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Abstract

High-order Discontinuous Galerkin methods
for incompressible flows

Adeline de Montlaur

This PhD thesis proposes divergence-free Discontinuous Galerkin formulations pro-

viding high orders of accuracy for incompressible viscous flows.

A new Interior Penalty Discontinuous Galerkin (IPM-DG) formulation is devel-

oped, leading to a symmetric and coercive bilinear weak form for the diffusion term,

and achieving high-order spatial approximations. It is applied to the solution of the

Stokes and Navier-Stokes equations. The velocity approximation space is decomposed

in every element into a solenoidal part and an irrotational part. This allows to split

the IPM weak form in two uncoupled problems. The first one solves for velocity and

hybrid pressure, and the second one allows the evaluation of pressures in the interior

of the elements. This results in an important reduction of the total number of de-

grees of freedom for both velocity and pressure. The introduction of an extra penalty

parameter leads to an alternative DG formulation for the computation of solenoidal

velocities with no presence of pressure terms. Pressure can then be computed as a

post-process of the velocity solution. Other DG formulations, such as the Compact

Discontinuous Galerkin method, are contemplated and compared to IPM-DG.

High-order Implicit Runge-Kutta methods are then proposed to solve transient

incompressible problems, allowing to obtain unconditionally stable schemes with high

orders of accuracy in time. For this purpose, the unsteady incompressible Navier-

Stokes equations are interpreted as a system of Differential Algebraic Equations, that

is a system of ordinary differential equations corresponding to the conservation of

momentum equation, plus algebraic constraints corresponding to the incompressibility

condition.

Numerical examples demonstrate the applicability of the proposed methodologies

and compare their efficiency and accuracy.
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Resumen

Métodos de Galerkin discontinuo de alto orden para flujos
incompresibles

Adeline de Montlaur

Esta tesis doctoral propone formulaciones de Galerkin discontinuo (DG) de alto

orden para flujos viscosos incompresibles.

Un nuevo método de DG con penalti interior (IPM-DG) se desarrolla, conduciendo

a una forma débil simétrica y coerciva para el término de difusión, y logrando aprox-

imación espacial de alto orden. Se aplica para resolver las ecuaciones de Stokes y

Navier-Stokes. El espacio de aproximación de la velocidad se descompone en cada el-

emento en una parte solenoidal y otra irrotacional, permitiendo dividir la forma débil

IPM-DG en dos problemas desacoplados. El primero proporciona las velocidades y

presiones h́ıbridas, mientras el segundo calcula la presión en el interior de los elemen-

tos. Este desacoplamiento representa una reducción importante del número de grados

de libertad tanto para velocidad como para presión. La introducción de un parámetro

extra penalti resulta en una formulación DG alternativa, involucrando exclusivamente

a las velocidades solenoidales. Las presiones se pueden calcular como un post-proceso

de la solución de las velocidades. Se contemplan otras formulaciones DG, como por

ejemplo el método Compact Discontinuous Galerkin, y se comparan con el método

IPM-DG.

Se proponen métodos impĺıcitos de Runge-Kutta de alto orden para problemas

incompresibles transitorios, permitiendo obtener esquemas incondicionalmente esta-

bles y con alto orden de precisión temporal. Las ecuaciones de Navier-Stokes in-

compresibles transitorias se interpretan como un sistema de Ecuaciones Algebraicas

Diferenciales, es decir un sistema de ecuaciones diferenciales ordinarias correspondi-

endo a la ecuación de conservación del momento, más las restricciones algebraicas

correspondiendo a la condición de incompresibilidad.
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Ejemplos numéricos muestran la aplicabilidad de los métodos propuestos y com-

paran su eficiencia y su precisión.
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vii



de Castelldefels, believing in my teaching skills before I even did. Thanks to the aero

group: Dago, Jorge, Luis, Pep, Santi and Xevi. These years would not have been

the same without the endless lunch conversations, the Monday or birthday cakes, the

shared awareness that ‘PhD thesis should be our absolute priority no matter what’.

Thanks also to the physics group and especially to Cesca, David, Pere, and Ricard.

Thanks to Daniel for giving me the opportunity to work on the vertical wind tunnel

project, which launched me on the CFD path.

And since PhD is not always a long quiet river, in the busiest moments, I could

always count on getting back to normal life or at least life outside PhD, thanks to

numerous actors. I have been playing rugby in the CEU team since my first days in

Barcelona and no matter what, Tuesdays and Fridays have always been rugby days

and always managed to clear my head from matrices and solenoidal spaces. Thanks

to my teammates, coaches and friends for the great times playing, for the laughing

during tercer, cuarto o quinto tiempo and for the great conversations anytime about

anything. Thanks to the Catalano-Irish squad of the Barcelona Gaelettes and Gaels

for having me discover that round balls can also generate fun games.

And because I was never really able to stay quiet in one place of the world, huge

thanks to those of you in Barcelona/Lleida, Vincennes/Paris, Strasbourg, Toulouse,

Cardiff, Boston and also to those of you dispatched everywhere else, for the great

moments together and for being there even being far away.

Final thanks to my family, especially to my parents and my brothers, thanks for

supporting any decision I had to take, as long as I was not going much further than

1000 km from Paris, and then for being so positive and encouraging during all this

adventurous trip toward the PhD defense.

viii



Contents

Abstract iii

Resumen v

Acknowledgments vii

Contents ix

List of Figures xiii

List of Tables xvii

1 Introduction 1

1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Discontinuous Galerkin method . . . . . . . . . . . . . . . . . . 5

1.2.2 Spatial discretizations for incompressible flows . . . . . . . . . . 6

1.2.3 Interior Penalty Method . . . . . . . . . . . . . . . . . . . . . . 10

1.2.4 Time integrators for incompressible flows . . . . . . . . . . . . . 11

1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Discontinuous Galerkin Interior Penalty Method for incompressible

flows 15

2.1 DG formulations for Stokes . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 IPM formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 18

ix



2.1.2 IPM with solenoidal approximations . . . . . . . . . . . . . . . 19

2.1.3 Error bounds for IPM . . . . . . . . . . . . . . . . . . . . . . . 21

2.1.4 Numerical inf-sup test for IPM . . . . . . . . . . . . . . . . . . 23

2.1.5 Comparison with other DG methods . . . . . . . . . . . . . . . 25

2.1.6 Formulation with penalization of the discontinuity . . . . . . . . 28

2.2 DG formulation for the Navier-Stokes equations . . . . . . . . . . . . . 32

2.3 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.1 IPMP analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.2 IPM and CDG accuracy comparison . . . . . . . . . . . . . . . 37

2.3.3 Driven cavity example . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.4 Flow in an idealized porous medium . . . . . . . . . . . . . . . 38

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 High-order Implicit Runge-Kutta methods for unsteady incompress-

ible flows 43

3.1 DAE Runge-Kutta methods for unsteady incompressible flows . . . . . 44

3.1.1 DAE for incompressible flows . . . . . . . . . . . . . . . . . . . 44

3.1.2 IRK and SDIRK methods . . . . . . . . . . . . . . . . . . . . . 47

3.1.3 Asymptotic stability . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.1 Asymptotic stability . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.2 Runge-Kutta and Crank-Nicolson accuracy and cost comparison 53

3.2.3 Flow past a circle . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4 Conclusions and future developments 67

4.1 Future developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1.1 Code further development . . . . . . . . . . . . . . . . . . . . . 68

4.1.2 Raviart and Thomas - MAC approach . . . . . . . . . . . . . . 70

Bibliography 73

x



A Error bounds of IPM with solenoidal approximations 79

B LDG and CDG methods for the incompressible Stokes equations 87

B.1 The weak form of the Stokes problem . . . . . . . . . . . . . . . . . . . 87

B.1.1 Numerical fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . 89

B.1.2 LDG formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 91

B.2 CDG formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

C Explicit Runge-Kutta methods for incompressible flows 97

APPENDED PAPERS 101

PAPER I

Montlaur, Fernández-Méndez and Huerta. A discontinuous Galerkin

method with divergence-free interpolation for the incompressible

Stokes equations, International Journal for Numerical Methods in

Fluids, 57 (9), 1071–1092 (2008) 101

PAPER II

Montlaur, Fernández-Méndez and Huerta. Discontinuous Galerkin

methods for the Navier-Stokes equations using solenoidal approxi-

mations. International Journal for Numerical Methods in Fluids,

Accepted for publication (2009) 125

xi





List of Figures

1.1 Crouzeix-Raviart P1-P0 element (a). Decomposition into elements from

ShCR (b) and IhCR (c). Arrows indicate nodes for the velocity in the

directions shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 IPM convergence results with velocity approximation of degree k = 4

and pressure interpolation of degree 3, with γ = 40 . . . . . . . . . . . 23

2.2 Numerical inf-sup test result for hybrid pressure. . . . . . . . . . . . . . 25

2.3 Structured mesh for h = 1/8 and dependency of the condition number

of the diffusion matrix on the stabilization parameter C11 = γh−1, for

CDG and IPM, with a fourth order approximation of the velocity (k = 4). 27

2.4 Comparison of the total number of dof, divided by the number of ele-

ments, for a typical finite element mesh corresponding to a continuous

Galerkin (CG) discretization, a discontinuous Galerkin nodal interpo-

lation (DG), a IPM-DG solenoidal approximation (IPM-DGS), and a

IPMP-DG solenoidal approximation (IPMP-DGS), in 2D (a) and 3D

(b), with order k for velocity and k − 1 for pressure. . . . . . . . . . . . 31

2.5 IPM velocity solution (a) and detail (b) and IPMP velocity solution

for β = 50 (c), β = 500 (d) and β = 5000 (e), with k = 4, γ = 40. . . . 35

2.6 Stokes analytical example. Influence on the non-consistent penalty

parameter β on the L2-error convergence, with k = 4, γ = 40 . . . . . . 36

2.7 Comparison of L2-errors obtained with CDG and IPM, for a fourth

order approximation of the velocity and a cubic interpolation of hybrid

and interior pressures, with C11 = 40h−1 and γ = 40 respectively. . . . 37

xiii



2.8 Driven cavity: velocity streamlines for Re = 1 (a) and Re = 400 (b),

k = 2, h = 0.0667, γ = 10. . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.9 Driven cavity: velocity profiles at the vertical centerline, for Re = 1

(a) and Re = 400 (b), k = 2, h = 0.0667, γ = 10. . . . . . . . . . . . . . 39

2.10 Computational domain. The porous domain is limited to the central

part, of length 5l and height l. . . . . . . . . . . . . . . . . . . . . . . . 40

2.11 Velocity vectors within the porous domain of length 5l. The grey part

represents a porous material, the white ones an empty domain. . . . . . 41

3.1 Stability regions in the complex plane for SDIRK and IRK methods.

The stable region corresponds to the white part. . . . . . . . . . . . . . 53

3.2 Position of λ∆t marked with ×, where λ represents the eigenvalues of

(I−H) A for Re = 100, 10000, for k = 5, ∆t = 1 and h = 0.1, for

an Oseen problem and stability region for 2-stage SDIRK scheme with

γ = 3+
√

3
6

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Unsteady analytical example: unstructured mesh of 128 elements, size

of the elements is such that 0.01 ≤ h ≤ 0.1. . . . . . . . . . . . . . . . . 55

3.4 Unsteady analytical example: velocity and hybrid pressure L2-errors

for 3-stage and 2-stage IRK, SDIRK and CN methods, k = 4, 0.01 ≤
h ≤ 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Unsteady analytical example: interior pressure L2-errors for 3-stage

and 2-stage IRK, SDIRK and CN methods, k = 4, 0.01 ≤ h ≤ 0.1. . . . 56

3.6 Unsteady analytical example: velocity and hybrid pressure L2-errors,

as a function of the CPU cost for 3-stage and 2-stage IRK, SDIRK and

CN methods, k = 4, 0.01 ≤ h ≤ 0.1. . . . . . . . . . . . . . . . . . . . . 58

3.7 Unsteady analytical example: interior pressure L2-error, as a function

of the CPU cost for 3-stage and 2-stage IRK, SDIRK and CN methods,

k = 4, 0.01 ≤ h ≤ 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.8 Flow past a circle: unstructured mesh of 472 fourth order elements . . 60

3.9 Flow past a circle: velocity of the flow for Re = 1 . . . . . . . . . . . . 60

3.10 Flow past a circle: velocity of the flow for Re = 40 . . . . . . . . . . . . 61

xiv



3.11 Flow past a circle: velocity module and vectors of the flow for Re = 100,

transient phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.12 Flow past a circle: velocity module and vectors of the flow for Re = 100,

periodic phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.13 Flow past a circle: velocity vectors in the vicinity of the circle for

Re = 100, periodic phase. . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.14 Flow past a circle: evolution of the lift coefficient with time . . . . . . . 64

4.1 RT1 rectangular element . . . . . . . . . . . . . . . . . . . . . . . . . . 71

C.1 Velocity and pressure error for fourth (RK4) and second (RK2) order

explicit Runge-Kutta methods. . . . . . . . . . . . . . . . . . . . . . . 99

xv





List of Tables

3.1 Butcher array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Butcher array for 2-stage (left) and 3-stage (right) Radau IIA-IRK

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Orders of convergence for s-stage IRK methods for index-2 DAEs and

for ODEs (Butcher, 1987; Hairer and Wanner, 1991). . . . . . . . . . . 48

3.4 Butcher array for 2-stage SDIRK methods . . . . . . . . . . . . . . . . 48

3.5 Orders of convergence for SDIRK methods for index-2 DAEs and for

ODEs (Butcher, 1987; Hairer and Wanner, 1991). . . . . . . . . . . . . 49

3.6 Flow past a circle: Strouhal number results for Re = 100 . . . . . . . . 64

C.1 Butcher array for 4-stage explicit Runge-Kutta method . . . . . . . . . 98

xvii





Chapter 1

Introduction

Aerodynamics – branch of fluid dynamics studying gas flows – has numerous appli-

cations, from predicting aerodynamic forces on aircraft or other vehicle designs, in-

cluding automobiles, to predicting forces and moments in sailing or the ones applied

on buildings. It studies flows around solid objects of various shapes as well as flows

through solid objects. It can be classified depending on the speed of the flow, relative

to the speed of sound, and also depending on its viscosity. In this work, incompress-

ible viscous flows are considered, examples of application being amongst others light

aircraft dynamics, car and Formula One designs, or low speed wind tunnels.

There are two main ways of studying the aerodynamic properties of an object:

an experimental one, using for example wind tunnel testing, and a numerical one,

using the so-called Computational Fluid Dynamics (CFD), science of predicting fluid

flow, heat and mass transfer, and related phenomena, by solving numerically a set of

governing mathematical equations. The results of CFD analysis are relevant in studies

of new designs and product development as well as in troubleshooting and redesign.

Though it does not completely eliminate experimental testing, it complements it,

reducing the total effort required in the experiment design and data acquisition. A

critical step for a good CFD analysis is to properly model the flow to be studied.

Back to our problem, the mathematical equations describing viscous flows are

composed by a set of partial differential equations, the Navier-Stokes equations, which

describe the physics of a large number of phenomena such as ocean currents, water

flow in a pipe, flow around an airfoil, etc. They establish that changes in momentum

1
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of the particles of a fluid are simply the product of changes in pressure and dissipa-

tive viscous forces acting inside the fluid. Incompressible Navier-Stokes problems are

a subset of the Navier-Stokes models, adding to the momentum conservation equa-

tion the incompressibility constraint. The Navier-Stokes equations are usually not

amenable to analytical solutions, except for very simple cases. Therefore, flow prob-

lems have to be solved numerically. To this end, flow domains to be studied have

to be split into smaller subdomains and discretized governing equations are solved

inside each of these portions of the domain. Each portion is known as element, and

the collection of all elements is known as mesh. Typical methods used to solve the

approximate version of the system of equations are finite volumes, finite elements, or

finite differences. As usual in CFD problems, great care must be taken to impose con-

tinuity of the solution across the common interfaces between two subdomains, so that

the approximate solutions inside the elements can be put together to give a complete

description of the fluid flow in the entire domain.

Obtaining a good level of precision in numerical results is highly interesting in

CFD, especially when dealing with zones such as boundary layers, around an airfoil,

a car aileron or on the wall of a wind tunnel. Spatial accuracy is needed to correctly

describe the changes in velocity and pressure and then to calculate for example lift,

drag or other aerodynamic coefficients of an object. One way of increasing the pre-

cision in these zones is to use a finer mesh, of characteristic size h. This is usually

the strategy chosen in commercial CFD software and it is referred to as h-refinement.

Another alternative, used in the context of Finite Element Methods (FEM), is to

define high-order approximations of degree p in the mesh elements, using for instance

a Discontinuous Galerkin (DG) formulation.

DG methods use element-by-element discontinuous approximations. Continuity

between elements is weakly imposed introducing numerical fluxes through element

sides or faces. The attractiveness of DG is mainly due to its stability properties in

convection dominated problems and its efficiency for high-order computations, which

allows hp-adaptive refinement. Also, the element-by-element formulation leads to

efficient explicit time integration with straight-forward parallel implementation. En-
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hancing the flexibility given by DG, high-order divergence-free DG formulations for

incompressible flows are developed in this thesis.

Clearly, for the same mesh, the cost of a DG formulation is higher than a continu-

ous formulation because of the duplication of the degrees of freedom at the boundaries

of the elements. Nevertheless, this increment in degrees of freedom is less significant for

high-order approximations, which are desired here to obtain high orders of accuracy.

Moreover, divergence-free approximations can be easily defined in a DG formulation

and allow to reduce the number of degrees of freedom. In a solenoidal formulation,

incompressible flows are first solved for velocity and only part of the pressure’s degrees

of freedom, reducing the overall size of the system to be solved. The rest of pressure’s

degrees of freedom is computed as a post-process. This results in a competitive code

that can be used for steady or unsteady flows.

In the past, special emphasis has been made in solving stationary flows, because

of the constraints of computing costs. Nevertheless, lots of physical phenomena of

interest are inherently unsteady, as for example, separated flows or wake flows. An

efficient temporal method is then needed to solve these problems. Since high orders of

accuracy are obtained in space with the divergence-free DG formulation proposed in

this thesis, same levels of precision are desired for time integration. Furthermore, since

lots of physical situations require large variations in element size, as boundary layers

or high Reynolds number flows, implicit time integration is considered to obtain an

unconditionally stable formulation. To satisfy these requirements, high order Implicit

Runge-Kutta methods are proposed in this thesis to solve incompressible unsteady

flows.

1.1 Objectives

The main objective of this PhD thesis is to propose a divergence-free Discontinuous

Galerkin (DG) formulation providing high orders of accuracy both in space and in

time for unsteady incompressible viscous flows. To reach this objective, various partial

objectives have to be accomplished:
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• to derive DG formulations, providing symmetric and coercive bilinear weak

forms for the diffusion term, and achieving high-order spatial approximations,

• to introduce solenoidal approximations in order to reduce the total number of

degrees of freedom of velocity and pressure,

• to explore possibilities of getting a formulation where velocity and pressure

are completely decoupled, reducing even more the total number of degrees of

freedom,

• to develop a Matlab code, in order to solve numerical examples demonstrating

the applicability of the proposed formulations,

• to analyze and study the behavior of the proposed methods,

• to critically compare different DG formulations with solenoidal approximations,

these partial objectives are achieved for the steady incompressible Stokes and Navier-

Stokes equations by Montlaur et al. (2008, 2009) and in Chapter 2;

• to propose high-order and unconditionally stable time integration methods for

unsteady incompressible flows,

this objective is developed in Chapter 3.

1.2 State of the art

Research in FEM for the numerical solution of problems with incompressibility con-

straints has been very active in the last decades. These problems have a large number

of applications ranging from the simulation of incompressible fluids to the solution

of the Maxwell’s equations in electrodynamics problems. Classical strategies to treat

incompressible flows include velocity-pressure pairs satisfying the LBB stability condi-

tion, stabilized formulations for velocity-pressure pairs that are not stable in standard
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Galerkin formulation, or penalizing the incompressibility by means of a slightly com-

pressible formulation. Another possibility, which is the one chosen in this thesis, is to

use solenoidal basis functions, whose implementation for high-order approximations

is made easier by using Discontinuous Galerkin (DG) interpolations. Some of the

solutions proposed for this approach, are commented next.

1.2.1 Discontinuous Galerkin method

The DG method, which has first been proposed and analysed by Reed and Hill (1973),

has recently been receiving great attention by several authors, with examples of ap-

plication in CFD (Cockburn, 2004), and in particular for the Stokes equations (Baker

et al., 1990; Cockburn and Gopalakrishnan, 2005; Toselli, 2002). Among the advan-

tages of DG discretization are its compactness (coupling is restricted to the elements

sharing a face) and the possibility to accommodate elements of varying order of ac-

curacy within the same grid without difficulty, opening the way to a straightforward

implementation of hp-adaptive methods. The drawback of a DG formulation is that

for the same mesh, its cost is, in general, higher than the one of a continuous formula-

tion because of the duplication of the degrees of freedom at the elements’ boundaries.

However, on the one hand this increment in degrees of freedom is less significant

for high-order approximations. On the other hand, the following will show that us-

ing divergence-free approximations allows to decrease the total number of degrees of

freedom and thus to reduce the computational cost.

Originally conceived for purely advective problems, the DG method has then been

extended to treat advection-diffusion problems and was very successful in the numer-

ical solution of the Navier-Stokes equations. Several schemes for the discretization

of the viscous terms have been proposed in the literature, such as, among the many

available, Bassi and Rebay (2001) for the compressible Navier-Stokes equations, or

the Local Discontinuous Galerkin (LDG) formulation introduced by Cockburn and

Shu (1998) for convection-diffusion problems.

LDG has been successfully analyzed and applied to Stokes, Oseen and Navier-
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Stokes equations, see for instance Cockburn et al. (2005a). Lifting operators are

introduced to substitute vorticity, leading to a velocity-pressure formulation, with an

approximate orthogonality property. However, one major drawback of LDG is the loss

of compactness due to the introduction of lifting factors. That is, the LDG stencil

goes beyond immediate neighbors, in front of the usual DG stencil where degrees of

freedom in one element are connected only to those in the neighboring elements.

To avoid this loss of compactness, Compact Discontinuous Galerkin (CDG) was

introduced by Peraire and Persson (2008) with application to elliptic problems. CDG

is very similar to LDG but it eliminates coupling between degrees of freedom of non-

neighboring elements by means of alternative local lifting operators, recovering the

compactness lost with LDG.

Another interesting feature of DG is that for incompressible problems, divergence-

free high-order DG approximations can be easily defined as it will be seen in the

following section.

1.2.2 Spatial discretizations for incompressible flows

To solve problems with incompressibility, an interesting alternative to velocity-pressure

approximations satisfying the LBB condition consists in using explicit divergence-free

bases. Crouzeix and Raviart (1973) constructed divergence-free elements for incom-

pressible flows, in order to eliminate pressure in the final equation. They analyzed

several combinations of conforming and non-conforming velocity elements and discon-

tinuous pressure elements.

