusually from 5KB to
1000KB). Each test has been done, with 1, and 10 agents rusimmgtaneously. All

4.5. PERFORMANCE EVALUATION 3: PCTP VS RESTTP 95

Protocol | Agents | 5KB | 10KB | 25KB | 50KB | 100KB | 250KB | 500KB | 1000KB
RESTTP 1 101 102 106 109 126 160 212 311
10 71 71 73 77 87 108 145 242

PCTP 1 126 140 222 493 | 1,734| 11,943| 41,499| 150,162
10 77 85 140 339 | 1,200| 8,300| 32,710| 116,721

Table 4.12: Scenario 1: Multi-size agent code migratiorigrarance (in ms).

these tests have been performed in the same three scersatbmhe previous section,
since RESTTP is also devised for any type of network envirarime

In the next tests these are the parameters modified: thefdize agent code and the
agent data, the number of iterations or round-trips (whechdjusted to 10 for agents
greater than 100KB, and to 100 for agents smaller or equaltf@KB), and the num-
ber of agent instances concurrently running. In all the £dbe agent code is also
encapsulated in uncompressed JAR files.

4.5.1 Scenario 1: Local Area Network

Two basic sets of tests have been performed in this scerdrefirst is a set of agents
with different code sizes, migrating between the two lawagipresent in the network,
and using RESTTP and PCTP (Table 4.12). The second is a setrasagéh different
data sizes in the same environment than the previous on@gbée4.13).

Firstly, as it is depicted in Figure 4.14, RESTTP is the moftieht protocol. The
average migration round-trip time increases linearly,levhising PCTP this time in-
creases exponentially as agents get weightier. PCTP cambileced usable to migrate
agents with a code size up to 50KB with regard to RESTTP. Theatian concurrency
reduces the average migration time spent by the AM to a 66%eofilne spent for a
single migrating agent.

The best data transference rate obtained by RESTTP is adiigagents of 1000KB.
The throughput in this case if about 8MB/s. In the case of PCERéiter throughput
is for agent codes of 25KB, and it is about 313KB/s. In case ofguthis protocol for
agents of 1000KB, the throughput is only 17KB/s.

Finally, since RESTTP also optimises the transfer of the adata, a set of tests
with agents carrying different amounts of data has beeropedd (Table 4.13 and

96

Average migration time (ms)

Average migration time (ms)

160000

140000

120000

100000

80000

60000

40000

20000

0

CHAPTER 4. PERFORMANCE ANALYSIS

e

e

R

RESTTP 1 Agents—+—
RESTTP 10 Agents-—x--—- -
PCTP 1 Agents--—-x--- 7
PCTP 10 Agents-—#-

1 N3 ! ! ! !

0

100 200 300 400 500 600 700 800 900 1000

Agent code size (KB)

Figure 4.14: RESTTP vs PCTP Scenario 1 (code).

160000

140000

120000

100000

80000

60000

40000

20000

P

o

,,;»r’ﬁ&:

RESTTP 1 Agents——

RESTTP 10 Agents-——-x---
PCTP 1 Agents--—-x---
PCTP 10 Agents—a

1 & ! ! ! L

100 200 300 400 500 600 700 800 900 1000

Agent data size (KB)

Figure 4.15: RESTTP vs PCTP Scenario 1 (data).

4.5. PERFORMANCE EVALUATION 3: PCTP VS RESTTP 97

Protocol | Agents | 5KB | 10KB | 25KB | 50KB | 100KB | 250KB | 500KB | 1000KB
RESTTP 1 102 103 106 112 130 174 240 444
10 71 72 74 79 91 123 186 330

PCTP 1 133 148 227 499 | 1,760| 11,546| 39,869 | 141,939
10 81 91 160 413 | 1,614| 10,726| 33,456| 113,339

Table 4.13: Scenario 1: Multi-size agent data migratiorigrarance (in ms).

Protocol | Agents| 5KB | 10KB | 25KB | 50KB | 100KB | 250KB | 500KB | 1000KB
RESTTP 1 2,502 | 2,727 | 3,027 | 3,451 | 3,998| 5,037| 6,128 7,868
10 1,315| 1,365| 1,527 | 1,758| 3,590| 4,743| 5,822 7,558
PCTP 1 2,017| 2,264 | 2,719| 3,423 | 5,216| 16,496| 46,232| 153,689
10 1544| 1,695| 2,094 | 2,303| 2,550| 9,133| 33,870| 112,927

Table 4.14: Scenario 2A: Multi-size agent code migratiorigrenance (in ms).

Figure 4.15). The results are quite similar to the previawessawvith only slight changes.

They are consequence of the different treatment that thet alg¢a receives regarding
the agent code.

45.2 Scenario 2: Wide Area Network

As in the previous section, only one set of tests for each efnigtwork variants (the
one without packet loss and the one with it) has been coreidérhe set of tests that
analyses migrations with different agent code sizes (sbke#al4 for Scenario 2A, and
Table 4.15 for Scenario 2B).

In the first case (Table 4.14 and Figure 4.16), the netwodnlat strongly penalises
protocol handshakes. Since not only does RESTTP exchangaitienumber of ACL
messages than PCTP, but it even establishes two HTTP coomedRESTTP performs
worse than PCTP when a single agent with a code size betweeraBHEB0KB mi-
grates. The time spent in the number of operations requarécahsfer such amounts
of data is too high to be recovered. In all the other cases REPS¥EFforms better than
PCTP. Furthermore, the migration concurrency also imprtdvesverage performance
results.

The best transfer data rate achieved with RESTTP is 265KBfs thé 1000KB
agent. At the contrary, the best transfer data rate achewbdPCTP is 78KB/s with
the 100KB agent. The same protocol with the 1000KB agentepitssa transfer data

98

Average migration time (ms)

Average migration time (ms)

CHAPTER 4. PERFORMANCE ANALYSIS

160000 T T T T

RESTTP 1 Agents—— |
RESTTP 10 Agents--—-x---"
PCTP 1 Agents-—*:- 7
PCTP 10 Agents-®

140000

120000

100000

80000

60000

40000

20000

M ety

0 Pt = - | | | ; | | | |
0 100 200 300 400 500 600 700 800 900 1000
Agent code size (KB)

Figure 4.16: RESTTP vs PCTP Scenario 2A.
200000 : : : : :

RESTTP 1 Agents—— .~

RESTTP 10 Agents-—x-<

PCTP 1 Agents—x"
PCTP 10 Agents--

180000

160000
140000

120000

100000
80000

60000

40000 e

20000

0O 100 200 300 400 500 600 700 800 900 1000

0

Agent code size (KB)
Figure 4.17: RESTTP vs PCTP Scenario 2B.

4.5. PERFORMANCE EVALUATION 3: PCTP VS RESTTP 99

Protocol | Agents| 5KB | 10KB | 25KB | 50KB | 100KB | 250KB | 500KB | 1000KB
RESTTP 1 4,382 | 4,656 | 5,033| 5505| 7,160| 10,760| 20,019| 38,209
10 2,707 | 2,746 | 2,844 | 3,269 | 4,275| 11,114| 20,548 | 37,354
PCTP 1 2,988 | 3,248| 4,276 | 5932| 09,673| 27,001| 67,196| 197,131

10 2,189 | 2,424 | 3,289 | 4,284 | 5,123 | 16,034| 43,207 | 135,615

Table 4.15: Scenario 2B: Multi-size agent code migratiorigrarance (in ms).

Protocol | Agents| 5KB | 10KB | 25KB | 50KB | 100KB | 250KB | 500KB | 1000KB
RESTTP 1 1,357| 1,443| 1,683| 2,131| 2,972| 5,670| 10,134| 18,998
10 701 742 | 1,012 1,224 2,271| 5,532 9,995| 18,868

PCTP 1 1,008 | 1,100 | 1,675| 2,496| 5,002| 19,412| 56,628 | 177,940
10 801 882 | 1,253 | 1,493| 2,714| 12,205| 39,581 | 125,591

Table 4.16: Scenario 3: Multi-size agent code migratiorigrarance (in ms).

rate of 18KB/s. All the cases are referred to concurrent rtimna.

In the second case (Table 4.15, and Figure 4.17) the conminat latency and
packet loss increases the packet exchange penalisatth@ichannel bandwidth. In
this case RESTTP performs better than PCTP with agent codefsire SOKB without
concurrent migrations, and from 25KB with concurrent migmas. Migration concur-
rency reduces the latency effects, but only in the ACL messagleange (the improve-
ment obtained because of the parallelisation is higher @llsagent codes).

The transfer data rate achieved in this scenario with RESETHIKB/s with the
1000KB agent. Using PCTP the maximum data rate achieved iB9Kith the 100KB
agent. The same protocol with the 1000KB agent presentasfénedata rate of 15KB/s.
All the cases are referred to concurrent migrations. In¢hse the maximum data rate
obtained is not only limited by the latency, but by the conaltion with the message
loss that, under the TCP protocol, establishes a maximunmeh&andwidth. This can
be proved checking the performance results obtained bytageth large agent codes
sent with RESTTP. In these cases the time spent increasesrpoolly and linearly
with regard to the code size (see first and second rows of Pabt, which means a

bandwidth limitation. In other cases, the time spent dod¢snwease proportionally
(see first and second rows of Table 4.14).

100 CHAPTER 4. PERFORMANCE ANALYSIS

180000 | | | -
RESTTP 1 Agents—+— -
r RESTTP 10 Agents-—x— |
100000 PCTP 1 Agents--x--
A PCTP 10 Agents-©
2 140000} |
[0}
£ 120000}]
c
2 100000 |
o
(@]
€ 80000 - |
S
€ 60000 |
g
< 40000} = |
20000 - x |
0 = e : ‘ . ! ! ! !

0 100 200 300 400 500 600 700 800 900 1000
Agent code size (KB)

Figure 4.18: RESTTP vs PCTP Scenario 3.

4.5.3 Scenario 3: Metropolitan Area Network

As in the previous scenario, only one set of tests have beesidered. The set of tests
that analyses agent migrations with different code sizebléT4.16 and Figure 4.18).
In this case RESTTP is the protocol with the best performawié, the exception of
single migrating agents with code sizes between 5KB and 25KB.

The transfer data rate achieved in this scenario with RESTTIR6KB/s with the
1000KB agent. Using PCTP the maximum data rate achieved iB/&AKith the 100KB
agent. The same protocol with the 1000KB agent presentasfénedata rate of 16KB/s.
All the cases are referred to concurrent migrations. In¢hise RESTTP use the 100%
of the channel bandwidth (since it is 1Mb/s and the trangacines 106KB/s).

4.6 Conclusions

In this chapter, through the use of the JIPMS implementatidras been demonstrated
the versatility of IPMA. Different migration transfer paxtols give rise to different
migration strategies suitable to one or more specific enmrents. And each of these

4.6. CONCLUSIONS 101

protocols obtain different results depending on the emvitent conditions. In the next
paragraphs there is a comparison of the benefits of each kimg tato account the
results previously obtained.

The protocols analysed have been PCTP, ODTP, FrTP, and RESTH® first
three are only based on the use of IEEE-FIPA standards, ah#re last one introduces
the use of HTTP requests. PCTP, and FrTP are based on the pgistion strategy,
RESTTP is based on a pull-at-once migration strategy, andf”JD R pull-on-demand
migration strategy (see Section 3.4 for more details).

PCTP is the default protocol of JIPMS. It is the simplest onkisTs the reason
why it has been chosen as the reference protocol for the atsopa. According to
the results obtained, this protocol is suitable for migrgtagents with a small agent
code and small agent data (typically up to 50KB). Data traesiges of more than
250KB are usually highly inefficient because of the ACL uresitity for dealing with
large amounts of data (see [Cuc04, JJKO6]). Neverthelesenliere are network
performance restrictions (high latency, packet loss, adiadth limitation) it may be
preferable its usage even with larger agent codes and data.

FrTP is a protocol that sends the agent code and agent da@dsior several frag-
ments, with a customisable size, each one encapsulatedi@lamessage. This takes
advantage of the JADE messaging service suitability fotidgavith huge amounts of
small ACL messages [CGHO5]. It was initially devised to substitute PCTP, since by
changing the fragment size it can be generalised to the daBE€®BP, where all the
agent code is sent in a single ACL message, and all the agentdagnt in another one.
Nevertheless, according to the results, it is better to uas & complement of PCTP,
since the complexity increase of FrTP is too high for smadirdg (5KB to 25KB agent
codes), where PCTP performs better. For large agent codgsetfrmmance is quite
better. There is another disadvantage, in case of netwt@kdg the protocol is not so
efficient as initially anticipated, because of the high antai messages which are sent.
Despite the fact that there is no acknowledgement of thessages, the MTP-HTTP
does not consider a message sent until an internal HTTPneeps received. This is
the reason why the latency affects the performance of theq@ob Using another MTP
without this restriction the performance would be bettethis case.

102 CHAPTER 4. PERFORMANCE ANALYSIS

RESTTP is a protocol based on the request of the agent resptname the remote
location, using HTTP connections. This protocol demomssrghat the data transfer-
ences based on ACL messages are not efficient. In most of tae itdakes advantage
of almost 100% of the bandwidth available. This protocolugable for almost all the
environments. The only disadvantages it has are the usalifathl standards than the
ones dictated by the IEEE-FIPA, and that it requires esthinlg new connections from
the remote platform to the local platform (sometimes thig/rha a problem because
new ports must be opened in network firewalls).

And ODTP is a protocol that only transfers the required agede as it is needed.
It is devised for agents which do not use all their code infal ibcations they visit.
It is intended to be used only in local area networks, sineedbst of individually
requesting several code snippets can be very high in wide redvorks where the
associated latency is higher. Checking the performancésegican be seen that when
only few parts of the agent code are used, the time spent imifations is constant.
Then, when large agent codes are involved, and they are apiv®priate environment,
this protocol can even be more efficient than FrTP.

Finally, the better strategy to migrate agents, if only IEHPA standards can be
used, is the combination of several protocols. Each one insé@ most suitable case
for it. In case of being able to use non IEEE-FIPA standatd=s) the response is clear,
RESTTP is the most efficient protocol in almost all the sitadi Nevertheless, it must
be said that all the given results depend on the specific mgahation tested, and that
they could present some differences if other implementatamnd MTPs were used.

Chapter 5
Agent Code Distribution Service

This chapter proposes a global cache service to efficientlysgcurely deal with the
distribution of agent code. An implementation of the sesJg presented, and a set of
performance tests demonstrate its benefits.

5.1 Introduction

The performance of mobile agent migrations has been alwayalised because of the
need of carrying the three parts from which agents are coetp@®de, data, and state)
to each visited location (see Section 2.2.2). The agentatadastate must always be
transfered from location to location since they dynamjcallange. Nevertheless, since
the agent code is static during the whole life of the agestinanagement can be im-
proved, e.g., using code caches, and the penalisationiaEsbto its transmission can

be reduced [Gav04]. Furthermore, in case several agents gfeasame code, a huge
guantity of network bandwidth can be saved up. Thereforentatigent management

of the agent code can improve the migration time of agents.

Several solutions (see Chapter 3 or [BR05]), such as the additioode caches or
the partial transference of the agent code (code on demhad}, been used in Agent
Platforms (APs) to improve the agent performance. Nevir$ise these solutions are
always local to APs. Agent codes can be better managed frolmbalgoint of view,
taking into account the code necessities everywhere.

103

104 CHAPTER 5. AGENT CODE DISTRIBUTION SERVICE

In this chapter a service called Agent Code Distribution Ber¢(ACDS) is proposed
to manage the agent code from a global perspective. In ®eut?oa set of requirements
for a global code manager service is detailed. Then in Seéti®, ACDS with its secu-
rity features and its public user interface is explainede 3érvice has been implemented
allowing the performance of several tests in different aces to demonstrate its bene-
fits, see Section 5.4. Then, a set of related work is compaitbdtie service proposed
in Section 5.5. And, finally, Section 5.6 concludes the chiapt

5.2 Requirements and Roles

Regarding the nature of the service which is proposed lat¢hisnchapter, a set of
requirements have been selected in the following linesyHne taken into account in
its design, which is explained in the next section.

¢ Agent middleware independendée codes managed by the service and the inter-
action of it with APs must not be limited to a specific type ofekg Middleware
(AM).

e Programming language independend®oth, the interface to access the service
and the codes managed by it must not be restricted to a spBotfgramming
Language (PL).

e Code efficiently transported\gent code must be transfered using efficient proto-
cols. The performance should be independent of the amouddtaftransmitted.
E.g., in the JADE [BCPRO08] AM the ACL messaging system perforraashe-
crease as the ACL messages size grows [Cuc04, JJKO06].

e Code intelligently distributed and cachedgent code must be distributed and
cached close to the APs that possibly will need it in a neanhyré.

e Code distribution under contraciThe parameters regarding the distribution and
maintenance of code must be associated to a code contract.

5.2. REQUIREMENTS AND ROLES 105

e Support for multiple code binariegach agent code must be able to include one
or more binaries developed in different PLs. This permitsgbpport for inter-
language agents (see Chapter 6).

e Support for code updategdgent code updates must be able to be propagated for
security purposes.

e Secure code distributionSensitive operations, such as removing or updating an
existing agent code, must always be authenticated. Funtirer, the agent code
integrity and authenticity must be guaranteed.

e Service transparent to agent3.he fact of using a service to manage the agent
code must be transparent to agents, which are not neededpbiéically devel-
oped to support this situation.

But not only the service requirements must be taken into addouits design. Any
service has at least two parties involved in it, the client e server. In this case, there
are more parties that take part in it. Each one is represevitadh specific role:

e Code developerThis is the role associated to the agent developer. It hésnp
to do with the code distribution service since the serviceassparent to the
agent.

e Code owner This is the role associated to the person who has boughtnoes
times developed, the agent. It uses the agent code serwodutatarily or invol-
untarily distribute its code.

e Code user This is the role associated to the agent on itself and to ks fat
use the code to run the agent.

e Code provider This is the role associated to the code distribution seramin-
istrators.

All these roles are taken into account in the design of theicepresented in the
next section.

106 CHAPTER 5. AGENT CODE DISTRIBUTION SERVICE
5.3 Agent Code Distribution Service

PoP

.....
PoP PoP
R5 R2

N

PoP PoP
R4 R3

Region Local Communication

---------------------- PoP Communication Network

Figure 5.1: Agent Code Distribution System.

In this section a service to manage the distribution of agedes, the ACDS, is
presented. The agent code distribution is tackled from bajlpoint of view and fulfils
the requirements presented in the previous section.

5.3.1 Overview of the Architecture

ACDS defines a network composed of several nodes, called &diresences (PoPs),
which distribute and cache code through inter-networke (&@gure 5.1). The idea is
similar to the Content Delivery Networks (CDNs) [PB07], suctAamai [DMP*02],
but focused on agent codes, where critical informatiormftbe performance point of
view, is transported using a dedicated network belongirtgeacode provider.

The service is offered over an inter-network which is dididieto regions (see Fig-
ure 5.1). Each region has one or more nearby networks assigreere is a publicly
known PoP in each region in addition to other ones for fauéremce or load distri-
bution purposes. PoPs are interconnected with themseteespose the core of the

5.3. AGENT CODE DISTRIBUTION SERVICE 107

system, and are the smallest independent entities of ACDS ilA&ract with their clos-
est PoP for requesting agent codes. As closer is a PoP of apetter the performance
that is got in the code fetching. As shown in Figure 5.2, a Po#eris composed of
four basic components: the Local Code Repository (LCR), the Re@otle Manager
(RCM), the Contract Enforcement Module (CEM), and the ACDS |atsef

Other PoPs Agent Platforms
ACDS
Interface Local Code
A Repository

Y

Remote Code
Manager

Contract
> Enforcement
Module

Figure 5.2: Point of Presence (PoP).

e Local Code Repository (LCRIt is a repository that contains all the agent codes
local to a PoP. Non present codes in this repository must dpgested to other
PoP nodes.

¢ Remote Code Manager (RCM)is the core of the PoP. It manages the local and
remote operations to agent codes, i.e., it serves codes $p &ki@ requests and
serves codes to other nodes, through the ACDS Interface.

e Contract Enforcement Module (CEMJhis module enforces the rules specified
in the contract of each agent code. Some operations will ag@eomitted if they
are not authorised by the code contract.

e ACDS Interface:This is an interface between PoPs and clients, and PoPs and
other PoPs. Two basic kinds of operations are supportedethesst of an agent
code, carried out by APs or other PoPs, and the managemeubliéiped codes,
carried out by the code owners or other PoPs. This interfaspeécified in Sec-
tion 5.3.5.

108 CHAPTER 5. AGENT CODE DISTRIBUTION SERVICE

Group Code Identifier (CGID): 1f332209d0dc354
Code Identifier (CID) Security Revision (SR) Hash Code Identifier (HCID)
22dlccfe8a 3 ebd6c336cd3cebf83£5410a180112d41
ch3acb26ce 1 £368£50481a99b0b44b083d24e5b03d6
27de3d6279 2 225ea33d20e0185d1f4a5aa271e482a4
56a7c9daa8 1 2a51345179ead3700c8b2fecd150e222
27de3d6279 1 aff05f9767ce0dbb4e5bed7ae67518fe

Figure 5.3: Example of the use of agent code identifiers.

5.3.2 Code Management

As previously mentioned, ACDS is a system similar to a CDN. Miaatess, dealing
with distribution and caching of code is slightly differdram dealing with typical web
data. Agent codes are identified by a different mechanismetimes they must be
immediately updated or removed from the whole network, aifférdnt versions of
their binaries might exist to support inter-language ioperability mechanisms such as
the one proposed in Chapter 6, where an agent can be composedeoél equivalent
codes. Agent codes can be completely different regardiverakaspects:

e the PL in which they are written,
o if they are compiled or are source code,
¢ the architecture or interpret for which they are prepared,

¢ the method of packaging

The ACDS can deal with any kind of codes, included source cad&gges, since
the service does not interpret them. Codes are only integbriey the AP which has
requested them. The set of identifiers described in Secti®2 35 used to classify
and uniquely identify codes (see also the example of FigiBe Blevertheless, ACDS
arranges them in an URN-like name, following the hierardrschema shown in Fig-
ure 5.4, as:

urn:agent-code-ickCGID>:<CID>:<SR>:<HCID>

5.3. AGENT CODE DISTRIBUTION SERVICE 109

gé{ClD-o}r:,/%.{cm-l}
'HCIDx | (HCIDx] (HCIDx] (HCIDX(HCIDX]
Figure 5.4: Code identifier hierarchy.

So, for example a given code can be identified by a name like:
urn:agent-code-id:cgid:cid-0:2:HCIDx

This code is named following the identifier hierarchy showrFigure 5.4, so re-
garding the code examples of Figure 5.3, the identifier:

urn:agent-code-id:1f332e209d0dc354
denotes all the code withGID = 1£332¢209d0dc354. Or the name

urn:agent-code-id:1f332e209d0dc354:22d1ccfe8a

denotes all the code revisions of the code with@hé = 22d1ccfe8a andCGID =
1£332¢209d0dc354.

Furthermore, each agent code must have associatedeaprofilein addition to the
URN previously proposed. No specific format is enforced fer tbde profile, since
the service only propagates it together with the code withequiring its interpretation.
The code profile contains information, among others, of thenPwhich the code is
written and the type of architecture supported. This allagsent developers to create
new agent codes supporting different profiles for a specgena (see Section 6.5.3)
which is already deployed. Existing agents can migrateggipusly unsupported loca-
tions finding the new codes developed by using their Code Garrgifier (CGID), and
the code profile information available in ACDS. The CGID is assted to the agent
and represents all the agent codes suitable for this agerthéfmore, as it is explained
in Section 5.3.4, the agent code also has associatededistribution contract

110 CHAPTER 5. AGENT CODE DISTRIBUTION SERVICE

5.3.3 Code Distribution

Two types of code distribution are supported by ACDS, the anatel distribution and
the a priori distribution. They are used depending on the tyfpservice required and
the availability of a specific code.

On Demand Distribution

In the on demand distribution the code is uploaded to a spdai when it is needed.
This way to distribute the code is flexible, but it does notata/represent an improve-
ment in the code fetching. If the code is only requested ane th each region, from
the agent point of view, this may increase the final time speriietch it. It also has
the disadvantage that, once the code has been spread tleewgtal nodes, it is not
trivial to delete or update it. Two types of service can bex&t depending on the code
provider policy.

e On the one hand, the ACDS only acts as a region cache. In tresitascode is
requested by an AP and it is not present in the PoP, a respaatisating that the
code is not found is returned. Then, it is responsibilityled AP to upload the
code, for the other’s region APs benefit, after the code dittamally received.

e Onthe other hand, another more advanced type of servicestiiee PoP to search
for a requested agent code in other PoPs. Although diffeattatnatives can
be used, we propose to take advantage of a Distributed Hada {[2HT), e.g.,
Chord [SMLN"03]. The idea is to store in a DHT the agent code contracts;whi
include a list of the regions where the code is available.rdfoee, each time a
code is required the contract associated to the code reglissetrieved from the
DHT, and one PoP of the list of regions is asked for the codéeltontract is not
found in the DHT a code not found response is returned, anith, i® previous
case, it is responsibility of the AP to upload the code oneedbt.

A Priori Distribution

In the a priori distribution the code is uploaded to a set d?$according to st of re-
gionsstated in the code distribution contract. Although thismoetis not as flexible as

5.3. AGENT CODE DISTRIBUTION SERVICE 111

the previous alternative, it guarantees that the code septan all the desired regions
when agents reach them. Furthermore, it allows to easihatepdnd delete the dis-
tributed code. In case the code owner agrees, this distibaotethod can be combined
with the previous one.

The flexibility of this method has been enhanced by using ¢timeept of neighbour-
hood. Each PoP includes a list of its neighbours (PoPs) iwdenotes the closest nodes
from a topographic point of view, that is defined by the nodmiadstrators, and it is
static, i.e., it does not frequently change. Therefore,mdneode is sent to the regions
listed in the contract, each PoP associated to the regialssba code to its neighbours.
This operation is repeated a number of times, according taranpeter calleaheigh-
bourhood degreedown the tree of neighbours. The parameter is an integérctrma
be:

e Zero: in this case the code is not sent to any neighbour, i.e.jgheguivalent to
the original distribution method.

e Greater than zero: in this case there is a wider code distribution, while kagpi
the possibility to update and delete the code from all theespsince the pathway
to them can be easily reconstructed.

As the neighbourhood degree increases, these processeweerror-prone. Nev-
ertheless, depending on the average number of neighbocinsneale has, the neigh-
bourhood degree has a limit which has no sense to be exceseethé concept @ix
degrees of separatian [Bar02]).

5.3.4 Security Management

In the business model proposed for ACDS, where the agent satistributed a priori,
the code owner establishes a contract with the ACDS admatistr authority in order
to use the network to distribute its code. This contractvedlohe code owner to use
some of the distribution schemes available in ACDS under thted conditions and
possible constraints. Thus, ACDS must guarantee that thewdidbe distributed as it
has been agreed and, furthermore, the infrastructure maxgte security mechanisms

112 CHAPTER 5. AGENT CODE DISTRIBUTION SERVICE

to protect the code and the code owner operations. One ofdhedi threats to ACDS
is the malicious code upload, update, or deletion by unaisbd users, so each PoP
must enforce the user contract and other possible secwulityigs applicable.

On the other hand, once the code is distributed over the mietine code user can
freely download it from the ACDS PoPs. No restrictions aréally imposed in code
downloads regarding the code user. If download restristionst be applied, they are
stated in the initial contract by the code owner by, for ins&g limiting the number of
code downloads or bandwidth used during a period of times @lsio allows to improve
the code download efficiency and performance, by speedinbaiprocess, because it
can avoid servers saturation.

The agent code and agent code profile integrity can be gues@rity signatures
issued by the code owner. The service does not check thesssigs, only distribute
them along the agent code and agent code profile. Therelfieyectin be verified by the
AP which has requested them.

Code Distribution Contract

The code distribution contract is established with the AC@8®iaistrative authority
and states mainly what the code owner can distribute oveh@i2S network and how.
The main elements contained in the contract are:

e Contract issuerthe ACDS authority issuing the contract.

e Subject the code owner allowed to distribute code (a hash of the codweer
public key is used as user identification).

e Actions actions allowed to the code owner. This will normally be asat of

{upload, update, delete}.
e Object the code to be distributed by ACDS.

e Conditions several conditions to be met for the contract to be valide Tiost
important conditions are:

— Distribution specificationkind of distribution to be performed, as described
in Section 5.3.3.

5.3. AGENT CODE DISTRIBUTION SERVICE 113

— Validity specification validity of the contract and thus of the code distribu-
tion, which is normally expressed as a time interval.

e Signature the contract is signed by the contract issuer.

This contract is expressed in XACML [xac05]. XACML is an OASItrsdard,
which provides an XML-based language to express generigsaamontrol (or authori-
sation) policies, and standard messages for a query/resgwntocol. More precisely,
the contract is expressed as an XACML policy so it can be dy@sted in the policy
enforcement process. Figure 5.5 shows an example code aangact policy, where
an ACDS administrative authority establishes a contradt witjiven code owner, both
identified by a hash of their public key, with the followinganmation: the code owner
(subject) can distribute code withG 1D = 1f332e209d0dc354 during one year; since
no action is specified the code owner can perform all the plesactions.

Summarising, the policy specifies a target which is the cadeeo and provides a
set of rules. Each rule can be applied to an specific targechwiarrows the policy’s
target, normally by specifying a resource or an action asgdril@ing some conditions. It
is important to note that in the previous example of Figusg Wwe are using the XACML
3.0 administration specification to include the issuer enghlicy, which is currently not
approved as a standard. The current XACML standard (vergido&s not support the
policy issuer element although it may be included apart efXiML digital signature
provided with the contract.

Contract Enforcement Module

The enforcement of the code owner contract as well as otlerriserelated policies
are provided by CEM in each PoP (see Figure 5.2). This modutwisly responsible
for the following tasks:

e Authentication of the code owner and code provider opeanat{apload, deletion,
modification, ...), and the code owner contract.

e Enforcement of the code owner contract, PoP local poliaesl other generic
policies (provided globally or on a region-base by ACDS).

