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Abstract 
 
We developed a computational framework implemented as an R package for generation, 
visualization and functional and differential analysis of epigenome maps. Methods are 
provided for integrating and comparing data from different conditions or biological 
backgrounds, accounting and adjusting for systematic biases in order to provide an 
efficient and statistically robust base for differential analysis. We also provide methods 
for general data assessment and quality control, such as functions to study chromatin 
domain conservation between epigenomic backgrounds, to detect gross technical 
outliers and to help in the selection of candidate marks for de-novo epigenome mapping. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Resum 
 
Hem desenvolupat una metodologia computational implementada en forma de paquet  
pel llenguatge R per la generació i visualització de mapes epigenòmics, així com per dur 
a terme el seu anàlisi funcional i diferencial. Proporcionem mètodes per la integració i 
comparació de dades provinents de diferents condicions, identificant i eliminant biaixos 
sistemàtics per obtenir una base amb robustesa estadística per l'anàlisi diferencial. 
També proporcionem funcions per dur a terme un control de qualitat de les dades, per 
estudiar la conservació i integritat dels dominis de cromatina, per detectar errors tècnics 
i per ajudar en la selecció de factors epigenètics candidats per la generació de mapes 
epigenòmics 'de-novo'. 
 
 
 
 
 
 



 
 
 



”The known is finite, the unknown infinite; intellectually we stand on an islet in the midst

of an illimitable ocean of inexplicability.”

T. H. Huxley. 1886
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Chapter 1

Introduction

1.1 Foreword

The human species does not possess the most complex visual system in the animal world. However,

seeing has played a crucial role not only in our ability to survive, but in the development of a

language, in the acquisition and the transmission of knowledge, in the generation of a culture, and

therefore in discovering and understanding. From the infinitely small universe seen by Leuwenhoek

to the Jovian moons of Galilei, our minds have walked the path of Science stepping on the bricks

of observation. So, it is not surprising that in the era of data, with millions of invisible pieces that

only exist as a binary state in an electronic nature, the ability to visualize what we know is more

important than ever.
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1.2 Prologue

The genome of eukaryotic organisms, that is, organisms whose cells contain a cell nucleus and other

organelles surrounded by a membrane, is composed both of genetic information, encoded in the

DNA sequence, and also epigenetic instructions that, contained in DNA-associated factors (such

as regulatory RNAs, histone and non-histone proteins), regulate its expression. This complex of

DNA, RNA and associated proteins is known as chromatin, from the Greek word ’khroma’ (color),

and is essential for DNA packaging within the cell nucleus, DNA damage prevention and DNA

replication. Walther Flemming gave chromatin its name due to the ability of these structures to

absorb color dyes and therefore become visible to the human eye under the microscope [Hardy

et al., 2009]. Full understanding of genome function and regulation requires description of this

epigenetic information. In other words it is necessary to describe the epigenome.

In the last decade, after sequencing the genomes of several model organisms, we have assisted to an

unprecedented increase in availability of data collected on different aspects of genome functioning,

ranging from gene expression and non-coding RNAs to genomic distribution of epigenetic factors.

At the same time, there is also an increasingly large number of online databases and reposito-

ries related to gene functions and protein-protein interactions, and to their alterations in disease

[Karnik and Meissner, 2013].

The exponential development of bioinformatics and biostatistics as necessary disciplines to pro-

cess and understand the huge amounts of generated information have contributed with tools to

analyze, visualize and integrate genomic data at a functional level. However, despite the fact that

large efforts are being devoted to the description of the epigenome [Celniker et al., 2009; Bernstein

et al., 2010; Dunham et al., 2012; Ernst and Kellis, 2010], the development of tools to integrate and

visualize experimental results and databases on epigenetic factors and genetic elements remains

a challenge Marx [2015]. In this context, we present a computational approach based on dimen-

sionality reduction techniques, chroGPS (or chromatin Global Positioning System) to integrate,

visualize, analyze and compare the associations between epigenetic factors and their relation to

functional genetic elements in low dimensional epigenetic maps.

1.3 Epigenetics and chromatin

1.3.1 Beads on a string

In eukaryotic cells, DNA is found in the nucleus together with a complex of proteins that, by

means of contributing to the generation of higher order structures (fig. 1.1), tightly condense it in

the form of chromosomes, structures which are visible under the light microscope [Alberts et al.,

2002]. This complex of DNA and proteins is known as chromatin. Chromatin can be classified

in two main types. The first one, called euchromatin, presents a smaller degree of packaging and

therefore it is reachable for transcriptional machinery. Heterochromatin on the other hand shows a

much higher degree of condensation, and as such, it does not get usually transcribed into mRNA.

Nucleosomes are protein complexes composed by eight proteins known as core canonical histones

17



Figure 1.1: The major structures in DNA compaction: DNA, the nucleosome, the 10 nm ”beads-
on-a-string” fibre, the 30 nm chromatin fibre and the metaphase chromosome. Source: Richard
Wheeler at en.wikipedia - Transferred from en.wikipedia to Commons by sevela.p., CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=4017531

(specifically, 2 copies of H2A, H2B, H3 and H4 histones) that conform the basic DNA packaging

unit in eukaryotic organisms (fig. 1.2). The nucleosome provides a structure for the DNA to wrap

around and is essential in the conformation of higher order structures. Approximately, 146bp of

DNA turn around the nucleosome in a left-handed turn. Together with around 20 and 60 base

pairs of additional DNA on each side of the nucleosome, this conforms the 10nm fiber, or as is often

described, the ’beads on a string’ [Alberts et al., 2002; Weber and Henikoff, 2014]. Additionally, a

special kind of histone, the linker histone H1 contacts the extremes of the DNA strand wrapped

in the nucleosome, keeping it in place and conforming the chromatosome, which plays a crucial

role in the conformation of higher order structures [Bayona-Feliu et al., 2017]. Nucleosomes are

then wrapped to form the solenoid, a 30nm spiral structure which is supported by other histone

proteins that contribute towards further DNA packaging within the cell nucleus.

Figure 1.2: Schematic representation of the nucleosome. In blue, the eight core histones. Ap-
proximately 146bp of DNA (red) is wrapped around the nucleosome and fixed in place by linker
histone H1 to help in the conformation of higher order structures. Source: Darekk2 - Own work,
CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=21977693

Epigenetics of gene expression

Chromatin accesibility is essential in regulating transcription, and thus, gene expression [Li and

Reinberg, 2011]. Histone proteins play a key role in this by carrying chemical modifications that

are associated with activation or repression of transcription. The mechanistic model to explain

how these dynamic modifications relate to effective transcription regulation range from direct al-

teration of chromatin packaging to recruitment of other chromatin binding protein complexes that
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indirectly initiate transcription (fig. 1.3). Chromatin modifications are often known with the gen-

eral name of epigenetic marks [Salozhin et al., 2005]. As opposed to changes in DNA, changes

in epigenetic marks are reversible, but it is still an open question how some chromatin epigenetic

marks remain persistent after cell division [Berger, 2007]. Constitutive heterochromatin is mainly

located at pericentromeric regions, that is, regions close to the nuclear chromosomal centromere,

and is very poor in genes, as is basically composed of satellites (large arrays of tandemly repeating

DNA) and other repeat elements. Pericentromeres are crucial structures during chromosome seg-

gregation in mitosis yet show a very low degree of conservation between organisms, which suggest

their functions could be regulated in an epigenetic manner [Saksouk et al., 2015].

Figure 1.3: In the off state, the DNA-bound repressor (REP) at the upstream repressor site (URS)
recruits negative modifiers, such as histone deacetylase (HDAC), which remove acetyl (ac) groups
from histones. b, In the on state, DNA-bound activator (ACT) at the upstream activator site
(UAS) recruits positive modifiers, such as histone acetylases (HAT), at the promoter, while DNA-
bound RNA polymerase (POL) recruits histone methylases at the ORF. Early during elongation,
the C-terminal domain (CTD) polymerase repeat is phosphorylated at serine 5 (S5ph), leading to
recruitment of the COMPASS complex (Set1, part of the COMPASS complex, methylates H3K4)
and DOT1 (which methylates H3K79). Later in elongation the CTD repeat is phosphorylated at
serine 2 (S2ph), leading to recruitment of Set2 (which methylates H3K36). Source: [Berger, 2007]

The two main chemical modifications to histone proteins are Acetylation and Methylation, which

are associated with activation and repression of transcriptional activity respectively. In Acetylation,

special enzymes called histone Acetyl Transferases and Deacetylases effectively add or remove an

acetyl group to N-terminal lysine residues out of the histone core of nucleosomes. Reciprocally,

in histone Methylation, Methyl Transferases and Demethylases perform the analog task but this

time in Histone cytosine residues. The possibility to add multiple acetyl or methyl groups, and

to do that at different terminal residues gives as a result a large number of potential histone

modifications, many of which have been deeply studied [Bannister and Kouzarides, 2011]. It is

common to name histone modifications according to the type, number and position of their chemical
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modification, that is, H3k27me3 stands for a tri-methyl group in lysine 27 of histone H3. Both

histone methylation and acetylation are key mechanisms in gene expression regulation, and their

alteration has been associated with cancer and other diseases [Maze et al., 2014].

1.3.2 Drosophila epigenetics

Drosophila melanogaster is without doubt a model organism for genetic and epigenetic research.

In the third decade of the last century, the relationship between genotype and phenotype was

made through observation of changes in eye color in the fruit fly. By introducing mutations in the

white gene researchers observed change in eye color from red (the normal fly eye color) to white.

However, some cases of variegation, that is, partial coloration, were also observed. This was later

found to be related to chromosomal inversions that somehow repressed expression of the white

gene, due to the proximity to specific regions of the chromosome where certain proteins that acted

as gene silencers were detected [D. et al., 2015]. These proteins had an effect on gene expression

and silencing, and after being first discovered in Drosophila were later extensively studied in a

wide range of species, from humans to yeast. The two main groups of proteins were classified

in the Polycomb group (or PcG), and Trithorax (TrxG), that acted as general transcriptional

gene repressors and activators respectively, through several mechanisms of histone modification

and chromatin conformation remodeling [Schuettengruber et al., 2007]. With the advent of high-

throughput Next Generation Sequencing techniques, the amount of epigenetic information available

in Drosophila has grown exponentially [Kharchenko et al., 2011], and therefore it provides an ideal

scenario for continued research in this field.

Transcription factors

Transcription factors (TF) are proteins that recognize and bind to specific DNA sequences and

are involved in transcription of DNA to messenger RNA. Transcription factors recognize specific

DNA-binding motifs in their target double or single-stranded DNA sequences thanks to DNA-

binding domain (DBD), even though some of them present general binding affinity. These specific

sequences of DNA are called enhancers and promoters. Whereas some TFs bind to DNA promot-

ers regions near Transcriptional Start Sites (TSS), others bind to enhancer regulatory sequences

that can contribute to regulation of transcription of their associated gene [Jones, 2012; Spitz and

Furlong, 2012]. Enhancers can be located very far upstream from the gene whose transcription

they affect. Among the different ways to control gene expression, regulation of transcription is

the most common (fig. 1.4). Transcription factors directly control expression of genes along de-

velopment and account for the differences in expression level in different cell types. The actual

number of existing transcription factors is unknown, but in Drosophila, around 400 candidates from

more than the evaluated 1000 were considered as site-specific TF according to the FlyTF database

(http://www.flytf.org), whereas more than a thousand are usually considered for mammals

[Vaquerizas et al., 2009].

Insulators

Conformation of chromatin in eukaryotic organisms leads to existence of adjacent genomic regions

with completely different functions, with genes that need to be expressed in a certain tissue or

20
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Figure 1.4: An enhancer is a DNA sequence that promotes transcription. Each enhancer is made
up of short DNA sequences called distal control elements. Activators bound to the distal control
elements interact with mediator proteins and transcription factors. Two different genes may have
the same promoter but different distal control elements, enabling differential gene expression.
Source: https://archive.cnx.org/contents/53013107-747b-41b0-ad43-f4e97bd69ef1@2/

gene-expression-eukaryotic-transcriptional-regulation-gpc

developmental stage being close to genes that need to be silenced. It is therefore necessary to

prevent inadequate interaction between these adjacent chromatin domains that could result in loss

of expression regulation. Insulators are special DNA sequences recognized by insulator-binding

proteins. Through this mechanism, insulator-binding proteins prevent inadequate transcriptional

regulation between proximal enhancers and promoters, and also due to the spreading effect of

nearby silencing heterochromatin (fig. 1.5) [Alberts et al., 2002; Gaszner and Felsenfeld, 2006;

Van Bortle and Corces, 2013].

Figure 1.5: Insulators both prevent the spread of heterochromatin (right-hand side of diagram)
and directionally block the action of enhancers (left-hand side). Thus gene B is properly regulated
and gene B’s enhancer is prevented from influencing the transcription of gene A. Source: Molecular
biology of the Cell. 4th edition [Alberts et al., 2002].

Insulators are crucial for the maintenance of chromatin domains, acting as effective boundaries,

and therefore in regulation of gene expression. They also have been found to be associated with

the formation of chromatin loops through several molecular mechanisms [Gaszner and Felsenfeld,

2006]. Until recently, five insulators were described in Drosophila, Su(Hw), dCTCF (analog to

mammal CTCF), Zw5, BEAF32 and in some cases GAF. However, this is a field of continued

research as of today [Cuartero et al., 2014], as novel insulator/boundary related proteins are iden-

tified.
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1.3.3 Chromatin domains

In recent years, the model of chromosomal organization and distribution within the cell nucleus has

been widely studied [Dixon et al., 2016]. However, we are still far from understanding the internal

structure and organization within chromosomes themselves. In this regard, the most important

contribution to this field has been the discovery of topologically associated domains (TADs) using

chromosome conformation capture technology (such as 3C, 4C, 5C and Hi-C) [Belton et al., 2012;

Dekker et al., 2013], which allow studying the spatial organization of genomes at unprecedented

resolution. TADs are self-interacting genomic regions, that is, regions that present a high level

of physical interaction between themselves when compared with their degree of interaction with

regions outside the TAD (fig. 1.6).

Figure 1.6: Structural organization of chromatin. (A) Chromosomes within an eukaryotic nucleus
are found to occupy specific nuclear spaces, termed chromosomal territories. (B) Each chromosome
is subdivided into topological associated domains (TAD) as found in Hi-C studies. TADs with
repressed transcriptional activity tend to be associated with the nuclear lamina (dashed inner
nuclear membrane and its associated structures), while active TADs tend to reside more in the
nuclear interior. Each TAD is flanked by regions having low interaction frequencies, as determined
by Hi-C, that are called TAD boundaries (purple hexagon). (C) An example of an active TAD
with several interactions between distal regulatory elements and genes within it. Source: [Matharu
and Ahituv, 2015]

We are just starting to understand possible functions of TADs, but nonetheless they have been

found to be related to three dimensional organization of chromosomes and, as such, to alteration of

gene regulation. TADs can range from hundreds of kb to actually several Mb [Dixon et al., 2016],

and have been found to be stable even after many cell divisions. They also present a high degree
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of conservation in related species and are invariant across cell types, and they are considered to

play a crucial role in chromosome folding and organization [Cremer and Cremer, 2010]. TADs

have been found in Drosophila, human and mouse genomes, and although they have not been yet

completely described in yeast, some very recent studies already report on some degree of genome

compartmentalization [Tsochatzidou et al., 2017].

