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Preface

The term III-N nanowire (NW) will refer throughout this work to the free-standing
nanowires made of group-III-nitrides semiconductors, namely InN, GaN and AlN
[1]. These nanostructures have a large length/diameter ratio, of the order of 100
(several micrometers versus tenths of nanometers). The term free-standing high-
lights the fact that the NWs are not embedded in another material. The im-
provement of the epitaxial techniques [2], and in particular, those based on III-N
semiconductors [3], has lead an important part of the Solid State Physics commu-
nity to concentrate the attention in the last years towards a better understanding
of the physical properties of those NWs, and their application in the development
of novel devices [4, 5].

Nanowires present several di�erences with respect to the still widely investi-
gated two-dimensional layers and the zero-dimensional nanostructures (quantum
dots). We would like to highlight the following: (i) Nanowires grow strain-free
(except maybe at their base), and thus with a minimal presence of dislocations or
defects along the main structure. This fact opens the possibility of growing high-
quality materials with an important lattice mismatch with the substrate, contrary
to the situation found in quantum dots or superlattices. (ii) Depending on the NW
lateral dimensions, two types of NWs can be distinguished. When the diameter
is larger than ∼ 20 nm, the electronic properties of the NWs can be considered
as that of a bulk material, thus making them a suitable platform to study the
bulk optical and transport properties, which can be hardly investigated in bulk
samples (thin �lms), that grow with a high density of defects, when there is a high
lattice mismatch with the substrate [6]. (iii) For NWs of smaller diameters (. 20

nm), on the other hand, the e�ects of quantum con�nement can lead to important
changes in the optical and transport properties, which can open the possibility of
tuning the NW properties by controlling their size [7]. (iv) Moreover, contrary
to quantum dots, that are usually immersed in a matrix of another material, the
free-standing NWs have the advantage that they can be easily separated from the
substrate and dispersed on a surface. Thus, transport measurements in single NWs
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can be performed [8].

One can roughly classify the investigations on nanowires into three main re-
search lines. The �rst one concerns the fabrication, being the molecular beam
epitaxy or/and the metal organic chemical vapor deposition (MOCVD) the two
techniques that allow the growth of higher quality NWs. This research area is in
constant development, and is not limited only to the growth of pure compound
NWs, but also alloy-based NWs, which extend the possibilities of allowing beyond
those possible in standard bulk growth, or axially and radially structured NWs [9].
New physical phenomena arise which must be tacked by the physical community,
in particular the e�ect of the surface in the optical and transport properties of the
NWs. Another focus of research is based on applications to optoelectronics de-
vices and photovoltaic cells. In particular, III-N NWs, as InN, GaN and AlN, have
attracted a special interest of the scienti�c community, due to the band gap engi-
neering. InN has a band gap of 0.67 eV (1852 nm), in the infrared, whereas GaN
and AlN have a band gap of 3.5 eV (355 nm) and 6.2 eV (200 nm), respectively,
in the ultraviolet. This opens the possibility of covering the whole solar spectrum
by an appropriate alloying [10]. Also, each material shows a di�erent degree of
anisotropy in the optical response due to its speci�c band structure, being useful
for polarization-sensitive devices [11].

In this context, the theory and numerical simulations play a crucial role in
the explanation of NWs properties and a better understanding of the observed
phenomena. The predictions o�ered by the theory can also drive the fabrication
of new heterostructures and the design of devices. In this work, we have studied
theoretically by using several models, the fundamental aspects of the electronic
structure and optical properties of the III-N bulk semiconductors in the �rst place,
and have applied afterwards such models to the investigation of the III-N nanowires
physical properties.

The thesis has been structured as follows:

• In Chapter 1 we have included a brief summary of the properties of the
group III nitride bulk semiconductors and nanowires. We have focused on
the structural and optical properties of free-standing NWs, giving a brief
account of the state-of-the-art of the �eld concerning the main achievements
of the growth techniques, together with spectroscopic results and potential
applications. The Chapter is ended with the presentation of the di�erent
theoretical methods used in this work to calculate the electronic and optical
properties of the NWs. We have also discussed the state-of-the-art of the
main techniques used to study NW system as well.
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• In Chapter 2 we describe the theoretical models employed in this thesis
for the study of the bulk electronic structure. We have complemented the
discussion with our own calculations of the band structure of III-N bulk
semiconductors, with the aim of highlighting the di�erences between the
electronic structures of InN, GaN and AlN. We devote also this Chapter
to introduce several concepts necessary to understand the results related
to III-N nanowires, to be presented later. The methods have been ordered
hierarchically, the ab initio formulation, being presented �rst, followed by the
formulation of the semi-empirical methods, based on the pseudopotential and
tight-binding approaches.

• In Chapter 3 we have calculated the electronic structure and the optical
properties of the III-N free-standing nanowires from an atomistic point of
view. Due to the limitation of the ab initio methods to system with few
atoms, i. e., long computational time, the semi-empirical pseudopotential
and the tight-binding methods have been used. Moreover, the model used
for the lateral free surfaces of nanowires has been discussed.

• Finally, Chapter 4 is devoted to the study of the inhomogeneous distribu-
tion of electrons in large InN nanowires, which has been studied within the
framework of the e�ective mass approximation, by means of a self-consistent
procedure designed to �nd simultaneously the electrostatic potential and the
charge density. We study the optical absorption and its di�erent dependen-
cies. We show also the excellent agreement of our numerical results with the
experiments, which has been performed with high quality sample.
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Chapter 1

Introduction

In this Chapter we will present an overview of the main physical properties of
the nanowires based on group III nitrides (InN, GaN and AlN). We start in Sec-
tion 1.1 with a summary of the bulk crystalline structure and electronic structure.
In Section 1.2 we give a brief overview of the growth techniques and analyze some
experiments on the optical properties of III-N NWs. Finally, in Section 1.3 we
present the theoretical models used in this thesis for the calculations of the elec-
tronic structure and the optical properties of III-N NWs.

1.1 Bulk III-N semiconductors

1.1.1 Crystal structure

Under the denomination on group III nitride (or more brie�y, III-N) semiconduc-
tors, we refer the binary compounds InN, GaN and AlN [1], where the nitrogen
atom plays the role of anion, and the group III element is the cation. III-N semi-
conductors crystallize, under ambient pressure and room temperature conditions,
in the thermodynamically stable wurtzite structure. In this structure, each atom
of one type is tetrahedrally bonded to four atoms of the other type [12]. III-N
semiconductors can be grown also in the meta-stable zinc-blende structure, by
taking advantage of epitaxial growth on cubic substrates such as GaAs [13] or 3C-
SiC [14]. Under certain growth conditions, both crystal structures can coexist, as
observed recently in GaN [15] and InP nanowires [16]. In a reciprocal trend, in the
last years, it has emerged an increasing interest in synthesizing other zincblende
semiconductors, such as GaAs and InAs, in the wurzite phase [17].
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group III

nitrogena

c

[0001](a) (b)

A

A

B

B

[0001]

uc

dz

dp

Figure 1.1: (a) Representation of the wurtzite unit cell of parameters a and c of a III-N compound.
(b) Stacking sequence of wurtzite.

The space group of the wurtzite crystal structure is denoted by P63mc in the
Hermann-Mauguin notation and C4

6v in the Schön�ies notation. The point group
symmetry is 6mm in the Hermann-Mauguin notation and C6v in the Schön�ies
notation [18]. The wurtzite structure consists of two hexagonal sublattices of pa-
rameters a and c, displaced relative to each other a distance uc along the [0001]

direction (c-axis) (u is called the internal parameter), as shown in Fig. 1.1(a).
The resultant atom arrangement is such that each atom of one sublattice is tetra-
hedrally bound to the atoms of the other sublattice, giving a stacking sequence
ABAB... along c-axis, as depicted in Fig. 1.1(b). The distances between one atom
and its nearest neighbors are speci�ed in terms of a, c and u,

dz = uc, dp =

√
a2

3
+

(
1

2
− u

)2

c2, (1.1)

where dz is the bond distance along the c-axis, and dp the bond distance between an
atom and its nearest neighbors in the basal plane. In the ideal wurtzite structure,
the lattice parameters c, a and the internal parameter u follow the relation c/a =√

8/3 ' 1.633, u = 3/8 = 0.375, and dz = d⊥ = 3c/8. However, in most of the
III-N semiconductors, there is a distortion of the tetrahedral bond being dz 6= d⊥,
which leads to deviations in the lattice parameter relations from the ideal one. In
Table 1.1 we show the experimental lattice parameters of III-N semiconductors,
where the deviation from the ideal wurtzite structure can be noticed. This leads
to important e�ects in the electronic structure of wurtzite III-N semiconductors
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a (Å) c (Å) u c/a

InN 3.538 5.703 0.377 1.612
GaN 3.189 5.185 0.375 1.626
AlN 3.112 4.982 0.382 1.601

Table 1.1: Lattice parameters of III-N wurtzite semiconductors as reported in Refs. [19] and [20].

as compared to their zinc-blende counterparts, which will be described later.

The choice of the primitive vectors of the Bravais hexagonal lattice, that we
have adopted in this work is:

a1 =

(
a

2
,

√
3a

2
, 0

)
,

a2 =

(
−a

2
,

√
3a

2
, 0

)
,

a3 = (0, 0, c) ,

(1.2)

with the vector components referred to a rectangular reference system. The vector
a3 is orthogonal to both vectors a1 and a2, which form a 60◦ angle. The lengths
are |a1| = |a2| = a 6= c = |a3|. Any unit cell of the lattice is speci�ed by a lattice
vector as:

Rn = n1a1 + n2a2 + n3a3, (1.3)

with n1, n2 and n3 integers. The position vectors of the four atoms, τi (i =

1, . . . , 4), inside the unit cell, are given by

τ1 = (0, 0, 0) ,

τ2 = (0, 0, uc) ,

τ3 =

(
0,

a√
3
,
c

2

)
,

τ4 =

(
0,

a√
3
, (1− u)c

)
,

(1.4)

where τ1 and τ3 denote the vector position of the group III atoms (In, Ga or
Al), while τ2 and τ4 the nitrogen atoms. Due to the hexagonal arrangement of
the atoms, the directions and crystallographic planes of the wurtzite structure
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1
u
r

2
u
r
2
u

3
u
r

4
u
r

Figure 1.2: Crystallographic orientations in the hexagonal system, indicated by the Miller [hkl]
and the Miller-Bravais [hkjl] index. Note that in the latter j = −(h + k). The Miller-Bravais
indexing system uses three coplanar vectors u1,u2,u3, besides u4, which coincides with the
vector a3.

are commonly written in terms of the Miller-Bravais indices in the specialized
literature, instead of the usual Miller indices. In Fig. 1.2 we have represented the
correspondence between both indexing nomenclature. The orientation [0001] is
generally referred as polar direction and the perpendicular plane, (0001), as polar
surface, due to the spontaneous polarization developed by the wurtzite crystals
along the c-axis [21]. The planes perpendicular to (0001), are consequently called
nonpolar surfaces. The nonpolar planes are denominated M -plane for (11̄00) and
A-plane for (112̄0). The associated nonpolar directions are denoted by a small
letter, i. e., the m-direction or a-direction. This terminology will be kept through
out this thesis.

Besides the direct lattice, de�ned by the primitive translations of Eq. (1.2), it
is also important to introduce the reciprocal lattice, generated by three primitive
translation vectors b1, b2 and b3 in the reciprocal space, satisfying the relation

ai · bj = 2πδij. (1.5)

In the case of the hexagonal Bravais lattice, the reciprocal lattice primitive
translations are:
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Figure 1.3: First Brillouin zone of the wurtzite structure showing some of the high-symmetry
points and directions according to the Koster notation [22].

b1 =
2π

a
(1,

1√
3
, 0),

b2 =
2π

a
(−1,

1√
3
, 0),

b3 =
2π

c
(0, 0, 1).

(1.6)

All the sites of the reciprocal lattice are obtained by:

Km = m1b1 +m2b2 +m3b3, (1.7)

with m1, m2 and m3 integers.

One convenient choice of primitive unit cell of the reciprocal lattice is the so-
called �rst Brillouin zone [23]. In Fig. 1.3 we show the �rst Brillouin zone (primitive
unit cell) of the reciprocal lattice of the hexagonal Bravais lattice, labeling the high
symmetry points (Γ, A, M , K, L, M) and directions (Σ, ∆, T ,. . . ) according to
the Koster notation [22].
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1.1.2 Electronic structure of III-N semiconductors

The band structure of a semiconductor is of pivotal importance in the understand-
ing the properties of the material in response to applied �elds and to determine its
potential applications. In this Subsection, we summarize the main features of the
band structure of the III-N semiconductors. Figure 1.4 shows the band structure
of GaN, as calculated within the density functional theory. Since all the group
III nitrides are direct band gap semiconductors, the most important region of the
band structure is in the vicinity of the Γ point (k = 0), that has been marked
with a red rectangle in Fig. 1.4. Most of the fundamental optical properties, such
as the optical absorption or the photoluminescence, are basically determined by
the features of the bands adjacent to the band gap, near the Γ point. The proper
description of this region is therefore of crucial importance for realistic predictions
about the optical properties of the wurtzites semiconductors. The bands far from
the center of the Brillouin zone can be accessible by, for instance, angle-resolved
photoemission spectroscopy [24], but their in�uence in the optical properties of the
III-N nanowires studied in this work is marginal. Thus, although the theoretical
methods used in this thesis are able to calculate accurately the bands in the whole
Brillouin zone, our calculations below will be in general biased towards an accurate
detailed description of this part of the band structure.

On the other hand, the electron wave functions can be classi�ed (in the so-called
representations) according to their transformation under symmetry operations of
the crystal point group (C4

6v in wurtzite crystals). In addition, optical selection
rules can be deduced from the wave functions symmetry. The group theory is the
mathematical tool that deals with this issue and we will complete our discussion
of the electronic structure with some notions of group theory [25]. Table 1.2
presents the character of the group C4

6v (without spin), Γ1, . . .Γ6, and for the double
group (relevant when the spin-orbit interaction is considered), that introduces the
representations Γ7, Γ8, and Γ9. The basis functions for each representation are
also given. The states belonging to the Γ1 representation are either spherically
symmetric or axially symmetric around the ẑ-axis (c-axis), i. e., they have the
same symmetry as the atomic orbitals s and pz. On the contrary, the states
labeled as Γ5, are symmetric with respect to rotations around the x̂- and ŷ-axis,
as the orbital px and py are. The other representations can be also related to other
orbitals or combination of them, dx2−y2 , dyz, fx3−3xy2 , etc.

Due to the electronic con�guration of group III and nitrogen atoms, with s and
p valence electron symmetry, the electron wave functions are essentially dominated
by those orbitals. In the case of atoms of larger atomic number, Ga (Z = 13)
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Figure 1.4: Band structure of GaN calculated within the density functional theory in the local
density approximation (see Chapter 2 for details of the calculation). The zero of energy is placed
arbitrarily at the valence band maximum. The important portion of the band structure, near
the fundamental energy gap is framed with a red rectangle.

and In (Z = 49), the d orbitals can also play an important role for an accurate
description of the electronic structure, as discussed later. The wave functions
of the lowest conduction band in the vicinity of the Γ point are mostly formed
by a combination of atomic-like s orbitals and a spin function, belonging to the
Γ7 representation of the double group [26]. This band can be considered to be
essentially 2-fold degenerate (the Dresselhaus e�ect can be neglected [27]), and
can be well approximated by a parabolic dispersion with an anisotropic e�ective
mass. This parabolic picture of the conduction band works well for GaN and AlN,
where the wide band gap prevents a sizeable coupling with the valence bands. By
the same token, in the case of InN, the narrow band gap leads a strong coupling
between conduction band and valence band manifold, resulting in a considerable
deviation from the parabolic approximation of the conduction band [28]. The
topmost valence band states are mostly a combination of orbitals of p symmetry
(px, py, and pz-like) orbitals with spin functions (spinors). These valence bands
cannot be simply represented by parabolic dispersion curves as they exhibit a
complicated dependence with k, as we will shown in detail.

While the conduction band near the Γ point is similar to that of zinc-blende
semiconductors, the valence bands are the hallmark of wurtzite semiconductors.
Figure 1.5 shows: (a) a schematic representation of the splitting of the valence
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C6v E C2 2C3 2C6 3σv 3σd Basis
Γ1 1 1 1 1 1 1 s, z, 3z2 − r2

Γ2 1 1 1 1 -1 -1 Rz

Γ3 1 -1 1 -1 -1 1 x3 − 3xy2

Γ4 1 -1 1 -1 1 -1 y3 − 3yz2

Γ5 2 -2 -1 1 0 0 (Rx, Ry), (x, y), (zx, yz)
Γ6 2 2 -1 -1 0 0 (x2 − y2, yz)

E Ē C2, C̄2 2C3 2C̄3 2C6 2C̄6 3σv, 3σ̄v 3σd, 3σ̄d

Γ7 2 -2 0 1 -1
√

3 −
√

3 0 0
Γ8 2 -2 0 1 -1 −

√
3

√
3 0 0

Γ9 2 -2 0 -2 2 0 0 0 0

Table 1.2: Character table for the wurtzite single group C4
6v at the BZ center (Γ point). The

representations are labeled as Γ1,. . . ,Γ6. The double group results due to the introduction of the
spin-orbit interaction, with representations Γ7, Γ8 and Γ9. Adapted from Ref. [29].

bands at the Γ point, and (b), the band dispersion as calculated with the tight-
binding method for InN, taking into account the crystal-�eld (∆cf ) and the spin-
orbit (∆so) interactions (see more details in Chapter 2). The crystal-�eld splitting
is a direct consequence of the anisotropy of wurtzite crystals and is one of their most
relevant characteristic. The spin-orbit interaction is a relativistic e�ect caused by
the coupling of the spin with the angular momentum, being more important in
heavier atoms. In our case, more important in InN than in GaN and AlN. An
explanation of the wurtzite valence band structure can be constructed by consid-
ering the e�ect caused by the crystal-�eld interaction in a virtual cubic crystal,
where the six valence bands are degenerate (in absence of spin-orbit interaction),
as shown in the left side of Fig. 1.5(a). The crystal-�eld interaction breaks this
degeneracy (as well as changes the space group), and now the states belong either
to the representation Γ5 (4-fold degenerate and with the same symmetry as px−py

orbitals), or to the representation Γ1 (2-fold degenerate and with the same symme-
try as pz orbitals). If one now switches on the spin-orbit interaction, the states are
further mixed to form three doublets, Γ9, Γ7,+ and Γ7,−, now labeled according to
the irreducible representation of the double space group. Considering both e�ects
the valence band wave functions in the Γ point are two-fold degenerate and belong
to the representations Γ9 and Γ7 [26]. A more detailed explanation in terms of
group theory can be found in Ref. [30]. The 2-fold degeneracy is lifted for direc-
tions perpendicular to the c-axis due to the spin-orbit interaction (see Fig. 1.5).
This is known as Dresselhaus e�ect [27].
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Figure 1.5: (a) Splitting of the Γ-point valence band states, for wurtzite III-N semiconductors,
interpreted as a result of the in�uence of the crystal-�eld and the spin-orbit coupling (after
Ref. [31]). (b) Schematic representation of the top of the InN valence band in the vicinity of the
Γ point (calculated with the tight-binding model, see Chapter 2).

An analytical expression of their energies as a function of ∆cf and ∆so can be
obtained by the k · p method [32], written as follows:1

EΓ9 = Ev + ∆cf +
1

3
∆so,

EΓ7,+ = Ev +
1

2

{
∆cf −

1

3
∆so +

√
(∆cf + ∆so)

2 − 8

3
∆cf∆so

}
,

EΓ7,− = Ev +
1

2

{
∆cf −

1

3
∆so −

√
(∆cf + ∆so)

2 − 8

3
∆cf∆so

}
,

(1.8)

where Ev is the valence band edge (in the absence of ∆cf and ∆so). In the case
of ∆so = 0, we get EΓ9 = EΓ7,+ ≡ EΓ5 , and EΓ7,− ≡ EΓ1 (see Fig. 1.5). The
magnitude and sign of the parameters ∆cf and ∆so determine the ordering of the
Γ point valence band states, as well as the o�-Γ band anticrossings. In Table 1.3
we show the band gaps, ∆cf and ∆so of the III-N semiconductors. Hence, for InN
and GaN, the ∆cf and ∆so splittings are both positive and smaller than 40 meV.
On the opposite, in the case of AlN, ∆so is negligible and ∆cf has a large negative
value (hundreds of meV), which is responsible for the di�erent photoluminescence

1Another notation for the valence bands can be found in the literature, labeling the bands as
A, B and C, starting from the valence band edge [33]. Those labels do not give any information
about the symmetry of the states and can lead to a misunderstanding when dealing with di�erent
material symmetries. In this thesis, we will use both notations in our discussion of the electronic
structure of III-N semiconductors, but always with a precise speci�cation of the symmetry of
each state.
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Eg(eV) ∆cf (meV) ∆so (meV)

InN 0.67 20-80 8-25

GaN 3.5 9-50 8-20

AlN 6.2 −(104-300) 5-20

Table 1.3: Band gap Eg, and parameters ∆cf and ∆so of III-N semiconductors, summarized
from Refs. [19, 35�39].

features of AlN crystals as compared with the other III-N semiconductors [34].
Measuring accurately the valence band splittings (∆cf and ∆so) is rather di�cult
and therefore these values are constantly revised.

One very interesting characteristic of III-N semiconductors is the wide range
spanned by their band gap value. In Fig. 1.6 we show the band gap energy of the
III-N semiconductors versus the lattice constant a. The band gaps of AlN and
GaN are in the ultraviolet part of the spectrum, whereas that of InN lies in the
infrared spectrum [40]. As we see, GaN and InN reside in the opposite sides of the
electromagnetic visible spectrum, and the ternary GaxIn1−xN compound could in
principle cover completely it by changing the alloy composition x. This property
converts GaxIn1−xN in one of the most appealing one in the �eld of photovoltaic
technology [10, 41]. The AlN and GaN semiconductors are commonly termed as
wide band gap (or wide-gap) semiconductors. Probably one of the most recognized
applications of GaN is the blue laser diode [31]. Other relevant applications are
as active material of �eld-e�ect transistor or single electron transistors [42]. The
AlGaN alloys are widely used, for instance, as ultraviolet detectors [43].

In the case of InN, the exact value of its band gap has been the object of a
notorious controversy. Nowadays, it seems to be solved with the current accepted
value of 0.67 ± 0.05 eV [1]. However, in the earliest 80's, due to the poor quality
of the InN layers available (usually grown by the sputtering technique), the as-
signed value of the band gap was around 1.9 eV [44]. The ultimate reason of this
overestimation was the high density of impurities, leads to a very hight occupancy
of the conduction band by free electrons. The resulting degenerate semiconductor
sample, exhibited a sizeable Burstein shift that manifested in the absorption spec-
tra, as an apparent higher value of the band gap. The improvement of the growth
procedures, and notably the molecular beam epitaxy technique, has allowed to ob-
tain better samples, with a much smaller impurity concentration, and �nally has
lead to the update of the band gap value to the current value of 0.67 eV, reported
almost simultaneously by the authors of Refs. [45] and [46]. This update places
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Figure 1.6: Representation of the band gap of AlN, GaN and InN versus the a lattice constant.
The question symbol asks if the controversy around the InN band gap (extracted from Ref. [47]).

the InN band gap in the infrared spectrum, and has situated the material at the
top of the list of the most investigated materials for the optoelectronic and solar
energy applications, as we have commented before.

Despite of the improvements in the growth techniques, indium nitride still
exhibit a propensity to the n-doping. Moreover, their surface states are mainly
donor-type [48], giving rise to an electron accumulation layer at the surfaces, as-
sociated with a transfer of electrons from the surface states to the bulk. It is still
under debate the character, intrinsic or not, of the electron accumulation in InN
surfaces. While there is a general agreement on the existence of an accumulation
layer on polar surfaces, the situation at nonpolar surfaces, such as the (112̄0)-
plane layers, is still controverted. In this sense, optical studies have shown that
this accumulation layer can depend on the growth conditions [49]. The study of
nonpolar surfaces is di�cult because of the high density of defects and the metalic
indium coverage exhibited by the state-of-the-art samples. A recent study suggest
that the origin of the accumulation layer in nonpolar surfaces is related to the
adsorption of oxygen at InN surface [50]. However, the high density of basal-plane
stacking faults of the studied samples prevents a de�nitive conclusion. As we ex-
plain in Subsection 1.2, the studies performed on InN nanowires seem to be more
conclusive due to the absence of defects and strain in such structures.

From a theoretical point of view, the computation e�ort has been mostly di-
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rected to the elucidation of the band structure from �rst principles. It is well known
that the indium d orbitals cannot be disregarded and that ab initio calculations
based on the local density approximations (LDA) give an incorrect estimation of
the p-d orbital coupling. This results in a zero or even negative band gap. The re-
�nement of the local density approximation by including the Hubbard model [51],
or calculations beyond density functional theory (DFT), such as the GW approx-
imation [39, 52], have shown themselves to be able to solve, at least partially, the
InN band gap problem. Concerning the indium nitride surface properties, the cal-
culations of Van de Walle's group have concluded a tendency of the polar surfaces
to develop an accumulation layer, but suggest the absence of such accumulation
layer in (112̄0) and (11̄00) surfaces under certain conditions [53].

1.2 Properties of III-N semiconductor nanowires

Nanowires (NWs) are characterized by a much larger longitudinal length (range
1-10 µm) than the cross-section dimension (range 10-70 nm). When the nanowire
cross-section reaches such dimensions that the e�ects of the quantum con�nement
on the electron states are appreciable, they can legitimately called as quantum
wires. In addition, the longitudinal direction of the NW can be used to direct the
conduction of the electrons, phonons, and photons. Thus, many physical properties
of semiconductors have stronger dependence on the geometry when grown as a
nanowire than as a bulk [54]. Contrary to the early realization of the quantum
wire concept, which were based on the formation of elongated structures, lying on
the substrate and covered with another semiconductor [55], the nanowires under
study here adopt a columnar shape, which are also called nanocolumns in the
literature [56].

Among the variety of growth techniques to fabricate group III nitride NWs,
the molecular beam epitaxy (MBE) is one of the most successful tools to obtain
NWs with high crystalline quality. It is also noteworthy the crystalline quality
achieved by another technique such as metal organic chemical vapor deposition
(MOCVD) [3, 57]. This methods typically use a catalyst that de�nes the position
and diameter of NWs and enhances the NW growth locally. Unfortunately, the
catalyst can also be a source of contamination of the sample. In the following we
describe succinctly the growth of NWs by MBE.

Molecular beam epitaxy is a growth technique based in a controlled slow depo-
sition of a thin crystalline layer on a monocrystalline substrate, in such a way that
the crystal structure of the new layer replicates that of the substrate. To achieve
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Figure 1.7: Illustration of the elemental processes taking place on growing surface during MBE.

the crystalline deposition, molecules or atoms of the constituent species are evapo-
rated from elemental beam sources (e�usion cells), depositing on the surface. Once
on the surface, the atoms move by di�usion until they reach a thermodynamically
favorable location to bond to the substrate. The main possible processes involved
in the MBE are shown in Fig. 1.7 and explained as follows:

• Deposition: The atoms arrive to the surface but they are not attached yet
and are free to move.

• Desorption: Adatoms of su�cient kinetic energy do not aggregate and leave
the substrate surface.

• Di�usion: The adatoms move on the surface to reach a energetically favorable
location.

• Nucleation: The adatoms are attached to the substrate or to the grown layer.

Because the atoms require time to di�use across the surface, the quality of
the �lm will improve with slower growth rate. Typically growth rates of about
one monolayer per second provide su�cient high quality layers. The dynamics of
the growth processes is controlled mainly by the substrate temperature and the
�ux of beam source. The chemical elements are commonly provided by e�usion
cell sources (typically knowing Knudsen cells), that contain the elemental form of
the constituents in very high purity. The cells are heated in a controlled manner
to encourage evaporation, in the required amounts or �uxes. The material �ux
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is measured by means of the beam equivalent pressure (BEP) of the atomic or
molecular beams, and it is used to quantify �ux ratios and growth rates.

Some relevant advantages of MBE are:

• The high vacuum atmosphere allows a minimization of the appearance of
non-intentional impurities, and perform an accurate doping process.

• The samples can be analyzed in-situ by re�ection high energy electron di�rac-
tion (RHEED). In this technique a beam of electrons of energy 5-40 keV is
focused into the substrate. They are re�ected from the surface at a very
small angle (less than 3◦) and directed onto a recording screen. These elec-
trons interact with only the top few atomic layers and thus provide valuable
information about the surface. The obtained di�raction pattern can be used
to establish the surface geometry and morphology.

Some disadvantages of MBE can be mentioned:

• Epitaxial growth techniques require a high crystalline quality substrate hav-
ing a small lattice mismatch compared to the material to be grown. This is
not always possible and a bu�er layer must be grown to avoid a high density
of defects.

• In order to avoid the contamination of the growing material, each MBE
system must in principle be dedicated to fabricate only one class of materials:
arsenides, nitrides, etc.

• The slow growth velocities and long growth times imply that this technique
is not appropriate to grow bulk materials. Typical thicknesses obtained by
this technique are around the micrometer.

After this brief introduction to the MBE technique, we turn to study the actual
growth procedure that generates the NWs. The procedure starts with deposition of
atoms forming a two-dimensional layer. This so-called wetting layer epitaxial layer
presents a lattice mismatch with the substrate. Therefore, the associated strain
energy increases with the thickness of the wetting layer and can be elastically
relieved by the formation of islands with dimensions of nanometers (Stranski-
Krastanov mode) [59]. This method has revealed itself as a very e�cient way
to obtain semiconductor quantum dots, free of defects. However, this process is
essentially spontaneous, and it remains di�cult to control the size and shape of
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Figure 1.8: Steps of the nanowire growth process described in Ref. [58]. (a) Di�usion of gallium
and nitrogen atoms over the AlN-(0001) surface. (b) Formation of islands of GaN. (c) Growth
of the nanowires.

the dots, and their separation. The reader can �nd more details about the growth
of self-organized quantum dots, and their main electronic and optical properties
[60, 61].

We focus from now on the growth process of GaN NWs. In Fig. 1.8 we have
represented a scheme of the NW formation, as described in Ref. [58]. The �rst step
is to di�use the gallium and nitrogen atoms on an partially relaxed AlN thin layer
on Si (001), for a �xed temperature of the substrate (step (a) in Fig. 1.8), following
the deposition of gallium and nitrogen atoms. The formation of nanometer-sized
GaN islands takes places (step (b) in Fig. 1.8). These islands are preferential
sites for further GaN growth due to strain minimization, and act as a collector of
material, becoming the seeds of the NW growth. In this step, it is also observed the
generation of a low density of columnar structures together with a high density of
GaN islands. Keeping the e�usion of atoms from the Knudsen cells, one observes
that most of the NWs grow directly on top of the three-dimension islands (step
(c) in Fig. 1.8). These NWs grow without dislocations or staking faults, being
essentialy strain-free structures. The morphology, density, and size of the NW can
be controlled to some extent by the ratio of gallium and nitrogen atoms, denoted as
III/V ratio, and substrate temperature. It is well established that the grow of III-
N NWs takes place under nitrogen-rich conditions [62], depending the temperature
on the material.2 It is important to notice the absence of catalyst elements in this
growth mode, and therefore, the absence of unintentional contamination.

Concerning the morphology of the NWs, it is important to mention that in
many of the existing samples, the NWs present a hexagonal cross-section, faceted at
(101̄0) planes. This characteristic is common to all III-N nanowires. In Fig. 1.9 we
show microscopy images of (a) GaN and (b) InN NWs. In both cases we appreciate

2In the NW literature it is common to �nd the term plasma-assisted MBE (sometimes one
can �nd this technique in the literature as PAMBE) [63].
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(a) (b)

100 nm

Figure 1.9: (a) Top view scanning electron microscopy image of GaN NWs [65], and (b) lateral
view of InN NWs [67].

the hexagonal cross-sections. Theoretical studies based on ab initio calculations
for free-standing GaN surfaces, have shown a lower formation energy for (11̄00)

surfaces than for (112̄0) surfaces [64]. As the NWs free surfaces are nonpolar, it is
logic to think that the structure choses the (11̄00) planes to minimize the energy.
The X-ray studies di�raction of Refs. [65] and [66] also point in that particular
morphology.

The method described here for the growth GaN NWs can and has been extended
to the other III-N semiconductors by the pertinent modi�cations. Therefore, by
an appropriate choice of the substrate, �ux ratio, and substrate temperature, it
has been shown feasible to grow NWs made of any III-N semiconductor [68]. The
techniques to grow InN and GaN nanowires are well established and these system
are nowadays a robust �eld of research. In the case of AlN nanowires, only re-
cently there have appeared preliminary works showing the growth with su�cient
crystalline quality and an acceptable columnar morphology [69, 70]. Table 1.10
summarizes the most important groups active in the study of III-N NWs present
as well as the main characteristics of their samples.

1.2.1 InN nanowires

The InN NWs usually grow at temperatures ranging from 400 to 600 oC, due to the
low decomposition temperature of InN. At these low temperatures the desorption
of indium (see Fig. 1.7) can be neglected, while the decomposition of nitrogen by
e�usion is a process which strongly a�ects the InN growth. The nitrogen decompo-
sition induces a segregation of indium atoms at the surface. To avoid the formation
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Group Material Substrate Diameter 
(nm)

Technique Tsubs 
(ºC)

Refs.

A. Rizzi InN Sapphire 20-80 MBE 450 [67]

E. Calleja InN AlN/Si 80-120 MBE 475 [73]

R. Calarco InN Si 50-150 MBE 440-525 [71]

B. Daudin GaN AlN/Si 40-80 MBE 720 [58]

R. Calarco GaN Si 20-50 MBE 785 [63]

E. Calleja GaN Si 65-150 MBE 660-770 [65]

V. Naraynamurti GaN Si 20-80 MOVCD (nickel) 700 [57]

B. Daudin AlN SiO2/Si 80-120 MBE 900-950 [69]

J. Jian AlN Graphite, Si, Mo 80-150 MOVCD 900 [70]

Table 1.10: Summary of the growth conditions, material, size and substrate of the III-N nanowires
studied by the most relevant research groups.

of defects during MBE growth, the nitrogen �ux must balance the indium accu-
mulation. Therefore, nitrogen-rich conditions are necessary for obtaining the InN
NWs with the characteristic columnar morphology [71, 72].