Some of these elements are briefly recalled here. The following discrete finite

element spaces for velocity and pressure are defined

Vh = {v ∈ [L2(Ω)]nsd ; v|Ωi ∈ [Pk(Ωi)]
nsd ∀Ωi}

Qh = {q ∈ [L2(Ω)] ; q|Ωi ∈ [Pk−1(Ωi)] ∀Ωi}
(1.1)

where Pk(Ωi) is the space of polynomial functions of degree at most k ≥ 1 in Ωi.

Solenoidal basis functions are considered that approximately satisfy the incompress-
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ibility condition

ShCR = {vh ∈ Vh |
∫

Ωi

q∇·vh dΩ = 0 ∀q ∈ Qh },

and irrotational basis functions are then used to calculate the pressure once the

velocity has been computed. Note that the irrotational space IhCR is such that

Vh = ShCR ⊕ IhCR. This allows to split the Stokes problem a
(
uh,v

)
+ b(v, ph) = l

(
v
)
,

where a
(
u,v

)
=
∫

Ω
∇u :∇vdΩ, b(v, p) =

∫
Ω
p∇·v dΩ and l

(
v
)

=
∫

Ω
f ·v dΩ in two

uncoupled problems: first, find uh ∈ ShCR such that

a
(
uh,v

)
= l
(
v
)

for all v ∈ ShCR. (1.2)

Then, given uh solution of (1.2), find ph ∈ Qh such that

b(v, ph) = a
(
uh,v

)
− l
(
v
)

for all v ∈ IhCR. (1.3)

For example, the simplest Crouzeix-Raviart element, P1-P0 non-conforming element,

shown in Figure 1.1, uses linear velocity, with continuity ensured at the middle points

of the sides, and constant pressure.

(b) (c)(a)

Figure 1.1: Crouzeix-Raviart P1-P0 element (a). Decomposition into elements from
ShCR (b) and IhCR (c). Arrows indicate nodes for the velocity in the directions shown.

Griffiths (1981) also proposed an element level divergence-free basis for several

finite element schemes on triangular and quadrilateral elements. The main advan-

tage of both methods is that they compute velocity separately from pressure for the

Stokes problem and calculate pressure afterwards, reducing the number of degrees



8 Introduction

of freedom. Nevertheless, a major limitation of these techniques is that continuous

and weakly divergence-free (or discretely divergence-free, following the notation of

Gunzburger (1989)) approximation spaces are difficult to generalize for higher order

approximations. New solenoidal and pressure spaces must be computed for each kind

of element: there is no simple rule to construct these spaces for a higher polynomial

order from the one of a lower polynomial order. Furthermore, it is very difficult to ob-

tain such a formulation for high-order interpolation, that is for third or higher order.

Because of the difficulties to construct them, these spaces of weak incompressibility

have never been very popular.

On the other hand, in a Discontinuous Galerkin framework, divergence-free high-

order approximations can easily be defined. An element by element discontinuous

approximation with a divergence-free polynomial basis in each element can be consid-

ered, with a straightforward definition for high-order approximations, see Baker et al.

(1990) or Cockburn and Gopalakrishnan (2005). For instance, a solenoidal basis in a

2D triangle for an approximation of degree k = 2 is

Sh =
〈( 1

0

)
,

(
0

1

)
,

(
0

x

)
,

(
x

−y

)
,

(
y

0

)
,

(
0

x2

)
,

(
2xy

−y2

)
,

(
x2

−2xy

)
,

(
y2

0

)〉
(1.4)

and an irrotational base for k = 2 is

Ih =
〈( x

0

)
,

(
x2

0

)
,

(
0

y2

)〉
, (1.5)

see for example Baker et al. (1990) for the construction of this basis.

Due to the important costs of DG methods, the reduction in degrees of freedom

(both in velocity and pressure) induced by a divergence-free approach is very inter-

esting from a computational point of view. Nevertheless the resulting formulation

does not completely eliminate the degrees of freedom of the pressure. Thus, either a
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non-consistent penalty term must be used to penalize the normal component of the

velocity between elements and then completely eliminates pressure or, hybrid pres-

sure, that is pressure on the side/face of the elements, has to be introduced. Methods

using solenoidal DG formulations are commented next.

In the 90’s, Baker et al. (1990) and Karakashian and Jureidini (1998) developed

and analyzed a DG formulation with piecewise polynomial divergence-free velocity,

which can be used for any order of the approximation and with optimal error bounds.

However, this formulation has some limitations: it requires the use of continuous

pressure approximations, only Dirichlet boundary conditions are considered (in fact,

natural boundary conditions cannot be easily imposed), and different computational

meshes (with different mesh sizes) must be considered for velocity and pressure to

ensure stability (usually a finer mesh is used for the velocity).

A DG method for the Stokes equations with piecewise polynomial approximations

was also proposed and analyzed by Toselli (2002), but without the point-wise impo-

sition of the divergence-free condition. This DG formulation shows better stability

properties than continuous Galerkin approximations and uniform divergence stability

is proven when velocity is approximated one or two degrees higher than pressure. In

fact, for equal order interpolation, numerical results show no spurious pressure modes

although no uniform stability properties are proven. Unfortunately, the bilinear form

related with velocities is non-symmetric, and the DG advantages for the definition of

piecewise solenoidal approximations are not exploited.

Recently, Cockburn et al. (2005b, 2007) propose a DG formulation with solenoidal

piecewise polynomial approximations. It is derived from a LDG rationale based on

a mixed formulation of the problem (with velocity, vorticity and pressure), and with

the introduction of numerical traces. Hybrid pressures are used, and pressures in the

interior of the elements are computed as a postprocess of the LDG solution, see for

example Cockburn and Gopalakrishnan (2005) and Carrero et al. (2005). As usual

in LDG, lifting operators are introduced, leading to an approximate orthogonality

property and a lost of consistency.

Note that divergence-free DG formulations are not limited to fluid problems, but
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have also been used to solve the Maxwell equations (Cockburn et al., 2004) or in

elasticity problems (Hansbo and Larson, 2003).

1.2.3 Interior Penalty Method

The Interior Penalty Method (IPM) is a compact formulation used to treat second

order derivative, enhancing the flexibility given by discontinuous elements. In the

case of Dirichlet boundary conditions, Nitsche (1971) first introduced penalty terms

on the boundary of the domain in order to penalize the deviation between the values

of approximate and true solutions. Similar rationale was followed by Arnold (1982)

formulating a new finite element method for second-order parabolic equations where

discontinuous piecewise polynomial functions were used over general meshes. Approxi-

mate continuity between elements was obtained adding consistent penalty terms. IPM

leads to a symmetric and coercive bilinear weak form. There is no need to write the

problem as a first order partial derivative equation and no additional variables or

lifting operators have to be introduced. While other discontinuous methods, such as

LDG, were first thought for hyperbolic problems and then applied to elliptic prob-

lems, IPM was originally formulated for second-order parabolic equations and thus

especially conceived for self-adjoint operators as the diffusion operator. This is why in

this thesis, taking advantage of the good properties of IPM for self-adjoint operators,

a new consistent IPM-DG formulation is developed for incompressible flows.

Another penalty DG formulation has been proposed by Hansbo and Larson (2008)

for the computation of solenoidal velocities with no presence of pressure terms. In this

case normal discontinuities of the velocity are further penalized, allowing the elimina-

tion of the pressure’s degrees of freedom, but leading to a non-consistent formulation.

Different alternatives for this approximation, based on the definition of piecewise con-

tinuous stream function spaces, are proposed and analyzed and have inspired several

authors, see for instance Mozolevsky et al. (2007) for the solution of the Navier-Stokes

equations, or Montlaur et al. (2008) for the Stokes problem.

Interior Penalty Method has also been used for other kinds of problems as discon-
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tinuities in solid mechanics (Hansbo and Hansbo, 2004), or Maxwell equations (Grote

et al., 2008).

1.2.4 Time integrators for incompressible flows

Due to constraints of computing costs, in the past, the development of numerical

techniques for fluid flow simulations has focused mainly on steady state calculations.

However, many physical phenomena of interest are inherently unsteady, creating the

need for efficient numerical formulation for unsteady flows, a few examples being sep-

arated flows, wake flows, fluid actuators and maneuvering. Good stability properties

and high orders of accuracy in time as well as in space are critical requirements, es-

pecially when studying boundary layers or high Reynolds number flows. This section

reviews the principal time integrators proposed for incompressible flows.

An important difficulty for the numerical simulation of incompressible flows is

that velocity and pressure are coupled by the incompressibility constraint. The inter-

est in using projection methods to overcome this difficulty in time-dependent viscous

incompressible flows started with the introduction of fractional steps methods for in-

compressible Navier-Stokes equations by Chorin (1968) and Temam (2001). Following

the original ideas of Chorin and Temam, numerous authors have successfully used frac-

tional step methods for incompressible flows, among them Donea et al. (1981), Kim

and Moin (1985), Guermond et al. (2006), Houzeaux et al. (2009). Fractional step

method is a method of approximation of the unsteady equations based on a decom-

position of the operators: the pressure/incompressibility terms are treated implicitly

while the remaining terms, viscous and convective, can be treated either explicitly,

semi-implicitly or fully implicitly. The most attractive feature of projection methods

is thus that, at each time step, a sequence of decoupled elliptic equations are solved

for velocity and pressure, making the method very efficient for large scale numerical

simulations. Note that the treatment of boundary conditions is critical and depends

on the chosen derivation of the fractional step method. A time discretization can be

performed first, followed by a space discretization. A controversy arises then about
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what boundary conditions are to be imposed at each step, so that the intermedi-

ate semi-discrete problems are well-posed. Alternatively space discretization can be

performed prior to the fractional step time discretization; in that case, boundary con-

ditions are fixed from the start. Another important feature of fractional step methods

is their overall order of accuracy with respect to time discretization. Most methods

are first-order-accurate, or at most second-order-accurate.

While explicit schemes are used at much lower cost, the number of realistic prob-

lems that are amenable to explicit formulation is very small. In common situations,

large variations in element size, required to solve multiple spatial scales occurring in

high Reynolds number flow or in boundary layers, make the use of explicit time inte-

gration techniques impractical. In such cases, implicit schemes have to be considered.

Unconditionally stable schemes can then be used, as for example the multistep meth-

ods as Crank-Nicolson (Kim et al., 2002), or generalized-α methods (Jansen et al.,

2000), which have both been applied to the incompressible Navier-Stokes equations.

They reach second-order accuracy in time and complete the numerous low order tem-

poral schemes available for incompressible flows.

High-order time integrators are widely used for compressible flows. For example,

Persson and Peraire (2008) apply a backward difference approximation of time deriva-

tive to the compressible Navier-Stokes equations, leading to an optimal third-order

accuracy in time. Higher orders can be obtained with backward difference approxima-

tion, but the higher the order the smaller the stability region. Furthermore because

these methods are multistep and the value calculated at each time depends on val-

ues from previous time steps, a variable time step can not be easily used. These two

drawbacks are avoided when using Runge-Kutta methods, which are one-step method,

allowing the use of variable time step and whose stability regions increase with the

order of the method. High-order Runge-Kutta methods are successfully applied to

compressible flow problems, whose finite element or finite volume discretization leads

to a system of Ordinary Differential Equations (ODEs), see Bassi and Rebay (1997),

Wang and Mavriplis (2007). Explicit Runge-Kutta methods have also been used to

solve incompressible flows, see for example Pereira et al. (2001) for an application
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to a constrained ODE, or Linnick and Fasel (2005), Liu and Shu (2000) for vorticity

stream-function formulations.

In this thesis, the space discretization of incompressible flow equations is inter-

preted as a system of Differential Algebraic Equations (DAE) (Hairer and Wanner,

1991), that is, a system of ODEs corresponding to the conservation of momentum

equation, plus algebraic constraints corresponding to the incompressibility condition.

High-order Implicit Runge-Kutta (IRK) methods are considered to solve this DAE

system (Hairer et al., 1989). IRK methods are of special interest because high orders

of accuracy can be obtained (Butcher, 1987) and they are unconditionally stable for

an incompressible Navier-Stokes problem. However, since they have a higher cost

than explicit methods or low-order implicit methods, it is necessary to balance the

benefits obtained in stability and accuracy with the extra needed cost.

1.3 Overview

The thesis is divided in three main parts: the exposition, the appendices referring

to the exposition and finally some of the main contributions of the thesis enclosed in

form of a published paper and a paper accepted for publication.

The exposition part is divided in three chapters. Chapter 2 presents the main ideas

and core concepts of the Discontinuous Galerkin (DG) formulations with solenoidal

approximations proposed in this thesis for the simulation of incompressible flows, with

applications to the steady Stokes and Navier-Stokes equations. The full details of the

deduction and implementation of the proposed methodologies are appended either in

appendices A and B, or in the final papers. Chapter 3 is concerned with obtaining

unconditionally stable and high-order time integration methods, so that the resulting

scheme proposed in this thesis has high order properties both in time and space.

Explicit Runge-Kutta time integrators for constrained problems are commented in

Appendix C. Finally Chapter 4 presents the conclusions and future developments.

The two appended papers correspond to references Montlaur et al. (2008) and

Montlaur et al. (2009). Throughout the thesis these papers are cited using the corre-
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sponding references.



Chapter 2

Discontinuous Galerkin Interior
Penalty Method for incompressible
flows

In this chapter, a new solenoidal Discontinuous Galerkin (DG) formulation for in-

compressible flows is built up and applied to Stokes and Navier-Stokes problems. An

Interior Penalty Method (IPM) DG formulation is developed in Section 2.1.1 for the

incompressible Stokes equations. Interelement continuity is enforced approximatively

by means of penalties, leading to a symmetric and coercive bilinear form for the diffu-

sion term. In a DG context, high-order piecewise solenoidal approximations are easily

defined, with an important reduction in the number of degrees of freedom (Baker

et al., 1990; Cockburn et al., 2005b; Montlaur et al., 2008). Thus, in Section 2.1.2,

the approximation space for the velocity field is decomposed in every element as direct

sum of solenoidal and irrotational polynomial spaces. This allows to split the IPM

weak form in two uncoupled problems. The first one solves for velocity and hybrid

pressure (i.e. pressure on elements’ sides/faces), and the second one allows the eval-

uation of pressure in the interior of the elements as a post-process. Error bounds are

given for the Stokes IPM formulation in Section 2.1.3. This new solenoidal IPM-DG

method was proposed by Montlaur et al. (2008).

Other DG techniques, such as Local Discontinuous Galerkin (LDG) or Compact

Discontinuous Galerkin (CDG), can also be used with solenoidal approximations to

solve incompressible flow problems. A CDG formulation with solenoidal velocities was

15
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developed for the incompressible Navier-Stokes equations by Montlaur et al. (2009)

and is recalled for the Stokes problem in Section 2.1.5. CDG and IPM have many

points in common: both methods lead to symmetric and coercive bilinear forms for

self-adjoint operators and induce compact formulations, to the difference of LDG.

Moreover, though CDG and IPM are derived from different rationales, CDG can be

written as the IPM weak form plus some extra terms, including lifting operators.

A deeper comparison of these methods is presented by Montlaur et al. (2009) and

summarized in Sections 2.1.5 and 2.3.2.

In Section 2.1.6, the Stokes weak form with solenoidal velocities is reformulated as

a minimization problem subject to the constraint of normal continuity of the velocity

field. The solution of this optimization problem introducing a non-consistent penalty

leads to an alternative DG formulation for the computation of velocities with no pres-

ence of pressure terms, with an important save in the number of degrees of freedom.

Pressure is also computed as a post-process of the velocity solution.

Finally IPM with solenoidal approximation is extended to the Navier-Stokes equa-

tions in Section 2.2. Numerical examples show the applicability and accuracy of the

proposed methods in Section 2.3.

2.1 DG formulations for Stokes

Let Ω ⊂ Rnsd be an open bounded domain with boundary ∂Ω and nsd the number

of spatial dimensions. Suppose that Ω is partitioned in nel disjoint subdomains Ωi,

which for example correspond to different materials, with boundaries ∂Ωi that define

an internal interphase Γ; the following definitions and notation are used

Ω =
nel⋃

i=1

Ωi, Ωi ∩ Ωj = ∅ for i 6= j,

Ω̂ :=
nel⋃

i=1

Ωi, and Γ :=
nel⋃

i,j=1
i 6=j

Ωi ∩ Ωj =
[ nel⋃

i=1

∂Ωi

]
\∂Ω.
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The strong form for the steady incompressible Stokes problem can be written as

−∇·σ = s in Ω̂, (2.1a)

∇·u = 0 in Ω̂, (2.1b)

u = uD on ΓD, (2.1c)

n ·σ = t on ΓN , (2.1d)

Jn⊗ uK = 0 on Γ, (2.1e)

Jn ·σK = 0 on Γ, (2.1f)

where ∂Ω = ΓD ∪ΓN , ΓD ∩ΓN = ∅, s ∈ L2(Ω) is a source term, σ is the (“dynamic”

or “density-scaled”) Cauchy stress, which is related to velocity u, and pressure p, by

the linear Stokes’ law

σ = −p I + 2ν∇su, (2.2)

with ν being the kinematic viscosity and ∇s = 1
2
(∇ +∇T ). Here unitary density is

considered.

The jump J·K and mean {·} operators are defined along the interface Γ using values

from the elements to the left and to the right of the interface (say, Ωi and Ωj) and are

also extended along the exterior boundary (only values in Ω are employed), namely

J}K =





}i +}j on Γ,

} on ∂Ω,

and {}} =





κi }i +κj}j on Γ,

} on ∂Ω.

Usually κi = κj = 1/2 but, in general, these two scalars are only required to verify

κi+κj = 1, see for instance Hansbo and Hansbo (2004). The major difference between

the mean and the jump operator is that the latter always involves the normal to the

interface or to the domain. For instance, given two contiguous subdomains Ωi and Ωj

their exterior unit normals are denoted respectively ni and nj (recall that ni = −nj)
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and along ∂Ω the exterior unit normal is denoted by n; the jump is then

JpnK =





pini + pj nj = ni(pi − pj) on Γ

pn on ∂Ω

for scalars, see Montlaur et al. (2008) for vectors or tensors.

Finally, in the following equations
(·, ·) denotes the L2 scalar product in Ω, that

is

(
p, q
)

=

∫

Ω

p q dΩ for scalars,

(
u,v

)
=

∫

Ω

u ·v dΩ for vectors,

(
σ, τ

)
=

∫

Ω

σ : τ dΩ for second order tensors.

Analogously,
(·, ·)

Υ
denotes the L2 scalar product in any domain Υ ⊂ Γ ∪ ∂Ω. For

instance,
(
p, q
)

Υ
=

∫

Υ

p q dΓ

for scalars.

2.1.1 IPM formulation

Following the standard approach of Interior Penalty Method, introduced by Arnold

(1982) for second order parabolic equations, the Interior Penalty approach developed

by Montlaur et al. (2008) for the Stokes equations is: find uh ∈ Vh and ph ∈ Qh such

that

aIP
(
uh,v

)
+ b
(
v, ph

)
+
(
{ph}, Jn ·vK

)
Γ∪ΓD

= lIP
(
v
)

∀ v ∈ Vh,

b
(
uh, q

)
+
(
{q}, Jn ·uhK

)
Γ∪ΓD

=
(
q,n ·uD

)
ΓD

∀ q ∈ Qh,
(2.3)
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where Vh and Qh are defined in (1.1) and

aIP
(
u,v

)
:=
(
2ν∇su,∇sv

)
+
γ

h

(
Jn⊗ uK, Jn⊗ vK

)
Γ∪ΓD

−
(
2ν{∇su}, Jn⊗ vK

)
Γ∪ΓD

−
(
Jn⊗ uK, 2ν{∇sv}

)
Γ∪ΓD

, (2.4a)

lIP
(
v
)

:=
(
f ,v

)
+
(
t,v
)

ΓN
+
γ

h

(
uD,v

)
ΓD
−
(
n⊗ uD, 2ν∇sv

)
ΓD
, (2.4b)

b
(
v, p
)

:= −
∫

Ω

q∇·v dΩ. (2.4c)

The penalty parameter, a positive scalar γ, must be large enough to ensure coercivity

of the symmetric bilinear form aIP, see Montlaur et al. (2008). The characteristic

mesh size is denoted by h. For instance, following Hansbo and Larson (2002), for a

2D mesh of straight edges, the mesh parameter h can be defined by

h|∂Ωi =





2
(

length(∂Ωi)
area(Ωi)

+ length(∂Ωi)
area(Ωj)

)−1

for ∂Ωi on Γ,

area(Ωi)
length(∂Ωi)

for ∂Ωi on ∂Ω.
(2.5)

2.1.2 IPM with solenoidal approximations

The velocity space Vh is now split into direct sum of a solenoidal part and an irrota-

tional part, see Cockburn and Gopalakrishnan (2005), Carrero et al. (2005), Montlaur

et al. (2008) for details, that is Vh = Sh ⊕ Ih, where

Sh =
{
v ∈ [L2(Ω)]nsd | v|Ωi ∈ [Pk(Ωi)]

nsd , ∇·v|Ωi = 0 for i = 1, . . . , nel
}
,

Ih ⊂
{
v ∈ [L2(Ω)]nsd | v|Ωi ∈ [Pk(Ωi)]

nsd , ∇×v|Ωi = 0 for i = 1, . . . , nel
}
.

(2.6)

For instance, examples of solenoidal and irrotational basis in a 2D triangle for an

approximation of degree k = 2 are given in (1.4) and (1.5), and in Baker et al. (1990).

Under these circumstances, the IPM problem (2.3) can be split in two uncoupled

problems. The first one solves for divergence-free velocities and the so-called hybrid
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pressures : find uh ∈ Sh and p̃h ∈ P h solution of




aIP
(
uh,v

)
+
(
p̃h, Jn ·vK

)
Γ∪ΓD

= lIP
(
v
)

∀v ∈ Sh,
(
q̃, Jn ·uhK

)
Γ∪ΓD

=
(
q̃,n ·uD

)
ΓD

∀q̃ ∈ P h,
(2.7a)

with the forms defined in (2.4).

The space of hybrid pressures (pressures along the sides in 2D, or faces in 3D) is

simply:

P h :=
{
p̃ | p̃ : Γ ∪ ΓD −→ R and p̃ = Jn ·vK for some v ∈ Sh

}
.

In fact, Cockburn and Gopalakrishnan (2005) demonstrate that P h corresponds to

piecewise polynomial pressures in the element sides in 2D or faces in 3D.

The second problem, which requires the solution of the previous one, evaluates the

interior pressures : find ph ∈ Qh such that

b
(
v, ph

)
= lIP

(
v
)
− aIP

(
uh,v

)
−
(
p̃h, Jn ·vK

)
Γ∪ΓD

∀v ∈ Ih. (2.7b)

It is important to note that equation (2.7b) is a post-process of the solution of (2.7a),

with an element by element computation.

Note that the resulting method has many points in common with the LDG for-

mulation stated by Carrero et al. (2005). Namely, both are formulated in terms of

piecewise solenoidal velocities and hybrid pressures, the bilinear form is symmetric

and positive definite and the pressure in the interior of the elements is computed as

a post-process of the solution. Nevertheless, different rationales are followed for the

LDG and IPM methods, leading to completely different formulations. For instance,

one of the most remarkable differences is that the IPM formulation proposed here does

not involve lifting operators, which induce an approximate orthogonality property in

the LDG formulation (Carrero et al., 2005) and a lost of consistency. Moreover, the

computation of the LDG liftings induces an extra computational cost and an increase
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of the LDG stencil with respect to IPM.