114 CHAPTER 5.

<Policy Policyld="ACDS—contrat—policy:example”
RuleCombiningAlgld="deny—overrides”>
<Policylssuer>
<Attribute
Attributeld ="subject:subject—id”
DataType="xmldsig#RSAKeyValue">
<AttributeValue >
<RSAKeyValue>
e >
</RSAKeyValue>
</AttributeValue >
</Attribute >
</Policylssuer>
<Target>
<Subjects>
<Subject>
<SubjectMatch Matchld="rsakeyval—equal”>
<AttributeValue
DataType="xmldsig#RSAKeyValue”>
<RSAKeyValue>
<l ——>
</RSAKeyValue>
</AttributeValue >
<SubjectAttributeDesignator
Attributeld = "subject:key—info”
DataType="xmldsig#RSAKeyValue"/>
</SubjectMatch>
</Subject>
</Subjects>
<Resources><AnyResource /></Resources>
<Actions><AnyAction/></Actions>
</Target>
<Rule Ruleld="validity period rule” Effect="Deny”>
<Target>
<Subjects><AnySubject /></Subjects>
<Actions><AnyAction /></Actions>
<Resources>
<Resource>

AGENT CODE DISTRIBUTION SERVICE

<ResourceMatch
Matchld="anyURI—equal’>
<AttributeValue
DataType="XMLSchema#anyURI">
urn:acds:cgid:1f332e209d0dc354
</AttributeValue >
<ResourceAttributeDesignator
DataType="XMLSchema#anyURI”
Attributeld ="resource:resource—id"/>
</ResourceMatch>
</Resource>
</Resources>
<[Target>
<Condition Functionld="and">
<Apply Functionld="date—greater—than—or—
equal”>
<Apply Functionld="date—one—and—only”>
<EnvironmentAttributeSelector
DataType="XMLSchema#date”
Attributeld ="environment:current—date”/>
</Apply>
<AttributeValue DataType="XMLSchema#date”>
2008—01-01
</AttributeValue>
</Apply>
<Apply Functionld="date—less—than—or—equal”>
<Apply Functionld="date—one—and—only">
<EnvironmentAttributeSelector
DataType="XMLSchema#date”
Attributeld ="environment:current—date”/>
</Apply>
<AttributeValue DataType="XMLSchema#date”>
2009-01-01
</AttributeValue >
</Apply>
</Condition>
</Rule>
</Policy>

Figure 5.5: Example of code owner contract policy.

5.3. AGENT CODE DISTRIBUTION SERVICE 115

These tasks are performed when a code owner requests aniap@ma PoP of the
network, such asipload update or deletea given code. Figure 5.6 shows the main
components of CEM and their main tasks.

Trusted
| contracioes
Contract

User
lhm'
Suhenscason authentication

A
2 3 v
y r'e : :
6 -
. Auth, 4 —»| Contoxt XACML
component handler A PDP
7

\ A

user 1 / 5 5
request \ ¥ \ \

user-provided |- 5 —| PAP
contract
Remote Code T ACDS-generic
Manager PoP local 5 policies
policy

Figure 5.6: Contract Enforcement Module overview.

To see how this module works and its functionality we showethi®rcement process
of a generic code owner'O requesting taipload a given code”'GID,. The process

will normally consist of:

1. The module receives the code owner request, which maydadhe code owner
contract if it is the initial code upload.

2. If needed, the Authentication Component (PoP-AC) autbaetas the code dis-
tribution contract by verifying its signature with a reposy of trusted ACDS
administrative authorities keys. These keys are disethtd all nodes (normally
making use of certificates in a PKI-like fashion). The cocttrarovides the code
owner public key, which will be used to authenticate the apen request on the

specific code.

116

CHAPTER 5. AGENT CODE DISTRIBUTION SERVICE

3. PoP-AC authenticates the code owner operation requéstiva hash of the pub-

lic key present in the contract as the subject.

. The request is passed to the Context Handler componentGPI)PThis com-

ponent formats the request as a valid XACML request messagi@asses the
contract to the Policy Administration Point (PoP-PAP) taused in the XACML
based Policy Decision Point (PDP).

PoP-PAP combines the following XACML policies:

e Code distribution contract as provided by PoP-CH.

e PoP-local policy: each PoP may impose constraints locallysoresources,
either temporarily or permanently.

e ACDS-generic policy: PAP includes references to ACDS-gengoiicies
maintained by the ACDS administration authorities. Theskcigs may
have a global or region-based applicability.

XACML PDP is the component that actually performs the atglation decision.
It is a generic XACML PDP, since both, the user request and tlieips are
standard XACML request and policies.

PDP outputs a response to PoP-CH. This response capdomit (if access is
allowed),deny(if access is denied)ndeterminatg(if an error occurred or some
required value is missing), oot applicable(if no policy applies to the request).

7. PoP-CH reports the result to the main PoP-RCM.

5.3.5 Service Interface

The ACDS Interface allows code users and code owners to usgetfrece without

knowledge of its internal details. The following sectiotats the requirements of the

interface and propose a specification based on the REST nfo0e2].

5.3. AGENT CODE DISTRIBUTION SERVICE 117

Requirements

A set of operations must be supported by the interface in Ba€hnode. These opera-
tions, which are used by code users and code owners, are bothmel CGID and Code
Identifier (CID) elements. The CGID element must accept tHeviohg operations:

e Create a CGID element with or without a specific code distrdsutiontract.

Get the associated code distribution contract.

Update the associated code distribution contract.

Get a list of available codes (CIDs) in the node.

Remove the CGID element.

Some of these operations refer to the code distributionraontin case no contract
is given in the CGID creation, no code owner can be assigndtetodde and a specific
anonymous contract is automatically created by the servitehis case only the on-
demand type of service can be offered. Regarding the CID, thetpns accepted are
the following ones:

e Upload agent code and its signature.

Update existing agent code and its signature.

Download agent code and its signature.

Remove agent code.

Get an agent code profile and its signature.

Operations that involve the publication, modification anoval of agent codes and
their properties require authentication. Nevertheldssnon authenticated publication
of agent codes is possible using the anonymous servicednatity.

Since ACDS is a global service focused on an efficient didfiobuof agent code,
there is a set of basic requirements that must be fulfillegcigly on the interface pro-
vided to the clients. Therefore the requirements for the AOR&face are: simplicity,

118 CHAPTER 5. AGENT CODE DISTRIBUTION SERVICE

scalability, low latency, efficient data transference,ta@ole interface, and support for
any type of code.

REST Interface

The ACDS Interface can be implemented using different teldgies such as SOAP,
XML-RPC, and REST. Actually, several complementary interfacan be provided.
Nevertheless, in this chapter we have focused on only or€ate based on the REST
technology [FT02]. REST is a coordinated set of architetwmastraints based on the
HTTP protocol. Itis characterised for minimising the commuation latencies, simpli-
fying the network communication, and maximising the indegence and scalability of
component implementations.

Interfaces implemented with REST have a base address, a sktnoénts coming
from this base address (in our case the CGID and CID), and s$&peations associ-
ated to each element. The REST interface which is proposeztadet] in Table 5.1.

AS-
tes

nes

e.,

nde

S_
le.
de
led

Base URL: | http://server/acddfcgid}/{cid}
Element | Method | Req. Param. | Req. Headers | Resp. Headers | Body Functionality
PUT [Authorization], [XACML Creates a code group with or without an 3
[Depth] contract] signed contract. The Depth header indica
the depth in the neighbourhood tree (it is used
to control when the code propagation reach
the established neighbourhood degree).
cgid DELETE Authorization Removes a code group and its content, i
its codes.

GET list, contract List of codes Get information from the code group: list of
or XACML its content and associated contract.
contract

POST Authorization XACML Update the contract associated to the cq

contract group.

PUT [Authorization], Code 1.Upload a specific code (CID) with an a

SR, HCID, sociated profile. 2.Update a specific cog
Code prdfile, Note: A specific Code signature and Co
[Code profile signature headers have been inclug
signature], to deal with code and profile signatures
[Code profile These headers are optional and are encgo
signature] in Base 64.
cid DELETE Authorization Removes a specific code (CID).
GET Code profile, Code Download a specific code (CID) and profile.
[Code
signature],
[Code profile
signature]
HEAD Code profile, Get a specific code profile.
[Code profile
signature]

Table 5.1: REST Interface.

ded

FOINHGFS NOILNAGIH1SId 3d0OD LN39Y €S

6TT

120 CHAPTER 5. AGENT CODE DISTRIBUTION SERVICE

Operations that require authentication take advantageed®uthorization” header
defined in the RFC 2617 [BLFMb]. The authentication method pseg for the de-
scribed interface is based on the signature of the MD5 hash¢§Ra string that contains
several parameters of the HTTP request:

String To Sign = HTTP Methodt+ “\n"” + HTTP Request URF “\n” +
+Date+ “\n” + Content MD5+ “\n" +
+Content-Typer “\n” + Interface HTTP Headers

Notice that the HTTP headers defined in the interface areiatdoded sorted in
the appearance order. The string is encoded in UTF-8 ancethdt 1of its hashing is
encoded in Base 64. The signature is put in the “Authorizati@ader together with
the subject of the certificate, which is the identificatiorttod certificate owner (in this
case the hash of its public key). The format of this header is:

Authorization: PublicKeyAutlcertificate-subject signature

where the “PublicKeyAuth” states the authentication tyfhes certificate-subject
identifies the subject of the operation, which may be the cwder or the code provider,
and thesignatureis the chain encoded in Base64 that contains a PKCS-7 [Lab38] wi
the signature of the previously describ@aling to Sign This methodology is similar to
the one used in the Amazon webservices [AWS].

5.4 Implementation and performance

5.4.1 Service implementation

A preliminary version of ACDS has been implemented [acd] tal@ate the service
proposed in this chapter. It has been developed in Java igtakivantage of the Java
integrated HTTP server and the Java API for RESTful Web SesvidAX-RS) [HSO07],
which is implemented by the Jersey Java project.

5.4. IMPLEMENTATION AND PERFORMANCE 121

Furthermore, a Java ACDS client library has also been degdlapeasily integrate
the service into existing AMs. The library has been used énRiosh Cache Transfer
Protocol (PCTP) and REST Transfer Protocol (RESTTP) protaxfdlee Inter-Platform
Mobility Architecture (IPMA) to perform the tests explaimhén the next section.

5.4.2 Performance tests

A set of performance tests have been done to evaluate thatades of ACDS using
the JADE Inter-Platform Mobility Service (JIPMS). Sincetimessaging system imple-
mented in the JADE AM is not devised to send much data in asiAgent Commu-
nication Language (ACL) message [Cuc04, JJKO06], the tesis hatvbeen carried out
only with PCTP, but also with RESTTP which does not use large A@issages. The
evaluation setup and test suite used to run the tests araiie af Section 4.2. Three
different scenarios, similar to the ones shown in Sectiofsid 4.5, have been used to
compare the migration performance with and without the ACB&ed. The network
conditions of each scenario have been also simulated by uk& NetEm [HemO05]
Linux utility, which allows the adjustment of network la®n bandwidth, and packet
loss.

A set of agents with code sizes of 5KB, 10KB, 25KB, 50KB, 100KB, 280K
500KB, and 1000KB packed in uncompressed JAR files have besth tosperform
the tests. Each test has been done with one and, later, teatmggagents of a specific
size in each location. As in Chapter 4 the measures shown ialies are the average
time consumed by the agents from the AM. The itinerary of tpends only involves
two locations and it is repeated a fixed number of times (i@na or migration round-
trips). In these tests agents smaller or equal than 100K&atepeir itinerary 100 times,
while larger agents, which spend more time per migratigmeattheir itinerary only 10
times. The local cache mobility mechanisms have been cdetpldisabled, therefore
although agents only visit two real locations their behavican be extrapolated to the
case of agents that visit a new location in each migratioremAgodes used in the tests
are delivered to each PoP in advance.

122 CHAPTER 5. AGENT CODE DISTRIBUTION SERVICE

Protocol | N.Agents| 5KB | 10KB | 25KB | 50KB | 100KB | 250KB | 500KB | 1000KB
PCTP 1 126 140 222 493 | 1,734 11,943| 41,499| 150,162
ACDS Off 10 77 85 140 339 | 1,200| 8,300| 32,710| 116,721
PCTP 1 100 101 103 113 123 161 211 320
ACDS On 10 63 63 68 70 77 106 154 253

Table 5.2: Scenario 1: Agents moving in the same region (PQMP)S).
Protocol | N.Agents| 5KB | 10KB [25KB | 50KB | 100KB | 250KB | 500KB | 1000KB

RESTTP 1 101 102 106 109 126 160 212 311
ACDS Off 10 71 71 73 77 87 108 145 242
RESTTP 1 104 106 107 112 131 165 217 304
ACDS On 10 69 69 70 73 84 106 152 245

Table 5.3: Scenario 1: Agents moving in the same region (RE&T)S).

Scenario 1: Agents moving in the same region

The first scenario (see Figure 5.7) is composed of only one A@Q®n with two APS,
i.e., there is only one PoP node providing service to the ABRs.response time consid-
ered between all the hosts of the region is less than 1m theo loss of packets, and
there is a bandwidth of 100 Mb/s. This is a typical scenaria dbcal Area Network

(LAN).
/ Point of \
Presence

Agent Agent
Platform A Platform B

Region 1

Figure 5.7: Scenario 1.

Tables 5.2 and 5.3 show the performance results obtaindkifirist scenario. And
Figures 5.8 and 5.9 show a graphical representation of them.

In the case of PCTP the results are clearly favourable to #te with the ACDS
enabled. In this specific scenario, where the access conglitd any host of the network
are the same (included the PoP), the ACDS improvement is qaesee of the penalty

5.4. IMPLEMENTATION AND PERFORMANCE

Average migration time (ms)

Average migration time (ms)

1800 T T T T T T T T
PCTP ACDS Disabled 1 Agents——
1600 L PCTP ACDS Disabled 10 Agents-—-x-" |
PCTP ACDS Enabled 1 Agents--x~-
PCTP ACDS Enabled 10 Agent
1400
1200 |+
1000
800
600
400
200
0
0
Agent code size (KB)
Figure 5.8: Performance Scenario 1 (PCTP).
400 T T T T T T R T T T
RESTTP ACDS Disabled 1 Agents———
RESTTP ACDS Disabled 10 Agents-<--
350 RESTTP ACDS Enabled 1 Agents-*— 1
RESTTP ACDS Enabled 10 Agents-=
300
250
200
150
100
50 + e
0 1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000

Agent code size (KB)
Figure 5.9: Performance Scenario 1 (RESTTP).

123

124 CHAPTER 5. AGENT CODE DISTRIBUTION SERVICE

imposed by the ACL data transmission implemented in JADE [€ee04, JJK06]),
where the time spent in these agent migrations increasemerpally. Notice that
only agents with codes up to 100KB are shown, since the largege migration time
differences complicate the comparison of the results.

In the case of RESTTP, which as it is explained in Section 4ngaee efficient than
PCTP, the results with and without the ACDS enabled are alrhestsame, since the
network conditions and the technologies used are also the.sa

Therefore the REST model, used in RESTTP and in ACDS, has rddufialy ef-
ficient in data transmission (as it was required in Secti@6). In the best case, using
RESTTP with the ACDS enabled, there is only a difference of ayprately 176ms
between the smallest and the biggest agent (codes betwdgarak 1000KB), which
means a transmission rate of approximately 11MB/sec (clms$ket theoretical maxi-
mum data transmission rate of the network devices usedh ¥ ACDS enabled the
time spent in the migration increases linearly. Taking sxtoount the results presented,
in concurrent migrations with 10 agents the average timatsper agent decreases
around a 70% of the time spent with a single agent migration.

Scenario 2: Agents moving between different regions

The second scenario (see Figure 5.10) is composed of two A€§isns with an AP

in each one, i.e., there are two PoP nodes providing servie® tAP in each region.
The response time considered between all hosts in a regiessghan 1ms, there is
no loss of packets and there is a bandwidth of 100 Mb/s, hesd are the conditions
between the AP and its correspondingly PoP. Regarding thencwrication between
the two regions, two cases have been simulated. The firstup@oses an error free
transmission with no packet loss. In this case, the resptimseconsidered between
the two regions is 120ms with a variation of 10ms and a banithwofl 100 Mb/s. The

second case supposes the same parameters with a 5% losgpatkats transmitted.
The scenario and the two cases described are represenfatizt Wide Area Networks

(WAN).

5.4. IMPLEMENTATION AND PERFORMANCE

125
Protocol | N.Agents| 5KB | 10KB | 25KB | 50KB | 100KB | 250KB | 500KB | 1000KB
PCTP 1 2,017 | 2,264 | 2,719| 3,423 | 5,216 | 16,496 | 46,232| 153,689
ACDS Off 10 1544] 1,695| 2,094 | 2,303| 2,550| 9,133| 33,870| 112,927
PCTP 1 1,604 | 1,587 | 1,629| 1,663| 1,705| 1,836| 2,076 2,483
ACDS On 10 1,086| 1,083| 1,086| 1,090| 1,095| 1,102| 1,139 1,248

Table 5.4: Scenario 2: Agents moving between differentaregy(no packet loss)
(PCTP) (in ms).

Protocol

N.Agents| 5KB | 10KB | 25KB | 50KB | 100KB | 250KB | 500KB | 1000KB

RESTTP 1 2,502 | 2,727| 3,027 | 3,451 | 3,998 | 5,037| 6,128 7,868
ACDS Off 10 1,315| 1,365| 1,527 | 1,758 | 3,590| 4,743| 5,822 7,558
RESTTP 1 1,741| 1,742| 1,750| 1,749| 1,808| 1,831| 1,854 1,944
ACDS On 10 1,023| 1,024| 1,022| 1,023| 1,039| 1,191| 1,154 1,164

Table 5.5: Scenario 2: Agents moving between differentoreg(no packet loss)
(RESTTP) (in ms).

Protocol | N.Agents| 5KB | 10KB | 25KB [50KB | 100KB [250KB [500KB [1000KB
PCTP 1 2,988 3,248 4,276 5,932| 9,673| 27,001| 67,196| 197,131
ACDS Off 10 2,189 2,424 3,289 4,284| 5,123 16,034| 43,207| 135,615
PCTP 1 2,083 | 2,089 2,038| 2,105| 2,139| 2,275| 2,124| 2,292
ACDS On 10 1,479| 1,489| 1,485| 1,484 1,495| 1,497| 1,488| 1,476

Table 5.6: Scenario 2: Agents moving between differentorg)i

(5% packet loss)(PCTP) (in ms).
Protocol | N.Agents| 5KB | 10KB | 25KB [50KB | 100KB [250KB [500KB [1000KB
RESTTP 1 4,382 4,656 | 5,033 5,505 7,160 10,760| 20,019| 38,209
ACDS Off 10 2,707 2,746 | 2,844 3,269 4,275| 11,114| 20,548| 37,354
RESTTP 1 2,708 2,754 | 2,754 2,624| 2,722| 3,463| 3,053 3,907
ACDS On 10 1,640| 1,616| 1,636| 1,599 1,615| 1,825| 1,783| 1,703
Table 5.7:

Scenario 2: Agents moving between differentoreg)i
(5% packet loss) (RESTTP) (in ms).

126 CHAPTER 5. AGENT CODE DISTRIBUTION SERVICE

P P

resence resence

@ Router @"lt@

Agent Agent
Platform A Platform B
Region 1 Region 2

Figure 5.10: Scenario 2.

Tables 5.4 and 5.6 for PCTP, and Tables 5.5 and 5.7 for RESTOR, thie perfor-
mance results obtained in the two network environmentsisfaicond scenario. Fig-
ures 5.11 and 5.13 for PCTP, and Figures 5.11 and 5.13 for RESAGW a graphical
representation of them.

In the first case, the WAN without network loss (see Table,5h8 increase of the
response time considerably changes the performance of aggrations. An agent
migration may be up to 20 times longer than in the first scendsevertheless, there
IS an exception with migrations of agents with large codesguBCTP with the ACDS
disabled, in this case the time spent in each migration idairhecause of the ACL
message penalisation (see Section 4.4.2). When the ACDSh¢ednaince the code
request is not subject to the WAN access time, the time iseréaonly associated to
the ACL message handshake, e.g., see that in case of 10 migagents with PCTP, in
a similar way than the first scenario, there is only a diffeeeaf approximately 160ms
between the smallest and the biggest agent, i.e., the tierg spthe code transmission
has not increased.

In the second case, the WAN with a loss of 5% of the packetsTabke 5.6), the
performance of the agent migrations decrease regardings$te presented up to now.
Compared with the previous case, the average time spent lnaggnt migration with
the ACDS disabled increases from a minimum of 20% to a maximb&@006% more
with PCTP, and from a minimum of 20% to a maximum of 400% mord\RESTTP.
When the ACDS is enabled the time spent does not increase nmameatd0% with
PCTP, and a 100% with RESTTP. Therefore, the use of ACDS is rajhiopriate

5.4. IMPLEMENTATION AND PERFORMANCE

Average migration time (ms)

Average migration time (ms)

5500

5000
4500
4000
3500
3000
2500
2000
1500
1000

500

PCTP ACDS Disabled 1 Aben%
PCTP ACDS Disabled 10 Agents—x-~" -

10 20 30 40 50 60 70 80 90 100

Agent code size (KB)

Figure 5.11: Performance Scenario 2 (no packet loss) (PCTP).

10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

0

RESTTP ACDS Disabled 1 Agents———

RESTTP ACDS Disabled 10 Agents -
RESTTP ACDS Enabled 1 Agents-*---
RESTTP ACDS Enabled 10 Agents-=

0

100 200 300 400 500 600 700 800 900 1000
Agent code size (KB)

Figure 5.12: Performance Scenario 2 (no packet loss) (REFTTP

127

128 CHAPTER 5. AGENT CODE DISTRIBUTION SERVICE

10000 — -
PCTP ACDS Disabled 1 Agents——
9000 | PCTP ACDS Disabled 10 Agents—<= _
m 8000 |
E
o 7000 |
£
= 6000 |
R
T
5 5000 |
aE) 4000
(o]
©
’c;) 3000 |
<
2000 |
B e & =
1000 i
O 1 1 1 1 ! ! | \ .

0 10 20 30 40 50 60 70 80 90 100
Agent code size (KB)

Figure 5.13: Performance Scenario 2 (5% packet loss) (PCTP).

45000 . . . : : , , . .
RESTTP ACDS Disabled 1 Agents——
40000 + RESTTP ACDS Disabled 10 Agents—x-— |
RESTTP ACDS Enabled 1 Agents *
@ RESTTP ACDS Enabled 10 Agents =~
g 35000} =]
()
£ 30000 |
c
S 25000 |
©
(e)]
'€ 20000 |
S
© 15000 |
2
< 10000 |
5000
I S —
[mE-5 =] =)
O 1 L L 1 Il | |))

0 100 200 300 400 500 600 700 800 900 1000
Agent code size (KB)

Figure 5.14: Performance Scenario 2 (5% packet loss) (RERTTP

5.4. IMPLEMENTATION AND PERFORMANCE 129

when the network conditions get worse.

The penalisation imposed by the response time increaseecanitigated by the use
of concurrent migrations. Usually, these ones get a bditeughput than single agent
migrations. When the ACDS is disabled, concurrent migratcmmsume approximately
a 70% of the time than single migrations. When the ACDS is ealdencurrent
migrations consume approximately a 65% of the time with PCIre, a 60% of the
time with RESTTP. These values slightly change dependinh@magent size.

It is worth comparing the results obtained with PCTP and RESpibRocols with
the ACDS enabled. In the first case, no packet loss, there igrtbfferences, for agents
with codes of 5KB to 100KB PCTP tends to perform better witlyragent migrations,
and RESTTP with concurrent ones. For larger agents this teyds inverted. But, in
the second case, 5% packet loss, PCTP performs better iralates. This is because
RESTTP establishes an additional connection to retrievadgkat data, which in PCTP
is included in the first ACL message sent. Nevertheless, ia tteessdata size was larger,
this tendency would be inverted.

Scenario 3: Asymmetric links

The third scenario (see Figure 5.15) is composed of one ACGiSrravith two APs, i.e.,

there is one PoP node providing service to two APs. All the ARhis scenario use
a 20Mb/s (downstream) 1Mb/s (upstream) ADSL link to the RigSubscriber Line

Access Multiplexer (DSLAM). The response time associatethese links is around
30ms. Data exchanged between APs, since traverses two ABI&, tan only reach
1Mb/s of bandwidth and the response time is 60ms. On the bted, data received
from the PoP node in the APs can reach 20Mb/s of bandwidth awtfsponse time of
30ms. Obviously, uploaded data can only reach 1Mb/s, affhdbere is less data to
upload than to download.

Table 5.8 for PCTP and Table 5.9 for RESTTP show the performessidts ob-
tained in the third scenario. And Figures 5.16 and 5.17, fof P and RESTTP re-
spectively, show the graphical representation of them. rékalts are also favourable
to the tests which have been performed with the ACDS enabled.i§ because of the
higher download rate from the ACDS PoP (20Mb/s). Nevertiselescause of the new

130

-

CHAPTER 5. AGENT CODE DISTRIBUTION SERVICE

ADSL

Point of
Presence

Link

A

~

Ethernet Link

DSL Link

Agent
Platform A

Pla

Agent

tform B

Region 1

Figure 5.15: Scenatrio 3.

Protocol | N.Agents| 5KB | 10KB [25KB | 50KB | 100KB | 250KB | 500KB | 1000KB
PCTP 1 1,008 1,100| 1,675| 2,496| 5,002 | 19,412 | 56,628 177,940
ACDS Off 10 801 | 882 1,253 1,493| 2,714 12,205| 39,581 125,501
PCTP 1 972 | 952 1,083| 1,191 1,298| 1,468| 1,708| 2,140
ACDS On 10 538 | 539| 542| 547 603 769 998 1,409
Table 5.8: Scenario 3: Asymmetric links (PCTP) (in ms).

Protocol | N.Agents| 5KB | 10KB [25KB | 50KB | 100KB | 250KB | 500KB | 1000KB
RESTTP 1 1,357 1,443| 1,683| 2,131| 2,972| 5,670| 10,134 18,998
ACDS Off 10 701| 742 1,012| 1,224 2271| 5532| 9,995| 18,868
RESTTP 1 1,183 1,138 1,213| 1,285| 1,424| 1,604| 1,825 2,268
ACDS On 10 540 | 542| 566| 608 724 905 | 1,121| 1471

Table 5.9: Scenario 3: Asymmetric links (RESTTP) (in ms).

link conditions, there are migrations which are performé@ditnes slower than in the
first scenario. In this case, with the ACDS enabled, the diffee between the smallest
and the biggest agent migration round-trip (in case of 1&uoent agent migrations)
are 871ms for PCTP and 931ms for RESTTP. These results arexapptely 5 times

higher than the ones obtained from the scenario 1, i.e.isncése the practical band-
width is around 2 MBJ/s.

The most affected part by the new link conditions are the agsfandshakes. See
the exchange of ACL messages to perform the agent migratiansofgle agent with
PCTP. In this case, the time spent is around 1000ms for eacdfatioig round-trip. This
time is coherent with the new link conditions, which has gosse time of 60ms. In
the first case of the scenario 2 the response time assoctated link was 120ms and,
therefore, the time spent exchanging ACL messages was ab00bis. This is similar

5.4. IMPLEMENTATION AND PERFORMANCE

Average migration time (ms)

Average migration time (ms)

5500

5000
4500
4000
3500
3000
2500
2000
1500
1000

500

PCTP ACDS Disabled 1 Aben%

PCTP ACDS Enabled 10 Agent

25000
22500
20000
17500
15000
12500
10000

7500

5000

2500

40 50 60 70 80 90
Agent code size (KB)

Figure 5.16: Performance Scenario 3 (PCTP).

RESTTP ACDS Disabled 1 Agents———

RESTTP ACDS Disabled 10 Agents-<--
RESTTP ACDS Enabled 1 Agents-*---
RESTTP ACDS Enabled 10 Agents-=

100 200 300 400 500 600 700 800 900 1000

Agent code size (KB)

Figure 5.17: Performance Scenario 3 (RESTTP).

131

132 CHAPTER 5. AGENT CODE DISTRIBUTION SERVICE

with RESTTP.

In all the tests, the use of parallelism with 10 agents hasninesdgration times
around the 70-75% of the single agent migration time. But bseaf the fact that
the link with the ACDS PoP is also subject to a higher respoimse than the other
scenarios, the use of parallelism even obtains a greateouament (around a 50%
of the single migration time). This is because the transomssf data can be done in
parallel with the ACL message interaction of the other migreg. In other scenarios,
although this can also be done, the data transmission tisterser and the effect of the
migration pipeline is not so noticeable.

Regarding PCTP and RESTTP with the ACDS enabled, PCTP perfornes bet
all the cases. Similar to the previous scenario, this is lee&®RESTTP establishes an
additional connection to retrieve the agent data, which@TP is included in the first
ACL message sent.

Conclusions

The tests performed denote that in all the cases the bedtsrémve been obtained
when the ACDS service was enabled. Furthermore, in case af/oumfable network
conditions the use of the service is also highly encouragede the benefits of the
code caching service are even more noticeable.

Another remarkable fact is that the use of the ACDS when ceoanuiagent mi-
grations take place allows an even better average migrétien This is because the
different mechanisms involved in the agent migration, dr@rhechanisms to request
the agent code to the PoP are arranged as a pipeline and damwarallel, since they
are completely independent among each others.

Finally, regarding the use of one or another migration prot¢PCTP or RESTTP
in this case) in combination with the ACDS, in the tests presbit seems that PCTP
performs better. But this exclusively depends on the way thé&opols deal with the
agent data and state.

5.5. RELATED WORK 133

5.5 Related work

In this chapter a code distribution service, initially ceived for Mobile Agents (MAS),
has been proposed. No other initiatives in the literaturee ieeen found with this ex-
act purpose and functionality, but there are some workscinagr specific areas of the
service proposed. This is the reason why the related workesepited in several cate-
gories.

5.5.1 Code distribution

The distribution of agent codes has not been already prdpsan independent service
such the one presented in this chapter. Nevertheless, lag\&abas its own agent code
distribution mechanism, several works exist in the areackldich et al. [NQKA98]
states three types of code distributiomigration, push andpull. According to their
definition, themigration distribution is the one which sends the agent code along the
agent state during an agent migration. This is the most cammay to distribute the
code and it is supported by most of the AM, such as Aglets [LIMS8MoA [RJIS01],
Tracy with Kalong [BRO5], and JADE with IPMA (see Chapter 3). Theshcode dis-
tribution consists of sending the agent code to a set ofilmtsit sometimes associated
to the agent itinerary, before the agent launch. This scheassebeen used by Nick-
lisch et al.[NQKA98] in INCA and, with several improvements in the dibtrtion list,
by Gavalast al. [GGGOO02] in their hierarchical network management solutrased
on MAs. And thepull code distribution consists of downloading the code oncagjent
reaches a location. This scheme, usually in combinatioh thi2 migration scheme, is
rather extended. It is supported by the same AMs which haee peeviously listed
with the push distribution.