The most commonly used substrate is Si (111), that o�ers the advantages with
respect to sapphire substrates of having a low cost, high crystal quality, doping
capabilities, cleavability, and thermal conductivity [73]. The covering of the Si
(111) substrate by a thin layer of AlN has also shown the capability of the columnar
growth of InN. In Fig. 1.11 we show one of the �rst samples of InN NWs obtained
by the group of R. Calarco in 2006 [71].

Concerning the physical properties of InN NWs, the presence of an electron
accumulation at the surface, analogously to the case of InN layers is a notorious
property that is receiving a great attention [74]. The �rst evidence of an electron
accumulation layer in nonpolar surfaces were reported by the group of E. Calleja
in Ref. [75], where the measurements of the transport along the NWs indicate
a strong surface conductivity. Other studies based on Raman spectroscopy and
photoluminescence also point to the presence of a surface accumulation layer [49].
One of the aims of this thesis is to provide a theoretical model capable of explain-
ing the in�uence of this electron accumulation layer in the optical properties of
InN NWs. The Chapter 4 is devoted to the presentation of the model and the
comparison between the theoretical and experimental results.
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Figure 1.11: Scanning electron microscopy image of InN nanowires grown at substrate temper-
ature of 475 oC. Together with the name of the sample, the In-�ux in mbar. Extracted from
Ref. [71]

1.2.2 GaN nanowires

Because of the prospective applications of GaN, due to its near ultraviolet band
gap, the GaN nanowires have received an enormous attention [76]. The substrate
temperature is around 700 oC, much higher than in the case of InN NWs. In
principle, the di�erence between the substrate temperatures for the growth of
these types of NWs could represent a problem to grow NWs based on the ternary
alloy GaInN. An alternative technique to the growths of GaN NWs by MBE is
the self-catalyst vapor-liquid-solid (VLS) process [77]. Here, the GaN nanowires
nucleate and grow from Ga droplets formed during thermal decomposition of GaN
at very high temperatures in vacuum atmosphere. The disadvantages of the VLS
mode is a low control of the growth, and a larger dispersion in the sizes. In Fig. 1.12
we show a picture of GaN NWs, highlighting the hexagonal cross-section of the
structures.

Di�erently to the reported electron accumulation layer behavior at the surfaces
of InN NWs, the observed experimental transport indicates a depletion of electrons
near the surface of GaN NWs. In principle, below a critical diameter, the current
�ow is only possible with illumination by ultraviolet light that generates electron-
hole pairs. The determination of the critical diameter was achieved by performing
current voltage measurements. Such behavior has been reported in silicon-doped
GaN NWs, with the critical diameter depending on the amount of doping [78]. An
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Figure 1.12: Scanning electron microscopy image of GaN NWs oriented along the c-axis, as grown
by MOCVD over a substrate of MgO (from Ref. [80]).

atomic force microscopy point also out to the existence of such electron depletion
layer. However, there is not nowadays a de�nitive explanation of the phenomenon
[79].

1.2.3 AlN nanowires

The AlN NWs are probably the less investigated member of the family of III-N
NWs. The InN and GaN NWs have concentrated until now the major e�orts of the
scienti�c community as we have reported in the previous Subsections. However, the
band gap in the far ultraviolet (UV) of AlN makes this material very interesting for
optoelectronic applications. The Si (111) substrate used in the growth of InN NWs
is unsuitable here, since no three-dimensional islands (the precursors of NWs) are
formed, due to the almost perfect lattice matching between AlN and Si (111). An
alternative is the use of the substrate SiO2/Si (100), that facilitates the formation
of three dimensional islands, by the Volmer-Weber growth mode.3 The control of
the structural and optical properties of this kind of NWs is a challenge for the the
MBE-based techniques. In Fig. 1.13 we show the AlN NWs obtained by MBE.
The NW diameter are in the range of 80-100 nanometers. Again nitrogen-rich
conditions are necessary for the growth process, and the substrate temperature is
in the range of 900-950 oC, higher than in the case of InN and GaN NWs. This is

3In the Volmer-Weber mode the formation of three dimensional islands takes place without
the formation of the wetting layer, characteristic of the SK mode. For a detailed exposition, see
Ref. [81].
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Figure 1.13: Scanning electron microscopy image of AlN NWs on SiO2/Si (100) extracted from
Ref. [69].

because the lower di�usion of aluminium atoms compared with indium or gallium
atoms. The NWs are aligned parallel along the c-axis of the wurtzite structure
and they are found to be free of dislocations and mostly relaxed, as con�rmed by
Raman spectroscopy. Other alternatives, such as the synthesis of the NWs from
aluminium powder do not seem to obtain the crystalline quality achieved by MBE
[82]. Other e�ort in the growth of AlN NWs has achieved, with a relative success,
the fabrication of one-dimensional nanostructures, founded in the nitridation of
aluminium powder, but with a large amount of staking faults [83].

1.2.4 Applications of III-N nanowires

Nanowires are interesting as a platform for fundamental physics research. For
instance, studies concerned with the quantum con�nement can be performed if
the NWs have a diameter below ∼20 nm. In Fig. 1.14 we can see the photolu-
minescence spectra of single NWs with diameter below 20 nm. The NWs were
grown by laser-assisted catalytic growth using gold catalyst, and dispersed on ox-
idized silicon substrate. In this case, the con�nement leads a substantial increase
in the emission energy [84]. This reported two-dimensional con�nement endows
NWs with unique properties which stray from those of their corresponding bulk
materials [85]. The NWs have also demonstrated to be a suitable platform for
the growing of the zinc-blende phase of materials, which are thermodynamically
unstable when grown in bulk form. This is the case, for instance, of GaN and InP
[15, 86]. In this sense, it is noticeable the absence of theoretical studies concerning
the electronic structure of these wurtzite/zinc-blende semiconductors heterostruc-
tures. Moreover, NW heterostructures are currently being grown within the NWs
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Figure 1.14: Photoluminescence spectra taken at (a) room temperature and (b) 7 K, for single
InP NWs with nominal diameters of 50, 20, 15, and 10 nm. In (c) and (d), energy of the
photoluminescence peak versus diameter. Extracted from Ref. [7].

themselves, as either nanodisks along the NW axis, or as radial nanowires (core-
shell), where the composition varies with the radius [87]. In addition, the large
aspect ratio of NWs makes them a convenient structure for studies related with
transport phenomena [88].

The constant improvement of the technology for the fabrication of NWs, has
made possible the design of novel devices and applications. In the �eld of the
energy conversion, NWs has been received an increasing attention, proposing them
as novel solar cells [6]. For instance, in solar cells, the e�cient charge separation of
electrons and holes after photoexcitation is desired. In this way, coaxial nanowires
can in principle provide this feature [89]. Moreover, the possibility of separating
NWs from the ensemble were they are grown, can allow the fabrication of single-
nanowire solar cell, that can be useful in the design of future macroscopic solar cells
based in arrays of such nanostructures [90]. In addition, the superlattice nanowires
can lead the building of more e�cient light-emitting diodes (LEDs), where the
light emission is achieved in an active region of precisely controlled dimensions, by
growing a section of an appropriate material inside a NW p-n junction [91].



22 Introduction

1.3 Theoretical modeling of III-N nanowires

In this thesis, we have studied theoretically the electronic and optical properties
of III-N NWs with several approaches, depending on the size of the NW. In a
preliminary step, ab initio methods based on the density functional theory, have
been used to obtain the bulk electronic structure of III-N semiconductors. On
the other hand, the posterior study of the III-N NWs has been performed with
semi-empirical methods, whose parameters have been derived from the bulk ab
initio results. The term semi-empirical is used in this work to emphasize that the
parameters are deduced from a well founded theoretical model, and are not just the
result of an arbitrary �tting procedure. For the latter kind of procedures we reserve
here the term empirical. The semi-empirical methods used in this thesis can be
further divided into atomistic-like (the pseudopotential and tight-binding methods)
and continuum-like (e�ective-mass approximation). An schematic guide of the
calculations performed in this thesis is shown in Fig. 1.15. The pseudopotential
model is used for the study of free-standing GaN NWs, with diameters ranging
from 1 to 10 nm approximately. The tight-binding method, which is able to deal
with larger NWs, until a diameter of 20 nm, is applied in a comprehensive study
extended to all types of III-N NWs. It is worth to mention that our �ndings cannot
be compared with experimental results since the current growth methods have not
produced narrow III-N NWs, although as seen in Fig. 1.14, such capability has been
demonstrated for InP nanowires. Therefore, the value of our atomistic calculations
of our NWs lies on one hand in the methodological level and as predictions to be
checked when su�ciently narrow NWs are available. On the other side, the study
of the electron accumulation layer in InN NWs, and its in�uence on the optical
properties needs a self-consistent solution of the Schrödinger-Poisson system of
equations, that would be very computationally demanding for both the atomistic
methodologies commented above. Fortunately, the size of the InN NWs is above
20 nm in the samples in which the optical experiments were performed, and for
these dimensions, an atomistic treatment is unnecessary, and the e�ective-mass
approximation (EMA) is a suitable method.
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In the following, we enumerate the main characteristic of the theoretical models
employed in this thesis:

• First principles or ab initio methods : These approaches apply the laws of
quantum mechanics, avoiding if possible the introduction of parameters. The
atoms of the system are explicitly included, and an optimization process is
applied until the system reaches the minimum of the total energy. The ab
initio methods provide a very accurate information about the properties
of bulk materials, such as the lattice constants, band structure, or elastic
constant [92]. Thus, the obtained information from the ab initio methods
is invaluable for a precise knowledge of the bulk band structure, and it is
also useful for the deduction of parameters for the empirical methods. In
Chapter 2, we present calculations performed by ab initio methods, based on
the density functional theory, of the band structure of III-N semiconductors.

The use of such ab initio methods in nanostructures, composed by many
atoms (thousands of atoms), is strongly limited due to the computational
resources required. The advance in the computational capabilities has made
possible the application of the ab initio methods to small nanostructures [93].
Thus, in the �eld of III-N NWs, one can �nd ab initio calculations of the
electronic structure of small NWs of AlN [94], GaN [95, 96] and InN [97, 98].
Such studies are very useful to confront their results with those obtained from
empirical methods. However, the studies of trends in the physical properties
with varying nanostructure sizes or shapes, that require e�cient repetition of
calculations, are still impractical and more simpli�ed methods are demanded
for such tasks.

Another advantage of performing calculations with the ab initio methods is
the availability of extensively developed software for those purpose. A large
community of researchers is involved in the implementation of the theory
in e�cient and easy-to-use environments for the users. It is worth to men-
tion that most of the ab initio codes are open-source, which certainly has
contributed to their expansion. In this thesis, we have used the codes AB
INIT [99] and QUANTUM ESPRESSO [100] codes, as explained in Chap-
ter 2. Other popular codes that implement calculations based on the density
functional theory are SIESTA [101], developed mainly in Spain, or WIEN2k,
created at the University of Vienna, Austria [102].

• Semi-empirical atomistic methods : In these approaches the electronic struc-
ture of the material is also obtained by solving the one-particle Schrödinger
equation with the explicit consideration of the atomic positions. However,
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contrary to the ab initio methods, the interactions between the atoms are
now simulated by a set of judiciously chosen parameters, thus avoiding the
need of self-consistent calculations. The computation time for the calcula-
tions is now much shorter than in the case of ab initio methods and this
means, their use has become very common in the study of the physical prop-
erties of all kinds of nanostructures. The most important semi-empirical
atomistic methods are the empirical pseudopotential and the tight-binding
approaches [103�105].

In the pseudopotential method, the electron-ion and electron-electron inter-
action is embedded in the use of atomic pseudopotentials, which are chosen
in such a way that the band structures of the bulk materials reproduce to the
largest possible extent the available experimental data and/or ab initio bulk
results. This method has been widely used in the �eld of nanostructures to
model the electronic structure and the optical properties of quantum dots
[106, 107]. In the �eld of NWs, most of the theoretical e�ort has been ad-
dressed to the study of zinc-blende NWs grown in the [111] direction [108],
and more recently, also in wurtzite NWs [109, 110]. In Chapter 3 of this the-
sis, we will study the electronic structure of wurtzite GaN nanowires, grown
along the c-axis, by the semi-empirical pseudopotential method [111]. In
Chapter 2 we present such formalism, together with our own calculations in
GaN and AlN bulk of the band structure.

On the other side, the tight-binding method, which is also an atomistic ap-
proach, codes all the information about the interatomic interactions into a
set of parameters interpreted as overlap integrals between atomic-like or-
bitals [112].4 The tight-binding method o�ers an intuitive picture of the
electronic states in terms of the mentioned atomic-like orbitals. The general
formulation for the III-N bulk is given in Chapter 2. Analogously to the pseu-
dopotential method, the tight-binding approach is also a suitable and broadly
used methodology for the predictions of the electronic and optical properties
of nanostructures [105, 113�115]. In the last years, the tight-binding method
has also been applied to the calculation of the optical properties of zinc-
blende [116] and wurtzite NWs [98, 117�119]. In this thesis, we apply the
tight-binding method to study the electronic structure and the anisotropy in
the optical response of the III-N nanowires, as presented in Chapter 3.

• E�ective-mass approximation: In this approximation, the crystal microscopic
potential is replaced by a constant potential. The electron is assumed to move

4This method is also called the linear combination of atomic orbitals (LCAO).
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in vacuum with a renormalized mass (known as e�ective mass, m∗), that de-
pends on the material [120]. The electron wave function is expressed as the
product of a periodic function and an envelope function. In this thesis, the
e�ective-mass approximation (EMA) is applied in its simplest version, as-
suming the single-band model (particle-in-a-box). In the treatment of large
nanostructures, with 104-109 atoms, EMA is an appealing methodology since
the computational requirements are essentially independent of the nanostruc-
ture size. Besides, the introduction of external �elds is performed in a very
intuitive way. Thus, for example, the problem of the electron accumulation
layer in InN surfaces commented brie�y in Section 1.2 is hardly a�ordable by
means of an ab initio approach. The empirical atomistic approaches can give
valuable information for large NW sizes, but parametric studies as a function
of size or impurity concentration are impractical due to the large number of
repetitive calculations required. It is here where the use of theoretical tools,
based on the solid as a continuum, in which the electron moves as in vacuum
but with a renormalized kinetic energy are especially suitable for the simu-
lation of large nanostructures. Thus, although the EMA has been strongly
criticized [121], it has demonstrated to be a valid method in an appropri-
ate range of nanostructures sizes [122, 123], usually for dimensions above
10 nm. Besides, the required computational e�ort is minimal in comparison
with the atomistic methods, being possible the performance of calculations
in desktop computers [124]. In Chapter 4 of this thesis, the electron accumu-
lation layer of large InN NWs (diameter above 20 nm) is calculated within
the self-consistent (Schrödinger-Poisson) e�ective-mass approximation. This
approach allows us to study the in�uence of the electron distribution on the
optical properties, by varying the NW size and the impurity concentration,
and to perform a successful comparison with available experimental mea-
surements of photoluminescence excitation.



Chapter 2

Electronic structure of III-N

semiconductors

The aim of this Chapter is to summarize the theoretical methods used in the
calculation of the electronic structure of III-N nanowires. Besides the general
formulation of each method, we also show our calculations of the band structure
of bulk III-N semiconductors, in order to introduce concepts that help in the
exposition of subsequent Chapters.

This Chapter is organized as follows:

• Section 2.1 gives an outline of the density functional theory and introduces
the Kohn-Sham (KS) equations. The local-density approximation (LDA) and
the variant constructed by adding the Hubbard-like term in the Hamiltonian
(LDA+U) are exposed afterwards. Then, the pseudopotential concept and
the plane-wave representation, used in practice to solve the KS equations,
are explained. It follows a discussion of the results that we have obtained for
the band structure of III-N semiconductors, InN, GaN, and AlN.

• Section 2.2 deals with the semi-empirical pseudopotential method as applied
to wurtzite semiconductors. Unlike the standard procedure, we derive the
pseudopotentials directly from the ab initio calculations. This procedure to
obtain these screened pseudopotentials as well as the strategy to reduce the
computation time and correct the ab initio band gap problem arex explained
in detail. The set of obtained pseudopotentials are suitable to perform cal-
culations in nanostructures, and in particular, we will use then to compute
the electronic structure of GaN nanowires in Chapter 3.
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• Section 2.3 is concerned with the introduction of the semi-empirical tight-
binding method. The tight-binding parameters have been obtained by �tting
the ab initio band structures calculated in Section 2.1. We have taken special
care in obtaining the true symmetry of the wave functions at the center of the
Brillouin zone. The set of tight-binding parameters obtained here will then
be used in the electronic structure calculations of various III-N nanowires in
Chapter 3. The treatment of the optical absorption within the tight-binding
formulation is explained in Section 2.4.

2.1 Density functional theory

Many of the physical properties of solids are related to total energies or to total
energy di�erences. For instance, the equilibrium lattice constant of a crystal is
given by the atomic spacing that minimizes the total energy. Surfaces and defects
of solids adopt the structure that minimizes their corresponding total energies. If
total energies can be calculated, any of those physical properties, can be deter-
mined computationally, in principle. The methods that obtain the total energy
of the system, and then by applying the laws of the quantum mechanics, starting
exclusively with the atomic information of the constituents of the system (in the
case of solids, the number of positively charged nucleus and the number of elec-
trons), are termed as ab initio or �rst principles methods. Among the variety of ab
initio methods proposed, the density functional theory (DFT) has demonstrated
to be an extremely successful approach for the description of the ground state
properties of solids. The main idea behind the DFT is the possibility to describe
the system by its electronic density, instead of using its complete many-body wave
function [125]. The Kohn-Sham (KS) equations provide the way to convert the
DFT a practical methodology [126]. The approximation within the DFT most
used often is the local-density approximation (LDA), which locally substitutes the
exchange-correlation energy on an inhomogeneous system by that of the homo-
geneous electron gas. Next, we recall the main ideas concerning the DFT, KS
equations, and LDA. At the end of the Section, we present our ab initio calcula-
tions of the electronic structure of III-N semiconductors. Readers familiarized to
the fundamentals of DFT are suggested to go directly to Subsection 2.1.3.

2.1.1 General formulation

The problem of solving the Schrödinger equation of a solid, where there are nu-
merous nuclei and electrons (of the order of 1023), is computationally intractable
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without some simpli�cations. The �rst one the Born-Oppenheimer approxima-
tion, which justi�es the decoupling of the electronic and nuclear dynamics. In the
next step one usually applies one of the various forms of mean �eld approxima-
tions, leading to the substitution of the N -electron problem by N single-electron
problems. It is not our aim here to analyze in detail the implications of these fun-
damental approaches, and we therefore refer the reader to Ref. [127] for a detailed
explanation.

As mentioned above, one of the most successful mean-�eld approaches is the
density functional theory (DFT) formulated in the 60's of the past century by
Hohenberg, Kohn and Sham [128, 129], that it has become the standard method
in the calculation of the electronic structure of solids. For this work, W. Kohn
received the Chemistry Nobel Prize in 1998, together with J. Pople [130].

Hohenberg-Kohn theorems : The starting point of DFT is a system of N in-
teracting electrons under the in�uence of an external potential Vext(r). In most
situations Vext(r) is the total coulombic potential created by the nuclei of the solid,
assumed to be at �xed positions. The ground state many-body wave function of
the system is denoted as Ψ and the corresponding density is n(r). The ground
state energy can be written as follows:

E = T + Vee + V, (2.1)

where T = 〈Ψ|T̂ |Ψ〉 is the kinetic energy term and Vee = 〈Ψ|V̂ee|Ψ〉 is the Coulomb
electron-electron interaction energy. The functional that relates the external po-
tential with the density is then:1

V [n] =

∫
Vext(r)n(r)d3r. (2.2)

The �rst Hohenberg-Kohn theorem establishes that the ground state density
n(r) uniquely determines the external potential Vext(r), up to an additive con-
stant. The second Hohenberg-Kohn theorem demonstrates that the functional
F [n], de�ned as follows:

F [n] = 〈Ψ|T̂ + V̂ee|Ψ〉 = T [n] + Vee[n], (2.3)

is the same for all electronic structure problems, because in its de�nition no men-
tion has been done to the external potential. Therefore, the total energy functional
can be written as follows:

1A functional is a mapping that assigns a number to a function.
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E[n] = F [n] +

∫
Vext(r)n(r)d3r, (2.4)

As the functional F [n] takes its minimum value for the ground state density, and
the �rst theorem establishes a univocal relation between the density and the ex-
ternal potential, the total energy potential has its minimum value for the ground
state density [131].2 Unfortunately, the Hohenberg-Kohn theorems do not provide
the exact functional F [n], and the problem of determining the ground state energy
and density is subordinate to the discovery of su�ciently accurate estimations of
such functional.

Kohn-Sham equations : These equations establish the methodology for the prac-
tical use of the Hohenberg-Kohn theorems [126]. In these equations, the interact-
ing electron system under the in�uence of the external potential is represented (or
screened) by a system of non-interacting electrons under the in�uence of a mean-
�eld potential. This potential, called as KS potential VKS(r), is chosen in such a
way that its ground state density is the same as for the interacting electron system.
The one-electron KS wave functions are then the solutions of the single-particle
Schrödinger equation3

{
−1

2
∇2 + VKS(r)

}
ψi(r) = εiψi(r), (2.5)

where εi are the energy eigenvalues. The potential VKS(r) includes the external
potential and the electron-electron interaction, and will be explicited later. The
density n(r) is written as follows:

n(r) =
N∑

i=1

|ψi(r)|2, (2.6)

where only the N occupied (lowest energy) states participate in the construction
of n(r).

Now we de�ne the mean-�eld kinetic energy of the non-interacting electrons as
follows:

2We assume here that electrons are non-spin-polarized. The extension to spin-polarized sys-
tems is straightforward; the total energy becomes a functional of the spin density, which in the
general case is given as a four component spinor [132].

3Except where noted, we use here atomic units, so that: e2 = ~ = m = 1, the unit of energy
is Hartree, and length is in Bohr.
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Ts[n] =
N∑

i=1

〈ψi| −
1

2
∇2|ψi〉, (2.7)

that it is slightly di�erent from the kinetic energy T of the interacting electron
system [126]. The functional F [n] is now conveniently rewritten in terms of Ts as
follows:

F [n] = Ts[n] + VH [n] + EXC [n], (2.8)

the Hartree energy

VH [n] =

∫
n(r)n(r′)

|r − r′|
d3rd3r′, (2.9)

and the term EXC is the exchange-correlation energy. The exchange energy is due
to the antisymmetry of the many-electron wave function, that produces a spatial
separation between electrons with the same spin, thus reducing the Coulomb en-
ergy of the system [131]. On the other side, the correlation energy comes from the
di�erence between the many-body energy of an electronic system and the energy
of the system calculated in the Hartree-Fock approximation [133].

Therefore, the potential VKS(r) of Eq. (2.5) is given by

VKS(r) = Vext(r) +

∫
n(r)

|r − r′|
d3r′ + VXC , (2.10)

where

VXC [n] =
δEXC

δn(r)
. (2.11)

The system of equations (2.5), (2.6) and (2.10) are known as Kohn-Sham equa-
tions. By solving them self-consistently, the ground state density and the total
energy of the system can be subsequently found [129]. In the following, the in-
teraction of the electrons with the nuclei is introduced by means of the external
potential. The Kohn-Sham equations are exact, and provide the exact ground
state density. Moreover, the KS equations provide reliable solutions in reasonable
computational times. However, all the bene�ts promised by this theoretical frame-
work depend on the ability to deal with the exchange-correlation functional, in an
exact rigorous manner (that nobody has succeeded to this date) or by means of
�nding accurate approximations.



32 Electronic structure of III-N semiconductors

Local-density approximation and the band gap problem: The simplest approxi-
mation, and also the most widely used to the exchange-correlation energy EXC , is
the local density approximation (LDA). The EXC is obtained from

EXC =

∫
εXC(r)n(r)d3r, (2.12)

where εXC(r) is a local functional of the density at every point r, obtained by
assuming the value it could take for the density of a homogeneous electron gas
in its ground state [125]. Thus, the LDA assumes that the exchange-correlation
energy of a non-uniform system can be obtained by using the information obtained
from the uniform electron gas. Therefore, e�ects of the inhomogeneities in the
density on EXC are ignored. Despite this gross oversimpli�cation, it is remarkable
the good results that the LDA has provided over the years [131]. This is so to
such an extent that DFT-LDA can be considered the cornerstone of most of the
electronic structure calculations.

However, one of the major problems of LDA is that it systematically underes-
timates the band gap of semiconductors and insulators with respect to the experi-
mental value. As we have illustrated in Fig. 2.1, the band gap of a semiconductor
is the di�erence between the ionization potential (I = −(E[N ] − E[N − 1])) and
electron a�nity (A = −(E[N+1]−E[N ])), with E[M ], indicating here the ground
state total energy of the M -electron system, written as follows [134]:

Eg = A− I = E[N + 1] + E[N − 1]− 2E[N ]. (2.13)

Thus, the exact band gap can be expressed by

Eg = Eg,KS + ∆XC , (2.14)

where the DFT-KS band gap is:

Eg,KS = εKS,N+1(N)− εKS,N(N), (2.15)

where εKS,i(M) is the energy of the ith single particle eigenvalue of Eq. (2.5) for
the M -electron system. The term ∆XC is the di�erence between the (N + 1)−th
eigenvalues in the (N + 1)− and N−electron systems

∆XC = εKS,N+1(N + 1)− εKS,N+1(N). (2.16)
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Figure 2.1: Illustration of the DFT Kohn-Sham one-electron energies, shown in the form of a
band structure, for the N and (N+1)-particle systems, and their relation with the exact band
gap of the solid. Extracted from Ref. [139].

This di�erence arises from the discontinuity in the exchange-correlation poten-
tial under adding and subtracting an in�nitesimal fraction γ of the integer particle
number N [135]

∆XC = lim
γ→0

(
δEXC [n]

δn

∣∣∣∣
N+γ

− δEXC [n]

δn

∣∣∣∣
N−γ

)
. (2.17)

As the exchange-correlation functional is continuous in LDA , the discontinuity
of Eq. (2.17) cannot be reproduced. In any case, the question if some other ap-
proximation to the functional EXC [n] can allow to DFT to estimate accurately the
band gap is controversial and under debate [136]. In principle, for the wide band
gap nitrides, GaN and AlN, the underestimation of the band gap given by LDA is
not a pivotal problem, because it does not a�ect signi�catively to the quality of the
calculated valence bands. Besides, the experimental band gap and upper unoccu-
pied (conduction) bands can be forced upon by a rigid shift of the LDA conduction
band. However, in InN, because of its narrow band gap, the LDA produces a zero
or even negative band gap, altering substantially the valence bands, and making
the whole band structure unreliable. For the correction of this underestimation of
the band gap, a wealth of alternative approaches to LDA have been proposed, the
most relevant ones being the application of exact-exchange potentials [137] and
the LDA+U method [138].

Other approaches beyond DFT, that are based in many-body perturbation
theory and in the Green-function formalism, e. g., the GW approximation, have



34 Electronic structure of III-N semiconductors

demonstrated the capability to improve the LDA results [52, 140]. However, these
methods are much di�cult of implementing and add a substantial increment in
the computational time.

The LDA+U method : Among all the approaches applied to palliate the LDA
band gap problem, the LDA+U method requires less computation time and it is
simpler to apply. We explain brie�y this approach, since it will be later applied to
the narrow gap semiconductor InN. Although this method was initially introduced
to make possible the description of strong electronic correlations, such as those
found in transition metal or rare-earth metal ions, where partially �lled d and f
orbitals are of importance [138], it has been recently demonstrated its utility in
the description of the electronic structure of ZnO and InN [51]. In the LDA+U ap-
proach, the Coulomb interactions between d electrons are taken into account via a
mean-�eld Hubbard-like correction to the standard exchange-correlation functional
[141]. While the s and p electrons could be excluded from this approximation, be-
ing dealt only within the LDA approach, the interactions between d electrons are
supposed to be expressible as a function of the generalized orbital occupations,
nI

mm′ of atomic sites I, de�ned as:

nI
mm′ =

∑
i

fi〈ψi|P I
mm′|ψi〉, (2.18)

where ψi are the wave functions of the KS eigenvalue εKS,i (see Eq. (2.5)), fi is
the occupation number of the i-th state, and P I

mm′ are the generalized projection
operators

P I
mm′ = |ϕI

l,m〉〈ϕI
l,m′|, (2.19)

being ϕI
l,m the valence orbital of atom at site I with angular momentum (l,m).

The total occupation of the atomic site I is then nI =
∑

m n
I
m ≡

∑
m n

I
mm. The

correction to the total energy considering the occupation of the d-states (here
l = 2 and −2 ≤ m ≤ +2), is written in a simpli�ed scheme as (a more detailed
exposition on Ref. [142]):

ELDA+U [n] = ELDA[n] +
∑

I

[
U

2

∑
m,m′

nI
mn

I
m′ −

U

2
nI(nI − 1)

]
, (2.20)

where the �rst term represents the correct on-site correction to the correlation func-
tional. As LDA is supposed to contain this contribution in an averaged manner, a
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negative term is added to avoid such duplicity. U represents the screened on-site
Coulomb parameter. Finally, the new potential to be included in the Kohn-Sham
equation (2.5) (VKS → VLDA+U) is de�ned by

VLDA+U |ψi〉 = VLDA|ψi〉+
∑

I

∑
m

U

(
1

2
− nI

m

)
P I

mm|ψi〉. (2.21)

To give an idea of how the LDA+U method works, let us take a simple example
by considering the last occupied state εv (occupation nm ≈ 1) and the �rst unoc-
cupied state εc (occupation nm ≈ 0). For simplicity we consider only one atomic
site. If we di�erentiate the energy with respect to the occupation number nm, we
get

εm =
∂ELDA+U

∂nm

= ε0
m + U

(
1

2
− nm

)
, (2.22)

where ε0
m is the corresponding LDA result. The di�erence between εc and εv gives

the corrected LDA+U band gap

εLDA+U = ε0
c − ε0

v + U = εLDA + U. (2.23)

Therefore, the gap between the last occupied orbital (ni ∼ 1) and the �rst
unoccupied orbital (ni ∼ 0) would be opened a width U . As we will show later,
LDA+U provides an optimal solution for the band gap problem in InN. For a more
detailed account of LDA+U , we remit the interested reader to the Ref. [143].

2.1.2 Plane wave representation and pseudopotentials

In solid state physics, due to the periodicity of crystals, the Bloch's theorem estab-
lishes that the wave function of an electron with wave vector k in band j, ψj,k(r),
can be written as the product of a plane wave and a periodic function, uj,k(r):

ψj,k(r) = eik·ruj,k(r), (2.24)

where k can be restricted without loss of generality to the �rst Brillouin zone (BZ)
[144]. As uj,k(r) has the periodicity of the crystal lattice, it can be expanded in
a Fourier series of plane waves with wave vectors G belonging to the reciprocal
lattice:4

4The reciprocal lattice is formed by those vectors G that satisfy eiG·R = 1 for any vector of
the crystal lattice R.
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uj,k(r) =
∑
G

Aj,k(G)eiG·r, (2.25)

and the Bloch wave function of the electron can be expressed as follows:

ψj,k(r) =
∑
G

Aj,k(G)ei(k+G)·r =
∑
G

Aj,k(G)〈r|k + G〉, (2.26)

where the plane waves 〈r|k + G〉 = 1√
V
ei(k+G)·r form an orthogonal basis:

〈G|G′〉 = δG,G′ . (2.27)

Therefore, the plane wave basis is specially suited for such periodic systems.
In the plane wave representation, the KS equation (2.5) takes a very simple form,
that can be obtained by multiplying by 〈k+G| from the left, and integrating over
r, to give a matrix eigenvalue problem for every k within the BZ [145]:

∑
G′

{
1

2
|k + G|2δG,G′ + V̂KS(G−G′)

}
Aj,k(G′) = εjAj,k(G), (2.28)

where V̂KS(G−G′) is the Fourier transform of the K-S potential combining external
and Coulomb (Hartree and exchange-correlation terms) terms. As we see, in the
plane wave representation the eigenvalue problem expressed by the KS di�erential
equations transforms into a matrix diagonalization problem where the kinetic en-
ergy only contributes to the diagonal matrix elements. Usually, to calculate the
potential contribution, each part, external, Hartree and exchange-correlation, is
considered separately (see Ref. [146] for details). Moreover, in practical calcula-
tions the plane wave basis must be truncated. This can be done by �xing the
cuto� energy, Ecut, that determines the number of plane waves used by imposing:

1

2
|G|2 ≤ Ecut, (2.29)

the value of this energy cuto� is set by testing the convergence of the total energy
with the increase of Ecut. Proceeding by this way we make the basis size to depend
on only one parameter, Ecut.

However, the important disadvantage of the plane wave basis must also be
commented. Since the plane waves are non-localized functions, it is required to
use large basis sizes to deal with strongly oscillating functions (as the case of the
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atomic orbitals) or very localized functions. This problem can be overcome by
introducing the concept of pseudopotential [147], that it will be explained below.
In addition, the plane wave basis is in principle not suitable to deal with �nite
system. Therefore, in these cases, the use of a plane wave basis cannot take
advantage of the interface to vacuum to reduce the basis size. In those cases, a
large supercell is de�ned to enforce the periodicity of the system, but the supercell
must be large enough to prevent coupling between di�erent replica of the system.
This same problem arises in systems with relevant inhomogeneities. We will come
back to this point in Chapter 3.

Before introducing the pseudopotentials, it is useful to split the electrons into
core and valence electrons. This makes sense since most of the physical and chem-
ical properties of crystals depend to a very good approximation only on the dis-
tribution of the valence electrons. Thus, the core electrons are strongly localized
around the nucleus, interacting minimally with electrons from other atoms. It is
therefore sensible to make the frozen core approximation that assumes the core
electrons to be unperturbed by the environment. The contributions of the core
electrons and nuclei are therefore combined into a single ionic pseudopotential. In
this way, a great simpli�cation is introduced into the KS equation, and the number
of eigenvalues to be calculated now is substantially reduced. Note also that the
external potential, mentioned in the exposition of the fundamentals of DFT, will
be in the following this ionic potential (Vext → Vion).