2.1.3 Error bounds for IPM

This section presents the continuity and coercivity properties of the IPM bilinear form

and the error bounds of the IPM Stokes formulation with solenoidal velocity (2.7).

For γ large enough, the IPM bilinear form aIP defined in (2.4a) is continuous and

coercive, that is: there exists a constant c such that

|aIP (u,v)| ≤ c 9 u 9 9v 9 ∀u,v ∈ [H1(Ω̂)]nsd (2.8)

and

m 9 v92 ≤ aIP (v,v) ∀v ∈ [H1(Ω̂)]nsd (2.9)

for some constant m > 0 independent of the mesh size h, where the norm 9 ·9 is

defined by

9 v92 = ‖∇sv‖2
Ω + ‖h1/2{n ·∇sv}‖2

Γ∪ΓD
+ ‖h−1/2Jn⊗ vK‖2

Γ∪ΓD
∀v ∈ [H1(Ω̂)]nsd

(2.10)

with the usual L2-norms

‖f‖2
Ω =

∑

i

∫

Ωi

f :f dΩ, ‖f‖2
Γ∪ΓD

=
(
f, f
)

Γ∪ΓD
. (2.11)

The continuity of aIP, that is equation (2.8), can be proven following standard ar-

guments, see Hansbo and Larson (2002, 2008) for details, and the coercivity (2.9) is

proven in Appendix A. The continuity and the coercivity of the bilinear form allow

to prove the result of optimal error bound for velocity. Error bounds for pressure and

hybrid pressure are also derived assuming that the following inf-sup condition holds.

Hypothesis 2.1.1 (inf-sup condition for hybrid pressure). The spaces of solenoidal
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velocities Sh and hybrid pressures P h satisfy

sup
v∈Sh

(
q̃, Jn ·vK)

Γ∪ΓD

9v9 ≥ c1h‖q̃‖Γ∪ΓD ∀q̃ ∈ P h, (2.12)

for some constant c1 independent of the characteristic mesh size h.

The satisfaction of this inf-sup condition is checked in Section 2.1.4 through a

numerical inf-sup test. In all experiments, the numerical inf-sup test is passed for

approximations of order k for velocity and k − 1 for pressure. An analytical proof

of the satisfaction of the inf-sup condition is considered as future work, outside the

scope of this thesis.

Theorem 2.1.2 (Error bounds). Let u ∈ [H1+α(Ω)]nsd, 1 ≤ α ≤ k, and p ∈ Hα(Ω)

be the exact solution of the Stokes problem, p̃ = {p} on Γ∪∂Ω, and (uh, p̃h, ph) ∈ Sh×

P h×Qh the numerical solution of the IPM system (2.7), then, under the assumption

of hypothesis 2.1.1

9 u− uh9 ≤ K1h
α|u|[H1+α(Ω)]nsd (2.13a)

‖p̃− p̃h‖Γ∪ΓD ≤ K2h
α−1|u|[H1+α(Ω)]nsd (2.13b)

‖p− ph‖Ω ≤ K3

(
hα−

1
2 |u|[H1+α(Ω)]nsd + hα‖p‖Hα(Ω)

)
(2.13c)

where constants K1, K2, K3 are independent of the mesh size h and the exact solution.

Elements of proof of the error bounds for hybrid and interior pressures can be found

in Appendix A. The convergence rate of the velocity is optimal, that is u converges

to uh with order k for a 9.9-like norm, see Montlaur et al. (2008) for details. Though

these results prove that p̃h converges to p̃ with at least order k − 1 and ph converges

to p with at least order k − 1
2

in an L2-like norm, numerical experiments, as shown

in Figure 2.1, actually indicate that p̃h and ph respectively converge to p̃ and p with

optimal order k. Similar results were obtained by Carrero et al. (2005).
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Figure 2.1: IPM convergence results with velocity approximation of degree k = 4 and
pressure interpolation of degree 3, with γ = 40

Figure 2.1 shows the convergence under h-refinement for an order of approximation

of 4 for velocity and 3 for pressure for a Stokes example with analytical solution, solved

in a 2D square domain with Dirichlet and Neumann boundary conditions. Details of

this example can be found in (Montlaur et al., 2008). As previously commented,

optimal fourth order convergence is obtained for velocity error with 9.9-norm and

hybrid and interior pressure errors with L2-norms.

2.1.4 Numerical inf-sup test for IPM

This section presents a numerical inf-sup test for the IPM Stokes formulation with

solenoidal velocity (2.7). Let us first recall how to perform a numerical inf-sup test

on a general Stokes formulation.

Let us consider a weak form of a discretized incompressible Stokes problem: find

uh ∈ Vh and ph ∈ Qh such that

a
(
uh,v

)
+ b
(
v, ph

)
= l
(
v
)
∀ v ∈ Vh,

b
(
uh, q

)
= 0 ∀ q ∈ Qh.

(2.14)
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The inf-sup condition is passed if
(
Vh,Qh

)
satisfy

sup
vh∈Vh

b
(
vh, qh

)

9vh 9 ‖qh‖Ω

≥ kh > 0 ∀qh ∈ Qh, (2.15)

with the stability condition

lim
h→0

kh ≥ β > 0,

for some constant β > 0.

Giving an analytical proof of (2.15) for
(
Vh,Qh

)
is usually not trivial. For this

reason a numerical inf-sup test can be used in order to confirm the result of (2.15) with

relatively little effort, following Chapelle and Bathe (1993), Huerta et al. (2004). For

the inf-sup test (2.15), let Mv and Mq be the mass matrices associated to the scalar

products of Vh and Qh respectively, and let µmin be the smallest non-zero eigenvalue

defined by the following eigenvalue problem

BTMqBv = µ2Mvv (2.16)

where B is the discretization of b
(
·, ·
)

in (2.14). Then the value of kh is simply µmin.

The numerical test consists in testing a particular pair
(
Vh,Qh

)
by calculating µmin

using meshes of increasing refinement. On the basis of three or four results it can be

predicted whether the inf-sup value µmin is probably bounded from underneath or, on

the contrary, goes down to zero when the mesh is refined.

In order to come up with a numerical inf-sup test for hybrid pressure, see (2.12),

Mv and Mq̃ are the mass matrices associated to the scalar products of Sh and P h

respectively, that is

(
u,v

)
=
(∇su,∇sv

)
+
(
h1/2{n ·∇su}, h1/2{n ·∇sv}

)
Γ∪ΓD

+
(
h−1/2Jn⊗ uK, h−1/2Jn⊗ vK

)
Γ∪ΓD

∀u,v ∈ Sh,
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and
(
p, q
)

Γ∪ΓD
∀p, q ∈ P h.

Then µmin is the smallest non-zero eigenvalue defined by the following eigenvalue

problem

BTMq̃Bv = µ2Mvv (2.17)

where B is the discretization of
(
q̃, Jn ·vK)

Γ∪ΓD
in (2.7a).
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Figure 2.2: Numerical inf-sup test result for hybrid pressure.

In order to perform the numerical inf-sup test a sequence of four successive refined

meshes is considered (uniform distribution of 8, 32, 128 and 512 elements). Approxi-

mations of order 4 and 2 for velocity and 3 and 1 for pressure are considered. Figure

2.2 shows that for the hybrid pressure a steady decrease in log(µmin) is observed,

violating the classical inf-sup condition for
(
Sh,P h

)
. Nevertheless a slope of 1 is

observed, that is µmin = αh, which fits the inf-sup condition (2.12).

2.1.5 Comparison with other DG methods

Other DG formulations, such as the Local Discontinuous Galerkin (LDG) or the Com-

pact Discontinuous Galerkin (CDG) methods, can also be used to solve the incom-

pressible Stokes equations with solenoidal velocities. Both formulations’ weak forms

can be written as the IPM weak form plus some extra terms, mainly involving lifting
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operators. For example the uncoupled Stokes problem (2.7) can be solved using a

CDG formulation, substituting aIP and lIP by

aCDG
(
u,v

)
:= aIP

(
u,v

)
−
(
2νC12⊗Jn ·∇svK, Jn⊗uK

)
Γ
−
(
2νC12⊗Jn ·∇suK, Jn⊗vK

)
Γ

+
∑

Γe⊂Γ∪ΓD

(
2ν
(
re(Jn⊗ uK) + se(C12 ·Jn⊗ uK)

)
, re(Jn⊗ vK) + se(C12 ·Jn⊗ vK)

)

(2.18a)

lCDG
(
v
)

:= lIP
(
v
)

+
∑

Γe⊂ΓD

(
2ν re(n⊗ v), re(n⊗ uD)

)
(2.18b)

being aIP and lIP the IPM forms defined in (2.4), with γ = hC11. The two local lifting

operators re, se are defined in (B.16) and (B.17) in Appendix B, where the obtention

of the CDG weak form for the incompressible Stokes equations is detailed, following

the rationale proposed by Peraire and Persson (2008) for elliptic problems. The CDG

formulation for Stokes and Navier-Stokes is proposed by Montlaur et al. (2009) and

compared with IPM. The conclusions of the comparison are summarized here.

Remark : The implementation of CDG lifting operators, requires computing

several elemental matrices, matrix inversions and products, for every side/face, see

Montlaur et al. (2009). Thus, in addition to the implementation effort, lifting terms

represent a clearly non-negligible increase in the computational cost relative to IPM.

This is also the case for transient problems and it implies a non-negligible burden

mostly for explicit time integrators. Auxiliary variables for the lifting operators have

to be stored and computed (solving linear systems of equations in each element) at

every time step.

Note that CDG, and it would also be the case for LDG, has two parameters, C11

and C12. The former, C11, substitutes the consistent penalty parameter in aIP, that

is C11 = γh−1, and it is thus a non-negative parameter of order O(h−1). The latter,

is an additional vector, C12 ∈ Rnsd , defined for each interior side/face, see Peraire

and Persson (2008) and (B.7) in Appendix B for details. Though both bilinear forms

of CDG and LDG introduce more terms than IPM, because of the introduction of
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lifting operators, CDG presents the major advantage, in front of LDG, that it is a

compact formulation. That is, both IPM and CDG have the same compact stencil,

where degrees of freedom of one element are only connected to those of immediate

neighbors. This is why CDG has been preferred here in front of LDG.

While in an IPM formulation γ must be large enough to ensure coercivity of

the bilinear form, in CDG, C11 = 0 may be considered on Γ, see Peraire and Persson

(2008), giving more flexibility for the choice of this parameter. Nevertheless, note that

on the Dirichlet boundary it must be positive, C11 > 0, to treat properly boundary

conditions. The influence of the C11 parameter in CDG or γh−1 in IPM on the

condition number of the diffusion matrix — the discretization of the bilinear form

aCDG for CDG or aIP for IPM — is studied next. Figure 2.3 shows the evolution of the

condition number of the diffusion matrix for a regular structured mesh with h = 1/8

and degree k = 4. For C11 ≥ 40h−1, i.e for γ ≥ 40, large enough to ensure coercivity
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Figure 2.3: Structured mesh for h = 1/8 and dependency of the condition number of
the diffusion matrix on the stabilization parameter C11 = γh−1, for CDG and IPM,
with a fourth order approximation of the velocity (k = 4).

of the IPM bilinear form, similar condition numbers are obtained with both methods.

Though CDG (and it would also be the case for LDG) allows to choose a value of C11

as small as wanted, Figure 2.3 shows that the condition number is rather constant for

small values of C11. Moreover the minimum value of the condition number is more

or less the same for CDG and for IPM. Thus, the flexibility of CDG for the choice of
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C11 does not imply any advantage in front of IPM for the conditioning of the matrix.

Numerical experiments, presented in Section 2.3 and Montlaur et al. (2009), also

reveal that IPM and CDG present similar results for the accuracy of the numerical

solution, both reaching optimal convergence rates for velocity and pressure.

Thus, the main differences between both methods are that CDG is less sensitive

to the selection of the penalty parameter (tuning of C11 is almost eliminated), but

it has the major disadvantage of the implementation and computation of the lifting

operators. That is, IPM leads to a simpler and straight-forward implementation,

avoiding the extra computational cost associated to CDG or LDG liftings.

2.1.6 Formulation with penalization of the discontinuity

The formulation with solenoidal spaces allows a computation of the velocity solution

involving the pressure only in the boundary of the elements, i.e the hybrid pressure.

The aim of this section is more ambitious: to obtain a completely decoupled for-

mulation allowing the computation of the solenoidal velocity, with no presence of

pressures at all. The introduction of a new penalty in the weak formulation achieves

this purpose. For large engineering computations this second formulation represents

an important save in the number of degrees of freedom in front of a formulation in-

cluding hybrid pressure. However, the price of a totally decoupled velocity-pressure

formulation is the lost of consistency, which provokes ill-conditioning, typical for non-

consistent penalty formulations.

The IPM formulation with penalization proposed by Montlaur et al. (2008) ex-

actly coincides with the DG method initially proposed and analyzed by Hansbo and

Larson (2008). Nevertheless it is worth mentioning that in Montlaur et al. (2008) it

is deduced from an alternative rationale, based on the IPM formulation (2.7a) and

the introduction of a non-consistent penalty. The rationale is summarized next. The

IPM formulation with solenoidal velocities (2.7a) can be rewritten as a saddle-point
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problem, namely

(uh, p̃h) = arg min
v∈Sh

max
q̃∈P h

1

2
aIP
(
v,v

)
− lIP

(
v
)

+
(
q̃, Jn ·vK)

Γ∪ΓD
−
(
q̃,n ·uD

)
ΓD
, (2.19)

or, equivalently, as a minimization problem subject to normal continuity constraints,

uh = arg min

v ∈ Sh

s.t. Jn ·vK = 0 in Γ

n ·v = n ·uD in ΓD

1

2
aIP
(
v,v

)
− lIP

(
v
)
. (2.20)

Note that the terms with pressures are cancelled thanks to the imposed continuity

constraints. As usual in constrained minimization problems, (2.20) can be solved

using a non-consistent penalty, see for instance Babuska (1973). The corresponding

minimization problem with penalty is

uh = arg min
v∈Sh

1

2
aIP
(
v,v

)
−lIP

(
v
)
+β
[(

Jn ·vK, Jn ·vK)
Γ
−
(
n ·(uD − v),n ·(uD − v)

)
ΓD

]

where β is a scalar penalty to be chosen. The solution of this optimization problem is

the solution of the following IPM weak formulation with penalty: find uβh ∈ Sh such

that

aIP
(
uβh,v

)
+ β

(
Jn ·uβhK, Jn ·vK

)
Γ∪ΓD

= lIP
(
v
)

+ β
(
n ·v,n ·uD

)
ΓD

(2.21)

for all v ∈ Sh. In the following, we refer to this weak formulation as Interior Penalty

Method with Penalty (IPMP) in front of the IPM formulation described in (2.7a).

Once the velocity is obtained, pressure can be computed as a postprocess in two

steps. First an approximation of the hybrid pressure can be obtained introducing the
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solution of (2.21) in (2.7a), namely

p̃βh =




β Jn ·uβhK on Γ,

β n ·[uβh − uD] on ΓD.

Then, with uβh and p̃βh the interior pressure can be determined as the solution of (2.7b).

As previously commented, a major advantage of solenoidal spaces is the reduction

in the number of degrees of freedom (dof) for the DG solution, and an additional

reduction in the number of dof is achieved with the introduction of the non-consistent

penalty parameter. Figure 2.4 shows the number of dof for a typical finite element

mesh corresponding to a continuous Galerkin (CG) discretization, a DG nodal in-

terpolation (DG), a IPM-DG solenoidal approximation (IPM-DGS), and a IPMP-DG

solenoidal approximation (IPMP-DGS). The hypothesis made to count dof in function

of the order of approximation k are detailed by Montlaur et al. (2009). Note that for

CG and DG, the number of dof for velocities and interior pressures is contemplated,

whereas for the IPM-DGS approximation the number of dof for velocities and hybrid

pressures is considered, see problem (2.7a). For the IPMP-DGS approximation only

the number of dof for velocities is taken into account, see equation (2.21).

Figure 2.4 shows the important reduction in dof when using solenoidal approxima-

tions with hybrid pressures (IPM) and without pressure (IPMP) in a DG formulation.

Compared with CG, the IPM-DGS and IPMP-DGS lead to much less dof in 2D, and

to a competitive number of dof in 3D. Moreover, note that CG and standard DG

behave similarly when increasing k, whereas the growth of the number of dof for the

IPM-DGS and IPMP-DGS methods is much slower. Here the penalization is intro-

duced to eliminate the pressure in the IPM formulation, but the same strategy could

be used with solenoidal CDG or LDG formulations. Equation (2.21) can be applied

using a CDG or LDG formulation instead of IPM and the save in dof is exactly the

same as the one exposed in Figure 2.1.6.

It is important to remark that the IPMP formulation (2.21) involves two penalties

with important differences. The first one is inherited from the IPM formulation, i.e.
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Figure 2.4: Comparison of the total number of dof, divided by the number of elements,
for a typical finite element mesh corresponding to a continuous Galerkin (CG) dis-
cretization, a discontinuous Galerkin nodal interpolation (DG), a IPM-DG solenoidal
approximation (IPM-DGS), and a IPMP-DG solenoidal approximation (IPMP-DGS),
in 2D (a) and 3D (b), with order k for velocity and k − 1 for pressure.

γh−1 in the bilinear form aIP
(
·, ·
)

defined in (2.4a). It is a consistent penalty in the

sense that the solution of the original problem (2.1) is solution of the IPM formulation

(2.7a) and therefore, as usual in IPM formulations, in practice, moderate values of

the constant parameter γ provide accurate and optimally convergent results. This is

not the case for the second penalty. The penalty β in the IPMP formulation (2.21) is

a non-consistent penalty: the solution of the IPMP formulation verifies the continuity

of the normal component of the velocity and the Dirichlet boundary conditions only

in the limit, for β going to infinity. This lack of consistency is the origin of the usual

drawbacks of penalty techniques: the tuning of the penalty parameter affects the

accuracy of the solution and, in practice, too large values of β are needed, leading to

ill-conditioned systems of equations.
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2.2 DG formulation for the Navier-Stokes equa-

tions

The strong form for the momentum conservation equation and the incompressibility

condition of the steady Navier-Stokes problem can be written as

−2∇· (ν∇su) +∇p+ (u ·∇)u = f in Ω̂, (2.22)

∇·u = 0 in Ω̂, (2.23)

with boundary and interface conditions (2.1c)-(2.1f).

A standard upwind numerical flux, see for instance Kanschat and Schötzau (2008),

is used for the definition of the trilinear form associated to the convective term

c
(
w;u,v

)
:= −

(
(w ·∇)v,u

)

+
nel∑

i=1

∫

∂Ωi\ΓN

1

2

[
(w ·ni)(uext +u)− |w ·ni| (uext −u)

] ·vdΓ +

∫

ΓN

(w ·n)u ·vdΓ.

(2.24)

where uext denotes the exterior trace of u taken over the side/face under consideration,

that is

uext(x) = lim
ε→0+

u(x+ εni) for x ∈ ∂Ωi.

As for the Stokes problem, the velocity space is split in a solenoidal part and an

irrotational one, and the IPM formulation for Navier-Stokes equations is split in two

uncoupled problems. The first one solves for divergence-free velocities and hybrid

pressures: find uh ∈ Sh and p̃h ∈ P h solution of




aIP
(
uh,v

)
+ c
(
uh;uh,v

)
+
(
p̃h, Jn ·vK

)
Γ∪ΓD

= lIP
(
v
)

∀v ∈ Sh,
(
q̃, Jn ·uhK

)
Γ∪ΓD

=
(
q̃,n ·uD

)
ΓD

∀q̃ ∈ P h,

(2.25a)
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with the forms defined in (2.4) and (2.24), and the second problem is: find ph ∈ Qh

such that

b
(
v, ph

)
= lIP

(
v
)
− aIP

(
uh,v

)
−
(
p̃h, Jn ·vK

)
Γ∪ΓD

− c
(
uh;uh,v

)
∀v ∈ Ih. (2.25b)

When solving the unsteady incompressible Navier-Stokes equations, the original

convective term of the strong form, (u ·∇)u is replaced by (u ·∇)u − 1
2
(∇·u)u,

which is a legitimate modification for a divergence-free velocity field, see Temam

(2001). This guarantees unconditional stability, in the case of an implicit or semi-

implicit time integration, see Donea and Huerta (2003). The skew-symmetric trilinear

convective term becomes

c̃
(
w;u,v

)
:=

1

2

[
−
(
(w ·∇)v,u

)
+
(
(w ·∇)u,v

)

+
nel∑

i=1

∫

∂Ωi\ΓN

1

2

[
(w ·ni)(uext +u)− |w ·ni| (uext−u)

] ·vdΓ +

∫

ΓN

(w ·n)u ·vdΓ
]

Under these circumstances, the unsteady IPM problem becomes: first find uh ∈ Sh

and p̃h ∈ P h solution of





(
uth,v

)
+ aIP

(
uh,v

)
+ c̃
(
uh;uh,v

)
+
(
p̃h, Jn ·vK

)
Γ∪ΓD

= lIP
(
v
)

∀v ∈ Sh,
(
q̃, Jn ·uhK

)
Γ∪ΓD

=
(
q̃,n ·uD

)
ΓD

∀q̃ ∈ P h,

(2.26)

and then: find ph ∈ Qh such that

b
(
v, ph

)
= lIP

(
v
)
−
(
uth,v

)
− aIP

(
uh,v

)
−
(
p̃h, Jn ·vK

)
Γ∪ΓD

− c̃
(
uh;uh,v

)
∀v ∈ Ih.

(2.27)

The second problem (2.27) is a postprocess that allows to compute pressure in the

elements’ interior, usually at the end of the computation, or after the iterations in

each time step. For example, if interior pressure ph needs to be calculated at time tn,
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(2.27) is solved at tn, where uth can be approximated using

uth
∣∣n =

ut
n

h − ut
n−1

h

∆t
, for first order accuracy in time, (2.28a)

uth
∣∣n =

ut
n+1

h − utn−1

h

2∆t
, for second order accuracy in time, (2.28b)

uth
∣∣n =

−utn+2

h + 8ut
n+1

h − 8ut
n−1

h + ut
n−2

h

12∆t
, for fourth order accuracy in time.

(2.28c)

2.3 Numerical examples

In this section, numerical examples show the applicability and accuracy of the pro-

posed methods. An example with analytical solution is first used to study the behavior

of IPMP for Stokes and then to compare IPM and CDG from an accuracy point of

view for Navier-Stokes. The applicability of IPM to the Navier-Stokes equations is

then demonstrated through the classical benchmark test of the driven cavity example.

Finally an example of a flow in an idealized porous medium, that is following Darcy’s

law, used to describe oil, water, and gas flows through petroleum reservoirs, is shown.

Other examples are also presented by Montlaur et al. (2008, 2009). These examples

show the diversity of the possibilities of application of the methodology developed in

this thesis.

2.3.1 IPMP analysis

An example with analytical solution is considered to study the behavior of IPMP,

that is, the influence of the extra non-consistent penalty in front of the IPM method.