1.4 Chromatin analysis

1.4.1 Chromatin Immunoprecipitation

Chromatin Immunoprecipitation (ChIP) and related techniques are used to study the interaction

between proteins and DNA. The objective of these techniques is to answer the question of which

proteins are associated with specific genomic regions in a certain biological background, and to

detect these protein-DNA binding sites as well as those of histone modifications and nucleosome

positioning across the whole genome. In this regard, ChIP-seq, that is, chromatin immunopre-

cipitation experiments followed by high-throughput Next Generation Sequencing, has contributed

largely not only to address a wide range of questions with a reduced cost in time and experimen-

tal resources but also to a vast improvement in resolution. ChIP-seq is often referred as the main

technique addressing the question of high-troughput epigenetics, but there are actually many other

techniques to approach the problem (See list below).

• ChIP-seq (Chromatin immunoprecipitation sequencing), aimed against identification of bind-

ing sites for DNA-binding proteins and histone modifications, can be used to identify chro-

matin states throughout the genome. Different modifications have been linked to various

states of chromatin.

• DamID (DNA adenine methyltransferase identification) identifies binding sites by expressing

the proposed DNA-binding protein as a fusion protein with DNA methyltransferase. Binding

of the protein of interest to DNA localizes the methyltransferase in the region of the binding

site.

• DNase-seq (DNase I hypersensitive sites Sequencing) uses the sensitivity of accessible regions

in the genome to the DNase I enzyme to map open or accessible regions in the genome.

• FAIRE-seq (Formaldehyde-Assisted Isolation of Regulatory Elements sequencing) uses the

chemical properties of protein-bound DNA in a two-phase separation method to extract

nucleosome depleted regions from the genome.

• ATAC-seq (Assay for Transposable Accessible Chromatin sequencing) uses the Tn5 trans-

posase to integrate (synthetic) transposons into accessible regions of the genome conse-

quentially highlighting the localisation of nucleosomes and transcription factors across the

genome.

• DNA footprinting is a method aimed at identifying protein-bound DNA. It uses labeling and

fragmentation coupled to gel electrophoresis to identify areas of the genome that have been

bound by proteins.
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• MNase-seq (Micrococcal Nuclease sequencing) uses the micrococcal nuclease enzyme to iden-

tify nucleosome positioning throughout the genome. Chromosome conformation capture de-

termines the spatial organization of chromatin in the nucleus, by inferring genomic locations

that physically interact.

• MACC profiling (Micrococcal nuclease ACCessibility profiling) uses titration series of chro-

matin digests with micrococcal nuclease to identify chromatin accessibility as well as to map

nucleosomes and non-histone DNA-binding proteins in both open and closed regions of the

genome.

Figure 1.7: A typical ChIP-seq experiment pipeline. DNA and their associated proteins are first
crosslinked. This complex composed of DNA and protein as well as the rest of the cell components
is subject to sonication or nuclease digestion. In order to separate protein-bound DNA fragments
from the rest of material, an appropiate protein-specific antibody is used. The associated DNA
fragments are purified and subject to high-throughput sequencing for further processing and bioin-
formatics analysis. Source: Adapted from Stuart M. Brown. Center for Health Informatics and
Bioinformatics. NYU School of Medicine. http://slideplayer.com/slide/3385783/

In ChIP-seq (fig. 1.7), DNA and their associated proteins are first crosslinked (by treating cells with

chemical exogenous or endogenous agents which as an effect fix DNA-protein interactions). Then,

this complex composed of DNA and protein as well as the rest of the cell components is subject to

sonication or nuclease digestion. The recommended fragment size for ChIP-seq ranges between 150

and 300bp [Kidder et al., 2011]. In order to separate protein-bound DNA fragments from the rest of

material, an appropiate protein-specific antibody is used. This is often referred to as a potentially

weak point in this type of immunoprecipitation technique [Landt et al., 2012], as sometimes it is

difficult or nearly impossible to identify an antibody which binds properly to the protein of interest,

and in many occasions non-specific binding results in the generation of experimental noise that

masks proper DNA-protein interactions of interest. The associated DNA fragments are purified

and subject to high-throughput sequencing for further processing and bioinformatics analysis.
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1.4.2 Computational epigenetics

Epigenetics poses two important challenges from a computational perspective [Robinson and Peliz-

zola, 2015]. First, chromatin immunoprecipitation techniques based on Next Generation Sequenc-

ing deliver massive amounts of data in genome-wide distribution of several proteins and histone

modifications. Even though bulk processing of these data has become easier both by the increase

in raw computing power and memory, the spreading of parallel computing and also due to opti-

mized algorithms and embedded sequencer processing that eliminates the most tedious parts of

file processing such as image processing and basecalling, a bioinformatician still gets face to face

with biological samples delivering individual files of several Gigabytes each that have to be stored,

processed, checked for quality control, analyzed and of course interpreted. It is actually at the

level of interpretation where the second challenge of these data becomes clearly visible, that is,

the multiple faces of epigenetics and its combinatorial nature to control gene expression and other

biological processes in a coordinated manner. These challenges have to be addressed with the

combination of computer science and statistics, but also with deep biological knowledge of the

intrinsic complexity of the mechanisms involved [Bock and Lengauer, 2008].

Figure 1.8: A typical ChIP-seq pipeline processing and analysis scenario comprising some of the
most common steps and tools for quality control, sequencing adapter detection and removal, short-
read alignment, putative binding site detection and further downstream analysis. Source: https:
//bioinformatics.cineca.it/cast/workflow.php

A typical ChIP-seq pipeline processing and analysis scenario [Nakato and Shirahige, 2017] (fig. 1.8)

may start by checking the FastQ files (which contain raw sequence reads and base calling qual-

ities from the ChIP-seq experiment itself as returned from the NGS sequencing machine), using

quality control tools such as FastQC [Brown et al., 2017] to identify potential technical problems

or sample contamination, and in some cases to proceed to filter the reads using read trimming or

adapter cleaning softwares [Patel and Jain, 2012; Martin, 2011]. High quality data is then subject
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to alignment against the whole-genome DNA reference sequence of the corresponding organism or

to custom built reference sequence versions. This is done using some of the commonly used short

read aligner algorithms recommended for ChIP-seq data, namely Bowtie and Bowtie 2 [Langmead,

2010; Langmead and Salzberg, 2012], both based on the Burrows-Wheeler Algorithm [Canzar and

Salzberg, 2017], accounting for a certain rate of sequencing errors and the potential repeated and

repetitive nature of the obtained sequences and adjusting algorithm parameters as necessary. Un-

expectedly low alignment rates to this reference genome can already point towards problems in

sample sequencing, contamination or other issues such as abundance of repetitive sequences. Af-

ter reads are aligned, tools such as sambamba or htSeqTools [Tarasov et al., 2015; Planet et al.,

2012] are usually used to identify and remove putative PCR over-amplification artifacts. This is

a somewhat common issue in this technique, as by its own nature immunoprecipitation followed

by PCR amplification may lead to the same exact sequence being amplified many times, and it

is therefore necessary to estimate the expected proportion of duplicated reads arising from true

sequences under a certain False Discovery Rate (FDR) threshold [Planet et al., 2012], and exclude

the rest from downstream analysis . At this step, it is normal to generate binary coverage whole-

genome tracks of ChIP signal for using in genome browsers such as the Integrative Genomics Viewer

[Thorvaldsdottir et al., 2013] (fig. 1.9). This is actually the first result of a ChIP-seq experiment

that allows general visual inspection of binding signal across the genome of the investigated organ-

ism, and it is usually very useful for the biological researcher as a first general assessment of results.

Figure 1.9: Left: ChIP-seq analysis of Pol2, EGFR and ERK kinases recruitment at selected loci
in quiescent and EGF stimulated cells. BigWig input and ChIP-seq files for a given factor and
condition were imported to IGV and data range was set for 100 to underscore differences between
factors level at given locus. The relative enrichment of each factor at selected sites is inferred from
the density of mapped fragments. Pol2 ENCODE ChIP-seq data for HeLa-S3 proliferating cells (ID:
wgEncodeBroadHistoneHelas3Pol2bStdSig) were included to show similarities in transcriptional
complex binding between datasets. Source: [Mikula et al., 2016]. Right: normalized binding
profile around TSS of target genes for the WOC protein in Drosophila melanogaster S2 cells,
showing both binding intensity and location [Kessler et al., 2015].

Aligned reads are then used as a source material to perform additional quality control analysis to

assess immunoprecipition efficiency and general assessment of the experiment using PCA-like plots
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[Planet et al., 2012; Diaz et al., 2012], and specially to identify putative protein binding sites or

histone modifications using peak-calling algorithms such as MACS or MACS2, Sicer or htSeqTools

[Feng et al., 2011; Planet et al., 2012; Xu et al., 2014]. Most current methods rely on modelling

ChIP-seq reads based on the negative binomial distribution and use this information to detect en-

riched regions and candidate ’peak’ sites in the immunoprecipitated samples, by comparing them

with the signal obtained from control Input or IgG samples arising from performing ChIP with a

non-specific antibody, usually belonging to a different species than the studied organism. These

algorithms return a set of putative binding sites or histone modifications at a whole genome-level,

together with a statistical assessment to control false-positive peak calls, and can already be used

for result evaluation and to assess general and particular hypothesis at specific genome locations

by the biological researcher.

Additionally, after read processing and binding it is usual to annotate the collection of provided

binding sites to obtain the lists of genes over which they are located [Heinz et al., 2010; Zhu et al.,

2010], to investigate their general location across the genome, their relative distribution and binding

intensity relating to closest genomic features (fig. 1.9), and to perform functional analysis by means

of Gene Ontology enrichment analysis [Bailey et al., 2013]. Individual binding site data can also be

integrated with other in-house experimental information to perform further interpretative analysis,

or compared with different conditions to investigate changes in overall binding site co-localization

and differential binding events [Gel et al., 2016; Ross-Innes et al., 2012]. The identified collection

of binding sites and their association with certain regions of the genome are also helpful as an

additional quality control step to investigate potential issues due to sample contamination or to

detect lack of immunoprecipitation efficiency [Carroll et al., 2014]. Finally, as previously mentioned,

integration and comparison of the identified sets of binding sites for different epigenetic factors with

the vast amount of available genetic and epigenetic information in the biological background of

interest is crucial for further interpretation of the picture arising from this biological canvas and

to obtain biologically meaningful conclusions.

1.4.3 The five colors of chromatin

High-throughput Next Generation Sequencing techniques allow obtaining genome-wide binding

profiles for a large collection of epigenetic factors and associated proteins, and subsequently, opens

the door to the application of computational methods to approach the question of chromatin anal-

ysis and classification. Drosophila is an ideal model organism to explore these hypothesis [Celniker

et al., 2009]. After generation of Dam-ID whole-genome binding profile data for 53 chromatin

associated proteins in Drosophila melanogaster Kc167 cells, [Filion et al., 2010] used Principal

Component Analysis and Hidden-Markov models to analyze and classify the differential binding

patterns obtained over fixed size bin genome segmentations. As a result, they presented a classi-

fication of chromatin on five different groups based on the combination of their unique identified

binding sites. Thus, this approach introduced the now widely accepted concepts of BLUE, GREEN,

BLACK, RED, and YELLOW chromatin (fig. 1.10). This classification delivered chromatin do-

mains that ranged largely in their extension, with some extending up to hundreds of kilobases and

surprisingly this low number of chromatin types reflected the known regulatory nature of their

contained proteins.
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Figure 1.10: Overview of protein binding profiles and derivation of the 5-type chromatin segmenta-
tion. (A) Sample plot of all 53 DamID profiles (log2 enrichment over Dam-only control). Positive
values are plotted in black, negative values in grey for contrast. Below the profiles, genes on both
strands are depicted as lines with blocks indicating exons. (B) Two-dimensional projections of
the data onto the first three principal components. Colored dots indicate the chromatin type of
probed loci as inferred by a 5-state HMM. (C) Values of the first three principal components along
the region shown in (A), with domains of the different chromatin types after segmentation by the
5-state HMM highlighted by the same colors as in (B). [Filion et al., 2010]

Authors found that BLUE and GREEN chromatin correspond to known repressed chromatin types.

In detail, GREEN chromatin related to classic heterochromatin, characterized by the presence of

SU(VAR)3-9, HP1, and HP1-interacting proteins, a type of chromatin typical of pericentromeric

regions of chromosome 4 [Ebert et al., 2006; Greil et al., 2007]. BLUE chromatin is related to

Polycomb, and as such is characterized by binding of Polycomb associated proteins PC, E(Z),

PCL, and SCE. Interestingly, these findings were later verified by performing genome-wide ChIP

analysis of histone modifications known to be associated with these heterochromatic types, but

not used for classification using Hidden Markov Models.

In contrast, RED and YELLOW chromatin mainly represent active euchromatin. In most cases,

genes belonging to these two chromatin domains presented important levels of mRNA and RNA

polymerase, and were found to be enriched in H3K4me2, and H3K79me3, whereas presence of

H3K9me2 and H3K27me3 was found to be low. Apart from these common features between

both chromatin types, authors also found interesting differences. RED chromatin presented an
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abundance in several proteins that were almost totally absent in the other other chromatin types

(namely SU(VAR)2-10 and MED31), and that were mostly related to nucleosome remodeling and

regulation of chromosome structure, and present in various histone-modifying complexes [Martinez-

Balbas et al., 1998; Tie et al., 2003]. Reciprocally, there is only one protein abundant in YELLOW

chromatin but not in present in RED: MRG15, a chromodomain-containing protein reported to

bind H3K36me3 [Zhang et al., 2006].

Finally, probably the most striking finding was BLACK chromatin. A chromatin domain that cov-

ers almost half of the queried genome and therefore is by far the most abundant type of chromatin

in the tested biological background as well as the one presenting larger regions. Regions of BLACK

chromatin have an average length of 17kb and many of the identified BLACK regions were larger

than 100kb, and were characterized by presence, among others, of SU(HW) and also of Histone

H1, often described as ’the big silencer of the genome’ [Bayona-Feliu et al., 2017]. Even though

BLACK chromatin is relatively empty of genes, it still contains more than 4000. Authors found

that these genes presented very low or no transcriptional activity at all, and no presence of tran-

scription associated marks was found. Authors conclude that while BLACK chromatin is indeed a

silent type of chromatin covering large portions of the genome, some genes contained in this large

domain were expressed, although only in certain tissues, suggesting that BLACK chromatin could

present certain levels of dynamic regulation during development.