However, in spite of the frozen core approximation, the ionic potential still has a
sharp oscillating pro�le near the core region, as a consequence of the orthogonality
between the valence wave functions and the core electron wave functions [148].
Therefore, the number of plane waves necessary to describe such wave functions
will still be huge. On the other hand, it is expected that for distances far enough
from the core, the valence electrons feel only a smooth screened potential. Thus, it
would be desirable to substitute the rippling ionic potential by a smoother function,
that mimics the all electron wave function outside a selected ionic radius (cuto�
radius rc) as illustrated in Fig. 2.2 [149, 150]. This is the so-called pseudopotential
approximation. Now, the pseudopotential and the pseudo wave functions have
a nodeless pro�le, or in the pseudopotential terminology, they are soft. For soft
pseudopotentials the number of plane waves necessary to expand the pseudo wave
function should be as small as possible.

A formal justi�cation of the pseudopotential approximation can be given fol-
lowing the formulation of Phillips and Kleinman [149], that we sketch here. Let
|φi〉 be the true valence wave function with energy εi, and |χn〉 the true core
wave functions with eigenvalues En. The aim is to achieve a smooth pseudo wave
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Figure 2.2: Illustration of the true wave function and electronic potential (solid lines) plotted
against distance r from the atomic nucleus. The corresponding potential and pseudo wave
function are drawn with dashed lines. The true wave function and the pseudo wave function are
identical outside a certain radius, here denoted as rc.
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function ψi. We can write the valence wave function as:

|φi〉 = |ψi〉+
∑

n

cn|χn〉. (2.30)

Since the wave functions are orthogonal:

〈χn|φi〉 = 0 = 〈χn|ψi〉+ cn → cn = −〈χn|ψi〉, (2.31)

and the Eq.(2.30) is written now as:

|φi〉 = |ψi〉 −
∑

n

〈χn|ψi〉|χn〉. (2.32)

Now by introducing this expression into the Schrödinger equation, Ĥ|φi〉 =

εi|φi〉, obtain an e�ective equation for |ψi〉 and εi:

Ĥ|ψi〉+
∑

n

(εi − En)|χn〉〈χn|ψi〉 = εi|ψi〉. (2.33)

It can be shown that the second term is a strongly repulsive potential which
almost cancels the strongly attractive core potential implicit in Ĥ, leaving a weak
soft e�ective potential. The smooth pseudo wave functions obey a Schrödinger
equation with an additional energy dependent pseudopotential. The pseudopoten-
tial can be written as follows:

Vps = Vion +
∑

n

(εi − En)|χn〉〈χn|ψi〉. (2.34)

Now we can write the KS equation (2.5), taking account this reformulation of
the ionic potential:

− 1

2
∇2|ψi〉+

[
VH + VXC +

{
Vion +

∑
n

(εi − En)|χn〉〈χn|

}]
|ψi〉 = εi|ψi〉. (2.35)

Since the atomic core wave functions |χn〉 depend on the angular momentum
(l,m), the most general form of the ionic pseudopotential can be expressed as
follows [151].
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Vps =
∑
l,m

Vps,lP̂l,m, (2.36)

where P̂l,m = |l,m〉〈l,m| is the projector on the angular momentum state (spher-
ical harmonic) (l,m). However, for computational tasks such expression is not
convenient, and it is reformulated as follows. For large distances from the core, it
is assumed that Vps,l reduces to an screened Coulomb potential and gets indepen-
dent of l. Thus, a good approximation would be to express the pseudopotential as
a local part plus a sum over l-dependent nonlocal terms for l < lmax :

Vps = Vlocal + Vnonloc = Vlocal +
∑
l,m

|l,m〉vnonloc,l〈l,m|, (2.37)

In this expression the local term vanishes if r < rc. In �rst approximation, the
pseudopotential can be considered as local, though the nonlocal part is far from
negligible. In Section 2.2 some further details will be given in the context of the
calculations of the nonlocal part of the semi-empirical pseudopotential.

In summary, the pseudopotential formulation allows us to avoid the use of the
true atomic potential, and simpli�es enormously the resolution of the KS equa-
tions. However, the best pseudopotential is a priori unknown, and the problem of
determining such pseudopotential is not a trivial task. Since the works where the
use of pseudopotentials was �rst proposed [152], the sophistication of the methodol-
ogy to generate accurate and e�cient pseudopotential has grown notably. Usually,
the construction of a pseudopotential starts from ab initio calculations for an iso-
lated atom. However, it is also desirable a pseudopotential able to be used in other
chemical environments, di�erent from where it was generated. This property is the
so-called transferability. The properties of softness and transferability are closely
related to the cuto� radius rc, and compete with each other. Thus, a low rc gives
pseudopotential very transferable, and on the other side, large rc makes the the
pseudopotential softer. Therefore, one must �nd a compromise between the two
requirements. The main criteria to generate pseudopotentials, among others, are:

• Norm-conserving pseudopotentials: First, the pseudo wave function outside
rc must mimic the all electron wave function. Moreover, inside the sphere
de�ned by the cuto� radius the pseudo wave function and the all electron
wave function must have the same norm, in order to guarantee that both
wave functions generate identical electron densities in the external region
[153, 154].
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• Ultra-soft pseudopotentials: Here the pseudo wave functions are required to
be equal to the all electron wave functions for r > rc but the norm-conserving
requirement is relaxed, and the pseudopotential for r < rc is allowed to be
as soft as possible [155].

A more extended explanation of each kind of pseudopotential, and how to
generate them can be found in Ref. [156].

2.1.3 Band structures of bulk III-N semiconductors

Once the theoretical background of the DFT and the description of the approxi-
mations LDA and LDA+U have been introduced, in this Subsection we illustrate
the suitability of both approaches for the calculation of the band structure of III-N
semiconductors. We have separated the discussion of our calculations for GaN and
AlN (wide band gap nitrides) on one side, and InN on the other, because of the
re�nement of the LDA that it is required in the InN case on account of its narrow
band gap. In the case of GaN and AlN, the code AB INIT has been used [99].
This open-source software is able to calculate the total energy, charge density and
electronic structure of systems made of electrons and nuclei (molecules or periodic
solids) within the DFT, using the plane wave representation and the pseudopoten-
tial method. The norm-conserving Troullier-Martins pseudopotentials have been
used here [99]. On the other side, for the calculations of narrow band gap InN,
the QUANTUM ESPRESSO software has been used [100, 157]. The QUANTUM
ESPRESSO is an integrated suite of computer codes able to calculate the elec-
tronic structure of solids, within the DFT, as the mentioned AB INIT. In this
case, Perdew-Zunger ultrasoft pseudopotentials were used [100]. Moreover, in all
the ab initio calculations of III-N semiconductors, the spin-orbit interaction has not
been included, with the intention of adding it a posteriori when implementing the
semi-empirical approaches. The most important speci�cations of the calculations
can be found in Table 2.1. Concerning the DFT calculations, we have performed
the LDA calculations of the GaN and AlN band structure in collaboration with
G. Bester, from the Max-Planck Institute, Stuttgart (Germany), and the LDA+U
computation of the InN band structure has been carried out by A. Terentjevs and
G. Cicero, from the Politecnico di Torino, Italy.
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Wide-gap nitrides: GaN and AlN

For the LDA calculations5 of the GaN and AlN band structure the lattice pa-
rametershave been �xed at the outset. The experimental values of the a lattice
constant have been assumed, and c has been obtained under the condition of ideal
wurtzite, in order to avoid arti�cial strain e�ects in the band structure, caused
by the underestimation of the lattice parameters given by LDA, in the process
of total energy minimization [39]. In Fig. 2.3 we show the calculated GaN and
AlN LDA band structures, along the main high symmetry lines of the wurtzite
Brillouin zone, as obtained with the code AB INIT. The zero of energy is placed
at the top of the valence band. The valence band energies are similar to those
computed in previous calculations [158]. In this Reference, the authors have cal-
culated the band structure within the LDA, and then included a re�nement by
using the more sophisticated GW method. They have reported that the substan-
tial changes as a consequence of improving LDA a�ect mainly to the conduction
bands, and the valence bands are only slightly modi�ed. Therefore, we can safely
consider that our LDA description of the valence bands is accurate enough for
our purposes. The calculated band gaps are listed in Table 2.2, in comparison
with the experimental values and with the theoretical results obtained with the
LDA+U approach of Ref. [51]. As it is expected, the band gap is underestimated
in both materials. Although these values are still far from the experimental value,
they are large enough to prevent a signi�catively coupling between the conduction
and valence bands. In Fig. 2.3 we have drawn with red points some valence band
energies, from ab initio data of Ref. [158], that show a reasonable agreement with
our LDA band structures.

Therefore, it is expected that the improvements that one could achieve with
LDA+U or other approaches, will yield a better estimation of the band gap in
GaN and AlN but will leave the valence band unaltered. As we will see in Sec-
tions 2.2 and 2.3 in the semi-empirical models introduced in this work, the band
gap is adjusted by hand to the experimental value. Therefore, for our purposes,
the LDA is a suitable approximation in the case of GaN and AlN.

Narrow-gap nitride: InN

As explained above, in the case of InN, the use of LDA completely fails in describ-
ing correctly the band structure. Moreover, the consideration of the 4d electron

5For brevity, we refer throughout this thesis the DFT+LDA calculations simply as LDA
calculations.
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Figure 2.3: Ab initio GaN and AlN band structures, calculated within the LDA scheme by means
of the AB INIT software. The calculation parameters have been summarized in Table 2.1. The
red points are the data from Ref. [158].
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Parameters of the calculation
[1pt] Ecut(Ha) U (eV) Mesh in k-points
GaN 30.0 - 6× 6× 6
AlN 30.0 - 6× 6× 6
InN 60.0 6.0 (In), 1.5 (N) 8× 8× 8

Table 2.1: Parameters of the ab initio calculations of the bulk band structure of III-N compounds.

of indium atoms as valence electrons provides no signi�cant improvement. This
de�ciency comes from an incorrect description of the Coulomb interaction between
the localized d electrons of indium. As a consequence, the semicore 4d bands are
too high in energy, and the Coulomb repulsion with the nitrogen p-like bands
(located at the valence band maximum) is overestimated. This pushes up the va-
lence band maximum, reducing the calculating band gap. In the particular case
of InN, the LDA gives null or negative band gap. Some other approaches make
use of the fact that d orbitals are strongly localized, and use a hybridized basis of
plane waves (in the interstitial distances) and atomic orbitals (in the core region),
with the aim of improving the description of such orbitals. This linear augmented
plane wave (LAPW) method has been used with some success in In-based wurtzite
semiconductors. In the case of InP the ab initio band gap is 0.432 eV [159] to be
compared with the experimental gap of 1.488 eV [160]. Our choice to overcome the
LDA band gap problem, the LDA+U method, that adds to the LDA functional a
term, corresponding to the mean-�eld approximation of the Coulomb interaction,
as described above.

The application of the on-site Hubbard U correction, presented in Section 2.1,
to the 4d indium and 2p nitrogen electrons, palliates the problem of the null-
band gap [142]. The selected U parameters for indium and nitrogen are listed
in Table 2.1. The procedure to determine the U parameter can be consulted in
Ref. [161]. Within this computational scheme, the calculated lattice parameters
are a = 3.505 Å and c = 5.664 Å, deviated by only 0.9 % with respect to the
experimental values. In Fig. 2.4(a) we have represented the InN band structure
as calculated with the LDA+U approach, with the origin of energy placed at
the top of the valence band. The red lines highlight the lower conduction band
and highest valence band. The calculated band gap value is now 0.34 eV, which
improves substantially the value achieved by other LDA+U approaches (0.03 eV
in Ref. [51]). Another relevant feature is the valence band width, of value 6.3
eV, very close to the one of 6.4 eV predicted by experiments and by many-body
corrections in Ref. [162]. Moreover, we can appreciate the existence of bands with
a �at dispersion located around -16 eV. These bands correspond to the d orbitals
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Figure 2.4: (a) InN band structure calculated within the LDA+U scheme. (b) Detail of the
valence band structure near the Γ point. (c) InN band structure near the Γ point as calculated
with LDA Ref. [39].
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Lattice Parameters (Å)
Our Van de Walle [51] Experimental [20]

a-InN 3.505 3.488 3.548
a-GaN 3.189∗ 3.152 3.189
a-AlN 3.110∗ 3.090 3.110
c/a-InN 1.616 1.617 1.612

Bangap (eV)
Our Van de Walle [51] Experimental [39]

InN 0.34 0.03 0.67
GaN 2.68 2.87 3.5
AlN 4.22 4.41 6.2

Table 2.2: Equilibrium lattice parameters used in the band structure calculations and band gaps
of III-N obtained, and compared with other theoretical and experimental data. The asterisk
recalls that we have used the experimental a lattice parameters and assumed ideal wurtzite for
GaN and AlN.

of the indium, strongly localized in the core. Therefore, the plane wave basis can
still reproduce those localized states, although this is at the cost of increase in the
energy cuto� (60 Hartree for InN).

From the LDA+U calculation one can con�rm that the LDA not only has
problems to reproduce a positive band gap, but also that the LDA results for the
top of the valence band are not reliable. To illustrate this fact, in Figs. 2.4(b) and
(c) we have represented our LDA+U valence bands and the LDA bands calculated
in Ref. [39], in the vicinity of the Γ point. The bands are here labeled according
to the irreducible representation to which the k = 0 states belong. As we have
established in Section 1.1, the conduction band and the crystal-�eld split-o� band
belong to the representation Γ1. When the valence band is closer to the conduction
band as happens in LDA, both states, that share group symmetry, repel each other,
and the valence band is pushed down to lower energies. Therefore, due to null band
gap obtained in LDA, Fig. 2.4(c) shows that the crystal-�eld splitting is largely
overestimated, taking a value of around 300 meV, one order of magnitude larger
than the experimental measurements, that give the value in the energy range of 15-
80 meV [38]. Figure 2.4(b) shows the improvement achieved by our LDA+U scheme
in the top of the valence band with respect to the LDA calculation. The separation
of the conduction band from the valence band (0.34 eV) leads a reduction of the
crystal-�eld splitting ∆cf , having now a value of 40 meV, within the range of the
reported experimental values. In addition, we can see the existence of an anti-
crossing between the second and third valence bands, which is absent in the LDA
calculations.
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As we have seen, the LDA and LDA+U approaches o�er a valuable framework
to obtain the bulk electronic structure of III-N semiconductors. In the next Sec-
tions, the ab initio band structures combined with various semi-empirical strategies
to obtain the corresponding parameters of each model. We will focus in achieving
agreement in the energies and also in the symmetry of the wave functions at the
Γ point, which is a crucial requirement for a reliable study of the electronic and
optical properties.

2.2 Semi-empirical pseudopotential method in wurt-

zite semiconductors

In the previous Section, the band structures of III-N semiconductors were derived
ab initio, by using a plane wave basis within the pseudopotential formulation.
Whereas the ionic pseudopotentials (local and nonlocal terms) were chosen by us,
the Hartree and exchange-correlation terms must be found self-consistently, within
an approach of our choice, such as LDA (for GaN and AlN) or LDA+U (for InN).
In order to avoid the self-consistent procedure to determine the contribution of
the electron-electron interaction to the potential, VKS, one could try to de�ne a
screened ionic pseudopotential, sum of the ionic potential and a contribution com-
bining as much as possible of the electron-electron interactions. This screened
pseudopotential could be tried to be written as a function of a set of parameters to
be determined by �tting the corresponding band structure to experimental or accu-
rate theoretical data. Once obtained, the screened pseudopotential can be used in
further calculations without needing to resort to self-consistent solutions of the KS
equations. This methodology is known as the empirical pseudopotential method
(EPM) [163]. In this approach, there is no self-consistency and most of the di�-
culties that arise from the calculations that involve the exchange-correlation terms
are avoided. The pseudopotentials are expressed in terms of analytical functions,
such as a sum of Gaussian or exponential functions, which reduces signi�cantly
the complexity. The elimination of the self-consistent procedure, together with
the parametrization of the empirical pseudopotentials, allows the use of a much
lower energy cuto� (typically less than 5 Hartree), which decreases substantially
the number of required plane waves. In contrast to the DFT-based methods, the
computational time is much lower now, and the EPM is therefore apt for calcula-
tions of the electronic structure of systems with hundred thousand atoms. This is a
non self-consistent approach, and the energy cuto� can be conveniently reduced in
order to reduce the basis dimensions. This reduction implies a better applicability
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in the calculation of the electronic states of nanostructures [164]. For all these
reasons, the EPM has become enormously popular in the calculation of physical
properties of nanostructures such as quantum wells, wires and dots [165].

However, a discretional �t of the pseudopotential with respect to the experi-
mental data, as the band gap or the e�ective masses, is not exempt of problems.
For instance, even if the eigenvalues are correctly reproduced, the wave functions
may di�er from the exact ones.6 Moreover, as the empirical pseudopotentials are
obtained for a given crystal con�guration, serious doubts about their transferabil-
ity arise. Thus, the use of empirical pseudopotentials in di�erent environments
from those where they were obtained does not guarantee reliable results. For in-
stance, when empirical pseudopotentials generated from a bulk semiconductor ab
initio calculations, are used in a strained nanostructure, as a self-assembled quan-
tum dot, new parameters are needed to take into account the e�ects of the strain
on the band structure. The same occurs when the crystal structure changes. Thus,
if the potential was generated to reproduce the band structure of a wurtzite GaN
crystal, it will probably be not useful in a GaN zinc-blende environment [166, 167].
Therefore, it would be desirable to generate transferable empirical pseudopoten-
tials in a manner more consistent and robust, so that the potentials can be used
in di�erent environments, such as alloys, or with modi�ed interatomic distances,
such as in strained nanostructures without the inclusion of arbitrary additional
parameters [168].

L. W. Wang and A. Zunger proposed a methodology to derive such high-quality
pseudopotentials from the self-consistent KS potential VKS, and applied it to zinc-
blende (Si) and wurtzite (CdSe) structures [169]. In principle, the so-derived
pseudopotentials retain to a great degree the information of the Coulomb and
exchange-correlation interactions obtained by the DFT calculations. Once de-
termined, these pseudopotentials are used in the same way as in the EPM and
with the same advantages. Nevertheless, given the di�erent procedure followed
to obtain the pseudopotential, we will use in this case the name semi-empirical
pseudopotential method (SEPM), as opposed to the EPM, that purely �ts pre-
determined analytical forms of the pseudopotentials [111]. It is also important
to clarify what the term semi-empirical means. We denominate as semi-empirical
only the pseudopotential obtained directly from the DFT pseudopotential, consid-
ering empirical the pseudopotentials obtained from �tting of the band structure,
even if such pseudopotentials include the nonlocal term.

In this thesis we will apply the methodology proposed by Wang and Zunger

6The use of the terms exact or true refers here and in the following to the ab initio solutions
obtained in Section 2.1.
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Figure 2.5: Flowchart describing the steps necessary to generate the semi-empirical pseudopo-
tential for two crystal structures A and B at di�erent lattice constants.

[169] to derive suitable semi-empirical pseudopotentials for GaN and AlN semi-
conductors, focusing on an accurate description of the valence band states in the
vicinity of the Γ point. We will also show that with slight modi�cations in the
pseudopotential, the calculated (underestimated by LDA) band gap can be cor-
rected in order to set the experimental band gap. It is worth to mention that
this methodology is completely general, and it could be in principle used to obtain
semi-empirical pseudopotentials from more sophisticated ab initio approaches such
as the GW method. In the next Subsections the methodology to obtain the semi-
empirical pseudopotentials in wurtzite semiconductors is formulated, and applied
to the particular case of GaN and AlN, whose LDA band structures have been
reported in Section 2.1. The work presented in this Section has been performed
during a research stay in the group of Theory of Semiconductor Nanostructures,
lead by Dr. G. Bester, in the Max-Planck-Institut für Festkörperforschung, Stutt-
gart.
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2.2.1 Methodology

In Fig. 2.5 we have composed a �owchart with the necessary steps to obtain the
semi-empirical pseudopotentials from the LDA results. The �rst block is to obtain
the band structure of the bulk system at di�erent lattice constants by means of
DFT calculations. These calculations were performed in Section 2.1 within the
LDA for GaN and AlN, obtaining the eigenvalues and eigenvectors, εLDA and
ψLDA. The total self-consistent potential is written as follows:

VKS(r) = Vps(r) + VHXC(r) = Vlocal(r) + Vnonloc(r) + VHXC(r), (2.38)

where the Vps is the input non-screened ionic pseudopotential, that we have sepa-
rated into its local Vlocal and nonlocal Vnonloc terms, and the term VHXC includes the
Coulomb (Hartree) and exchange-correlation contributions, detailed in Section 2.1.
We de�ne the self-consistent local potential

VLDA(r) = Vlocal(r) + VHXC(r). (2.39)

It has the lattice periodicity and needs therefore to be speci�ed only in a unit
cell. The �rst task of the second block of Fig. 2.5 is to express VLDA in such
way that it can be used as if it were an empirical potential, i. e., as a sum of
atomic-centered pseudopotentials (not necessarily spherical), to be determined7

VLDA(r) =
∑
m,α

vα(r − (Rm + τα)), (2.40)

where Rm are vectors of the crystal lattice and τα are the basis vectors within the
unit cell (see Eqs. (1.2) and (1.4)). These screened pseudopotentials vα contain,
additionally to the ionic part, in an average way, the contribution related to the
electron-electron interaction, expressed by VHXC. The goal now is to obtain an ex-
pression for vα that we could use them in other environments, as in nanostructures.
However, the procedure of obtaining these atomic potentials from the total local
potential must be clearly speci�ed and checked for consistency. In the following,
we explain how the construction of the screened atomic pseudopotential is carried
out.

7We use the capital letter V for crystal potentials and the small cap letter v for atomic
potentials.
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Since the total local potential VLDA(r) is a periodic function, it can be written
as a Fourier series in terms of reciprocal lattice vectors

VLDA(r) =
∑
G

VLDA(G)eiG·r, (2.41)

where
VLDA(G) =

1

Ωc

∫
Ωc

VLDA(r)e−iG·rd3r

=
1

Ωc

∫
Ωc

∑
m,α

vα(r − (Rm + τα))e−iG·rd3r,
(2.42)

Ωc being the unit cell volume. After some manipulations we obtain the �nal result

VLDA(G) =
1

Ωc

∑
α

e−iG·ταvα(G), (2.43)

with

vα(G) =

∫
Ω0

vα(r′)e−iG·r′d3r′, (2.44)

where the integral is de�ned in the atomic volume Ω0, as consequence of Eq. (2.40)
and after Ref. [111].

This general expression can be expressed in a more compact form, in the par-
ticular case of the wurtzite structure. In this case there are only two di�erent
atomic centered pseudopotentials (although the number of atoms in the unit cell
is n = 4), corresponding to cation (Ga or Al) and anion (N), labeled as vc(r) and
va(r), respectively. We also de�ne the lattice vectors given by Eq. (1.4) in a more
convenient way as a function of the primitive vectors (see Eq. (1.2))

τa1 = −1

6
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6
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16
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6
a2 +

7

16
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(2.45)

so that VLDA(G) can be written as:

VLDA(G) =
1

Ωc

(
e−iG·τava(G) + e−iG·τcvc(G) + eiG·τcva(G) + eiG·τavc(G)

)
.

(2.46)
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We de�ne now the symmetric (v+) and antisymmetric (v−) pseudopotentials
as:

v+(G) = va(G) + vc(G) ; v−(G) = va(G)− vc(G), (2.47)

and VLDA(G) can be �nally expressed as:

VLDA(G) =
1

Ωc

v+(G) [cos (τa ·G) + cos (τc ·G)]

+ i
1

Ωc

v−(G) [sin (τc ·G)− sin (τa ·G)] .

(2.48)

Since va/c have inversion symmetry, v+/− are real, and they can be written in
terms of the real and imaginary parts of VLDA(G)

v+(G) =
Ωc

cos (τa ·G) + cos (τc ·G)
<{VLDA(G)},

v−(G) =
Ωc

sin (τc ·G)− sin (τa ·G)
={VLDA(G)}.

(2.49)

Once v+/− are obtained, the reciprocal-space atomic pseudopotentials va/c are
obtained by inverting Eq. (2.47).

So far, the procedure to obtain va/c(G) is exact. However, we assume now
that va(G) and vc(G) are well represented by their spherically averaged counter-
parts va(q) and vc(q), with q = |G|. This approximation allows us to write the
pseudopotentials as a manageable simple one-dimensional function.

Figures 2.6(a) and 2.6(b) show the LDA results (symbols) for v+ and v−, re-
spectively, corresponding to GaN. Figure 2.6(c) shows the corresponding v+ and v−
results for AlN. In order to have a better de�nition of the pseudopotential, we have
done LDA calculations for several lattice constants, obtaining a large number of G

points. In the case of GaN, we have obtained the �ve structures by changing the
a lattice constant. In the case of AlN, we have reduced the number of computed
structures to two, observing the same features as in the case of GaN. Observe that
the pseudopotentials v+ and v− from di�erent unit cell volume fall over the same
line, and only there is only some slight dispersion in the data around q = 2 Bohr−1

in v+ of GaN. In principle, this proves that the spherical pseudopotentials are
independent of the atom stacking, and justi�es their atomic origin. Concerning
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the pseudopotentials at G = 0, v+/−(G = 0), their values are arbitrary, and the
variation of v+(G = 0) produces a overall shift of the band structure. The value
of v+(G = 0) can be �xed to the electron a�nity (see Section 2.1) deduced from
experimental data [170] or obtained from ab initio. Neither the value v−(G = 0)

has relevant e�ects in the band structure as long as one �xes correctly the rest
of the points. Moreover, in regions of small q (. 2.5 Bohr−1), the changes in the
pseudopotentials v+ and v− do not a�ect substantially the band structure, which
also happens for the pseudopotentials va and vc. In all the cases we have performed
a �tting with spline functions, represented with lines. In regions of large q (> 12

Bohr−1), small oscillations persist, requiring a careful �tting. Both curves prove
that v+/−(q) seem to fall on a nearly unique curve.

The fact that the pseudopotentials follow a single curve suggests that an hy-
pothetical strain of the system could be taken into account by just rescaling the
interatomic distances without modifying the pseudopotentials. In the purely em-
pirical pseudopotential method [163], the strain e�ects on the electronic states
are usually introduced by adding a Gaussian potential. The parameters of the
Gaussian are deduced from the deformation potentials [171]. Therefore, the semi-
empirical pseudopotentials obtained here introduce an improvement to the method,
by relieving it of further �tting parameters [172].

By inverting Eq. (2.47), the screened atomic pseudopotentials va and vc can
be derived. We have represented them in Fig. 2.7 for gallium, aluminium and
nitrogen. Concerning the general behavior of the pseudopotential curves, the os-
cillations persist until large range (q ≈ 10 Bohr−1), which determines the energy
cuto� in the subsequent calculations. Note that we have calculated the nitrogen
pseudopotentials in the environments of GaN and AlN (the di�erence among them
is the black dotted line). For q > 1 Bohr−1, they are almost identical with the
exception of a slight deviation around q ∼ 3 Bohr−1. Their disagreement ofr q < 1

Bohr−1 is due to the di�erent electron a�nity of GaN and AlN. However, those
di�erences near q = 0 only a�ects the origin of the energies, but not the band
structure. This is a another proof of the atomic nature of the obtained pseudopo-
tentials, as we have indicated before. Even after adding the Coulomb interaction
and the exchange-correlation information, that are supposed to be di�erent in both
semiconductors, the derived pseudopotentials keep the atomic �avor. This is im-
portant in connection with the tranferability of the pseudopotentials for their use
in other systems.
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Figure 2.6: The LDA-derived contributions v+ and v− for GaN, (a) and (b), and AlN, (c), as
de�ned in Eq. (2.49). We have calculated �ve structures in the case of GaN, and two structures
for AlN, varying the lattice constant a as indicated in the legends. The ratio of the lattice
constants c/a is kept the same (equal to the ideal value) in all the cases. The lines represent the
�tting with splines functions.
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Figure 2.7: Screened atomic pseudopotentials va(N) and vc(Ga or Al) obtained from the DFT-
LDA calculations of the self-consistent crystal potential of GaN and AlN: Ga (red), NGa (blue),
Al (magenta), and NAl (green). The dashed black line is vN(Al) − vN(Ga).

2.2.2 Calculations of the nonlocal potentials and spin-orbit

interaction

Once the local part of the atomic pseudopotentials has been derived, it remains
to recalculate the associated nonlocal part following the steps sketched in the
�owchart of Fig. 2.5. We rewrite the nonlocal term of Eq. (2.37), given elsewhere
[173, 174]:

Vnonloc(r) =
∑

α

∑
l,m

|Pl,m(τα)〉vnonloc,l(|r − τα|)〈Pl,m(τα)|. (2.50)

Here (l,m) denotes angular momentum, vnonloc,l is the lth angular momentum
pseudopotential, and |Plm(τα)〉 is a projection function centered at the atomic site
τα. The nonlocal term is commonly calculated by the Kleinman-Bylander method
[151], that scales as ∼ M2, where M is the size of the system. Another approach
is the real-space implementation proposed by King-Smith et. al. [175]. We use
here a method known as the small box implementation, that scales linearly with
the system size, and has a simpler formulation. The interested reader can �nd a
more detailed explanation in Ref. [169].

Furthermore, the nonlocal part of the pseudopotentials can be rede�ned in
order to achieve a rigid shift of the conduction band with respect to the valence,
which gives a mechanism to open the band gap up to the experimental value [176].
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In Subsection 2.2.3, we apply such a slight modi�cation to some selected nonlocal
potentials, so as to force the SEPM calculation of the GaN bulk band structure
to reproduce the experimental band gap. In Fig. 2.8 we present the nonlocal
potentials, vnonloc,l, employed in this work, of Ga, Al and N. The bare Coulomb
potentials are represented with the thin black lines, with Z = 3 for gallium and
aluminium, and Z = 5 for nitrogen.

It is straightforward to incorporate at this level the spin-orbit interaction by
means of the following potential:

VSO(r) =
∑

α

∑
l,m

V SO
l (|r − τα|)|Pl,m(τα)〉L · S〈Pl,m(τα)|. (2.51)

The notation for the angular momentum and projectors is the same as in
Eq. (2.50), but now with the introduction of the spin operator S whose com-
ponents are given by Pauli matrices, and V SO

l (r) is a potential describing the
spin-orbit interaction. We have set its functional form to a Gaussian and only the
e�ect on p states (with l = 1) has been included. In this way, we reduce the spin-
orbit interaction to one parameter for every type of atom [177]. As the spin-orbit
interaction is a relativistic e�ect, we apply it only to gallium and aluminium, much
heavier than nitrogen.
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The next step of the �owchart in Fig. 2.5 is the resolution of the KS equation 2.5,
where the Kohn-Sham potential VKS (eq. (2.10)) is replaced by the screened pseu-
dopotentials calculated above and the nonlocal term:

VKS(r) −→
∑
m,α

vα(r − Rm − τα) + Vnonloc(r). (2.52)

The Schrödinger equation in the semi-empirical method, taking into account
the spin-orbit interaction, is written as follows:

{
−1

2
∇2 +

∑
m,α

vα(r − Rm − τα) + Vnonloc(r) + VSO(r)

}
ψ̃i(r) = ε̃iψ̃i(r). (2.53)

This Hamiltonian matrix requires to be solved only once for each given prob-
lem, as there is no need to achieve self-consistency, which reduces considerably
the computation times. The eigenvalues and eigenvectors obtained by the SEPM
Schrödinger equation, ε̃ and ψ̃, should be compared with their LDA counterparts,
in order to verify the accuracy of our method. This is the last step of the �owchart
of Fig. 2.5. We devote the next subsections to test the validity of our semi-
empirical pseudopotentials and to correct the LDA underestimation of the band
gap in bulk GaN and AlN. Also we de�ne an optimal energy cuto�, that will be
used in nanostructures calculations.

2.2.3 Band structure of GaN without spin-orbit interaction

Once the methodology is well established, we proceed to the comparison of the
SEPM band structure with the LDA calculations. As the spin-orbit interaction
only produces small splittings in GaN, we have neglected this interaction for the
overall band structure comparison, but it will be introduced later on, once the
validity of the SEPM has been demonstrated. The e�ects on the band structures
caused by a reduction of the energy cuto� will also be analyzed. In Fig. 2.9
we have represented together the following GaN band structures: the same LDA
results already shown in Fig. 2.3 (black solid lines), the SEPM band structure
with Ecut = 90 Ry, 90-SEPM (red points), and the SEPM band structure with
Ecut = 30 Ry, 30-SEPM (green dashed lines). In order to help in the discussion,
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the group represenation labels at the Brillouin zone points Γ, A, and M have been
added [158].

The �rst conclusion is that the LDA and the 90-SEPM band structures have a
nearly perfect coincidence for all bands and throughout the Brillouin zone. This
de�nitely proves the validity of the spherical average assumed for va(q) and vc(q)

explained above. Usually, the EPM needs many parameters to obtain such a
good agreement with ab initio band structures through whole Brillouin zone. This
discretional addition of parameters makes those models less transferable to other
environments. Hereby, only careful �tting the screened pseudopotential curves of
Fig. 2.6, a perfect matching between LDA and SEPM method has been achieved.

However, the high cuto� implies a larger number of plane waves. Thinking
in the applications to nanostructures, where thousands of atoms are involved,
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it is desirable to set this cuto� as small as possible. The 30-SEPM GaN band
structure shows the e�ects of �xing smaller energy cuto�. The main e�ect is a
rigid displacement of the conduction bands towards the valence bands, reducing
the band gap approximately by 1 eV. The same shift is appreciated for the states
A1c,3c and M1c,3c. The valence band states more a�ected by the reduction of Ecut

are those belonging to the representations Γ1,Γ3, A1, A3,M1,M3, being less a�ected
the states belonging to Γ5, A5, A6,M4. The topmost valence band states remain
almost unaltered, and in both cases the topmost valence band state belongs to
the representation Γ5, in agreement with the ab initio band structure. It is also
important that the curvature of the bands is not substantially changed.

The underestimation of the band gap is therefore enhanced if the energy cuto�
is reduced. In the SEPM one can correct this problem easily, since the multipli-
cation of the local potentials by a Gaussian function, can serve to open the band
gap up to the experimental value. An alternative is an adequate renormalization
of the nonlocal pseudopotentials [169]. In this work, always with the aim of using
the smaller possible number of parameters, we have chosen this last possibility.