The service proposed in this chapter supports the push dhdghemes (see Sec-
tion 5.5.1). The difference with all the initiatives mentea is that ACDS is a standalone
service that is not bound to any specific AM. Furthermoreait manage several codes
per agent, which can be developed in any PL, it can deal witle goofiles and code
signatures, it supports access control regarding the tipeseto manage the code, and
it provides a standard interface for its usage.

134 CHAPTER 5. AGENT CODE DISTRIBUTION SERVICE

5.5.2 Content Delivery Networks

A Content Delivery Network (CDN) [PB07] is a network composedpécific nodes,
called PoPs in this thesis, close to Internet backbonesetise the content distribu-
tion. CDNs are focused on the efficient distribution and aagladf content. Usually,
there is an important hardware infrastructure behind. Tér&opmance experienced by
users that access content present in a CDN is improved, wielsdturation of wide
area networks is reduced, see [RKSBO05] for more details. Inymases the service is
transparent to its users, i.e., they do not notice they ang uis

There are several CDNs dedicated to different types of cont€he most well-
known CDN is Akamai [DMP 02, SLBWO05] for web content. Although web con-
tent can include code, such as applets, no special conttdataasioning facilities are
supported. There is a CDN specifically designed to distrilayglications, the App-
Stream [App]. Nevertheless it is based on a centralisedoagprconceived for small
environments. There are other initiatives similar to tlagch as the ASP-NG sys-
tem [BGN'05] which serves applications on demand, although it igiotstl only to
J2EE applications.

5.5.3 Peer to Peer networks

Peer to Peers (P2Ps) are distributed networks that maimf@mmation, usually files,
through several nodes. A decentralised model is generaltyl.u Each node is con-
sidered an equal, and has the same properties and fundiEsak others. P2Ps are
focused on file distribution, are fault tolerant in most oé ttases, and can prevent
server bottlenecks. Examples of P2Ps are the well-knowntéBayRFI102], Fast-
Track [LRWO03], JXTA [Gon01], and eDonkey [TutO4]. Unfortuely, P2Ps are not
focused on offering a high performance data transmissi@y, do not provide version-
ing support, and they increase the general bandwidth coptsom

5.6. CONCLUSIONS 135

5.5.4 Distributed Version Control systems

Distributed Version Control systems are applications thextage and keep source code,
which is distributed through several hosts, in differenisiens and branches. There-
fore, the information is usually structured in a hieraraehiepresentation. The benefits
of these systems are that the code can be distributed andatepl through several
nodes, and that there is a clear file version maintenanceypoli

Examples of them are GIT [git], Darcs [Rou05], and Mercurfalg]. Regarding
our purposes, these systems are too focused on source strifeution instead of their
binaries, have poor authentication methods, which arellysbased on secure shells
such as the SSH, and are devised to maintain files which atmaonosly changing.

5.6 Conclusions

The advantage, and at the same time inconvenient, of MA=isaitt of carrying the
agent code, data, and state everywhere they go. The degretoobmy agents have as
a result of this characteristic is exceptional regardifgeotechnologies. But carrying
these components may be an inconvenient when they weigbidsoably.

In this chapter ACDS, which aims to reduce the penalisatiqmosed by the men-
tioned agent structure, has been presented. ACDS dissitheeagent codes to a subset
of regions in which the network is divided. The agent codesdistributed under con-
tract, i.e., agreeing several specific conditions and pbsisaving to pay for the service,
or anonymously without having to pay for the service. In the&t tase the agent code is
deployed in advance to a set of regions enforced by contiiathe second case, since
no regions to deploy the agent code are known in advanceptteeis spread on-demand
to each PoP. Therefore, the service benefits are not alwayampeed in this last case.

Contracts are expressed in XACML and there is an access camtigiianism which
enforces a set of agreed restrictions to the basic ACDS opesat Therefore, it is
guaranteed that a code owned by a specific person will beldistd according to the
parameters agreed, and that no one will be able to modifycthde or its distribution.
The code management is very flexible and it is self-admatdidér by each code owner.

136 CHAPTER 5. AGENT CODE DISTRIBUTION SERVICE

Regarding the interaction with the service a REST interfasddean proposed. Al-
though different technologies can be used to accomplishphipose, REST has been
chosen since: it is independent of the PLs used by the seawideclient implementa-
tions, itis standard, it is efficient, and it has been exiexigitested in other applications.

Finally, the benefits of the service proposed have been detnabed. A set of per-
formance tests comprising different scenarios which agsgnt in the real world have
been done (a local area network, a wide area network with athdw packet loss, and
a network composed of several ADSL lines).

Chapter 6
Interoperability

For mobile agents to be deployed on Internet scale disttbsystems, interoperability
with different types of agent middleware needs to be ensuiidds chapter presents
several proposals to achieve the challenge of agents fneigisating in heterogeneous
environments.

6.1 Introduction

According to Pinsdorgt al. [PR02], two Mobile Agent Systems (MASS) are interop-
erable if a Mobile Agent (MA) can interact and communicatéwather agents (local
or remote), and if the agents of one system can migrate tottiex system, i.e., they
can leave their system and resume their execution in themtexoperable system. This
kind of interoperability is calledull interoperability and can be tackled from the four
areas described in Section 2.4.1.

Despite the fact that there are several specific proposa¢safth area, a full interop-
erability mechanism general enough to cover all the passibmbinations of Agent
Middlewares (AMs), Programming Languages (PLs), and Uwgihgr Architectures
(UAs) is hardly achievable. Too many variables are involvétkevertheless, full in-
teroperability can be reached assuming some limitatiotis thie intended scope. The
most common limitation in the literature is the entailmemtat specific PL and UA,
usually Java and its Virtual Machine (VM) [FGRO7]. Anothesug with the existing

137

138 CHAPTER 6. INTEROPERABILITY

mechanisms is that they do not usually support currentlys@-agent standards, such as
MASIF [OMG97] or the IEEE-FIPA [FIP02a] specifications.

In order to face the shortcomings of the existing approgdhese proposals are pre-
sented in the next sections. These solutions are spegiffoalised on theniddleware
andprogramming language and underlying architectareas. A full mobile agent in-
teroperability within the IEEE-FIPA context is achieved the combination of these
proposals together with the Inter-Platform Mobility Artddture (IPMA) described in
Chapter 3, that covers thmaobility area, and the IEEE-FIPA specifications, that cover
thecommunicatiorand part of theniddlewareareas.

e Common Agent Interface (CAIl): A common abstract agent interface is pro-
posed in Section 6.3 to deal with the interoperability inttinddleware area. The
idea behind it is to set the basis for a minimal interoperalgient compliant with
the IEEE-FIPA specifications and suitable for any PL. Agexats be moved to
any AM supporting CAIl and the specific PL in which they are depel (this
was firstly considered in [CMR07, COO 07]). Therefore, the middleware area
of interoperability is dealt in this section.

e Multiple Execution Environments: Assuming a common agent interface such
as CAl, the idea of having multiple Execution Environment&gkEfor a selection
of PLs within an AM is discussed in Section 6.4. This allows #&xecution and
local interaction of agents present in the same AM, but dped in different
PLs. Therefore, the programming language and underlyioitecture area of
interoperability is dealt in this section. This is an ideaitar to the one applied
in [JLVR*02, GCK'02, Pei02, CCP06, OB04].

e Multiple Code Agents: Agents with several equivalent versions of their code,
each one written in a different PL, are proposed in Sectién @hese agents
can visit any Agent Platform (AP) with support for one of thespf their code.
They keep and resume their state although using one ditfeoele in each visited
location. A shared data representation mechanism is peop&everal data rep-
resentation languages are discussed to agree on a commaowléldendent way

6.2. BACKGROUND 139

of representing the agent data. This approach is complametd the previous
one and deals with the same area of interoperability.

The adoption of one, two or three of the proposals impliefediht grades of con-
straints and complexity. Therefore, MAS developers musbsk the most appropriate
ones to their needs. It is worth mentioning that these pralgsasre only devised to
support weak agent mobility. The use of strong mobility isg@aerious restrictions to
the agent interoperability because of its strong dependeitb the UA [CLZ00]. See
Section 2.3.2 for more information about types of agent fitgbi

Finally, the use of the these approaches in combinationidfRnd the IEEE-FIPA
specifications ends up with a full interoperable solutionNASs in the IEEE-FIPA
context. In Section 6.6 several proposals present in tagtiire claiming to provide
agent interoperability are discussed.

6.2 Background

Proposing a full interoperability solution for MASs is akakat comprises the study of
the most relevant mobile agent technologies and their neatufes. In this section are
presented several of the most known MASs which are bounditggesPL, and several
others which support many PLs.

6.2.1 Single Programming Language MAS

Grasshoppe[BBCMO0O0] is a commercial AM, no longer available, based on theaJa
PL. It was the first one to support the OMG MASIF and the IEEBA-agent standards.
Agents are implemented overriding one of the two super elapsovided, the Station-
aryAgent and the MobileAgent, depending on the type of agamqiired. These classes
provide the methods with the agent and AM functionality, anelimplemented by the
agent and AM developers respectively. The AM has a commtiaicaervice with sup-
port for CORBA 110OP, Java RMI, and plain socket connections vejptional SSL. It
also incorporates a persistence service, and a secuntigasevhich takes advantage of
x509 certificates, SSL and the Java security model.

140 CHAPTER 6. INTEROPERABILITY

The Agletsserver middleware [LM98] is an environment to execute Agylethich
are Java MAs. Although its authors considered the Aglet APlightweight, it is in
fact quite large because of the AM extensive functionaitich as the agent creation,
migration, cloning, synchronous and asynchronous mesgagnd persistence. The
agent server is based on an event-driven model. And thawtten with other agents is
accomplished by means of a proxy interface, which providesamon and secure way
of accessing them.

Ajanta [TKA102] is an AM for Java MAs which is focused on security and fault
tolerance. It supports RMI communications and on-demandtagebility. Agents
are implemented from a base class that comprises severhbdsetvhich implement
the functionality of the agent and the AM. Some of them arerdgen by the agent
developer to react to agent events and encode its fundatipriadients have the ability to
create and kill another agents. Furthermore, Ajanta ageipsort itineraries including
several migration patterns. A specific task can be assodiateach visited location.

SeMoA[RJS01] is a runtime environment for Java-based MAs focuseskegurity
and easy extensibility. SeMoA agents only have to implentiemtlava Runnable in-
terface. Services are accessed through context objectsogota static method of the
service class. The advantage of this mechanism is thatsageit need to know the
interfaces of the services they are planning to use.

SOMA[BCSO01b, BCS014a] is a flexible and extensible programming fraonevor
MAs with a rich infrastructure of middleware services. Ipports local communication
by using shared objects, and remote communication by theaexe of asynchronous
messages. SOMA includes a persistence service, a QoSesanit a security service,
based on PKIs, certificates, and the Java security mechaniBorthermore, MASIF
and the IEEE-FIPA agent standards are optionally supported

Tracy[BRO5] is a modular, component-oriented, extensible Java &Blghed as a
micro-kernel. Because of their micro-kernel philosophyrtagents only need to imple-
ment the Java Runnable interface. Services are accessethfycantext objects, each
one with its own public interface, which can be retrievedhirstatic classes provided
by them. Regarding the life cycle of its agents it only comgsitwvo states: running and
waiting.

6.2. BACKGROUND 141

JADE [BCGO06, BCPRO08] is a Java AM compliant with the IEEE-FIPA specifica
tions. It has a large interface that provides a complex agshktscheduler, an agent state
management completely based on the use of multiple metdo&uépend(HoWait()..),
and an agent event management also based on the overloddiegecal methodsaf-
terMove() takeDown()..). Agent states are based on the IEEE-FIPA agent life cy-
cle [FIPOA4].

Mobile-C [CCPO06] is an IEEE-FIPA compliant AM which supports C/C++ agents
and it is based on the extensively use of XML [CLCO08]. Althougporting the IEEE-
FIPA specifications, the agent life cycle state is proprietds agent interface provides
methods to deal with services, communicate, and manage#m state among others.
Agent migrations are done according to a preestablishaeréry. Agents run on top of
the Ch C/C++ interpreter.

6.2.2 Multiple Programming Language MAS

TACOMA[JLVR'02] is a framework which supports the execution of MAs depebbin
different PLs (C, Tcl/Tk, Perl, Python, and Scheme) by usiiffgieent VMs. Each VM
has an associated briefcase folder with the code of the sag@miing on it. Only weak
migration is supported and the agent developer is resplentib gathering the agent
data considered necessary in each migration. The comntiomcaodel of this AM is
completely different from the others. It is based on the ddariefcases and cabinets.
Briefcases are data containers associated to a specific wbeastt can be eventually
shared with another agent to exchange information. Remetentmication is carried
out by sending a copy of the agent to the remote platform acbamging briefcases.
Therefore, it implies agent mobility. Cabinets are also datatainers, but associated to
a specific AP. They are used to concurrently share data anmenggents local to the
platform. Some of them can be secret by the assignment & largdom names only
known by a few agents.

D’Agents|GCK*02] is an AM which supports multiple PLs (Tcl, Java, and Scegm
It is composed of a server component and several EEs. Strajrgtion is supported.
Each EE includes an interpreter or VM for the PL consideredpdule to capture the
agent state, and a module to deal with agent security. Teexeset of stub routines to

142 CHAPTER 6. INTEROPERABILITY

allow agents to invoke the functions of the AM shared librafizis routines are stated
in an interface shared by all the agents which keeps the samsédnality for each sup-
ported PL. Minor differences exist in some method names amdnpeters defined in
the specific interface used in each PL. The server compowhitth is the core of the
AM, manages the reception of agents injecting them to theogpiate EE. Each agent
is authenticated and limited to a specific amount of res@uiéer the sake of simplicity
TCL and Scheme EEs are threads within the server procesi@deva EE has its own
process.

Ara [Pei02] is an AM which supports different PLs (currentlyytaae Tcl, C/C++,
and Java) and strong migration. It is composed of a PL inddgr@nsystem core and
several PL interpreters (EES). The system core providesithenum low level nec-
essary functionality for agents. Extended functionalitystnbe provided by dedicated
server agents (similarly to the IEEE-FIPA philosophy). NEfs can be easily added
since there is a well defined interface between the systeearat them. The interface
is composed oftubs which are the calling interfaces of the core for each supldeL,
and theupcalls which are the implementation of certain functions for thieipreters
management. Each agent is attached to a system thread. tddsgpporting remote
communications, local agent communications usage is esiggth Two methods, one
based on synchronous message passing and another baseldapadatsple space, are
provided. Ara also provides security by means of an accghbssrivector mechanism.

AgentScap¢OBO04] is a multi-language AM designed to support scalaldeuse,
distributed multi-agent applications. Currently it prosgdan EE for Java agents. It has
a large interface mainly because of the messaging systerthandethods to interact
with the underlying Agent Operating System (AOS) [vN@I7]. ACS is a low level
layer which provides interoperability and security faa to AMs based on it. Another
AM based on AOS is Mansion [VNBTO04].

6.3. COMMON AGENT INTERFACE (CAl) 143

6.3 Common Agent Interface (CAl)

The existence of different AMs makes the agent interopétalifficult at the middle-
ware level. Each AM has its own agent interface, therefoeeitkeraction agent/AM
is limited to entities sharing the same interface. The maintribution of this sec-
tion is the definition of a common agent interface called CAthii the context of the
IEEE-FIPA specifications. A shared specific interpreted Rleach AM is assumed,
which currently is the most common scenario in the lite{iR00, PR02, GGKO02,
MPD*02, FGRO7]. In our opinion, most of the existing full interogkility approaches
usually fail in that:

1. Widespread agent standards, such as MASIF or the IEEE-Fb@&ifications, are
not taken into accountlt is an important decision whether to use existing agent
standards or not in the design of a new agent interface. Aaugito our point
of view, not using them is a serious error since it hindersatth@ption of the so-
lution proposed and, also, the adoption of the agent stdaddwo main agent
standardisation efforts stand up, MASIF and the IEEE-FIPActfications (see
Section 2.4.2). MASIF is composed of several definitions @m@imon middle-
ware interfaces (MAFFinder and MAFAgentSystem) for MAS .vBieheless, no
agent standard interface neither agent communication amins are defined.
IEEE-FIPA are the standards selected for our approache shrey are the most
extended agent interoperability solution nowadays. Theyide good interop-
erability in the area of agent communication, but they dodedtne a common
agent interface. This is the reason why CAl is defined in thitice.

2. Approaches are tightly coupled to a specific. PUsually they only support the
Java PL and its VM. This is an important limitation, sincefeliént PLs are
appropriate for different applications. This is the reastwy the proposed general
interface must be the base of specific interfaces for eachrRis. first approach
must guarantee interoperability with AMs that share thees&in

3. Complex implementations and major middleware internal moatibns are re-
quired Most of the existing approaches are complex and are impltedeat

144 CHAPTER 6. INTEROPERABILITY

the middleware level, except JIMAF [FGRO7] which is implenezhat the ap-
plication level. Many agent interfaces tend to provide wassary functional-
ity [GTAO8]. The proposed simple agent interface, only wiitie IEEE-FIPA
functionality needed, must be simple. The scheme reingatee IEEE-FIPA phi-
losophy of using services or doing tasks in cooperation wfitler agents only by
means of their messaging system and not relying on comptéxtacture depen-
dent interfaces. Furthermore, the implementation musbbeta be deployed at
the application level or at the middleware level regardimg $pecific necessities
in each context and the availability of the AM source code.

Our proposal is devised for IEEE-FIPA compliant AMs. Nelietess, non compli-
ant MASs can always be adapted [GRK03, C@®]. This approach allows the use of
different specialised AMs for specific environments suchaspitals, and laboratories
among others, which admit generic agents, such as agemd basCAl, to coexist and
interact with their native agents by means of the IEEE-FIBAmunication facilities.
Furthermore, IPMA, presented in Chapter 3, is chosen asopeability solution in
the area of mobility. The reason is that it is a flexible aggilan level agent migra-
tion architecture independent of any AM and PL, since it isdghon the IEEE-FIPA
specifications.

6.3.1 Considerations toward a common agent interface

The life of an agent takes place on top of a specific AM. Due éof#tct that there are
many different AMs with different agent interfaces, thev@o possibility of exchanging
their agents. CAl, which is shared by all the AMs with the sarmefd UA, allows the
exchange of agents compliant with this interface.

The multi-language programming suitability desired foe firoposal enforces the
definition of an abstract interface as a basis for specifariates for any PL (see Fig-
ure 6.1). The interface is composed of two parts, one withhods implemented by the
agent, which are the ones called by the AM, and another withods implemented by
the AM, which are used by the agent to access the middlewacgiénality. How this
interface is mapped to each PL is freely left to people in gbaf the standardisation

6.3. COMMON AGENT INTERFACE (CAl) 145

regarding each PL. No rules are enforced to allow gettingrtbst appropriate specific
interface for each case.

Common Agent
Interface
(CAI)

\ 4

Java CAl Python CAl C++ CAl

Figure 6.1: Common Agent Interface.

Nevertheless, one may question which is the reason to ettablbase interface
where specific ones inherit from it if, in fact, the agent iofeerability seems to be
restricted to systems sharing the same PL and UA. There ares&asons:

¢ In all the cases the functionality to provide is similar, & seprimitives in the
IEEE-FIPA context. Therefore, it is reasonable to use simiiterfaces avoiding
the effort of designing a new interface for each PL.

e In Section 6.5 there is a proposal of inter-language interapility, i.e., agents
which can move to AMs that support different PLs. These agard composed
of several equivalent codes developed according to a senhdésguidelines, the
equivalent interfaces.

Taking into account the interfaces analysed from other Ad&® (Section 6.2) and
the IEEE-FIPA specifications, CAl should provide the follagyiifunctionality:

e Agent management The agent must have an IEEE-FIPA [FIP04] compliant
unique identification (AID) and life cycle state associat8dveral accessors must
be provided to set/get them. No accessors are necessatyefagent mobility,
since the IPMA model is completely based on the exchange ehAGommuni-
cation Language (ACL) messages.

e Agent messaging The exchange of IEEE-FIPA ACL messages [FIP02e] must
be supported. Taking into account the nature of ACL messaggschronous

146 CHAPTER 6. INTEROPERABILITY

communication is enough. Furthermore, some facilitiegp&rate with ontologies
should be provided although not as part of CAI.

e Agent event reaction The agent must have the capacity to react to events such
as state changes or incoming messages. Neverthelessetbkthis feature is not
mandatory and depends on the agent developer.

Although the optimisation of the agent itineraries can @pranhuge improvement
to the performance of MAs [GPO06], no itinerary managemecitifees [RB02] are di-
rectly provided, as Ajanta and Mobile-C AMs do. The reasatha this functionality
can be easily provided as part of the agent code without comising the agent inter-
operability. Furthermore, no security facilities are gsovided through the interface.
Since security is usually related to the agent mobility, M the component which
has to implement it (see Section 7.5). Moreover, as ACL messarg used to interact
with IPMA, no special methods in the agent interface areirequo negotiate security
parameters with it.

6.3.2 Proposed Common Agent Interface (CAl)

One interface, some data structures, and a list of valueprapsed for CAl. The
interface is expressed in terms of object oriented PLspotig the OMG IDL specifi-
cation [OMG99].

Interface

The interface is composed of two parts. On the one hand, theéhe agent interface,
which is composed of a set of methods implemented by the alpmeioper that char-
acterise the agent functionality. On the other hand, thetlka AM interface, which is
composed of a set of methods with the AM functionality tha&t mnplemented by the
AM developer. This is the same philosophy that is followedviaonads [MROO] and
JIMAF [FGRO7] interoperability approaches to avoid mixihg implementation of the
two kind of methods. The agent interface is detailed in thieiong lines:

6.3. COMMON AGENT INTERFACE (CAl) 147

interface Agent {
voi d deliver(in ACL nsQ);
voi d set Agent State(in short state);
short get Agent State();
void setAID(in AID id);
Al D get Al D();
void run();
voi d set MCont ext (i n M ddl ewar eCont ext nt);
M ddl ewar eCont ext get MCont ext () ;

The MiddlewareContext object referred by the agent interfacthe mechanism the
agent might use to access the AM interface, which providesrathods implemented
by the AM developer. Therefore, each AM is responsible feigrsng its own imple-
mentation of this interface using theét MCont ext () ” method. The middleware
interface is defined in the following lines:

i nterface M ddl ewar eCont ext {
void send(in ACL nsgQ);
Al D get AVS() ;

The interface proposed has a reduced set of methods singahenbasic func-
tionality required is provided. The combination of thesetlmes allows developers
to implement the exact required functionality for each dgek clear example is the
agent message management, which can be as much complexchxpees prefer. They
can implement thedel i ver () ” method to manage incoming messages in queues (as
the implementation described in Section 3.7.2), or protiess instantaneously, or in
whatever other way they consider appropriate. Other catiplectionality, such as
messaging encoding is not included in the interface. lalsté#his, this functionality is
delegated to the AM, which according to the language anddingparameters selected
by the agent encodes the ACL message.

148 CHAPTER 6. INTEROPERABILITY

Data structures

There are two main data structures. They represent the FHBE-Agent Identifier
(AID) [FIPO4] and the IEEE-FIPA Agent Communication Langea@\CL) [FIP02e]
message. First of all the AID:

val uetype AID {
string nane
sequence <string> addresses
sequence <Al D> resol vers

And the ACL message:

val uetype Tuple {
string key
string val ue

t ypedef sequence <Tupl e> Tabl e;

val uet ype ACL {
string performative
Al D sender
sequence <Al D> receivers
AID replyto
sequence <octet> binary_content
string string_content
string | anguage
string encodi ng
string ontol ogy
string protocol

6.3. COMMON AGENT INTERFACE (CAl) 149

string conversation-id
string reply-with
string in-reply-to
string reply-by

Tabl e ud- paraneters
string acl -encodi ng

Although an agent could use its own data structures to reptésis information, the
proposed data structures are needed to exchange the itifammath the AM through
the interfaces previously defined. An example are the ACL aggss which are not en-
coded by the agent, but it is the AM that interprets the datacgire previously defined
and encodes it according to the language and encoding peaselected by the agent.
Therefore, the message must be handed in to the AM with tlzestiatcture defined.

Agent state values

In CAl, a set of integer values are associated to the IEEE-RI§#nt life cycle states
(see Section 2.4.3):

- Unknown

- Initiated
- Active
Suspended
- Waiting

- Transit

oa » WO N B O
1

Although the IEEE-FIPA agent life cycle states could be e®etbas strings, an
integer representation is more efficient and easy to useeiaglent code.

150 CHAPTER 6. INTEROPERABILITY

6.3.3 Comments on interface usage

CAl is devised to offer the maximum functionality and flexityilto agent developers
by providing a set of minimum essential methods. No attebwdre enforced, giving
the agent developer the freedom to use its own ones. Thenvialiplines explain the
capabilities of the interface.

Agent management

The AID is managed by the corresponding accesseest Al I) " and “get Al D() .
The AID does not change during the whole life of the agentepkin case of an agent
cloning. IEEE-FIPA states the agent identifier must be usjduut does not define
mechanisms to enforce it. A possibility, which does not mexja central authority,
is using a large random value together with the home agetfoptd@s name. The
“get AM5() " method call allows to get the local Agent Management SystamS)
identification in addition to the network addresses avélabthe current location. AMS
is the agent which, according to the IEEE-FIPA specificatjonanages the AP. The
agent life cycle state is also managed with similar accesgmt Agent St ate()”
and “‘set Agent St at e() ”. Notice that in our approach it is not kept by the AMS
agent as stated by the IEEE-FIPA Agent Management SpeficfEIP04]. This is
because the interface proposed is devised for MAs whichnseifage their state along
their itineraries, i.e., the set of locations visited dgrthe life of an agent. The agent
execution is carried out by repeated calls to thari() ” method while the agent is in
the IEEE-FIPA Active state. The agent is killed by sendingeedistration message to
AMS, which changes the agent to the IEEE-FIPA Unknown siatedqrding to IEEE-
FIPA only the AMS agent can finally kill agents). No methode provided to create
or destroy agents. This functionality could be provided inearby future by means
of specifically defined ACL messages sent to the AMS agent. |1&iyiservices of-
fered by other agents are used through the incorporatedagiegsacilities. Since the
agent migration is considered a service, it is also mandgedgh ACL messages (see
Chapter 3) sent to the Agent Mobility Manager (AMM) agent.

6.3. COMMON AGENT INTERFACE (CAl) 151

Agent messaging

Agent messaging is one of the most flexible parts of CAl. Onlp twethods are
mandatory, one to send messages and another one to recang(tiis is similar to
the Grasshopper [BBCMO0O] implementation). Tleehd() ” method which is imple-
mented by the AM, directly sends the message passed by paraifiee other one, the
“del i ver ()", is used by the AM to deliver an incoming message to the age¢atv
agents manage these messages is left to agent developsrsudgested to implement
incoming and outgoing message queues and several methbitsrtand get messages
from them (receive, blockingReceive, and so forth). Notiw ho support is provided
to deal with ontologies for the ACL message content. Thismmetely left open, since
the establishment of a standard way to deal with them, frenatent interface point of
view, valid for any PL is too complex. Two solutions are prepd. On the one hand
agents can include all the logic needed to create and pasentessages content. Or,
on the other hand, a common library to create and parse gnsldor each PL must
be used, e.g., the fiParse [SKWO05] generic parser for the Javeviich is a library
included in the AM to encode and parse the message content.

Agent events

There are two basic agent events to deal with, the ones cdnoimgagent state changes,
and the ones coming from the messaging system. The first andseceasily dealt with
overriding the Set Agent St at e() ” method and taking into account the agent state
modification. This can be used, for example, to do some apesajust before the
agent migrates (the state changes from Active to Transit)usi when it reaches a
new location (it changes from Transit to Active) among aghefhis functionality is
offered in some AMs through specific methods overloaded éytent developer, such
asbeforeMove()afterMove() setup() cleanUp() and so forth. The messaging system
events, i.e., the reception of messages, can be dealt wethidwg the ‘del i ver ()~
method, since it is asynchronously called each time a megsagceived.

152 CHAPTER 6. INTEROPERABILITY

6.3.4 Common Agent Interface considerations

The main characteristics of CAl, together with a comparisioregular agent interfaces
present in several AMs, are summarised in Table 6.1. Neaslginow the most relevant
characteristics of it.

First of all, although CAl may seem a single interface, in factTable 6.1, it is
classified as two, since one part is implemented by the agaelaper and the other by
the AM developer. This is a common methodology in interop#itg approaches based
on interface standardisation (see Monads [MR0O] and JIMAERB7] in Section 6.6).
Furthermore, it is important to mention that CAl allows anrgveriven implementation
of the agent, allowing it to react to its state changes adogrtb the agent developer
aims. Regarding the message transport and the agent life, ¢dhiely are based on the
IEEE-FIPA specifications, therefore they use the FIPA Mgss&ransport Protocols
(MTPs) and the FIPA agent life cycle respectively. Regardirvegagent creation, dis-
posal and mobility, CAl does not implement any specific metfowdhem, since they
can be accomplished by using specific ACL messages defined FIHA Agent Man-
agement Specification [FIP04] and in IPMA (Section 3). Asaih ®e seen the interface
proposed is characterised by its simplicity and flexibilihtich makes it suitable for
different agent models and applications. Furthermoretated in [Gav04], having a
simple interface, i.e., simple agent classes, a reducedeauof mandatory variables,
and so forth, contributes to a better performance in agegtations.

Finally, it is worth mentioning that two realisations of CAlrfthe Java PL and the
Python PL have been developed. They are available in thel®ldbient Interoperability
section of the JIPMS SourceForge project [JIPa]. The two @Alisations for the Java
and Python PLs are also included in Appendix B.

Interface Grass- | Aglets Ajanta | SeMoA | SOMA | Tracy JADE Mobile- | Tacoma | D'Agents Ara Agent CAl

hopper C Scape
Number of Interfaces 1+1 2 1 n 1 n 1 1 1 1 1 1 2
Enforce agent structure | Yes Yes Yes No Yes No Yes No No No No Yes Yes
Event-driven No Yes Yes No No No Yes No No No No No Optional
State change reaction No No Yes No No No Yes Yes No No Yes No Optional
Extensible Yes No No Yes Yes Yes Yes Yes No No No No ACL
Agent creation support | N.A. Yes Yes No N.A. No No Yes Yes Yes Yes Yes ACL
Agent disposal support | N.A. Yes Yes No N.A. No No Yes No No Yes Yes ACL
Agent state management N.A. Yes No No N.A. No Yes Yes No No Yes No Yes
Mobility support Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes ACL
Other facilities Persis- Security, Persis- | Place, Persis- Persis-

tence, Fault tence, Sur- tence tence,

Security toler- QoS, vival Security

ance Secu-
rity

Agent standards MASIF, | MASIF FIPA MASIF, FIPA FIPA AOS Yes

FIPA ACL, FIPA

KQML

Messaging transport CORBA | ATP RMI Propri- | Shared | Propri- | FIPA- FIPA Briefcase Propri- | Propri- | AOS FIPA-

1IOP, etary objects, | etary MTP MTP- etary etary (RPC) MTP

RMI, FIPA- HTTP

sock- MTP,

ets, CORBA-|

FIPA- IIOP

MTP

IIOP
Messaging type Async., | Async., | Syn. Async. | Async., | Async. | Async. | Async. | Async., | Async. | Async. | Async. | Async.