1.5 Analyzing high-dimensional data

1.5.1 Multidimensional Scaling (MDS)

Multidimensional scaling (MDS) [Kruskal, 1964a,b] is a statistical method originally from the field

of psychometrics that represents measures of similarity (or dissimilarity) between pairs of elements

as distances between points in a low-dimensional space, so that Euclidean distances between those

points approximate the observed dissimilarities as much as possible [Borg and Groenen, 2003].

This graphical representation provided by MDS allows the user to literally ’look’ at the data

and to explore their structure from a visual point of view (which often shows regularities that

remain hidden by the raw numbers), and to easily obtain a global judgment of the scale of their

resemblances and differences. The four purposes of MDS are: a) to represent (dis)similarity data

as distances in a low-dimensional space to make these data acessible to visual inspection and

exploration; b) to test if and how certain criteria by which different objects can be differentiated

are mirrored in corresponding empirical differences of these objects; c) to serve as a data analysis

approach to discover the dimensions behind a set of (dis)similarities; d) to provide a psychological

model to explain judgments of dissimilarity in terms of a rule that mimics a particular type of

distance [Borg and Groenen, 2003].

It is important to note that the computed dissimilarities may reflect very complex characteristics

of the observed set of elements in a high number of variables, and therefore, even though there

are measures to estimate the accuracy of the obtained representation related to the observed dis-

similarities, it is crucial to prioritize interpretability in a way that ’makes most sense’ [Borg and

Groenen, 2003]. Axes in MDS are arbitrary. This means that the obtained representation could

be rotated in any way, or actually we could mirror the axis up to down, and left to right, and the
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4 1. The Four Purposes of Multidimensional Scaling

TABLE 1.1. Correlations of crime rates over 50 U.S. states.

Crime No. 1 2 3 4 5 6 7

Murder 1 1.00 0.52 0.34 0.81 0.28 0.06 0.11

Rape 2 0.52 1.00 0.55 0.70 0.68 0.60 0.44

Robbery 3 0.34 0.55 1.00 0.56 0.62 0.44 0.62

Assault 4 0.81 0.70 0.56 1.00 0.52 0.32 0.33

Burglary 5 0.28 0.68 0.62 0.52 1.00 0.80 0.70

Larceny 6 0.06 0.60 0.44 0.32 0.80 1.00 0.55

Auto theft 7 0.11 0.44 0.62 0.33 0.70 0.55 1.00

murder

assault

rape
larceny

burglary

auto theft
robbery

FIGURE 1.1. A two-dimensional MDS representation of the correlations
in Table 1.1.

1.1 MDS as an Exploratory Technique

Exploratory data analysis is used for studying theoretically amorphous
data, that is, data that are not linked to an explicit theory that predicts
their magnitudes or patterns. The purpose of such explorations is to help
the researcher to see structure in the data. MDS, too, can be used for such
data explorations.

Consider an example. The U.S. Statistical Abstract 1970 issued by the
Bureau of the Census provides statistics on the rate of different crimes
in the 50 U.S. states (Wilkinson, 1990). One question that can be asked
about these data is to what extent can one predict a high crime rate of
murder, say, by knowing that the crime rate of burglary is high. A partial
answer to this question is provided by computing the correlations of the
crime rates over the 50 U.S. states (Table 1.1). But even in such a fairly
small correlation matrix, it is not easy to understand the structure of these
coefficients. This task is made much simpler by representing the correlations
in the form of a “picture” (Figure 1.1). The picture is a two-dimensional
MDS representation where each crime is shown as a point. The points are
arranged in such a way that their distances correspond to the correlations.
That is, two points are close together (such as murder and assault) if their
corresponding crime rates are highly correlated. Conversely, two points are
far apart if their crime rates are not correlated that highly (such as assault
and larceny). The correspondence of data and distances is tight in this

Figure 1.11: Table with crime rate correlations between the 50 U.S. States and 2-dimensional MDS
with graphical representation of those correlations. Closely space points indicate crime rates which
tend to be related to each other. Source: [Borg and Groenen, 2003]

distances between the represented elements would stay equal.

Classical Multidimensional Scaling [Torgerson, 1952] seeks to minimize a loss function called stress,

which is simply the sum of squared differences
∑

i>j(dij− d̃ij)
2, where dij is the input dissimilarity

between objects i and j and d̃ij is the corresponding Euclidean distance in the low-dimensional

representation. The stress is not a satisfactory measure of goodness-of-fit, as it depends on the

scale of the original distances. Instead, [Kruskal, 1964a,b] proposed the stress-1 function:

∑
i>j(dij − d̃ij)

2/
∑

i<j d
2
ij

which is normalized by the overall magnitude of the dissimilarities and is invariant to scale trans-

formations of dij . Because the denominator in this formula depends only on the input distances

dij , minimizing it is equivalent to minimizing stress. Sibson [Sibson, 1972] proposed using the R2

coefficient instead, i.e. the squared Pearson correlation between dij and d̃ij . R2 is invariant to

location and scale transformations and guaranteed to be in [0, 1].

isoMDS is a non-metric (or ordinal) MDS that chooses an initial k-dimensional (default k =

2) configuration (usually the one obtained from Classic MDS), to minimize the stress between

the Euclidean distances in the obtained representation and a monotonic transformation of input

dissimilarities that preserve the rank order. Starting from this initial configuration, an iterative

algorithm is used to converge on an optimal solution, which mean the algorithm comes at a O(n2)

cost, and therefore can become very slow for large datasets [Cox and Cox, 1994] and [Cox and Cox,

2000]. By default many non-metric MDS algorithm implementations are set up with a number

of iterations that dates back to that times when computing was slow and expensive and that
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can actually end the process before it has converged on a local minimum, so it is important to

check default settings and increase them when needed, as very small improvements in stress can

nonetheless have a significant impact in the position of some points [Borg et al., 2012]. Several

approaches have been made to address this computational problem using optimization and parallel

computation [Strickert et al., 2005; Pawliczek and Dzwinel, 2009], and have been also adressed using

Graphical Processing Units [Osipyan et al., 2015] with a great improvement in speed, however this

is still a problem in which computational resources can limit practical usefulness.

1.5.2 Procrustes

In Greek mythology, Procrustes (’the one who stretches’) was a rogue smith and host who offered

hospitality to passing travelers with the promise of a pleasant meal and a night’s rest on his special

iron bed (fig. 1.12). This bed was supposed to have the unique property to match exactly the

length of whoever used it. Essentially, after the meal was over and the guest was getting prepared

for the night, the reality of this magical bed was unveiled, as Procrustes himself would take care

to ensure this perfect match by stretching his shorter guests to fill the length of the bed, or by

properly chopping those bits that came out on taller ones. However, this methodology proved

unsuccessful when Theseus appeared by Procrustes house and actually turned the tables, with

fatal consequences for the bed’s owner.

Figure 1.12: Procrustes and Theseus. Source: http://www.mindwhirl.com/entrepreneurship/

the-lure-of-the-procrustean-solution/. Original drawing author unknown.

Procrustes analysis [Kendall, 1989] (fig. 1.13) combines two (or more) sets of points x = (x1, . . . ,xn)

and y = (y1, . . . ,ym) by estimating a location, scale and rotation transformation, so that the

meaningful properties of the transformed set are conserved [Borg and Groenen, 2003]. The shift

is estimated as the difference between the mean coordinates for x and y, whereas the scale and

rotation are determined from their covariance matrices. Procrustes is a general adjustment in

the sense that it does not require careful consideration of what causes the systematic differences

between sources, but it requires a minimal number of common points between (x1, . . . ,xn) and

(y1, . . . ,ym). Specifically, estimating the shift requires at least one common point, while estimating

the scale and rotation requires two, and in practice, it is recommended to have at least three or

more points covering a moderately wide range of the point distribution to match to obtain a reliable

solution. Further generalizations of this technique also allow linear distortion transformations, or

different dimensionalities in the configurations [Borg and Groenen, 2003]. Procrustes solutions are
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important in practice to eliminate irrelevant (and often misleading) differences between two given

MDS solutions, with practical applications in pattern recognition and image analysis problems

[Duta et al., 1999]. Procrustes is also a widely used technique in analysis of high-dimensional data,

with successful application in several biological scenarios [Wang et al., 2015].

Figure 1.13: Procrustes superimposition. The figure shows the three transformation steps of an
ordinary Procrustes fit for two configurations of landmarks. (a) Scaling of both configurations
to the same size; (b) Transposition to the same position of the center of gravity; (c) Rotation
to the orientation that provides the minimum sum of squared distances between corresponding
landmarks. Source: [Klingenberg, 2015].

1.5.3 Cluster analysis

The aim of cluster analysis is to identify groups of objects that share similar characteristics. Ele-

ments within a group tend to present higher similarity between them than with those classified in

other clusters and vice versa, that is, a desirable cluster classification presents a high level of co-

hesion and separation (fig. 1.14). It is important to note that clustering is not a specific algorithm

per se, but more of a general methodology to perform data exploration and classification, and that

the identified groups have to come together with an emphasis on usefulness and meaning, by iden-

tifying the natural structure underlying in the data. Later, this classification result can be used to

perform further statistical analysis and to generate visual representations in order to be used for

interpretation purposes. Cluster analysis has been used in a vast range of disciplines, from biology,

ecology and genetics to psychology, marketing, and data mining. Human beings are particularly

good at identifying groups of similar elements within a set of objects, and human vision and brain

are capable of performing such a task even in small children in the most natural way. This makes

cluster analysis a very intuitive and easy to interpret tool for performing exploratory analysis of

new data [Tan et al., 2005].

A distinction can be made depending on wether cluster nesting is permitted, that is, if elements

conforming major clusters can at the same time belong to smaller clusters within them. In con-

trast, a second group of clustering methods seek to perform a division of the data in order to
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Figure 1.14: Cluster cohesion and separation. It is desirable for a given cluster solution to provide
good levels of cohesion and separation, that is, that clusters are well-defined and well separated
from the rest, something that can be estimated by measuring within and between-cluster distances.
Source: [Tan et al., 2005]

classify each item in a unique non-overlapping cluster. In the first case, we talk of hierarchical

clustering, whereas the second one is known as partitional clustering. Independently, we also dif-

ferentiate between exclusive clustering methods, which assign each element to a unique cluster, and

overlapping ones, in which a given element can belong to more than one cluster at the same time.

Finally, in fuzzy clustering methods elements are classified in clusters with a certain probability (or

uncertainty) value between 0 and 1 [Fraley and Raftery, 2006; Azzalini and Menardi, 2014]. It is

also possible to use non-fuzzy hierarchical clustering methods and still obtain a probability ’score’

for elements to be correctly classified within its assigned clusters, for instance by using Bayesian

density estimation methods [Jara et al., 2011] with the obtained clustering classification results.

As a final note, we can also differentiate between complete clustering methods, in which each and

every element is classified in some cluster, and partial ones, that can return unclassified elements

[Suthar et al., 2013].

Figure 1.15: Four possible clustering classifications for the same set of points. Source: [Tan et al.,
2005].

In summary, cluster analysis is a discipline by itself and the vast amount of methodologies can

cover an equal wide range of scenarios (fig. 1.15). However, it is not only important to ensure that

the obtained classification is appropriate from a purely statistical point of view, for instance by

ensuring that the identified clusters are robust (and therefore, reproducible) with bootstrap resam-
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pling or silhouette analysis [Rousseeuw, 1987], but also to verify that the provided classification is

meaningful from the point of view of the original experimental question, interpretable, useful to

obtain relevant conclusions and, as we mentioned in the case of Multidimensional Scaling, ’makes

most sense’.

1.6 Visualizing the epigenome.

Seeing comes before words. The child looks and recognizes before it can speak.

It is seeing which establishes our place in the surrounding world; we explain that world with words,

but words can never undo the fact that we are surrounded by it.

John Berger. Ways of seeing. 1972.

Despite being principles dating from more than 50 years ago, the four major influences acting on

data analysis in 1965 are equally valid today: 1) The formal theories of statistics; 2) Accelerating

developments in computers and display devices; 3) The challenge, in many fields, of more and

larger bodies of data; 4) The emphasis on quantification in a wider variety of disciplines [Cooley

and Tukey, 1965; Herr, 2014]. Since then, exponential advances in technology, computer science

and telecommunications, as well as our own fast adaptation to them, have boosted these four prin-

ciples, and in some way have added a fifth one: the instant access to unprecedented amounts of

visual, interactive data. In his book Semiologie Graphique (Semiology of Graphics, [Bertin, 1967]),

Jacques Bertin, a French cartographer and theorist, introduced and developed the theory of Visual

Language as a Sign System where images are perceived as a set of signs in which a sender encodes

information that is received and decoded by the Receiver (fig. 1.16). This monumental work, based

on his experience as a cartographer and geographer, represents the first and widest intent to pro-

vide a theoretical foundation to Information Visualization, and also lead to the establishment of

Visualization Design Principles, that can be summarized in two main statements:

• Tell the truth and nothing but the truth (don’t lie, and don’t lie by omission).

• Use encodings that people decode better (where better = faster and/or more accurate)

Development of efficient tools for data visualization as well as functional and differential analysis

in the field of epigenetics is a field of continued research. Together with the generation of databases

containing high-throughput data on whole genome distribution of DNA associated proteins and

other factors in human and model organisms, several approaches have been made with a scope on

visualization of this information and its integration with existing genomics and biomedical data.

Not surprisingly, some of the most important advances in this field came from the main public

consortiums generating this data such as ENCODE, modENCODE and Roadmap epigenomics

([Dunham et al., 2012; Celniker et al., 2009; Bernstein et al., 2010; Kharchenko et al., 2011; Rid-

dle et al., 2011]), as a way to offer a channel of generating public repositories to store and share

the generated results with the scientific community. Also, the unprecedented availability of these
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Figure 1.16: Within the plane a mark can be at the top or the bottom, to the right or the
left. The eye perceives two independent dimensions along X and Y, which are distinguished
orthogonally. A variation in light energy produces a third dimension in Z, which is independent
of X and Y. The eye is sensitive, along the Z dimension, to 6 independent visual variables, which
can be superimposed on the planar figures: the size of the marks, their value, texture, color,
orientation, and shape. They can represent differences (), similarities (=), a quantified order
(Q), or a nonquantified order (O), and can express groups, hierarchies, or vertical movements.
Source: Jacques Bertin. Semiology of Graphics. 1967 [Bertin, 1967] and adapted by https:

//medium.com/@mbostock/introducing-d3-scale-61980c51545f

data and its quick adoption by the biological and biomedical fields as a way to explore and test

functional hypothesis brought as a result some very interesting contributions to the question [Zhou

et al., 2011, 2014].