In Fig. 2.10 the 30-SEPM band structure of Fig. 2.9 has been represented again
(here labeled as unshifted), together with the shifted 30-SEPM band structure
resulting from a slight re-normalization of nonlocal potentials of momentum l = 0.
For comparison, the reference LDA band structure is also shown. The band gap
opening does not in�uence signi�catively the valence band curvatures, although a
slight modi�cation is appreciated in the vicinity of the Γ point, which produces an
even better agreement with the LDA bands.

The conduction band is rigidly moved to higher energies. Its curvature varies
as expected beyond the LDA results, so as to obtain the experimental band gap
due to the decreased coupling with the valence bands. Energy cuto�s lower than
30 Ry have also been checked, but the changes in the band structure exceed the
admissible margin.

As important as the agreement of the energies is the reproduction of the correct
symmetry of the wave functions. On the right hand of Fig. 2.10 we show the
projections of the charge density on the plane (0001).8 As required by group theory
(see Table 1.2), the states Γ5 must have a charge density reminiscent of the px-py

orbitals, and this is con�rmed by our calculations in Fig. 2.10. On the other hand,
the state Γ1 has the charge density distributed with pz symmetry. We conclude

8This projection is de�ned as: For a position vector written in terms of the primitive vectors,
r = xa1 + ya2 + za3, ρ(x, y) = 1

c

∫ 1

0
|ψ(r)|2dz. Analogously, the projection on the plane (11̄00)

is: ρ(y, z) = 1
a

∫ 1

0
|ψ(r)|2dx.



60 Electronic structure of III-N semiconductors

0

2

4

 

G
aN
 B
an
d
 S
tr
u
ct
u
re
 (
eV
)

 

Γ5v , Γ1v

Γ1c

Γ5v

Γ5

px

py

exp. 

band gap

-6

-4

-2

     LDA

 

 

A/2                   Γ                             M/2

{E
cut
 = 30 Ry

G
aN
 B
an
d
 S
tr
u
ct
u
re
 (
eV
)

 

  unshifted

    shifted

Γ5v

Γ3v

Γ1

Γ5

py

0

Max.

(0001)

pz

Figure 2.10: Left: SEP GaN band structure calculated with Ecut = 30 Ry versus LDA band
structure. Right: Charge density of the states Γ5v (4-fold degenerate) and Γ1v (2-fold degenerate)
projected on the (0001) plane.

that the action of reducing the cuto� energy, together with the correction of the
band gap does not alter essentially the valence band structure, and in particular,
conserves the symmetry of the states as required by group theory and obtained by
the LDA calculations.

2.2.4 GaN and AlN band structure with spin-orbit interac-

tion

Once the energy cuto� has been set and the band gap has been opened, the
spin-orbit interaction can be added to our calculations [111], as explained in Sub-
section 2.2.2.

The corresponding valence bands in the vicinity of the Γ point of GaN and AlN
have been represented in Fig. 2.11. Concerning the band dispersion, a zero-�eld
Dresselhaus spin splitting is also observed for increasing values of the momentum
vector k toward M point [178, 179]. This e�ect is too small to be observed in
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Figure 2.11: Valence band structure of GaN and AlN as calculated with the shifted 30-SEPM
including the spin-orbit interaction. The lower part displays the projections of the charge density
of the states Γ7 and Γ9 of AlN.

the bands of AlN. As it is sketched in Fig. 1.5 of Chapter 1, the states Γ5 and Γ1

split under spin-orbit interaction into Γ9, Γ7,+ and Γ7,−. The ordering of these new
valence band states is di�erent in GaN and AlN. In the case of GaN, the sequence
is Γ9-Γ7,+-Γ7,−, and for AlN, Γ7,+-Γ9-Γ7,−, as a consequence of its negative crystal-
�eld parameter (∆cf (AlN) < 0). This change in the ordering is illustrated with the
charge density of the wave functions drawn in Fig. 2.11, with the charge density
of the states Γ7,+-Γ9-Γ7,− of AlN, projected on the planes (0001) and (11̄00). The
topmost state, Γ7,+, separated 245 meV from the next states, Γ9 and Γ7,−, has pz

symmetry.

The splittings of the top of the valence band, the band gap, and the conduction
and valence band e�ective masses are reported in Table 2.3, together with other
available data. Although the band gaps and the conduction e�ective masses have
a rather well established value, it is important to note the dispersion of the exper-
imental values for the splitting parameters ∆cf and ∆so. These values are di�cult
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to access experimentally, and even the ab initio calculations are still uncertain, so
that these values a provisional status even within an accepted range of energies.

In conclusion, we have demonstrated in this Section the quality of the LDA-
derived semi-empirical pseudopotentials, and have compared the corresponding
results with LDA calculations and experimental data for bulk GaN and AlN. The
SEPM will be used in Chapter 3 for the calculation of the electronic structure of
GaN nanowires.
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Parameter SEPM Ab initio EPM Experimental
AlN ∆cf (meV) −245 −295a −199c, −128d −230e

∆so (meV) 5 - - 5-20e

Eg (eV) 6.2 6.47a 6.2c 6.2e

mc
z 0.435 0.32a, 0.427b 0.232d 0.29-0.45f

mc
⊥ 0.484 0.30a, 0.465b 0.242d 0.29-0.45f

mA
z 0.264 - - -

mA
⊥ 8.876 - - -

mB
z 2.511 - - -

mB
⊥ 1.143 - - -

mC
z 2.465 - - -

mC
⊥ 1.143 - - -

GaN ∆cf (meV) 49 34a 42c,43d 9-38e

∆so (meV) 8 - - 8-20e

Eg (eV) 3.5 3.24a 3.5d 3.5e

mc
z 0.210 0.190a, 0.189b 0.138d 0.20e

mc
⊥ 0.239 0.210a, 0.221b 0.150d 0.20e

mA
z 2.110 - - -

mA
⊥ 0.598 - - -

mB
z 1.640 - - -

mB
⊥ 0.526 - - -

mC
z 0.025 - - -

mC
⊥ 3.890 - - -

Table 2.3: Band parameters of AlN and GaN, as calculated with the SEPM, and compared
with other available data of: (a) Ref. [39], (b) Ref. [180], (c) Ref. [167], (d) Ref. [181], (e)
Ref. [19, 36, 37], and (f) Ref. [182].
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2.3 The tight-binding method

In the previous Sections we have explained in detail the use of the plane wave
pseudopotential method. The tight-binding (TB) method implies a radical change
in the philosophy of the electronic structure calculations as exposed so far. Con-
trary to the plane wave pseudopotential method, where the electrons are modeled
as nearly free particles, with their wave function expanded as a linear combina-
tion of plane waves, the tight-binding method is founded on the opposite. In the
�rst place, the tight-binding method assumes that the valence electrons are tightly
bound to their nuclei. It is then reasonable to approximate the electron wave
function in the solid as a linear combination of atomic-like wave functions (atomic
orbitals) [104]. In covalent materials, there are two kinds of electron states, the
conduction band and the valence band states. The valence band states are con-
centrated in the covalent bonds and retain more of the atomic character than the
delocalized conduction band states. In principle, the tight-binding method should
give a very accurate description of the valence bands. Moreover, the interaction is
now coded into the Hamiltonian matrix elements between neighboring atomic-like
states. Thus, the band structure is represented in terms of a small set of overlap
parameters. In the following we illustrate the formulation of the tight-binding
approach for the wurtzite bulk crystal.

2.3.1 The tight-binding method in wurtzite crystals

Let us consider the atomic orbitals ϕl(r − rm,α) centered at the atomic site

rm,α = Rm + τα, (2.54)

where Rm is the lattice vector, and τα is the position of the atom α within the
unit cell. For such orbital, a Bloch-like function can be constructed, as follows:

Φα,l
k (r) =

1√
N

∑
m

eik·rm,αϕl(r − rm,α), (2.55)

where N is the number of unit cells in the crystal, and k the wave vector. The
sought wave function Ψ is written as a linear combination of the Bloch functions

Ψk(r) =
∑
α,l

Aα,l(k)Φα,l
k (r). (2.56)
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In order to obtain the eigenvalues and eigenvectors of the system, we let the
crystal Hamiltonian H to act on Ψk(r), and multiply by the left with a Bloch
function

〈Φα′,l′

k |H|Ψk〉 = E(k)〈Φα′,l′

k |Ψk〉. (2.57)

At this point we assume the orthogonality of the Bloch functions for di�erent
orbitals and/or di�erent atoms is desirable. Instead of the usual atomic orbitals,
we use here the Löwdin basis, constructed formally to guarantee that the orbitals
centered on di�erent atoms are orthogonal to each other [183]. The eigenvalue
equation in the Löwdin basis is written as follows:

∑
α,l

H(α′, l′;α, l)Aα,l(k) = E(k)Aα′,l′(k). (2.58)

The Hamiltonian matrix elements are:

H(α′, l′;α, l) =
1

N

∑
m′,m

eik·(rm,α−rm′,α′ )〈ϕl′(r − rm′,α′)|H|ϕl(r − rm,α)〉

=
∑
m

eik·(Rm+τα−τα′ )〈ϕl′(r − rm′,α′)|H|ϕl(r − rm,α)〉
(2.59)

The problem is completely determined at this stage, with the exception of the
value of the integrals 〈ϕl′,α′|H|ϕl,α〉.9 These integrals represent the overlap, medi-
ated by the Hamiltonian, between the atomic orbitals. The tight-binding method
convert these integrals into empirical parameters, and assumes that the relevant
electron-electron and electron-ion interactions are included in the parameters. How
to determine such parameters will be discussed later. However, some fundamental
approximations can be introduced beforehand to reduce the number of indepen-
dent matrix elements. We enumerate these approximations in the following:

1. The crystal Hamiltonian can be expressed, to a good approximation, as a
sum of centered atomic potentials, Vβ. The integral discussed above is then

〈ϕl′,α′|H|ϕl,α〉 = 〈ϕl′,α′|
∑

β

Vβ|ϕl,α〉, (2.60)

9In the following, we adopt this abbreviated notation for the orbitals: ϕl,α ≡ ϕl(r − rm,α).
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the sum
∑

β run over all the atoms. The �rst approximation is to keep only
two-center integrals, that only involve potentials due to atoms β = α and
β = α′ [112].

The two-center approximation allows to classify the overlap integrals into
two classes; on-site elements, Eα,l, and overlap parameters, Vα,l,α′,l′ . The on-
site elements are the energies of the orbital l of the atom α. These energies
should in principle be related to the atomic energies of the isolated atom.
However, the crystal environment modi�es these values. The other terms,
Vα,l,α′,l′ , take account of the overlap between two orbitals, l and l′, of the
atoms α and α′.

2. The overlap parameters Vα,l,α′,l′ are considered only up to nearest neighbors
(nn), and the Hamiltonian matrix elements are

H(α′, l′;α, l) =
nn∑
m

〈ϕl′,α′|H|ϕl,α〉eik·(Rm+τα−τα′ ). (2.61)

Considering the approximations proposed here, the matrix elements can be of
two types:

H(α, l;α, l) =Eα,l,

H(α′, l′;α, l) =
nn∑
m

Vα′,l′,α,le
ik·(Rm+τα−τα′ ).

(2.62)

Although the applied approximations have reduced the problem enormously,
one can make a further reduction by using symmetry considerations, and express
the overlap terms as a function of a minimal set of parameters, depending on the
choice of the basis (number and type of atomic orbitals per atom).

The choice of the basis deserves a careful discussion to justify the adequacy
of our selection. In principle, a larger basis may o�er more accurate results for
the same system than a smaller basis. However, it also implies the addition of
more and more parameters, which makes di�cult the interpretation of the results,
and it does not always imply an improvement of the band structure [184�186].
Moreover, the increase of the basis requires more computational e�ort when the
method is applied to nanostructures. In the literature, one can �nd tight-binding
models that use a minimal basis that only takes account a s orbital of the cation
(group III element, in our case) and three p orbitals of the nitrogen (anion), also
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called scp
3
a basis (four parameters). This model seems to give reliable results for

the con�ned states of GaN/AlN zinc-blende quantum dots [187]. However, a small
size basis could be insu�cient to reproduce accurately the band structure far from
the Γ point. In the other extreme, there is a parametrization by J. M. Jancu et. al.
[188], with a large basis of 20 orbitals sp3d5s? considering the 3d orbitals of gallium
and spin-orbit interaction, and applied to solve the band structure of wurtzite bulk
GaN and AlN. This basis assures a precise result for the band structure along the
whole Brillouin zone, but it needs a lot of information for the parametrization. A
more re�ned parametrization, extending the interaction to second neighbors, as
in Ref. [189], has been used for calculations of bulk GaN, InN and their alloys,
considering also the 4d orbitals of the indium atoms. The disadvantage of these
large bases is additionally the large number of parameters (more than 40) that
involves, and the prohibitive increase in the computational requirements when ap-
plied in nanostructure calculations. Although an accurate description of the whole
band structure is always desired, in nanostructure applications, there must be a
compromise between the accuracy and the computational cost. Furthermore, the
optical properties of direct band gap semiconductors as measured in the majority
of the experiments, are related only to the bands in the vicinity of the Γ point.

Considering all these arguments, we have decided to use an sp3 basis, includ-
ing spin-orbit interaction [190]. This basis gives a good description of the band
structure near the Γ point, and reproduces reasonably well the other bands. On
the other hand, the number of parameters (10) is much smaller than in the sp3d5s?

method, providing an intuitive physical picture. We omit the addition of the ex-
cited orbital s?, proposed by P. Vogl et. al. [191], that would be nevertheless
necessary for indirect semiconductors or for an accurate description of the bands
near the L or K edges.

The minimal set parameters needed to de�ne the Hamiltonian matrix elements
is obtained, as commented before, by symmetry considerations. We have illus-
trated in Fig. 2.12 how the overlap between orbitals of adjacent atoms can be
decomposed in terms of the director cosines ûd = (p, q, r). A detailed and general
guide can be found in the book of R. Enderlein and H. Höring (Ref. [127]). The
exact expressions are as follows:
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〈sα′|H|sα′〉 = Vssσ,

〈sα′,c|H|px
α,a〉 = pVscpaσ,

〈sα′,c|H|py
α,a〉 = qVscpaσ,

〈sα′,c|H|pz
α,a〉 = rVscpaσ,

〈px
α′|H|px

α〉 = (1− p2)Vppπ + p2Vppσ,

〈py
α′|H|py

α〉 = (1− q2)Vppπ + q2Vppσ,

〈pz
α′|H|pz

α〉 = (1− r2)Vppπ + r2Vppσ,

〈px
α′|H|py

α〉 = pq(Vppσ − Vppπ),

〈px
α′|H|pz

α〉 = pr(Vppσ − Vppπ),

〈py
α′|H|pz

α〉 = qr(Vppσ − Vppπ).

(2.63)

The case of the integral 〈sα,a|H|px
α′,c〉 is analogous to 〈sα′,c|H|px

α′,a〉. After these
symmetry considerations, the independent overlap parameters are just �ve: Vssσ,
Vscpaσ, Vsapcσ, Vppπ, and Vppσ. In Appendix A, we have written the �nal tight-
binding Hamiltonian matrix within the sp3 model for a crystal with the wurtzite
structure (with respect to the unit cell given in Section 1.1). The determination
of the optimal values of the parameters can be done in several ways. The most
common one �ts the parameters to reference band structures (as given by ab initio
calculations). Alternatively they can be �tted to experimental information such as
the band gap, e�ective masses, etc. In the next Subsection we will combine both
theoretical and experimental information to deduce the tight-binding parameters
of the III-N semiconductors.

The Hamiltonian matrix as de�ned in Appendix A is ready for calculating the
band structure of any wurtzite semiconductor or nanostructure. However, the sp3

basis in the �rst neighbor approximations cannot reproduce the crystal-�eld split-
ting, and gives in the absence of spin-orbit interaction a six-fold degeneracy at the
top of the valence band [190]. This is because at the nearest neighbors level the
wurtzite structure is indistinguishable from the cubic zinc-blende. The introduc-
tion of second and farther neighbors would palliate this de�ciency [115]. Notice
that in the pseudopotential method, the crystal-�eld splitting is well reproduced
since we have not introduced any approximation concerning the neighbors. An
alternative to the addition of farther neighbors, is to distinguish by hand between
the px − py and pz orbitals. This ad hoc modi�cation is performed on the on-site
energy Ea,pz 6= Ea,px = Ea,py . The major impact on the valence band will be the
splitting into the states Γ5 and Γ1. These changes have been taken into account
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in the tight-binding Hamiltonian matrix shown in Appendix A,

In addition to the crystal-�eld splitting, the non-ideality of the wurtzite unit
cell can also be included by means of the Harrison's rule [193]. In its original this
rule establishes version that the overlap parameters depend quadratically on the
inverse of the distance between the adjacent atoms

Vα′,l′,α,l =

(
d

(0)
α′,α

dα′,α

)2

V
(0)
α′,l′,α,l, (2.64)

where V (0)
α′,l′,α,l is the overlap parameter at the equilibrium bond distance. The

exponent of 2 has being modi�ed in subsequent works, in order to have a better
agreement between theory and experiments. It has also been proposed a depen-
dence on the orbital. In this work, we will take the exponent in the Harrison's rule
as an additional �tting parameter ηl,l′ [194]:

Vα′,l′,α,l =

(
d

(0)
α′,α

dα′,α

)ηl,l′

V
(0)
α′,l′,α,l. (2.65)

The �tted exponent can be found in Appendix A. We have followed the criteria of
keeping the exponent in values close to two, in order to keep the physical meaning
of the Harrison's rule [195].

The last point of this exposition of the tight-binding method concerns the spin-
orbit interaction. In the approximation assumed in this work, this interaction only
couples p orbitals of the same atom. This assumption for the III-N semiconductors
is already su�cient to reproduce the three-edge valence band structure at the Bril-
louin zone center. We add the spin-orbit energy to the tight-binding Hamiltonian
as follows [196]:

H = H0 +HSO, (2.66)

where:

HSO =
~

2m2c2
1

r
[∇V × p] · σ. (2.67)

V is the total crystal potential and σ de Pauli matrices. After some algebraic
manipulations, the spin-orbit interaction can be described by a single parameter:

λ = 〈px, ↑ |
~

4m2c2
[∇V × p]|py, ↓〉. (2.68)
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In Appendix A we give the explicit form of the tight-binding Hamiltonian matrix
with the spin-orbit interaction. In the rest of the work, the notation for the orbital
including the spin is: |ϕα,l,σ〉 with l = s, px, py, pz and σ =↑, ↓.

The results of the tight-binding band structures are presented in the next Sub-
section, with special attention to the Brillouin zone center. In order to facilitate
the interpretation of the electronic structure, it is convenient to have a method
to characterize the symmetry of the wave functions. By taking advantage of the
atomistic nature of the tight-binding method, we can de�ne the symmetry char-
acter of each calculated wave function n, as its projection over the atomic orbital
l (= s, px, py, pz):

φn
l =

∑
α,σ

|〈Φα,l,σ
k |Ψn

k〉|2 =
∑
α,σ

|An
α,l,σ|2. (2.69)

The set of numbers {φn
l }l=s,px,py ,pz for a given state n summarizes the relevant

information about the symmetry of the state and satis�es
∑

l φ
n
l = 1. Usually

one of these numbers is dominant (say > 0.5). In this situation we say that the
state has dominant l-character. Given the isotropy in the basal plane (in-plane
isotropy) of the wurtzite structure, it is convenient to introduce in further analysis
the quantity φ⊥ = φpx + φpy .

2.3.2 Tight-binding band structure of III-N semiconductors

The formulation presented above will be applied here to obtain the band structures
of III-N semiconductors. The set of parameters have been deduced by �tting the
ab initio calculations presented in Section 2.1, except for the case of AlN, where
we have used those provided by A. Kobayashi et. al. [190]. In the cases of
GaN and InN, the parameters have been adjusted to obtain the experimental
value of the band gap. The emphasis in the �tting procedure has been put in
obtaining a precise agreement at the top of the valence band, with a special care in
reproducing the symmetry of the wave functions. These requirements provide a set
of tight-binding (TB) parameters suitable for predictions of the optical properties
of nanostructures.

In Fig. 2.13 we present the InN band structure as calculated with the TB
method (solid lines) and the LDA+U method (dotted lines). The topmost valence
and the lowest conduction bands are drawn with red lines. In both cases, the spin-
orbit interaction has not been included. First, we highlight the good matching in
the valence bands, in the energy range between -7 and 0 eV. This demonstrates
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Figure 2.13: Band Structure of InN as calculated with the sp3 tight-binding model (solid lines)
and with LDA+U (dotted lines).

that the sp3 basis is su�cient to give a reasonable agreement also at points in the
Brillouin zone other than Γ. For instance, the coincide is surprising by good at the
A, M and L points (shown in Fig. 2.13), and the larger deviations are located at
K and H. The exception is the conduction band. The conduction bands obtained
by DFT with energies above 3 eV, are not at all reliable and therefore we have
renounced to �t them with our tight-binding model. Note that there are no d
bands in the tight-binding results due to the absence of d states in the TB basis.
In Table 3.12 we have compared the energies of TB and LDA+U approaches at
some points of the Brillouin zone.

We depict in Fig. 2.14 a zoom of the valence band structure. We observe a
very accurate �tting for the A and C bands whereas the B-band shows a slight
deviation for k > 0.1 in the M direction. Along the ΓA direction, A and B bands
are degenerate and both calculations match perfectly. The anti-crossing between
B and C bands is also well captured by the TB method.

Therefore, the numerical results for InN con�rm that the TB method based
on the sp3 basis is an optimal solution between the small basis (scp

3
a) and the



2.3 The tight-binding method 73

Energy (eV)
LDA+U TB LDA+U TB

Ac
1,3 2.812 1.993 Lc

1,3 3.750 3.292
Av

5,6 -0.485 -0.474 Lv
1,3 -1.687 -1.894

Av
1,3 -3.506 -3.566 Lv

1,3 -5.871 -6.002
M c

1 4.297 2.990 Lv
1,3 -11.333 -11.133

M v
4 -0.938 -0.964 Γc

3 3.2064 1.7783
M v

3 -1.864 -1.181 Γc
1 0.34 0.67

M v
2 -2.532 -2.711 Γv

6 0.0 0.0
M v

1 -3.708 -3.515 Γv
1 -0.040 0.040

M v
3 -4.761 -5.306 Γv

5 -0.9561 -0.93599
M v

1 -5.785 -6.794 Γv
3 -6.2955 -5.504601

InN valence band e�ective masses

mA
⊥ 2.80 mA

z 1.86

mB
⊥ 0.07 mB

z 1.86

mC
⊥ 0.57 mC

z 0.07

Table 2.4: Comparison between ab initio reference values obtained by LDA+U (Section 2.1) and
corresponding optimized TB method values for high symmetry points in InN (eV).
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large basis (sp3d5s?) models. The addition of the s? orbital could be performed
straightforwardly without a�ecting the obtained parametrization, if one desire to
make corrections of the conduction band far from Γ. However, new experimental
results should be available in the literature to make these corrections necessary.
The e�ective masses of the topmost valence band states are also given. The same
procedure has been followed to �t GaN to LDA results of Section 2.1. Figure 2.15
reproduces a more detailed picture of the top the valence bands of InN, GaN and
AlN. The spin-orbit interaction is included as explained before and in Appendix A.
Therefore, the corresponding group representations are now Γ9 and Γ7, as labeled
in Figure 1.5. The alternative labeling of the bands A, B and C, in decreasing
order of energy, is also used. Although the parameters were obtained by �tting
ab initio band structures where the spin-orbit interaction was absent, when this
is introduced, due to its small contribution the splittings ∆so are not larger than
10 meV and no modi�cation of the TB parameters is required. The main e�ect
concerns the topmost valence band state. For the InN and GaN semiconductors,
this valence band state belongs to the representation Γ9, having a character φ⊥ = 1.
On the contrary, the AlN topmost state belongs to the representation Γ7, and the
character is now purely φpz , due to the negative and large crystal �eld splitting
[197]. The spin-orbit interaction, that depends on the atomic number, is larger
in InN (10 meV) (indium has an atomic number of 49), and minimum in AlN (5
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Figure 2.15: Detail around the Γ point of the bulk band structures calculated with the tight-
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meV).

The tight-binding approach presented in this Section is ready to be used for any
kind of nanostructures, as will be shown for the case of nanowires in Chapter 3.
In the next Section, the formulation to �nd the optical absorption in terms of the
tight-binding wave functions is explained.

2.4 Optical properties

2.4.1 Calculation of the absorption coe�cient within the

tight-binding method

We describe the light-matter interaction by a semi-classical formulation, where
the electronic structure is modeled by means of quantum mechanics, as shown in
previous Sections, and the electromagnetic �eld is introduced by the classic theory
of the electromagnetism [198]. For the description of the electromagnetic �eld we
use the vector potential, A(r, t). The Hamiltonian for an electron with charge −e
in such electromagnetic �eld

H =
1

2m0

[p + (eA)]2 + V (r). (2.70)

Here the vector potential is supposed to have an harmonic temporal evolution

A(r, t) = A0e
{
ei(q·r−ωt) + c.c.

}
. (2.71)
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where e is the light polarization vector and q the light wave vector. In this thesis,
we assume the dipole approximation, where the wave vector is negligible, i. e.,
q ≈ 0. The Hamiltonian of Eq. (2.70) can be written, by using the fact of ∇·A = 0

(Coulomb gauge), and neglecting terms proportional to A2

H =
p2

2m0

+ V (r) +
e

m0

A · p. (2.72)

Therefore, the e�ect of the electromagnetic �eld is a perturbation to the problem
of an electron in a periodic crystal. This additional term is called the light-matter
interaction Hamiltonian, and in the following, we refer it as HI . If we apply the
Fermi's golden rule, the probability of transition from an initial state, |Ψv〉, to a
�nal state, |Ψc〉, can be calculated as [199]:

Wv→c =
2π

~
|〈Ψc|HI |Ψv〉|2δ(εc − εv − ~ω), (2.73)

and

pe
v,c = |〈Ψc|HI |Ψv〉|2 =

(
eA0

m0

)2

|〈Ψc|e · p|Ψv〉|2. (2.74)

where we have considered only transitions from the valence to the conduction band
accompanied by the absorption of a photon with energy ~ω = εc − εv.

The absorption coe�cient is then de�ned as the sum over all the possible
processes [200]:

α(~ω) ∼
∑
c,v

Wv→c. (2.75)

We describe below how to calculate the momentum matrix element pe
v,c within

the tight-binding formulation.

In the tight-binding method, the exact form of the wave functions is not known.
In Section 2.3 we have explained how the wave functions are expanded in terms
of an orthogonal basis composed ofthe atomic orbitals. In principle, by means
of ab initio calculations one could obtain the exact atomic functions and then
calculate exactly the momentum matrix elements of Eq.(2.74). However, this
procedure would increase the di�culty of the tight-binding method. An alternative
solution is the proposed in Refs. [201], [202], and [203]. In these works, the authors
propose, by algebraic manipulation and using basic quantum mechanics, to write
the momentum matrix element as a product of the tight-binding parameters and
the coe�cients of the corresponding wave functions. Therefore, there is no need
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of additional parameters to calculate the optical absorption. Thus, for the wave
functions µ (= v, c)

|Ψµ〉 =
∑
α,l

Aµ,α,l(k)|ϕl(r − τα)〉, (2.76)

we can write pe
v,c as [203]:

pe
v,c =

m0

~
∑

α′,l′,α,l

A†
c,α′,l′(k)i(τα′ − τα) · eHα′,l′,α,le

ik·(τα′−τα)Av,α,l(k). (2.77)

The indices α and α′ runs over atoms and the indices l and l′ over orbitals.

Taking advantage of the de�nition of the Brillouin zone and the fact of that
our states are grouped in bands, we can rewrite the absorption coe�cient

α(~ω) ∼
∫

BZ

fe
v,c(k)δ(εc,k − εv,k − ~ω)dk, (2.78)

where fe
v,c(k) =

|pe
v,c|2

εc−εv
is the oscillator strength. The optical transitions between

two energy levels are characterized by a radiative recombination time that intro-
duces an inhomogeneous broadening of the spectral line. In such circumstances,
the spectra line can be described by a Lorentz function instead of the Dirac's
delta. As we have mentioned in Chapter 1, nanowires are not placed in an ideal
environment, and many factors contribute to further increase the broadening of
the optical transitions. A typical value of this broadening is in the range of several
meV. The parameter Γ represents along this work such broadening. Hence, the
absorption takes the form:

α(~ω) ∼
∫

BZ

fe
v,c(k)

1

π

Γ/2

(εc,k − εv,k − ~ω)2 + (Γ/2)2
dk. (2.79)

The absorption coe�cient α(~ω) depends on the light polarization e. In this
work, we study the following two polarizations:

e⊥ = 1√
2
(x̂+ iŷ),

ez = ẑ,
(2.80)

where x̂, ŷ and ẑ are the unitary vectors parallel to the cartesian axis. These
two con�gurations of a possible experiment of absorption or photoluminescence
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are specially important in wurtzite, due to the anisotropy between the c-axis and
the basal plane [204].

2.4.2 Group theoretical analysis of the optical transitions in

wurtzite semiconductors

The application of the group theory can give valuable information about the al-
lowed and forbidden transitions from the valence to the conduction band, as a
function of the light polarization [192]. The point symmetry of the wurtzite is
C6v, and the possible symmetries of Γ-point states are compiled in Table 1.2. The
information given by the character table and the multiplication table is enough to
establish the selection rules for the optical transitions from the valence to the con-
duction band. The Hamiltonian term HI , for the light polarizations of Eq. (2.80),
belong tos the following representations [30]:

e ∈
{

Γ5 if e = e⊥
Γ1 if e = ez

(2.81)

Therefore, if the initial state has a symmetry Γv, the �nal state is Γc, and the
perturbation operator transform like ΓI , the following rule indicates whether the
momentum matrix element is zero or non-zero:

pe
v,c =

{
6= 0 if Γv ⊗ ΓI ⊇ Γc;

0 otherwise
(2.82)

The selection rules for wurtzite semiconductors, without spin-orbit interaction,
are written as follows (Γv = Γ1 or Γ5 and Γc = Γ1):

e⊥

{
Γ5 ⊗ Γ5 �Γ1 + Γ2 + Γ6 ⊇ Γ1 =⇒ p⊥Γ5,v ,Γ1,c

6= 0,

Γ1 ⊗ Γ5 �Γ5 6⊇ Γ1 =⇒ p⊥Γ1,v ,Γ1,c
= 0,

ez

{
Γ5 ⊗ Γ1 �Γ5 6⊇ Γ1 =⇒ pz

Γ5,v ,Γ1,c
= 0,

Γ1 ⊗ Γ1 �Γ1 ⊇ Γ1 =⇒ pz
Γ1,v ,Γ1,c

6= 0.

(2.83)

In Fig. 2.16(a) we have represented with arrows the allowed and forbidden
transitions deduced from Eq. (2.83). As we can see, px-py orbitals are related to
e⊥ light polarization and pz orbitals to ez polarization. If the spin-orbit interaction
is considered, the relations are quite di�erent [30]
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Figure 2.16: Scheme of the optical transitions between the valence and conduction bands for
the wurtzite bulk considering the di�erent polarizations. The degeneration of each state is also
indicated.

e⊥

{
Γ9 ⊗ Γ5 �Γ7 + Γ8 ⊇ Γ7 =⇒ p⊥Γ9,v ,Γ7,c

6= 0,

Γ7 ⊗ Γ5 �Γ7 + Γ9 ⊇ Γ7 =⇒ p⊥Γ7,v ,Γ7,c
6= 0,

ez

{
Γ9 ⊗ Γ1 �Γ9 6⊇ Γ7 =⇒ pz

Γ9,v ,Γ7,c
= 0,

Γ7 ⊗ Γ1 �Γ2 + Γ7 + Γ9 ⊇ Γ7 =⇒ pz
Γ7,v ,Γ7,c

6= 0.

(2.84)

Now, only one transition Γ9 9 Γ7c for ez-polarized light is strictly forbidden.
In Fig. 2.16(b) we have also indicated the transitions in the case of including the
spin-orbit interaction. Notice that all the transitions from valence states Γ7 to
the conduction state Γ7 are allowed and only the calculation of pe

c,v will tell us
information about the intensity of such transitions. While in the case of InN and
GaN the lowest valence band-conduction band transition (Γ9v → Γ7c) is allowed
for e⊥-polarized light, in the case of AlN the intensity of this transition depends on
the p⊥-orbital composition. The opposite occurs for ez-polarized light, for which
the band gap transition Γ9v 9 Γ7c is forbidden for InN and GaN. In the case of
AlN, this transition is allowed (Γ7v,+ → Γ7c). Therefore, the group theory can
result useful for the analysis of the electronic structure in nanowires, as shown in
Chapter 3.
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Chapter 3

Atomistic modeling of free-standing

nanowires

In this Chapter we present atomistic calculations of the electronic structure and
optical absorption for III-N nanowires. The calculation have been made by using
both the semi-empirical pseudopotential method (SEPM) described in Section 2.2,
and the tight-binding (TB) method, formulated in Section 2.3. Although both sets
of calculations have a very di�erent nature, it is convenient to highlight �rst some
of the aspects they have in common.

Concerning the geometry, the NWs are assumed to be in�nite in the c-axis,
with hexagonal cross-section, and lateral faces parallel to the planes (11̄00). This
geometry is compatible with the observations made by microscopy, and with the
theoretical ab initio calculations performed in nonpolar slabs, as discussed in Sec-
tion 1.2. In real systems, the NW surface are free and therefore this implies a
surface reconstruction, i. e., the near surface atoms modify their interatomic dis-
tances in order to minimize the total energy. For simplicity, in our calculations, we
will assume the atomic arrangement corresponding to the perfect wurtzite every-
where. This approximation is reasonable since the surface reconstruction structure
takes place only in a few outer atoms, a�ecting only slightly the electronic states
of thick enough NWs [193]. In the following, the term NW diameter is used to
mean the lateral size of the NW as de�ned in Fig. 3.1.