Syn. Syn. Syn Syn.
Messaging locality Remote | Remote | Remote | Remote | Remote,| Local Remote | Remote | Remote,| Remote | Remote,| Remote | Remote

Local Local Local

Agent lifecycle states FIPA + | 2 states 6 states | N.A. 2 states | FIPA 6 states | 2 states | 2 states | 3 states | 2 states | FIPA

Native
Programming languages Java Java Java Java Java Java Java C/C++ | Any Any Any Java Any

and
Others

Table 6.1: MAS agent interfaces comparison.

(IV2) 30V443LNI INFOV NOWWNOD €9

€at

154 CHAPTER 6. INTEROPERABILITY

6.4 Multiple execution environments

Interoperability in the area of programming languages arttedying architecture is not
completely solved. This area comprises two well differatetil parts. The PL in which
an agent is developed and the UA for which it is compiled. Tlagoontribution of this
section is proposing an infrastructure to allow agents ld@easl in different interpreted
PLs run in the same AP.

6.4.1 Computer architectures

Having multiple computer architectures is a problem cutyedealt with the use of
interpreted PLs such as Java, and Python among otherssloase a common UA, the
one implemented by the VM, is assumed. Other techniquesasittverse engineering
to recompile the agents or emulators have been proposecititéhature, although
with less acceptation. There is also an attempt to deal \withissue in [OdGWBO06]
where agent codes are dynamically generated in each visitation. Unfortunately
this approach requires too much effort for the AM develomenee a set of specific
modules of code present in each MAS must be kept updated.

If only one computer architecture existed, there would reoaby problem with the
PL used in the agent, but to share a set of common dynamicibirdries. In this case
agents would be created and distributed compiled for theispeomputer architecture
with independence of the high level PL used. Since this ipnesible, interpreted PL,
each one with its own associated UA (interpreter or VM), aedu This is the reason
why the solutions proposed in the chapter talk about ageswsldped in different PLs
instead of talking about agents compiled for specific UAs.

6.4.2 A Multiple Execution Environment approach

The approach proposed is based on the use of EEs. An EE isareamif agents which
supports a specific PL and agent interface. The EE includektiguage interpreter in
which their agents are developed and takes care of theiuggac One or more EEs
can be added to new or existing AMs. Each AP has the more appt®set of EEs

6.4. MULTIPLE EXECUTION ENVIRONMENTS 155

a Execution Execution Execution
' Environment Environment | | Environment
X y X
Native Execution Execution
Execution Environment | | Environment
Environment % y

Native Execution Environment

Core Layer
Core Layer

Figure 6.2: Middleware Level. Figure 6.3: Application Level.
Q@ A4

Q fA} fA}

: ; - Execution Execution
Execution Execution Execution . .
Environment Environment |- Environment Environment Environment
X y y X y
Figure 6.4: 1 Agent. Figure 6.5: N Agents.

considering the expected visitors. Similar approachegcaned in Tacoma, D’Agents,
and Ara (see Section 6.2.2).

The use of multiple EEs allow the maximum level of rapprochetibetween agents
coded in different PLs. Again the idea of agents interactogglly by means of the
IEEE-FIPA Message Transport System (ACL message exchange®ssed. Neverthe-
less, in this case agents may be developed with differenaRdsre running in different
EEs.

In the following lines several alternatives of implemeittatare explained, all of
them compatible from the agent point of view, i.e., the sagenacompliant with CAl
proposed in the previous section could be executed on ea@nwaEach alternative
is defined by the level on which it is implemented, and the nemab agents that each
EE hosts. These alternatives are illustrated in Figures632 6.4, and 6.5, where each
agent developed with a specific PL is represented with a fspsbiape and lettex(or
y). The levels on which the EEs and their management comp®oantbe implemented
are:

e Middleware level: This is the most common approach for AMs initially created

156 CHAPTER 6. INTEROPERABILITY

with the idea of supporting several PLs (see Figure 6.2), B:4gents [GCK"02]
and Ara [Pei02], or AMs which require an interpret for the Red, e.g., Mobile-
C [CCPO06]. In this case agents are directly created within threesponding
EE. The use of a common interface between the core layer ohlth@nd the
EE is highly encouraged although not mandatory to ease ttgiad of new
EEs [Pei02]. Nevertheless, the really important interfeethe agent interop-
erability is the one between the agent and the EE, i.e., tieef@ite proposed in
Section 6.3.

e Application level: This is the most common approach in interoperability psspo
als over existing AMs (see Figure 6.3), e.g., Monads [MROOJAS [GGK102],
Guest [MPD 02], and JIMAF [FGRO7], since it involves a few or no modifica-
tions to the AM internals. Because of this, each agent runwittiggn an EE is
usually represented by a native agent of the AM. This approaaally consumes
more system resources than the previous one.

Regarding the number of agents that an EE can host, two vaugditihe approach
are possible:

¢ Single agent In this case there is only one interoperable agent runnmgazh
EE (see Figure 6.4). The simplicity of implementation arelfcility to securely
isolate agents from other agents (sand boxing) are two ohém advantages.
Combined with the application level approach, each EE isingnover a middle-
ware native agent. The functionality of the EE is similartte tunctionality of an
adaptor and, therefore, only one execution thread is redquor each agent. An
example of its use in the application level, only for the Tmll&cheme PLs, is the
D’Agents [GCK"02] AM. There is also the example of the GMAS [GGB2]
interoperability approach. And an example of its use in theédeware level is
the Mobile-C [CCP06] AM.

e Multiple agents: In this case there are several interoperable agents rgimmin
each EE (see Figure 6.5). This approach is complex to impigrakhough when
it is used at the middleware level is the most efficient one.th&t contrary, at

6.4. MULTIPLE EXECUTION ENVIRONMENTS 157

the application level there must be a native agent linkedatthenteroperable
agent running in the external EE, and at least two threadsegrgred for each
interoperable agent (see the triangular agents of Fig®)e Gome examples of
its use at the middleware level are D’Agents [GAR], regarding the Java PL,
and Ara [Pei02], regarding any PL.

All the approaches and their combinations are compatibile @Al. The adoption
of one or other method only affects the performance of ifterable agents execution
and the complexity of implementation. From now on it is assdra middleware level
approach combined with EEs hosting more than one agentt(sed-igure 6.6).

Native Agents N Supported languages
Legend
Agents
A\ i\ (P1)-
Java FIPA Python FIPA Java Agent
Interface Interface
Execution Native Java Python @
Environtments Execution Execution Execution
Environment Environment Environment Python Agent
Language Independent
Interface Therface
Midgleware { FIPA Compliant Agent Middleware (Core) Native Agent
ore

Figure 6.6: Multiple Execution Environments Middleware.

The reasons for choosing this alternative are that havirgkth for each agent is
quite inefficient in terms of performance execution and ueses consumed, and that
the implementation at the middleware level is a more robodtvaell designed option
than the implementation at the application level.

In the example of Figure 6.6 there is an AM following this aggoech with EEs for
the Java and Python PLs. In the figure there is an agent caNéd Which, as defined
in the IPMA mobility specification of Chapter 3, is in chargeagfent migrations. See
Section 6.5.4 for an explanation of several mobility coasaions motivated by the
introduction of multiple EEs. Also, notice the existencelwd standard AMS and DF
IEEE-FIPA agents. As itis explained in Section 2.4.3, AMSisagent which manages

158 CHAPTER 6. INTEROPERABILITY

the agent platform and DF is a directory service.

6.5 Multiple Code Agents

In the previous sections two methods to improve the comitisitibf agents with dif-
ferent AMs have been proposed. On the one hand, CAIl, whiclvaléments to live in
different types of AM. On the other hand, the multiple EE $iol, which increases the
range of supported PLs in a single AM. The effectiveness effitlst method depends
on the support for the PL in which the agent is developed it ediche locations to
visit. Therefore, locations should support as many PLs asiple.

The contribution of this section is an additional approadticl relaxes this state-
ment. The interface of Section 6.3 is also used. It consisteencreation of agents
composed of several equivalent codes developed in ditfétes. Therefore, each time
an agent visits a new location the appropriate agent codw@iag to the available EEs
is selected. This is called from now own inter-languagerogerability, since the agent
can be transparently executed and migrated through AP$wdoiciot support the same
PL.

There are two reasons which can hinder the adoption of thpsoagh. Firstly, the
agent developer has to provide several codes with equiMadgraviours, which may be
a complex task. And secondly, a mechanism to represent t& dgta in a standard
way must be provided in all the AMs. Otherwise the agent daitddcnot be shared with
the different agent codes. In Figure 6.7 there is repredeantéhypothetical multi-code
agent that moves from a Java AM to a Python AM.

Java Execution Environment Agent Independent Representation Python Execution Environment

FIPA Agent

FIPA Java Agent . FIPA Python Agent
/ Data: YAML representation
Data: Java object instance \ Data: Python object instance|
/ Code: | Java classes
Code: Java classes Python modules > Code: Python modules

Other codes

Figure 6.7: Agent data transformation.

Next sections discuss the usage and implementation of sgatit multiple codes,

6.5. MULTIPLE CODE AGENTS 159

and the standard representation of the agent data by ussegisstandard data repre-
sentation languages.

6.5.1 Agent data processing

As previously mentioned, the inter-language compatpitit agents requires a stan-
dard mechanism to represent the agent data. In this sectrmthanism based on the
YAML [yama] data serialisation standard is proposed.

In recent MASSs, the methods to capture the agent data haleeatobject of much
discussion. Most of the PLs recently used in agent developrewe object oriented,
and they already include their own object serialisation arshalling mechanisms. In
MASSs where agents are represented as objects this is egpiital capture the agent
data. Examples of these mechanisms are the Java ser@alisaéchanism, and the
Python marshalling mechanism, among others. Neverthetessnpatibility beyond a
specific PL is required, the way the agent data is capturedemrdsented is a matter of
concern. Therefore, the use of a standard data represerniatiguage is recommended.

Existing data serialisation mechanisms

A short analysis of data representation mechanisms is daotie inext lines. Two types
exist: data binary, and data string. Data binary repreentanechanisms are compu-
tationally efficient and achieve a good data size ratio, bein@t human readable, and
are usually tightly coupled to a specific PL, e.g., Java bsaigon, Python marshalling,
and so forth. Furthermore, sometimes they present classonecompatibility issues
because non necessary internal information, which is highision dependent, is cap-
tured. Data string representation mechanisms are humdabieg but have a worst data
size ratio. Nevertheless, since they are not usually gigtdlipled to a specific PL they
are preferred for our purposes. Some standard data stymgsentation mechanisms
have been considered:

e Extensible Markup Language (XML): XML [XML] is a specification which
allows the representation of structured data. There is andstd XML data
serialisation mechanism defined, but some specific prepyietplementations

160

CHAPTER 6. INTEROPERABILITY

with their own semantics for several PLs. The data got froes¢happroaches
can be relatively independent of their PLs, and does notepteslass version
compatibility issues like their binary counterparts. Thexamples of them are
XStream [XSt], which is available only for the Java PL, PyXNRyX], only
available for the Python PL, and .NET XML serialisation [M&]. The first one
produces a clear XML and allows changes to adjust its depeed® the Java
class names (some aliases may be used for them), the secertfthera trick-
ier semantic format and is less flexible, and the third onesdu support the
serialisation of private fields. Nevertheless, there is als alternative to the au-
tomatic object serialisation. It consists of defining a #ipedata structure where
the agent manually stores the data it considers necessatigefmext location.
This is the alternative used in MAWS [AKO6], which is a MAS appach based
on Web services.

JavaScript Object Notation (JSONY) JSON [Crob] is a lightweight language in-
dependent data-interchange format. It is a subset of the EQBRAstandard, on
which JavaScript is based. Its availability in many PLs sit#ability to encap-
sulate information, and its reasonable data size ratigitdelseing a string based
format, are some of its advantages. Nevertheless, since data types, data ref-
erences, and cycles are not supported, JSON is not feasialgeneral agent data
serialisation mechanism.

YAML Ain’t Markup Language (YAML) : YAML [yama] is a data serialisation
language independent of any specific PL. Its availabilitynany PLs (although
not so extended as JSON), its suitability to encapsulatenmdtion, its reasonable
data size ratio, its support for generic objects of any dgia,tand its support for
data references and cycles, make YAML the perfect languagéote the agent
data in a standard way. Several implementations are alailabdifferent PLs,
e.g., PyYAML [PyY] for Python, YAML.rb [YAMb] for Ruby (whichis currently
integrated as part of the PL) and Jvyaml [Jyy] for Java.

6.5. MULTIPLE CODE AGENTS 161

!TestYAMLAgent
acl: !ACL
encoding: String
language: SL
ontology: migration-ontology
performative: request
receivers:
- !AID
addresses: ['http://localhost:7788/acc',
'tftp://localhost:7789/acc']
name: otherAgent@FIPA-Platform/FIPA-P
resolvers: []
string_content: content-test
aid: !AID
addresses: ['http://localhost:7788/acc']
name: testerAgent@FIPA-Platform/FIPA-P
resolvers: []
firsthop: 1
state: 4

Figure 6.8: YAML encoded agent data.

6.5.2 YAML agent data representation

Our approach is to use the YAML standard data representi@myuage to establish the
basis for a standard agent data representation. Some eoatgaths must be taken into

account because of the differences in PLsS:

e There is a set of basic data types supported by YAML. Nevkssise specific PL
data types and user-defined objects are not part of the sthriflater-language
interoperability is needed, the use of too specific datagypenot encouraged
and user-defined object classes must be accompanied byrgptiesaegarding
how to serialise/deserialise them to/from YAML. Usuallg thnly issue with user-
defined objects is the name which maps the serialised olgéist tlass. YAML
typically names a user-defined object with a pattern whicluthes the PL name,
the class package or module, and the class name, e.g., anPA@ldViessage
object in the “fipa” module would be: “'python/object:figdCLMessage”. Us-
ing the methods provided in the YAML implementation of eath &bject class
names must be replaced to a user-defined name for each shgedmthe differ-
ent codes provided with the agent, e.g., the ACLMessage totgedbe identified

162

CHAPTER 6. INTEROPERABILITY

as “IACLMessage”. The name assigned must be unique withirmgieat code.
The only needed information to serialise the agent is saitained in each of the
included codes.

Attribute types are not equally distinguished in all PLs.sbme cases types are
indicated by the attribute name, e.g., Python privatelaitei names must begin
with “__" characters, which in another language may not be necesEagyefore,
the use of attributes containing PL special charactersisodraged. Proper seri-
alisation/deserialisation descriptions must be provigechap different names to
an intermediate valid representation for all the PLs used.

The default procedure in the serialisation of objects isddeture of all the at-

tributes that belong to the main agent class. Neverthetessetimes there are
attributes which are not necessary in the remote locatiowhach can cause dif-

ficulties to the serialisation process. As in the other célsisscan be adjusted
by using the facilities provided by each YAML implementatiavailable for each

PL. Including only the minimal required agent state infotioris a good practise
to improve the agent migration performance [Gav04, GTA08].

Following the explained approach with the mentioned carsitions, the agent data

can be serialised in an independent representation uaddedile by any of the equiva-

lent agent codes. An example of YAML code produced by thelsation of an agent,

which includes an ACL message, an AID, the IEEE-FIPA agertdifcle state and a
user-defined state is shown in Figure 6.8. This is in the sbutiea prototype available
in the MAI package of the JIPMS SourceForge project [JIPa]

6.5.3 Agents with multiple codes

The inter-language interoperability approach proposettig section is based on the

development of several agent equivalent codes, the exacatiwhich can be stopped

from one code and resumed to another. Therefore, this agpraéows the agent to
visit AMs that support different PLs. All agent codes shdodddesigned with an equiv-
alent structure, and they must use the mechanism to captdreeatore the agent data

6.5. MULTIPLE CODE AGENTS

163

1 def run(self) 1 public void run() {
2 2
3 if self.state == 0: 3 switch (state) {
4 print "Starting agent 4
execution." 5 case O:
5 6 System out. println("
6 # Do some process Starting agent
7 doWhat Ever () execution.");
8 7
9 # Request to migrate 8 /1 Do some process
10 doM grat e() 9 doWhat Ever () ;
11 10
12 # Setting the next state 11 /!l Request to mgrate
13 self.state = 1 12 doM grate();
14 13
15 print "Ending first hop" 14 /1 Setting the next state
16 15 state = 1
17 16
18 if self.state == 17 System out. println("Endi ng
19 first hop");
20 print "Endi ng agent 18 br eak;
execution." 19
21 20 case 1:
22 # Kill the agent 21
23 doKi |1 () 22 System out. println("Endi ng
agent execution.");
23
24 /1 Kill the agent
25 doKill();
26
27 }

Figure 6.9: Equivalent agent codes (Python on the left, davhe right).

previously discussed. An example of two equivalent codesbeaseen in Figure 6.9.
Notice that some methods are not present in CAl, since theymgiemented by the
agent using the more basic CAl methods.

Although these requirements could seem too strong, agttredly are not. Equiva-
lent codes do not imply an implementation of exactly the saméhods with the same
lines of code and the same structure. In fact the only requarg is that all the agent
codes deal with the same attributes and have a similar afemtytle (this last refer-
ring to the agent self-defined states in which the code isnisgd, e.g., the cases of
the switch statement in the main agent code if this agentldewent philosophy is

164 CHAPTER 6. INTEROPERABILITY

followed).

But beyond the development of equivalent codes for the latgguage interop-
erability, new interesting possibilities appear when iplét codes are introduced in
agents:

e Preferred code selectioWWhen there are several compatible EEs with the agent
codes provided, different codes can be chosen when the egpites the AP.
Therefore, with the appropriate mechanisms, agents andrthedlewares can
establish a preference in the use of their codes, e.g., toittgge more efficient
PLs such as C++ or similar.

e Complementary codedf the agent developer knows that certain types of tasks
are only carried out by AMs developed in a specific PL, it cavvjate equivalent
codes in structure, but only with the needed parts impleetenSupposing an
agent with methods A and B, where A is only used in C++ AMs and Bniy o
used in Java AMs, there is no need to implement A in the Java eod vice
versa. This is advantageous, since some tasks may be ditbcdévelop in all
the PLs (some PLs are more appropriate than others for spegks).

The disadvantages of this approach are the complexity griovihe development of
agents, and the increase of the migration time because atiéer of codes that must
be currently transfered with the agent. Nevertheless,tgdbcases it is worth using
the multiple agent code approach because of the previoushyiomed advantages.

6.5.4 Agent mobility model considerations

The IPMA mobility model described in Chapter 3 is based on antgalled AMM
present in all the AMs which manages agent migrations. Thaevimigration process
is driven by the local AMM, which interacts with the remote AMMuntil the finalisation
of the process. The introduction of the inter-languageragerability requires some
additional features to the original AMM, which must be alde t

e manage multiple equivalent agent codes developed in ddResa

e deal with multiple EEs;

6.5. MULTIPLE CODE AGENTS 165

e inject agents in each corresponding EE;
e request YAML agent data capture to an EE;
e control agent execution state through AMS;

Some aspects of the IPMA specification, which in the initiagosals [CMR 07,
COO"07] were not considered, have been reinforced to deal witlipteiagent codes
and different agent data representations:

e Multiple profiles for each agent, referring to each code gisiinique code iden-
tifier (CID), are supported.

e Agent profiles are included in the preference order of usadberefore the agent
could establish a specific code preference usage just intltasgent visits some
AMs with support for several PLs. If the destination AP does support any
of the agent codes, the migration is cancelled. Then, thetags decide a new
location to visit.

e The transfer of multiple codes for a specific agent must wald. This is easy
to achieve by creating new transfer protocols to the arctute or by modifying
the existing ones. Currently multiple codes can be trandfieyausing the service
described in Chapter 5.

e The representation used for the agent data is specifiedhergeith the agent
profiles (YAML, XML, Java serialisation...).

Finally, its worth mentioning that in case a secure transiorsof the agent data is
required, this must be requested to the mobility servic®AR

6.5.5 Inter-language mobility example

This section shows the example (see Figure 6.10) of an aggnation in the context
of two different AMs taking advantage of our full interopbilgty proposal. In this case,
the EEs are implemented at the middleware level and run slezgents. There is an
agent Al that migrates from an AM with a Java EE to an AM with @éhBg EE. In

166 CHAPTER 6. INTEROPERABILITY

IPMA ACL Message exchange

1.Request move
A1A >

2.Suspend agent A1
13.Kill agent A1

4.Register agent A1'
15.Put agent A1' in the
execution state

5.Req. ag. data (YAML) 9.Register ag. code
7.Req. ag. code (versions 11.Register agent A1' (use
needed or available) agent data in YAML)

Java Native Native - > Py
EE 3.Suspend agent A1 EE EE 12.Register agent A1' EE
6.Req. ag. data (YAML) (YAML + Py code)
14 Kill agent A1 16.Resume agent
execution
Agent Middleware Core > Regzgi?ory Ref):g::ory < Agent Middleware Core

8.Fetch agent code 10.Register ag. codes

Figure 6.10: Agent migration with YAML encoded data.

the following lines there are detailed the steps of a migrdlike that, which denote the
importance of the different interoperability areas inwm\n the process.

1. An agent sends an ACL message to AMM to request the moverhgselbor, in
other cases, the movement of another agent.

2. AMM requests AMS to suspend the migrating agent execution
3. AMS requests the corresponding EE to suspend the agent.

4. After the first messages defined in IPMA are exchanged, élxeagent is regis-
tered to the remote AMS.

5. Then the local AMM requests the serialisation of the ageita to the AM.

6. Since the migrating agent does not reside in the nativalieEequest to serialise
the agent data is forwarded to the Java EE.

7. Therefore, AMM requests the agent code to the AM.

8. In this case the agent code is managed through a localiteyosr herefore the
codes are requested to it.

9. In the destination, once the codes are received, the agdas are registered.

10. The AM registers the agent codes to the local repository.

6.6. RELATED WORK 167

11. Therefore, the remote AMM registers the migrating agétit the YAML agent
data previously received.

12. Since in this case the AM only supports the Python PL, fhkdh agent code is
selected. Then, the agent YAML state and the Python agemt agsent to the
Python EE.

13. In the local AP, AMM requests AMS to kill the migrating age
14. The AMS agent requests the corresponding EE to kill teatg
15. Finally the remote AMM requests AMS to put the agent ingkecution state.

16. The remote AMS resumes the agent execution.

The complete mechanism for the depicted inter-languagedperability approach
is composed of an IEEE-FIPA compliant AM that includes saMEESs, YAML parser/en-
coders suitable with each of the in-use PLs, and the IPMA litplbnodel.

6.6 Related Work

This section compares full interoperability approachesent in the literature with our
solutions. Most of the approaches are based on the stasdtodi of interfaces, uni-
versal AMs, agent interface adaptation, and agent regeoei@ee Figures 6.11, 6.12,
6.13 and 6.14 respectively). A summary of the comparisorbesiound in Table 6.2.
Monads[MRO0O0] is a MAS implemented on top of other MASs using the Jaka P
The idea behind it is to define a specific interface for its égesich is used to separate
Monads agents from the underlying AM. This separation iseutadken by dividing
agents into a head, the AP independent part, and a body, peadent part. In Monads
the agent migration and communication is coordinated tjinca specific agent called
Monads Agent Gatewayl his approach is restricted to the Java PL and, because of th
time when it was devised, it is not based on any agent starfdasgpite including a first
implementation of the ACL messages defined by IEEE-FIPA)s phoposal is similar
to Guestfrom Magninet al. [MPD*02], which runs on top of Java MASs following

168 CHAPTER 6. INTEROPERABILITY

Native Native Other #1 Other #2
Agent Standard Agent Interface Agent Agent Agent
Interface Interface Interface Interface
Middleware Core Layer Middleware Core Layer

Figure 6.11: Standard Standardardisation. Figure 6.12: Universal Middleware.

Agent regeneration A
> A
Adaptor Adaptor ﬁ —
Native to Native to =
Other #1 Other #2 =
Native #1 Native #1
Agent
Agent f . Agent
Functionality
Native Agent Interface Interface Description Interface
Middleware Middleware
. Core Layer Core Layer
Middleware Core Layer
Location 1 Location 2

Figure 6.13: Agent Interface Adaptation. Figure 6.14: Agent Regeneration.

the Guest interface. The approach presented in this chigpgenilar to these ones, it
is also based on a common agent interface, and the whole troigrarocess is driven

by the specific agent AMM. Nevertheless, at the contrary oh&tts and Guest, our
approach supports different PLs by using multiple EEs, amdiges inter-language

interoperability by providing several equivalent codes aefining a standard agent
data representation.

Pinsdorfet al.[PR0O2] propose a solution integrated into their AM, SeMoA [BTS
based on voluntary interoperability. SeMoA provides supjar interfaces used in
other AMs, such as JADE and Tracy, to deal with their agentsfatt, this is an ex-
pensive solution, in terms of maintenance costs, and it isgeaeral enough to be
extended, since only a subset of AMs can be supported. As ndwnferfaces or
newer versions of them appear, all the AMs which want to off@mpatibility with
them must be updated. Furthermore, only the Java PL andtassdaalisation mech-
anism is supported. In SOMA [BCSO01b] a similar solution to sup@gents from
the Grasshopper [BBCMO00] AM has been applied, although in thge ¢the MASIF
standards are also used. The approaches proposed in thieica not require such

6.6. RELATED WORK 169

amount of maintenance, support several PLs, and define dasthagent data repre-
sentation. Nevertheless, there is the inconvenient tleaitieroperable agents must be
specifically created.

Grid Mobile Agent System (GMAB3GK™02] is an approach that allows the exe-
cution of native agents of a specific AM to a different one.eltes on the translation
of agent interfaces. The idea is to provide an intermedraggface supported by differ-
ent MASs on top of which are put the translators to the foreigent interfaces. Then,
foreign agents are run above these translators. The adpaotdhis idea is that agent
compatibility can be granted only by creating one GMAS caanltranslator which is
automatically retrieved when it is needed. Regarding thenconications, the CoABS
Grid is used to handle them. Nevertheless, GMAS has two maaddantages, on the
one hand itis quite inefficient in performance terms, ancherother hand it is restricted
to the Java PL. Proposals present in this chapter can be ifficiere and support sev-
eral PLs. Nevertheless, interoperable agents must befispdgideveloped following
the appropriate interfaces.

Overeindeet al. [OdGWBO06] is an original proposal that guarantees agentapter
erability even in case of different AMs running on differétits and UA. The approach
is based on the regeneration of the agent code each timegheragyrates. The agent’s
functionality is described by means of the agent’s blugpainimplementation indepen-
dent description which states a set of components used ifinddeagent code. These
components are implemented in each AM according to its ctire and are used
every time the agent code is regenerated. This approacthbaslvantage that their
agents are not constrained to a set of specific PLs and UAzriteless, the expressiv-
ity of the possible agent codes is limited to the componemdistheir implementations
available for each possible PL and UA. Furthermore, no ek@olutions are provided
regarding the agent communication. From the interopetalpibint of view, this is the
most general approach, since agent developers do not hpx@jide several equivalent
agent codes in different PLs, and AM developers only havenfléement a set of mod-
ules. Our approach is limited in the number of PL and UA coratams, but it offers
more flexibility to agents, since they are not subject to tralability of a set of prebuilt
modules.

170 CHAPTER 6. INTEROPERABILITY

Java-based Interoperable Mobile Agent Framework (JIMAFBRO07] is a high-
level approach based on voluntary interoperability. Tredi@ea is similar to Monads,
in the sense that the agent is divided into an AM dependenaarnrdM independent
parts. Interoperable agents must be developed accordiagpecific interface. The
main advantage of this approach is that it does not requaentbdification of the AM
internals, but it is implemented on top of it. JIMAF is compdf several interfaces
and several wrapper agents that implement the agent coroatiom and migration fa-
cilities. Each JIMAF agent runs on top of a middleware natigent which is an adap-
tor to the specific JIMAF interface. JIMAF agents are based generic light-weight
event model. There are two outstanding drawbacks. First,dha approach is tightly
coupled to the Java PL. Secondly, it depends on the use ofperagents to interact
with native agents. The approach presented in this chappgosts different PLs (even
inter-language interoperability), different implemeida possibilities (middleware and
application levels), and it is based on well-known agemdaads which allow the direct
interaction with middleware native agents. Furthermdne,groposed agent interface
is flexible enough to allow agent developers to follow an éwkiven model for their
agents.

Interoperability Monads Guest SeMoA GMAS Agent JIMAF FIPA
solution Regeneration Interoperab.
Interoperability method | Standard Standard Support for Interface Agent Standard Standard in-
interface interface interfaces of | adaptors regeneration | interface terface + Ex-
other MASs ecution envi-
ronments
Agent interface / toolkits| AgentBody /| Guest API Runnable, Any Agent JIMAF CAl
AgentHead JADE, Tracy blueprint
Inter-language interoper- No No No No Yes No Yes
ability support
Programming languages Java Java Java Java Any Java Any
supported
Communication interop¢ Yes No Yes Yes No Yes Yes
erability support
Communication solution Monads Wrapping CoABS Grid Wrapper FIPA ACL
Agent agents
Gateway
Migration interoperabil-| Yes Yes Yes Yes Yes Yes Yes
ity support
Migration solution Monads N.A. SeMoA GMAS Agent JIMAF IPMA
Agent migration Factory
Gateway
Agent Data/State repre- Java Java Java Java XML, RDF Java YAML
sentation mechanism Serialization | Serialization | Serialization | Serialization | or OIL Serialization
/ SelfSerializ-
able agents
Interoperability trans{ No No Yes Yes No No No
parency
Implementation level Application Application Middleware | Application Application Application Application /
level level level level level level Middleware
(middleware levels
parts may be
required)

Table 6.2: Interoperability solutions comparison.

AHOM d31vi13d 99

TLT

172 CHAPTER 6. INTEROPERABILITY

6.7 Conclusions

During the last years a large amount of different MASs haenlzeveloped. As a con-
sequence the interoperability of MAs has become a subjaoiagdr concern, specially
taking into account the present tendency to technologmalergence.