The range of methodologies and techniques to face this challenge started with the classic 1 di-

mensional linear genome browsers [Yates et al., 2016; Zhou et al., 2014] (fig. 1.17), on which

epigenetic information is often represented as a track or combination of tracks containing epige-

netic information of the observed genomic coordinates. Other applications opted for more complex

2 dimensional representations of the genome using Hilbert-matrix based approaches to generate a

two-dimensional picture of the genome based on a mathematical representation of euclidean space

[Kharchenko et al., 2011; Riddle et al., 2011] (fig. 1.18), using color to represent genomic and

epigenomic information. Finally, dimensionality reduction techniques have been used to generate

two and three-dimensional representations based on whole-genome segmentation and computation

of epigenetic states [Filion et al., 2010; van Bemmel et al., 2013]. In this regard, dimensionality

reduction approaches together with clustering and machine-learning analysis and other statistical

methods provide an interesting set of tools to approach the challenge of epigenomics data visu-

alization and offers the opportunity to introduce additional visual information based on classic

visualization principles [Bertin, 1967].

Functional analysis of the obtained epigenomic landscapes in several biological scenarios have been

faced using Hidden Markov Models and Bayesian networks [Juan et al., 2016]. However, in many
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Figure 1.17: A capture of the Washu Epigenome browser. a) Heat-map view of histone modification
profiles of IMR90 (top) and K562 cells (bottom; red and fuchsia for repressive histone marks,
green and teal for active histone marks, identified by the color blocks in the metadata color map
on the right). (b) ChIA-PET track from K562 cells obtained using DNA-binding factor CTCF
(ENCODE data). (c) Hi-C track from IMR90 cells5. The triangle shapes in the Hi-C track depict
chromatin domains in IMR90 cells (labeled as domains 1), and the arcs in the ChIA-PET tracks
indicate similar domain structure in K562 cells. Two interacting loci in either genomic region
are highlighted by the two semitransparent columns, and the Hi-C cell is indicated by an arrow.
Source: [Zhou et al., 2014]

Figure 1.18: a, The chromosome is folded using a geometric pattern (Hilbert space-filling curve)
that maintains spatial proximity of nearby regions. An illustration of the first four folding steps is
shown. Source: [Kharchenko et al., 2011].

cases these methods were specially developed and tuned to cope precisely with the vast generated

amounts of data. Thus, sometimes they lack the required flexibility to be adapted as a more general
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tool for the non-specialist researcher with a broader question or willing to use them for exploratory

purposes: to investigate other biological backgrounds of interest, to obtain some functional rela-

tionship information about in-house epigenetics data, or to easily add custom annotation of gene

expression or gene classification of interest to a given dataset, and their results can be difficult to

interpret from a visual point of view.

Regarding the field of comparative epigenomics, several methods have been developed to approach

the issue of differential methylation, and also for whole epigenome comparison [Zhang et al., 2013;

Cao and Zhong, 2013; He and Wang, 2017], which usually rely on the simultaneous visualiza-

tion and pseudo-automatic analysis of genome-browser 1-dimensional epigenetic tracks. As in the

field of data visualization, the main consortiums behind the generation of big epigenomics data

repositories have contributed with very interesting approaches to perform differential analysis of

epigenomics data across multiple cell types and datasets [Yen and Kellis, 2015], and others have

also approached this question analyzing precomputed information of chromatin states data [Li

et al., 2016]. Also, in order to overcome the drawback of the high number of epigenetic marks

needed to generate whole-genome epigenetic datasets, methods such as ChromImpute [Ernst and

Kellis, 2015] take advantage of the combinatiorial nature of epigenetic marks and how experimen-

tally obtained information on certain groups of marks can be successfully used to impute others.

Finally, without doubt the development of bioinformatics and biostatistics as necessary tools for

modern Data Science and the appearance of Big Data brought us the Golden Age of data visu-

alization [Friendly, 2008], when finally many of the very advanced concepts developed in the first

years of computational statistics found a field in which they could fulfil their potential almost with

the only limit of our imagination [Cooley and Tukey, 1965; Bertin, 1967]. We also have to admit

the crucial contribution of the internet to this, as we owe to the World Wide Web for the instant

imaging era in which we currently are.
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Chapter 2

Objectives

The five main objectives of this thesis are:

• To develop and implement a computational and statistical approach for the generation and

visualization of epigenetic factor maps.

• To develop and implement a computational and statistical approach for the generation,

visualization and functional analysis of whole-genome epigenetic maps.

• To develop and and implement a computational approach for differential analysis of factors

and gene maps.

• To explore the possibility to generate and analyze epigenetic maps with combined informa-

tion from two different species.

• To develop and implement a computational strategy to select the minimum set of factors

that are required to generated biologically informative factor and gene epigenetic maps.
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Chapter 3

Results
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chroGPS2: differential analysis of epigenome maps in R.

Oscar Reina, Fernando Azorin and Camille Stephan-Otto Attolini.

November 2, 2017

1 Abstract

We present chroGPS2, a computational framework for differential analysis of epigenomes.
Methods are provided for efficient integration and comparison of data from different condi-
tions or biological backgrounds, accounting and adjusting for systematic biases in order to
provide an efficient and statistically robust base for differential analysis. We also include
functionalities for general data assessment and quality control prior to comparing maps, such
as functions to study chromatin domain conservation between epigenomic backgrounds, to
detect gross technical outliers and also to help in the selection of candidate marks for de-novo
epigenome mapping.

- Availability: https://github.com/singlecoated/chroGPS2
- Contact: oscar.reina@irbbarcelona.org

2 Introduction

In recent years, we have assisted to an unprecedented increase in availability of epigenomics
data related to whole-genome distribution of transcription factors, histone modifications and
other DNA binding proteins [Celniker et al., 2009; Dunham et al., 2012; Bernstein et al., 2010],
which helped to establish a deeper knowledge about chromatin states and topologically asso-
ciated domains [Filion et al., 2010; Serra et al., 2016], and to offer a broad scope of genomic
regulation from both a functional and structural point of view. However, there remains a
need for efficient tools for visualization, functional analysis and comparison of epigenomics
data [Marx, 2015]. Previously, we developed chroGPS [Font-Burgada et al., 2014], an R pack-
age based on dimensionality reduction techniques (namely Multidimensional Scaling, MDS
[Borg and Groenen, 2003]) to measure and visualize genome-wide associations between epi-
genetic factors and their relationship to functional genetic elements in low dimensional maps.
Now we extend this software and introduce novel features to perform differential analysis of
epigenome maps using Procrustes [Lisboa et al., 2014], hierarchical clustering and Bayesian
density estimation methods [Jara et al., 2011]. Additionally, we provide functions for general
data assessment, quality control and to help in the selection of epigenetic factors for de-novo
epigenome mapping. ChroGPS2 is integrated in Bioconductor [Huber et al., 2015], an open-
source collection of R packages for computational analysis of omics data. We illustrate our
approach using two publicly available datasets containing extensively mapped human and
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fruit fly epigenomes (https://www.ncbi.nlm.nih.gov/geo/info/ENCODE.html). Supplemen-
tary material includes detailed data accession information, workflows and additional examples
in several biological scenarios.

3 Data assessment and Quality Control

We offer functions to perform a first general assessment of functional relationships between
epigenetic factors and conformation of chromatin domains across datasets, and to highlight
major differences between them. After measuring pairwise similarities between epigenetic
factors based on genome-wide overlap of their binding profiles with the distGPS function,
the domainDist one evaluates and compares these results at factor and domain level using
Pearson correlation and Mantel-Hazel tests, pointing towards major changes that may suggest
strong biological effects but also gross technical problems or annotation errors (i.e. sample
mislabeling, truncated or empty data, inefficient immunoprecipitation, see Supplementary
section 3.1).

4 Select candidates for de-novo epigenome experiments

Selection of candidate factors when designing high-throughput ChIP-Seq, Dam-ID or Hi-
C experiments in order to compare a known scenario with an novel one poses important
experimental and economical challenges. The rankFactors function effectively ranks a set of
factors based on how much they contribute towards conservation of their respective chromatin
domain identity. Additionally, if domain identity is unknown or incomplete we rely on relative
conservation of functional relationships between individual epigenomic marks and genetic
elements (i.e. genes, promoters, etc) and how information from experimentally mapped factors
can be used to successfully impute presence/absence of others [Ernst and Kellis, 2015]. In
detail, we offer methods based on linear and logistic regression to rank marks based on their
ability to predict others, helping the researcher to refine selection of potential candidates for
experimental mapping (See Supplementary section 3.2).

5 Comparing epigenomic factor maps.

chroGPS factor maps use MDS to represent genome-wide epigenetic factor co-localization
based on similarities between their binding profile overlaps according to a metric of choice.
This core methodology is also used as a starting point to identify differences between epige-
nomic factor associations at different conditions, time points, cell lines, or between different
species.

• Assess differences between conditions: Comparing two epigenomic factor maps
from the same species with a rich number of common factors is relatively straightfor-
ward, as they share a genomic background over which pairwise similarities s(i,j) between
their genome-wide binding profile overlaps can be computed using the distGPS func-
tion, and represented together in a low dimensional space using MDS. This already
produces a joint map which accurately represents putative functional relationships be-
tween all elements from both datasets [Font-Burgada et al., 2014]. Further adjustment
and differential analysis is performed with the function diffGPS.factors, which uses
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Procrustes to identify potential biological differences between both backgrounds after
adjusting for possible technical and biological biases. Procrustes matches two sets of
points represented in a low-dimensional space by using the information from common
elements (landmarks) to compute a transformation involving scaling, translation and
rotation to minimize euclidean distances between landmark points while preserving rel-
ative spatial configuration within each set. General goodness of fit and magnitude of the
observed changes between common factors is measured via Procrustes sum of squares,
and statistical assessment can be performed via permutation tests [Gel et al., 2016].
This approach has been successfully applied to integrate and compare the epigenomic
landscape obtained at different time points during genome replication in Drosophila S2
cells (See Figure 1 and supplementary section 4.3).
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Figure 1: Differential chroGPS-factors map showing the epigenomic landscape differences at
Drosophila melanogaster Early (light) and Late (dark) time points during genome replication.

• Investigate differences between species: Another interesting hypothesis is to ex-
plore potential differences between homolog epigenomic factors in two distant species
over which common whole-genome co-localization cannot be assessed, but where con-
servation of their respective relative distances between common factors can still be
compared. For this purpose, after generating individual maps for each background G
and G’, position of common elements i, i’ is used to match, adjust and compare them
using Procrustes. We successfully used this approach to study potential functional dif-
ferences between homolog boundary/insulator elements in Drosophila S2 and human
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K562 cell lines, and to assess their relationship with spatial configuration of transcrip-
tional activity surrounding CTCF binding sites (See supplementary section 4.4.2).

6 Comparing epigenomic gene maps

ChroGPS-genes maps represent similarities between genomic features by computing pair-
wise distances between the binary vectors defined by their epigenetic footprint, that is, their
collection of nearby epigenetic marks, and projecting them in a low dimensional space via
MDS [Font-Burgada et al., 2014]. Downstream functional analysis can be performed by using
hierarchical clustering with the clusGPS function or using the original and approximated
distances with other machine learning or class discovery methods of choice.

• Detecting epigenomic footprint differences: The diffGPS.genes function uses es-
sentially this strategy to compare two sets of mapped factors from the same or different
species using epigenomic footprint information of both datasets simultaneously. First,
common factors between both sets are selected. Then, pairwise similarities between
their whole-genome epigenetic footprints are computed to generate a map comprising all
common genes from both datasets, relying on inter-species gene homology information
if necessary. Identification of genes presenting changes in their epigenomic footprints
is then straightforward, as they will be indicated by those genes being represented by
different points for each set.

• Interpreting loss of epigenomic footprint identity: A first approach to study
those differences is to rank them using Procrustes to compute the residual sum of
squares between points representing differentially located genes, but this offers little
insight on the observed changes from a functional perspective. We use unsupervised
hierarchical clustering followed by computation of Bayesian posterior probability of
cluster classification using a Dirichlet Process mixture of normals [Jara et al., 2011] to
identify and characterize clusters of genes with similar epigenetic patterns, and to report
genes found to be strongly classified under two distinct clusters between both conditions.
Akin with results obtained from other high-throughput technologies, candidate gene
lists can be used for further downstream functional analysis, such as Gene Ontology
enrichment or Gene Set Enrichment Analysis, as well as compared with other genomics
data such as changes in gene expression or regulation to further explore interesting
hypothesis. We illustrate the use of this strategy to identify and characterize genes
potentially involved in epigenomic changes between third instar larvae Drosophila S2
cells and BG3 neuronal tissue. (See Figure 2 and Supplementary section 5.2).

7 Visualization

We facilitate the visualization of results by offering functions to export graphical outputs into
open formats for using them with R network/graph visualization packages, or with external
softwares such as Cytoscape with the function gps2xgmml. Additionally, supplementary code
includes examples on to export results as interactive HTML5 outputs using the shinyRGL
and plotLy packages.
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Figure 2: Differential chroGPS-genes map of Drosophila melanogaster S2 and BG3 cell lines.
Focus is put on genes changing from cluster 5 in S2 (blue, moderate HP1 repression) to cluster
2 in BG3 (red, transcriptionally active). Dashed lines indicate probability contours containing
50 percent of genes for each cluster. On the right, the top 20 enriched Gene Ontology terms
for genes involved in the analyzed cluster transition are shown. Selected genes are specially
enriched in nervous system and cell differentiation categories.
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1 DATA ACQUISITION AND FORMATTING

The source material for generating and comparing epigenomic maps with chroGPS is a list
of genome-wide predicted binding sites for each condition, formatted as a GRangesList ob-
ject, that is, a list of Genomic Ranges. These can simply be collections of plain-text BED
or GFF files downloaded from ENCODE, modENCODE, Roadmap Epigenomics [Bernstein
et al., 2010; Celniker et al., 2009; Dunham et al., 2012], or any other public data reposi-
tory, or in-house generated data coming from any of the widely used Peak Calling algorithms
such as MACS, Sicer, etc. Such files can be easily imported into R using custom code or
readily available functions from many other Bioconductor packages [Gentleman et al., 2004].
Alternatively, some specific packages already provide routines to efficiently query, filter and
download such kind of data directly from the official repositories in GRanges format. See be-
low for a comprehensive list of online databases and tools taken from the Epigenie website.).
Additionally, supplementary code offers some guidelines on importing genomic-interval based
data from several sources.

Supplementary R code and data available at:
https://github.com/singlecoated/chroGPS2/tree/master/examples/getData’

• IHEC Data Portal: The International Human Epigenome Consortium (IHEC) brings forth
reference epigenomes relevant to health and disease. View, search, and download all the data.