Not only is the atomic arrangement modi�ed close to the NWs free surfaces. In
addition, the atoms at those surfaces will have dangling bonds, where no atom is
attached [193]. The existence of these dangling bonds generates electronic states
localized at the surfaces, whose energies are within the band gap of the semicon-
ductor and are eventually hybridized with the conduction and valence states. A
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Figure 3.1: Ball-and-stick representation of the nanowire cross-section, with the arrow indicating
the size. The hydrogen atoms are also shown.

detailed and careful analysis of what happens at the surface must be carried out
for studies about surface properties. In our case, we are only interested in the con-
�ned states related with the small size of the crystal, disregarding the study of the
surface states. However, as these states have energies close to the conduction and
valence band edges, they can induce an arti�cial modi�cation of the conduction
and valence states, and they have to be eliminated. Moreover, the appearance
of more states in the energy range of interest impoverishes the e�ciency of the
calculations, increasing unnecessarily the computation time. Therefore, there are
multiple reasons for developing a method for their elimination. One possibility is
to surround the nanostructure by a virtual material with a larger gap, in order
to achieve quantum con�nement for the inner atoms [165]. The disadvantages of
using this virtual material is the increasing of the number of atoms, which requires
much more computation time, and also that it could add arti�cial e�ects due to
the interaction of the barrier atoms with the nanostructure atoms. Another way
to remove this annoyance consists of attaching an atom, usually of hydrogen, to
the dangling bonds (the so-called passivation), which displaces the energies of the
surfaces states far from the band gap [205]. In this thesis we use the passivation
with hydrogen-atoms to saturate the dangling bonds of the surface atoms and thus
get rise of the surface states.

The atomic positions rα are denoted by:

r1, r2, . . . , rnatom , ..., rh1 , ..., rhp , (3.1)
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where natom is the number of group III element and nitrogen atoms, and hp is
the number of hydrogen atoms, used to passivate the dangling bonds at the NW
surface.

In both methods, the single-particle Schrödinger equation to be solved to obtain
the electronic structure has translational symmetry along the NW axis. Therefore,
the electronic states are organized in an one-dimensional band structure ε(k),
depending only on the wave vector k = kn, n being a unit vector along the NW
axis. The eigenvalue problem is written in any case as:

H(k)Ψk(r) ≡ H(k)Ψk(r) = ε(k)Ψk(r). (3.2)

The Brillouin zone is here one-dimensional, with length 2π/c. All the calcula-
tions are performed including the spin-orbit interaction, but all the obtained NW
electronic states are still doubly degenerate, due to Kramer's degeneracy.

The Chapter is divided in two parts, brie�y described as follows:

• In Section 3.1, the semi-empirical pseudopotential method (SEPM) is applied
to �nd the electronic states of GaN NWs up to a diameter of 6 nm. As
a previous step, an ab initio methodology has been developed to obtain
a local-density derived pseudopotential for the hydrogens attached to the
surface atoms. We also analyze the NW energy spectrum, determining the
allowed and forbidden optical transitions using the concepts of group theory
explained in Section 2.4.

• In Section 3.2, the tight-binding (TB) method is used to determine the NW
band structure. The atomistic nature of the TB method allows us to compare
the TB results with the ab initio results obtained for a thin NW. With
this test, we can con�rm the suitability of the TB bulk parameters derived
in Section 2.3. We have therefore studied the electronic structure and the
optical absorption as a function of the NW size and the light polarization,
for the whole set of III-N semiconductor NWs.

3.1 Semi-empirical pseudopotential method applied

to free-standing GaN nanowires

In this Section we present the calculation of the electronic structure of GaN NWs
with the semi-empirical pseudopotential method. First, in order to bene�t from
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Bulk Unit Cell NW Unit Cell

Figure 3.2: Ball-and-stick representation of the bulk and nanowire supercell. Notice that the
representation does not respect the scale.

the plane wave representation in which the SEPM is formulated, it is mandatory to
embed the NW in a periodic system. We proceed by de�ning the NW supercell as
shown in Fig. 3.2. A vacuum space of several angstrom must be left to prevent the
coupling between adjacent NWs. We construct the NW supercell by reproducing
the wurtzite bulk, and de�ning the NW lattice vectors:

A1 = N1a1 = N1

(
a

2
,

√
3a

2
, 0

)
,

A2 = N2a2 = N2

(
−a

2
,

√
3a

2
, 0

)
,

A3 = N3a3 = N3 (0, 0, c) ,

(3.3)

where bulk lattice vectors a1, a2 and a3 are those of Eq. (1.4) and N1, N2, and
N3 integers.1

Related to the Hamiltonian matrix obtained after Eqs. (2.53) and (3.2), due to
its large size, we only calculate how the Hamiltonian matrix acts on a vector, and
such matrix is never explicitly computed. We calculate the kinetic energy part
in Fourier space, where it is diagonal, and the potential energy part in real space
where the number of operations for the matrix-vector product is smaller than in
the reciprocal space. Then, we move between the real and reciprocal spaces by
means of Fourier transforms. The diagonalization is performed by the conjugate
gradient algorithm applied with the folded spectrum method [206, 207]. The states

1For the case of an in�nite NW in the (0001) direction N3 = 1.
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obtained from the solution of the Schrödinger Eq. (3.2) will be indexed in ascending
order according to their separation in energy from the respective band edge, as
calculated at k = 0. The Kramer's double degeneracy is omitted from the indexing
and the NW energies are written as follows:

Valence Band edge: Ev ⇒ v1(s), v2(s), v3(p), . . .

Conduction Band edge: Ec = Ev + Eg ⇒ c1(s), c2(p), c3(p), . . .
(3.4)

In all the calculations presented in this Section, the bulk valence band edge is
set as the zero of energy, Ev = 0. The letters s, p, . . . , indicate the envelope shape
of the wave function, according with the Bessel functions. The s-type envelope
corresponds to J0(x), p-type envelope to J1(x), etc.

Another practical way to characterize the NW wave functions is the projections
of a NW state onto given bulk states:

Pn(i) = 〈Ψk,i|Ψk,n〉, (3.5)

where Ψk,n is the NW n state, and Ψk,i is the bulk state, being i the bulk band.
If the wave functions are normalized, the projections Pn(i), obey:

∞∑
i=1

Pn(i) = 1. (3.6)

The projections tell us the composition of the NW states in terms of the bulk
states, and give a valuable information about their. Moreover, predictions con-
cerning the allowed and forbidden optical transitions can be attempted with the
help of this information. In the analysis presented below, only k = 0 NW states
have been considered by projecting them onto Γ (k = 0) bulk state.

3.1.1 Surface states and passivation

Before calculating the electronic states of GaN NWs, it is necessary to design a
methodology to deal with the free surfaces. An e�cient passivation is a crucial
prerequisite for obtaining reliable results of the electronic structure.

More speci�cally, the application of the passivation in the pseudopotential
method requires to �nd the adequate passivant pseudopotential. The simplest
way is to assume that the dangling bonds are saturated by hydrogen atoms and to
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Figure 3.3: Total energy as a function of the distance between the hydrogen atoms attached to
gallium and nitrogen atoms of the surface. In the lower part a ball-stick representation of the
passivated layer is drawn.

model the hydrogen pseudopotential by an analytical function, such as a Gaussian
pro�le with two parameters (height and width). In principle, this function must
be di�erent for each atom (gallium, nitrogen, aluminium, etc.) and one has to
search the Gaussian parameters for each case. The method to optimize the form
of the Gaussian function can be a simple trial and error procedure, or a more
sophisticated approach. For instance, one can de�ne a target function, such as the
charge density inside the crystal, and search with a genetic algorithm the Gaussian
function that maximizes this target [208]. However, the empirical parametrized
Gaussian pseudopotentials involve iterative calculations of the electronic structure,
which complicates the computational task, and this does not always guarantee to
achieve an adequate passivation.

The SEPM presented in Section 2.2 to obtain ab initio-quality semi-empirical
pseudopotentials of gallium, aluminium and nitrogen atoms, suggests the follow-
ing question: Why do not adapt the methodology to obtain local-density derived
passivating hydrogen pseudopotential? We propose to derive the hydrogen pseu-
dopotential from LDA calculations on a very small free-standing structure, such
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as a thin nonpolar layer, and then introduce this pseudopotential in the hydro-
gen placed in the lateral nonpolar surfaces of the nanowires.2 In principle, as we
have argued before, the atomic nature of this screened pseudopotential, and its
good transferability properties, should allow its application also to the nanowire
surface. In the next paragraphs we explain the steps followed to perform a proper
passivation:

Step 1: Ab initio calculation of the self-consistent potential. We calculate within
DFT-LDA the self-consistent potential of a free-standing (11̄00) GaN layer, termi-
nated by hydrogen atoms. The calculation is performed by arranging a periodic
system, whose supercell is formed by the layer under study plus some portion of
vacuum. The vacuum layer is thick enough as to prevent the coupling between
neighbors GaN layers. Speci�cally, in each supercell, the GaN layer is approx-
imately 15 Ångstrom thick, and the vacuum 10 angstrom in both sides. The
dimensions of the GaN layer should be large enough to prevent the coupling be-
tween the two free surfaces, and thin enough to reduce as much as possible the
computation time. In addition, these planes coincide with those of the GaN nano-
wires. Two di�erent layers have to be calculated. The �rst one with unsaturated
dangling bonds. The second one with the dangling bonds passivated by hydrogen
atoms. The input hydrogen potential is taken to be the same for hydrogen atoms
bound to gallium and nitrogen, being a Troullier-Martins pseudopotential with one
electron [99]. For the atomic arrangement we assume the bulk lattice constants,
and perfect wurtzite structure everywhere. However, the distance between the
hydrogen and the corresponding gallium and nitrogen atoms must be determined
by minimizing the total energy (ETOTAL) of the passivated layer. Figure 3.3 shows
two sets of points, corresponding to the dependence of ETOTAL on the distance
between the hydrogen and the gallium and nitrogen atoms, denoted as dH−Ga and
dH−N , respectively. The polynomial �ttings are represented with lines. From these
results we determine the equilibrium and its electronic properties. After structure
relaxation, we will in step 2 obtain the screened hydrogen potential. It is worth to
mention that a correct passivation, in the sense of moving the surface states away
from the band gap, could not be achieved without minimizing the total energy, as
shown in Fig. 3.3.

The band structures of the bare and relaxed passivated (11̄00)-layers can be
now examined. In Fig. 3.4 both LDA band structures have been represented.
The conduction bands are plotted with red lines, the valence bands with blue
lines and the surface state bands with green lines. First, the �atness of all bands

2Note that for calculations performed in polar layer, one should take care of the polarization
�elds of wurtzite semiconductor [209].



88 Atomistic modeling of free-standing nanowires

- 6

- 4

- 2

0

2

4

6 c 1 0
c 2

s 1 - s 4

s 5 - s 6

P a s s i v a t e d

M          Γ                               A A                                    Γ          M

 

 

Ga
N-

sla
b b

and
 str

uct
ure

 (e
V) E s u r f

B a r e

c 1

...
v 1

 
 

 

 

Figure 3.4: Band structure of a bare and passivated (11̄00) GaN layers calculated with LDA.

along the Γ-M direction con�rms the decoupling between adjacent layers, and
therefore indicates that our results are representative of an isolated layer. The
energy dispersion along the Γ-A line of the Brillouin zone is shown, exhibiting
the same behavior as in the case of a quantum well [210]. The curvature of the
conduction and valence bands is the same for both cases. We can appreciate
that the bare layer has a larger band gap, with a di�erence of 0.370 eV. The main
di�erence is obviously the presence of surfaces states, located within the band gap,
in the case of the bare layer. These states are grouped in two energy ranges. The
states s1 − s4 (the index assigned in increasing order of energy), are closer to the
valence band edge and have a �atter dispersion . The other group, formed by the
states s5 and s6, located in the middle of the band gap, have a more pronounced
dispersion. On the contrary, the band structure of the passivated layer has no
state within the band gap.

This analysis is further clari�ed by examining the charge density in real space.
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Figure 3.5: Selected Γ-point states, corresponding to the band structures of Fig. 3.4.
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Figure 3.5 shows the plane-averaged self-consistent potential pro�le, along the
[11̄00] direction (lower panel), together with the plane-averaged density corre-
sponding to some relevant states of the bare and passivated (11̄00)-layers (upper
panel). The surfaces states s1, . . . , s6 present di�erent pro�les. For instance, we
can see that the mid-gap states s5 and s6 have a strong hybridization with the layer
atoms, penetrating appreciably inside the layer. Correspondingly, the state c1 in
the bare layer shows a non negligible contribution near the surface. The charge
density of the valence states seems to vanish at the surface. On the other side, the
passivated layer shows all the conduction and valence states totally embedded in
the crystal, without localization at the surfaces. In particular, note that the two
surface peaks of the state c1 in the bare layer have disappeared here. The valence
states exhibit the same pro�le as in the bare slab. We can therefore conclude that
the dangling bonds a�ect mainly the states of the conduction band. The conduc-
tion band state c2 has a p-type envelope at k = 0, as expected. The state c10 is the
�rst one (2.70 eV above εc1) showing coupling e�ects with neighbors GaN layers.
In conclusion, we have illustrated by means of DFT-LDA calculations to which
extent the passivation via hydrogen atoms is able to eliminate the surface states.

Step 2: Determination of the screened hydrogen pseudopotential. As we have
demonstrated in Section 2.2 for the bulk system, we are able to determine the
screened pseudopotential of an atom, from the self-consistent potential of the
whole system. In this step, we read the self-consistent potential of each layer
as calculated in the Step 1. If there are many interior atoms, and the vacuum
space is large enough to prevent the coupling between adjacent layers, both po-
tentials are expected to be very similar, except at the surface (see Fig. 3.4). Thus,
it is reasonable to assume that the screened hydrogen pseudopotential can be ob-
tained by subtracting from the passivated layer potential the one from the bare
layer. By this simple operation, we can obtain a self-consistent potential around
the hydrogen sites. Although the procedure is basically the same that for the bulk,
the presence of vacuum and the existence of free surfaces introduces some di�-
culties in comparison with the bulk case, and some additionally approximations
have to be applied in order to successfully obtain an e�cient passivant pseudopo-
tential. Such considerations have been discussed in Appendix B. Figure 3.6 shows
the obtained hydrogen screened potentials that must be attached to the dangling
bonds of gallium and nitrogen. Since only one electron is involved, the pro�le of
both pseudopotentials is much simpler than in the case of gallium or nitrogen (see
Fig. 2.7). A slight di�erence is observed when q → 0, resulting from the distinct
interaction between hydrogen and gallium or nitrogen atoms.

Step 3: Check the wave functions of the passivated layer obtained by the SEPM
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Figure 3.6: Hydrogen screened pseudopotentials, represented in the reciprocal space, as calcu-
lated following the procedure summarized in Appendix B.

with the hydrogen screened potentials. The correctness of the passivation proce-
dure has been checked by applying the SEPM to the same slab used for the LDA
calculations. Figure 3.7 shows (a) the energy spectrum and (b) the charge density
of some conduction and valence band states. In these calculations the same cuto�
energy of 30 Ry as in the case of GaN bulk has been used, and the nonlocal part
of the Ga and N pseudopotentials is already adjusted to obtain the experimental
bulk band gap. We have obtained a band gap cleared up of spurious states, with
the state c1 having a reasonable density pro�le, well embedded within the layer.
The valence states v1 and v2 have the same s-type envelope that their counter-
parts LDA states. The discrepancies can be attributed to the small dimensions of
the layer, and are expected to gradually disappear for larger nanostructures. To
summarize, we have demonstrated a suitable passivation strategy in (11̄00) GaN
surfaces, based on the use of semi-empirical passivating hydrogen pseudopoten-
tials. This procedure can be straightforward generalized to other surfaces and/or
materials, such as (112̄0) and (0001) surfaces. For every crystallographic orienta-
tion the distance between the hydrogens and the crystal atoms may change, and
the potential will be slightly di�erent. The hydrogen pseudopotentials obtained
here are used in the next Subsection to calculate the electronic structure of GaN
nanowires with (11̄00) facets.
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with the SEPM.
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Figure 3.8: Schematic representation of the s-type and p-type envelopes of two nanowire states.

3.1.2 Electronic states of GaN nanowires

The GaN NWs studied here have hexagonal cross-section with lateral size ranging
from 1 to 6.5 nm. The number of atoms in the supercell varies from 100 to 1500
approximately, and the computation time is signi�cantly shorter here than in the
corresponding ab initio calculations (that we have not tried), since we do not
perform energy minimization. In the following results, there will be no surface
states within the NW band gap or in the conduction or valence bands, as a result
of the passivation procedure employed. In Fig. 3.8 we show the notation used here
to characterize the envelope of the NW states, where the s-type corresponds to the
Bessel function J0(x) and the p-type to the Bessel function J1(x). States related
to Bessel functions of higher order do not appear in our study.

We begin our study with the analysis of the dependence of the electronic struc-
ture with the NW size. Figure 3.9 shows the con�nement energy of the NW
conduction band (CB) states, calculated at the Γ point, as a function of the NW
size.3 As we have highlighted during Chapter 2, the wide band gap of GaN bulk
(see Fig. 2.3) decouples almost totally the conduction and the valence bands, and
the �rst conduction band exhibits a parabolic pro�le in the vicinity of Γ. More-
over, the lowest conduction band is far away from the other conduction bands.
Therefore, the con�nement e�ects for the �rst NW CB states could be in principle
similar to those predicted by a single-band model within the e�ective mass ap-

3We de�ne the con�nement energy as the di�er-
ence between the energy of a con�ned electron
in a NW and the band edge of the bulk material.

6
Con�nement energy
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Figure 3.9: Con�nement energy of the CB states as a function of the nanowire size (as de�ned in
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mass approximation. The projection onto the bottom conduction state of the bulk is given by
the red solid line. The charge density of the CB state c1 for nanowire size of 6.5 nm is shown as
an inset.

proximation (EMA). Under this assumption, it is expected a direct relationship of
the NW CB states with the bulk CB edge state. Thus, the projection of CB state
c1, highlighted with red circles, is associated to the lowest bulk conduction band.
The projection of c1 onto the �rst conduction bulk state cB, Pc1(cB) = 〈Ψc1|ΨcB

〉,
(which is represented by a red line in Fig. 3.9), tends towards Pc1(cB) ∼ 100%,
for the largest size explored here, and stays above 75 % for the smallest radius.
Therefore, the state c1 comes mostly from the �rst bulk conduction band. Ad-
ditionally, the c1 charge density exhibits a clear s-type envelope for all the sizes
explored here (see the case of 6.5 nm in the inset of Fig. 3.9). In order to know
how much the con�nement energy of the CB state c1 deviates from the prediction
of the single-band EMA energy, we have �tted its energy to the function

εc1(S) = Ec + a
1

Sb
, (3.7)

with S representing the NW size. We have found the values a = 1.28 ± 0.01 and
b = 1.62± 0.02, with Ec �xed at 3.5 eV. This value of b di�ers from the prediction
of the e�ective-mass approximation for a single-band
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εEMA
c1

(R) =
~2

2mc
⊥

(
k0

1

R

)2

(3.8)

where we assume R = S/2 as the NW radius and k0
1 = 2.4048 is the �rst zero of

the Bessel function J0(x). We have also represented εEMA
c1

in Fig. 3.9 by a dashed
line (the electron e�ective mass of Table 2.3 was used). In spite of coming mainly
from the CB bulk state, the CB state c1 has a subtle mixing with other bands,
which makes the single-band EMA results to overestimate the con�nement energy,
this discrepancy being more pronounced as the size is reduced.

For the NW CB states of higher energy, a stronger mixing is expected. Thus,
by examining the CB state c2 for the largest NW size, we have found a p-type
envelope of the charge density, and a main contribution to the projection of the
bulk state cB. However, as the NW size is decreased the di�erence of energies
εc2 − εc1 does not follow a monotonous trend, having a maximum around S ∼ 3.6

nm. We have also seen sudden changes in the charge density pro�le. The higher
con�nement energy of c2 probably enhances the mixing with higher conduction
bands. Nevertheless, these CB states have energies much higher than the NW
band gap and would not be relevant in the study of optical transitions near the
band edges.

We now turn to the analysis of the valence band (VB) electronic structure.
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As opposed to what happens in the conduction band electronic structure, the
symmetry mixing and spin-orbit coupling within the bulk valence (see Fig. 2.11)
together with the weaker con�nement e�ects (due to larger e�ective masses, pre-
sented in Table 2.3) will cause a complicated size dispersion of the valence band
energy level structure of the GaN NW, as will be shown below. It is worth to
mention that in the absence of the spin-orbit interaction there would be an exact
degeneracy between orbitally symmetric (equivalent) states. This degeneracy is
broken in our calculations including the spin-orbit interaction. Nevertheless, due
to the symmetry mixing, it becomes impossible to identify quasi-degenerate pairs
of states. Therefore, we have represented in Fig. 3.10 the energy levels of a set
of representative k = 0 VB states. Speci�cally, we show the 15 highest-energy
levels (labeled v1 to v15) for every NW size, irrespective of their symmetry prop-
erties. Thus, Fig. 3.10 gives an overall view of the con�nement e�ects. For the
largest NW explored (size of 6.5 nm), the set of 15 levels spans an energy range
of around 120 meV, with the highest one showing a con�nement energy of around
30 meV. On the other hand, for a small radius NW, say 1.5 nm in size, the levels
span a range of 700 meV, and the highest one VB state being 200 meV below the
bulk valence band edge. We have also studied the envelope of the wave functions.
For the largest NW, the �rst con�ned state shows a p-type envelope, as shows its
charge density, represented in Fig. 3.10. However, as the NW size is decreased,
the envelope of the VB state v1 becomes s-type.

From this �rst analysis we appreciate a complex interplay between the valence
band mixing and the con�nement mentioned above. The interpolation of the
energy levels to represent the energy spectrum in Fig. 3.10 as a series of continuous
size dispersion curves cannot be done without an exhaustive group theoretical
analysis of the eigenvalue problem, that would allow to assign the exact symmetry
(the group representation) of every state. Not having done this analysis, which
is outside the scope of this work, we must content ourselves with an individual
state-by-state analysis of the eigenstates obtained numerically.

A visualization of the charge density of the topmost valence band states for
di�erent sizes can help to understand the complex evolution of the energy depicted
in Fig. 3.10, and to perform a state-by-state analysis. Figure 3.11 shows the charge
densities of the �rst four VB states as a function of the NW size (lower panel).
The corresponding energies are also drawn in the upper panel. A �rst examination
reveals that the wave functions are well con�ned inside the NWs, and only for some
states of the smallest NW there is a slight spreading beyond the surface atoms.
In particular, the analysis of the charge density of the VB state v1 shows that its
envelope changes suddenly from p-type for the largest NW to s-type for smaller
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NWs. We can also appreciate that for size 2.6 nm and below, the �rst three VB
states show a s-type envelope, and the VB state with p-type envelope is moved to
the fourth place in the energy spectrum. Therefore, after a careful examination
of the wave functions, we have traced a line connecting the state with p-type
envelope, as depicted in Fig. 3.10. This shows a nontrivial evolution of such state.
In particular, it crosses with the state of s-like envelope that turns out to be the
�rst state for some size between 4 and 6 nm.

Having seen the evolution of the overall charge densities it would be necessary
to complete the study by obtaining the projections of the NW valence band states
onto the bulk states A(Γ9), B(Γ7,+) and C(Γ7,−), at the Γ point. This projection
will give us additional information about the symmetry of the states. In Fig. 3.12
we have made a pie chart representation, wherein each piece includes the value of
the corresponding projection (Pvi

(A), Pvi
(B) and Pvi

(C)), for the same set of NWs
size of Fig. 3.11. We have tuned the degree of transparency to be proportional
to the value of the projection. The violet portion contains the sum Pvi

(A) +

Pvi
(B)+Pvi

(C). We start the analysis with the largest nanowire shown here. The
composition of the topmost state is almost equally divided between the bulk states
A and B, which con�rms the mixed nature of the VB state v1 inferred above. The
next two VB states, v2 and v3, clearly show a dominant contribution from states
A and B, respectively (Pv2(A) = 82% and Pv3(B) = 76%). Neither of these two
states has a signi�cant contribution from the C-band. When the nanowire size is
reduced we observe that the mixed state A-B is not the topmost state anymore,
becoming v3 with energy -35 meV for S = 6.5 nm and v4 with energy -135 meV for
S = 2.6 nm. For these two sizes, the two topmost states exhibit an almost pure
composition of A and B bands, and a state with main contribution from the C band
has appeared between the �rst four valence states. In addition, the impossibility of
identifying quasi-degenerate pairs of states is clearer from the analysis of Fig. 3.11
and Fig. 3.12. Thus, the states v1, v2 and v3 for NW sizes of 1.5 and 2.6 nm, where
they show a mix composition A-B-C, having the same s-type envelope and being
ambiguous the identi�cation of two equivalent states.

Therefore, the detailed analysis of the NW wave functions as a function of size,
allows us to de�ne the state with p-type envelope function as a mixture of bands
A and B. This is possible due to the interplay of di�erent factors that enhance
the mixing. The �rst is a weak spin-orbit interaction, and the second is the large
valence band e�ective masses, which prevent an excessive separation of the energy
levels due to the quantum con�nement. This unconventional trend of the nanowire
electronic structure has also been reported by calculations using the tight-binding
method [117]. Moreover, studies in other wurtzite systems, as the one made in
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ZnO nanocrystals by S. Baskoutas and G. Bester [211] shows also that the highest
state of the valence band is characterized by a p-type envelope.

To conclude this Section we will discuss qualitatively the possible optical transi-
tions between the valence band and the conduction band states for a �xed nanowire
size. As discussed in Chapter 2, each k = 0 state from the bulk valence bands
belongs to a speci�c representation, which can be Γ9 or Γ7. Due to the inclu-
sion of spin-orbit interaction, the states Γ9, Γ7,+ and Γ7,− at the Γ point can no
longer be classi�ed according to their atomic symmetry (px-py or pz) due to the
mixing induced by the spin-orbit interaction. This makes di�cult the application
of selection rules (see Fig. 2.16). However, in GaN, the spin-orbit interaction is
much smaller than the crystal �eld interaction, and we can assume as a reasonable
approximation to consider the states A and B belonging to the representation Γ5

and the state C to Γ1 of the space group C6v (without spin). This approximation is
useful for a qualitative understanding without explicitly calculating the oscillator
strength. Figure 3.13 illustrates the charge density of the conduction (c1(s) and
c2(p)) and valence states (v1(p), v2(p) and v3(p)) for a nanowire with size 6.5 nm,
together with an scheme of the relevant optical transitions. We explain through
an example how to determine if one transition is allowed or forbidden and which
probability it has. In general, transitions that involve s and p-type envelope are
considered as forbidden due to the small spatial overlap. Thus, if we take the states
v1(s) and c1(p), we can appreciate the small spatial overlapping due to the dis-
tinct envelope function. Alternatively, the transition v2(s)-c1(s) has a large spatial
overlap, and the main contribution to the state v2(s) comes from the state A (sym-
metry Γ5). Therefore, this transition is almost totally in-plane polarized (e⊥ light
polarization, see Fig. 2.16). Thus, the oscillator strength of a transition from a VB
state to a CB state will vanish if their envelopes are di�erent. On the contrary, its
value is one their envelopes are the same. The oscillator strength value for each
light polarization is estimated with the projection value, where Pv(A) + Pv(B) is
related to e⊥ and Pv(C) to ez.

In Figure 3.14 we have summarized the relevant optical transitions in the en-
ergy range close to the nanowire band gap. We have represented the oscillator
strength (at k = 0) versus the transition energy. As we can see, there is a larger
number of allowed transitions for e⊥ light than for ez light. In addition, the energy
di�erence between the �rst transition for each polarization is 32 meV, being the
lowest one corresponding to in-plane polarization. It is also noticeable the fact
that for this NW size the lowest transition (NW band gap), namely v1(p)-c1(s), is
not optically (dark) allowed. Nevertheless, this will be a hardly observable e�ect
since the �rst allowed transitions, v2-c1 and v3-c1 are shifted only 3 meV with re-
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spect to the nanowire band gap. Moreover, a more complete study must include
the calculations of the oscillator strength for every k, as we present in the next
Section, in the framework of the tight-binding method.

In summary, we have demonstrated the applicability of the SEPM by perform-
ing a study of relatively large GaN nanowires that would have been extremely
costly to perform directly by ab initio methods. The strategy designed to pas-
sivate the surface dangling bonds has been successfully applied to the nanowires
surfaces. The main electronic properties of GaN nanowires, extracted from our
study can be summarized as follows: (i) The complex interplay between valence
band mixing and quantum con�nement leads to a non-trivial valence band elec-
tronic structure. (ii) The anisotropy of the wurtzite structure is translated to the
optical response of the GaN nanowires. (iii) Regarding the conduction band, al-
though its behavior is simpler to interpret, it shows deviations with respect to the
predictions of the single-band e�ective-mass approximation. The SEPM that we
have implemented can be improved in order to achieve a still better computation
e�ciency. One possibility is to try to reduce the cuto� energy, by smoothing the
screened pseudopotentials (a reduction of the energy cuto�), while keeping their
ab initio quality.
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3.2 Tight-binding method in III-N nanowires

In the previous Section, we have demonstrated the capability of the semi-empirical
pseudopotential method to deal with small NWs, up to a size of 6 nm. However,
in its present state, the SEPM is still prohibitive in terms of computational time
for the exploration of sizes up to 15-20 nm. Alternatively, the tight-binding (TB)
method has demonstrated its capability of performing calculations in structures
with thousands of atoms in much shorter times, and presumably can give also reli-
able results [94, 118]. One of the reasons of its computational e�ciency lies in the
small sp3 basis used here, which represents each atom by a small matrix 8× 8 (in-
cluding spin). Besides, the nearest neighbors approximation gives a Hamiltonian
matrix (Eq. (3.2)) composed mainly by zeros (less than the 0.5 % of the Hamilto-
nian matrix elements are non-zero). This kind of matrix is called sparse matrix,
and its eigenvalues and eigenvectors can be e�ciently calculated by computational
methods such as the Arnoldi algorithm (see Appendix C for details). Figure 3.15
illustrates the computation time versus the number of atoms required to obtain
the energy spectrum of an InN nanowire of varying size, as calculated in a single
processor (IBM AIX Power 5), with our implementation of the TB method. We
can observe a nearly linear relation. This allows us to extrapolate that, e. g., the
time employed in the calculation for a nanostructure of one million of atoms, if
performed in parallel with eight processors, would take 3-4 days.

On the other hand, the TB parameters used here have been adjusted to the III-
N bulk band structures, and in principle lack the consistency of the semi-empirical
pseudopotentials obtained by the robust procedure explained in Section 2.2. There-
fore, it would be desirable to examine the reliability of the TB method to deal with
nanostructures. It would also be interesting to establish the smallest NW size that
the method can treat accurately. In this sense, the atomistic nature of the tight-
binding method allows us to make a relatively unambiguous comparison with the
ab initio approaches as we will shown later.

Before analyzing the results of our calculation about the electronic structure of
III-N nanowires, it is convenient to present some de�nitions. As commented in the
introduction of this Chapter, the states are labeled in increasing order of energy.
Moreover, it is also interesting to analyze the shape of the charge density, de�ned
as n(r) = |Ψ(r)|2. The k = 0 nanowire wave functions are written as follows:

ΨΓ(r) =
∑
α,l

Aα,lϕl(r − rα), (3.9)
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where the index α runs over atoms and l over orbitals. In order to identify the
orbital composition of the nanowires states when analyzing the TB results we
denominate each state by its predominant character (φi > 50%), as de�ned in
Section 2.3. As we know from Section 2.3, the functional dependence of the or-
bitals ϕl is unknown. To overcome this ambiguity we have chosen two ways of
representing the wave function. (i) If we are interested in representing explicitly
the orbital symmetry, we can substitute each orbital ϕl by the spherical harmonic
that shares the same symmetry [212], and then averaging over the z variable in
order to obtain a map of the density in the c-plane. Such representation gives a
detailed picture of the charge distribution around the atomic sites, similar to those
obtained in the SEPM (for instance, Fig. 3.11), and it results also very useful for
the analysis of small nanowires. (ii) The other representation sums the coe�cients
Aα,l of atoms with identical coordinates in the c-plane, without di�erentiating be-
tween orbital symmetry, and gives a crude average of the charge density. However,
this representation is clearer for larger nanowires, where the atomic detail can be
misleading.

The optical absorption of III-N nanowires, calculated as explained in Sec-
tion 2.4, is also investigated for light polarization e⊥ (in-plane) and ez (on-axis).
The broadening Γ introduced to represent the delta function in the absorption
spectrum is 10 meV in all the cases.

We have organized this Section as follows: First, the passivation of the free



3.2 Tight-binding method in III-N nanowires 105

surfaces is formulated in the framework of the tight-binding model. Next, an as-
sessment of the TB parameters �tted to bulk InN is performed by comparing the
band structure and wave functions obtained by the TB method and the LDA+U
approach for small nanowires. The subsequent Subsections are devoted to a com-
parative study of the electronic structure and the optical properties of InN, GaN
and AlN nanowires.

3.2.1 Treatment of free surfaces in the tight-binding model

In Subsection 3.1.1 we have de�ned the procedure used for the passivation within
the SEPM of dangling bonds at the free surfaces. Here we will give the procedure
followed within the tight-binding method.

The use of the TB method in systems with free surfaces has been tradition-
ally related to the theoretical study of the porous silicon. This was motivated by
the measurement of intense photoluminescence from porous silicon, attributed to
quantum con�nement e�ects in the existing holes inside the material [213�215]. In
this context, the TB method is an ideal tool because given its atomistic nature it
can model any structure shape. Moreover, it could be implemented in large super-
cell calculations, thus gaining tremendous popularity in the study of nanocrystals
or nanoparticles of silicon, germanium, among others materials [216, 217]. These
advantages have made the TB method a broadly used tool to study the optical
properties of nanostructures, and in particular, of nanowires [116�118].

Within the TB model, the passivation is carried out in essentially the same way
that in the SEPM, i. e., by attaching a hydrogen atom at each dangling bond.
However, instead of de�ning a passivant pseudopotential, an s orbital is assigned
to each hydrogen atom, according to the TB formulation [218]. The interaction
between the hydrogen and the orbitals of the wurtzite atoms is modeled by writing
the interaction parameter according to the Harrison's rule:

VH−λ(d) =

(
d0

dH−λ

)ηH−λ

V0, (3.10)

where the parameter V0 is a concise notation for any of the overlap integrals Vssσ,
Vscpaσ, and Vsapcσ described in Section 2.3. The interatomic distances d0 and dH−λ

correspond to the bulk wurtzite structure (d0), and to the distances between the
hydrogen atom and atom of the III-N compound, λ = c, a, for cation and anion,
respectively. For the sake of simplicity we assume the same distance dH−λ =
1
2
d0 for all the dangling bonds, independently of the atomic species. This is in

concordance with the ab initio results for the GaN shown in Fig. 3.3, where dH−λ <
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d0. The exponent ηH−λ enters here as a �tting parameter. Also for simplicity,
the value of ηH−λ is imposed to be the same for every atom and every orbital,
denoted in the following as ηH . The interaction between di�erent hydrogen atoms
is disregarded. Here, the limiting case of an unpassivated nanowire would be
represented by dH−λ →∞.