In this chapter a full interoperability proposal, which eos all the interoperabil-
ity areas mentioned in Section 2.4.1, is presented as a oatdm of the IEEE-FIPA
specifications, the IPMA mobility model (see Chapter 3), dreddolutions proposed in
Sections 6.3, 6.4, and 6.5. The novelties of the proposgddéng the existing ones de-
scribed and compared in Section 6.6, are that it is valid figrabject oriented PL (and
other ones with slight modifications), it is completely ptated with the IEEE-FIPA
agent standards, it provides inter-language interopisakand it defines a common
way of saving the agent data using the YAML standard.

The simple agent interface, proposed in Section 6.3, pesvide minimal neces-
sary functionality to develop a fully functional agent in HFEEE-FIPA context. The
deployment of this approach is simple, in many cases it oohsists of an extra layer
on top of the AM. Furthermore, since the interface is devisetbexist with the native
AM interfaces, the interoperable agents can closely iotevith the middleware native
agents, which usually have more specific features and pgrepeNevertheless, if this
approach is the only one used, the interoperability is onlgrgnteed with agents and
AMs that share the same PL. An issue with the implementatighi® approach is the
management of the agent messages content. A content languased to represent the
information according to a specific ontology. AMs usuallpyde tools to create and
interpret it. Nevertheless, no specific codec/parsers @lfiaeti in our approach. This
functionality must be implemented in the agent’s code ortrhasbtained from shared
libraries. In this last case, a de facto ontology managet miagreed for each PL.

The concept of EE, discussed in Section 6.4, allows AMs teetiohost agents de-
veloped in different PLs. The advantage of using EEs is thggiementation flexibility.
They can be implemented at the middleware level or the agupdic level as appropriate.
Nevertheless, a disadvantage is that an EE must be devdimpeaich PL supported by
the AM. Therefore, only a limited number of PLs can be supgzhrt

6.7. CONCLUSIONS 173

Finally, the method to develop inter-language compatillengs, proposed in Sec-
tion 6.5, allows agents to run into EEs that support diffeRirs. The advantage of this
approach is that the AM developers do not have to providemifit EEs, although in this
case the agents must be composed of multiple codes. Analiientage is that having
agents with multiple codes may bring the possibility of ierpenting each agent task
with the most appropriate PL, always assuming the agentia@@eknows in advance
the supported PL in each AP. An inconvenient is the agentldpxreent complexity
increases, although using development automatisatida tiocan be greatly reduced.
Furthermore, in case of using this approach to implemertt &k with a specific PL
the development complexity can be extremely reduced, sione tasks can be easier
to implement with a PL than another. As in the previous apgrpa limited number
of PLs are supported, although in this case this is limitedhieyagent codes available.
Nevertheless, the two approaches can be combined and theuppsrted increase.
There is an issue regarding the implementation of the ageatlocessing similar to
the message content issue previously explained. The fdwts shared YAML parser
must be available in all the AMs for each PL used, otherwisenagodes could not
specify how to serialise their data. And, finally, as mergm Section 6.5.3, the agent
migration time increases as a consequence of the greatdramnaiagent codes to trans-
fer. Nonetheless, using the agent code distribution semiesented in Chapter 5, this
additional load does not suppose an issue, since the cotptd task is delegated to
the mentioned service and only the specific code needed mpdatform is requested.
Otherwise, all the agent code versions must be carried gltiiewhole agent itinerary.

Chapter 7
Security

Security is one of the most trying aspects in Mobile Agentt&ys (MASS). In this
chapter, after a brief introduction to several security In@eisms, two methods to pro-
tect mobile agents are proposed. Firstly, a scheme to prageat itineraries with loops
is presented. And later, a protocol to authenticate agemtsgaarantee their code’s
integrity in the Inter-Platform Mobility Architecture (NRA) is proposed.

7.1 Introduction

Mobile Agents (MAs) introduce new challenges and oppottesifor mischief, which
must be addressed before we can see real-world applicatepigyed using them. Se-
curity is one of the most trying aspects in MASs, and enswstgnd protection against
external malicious parties in MA environments is still arengproblem. More con-
cretely, a MA owner must have the guarantee that the ageotie end data will be
executed without external modifications. On the other hdrelexecution environment
must be protected from malicious agents. A set of basic aggnirity requirements and
the most frequent security threats have been explainedato8e2.5.

This chapter begins showing some methods to deal with ageuntisy attacks. Tak-
ing into account who the attacker and the victim are and awegrto [JKOO], four
categories of attack can be established. The first oAgént-to-platformwhich refers

175

176 CHAPTER 7. SECURITY

to the set of attacks where one or more agents exploit the tAgjatform (AP) weak-
nesses. The next one is tAgent-to-agentwhere agents attack other agents. In this
case it must be taken into account that some APs, such as BAedeimpliant ones,
have several components operated as agents. Thereforeategory might include
Agent-to-platformattacks. The next one is tH&atform-to-agent where APs attack
agents. Usually each AP attacks its own agents since theynaler its control. This

is an attack that it is not easy to prevent because of the agemplete submission to
the AP. And, finally, there is th®ther-to-platformcategory, where third parties, such
as APs or agents, attack an AP. In Section 7.2 several seamiroaches classified
according to the attacked entity (agent or AP) are detailed.

The rest of the chapter is focused on the proposal of two agenirity schemes, one
for agent itineraries, and the other for IPMA, presented ialér 3. The first scheme
is an extension of the itinerary protection scheme apprpaekented in [MBO3] and
described in Section 7.3. The aim of our proposal is to allogvgrotection of agent
itineraries with loops, which are not supported in the prasiapproach. This extension
is described in Section 7.4 and it has been published in [CABZ&)R"05]. Never-
theless, it had been discontinued by the thesis’ authdmadih continued within our
research group (see [GMBS8]). The second scheme, described in Section 7.5, is an
authentication protocol for MAs devised for the pre-transitep of IPMA. This pro-
tocol checks the authenticity and integrity of the agenesoeceived in the migration.
Finally, the chapter is concluded in Section 7.6.

7.2 Background

In MASSs the entities exposed to attacks are agents and ARsefne, agent security
mechanisms can be classified according to the receiver aittaek.

7.2.1 Agent platforms

The protection of APs is important since agents dwell withem. Therefore, an attack
to an AP can indirectly affect a huge amount of agents. Evemigdata may be in
danger. APs are easier to protect than agents, since theytfietconventions of a

7.2. BACKGROUND 177

traditional computer program. In the next paragraphs thezedescribed some of the
most relevant techniques found in the literature.

Software-Based Fault IsolatigiVLAG93] is a method to execute non trusted code
developed in unsafe Programming Languages (PLs), such a2+ This method
consists of executing the code in a separate virtual addpes=e, which has a limited
amount of resources assigned and strong restrictions ésatice network and local file
systems. This technique is knownsadboxingnd it is integrated into the Java Virtual
Machine (VM).

The safe code interpretatiors a method based on the use of interpreted PLs to
develop agents. Therefore, potential harmful instructioan be closely controlled to
guarantee the system security. Some examples of the PLagbahis technique are
Java and Safe Tcl, in which several APs are based on, e.gE JRBK05] and Agent
Tcl [Gra96].

Thecryptographic signature of the agent codenother technique commonly used.
Its use allows APs to verify the ownership of a specific codeitaintegrity. Depending
on the AP security policy and the authority which represémesMA, a certain degree
of rights are granted to it. As can be seen in [NAOG6], acceagrabin MAs is complex.
There, some solutions to relax its complexity are proposed.

The State Appraisa[FGS96] is a method used in combination with the crypto-
graphic signature of the agent code. It consists of sevarditions integrated in the
agent code which verify the agent is in a coherent and pexdhéitate. Modification of
the agent code is detected through its signature, and matguof the agent state is
detected by these functions.

TheProof Carrying CodgNL96] mechanism is a technique based on the provision
of several formal proofs, which demonstrate the agent caslédfithe security policies
required by the visited AP. This technique prevents thei@a of unsafe code without
using any cryptographic mechanism. Nevertheless, it imnaasy method to put into
practise.

Another security mechanism, which is focused on the deteaf agents coming
from non trusted APs, is the one based on itiveerary logging [CGH"95, Ord96,
Rot98]. Each visited AP adds a signed entry to the log whiclicatds its identity.

178 CHAPTER 7. SECURITY

This log is cryptographically secured to avoid manipulati®herefore, APs can check
the locations visited by an agent before giving it rights ¢oess the AP. The only in-
convenient is that the log gets bigger as the agent visitsloeations. This method is
also used to audit agents as it is explained in the next sectio

7.2.2 Mobile agents

The protection of MAs is more complex than the protection &sA The reasons are
that MAs and their code do not statically reside in a speadiation, but dynamically
change regarding their needs, they accumulate the intéatea@sults obtained in the
previous locations, and they are completely subject to tRenere they are residing.
Therefore, it is not possible to prevent an attack from aingshP. This is the reason
why the detection of attacks is emphasised in the mechanisesented in the next
paragraphs. These mechanisms consider the protectioneoblomore parts of the
agent: agent code, data, state, and itinerary (if appr@ria

The first set of mechanisms deal with the encapsulation ofteegenerated by the
agent along their execution and itinerary. The encapsuahay imply data integrity,
confidentiality, responsibility, and authenticity. Onetloé first methods proposed was
the Partial Result Authentication Codes (PRAG®e99]. It consists of the initial cre-
ation of a set of disposable random keys used to encrypt ttee gimerated in each
location. The Home Agent Platform (HAP), which keeps a copgllthe keys, is the
only entity which can retrieve all the data generated. Thehmd can be deceived if
the agent visits the same AP more than once, or if there ahedood) APs. Therefore,
Karjoth et al.[KAG98] proposed a mechanism where each entry included la dfethe
previous one and the next location to visit. With the addivbthis information it is not
possible to exchange results hosted in the middle of thenciRecently, new vulnera-
bilities, and their correspondingly solutions [CW02, MSOFPDO04], have appeared,
such as attacks based on collusion or based on cutting oghtiie and rebuilding it
with forged results.

A second type of security mechanism is basedagant audits This mechanism
consists of monitoring and recording all the agent actiondetect possible attacks to
the agent at the end of its execution. Some of them are theficatthn of the agent

7.2. BACKGROUND 179

itinerary, the environment manipulation to make the agentaya different location,
and the agent kidnapping. Several methods have been phpOse of them [Rot98]
is based on two cooperative agents which monitor each othikis method can be
generalised for more than two agents. Later, more advanegzbgals based on the
same idea have been presented [DEO4]. Another approac@{Bslbased on the use of
several replicas of the same agent and the logging of thiamrec It is assumed that only
a subset of the replicas will be kidnapped or lost in casetatkt The considered final
result is the one obtained by most of the replicas executewlli; another approach
based on agent audit is [Vig97]. It tries to discover the ageamipulation from a set of
cryptographic traces, regarding the agent execution,ikdpe APs visited by it.

APs can get privileged information of their visitor agentglahe tasks they are
carrying out. This information may be used against the aganterest. There is no
solution to this problem, since APs must have access to agetgs, but two tech-
niques can contribute to alleviate it. The first techniqu€anputing with Encrypted
Functions[ST98], which consists of encrypted functions that retunorgpted results
without having to decrypt the functions, e.g., a functiprs encrypted F(f), and in-
cluded in the agent code as a progrB(E(f)). When the agent reaches its destination,
the programP(E(f)) is executed and the resllf f(z)) is obtained. Later, in the HAP,
this result is decrypted(x). Notice that the destination AP has no access to the func-
tion f. The second technique is based ondbde obfuscatiofHoh98], which consists
of making the code incomprehensible to agent developers pfévious technique also
falls in the category of code obfuscation.

Since the previous mechanisms present several restsatiofimitations on their
applicability, a different approach based secure coprocessof¥ee94, Kar00] can
be followed to prevent this kind of information stealing.c8ee coprocessors execute
agents or, at least, sensitive operations. They use cmgyibg private keys and do not
allow to monitor the tasks they are processing.

Finally, another important aspect to protect against mdatpn are the agent itiner-
aries (see Section 2.3.3). Cryptographic protocols, suttieamnes proposed in [CMS99,
KTO01, Rot02], take advantage of key pairs to guarantee irdtion confidentiality and

180 CHAPTER 7. SECURITY

integrity to each visited location. An example which illieges a possible itinerary pro-
tection mechanism is shown in the next equation:

I = SO(Ekl(ml),Ek2(m2),...,Ekn(mn)) (71)

this is an agent itinerary j composed of a vector signéd, by the agent owner®)
which contains a set of ciphered tasks, (m;)). Each task is intended to be executed
in a different location, since it is ciphered with a specifeyk; associated to the lo-
cation. Nevertheless, these proposals are focused ondtexpon of static itineraries.
This is the reason why several proposals [SRM98, MB02, MB03 (ke following
Section) make the static itineraries more flexible by addiffgrent types of transitions
(sequence, alternative, and set). All these proposalsraessacurity mechanisms only
involve the agent and the visited APs, but in [GRCR04, TYO05] deraative method
based on Trusted Third-Parties (TTPSs) is presented. Thewhstage of this method is
the big infrastructure required. More recent works [GRBO&Ideth dynamic itiner-
aries, but using only a subset of trusted nodes which beltiietagent itinerary.

7.3 Protection of agent itineraries

In this section a scheme for agent itinerary protection wlesd in [MBO03], which is
extended in the next section, is presented. That schemexibl@eenough to allow
arbitrary combinations of sequences, alternatives, arsdaspecify the protected itin-
eraries over a fixed list of hosts. To protect an itineragyrépresentation as a Petri net
is first constructed. This construction allows an efficieatitment of complex paths,
and provides a clear-cut specification of the transitiortzetprotected.

The protection protocol is based on digital envelopes [3d8th the structure:

D = (P(r:)| Er, (1))

wherer; is the (randomly generated) envelope’s symmetric key@ndenotes the
destination host’s public key. The owner of the correspoggirivate key can therefore
obtainr; to decipher the informatio. The protected itinerary is built as a chain of

7.3. PROTECTION OF AGENT ITINERARIES 181

digital envelopes, so that it can only be disclosed in a @fendd order. Let us describe
how the protection protocol works.

Protection Protocol:

1 Initialisation : Itineraries are represented as a Petri net witiodes labelled:;
for 1 < i < n. The agent’s owneK), generates random keysy;, and assigns one to
each node. Each node represents a host to be visited. Weedgntite transition from
node: to node; (see transition examples in Figures 7.1 and 7.2).

g oY
O+O *©

Figure 7.1: Sequence type transition. Figure 7.2: Alternative type transition.

2 For each transition h; = h;, create t, ;:

(a) Signature: The owner signs the address;@fndh;, r; and a travel mark (see
Equation 7.4 below), obtaining:

S = S@(hi, hj, t, Tj)

(b) Transition token: The owner ciphefwusingh;’s public key; the transition token
t; ; is then obtained as the concatenation of this valuergradidress:

ti; = (hj, Pj(So(hi, hj, t,75))) (7.2)

3 Information ciphering: The agent’s owner proceeds to encipher each node’s pri-
vate information, including the next transitions, using tdorresponding symmetric key
r;. This information will consist of a method or task,; and, for alternate entries, a
condition,C (see figure 7.2). If we denote ldy; the operation of enciphering with key
r; we can write the ciphered informatief), representing an alternative, as:

e; = E,,(m;,C,t;;,tik) (7.3)

182 CHAPTER 7. SECURITY

4 End : Once the above steps have been performed for each node iethad&?,
we end up with a protected itinerary, which can be denoted-age;, es, - - - , €,).

The travel markt identifies the agent, and precludes replay and cut-ane st
tacks. It is defined as:

t =T || H(mobile agent’s code), (7.4)

whereT is a time stamp and{ a cryptographic hash function.Without this mark, a
dishonest host could change the agent’s itinerary, usinglcgaagent’s one (belonging
to the same owner)l’ guarantees thatis unique for each travel, while the agent’s code
hash binds the itinerary to its legitimate agent. Eachekitost will storg only as long

as the agent owner’s signatures remain valid, so that th&'agalidity is time-limited.

7.3.1 Properties of the Protection Protocol

The protection protocol just described can be applied tertiries created by arbitrary
combinations of sequential and alternate subpaths, andlipsevide the following
guarantees [MBO3]:

P1 Integrity

P2 Confidentiality

P3 Forward privacy

P4 Data verifiability

P5 Originator’s verifiability
P6 Strong identification

P7 Once entry

The P6 property, which guarantees that the agent is exeountgdnce in each host,
by means of its unique identification, precludes loops inttherary. To allow them, we
must provide a way of distinguishing legitimate re-exemusi (ensuing from the agent
following a closed path during its travel) from maliciouplays. The following sections
show how this can be done without jeopardising the protecaheme.

7.4. PROTECTION OF AGENT ITINERARIES WITH LOOPS 183

7.4 Protection of agent itineraries with loops

In this section a method to protect agent itineraries witpk) such as the one shown in
Figure 7.3, is presented. The method is a modification of glemtitinerary protection
protocol described in the previous section.

7.4.1 Protection Protocol Modifications

The existence of closed paths, the loops, will obviouslylyrtpat the agent’s code
is executed more than once in one or more nodes of its itiperdre challenge is to
distinguish such legitimate re-executions from malicionss issued by an attacker.

Let N denote the vector of maximum allowed agent executions at égmerary
node for any given time; i.e.,

N = (seq, seqa, . . ., seqy)

whereseg; is the maximum number of times the agent can visit gsturing the rest
of its travel. At the origin, this vector will be initialisedith the maximum allowed
visits to each node, and, each time the agent is executedsabhats corresponding
counterseq; will be decremented. The key of our protocol is to includes tector in

the information that travels with the agent. Rather tianthe agent will contain the
execution counters in ciphered form, as the vector:

v, = (B (seqr), B (seq), ..., E,., (seq,)), (7.5)

where we have made explicit this vector’s dependenacy,dhe step in the agent travel.
That is, at the agent’s origin we are at step= 0, after visiting the first host in the
itinerary,w = 1, and so forth until the travel ends for some value- wy.

E,. denotes the symmetric ciphering function using kgyas mentioned, only the
agent’'s owner and; have access to the corresponding visits counter. The fonntler
initialise the counter with the maximum allowable numbervists to the host for a
given itinerary, while the latter will take care of checkiagd decrementing it after each
visit.

184 CHAPTER 7. SECURITY

L

P
®+®+®+@+@

Vi 12221 v,: 02221 v, 01221 01121
Ollll 00111 V 00011 V‘Z OOGOl

Figure 7.3: One loop itinerary.

The protection provided by the symmetric ciphering@j; can be further strength-
ened by adding to the counter random bits at fixed positiomsghwwill be changed
every timeseg;’s value is recomputed in order to avoid predictability-ddsattacks.

In the example depicted in figure 7.3, if we wish the agentvisach internal loop
nodes twice, we would haveq, = seq, = 1 andseq; = seq;, = seq; = 2, and, during
the agent’s itinerary,, will take eight different values, i.ew; will run from 0 to 7.

The first time an agent visits; the following steps will ensue:

The host decipherg,. (seq;) and the travel tokeh Since this is the first agent’s
visit, no record containingwill be found in the host’s database.

A time to live, TTL, is assigned to the above values. This TTill e greater or

equal to the agent’s expiration time, so that the agent ddmnoe-executed after
the stored counters have expired (and possible deletedthesystem).

The tuple
t; = (t, seq;, TTL) (7.6)

is stored.

If seq; > 0, the agent is executed, its counter decrementedvangpbdated ac-
cordingly.

On the other hand, every time the agent closes a loop andits+vi the following
process will take place:

e Extract from the vector,, carried by the agent its current execution countey;.

7.4. PROTECTION OF AGENT ITINERARIES WITH LOOPS 185

If the agent has expired eeq; = 0, the agent will be rejected.

Retrieve the tuple; (see Equation (7.6)) associated with this agent, usiag a
search key.

If agent’s execution counteseq;, is not lesser than tuple’s;f associated counter,
the agent is rejected.

Otherwise, the agent is executed.

t; is updated substituting his counter faty;’s agent counter.

The agent’s data is updated subtracting one unietgin v, and the agent mi-
grates to its next destination.

A key ingredient of the above protocol is the vectgrcarried by the agent. Fig-
ure 7.4 provides a schematic view of the main agent compenéhi,,, as given by
Equation 7.5, would be transported without further pratecta malicious third party
could capture it and try to tamper with the system using stuibisin attacks (see Section
7.4.3).

(Transition)(V.Seq)

Set of digital Control
envelopes code

Expiration date

Figure 7.4: Mobile agent components.

To avoid substitution attacks, the execution counter veetlh be ciphered so that
it can only be read by the next node in the agent’s itineramyaddition, the receiving
node should be able to check the legitimacy of the agentdesgine., the previous host
in the itinerary, which was the last, modifier). These goals can be met by storing in
the agent, instead of,, the following quantity:

pi = Pj(Si(vy, H(ti;))), (7.7)

186 CHAPTER 7. SECURITY

where: is the sending hosy, the receiver and, ; the transition given by Equation 7.2.
Since the vector is ciphered using the receiver node’s pliely (this ciphering being
denoted by the functio®;() above), only the receiver can access it. The digital signa-
ture S; provides verifiability ofp;’s creator identity. Finally, the hash functidi binds

p; to the corresponding transition.

This completes our new protocol definition. Note that thextom of p; should be
fully automated, avoiding the agent to directly deal witk firivate keys of the visited
APs. To that end, the cryptographic services scheme prdpasgARORO04] can be
used.

7.4.2 Loop Implementation

Our new protocol can be implemented, in a manner analogabstof alternatives, in
systems using itinerary protection mechanisms of the kestdbed in Section 7.3.

For instance, to implement the loop depicted in Figure 7.8,just need two ad-
ditional transitions: one from the final host to the initiash ¢; ;) and one between
the final and next hosts,(,), which exits the loop. Both transitions will be signed by
the agent’s owner and ciphered for the corresponding dggimnode (as described in
[MBO3]):

ti; = (hy, Pj(So(hy, hy, t,75))), (7.8)

tin = (hny Pu(So (b, hns 1)), (7.9)

In addition, these transitions will be contained in the @igenvelope assigned to the
last node in the loop, with the same format used for an altemanamely:

€ = Erl (mlacatl,jvtl,n)v (710)

whereC denotes the guard condition to be fulfilled for the transitio the initial node
to take place.

Finally, the execution counters will be initialised at anigvith the corresponding
values for the maximum number of allowed executions in ead. h

7.4. PROTECTION OF AGENT ITINERARIES WITH LOOPS 187

7.4.3 Security Assessment

This section examines our proposed protocol resiliencaagexternal attacks.

External Itinerary Replay

In replay attacks, as depicted in Figure 7.5, a maliciousres entity captures roaming
agents and tries to modify and execute them at hosts on tiifiesedt to the intended

ones. Agents can be captured by network sniffing or collugiidma host in the agent’s

itinerary.

O
ORO.

Figure 7.5: External Reply Attack.

The use of a Public Key Infrastructure (PKI) and the assediancryption, and the
use of verification services, such as the comparison of theesee number stored in
the AP with the one provided by the agent, precludes this &frattacks in our protocol.
These techniques are used also in the original itineratgption protocols, so that both
the static and dynamic parts (see Figure 7.4) of our ageatsratected. As mentioned,
the use of public key encryption and digital signatures tatqut this data avoids any
impersonation risks (a third party trying to play the paradégitimate host).

Substitution attacks will also be detected. In this caseattacker would try to send
her own agent to resume the captured agent’s itinerary. Aexegution counter vector
could be constructed with the correct structure, but it Wodvertheless be detected as
bogus when trying to get the agent counters, because symrkeys will be different.

Internal Itinerary Replay

In this scenario, the attack is conducted by a dishonestihadsie agent’s itinerary,
which tries to re-execute the agent in another node to thiéstemtvantage (e.g., to make

188 CHAPTER 7. SECURITY

it buy more items than planned at the host’s electronic shap)shown in Figures 7.6
and 7.7 this attack can be attempted either by an isolateédhascollusion with other
hosts in the itinerary.

vt @rO+@

Figure 7.6: Single host internal replay Figure 7.7: Internal replay attack with
attack. collusion.

Single host It can be easily seen that this attack has no chance of sucBespite
having access to,,, the dishonest host cannot alter the execution counteryof an
other host in the itinerary, for it has no access to the symaiesy of the attacked

host.

Colluding hosts In this attack, two dishonest nodes collude to cause unasdtbagent
executions on a third honest host (see Figure 7.7). When theddéhes the sec-
ond dishonest host, this host senggo the colluding AP (both of them will have
access to its contents, via their private keys). The receiileinject this new vec-
tor in a copy of the agent (which had visited the AP in a presitmerary step),
appropriately signed and ciphered, and it will resend thematp the attacked host.
The latter will have no way of detecting the fraud, and willeseecute the agent.
In this way, unintended agent executions can be provokedjanmhdetected: our
protocol cannot cope with collusion.

Internal Host Replay

In this attack, a dishonest host re-executes the agent agtmaas as it sees fit, disre-
garding the execution counter. As noted in the literatuné(d], this kind of attack is
unavoidable, due to the fact that it is not observable froenaihtside.

7.5. IPMA SECURITY PROTOCOL 189

Loop Iteration Replay

A final security breach arises when the host that decides wi@wp needs to be iterated
is dishonest. Such a host has a privileged role, and can lggaa® many iterations of
a closed loop as desired, unless the number of iterationsnistant and can be fixed
beforehand, and the loop is composed of more nodes. In tiee &tse, the maximum
number of executions set at the agent’s origin will also legdial number of executions
for any legitimate itinerary traversal, and the attack wioé detected. In itineraries
where the actual number of loop iterations is dynamicalkgeined by the agent, the
only solution is to ensure the critical host’s honesty byeaxal means.

7.5 IPMA Security Protocol

Agent security solutions presented in previous sectioesiat bound to a specific AP
or agent migration architecture. They are general enougje icnplemented in any of
them. On the contrary, in this section a security solutig@arding the agent authentica-
tion specifically designed for IPMA, presented in Chaptesiroposed.

This solution is implemented as an IPMA pre-transfer protaalled One-Shot
Agent Authentication Protocol (OSAAP). It is an authentima protocol, which is
based on the exchange of Agent Communication Language (AC&9ages, that identi-
fies MAs with X.509 certificates [Croa], and that guaranteestlinership and integrity
of the agent and their codes using digital signatures. Arsetcliannel to exchange the
ACL messages of the whole migration protocol is assumedetber no manipulation
of the Migration Identifier (MID) is possible.

7.5.1 Preliminaries

Before explaining the protocol there are two kinds of pratianies to deal with: cryp-
tography, and agent code organisation.

Firstly, the aim of this protocol is to authenticate agemtd assure their code in-
tegrity and authenticity. This can be achieved by meansettiiptographic signature
operation. This operation requires to deal with certifisated signatures. The X.509

190 CHAPTER 7. SECURITY

standard [Croa] has been chosen to represent the certifidhie agent owner®). The
PKCS-7 cryptographic data structure [Kal] has been chosemtapsulate the men-
tioned certificate and the signatures done with it. Furtleeenit is worth noting that
required signatures are calculated in advance by the agemravhen the agent is cre-
ated. Sometimes, new codes can be developed and signedNaterethod is enforced
to deal with private keys since they are only used by the agener).

The agent code organisation, see Section 3.3.2, imposessesstrictions to the
way agents are authenticated. Since new agent codes canlée tada specific agent
after its creation, it is not possible to include all the caitgnatures in advance with
the agent. Therefore, two kinds of signatures are distsigad: theagent signature
and thecode signature Theagent signatur¢see Equation 7.11) is created through the
signature of a string containing the agent nameg,{.) and the Code Group ldentifier
(CGID), which binds the agent with a group of codes, sepaiayetie colon character.
A PKCS-7 structure encapsulates the agent signature ancetticate of the agent
owner (0). And thecode signaturésee Equation 7.12) is built by signing a URN, such
as the one proposed in Section 5.3.2, which uniquely idestéach code and binds it
with its CGID, Code Identifier (CID), Security Revision (SR), andsH Code Identifier
(HCID). ltis also encapsulated in a PKCS-7 data structurbpatih no certificate is
included in this case.

Each agent includes agent signature And each agent code hasade signature
associated. Agent codes which are obtained from exterm dastribution services,
such as the Agent Code Distribution Service (ACDS) preseméthapter 5, must be
accompanied by aode signature Therefore, new codes compliant with this security
mechanism can be created and distributed for already rgiatid deployed agents.

agent_signature = So(angme + CGID) (7.11)

code_signature = So(code) (7.12)

codey,n, = urn : agent — code — id :< CGID >:< CID >:< SR >:< HCID >
(7.13)

7.6. CONCLUSIONS 191

7.5.2 Protocol’s operation

The authentication process consists of two parts (see&ig8), one carried out in the
pre-transfer step and the other one in the transfer stegtly-mn X.509 certificate iden-
tifying the agent owner@®) and a set of signatures are sent. Checking this certificate,
and the possible chain of certificates behind it, remote Afe&de whether to accept an
agent or not depending on the authorities they trust. Thetagbound to the certificate
presented by thagent signatur¢see Equation 7.11).

Secondly, OSAAP also takes part indirectly in the transteps There, theode
signature(see Equation 7.12) is validated against the code receif@te code can-
not be validated an error is climbed up to the transfer patoAlthough seems that
this affects other protocols, since code validation faituare forwarded by the transfer
protocols, this is only an implementation challenge. Fromttansfer protocol point of
view this implies sending a normative failure message wighthe description returned
by the OSAAP implementation. It is also important to tak® iatcount that not all the
combinations of the authentication and transfer protoactsavailable. It depends on
the developer’s decisions and it is announced by the Dirgdtacilitator (DF) agent
(see Section 3.3.2).

The protocol is composed of one FIPA Request interactioropodt and a specific
ontology (see Appendix A.9) that defines the associatedratti the request and the
mentioned information included in it. Errors are managethensame way as in MMP
(see Section 3.3.3), although with specific exception pedds regarding this protocol.
An example of a typical authentication in terms of ACL messagehown in Figure 7.9.

7.6 Conclusions

Security of MAs is one of the most discussed issues of thiselogy. If agents cannot
offer enough security to their users, then their deployneedifficult. Nevertheless, if
they are not enough spread, it is difficult to know which are thost important secu-
rity problems to deal with. In this chapter a summary and asifcation of the most
common security problems present in MASs have been showereldre, two specific
security issues have been analysed and two solutions hawepbeposed.

192 CHAPTER 7. SECURITY

Send X509 certificate, agent signature,
and code signatures

2

Verify agent signature

Pre-Transfer part

Agent is transfered
by the chosen transfer protocol

Transfer part ¢

Verify corresponding
code signature

Y

Cancel
migration

Figure 7.8: One-Shot Agent Authentication Protocol diagra

7.6. CONCLUSIONS 193

Local Remote
Platform Platform

Request (x509-agent-auth (mid, agent-signature, code-signatures))
>

Inform / Failure (predicate)

Figure 7.9: One-Shot Agent Authentication Protocol flongdgam.