• ROADMAP Epigenomics: The NIH Roadmap Epigenomics Mapping Consortium offers maps of
histone modifications, chromatin accessibility, DNA methylation, and mRNA expression across
100s of human cell types and tissues.

• CEEHRC Platform: A reference epigenome project for human cells and not the typical stem
cell lines.

• DeepBlue: Store and work with genomic and epigenomic data from a number of international
consortiums.

• Epigenome Browser: For the UCSC genome browser fans.

• WashU Epigenome Browser: A web browser that fffers tracks from ENCODE and Roadmap
Epigenomics projects.

• Ensembl: Featuring ENCODE.

• GenExp: A web-based visualization tool to interactively explore a genomic database.

1



• The Epigenome Atlas: Human reference epigenomes.

• Classification of Human Transcription Factors: The mother list of transcription factors and their
binding sites.

2 DATA EXPLORATION AND QUALITY CONTROL

Before performing differential analysis some useful information can be obtained from original
data to determine goodness of the selected datasets and help interpreting the observed dif-
ferences afterwards. In detail, we offer functions to study the degree of conservation between
chromatin domains defined by groups of factors under two given conditions, and to assess
presence of gross technical problems or annotation errors present in the data that could af-
fect subsequent integration and comparison. Additionally, we implement methods to help
researchers with selection of candidate marks when designing de-novo epigenome mapping
experiments in order to compare a novel background or condition with already existing ones,
a scenario posing important technical and economical challenges.

2.1 Exploring factors and domains

The core methodology of chroGPS, that is, computation of pairwise similarities (and thus,
dis-similarities that can be interpreted as distances) between epigenomic factors based on
their binding profile overlaps, already provides some useful insight on relative configuration
of epigenomic factor domains present in the data. In detail, this information can be compared
across multiple datasets from which a rich number of common mapped factors is available,
to assess correlation in vectors of similarities between pairs of analog factors or domains, in
order to identify potentially strong biological or technical differences between them. We make
use of this functionality using the domainDist function to assess the already observed general
domain conservation between Drosophila melanogaster S2 and BG3 cell lines [Celniker et al.,
2009; Font-Burgada et al., 2014], and to see what happens when we artificially introduce a
’wrong’ instance of factor EZ in the S2 dataset (See Supplementary Figure 1).

We will start by loading an object with downloaded Binding Sites for several Drosophila
melanogaster S2 and BG3 epigenomic factors annotated for closest and overlapping dm3 genes
using the AnnotatePeakInBatch function from the ChIPpeakAnno package [Zhu et al., 2010],
and will unify experimental replicates by simply joining all reported binding sites for each
factor. Additional methods of replicate management are provided in the function mergeRepli-
cates.

Afterwards, we will use the color information provided in the s2names data frame object,
which will effectively serve as aliases for our chromatin domains of interest. And then, we will
take care of computing pairwise similarities / distances between S2 and BG3 epigenomic fac-
tors based on their whole genome binding profile overlaps [Font-Burgada et al., 2014], and will
use the domainDist function to calculate both within and between-domain distances, which
can be described as the collection of computed mathematical distances measured between
all pairs of factors belonging to a certain chromatin domain (intra), or between all possible
pairs of factors from two different domains (inter). This information gives a valuable infor-
mation regarding cohesion and separation of the different domains observed in the map, and
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can be used to start assessing putative conservation between factors on different biological
backgrounds.

The returned intra and inter-domain distance objects can be used for generating cus-
tom plots and performing further downstream analysis, and the observed differences between
datasets can be assessed statistically via Mantel-Hazel tests or permutation tests [Gel et al.,
2016]. We can also see the effects of introducing an artificial outlier EZ sample in the S2 cell
line, by randomly selecting binding sites from other factors.

Supplementary R code and data available at:
https://github.com/singlecoated/chroGPS2/tree/master/examples/domainDist’
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Figure 1: Detection of potential technical artifacts by checking conservation of relative distances
between common factors. Left: Conservation for Drosophila S2 and BG3 epigenomic datasets. Right:
The same plot where artificially modified EZ factor is introduced in the S2 dataset.

2.2 Selecting factors for de-novo epigenome mapping

Maximize chromatin domain identity: Chromatin domains offer an insightful and in-
tuitive way to interpret epigenomic map conformation, by providing a biological context to
factors based on functional relationships between them. When such information is available,
a straightforward approach to select candidate factors for performing a de-novo epigenome
mapping is to select those ones giving maximum robustness to their corresponding domain.
This is easily achieved using the rankFactors function. We can use our chromatin color values
as an alias to define chromatin domains. In this example we see how to perform a domain dis-
tance based selection for the HP1a repression considering a subset of 4 different factors (See 2).

Ranking factors based on functional relationship with genetic elements. Alter-
natively, or whenever domain information is not available, selection of candidate factors can
be based upon conservation of functional relationships between epigenetic factors and genetic
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elements and how information on experimentally mapped factors has been successfully used to
impute unknown ones [Ernst and Kellis, 2015]. The data for performing this analysis is that
one used to generate chroGPS-genes maps (See Supplementary section 4), that is, a binary
matrix of N genes (rows) per M columns (factors), where each cell equals 1 if that gene has
an assigned binding site for that factor, and 0 otherwise. The rankFactors function provides
methods based on linear and logistic regression to rank factors based on how accurately they
can be predicted by others. At each iteration, the factor which can be best predicted by the
rest is removed and prediction accuracies are recomputed (see 2). On the downside, these
methods can be computationally intensive and we recommend using parallel computation or
reducing the number of iterations if computing power is limited.

Supplementary R code and data available at:
https://github.com/singlecoated/chroGPS2/tree/master/examples/rankFactors’
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Figure 2: Left: From left to right, resulting domain integrity (Cohesion/Separation) based on computa-
tion of Intra and Inter-Domain distances for each combination of 4 factors within the HP1a repression
domain. Results are sorted by Intra-Domain distance, which is an informative concept regarding
cohesion of the observed domains in the map. Potential candidates are those among the leftmost fac-
tor combinations minimizing Intra-Domain distance but still providing meaningful biological content.
Right: Factor ranking based on logistic regression of functional relationship with genetic elements
when no domain information is available. Left axis, from top to bottom, indicates factor removed at
each iteration, which is the one having the higher correct prediction rate based on information from
those ones remaining below, until the number of remaining factors is lower than a given threshold.
Boxplots in each line indicate the obtained prediction rates for all removed factors on top, based on
the information from those on the bottom. Notice that as we remove more factors, general prediction
rates get lower.
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3 COMPARING CHROGPS-FACTOR MAPS

In chroGPS-factors maps epigenetic factors are represented over a low-dimensional space
based on a similarity measure based on their observed co-occurences at whole genome level.
However, this is only a global picture of epigenetic factor colocalization and thus does not
reflect the possible mechanisms going on in certain kind of genomic regions (i.e. coding re-
gions, promoters, transcription start sites, enhancers etc). Epigenomic factor colocalization is
indeed a complex scenario, playing a critical role in gene regulation and silencing, transcrip-
tional replication, genome structure and repair, etc. A very straight-forward exercise is to
observe distribution of these epigenetic marks based on factor overlaps happening only over
certain specified regions of interest, to be used at subsequent comparisons. Even though the
methodology to generate chroGPS-factors maps is available in our previous work, first we will
provide a brief reminder on how these maps are generated.

3.1 Generating factor maps

The main ingredient for generating chroGPS-factors maps is a collection of genomic intervals
from our epigenomics data (putative binding sites, enriched regions, etc) in GenomicRanges
format, in the shape of a GRangesList object, belonging to the experimental condition we
want to study (i.e. cell line, patient, etc). Such information can be stored in independent plain
tab-separated, BED or GFF files. Once our genomic intervals collection is loaded, we make
use of the distGPS function to compute pairwise similarities / distances between them, as a
way to assess whole genomic co-localization in our epigenomics background. At chroGPS we
provide different metrics designed to work with genomic interval data to account for several
scenarios where certain mathematical characteristics may be desirable, as well as the option
to feed the workflow with user-defined metrics [Font-Burgada et al., 2014]. The resultant
object contains a n x n matrix of dissimilarities ranging between 0 and 1 that can be already
used for visualization and analytical purposes (i.e. heatmaps, clustering).

The next step is to use the distance object as input to the core of our methodology. Mul-
tidimensional Scaling (MDS) technique used used to dissimilarity data in easy to visualize,
easy to interpret, 2 or 3 dimensional graphical representations that account for the original re-
lationships of similarity between the observed objects [Borg and Groenen, 2003]. We account
for several MDS methods, and provide functions for parallel computation and goodness-of-fit
optimization when several thousands of elements are present in our dataset.

The returned object can be represented in a 2 or 3 dimensional space where each ele-
ment is located based on their similarity (i.e. co-occurrence) with all the other elements
at whole genome level. This strategy already proved successful at reflecting the biological
nature of epigenomic domains in Drosophila melanogaster S2 cells as illustrated in the left
panel of Figure 3. MDS objects returned can be plotted directly using the package provided
method. Additionally, the function getPoints can be used to retrieve values for each ele-
ment present in the map and used for producing custom or enhanced graphical outputs or
exporting interactive HTML5 graphics with RStudio if desired (See Supplementary section 5).

Supplementary R code and data available at:
https://github.com/singlecoated/chroGPS2/tree/master/examples/chroGPS-factors’
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Figure 3: chroGPS-factors map of Drosophila melanogaster S2 cells (left) and human K562 leukemia
cell line (right).

3.2 Generating region-specific factor maps (Promoters)

The basis for this case study is the same epigenetic factor collection used to generate the
Drosophila melanogaster map above, plus additional information providing the genomic re-
gions in which we would like to focus. In our case we will focus our study over gene promoters
by obtaining UCSC dm3 genes and generating a new GenomicRanges collection with pro-
moter regions (defined as 1kb upstream of the TSS).When these two objects are provided
as input for the distGPS function, similarities between epigenetic factors are only taken into
account when their overlap falls over the specified regions of interest. Thus, co-occurrences
taking place at coding or intergenic regions will be ignored. If more control over region-based
filtering is needed, interval-based operations from the IRanges and GenomicRanges packages
offer advanced options to address it.

Straightforward visualization of the map generated in this way (4) already provides some
insights on potential regulatory changes happening at promoter regions. Direct visual com-
parison with the whole genome Drosophila melanogaster S2 map [Font-Burgada et al., 2014]
already highlights interesting changes in the conformation of some epigenomic domains, such
as location of the Heterochromatin Protein complexes. However, it is desirable to perform fur-
ther analitical work to offer the user quick and unbiased identification of significant changes
when comparing region-based maps between two collection of regions or against a whole-
genome scenario.

Supplementary R code and data available at:
https://github.com/singlecoated/chroGPS2/tree/master/examples/diffPromoters’
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Figure 4: chroGPS-factors map of factor co-localization over Drosophila melanogaster S2 promoters.

3.3 Comparing factor maps between conditions (Origins of Replication)

Procrustes allows integration of epigenetic maps coming from different biological backgrounds,
as well as adjustment of undesired biases due to technical effects [Borg and Groenen, 2003;
Kendall, 1989]. Furthermore, it can be used to identify differences between epigenomic fac-
tor maps generated at different conditions (healthy/disease, control/treated), coming from
distinct biological backgrounds, or being snapshots of different points in time, such as de-
velopmental stages or timings in origins of replication. We will focus on this elements to
illustrate comparison of chroGPS-factors maps.
Origins of replication are particular genomic sequences at which replication of DNA starts in
living eucharyote and prokaryote organisms, and of DNA-RNA in viruses. These sequences
are recognized by specific proteins, that recognize, unwind and begin to copy the genomic
sequence. In the following steps we illustrate how to use chroGPS to compare the epigenomic
landscape at these different time points.

First, we start by loading Origins of Replication data from Drosophila melanogaster S2
cells available in modENCODE [Celniker et al., 2009], and contains location for Origins of
Replication at Early, Early Mid, Late Mid and Late cell replication time points, stored in
four different BED files. The other data to perform our study will be our already familiar
collection of epigenomic elements (genomic intervals) in all conditions we would like to com-
pare. In our case we will use Drosophila melanogaster S2 modENCODE binding sites and
will filter them according to the different collections of Origins of Replication regions we just
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loaded. This can be easily performed using basic IRanges overlap operations.
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Figure 5: chroGPS-factors map showing the epigenomic landscapes Drosophila melanogaster S2 cell
lines at Early (top left), Early-Mid (top right), Mid-Late (bottom left) and Late (bottom right). Upon
visual inspection we can already observe changes in location and distribution of some epigenetic factors
and domains.

The next step is to generate regular chroGPS-factors maps of each joint dataset as de-
scribed in section 3.1. Map comparison is performed using Procrustes to measure and rank
changes between two given maps in an unbiased manner, which is done automatically with
the diffGPS.factors function. This function performs the dual task of finding an optimal
adjustment in shift, scale and rotation so that both maps are matched as much as possible
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while maintaining relative distances between the respective factors of each one and providing
the user with the internal sum of error metrics of the Procrustes algorithm. As a result, we
obtain both a graphical 2D chroGPS-factors map where distances between replicates of the
same element in both backgrounds are highlighted, and a ranked list of Procrustes errors for
all common factors involved in the map. Statistical significance of the observed changes can
be assessed via Mantel-Hazel and overlap permutation tests. Figure 6 illustrates results for
Procrustes differential analysis of the transition between Early-Mid and Late time points.
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Figure 6: Differential chroGPS-factors map of Drosophila melanogaster S2 cells at Early vs Late
Origins of Replication (left), and Procrustes normalized errors (right). In this differential map, PSC2,
a Polycomb related protein involved in non-heterochromatic gene silencing, is strongly shifted from
the boundary-insulator region (Early) towards the Polycomb repression one (Late).

Supplementary R code and data available at:
https://github.com/singlecoated/chroGPS2/tree/master/examples/diffOrigins’

3.4 Comparing factor maps between species

3.4.1 Introduction

In recent years, the ENCODE Project [Dunham et al., 2012] has widely expanded the avail-
ability of epigenomics data systematically for a huge collection of human cell lines and tissues,
at different level of completion (Tiers). In this regard, K562, H1-hESC and GM12878 rep-
resent the three Tier1 ’complete’ epigenomes. K562 cells were the first human immortalised
myelogenous leukemia line to be established. K562 cells are of the erythroleukemia type,
and the line is derived from a 53-year-old female CML patient in blast crisis. Embryonic
stem cells (ES) are pluripotent stem cells derived from the inner cell mass of a blastocyst, an
early-stage preimplantation embryo. GM12878 is a B-lymphocyte, lymphoblastoid cell line
immortalized via Epstein-Barr Virus, from the International HapMap Project - CEPH/Utah
genotype. This, together with available data in mice and specially in fruit fly coming from the
modEncode project, offers an interesting scenario to explore functional hypothesis regarding
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epigenomic differences between two distant species.