The in�uence of the parameter ηH on the nanowire band structure is illustrated
in Fig. 3.16 through an example for InN NWs. Figure 3.16 shows the energy of
the �rst conduction band state, c1, as a function of the NW size, for several
values of the exponent ηH . It is important to note that for all the ηH shown
here, there are no surface states within the band gap at all. However, smaller
values of ηH , or distances dH−λ too large, could lead to the presence of states
within the band gap. In Fig. 3.16, we see that the sensitivity of the c1 energy to
the parameter ηH is reduced as the NW size increases, the change in the energy
being negligible for S > 6 nm. This is consistent with the fact that for larger
NW cross sections, the surface e�ects are less important. Moreover, there is no
hybridization between the conduction states and the surface states. In the inset
of Fig. 3.16 we have �xed the nanowire radius to S = 1.6 nm, and plotted the
energy of the state c1 versus ηH . For ηH & 3.5, a saturation of the energy is
observed, reminiscent of the hard-wall condition (in�nite barrier), often used in
the e�ective-mass approximation. Concerning the valence band states, they do not
show signi�cant changes in their energy in the range of the parameter ηH studied
here. This is again understandable since the interaction of the hydrogen atoms
with p orbitals takes place only through the parameters Vscpa and Vsapc . It also
agrees with the results of the pseudopotential method for the GaN (11̄00)-layer
presented in Section 3.1, where the valence band wave functions remained almost
identical in the cases of unpassivated and passivated surfaces. The passivation
procedure in the TB model is much simpler than in the SEPM (see Section 3.1),
since it only requires one parameter ηH to be �xed. We have determined ηH for
InN NWs by adjusting the band gap of a small NW to the value obtained by
LDA+U calculations, as shown below. The parameters ηH for GaN and AlN NWs
have been adjusted to the available ab initio or semi-empirical approaches data for
small NWs.

Now we examine the electronic structure and optical absorption of III-N nano-
wires obtained by means of the TB method.
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Figure 3.16: Energy of the �rst CB state, c1, as a function of the InN NW size, for di�erent
values of ηH . In the inset, variation of the energy with the parameter ηH for �xed size, S = 1.6
nm.

3.2.2 Assessment of the tight-binding parameters: Compar-

ison with LDA+U results

The tight-binding parameters are usually deduced from a bulk band structure, as
we have shown in Section 2.3. Its use is justi�ed when the nanostructures are
large enough. However, it is somewhat uncertain the minimum nanostructure size
for which their use is reasonable. In addition, there is some controversy about
whether an increase in the number of the atomic orbital used would be needed for
the electronic structure calculations of small nanostructures [184�186]. A robust
test would be to compare the tight-binding results with those obtained from ab
initio calculations for a small nanostructure. In this Section we make such a
study by comparing the electronic structure of a small InN nanowire (S = 1.6

nm) as obtained with the LDA+U and the tight-binding methods. To make the
comparison we can neglect the spin-orbit interaction, because it only a�ects slightly
the band structure. The LDA+U calculations shown here have been performed by
A. Terentjevs and G. Cicero, from the Politecnico di Torino (Italy) [161].

The electronic structure of an InN nanowire of S = 1.6 nm has been calculated
�rst with the LDA+U , by passivating the dangling bonds at the surface with
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right upper part, top of the valence band as calculated with (a) LDA+U (b) and TB method.
In the lower part, we represent the square of the wave function for the valence band states v1,
v2, v3, and v4 as calculated with both approaches.

hydrogen atoms, as usual. The nanowire atomic arrangement has been fully opti-
mized until forces are less than 0.001 Ry/Bohr per atom. A Monkhorst-Pack mesh
of 6 points for the one dimensional nanowire Brillouin zone has been used. It is
found that the indium and nitrogen atoms placed at the surface, have their tetrag-
onal bonds slightly distorted due to the presence of the passivant hydrogen atoms
[219]. This surface reconstruction is not taken into account in our tight-binding
calculations, which assume a perfect wurtzite everywhere [117].

A ball-and-stick representation of the nanowire used in our calculations is given
in Fig. 3.17 (upper part), together with the topmost valence band states, as ob-
tained by the (a) LDA+U and (b) TB methods. The states v1 to v4 are within a
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range of 150 meV in both calculations. The TB result yields in addition the value
of -130 meV for the con�nement energy of the states v1 and v2 with respect to the
top of bulk valence band. In the case of the LDA+U calculation, the degeneracy
between v1 and v2 is broken (the splitting being around 3 meV) due to the exact
consideration of the atomic distances when the structure is relaxed, an e�ect that
the TB method ignores. In any case, the portion of the band structure framed by
a dashed green line, that contains the v1, v2, and v3 sub-bands, exhibits a remark-
able similarity in both calculations. In particular, the curvature of the bands is
identical and only a slight di�erence in the energy splitting of the states v1 and v3

(26 meV and 18 meV for LDA+U and TB calculation, respectively) is observed.
On the other hand, the v4 state is closer in energy to v3 in the TB calculations
than in the LDA+U approximation. Despite that its con�nement energy is under-
estimated by the TB calculation, v4 has the same curvature in both approaches.
Another di�erence is the appearance of more states (v5, v6,. . . ) in the range of
-150 meV from the state v1, in the case of TB calculation than in the LDA+U
one. In order to exclude the relaxation performed in the LDA+U calculation as a
source of these discrepancies, calculations with LDA+U in a nanowire with perfect
wurtzite structure arrangements everywhere were also performed, without �nding
any substantial di�erence with those for a relaxed NW.

Once the overall agreement of the valence band structure has been con�rmed,
we can go further in the test of the TB method, by comparing the squared wave
functions, i. e., the charge density, of the four valence band states, from v1 to
v4. The lower part of Fig. 3.17 shows the charge density maps calculated by both
methods. To plot the TB charge densities we have used Eq. (3.9). We can see
the charge density localized on the indium and nitrogen atoms, without signi�ca-
tive spreading towards the hydrogen atoms. Concerning the �rst two degenerate
valence band states (v1 and v2), they exhibit an electron density elongated along
two perpendicular directions (x and y). By looking closely to the density near
each atom, it is evident that it is dominated by the px and py orbitals, for the x-
elongated (v1) and y-elongated (v2) states, respectively. In the next valence band
state, v3, the wave function is notably con�ned at the center of the NW, being the
pz-orbital component predominant. In the case of the v4 state, we �nd that the
wave function has a node at the nanowire center, and a mixed composition of px

and py orbitals. One can appreciate that TB charge densities are more delocalized
toward the nanowire surface as compared to the LDA+U ones. However, the TB
method reproduces exactly the qualitative behavior of the charge density in terms
of symmetry and orbital composition. Concerning the charge density of the �rst
conduction band state, both models give an identical picture (not shown here),
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Figure 3.18: Dependence of the con�nement energy on the nanowire size. The limit of 1/S → 0
corresponds to the bulk material.

with the density concentrated at the NW core. Overall, we consider the compar-
ison between both sets of results are very satisfactory given the small size of the
TB basis and the tiny NW size. For larger NWs, the small di�erences between the
TB method and the LDA+U approximation are expected to be reduced, but that
kind of comparison is di�cult due to the computation time limitations.

Regarding the conduction band, a direct comparison of the TB method with
the ab initio results cannot be done, since the band gap was set to the experimen-
tal value (0.67 eV) in the current set of tight-binding parameters, and LDA+U
underestimates this value (0.34 eV). Alternatively, we can compare the calculated
con�nement transition energies for both approaches.4 Figure 3.18 shows the con-
�nement transition energy, versus 1/S, being S the NW size. The red spheres
correspond to the TB results and blue crosses to the energies calculated with
LDA+U . In addition, it is also shown (solid line) the con�nement energy cal-
culated within the e�ective-mass approximation (EMA), by assuming parabolic
valence and conduction bands

4The con�nement transition energy is Eg,NW − Eg,bulk
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εEMA =

(
~2

2mc
⊥
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2mA
⊥

)(
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R

)2

, (3.11)

where k0
1 = 2.4048 is the �rst zero of the Bessel function J0(x), and the e�ective

masses are reported in Sec. 2.3 (we approximate the radius as R = S/2). The
TB and EMA predictions almost coincide for large sizes, S > 30 Å, the di�erence
being related to the non-parabolic conduction band of InN, typical of narrow band
gap semiconductors. For decreasing size (S < 5 Å), the EMA overestimates the
con�nement energy as compared with the TB results, that changes in this range
the behavior from ∼ 1/S2 to ∼ 1/S. Moreover, the TB results connect perfectly
with the ab initio computed values, for sizes of 16 Å and 10 Å. This smooth
interpolation con�rms the suitability of the TB method to link the NWs size ranges
of ∼ 10 Å, where ab initio calculations are feasible and ∼ 100 Å, where the EMA
starts to be applicable. For this intermediate size range, the TB approach has the
advantages of keeping the atomistic nature of the system and be e�cient in terms
of computational e�ort.

We can conclude that the TB parameters obtained and tested here are suitable
to be used in the calculation of optical properties of InN-based nanostructures.
The sets of TB parameters obtained for GaN and AlN by an identical procedure,
should be as good as the InN parameters for the simulation purposes. In the next
Subsections we will study in detail the band structure and the optical absorption
of the III-N nanowires, InN, GaN and AlN.

3.2.3 Electronic structure and optical properties of InN na-

nowires

The reliability of the TB approach demonstrated above allows us to extend the
use of the model to large structures. The spin-orbit interaction, omitted for the
comparison with the LDA+U results, is now included in all the subsequent calcu-
lations.

Band structure

We start with the analysis of the band structure. As we have seen in Fig. 3.18, the
NW band gap does not follow the 1/S2 behavior, as a consequence of the strong
coupling between the conduction and valence bands. We add to our study the
information given by the state character, which helps us in the understanding of
the NW band states behavior when the NW size changes.



112 Atomistic modeling of free-standing nanowires

2 4 6 8 1 0 1 2 1 4 1 6

0 . 8

1 . 0

1 . 2

1 . 4

1 . 6

5 0

6 0

7 0

8 0

9 0

1 0 0

             v 1
 v 2 ,  v 3
 v 4 ,  v 5En
erg

y (
eV

)

S i z e  ( n m )

I n N  b a n d  g a p

� s (%
)
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Figure 3.19 shows the variation with the NW size of the energy of the �rst �ve
conduction band (CB) states at Γ point. In the absence of the spin-orbit interac-
tion, there would be an exact degeneracy between orbitally symmetric (equivalent)
states. This degeneracy is broken in our calculations including the spin-orbit in-
teraction, and the CB states labeled (c2, c3) and (c4, c5) are no longer degenerate.
Nevertheless, the corresponding splittings ε(c)3 − ε(c)2 and ε(c)5 − ε(c)4 are so small (< 5

meV) that they cannot be appreciated in Fig. 3.19. The small band gap of InN
leads a strong coupling between the conduction and the valence bands, and the
conduction band cannot be considered parabolic around Γ point. Moreover, the
small e�ective mass of the conduction band produces a large quantum con�nement
of the CB states, which still remains for large sizes (εc1 − Ec ∼ 35 meV at S = 15

nm). On the other side, the lowest CB energies exhibit a monotonous decreasing
evolution with the NW diameter, without any crossing or anti-crossing e�ects.
This is related to the single lowest conduction band of the InN bulk band struc-
ture, shown in Fig.2.13, that prevents of the mixing between di�erent conduction
bands. It is also interesting to quantify the deviation of the �rst CB state energy
with respect to the prediction made by the EMA. Thus, the energy εc1 has been
�tted to the function:

εc1(S) = Ec +
a

Sb
, (3.12)

and obtained the values: a = 1.94 ± 0.05 and b = 1.28 ± 0.02, being Ec = 0.67

eV. This function deviates signi�cantly from the ∼ 1/S2 function of the EMA for
a single-band. Further proof of the inadequacy of the single-band approximation
applied to the case of InN NWs is revealed by the c1 state character. Figure 3.19
also shows the s-orbital contribution of the CB state c1 (dashed line). Notice that
φs decreases below 85 % for NW sizes below 9 nm. The remaining contribution is
provided by pz orbitals.

In spite of the trend observed for the CB states, the analysis of the con�nement
e�ects in the valence band (VB) states reveals more complicate tendencies, as
shown in Section 3.1. Thus, as presented in Fig. 2.15 and discussed in the case of
GaN NWs in Section 3.1, we recall here the impossibility of identify exactly the
quasi-degenerate pair of states as those shown in Fig. 3.19. Analogously to the
exploration performed in Section 3.1, Figure 3.20(a) shows the energy at k = 0

of the �rst 20 valence band states as a function of the NW size (labeled from v1

to v20), irrespective of their symmetry properties. Two vertical lines highlight the
nanowires sizes, which band structures will be shown later.

For the largest NW analyzed (of size 16 nm), the set of the 20 levels spans an
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energy range around 30 meV, with the highest one showing a con�nement energy
of around 3 meV. On the other hand, for a small radius NW, say 5 nm in size,
the levels span a range of 175 meV, and the highest one being 40 meV below the
bulk valence band edge, showing a similar range from that calculated for GaN
NWs. Concerning the spin-orbit interaction, it a�ects the electronic structure
slightly, with a splitting not larger than 2 meV in the VB states explored here.
The energy spectrum of Fig. 3.20(a) cannot be represented as a set of continuous
size dispersion curves, due to the complex interplay between valence band mixing
and con�nement mentioned above. Alternatively, by examining the character of
the topmost valence band states, and their corresponding charge densities, we
have been able to trace various interpolating lines connecting states with the same
global symmetry. We have traced interpolated lines for the VB states v1, v2 and
v3 (all of them with p⊥-character) along the full range of sizes. For the VB state
v4 (with pz-character) we have drawn the curve until 5 nm. This simple exercise
already shows the existence of both crossing (between states of di�erent symmetry)
and anti-crossing e�ects (between states of equal symmetry). This results in a
non-trivial and non monotonous evolution of such curves. In particular, a rather
noticeable behavior arises as a consequence of this level interaction: The two quasi-
degenerate VB states (cyan and pink lines), that occupy the topmost position in
the valence band (see also Fig. 3.17) at S = 1.6 nm, become the second and third
states for sizes above 4 nm. For a NW size above 4 nm, the �rst VB state v1 (red
line) has a node in the center. On the other hand, the green line symbolizes the
�rst VB state with pz-character, which has only one maximum at the NW center.
Figure 3.20(b) shows the charge densities for a NW size 8.9 nm, of the �rst VB
states v1 and v2, with p⊥-character, with the �rst VB state with pz-character, that
occupies the 11-th position in the valence band energy spectrum.

We have here similar results for the valence band of the InN NW as the obtained
for the GaN NW calculated within the SEP approach. This is reasonable due to
the similarity between valence bands of both semiconductors. However, the larger
InN crystal-�eld splitting can lead to some di�erences, as we analyze later.

The results concerning the evolution of the electronic structure with the size of
the nanowire can be analyzed more widely by representing the band structure for
two representative sizes. Figure 3.21 shows the band structures for sizes (a) 3.4
and (b) 8.9 nm, highlighted also in Fig. 3.20(a) with the orange vertical lines. We
have chosen these sizes due to the di�erence in the con�nement energy between
each other. The conduction and valence bands are represented by red and blue
lines, respectively.

The conduction bands for both sizes show a quasi-parabolic line shape. In
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Figure 3.21: Band structure of the InN NWs of size (a) S = 3.4 and (b) S = 8.9 nm. (c) Some
selected wave functions of the nanowire of size 8.9 nm.

general, as the coupling with the valence band decreases with the increasing of
NW band gap, the conduction bands are better suited to a parabolic function for
smaller NWs. Moreover, for S = 3.4 nm, shown in Fig. 3.21(a), the conduction
sub-bands all exhibit a similar curvature, because they come from the same bulk
conduction band. The only exception is the band whose energy at k = 0 is 1.93
eV, recognizable by its curvature �atter than the rest of the bands. This band
comes from a bulk conduction band of higher energy, and its crossing with the
other bands implies that belongs to a di�erent representation, i. e., has a di�erent
global symmetry. In the case of S = 8.9 nm, the weaker con�nement results in a
larger number of sub-bands even in a lower energy range, as Fig. 3.21(b) shows.
Now, all the bands belong to the same family of curves.

On the other side, the valence bands show a distinct picture. The participation
of bands with di�erent curvatures complicates their pro�les. At �rst glance we
can appreciate multiple crossing and anti-crossing in the energy dispersion. By
analyzing the band structure of the smaller NW, we can see that the topmost VB
state, with φp⊥ = 100%, has an energy of -53 meV, and a almost �at band. The
�rst VB state with pz-character is placed at -70 meV (state v4), having a band
of more pronounced curvature. After analyzing the character of each VB state
at the Γ point, we can assign in most cases, a p⊥-character to the �atter bands,
and a pz-character to the bands with stronger curvature. The exceptions are
VB states with same global symmetry and close in energy, whose characters may
be di�cult to be de�ned. This correspondence between character and curvature
evokes the bulk band structure, where the C-band, of pz-character, has the most
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pronounced curvature of all. The valence band dispersion for the larger NW (shown
in Fig. 3.21(b)) is more complicated as the result of the weaker con�nement. Now,
we �nd a larger number of �atter bands, all with p⊥-character. The �rst VB state
with pz-character is found in the 11th band. In addition to the band structures,
the charge densities of some relevant states of the nanowire of size 8.9 nm has
also been represented in Fig. 3.21(c). Although the NW states seem to have a
circular symmetry, the NW hexagonal cross-section determines the envelope of the
wave function. This is evident in the VB state v10, with six maximum related
to the cross-section corners. Moreover, from this picture, a qualitative idea of
the magnitude of the oscillator strength can be inferred. Thus, the states v1 and
c1 will have a small spatial overlap, which means a low transition probability.
We complete below the information given by the NW energy spectrum with the
calculation of the absorption spectra.

Optical absorption

According to the discussion about the NWs electronic structure we can infer that
the NW optical properties can be strongly determined by the spatial overlapping
of the VB and CB states. Moreover, the optical response will also depends on the
light polarization as a consequence of the anisotropy of the wurtzite crystalline
structure, exhibited also in the electronic states. To complete the information
given by the band structures of Fig. 3.21, we calculate here the absorption for the
InN NWs of the same size.

Figure 3.22 shows the absorption spectra, for the same NWs size of Fig. 3.21
(sizes 3.4 and 8.9 nm), for e⊥-polarized light (in-plane) and ez-polarized light
(on-axis). Concerning the general behaviors presented by the absorption, both
spectra exhibit the characteristic one-dimensional density of states (modulated by
the oscillator strength). While the spectra of e⊥-polarized light present a more
complex pro�le, the spectra ez-polarized light are composed by single peaks well
separated from each other. This is explained by the large number of states with
p⊥-character than states with pz-character, as we have appreciated before in the
band structures (Fig. 3.21). Thus, for both NW sizes, in the in-plane spectra we
recognize a structure composed by group of peaks of similar energies, where several
transitions participate. In the case of the on-axis spectra, the structure is simpler,
and exhibits the mentioned single-peak pro�le. The average separations between
consecutive on-axis absorption peaks and groups of in-plane absorption peaks are
approximately the same, being 0.4 eV for size of 3.4 nm, and 0.1 eV in the case of
8.9 nm.
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Figure 3.22: Optical absorption spectra for in-plane (e⊥) and on-axis (ez) light polarization, for
the NW sizes S = 3.4 and S = 8.9 nm.
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In spite of the oscillator strength of the transition v1-c1 is practically zero, the
absorption edge energy of the spectra of e⊥-polarized light coincides with the NW
energy gap in the spectra of both NW sizes. This is due to the small separation
between the energies of the state v1 and states v2 − v3 (3 meV). In the case of the
on-axis spectra, the �rst VB state with pz-character has a large spatial overlap
with the CB state c1. Therefore, the absorption edge energy is exactly placed
at the transition energy from this VB state to the CB state c1. Moreover, the
absorption edge energy of the on-axis spectra is blue-shifted with respect to the
in-plane spectra. This shift is 10 meV for the NW size of 3.4 nm and 38 meV
for a NW size of 8.9 nm. We can also observe that the di�erence between the
absorption edge energies of in-plane and on-axis spectra can be lower than the
value of the bulk crystal-�eld splitting, due to the di�erent level of con�nement
of states with p⊥ or pz-character, motivated by the complex interplay between
the valence band mixing and the quantum con�nement. Nevertheless, this blue-
shift will tends asymptotically to the crystal-�eld splitting value as the NW size
increases.

In conclusion, the absorption of wurtzite InN NWs exhibits a relevant anisotropy
depending on the light polarization, which also leads a di�erent absorption edge
energy. Moreover, the interplay between the quantum con�nement and the valence
band mixing produces non-trivial trends in the optical properties when the NW
size changes. Thus, the complete study of the absorption of InN NWs of sizes
below 20 nm, where the quantum con�nement e�ects are important, should be
performed within a precise description of the valence bands dispersion.

3.2.4 Electronic structure and optical properties of GaN na-

nowires

In Section 3.1 the SEPM was able to establish the relevant electronic properties of
GaN NWs with sizes below 6.5 nm. However, a more detailed studied was lack due
to the required computational time. On the other hand, in previous Subsections,
the tight-binding method has handled with InN NWs (size up to ∼ 16 nm), and
also the absorption spectra were obtained. It would be interesting to complement
the SEPM results with more calculations of the electronic structure for larger GaN
nanowires.
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Figure 3.23: Con�nement energy of the conduction band states versus nanowire size. Squares
represent the data of SEPM calculations of Section 3.1. The dashed lines is a single-band EMA
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Band structure

We start by analyzing the in�uence of the NW size on the conduction band (CB)
energy spectrum. In Fig. 3.23 we present the variation with the NW size of the
con�nement energy of the �rst ten CB states at k = 0 (circles). We have high-
lighted the �rst CB state, c1, with red circles. As we have mentioned above, the
absence of spin-orbit interaction there would be an exact degeneracy between or-
bitally symmetric (equivalent) states. Analogously to the situation of InN NWs,
this degeneracy is broken also in these calculations including the spin-orbit inter-
action. Nevertheless, the corresponding splittings between the quasi-degenerate
CB states are as small (< 5 meV) as in InN NWs, and cannot be distinguished
in Fig. 3.23. Analogously to the case of InN NWs, the CB energies exhibit a
monotonous decreasing evolution with the NW size, without any crossing or anti-
crossing e�ects. This is related to the rather simple nature of the bulk conduction
band, and the wide band gap of GaN. This wide band gap also prevents a strong
coupling between the conduction and valence bands, being the dispersion of the
conduction bands around the Γ point nearly parabolic. The di�erences with the
InN NWs arise as a result of the larger e�ective mass of the GaN conduction band.
This results in a lower con�nement energy. In Fig. 3.23 we can see that the state
c1 con�nement energy is smaller than 5 meV for large NW sizes, while for the
same CB state was around 35 meV in InN NWs. Another di�erence among InN
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Figure 3.24: Con�nement energy of the VB states versus nanowire size. The charge density of
the topmost VB state is represented for two relevant sizes.

and GaN NWs is the dependence of the con�nement energy with the NW size. We
have �tted the con�nement energy εc1 to the function:

εc1(S) = Ec +
a

Sb
, (3.13)

and obtained: a = 1.34 ± 0.07 and b = 1.69 ± 0.02, being Ec = 3.5 eV. Now, the
exponent b is larger to the value obtained in InN NWs, and closer to the value
of 2 established by the e�ective-mass approximation (EMA). For comparison, we
have represented the EMA result for εc1 with a dashed blue line in Fig. 3.23. In
addition, the representation of the φs corresponding to the CB state c1, explains in
part this deviation with respect to the EMA result. As we can see in Fig. 3.23, the
decreasing of the NW size entails a decreasing of φs, that falls below 95 % for S < 5

nm. This reveals a slight multi-orbital composition, to a lesser degree than in InN
NWs. Finally, we have also shown εSEPM

c1
as calculated with the SEPM (green

rectangles). We can appreciate a good agreement with the current TB results.
However, a comparison with higher CB states is misleading due to di�erences in
the bulk band structure for the higher conduction bands. Nevertheless, such states
are not of much interest in the optical properties.

In the case of the valence band (VB) states, as opposed to what happens in
the conduction electronic structure, a complex size dispersion of the VB energy
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is expected. As in the case of InN NWs, it becomes impossible to identify quasi-
degenerate pairs of states as shown in Fig. 3.23 for the CB state c1. Therefore,
we have represented in Fig. 3.24 the energy levels as done in Fig. 3.20, for a
set of representative k = 0 VB states. More precisely, we show the 15 highest-
energy levels (labeled v1 to v15) for every NW size, as obtained from the numerical
diagonalization, irrespective of their symmetry properties.

Figure 3.24 shows an overall view of the con�nement e�ects. For the largest
NW analyzed (S = 15 nm), the set of 15 levels spans an energy range of around
20 meV, with the highest one showing a con�nement energy of around 5 meV. On
the other hand, for a small radius NW, say 5 nm in size, the levels span a range
of 100 meV, the highest one being 30 meV below the bulk VB band edge. We
have also studied the symmetry of the wave functions. For the largest NW, the
con�ned states exhibit all de�nite character p⊥, with no state in this energy range
with character pz, that allows to identify such con�ned states as originating from
the GaN bulk band edges Γ9 and Γ7,+ of Fig. 2.15.

Nevertheless, as the NW size decreases, the complex interplay between VB
mixing and con�nement precludes a systematic identi�cation of the origin of each
VB state. Analogously to the case of InN NWs, the representation of the energy
levels as a series of continuous size dispersion curves, can be only achieved after
an exhaustive group theoretical analysis. Not having done this analysis, we have
proceeded as in Fig. 3.20, tracing interpolating lines connecting states with the
same global symmetry. As in the InN NWs, this exercise shows several crossing
and anti-crossing e�ects, with the known nontrivial evolution of the size dispersion
curves. However, a di�erence can be appreciated with respect to the VB behavior
studied for InN NWs. Here, the two highest energy size dispersion curves cross
at around 4 nm, so that the highest energy valence band state exhibits a change
in its properties at that critical size. For NWs with diameter larger than 4 nm,
the highest-energy state has dominant p⊥-character (φ⊥ larger than 98 %), as the
bulk band edge. However, when the diameter decreases below 4 nm, the dominant
character of the highest state becomes pz. Moreover, this change in the orbital
composition is accompanied by a change in the envelope of the VB state. We
illustrate this in Fig. 3.24 by representing the charge density of the VB state v1 for
NW sizes 3.1 and 8.7 nm. We recognize a charge density with one maximum at
the NW center, for the VB state of pz-character (S . 4 nm). The envelope of v1

changes to have a node at the NW center, exhibiting an overall annular form when
S & 4 nm. Therefore, we can identify clearly two regions with di�erent ground
state of the valence band, illustrated in Fig. 3.24 by shaded areas (green and red).
This di�erence behavior between the VB ground states of GaN and InN NWs is
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Size (nm)
v1 v2 v3 v4

1.5

3.1

2-98 44-40 44-46 98-2

3.1

6.5

4-96 98-2 56-40 54-43

100-0 94-6 94-6 20-80

Figure 3.25: Charge density of the four NW valence band states for varying sizes. A ball-and-
sticks representation of every NW is given for clarity. Numbers indicate the contribution from p
orbitals to the character state, φp⊥ − φpz .

a consequence of the smaller crystal-�eld splitting of GaN. For larger NW sizes,
where the con�nement e�ects are weaker, the VB state v1 has the same properties
of character and envelope in GaN and InN NWs. This result is interesting because
demonstrates di�erences in the electronic structure of GaN and InN NWs caused
by the quantum con�nement. Concerning the other dispersion curves, various
crossings and anticrossings are observed, as for instance, at S = 6 nm, among the
green and pink curves.

The changes in the global symmetry of the topmost VB states of the GaN
NWs can be examined more carefully. In order to illustrate how this changes
take places, we have represented in Fig. 3.25 the charge densities of the VB states
from v1 to v4 for several representative sizes, S = 1.5 ,3.1, and 6.5 nm. The
p⊥ and pz-character of every VB state is also shown as a number in the format
φp⊥ − φpz . We indicate as well with the number color if it has a preponderant
orbital contribution, corresponding red to p⊥-character, green to pz-character, and
black when it is unde�ned.

First, the VB state v1 has pz-character for the sizes 1.5 and 3.1 nm. The
consecutive VB states (v2 and v3) for the size 1.5 nm have a strong mixing in their
orbital compositions (44-46), being impossible to assign an univocal character.
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Figure 3.26: Band structure for GaN nanowires of S = 1.5, 3.1 and 6.5 nm.

The VB state v4 for this NW size has the aforementioned node in the center
and a clearly p⊥-character. As the size of the NW increases, the VB state with
pz-character occupies lower positions in the energy spectrum, until the largest
NW presented here (S = 6.5 nm), where it is the state v4, and has a mixture
composition (20-80). Precisely for this NW size, the topmost VB state has a p⊥-
character and the annular envelope described above. The two following VB states
have now their own fully de�ned p⊥-character with a φp⊥ = 94%. This result
agrees to some extent with those obtained by the SEPM in Section 3.1.

The study of the electronic states can be enriched by checking the band disper-
sion for several NW sizes. Figure 3.26 shows the band structures of the GaN NWs
studied in Fig. 3.25. The conduction and valence bands have been highlighted in
red and blue, respectively. The conduction bands are decoupled of the valence
bands due to the wide band gap of GaN and they can be considered parabolic for
k < |A|/4. We can appreciate a family of curves not intersecting, because they
come exclusively from the con�nement of a single band. Concerning the valence
bands, they show a much more complicated pro�les than the conduction ones,
similar to the behavior of their counterparts valence bands of the InN nanowires
(see Fig. 3.21). However, a distinct feature is observed here. The band structure
of the smallest NW shown here has a topomost band with a narrower curvature
than the topmost valence band of larger NW sizes. This is consistent with that
shown in Fig. 3.25, where the state v1 has a pz-character and comes from the bulk
C-band. Thus, the increasing of the NW size changes the curvature of the topmost
VB, adopting a pro�le similar to those of the bulk A- and B-bands.

Complementing the information of the band structure, we can investigate the
in�uence of varying the wave vector k instead of changing the NW size. As studied
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in Fig. 3.24, the global symmetry of the wave functions determines the behavior
of the band dispersion. For clarity, we have analyzed the dispersion of a thin NW,
of size 1.5 nm, where the bands are su�ciently separated due to the con�nement.
Figure 3.27 shows a zoom of the four topmost valence bands near the Γ point.
On the left hand we also represented the corresponding charge densities at the
Γ point. The arrows highlight the crossings (dashed lines) and the anticrossing
(solid lines) of the bands. In addition, the character of the VB states before
and after the crossing is also indicated. We can now examine some VB states
by way of illustration. Thus, a look at the evolution of v3 with k, shows how
its dispersion crosses the second band, becoming the VB state v2 at k = A/10,
and keeping the same character and charge density envelope. On the other hand,
the VB states v1 and v2 while di�ering in the character, share the same global
symmetry. Therefore, they exchange the character, in the anticrossing located at
-170 meV (red solid arrows). Thus, the topmost VB state at k = A/10 has now
a p⊥-character. Next, another anticrossing takes place at -200 meV (green solid
arros). Here, the VB state v4, exchanges with the old VB state v1 character and
evelope. We can see that the VB state v3 has now a node at the NW center.

We can conclude the study of the electronic properties of the GaN NWs with
the summary of the main results. First, the topmost VB state, for sizes larger
than 4 nm, has an unconventional node in the NW center, as exhibited also in
InN NWs. A plausible explanation of such atypical envelope is the proximity of
the bulk bands A and B. Besides, the curvature of such bands is very similar, and
therefore, the resulting con�ned states are close in the energy spectrum, which
enhances the mixing between the VB states. In contrast, in a hypothetical case
where the spin-orbit and crystal-�eld interactions were large enough to separate
the three valence bands of wurtzite bulk, we would expect a topmost VB state
similar to the topmost CB state, i. e., with a maximum of the charge density in
the NW core. This hypothetical result was obtained numerically by using tight-
binding parameters of a virtual material with large ∆so and ∆cf . This trend was
also obtained in a similar work of M. P. Persson and A. Di Carlo for GaN nanowires
and nanotubes [117], and also in calculations with the empirical pseudopotential
method in ZnO nanoparticles, performed by S. Baskoutas and G. Bester [211].
Moreover, a di�erence with the electronic structure of InN NWs is the pz-character
of the topmost VB state for NW sizes below 4 nm, as a consequence of the smaller
∆cf of GaN. Concerning the CB states, as the conduction band e�ective mass is
much larger, being ∼ 0.24 for GaN and ∼ 0.07 for InN, the con�nement is here
much lower. Also the deviation respect the EMA prediction is less pronounced
here.
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Optical absorption

Figure 3.28 shows the absorption spectra for the same nanowire size of Fig. 3.25
for light polarizations e⊥ (in-plane) ez and (on-axis). The transitions close to the
absorption edge has been highlighted. First, for the thinnest NW explored here
(S = 1.5 nm), we observe the absorption edge of ez-polarized light at lower energy
than for e⊥-polarized light. Besides, the absorption edge energy coincides with
the NW band gap (Eg) energy (4.17 eV). The absorption edge of e⊥-polarized
light is blue-shifted 60 meV with respect to the NW Eg. For this spectrum, the
�rst allowed transitions correspond to v2,3 − c1, practically at the same energy.
The next transition of similar peaks high is found at 4.88 eV (v4-c2). Concerning
the general attributes of both spectra, we recognize the one dimensional pro�le of
the NW density of states (modulated by the oscillator strength), being the spaces
between peaks layer for ez-polarized light than for e⊥, due to the smaller number
of VB states with pz-character.