Firstly, a method [MBO03] to protect agent itineraries hasrbsteidied. The method
fails in protecting the itineraries which contain loops eféfore, a protocol, which is an
improvement of the previous one, to support the existendeogis is presented.

Finally, in the context of IPMA, a new security protocol tatlaenticate agents and
guarantee their code integrity has been devised. This isam@e of agent authenti-
cation based on X.509 certificates. Certificates identifynagevners, in which agent
platforms decide if they trust or not, and a set of digitahsityires prove that agents and
their codes really belong to their agent owners and they ha/been modified.

Chapter 8
Conclusions

As explained in the introduction of this thesis, great pesgrhas been made in the
mobile agent technology since its creation. Neverthelsspite the research efforts, a
wide-scale adoption of the technology has not been produdeste are several reasons
about that, but the most important one nowadays is focusetiemteroperability of
Mobile Agents (MAs). Furthermore, the efficiency and seguaire also important.

In order to deal with the interoperability of mobile and noaliie agents several ini-
tiatives arise. The most widespread initiatives are theBEEHPA specifications, which
are focused on the management and communication of ageetgrtNeless, they do
not take into account their mobility. Another initiative espfically created for MAs
is MASIF, but it is not currently in use, and it requires thenze collaboration of the
Agent Middleware (AM) developers to achieve migration roggerability between dif-
ferent AMs.

The first objective of the thesis has been the design of ant agelnility specifica-
tion to complement the existing IEEE-FIPA standards. Tlseltang specification has
been described in Chapter 3. It is the Inter-Platform Mop#itchitecture (IPMA), an
efficient, flexible, and extensible migration architectudgich is completely based on
the use of the IEEE-FIPA specifications. Several protocalslme incorporated to the
mentioned architecture in order to provide customisabenagigrations. Thus, a set
of protocols with different migration strategies, i.e.ffelient ways of transferring the
agent components, have also been proposed in the samerchdmeaesearch of this

195

196 CHAPTER 8. CONCLUSIONS

chapter has been published in several conferences [AEBVICMR™ 07, COO 07] and
it has been submitted to a journal [CMNAS8]. Furthermore, IPMA has been imple-
mented in two AMs. There is a first implementation, the JIPM8-an for the JADE
AM, which has a project associated to the SourceForge veepPa]. And, further-
more, there is the ASIPMS for the AgentScape AM, which can li@ioed directly
from the author. The first implementation is considered tsfault inter-platform mo-
bility service of JADE, this is the reason why it motivatedepter [CAMOG6] in the
book written by the JADE developers. Finally, an extensisdgrmance analysis of the
JIPMS implementation with all the protocols proposed hanbshown in Chapter 4.
The aim of this analysis has been demonstrating the fleyiaind efficiency of the
architecture presented, this last depending on the migratiotocols used.

Another objective of this thesis was the proposal of efficraethods to distribute
agent code. Since the agent code is usually static duringtioée life of an agent, and
sometimes is shared with several agents, having a speaficsehat deal with it can
highly improve the agent migration performance. In Chaptdrebe is a proposal of a
distribution service called Agent Code Distribution Seevi@CDS). In the literature
exists some proposals to distribute agent codes [GGGOO02, BB®S5all of them are
tightly coupled to a specific type of code (Java code). ACD&lgl\for any type of ex-
isting or future agent code, introduces the concept of cod&ract based on XACML to
specify the code distribution parameters and restrictiand have an standard and sim-
ple interface based on REST. A migration performance corsparvith and without the
service enabled has been carried out in the same chapterefdies the improvement
that the service proposed implies has been demonstratedre§karch of this chapter
has been submitted to a journal [CNANM8]. Furthermore, a prototype [acd] has been
implemented.

Coming back to the interoperability of MAs, with the introdien of IPMA de-
scribed in Chapter 3 it is possible to send MAs between diffetgpes of AM. Nev-
ertheless, since no interoperability exists at the middfewevel regarding the agent
design, it is not possible to execute the incoming agentisf itot compatible with the
destination AM. Despite several proposals exist, ther@iagreement in the literature
to face this problem. The deployment of these proposalstisasy, since they are not

197

integrated with existing agent standards and, moreowey,dhe usually focused on only
one specific Programming Language (PL).

This is the reason why the third objective of this thesis wagppsing methods to
guarantee the interoperability of agents at the middlewewa, taking into account the
possibility of different PLs and Underlying Architectur@gAs). Therefore, in the end,
three methods have been proposed in Chapter 6. The combiraitibhem with the
IEEE-FIPA standards and IPMA allows agents to move and redineir execution in
a location with a different type of AM. Each of the methodsgweed is an improve-
ment over the degree of interoperability reached. The fieshiod proposes a common
agent interface that provides the agent with all the IEEBAHunctionality. The sec-
ond method defines the concept of execution environmenthibia way to structure
AMs in order to cope with agents developed with different Bhd UAs. And the third
method propose the creation of agents supporting diffdPesstand UAs by carrying
several versions of their code. These last method also dedistandard way to share
the agent data using the YAML language. As this last methadesexpensive in terms
of the agent code transmission, the ACDS service usage imraeaded. The interop-
erability research detailed in this chapter has been stdmirtiv a journal [CMNAT.

Finally, although it has not been the main objective of thesik, the security of
agents has also been discussed. Two different aspects aféme security have been
dealt with in Chapter 7. First of all, the security of agentetiaries (list of locations
that an agent visits). In this part a proposal to protectgieddished agent itineraries
that includes loops has been presented. This work stants &grotocol to protect
agent itineraries proposed in [MB03]. This research has pebiished in two confer-
ences [CABO5, CAORO5]. The second aspect dealt with is the access control otage
and the authentication and integrity of their codes witlMA. In this case a protocol
for the migration architecture has been proposed. Thiopobichecks, during the mi-
gration of an agent, the identity of the agent to decide & @c¢cepted in the destination.
Furthermore it checks the authenticity and integrity ofrtikede. This solution can be
combined with ACDS, since this last supports the distributdd the code signatures
required to authenticate the agent codes.

Therefore, as a final conclusion it can be stated that the danke during this thesis

198 CHAPTER 8. CONCLUSIONS

allows MAs to efficiently migrate between different typesAi, with different PLs
and UAs, and with some security measures.

8.1 Future research lines

The future directions of the research presented in thisgtes detailed in the next
paragraphs. First of all, regarding IPMA, a more completeigty analysis to guarantee
the robustness of the architecture against migrationkstsicould be considered. And
a study of new fault tolerance techniques may also be coemeniFurthermore, new
migration protocols to integrate in the architecture capioposed in the future. These
protocols can include security mechanisms for the agentation, such as the one
detailed in Chapter 7.

In ACDS, three ideas can be considered. Firstly, since ctiyréime agent code
distribution is only based on the code owner instructioniés{af regions), then a pre-
dictive method to distribute the agent code, based on delllestatistics of code usage
can be studied. Secondly, the service is used through a RE&Taice, then additional
interfaces can be devised to ease developers the sengggahon into their products.
And thirdly, a solution to distribute portable source code aerve it compiled on the
fly for the required UAs would allow the deployment of agentseloped with highly
efficient PLs, such as C or C++, over almost any architectyspated by the service.

Finally, future research in the interoperability must beused on the deployment of
the solutions presented in the whole thesis, such as theinatidn of the IEEE-FIPA
standards together with IPMA and the methods proposed int€héypin different types
of AM with different PLs and UAs. The results and experiencbtained from these
deployments will allow a final adjustment of the solutionsegsed.

Bibliography

[acd]

[ACM *06]

[AKO6]

[App]

[ARBO3]

[ARORO4]

[AWS]

Agent Code Distribution Service 0.1. http://tao.gabacds.

J. Ametller, J. Cucurull, R. MartG. Navarro, and S. Robles. Enabling
mobile agents interoperability through fipa standards. [nKMisch,
M. Rovatsos, and T.R. Payne, edita@®operative Information Agents
X, volume 4149 ot ecture Notes in Atrtificial Intelligencgages 388—
401, Edinburgh, UK, September 2006. CIA 2006, Springer \gerla

Hassan Artail and Elie Kahale. Maws: a platform-ipgadent frame-
work for mobile agents using web servicek.Parallel Distrib. Com-
put. 66(3):428—-443, 2006.

Appstream. http://www.appstream.com/.

J. Ametller, S. Robles, and J. Borrell. Agent Migrationeo FIPA
ACL Messages. IMobile Agents for Telecomunication Applications
(MATA, volume 2881 ofLecture Notes in Computer Sciengeges
210-219. Springer Verlag, 2003.

J. Ametller, S. Robles, and J. A. Ortega-Ruiz. Setitgected mobile
agents. INPAAMAS ‘04: Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent Systpates
362-367, Washington, DC, USA, 2004. IEEE Computer Society.

Amazon Web Services. http://aws.amazon.com/ressurc

199

200

[Bar02]

[BBCMOO]

[BCGO6]

[BCPROS]

[BCSO1a]

[BCSO1b]

[BGN*05]

[BLFMa]

[BLFMD]

[BMOO1]

BIBLIOGRAPHY

Albert-Laszb Baralasi. Linked: The New Science of Netwarks
Perseus Publishing, April 2002.

C. Baumer, M. Breugst, S. Choy, and T. Magedanz. Grasshoppe
universal agent platform based on omg masif and fipa staad20d0.

F. L. Bellifemine, G. Caire, and D. Greenwoodeveloping Multi-
Agent Systems with JADRViley, January 2006.

Fabio Bellifemine, Giovanni Caire, Agostino Poggi, &idvanni Ri-
massa. Jade: A software framework for developing multragepli-
cations. lessons learnéahformation and Software Technolqd0:10—
21, 2008.

P. Bellavista, A. Corradi, and C. Stefanelli. Mobilerggaiddleware
for mobile computing Computey 34(3):73-81, Mar 2001.

Paolo Bellavista, Antonio Corradi, and Cesare SteffaMiddleware
services for interoperability in open mobile agent systeMgropro-
cessors and Microsystezb(2):75—-83, April 2001.

Ch. Bouras, A. Gkamas, |. Nave, D. Primpas, A. Shani, O. §heo
K. Stamos, and Y. Tzruya. Application on demand system dver t
internet. Journal of Network and Computer Applicatiqrz8(3):209—
232, August 2005.

T. Berners-Lee, R. Fielding, and L. Masinter. RFC 2396:
Uniform resource identifiers (uri): Generic syntax.
http://www.ietf.org/rfc/rfc2396.txt.

T. Berners-Lee, R. Fielding, and L. Masinter. RFC 2617:
Http authentication: Basic and digest access authentitatio
http://www.ietf.org/rfc/rfc2617 .txt.

Bernhard Bauer,arg P. Miller, and James Odell. Agent UML: A for-
malism for specifying multiagent software systemsAtent-Oriented

BIBLIOGRAPHY 201

[BRO5]

[CABOS]

[Cai04]

[CAMOB]

[CAOR*05]

[CCPO6]

[CFL+02]

Software Engineering: First International Workshop, AOSB@, Lim-
erick, Ireland volume 1957 of. NCS pages 109-120. Springer-Verlag,
2001.

P. Braun and W. R. Rossaklobile Agents: Basic Concepts, Mobility
Models, and the Tracy ToolkitMorgan Kaufmann, Heidelberg, Ger-
many, 2005.

J. Cucurull, J. Ametller, and J. Borrell. Protocol foretlprotec-
tion of mobile agent itineraries with loops (in Spanish). Alberto
Peinado Doringuez et al., editorlr Simposio sobre Seguridad In-
formatica [SSI'2005] pages 61-68, Granada. Spain, September 2005.
CEDI 2005, Thomson.

G. Caire. Jade: The new kernel and last developmentschril-
cal report, Telecom ltalia, 2004. http://jade.tilab.cpapgers/Jade-the-
services-architecture.pdf.

J. Cucurull, J. Ametller, and R. Mart Agent mobility. In F. L.
Bellifemine, G. Caire, and D. Greenwood, editddgveloping Multi-
Agent Systems with JADRages 115-130. Wiley, January 2006.

J. Cucurull, J. Ametller, J.A. Ortega-Ruiz, S. Robles, anBarrell.
Protecting mobile agent loops. In T. Magendanz, K. Ahmed,lake-
nieris, editorsMobility Aware Technologies and Applicatign®lume
3744 ofLecture Notes in Computer Sciengmages 74-83, Montreal,
Canada, October 2005. MATA 2005, Springer.

Bo Chen, Harry H. Cheng, and Joe Palen. Mobile-c: a mobédata
platform for mobile c/c++ agentsSoftw., Pract. Exper36(15):1711—
1733, 2006.

Jiannong Cao, Xinyu Feng, Jian Lu, Henry Chan, and Sajal &. D
Reliable message delivery for mobile agents: Push or pglhads
00:314, 2002.

202

[CGH*95]

[CGK*05]

[CHBO3]

[CLCO8]

[CLZ0O0]

[CMNA*]

[CMNA+08]

[CMR*07]

BIBLIOGRAPHY

Davis Chess, Benjamin Grosof, Colin Harrison, David Leyi@elin
Parris, and Gene Tsudik. Itinerant Agents for Mobile ComputiEEE
Personal Communication2(5):34—49, 1995.

Krzysztof Chmiel, Maciej Gawinecki, Pawel Kaczmarek, chl
Szymczak, and Marcin Paprzycki. Efficiency of jade agentfqien.
Sci. Program,.13(2):159-172, 2005.

Arjav J. Chakravarti, Xiaojing Wang; Jason O. Hallstrcand Gerald
Baumgartner. Implementation of strong mobility for mulir¢aded
agents in java. IfParallel Processing, 2003. Proceedings. 2003 Inter-
national Conference onEEE, 2003.

Bo Chen, David D. Linz, and Harry H. Cheng. XML-based agemh-
munication, migration and computation in mobile agentesyst.Jour-
nal of Systems and Softwa@(9):1364-1376, 2008.

Giacomo Cabri, Letizia Leonardi, and Franco Zambbn&leak and
strong mobility in mobile agent applications. Pnoceedings of the 2nd
International Conference and Exhibition on The PracticaphAgation
of Javg Manchester (UK), April 2000.

J. Cucurull, R. Mari, G. Navarro-Arribas, S. Robles, and J. Borrell.
Full mobile agent interoperability in an IEEE-FIPA conteSubmitted
to Journal of Systems and Software.

J. Cucurull, R. Mait G. Navarro-Arribas, S. Robles, B. J. Overein-
der, and J. Borrell. Agent mobility architecture based onBEHPA
standards. 2008. Submitted to Computer Communications.

J. Cucurull, R. Mait S. Robles, J. Borrell, and G. Navarro. FIPA-based
interoperable agent mobility. IMulti-Agent Systems and Applications
V, volume 4696 oLNAI, pages 319-321, Leipzig, Germany, Septem-
ber 2007. Springer.

BIBLIOGRAPHY 203

[CMS99]

[CNAM*08]

[COO*07]

[Croa]

[Crob]

[Cuc04]

[CWO02]

A. Corradi, R. Montanari, and C. Stefanelli. Mobile atgeprotection
in the internet environment. 183rd Annual International Computer
Software and Applications Conferend®99.

J. Cucurull, G. Navarro-Arribas, R. MariS. Robles, and J. Borrell.
Agent mobility architecture based on IEEE-FIPA standa2@98. Sub-
mitted to Journal of Network and Computer Applications.

J. Cucurull, B. J. Overeinder, M. A. Oey, J. Borrell, and F. MBra-
zier. Abstract software migration architecture towarderagniddle-
ware interoperability. IfiProceedings of the International Multiconfer-
ence on Computer Science and Information Technolpgges 27-37,
Wisla, Poland, October 2007.

D. Crockford. ITU-T Recommendation X.509. Informati@thnol-
ogy - Open Systems Interconnection - The Directory: Pukdig-and
attribute certificate frameworks.

D. Crockford. RFC 4627: The application/json media tyfjpe
javascript object notation (JSON). http://www.ietf.afg/rfc4627.txt.

J. Cucurull. JADE MTP-TFTP. Technical report, Unsitat
Autonoma de Barcelona, June 2004.

J.S.L. Cheng and V.K. Wei. Defenses against the trumicaif com-
putation results of free-roaming agents. In R. Deng, S. Qidao,
and J. Zhou, editordnformation and Communications Security: 4th
International Conference, ICICS 20020lume Volume 2513 otec-
tures Notes in Computer Sciengages 1-12. Springer-Verlag GmbH,
January 2002.

204

[DE04]

[DMP+02]

[EARLO3]

[FGRO7]

[FGS96]

[FIPOO]

[FIP02a]

[FIPO2b]

[FIPO2c]

BIBLIOGRAPHY

Asnat Dadon-Elichai. Rds: Remote distributed schearepfotect-

ing mobile agents. IMMAMAS '04: Proceedings of the Third Inter-
national Joint Conference on Autonomous Agents and Mulieg§gs-
tems pages 354-361, Washington, DC, USA, 2004. IEEE Computer
Society.

J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, Bn@eihl.
Globally distributed content delivery. Internet Computing, IEEE
6(5):50-58, Sep/Oct 2002.

J.A. Exposito, J. Ametller, S. Robles, and N. Lhaitli How to use the
new HTTP MTP with JADE. Technical report, Universitat Anbma
de Barcelona, 2003.

Giancarlo Fortino, Alfredo Garro, and Wilma Russohiwing mobile
agent systems interoperability through software layerinfprmation
and Software Technolog®2007. doi:10.1016/j.infsof.2007.02.016.

William M. Farmer, Joshua D. Guttman, and Vipin Swyar Security
for mobile agents: Authentication and state appraisaPrbteedings
of the Fourth European Symposium on Research in Computeri§ecu
pages 118-130, Rome, Italy, 1996.

FIPA. FIPA agent management support for mobilitye@fication,
2000. http://wwv. fi pa. org/ specs/fi pa00087/i ndex.
htm .

FIPA. FIPA abstract architecture specificatidd22 ht t p: / / www.
fipa.org/specs/fipa00001/index. htm .

FIPA. FIPA acl message representation in bit-effit specification,
2002. http://ww. fi pa. org/ specs/fi pa00069/i ndex.
ht i .

FIPA. FIPA acl message representation in strirgcgation, 2002.
http://ww. fipa.org/specs/fipa00070/index. htm .

BIBLIOGRAPHY 205

[FIP02d]

[FIPO2¢]

[FIP02f]

[FIP02g]

[FIPO2h]

[FIPO2i]

[FIPO2j]

[FIPO2K]

[FIPO2]]

[FIPOA4]

[FPV98]

[FTO2]

FIPA. FIPA acl message representation in xml djpation, 2002.
http://ww. fipa.org/specs/fipa00071/index. htm .

FIPA. FIPA ACL message structure specification, 208t t p: //
www. f i pa. org/ specs/fi pa00061/index. htm .

FIPA. FIPA agent message transport protocol fap Ispecification,
2002. http://ww. fi pa. org/ specs/fi pa00084/i ndex.
htm .

FIPA. FIPA agent message transport protocol fop specification,
2002. http://wwv. fi pa. org/ specs/fi pa00075/i ndex.
htm .

FIPA. FIPA agent message transport service spatidn, 2002.
http://ww. fipa.org/specs/fipa00067/index. htm .

FIPA. FIPA communicative act library specificatio2002. htt p:
/I ww. fi pa.org/specs/fipa00037/index. htn .

FIPA. FIPA propose interaction protocol specifioa, 2002. ht t p:
[ww. fipa.org/specs/fipa00036/index. htm .

FIPA. FIPA request interaction protocol specifica, 2002. ht t p:
[ww. fipa.org/specs/fipa00026/index. htm .

FIPA. FIPA SL content language specification, 2002t p: / / ww.
fi pa.org/specs/fipa00008/index. htm .

FIPA. FIPA agent management specification. Interr004.
http://www.fipa.org/specs/fipa00023/index.html.

Alfonso Fuggetta, Gian Pietro Picco, and Giovangnd. Understand-
ing code mobility.IEEE Trans. Softw. Eng24(5):342—-361, 1998.

Roy T. Fielding and Richard N. Taylor. Principled desaj the modern
web architectureACM Trans. Interet Technol2(2):115-150, 2002.

206 BIBLIOGRAPHY

[Gav04] Damianos Gavalas. Mobile agent platform designnapations
for minimising network overhead and latency in agent migred.
In Global Telecommunications Conference, 2004. GLOBECOM ’04.
IEEE, volume 2, pages 605-609, 2004.

obert S. Gray, George Cybenko, David Kotz, Ronald A. Peteian

[GCKT02] Robert S. Gray, G Cybenko, David Kotz, Ronald A. P d
Daniela Rus. D’agents: Applications and performance of ail@ob
agent systemSoftw., Pract. Exper32(6):543-573, 2002.

[GGGOO02] Damianos Gavalas, Dominic Greenwood, MohammeanGéri, and
Mike O’Mahony. Hierarchical network management. a scaabl
and dynamic mobile agent-based approaclkomputer Networks
38(6):693-711, 2002.

[GGKT02] Arne Grimstrup, Robert Gray, David Kotz, Maggie BreedyrtteCar-
valho, Thomas Cowin, and Daria Cleac Toward interoperability of
mobile-agent systems. Mobile Agentsvolume 2535 of. NCS pages
106-120. Springer Berlin / Heidelberg, January 2002.

[ait] GIT - Fast Version Control System. http://git.or.cz/.

[GMB*08] C. Garrigues, N. Migas, W. Buchanan, S. Robles, and J. Bofed-
tecting mobile agents from external replay attacksurnal of Systems
and Softwarg2008.

[Gon01] Li Gong. Jxta: a network programming environmelmternet Com-
puting, IEEE 5(3):88-95, May/Jun 2001.

[GPO6] Damianos Gavalas and Christina Tanya Politi. Low-itmeeraries for
multi-hop agents designed for scalable monitoring of midtsubnets.
Computer Network$0(16):2937-2952, November 2006.

[Gra96] R. S. Gray. Agent Tcl: A flexible and secure mobileragystem. In
M. Diekhans and M. Roseman, editofFurth Annual Tcl/Tk Work-
shop (TCL 96)pages 9-23, Monterey, CA, 1996.

BIBLIOGRAPHY 207

[Gra03] Jim Gray. Distributed computing economics. In AswlrHerbert
and Karen Sgarck Jones, editor§;omputer Systems: Theory, Technol-
ogy and Applicationspages 93—-101. Springer, December 2003. Also
MSR-TR-2003-24, March 2003.

[Gra04] R.S. Gray. Mobile agents: overcoming early hype aoacbnameMo-
bile Data Management, 2004. Proceedings. 2004 IEEE Int@vnal
Conference oppages 302—303, 2004.

[GRBO8] C. Garrigues, S. Robles, and J. Borrell. Securing dyn@meraries
for mobile agent applicationslournal of Network and Computer Ap-
plications 31(4):487-508, November 2008.

[GRCRO04] M. Giansiracusa, S. Russell, A. Clark, and V. Roth. Maevet atten-
tion to mobile agent security: Introducing the mobile agesture hub
infrastructure concept. Imformation and Communications Security:
6th International Conference, ICICS 2004olume 3269 ofLecture
Notes in Computer Sciengeages 343-357. Springer Verlag, 2004.

[GRKO3] Christos Georgousopoulos, Omer F. Rana, and Anthomgdémrgos.
Supporting fipa interoperability for legacy multi-agenss®ms. IrPro-
ceedings of the Agent-Oriented Software Engineeringiivhber 2935
in LNCS, pages 361-379. Springer, 2003.

[GTAOS] Damianos Gavalas, George E. Tsekouras, and Chrigtoag-
nostopoulos. A mobile agent platform for distributed neatwo
and systems management. Journal of Systems and Software
doi:10.1016/}.jss.2008.06.034, 2008.

[HemO5] Stephen Hemminger. Network emulation with netemuk Conf Au,
2005.
[Hoh98] Fritz Hohl. Time limited blackbox security: Protegy mobile agents

from malicious hosts. IMobile Agents and Securijtpages 92-113,
London, UK, 1998. Springer-Verlag.

208

[HSO07]

[HY98]

[IKKWO1]

[JIPa]

[JIPb]

[JIKO6]

[JKOO]

[JLVR02]

[Jyy]
[KAGOS]

[Kal]

BIBLIOGRAPHY

March Hadley and Paul Sandoz. Jax-rs 1.0 early deafew specifi-
cation, October 2007. Sun Microsystems, Inc.

Matthew Hohlfeld and Bennet Yee. How to migrate agertsgust
1998. unpublished.

Torsten lllmann, Tilman Krueger, Frank Kargl, andidhael Weber.
Transparent migration of mobile agents using the java@iatidebug-
ger architecture. IIMobile Agents: 5th International Conferencsl-
ume 2240 ofLecture Notes in Computer Sciengage 198. Springer
Verlag, December 2001.

JADE Inter-Platform Mobility Service. http://jipsreourceforge.net.

JADE Inter-Platform Mobility Service Performanceest Suite.
http://jipms.sourceforge.net.

Kresimir Jurasovic, Gordan Jezic, and Mario Kusékperformance
analysis of multi-agent systematernational Transactions on Systems
Science and Application4(4):335-342, 2006.

W. Jansen and T. Karygiannis. Nist special publara800-19 - mobile
agent security, 2000.

Dag Johansen, Kåre J. Lauvset, Robbert van RerfesseB.
Schneider, Nils P. Sudmann, and Kjetil Jacobsen. A tacotnasgeec-
tive. Softw. Pract. Exper32(6):605-619, 2002.

Jvyaml. https://jvyaml.dev.java.net/.

G. Karjoth, N. Asokan, and C.A. &IcAi. Protecting the computa-
tion results of free-roaming agents.MA '98: Proceedings of the Sec-
ond International Workshop on Mobile Agenpages 195-207, Lon-
don, UK, 1998. Springer-Verlag.

B. Kaliski. RFC 2315: PKCS #7: Cryptographic message synta
http://www.ietf.org/rfc/rfc2315.txt.

BIBLIOGRAPHY 209

[Kar00]

[KEO6]

[KTO1]

[Lab93]

[LCWO04]

[LMO8]

[LRWO3]

[LY99]

[MBO2]

G. Karjoth. Secure mobile agent-based merchankdsiog in dis-
tributed marketplaces. In D. Katz and F. Mattern, edit@scond
Joint Symposium on Agent Systems and Applications / Mobaata
(ASA/MA 200Q)number 1882 in LNCS, pages 44-56. Springer, 2000.

Gu Su Kim and Young Ik Eom. Domain-based mobile agewnitf
tolerance scheme for home network environmentdniormation Se-
curity Practice and Experience, LNC®lume 3903 olLNCS pages
269-277, February 2006.

Neeran M. Karnik and Anand R. Tripathi. Security in #h@nta mobile
agent systentSoftware Practice and Experienl1(4):301-329, 2001.

R. Laboratories. PKCS 7: Cryptographic message systaxdard,
1993.

M. R. Lyu, X. Chen, and T. Y. Wong. Design and evaluatioradult-
tolerant mobile-agent systentEEE Intelligent System4.9(5):32-38,
Sept.-Oct. 2004.

Danny B. Lange and Oshima MitsuriProgramming and Deploying
Java Mobile Agents Agletaddison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1998.

N. Leibowitz, M. Ripeanu, and A. Wierzbicki. Deconstting the
kazaa networklnternet Applications. WIAPP 2003. Proceedings. The
Third IEEE Workshop ompages 112-120, June 2003.

Tim Lindholm and Frank Yellin. Java Virtual Machine Specification
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA
1999.

J. Mir and J. Borrell. Protecting general flexible itraeies of mobile
agents. IrProceedings of ICISC 200LNCS. Springer Verlag, 2002.

210

[MBO3]

[MFB+07]

[Mic08]

BIBLIOGRAPHY

J. Mir and J. Borrell. Protecting mobile agent itinees:. In Mobile
Agents for Telecommunication Applications (MAT¥9lume 2881 of
Lecture Notes in Computer Sciengages 275—-285. Springer Verlag,
October 2003.

J.D. Meier, Carlos Farre, Prashant Bansode, Scott BanbeéDannis
Rea. Performance Testing Guidance for Web Applicatioscrosoft
patterns & practices. Microsoft Press, 2007.

Microsoft. .NET Framework Developer’'s Guid008. XML and
SOAP Serialization.

[MMLCVNOS8] Iv an Marsa-Maestre, Miguel A. bpez-Carmona, Juan R. Velasco, and

[MMLVAO6]

[MOBO6]

[MPD*02]

[MROO]

[MS03]

Andrés Navarro. Mobile agents for service personalization iarsm
environmentsJournal of Networks3(5):30-41, May 2008.

I. Mars a-Maestre, M.A. bpez, J.R. Velasco, and A.Navarro. Mobile

personal agents for smart spaces. AIDS/IEEE International Confer-
ence on Pervasive Servicgmges 299-302, 2006.

D. G. A. Mobach, B. J. Overeinder, and F. M. T. Brazier. WS-
Agreement based resource negotiation framework for magnts.
Scalable Computing: Practice and Experienc€l):23—-36, 2006.

L. Magnin, T. Viet Pham, A. Dury, N. Besson, and A. ThiefairOur
guest agents are welcome to your agent platformSelenteenth ACM
Symposium on Applied Computing (SAGgges 107-114, 2002.

P. Misikangas and K. Raatikainen. Agent migration kegwincompat-
ible agent platformsDistributed Computing Systems, 2000. Proceed-
ings. 20th International Conference goages 4-10, 2000.

Paolo Maggi and Riccardo Sisto. A configurable mobgera data
protection protocol. IRAMAS '03: Proceedings of the second interna-
tional joint conference on Autonomous agents and multinggstems
pages 851-858, New York, NY, USA, 2003. ACM Press.

BIBLIOGRAPHY 211

[MSM97]

[NAO6]

[NL96]

[NQKA98]

[OB04]

[OdGWBO06]

[OMGO7]

[OMG99]

Matthew Mathis, Jeffrey Semke, and Jamshid Mahdawe macro-
scopic behavior of the tcp congestion avoidance algoriBie.COMM
Comput. Commun. Re7(3):67-82, 1997.

G. Navarro-Arribas. Access Control and Authorisation Management
in Mobile Agent Systems PhD thesis, Universitat Autonoma de
Barcelona, 2006.

George C. Necula and Peter Lee. Safe kernel extenswthsut run-
time checking. In USENIX, edito2nd Symposium on Operating Sys-
tems Design and Implementation (OSDI '96), October 28—-3D61
Seattle, WApages 229-243, Berkeley, CA, USA, 1996. USENIX.