The proof of principle for this exercise was already introduced in our original chroGPS publica-
tion [Font-Burgada et al., 2014]. Basically, instead of using Procrustes adjustment to remove
biases due to different cell or technological backgrounds with a global MDS map generated
from a jointly computed distance matrix, we will adjust two complementary distance matri-
ces for each background separately, as joint overlaps between factors from different genomic
backgrounds cannot be computed. Since Procrustes will adjust different configurations to
match each other, having a separate distance matrix for each organism backgrond is enough
to perform a valid adjustment, as long as enough common landmark elements are present in
each one.

3.4.2 Integrating and comparing factor maps from different organisms

In order to start, we will need to generate separated chroGPS-factors maps for each biological
background as defined in our case by the already known Drosophila melanogaster S2 mod-
ENCODE collection and the Human K562 collection available from ENCODE. Bear in mind
that in this case study we will be integrating together data from two different biological but
also technical backgrounds, as fly data is composed of ChIP-chip determined binging sites
whereas the human one comes from ChIP-Seq techniques, providing much better resolution
at identification of potential binding sites. As we will see, conservation of relative distances
between epigenomic factors allows successful integration of both datasets accounting for sys-
tematic biases in an unsupervised manner.

The first step once our datasets are loaded in the respective GenomicRanges lists is to
generate separated chroGPS-factors maps using the steps already described. Again, we will
use the diffGPS.factors function to obtain both a graphical map with highlighted distances
between common factors in both backgrounds as well as a ranked list of Procrustes errors.
As described in [Font-Burgada et al., 2014], efficient matching of both maps with Procrustes
depends on the existance of enough common anchor elements. It is therefore advisable to
use the domainDist function already described previously to assess replicate coherence and
identify potential outliers.

As opposed to previously presented case studies, the genomic background of the two com-
pared maps here is different. Therefore, combining the collections of epigenomic factors for
joint computation of similarities between epigenomic elements is not possible, and we have to
rely on integration of both independently generated maps using Procrustes adjustment. This
is specially important in case of integrating backgrounds with big differences in the number
of mapped factors or very few common elements between them, as even though a Procrustes
adjusted joint map can always be computed, conservation of the relative configuration on
both maps is important for obtaining meaningful biological interpretation of the results.

Direct comparison of backgrounds in this case study already pointed to a potentially
interesting difference in the biological role of CTCF boundary elements between fly and hu-
man. Figure 7 illustrates the main result of this case study, presenting a joint Procrustes
adjusted map for human K562 and Drosophila S2, which present some remarkable similari-
ties, with apparently some domains well conserved between both species. However, it is also
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Figure 7: Differential chroGPS-factors map showing the epigenomic landscape differences in Drosophila
melanogaster S2 cells and human K562 cell line. Notice the different location of CTCF elements in
human (circles) and fly (squares), indicated by the red line.

clear that they present some strong differences, as is the apparent lack of conservation in the
HP1 heterochromatin-related domain in human, with CBX heterochromatin related proteins
spreading around several domains. Another more subtle difference at first sight is related
to location of CTCF elements. CTCF is a well known insulator strongly associated with
chromatin organization and chromatin loop formation, well located in the very center of the
boundary-insulator domain in Drosophila, whereas apparently it locates close to the human
BEAF element in the human map, surrounding the active transcription domain.

This finding prompted us to verify if this could be related to transcriptional orientation
around CTCF sites. Briefly, we categorized all Drosophila dm3 intergenic regions based on
orientation of adjacent transcription start and end sites, giving place to the three mutually
exclusive categories of Head-to-Head (HH), Tail-to-Tail (TT) and Others (NN). Head-to-Head
sites were those with adjacent TSS in opposite directions, while sites classified as Tail-to-Tail
were those where transcription ended in the same adjacent region. Finally, NN indicate re-
gions where a TXE is shortly followed by a TSS going in the same direction. Notoriously, as
seen in Figure 8 such a basic classification of CTCF sites already unveiled a distribution for
HH CTCF similar the one observed in human K562, while TT elements tend to locate in a
region between external insulator elements and heterochromatin related proteins. NN CTCF
elements shown almost the same behaviour as the original CTCFs. These findings go in par
with recent works related to the complex nature of CTCF elements and their potential dual
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role in gene regulation and genome structure.

Supplementary R code and data available at:
https://github.com/singlecoated/chroGPS2/tree/master/examples/diffSpecies’

3.5 Integration of Hi-C Topological Associated Domains (TADs) data

Topologically associating domains (TADs) are a way of understanding the organization of
mammalian genomes as being split up into ”chromosome neighborhoods” within which most
enhancer-promoter contact occurs. They can range in size from thousands to millions of DNA
bases. TADs are separated from each other by boundary regions enriched for transfer RNA
genes and for binding of the transcription factor CTCF. In [Gomez-Marin et al., 2015], authors
provide a whole genome distribution of TADs over polytenic chromosomes in Drosophila.
Integration of these results into chroGPS maps are addressed in two ways. First, TAD
regions are directly incorporated into chroGPS factors map as an additional factor. Location
of TADs is not surprisingly strongly associated with CTCF elements (Figure 8), comprising
almost the exact center of the insultator-boundary domain.

−1.0 −0.5 0.0 0.5 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

ASH1

BEAF

BEAFCHRO(CHRIZ)
CHRO(CHRIZ)

CP190CP190

CTCF

CTCFCTCF
DMI2

DRING

DSFMBT

EZ

EZ

GAF

H2B_UBIQ

H2BK5AC

H3K18AC

H3K23AC

H3K27AC

H3K27ME3

H3K36ME1

H3K36ME3

H3K4ME1

H3K4ME2H3K4ME2

H3K4ME3
H3K4ME3

H3K79ME1

H3K79ME2

H3K9ACH3K9AC

H3K9ME2H3K9ME2
H3K9ME3

H4AC
H4K16AC

H4K16AC

H4K5AC

H4K8AC

HP1A

HP1A
HP1A

HP1B
HP1B

HP1C
HP1C

HP2

ISWI

JHDM1

JIL1
JIL1

JMJD2A

MDB_R2MDB_R2

MOD2

MRG15

NURF301

NURF301

PC
PCL

PHO

PR_SET7

PSC2

RNAPOL2
RNAPOL2

RPD3

SPT16

SU(HW)SU(HW)

SU(VAR)37

SU(VAR)39

SU(VAR)39

WDS

ZW5

TADs

CTCF.HH

CTCF.HH
CTCF.HH

CTCF.TT

CTCF.TT
CTCF.TT

CTCF.NN

CTCF.NN
CTCF.NN

Figure 8: chroGPS-factors map Drosophila melanogaster S2 cells including TAD information and
CTCF sites categorized categorized according to adjacent TSS/TXE configuration.
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4 COMPARING CHROGPS-GENES MAPS

In chroGPS-genes maps, all genes in the genome are assigned a unique epigenetic ‘profile’,
based on the epigenetic marks present at gene level in a certain biological scenario. Gene maps
can also be used to highlight differences happening between different biological backgrounds
such as different cells or tissues, diseases, and developmental or differentiation stages. In the
following example we will explore several of these scenarios, using chroGPS to study differences
between different epigenomic landscapes, as well as introduce the necessary methodology for
performing this task.

4.1 Generation and functional analysis of chroGPS-genes maps.

The procedure to generate and analyze chroGPS-genes maps is detailed in our previous pub-
lication [Font-Burgada et al., 2014] as well as in the chroGPS package vignette, however here
we offer a summarized how-to highlighting the general steps.

The initial set-up for generation of chroGPS-genes maps is a collection of epigenetic factors
in the shape of a GenomicRanges list, and a set of genetic elements (i.e. genes). chroGPS-
genes are aimed at visualization and analysis of genetic elements based on their epigenetic
state, that is, the epigenetic marks they present. In this example we will focus on genes
(as defined by the longest possible transcript for each gene in the UCSC dm3 genome. The
base object for generating chroGPS-genes maps is a matrix of G rows (usually genes) and F
columns (epigenetic factors), and where each cell Gi,Fj of the matrix will take a value of 1 if
a certain epigenomic mark j is reported for gene i, and 0 otherwise.

The resultant binary matrix is given as the main argument to the distGPS function,
that will compute pairwise similarities/distances between rows of the matrix (in our case,
genes), based on their epigenetic profiles. Thus, genes sharing a high number of common
factors will present a high similarity value (or small distance), whereas ones sharing very few
ones will be the opposite. As with chroGPS-factors, we offer different similarity metrics and
ways to weight and penalize presence and absences of epigenetic factors when computing dis-
tances, as well as different ways to deal with technical replicates of the same epigenetic factor.

The following step is to use the resulting distGPS object to generate a low-dimensional
representation using MDS, as we did in chroGPS-factors. In order to speed up computation
of the MDS solution with gene maps that comprehend thousands of genes, we offer parallel
computation using a random split-and-combine approach that also offers optimization of the
resulting map in order to maximize goodness-of-fit and removes potential undesired effects
from the randomization applied in the parallel computation.

After generation of the map, the next natural step in our approach is to perform a hierar-
chical clustering analysis using the clusGPS function, which by default performs a hierarchical
clustering of the original distance matrix using average linkage. Methods for unsupervised
determination of underlying number of clusters in our scenario and Bayesian non-parametric
density estimation for assigning posterior probabilities of cluster identity for each element
in the map are provided [Jara et al., 2011]. Final map visualization can also incorporate
additional useful information such as expression values by means of palette color scales in the
provided plot function, and point size to reflect cluster classification uncertainty. Functional
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analysis of the identified clusters can also be performed by means of assessing their enrichment
/ depletion on epigenetic marks when compared to the whole map using the profileClusters
function. Figure 9 shows final result of this approach as analyzed in [Font-Burgada et al.,
2014].

Figure 9: chroGPS-genes map of S2 cells. The map is analyzed using hierarchical clustering with
average linkage. Clusters corresponding to 50 percent between-cluster distance are shown after unsu-
pervised merging. The epigenetic state of each cluster is determined based on the log2 enrichment/de-
pletion ratio of each factor. ’Epigenes’ are colored according to their average log2 RMA expression
levels in S2 cells [Kessler et al., 2015], and they distribute clearly according to Active and Repres-
sion domains. Legends on the right side indicate number of genes in each cluster and average gene
expression level of each gene point.

4.2 Introduction to chroGPS-genes differential maps

Generation of differential chroGPS-genes maps to compare two epigenomic data sets is per-
formed in a very similar way to the ones presented above. First, common factors between
both backgrounds to compare are selected, usually after performing some operation to unify
factor replicates when present. Then, for genes with at least one epigenetic mark in each
background we compute pairwise distances between their epigenetic profiles using our metric
of choice and a 2 dimensional map is generated via MDS. This allows to keep trace both
of the epigenetic and background identity for each gene in the analysis. Since genes can be
identified easily on the map by means of its epigenetic profile, it is straightforward to know
which genes from different conditions present the same or very similar profiles (thus they are
located in the same exact point or very close in the map), and which ones present significant
differences (and therefore differ strongly in their location).

Downstream functional analysis of this differential map is essentially done in the same
way as in a regular chroGPS-genes one. Briefly, hierarchical clustering is performed over the
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mathematical distances computed between each pair of unique epigenetic profiles. The iden-
tified clusters in this first step are then subject to an unsupervised merging process in order
to further refine cluster definition and reduce granularity inherent to this method. Finally,
after a final clustering configuration is obtained, each gene is assigned a posterior probability
of correct classification by means of Bayesian density estimation procedures. In this way,
we present not just a (simple and elegant) method to obtain an average robustness / repro-
ducibility score for each one of the clusters and also for the global clustering solution, but also
to obtain a posterior probability value indicating how sure we are that a given gene is ‘well’
located within its assigned cluster. This strategy proves very useful also not just to refine
selection of those genes changing clearly from any two given clusters (i.e. genes suffering a
strong change in epigenomic identity), but can also be used with differential maps to assign
a probability score in order to rank gene changes involved in cluster changes of interest, pro-
viding us with an intuitive method to select potential candidate genes for further analysis in
a scenario where two different backgrounds want to be compared.

Supplementary R code and data available at:
https://github.com/singlecoated/chroGPS2/tree/master/examples/chroGPS-genes’

4.3 Comparing Drosophila melanogaster S2 and BG3 cell lines

We illustrate this with a case study comparing two well characterized Drosophila melanogaster
cell lines, S2 and BG3. Schneider 2 cells, usually abbreviated asS2 cells, are one of the
most commonly used Drosophila melanogaster cell lines. S2 cells were derived from a pri-
mary culture of late stage (20–24 hours old)Drosophila melanogaster embryos, likely from a
macrophage-like lineage. BG3, however, is a cell line derived from central nervous system of
third instar larvae.

To demonstrate how this strategy allows to identify changes related to biological differences
between these two cell lines, following generation and functional analysis of the differential
map involving common epigenetic factors present in S2 and BG3 we iterate over gene groups
involved in cluster transitions between both backgrounds, and proceed to perform a Gene
Ontology enrichment analysis for all genes involved in the observed cluster transitions.

The usual scenario in which to perform a differential chroGPS-genes map is that one in-
volving studying epigenetic profiles over genes in two different conditions, biological or tech-
nical backgrounds from the same species, even though one could use the same methodology
to address for instance changes in regulatory mechanisms in promoter vs coding regions or
origins of replication, by simply recomputing binding site assignments under different genomic
locations, etc. The basic elements to generate this map are the two collection of epigenetic
elements which we want to compare at our desired level to use for generation of the necessary
binary matrices described previously, or in its defect, two already computed matrices of 0s
and 1s representing epigenetic profiles for each genetic element in each condition. Only com-
mon epigenetic factors mapped in both conditions will be taken into account (and therefore,
only common genetic elements with at least 1 mapped factor in each condition are used).
The diffGPS.matrix function takes raw genes x factors matrices for both backgrounds and
returns a unique matrix containing unique epigenetic profiles for them (see 10).

This combined matrix is given as input to the distGPS function, together with the re-
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Figure 10: Left: stacked binary matrix with presence/absence information for common genes and
epigenetic factors from backgrounds S1 and S2. Center: The unique epigenetic profiles for both
backgrounds are used to compute a unique similarity/distance matrix based on pairwise similarity
between the vectors for all epigenetic profiles (right).

spective labels identifying each background. The resulting object is used to generate a low-
dimensional map of all genetic elements based on the similarity of their epigenetic profiles
using MDS. All other methodologies used with regular chroGPS-genes maps (clustering, etc)
are available for differential maps as well. To sum up, the map just represents a certain num-
ber of genetic elements on space based on similarity of their epigenetic profiles. Thus, two
genes sharing exactly the same epigenetic profile will be located at exactly the same point,
whereas changes in their profiles will translate into shifted positions. These changes and their
potential functional effects are indentified and analyzed with the diffGPS.genes function.