The absorption spectra of larger NWs (size 3.1 and 6.5 nm) present an increas-
ing number of peaks as a result of the weaker con�nement, being still recognizable
the one-dimensional density of states. For the NW size of 3.1 nm, the lowest
absorption edge energy is still for ez-polarized light, as a result of the allowed
transition between states v1 (pz character) and c1. The blue-shift of the absorp-
tion edge of e⊥-polarized light with respect to the NW Eg is now 23 meV. In the
case of the nanowire of size 6.5 nm, the absorption edge for in-plane polarization
is now at lower energy for the case of on-axis polarization, being the energy shift
of the latter 10 meV. Since the topmost VB state has a node at the NW center
for this size, the transition v1 − c1 is now forbidden. However, due to the small
di�erence in energy between the state v1 and the v2 and v3 pair, the changes in the
absorption edge are minimal. We note also that the blue-shift energy di�erence
between the spectra of e⊥ and ez-polarized light is lower than the GaN bulk ∆cf .
For larger NWs, the energy di�erence between the absorption edges of distinct
polarization will tends asymptotically to the GaN crystal-�eld splitting.

In addition to the information provided by the absorption spectra, we can
study how the oscillator strength of several selected transitions varies with the
NW size. From the experimental point of view, this information can be more
practical, because most of the optical experiments concerns to the measurements
of the photoluminescence spectra, where the radiative e�ciency of the transitions
of lower energy is accessed. Therefore, the value of the oscillator strength of
the two transitions of lower energy has been calculated at k = 0 and shown in
Fig. 3.29. The oscillator strength, denoted as fv,c(e) (between parenthesis the light
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Figure 3.29: Optical matrix element as a function of the NW radius. The transitions represented
are from the VB states v1 and v2 to the CB state c1, for the in-plane and on-axis polarizations.
For clarity, for S > 5 the scale has been augmented 40 times.

polarization), has been represented versus the NW size, calculated for the in-plane
and on-axis polarizations. For clarity, at the right side we have augmented 40 times
fv,c for sizes above 5 nm. In general, the value of fv,c decreases asymptotically as
the NW size increases toward a constant value. We can also observe that fv1,c1(z)

has the largest value for the smallest NW sizes until it intersects with fv2,c1(z), at
S ≈ 3.5 nm. Then, fv2,c1(⊥) passes fv2,c1(z), taking the largest value. Note that
fv1,c1(⊥) is zero for all the NW sizes explored here.

In conclusion, GaN NWs show a strong anisotropy in their optical spectra, as
a result of the anisotropy of wurtzite crystalline structure, with similar trends to
those observed for InN NWs. The absorption edge is found to be in lower energy
for e⊥ light polarization than for ez light polarization, with the exception of NW
sizes below 4 nm, where the absorption edge is at lower energy for ez-light. As
far we know, the current NWs have diameters over 20 nm. However, the recent
advances in the deposition of a single NWs in surfaces, that allow the performance
of experiments in one NW, open the possibility of testing the theoretical results
proposed here. Accordingly, our results are o�ered as prediction of the optical
properties, and also to propose theoretical tools to model nanostructures.



130 Atomistic modeling of free-standing nanowires

3.2.5 AlN nanowires: polarized absorption along the c-axis

In Subsections 3.2.3 and 3.2.4 we have explored the optical absorption of the
InN and GaN NWs, and also investigated the symmetry of the NW band states.
Moreover, we have related the optical properties of the NWs with the bulk band
structure. Therefore, most of the analysis performed above can be used in under-
standing the optical properties of AlN NWs.

First, we have seen in Section 2.3 that the AlN bulk valence band is substan-
tially di�erent than those of InN and GaN. We recall that the order of the VB states
is Γ7,+-Γ9-Γ7,−, having the topmost VB state a pz-character (φpz = 100%). The
splitting between the topmost VB state and the other VB states ranges roughly
from 100 to 300 meV (in our TB parameter is set in ∼ 120 meV). On the other
hand, the spin-orbit splittings takes a small value, as seen in Fig. 2.15. Concern-
ing the conduction band, the large band gap of AlN, ∼ 6.2 eV, decouples almost
totally the conduction and topmost valence band would have a behavior similar
to those of a single-band, as we will see.

Regarding the CB states behavior when the NW size varies, we found that
CB states energy at k = 0 decreases in a similar way that in the case of GaN
NWs. However, in this case, this behavior is closer to the EMA prediction, and
the energy of the CB state c1, can be �tted to the following function:

εc1 = Ec +
a

S2
− b

S3
(in eV), (3.14)

where a = 1.84± 0.02, b = 0.85± 0.02, and Ec = 6.2 eV. For small sizes, although
the AlN band gap is very large, the strong quantum con�nement deviates the
energy dependence slightly from the EMA prediction for parabolic bands, i. e.,
from 1/S2. We have corrected this overestimation by adding a cubic term, which
it is only e�ective for sizes below 5 nm. For larger NWs, the expression given by
EMA works reasonably well. On the other hand, the s-orbital contribution to the
state c1 has found to be φs > 95% for all the cases, which con�rms a single-band
for the CB state c1 of AlN NWs.

On the other hand, the analysis of the VB states is more interesting because
their in�uence on the optical properties. Figure 3.30 shows the evolution of the
VB states with the NW size. Due to the large splitting among the VB states with
pz-character and p⊥-character in the bulk band structure (see Fig. 2.15), we can
now label the states as vz,n (n in increasing order of energy) until the �rst VB
state with p⊥-character. In Fig. 3.30 the VB states vz,1, vz,2 and vz,3 have been
represented with black circles and the two VB states v⊥,1 and v⊥,2 with red circles.
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Figure 3.30: Valence band states as a function of the AlN nanowire radius. Black dots are the
�rst three valence states with character pz > 95. The red dots are the �rst two valence states
with character p⊥ > 95. The wave functions of the �rst state of each class are given for a size of
8 nm. The solid line is a �tting with a function given in the main text.

With the aim of having a clear picture of the evolution, we have eliminated all the
states between these two sets of energies. Contrary to the case of InN and GaN,
we can observe the absence of the complex crossings and anti-crossings observed
in the valence band of GaN NWs (see for instance Fig. 3.24). Now, we can �t
the energy of the VB state vz,1 by the same function of Eq. (3.14), obtaining the
following results:

εv1 = −417

S2
+

159

S3
(in meV), (3.15)

where the error of the coe�cients is 3 meV. The �tting is represented in Fig. 3.30
with a solid cyan line. Other di�erences with previous results come from the
symmetry of the wave functions. In Fig. 3.30, we have plotted the charge density
of the VB states vz,1 and v⊥,1. Here, the state vz,1 has the density concentrated
at the NW core, decaying smoothly until be zero at the border. This shape of the
charge density amply matches with that of the �rst CB state (not shown here).
This agrees with the expected EMA result for the �rst con�ned state in a NW
when the Hamiltonian is solved in the single-band approximation. In addition, the
state v⊥,1 of p⊥-character has the annular pro�le also exhibited by the topmost
VB state of GaN and InN NWs, due to the mixing between contiguous states, as
we have explained above.

After the analysis of the electronic structure of the AlN NWs, we do not expect
radical changes in the optical absorption when the NWs size varies. For this reason,
in Fig. 3.31 we have represented the absorption of a NW of S = 5.3 nm, for the
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Figure 3.31: Absorption spectra of a AlN NW with S = 5.3 nm, for the light polarizations
in-plane (e⊥) and on-axis (ez).

light polarizations in-plane and on-axis. The one-dimensional density of states is
indubitably recognized, observing a larger number of transitions in the case of the
e⊥-light, as usual. The di�erence with the other spectra (see Figs. 3.22 and 3.28)
arises in the relative position of the absorption edges obtained for di�erent light
polarizations. Hence, the absorption edge for ez-light is clearly located at an
energy much lower than its counterpart in the case of e⊥-light, being separated
by 143 meV for the NW size shown here. Still the second relevant transition
for on-axis light takes places at lower energy than the absorption edge of the
in-plane polarization (129 meV blue-shifted with respect to the �rst transition).
Considering the evolution of the VB states shown in Fig. 3.30, we can argue that
the optical spectra for thicker AlN NWs will be very similar to the one displayed
here, with the only di�erence of a ripple pro�le. Also, the shift between absorption
edge of the di�erent polarizations will tend to the bulk AlN ∆cf , as the NW size
increases.

We can conclude this Chapter by summarizing the most relevant physical prop-
erties of III-N NWs calculated from our atomistic semi-empirical methods. First,
the anisotropy of the crystal structure is transferred to the absorption spectra.
The absorption edge energy depends on the light polarization, being determined
by the crystal-�eld splitting and by the quantum con�nement of the NWs states.
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In the case of InN and GaN NWs, except in quantitative di�erences, they show a
similar blue-shift of the absorption edge for on-axis polarization with respect to the
in-plane polarization. On the opposite, the AlN NWs exhibit a large blue-shift for
the in-plane polarization, as a consequence of the negative crystal-�eld splitting.
It is worth to mention the weak impact of the spin-orbit splitting in the overall
optical properties of free-standing III-N NWs. We recall the importance of the
semi-empirical atomistic methods due to their capability to cover a wide range of
sizes, being an accurate extension of the ab initio approaches [220].
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Chapter 4

Inhomogeneous electron distribution

in InN nanowires: In�uence on the

optical properties

In Chapter 1 we advanced a discussion about the existence of an electron accumu-
lation layer near the surface of InN �lms and nanowires. Besides the accumulation
layer, a high density of electrons inside the material has been evidenced by a sig-
ni�cant Burstein-Moss shift observed in absorption and emission measurements in
InN �lms [28, 45, 221]. Subsequent infrared re�ection studies on InN �lms have
estimated a free electron concentration of approximately ∼ 1018 cm−3 [28, 222].
Concerning the electron accumulation layer, X-ray photoemission spectroscopy ex-
periments have con�rmed the presence of such charge layer in surfaces of both polar
and nonpolar InN �lms, which indicates an universality of such phenomena [223].
It also worth highlighting the angle resolved photoemission spectroscopy experi-
ments, which can accurately measure the di�erence between the Fermi level and
the valence band [1, 224]. There are only a few results of cross-sectional scanning
photoelectron microscopy and spectroscopy performed on cleaved (112̄0) InN sur-
faces, that claim the absence of the electron accumulation layer [225]. However, it
cannot be excluded that the cleavage has an in�uence on the electronic properties
measured in those experiments. On the theoretical side, ab initio calculations for
�lms have delimited the origin of this unintentional doping, by proposing a mech-
anism in nonpolar InN layer related to the presence of nitrogen vacancies, that
tend to segregate closer to the surface, and act as n-type defects [97]. Alterna-
tively, another source of such doping could be the presence of hydrogen impurities
[226, 227]. Some other theoretical studies have pointed to the absence of electron
accumulation layer in stoichiometric surfaces because the band structure does not
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have any surface states within the band gap, and attributed the electron accu-
mulation in actual surfaces to the presence of an indium layer [53]. However, the
tendency of indium to oxidize makes it unlikely the existence of such a bare indium
layer. Instead, it seems more plausible the termination of the surface by some sort
of indium-oxide layer, that could also be a possible source of free-electrons [97].
Therefore, more experiments and theoretical calculations investigating the exact
origin of the electron accumulation layer are demanded before de�nite conclusions
are agreed.

In relation to the InN NWs, most of the experimental results to date also indi-
cate the presence of the electron accumulation layer in the NW lateral walls. Due
to their elongated shape, e.g., the length is much larger than the cross-section,
the NWs are especially appropriate to implement in them carrier transport ex-
periments. Such transport measurements have been performed on InN in various
forms, such as the atomic force microscopy conductivity measurements [75], and
the magneto-transport experiments [228]. The results of these experiments are
compatible with the assumption that carrier transport takes place mainly in an
electron shell, adjacent to the surface. Other electrical measurements performed
by contacting the InN NW with metallic pads [229] or by means of a polymer
electrolyte gating [230] coincide in that the electron accumulation layer makes a
certain contribution to the measured carrier transport. Other experimental evi-
dences based on spectroscopy con�rm the existence of the electron accumulation
layer in InN NWs, as we will explain below.

The causes of the accumulation layer in InN NWs are currently assumed to be
the same as for InN �lms, on account of the dimensions of the existing NWs in the
literature, with diameter larger than 20 nm (see also Table 1.10). However, it is
not only of interest to determine the origin of the electron accumulation layer, but
also to investigate the in�uence of such accumulation on the electronic and optical
properties of InN NWs. Though several studies have addressed the e�ect of the
electron accumulation layer in the electronic structure of InN �lms [74], a model
taking into account the columnar morphology is still lacking. It is expected that
the speci�c geometry of the NWs can lead to di�erences in the spatial distribution
of the free electrons, which possibly has also impact on the optical properties.
Concerning the choice of the theoretical framework, the application of atomistic
methods seems inappropriate here due to the large size of the NWs. While it is
clear that ab initio approaches are not suitable for problems which involve mil-
lions of atoms, the semi-empirical atomistic approaches, such as the pseudopo-
tential and tight-binding methods used in Chapter 3 to investigate the electronic
structure of moderate size free-standing NWs, could in principle deal with this
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problem [113, 231]. However, the large computation times required, make pro-
hibitive the repetitive calculation needed to implement a self-consistent procedure
and to investigate trends as a function of the sizes, among other parameters. The
alternative proposed here consists of the use of the e�ective-mass approximation
(EMA), applied within a self-consistent procedure, to �nd the electron distribu-
tion. Moreover, as concluded in Chapter 3, for NW diameters larger than 20 nm,
it is not expected a large discrepancy between the electronic structure predictions
of the semi-empirical atomistic approaches and the EMA (see Figs. 3.18 and 3.23).

We have organized this Chapter as follows: �rst of all, in Section 4.1 we will
present some relevant experiments connected with our theoretical model. Then,
the formulation and approximations of the model are explained in detail in Sec-
tion 4.2. The numerical results and the comparison with the experiments are
summarized in Sections 4.3 and 4.4.

4.1 Experimental evidences of the electron accu-

mulation in InN nanowires

Among the variety of experiments reported in the literature, we have chosen a work
by A. Rizzi, of the University of Göttingen, concerning electrical measurements on
InN nanowires [229], to illustrate the role of the electron accumulation layer in
the carrier transport. Figure 4.1(a) shows an InN NW, deposited on a surface of
oxidized silicon, and with four contact pads attached by electron beam lithography.
The experiment measures the NW resistance, RW , between the voltage probe
contacts. In Fig. 4.1(b) the authors have represented a cylindrical NW, where two
region are distinguished: the center of the NW, where a low density of electrons
is assumed, and can be considered equivalent to a bulk (3D region), and shell of
a few nanometers thick (2D region), where the electron density is assumed to be
several orders of magnitude larger in comparison with the concentration in the 3D
region. Consequently, the conductance (de�ned as g = LW/RW where LW is the
NW length), has two distinct contributions:

g ∼ 1

ρ3D

r2 +
1

ρ2D

r. (4.1)

The �rst term, with quadratic dependence on the NW radius, r, is due to
electron transport through the NW core (3D region or bulk), with resistivity ρ3D.
The second term, with linear dependence on the NW radius, is the contribution of



138 Inhomogeneous electron distribution in InN nanowires

(a)

(c)

(b)

InN nanowireInN nanowire

contacts

Figure 4.1: (a) Scanning electron microscopy image of a single InN nanowire contacted by electron
beam lithography in a four-point probe geometry. (b) Sketch of the InN nanowire, where the
di�erent regions have been marked: bulk (3D), shell (2D), and the indium oxide at the surface.
(c) Normalized conductance g versus the radius r of the nanowire, derived from the electrical
measurements (see main text). In the inset, the same data points in logarithm scale, with a
power law �t (dashed line) to determine the exponent β = 1.6 ± 0.2 in the relation g ∼ rβ .
Extracted from Ref. [229].

the electron accumulation layer, close to the surface (2D region), with resistivity
ρ2D.

The results of the resistance measurements for ten nanowires have been plotted
in Fig. 4.1(c). As we can see in the inset, the conductance follows the equation
g ∼ rβ, where β = 1.6 ± 0.2. As 1 < β < 2, the authors infer that the carrier
transport takes place both through the core and the shell of the InN nanowire,
which points out to a certain electron accumulation at the surface. Similar results
of other transport measurements made by di�erent groups agree with the work
described here [75, 228, 230].

In addition to the transport experiments, the optical spectroscopy studies based
in the Raman scattering, the photoluminescence (PL) and the photoluminescence
excitation (PLE) have also shown evidences for the existence of the electron ac-
cumulation layer. At this point it is interesting to describe some relevant results,
which have been obtained by these techniques and are closely related to our work.
The PL and PLE experiments explained here have been performed by J. Segura-
Ruiz for his Ph. D. thesis under the supervision of N. Garro and A. Cantarero [232],
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G532 G041

G136 G044

Figure 4.2: InN nanowire ensembles employed for the PLE measurements in Ref. [233].

and have motivated a great deal of our theoretical calculations. Figure 4.2 shows
the InN nanowire ensembles used in the spectroscopy studies of Ref. [49, 233]. The
samples were grown by C. Denker, J. Malindretos and A. Rizzi, from the University
of Göttingen, by plasma-assisted molecular beam epitaxy on Si (111) substrates,
under nitrogen-rich conditions. They are oriented along the c-axis, and the con-
ditions of substrate temperature and nitrogen �ux, among others, were slightly
varied to obtain di�erent morphologies. More details about the growth conditions
can be found in Ref. [67]. We can recognize an hexagonal cross-section of the NWs
from the samples G532, G041 and G044, while the sample G136 shows unfaceted
wires. The samples show a dispersion in the NW diameter, varying from 40 to
100 nm, the sample G136 having the thinnest NWs. With this range of sizes the
quantum con�nement e�ects are excluded.

The Raman scattering spectra present very narrow Eh
2 phonon peaks, with

FWHM ranging from 3 to 5 cm−1, thus revealing a high crystalline quality of the
InN nanowires. It has also been observed the coexistence of the plasmon-coupled
mode (PLP− mode) and the uncoupled longitudinal optic mode in the Raman
spectrum [49, 234]. Such coexistence indicates two regions with a substantial dif-
ference in the electron concentration. Hence, the plasmon-coupled mode is related
with high electron densities, presumably localized near the NW surface, and the
uncoupled longitudinal optic mode is associated with a low electron concentration
region, located at the NW core. The measured frequencies for the PLP− mode,
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Figure 4.3: PL and PLE spectra of the InN nanowire ensembles shown in Fig. 4.2, measured at
T = 10 K.

around 435 cm−1 corresponds to electron concentration of the order of 10−19 cm−3

close the NW surfaces [235].

The photoluminescence (PL) and photoluminescence excitation (PLE) experi-
ments also add some relevant information complementary to the Raman scattering.
Figure 4.3 shows the PL and PLE spectra of various samples, measured at T = 10

K (the details of the experimental setup can be found in Ref. [232]). First of
all, the PL spectra show di�erent emission energies, blue-shifted in all the cases
with respect to the InN band gap (at 0.67 eV). The di�erent blue-shift can be
attributed to changes in the electron concentration from sample to sample. Also,
it can be appreciated that the peak asymmetry and the broadening increase with
the emission energy.

The large broadening observed in the PL spectra (from 40 to 100 meV) could
be in principle attributed to the inhomogeneous distribution of sizes in the InN
nanowire ensembles. However, by selectively exciting di�erent sizes, no changes
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were detected in the line width and in the peak position. This could indicate
that this broadening is intrinsic to each nanowire. However, more sophisticated
experiments, for instance, in micro PL, where only one nanowire is excited, should
be carried out to con�rm this hypothesis [160]. The experiments also show that
the integrated PL intensity decreases with the energy of the PL peak. Overall
the available data suggest di�erences in the electron accumulation layer for each
sample, attributed to the di�erent growth conditions.

Under certain conditions, which will be explained later, PLE and absorption
spectra are equivalent [236]. Therefore, the PLE is an alternative to absorption
when the samples have been grown on opaque substrates, where the standard
absorption experiments are not possible. Figure 4.3(b) shows the PLE spectra
of the InN NW ensembles shown in Fig. 4.2, measured in the same conditions as
the PL spectra presented above. The following facts deserve to be highlighted.
(i) The spectra are featureless and no exciton related peaks have been observed.
(ii) There is a relevant blue-shift of the absorption edge in all the samples, up
to 58 meV for the sample G044, but now the PLE edges are located at higher
energies than the PL peaks. (iii) A careful look at the absorption edge reveals
higher slopes for the samples with higher absorption edges. (iv) The energy of the
PL peak and the Stokes shift between the PL and PLE increases with the PLE
edge energy [232]. Therefore, the results of PLE spectroscopy also suggest changes
in the electron accumulation layer dependent on the growth conditions [72]. These
PLE experimental data will be discussed in the following Sections together with
the theoretical results.

4.2 Electrostatic potential and charge density in

InN nanowires

The available experimental data summarized above make desirable a theoretical
model for investigating the in�uence of the electron accumulation layer on the
optical properties of NWs, taking into account the columnar morphology of the
NWs. In order to obtain the electrostatic potential and the electron distribution
in the nanowire, we propose an iterative procedure for solving the Schrödinger-
Poisson system of equations [237]. Before detailing the formulation, the main
approximations assumed for our model are explained here.

Concerning the morphology of nanowires, although Figure 4.2 shows a wide
variety of shapes, we assume the NWs as in�nite cylinders of radius R, and asso-
ciated cylindrical coordinates (r, ϕ, z) will be used throughout. This is consistent
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Figure 4.4: (a) Surface donors release their electrons inside the nanowire, remaining positively
charged. (b) Electrons arrange in the energy levels until certain Fermi energy.

with our discussion in Chapter 3, where we have demonstrated that the NW states
are not signi�catively a�ected by the cross-section shape above a diameter of 20
nm, smaller than the one of the NWs studied here.

The electronic states are found by solving the single-particle Schrödinger equa-
tion within the single-band in the e�ective-mass approximation. The conduction
band is assumed to be isotropic and parabolic with the e�ective mass m∗

c . Despite
the reported non-parabolicity of InN far from the Γ point [238], the parabolic
approximation is valid in the range of energies where the model will be applied
[239]. The contribution of the valence band to the electron accumulation has
been disregarded, since there is no experimental evidence of the in�uence of the
acceptor states in the formation of the electron accumulation layer. In order to
determine the optical properties, the valence band is calculated a posteriori, once
the self-consistent electrostatic potential and the electron density have been found.

The formation of the electron accumulation layer, which motivates the approach
presented here, is explained in Fig. 4.4. Independently of their origin, there are
donor-like surface states located above the Fermi level, which release their electrons
to the InN conduction band. This results in a free-electron population inside the
wire, and a positive charge density N+

ss at its surface (r = R), which provides
an electric �eld that bends the conduction band near the surface. Figure 4.4(b)
shows how these free-electrons occupy the energy levels, which are determined by
the potential energy. The Fermi level indicated by the last energetic level occupied
by free electrons, determined by applying the charge neutrality condition, i. e.,
the number of free electrons is equal to the ionized impurities. Furthermore, since
the presence of impurities within the nanostructure cannot be avoided [240], we
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Figure 4.5: Flowchart of the self-consistent procedure designed to �nd the potential energy V (r)
and the charge density n(r).

have assumed the presence of a uniform ionized donor bulk doping (concentration
N+

D ∼ 1017 − 1018 cm−3). These impurities also provide electrons, which must be
taken into account when calculating the Fermi level [74].

In the next Subsections we present in detail the formulation of a self-consistent
method for obtaining the electrostatic potential and the electron density, together
with the derivation of the absorption spectrum.

4.2.1 Self-consistent procedure

The self-consistent procedure is divided in four steps, represented in Fig. 4.5, as
explained in detail in the following paragraphs.

Step 1: Resolution of the Schrödinger equation. For a given potential energy,
V (r), the single-particle Schrödinger equation is written as follows:
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[
− ~2

2m∗
c

~∇2 + V (r)

]
Ψ(r) = εΨ(r). (4.2)

In the e�ective-mass approximation, V (r) is the conduction band pro�le, given
by

V (r) =

{
Ec − eφ(r) r ≤ R

∞ r > R
, (4.3)

where φ(r) is the electrostatic potential and Ec the conduction band edge (hard-
wall conditions outside the nanowire). Given the axial symmetry of our geometry,
the potential energy, V (r), only depends on the radius, and therefore the wave
function is separable as follows:

Ψn,l,k(r) = ψn,l(r)
1√
2π
eilϕ 1√

Lz

eikz, (4.4)

where n = 1, 2, . . . is the radial quantum number and l = 0,±1, . . . is the z-
component of the angular momentum. The length Lz is the normalization length
of the plane wave in the z-direction, with vector k. The eigenvalues of the Eq. (4.2)
are

εn,l(k) = En,l +
~2k2

2m∗
c

, (4.5)

showing the parabolic one-dimensional dispersion in k. After some algebraic ma-
nipulations one can derive the equation for the radial part of the wave function,
that determines the eigenvalues En,l

{
− ~

2m∗
c

(
∂2

∂r2
+

∂

r∂r
− l2

r2

)
+ V (r)

}
ψn,l(r) = En,lψn,l(r). (4.6)

Initially the electrostatic potential is taken to be zero, φ(r) = 0.

Step 2: Calculation of the charge density and Fermi energy. Once the electronic
states are determined, the electron density −en(r) is deduced by summing the
squared wave functions multiplied by the occupancy probabilities

n(r) = 2
∑

k

∑
n,l

fn,l,k|Ψn,l,k(r, ϕ, z)|2 = 2
∑
n,l

1

Lz

1

2π
|ψn,l,k(r)|2

∑
k

fn,l,k, (4.7)
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where factor 2 counts for the spin degeneracy and fn,l,k is the occupancy probability
given by the Fermi-Dirac distribution. Therefore

∑
k

fn,l,k =
Lz

2π

∫ +∞

−∞
dk

1

1 + e
εn,l(k)−EF

kBT

=
1

2

√
2m∗

c

~2

kBT

π
F−1/2

(
EF − En,l

kBT

)
, (4.8)

where F− 1
2
is the semi-integer Fermi integral [241], and the �nal expression for the

electron density is then

n(r) =
∑
n,l

√
2m∗

ckBT

~2π
F− 1

2

(
EF − En,l

kBT

)
|ψn,l(r)|2. (4.9)

The contribution of all the sub-bands to the electron density is explicitly cal-
culated in the present approach [242], in contrast with other methods, such as the
modi�ed Thomas-Fermi approximation [74].

The Fermi level EF in Eq. (4.9), which sets the conduction band occupancy,
is determined by taking into account that the total electron charge must be equal
to the charge provided by the densities of bulk donor impurities density, N+

D , and
surface states N+

ss, i. e.,

∫ R

0

n(r)rdr = 2πRN+
ss + πR2N+

D . (4.10)

This nonlinear equation for EF is solved by the Newton-Raphson method [243].

Step 3: Resolution of the Poisson equation. The electrostatic potential φ(r) is
obtained via the Poisson equation:

1

r

d

dr

(
r
dφ(r)

dr

)
= − e

ε0εr
[N+

D − n(r)]. (4.11)

The presence of ionized surface states with density N+
ss imposes the boundary

condition for the potential:

dφ

dr

∣∣∣
r=R

=
N+

ss

ε0εr
. (4.12)

Step 4: Check of the convergence. The new potential energy is updated with
the solution of Eq. (4.11), V (r) = Ec − eφ(r) and the Schrödinger equation (4.6)
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is solved again. This procedure is iterated with the method of successive over-
relaxation until convergence is achieved [243]. The Schrödinger and Poisson equa-
tions, (4.6) and (4.11), are numerically solved by �nite di�erence methods, and
the singularity at r = 0 is treated by following Refs. [244�246].

At this point, it should be mentioned that the Hamiltonian of Eq. (4.6) may
not be hermitic unless an adequate transformation is used to discretize it. In the
�nite di�erence method applied here, the discretized Hamiltonian results in a real
non-symmetric three-diagonal matrix. However, it would be desirable to operate
with a symmetric Hamiltonian matrix to facilitate the computational task. Thus,
the following symmetrization procedure has been used: Let HS be a symmetric
matrix, and H the Hamiltonian matrix, obtained after discretizing Eq. (4.6). We
can �nd a matrix M that obeys

HS
i,i+1 = Mi,iHi,i+1 = Mi+1,i+1Hi+1,i = HS

i+1,i, (4.13)

we set M1,1 = 1, and therefore

Mi+1,i+1 = Mi,i
Hi,i+1

Hi+1,i

, (4.14)

if we apply this in the Schrödinger Eq. (4.6)

HSψ = MHψ = εMψ, (4.15)

where ε are the energy eigenvalues. Let Mi,i′ = Li,i′Li,i′ , we obtain

L−1HSL−1Lψ = L−1LLHψ = εL−1LLψ = εLψ,

HRφ = εφR.
(4.16)

The Hamiltonian matrix HR = L−1HSL−1, is then symmetric and three-
diagonal, with eigenvalues ε. The true wave functions are recovered via ψ = L−1φR.
With this transformation, we save a noticeable computational time in storing and
solving the eigenvalue problem [247].

The over-relaxation method guarantees the convergence of the self-consistent
procedure. In each iteration, we must check the di�erence of two consecutive
potentials (or electron densities). The Fermi level calculated from the iterated
electron densities also re�ects adequately the convergence. Figure 4.6(a) shows
the Fermi level dependence on the iteration step of the self-consistent procedure,
for several nanowire radius, 10, 20, 40 and 50 nm. In all the cases there is a fast
convergence in less than 50 cycles (in terms of computation times, for a dense grid,
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(b) Conduction band pro�le, V (r), electron density, n(r), and two �rst wave functions with
l = 0, for a nanowire of R = 40 nm. The impurities concentration are N+

ss = 1013 cm−2 and
N+

D = 3× 1017 cm−3.

it means total converged times of less than 15 minutes in a standard processor).
We also observe the decrease of the Fermi level as the NW radius increases until
it stabilizes above a certain value (R ≈ 40 nm). This value also depends on the
density of N+

ss and N
+
D impurities, as we explain in Section 4.3.

The self-consistent results for a speci�c nanowire of R = 40 nm are given
in Fig. 4.6(b). First of all, the conduction band pro�le falls abruptly from zero
to approximately -1 eV, in the range R − r < 10 nm. Therefore, the lowest
electronic states are con�ned near the surface, as shown by the two states, with
quantum numbers (1, 0) and (2, 0), represented with dashed lines in Fig. 4.6(b).
In Fig. 4.6 we also show the electron density n(r) and the obtained Fermi level
which appears above the conduction band edge, Ec. The electron accumulation
layer is observed at the surface in a notably higher electron concentration of ∼ 10

nm thick. Besides, a careful look at the electron density reveals an oscillating
pro�le, known as Friedel-type spatial oscillations [242]. The physical origin of such
oscillations is related to the con�ned wave functions and the extent to which the
associated sub-bands (of larger quantum number l) are populated. This behavior
is absent in other approaches as the semi-classical Thomas-Fermi approximation
[248]. We have checked that the spatial oscillations are less pronounced if the
temperature increases, which is consistent with the results reported in [242].
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4.2.2 Calculation of the valence band states and absorption

spectra

The calculation of the optical absorption requires determining the nanowire va-
lence band states. Although in Chapter 3 we have insisted in the importance of
considering valence band mixing that leads to a nontrivial anisotropy in the op-
tical properties of nanowires, the PLE experiments presented in Section 4.1 have
not been performed for di�erent light polarizations. Therefore, for the purpose
of analyzing those experiments, we can assume a single-band e�ective-mass ap-
proximation (here associated to the band A) that leads to a Schrödinger equation
for the valence states, where we have retained the anisotropy of the valence band
e�ective-mass reported in Section 2.3. The LDA+U e�ective mass of the A va-
lence band (see Table A.1) are used here and denoted as m∗

v,⊥,m
∗
v,z. The potential

energy is now V (r) = Ev + eφ(r), where Ev = Ec − Eg is the valence band edge,
associated to the band A, and therefore the Schrödinger equation is:

{
− ~

2m∗
v,⊥

(
∂2

∂r2
+

∂

r∂r
− l2v
r2

)
+ V (r)

}
ψnv ,l(r) = Env ,lvψnv ,lv(r). (4.17)

Figure 4.7 shows (a), the energy potential, and (b), the valence band states
obtained by solving the Schrödinger Eq. (4.17), imposing hard-wall conditions.
The states, labeled according to their quantum numbers (n, l), are represented for
n = 1, . . . , 5 and angular momentum l = 0 (red line) and l = 1 (blue line), and
k = 0. Contrary to the conduction band wave functions shown in Fig. 4.6(b), the
valence states are now displaced toward the nanowire core, with a slight penetra-
tion in the potential barrier. We note that the valence band states are spread along
the radius for increasing energies, although due to the high value of the potential
energy (Ev − 1 eV at r = R), the localization is still remarkable even for the state
(5,1). Hence, there is a spatial separation of the conduction and valence band
states with the energy close to the respective band edges, which could eventually
reduces the absorption e�ciency.

The spectrum of optical absorption coe�cient, α(~ω), is calculated as follows
[124]:

α(~ω) ∝
∑

nc,nv ,l,k

P 2
nc,nv ,l(1− fnc,l,k)δ(~ω − (εnc,l(k)− εnv ,l(k))), (4.18)
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where Pnc,nv ,l is the oscillator strength for the transition from the valence sub-band
(nv, l) to the conduction sub-band (nc, l) (note the angular momentum conserva-
tion). The term fnc,l,k is the Fermi-Dirac distribution of the conduction band states
described above. The valence band is assumed to be completely occupied. The
conservation of k in the absorption event has also been taken into account. The
oscillator strength, which does not depend on k, is written as

Pnc,nv ,l =

∫ R

0

ψnc,l(r)ψnv ,l(r)rdr. (4.19)

On the other hand, energies depend on k as: εnc,l(k) = Enc,l+
~2k2

2m∗
c
and εnv ,l(k) =

Env ,l − ~2k2

2m∗
v,z
. Therefore

∑
k

(1− fnc,l,k) =
∑

k

(
1− 1

1 + e
εnc,l(k)−EF

kBT

)
δ(~ω − (εnc,l(k)− εnv ,l(k))) =

=
Lz

2π

∫ +∞

−∞
dk

(
1− 1

1 + eεnc,l(k)−EF kBT

)
δ(~ω − (εnc,l(k)− εnv ,l(k))).