Jan Nicklisch, drgen Quittek, Andreas Kind, and Shinya Arao. Inca:
an agent-based network control architecturd AIRA '98: Proceedings
of the second international workshop on Intelligent agemtsdlecom-
munication applicationgages 142-155, London, UK, 1998. Springer-
Verlag.

B. J. Overeinder and F. M. T. Brazier. Scalable middlenramviron-
ment for agent-based Internet application?taceedings of the Work-
shop on State-of-the-Art in Scientific Computing (PARA'(Q@Hges
675—-679, Copenhagen, Denmark, June 2004. Published inebpli
Parallel Computing, LNCS 3732, Springer, Berlin, 2006.

B. J. Overeinder, D. R. A. de Groot, N. J. E. Wijngaaedg] F. M. T.
Brazier. Generative mobile agent migration in heteroges@&owiron-
ments. Scalable Computing: Practice and Experiendé4):89-99,
December 2006.

OMG Mobile Agent Systems Interoperability Fagdg Specification
(MASIF), OMG TC Document ORBOS/97-10-05 , 1997.

OMG. The common object request broker: Architeetand specifica-
tion. Technical report, OMG, 1999.

212 BIBLIOGRAPHY

[OPBO1] James J. Odell, H. Van Dyke Parunak, and Bernhard BRegresent-
ing agent interaction protocols in UML. lAgent-Oriented Software
Engineering: First International Workshop, AOSE 2000, &rrok, Ire-
land, volume 1957 oL NCS pages 201-218. Springer-Verlag, 2001.

[Ord96] J. J. Ordille. When agents roam, who can you trustFirst Confer-
ence on Emerging Technologies and Applications in Commtioitsa
(etaCOM) Portland, OR, 1996.

[O'S] Bryan O’Sullivan. Distributed revision control with encurial.

[PBO7] Mukaddim Pathan and Rajkumar Buyya. A taxonomy and suo¥e
content delivery networks. Technical report, Grid Compyitmd Dis-
tributed Systems Laboratory, The University of MelbourAastralia,
2007. GRIDS-TR-2007-4.

[PBKO5] D. Trinh P. Braun and R. Kowalczyk. Integrating a new ffigbser-
vice into the jade agent toolkit. In K. Ahmed T. Magendanz ande-
nieris, editorsMobility Aware Technologies and Applicatign®@lume
3744 ofLecture Notes in Computer Scienpages 354-363, Montreal,
Canada, October 2005. MATA 2005, Springer.

[Pei02] Holger Peine. Application and programming expereewith the ara
mobile agent systenSoftw., Pract. Exper32(6):515-541, 2002.

[PRO2] U. Pinsdorf and V. Roth. Mobile Agent InteroperabilRgtterns and
Practice. InProceedings of Ninth IEEE International Conference and
Workshop on the Engineering of Computer-Based Sysfegss 238—
244. |[EEE Computer Society Press, 2002.

[PyX] Pyxml. http://pyxml.sourceforge.net/.

[PyY] Pyyaml. http://pyyaml.org/.

BIBLIOGRAPHY 213

[RBO2]

[RFI02]

[Riv]

[RISO1]

[RKSBOS5]

[Rot98]

[Rot02]

[Rot04]

Emmanuel Reuter and Frafoise Baude. System and network man-
agement itineraries for mobile agents. Nfobile Agents for Telecom-
munication Applicationsvolume 2521 ofecture Notes in Computer
Sciencepages 227-238, 2002.

M. Ripeanu, |. Foster, and A. lamnitchi. Mapping theutgila net-
work: Properties of large-scale peer-to-peer systems raptidations
for system designlEEE Internet Computing Journab(1), 2002.

R. Rivest. RFC 1321: The md5 message-digest algorithm.
http://www.ietf.org/rfc/rfc1321.txt.

Volker Roth and Mehrdad Jalali-Sohi. Concepts andtathre of a
security-centric mobile agent server.IBADS '01: Proceedings of the
Fifth International Symposium on Autonomous Decentrdl@gstems
page 435, Washington, DC, USA, 2001. IEEE Computer Society.

Hariharan Rahul, Mangesh Kasbekar, Ramesh SitaraamanArthur
Berger. Towards realizing the performance and availakéygefits of
a global overlay network. Technical report, Massachuseststute of
Technology Computer Science and Atrtificial Intelligence datory,
November 2005.

Volker Roth. Secure recording of itineraries throughoperating
agents. IlECOOP Workshopgages 297-298, 1998.

V. Roth. Empowering mobile software agentsPhoc. 6th IEEE Mo-
bile Agents Conferencerolume 2535 ofLecture Notes in Computer
Sciencepages 47—-63. Spinger Verlag, 2002.

V. Roth. Obstacles to the adoption of mobile agertobile Data
Management, 2004. Proceedings. 2004 IEEE Internationaf€ence
on, pages 296-297, 2004.

214

[Rou05]

[Sat03]

[SBS00]

[Sch97]

[SKWO5]

[SLBWOS5]

[SMLN+03]

[Sof]

[SRMO8]

BIBLIOGRAPHY

David Roundy. Darcs: distributed version managenrehaskell. In
Haskell '05: Proceedings of the 2005 ACM SIGPLAN workshop on
Haskell pages 1-4, New York, NY, USA, 2005. ACM.

I. Satoh. Building reusable mobile agents for nekwoanagement.
Systems, Man and Cybernetics, Part C: Applications and Reyiews
IEEE Transactions ar33(3):350-357, Aug. 2003.

L.M. Silva, V. Batista, and J.G. Silva. Fault-tolerarecution of mo-

bile agents. IMDependable Systems and Networks, 2000. DSN 2000.
Proceedings International Conference, @ages 135 — 143, New York,
NY, June 2000.

Fred B. Schneider. Towards fault-tolerant and seagentry. Technical
report, Cornell University, Ithaca, NY, USA, 1997.

Markus B. ®llner, Sven Kaffille, and Guido Wirtz. fiParse - a generic
parser for FIPA-compliant agent communication. In Petekd{oed-
itor, IASTED Conf. on Software Engineeringages 331-336. IAST-
ED/ACTA Press, 2005.

Alex Sherman, Philip A. Lisiecki, Andy Berkheimer, cadoel Wein.
Acms: the akamai configuration management systemN$DI'05:
Proceedings of the 2nd conference on Symposium on Networked Sy
tems Design & Implementatippages 245-258, Berkeley, CA, USA,
2005. USENIX Association.

lon Stoica, Robert Morris, David Liben-Nowell, David Kgr,
M. Frans Kaashoek, Frank Dabek, and Hari Balakrishnan. Chrd:
scalable peer-to-peer lookup service for internet apptina. IEEE
Transactions on Networkind 1, February 2003.

Softintegration. Ch interpreter.

M. Stral3er, K. Rothermel, and C. l\'ﬂg@fer. Providing Reliable Agents
for Electronic Commerce. IRroceedings of the International IFIP/GI

BIBLIOGRAPHY 215

[ST98]

[TKA+02]

[TST+05]

[Tut04]

[TYO5]

[VFLO6]

[Vig97]

[Vig04]

Working Conferencevolume 1402 ol ecture Notes in Computer Sci-
ence pages 241-253. Springer-Verlag, 1998.

Tomas Sander and Christian F. Tschudin. Protectingilm@agents
against malicious hosts. Mobile Agents and Securijtpages 44-60,
London, UK, 1998. Springer-Verlag.

Anand R. Tripathi, Neeran M. Karnik, Tanvir Ahmed, Ram Dndi,
Arvind Prakash, Vineet Kakani, Manish K. Vora, and Muktaét
Design of the Ajanta system for mobile agent programmidgurnal
of Systems and Softwa@2(2):123-140, 2002.

H.A. Thant, Khaing Moe San, Khin Mar Lar Tun, T.T. Naingyda

N. Thein. Mobile agents based load balancing method forllphen-
plications. Information and Telecommunication Technologies, 2005.
APSITT 2005 Proceedings. 6th Asia-Pacific Symposiunpages 77—
82, November 2005.

Kurt Tutschku. A measurement-based traffic profilthe edonkey file-
sharing service. liPassive and Active Network Measurementume
3015 ofLNCS pages 12-21, 2004.

Y. Tsipenyuk and B. Yee. Detecting external agent
replay and state modification attacks. http://www-
cse.ucsd.edu/"ytsipeny/home/research/paper.pdfuigb2005.

S. De Capitani Di Vimercati, A. Ferrero, and M. Lazaar. Mobile
agent technology for remote measuremef&E Transactions on In-
strumentation and MeasuremeB6(5):1559-1565, October 2006.

G. Vigna. Protecting mobile agents through tracingThird Workshop
on Mobile Object System$997.

G. Vigna. Mobile agents: ten reasons for failufdobile Data Man-
agement, 2004. Proceedings. 2004 IEEE International Cenfss on
pages 298-299, 2004.

216

[VMRC*06]

[VNBTO4]

[VNOT*07]

[WHBO01]

[Whi96]

[WHN*01]

[WJ95]

[WLAGO3]

BIBLIOGRAPHY

P. Vieira-Marques, S. Robles, J. Cucurull, R. Cruz-CorreidN&varro,
and R. Mart. Secure integration of distributed medical data using mo-
bile agentsIEEE Intelligent System21(6):47-54, 2006.

G.J. van’'t Noordende, F.M.T. Brazier, and A.S. Tam&mm. Security
in a mobile agent systenMulti-Agent Security and Survivability, 2004
IEEE First Symposium gmpages 35-45, 30-31 Aug. 2004.

Guido van't Noordende, Benno Overeinder, Reinier Timrireances

M. T. Brazier, and Andrew Tanenbaum. A common base for build-
ing secure mobile agent middleware systems.Ptaceedings of the
International Multiconference on Computer Science andrmgtion
Technologypages 13-25, Wisla, Poland, October 2007.

Xiaojin Wang, Jason Hallstrom, and Gerald Baumgartri&liability
through strong mobility. The Ohio State University, Jun@20

James E. White. Telescript technology: Mobile agemtdeffrey Brad-
shaw, editor,Software AgentsAAAI Press/MIT Press, Menlo Park,
CA, 1996.

Johnny Wong, Guy Helmer, Venkatraman Naganathan, V@&ami
Polavarapu, Vasant Honavar, and Les Miller. Smart mobiénatacil-
ity. Journal of Systems and Softwat6:9-22, 2001.

Michael Wooldridge and Nicholas R. Jennings. Inteltig agents:
Theory and practiceKnowledge Engineering Revied0(2):115-152,
1995.

Robert Wahbe, Steven Lucco, Thomas E. Anderson, aisdiSL. Gra-
ham. Efficient software-based fault isolatidkCM SIGOPS Operating
Systems Revie®7(5):203-216, December 1993.

BIBLIOGRAPHY 217

[WPT+97]

[xac05]

[XML]
[XSt]

[yama]

[YAMb]

[Yee94]

[Yee99]

[YFPDO4]

D. Wong, N. Paciorek, T.Walsh, J. DiCelie, M. Young, and BeP
Concordia: An infrastructure for collaborating mobile atgerin Pro-
ceedings of the First International Workshop on Mobile Ag€Berlin,
Germany) volume 1219 o NCS Springer-Verlag, April 1997.

eXtensible Access Control Markup Language (XACML})s#en 2.0,
February 2005. T. Moses (ed.).

Extensible markup language (xml) 1.0. http://www.ve8g/TR/xml.
Xstream. http://xstream.codehaus.org/.

YAML Ain’'t Markup Language Version 1.1
http://www.yaml.org/spec/1.1/.

Yaml.rb. http://yaml4r.sourceforge.net/.

Bennet YeeUsing secure coprocessorBhD thesis, Carnegie Mellon
University, May 1994.

Bennet S. Yee. A sanctuary for mobile agents. Sature Internet
Programming pages 261-273, 1999.

M. Yao, E. Foo, K. Peng, and E. Dawson. An improvedhiard in-
tegrity protocol for mobile agents. In Moti Yung Kijoon Chasitor,
Information Security Applications/olume Volume 2908 of.ectures
Notes in Computer Sciencpages 272-285. Springer-Verlag GmbH,
January 2004.

Appendix A

Inter-Platform Mobility Architecture

This appendix contains technical details about IPMA. Fifsll, there is the ontology
used to request the mobility services, then an interactiotopol used in Main Migra-
tion Protocol (MMP) of IPMA, and, finally, several ontologiased within the migration
architecture, and the different migration protocols psgzbalong the thesis. These on-
tologies have been kept as simple as possible in order taedtie data overhead they
may represent in an agent migration [Gav04].

A.1 Service registration

The migration architecture, as explained in Section 3.i3.2egistered as a service in
the FIPA Directory Facilitator [FIP04], which is implemeut by thedf agent. A

servi ce-descri ption concept is fulfilled, and sent to this agent. The concept is
encapsulated within theer vi ces field of thedf - agent - descri pti on concept,
which, in turn, is put inside aegi st er action. All the protocols, languages, and
ontologies supported by the service must be listed in theogpiate fields of the

servi ce-descri ption inaddition to thedf - agent - descri pti on.

The architecture is registered asammagent service. Its name and type aps
andnobi | i t y. The interaction protocol supported by the service is the
synchroni zed- r equest . The supported ontologies are tinebi | i t y- ont ol ogy,
and the pmns- ont ol ogy. And the content language is thepa- sl 0. Furthermore,

219

220 APPENDIX A. INTER-PLATFORM MOBILITY ARCHITECTURE

other interaction protocols and ontologies must be addeering on the migration
protocols used in the Protocol Sequencess (PSs) part of |BMAthd i pa- r equest
interaction protocol, and thect p- ont ol ogy for the Push Cache Transfer Protocol
(PCTP).

The supported profiles and available migration protocal#iie PS must be included
in theser vi ce-descri pti on concept. Two properties within thgr operti es
field are used. The first property is callagent - pr of i | es, and includes the set of
supported agent profiles by the AM. Thebi | e- agent - pr of i | e concept, part of
thei pns- ont ol ogy, is used.

The second property is callgat ot ocol s, and includes the the protocols sup-
ported by the middleware in the PS. A specially cregtedt ocol s- descri pti on
concept of therobi | i t y- ont ol ogy is used (see Table A.5). This concept contains
five fields. The first three fields, which are callpde-t r ansf er, transfer, and
post -transfer, are sets okt ri ng with the migration protocol names. And the
other two fields are these- pr ef er ence and ther el at i ons, which establish a
set of rules and constrains regarding the accepted migratm@tocols.

e Thefirstfieldr el ati ons, is a set of tuples with protocols that must be executed
together, i.e. if one of them is selected, the others prasethe tuple should be
selected too. It is structured as a set ef mwhich contain sets adt r i ng that
compose the mentioned tuples.

e And, finally, theuse- pr ef er ence field defines protocol rules to establish pro-
tocol priority or obligation of use. The property value iset sft er mwhich
contains sequences et ri ng. Sequences with only one element define the
mandatory protocols. In case of sequences with severakelesnonly one of the
protocols of the sequence is mandatory, taking into accthattthe first is pre-
ferred in front of the second, and so on. In case the only aimdvoe suggesting
a preference, the last must be the reserved vaturee. Then, one must choose
one of the protocols or none of them.

These two last properties allow the agent middleware toesgothat some protocols

A.1. SERVICE REGISTRATION 221

are preferred in front of others, e.g. authentication mgthoan be preferred to authen-
tication method 2; and that some protocols must be execatgther with others, e.g.
authentication method 1 must be used together with a resm@gotiation.

In the next lines there is an example of a registration messagt from the Agent
Mobility Manager (AMM) agent to the DF agent. The messageiests the register of
the Inter-Platform Mobility Service (IPMS) including PCTfRge On-Demand Transfer
Protocol (ODTP), and the One-Shot Agent Authenticationid@ (OSAAP) protocols.
In this case it has been specified that PCTP or ODTP must be arsedhat, in case of
using PCTP it must be used together with OSAAP.

(request
: sender
(agent-identifier
:nanme amm@d 0o0. com
: addresses (sequence http://foo.com 7778/ acc))
:receiver (set
(agent-identifier
:nanme df @ oo0.com
: addresses (sequence http://foo.com 7778/ acc)))
:language fipa-slO
:protocol fipa-request
:ontol ogy fipa-agent-managemnment
: cont ent
“"((action
(agent-identifier
:name df @ o0o. com
:addresses (sequence http://foo.com 7778/ acc))
(register
(df - agent - description
: nane
(agent-identifier
:name anmm@ 00. com
:addresses (sequence http://foo.com 7778/ acc))
:protocols (set synchronized-request fipa-request)
:ontol ogi es (set nobility-ontol ogy i pma-ontol ogy pctp-ontol ogy

: I anguages (set fipa-sl0)

222 APPENDIX A. INTER-PLATFORM MOBILITY ARCHITECTURE

:services (set
(service-description
:nane i pns
:type nobility
:protocols (set synchroni zed-request fipa-request)
:ontol ogi es (set neeting-schedul er)
;1 anguages (set fipa-sl0)
iproperties (set
(property
:nane agent-profiles
:value (set (nobile-agent-profile (...)))
(property
:nane protocols
:val ue
(protocol s-description
:pre-transfer (set osaap-vl)
:transfer (set pctp-vl odtp-vl)
. post-transfer
:use-preference (set (set (osaap-vl pctp-vl)))

crelations (set (set (pctp-vl odtp-v1)))))))))))))™)

A.2 Mobility Ontology

The mobility ontology is used in the exchange of messageedest ordinary agents and
the AMM. Its main purpose is providing the appropriate setieario regular agents for
requesting agent migrations and agent clonning.

Its name isnobi | i t y- ont ol ogy, it is composed of two actionsnmove and
cl one (see Table A.1 and Table A.2); two concepts:gr at i on- descri pti on
andpr operty (see Table A.3 and Table A.4 respectively); and one pregliicatthe
failure message (Table A.6). Furthermore, there ispthet ocol s- descri pti on
concept (see Table A.5) used to register the service (seerfsippA.1).

The migration of an agent is requested by sending an ACL régunessage with
the action to perform. The action includes thiegr at i on- descri pt i on concept.
This concept contains the agent identification, the migraprotocols to use, some

A.3. SYNCHRONIZED REQUEST INTERACTION PROTOCOL 223

specific properties of them (in this case greoper t y concept is used), and the number
of suggested migration retries AMM should do before consngea migration failed.
Furthermore, a remote agent identification can be providetibose the agent name in
case of clonning.

After sending the request, the agent should wait for a respofithe migration or
cloning succesdrfform or failure message). Notices that the failure message contains
an exception predicate (see Table A.6). This message iysiwaeived from the local
AMM regarding the requester agent location (steps 1 and Ggufr€ 3.2 depict these
exchanged messages in case of a successful migration).tiNdteo interaction pro-
tocols are used since the only essential message is therfe@stad responses are not
always received from the same AMM.

A.3 Synchronized Request Interaction Protocol

Sometimes there are processes or actions that must be pdebgdther ones. One
common case is when two consecutive actions must be dongisTthie model required
in the IPMA MMP. Since there were no agent interaction proteavhich allowed this,
a new one has been proposed.

The new interaction protocol is identified by the tolsgmchr oni zed- r equest ,
which is used in th@r ot ocol parameter of the ACL message. The interaction proto-
col, as itis shown in Figure A.1, starts like the IEEE-FIPA Rest Interaction Protocol.
The main difference is that when the action requested hasssfully terminated, an-
other one is immediately requested within the same protdoatase of the first action
failure, the second one is not requested. Notice, that aora@itagr ee orr ef use
message can be sent after the first request.

Since the protocol uses two messages with a repeated peatfeemone of them
correspondingly to the first message sent, they must be ppately distinguished.
The user-defined message paramtefct i on- Or der is used. In the first request
message exchanged its value is the stfing st , whereas in the second one it is the
stringsecond. Finally, all the other rules, such as the conversatiorcahcellation

224 APPENDIX A. INTER-PLATFORM MOBILITY ARCHITECTURE

Initiator Participant

REQUEST (actionl)

REFUSE

AGREE <
T FAILURE
- INFORM <

REQUEST (action2)

FAILURE

A

T INFORM ‘

ACL Message —>» OR <>

Figure A.1: Synchronized Request Interaction Protocol.

methods, among others, are the same specified for the FIPAeRielpteraction Proto-
col [FIPO2K].

A.4 IPMS Ontology

The IPMS ontology is used in the exchange of messages betddfs of the dif-
ferent locations involved in an agent migration. Its maimgase is to allow AMMs to
coordinate the operations of the MMP to perform the agentatiion.

Its name isi prs- ont ol ogy, it is composed of three actionsrove, cl one
andr esune (see Table A.7, Table A.8 and Table A.9 respectively); siroapts:
nobi | e- agent - descri pti on,nobi | e-agent-profil e,

A.5. PUSH CACHE TRANSFER PROTOCOL ONTOLOGY 225

nmobi | e- agent - syst em nobi | e- agent - | anguage, nobi | e- agent - os,
andpr operty (see Table A.10, Table A.11, Table A.12, Table A.13, Tabl&4fand
Table A.15 respectively); and two predicates for the refuse failure messages (see
Table A.17 and Table A.16).

The migration process between two AMMs is started by issam@\CL message
which contains the action to performfve or cl one). The action includes a descrip-
tion of the migrating agent within theobi | e- agent - descri pti on concept. Fur-
thermore this concept includes one or more agent profilesateacomposed of all the
other concepts mentioned. Once the agent has been trahsfedeegistered into the
destination location, a request message withrtesune action is sent to request its
resumption.

A.5 Push Cache Transfer Protocol Ontology

The ontology presented in this section is used in the exahafgnessages between
AMMs performing agent migrations with PCTP. Its main purp@sthe coordination
of the protocol and the encapsulation of the agent code ahatstate.

Its name igpct p- ont ol ogy, itis composed of two functions:
transfer-dat a-state andtransfer-code (see Table A.18 and Table A.20
respectively); two predicates to state if the agent codeeslad (see Table A.22); and
two conceptspct p- dat a- st at e, pct p- code (see Table A.19, and Table A.21)
to encapsulate the agent code, data, and state; and sexedlalgbes for the failure
message (see Table A.23).

A.6 On Demand Transfer Protocol Ontology

The ontologies presented in this section are used in theaegehof messages between
AMMs performing agent migrations with ODTP. Two ontologiae used, one for
transferring the agent data and state, and the other to duthp@n demand code fetch-

ing.

226 APPENDIX A. INTER-PLATFORM MOBILITY ARCHITECTURE

The main purpose of the first one is the coordination of thegaa and the en-
capsulation of the agent data and state. Its namadisp- ont ol ogy, it is com-
posed of one functiont r ansf er - dat a- st at e (see Table A.24); three concepts:
dat a- state,resource-|ist,andresource-descri ption (seeTable A.25,
Table A.26, and Table A.27); and several predicates for déilaré message (see Ta-
ble A.28).

The main purpose of the second ontology is the coordinatidheoagent resource
fetching and the encapsulation of each one. Its nanoalip- f et ch- ont ol ogy,
it is composed of one functiorf:et ch-r esour ce (see Table A.29); one predicate:
resour ce-f et ched (see Table A.30); one conceptesour ce- descri pti on
(see Table A.31); and several predicates for the failuresages(see Table A.32).

A.7 Fragment Transfer Protocol Ontology

The ontology presented in this section is used in the exachangnessages between
AMMs performing agent migrations with the Fragmented TfanBrotocol (FrTP). Its
main purpose is the coordination of the protocol and thegsdation of the agent code,
data and state in several fragments.

Its name id t p- ont ol ogy, itis composed of two functions:r ansf er - agent
andr equest - fragnent (see Table A.33 and Table A.38 respectively); two predi-
cates to state if the agent code is needed (see Table A.35predicate to encapsulate
each fragment, r agnent (see Table A.37); two concepts, one to negotiate the trans-
ference parameterpar anet er s (see Table A.34), and the other to transport and
request specific fragments; agnment - descri pti on (see Table A.39); and several
predicates to state the possible errors during the traersfer(see Tables A.36 and A.40).

A.8 REST Transfer Protocol Ontology

The ontology presented in this section is used in the exaahgnessages between
AMMs performing agent migrations with the REST Transfer Beol (RESTTP). Its
main purpose is the coordination of the protocol to traniferagent code, data, and

A.9. ONE-SHOT AGENT AUTHENTICATION PROTOCOL ONTOLOGY 227

state using an HTTP request.

Its name ig est t p- ont ol ogy, itis composed of one function, the
t ransf er - par anmet er s (see Table A.41); one conceptest - par anet er s (see
Table A.42), and several predicates to represent the mistecrors (see Table A.43).

A.9 One-Shot Agent Authentication Protocol Ontology

The ontology presented in this section is used in the exahafgnessages between
AMMs performing agent migrations with the One-Shot Agentiantication Protocol
(OSAAP). Its main purpose is the coordination of the protoand the encapsulation
of the agent owner certificate and agent, and code signatures

Its name isaap- ont ol ogy, itis composed of one functiox509- agent - aut h
(see Table A.44) and two concepx509- agent - aut h-descri pti on, and
aut h- pai r (see Table A.45, and Table A.46). Furthermore, severaligates are
provided to represent the possible authentication negetisponses (see Table A.47).

228

APPENDIX A. INTER-PLATFORM MOBILITY ARCHITECTURE

Function nmove
Ontology nmobi | i ty-ont ol ogy
Supported by | amm
Description An agent issues oV e request to start an agent migration process to
a remote platform.
Domain nm gration-description
Arity 1
Table A.1: Move action Mobility Ontology
Function cl one
Ontology nmobi | i ty-ont ol ogy
Supported by | amm
Description An agent issues @l one request to start an agent clone process 1o a
remote platform.
Domain m gration-description
Arity 1
Table A.2: Clone action Mobility Ontology
Frame m grati on-description
Ontology nmobi | i ty-ont ol ogy
Parameter Description Presence Type
| ocal -aid Name of the agent to migrate. Mandatory | agent-identifier

renot e-ai d

Name assigned to the agent
the remote location.

inOptional

agent-identifier

pre-transfer

Pre-transfer protocols to use| Optional Setofstring

transfer

Transfer protocols to use. Optional string

post -transfer

Post-transfer protocols to use.Optional Setofstring

properties Migration properties. Optional Set ofpr operty
retries Suggested migration retries.| Optional i nt eger
Table A.3: Migration Description concept Mobility Ontolpg
Frame property
Ontology nobi | i ty-ont ol ogy
Parameter Description Presence Type
nanme Property name. Mandatory | string
val ue Value. Mandatory | term

Table A.4: Property concept Mobility Ontology

A.9. ONE-SHOT AGENT AUTHENTICATION PROTOCOL ONTOLOGY

229

Frame pr ot ocol s-description

Ontology nobi | i ty-ontol ogy

Parameter Description Presence Type

pre-transfer Pre-transfer protocols to use| Optional Setofstring

transfer Transfer protocols to use. Optional string

post -transfer Post-transfer protocols to use.Optional Setofstring

rel ations Relations between protocols| Optional Setofterm

use- pref erence Execution protocols prefert Optional Setofterm
ences.

Table A.5: Protocols Description concept Mobility Ontojog

Communicative Act failure
Ontology nobi i ty-ont ol ogy
Predicate symbol Arguments | Description
agent - al r eady- present string Agent is already present in the remote location
pr ot ocol s- not - supported Set of Not supported protocols.
string
prot ocol s-not - al | owed Set of Not allowed protocols.
string
pr ot ocol s- needed Set oft er m | Mandatory protocols.
pr ot ocol - conbi nati on Set oft er m | Protocols on the list are the combinations allowg
ma- syst em not - supported string Mobile agent system not supported.
ma- 0s- not - support ed string Mobile agent operating system not supported.
ma- | anguage- not - supported | string Mobile agent language not supported.
prot ocol -error string Error with the indicated protocol.
regi stration-error string Error registering agent to the remote location.
resunption-error string Error resuming agent in the remote location.
message- error string Semantic error in the message received.
i nteraction-protocol-error | string Interaction protocol error.
unknown- err or string Unknown error.

Table A.6: Failure predicates Mobility Ontology

>

Function nove

Ontology i ps- ont ol ogy

Supported by | amm

Description The local AMM issues arove request to a remote AMM to start a
agent migration process to a remote platform.

Domain m gration-description

Arity 1

Table A.7: Move action IPMS Ontology

230 APPENDIX A. INTER-PLATFORM MOBILITY ARCHITECTURE

Function cl one
Ontology i ps- ont ol ogy
Supported by | amm
Description The AMM issues al one request to a remote AMM to start an
agent migration process to a remote platform which ends tiptwb
agents.
Domain m gration-description
Arity 1
Table A.8: Clone action IPMS Ontology
Function resune
Ontology i pns- ont ol ogy
Supported by | amm
Description The AMM issues a esune request to the remote AMM to resunje
the agent execution in the remote platform.
Domain ni gration-description
Arity 1
Table A.9: Resume action IPMS Ontology
Frame nobi | e- agent - descri ption
Ontology i pns- ont ol ogy
Parameter Description Presence Type
nm d Unique migration identifier Mandatory | string
between the two involved
agent middleware
nane The unique agent identifier | Mandatory | agent-i dentifier

agent-profile

Agent requirements for eachMandatory
provided agent code.

Sequence

nmobi | e-agent-profile

of

cgid Agent code group identificat Mandatory | stri ng
tion.

dat a- encodi ng Agent data encoding mecha-Mandatory | stri ng
nism.

st at e- encodi ng Agent state encoding mecha-Optional string
nism.

agent - ver si on Agent version. Optional string

pre-transfer

Pre-transfer protocols choseh Optional

Sequence oftri ng

transfer

Transfer protocols chosen Mandatory | string

post -transfer

Post-transfer protocols chosenOptional

Sequence oftri ng

Table A.10: Mobile Agent Description concept IPMS Ontology

A.9. ONE-SHOT AGENT AUTHENTICATION PROTOCOL ONTOLOGY

231

Frame nmobi | e-agent-profile

Ontology i prs-ont ol ogy

Parameter Description Presence Type

cid Agent Code Identification. Mandatory | string

system Mobile agent system environ- Mandatory | nobi | e- agent - syst em
ment.

| anguage Language environment. Optional nobi | e- agent - | anguage

0s Operating system environ- Optional nobi | e- agent - os
ment.

Table A.11: Mobile Agent Profile concept IPMS Ontology

Frame nobi | e- agent - system

Ontology i pns- ont ol ogy

Parameter Description Presence Type

nane Mobile agent system name. | Mandatory | string

maj or - ver si on Major version. Mandatory | string

m nor - ver si on Minor version. Optional string

dependenci es Dependencies required. Optional Set ofpr operty

Table A.12: Mobile Agent System concept IPMS Ontology

base before execute.