The steady incompressible Stokes equations are solved in a 2D square domain Ω =

]0, 1[×]0, 1[ with Dirichlet boundary conditions on three sides, and Neumann boundary

condition on the fourth side {x = 0}. A body force is imposed in order to have the
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(a) IPM (b) IPM

(c) IPMP, β = 50 (d) IPMP, β = 500 (e) IPMP, β = 5000

Figure 2.5: IPM velocity solution (a) and detail (b) and IPMP velocity solution for
β = 50 (c), β = 500 (d) and β = 5000 (e), with k = 4, γ = 40.

polynomial exact solution

u =


 x2(1− x)2(2y − 6y2 + 4y3)

−y2(1− y)2(2x− 6x2 + 4x3)


 ,

p = x(1− x). (2.29)

see Montlaur et al. (2008).

Fourth order approximation for velocity and cubic approximation for pressure (i.e.

k = 4) are considered. Figure 2.5 shows the solution of velocity obtained with IPM

and with IPMP for different values of β. IPM only needs moderate values of γ to
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Figure 2.6: Stokes analytical example. Influence on the non-consistent penalty pa-
rameter β on the L2-error convergence, with k = 4, γ = 40

ensure coercity of the diffusion bilinear form and good properties of continuity of

velocity. However when using IPMP, large values of the non-consistent parameter β

are necessary to ensure moderate discontinuities of normal velocity. Note that for

instance, for a mesh of 72 elements, for k = 4 and β = 5000, value ensuring good

continuity of the solution for IPMP, the condition number of the diffusion matrix is

around 3 × 107, whereas with IPM it is around 2 × 106. But the problem to solve is

reduced from a dimension of 8482 (with velocity and hybrid pressure) to 6402 (with

velocity only).

Figure 2.6 now presents the evolution of the velocity L2-error under h-refinement

for IPM and for IPMP for differents values of β. Note that as usual when using

non-consistent penalty formulations, see Babuska (1973), optimal convergence rates

are obtained by taking a penalty β of order h−k. For this choice of β, the accuracy

obtained is similar to the one obtained with IPM, see Montlaur et al. (2008) for further

comparison between IPM and IPMP. As previously commented, the main difference

between IPM and IPMP is that while moderate values of the consistent penalty γ

of order h−1 provide optimal orders of convergence with IPM, large values of the

non-consistent penalty β of order h−k are needed for IPMP. That is, though IPM

presents the advantage of a further reduction of the number of dof, its drawbacks are

that the tuning of β affects the accuracy of the solution and large values of β lead to
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(c) Interior pressure L2-error

Figure 2.7: Comparison of L2-errors obtained with CDG and IPM, for a fourth or-
der approximation of the velocity and a cubic interpolation of hybrid and interior
pressures, with C11 = 40h−1 and γ = 40 respectively.

ill-conditioned diffusion matrices.

2.3.2 IPM and CDG accuracy comparison

The same example with analytical solution described in 2.3.1 is now considered to

compare CDG or IPM from an accuracy point of view. This example is adapted to

solve the Navier-Stokes equations. That is, the body force term is changed so that

the solution (2.29) is solution of the Navier-Stokes equations, see Montlaur et al.

(2009). Once again fourth order approximation for velocity and cubic approximation

for pressure (i.e. k = 4) are considered. A value of C11 = 40h−1, corresponding to
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penalty parameter γ = 40, is considered, which is close to the minimum value that

ensures coercivity of the IPM bilinear form. With these selections of C11 and γ, similar

results are obtained as seen in Figure 2.7: both methods reach optimal convergence

rates for velocity and hybrid pressure, with similar accuracy.

The influence of C11 on the accuracy of CDG is analyzed by Montlaur et al. (2009)

and it is shown that for any value of C11, optimal convergence is obtained, with similar

accuracy.

2.3.3 Driven cavity example

A standard benchmark test for the Navier-Stokes equations is now considered to show

the applicability of IPM. A plane flow of an isothermal fluid in a lid-driven cavity is

modelled in a 2D square domain Ω =]0, 1[×]0, 1[, with zero body force and one moving

wall. A continuous velocity

u =





(10x, 0)T for 0 ≤ x ≤ 0.1

(1, 0)T for 0.1 ≤ x ≤ 0.9

(10− 10x, 0)T for 0.9 ≤ x ≤ 1

is imposed on the exterior upper boundary {y = 1}, and a zero velocity u = (0, 0)T

is enforced on the three other sides.

Figure 2.8 shows the velocity streamlines, which are conformed to the expected

solution. The main vortex moves toward the center of the cavity for increasing

Reynolds number. Velocity profiles at the vertical centerline are shown in Figure

2.9 for Re = 1, 400. It can be noticed that as the Reynolds number increases, the

boundary layers are more obvious and the variations in the velocity are sharper.

2.3.4 Flow in an idealized porous medium

This last example shows another kind of application of incompressible flows. A fluid

in an idealized porous medium is subject to a friction force proportional to the fluid
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Figure 2.8: Driven cavity: velocity streamlines for Re = 1 (a) and Re = 400 (b),
k = 2, h = 0.0667, γ = 10.
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Figure 2.9: Driven cavity: velocity profiles at the vertical centerline, for Re = 1 (a)
and Re = 400 (b), k = 2, h = 0.0667, γ = 10.

velocity u. This kind of problem is derived from the Stokes equations and it follows

Darcy’s law. It is valid for slow, viscous flow, such as groundwater flows. Darcy’s law

is also used to describe oil, water, and gas flows through petroleum reservoirs. The
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Figure 2.10: Computational domain. The porous domain is limited to the central
part, of length 5l and height l.

problem to be solved is

−∇·σ = −αu in Ω̂,

∇·u = 0 in Ω̂,

with boundary and interface conditions (2.1c)-(2.1f), and where α is the inverse of the

local permeability of the medium (α = 0 for an empty medium and α = +∞ for a

solid wall), see Okkels et al. (2005).

These equations are solved in the computational domain shown in Figure 2.10,

consisting of a long straight channel of height l and length L = 10l. The porous

domain is limited to the central part of length 5l. The porous domain is filled with

porous material of arbitrary value α = 100 for 2.5 < x < 7.5 except for two regions

verifying

x ∈]3.5, 6.5[ and y ∈]0,
1

3
[ ∪ ]

2

3
, 1[,

where empty medium is assumed, see white region in Figure 2.11. Dirichlet boundary

conditions prescribe a parabolic velocity profile at the inlet and at the outlet, and a

no-slip condition for the fluid on the channel sides.

A detail of the IPM velocity result in the porous domain is shown in Figure

2.11, demonstrating the capability of IPM for the solution of Darcy’s problems. As

expected, the two empty regions divert the flow away from the center of the channel:

the flow tends to go into the empty domains, with higher velocities than in the porous

region.
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Figure 2.11: Velocity vectors within the porous domain of length 5l. The grey part
represents a porous material, the white ones an empty domain.

2.4 Summary

Discontinuous Galerkin (DG) formulations with solenoidal approximations for the

simulation of incompressible flow are proposed, with applications to the Stokes and

Navier-Stokes equations. First, the methodology of Interior Penalty Method (IPM)

is followed to develop an IPM-DG formulation for Stokes and Navier-Stokes prob-

lems. The resulting bilinear form for the diffusion term is symmetric and coercive.

Then the interpolation space is decomposed in every element into a solenoidal part

and an irrotational part. This allows to split the IPM weak form in two uncoupled

problems. The first one solves for velocity and hybrid pressure, and the second one

allows the evaluation of pressures in the interior of the elements as a post-process.

An alternative to IPM is the Compact Discontinuous Galerkin (CDG) formulation

with solenoidal velocities that presents the advantage of eliminating the tuning of

the penalty parameter, but has the major disadvantage of the implementation and

computation of local lifting operators. Both IPM and CDG lead to efficient, compact

and high-order formulations, which show similar results for the condition number of

the diffusion matrix and for the accuracy of the numerical solution.

The formulation with solenoidal velocities and hybrid pressures presents an impor-

tant save in the number of degrees of freedom (dof) compared to continuous Galerkin



42 Discontinuous Galerkin Interior Penalty Method for incompressible flows

or classical Discontinuous Galerkin techniques. A formulation introducing a penalty

parameter for the weak enforcement of continuity of the normal velocity along element

sides is also proposed in order to further reduce the number of dof. It leads to another

DG formulation where the computation of velocities and pressures is completely de-

coupled, representing an important computational save, but where the non-consistent

penalty term leads to ill-conditioned systems of equations.



Chapter 3

High-order Implicit Runge-Kutta
methods for unsteady
incompressible flows

Chapter 2 shows how Discontinuous Galerkin (DG) methods are used to discretize

the incompressible Navier-Stokes equations, taking advantage of the possibility to

easily define high-order divergence-free approximations. The resulting DG schemes

are efficient and have high-order properties in space. The objective of this chapter is

to obtain an implicit and high-order time integration method, so that the resulting

scheme proposed in this thesis has high-order properties both in time and space.

An implicit scheme is preferred in order to be able to solve multiple spatial scales

occurring in high Reynolds number flow or in boundary layers, without having to

decrease drastically the time step size. This choice leads to nonlinear algebraic sys-

tems of equations, which need to be solved at each time step. The time algorithms

discussed in this chapter are applied using the solenoidal IPM-DG formulation previ-

ously proposed, since it is an efficient scheme, allowing an important save in degrees

of freedom. Nevertheless, the time algorithms proposed here would be equally ap-

plicable to other types of spatial discretization schemes, for example using classical

Discontinuous Galerkin or continuous Galerkin methods.

Section 3.1 proposes several high-order implicit Runge-Kutta (IRK) methods for

incompressible flows. IRK methods are chosen to solve such problems because they

reach high orders of accuracy and are unconditionally stable. Section 3.1.1 shows

43
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how the incompressible Navier-Stokes equations are considered as Differential Alge-

braic Equations (DAE), that is a system of Ordinary Differential Equations (ODE)

corresponding to the conservation of momentum equation, plus algebraic constraints

corresponding to the incompressibility condition. Section 3.1.2 emphasizes the main

advantages and disadvantages of fully implicit Runge-Kutta methods (IRK) and semi-

implicit Runge-Kutta methods (SDIRK), describing the systems of equations obtained

in each case, as well as the orders of convergence achieved. Section 3.1.3 discusses the

asymptotic stability of the proposed methods for the Oseen equations. Eventually

numerical examples, presented in Section 3.2, show the applicability of the methods

and compare their accuracy and cost with a classical Crank-Nicolson scheme.

3.1 DAE Runge-Kutta methods for unsteady in-

compressible flows

3.1.1 DAE for incompressible flows

The strong form of the unsteady incompressible Navier-Stokes problem can be written

as

∂u

∂t
− 2∇· (ν∇su) +∇p+ (u ·∇)u = f in Ω̂, (3.1a)

∇·u = 0 in Ω̂, (3.1b)

with boundary and interface conditions (2.1c)-(2.1f), and initial condition being u(x, 0) =

u0 in Ω̂.

Here the space discretization of the incompressible Navier-Stokes equations is car-

ried out using the IPM-DG scheme with solenoidal approximations that has been

detailed in Chapter 2. Nevertheless, the algorithms discussed in this chapter would

be equally applicable to other types of discretization schemes, such as classical Dis-

continuous Galerkin or continuous Galerkin. In any case, the space discretization of
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the unsteady incompressible Navier-Stokes problem (3.1) can be written as





Mu̇ + Ku + C(u)u + Gp = f1

GTu = f2
(3.2)

where M is the mass matrix, K the diffusion matrix, C the convection matrix, G the

pressure matrix, u and p the vectors of nodal values, or approximation coefficients

of velocity and pressure respectively, and f1 and f2 vectors taking into account force

term and boundary conditions. This system, of ndof degrees of freedom, can also be

written as 



u̇ = F(t,u,p)

0 = G(t,u)
(3.3)

where
F(t,u,p) = M−1 (Ku + C(u)u + Gp− f1) ,

G(t,u) = GTu− f2.
(3.4)

Note that ∂G
∂u

∂F
∂p

= GTM−1G is invertible, therefore (3.3) is a Hessenberg index-2

DAE system (Hairer et al., 1989).

DAEs originate in the modelisation of various physical or chemical phenomena

and have been deeply studied during the last years (Hairer et al., 1989; Brenan et al.,

1996). They are classified by their differential index, that is, the minimum number of

times that the DAE system must be differentiated to obtain an ODE. As previously

commented, the discrete incompressible Stokes or Navier-Stokes equations are index-

2 DAE systems. Instead of reformulating DAEs as ODEs, many numerical methods

defined for ODEs have been adapted to DAEs, as for example multistep Backward

Differentiation Formulae (BDFs) (Brenan and Engquist, 1988) or Runge-Kutta meth-

ods (Brenan et al., 1996). Runge-Kutta methods have been first regarded as poor

competitors to multistep methods, mainly because the order of convergence obtained

was less than the order obtained for ODEs, and the higher the index, the higher

the reduction, for most DAEs. Ulterior results from Hairer and Wanner (1991) have

however shown that good Runge-Kutta methods can form the basis of a competitive
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code, because they are unconditionally stable and can reach orders of convergence as

high as when applied to ODE.

In this work, Runge-Kutta methods for index-2 DAE are considered (Hairer and

Wanner, 1991). An s-stage Runge-Kutta method for (3.3) reads

un+1 = un + ∆t
s∑

i=1

bili

pn+1 = pn + ∆t
s∑

i=1

biki

(3.5)

where li and ki are defined by

li = F(tn + ci∆t,u
n + ∆t

s∑

j=1

aijlj,p
n + ∆t

s∑

j=1

aijkj) (3.6a)

0 = G(tn + ci∆t,u
n + ∆t

s∑

j=1

ai,jlj) (3.6b)

for i = 1, ..., s. Coefficients aij, bi, ci come from the Butcher array, whose general form

is seen in Table 3.1. Depending on the specific form of the Butcher array, implicit,

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...

...
...

...
cs as1 as2 · · · ass

b1 b2 · · · bs

Table 3.1: Butcher array

semi-implicit or explicit Runge-Kutta methods are obtained. A Runge-Kutta method

is said to be explicit if its Butcher array is strictly lower triangular, that is aij = 0

for j > i. Otherwise the method is implicit (IRK). In particular, an implicit method

is said to be semi-implicit, or singly diagonally implicit (SDIRK), if aij = 0 for j > i

and aii 6= 0 for some i. This work focuses on fully implicit and semi-implicit methods

because of their stability properties. In fact, explicit Runge-Kutta methods can not
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even be used in the form of (3.5)-(3.6) for Hessenberg index-2 DAEs, because the

resulting system (3.6) is under-determined to solve for li and ki. Nevertheless Pereira

et al. (2001) proved that explicit Runge-Kutta methods can be applied to DAE, using

a different formulation than (3.5)-(3.6). This formulation can be found in Appendix C,

where it is also shown that the order of convergence of explicit Runge-Kutta methods

applied to DAE is less than the one reached for a regular ODE.

3.1.2 IRK and SDIRK methods

Table 3.2 shows Butcher diagrams for 2- and 3-stage Radau IIA-IRK methods. Radau

IIA-IRK methods are a special case of IRK methods satisfying the additional property:

bj = asj for j = 1, · · · , s. These methods are called IRK(DAE) and they stand out

from all IRK methods in view of their applicability to DAE since at the last stage,

un+1 directly satisfies G (tn+1,un+1) = 0.
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Table 3.2: Butcher array for 2-stage (left) and 3-stage (right) Radau IIA-IRK methods

Table 3.3 shows the order of convergence for index-2 DAE (such as the discrete

incompressible Navier-Stokes problem), and for ODE, for s-stage Radau IA, IIA and

Lobatto IIIC methods. Other methods, such as Gauss or Lobatto IIIA, exist but

when applied to DAE they present higher order reduction with respect to ODE, so

they have not been chosen here. It can be seen that for index-2 DAE, the best orders

of convergence for velocity and pressure are obtained for a Radau IIA-IRK method

and the order of convergence for velocity is the same as the one obtained for an ODE.

This is thus the scheme selected here. 2- and 3-stage Radau IIA-IRK are compared

from accuracy and cost points of view in Section 3.2.2.

Note that the solution of an index-2 DAE system, such as (3.3), with an s-stage
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Method DAE: u error DAE: p error ODE error
Radau IA hs hs−1 h2s−1

Radau IIA h2s−1 hs h2s−1

Lobatto IIIC h2s−2 hs−1 h2s−2

Table 3.3: Orders of convergence for s-stage IRK methods for index-2 DAEs and for
ODEs (Butcher, 1987; Hairer and Wanner, 1991).

implicit Runge-Kutta method requires solving a non-linear system of equations of

dimension sndof at each time step, where ndof is the number of degrees of freedom in

(3.3): find li and ki, such that

(
K + C(un+∆t

∑
aij lj)

)(
un + ∆t

s∑

j=1

aijlj

)

+G

(
pn + ∆t

s∑

j=1

aijkj

)
+ Mli − f1 (tn + ci∆t) = 0

GT

(
un + ∆t

s∑

j=1

aijlj

)
− f2 (tn + ci∆t) = 0

for i = 1 . . . s.

Table 3.4 now shows the Butcher diagram for a 2-stage SDIRK method. The

3±
√

3
6
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√

3
6

0

3∓
√

3
6

∓
√

3
3

3±
√

3
6

1
2

1
2

Table 3.4: Butcher array for 2-stage SDIRK methods

computational effort in implementing semi-implicit methods is substantially less than

for a fully implicit method, indeed s systems of dimension ndof are to be solved, instead

of a problem of dimension sndof in the fully implicit scheme. Also for a linear problem,

as for example the Stokes problem, one may hope to use repeatedly the stored LU-

factorization of the iterative matrix. Nevertheless this method does not allow to reach

high orders of convergence, as seen in Table 3.5. Unlike for ODE problems, increasing
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Number of stages DAE: u error DAE: p error ODE error
2 2 1 3
3 2 1 4
5 2 1 6

Table 3.5: Orders of convergence for SDIRK methods for index-2 DAEs and for ODEs
(Butcher, 1987; Hairer and Wanner, 1991).

the number of stages of SDIRK methods does not improve the order of convergence

for index-2 DAE systems: the order of convergence obtained for an index-2 DAE

system is always 2 for velocity and 1 for pressure, for 2, 3 and 5 stages. Furthermore

Norsett (1974) conjectured and presented some evidence for the belief that for any

s even number greater than two, no SDIRK method exists. That is why no 4-stage

method appears in Table 3.5. The 2-stage SDIRK is thus the most efficient SDIRK

method and is chosen here.

The solution of an index-2 DAE system, such as (3.3), with a 2-stage SDIRK

method requires solving two non-linear systems of equations of dimension ndof at each

time step: first, find l1 and k1 such that

(
K + C(un+∆ta11l1)

)
(un + ∆ta11l1) + G (pn + ∆ta11k1) + Ml1 − f1(tn + c1∆t) = 0

GT (un + ∆ta11)− f2(tn + c1∆t) = 0

then, given l1 and k1, find l2 and k2 such that

(
K + C(un+∆t(a21l1+a22))

)
(un + ∆t(a21l1 + a22l2))

+G (pn + ∆t(a21k1 + a22k2)) + Ml2 − f1(tn + c2∆t) = 0

GT (un + ∆t(a21l1 + a22l2))− f2(tn + c2∆t) = 0.

The cost of solving DAE systems with SDIRK is thus substantially less than the cost

of solving DAE with IRK methods, but the numerical example of Section 3.2.2 shows

that the improved accuracy obtained using IRK is worth the extra cost needed for
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the solution of larger systems of equations.

3.1.3 Asymptotic stability

As a step towards the study of the asymptotic properties of the solution of the in-

compressible Navier-Stokes equations, the linear homogeneous Oseen equations are

now considered. The results of asymptotic stability for this scheme can then be ex-

tended to the non-linear Navier-Stokes equations. The strong form of the unsteady

incompressible homogeneous Oseen problem is

∂u

∂t
− 2∇· (ν∇su) +∇p+ (w ·∇)u = 0 in Ω̂, (3.8a)

∇·u = 0 in Ω̂, (3.8b)

where w is a given velocity field, with boundary and interface conditions (2.1c)-(2.1f),

and initial condition being u(x, 0) = u0 in Ω̂. Its discretized form is

u̇ + M−1 (K + C) u + M−1Gp = 0, (3.9a)

GTu = 0. (3.9b)

Following the discussion of asymptotic properties of solutions of general linear DAEs,

and in particular the cases of index-2 DAEs by Hanke and März (1996) and Hanke

et al. (1998), let A = M−1 (K + C) and H = M−1G
(
GTM−1G

)−1
GT . From (3.9b)

we get

Hu = 0. (3.10)

Then multiplying (3.9a) by GT

p = −
(
GTM−1G

)−1
GT [u̇ + Au] . (3.11)
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Substituting again p in (3.9a)

u̇ + Au−M−1G
(
GTM−1G

)−1
GT [u̇ + Au] = 0,

which can be written as

(I−H) u̇ + (I−H) Au = 0

or, using (3.10) as

[(I−H) u̇] = − (I−H) A [(I−H) u] (3.12)

Thus, the solution of (3.9) consists of three parts: one ODE (3.12) for the variable

(I−H) u – note that H is constant in time – and two algebraic equations (3.10)

and (3.11), for (I−H) u, Hu and p. Studying the eigenvalues of (I−H) A and

using stability functions for Runge-Kutta schemes give necessary conditions for the

asymptotic stability of the solution, as it will be seen in Section 3.2.1.

3.2 Numerical examples

Numerical examples are now considered to show the applicability of the proposed

methods. First, the asymptotic stability of SDIRK and IRK methods is checked.

Then, an example with analytical solution is used to compare RK methods with a

classical Crank Nicolson method from accuracy and cost points of view. The flow past

a circle example is finally used to show the good behavior of the proposed methods

and to demonstrate that the resulting method proposed in this thesis allows to obtain

high accuracy in the description of incompressible flows and in particular in critical

regions of the flow in which important flow pattern changes occur.
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3.2.1 Asymptotic stability

The purpose of this section is to check the unconditional stability of SDIRK and

Radau IIA-IRK methods for the Oseen equations. For each method, stability functions

R(λ∆t) = R(z) are recalled for eigenvalues λ and time step ∆t. For a DAE system, as

the Oseen problem, λ represents the eigenvalues of (I−H) A, see (3.12). For SDIRK

and Radau IIA-IRK methods, the stability functions are defined as follows, see Hairer

and Wanner (1991), with z = λ∆t

R(z) =
1 + (1− 2γ) z +

(
1
2
− 2γ + γ2

)
z2

(1− γz)2 for 2-stage SDIRK with γ =
3±
√

3

6
,

R(z) =
6 + 2z

6− 4z + z2
for 2-stage Radau IIA-IRK,

R(z) =
60 + 24z + 3z2

60− 36z + 9z2 − z3
for 3-stage Radau IIA-IRK.