(4.20)

After some algebraic manipulations [249], this integral is

g(ε) =

√
µ

π~2ε

{
1 + exp

[
−

µ
m∗

c
ε− (EF − Enc,l)

kBT

]}−1

, (4.21)

where µ is the electron-hole reduced mass µ = (m∗
cm

∗
v,z)/(m

∗
c + m∗

v,z) and ε =

~ω − (Enc,l − Env ,l). The absorption is therefore written now as

α(~ω) ∝
∑

nc,nv ,l

P 2
nc,nv ,lg(~ω − (Enc,l − Env ,l)), (4.22)

where the factor g(~ω−(Enc,l−Env ,l)) takes care of the occupancy of the conduction
band until the Fermi energy. Note that the integral in k has been eliminated from
the absorption equation, and now there is a sum over the conduction and valence
band states, only calculated at k = 0. This is an important simpli�cation for the
calculation of the absorption.
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4.3 In�uence of size and doping on the electron

accumulation layer

The self-consistent method formulated above is applied here to study the changes
in the electron accumulation layer when we vary the nanowire radius and the
concentration of impurities in both the volume and surface. The donor concentra-
tion has been varied in the ranges proposed in the literature, being N+

ss between
1012 − 1013 cm−2, and N+

D between 1017 − 1018 cm−3 [224, 250]. In order to give a
better understanding of the experimental results described in Section 4.1, we have
also studied the in�uence of such changes on the absorption.

All calculations were performed assuming a temperature of T = 10 K, although
we have found that the electron accumulation layer does not change substantially
with the temperature in the range from 295 to 595 K, in agreement with the
experimental results reported for InN layers [251]. The fundamental band-gap of
Eg = 0.67 eV reported for bulk InN was used (see Chapter 2). Also in the practical
numerical results presented here, the function 1/

√
ε in the absorption Eq. (4.22) is

substituted by <(1/
√
ε+ iγ), with γ = 10 meV, to smooth the singularity around

ε = 0.

4.3.1 In�uence of the nanowire radius

We have applied the self-consistent model for nanowires with di�erent radius (R =

10, 20, 40 and 50 nm), in order to match the average sizes reported for MBE-grown
InN nanowires (see Table 1.10). The donors concentrations are N+

D = 3×1017 cm−3

and N+
ss = 1013 cm−2, in concordance with the values for high quality InN polar

surfaces [224, 250].

Figure 4.8 shows (a) the conduction band pro�le V (r) = Ec − eφ(r), and
(b) the electron density n(r) for the selected NW sizes. The Fermi level is also
indicated for each size. In all the nanowires, the conduction band pro�le falls
from the inner part to Ec − 1 eV at the surface. This bend of the conduction
band pro�le occurs abruptly near the surface (in the range R− r ≤ 10 nm) of the
nanowire for the thicker NWs (R = 40, 50 nm), and starts at the nanowire core
for thinner nanowires, which thus presents a nearly parabolic pro�le. Thus, the
electron accumulation is strongly localized at the surface of the NWs of R = 40 and
50 nm, with densities of the order of 1019 cm−3 in a range of 10 nm approximately,
whereas in the case of thinner NWs, the di�erence in the concentration of electrons
between the core and the surface is less pronounced.
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Figure 4.8: Conduction band pro�le, V (r) = Ec− eφ(r) and (b) electron density pro�les for InN
NWs with ND = 3 × 1017 cm−3 and Nss = 1.0 × 1013 cm−2, and di�erent radius ranging from
10 (dashed line) to 50 nm (dash-dotted line). The Fermi level of each NW is also indicated.
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Figure 4.9: Optical absorption spectra for the same InN nanowires as Fig. 4.8. The number next
to the curves indicates the radius. The E1/2 ideal dependence of the absorption of bulk InN with
a band-gap energy of 0.67 eV is also displayed in two cases; intrinsic bulk (black dashed line)
and degenerate bulk EF − Ec = 30 meV (black solid line). The inset shows the evolution of the
absorption edge with the radius.

We can see how the density in core increases as the radius decreases and reaches
a concentration in the core of the same order of magnitude than at the surface
for the thinner NWs. The changes in the density pro�le can be best understood
by looking at the variation of the Fermi level, EF − Ec, with the NW radius.
This has a value of 0.29 eV for R = 10 nm, and then decreases to an almost
constant value of 0.03 eV for radius larger than 30 nm. Thus, the Fermi level will
increase with decreasing radius because the sub-band energy separation is larger
for smaller NW radius. Moreover, the Friedel-type oscillations are observed for all
the density pro�les, as explained before. As we have discussed in the example of
Fig. 4.6(b), an increase of the temperature smoothes such undulations until they
become imperceptible for T > 200 K.

In order to analyze how the size a�ects the optical properties, the absorption
spectra for the nanowires calculated above are displayed in Fig. 4.9. The absorption
spectra of intrinsic and degenerate bulk InN are also drawn with dashed and solid
black lines, respectively. Since the Fermi level is above the conduction band edge,
a Burstein-Moss shift is observed for all the nanowire considered here and this
increases with decreasing radius. All the nanowire spectra di�er from that of the
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degenerate bulk InN. The blue-shift of the absorption edge is accompanied by a
decrease in the intensity of the absorption, which is related to a smaller spatial
overlapping between valence and conduction band states. Thus, for nanowires of
radius 10 and 20 nm, the potential energy pro�le is not �at in any region and
the valence band states are con�ned at the NW core. On the other side, the
conduction band states displaced partially toward the surface. In the cases of R =

40 and 50 nm, the potential energy pro�le have a larger �at region, and the spatial
overlapping between valence and conduction band states increases, and therefore,
the absorption in larger NWs converges to the intrinsic bulk spectrum before (about
1.1 eV) than in thinner NWs. Moreover, the spectrum corresponding to R = 10 nm
shows certain structure in the pro�le related to the quantum con�nement produced
by large energy separation between the valence and conduction sub-bands. This
is con�rmed by the absorption edge energy, 25 meV over the Fermi level. The
evolution of the absorption edge with the radius is shown in the inset of Fig. 4.9.
On the other hand, we see that for NWs with R > 30 nm the absorption edge is
not signi�cantly a�ected by the NW size.

4.3.2 In�uence of N+
ss and N+

D on the absorption

In addition to the in�uence of size on the absorption, we study the dependence
of the electron accumulation layer on the changes in the donor concentration. As
we have seen in Section 4.1, di�erent growth conditions with slight variations in
the substrate temperature or nitrogen-�ux, result in InN nanowires of di�erent
morphology. Also, we can infer the presence of di�erent concentrations of free-
electrons in the samples of Fig. 4.2 from the PL and PLE spectra. It is therefore
interesting to explore how the electron accumulation layer and the absorption
spectrum change with varying concentrations of impurities, N+

D and N+
ss. In this

Subsection we have considered a NW radius of R = 40 nm.

Figure 4.10(a) shows the conduction band pro�le for several values of the donor
concentration. First of all, it is noteworthy to mention that the variation of the
volume concentration of impurities N+

D does not substantially a�ect the conduction
band pro�le, and we have represented only two potential pro�les, corresponding
to the cases of N+

ss = 1.0 × 1012 cm−2 and N+
ss = 1.0 × 1013cm−2. In any case,

the consequence of incrementing the surface donors concentration, N+
ss, is a more

pronounced bending of the conduction band pro�le. On the other side, a deeper
energy potential compensates the increasing of the electron population, and there-
fore, the Fermi level remains unaltered. It is worth to mention that for very thin
nanowires, the increasing of N+

ss will increment of the Fermi levels. In the inset
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Figure 4.10: (a) Conduction band and (b) electron concentration pro�les of a 40 nm radius InN
nanowire. In panel (a) N+

D = 1.0 × 1017 cm−3 and two di�erent values of N+
ss: 1.0 × 1012 and

1.0× 1013 cm−2. The inset shows the conduction band pro�le for the higher N+
ss value and the

�rst two conduction band states (l = 0). In panel (b) the electron density pro�les are also plotted
for N+

D = 5.0× 1017 cm−3.
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Figure 4.11: Calculated absorption spectra for InN nanowire with radius 40 nm and for two
values of N+

D ; 1.0× 1017 and 5.0× 1017, and two values of N+
ss; 1.0× 1012 and 1.0× 1013 cm−2.

The E1/2 ideal dependence of the absorption for intrinsic bulk InN (open circles) is also displayed.

of Fig. 4.10(a) we can see that the �rst two conduction band states of l = 0 are
clearly localized near the nanowire surface.

Figure 4.10(b) displays the charge density. The increment in the surface donor
concentration N+

ss induces a rise of the density n(r), which is concentrated near
the surfaces. However, the electron concentration in the core is not substantially
modi�ed. This is due to the increase in the potential energy at the surface. On the
contrary, if we augment the contribution of the volume donors, N+

D , keeping con-
stant N+

ss, the opposite e�ect is noticed in the density pro�le: Now, the increment
of N+

D entails a rise of n(r) at the NW core, without changing signi�catively in the
region close to the surface. The corresponding Fermi levels for each concentration
are 17 and 47 meV for N+

D = 1× 1017 and N+
D = 5× 1017 cm−3, respectively. Ba-

sically, the increase of volume impurities N+
D results in a �lling of the conduction

band. These results indicate that the e�ects of volume and surface impurities on
the nanowire charge density are approximately decoupled to some extent. This
will also manifest in the absorption coe�cient as we show below.

The above results suggest that the optical absorption would be also a�ected
by changes in the donor concentrations. Figure 4.11 shows the optical absorp-
tion calculated for the same set of nanowires considered in Fig. 4.10. The E1/2

ideal dependence of the absorption for intrinsic bulk InN is plotted with empty
circles. Figure 4.11 shows that distinctive optical features can be associated to
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variations in the bulk impurity concentration and surface charge density of the
NWs. First, the increase in N+

D blue-shifts the absorption (see red solid line and
dotted-dashed green line) 30 meV in this case and does not a�ect the overall ef-
�ciency (see at higher energies). On the other hand, the increase of the surface
donor concentration N+

ss from 1.0 × 1012 to 1.0 × 1013 cm−2 quenches the overall
value of the absorption, but does not in�uence in the absorption edge (see the
spectra represented by red solid line and dashed green line). We can also appre-
ciate that for energies beyond 0.9 eV the spectra of surface donor concentration
N+

ss = 1.0 × 1012 tends to the E1/2 curve, which indicates that the e�ects of the
electron accumulation layer in the absorption are negligible in that energy range
(∼ 200 meV above the band gap). In the cases of N+

ss = 1.0 × 1013, the optical
spectra does not converge to the E1/2 curve in the energy range represented here.
This negative in�uence on the absorption e�ciency of increasing N+

ss is due to the
larger potential drop. Therefore, while valence band states are more localized at
the NW center, the conduction band states, even with energy above the Fermi
level, will be perturbed by the energy potential well at the surface, which modu-
lates its wave function, shifting toward the surface. This is evident in the case of
N+

ss = 1.0 × 1012, where the potential falls to ∼ −0.2 eV (see Fig. 4.10), and the
corresponding absorption pro�les (solid red and dashed dark green lines) approach
the bulk absorption in energies above ∼ 0.2 eV respect the band gap. On the other
side, the in�uences of the surface and volume donors on the absorption spectra are
practically decoupled.

In conclusion, the self-consistent procedure developed here is a suitable tool
to study how the electrostatic potential and the electron density depend on such
parameters as the nanowire radius and the doping density. In the next Section,
we end this Chapter by comparing our theoretical absorption spectra with the
photoluminescence excitation spectra presented in Section 4.1.

4.4 Comparison with photoluminescence excitation

experiments

We will present here a comparison is carried out between the measured PLE spectra
commented in Section 4.1 and the theoretical absorption spectra calculated by the
self-consistent method in Section 4.3.

First of all, it must be recalled that only under certain conditions the PLE
and absorption spectra are equivalent and can be compared. As opposed to the
standard PL measurement, in a PLE experiment the detector is locked at a �xed
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detection energy (usually coinciding with the maximum of the PL spectrum, gen-
erally assigned to the ground state energy of the system), whereas the excitation
energy is varied over a wide range above the detection one. As a result, the PLE
spectrum is believed to represent the ground state emission intensity as a function
of the excess excitation energy. It would be helpful examine the relation between
the emission intensity Iem and the excitation intensity, Iex, which can be generally
written as follows:

Iem = IexPabsPrelPem, (4.23)

where Pabs is the probability of absorbing an incident photon thereby creating an
electron-hole pair, Prel is the probability of the photoexcited electron-hole pairs to
relax to the emitting state, and Pem is the probability of the radiative recombina-
tion from this emitting state, which can be assumed to be a constant (independent
of the excitation energy) in a PLE experiment. In principle, the two other terms,
Pabs and Prel, depend strongly on the energy, among other parameters. In Fig. 4.12
we have displayed an scheme of the electron-hole pair recombination. In the case
studied here the conduction band is already �lled with electrons up to the Fermi
level. Thus, the lowest energy emission takes place by the recombination of a
hole that has relaxed to the emitting state (highest valence band states), with an
electron that already occupies an emitting state. Therefore, Prel depends almost
exclusively on the hole relaxation. The dependence of the hole relaxation process
on the energy determines the feasibility of correlating Iem with Pabs and therefore
the comparison between the measured PLE and the theoretical absorption spec-
tra. If Prel can be considered as close to 1 (very e�cient relaxation of the hole to
the top of the valence band) and independent of the initial hole energy (for the
energies relevant to the experiment), then the spectrum of Iem mimics that of Pabs,
and therefore PLE and absorption measurements would yield essentially the same
pro�le. In high quality samples, and at low temperature, the non-radiative pro-
cesses can be neglected as compared to the relaxation induced by electron-phonon
scattering, so that one can expects a good correspondence between the PLE and
the absorption spectra at low excitation energies [192].

Therefore, we are going to attempt to �t the PLE experiments by means of
our theoretical model for the absorption spectrum. As we have shown in Subsec-
tion 4.3.1, a change in the nanowire radius leads to changes in the distribution of
free electrons and hence in the absorption spectrum. However, given the inhomo-
geneity in the size of the NWs (see Fig. 4.2), and knowing that most of the NWs
investigated here have a large radius (R > 30 nm), we have assumed a �xed radius
of R = 40 nm, for the calculations of the absorption presented here. On the other
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Figure 4.12: Scheme of the relevant process involved in a PLE experiment.

side, the N+
D and N+

ss values that allow the best �t of the theoretical spectra to
the PLE experiments have been summarized in Table 4.1. As we have shown in
the previous Section, the in�uence of N+

D and N+
ss on the absorption is decoupled,

and they can be estimated independently to a great extent.

The PLE spectra (symbols) and the theoretical �ts (solid lines) are shown in
Fig. 4.13, together with the associated PL spectra (dashed lines). We can appre-
ciate the good agreement of the theoretical spectra with the experimental data at
energies close to the absorption onset. At higher values, the experimental PLE in-
tensity decreases presumably due to the activation of non-radiative recombination
channels and deviates considerably from the theoretical spectrum. The blue-shift
of the absorption edge energy observed in the four spectra is accompanied by an in-
crease in the �tted concentration of impurities in the volume, N+

D , as it is reported
in Table 4.1. The values found for N+

D are in good agreement with those cited in
the literature and point out that InN NWs grown by plasma-assisted MBE contain
a relatively low density of donor impurities. On the other side, in the previous
Section we have established that the line shape of the absorption is controlled
by the surface donor concentration N+

ss. The variation of the �tted value from
one sample to another suggests that this parameter is also a�ected by the speci�c
growth conditions. Such a result is expected from the theoretical predictions of
Van der Walle and coworkers for nonpolar InN surfaces [53].

Regarding the PL spectra, all of them show a clear Stokes shift, whose mag-
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Sample
E0 ND Nss

(eV) (cm−3) (cm−2)
G532 0.687 0.8× 1017 2.5× 1013

G041 0.696 2.0× 1017 2.4× 1013

G136 0.711 5.0× 1017 1.7× 1013

G044 0.726 7.5× 1017 1.4× 1013

Table 4.1: Experimental absorption edge energy (E0), and values of the donor concentrations
N+

D and N+
ss that provide the best �t of the theoretical absorption spectra to the experimental

PLE measurements of the samples studied in this work. All the calculations have been done for
R = 40 nm, a band gap Eg = 0.67 eV, and with the isotropic electron mass m∗

c = 0.05 [233].

nitude increases with the absorption edge energy. The PL emission is broader for
the samples G136 and G044, that also exhibit the largest PL peak blue-shifts with
respect to the bulk band gap. A plausible explanation of this fact lies in the dif-
ferences between the processes of absorption and emission. Indeed, the absorption
is just the transition of an electron from the valence band to an unoccupied level
of the conduction band (in the case of the InN NWs studied here, this level must
be above the Fermi level). On the other hand, the emission takes place after the
recombination of a free electron with a hole, which may be free or localized (if it
is attached to an impurity) [252]. The existence of such localized holes has been
determined by exploring the dependence on the temperature of the PL response
[232]. The momentum conservation selection rule, followed in the absorption pro-
cess, would break for the case of emission involving localized states, thus allowing
recombination with all the free electrons in the conduction band, which would
imply an increased broadening of the emission. If the Fermi level increases, the
number of electrons available to recombine with the localized holes is notably in-
creased. Such electrons have the energy ranging between Ec and Ec + EF , and
therefore, the range of energy from where it is possible a recombination increases
with the Fermi energy, which also enlarges the PL broadening. The fact that
optical transitions are less probable for larger values of the wave vector explains
why the PL energy lies between the band gap and the absorption edge. This also
explains why the Stokes shift increases with the increase in the absorption edge
energy.

Not only the PL and PLE experiments can be interpreted on the basis of our
theoretical model. Also the reported Raman scattering and transport measure-
ments are compatible with the theoretical results. The measured frequency of the
PLP− mode suggests a charge near the surface of approximately 10−19 cm−3. As
we can see in Figs. 4.8 and 4.10 the electron density takes a value of this magnitude
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close to the surface. The depletion of electrons in the NW core is also compatible
with the existence of the uncoupled longitudinal optic mode. In relation to the
transport measurements, all the electron density pro�les shown in this Section con-
�rm the accumulation at the surface. However, the accumulation layer thickness
varies with the NW radius, as shown in Fig. 4.8. A more sophisticated calculation
of the resistivity for along-axis conduction, based on our self-consistent calculation
of the electronic spectrum would give more conclusive results.

In conclusion, the self-consistent model formulated in this Chapter is suitable
for the study of the optical absorption of InN NWs, and is favorably compared
with the reported PLE spectra. Even with the simpli�cations implicit in our
model, where the conduction band was considered parabolic, our approach has
given convincing explanation to the experimental data concerning the electronic
inhomogeneous distribution in InN NWs, and has also established the dependence
of such electron density with external parameters as the NW radius and doping
level. One major improvement of the model would be to consider realistically the
non-parabolic dispersion of the conduction band within the e�ective-mass approx-
imation. However, this would be accompanied by a substantial increase in the
complexity of the problem, because many approximations taken to calculate the
electron density or the absorption (see Eqs. (4.9) and (4.20)) would no longer be
valid. Other extensions of the model can be done by performing a study of the
recombination problem taking account the existence of localized holes, once the
electrostatic potential inside the NW is known.



Chapter 5

Conclusions

In this thesis we have developed a theoretical methodology in order to study the
electronic and optical properties of III-N nanowires, that applies di�erent models
depending on the size and complexity of the system. Below, we summarize the
main conclusions and give a graphical scheme of the work performed in Fig 5.1.

• The ab initio methods based on the density functional theory, within the lo-
cal density approximation (LDA) and the improved approach called LDA+U
have been applied to obtain the bulk band structure of the III-N semiconduc-
tors. These results have been used to derive the parameters of the empirical
methods. More speci�cally, for the wide band gap semiconductors GaN and
AlN, the LDA gives reliable results for the band structure but underestimates
band gap, that is subsequently corrected within the empirical pseudopoten-
tial and tight-binding methods. On the other side, in the case of the narrow
gap semiconductor InN, it is necessary a re�nement of LDA to get a reliable
band structure. We have demonstrated that the LDA+U is a suitable ap-
proach to improve the LDA band structure of InN. This is possible because
the LDA+U opens the LDA zero band gap, separating the valence band from
the conduction band.

• We have derived screened pseudopotentials directly from the ab initio re-
sults, which are the sum of the ionic pseudopotential and the contribution
of the electron-electron interaction, calculated by ab initio LDA. The good
agreement between the band structures calculated by this semi-empirical
pseudopotential method and LDA approach con�rms the suitability of the
derived pseudopotentials. Moreover, within the semi-empirical pseudopoten-
tial method the band gap, underestimated by the LDA, can be easily cor-
rected without compromising the other virtues of the method. In order to
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Figure 5.1: Summary of the main results.

use such pseudopotentials in the study of nanostructures with free surfaces,
a passivation strategy has been formulated, which obtains the suitable pas-
sivant pseudopotentials also from the LDA method. This strategy removes
the surface states from the nanostructure band gap, what has allowed us to
apply successfully the semi-empirical pseudopotential method to nanowires.
The electronic structure of GaN nanowires has been obtained for nanowire
sizes varying from 1 to 6.5 nm. From the symmetry of the wave function we
deduce an anisotropic optical absorption, much stronger for light polariza-
tion vector (e⊥) perpendicular than parallel (ez) to the NW axis. We have
also demonstrated a non-trivial size dependence of the valence band states.

• In order to extend the study to larger nanowires, we have adapted the tight-
binding method. The tight-binding parameters have been derived from the
ab initio LDA and LDA+U band structures. In addition, they are also forced
to �t the experimental band gap. A comparison between the LDA+U and
tight-binding results for a thin InN nanowire shows an excellent agreement,
which validates the use of tight-binding parameters �tted to bulk proper-
ties to study nanostructure systems. Based on these results, we have used
the tight-binding method to study the band structure and the absorption
spectra of III-N nanowires. The following conclusions have emerged from
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that study: (i) Both InN and GaN nanowires show an absorption edge at
lower energy for the e⊥ light polarization than for ez polarization. (ii) The
separation between these polarized absorption edges energy varies with the
size and converges for large NWs to the crystal-�eld splitting value. (iii) An
unconventional topmost valence band state with p-type envelope is found in
both InN and GaN nanowires, as a consequence of the A-B bands mixing.
(iv) A completely di�erent picture of the optical properties has been found
for AlN nanowires. The absorption edge is located at lower energy for ez

light polarization than for e⊥ polarization, as a consequence of the negative
crystal-�eld splitting of AlN. Moreover, the evolution of the topmost valence
band state almost follows the prediction given by the EMA in the single-band
approximation, and the charge density of those valence band states shows
an s-type envelope. In conclusion, the III-N nanowires present an important
anisotropy in the optical response, enhanced by the quantum con�nement
for sizes below 20 nm. We have shown that the tight-binding approach acts
as an ideal bridge between the ab initio methods suitable for small sizes (∼ 1

nm) and the of e�ective-mass approximation, originally formulated for larger
sizes (∼ 20 nm).

• We have also studied the optical properties of InN nanowires with electron
accumulation layer at the surface, as a function of the nanowire radius, the
surface and volume impurity concentration. Due to the large size of the
system, it is not amenable to treatment by means of ab initio or empirical
atomistic models. Instead we have used the e�ective mass approximation,
that furthermore allows a direct implementation of the Poisson equation need
to take account of the electrostatic potential and summarize here the main
results: (i) The absorption edge is determined mainly by the volume impurity
concentration, and the absorption pro�le is related to the surface impurity
concentration. (ii) A decrease in the nanowire radius entails a blue-shift of
the absorption edge, together with changes in the electron distribution in
the nanowire, with a tendency to a more homogeneous distribution. Finally,
theoretical absorption spectra have been compared with those obtained from
photoluminescence experiments, and a very good agreement has been found.
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Appendix A

Tight-binding Hamiltonian matrix

for wurtzite semiconductors

The tight-binding Hamiltonian matrix, HWZ, for wurtzite semiconductor, without
spin-orbit interaction, can be expressed in block from as

HWZ =


Ec V̂1,2 0 V̂ †

4,1

V̂ †
1,2 Ea V̂2,3 0

0 V̂ †
2,3 Ec V̂3,4

V̂4,1 0 V̂ †
3,4 Ea

 . (A.1)

Each block is a 4×4 matrix. The diagonal matrices Eβ, β = c, a contain the orbital
energies. The matrices V̂ represent the interaction up to nearest neighbors:

Ec =


Ec,s 0 0 0

0 Ec,p 0 0

0 0 Ec,p 0

0 0 0 Ec,p

 ; Ea =


Ea,s 0 0 0

0 Ea,px 0 0

0 0 Ea,px 0

0 0 0 Ea,pz

 ; (A.2)

V̂1,2 =


Vssσf(k) 0 0 Vscpaf(k)

0 Vppπf(k) 0 0

0 0 Vppπf(k) 0

−Vsapcf(k) 0 0 Vppσf(k)

 ; V̂3,4 = V̂1,2 (A.3)
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The coe�cients f ,h and t are

f(k) = eikzuc,
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(A.6)

The Hamiltonian matrix with the spin-orbit interaction can be constructed
straightforward by adding to the orbital basis the spin of the electron



170 Tight-binding Hamiltonian matrix

ĤWZ,SO =



σ =↑ σ =↓

σ =↑ ĤWZ

HSO,c 0 0 0

0 HSO,a 0 0

0 0 HSO,c 0

0 0 0 HSO,a

σ =↓

H†
SO,c 0 0 0

0 H†
SO,a 0 0

0 0 H†
SO,c 0

0 0 0 H†
SO,a

ĤWZ


(A.7)

The matrix ĤWZ is the same as HWZ (dimension 16× 16) with the addition of
the following matrix element of the spin-orbit interaction VSO, that couples states
of the basis with the same spin

〈px, ↑ |VSO|py, ↑〉 = −iλβ,

〈px, ↓ |VSO|py, ↓〉 = iλβ.
(A.8)

The matrix HSO,β couples states of the basis with di�erent spin:

HSO,β(↑↓) =


0 0 0 0

0 0 0 λβ

0 0 0 −iλβ

0 −λβ iλβ 0

 . (A.9)

Here λβ = λc, λa are the spin-orbit splitting of anion and cation p states. The
�tted tight-binding parameters used in this work are listed in Table A.1.
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InN GaN AlN

Ec,s -5.90550 -7.97000 -0.09600
Ec,p 9.61790 15.00000 9.41900
Ea,s -6.79100 -13.00000 -12.10400
Ea,px 0.04470 0.37170 3.58100
Ea,pz -0.00222 0.32800 3.72500
Vscpa 2.99810 4.70550 4.22400
Vsapc -0.10830 2.11700 3.50390
Vssσ -1.75000 -3.44280 -2.68375
Vppσ 3.07000 3.55000 5.69500
Vppπ -1.30000 -0.88175 -0.66950
λc 0.5 0.1 0.01

η 1.8 2.0 -
ηs,pz 2.5 2.0 -

Table A.1: The notation follows the Ref. [190]. InN and GaN parameters have been derived from
the ab initio calculations presented in Chapter 2. AlN parameters are extracted from Ref. [190].
Parameters are given in eV.
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Appendix B

Determination of the hydrogen

pseudopotentials

The details of how determine the screened hydrogen pseudopotentials are ex-
plained here. In principle, if we denote the self-consistent potentials as Vbare(r)

and Vpass(r), it is reasonable to obtain the screened hydrogen potential Vh(r) from
the following operation:

Vh(r) = Vpass(r)− Vbare(r). (B.1)

We Note that there are actually two di�erent hydrogen potentials, one attached
to the cation and the another to the anion. By applying the same methodology as
described in Section 2.2 one would obtain the screened hydrogen pseudopotentials,
that together with the Ga and N semi-empirical pseudopotentials, would allow to
construct a semi-empirical model for the passivated (11̄00)-layer, with the surface
states removed from the band gap region. However, a problem arises when ap-
plying the above procedure. A careful look at the LDA potential pro�le, shown
in Fig. B.1, reveals the potential decays smoothly toward the vacuum energy in
both cases. This decay is obtained in LDA, calculating self-consistently the charge
distribution. Thus, the charge density around the Ga and N atoms at the surface
is di�erent at the layer borders than in the interior of the �lm. Therefore, the
simple adding of atomic semi-empirical pseudopotentials that underlie the SEPM,
without any self-consistent procedure cannot reproduce this situation. Therefore,
the direct application of the passivation with the screened hydrogen pseudopoten-
tials as de�ned in equation (B.1) will ignore the smooth attenuation toward the
vacuum, and possibly will not ful�ll our goal of eliminating the surface states. It
would be highly desirable to include such attenuation in some way into our calcu-
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Figure B.1: The average potential in the (11̄00) direction, passivated LDA (blue points), bare
SEPM (red dashed), and the di�erence between both (black line).

lations. The most simple approach is to add as much as possible to the hydrogen
pseudopotentials. Hence, we rede�ne the hydrogen potential as follows:

Ṽh(r) = Vpass,LDA(r)− Vbare,SEPM(r), (B.2)

where the passivated layer potential is taken from the LDA calculation, but the
bare layer potential is the one calculated within the SEPM. Figure B.1 shows both
potentials, together with Ṽh(r). We note an abrupt drop in the surface of the
semi-empirical potential for the bare layer. With the new de�nition of Ṽh(r) this
e�ect is partially corrected. Now, the same procedure of Section 2.2 is applied
here to obtain the pseudopotentials of the hydrogen atoms bond to the nitrogen
and gallium atoms, VNH and VNGa, respectively. We have represented the obtained
potentials in Fig B.2, in real space. We observe that near the center, for r < 1

Bohr, both potentials show almost no dispersion of values for di�erent directions,
as in the case of the bulk potentials shown in Fig. 2.6. However, the dispersion is
more important for larger radius, and an average must be applied to enforce an
spherical approximation. In order to �t the pseudopotential to a simple function,
we have applied the following criteria: (i) For radii smaller than a certain cuto�
radius, where the points do not show dispersion, we will �t the potential with
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a function of three splines. (ii) For r > RC , we approximate the behavior by a
function that simulates the screening of the pseudopotential at large distances.
For this purpose, we have employed a Yukawa-like potential of the form:

VY (r) = −g2 e
−mr

r
, (B.3)

where m and g2 depend on the radius cuto� RC , and are:

m = −V
′
Y (RC)RC − VY (RC)

VY (RC)RC

; g2 = −VY (RC)RCe
mRC . (B.4)

The Yukawa-like �t function VY (r) depends ultimately only on RC : The pa-
rameters m and g2 depend on the values of the pseudopotential and its derivative
at RC , and these values are determined by the splines �t function for the region
r < RC , in order to guarantee a smooth pseudopotential. Figure B.2 shows with
lines the results of several �ts obtained for di�erent values of RC (= 0.75, 0.80,
0.85 Bohr). All the derived pseudopotentials eliminate the surface states from the
band gap.1 The only di�erence between them is the hybridization of the conduc-
tion band states. For RC 0.75 and 0.85 Bohr, the �rst conduction band state shows
a slight localization near the surface, which is totally absent in the case RC = 0.80

Bohr. Note that we have not tried to �t the shoulder around 1.2 Bohr. In calcu-
lations not shown here, where the whole potential range was �tted with splines,
thus �tting more accurately the shoulder located at 1.2 Bohr, the surfaces states
were not removed at all. This led us to think that the application of the spher-
ical average is not very accurate for large radius, where the asymmetry around
the hydrogen atoms is signi�cant. Its enforcement and simultaneous �tting of the
shoulder would give an arti�cial landscape in the pseudopotential pro�le, that is
otherwise smoothed in the �tting procedure illustrated in Fig. B.2.

1The values for m and g2 of the Yukawa potential for RC = 0.80 Bohr, are m = 1.408226 and
g2 = 2.583077.
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Appendix C

Arnoldi algorithm for the

diagonalization of sparse matrices

Typically, the dimensions of the tight-binding Hamiltonian matrix of nanowires are
in the range of 104 to 106. Although the LAPACK subroutines [253] can in principle
be used with matrices of dimensions up to 105, its e�ciency is dramatically reduced
for such matrix sizes, and in addition, since these direct methods store the whole
matrix, the computer memory is soon over�own.

The Arnoldi algorithm provides an optimal alternative approach, able of solving
huge matrix eigenvalue problems (matrix dimensions above 104). The software
that implements the Arnoldi algorithm is a free-license project, called ARPACK
[254]. The Arnoldi algorithm belongs to the class of iterative methods for solving
eigenvalue problems, where solution here has the narrower sense of obtaining, after
a small number of iterations, a portion of the spectra, called eigenvalues window.
Contrary to direct methods, which store all the elements of the matrix, the Arnoldi
package use the operation of the matrix on a vector, extracting the information
to solve the eigenvalue problem from the input vector image. Figure C.1 shows
the scheme of the Arnoldi methods. The algorithm works better for sparse matrix
(populated primarily with zeros), or structured matrix, where structured means
that a product on a vector requires n operations rather than the usual order n2.
In this method we only store the vector and its image, and the matrix is de�ned
by its action over an arbitrary vector. The absence of auxiliary storage makes the
algorithm very fast for sparse matrix problems, with practically no limitation in
the size of the matrix, thus converting it into a very suitable technique to solve
the spectrum of very large Hamiltonians.

The operation of the Hamiltonian matrix on an input vector is de�ned as:
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(1) v1= v/ ║v║2 for the starting vector  v

(2)             for j = 1, 2,…, m  do
(3)                   w := Avj
(4)                   for i=1, 2,…, j do
(5)                         hij = w*vi

Arnoldi procedure

ij i

(6)                         w := w - hijvi
(7)                   end for
(8)                   hj+1,j = ║v║2
(9)                  if hj+1,j = 0, stop
(10)                 vj+1 = w/hj+1,j
(11)            end for

Figure C.1: Flowchart of the Arnoldi algorithm. A detailed explanation of this and others
methods can be found in Ref. [255].

Ψout = H ·Ψin, (C.1)

where most of the tight-binding Hamiltonian elements are zero due to the nearest
neighbors approximation (even if we apply a second or third neighbors approxima-
tion, the matrix is very sparse). Moreover, in a semiconductor, we are interested in
the values near the top of the valence band or the bottom of the conduction band.
The ARPACK solvers use to give the lowest values of the spectra. Therefore, for
obtaining the energies around a certain value E0, we may shift the Hamiltonian
matrix by means of:

Ψout = [H − E0I] ·Ψin, (C.2)

being I the Identity matrix. Another variant of this procedure is the Folded
Spectrum Method (FSM) [256] which starts from the operator [H − E0I]2, and
the eigenvalues are found by �nding the minimum with the gradient conjugate
techniques. This squared Hamiltonian can also be implemented in ARPACK, but
one has to be careful since the product of two sparse matrix can lead to a dense
matrix (populated primarily with non-zeros), and the e�ciency of ARPACK in
dense matrix problems is drastically reduced.
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