This function takes as input the binary matrix with combined epigenetic profiles for both
backgrounds and the clustering object produced by clusGPS, and retrieves cluster identities
and posterior probabilities of classification. This information is provided for each genetic
element analyzed and for both conditions of interest, and therefore it is straightforward not
only to have a trace of all epigenetic cluster changes taking place for all analyzed genetic
elements, but also to rank those changes based on confidence estimates as provided by the
posterior probabilities of classification.

Once cluster transitions are obtained, a very straightforward approach for downstream
analysis and is to perform Gene Ontology enrichment analysis via hypergeometric testss us-
ing the provided enrichGPS function. Alternatively, the differentially located gene lists can
be analyzed with other functions such as the getEnrichedGO from the ChIPpeakAnno pack-
age, or using, DAVID, Gene Set Enrichment Analysis or others. In order to illustrate this,
we show results of our provided function enrichGPS to investigate potentially interesting
Biological Process terms enriched among genes involved in cluster transitions.

Between all cluster transitions analyzed (See supplemental Table 1), in Figure 11 we
present the differential map highlighting results for genes involved in cluster transition 5 (S2)
to 2 (BG3). Top Gene Ontology enriched results from the list of 70 genes involved in this
cluster transition present a strong and statistically significant enrichment in processes such
as axon guidance, neuron growth and other central nervous system ones.

16



Figure 11: chroGPS-genes differential map of Drosophila melanogaster S2 and BG3 cells showing top
20 Biological Process enriched terms for genes involved in cluster transition 2/5.

Supplementary R code and data available at:
https://github.com/singlecoated/chroGPS2/tree/master/examples/diffGenes’

5 SOME NOTES ON VISUALIZATION

5.1 Exporting chroGPS maps to XGMML / Cytoscape

Maps generated with chroGPS can be exported to GraphML XGMML format using the
provided funtion gps2xgmml. These maps can be imported with several R network analysis
packages such as igraph and are also suitable to use with external network visualization
and analysis solutions like Cytoscape. Additional information regarding distances between
elements in the map and all other information can be easily exported into tabular format files
and assigned to the imported network nodes using the standard procedures for each software.

5.2 Exporting chroGPS maps to HTML5 with plotLy, RStudio and Shiny

RStudio is an integrated development environment (IDE) for R available in open-source and
commercial editions and which runs both in desktop and server mode under the most used
operating systems. It includes a console, syntax-highlighting editor that supports direct code
execution, as well as tools for plotting, history, debugging and workspace management. Shiny
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is an R package that makes it easy to build interactive web apps straight from R. You can host
standalone apps on a webpage or embed them in R Markdown documents or build dashboards.
You can also extend your Shiny apps with CSS themes, htmlwidgets, and JavaScript actions.
Seamless RStudio and Shiny integration makes them a good solution to export graphical
results into interactive web pages. Plotly, also known by its URL, Plot.ly, is an online data
analytics and visualization tool that provides online graphing, analytics, and statistics tools
as well as scientific graphing libraries for Python, R, MATLAB, and other languages.

Supplementary R code and data available at:
https://github.com/singlecoated/chroGPS2/tree/master/examples/viz’
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Chapter 4

Discussion and Conclusions.

It is necessary to provide efficient and intuitive tools to visualize epigenomics data [Marx, 2015].

Recent advances in the ability to generate, analyze and share vast amounts of genomic and epige-

nomics information in a wide range of scenarios gave place to unprecedented opportunities to

explore and test biological hypothesis [Celniker et al., 2009; Dunham et al., 2012; Bernstein et al.,

2010]. There is, however, a need to develop intuitive, user friendly and computationally feasible

tools to visualize these data, and to encode the obtained conclusions from its functional and com-

parative analysis as visual information that can be easily interpreted, capuring and reflecting the

underlying structure in a manner which is unbiased, to therefore ’tell the truth and nothing but

the truth’ [Bertin, 1967].

chroGPS is a computational framework to measure, visualize and compare epigenetic similarity

between factors and/or genetic elements and to represent them in low dimensional maps using

Multidimensional Scaling (MDS), Procrustes and clustering techniques [Borg and Groenen, 2003;

Kendall, 1989; Tan et al., 2005]. As a proof of principle, we used data generated by the modEN-

CODE project [Celniker et al., 2009] in the Drosophila S2 and BG3 and human K562 cell lines

[Dunham et al., 2012] to present several case studies using two types of maps: chroGPS-factors

and chroGPS-genes.

Generating chroGPS-factors maps

chroGPS-factors describes similarities between epigenetic factors and inform about their functional

association (fig. 4.1). A similarity measure between factors is computed based on genomic distri-

bution of their binding profiles using the average interval overlap (iOverlap) metric [Font-Burgada

et al., 2014]. These similarities are then represented in 2 or 3 dimensional maps using non-metric

MDS (isoMDS) that jointly estimates a non-parametric monotonic relationship between the orig-

inal and the graphical Euclidean distances in the map. The resulting representation accurately

describes known epigenetic states (fig. 4.1): active chromatin (in green), boundary / insulator func-

tion (in grey), HP1 heterochromatin related repression (in blue) and Polycomb (PC) dependent

silencing (in yellow).
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Figure 4.1: chroGPS-factors 3D map of Drosophila S2 cells. Similarity between 76 individual
epigenetic factors, as determined from their genomic profiles using iOverlap, is represented in a 3D
epigenetic map using isoMDS. Factors are colored according to their biological activity: regulation
of transcription (green), boundary/insulator function (grey), HP1 (blue) and Polycomb (PC)-
dependent silencing (yellow). RNApol II is indicated in purple. The squared Pearson correlation
(R2) between original and approximated distances and the classical stress-1 function (section 1.5.1)
are indicated.

After generation of the Drosophila melanogaster S2 map, we used Procrustes to integrate in-house

generated ChIP-seq data, in order to assess functional relationships between the novel and pre-

viously undescribed insulator / boundary factors Ibf1 and Ibf2 (fig. 4.2) [Cuartero et al., 2014;

Cuartero i Betriu, 2014], and several proteins involved in regulation of H2Bub1 and involved in

RNA-Polymerase-II pausing at HP1c complex target genes (figs. 4.2 and 4.3) [Kessler et al., 2015;

Kessler, 2014]. Successful integration of these data contributed to obtain a visual representation

of their global scenario within Drosophila S2 cells.

Generating chroGPS-genes maps

chroGPS-genes integrates epigenetic marks at gene level and describes the epigenetic context of

gene expression and function (fig. 4.4). In this case, epigenetic similarity between genes is defined

based on the epigenetic marks that they have in common and is determined using the Tani-

moto metric [Font-Burgada et al., 2014]. chroGPS-genes maps may contain tens of thousands of

points, which constitutes a high-dimensional problem posing important computational challenges

for MDS representation. To overcome these limitations, we developed a novel two-step procedure,

BoostMDS, that finds an initial solution by splitting the distance matrix into smaller partially
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Figure 4.2: 2-dimensional version of the map in (fig. 4.1). After determination of whole-genome
binding sites by performing ChIP-seq bioinformatics analysis, several factors of interested were
integrated in the map to assess their potential functional relationships from a global perspective,
using Procrustes to identify and adjust for systematic technical biases between ChIP-chip and
ChIP-seq data. In pink: the novel insulator / boundary related factors Ibf1 and Ibf2 [Cuartero
et al., 2014; Cuartero i Betriu, 2014], which localized precisely with modEncode related proteins
CP190 and CTCF, showing a clear and strong co-localization with CP190 and suggesting functional
relationship with these elements from this chromatin domain. In red: HP1c, WOC, ROW, Dsk2
and Z4 [Kessler et al., 2015; Kessler, 2014], well located within the active region surrounding HP1c
and RNA-Polymerase-II.

overlapping sub-matrices, which are then computationally tractable. Since each pair of adjacent

distance matrices share a certain number of common anchor points, Individual solutions can be ad-

justed sequentially using Procrustes to conform a global representation (fig. 4.4). Also, as genomic

interval data objects are usually sorted by chromosomal coordinates, adjacent genes in the original

data matrix tend to present very similar epigenetic profiles, which would translate in closely spaced

MDS points. In order to ensure that most of the selected anchor overlapping points are distributed

equally across the whole map for good Procrustes performance, the original rows in the data are

shuffled prior to distance computation. Furthermore, to prevent this random shuffling having any

undesired effects on the final result and to ensure result reproducibility, the obtained solution is

then refined by formally maximizing the R2 coefficient via a gradient search algorithm [Strickert

et al., 2005].

In chroGPS-genes maps each point represents a group of genes that share an identical set of epige-
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Figure 4.3: Zoom-in view of the active transcription region in (fig. 4.2) to show detailed location
of HP1c, WOC, ROW, Dsk2 and Z4 ChIP-seq in-house generated factors.

netic factors or, in other words, an elusive epigene [Bird, 2007]. Functional analysis is performed

using hierarchical clustering with average linkage to identify groups of genes with similar epigenetic

profiles, an approach which returned a very large number of clusters with a high degree of spa-

tial overlap [Font-Burgada et al., 2014], complicating interpretation. To solve this, we performed

an unsupervised cluster merging process, by joining adjacent clusters based on Bayesian density

estimation [Jara et al., 2011] until their degree of overlap dropped swiftly, greatly improving the

Correct Classification Rate (CCR) [Font-Burgada et al., 2014]. By using this approach, 12 clusters

can be identified that are specifically enriched/depleted in particular epigenetic factors and describe

distinct epigenetic states (Figure 2): actively transcribed genes (clusters 1 and 2), HP1-silenced

(clusters 3 and 4) and PC-silenced genes (clusters 5, 6, 7, 8, and 10, fig. 4.4).

Comparing chroGPS-factors and chroGPS-genes maps

The use of chroGPS is not limited to the examples described above since it is a general tool appli-

cable to a wide range of situations. In particular, chroGPS maps can be generated for a particular

developmental process or disease, as well as based on certain genomic regions of interest such as

gene promoters [Reina et al., 2017] in order to study functional relationships between epigenetic

factors under specific circumstances. These maps can identify genetic / epigenetic transitions /

alterations of the analyzed elements between different backgrounds or conditions. So, for instance,
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Figure 4.4: chroGPS-genes map of S2 cells. The map is analyzed using hierarchical clustering
with average linkage. Clusters corresponding to 50 percent between-cluster distance are shown
after unsupervised merging. The epigenetic state of each cluster is determined based on the log2
enrichment/depletion ratio of each factor. ’Epigenes’ are colored according to their average log2
RMA expression levels in S2 cells [Kessler et al., 2015], and they distribute clearly according to
Active and Repression domains. Legends on the right side indicate number of genes in each cluster
and average gene expression level of each gene point.

comparing chroGPS-genes maps from normal and affected cells in a given disease could identify

which genes are changing epigenetic status and in what direction(s).

Comparing maps when they contain a reduced number of items, such as in chroGPS-factors maps,

is relatively straight-forward. Maps can be superimposed by using the factors shared between

different maps as anchor points using Procrustes adjustment [Kendall, 1989]. Procrustes super-

imposes two sets of points by altering their center, scale and orientation, while preserving relative

distances within each set, and relevant differences between sets can be obtained via Procrustes

sum of squared errors. This approach has been sucessfully applied to integrate and compare the

epigenetic landscape of Drosophila S2 cells at different time points during replication [Reina et al.,

2017](fig. 4.5), but can be extended to compare different cell lines or tissues. In this way, factors

that significantly change their relative position in the maps could be readily identify and the ob-

served alterations assesed from a functional perspective.

In order to compare chroGPS-genes maps, a similar approach is used, by generating maps con-

sidering all possible epigenetic profiles for genes from both conditions. Then, functional analysis
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Figure 4.5: Differential chroGPS-factors map of Drosophila melanogaster S2 cells at Early vs Late
Origins of Replication (left), and Procrustes normalized errors (right). In this differential map,
PSC2, a Polycomb related protein involved in non-heterochromatic gene silencing, is strongly
shifted from the boundary-insulator region (Early) towards the Polycomb repression one (Late).

is performed using hierarchical clustering with average linkage, unsupervised cluster merging and

Bayesian density estimation [Jara et al., 2011] to identify and characterize groups of genes present-

ing significant changes between both conditions [Reina et al., 2017]. Akin with results obtained

from other high-throughput technologies, candidate gene lists can be used for further downstream

functional analysis, such as Gene Ontology [Ashburner et al., 2000] enrichment [Ashburner et al.,

2000] or Gene Set Enrichment Analysis [Subramanian et al., 2005], as well as compared with

other genomics data such as changes in gene expression or regulation to further explore interesting

hypothesis. We illustrate the use of this strategy to identify and characterize genes potentially

involved in epigenomic changes between third instar larvae Drosophila S2 cells and BG3 neuronal

tissue (4.6).

Assessing the core set of factors to generate biologically meaningful epigenomic maps

Obtaining data on a large number of epigenetic factors for multiple conditions may not always be

affordable both technically and economically. In this regard, it must be noticed that epigenetic

states are generally determined by the concurrence of several epigenetic factors that, from this

point of view, provide redundant information [Ernst and Kellis, 2015]. Therefore, it seems feasible

to select a reduced set of factors to generate maps without losing their resolution and biological

information. Data availability which allowed generation of chroGPS maps for model organisms also

allows addressing this question in an unbiased manner. In detail, when chromatin domain informa-

tion is available for an organism of interest, we assess cohesion and separation (fig. 1.15) of these

domains in the map to select those candidate groups of factors which provide more information to

the obtained representation. Additionally, or when chromatin domain information is not available

or unknown, we use logistic and linear regression to estimate the predictive power of groups of

marks, helping in the selection of potential candidates for de-novo epigenome mapping, so that

they lead to a meaningful and useful map from a biological point of view [Reina et al., 2017](fig. 4.7).
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Figure 4.6: Differential chroGPS-genes map of Drosophila melanogaster S2 and BG3 cell lines. Red
and blue ellipses illustrate genes changing from cluster 5 in S2 (blue ellipse, moderate HP1 repres-
sion) to cluster 2 in BG3 (red ellipse, transcriptionally active). Dashed lines indicate probability
contours containing 50 percent of genes for each cluster. On the right, -log10 of Benjamini-Hochberg
hypergeometric test pvalues for the top 20 enriched Gene Ontology terms for genes involved in the
analyzed cluster transition are shown. Top left legend indicates R2 coefficient and stress - 1 (sec-
tion 1.5.1) values for the shown MDS solution. Bottom left legend indicates proportion of genes
lost in the S2 (blue ellipse) cluster. Selected genes are specially enriched in nervous system and
cell differentiation categories.