Figure 3.1 shows the stability regions (part of the complex plane shown in white),

that is, verifying |R(λ∆t)| ≤ 1, for 2-stage SDIRK, 2- and 3-stage Radau IIA-IRK

schemes. Note that the whole left-hand side of the complex plane belongs to the

stability regions of Radau IIA-IRK and SDIRK with γ = 3+
√

3
6

, making these schemes

unconditionally stable for the incompressible Oseen problem. Figure 3.2 shows the

positions of the product λ∆t, where λ are the eigenvalues of (I−H) A. Two Reynolds

numbers are considered Re = 100, 10000, a fifth order approximation for velocities,

that is k = 5, and space and time discretization of respectively h = 0.1 and ∆t = 1.

It can be seen that even for high Reynolds number the products λ∆t remain in the

left-hand side of the complex plane, that is eigenvalues with negative real part. Thus

the solution of the incompressible Oseen equations is unconditionally stable for 2-

stage SDIRK, with γ = 3+
√

3
6

, and also for 2- and 3-stage Radau IIA-IRK schemes.

However, note that for 2-stage SDIRK with γ = 3−
√

3
6

, it is only conditionally stable,

that is, ∆t has to be taken small enough so that all λ∆t stand within the stable region.

Though this analysis only gives a necessary condition for the asymptotic stability of

the solution of the incompressible Oseen equations, numerical experiments show that
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(b) 2-stage SDIRK, γ = 3−
√
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(c) 2-stage Radau IIA-IRK
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(d) 3-stage Radau IIA-IRK

Figure 3.1: Stability regions in the complex plane for SDIRK and IRK methods. The
stable region corresponds to the white part.

this is actually also a sufficient condition and that the same results stand when applied

to the incompressible Navier-Stokes equations.

3.2.2 Runge-Kutta and Crank-Nicolson accuracy and cost

comparison

An unsteady example with analytical solution proposed by Guermond et al. (2006)

is now used to compare the accuracy and cost of 2- and 3- stage Radau IIA-IRK,
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Figure 3.2: Position of λ∆t marked with ×, where λ represents the eigenvalues of
(I−H) A for Re = 100, 10000, for k = 5, ∆t = 1 and h = 0.1, for an Oseen problem

and stability region for 2-stage SDIRK scheme with γ = 3+
√

3
6

.

2-stage SDIRK with γ = 3+
√

3
6

, and Crank-Nicolson (CN) methods, which all are un-

conditionally stable methods for incompressible Navier-Stokes problems. The incom-

pressible Navier-Stokes equations are solved in a 2D square domain Ω =]0, 1
2
[×]0, 1

2
[

with Dirichlet boundary conditions on three sides and Neumann boundary condition

on the fourth side {x = 0}. A body force

f =




2νsin(x+ t)sin(y + t) + cos(x− y + t) + sin(x+ y + 2t) + sin(x+ t)cos(x+ t)

2νcos(x+ t)cos(y + t)− cos(x− y + t)− sin(x+ y + 2t)− sin(y + t)cos(y + t)




is imposed in order to have the exact solution

u =



sin(x+ t)sin(y + t)

cos(x+ t)cos(y + t)


 ,

p = sin(x− y + t).
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Polynomial interpolation of degree k = 4 for velocity and 3 for pressure is chosen

and an unstructured mesh of 128 elements is used, see Figure 3.3, in order to show

that the implicit time integration methods presented here can deal perfectly with

important variations of mesh size. Here the size of the elements is 0.01 ≤ h ≤ 0.1.

The calculation is made until a final time t = 40. The initial condition prescribes the

exact solution on the whole domain.

Figure 3.3: Unsteady analytical example: unstructured mesh of 128 elements, size of
the elements is such that 0.01 ≤ h ≤ 0.1.

10
−3

10
−2

10
−1

10
0

10
−8

10
−6

10
−4

10
−2

10
0

∆ t

ve
lo

ci
ty

 e
rr

or

 

 

3−stage IRK
2−stage IRK
CN
SDIRK

111 5

2 3

(a) Velocity error

10
−3

10
−2

10
−1

10
0

10
−4

10
−2

10
0

∆ t

hy
br

id
 p

re
ss

ur
e 

er
ro

r

 

 

3−stage IRK
2−stage IRK
CN
SDIRK

1

3

2
1

1 1

(b) Hybrid pressure error

Figure 3.4: Unsteady analytical example: velocity and hybrid pressure L2-errors for
3-stage and 2-stage IRK, SDIRK and CN methods, k = 4, 0.01 ≤ h ≤ 0.1.
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Figure 3.4 shows the convergence of error under ∆t-refinement obtained when

solving (2.26) for velocity and hybrid pressure. The highest orders of convergence,

almost fourth order for velocity and third order for hybrid pressure, are obtained

when using the 3-stage Radau IIA-IRK method. Note that sub-optimal orders of

convergence of the velocity error are obtained for Radau IIA-IRK methods for this

example, but using a finer mesh would allow to reach optimal theoretical orders of

convergence. This has been checked through scalar examples. An order of convergence

of almost 4 is obtained instead of an optimal order of 5 for 3-stage IRK, and of

around 2.6 instead of 3 for 2-stage IRK. SDIRK and CN show the expected second

order in time for velocity but SDIRK has a much worse accuracy than the other

methods. As for hybrid pressure, optimal orders are obtained for all methods, third

order for 3-stage IRK, second order for 2-stage IRK and CN, and first order for

SDIRK. Figure 3.5 shows the accuracy of the numerical solution of the interior pressure
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Figure 3.5: Unsteady analytical example: interior pressure L2-errors for 3-stage and
2-stage IRK, SDIRK and CN methods, k = 4, 0.01 ≤ h ≤ 0.1.

obtained as a post-process by solving (2.27) using a fourth order approximation for the

derivative of uh, see (2.28c). It can be seen that using this fourth order time derivative

approximation, interior pressure reaches the same optimal orders of convergence as

the ones obtained for hybrid pressure error.

Figures 3.4 and 3.5 demonstrate that 3-stage Radau IIA-IRK is the most accurate

method when compared to other methods such as CN, 2-stage Radau IIA-IRK, or



3.2 Numerical examples 57

SDIRK. Nevertheless it is also the most expensive, since for example compared to CN,

it requires three times more evaluations of the convective residue at each iteration and

it also leads to a larger non-linear system to solve. It is thus necessary to balance the

higher precision obtained with the higher cost per iteration needed.

Let us recall that a high-order time integration scheme is desired to obtain the

same level of accuracy in time as in space. The global error, for velocity for example,

is

e = c1h
k + c2∆tr

where k is the order of the space velocity interpolation and r the order of the time

integration. Assuming that a characteristic mesh size is h = 0.1. For k = 4, the order

of magnitude of precision obtained in space is around 10−4. If a scheme like 3-stage

Radau IIA-IRK, reaching fourth or fifth order in time, is used, a time step of ∆t = 0.1

can be considered to reach equivalent accuracy in time and in space. Whereas if a

second order method as for example CN, is used, a time step of ∆t = 0.01 has to

be taken. This means that ten times more time steps are needed with CN than with

3-stage Radau IIA-IRK to reach the same time accuracy. Note that Figure 3.4(a)

confirms this fact, the velocity error obtained with 3-stage Radau IIA-IRK for a time

step of ∆t = 0.1 is equivalent to the one obtained with a CN scheme for ∆t ≈ 0.01.

Now let us compare the cost of both methods. As previously commented, 3-stage

Radau IIA-IRK requires three evaluations of the convective residue when only one

evaluation is needed for CN. At each iteration, it has been checked for 3-stage Radau

IIA-IRK that almost 90% of the CPU time is spent in evaluating the convective residue

and only 10% in other operations such as the solution of the non-linear system. Note

that in order to decrease this cost, future work plans to use a mixed implementation

using Matlab and C++ in order to optimize the calculation of the convective residue,

which is where most CPU time is spent in the whole code, see Section 4.1.1. Thus,

roughly speaking, 3-stage Radau IIA-IRK is three times more expensive than CN at

each iteration. In both cases a Broyden method is used to solve the non-linear system

and the same number of iterations is needed to solve the non-linear system at each

time step. Since 3-stage Radau IIA-IRK needs ten times less time steps than CN to
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reach equivalent precision for velocity, globally and for high levels of precision, 3-stage

Radau IIA-IRK is three times more efficient than CN. The same comparison can be

made with hybrid pressure. Though the differences are not that obvious because levels

of precision for pressure are more similar, 3-stage IRK is again more efficient than CN.

The following study confirms these numbers.

Figure 3.6 compares the L2-errors of velocity and hybrid pressures obtained with

2- and 3- stage Radau IIA-IRK, 2-stage SDIRK and Crank-Nicolson methods as a

function of the CPU cost needed. For low accuracy, both for velocity and hybrid
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Figure 3.6: Unsteady analytical example: velocity and hybrid pressure L2-errors, as
a function of the CPU cost for 3-stage and 2-stage IRK, SDIRK and CN methods,
k = 4, 0.01 ≤ h ≤ 0.1.

pressures, all methods, except SDIRK, have an equivalent precision-to-cost ratio. But

when higher accuracy is wanted, that is for example for an error less than 10−4 for

velocity and less than 10−2 for hybrid pressure, the higher order of convergence of 3-

stage Radau IIA-IRK balances its higher cost per iteration, and it becomes the most

efficient method. Figure 3.7 shows the L2-error of the interior pressure, obtained

from (2.27) using a fourth order approximation for the time derivative, as a function

of the CPU cost. Similar results to those previously commented for velocity and

hybrid pressures are obtained for interior pressure demonstrating that 3-stage Radau

IIA-IRK is the most efficient scheme when high accuracy is required.
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Figure 3.7: Unsteady analytical example: interior pressure L2-error, as a function
of the CPU cost for 3-stage and 2-stage IRK, SDIRK and CN methods, k = 4,
0.01 ≤ h ≤ 0.1.

3.2.3 Flow past a circle

In the present section we consider a mixed Dirichlet/Neumann problem simulating

the flow past a circle in a uniform stream. The flow past a two-dimensional cylinder

is one of the most studied problems of aerodynamics. It is a classical benchmark test

and it is relevant to many engineering applications. The flow pattern depends on the

Reynolds number defined here as Re = u∞D
ν

, where u∞ is the mean fluid velocity and

D the circle’s diameter. Here u∞ = 1 and D = 1 are considered.

In this example, a high-order mesh generator EZ4U is used, see Roca (2009) and

Roca et al. (2007). Indeed, the environment EZ4U has a high-order export feature,

which generates middle edge nodes over curves of the domain, and inner face nodes

that follow curved edges of the elements. This allows to obtain high-order elements,

which is especially interesting in a DG formulation, and to describe properly the

flow around curved objects of study, see Figure 3.8(b). An unstructured mesh of

472 fourth order elements is used for the geometry description, as seen in Figure

3.8. These fourth order elements are used for numerical integration and in the post-

process. Fourth order of solenoidal approximation for the velocity is also used (k = 4)

and third order for pressure.

Dirichlet boundary condition is imposed on the inlet, uD = (1, 0), and no-slip
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(a) Mesh of the total domain (b) Zoom in the vicinity of the circle

Figure 3.8: Flow past a circle: unstructured mesh of 472 fourth order elements

condition, uD = (0, 0), on the circle. Null Neumann conditions are imposed on the

three other sides. The initial conditions prescribe a unitary velocity field u0 = (1, 0)

on the whole domain, except on the circle boundary where u0 = (0, 0). Since it has

proven to be the most efficient method, see Section 3.2.2, 3-stage Radau IIA IRK is

used for time integration.

The flow patterns caused by the flow past a circle are studied for various values of

the Reynolds number, within the range of Re = 1−100, where the flow stays laminar.

(a) Velocity module (b) Velocity vectors in the vicin-
ity of the circle

Figure 3.9: Flow past a circle: velocity of the flow for Re = 1

For small Reynolds number, Re = 1, the flow is smooth, it passes the circle and
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reform on the other side with no distorsion, as seen in Figure 3.9. Note that a zoom

around the circle in Figure 3.9(b) allows to check that high-order elements coupled

with high orders of approximation allow to obtain an accurate description of the

boundary layer.

Figure 3.10: Flow past a circle: velocity of the flow for Re = 40

For higher Reynolds numbers, Re = 40, inertia begins to play a more important

role and two stationary vortices are present behind the circle. Figure 3.10 shows

velocity magnitude and velocity vectors for Re = 40. For these two examples at low

Reynolds number, the solution reaches a stationary state.

For higher Reynolds number, for example here Re = 100, an unsteady solution is

obtained. A time step ∆t = 0.03 is used on the time interval [0, 100], and ∆t = 0.01

on [100, 120], to better capture the period of the periodic flow pattern. A sequence

of velocity vectors and modules are depicted in Figures 3.11 and 3.12. Figure 3.11

describes the transient solution developed until more or less t = 60, whereas Figure

3.12 shows two shots of the periodic solution.

At the beginning of the simulation, the flow is symmetrical and looks like a po-

tential flow, as for very low Reynolds number. With progress in time, flow separation

occurs, see Figure 3.11(a) at t = 6, and two small stationary eddies are formed in the

downstream wake region. These eddies are fed by circulation from the shear layers and

grow in size, with time. For t = 15, the two attached, symmetrical eddies of opposite

circulation can be noticed in Figure 3.11(b). They grow further in size, along and



62 High-order Implicit Runge-Kutta methods for unsteady incompressible flows

(a) t=6 (b) t=15

(c) t=24 (d) t=33

Figure 3.11: Flow past a circle: velocity module and vectors of the flow for Re = 100,
transient phase.

across the stream, and result in a wake, which is much wider and longer and starts

to show some non-symmetric pattern in Figure 3.11(c) at t = 24. At further time,

vortex shedding starts, as first seen in Figure 3.11(d). The vortices are not stationary

anymore but detach from the top and bottom of the cylinder. This happens in an

alternating fashion and this non-symmetric flow pattern is known as the Von Karman

vortex. Figure 3.12, shows the flow pattern once it has reached the periodic solution.

Figure 3.13 shows more precisely how the flow detaches successively from the top and

from the bottom of the sphere creating a vortex behind the circle.

These phases of the solution are also captured by the evolution of the lift coefficient

CL, which is defined by

CL =

∫ 2π

0

σydx

where σy is the y-component of the Cauchy stress σ. Studying the evolution of the

lift coefficient allows to confirm the periodic nature of the flow pattern. Figure 3.14
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(a) t=96 (b) t=105

Figure 3.12: Flow past a circle: velocity module and vectors of the flow for Re = 100,
periodic phase.

(a) t=96 (b) t=105

Figure 3.13: Flow past a circle: velocity vectors in the vicinity of the circle for Re =
100, periodic phase.

shows CL as a function of time and confirms that from a time of around t = 60 the flow

pattern reaches the periodic solution. It also allows to study the frequency of the Von

Karman vortex. Roshko (1954) experimentally established the relation between the

Strouhal number and the Reynolds number, for flows past a circle and for Reynolds

numbers between 90 and 150 as

S = 0.212

(
1− 21.2

Re

)
, (3.13)
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Figure 3.14: Flow past a circle: evolution of the lift coefficient with time

where S is the Strouhal number, dimensionless number describing oscillating flow

mechanisms, defined from the frequency of vortex shedding fS as

S =
fSD

u∞
,

with D and u∞ characteristic lengths and velocity of the problem previously defined.

In Figure 3.14, the period of the periodic movement is measured and is found equal

to T = 5.96, which corresponds to S = 0.1678, which is in good agreement with

experimental results and reported numerical simulations from Roshko (1954) and

Simo and Armero (1994), as seen in Table 3.6. Note that in order to obtain a better

3-stage IRK 2-stage IRK Roshko (3.13) Simo and Armero (1994)

S 0.1678 0.170 0.1671 0.167

Table 3.6: Flow past a circle: Strouhal number results for Re = 100

measure of the period T , the time step ∆t has been set up to a value of 0.01 on a few

periods, once the periodic solution is reached. A similar value of Strouhal number

is obtained when using a 2-stage IRK method, confirming the general good behavior

of the Radau IIA-IRK methods, for the solution of the incompressible Navier-Stokes

problem.
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3.3 Summary

The space discretization, using DG formulation with solenoidal approximations, pre-

sented in the previous chapter for incompressible steady flow equations is now consid-

ered for unsteady flows. The incompressible Navier-Stokes equations are interpreted

as a system of Differential Algebraic Equations (DAE), that is a system of ODEs

corresponding to the conservation of momentum equation, plus algebraic constraints

corresponding to the incompressibility condition. High-order implicit Runge-Kutta

(IRK) methods are considered to solve this DAE system. In particular Radau IIA-

IRK methods are chosen since they reach the same orders of convergence as the ones

obtained for an ODE problem. Unconditionally stable schemes are obtained, allowing

maximum flexibility for the choice of the time step, which can be taken constant or

can vary with time, depending on the problem considered. High orders of accuracy

in time are reached. A numerical example with analytical solution shows that the re-

sulting IRK time integration scheme is very competitive, compared to classical Crank

Nicolson methods, and is more efficient when high accuracy is required. That is, even

though the cost per iteration is bigger for IRK, the higher order of accuracy makes

that a bigger ∆t can be used, reaching a steady state faster. Also, at equal cost or at

equal ∆t the precision of 3-stage Radau IIA-IRK is better than the one obtained with

Crank Nicolson, except for low precision results. The classical benchmark example

of the flow past a circle confirms the good behavior of the proposed Radau IIA-IRK

high-order methods.





Chapter 4

Conclusions and future
developments

The main conclusions of the presented work have been drawn at the end of each

chapter. The most salient results are summarized below.

The first contribution has been to derive a new Interior Penalty Discontinuous

Galerkin (IPM-DG) formulation with divergence-free approximations for incompress-

ible flows. First, the methodology of IPM is followed, leading to a symmetric and

coercive bilinear form for the diffusion term. Then, the interpolation space is decom-

posed into a solenoidal part and an irrotational part. It allows to reduce the total

number of degrees of freedom for both velocity and pressure by splitting the IPM

weak form in two uncoupled problems. The first one solves for velocity and hybrid

pressure, and the second one allows the evaluation of pressures in the interior of the

elements as a post-process. The total number of degrees of freedom (dof) is highly

reduced, compared to classical DG and even to continuous Galerkin methods.

Second, an alternative to IPM has been developed for the incompressible Navier-

Stokes equations: the Compact Discontinuous Galerkin (CDG) formulation, also using

solenoidal velocities. It presents the major advantage of eliminating the tuning of the

penalty parameter, but it requires implementation and computation of local lifting

operators. Both IPM and CDG with solenoidal interpolation lead to efficient, compact

and high-order formulations, with similar accuracy of the numerical solution.

Third, another formulation with a penalty parameter for the weak enforcement

67
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of continuity of the normal velocity along element sides has been proposed in order

to further reduce the number of dof. It leads to another DG formulation where

the computation of velocity and pressure is completely decoupled, representing an

important computational save, but where the non-consistent penalty term leads to

ill-conditioned systems of equations.

Finally, Implicit Runge-Kutta (IRK) methods have been used to solve unsteady

incompressible flows. Unconditionally stable time integration methods are obtained,

allowing maximum flexibility in the choice of the time step. Higher order of accuracy

in time are obtained than the ones usually reached with classical methods for incom-

pressible flows. IRK are used at a very competitive cost when compared to more

classical methods such as a Crank-Nicolson method, that is, the extra cost needed

to compute high-order IRK is more than balanced by the extra accuracy obtained.

Thus the DG methods with solenoidal interpolation proposed in this thesis present

the appealing advantages of high orders in space as well as in time.

Classical 2D examples, solved with the Matlab code developed along this thesis,

have been used to show the applicability and the accuracy, both in space and in time,

of the proposed methods. As further commented in 4.1.1, future work will focus on

optimizing the code developed for the methods proposed in this thesis, in order to

reduce the CPU cost needed for more complex examples, to adapt the code to 3D

problems and to expand its scope of applications.

4.1 Future developments

4.1.1 Code further development

This thesis has focused on developing several Discontinuous Galerkin methods with

solenoidal velocities and on exploring the various possibilities of time integration

schemes that best fit the proposed spatial discretization scheme. All numerical meth-

ods have then been coded using Matlab, which has proven to be efficient when dealing

with multidimensional arrays. Nevertheless for transitory examples, where not only
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iterations in time are needed but also inner iterations in order to solve non-linear

systems, the code has not yet been optimized to its maximum. Actually when several

nested loops are needed, as it is the case for transitory simulations, calculations made

in the inner loops are the ones with the biggest computational cost. For example,

the computation of the convection residue requires a loop in time, a loop in iterations

for the resolution of the non-linear system, a loop in elements and sides/faces and

finally the most inner loop is the loop in Gauss points, where the basis functions

eventually have to be evaluated. This calculation, within four nested loops, repre-

sents the biggest part of the total computational cost at each iteration and could be

improved. A C++/Matlab library is being coded within the LaCàn (Laboratori de

Càlcul Numèric) research group in order to take advantage of the best features of

both coding languages. For example, in our case, programming with C++ the inner

loops, where basis functions are computed, would decrease the total computational

cost. Future work will focus on adapting the code developed for the DG formulations

proposed in this thesis to a mixed code in C++ and Matlab in order to decrease the

total computational cost.

Optimizing the 2D code of the high-order DG methods presented in this thesis is

actually a necessary step towards the 3D implementation, which is the next task to

be fulfilled. This will allow to simulate incompressible flows in more complex physical

situations, as would be for example complete Formula One aileron, wind tunnels

or micro-aerial vehicles, which are some possible 3D examples of application of the

incompressible Navier-Stokes equations.

In this thesis, classical isoparametric transformation has been used when dealing

with curved elements, for instance in the flow past a circle example. Another possi-

bility is to use NURBS-Enhanced Finite Element Method (NEFEM), with an exact

geometry description, which has proven very efficient for computing accurate solution

in presence of curved boundaries, see Sevilla et al. (2008) and Sevilla (2009) for appli-

cations to Euler equations. NEFEM advantages for incompressible flows could then

also be explored.

Finally, and once again to widen the scopes of application, the code will be adapted
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to problems with free surfaces, in order to be able to simulate flows with moving free

surfaces.

4.1.2 Raviart and Thomas - MAC approach

The MAC (Marker And Cell) method, see Harlow and Welch (1965), is one of the

best methods for Navier-Stokes equations due to its high stability and efficiency.

Unfortunately, it is difficult to generalize the MAC scheme to high-order elements

and to irregular mesh. Kanschat (2008) shows that the lowest order Raviart-Thomas

(RT) element (RT0) on rectangular meshes is algebraically equivalent to MAC scheme.

Developing an efficient method, with solenoidal approximation for velocity, and where

RT elements would generalize the MAC scheme to high-order elements, would be an

interesting future research line. Rectangular RT elements could be used for regular

meshes, triangular RT elements for irregular meshes, and then connection between

both would be needed.

RT elements were introduced on 2D triangle or quadrilateral meshes by Raviart

and Thomas (1977). Optimal-order approximations in H(div) of smooth vector fields

were obtained on 2D shape-regular rectangular meshes. The generalization to 3D

tetrahedra or cube meshes was done by Nédélec (1980). A good review of existing

RT elements is also presented by Brezzi and Fortin (1991). Fluid solid systems, linear

elasticity or second order elliptic problems are some examples of applications of RT

elements. For example, fluid displacements are discretized in fluid-structure vibroa-

coustic interaction problems by Bermúdez et al. (1995) or numerical approximations

of the displacement form of the acoustic wave equation are solved using RT elements,

see Jenkins (2007).