Frame nobi | e- agent - | anguage

Ontology i pns- ont ol ogy

Parameter Description Presence Type
name Mobile agent PL name. Mandatory | string
maj or - ver si on Major version. Mandatory | string
ni nor - versi on Minor version. Optional string
f or mat Code base format. Optional string
filter Filter to execute over the codeOptional string

dependenci es

Language dependencies.

Optional

Set ofpr operty

Table A.13: Mobile Agent Language concept IPMS Ontology

Frame nobi | e- agent - os

Ontology i prs-ont ol ogy

Parameter Description Presence Type

nane Operating system name. Mandatory | string

maj or - ver si on Major version. Mandatory | string

m nor - ver si on Minor version. Optional string

har dwar e Hardware below operating Optional string
system.

dependenci es Dependencies required. Optional Set ofpr operty

Table A.14: Mobile Agent OS concept IPMS Ontology

232

APPENDIX A. INTER-PLATFORM MOBILITY ARCHITECTURE

Frame property

Ontology i prs-ont ol ogy

Parameter Description Presence Type
nane Property name. Mandatory | string
val ue Value. Mandatory | term

Table A.15: Property concept IPMS Ontology

Communicative Act refuse
Ontology i pns- ont ol ogy
Predicate symbol Arguments | Description
in-use-md string The selected MID it is being used in another mi-
gration transaction.
agent - al r eady- present string Agent is already present in the remote location
pr ot ocol s- not - supported Set of Protocols on the list are not supported.
string
pr ot ocol s- not - al | owed Set of Protocols on the list are not allowed.
string
pr ot ocol s- needed Set oft er m | Protocols on the list are mandatory.
pr ot ocol - conbi nati on Set oft er m | Protocols combination not supported. Protocpls
on the list are the combinations allowed.
mae- syst em not - support ed string Mobile agent system is not supported.
ma- 0s- not - support ed string Mobile agent operating system is not supported.
ma- | anguage- not - supported | string Mobile agent language is not supported.
Table A.16: Refuse predicates IPMS Ontology
Communicative Act failure
Ontology i prs- ont ol ogy
Predicate symbol Arguments | Description
protocol -error string Protocol error in the indicated one.
regi stration-error string Error registering agent to the remote location.
resunpti on-error string Error resuming agent execution in the remote |o-
cation.
nmessage- error string Semantic error in the message received.
i nteraction-protocol -error | string Interaction protocol error.
unknown- error string Unknown error.

Table A.17: Failure predicates IPMS Ontology

A.9. ONE-SHOT AGENT AUTHENTICATION PROTOCOL ONTOLOGY 233

Function transfer-data-state

Ontology pct p- ont ol ogy

Supported by | amm

Description The AMM issues & r ansf er - dat a- st at e request to transfer
the agent data and state to the remote platform.

Domain data-state

Arity 1

Table A.18: Transfer Data State action PCTP Ontology

Frame dat a-state

Ontology pct p- ont ol ogy

Parameter Description Presence Type
md Unique migration identifiey Mandatory | stri ng

between the two involveq
agent middleware

cid Agent code identification. Mandatory | string
sr Agent code security revision| Mandatory | string
hcid Agent code hash. Mandatory | string
dat a Agent data. Mandatory | byte-stream
state Agent state. Optional byt e- st ream

Table A.19: Data State concept PCTP Ontology

Function transfer-code

Ontology pct p- ont ol ogy

Supported by | amm

Description The AMM issues @ r ansf er - code request to to transfer the agent
code to the remote platform.

Domain code

Arity 1

Table A.20: Transfer Code action PCTP Ontology

Frame code

Ontology pct p- ont ol ogy

Parameter Description Presence Type
md Unique migration identifief Mandatory | string

between the two involved
agent middleware

cid Agent code identification. Mandatory | string
sr Agent code security revision| Mandatory | string
hci d Agent code hash. Mandatory | string
code Agent code. Mandatory | byt e-stream

Table A.21: Code concept PCTP Ontology

234

APPENDIX A. INTER-PLATFORM MOBILITY ARCHITECTURE

Communicative Act inform
Ontology pct p- ont ol ogy
Predicate symbol Arguments | Description

code-i s- needed

The agent code is not present in the remote p
form and it must be sent.

lat-

code-i s- not - needed

The agent code is already present in the remote

platform and it does not have to be sent.

Table A.22: Inform predicates PCTP Ontology

Dn.

Communicative Act failure

Ontology pct p- ont ol ogy

Predicate symbol Arguments | Description

invalid-md string The Migration Identifier (MID) is not valid.
not - enough- space string There is not enough space in the remote locatic
dat a-error string Error in the provided data.

state-error string Error in the provided state.

code-error string Error in the provided code.

nmessage- error string Semantic error in the message received.
i nteraction-protocol-error | string Interaction protocol error.

unknown- err or string Unknown error.

Table A.23: Failure predicates PCTP Ontology

Function transfer-data-state

Ontology odt p- ont ol ogy

Supported by | amm

Description The AMM issues & r ansf er - dat a- st at e request to transfe
the agent data and state to the remote platform.

Domain data-state

Arity 1

Table A.24: Transfer Data State action ODTP Ontology

A.9. ONE-SHOT AGENT AUTHENTICATION PROTOCOL ONTOLOGY

235

Frame data-state
Ontology odt p- ont ol ogy
Parameter Description Presence Type
ni d Unique migration identifie Mandatory | string
between the two involveg
agent middleware
cid Agent code identification. Mandatory | string
Sr Agent code security revision, Mandatory | string
hci d Agent code hash. Mandatory | string
dat a Agent data. Mandatory | byt e-stream
state Agent state. Optional byt e- st ream
resource-list List of agent resources. Mandatory | resource-|i st
resour ce-servers | Listof resource servers. Mandatory | Sequence odtri ng

Table A.25: Data State concept ODTP Ontology

Frame resource-|ist
Ontology odt p- ont ol ogy
Parameter Description Presence Type
resour ces List of agent resources. Mandatory | Sequence of
resource-description
hash-al gorithm Hash algorithm used in eachMandatory | string
resource.

Table A.26: Resource List concept ODTP Ontology

Frame resour ce-description

Ontology odt p- ont ol ogy

Parameter Description Presence Type
name Resource name. Mandatory | string
hash Resource hash. Mandatory | string

Table A.27: Resource Description concept ODTP Ontology

Communicative Act failure

Ontology odt p- ont ol ogy

Predicate symbol Arguments | Description

invalid-md string The MID is not valid.

i ncorrect-resource-|ist string Incorrect resource list.

i ncorrect-resource-server string Incorrect resource server.

not - enough- space string There is not enough space in the remote location.
data-error string Error with the data provided.
state-error string Error with the state provided.

message- error string Semantic error in the message received.
i nteraction-protocol -error | string Interaction protocol error.

unknown- error string Unknown error.

Table A.28: Failure predicates ODTP Ontology

236 APPENDIX A. INTER-PLATFORM MOBILITY ARCHITECTURE

Function fetch-resource

Ontology odt p-f et ch-ont ol ogy

Supported by | amm

Description The AMM issues & et ch-r esour ce request to ask for an agent
resource in the agent resources middleware.

Domain resour ce-description

Arity 1

Table A.29: Fetch Resource action ODTP Fetch Ontology

Communicative Act

i nform

Ontology

odt p- f et ch-ont ol ogy

Predicate symbol

Arguments

Description

resour ce-f et ched

byt e- stream

Contains the requested result.

Table A.30: Inform predicates ODTP Fetch Ontology

Frame resour ce-description

Ontology odt p- f et ch-ont ol ogy

Parameter Description Presence Type
hash Resource hash. Mandatory | string
al gorithm Algorithm used for the req Mandatory | string

source hash.

Table A.31: Resource Description concept ODTP Fetch Onyolog

Communicative Act

failure

Ontology

odt p- f et ch- ont ol ogy

Predicate symbol Arguments | Description
resour ce-not - f ound string Requested resource not found.
message- error string Semantic error in the message received.

i nteraction-protocol-error | string

Interaction protocol error.

unknown- err or

string

Unknown error.

Table A.32: Failure predicates ODTP Fetch ontology

A.9. ONE-SHOT AGENT AUTHENTICATION PROTOCOL ONTOLOGY

237

Function transf er - agent

Ontology ft p-ont ol ogy

Supported by | amm

Description The AMM issues a equest -t r ansf er - agent requestto trans
fer the agent to the remote platform

Domain paraneters

Arity 1

Table A.33: Request Transfer Agent action FrTP Ontology

Frame paraneters
Ontology ft p- ont ol ogy
Parameter Description Presence Type
fragment - si ze The fragment size which the Mandatory | i nt eger
origin platform wants to apply
in the migration process
code-si ze The agent code size Mandatory | i nt eger
dat a- si ze Agent instance size Mandatory | i nt eger
state Agent state Optional byt e- st ream
cid Agent code identification. Mandatory | string
sr Agent code security revision| Mandatory | stri ng
hcid Agent code hash. Mandatory | string

Table A.34: Parameters concept FrTP Ontology

Communicative Act agree
Ontology ft p-ontol ogy
Predicate symbol Arguments | Description

code-i s- needed

The agent code is not present in the remote pl
form and it must be sent.

code-i s- not - needed

The agent code is already present in the rem
platform and it does not have to be sent.

Table A.35: Agree predicates FrTP Ontology

at-

ote

'm.

Communicative Act refuse

Ontology ft p- ont ol ogy

Predicate symbol Arguments | Description

not - enough- space string There is not enough space in the remote platfo

agent-too-big string Agent size is too big and can not be accepted i
the remote platform.

reject-fragnment-size string Fragment size is not suitable.

Table A.36: Refuse predicates FrTP Ontology

238 APPENDIX A. INTER-PLATFORM MOBILITY ARCHITECTURE

Communicative Act | i nform
Ontology ft p- ont ol ogy
Predicate symbol Arguments Description
f ragment fragment - descri pti on | Message filled with agent fragment.
Table A.37: Inform predicates FrTP Ontology
Function request - f ragnment
Ontology ft p- ont ol ogy
Supported by | amm
Description The AMM issues a equest - f ragnent request to transfer a lost
fragment to the remote platform
Domain fragment - descri ption
Arity 1
Table A.38: Request Fragment action FrTP Ontology
Frame fragment - descri ption
Ontology ft p- ont ol ogy
Parameter Description Presence Type
cont ent Agent code or data snippetOptional byt e- st ream
which fits to the fragment.
id Fragment number that ident|- Mandatory | i nt eger
fies it in the migration.
type Indicates the type of fragr Mandatory | string
ment:dat a orcode
m d Migration transaction in| Mandatory | string
which the fragment is assoc|-
ated.

Table A.39: Fragment Description concept FrTP Ontology

A.9. ONE-SHOT AGENT AUTHENTICATION PROTOCOL ONTOLOGY

239

Communicative Act

failure

Ontology

ft p- ont ol ogy

Predicate symbol Arguments | Description

i nst ance-si ze-error string Error instance size not found.

code-si ze-error string Error code size not found.

fragnment - si ze-error string Error fragment size not found.

cid-error string Error cid not found.

bad- f or ned- nsg- error string Message received not properly created.

extracting-content-error string Error extracting message content.

regi stration-error string Error registering agent to the remote location.

action-error string Action received is not valid.

nul | -action-error string Null action received.

protocol -error string Migration protocol is not valid.

agent-entry-error string Agent entry not found to the remote location.

ni gration-service-error string Error contacting migration service to notice fa
ure.

out - of - sequence-error string Message received is out of sequence.

fragment-id-error string Not valid fragment number identifier.

fragment - ai d- error string Not valid agent unique identifier.

fragnment -type-error string Not valid fragment type.

nmessage- error string Semantic error in the message received.

interaction-protocol-error | string Interaction protocol error.

unknown- err or string Unknown error.

Table A.40: Failure predicates FrTP Ontology

Function transfer-paraneters

Ontology restt p-ontol ogy

Supported by | amm

Description The AMM agent issues ar ansf er - par amet er s request to
transfer the parameters required by the remote locatioptti fthe
agent code, data and state.

Domain rest-paraneters

Arity 1

Table A.41: Transfer Parameters action RESTTP Ontology

240 APPENDIX A. INTER-PLATFORM MOBILITY ARCHITECTURE
Frame rest-paraneters
Ontology resttp-ontol ogy
Parameter Description Presence Type
m d Unique migration identifiey Mandatory | string
between the two involveg
agent middleware
host HTTP server hostname. Mandatory | string
port HTTP server port. Mandatory | string
ssl - enabl ed Enables the use of SSL in theOptional bool ean
HTTP request.
code- nonce Agent code identification. Mandatory | string
dat a- nonce Agent data identification. Mandatory | string
st at e- nonce Agent state identification. Optional string
cid Agent code identification. Mandatory | string
sr Agent code security revision| Mandatory | stri ng
hci d Agent code hash. Mandatory | string

Table A.42: Rest Parameters concept RESTTP Ontology

Communicative Act failure

Ontology resttp-ontol ogy

Predicate symbol Arguments | Description

invalid-mgration-id string Migration ID is not valid.

not - enough- space string There is not enough space in the remote location.
data-error string Error with obtained data.

state-error string Error with obtained state.

code-error string Error with obtained code.

dat a- not - avai | abl e string Error getting data.

state-not-avail abl e string Error getting state.

code-not - avai | abl e string Error getting code.

ssl-error string SSL not supported by the HTTP server.
nmessage- error string Semantic error in the message received.
i nteraction-protocol-error | string Interaction protocol error.

unknown- err or string Unknown error.

Table A.43: Failure predicates RESTTP Ontology

A.9. ONE-SHOT AGENT AUTHENTICATION PROTOCOL ONTOLOGY

241

Function x509- agent - aut h

Ontology osaap- ont ol ogy

Supported by | amm

Description The AMM agent issues 8509- agent - aut h request to authentit
cate the agent in the remote platform.

Domain x509- agent - aut h-descri ption

Arity 1

Table A.44: X509 Agent Auth action OSAAP Ontology

Frame x509- agent - aut h-descri ption

Ontology osaap- ont ol ogy

Parameter Description Presence Type
mgration-id Unique migration identifief Mandatory | string

between the two
agent middleware

involveq

agent - si gnature

Agent owner certificate an
agent signature encapsulat
in a PKCS7 data structure

i Mandatory
ed

byt e- st r eam

code- si gnat ures

sulated in a PKCS7 data stru
tures.

Set of code signatures enca

p-Optional

L
L

Set ofaut h- pai r

Table A.45: X509 Agent Auth Description concept OSAAP Oatpl

Frame aut h-pair

Ontology osaap- ont ol ogy

Parameter Description Presence Type

key Identifier of the signed entity.| Mandatory | string
signature Signature encapsulated in [aMandatory | byt e- stream

PKCS7 data structure.

Table A.46: Auth Pair concept OSAAP Ontology

242 APPENDIX A. INTER-PLATFORM MOBILITY ARCHITECTURE

Communicative Act

failure

Ontology

osaap- ont ol ogy

Predicate symbol Arguments | Description

invalid-md string Migration ID is not valid.

certificate-not-found string The agent owner certificate is not included in t
message and cannot be found anywhere.

corrupted-certificate string The agent certificate is corrupted.

i nval i d- agent - si gnature string The agent signature does not validate.

corrupted-agent-signature | string The agent signature is corrupted.

corrupt ed- code- si gnat ur es string The code signatures are corrupted.

nmessage- error string Semantic error in the message received.

i nteraction-protocol-error | string Interaction protocol error.

unknown- err or string Unknown error.

Table A.47: Failure predicates OSAAP Ontology

1
2
3

© 00 N O O b~

10
11
12
13
14
15

Appendix B

Common Agent Interface

This appendix contains two specific realisations of the Com#gent Interface (CAl)

for the Java and Python Programming Languages (PLs). Thefttveem can be used
to develop equivalently structured agent codes that cgmihathallenge of providing
full agent interoperability.

B.1 Java CAIl

package fi pa. api;
public abstract class Agent inplenents Serializable {
/1 METHODS | MPLEMENTED BY DEFAULT
public Agent (AID aid) {
this.aid = aid;
public abstract void deliver(ACL n);
public void setAgentState(int s) {

state = s;

243

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

244 APPENDIX B. COMMON AGENT INTERFACE

public int getAgentState() {
return state;

}

public void setAID(AID a) {
aid = a;

}

public AID getAl D) {
return aid;

}

public abstract void run();

public void set MCont ext (M ddl ewar eCont ext ac) {
aContext = ac;

}

public M ddl ewar eCont ext get MCont ext () {
return aCont ext;

}

/1 APl ATTRI BUTES (Subject to serialization)

private int state;

private AlD aid;

/1 NON- APl ATTRI BUTES

private transi ent M ddl ewar eCont ext aCont ext;

}
public interface M ddl ewar eCont ext {

public void send(ACL m);

54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91

B.1. JAVA CAI

public Al D get AMS();

public class AID {

public AID() {

public AID(String name) {

t hi s. nane = nane;
new Vector<String>();
new Vect or <Al D>() ;

addr esses

resol vers

public String getName() {
return nane;

public void addAddress (String a) {
addr esses. add(a) ;

public Iterator<String> get All Addresses() {
return addresses.iterator();

publ i ¢ bool ean renpveAddress(String a) {
return addresses.renove(a);

public void cl ear Addresses() {
addr esses. cl ear () ;

public void addResol ver(AID r) {

245

246 APPENDIX B. COMMON AGENT INTERFACE

92 resol vers. add(r);
93 }
94
95 public Iterator<Al D> get All Resol vers() {
96 return resolvers.iterator();
97 }
98
99 publ i c bool ean renoveResol ver (AID r) {
100 return resol vers.renove(r);
101 }
102
103 public void clearResolvers() {
104 resol vers. clear();
105 }
106
107
108
109 public String nane;
110
111 public Vector<String> addresses;
112
113 publ i ¢ Vect or <Al D> resol vers;
114
115 }
116
117
118 public class ACL {
119
120
121 /1 FlI PA PERFORVATI VES
122 public static final String ACCEPT_PROPOSAL = "accept-proposal";
123 public static final String AGREE = "agree";
124 public static final String CANCEL = "cancel";
125 public static final String CALL_FOR PROPCSAL = "cfp";
126 public static final String CONFIRM = "confirni;
127 public static final String D SCONFI RM = "di sconfirn;
128 public static final String FAILURE = "failure";
129 public static final String INFORM = "infornt;

130
131
132
133
134
135
136
137
138
139
140
141
142

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

B.1. JAVA CAI 247

public static final String INFORMIF = "informif";

public static final String INFORM REF = "informref";

public static final String NOT_UNDERSTOOD = "not-understood";
public static final String PROPAGATE = "propagate”;

public static final String PROPOSE = "propose";

public static final String PROXY = "proxy";

public static final String QUERY_IF = "query-if";

public static final String QUERY_REF = "query-ref";

public static final String REFUSE = "refuse";

public static final String REJECT _PROPOSAL = "reject-proposal";
public static final String REQUEST = "request";

public static final String REQUEST_WHEN = "request-when";
public static final String REQUEST WHENEVER = "request - whenever

public static final String SUBSCRI BE = "subscribe";

public ACL() {
receivers = new Vector<Al D>();
ud_parameters = new Hasht abl e<String, String>();

/1 APl METHODS
public void setPerformative(String p) {
performative = p;

public String getPerformative() {
return performative;

public void setSender (Al D aid) {
sender = aid;

public Al D getSender () {
return sender;

248 APPENDIX B. COMMON AGENT INTERFACE

167

168 public void addReceiver(AID r) {

169 receivers. add(r);

170 }

171

172 public Iterator<Al D> get All Receivers() {
173 return receivers.iterator();

174 }

175

176 publ i c bool ean renpveReceiver(AID r) {
177 return receivers.renove(r);

178 }

179

180 public void cl earReceivers() {

181 receivers. clear();

182 }

183

184 public void setRepl yTo(AID aid) {

185 replyto = aid;

186 }

187

188 public AID getReplyTo() {

189 return repl yto;

190 }

191

192 public void setStringContent(String c) {
193 string_content = c;

194 bi nary_content = null;

195 }

196

197 public String getStringContent() {

198 return string_content;

199 }

200

201 public void setBinaryContent(byte[] c) {
202 bi nary_content = c;

203 string_content = null;

204 }

B.1. JAVA CAI 249

205

206 public byte[] getBinaryContent() {
207 return binary_content;

208 }

209

210 public void setlLanguage(String |) {
211 | anguage = |;

212 }

213

214 public String getlLanguage() {

215 return | anguage;

216 }

217

218 public void setEncoding(String e) {
219 encodi ng = e;

220 }

221

222 public String getEncoding() {

223 return encodi ng;

224 }

225

226 public void setOntol ogy(String o) {
227 ontol ogy = o;

228 }

229

230 public String get Ontol ogy() {

231 return ontol ogy;

232 }

233

234 public void setProtocol (String p) {
235 protocol =p

236 }

237

238 public String getProtocol () {

239 return protocol

240 }

241

242 public void setConversationld(String cid) {

243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

275
276
277
278
279

250

APPENDIX B. COMMON AGENT INTERFACE

conversation_id = cid;

public String getConversationld() {
return conversation_id;

public void setReplyWth(String rw) ({
reply with = rw

public String getRepl yWth() {
return reply_with;

public void setlnReplyTo(String irt) {
in_reply to =irt;

public String getlnReplyTo() {
return in_reply_to;

public void setReplyBy(String rb) {
reply_by = rb;

public String getReplyBy() {
return reply_by;

public void addUser Def i nedParaneter(String nanme, String val ue)

{

ud_paranet ers. put (nane, val ue);

public String getUserDefinedParaneter(String nane) {
return ud_paraneters. get(nane);

B.1. JAVA CAI 251

280 }

281

282 public String renpveUser Defi nedParaneter(String name) {
283 return ud_paraneters.renove(nane);

284 }

285

286 public void set ACLEncodi ng(String e) {

287 acl __encodi ng = e;

288 }

289

290 public String get ACLEncodi ng() {

291 return acl _encodi ng;

292 }

293

294 public ACL createReply() {

295

296 ACL acl = new ACL();

297

298 acl . acl _encodi ng = this.acl_encoding;

299 acl . binary_content = this.binary_content;
300 acl.string_content = this.string_content;
301 acl .conversation_id = this.conversation_id;
302 acl . encodi ng = this. encodi ng;

303 acl.in_reply to = this.reply with;

304 acl .l anguage = this. | anguage;

305 acl .ontol ogy = this.ontol ogy;

306 acl .recei vers. add(this. sender);

307

308 return acl;

309 }

310

311 /1 APl ATTRI BUTES

312 public String performative;

313 public Al D sender;

314 public Vector<Al D> receivers;

315 public AlID replyto;

316 public byte[] binary_content;

317 public String string_content;

318
319
320
321
322
323
324
325
326
327
328
329
330

© 00 N o 00~ WDN P

R i S N T i o el
© © N O Ul WNERE O

252

publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i
publ i

Stri
Stri
Stri
Stri
Stri
Stri
Stri
Stri

O O O O O o0 o o o o

ng
ng
ng
ng
ng
ng
ng
ng

APPENDIX B

| anguage;

encodi ng;
ont ol ogy;

pr ot ocol
conversation_id;
reply wth;
in_reply_to;
reply_by;

B.2 Python CAI

i mport

yam

cl ass Agent:

"FI PA agent base cl ass"
_init__(self, aid): abstract()

def

" AP

def

def

def

def

nmet hods """

run(sel f):

deliver(self,

abstract ()

neg) . abstract ()

set MCont ext (sel f, ac): abstract()

get MCont ext (sel f): abstract ()

. COMMON AGENT INTERFACE

Hasht abl e<String, Stri ng> ud_paraneters
String acl _encodi ng;

B.2. PYTHON CAI 253

21 def setAgent State(self, state): abstract()

22

23 def get Agent State(self): abstract()

24

25 def getAlD(self): abstract()

26

27 """ Non- APl nethods """

28 def _ abstract():

29 i mport inspect

30 caller = inspect.getouterfranmes(inspect.currentfranme())[1]][3]

31 rai se NotlnplementedError(caller + ' nust be inplenmented in
subcl ass’)

32

33

34 class M ddl ewar eCont ext :

35

36 """def bl ocki ngReceive(self,tinmeout,tenplate): abstract()

37

38 def receive(tenplate): abstract()

39

40 def doSuspend(): abstract ()

41

42 def doWait(): abstract()"""

43

44 def send(nessage): abstract ()

45

46 def get AMS(): abstract()

47

48

49 """ Non- APl nethods """

50 def __abstract():

51 i mport inspect

52 caller = inspect.getouterframes(inspect.currentframe())[1]][3]

53 rai se NotlnplenmentedError(caller + ' nust be inplenented in
subcl ass’)

54

55

56 class Al D(yanl . YAML.Cbject):

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

254

yam tag = U !'AD

def __init_ (self, agent_nane):
sel f. nane = agent _nane
sel f. addresses = []
self.resolvers = []

def get Name(sel f):
return sel f.name

def addAddress(self, address):
sel f. addr esses. append(addr ess)

def get All Addresses(sel f):
return sel f.addresses

def renoveAddress(sel f, address):

return (sel f.addresses. pop(address)==addr ess)

def cl ear Addresses(self):
sel f. addresses = []

def addResol ver(self, resolver):
sel f.resol vers. add(resol ver);

def get Al l Resol vers(sel f):
sel f.resol vers

def removeResol ver(self, resolver):

return (self.resol vers.renove(resol ver)==resol ver)

def cl earResol vers():
sel f.resolvers = []

class ACL(yam . YAMLObj ect) :

APPENDIX B. COMMON AGENT INTERFACE

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

B.2. PYTHON CAI

""" Fl PA PERFORMATI VES """
ACCEPT_PROPOSAL = "accept - proposal ";

AGREE = "agree"
CANCEL = "cancel ";

CALL_FOR PROPCSAL = "cfp";

CONFI RM = "confirnt

DI SCONFI RM = "di sconfi rnf

FAI LURE = "failure";

| NFORM = "infornt;
INFORM IF = "informif";
| NFORM REF = "informref";

NOT_UNDERSTOOD = "not - under st ood";
PROPAGATE = " propagat e";

PROPCSE = "propose"”;
PROXY = "proxy"

QUERY_IF = "query-if";
QUERY_REF = "query-ref";

REFUSE = "refuse";

REJECT PROPCSAL = "rej ect-proposal "

REQUEST = "request";

REQUEST_WHEN = "request - when"
REQUEST _WHENEVER = "request - whenever"
SUBSCRI BE = "subscri be"

yam _tag = u' ! ACL’
def __init__(self):

""" APl ATTRI BUTES """
self.receivers =[]

sel f.ud_paranmeters = {}
self.performative =

sel f.sender = []

self.replyto =

sel f. bi nary_cont ent
sel f.string _content

sel f. |l anguage =
sel f.encoding =
sel f.ontol ogy =

255

256 APPENDIX B. COMMON AGENT INTERFACE

133 sel f.protocol = ""

134 sel f.conversation_id = ""

135 self.reply with =""

136 self.in_reply to =""

137 self.reply by = ""

138 sel f.acl _encoding = ""

139

140

141 "t APl METHODS """

142 def setPerformative(self, perf):
143 sel f.performative = perf

144

145 def getPerformative(self):

146 return self.performtive

147

148 def setSender(self, aid):

149 sel f.sender = aid

150

151 def getSender(self):

152 sel f. sender

153

154 def addReceiver(self, receiver):
155 sel f.receivers. append(receiver)
156

157 def get All Recei vers(self):

158 return self.receivers

159

160 def renoveReceiver(self, receiver):
161 return receivers. pop(r);

162

163 def cl ear Recei vers(self):

164 sel f.receivers = []

165

166 def setReplyTo(self, aid):

167 self.replyto = aid;

168

169 def getReplyTo(self):
170 return self.replyto;

B.2. PYTHON CAI 257

171

172 def setStringContent(self, content):
173 sel f.string _content = content
174 sel f.binary_content = None
175

176 def getStringContent(self):

177 return self.string_content
178

179 def setBinaryContent(self, content):
180 sel f.binary_content = content
181 sel f.string content = None
182

183 def getBi naryContent (sel f):

184 return sel f.binary_content
185

186 def setlLanguage(sel f, |anguage):
187 sel f. |l anguage = | anguage

188

189 def getLanguage(self):

190 return sel f.language

191

192 def setEncodi ng(sel f, encoding):
193 sel f. encodi ng = encodi ng

194

195 def get Encodi ng(sel f):

196 return sel f.encoding

197

198 def set Ontol ogy(self, ontology):
199 sel f.ontol ogy = ontol ogy

200

201 def get Ontol ogy(self):

202 return sel f.ontol ogy

203

204 def setProtocol (self, protocol):
205 sel f. protocol = protoco

206

207 def getProtocol (self):
208 return self.protoco

258 APPENDIX B. COMMON AGENT INTERFACE

209

210 def set Conversationld(self, cid):

211 sel f.conversation_id = cid

212

213 def get Conversationld(self):

214 return self.conversation_id;

215

216 def setReplyWth(self, reply_wth):

217 self.reply with = reply with

218

219 def getRepl yWth():

220 return self.reply_with

221

222 def setlnReplyTo(self, in_reply to):
223 self.in reply to =irt

224

225 def getlnReplyTo(self):

226 return self.in reply to

227

228 def setReplyBy(self, reply_by):

229 self.reply_by = reply_by

230

231 def getRepl yBy(self):

232 return self.reply_by

233

234 def addUser Defi nedPar aneter (sel f, nane, val ue):
235 sel f.ud_paraneters. put[nane] = val ue
236

237 def get User Defi nedParaneter(sel f, nane):
238 return sel f.ud_paranet er s[nane]

239

240 def renoveUser Defi nedParaneter(self, name):
241 return self.ud_paraneters. pop(nane)
242

243 def set ACLEncodi ng(sel f, encoding):

244 sel f. acl _encodi ng = encodi ng;

245

246 def get ACLEncodi ng(self):

247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

B.2. PYTHON CAI

return sel f.acl _encoding

def createReply():

acl

acl
acl
acl
acl
acl

acl .

acl
acl
acl

. bi nary_cont ent

= ACL()

.acl _encodi ng = sel f.acl _encodi ng;

sel f. bi nary_content;

.string _content = self.string content;
.conversation_id = self.conversation_id;
.encodi ng = sel f.encodi ng;

in_reply_to = self.reply_with;

.l anguage = sel f. | anguage;
.ontol ogy = sel f.ontol ogy;
.receivers. add(sel f.sender);

return acl;

259

Jordi Cucurull Juan
Bellaterra, September 2008

260