Merging epigenetic data from different species

Available data for the generation of epigenetic maps in disease relevant genomes (i.e., humans,

mice) is not abundant. However, considering the high evolutionary conservation of the main epi-

genetic factors and their functional interactions [Woo and Li, 2012], it seems reasonable to explore

the possibility that data obtained in different species could be merged to generate high resolution

species-independent maps.

Procrustes allows successful integration of epigenetic information from different conditions, tech-

nological or biological backgrounds into biologically meaningful chroGPS-factors maps, thanks to

the strong conservation of certain epigenetic factor relationships [Font-Burgada et al., 2014]. As a

side result, factors in which this degree of conservation is not present can be easily identified [Reina

et al., 2017]. Interestingly, since such conservation is also observed at an inter-species level [Woo

and Li, 2012], we used the same methodology to efficiently integrate inter-species information.

As a result, these techniques allowed to highlight potential significant similarities and differences

between epigenetic programs across species, pointing towards potentially interesting functional dif-

163



0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Intra−Domain

Factor combination

C
oh

es
io

n

●

●
●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●●●●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●●

●

●●●●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●●

●

●●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●●

●

●
●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●
●●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

0 50 100 150 200 250 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Inter−Domain

Factor combination

S
ep

ar
at

io
n

●

●●● ●●● ●●●

●●●●●●●●●●

●●●●●

●●●●●●●●●

●●●●●●●●●●

●●●●●

●●●●●●●●●●●●

●●●●

●●●●●●●●●

●●

●●●●●●●●

●●●

●●●●●●●

●●●●●

●

JIL.1.Q4170..S2
H3K9acS10P_.new_lot..S2

PR.Set7_Q3484.S2
H3K27Ac.S2

CTCF.N_S2.ChIP.chip
dSFMBT.Q2642.S2

GAF.S2
MRG15_Q2481.S2

H4K8ac.S2
CP190.VC.S2

RPD3.Q3451.S2
BEAF.HB.S2

HP1c.Q4064.S2
ISWI_Q4095.S2

dMi.2_Q2626.S2
BEAF.70.S2

H2B.ubiq..NRO3..S2
H3K36me1.S2

JHDM1_Q2634.S2
H4K16ac.L..S2

Pho.S2
RNA.Pol.II..abcam..S2

HP1b.Q4114.S2
H3K36me3.S2
SU.HW..HB.S2

H3K18ac.S2
H3K27me3..Abcam2..S2

ZW5.S2
H3K9me3.S2

MBD.R2_Q2567.S2
HP1c..MO.462..S2

H4AcTetra.S2
CTCF.S2

Nurf301_Q4159.S2
Su.var.3.7.Q3448.S2

SPT16_Q2583.S2
H3K23ac.S2

H3K9me2.Ab2..new.lot..S2
WDS_Q2691.S2

H3K79Me2.S2
RNA.pol.II..ALG..S2

ASH1.Q4177.S2
H4K16ac.M..S2

H3K9ac.S2
NURF301_Q2602.S2

JIL1_Q3433.S2
Chro.Chriz.WR.S2

HP1a_wa191.S2
HP1b..Henikoff..S2

H3K4me3_S2.ChIP.chip
dRING.Q3200.S2

H3K9me2.antibody2.S2
CTCF.VC.S2
H2BK5ac.S2

H3K4me2.ab.S2
HP1a_wa184.S2

MBD.R2.Q4167..S2
mod2.2.VC.S2

Psc.S2
H3K4Me3.LP..S2

Pc.S2
Chro.Chriz.BR.S2

HP1a_552.S2
H3K4me2.Millipore.S2

Su.var.3.9.S2
PCL.Q3412.S2

HP2..Ab2.90..S2
Su.Hw..VC.S2

Ez.S2
Su.var.3.9.Q2598.S2

EZ.Q3421.S2

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

●

●●● ●●● ●●●

●●●●●●●●●●

●●●●●

●●●●●●●●●

●●●●●●●●●●

●●●●●

●●●●●●●●●●●●

●●●●

●●●●●●●●●

●●

●●●●●●●●

●●●

●●●●●●●

●●●●●

●

JIL.1.Q4170..S2
H3K9acS10P_.new_lot..S2

PR.Set7_Q3484.S2
H3K27Ac.S2

CTCF.N_S2.ChIP.chip
dSFMBT.Q2642.S2

GAF.S2
MRG15_Q2481.S2

H4K8ac.S2
CP190.VC.S2

RPD3.Q3451.S2
BEAF.HB.S2

HP1c.Q4064.S2
ISWI_Q4095.S2

dMi.2_Q2626.S2
BEAF.70.S2

H2B.ubiq..NRO3..S2
H3K36me1.S2

JHDM1_Q2634.S2
H4K16ac.L..S2

Pho.S2
RNA.Pol.II..abcam..S2

HP1b.Q4114.S2
H3K36me3.S2
SU.HW..HB.S2

H3K18ac.S2
H3K27me3..Abcam2..S2

ZW5.S2
H3K9me3.S2

MBD.R2_Q2567.S2
HP1c..MO.462..S2

H4AcTetra.S2
CTCF.S2

Nurf301_Q4159.S2
Su.var.3.7.Q3448.S2

SPT16_Q2583.S2
H3K23ac.S2

H3K9me2.Ab2..new.lot..S2
WDS_Q2691.S2

H3K79Me2.S2
RNA.pol.II..ALG..S2

ASH1.Q4177.S2
H4K16ac.M..S2

H3K9ac.S2
NURF301_Q2602.S2

JIL1_Q3433.S2
Chro.Chriz.WR.S2

HP1a_wa191.S2
HP1b..Henikoff..S2

H3K4me3_S2.ChIP.chip
dRING.Q3200.S2

H3K9me2.antibody2.S2
CTCF.VC.S2
H2BK5ac.S2

H3K4me2.ab.S2
HP1a_wa184.S2

MBD.R2.Q4167..S2
mod2.2.VC.S2

Psc.S2
H3K4Me3.LP..S2

Pc.S2
Chro.Chriz.BR.S2

HP1a_552.S2
H3K4me2.Millipore.S2

Su.var.3.9.S2
PCL.Q3412.S2

HP2..Ab2.90..S2
Su.Hw..VC.S2

Ez.S2
Su.var.3.9.Q2598.S2

EZ.Q3421.S2

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Correct prediction proportion

Fa
ct

or
 r

em
ov

ed

Figure 4.7: Left: From left to right, resulting domain integrity (Cohesion/Separation, fig. 1.15)
based on computation of Intra and Inter-Domain distances for each combination of 4 factors within
the HP1a repression domain. Results are sorted by Intra-Domain distance, which is an informa-
tive concept regarding cohesion of the observed domains in the map. Potential candidates are
those among the leftmost factor combinations minimizing Intra-Domain distance but still provid-
ing meaningful biological content. Right: Factor ranking based on logistic regression of functional
relationship with genetic elements when no domain information is available. Left axis, from top to
bottom, indicates factor removed at each iteration, which is the one having the higher correct pre-
diction rate based on information from those ones remaining below, until the number of remaining
factors is lower than a given threshold. Boxplots in each line indicate the obtained prediction rates
for all removed factors on top, based on the information from those on the bottom. Notice that as
we remove more factors, general prediction rates get overall lower.

ferences between certain epigenetic factors (fig. 4.8).

This finding prompted us to verify if this could be related to transcriptional orientation around

CTCF sites. Briefly, we categorized all Drosophila dm3 intergenic regions based on orientation

of adjacent transcription start and end sites, giving place to the three mutually exclusive cate-

gories of Head-to-Head (HH), Tail-to-Tail (TT) and Others (NN). Head-to-Head sites were those

with adjacent TSS in opposite directions, while sites classified as Tail-to-Tail were those where

transcription ended in the same adjacent region. Finally, NN indicate regions where a TXE is

shortly followed by a TSS going in the same direction. Notoriously, as seen in fig. 4.9, such a basic

classification of CTCF sites already unveiled a distribution for HH CTCF similar the one observed

in human K562, while TT elements tend to locate in a region between external insulator elements

and heterochromatin related proteins. NN CTCF elements shown almost the same behaviour as

the original CTCFs.

Considerations

Even though computation of distances for generation of chroGPS-factors maps using parallel com-

puting is not a major issue, it may be relatively slower for very large datasets with hundreds of
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Figure 4.8: Joint Procrustes adjusted map for human K562 and Drosophila S2, which present
some remarkable similarities, with apparently some domains well conserved between both species.
However, it is also clear that they present some strong differences, as is the apparent lack of a
clear HP1 heterochromatin-related domain in human, with CBX heterochromatin related proteins
spreading between fruit fly HP1 and PC-related repression [Kaustov et al., 2011]. Another more
subtle difference at first sight is related to location of CTCF elements. CTCF is a well known in-
sulator strongly associated with chromatin organization and chromatin loop formation [Van Bortle
and Corces, 2013], well located in the very center of the boundary-insulator domain in Drosophila,
whereas apparently it locates close to active transcription group in the human map.

factors. However, when performing integration of additional data into well-known and studied

factors maps to assess their functional relationships, it is enough to compute only distances for

the new elements. In this way, we envision offering precomputed distance matrices for several

chroGPS-factors maps in several organisms and cell lines, so that it is enough to integrate the new

factors of interest to generate and analyze their functional relationships within the resulting maps.

Large datasets may pose a problem also in terms of used computer memory, specially when using

R in UNIX/Linux environments, in which R memory management can seriously compromise the

operating system. Several R packages, such as bigmemory can take care of working with large

datasets using special indexed virtual memory management, and are recommended for hardware

configurations with moderates amount of RAM.

chroGPS maps provide useful insight on epigenetic marks both at factor and gene level. However,

there are also drawbacks that hamper interpretation. In this regard probably the most noticeable
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Figure 4.9: The adjacent/divergent TSS classification and its effect on Drosophila melanogaster
CTCF location in the S2 2-dimensional chroGPS-factors map.

is the very high number of factors and genes that are present in the active transcription region

in both maps. Further work is needed regarding the establishment of the ’core’ factors defining

relevant chromatin domains in order to eliminate potentially redundant information from elements

carrying almost the same epigenetic profile information, which reduces interpretability of the map

in some regions.

Additionally, even though ChIP-seq techniques account for a much higher resolution than pre-

viously used ChIP-chip, they are not free from issues either, ranging from antibody specificity

problems to GC-content bias [Teng and Irizarry, 2017], something that highlights the importance

of re-visiting existing data in order to perform adequate quality control analysis and, if needed, to

reprocess and re-analyze it in order to obtain ’clean’ curated versions of current public datasets.

The finding related to differential distribution of CTCF elements based on adjacent TSS/TXE

orientation also points towards a need to further study the possible existence of binding site clus-

ters within the same mapped factor that could relate to differentiated roles associated to distinct

chromatin domains. This could be approached in two ways: 1) by assessing if a given factor

presents binding site clusters with different intrinsic characteristics such as genomic width and/or

intensity [Starmer and Magnuson, 2016]; 2) by assessing the possible relationship between binding

site location with other genetic elements (TSS/TXE, promoters, enhancers or tandem repeated
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sequences). Both approaches can be supported by a computational methodology using chroGPS

maps to estimate loss and gain in domain / cluster cohesion and separation, in order to converge

on an optimal re-classification result.

Regarding generation of inter-species maps, while evolutionary conservation has been observed for

several groups of epigenetic marks [Woo and Li, 2012], it cannot be taken for granted, as map do-

main identity may also be lost between species [Kaustov et al., 2011]. Therefore, accurate selection

of epigenetic marks to act as Procrustes landmark points in this kind of integration is crucial, and

have to be chosen based not only on an evenly spatial distribution of these points across the map,

but also taking into account the existing biological knowledge available. Selection of landmark

points for Procrustes analysis between maps from the same species is not a trivial task either, and

even though it can be approached from a biological perspective based on domain conformation

of the maps, in general some numerical estimation of landmark point ’goodness’ is also desirable

in order to help in the selection of ’bridge’ datasets to accommodate different backgrounds in a

unique map.

Finally, even though in recent years there was a massive increase in generation and publication

of datasets with comprehensive genetic and epigenetic information, some of the consortiums who

produced this information are no longer generating new data [Boley et al., 2014], something which

poses a limitation in the generation of functional hypothesis to address using this technique, for in-

stance to explore scenarios regarding developmental stages and their functional relationships with

gene expression [Li et al., 2014]. It is therefore convenient to further refine and assess results from

maps generated using both experimental and imputed data [Ernst and Kellis, 2015] in order to

face this challenge.

Closing remarks

chroGPS is available as a package for Bioconductor [Gentleman et al., 2004], a comprehensive

collection of open-source libraries for computational analysis of ’omics’ data using the R statistical

language [R Development Core Team, 2008], and chroGPS2 will be available in the same repos-

itory. Both packages offer a computational framework based on Multidimensional Scaling and

are designed to explore combinations of multiple data types, accounting for systematic biases and

that can focus both on genetic elements and epigenetic factors. Our main contribution is enabling

the integration and comparison of massive heterogeneous epigenetics data in a visually appealing

and context-rich manner, by using techniques favoring interpretation and clear visual encoding of

variable information and that relate well to human ability for visual perception of similarities and

differences between elements, so that we can actually look at the underlying characteristics of the

data [Cooley and Tukey, 1965; Bertin, 1967; Kendall, 1989; Borg and Groenen, 2003; Tan et al.,

2005; Borg et al., 2012].

Aside from favoring representation of epigenetics information in a way that is easy to interpret, we

also assessed the adequacy of multiple distance metrics from a statistical point of view, and pro-

vided algorithms to represent a large number of objects at high resolution using a computational

effort manageable by a modern desktop or workstation computer by designing and implementing
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an algorithm to perform parallel computation of large dissimilarity matrices using Multidimen-

sional Scaling, as well as offering further strategies to annotate the maps in order to enhance their

interpretability [Font-Burgada et al., 2014; Reina et al., 2017].

chroGPS maps proved useful in a variety of situations, such as understanding functional interplays

between existing and novel epigenetic factors in Drosophila, to assess and explore conservation

and differences across S2 and BG3 cells, deriving testable hypotheses for novel factors, studying

chromatin states at genes and the epigenetic regulation of complex pathways [Font-Burgada et al.,

2014], to compare differences between biological backgrounds from an epigenetic point of view at

factor and whole-genome level, to investigate epigenetic differences between species, and to assess

the set of factors conforming chromatin domain identity [Reina et al., 2017].

Additionally, we used chroGPS to generate maps that consider only overlaps at specific locations

(e.g. promoters or origins of replication) [Reina et al., 2017] to inform about epigenetic states and

compare functional relationships occurring at the investigated elements, providing further insight

at the potential regulatory mechanisms involved in the complex molecular, spatial and temporal

choreography that exists within the cell nucleus of eukaryotic organisms, as a set of goggles to have

a look under the surface of the vast ocean of epigenetics inexplicability.
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