For a divergence-free approach as the one proposed in this thesis, the resolution of

the Stokes problem could be done very efficiently using a mixed mesh of rectangular

and triangle elements, for a 2D problem (or of tetrahedra and hexahedra for 3D).

Figure 4.1 shows the nodes of velocity and pressure for the rectangular RT1 element.

For this element, x-component of the velocity is cellwise linear and discontinuous in
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x-velocity y-velocity pressure

Figure 4.1: RT1 rectangular element

y-direction, and cellwise quadratic and continuous in x-direction; y-component of the

velocity is vice-versa and p is bilinear. As illustrated in Figure 4.1 for the particular

example of RT1 element, in a general rectangular RT formulation x-component of the

velocity is continuous in x-direction and discontinuous in the y-direction and vice-

versa for the y-component of the velocity. This property, added to the solenoidal

property of the basis functions, would allow to cancel some terms of the weak form

and to solve separately for the x- and y-components of the velocity, reducing the

size of the system to solve. Then for irregular mesh, triangular RT elements would

be used, the challenge consisting in computing (x, y) basis functions for high-order

triangular RT elements, which is far from trivial.
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element vibration analysis of fluid-solid systems without spurious modes. SIAM J.
Numer. Anal. 32, 1280–1295.

Brenan, K., S. Campbell, and L. Petzold (1996). Numerical Solution of Initial-Value
Problems in Differential-Algebraic Equations. SIAM.

Brenan, K. E. and B. E. Engquist (1988). Backward differentiation approximations
of nonlinear differential/algebraic systems. Math. Comp. 51 (184), 659–676.

Brezzi, F. and M. Fortin (1991). Mixed and hybrid finite element methods, Volume 15
of Springer Series in Computational Mathematics. New York: Springer-Verlag.

Butcher, J. (1987). The numerical analysis of ordinary differential equations. Wiley.
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Appendix A

Error bounds of IPM with
solenoidal approximations

This appendix gives elements of demonstration of the continuity and coercivity prop-

erties of the IPM bilinear form and of the error bounds of the IPM Stokes formulation

with solenoidal velocity (2.7). Norm 9 ·9 and L2-norms used here are respectively

defined in (2.10) and (2.11). Full Dirichlet conditions are considered and the mesh

considered is composed of elements of straight edges.

Lemma A.0.1 (Continuity of aIP). The IPM bilinear form aIP defined in (2.4a) is

continuous, that is: there exists a constant c such that

|aIP (u,v)| ≤ c 9 u 9 9v 9 ∀u,v ∈ [H1(Ω̂)]nsd . (A.1)

Proof. The continuity of aIP in equation (A.1) can be proven following IPM stan-

dard arguments, see Hansbo and Larson (2002, 2008) for details.

Lemma A.0.2. For f ∈ Vh, and h the mesh parameter defined in (2.5), the following

inverse inequality holds: there exists a constant c such that

‖h1/2{f}‖2
Γ∪ΓD

≤ c‖f‖2
Ω (A.2)
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Proof. Following finite element dimensionality and scaling from a unit reference

element, see Hansbo and Larson (2002), we have

‖h1/2f‖2
∂Ωi
≤ c1‖f‖2

Ωi
. (A.3)

Summing (A.3) for all elements we get

nel∑

i=1

‖h1/2f‖2
∂Ωi

= ‖h1/22{f}‖2
Γ + ‖h1/2f‖2

ΓD
≤ c1‖f‖2

Ω,

which proves (A.2).

This lemma is used in the demonstration of the coercivity of aIP coming next.

Lemma A.0.3 (Coercivity of aIP). For γ large enough, the IPM bilinear form aIP

defined in (2.4a) is coercive. For any constant m > 0

m 9 v92 ≤ aIP
(
v,v

)
∀v ∈ [H1(Ω̂)]nsd (A.4)

for some γ > 0.

Proof. Given some constant m > 0 independent of the mesh size h

aIP
(
v,v

)
−m9v92 = a

(
v,v

)
−2
(
2ν{∇sv}, Jn⊗vK

)
Γ∪ΓD

+γ
(
h−1Jn⊗vK, Jn⊗vK

)
Γ∪ΓD

−m
(
‖∇sv‖2

Ω + ‖h1/2{n ·∇sv}‖2
Γ∪ΓD

+ ‖h−1/2Jn⊗ vK‖2
Γ∪ΓD

)
.

That is

aIP
(
v,v

)
−m 9 v92 = (2ν −m)‖∇sv‖2

Ω + (γ −m)‖h−1/2Jn⊗ vK‖2
Γ∪ΓD

−m‖h1/2{n ·∇sv}‖2
Γ∪ΓD

− 2
(
2ν{∇sv}, Jn⊗ vK

)
Γ∪ΓD

. (A.5)
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Using the Cauchy-Schwarz inequality

(
2ν{∇sv}, Jn⊗ vK

)
Γ∪ΓD

≤ 2ν‖h1/2{∇sv}‖Γ∪ΓD‖h−1/2Jn⊗ vK‖Γ∪ΓD ,

then using Lemma A.0.2 there exists a constant C such that

(
2ν{∇sv}, Jn⊗ vK

)
Γ∪ΓD

≤ 2νC‖∇sv‖Ω‖h−1/2Jn⊗ vK‖Ω,

and using that 2ab < a2

ε
+ b2ε for an arbitrary constant ε

(
2ν{∇sv}, Jn⊗ vK

)
Γ∪ΓD

≤ νC

ε
‖∇sv‖2

Ω + νCε‖h−1/2Jn⊗ vK‖2
Γ∪ΓD

. (A.6)

Now using the Lemma 4 of Hansbo and Larson (2002), there exists a constant D such

that

‖h1/2{n ·∇sv}‖2
Γ∪ΓD

≤ D‖∇sv‖2
Ω. (A.7)

Eventually substituting (A.6) and (A.7) in (A.5)

aIP
(
v,v

)
−m9v92 ≥ (2ν−m−2νC

ε
−mD)‖∇sv‖2

Ω+(γ−m−2νCε)‖h−1/2Jn⊗vK‖2
Γ∪ΓD

.

Thus, the coercivity is ensured if 2ν −m− 2νC
ε
−mD ≥ 0 and γ −m− 2νCε ≥ 0.

The first condition is satisfied if the arbitrary constant ε is taken ε ≥ 2νC
2ν−m(1+D)

. The

second condition is verified when γ ≥ m+ 2νCε, that is for γ big enough, which ends

up the proof of the coercivity.

These properties of continuity and coercivity of the bilinear form aIP are used in

the derivation of the error bounds for velocity, hybrid pressure and pressure.

Theorem A.0.4 (Velocity error bound). Let u ∈ [H1+α(Ω)]nsd, 1 ≤ α ≤ k, be the

exact velocity of the Stokes problem, and uh ∈ Sh the numerical velocity of the IPM
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system (2.7), then

9 u− uh9 ≤ K1h
α|u|[H1+α(Ω)]nsd (A.8)

where K1 is independent of the mesh size and the exact solution.

Proof. See Montlaur et al. (2008).

Theorem A.0.5 (Hybrid pressure error bound). Let u ∈ [H1+α(Ω)]nsd, 1 ≤ α ≤ k,

and p ∈ L2(Ω) be the exact solution of the Stokes problem, p̃ = {p} on Γ ∪ ∂Ω,

and (uh, p̃h) ∈ Sh × P h numerical solution of the IPM system (2.7), then, under the

assumptions of hypothesis 2.1.1

‖p̃− p̃h‖Γ∪ΓD ≤ K2h
α−1|u|[H1+α(Ω)]nsd (A.9)

where K2 is independent of the mesh size and the exact solution.

Proof. IPM is a consistent formulation, thus (u, p̃) ∈ [H1+α(Ω)]nsd × L2(Ω) exact

solution of the Stokes problem is also solution of the IPM weak form (2.7a), that is

(
p̃, Jn ·vK)

Γ∪ΓD
= lIP

(
v
)
− aIP

(
u,v

)
, ∀v ∈ Sh.

The numerical solution (uh, p̃h) ∈ Sh × P h also verifies

(
p̃h, Jn ·vK

)
Γ∪ΓD

= lIP
(
v
)
− aIP

(
uh,v

)
∀v ∈ Sh,

thus, substracting the last equations

∣∣∣
(
p̃− p̃h, Jn ·vK

)
Γ∪ΓD

∣∣∣ =
∣∣aIP

(
u− uh,v

)∣∣ ∀v ∈ Sh. (A.10)
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Using the inf-sup condition (2.12) and equation (A.10), we get

‖p̃− p̃h‖Γ∪ΓD ≤ αh−1

∣∣aIP
(
u− uh,v

)∣∣
9v9 ∀v ∈ Sh. (A.11)

Then, using the continuity property of aIP seen in (A.1)

‖p̃− p̃h‖Γ∪ΓD ≤ ch−1 9 u− uh9 (A.12)

and finally using the velocity error bound (A.8), we obtain the hybrid pressure error

bound (A.9).

Lemma A.0.6 (inf-sup condition for pressure). The spaces of velocities Vh and pres-

sures Qh satisfy

sup
v∈Vh

b
(
v, q
)

9v9 ≥ c2‖PQhq‖Ω ∀q ∈ Qh, (A.13)

for some constant c2 independent of the characteristic mesh size h and where PQh is

the L2-projection onto Qh.

This lemma is proved by Carrero et al. (2005), and is used in the proof of the error

bound for interior pressure.

Theorem A.0.7 (Interior pressure error estimate). Let u ∈ [H1+α(Ω)]nsd, 1 ≤ α ≤ k,

and p ∈ Hα(Ω) be the exact solution of the Stokes problem, p̃ = {p} on Γ ∪ ∂Ω, and

(uh, p̃h, ph) ∈ Sh × P h × Qh the numerical solution of the IPM system (2.7), then

‖p− ph‖Ω ≤ K3

(
hα−

1
2 |u|[H1+α(Ω)]nsd + hα‖p‖Hα(Ω)

)
(A.14)

where K3 is independent of the mesh size and the exact solution.

Proof. The exact velocity and interior pressure (u, p) ∈ [H1+α(Ω)]nsd × Hα(Ω)
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solution of the Stokes problem verifies (2.3), that is

b
(
v, p
)

= lIP
(
v
)
− aIP

(
u,v

)
−
(
p̃, Jn ·vK)

Γ∪ΓD
∀v ∈ Vh,

and the numerical solution (uh, ph) ∈ Sh × Qh also verifies

b
(
v, ph

)
= lIP

(
v
)
− aIP

(
uh,v

)
−
(
p̃h, Jn ·vK

)
Γ∪ΓD

∀v ∈ Vh.

Thus, substracting these equations, we have

b
(
v, p− ph

)
= −aIP

(
u− uh,v

)
−
(
p̃− p̃h, Jn ·vK

)
Γ∪ΓD

∀v ∈ Vh,

and therefore

∣∣b
(
v, p− ph

)∣∣ ≤
∣∣aIP

(
u− uh,v

)∣∣+
∣∣∣
(
p̃− p̃h, Jn ·vK

)
Γ∪ΓD

∣∣∣ ∀v ∈ Vh. (A.15)

Using the inf-sup condition (A.13) and equation (A.15), we get

‖PQhp−ph‖Ω ≤
α

9v9
(∣∣aIP

(
u− uh,v

)∣∣+
∣∣∣
(
p̃− p̃h, Jn ·vK

)
Γ∪ΓD

∣∣∣
)

for some v ∈ Vh.

(A.16)

Then, using the Cauchy-Schwartz inequality and the definition of the 9.9-norm

∣∣∣
(
p̃− p̃h, Jn ·vK

)
Γ∪ΓD

∣∣∣ ≤ ‖p̃− p̃h‖Γ∪ΓD |Jn ·vK|Γ∪ΓD

≤ ‖p̃− p̃h‖Γ∪ΓD‖Jn⊗ vK‖Γ∪ΓD

≤ ‖p̃− p̃h‖Γ∪ΓDh
1
2 9 v9,

using the continuity property of aIP (A.1)

‖PQhp− ph‖Ω ≤ c
(
9u− uh 9 +h

1
2‖p̃− p̃h‖Γ∪ΓD

)
, (A.17)
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and using velocity and hybrid pressure error bounds previously obtained

‖PQhp− ph‖Ω ≤ chα−
1
2 |u|[H1+α(Ω)]nsd . (A.18)

Eventually,

‖p− ph‖Ω ≤ ‖p− PQhp‖Ω + ‖PQhp− ph‖Ω (A.19)

then, (A.18) and the well-known approximation result lead to the interior pressure

error bound (A.14) .





Appendix B

LDG and CDG methods for the
incompressible Stokes equations

Following the development of Peraire and Persson (2008) for an elliptic problem,

the weak form of a compact discontinuous Galerkin (CDG) formulation for the in-

compressible Stokes problem is derived next. The main differences with the Local

Discontinuous Galerkin, see for example Cockburn et al. (2001, 2005b), are empha-

sized.

Introducing the velocity gradient σ = 2ν∇su, the incompressible Stokes equations

can be rewritten as the following system of first order equations

σ = 2ν∇su in Ω̂, (B.1a)

−∇·σ +∇p = f in Ω̂, (B.1b)

∇·u = 0 in Ω̂, (B.1c)

with boundary and interface conditions (2.1c)-(2.1f).

B.1 The weak form of the Stokes problem

Multiplying equations (B.1a), (B.1b) and (B.1c) by smooth test functions τ ∈ Σ,

v ∈ V and q ∈ Q respectively, and integrating by parts over an arbitrary subset

87
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Ωi ⊂ Ω with outward normal unit vector n, the weak problem becomes

∫

Ωi

σ : τdΩ = −
∫

Ωi

2νu ·∇ · τdΩ +

∫

∂Ωi

2νu · τ ·ndΓ, (B.2a)

∫

Ωi

[
σ :∇sv − p∇·v] dΩ−

∫

∂Ωi

[σ : (v ⊗ n)− pv ·n] dΓ =

∫

Ωi

f ·vdΩ, (B.2b)

−
∫

Ωi

u ·∇qdΩ +

∫

∂Ωi

u ·nqdΓ = 0. (B.2c)

Note that the above equations are well defined for functions (σ,u, p) and (τ ,v, q) in

Σ×V× Q where the spaces

Σ = {τ ∈ [L2(Ω)]n
2
sd|τ = τT },

V = {v ∈ [L2(Ω)]nsd ; v|Ωi ∈ [H1(Ωi)]
nsd ∀Ωi}

Q = {q ∈ [L2(Ω)]}

are associated to the partition of the domain Ω̂ :=
⋃nel
i=1 Ωi.

In order to rewrite all nel weak problems defined in (B.2) as one weak problem,

finite element subspaces are used. Vh ⊂ V and Qh ⊂ Q have been defined in (1.1)

and Σh ⊂ Σ is such that Σh = ∇sVh. Moreover, using the definition of jumps and

means, we have the following property

∑

i

∫

∂Ωi

pv · ndΓ =

∫

Γ

(JpnK{u}+ {p}Jv · nK) dΓ +

∫
pu · ndΓ,

for vectors and scalars and an equivalent one for vectors and tensors. Now, using this

property and boundary condition (2.1f), and adding equations (B.2) for i = 1, . . . nel,

the unique weak problem becomes: find σh ∈ Σh, uh ∈ Vh, ph ∈ Qh such that

∫

Ω

σh : τdΩ = −
∫

Ω

2νuh ·∇ · τdΩ +

∫

Γ∪ΓD∪ΓN

2νûσh ·Jτ ·nKdΓ, ∀τ ∈ Σh (B.3a)
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∫

Ω

[σh :∇sv − ph∇·v]dΩ−
∫

Γ∪ΓD

[σ̂h :Jv ⊗ nK− p̂hJv ·nK]dΓ

−
∫

ΓN

t ·vdΓ =

∫

Ω

f ·vdΩ, ∀v ∈ Vh (B.3b)

−
∫

Ω

uh ·∇qdΩ +

∫

Γ∪ΓD

ûph ·JnqKdΓ = 0 ∀q ∈ Qh. (B.3c)

where ûσh, σ̂h, p̂h and ûph are numerical fluxes defined in the following sections.

Note that if we use the integration by parts formula

−
∫

Ω

v ·∇ · τdΩ =

∫

Ω

τ ·∇vdΩ−
∫

Γ

(Jn⊗ vK :{τ}+ {v} ·Jn · τ K)dΓ−
∫

∂Ω

v · τ ·ndΓ

valid for all τ ∈ Σh and u ∈ Vh, equation (B.3a) can also be written as

∫

Ω

σh : τdΩ =

∫

Ω

2ντ ·∇suhdΩ−
∫

Γ

2ν (Jn⊗ uhK :{τ} − {ûσh − uh} ·Jn · τ K) dΓ

+

∫

ΓD∪ΓN

2ν(ûσh − uh) · τ ·ndΓ (B.4)

Since the CDG formulation proposed here for Stokes is closely related to the LDG

method proposed by Cockburn et al. (2005b), a description of the LDG approach is

given next.

B.1.1 Numerical fluxes

Following the definition of the diffusive fluxes by Cockburn et al. (2001) for LDG

σ̂h = {σh}−C11Jn⊗uhK+C12⊗Jn ·σhK and ûσh = {uh}−C12 ·Jn⊗uhK, (B.5)

on interior sides/faces Γ and

σ̂h = σh − C11(uh − uD)⊗ n and ûσh = uD on ΓD, and ûσh = uh on ΓN . (B.6)
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C11 is a positive constant, defined in Section 2.1.5, and C12 is a vector that has to be

determined for each interior edge of the domain according to

C12 =
1

2
(Sijni + Sjinj) (B.7)

where Sij ∈ {0, 1} denotes the switch associated with element Ωi on the face that

element Ωi shares with element Ωj. There are several possible choices of the switches,

always satisfying Sij +Sji = 1, see Peraire and Persson (2008); Cockburn et al. (2001)

for details. One possibility is the natural switch, which takes into account the element

numbering to set Sij. Another alternative is to use a consistent switch that satisfies

0 <
∑

e∈∂Ωi

Sij < nsd + 1.

Considering the numbering of the nodes for each element Ωi is one possible option for

a consistent switch.

Numerical fluxes related to incompressibility constraint are now defined. If a face

lies inside the domain Ω (i.e. on interior sides/faces Γ)

ûph = {uh} and p̂h = {ph}, (B.8)

whereas on the Dirichlet boundary ΓD

ûph = uD and p̂h = ph. (B.9)
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B.1.2 LDG formulation

Using the expression of the fluxes previously defined, equation (B.4) can now be

written as

∫

Ω

σh : τdΩ =

∫

Ω

2ντ ·∇suhdΩ−
∫

Γ

2ν(Jn⊗uhK :{τ}+C12 ·Jn⊗uhK ·Jn · τ K)dΓ

+

∫

ΓD

2ν(uD − uh) · τ ·ndΓ (B.10)

As usual in LDG (Cockburn et al., 2005a), two local lifting operators are defined

in order to obtain an expression for σh as a function of uh, the lifting operators are

introduced: r : [L2(Γ ∪ ΓD)]n
2
sd → Σh is defined by

∫

Ω

r(σ) : τ dΩ =

∫

Γ∪ΓD

σ :{τ}dΓ ∀τ ∈ Σh, (B.11)

The second lifting, s : [L2(Γ)]nsd → Σh is defined by

∫

Ω

s(v) : τ dΩ =

∫

Γ

v ·Jn · τ KdΓ ∀τ ∈ Σh. (B.12)

Thus equation (B.10) defining σh in terms of uh can be rewritten as

σh = 2ν∇suh − σ̄h,

where σ̄h is

σ̄h = 2ν (r(Jn⊗ uhK) + s(C12 ·Jn⊗ uhK)) on Γ,

and

σ̄h = −2νr
(
n⊗ (uD − uh)

)
on ΓD.

Setting τ = ∇sv in equation (B.10) allows to substitute the term implying σ in
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equation (B.3b), which can be rewritten as

∫

Ω

2ν∇sv :∇suhdΩ−
∫

Γ

2ν
(
Jn⊗ uhK :{∇sv}+C12 ·Jn⊗ uhK ·Jn ·∇svK

)
dΓ

+

∫

ΓD

2ν(uD − uh) ·∇sv ·ndΓ

=

∫

Γ

σ̂h : Jn⊗ vKdΓ +

∫

ΓD

σ̂h :(v ⊗ n)dΓ +

∫

ΓN

v · tdΓ

+

∫

Ω

ph∇·vdΩ−
∫

Γ

p̂hJv ·nKdΓ−
∫

ΓD

p̂hv ·ndΓ +

∫

Ω

f ·vdΩ (B.13)

Further calculation consists in susbtituting the expression of the fluxes in (B.13) and

leads to a formulation where only velocity and pressure terms appear, that is σ is

eliminated. The LDG weak form of the Stokes problem is then: find uh ∈ Vh and

ph ∈ Qh such that




aLDG

(
uh,v

)
+ b
(
v, ph

)
+
(
{ph}, Jn ·vK

)
Γ∪ΓD

= lLDG
(
v
)

∀ v ∈ Vh,

b
(
uh, q

)
+
(
{q}, Jn ·uhK

)
Γ∪ΓD

=
(
q,n ·uD

)
ΓD

∀ q ∈ Qh,
(B.14)

with

aLDG
(
u,v

)
:= aIP

(
u,v

)
−
(
2νC12⊗Jn ·∇svK, Jn⊗uK

)
Γ
−
(
2νC12⊗Jn ·∇suK, Jn⊗vK

)
Γ

+
(

2ν
(
r(Jn⊗ uK) + s(C12 ·Jn⊗ uK)

)
, r(Jn⊗ vK) + s(C12 ·Jn⊗ vK)

)
(B.15a)

lLDG
(
v
)

:= lIP
(
v
)

+
(

2ν r(n⊗ v), r(n⊗ uD)
)

(B.15b)

and the forms defined in (2.4). The obtention of the weak form will be further detailed

for the CDG formulation in Section B.2. Note that LDG has attractive properties since

it is symmetric, conservative and adjoint consistent. Nevertheless the product of lifting

operators in (B.15a) makes the resulting descretization non-compact. The equation

corresponding to a given degree of freedom may involve degrees of freedom that belong

to elements that are not immediate neighbors. To avoid this lost of compactness, a
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Compact Discontinuous Galerkin (CDG) formulation is presented next.

B.2 CDG formulation

LDG presents attractive features but also the main desadvantage of a non-compact

formulation. The objective of the CDG formulation is to modificate the expression

of the lifting operators so that their product, see (B.15a) does not generate a bigger

stencil. To do so, a stress field σeh is defined for each face Γe as

σeh = 2ν∇suh − σ̄eh,

where σ̄eh is defined on a localized support

σ̄eh = 2ν (re(Jn⊗ uhK) + se(C12 ·Jn⊗ uhK)) for e ∈ Γ,

and

σ̄eh = −2νre
(
n⊗ (uD − uh)

)
for e ∈ ΓD.

The main difference with LDG is thus that in order to compute σ̂h on a given face

Γe, CDG requires to evaluate first a stress field σeh associated to this face, through

local lifting operators re and se defined next. As usual in CDG (Peraire and Persson,

2008), the liftings operators introduced in (B.11) and (B.12) are now decomposed into

facewise contributions. For all sides Γe ⊂ Γ ∪ ΓD, the lifting re : [L2(Γe)]
n2
sd → Σh is

defined by ∫

Ω

re(σ) : τ dΩ =

∫

Γe

σ :{τ}dΓ ∀τ ∈ Σh. (B.16)

The second lifting, se : [L2(Γe)]
nsd → Σh, is set to zero for all boundary sides, se(v) = 0

∀v ∈ [L2(Γe)]
nsd for Γe ⊂ ΓD, and it is defined by

∫

Ω

se(v) : τ dΩ =

∫

Γe

v ·Jn · τ KdΓ ∀τ ∈ Σh, (B.17)
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for all interior sides Γe ⊂ Γ. Note that for all σ ∈ [L2(Γe)]
n2
sd and v ∈ [L2(Γe)]

nsd

r (σ) =
∑

e∈Γ∪ΓD

re (σ) and s (v) =
∑

e∈Γ

se (v) .

Note that the diffusive flux σ̂h on a given face is defined for CDG as

σ̂h = {σeh} − C11Jn⊗ uhK +C12 ⊗ Jn · σehK on Γ,

and

σ̂h = σeh − C11(uh − uD)⊗ n on ΓD

C11 and C12 are the same parameters as the ones previously defined. The numerical

fluxes ûσh, ûph and p̂h for CDG are the same ones as the ones defined in (B.5)-(B.9).

The obtention of the CDG weak form is now detailed. From the definition of the

fluxes and of the local lifting operators, the terms involving the flux σ̂h in (B.13), can

be written as: on Γ

∫

Γ

σ̂h :Jn⊗ vK =
∑

Γe⊂Γ

∫

Γe

({σeh} − C11Jn⊗ uhK +C12 ⊗ Jn ·σehK) :Jn⊗ vKdΓ

=

∫

Γ

{2ν∇suh} :Jn⊗ vKdΓ +

∫

Γ

(
C12 ⊗ Jn · 2ν∇suhK

)
:Jn⊗ vKdΓ

−C11

∫

Γ

Jn⊗uhK :Jn⊗vKdΓ−
∑

Γe⊂Γ

∫

Γe

{σ̄eh} :Jn⊗vKdΓ−
∑

Γe⊂Γ

∫

Γe

Jn · σ̄ehK ·(C12 ·Jn⊗vK)dΓ

=

∫

Γ

{2ν∇suh} :Jn⊗ vKdΓ +

∫

Γ

(
C12 ⊗ Jn · 2ν∇suhK

)
:Jn⊗ vKdΓ

− C11

∫

Γ

Jn⊗ uhK :Jn⊗ vKdΓ−
∑

Γe⊂Γ

∫

Ω

σ̄eh :
(
re(Jn⊗ vK) + se(C12 ·Jn⊗ vK)

)
dΩ
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=

∫

Γ

{2ν∇suh} :Jn⊗vKdΓ+

∫

Γ

(C12⊗Jn · 2ν∇suhK) :Jn⊗vKdΓ−C11

∫

Γ

Jn⊗uhK :Jn⊗vKdΓ

−
∑

Γe⊂Γ

∫

Ω

2ν
(
re(Jn⊗uhK)+se(C12 ·Jn⊗uhK)

)
:
(
re(Jn⊗vK)+se(C12 ·Jn⊗vK)

)
dΩ

and on ΓD

∫

ΓD

σ̂h :(n⊗ v)dΓ =
∑

Γe⊂ΓD

∫

Γe

(σeh − C11(uh − uD)⊗ n) :(n⊗ v)dΓ

=

∫

ΓD

2ν∇suh :(n⊗v)dΓ−
∫

ΓD

C11(n⊗(uh−uD)) :(n⊗v)dΓ−
∑

Γe⊂ΓD

∫

Γe

σ̄eh :(n⊗v)dΓ

=

∫

ΓD

2ν∇suh :(n⊗v)dΓ−
∫

ΓD

C11(n⊗(uh−uD)) :(n⊗v)dΓ−
∑

Γe⊂ΓD

∫

Ω

σ̄eh : re(n⊗v)dΩ

=

∫

ΓD

2ν∇suh :(n⊗ v)dΓ−
∫

ΓD

C11(n⊗ (uh − uD)) :(n⊗ v)dΓ

+
∑

Γe⊂ΓD

∫

Ω

2νre
(
n⊗ (uD − uh)

)
: re(n⊗ v)dΩ

Therefore sustituting these expressions in equation (B.13), the CDG scheme for the

steady incompressible Stokes equations is obtained: find uh ∈ Vh and ph ∈ Qh such

that

aCDG
(
uh,v

)
+ b
(
v, ph

)
+
(
{ph}, Jn ·vK

)
Γ∪ΓD

= lCDG
(
v
)
∀ v ∈ Vh, (B.20)
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with

aCDG
(
u,v

)
:= aIP

(
u,v

)
−
(
2νC12⊗Jn ·∇svK, Jn⊗uK

)
Γ
−
(
2νC12⊗Jn ·∇suK, Jn⊗vK

)
Γ

+
∑

Γe⊂Γ∪ΓD

(
2ν
(
re(Jn⊗ uK) + se(C12 ·Jn⊗ uK)

)
, re(Jn⊗ vK) + se(C12 ·Jn⊗ vK)

)

(B.21a)

lCDG
(
v
)

:= lIP
(
v
)

+
∑

Γe⊂ΓD

(
2ν re(n⊗ v), re(n⊗ uD)

)
(B.21b)

and the forms defined in (2.4).

Using the following identity for any v ∈ [H1(Ω̂)]nsd and any q ∈ L2(Ω)

−
∫

Ω

q∇·vdΩ +

∫

Γ∪∂Ω

{q}Jn ·vKdΓ =

∫

Ω

v ·∇qdΩ−
∫

Γ∪∂Ω

JqnK{v}dΓ,

the incompressibility equation (B.3c) can be rewritten as

b
(
uh, q

)
+
(
{q}, Jn ·uhK

)
Γ∪ΓD

=
(
q,n ·uD

)
ΓD

∀ q ∈ Qh. (B.22)

It is straightforward to verify that the bilinear form (B.21a) is symmetric. Also the

conservative form of the numerical fluxes guarantees that CDG is conservative and

adjoint consistent, see Peraire and Persson (2008). Both thus share the same attractive

properties. But while LDG’s weak form involves product of non local lifting operators,

CDG involves product of local lifting operators, see (B.21a), which does not increase

the stencil of the diffusion operator.



Appendix C

Explicit Runge-Kutta methods for
incompressible flows

This appendix shows how to apply explicit Runge-Kutta (RK) methods to DAE prob-

lems, such as incompressible Stokes or Navier-Stokes equations. As commented in

Section 3.1.1 explicit RK methods can not be directly applied to DAE the same way

implicit or semi-implicit RK are formulated in (3.5)-(3.6), because the resulting system

of equations (3.6) is under-determined. Pereira et al. (2001) propose an explicit RK

formulation for the incompressible Navier-Stokes equations. As will be commented

next, the scheme is very similar to the one obtained for an ODE, but at each stage

the incompressibility constraint is added.

For simplicity purpose the Stokes equations are considered, but the formulation

would be equivalent for non-linear incompressible problems such as Navier-Stokes.

Let us consider the incompressible unsteady Stokes equations in discrete form





Mu̇ + Ku + Gp = f

GTu = 0
(C.1)

Following Pereira et al. (2001), the 4-stage explicit method with Butcher array

seen in Table C.1, leads to the scheme

97
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0

1
2

1
2

1
2

0 1
2

1 0 0 1
2

1
6

1
3

1
3

1
6

Table C.1: Butcher array for 4-stage explicit Runge-Kutta method





un+1 = un + ∆t
4∑

i=1

(f(tn + bi∆t)− biKui)−∆tGpn+1

GTun+1 = 0

(C.2)

with

u1 = un (C.3a)




Mu2 = un +
∆t

2

(
f

(
tn +

∆t

2

)
−Ku1

)
−∆tGp2

GTu2 = 0

(C.3b)





Mu3 = un +
∆t

2

(
f

(
tn +

∆t

2

)
−Ku2

)
−∆tGp3

GTu3 = 0

(C.3c)





Mu4 = un +
∆t

2
(f (tn + ∆t)−Ku3)−∆tGp4

GTu4 = 0

(C.3d)

A simple example with analytical solution is now used to check the orders of conver-

gence of explicit RK methods:

M =

(
1 0

0 1

)
, K =

(
3 4

5 6

)
, G =

(
1

−2

)
,
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are considered, with a body force

f =

(
2cos(t) + 10sin(t) + e−t

cos(t) + 16sin(t)− 2e−t

)

imposed in order to have the exact solution

u =

(
2sin(t)

sin(t)

)
, p = e−t.

Figure C.1 shows the errors for velocity and pressure for the 2-stage Heune’s method

and the 4-stage explicit RK method. Though a slightly better accuracy is obtained us-
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Figure C.1: Velocity and pressure error for fourth (RK4) and second (RK2) order
explicit Runge-Kutta methods.

ing 4-stage explicit RK, second order convergence is reached for velocity and pressure

errors with both methods. That is a high number of stages for explicit RK applied

to DAE systems does not allow to reach the same high orders of convergence than

when applied to ODE. Here the 2-stage Heune’s would be preferred since its cost is

less than the 4-stage explicit RK and both accuracy are equivalent. Furthermore,

2-stage Heune’s method has an equivalent cost as a fractional-step (FS) method for

incompressible flow. FS generally reaches second order in time for velocity but only

first order for pressure, see for example Guermond et al. (2006). Thus 2-stage Heune’s
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method is a more efficient explicit method for incompressible flows than FS.
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SUMMARY

A discontinuous Galerkin (DG) method with solenoidal approximation for the simulation of incompressible
flow is proposed. It is applied to the solution of the Stokes equations. The interior penalty method is
employed to construct the DG weak form. For every element, the approximation space for the velocity
field is decomposed as the direct sum of a solenoidal space and an irrotational space. This allows to split
the DG weak form into two uncoupled problems: the first one solves for the velocity and the hybrid
pressure (pressure along the mesh edges) and the second one allows the computation of the pressure in
the element interior. Furthermore, the introduction of an extra penalty term leads to an alternative DG
formulation for the computation of solenoidal velocities with no presence of pressure terms. Pressure
can then be computed as a post-process of the velocity solution. Numerical examples demonstrate the
applicability of the proposed methodologies. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION
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in electrodynamic problems. An interesting alternative is to use explicit divergence-free bases in
order to solve problems with incompressibility. Crouzeix and Raviart [1] were the first to construct
divergence-free elements in order to eliminate the pressure in the final equation. They used trian-
gular conforming and non-conforming elements where the incompressibility condition was only
approximately satisfied. Griffiths [2] proposed an element-level divergence-free basis for several
finite element schemes on triangular and quadrilateral elements. Nevertheless, a major limitation
of these techniques is that continuous and weakly divergence-free (or discretely divergence-free
following the notation of [3]) approximation spaces are difficult to generalize for higher-order
approximations.

More recently, several authors have focused their attention on discontinuous Galerkin (DG)
formulations for computational fluid dynamics [4] and in particular for the Stokes equations
[5–7]. The attractiveness of DG method is mainly due to its stability properties in convection-
dominated problems, its efficiency for high-order computations, which allows hp-adaptive refine-
ment, and local conservation properties. Moreover, in a DG framework, divergence-free high-order
approximations can be easily defined: an element-by-element discontinuous approximation with a
divergence-free polynomial base in each element can be considered with a straightforward defi-
nition for high-order approximations [5, 6]. Because of the important costs of DG methods, the
reduction in degrees of freedom (both in velocity and pressure) induced by a divergence-free
approach is very interesting from a computational point of view.

In the 1990s, Baker et al. [5] and Karakashian and Jureidini [8] developed and analyzed a
DG formulation with a piecewise polynomial divergence-free velocity, with optimal error bounds.
Nevertheless, this formulation has some limitations: it requires the use of continuous pressure
approximations; only Dirichlet boundary conditions are considered (in fact, natural boundary
conditions cannot be easily imposed), and different computational meshes (with different mesh
sizes) must be considered for velocity and pressure to ensure stability.

A DG method for the Stokes equations with piecewise polynomial approximations was also
proposed and analyzed by Toselli [7], but without the pointwise imposition of the divergence-
free condition. This DG formulation shows better stability properties than continuous Galerkin
approximations, and uniform divergence stability is proven when velocity is approximated one
or two degrees higher than pressure. In fact, equal-order interpolation numerical results show no
spurious pressure modes although no uniform stability properties are proven. Unfortunately, the
bilinear form related with velocities is non-symmetric, and the DG advantages for the definition
of piecewise solenoidal approximations are not exploited.

More recently, Cockburn and coworkers propose [6, 9, 10] a DG formulation with solenoidal
piecewise polynomial approximations. It is derived from a local discontinuous Galerkin (LDG)
rationale based on a mixed formulation of the problem (with velocity, vorticity and pressure), and
with the introduction of numerical traces. The concept of hybrid pressures is also introduced, that
is, pressures along the element sides. Pressures in the interior of the elements are computed as
a post-process of the LDG solution. For analysis purposes, the LDG formulation is expressed in
compact form in [9]. With the introduction of proper lifting operators, the vorticity is replaced
in the LDG formulation leading to a velocity–pressure formulation with symmetric and coercive
bilinear form for velocities.

In this work, a new DG formulation with piecewise solenoidal polynomial velocity and hybrid
pressures is proposed. It is derived from an interior penalty method (IPM) rationale [11, 12],
leading also to a symmetric and coercive bilinear form for velocities. As for the LDG formulation,
the approximation space for the velocity field is decomposed in every element as direct sum of
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solenoidal and irrotational polynomial spaces. This also allows to split the IPM weak form into
two uncoupled problems: the first one solves for velocity and hybrid pressure and the second one
allows the evaluation of pressures in the interior of the elements. The resulting method has many
points in common with the LDG formulation in compact form stated in [9]. Namely, both are
formulated in terms of piecewise solenoidal velocities and hybrid pressures, the bilinear form is
symmetric and positive definite, and the pressure in the interior of the elements is computed as a
post-process of the solution. Nevertheless, different rationales are followed for the LDG and IPM
methods, leading to completely different formulations. For instance, one of the most remarkable
differences is that the IPM formulation proposed here does not involve lifting operators that induce
an approximate orthogonality property in the LDG formulation [9].

The IPM weak problem is also reformulated as a minimization problem subject to the constraint
of normal continuity of the velocity field. The solution of this optimization problem with the
introduction of a non-consistent penalty leads to an alternative DG formulation for the computation
of solenoidal velocities with no presence of pressure terms (i.e. solving a system with symmetric
positive-definite matrix). Pressure can then be computed as a post-process of the velocity solution.
This second IPM method exactly coincides with the DG method proposed in [13], where different
alternatives for the approximation, based on the definition of a piecewise continuous stream
function spaces, are also proposed and analyzed. In fact, it is worth noting the contributions in
solid mechanics by Hansbo and co-workers [12, 14, 15], which have inspired several authors (see,
for instance, [16] for the solution of the Navier–Stokes equations) and in particular this paper.

The contributions of this paper are presented as follows. The derivation of a new DG IPM formu-
lation for the solution of Stokes problems, with Dirichlet and Neumann boundary conditions, is
presented in detail in Section 3.1. The particularization of the IPM weak form with a splitting of
the velocity space in solenoidal and irrotational parts is presented and analyzed in Section 3.2. In
Section 3.3, the DG method initially proposed by Hansbo and Larson in [13] is presented with
an alternative derivation. The implementation of Neumann boundary conditions is included in the
formulation, and a methodology for the computation of pressures as a post-process of the velocity
solution is proposed. Numerical tests demonstrate the applicability of both methodologies (IPM and
IPM with non-consistent penalty) for the solution of the Stokes equations in Section 5. The selec-
tion of the penalization parameters in order to achieve optimal convergence rates is also studied.
Finally, the IPM formulation is used for the simulation of a fluid flow through a porous medium.

2. THE STOKES PROBLEM

Let �⊂Rnsd be an open bounded domain with piecewise linear boundary �� and nsd the number
of spatial dimensions. Suppose that � is partitioned in nel disjoint subdomains �i , which for
example correspond to different materials, with also piecewise linear boundaries ��i which define
an internal interphase �; the following definitions and notations are used:

�=
nel⋃
i=1

�i , �i ∩� j =∅ for i �= j

�̂ :=
nel⋃
i=1

�i and � :=
nel⋃
i, j=1
i �= j

�i ∩� j =
[nel⋃
i=1

��i

]∖
��
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The strong form of the homogeneous Stokes problem can be expressed as

−∇·r= s in �̂ (1a)

∇·u= 0 in �̂ (1b)

u= uD on �D (1c)

n·r= t on �N (1d)

�n⊗u� = 0 on � (1e)

�n·r� = 0 on � (1f)

where ��=�D∪�N, �D∩�N=∅, s∈ 2(�) is a source term, r is the (‘dynamic’ or
‘density-scaled’) Cauchy stress, which is related to velocity, u, and pressure, p, by the linear
Stokes’ law

r=−p I+2�∇su (2)

with � being the kinematic viscosity and ∇s= 1
2 (∇+∇T).

The jump �·� and the mean {·} operators are defined along the interface � using values from
the elements to the left and right of the interface—say, �i and � j—and are also extended along
the exterior boundary—only values in the interior of � are employed—namely

�©◦ �=
{©◦ i +©◦ j on �

©◦ on ��
and {©◦ }=

{
�i ©◦ i +� j ©◦ j on �

©◦ on ��

Usually �i =� j = 1
2 but, in general, these two scalars are only required to verify �i +� j =1, see,

for instance, [12]. Note that definitions such as

�i =
{
1 if �i is the largest

0 otherwise

are also possible.
The major difference between the mean and the jump operator is that the latter always involves

the normal to the interface or to the domain. Given two contiguous subdomains �i and � j , their
exterior unit normals are denoted by, respectively, ni and n j (recall that ni =−n j ) and along ��
the exterior unit normal is denoted by n. In what follows, the jump operator as defined previously
will appear in these three cases:

�pn�=
{
pi ni + p j n j =ni (pi − p j ) on �

pn on ��
for scalars (3)

�n⊗v�=
{
ni ⊗vi +n j ⊗v j =ni ⊗(vi −v j ) on �

n⊗v on ��
or (4)
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�n·v�=
{
ni ·vi +n j ·v j =ni ·(vi −v j ) on �

n·v on ��
for vectors (5)

�n·r�=
{
ni ·ri +n j ·r j =ni ·(ri −r j ) on �

n·r on ��
for second-order tensors (6)

This definition of the jump was previously considered by other authors, see, for instance, [9],
and presents two important advantages: first, it does not depend on a selection of a privileged
normal sign on the edges in 2D or faces in 3D, and second, the input and output spaces for
the operator coincide, that is, the jump of a scalar is a scalar, the jump of a vector is a vector,
etc. Other definitions have been more popular in the past, but do not have these advantages. For
instance, the jump at an edge �E, shared by two elements �i and � j with i< j , could be defined
as �u�=ui −u j , see [5] among others. This definition involves the decision of a privileged normal
sign; therefore, it may lead to weak definitions with a not desirable dependency on this choice.
Another alternative definition would be �u�=uini +u jn j for scalar u, �u�=ui ·ni +u j ·n j for
vector u, etc., see, for instance, [17]. It also does not require the selection of a normal sign, but it
has different spaces for the input and the output: the jump of a scalar is a vector and the jump of
a vector is a scalar. Moreover, the use of this definition camouflages the presence of the normal
in the weak formulation: note that the evaluation of �u� involves the normal, although the normal
does not explicitly appear in the weak form. Thus, in the authors’ opinion the jump operator (3)
leads to more easily readable weak formulations. Nevertheless, there is one situation where jump
(3) or the definition used in [17] present some limitations: the computation of the jump of a scalar
function with no presence of the normal vector. In the following, this computation appears only
for terms of the form (ui −u j ,vi −v j )�E , where �i and � j are the elements sharing the interface
�E, and the following identity is used:

(ui −u j ,vi −v j )�E =(�n⊗u�,�n⊗v�)�E

3. THE WEAK FORM OF THE STOKES PROBLEM

Following the usual methodology in the DG framework, the weak problem from the strong form
defined by (1) is considered for each domain �i . That is, find ui ∈[ 1(�i )]nsd and pi ∈ 2(�i )

for i=1, . . . ,nel, which comply the boundary conditions (1c), (1e) and (1f) such that

a�i (ui ,v)+b�i (v, pi )−(ni ·r(ui , pi ),v)��i\�N
+b�i (ui ,q)= l�i (v)+(t,v)��i∩�N

(7)

for all (v,q)∈[ 1(�i )]nsd × 2(�i ), where

a�i (v,w)=
∫

�i

2�∇sv :∇swd�, b�i (v,q)=−
∫

�i

q∇·vd�

l�i (v)=
∫

�i

svd�

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 57:1071–1092
DOI: 10.1002/fld



108 Appended papers

1076 A. MONTLAUR, S. FERNANDEZ-MENDEZ AND A. HUERTA

In the previous and the following equations, (·, ·)� denotes the 2 scalar product in any domain
�⊂�∪��, that is

(p,q)� =
∫

�
pq d� for scalars

(u,v)� =
∫

�
u·vd� for vectors

(r,s)� =
∫

�
r :sd� for second-order tensors

In order to rewrite all nel weak problems defined in (7) as one weak problem, let u be such
that its restriction to �i is ui , namely u∈[ 1(�̂)]nsd with

[ 1(�̂)]nsd :={v∈[ 2(�)]nsd |v|�i∈[ 1(�i )]nsd for i=1, . . . ,nel}
and, similarly, p∈ 2(�) is such that its restriction to �i is pi . Differential operators are assumed
to act on these functions piecewise and not in the sense of distributions. Thus, adding equations
(7) for i=1, . . . ,nel, the unique weak problem becomes: find u and p such that

a(u,v)+b(v, p)−
nel∑
i=1

(ni ·r(ui , pi ),v)��i\�N
+b(u,q)= l(v) (8)

for all test functions v∈[ 1(�̂)]nsd and q∈ 2(�); where the bilinear forms are now integrated
over the whole domain �, namely

a(v,w)=
∫

�
2�∇sv :∇swd�, b(v,q)=−

∫
�
q∇·vd�

and

l(v)=
∫

�
svd�+(t,v)�N

For two contiguous subdomains, �i and � j , with a common boundary �e⊂� it is easy to check
that

(ni ·r(ui , pi ),vi )�e +(n j ·r(u j , p j ),v j )�e

=({r(u, p)},�n⊗v�)�e +(�n·r(u, p)�,� jvi +�iv j )�e

Moreover, the boundary condition (1f) simplifies the previous equation because the last term is
zero. Thus, from the previous equation the weak form (8) can be rewritten as

a(u,v)+b(v, p)−({r(u, p)},�n⊗v�)�−(n·r(u, p),v)�D +b(u,q)= l(v)

This expression can be further simplified using the extension of the jump and mean operators
on the exterior boundary, in particular, in this case along �D, and the identity n·r ·v=r :(n⊗v).
The weak problem equivalent to (1) becomes: find u∈[ 1(�̂)]nsd and p∈ 2(�) subject to the
boundary conditions defined by (1c) and (1e) such that

a(u,v)+b(v, p)−({r(u, p)},�n⊗v�)�∪�D +b(u,q)= l(v) (9)

for all test functions v∈[ 1(�̂)]nsd and q∈ 2(�).
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3.1. The IPM formulation

Following the standard approach of IPM [11], the previous weak problem (9) is symmetrized and a
new term is added to ensure a coercive bilinear form for the velocity. In this process, the boundary
conditions (1c) and (1e)—not yet imposed—are used in order to maintain the consistency of the
weak problem (i.e. the solution of (1) is the solution of the weak problem). The resulting IPM
weak problem can then be expressed as: find u∈[ 1(�̂)]nsd and p∈ 2(�) such that

a(u,v)+b(v, p)+b(u,q)−({r(u, p)},�n⊗v�)�∪�D −(�n⊗u�,{r(v,q)})�∪�D

+�(l−1
e �n⊗u�,�n⊗v�)�∪�D = l(v)−(uD,n·r(v,q))�D +�(l−1

e uD,v)�D

for all v∈[ 1(�̂)]nsd and q∈ 2(�), where le is a measure of each interface �e (edge in 2D, face
in 3D) and � is a scalar parameter, which must be sufficiently large (to ensure coercivity of the
form aIP(·, ·) defined below, see Remark 1). Note that boundary conditions (1c) and (1e) are no
longer explicitly mentioned because they are now imposed in weak form.

Using the constitutive law (2) in the previous equation, the weak problem, which presents a
symmetric structure, can be expressed as: find u∈[ 1(�̂)]nsd and p∈ 2(�) such that

aIP(u,v)+b(v, p)+({p},�n·v�)�∪�D

+b(u,q)+({q},�n·u�)�∪�D = lIP(v)+(q,n·uD)�D (10)

for all v∈[ 1(�̂)]nsd and q∈ 2(�), with

aIP(u,v) := a(u,v)−(2�{∇su},�n⊗v�)�∪�D

−(�n⊗u�,2�{∇sv})�∪�D +�(l−1
e �n⊗u�,�n⊗v�)�∪�D (11a)

and

lIP(v) := l(v)−(uD,2�n·∇sv)�D +�(l−1
e uD,v)�D (11b)

This weak form is close to the formulation proposed in [7] where stability is also studied. It
clearly identifies pressure with the Lagrange multiplier that imposes both a weakly solenoidal field
inside each element and a continuous normal component along �. However, the IPM provides a
symmetric bilinear form for the velocity, see Equation (11a), whereas the formulation proposed in
[7] does not.

An alternative IPM formulation that does not require the evaluation of the divergence of the
velocity field can also be obtained from (10). The divergence term is replaced using the following
identity valid for any v∈[ 1(�̂)]nsd and q∈ 2(�):

b(v,q)+({q},�n·v�)�∪�� =(v,∇q)�−(�q n�,{{v}})�
where the operator {{·}} is defined at any interior edge �E=�i ∩� j as

{{v}}=� jvi +�iv j

Using this identity and its particularization for v=u, the solution of the problem (which is contin-
uous and verifies (1c)), i.e.

b(u,q)+(q,n·u)�N =(u,∇q)�−(n·uD,q)�D −(�q n�, {{u}})�
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the IPM weak formulation (10) can be expressed as: find u∈[ 1(�̂)]nsd and p∈ 2(�) such that

aIP(u,v)+(v,∇p)�−(p,n·v)�N −(�pn�, {{v}})�
+(u,∇q)�−(q,n·u)�N −(�q n�,{{u}})� = lIP(v)+(n·uD,q)�D

for all v∈[ 1(�̂)]nsd and q∈ 2(�). The structure of this formulation suggests the use of contin-
uous pressures to simplify the equation, removing the terms with the {{·}} operator. The resulting
formulation is more closely related to the work presented in [5, 8], where the proposed bilinear
form is also symmetric and with no presence of divergence terms. Nevertheless, the weak formu-
lation proposed in [5, 8] has some limitations: as commented, it requires the use of continuous
approximations for the pressure, it is developed only for Dirichlet boundary conditions and natural
boundary conditions cannot be directly imposed, and different computational meshes (with different
mesh size) must be considered for velocity and pressure to ensure stability.

In this paper, the IPM formulation (10) is preferred because discontinuous approximations for
the pressure are considered and, more importantly, because this weak formulation can be further
simplified using piecewise solenoidal approximations.

3.2. The IPM formulation with solenoidal space

It is well known that any function in [ 1(�i )]nsd can be expressed as the sum of a solenoidal
part and an irrotational one. Thus, the functional space for the velocity can be split into the direct
sum: [ 1(�̂)]nsd = ⊕ where

:={v∈[ 1(�̂)]nsd |∇·v|�i =0 for i=1, . . . ,nel}
⊂{v∈[ 1(�̂)]nsd |∇×v|�i =0 for i=1, . . . ,nel}

Note also that u, the solution of the original problem (1) and (10), belongs to . Under these
circumstances, problem (10) can be split into two uncoupled problems, for test functions in and
, respectively.
First, divergence-free solution and test functions, u, v∈ , are considered in the IPM formulation

(10), leading to a simplified IPM formulation with no divergence terms

aIP(u,v)+({p},�n·v�)�∪�D +({q},�n·u�)�∪�D = lIP(v)+(q,n·uD)�D (12)

for all v∈ and q∈ 2(�). This formulation is further simplified with the introduction of the space
of the so-called hybrid pressures, that is

:={ p̂ | p̂ :�∪�D−→R and p̂=�n·v� for some v∈ } (13)

see [6] for details.
Thus, the first problem for divergence-free velocities and hybrid pressures becomes: find u∈

and p̂∈ such that

aIP(u,v)+( p̂,�n·v�)�∪�D = lIP(v) ∀v∈
(q̂,�n·u�)�∪�D = (q̂,n·uD)�D ∀q̂∈ (14a)
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The second problem, which requires the solution of the previous one, i.e. the velocity u and the
hybrid pressure p̂, determines the interior pressure: find p∈ 2(�̂)

b(v, p)= lIP(v)−aIP(u,v)−( p̂,�n·v�)�∪�D ∀v∈ (14b)

Note that this second problem would allow an independent computation of the interior pressure in
every domain �i .

The IPM formulation with solenoidal and irrotational spaces proposed here has many points in
common with the LDG formulation in compact form presented in [9]. Both consider piecewise
polynomial approximations, see Section 4, and a splitting of the approximation space as a sum of
solenoidal and irrotational parts, leading to two uncoupled problems: the first for velocities and
hybrid pressures, and the second for the computation of pressures in the interior of the elements.
Moreover, the bilinear form is symmetric, continuous and coercive in both formulations (see
Remark 1). Nevertheless, the IPM and the LDG methods correspond to different formulations. In
fact, none of the two methods can be expressed as a particular case of the other one. The LDG
method is deduced from a mixed formulation of the Stokes problem with velocity, vorticity and
pressure, and it is expressed in compact form using proper lifting operators to replace the vorticity.
In fact, the presence of lifting operators in the weak form is an important difference with the
IPM method, with consequences in the consistency of the formulation. The IPM formulation is a
consistent formulation in the sense that the solution of the Stokes problem (1) is also a solution
of the IPM weak form, whereas the LDG formulation only verifies an approximate orthogonality
property, see [9] for details.
Remark 1
For � large enough, the IPM bilinear form aIP(·, ·) defined in (11a) is continuous and coercive,
that is

aIP(u,v)�|‖u‖||‖v‖| ∀v∈ (15)

and

m|‖v‖|�aIP(v,v) ∀v∈ (16)

for some constant m>0 independent of the mesh size h, where

|‖v‖|2=‖∇sv‖2�+‖h1/2n·{∇sv}‖2�∪�D
+‖h−1/2�n⊗v�‖2�∪�D

(17)

and the 2 norms are defined as

‖f‖2� =∑
i

∫
�i

f : fd�, ‖ f ‖2�∪�D
=( f, f )�∪�D (18)

These properties can be proved following standard arguments, see [13, 14] for details.

3.3. IPM formulation with penalization of the discontinuity

The IPM formulation with solenoidal spaces presented in the previous section, see Equation (14a),
allows a computation of the velocity solution involving the pressure only in the boundary of
the domains �i , i.e. the hybrid pressure. The aim of this section is more ambitious: to obtain a
completely decoupled formulation allowing the computation of the solenoidal velocity, but with
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no presence of pressures at all. As proposed in [13], the introduction of a new penalty in the weak
formulation achieves this purpose. However, the price of a totally decoupled velocity–pressure
formulation is the loss of consistency, which provokes the ill-conditioning typical for non-consistent
penalty formulations.

The DG formulation initially proposed and analyzed in [13] is deduced next from an alternative
rationale, based on the IPM formulation (14a) and the introduction of a non-consistent penalty.
The IPM formulation with solenoidal velocities (14a) can be rewritten as a saddle-point problem,
namely

(u, p̂)=argmin
v∈ max

q̂∈
1
2aIP(v,v)−lIP(v)+(q̂,�n·v�)�∪�D −(q̂,n·uD)�D (19)

or, equivalently, as a minimization problem subject to normal continuity constraints,

u=arg min
v∈

s.t.�n·v�=0 on �
n·v=n·uD on �D

1
2aIP(v,v)−lIP(v) (20)

Note that the terms with pressures are canceled, thanks to the imposed continuity constraints.
As usual in constrained minimization problems, the previous optimization problem can be solved
using a non-consistent penalty, see, for instance, [18]. The corresponding minimization problem
with penalty is

u=argmin
v∈

1
2aIP(v,v)−lIP(v)+�[(�n·v�,�n·v�)�−(n·(uD−v),n·(uD−v))�D]

where � is a scalar penalty to be chosen. The solution of this optimization problem is the solution
of the following IPM weak formulation with penalty: find u� ∈ such that

aIP(u�,v)+�(�n·u��,�n·v�)�∪�D = lIP(v)+�(n·v,n·uD)�D (21)

for all v∈ . In the following, we refer to this weak formulation as interior penalty method with
penalty (IPMP) in front of the IPM formulation described in (14).

Once the velocity is obtained, pressure can be computed as a post-process with two steps. First,
an approximation of the hybrid pressure can be obtained introducing the solution of (21) in (14a),
namely

p̂� =
{

��n·u�� on �

�n·[u�−uD] on �D

Then, with u� and p̂� the interior pressure can be determined as the solution of (14b).
It is important to remark that the IPMP formulation (21) involves two different penalties with

important differences. The first one is inherited from the IPM formulation, i.e. �/ le in the bilinear
form aIP(·, ·) defined in (11a). It is a consistent penalty in the sense that the solution of the original
problem (1) is the solution of the IPM formulation (14a); therefore, as usual in IPM formulations,
in practice moderate values of the constant parameter � provide accurate and optimally convergent
results. This is not the case for the second penalty. The penalty � in the IPMP formulation (21)
is a non-consistent penalty: the solution of the IPMP formulation verifies the continuity of the
normal component of the velocity and the Dirichlet boundary conditions only in the limit, for
� going to infinity. This lack of consistency is the origin of the usual drawbacks of penalty
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techniques: the tuning of the penalty parameter affects the accuracy of the solution and, in practice,
too large values of � are needed, leading to ill-conditioned systems of equations. In fact, as proved
in [18] in the context of boundary conditions, and as it is seen in the numerical examples, the
penalty parameter � has to be of order h−k in order to keep the optimal 1 convergence rate, with
h the element size and k the degree of the approximation.

It is worth noting that an alternative and consistent methodology for the solution of the
constrained minimization problem (20) would be the introduction of a Lagrange multiplier. That is,

(u,�)=argmin
v∈ max

�∈�

1
2aIP(v,v)−lIP(v)+(�,�n·v�)�−(�,n·(v−uD))�D

where � is the Lagrange multiplier defined at �∪�D. This formulation corresponds exactly to
(19), or equivalently to the IPM formulation (14a), demonstrating that the hybrid pressure plays
the role of a Lagrange multiplier to impose the continuity of the normal velocity.

4. FINITE-DIMENSIONAL SPACES

In practice, approximations to the exact solution are obtained using finite-dimensional spaces.
In particular, standard finite-dimensional polynomial spaces may be introduced in each element
(standard DG) for all the previously defined weak problems, namely

h :={v∈[ 1(�̂)]nsd |v|�i ∈[Pk(�i )]nsd for i=1, . . . ,nel}
and

h :={p∈ 2(�) | p|�i ∈Pk−1(�i ) for i=1, . . . ,nel}
where Pm denotes the space of complete polynomials of degree less than or equal to m. The finite
counterparts of and are

h ={v∈[ 1(�̂)]nsd |v|�i ∈[Pk(�i )]nsd, ∇·v|�i =0 for i=1, . . . ,nel}
h ⊂{v∈[ 1(�̂)]nsd |v|�i ∈[Pk(�i )]nsd, ∇×v|�i =0 for i=1, . . . ,nel}

such that h ⊂ . Note that the following relations and inclusions are verified: h = h⊕ h ,
h ⊂[ 1(�̂)]nsd , h ⊂ 2(�) and h ⊂ . The finite-dimensional subspace associated with the

hybrid pressures, h ⊂ , can be defined directly from (13) restricting velocities to h . In fact,
Reference [6] also demonstrates that h corresponds to piecewise polynomial pressures in the
element edges in 2D or faces in 3D.

It is worth noting that the definition of the solenoidal and irrotational polynomial bases to be
used at each element is an easy task. For instance, a solenoidal base in a 2D triangle for an
approximation of degree k=2 is

h =
〈(

1

0

)
,

(
0

1

)
,

(
0

x

)
,

(
x

−y

)
,

(
y

0

)
,

(
0

x2

)
,

(
2xy

−y2

)
,

(
x2

−2xy

)
,

(
y2

0

)〉
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The use of this polynomial basis defined with Cartesian coordinates was also proposed in [6]. An
irrotational base for k=2 is

h =
〈(

x

0

)
,

(
x2

0

)
,

(
0

y2

)〉

In the numerical examples, to avoid ill-conditioning of the elemental matrices, all polynomials p
of the base are centered and scaled at each element as p((x−ce)/he), where ce and he denote the
center and the size of the element, respectively.

Remark 2
With these polynomial spaces, the numerical solution uh of the IPM method presented in Section
3.2 verifies the following error bound:

|‖u−uh‖|�Kh�|u| 1+�
(�)

(22)

for u∈H1+�(�), 1���k and some constant K . This result can be proved using the continuity
and coercivity of the bilinear form, see Remark 1 in Section 3.2. Following [9], the space of
piecewise divergence-free polynomial functions with continuity constraints for the normal velocity
is considered

Zh(uD)={v∈ h :(q,�n·v�)�∪�D =(q,n·uD)�D ∀q∈ h}⊂ h

Note that although the LDG formulation analyzed in [9] verifies an approximate orthogonality
with a residual h �=0 (due to the introduction of the lifting operators), the IPM formulation is
consistent and therefore the residual is in this case h =0. Thus, the particularization of the error
bound stated in [9] is

|‖u−uh‖|�(1+m) inf
v∈Zh(uD)

|‖u−v‖|

where m is the coercivity constant, see Remark 1. The error bound (22) is obtained considering the
projection into the BDM0 space (Brezzi–Douglas–Marini space of full polynomial approximations
with normal continuity and zero elementwise divergence, see [19] for details), that is v=�BDMu.
Note that BDM0⊂ Zh(uD), thus using the bound in [13] for the |‖·‖| norm, i.e.

|‖u−�BDMu‖|�Ch�|u| 1+�
(�)

with some constant C , bound (22) is proved.

Remark 3
The convergence of the IPMP formulation, developed in Section 3.3, is analyzed in detail in [13]
for different approximation spaces. For velocity approximation spaces including the BDM0 space,
the error bound is

|‖u−uh‖|�C(h�|u| 1+�
(�)

+h‖p‖ 1
(�)

)

for some constant C , and u∈ 1+�
(�), with 1���k.
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5. NUMERICAL EXAMPLES

To demonstrate the applicability of the two proposed methods, some numerical examples are shown
in this section. In all tests, an approximation of order k for velocity and k−1 for pressure is
considered. Triangular meshes are obtained by splitting a regular n×m Cartesian grid into a total
of 2n×m triangles for a rectangular domain, or 2n2 triangles for a square domain, giving uniform
element size of h=1/n.

5.1. Driven cavity example

A standard benchmark test for incompressible flows is considered first. A plane flow of an
isothermal fluid in a lid-driven cavity is modeled in a 2D square domain �=]0,1[×]0,1[, with
zero body force and one moving wall. A velocity u=(1,0)T is imposed on the exterior upper
boundary {y=1}, and a zero velocity u=(0,0)T is enforced on the other three sides.

Figure 1 shows the velocity vectors and the pressure fields of the flow for, respectively, the IPM
and the IPMP formulations, with a discretization of order k=2 for velocity and order k−1=1 for
pressure. Results fit to the expected solution; note that around the two upper corners the pressure
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Figure 1. Driven cavity IPM (top) and IPMP (bottom) results for second-order velocity and linear pressure:
(a) IPM velocity and pressure with �=10 and (b) IPMP velocity and pressure with �=10 and �=1000/h2.
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0 0.7

1 1

0 0.7(a) (b)

Figure 2. IPM velocity solution with 140 elements, fourth-order velocity approximation and �=20:
(a) velocity streamlines and (b) scaled velocity.

takes not bounded values because of the discontinuity of the velocity. Recall that the computation
of velocity and pressure is completely decoupled using the IPMP, with the corresponding saving
in computational cost. Nevertheless, it is worth noting that the use of the non-consistent parameter
�=1000/h2 in the IPMP considerably increases the condition number of the matrix. Moreover,
although similar accuracy is obtained for the velocity field, for the same discretization the IPM
provides more accurate and stable results for the pressure field than the IPMP.

The same example is now used for a rectangular cavity �=]0,0.7[×]0,1[. Figure 2 illustrates
the results obtained using the IPM formulation. The results present the expected behavior. Contra-
rotating vortices are created in the corners opposite to the moving wall. In the representation of
the velocity vectors, only the direction of the flow is represented, all the arrows have the same
length so that the contra-rotating vortices can be noticed. The velocity streamlines are represented
as well to prove that the contra-rotating vortices have small amplitude compared with the main
vortex movement.

5.2. Analytical example

An example with analytical solution is now considered to study the accuracy and convergence
properties of the proposed methodologies. The Stokes equations are solved in a 2D square domain
�=]0,1[×]0,1[ with Dirichlet boundary conditions on three edges, and a Neumann boundary
condition on the fourth edge {y=0}. A body force

f=

⎛⎜⎜⎜⎜⎜⎝
12(1−2y)x4+24(−1+2y)x3+12(−4y+6y2−4y3+1)x2

+(−2+24(y−3y2+2y3))x+1−4y+12y2−8y3

8(1−6y+6y2)x3+12(−1+6y−6y2)x2

+(4+48(y2− y3)+24(y4− y))x−12y2+24y3−12y4

⎞⎟⎟⎟⎟⎟⎠
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is imposed in order to have the polynomial exact solution

u=
(

x2(1−x)2(2y−6y2+4y3)

−y2(1− y)2(2x−6x2+4x3)

)

p= x(1−x)

5.2.1. IPM analysis. The behavior of the IPM formulation is first studied. In all examples, the
consistent penalty term � is set to a sufficiently large value to ensure the coercivity of the form
aIP(, ), see Equation (11a). In practice, moderate values of this penalty term are required.

Figure 3 shows the IPM solution obtained with an approximation of degree k=2 and 4 for
the velocity field (k−1 for pressure), with the same number of degrees of freedom. One of the
advantages of the proposed method is that the order of the approximation can be easily increased,
with a straightforward modification of the definition of the solenoidal and irrotational bases, see
Section 4. As expected, the higher-order approximation provides more accurate results, with smaller
discontinuities in the solution, especially for the pressure field.
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Figure 3. IPM velocity vectors and pressure field for two different orders of approximation:
(a) velocity and pressure with degree k=2, 256 elements and �=10 and (b) velocity and pressure

with degree k=4, 72 elements and �=40.
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Figure 4. IPM convergence results with velocity approximation of degree k=2,3,4 and pressure
interpolation of degree k−1, with �=10,20,40, respectively: (a) velocity 2 error; (b) velocity

energy error; and (c) pressure 2 error.

These results also confirm that the condition proposed in [20] to ensure the coercivity of the
bilinear form is also valid for the IPM formulation with solenoidal approximation proposed here.
The explicit formula used for the computation of the consistent penalty parameter is

�≈a�k2 (23)

where a is a positive constant and k is the degree of the velocity approximation.
Figure 4 shows the convergence under h-refinement, for different orders of approximation of

the velocity and pressure. Optimal convergence is obtained using polynomials of degree k to
approximate the velocity and k−1 for pressure; that is, convergence of order k+1 for the velocity
2 norm, order k for the energy norm, and order of k for the pressure 2 norm. As usual in

consistent IPM formulations, a penalty term of order h−1, i.e constant �, suffices to maintain the
optimal convergence rates for any order of approximation. As seen in the following examples, this
is not the case for the non-consistent penalty � in the IPMP formulation.

5.2.2. IPMP analysis. The IPMP behavior is tested with the same analytical example. First, the
influence of the non-consistent penalty term � is analyzed. The IPMP velocity for an approximation
of degree k=3, with two different values of the non-consistent penalty parameter � is depicted
in Figure 5. As previously commented, rather large values of � are necessary to ensure moderate
discontinuities of the normal velocity.

Figure 6 shows the results for two different orders of approximation. Again, higher-order
approximations provide more accurate results for the same number of degrees of freedom, especially
for the pressure field that presents much better continuity.
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(a) (b)

Figure 5. IPMP velocity solution (top) and detail (bottom) for two different values of the penalty term �
with a third-order velocity approximation and 32 elements: (a) �=5/h4 and (b) �=2000/h4.

Figure 7 shows the evolution of the error under h-refinement for different orders of approximation
of the velocity and pressure, using the IPMP formulation. As usual for non-consistent penalty
formulations [18], almost optimal converge rates are achieved using a penalty term of order h−k .
As previously noted, the need of large values for the penalty � is the main drawback of the IPMP
formulation, because of the ill-conditioning of the matrices in the solution with fine meshes. For
instance, for a computation with fourth-order interpolation of the velocity and 72 elements, the
dimension of the system of equations to be solved for the IPM (with velocity and hybrid pressures)
is 1350, whereas for the IPMP (with only velocities) the dimension is 1308. The reduction in the
number of degrees of freedom is thus appreciable for the IPMP case, but in return the condition
number of the matrix is higher for the IPMP formulation: around 5×109 for the IPMP with
�=40, and 4×107 for the IPM with the same � and �=4000/h4. Moreover, under h-refinement
or p-refinement, the condition number grows faster for the IPMP than for the IPM.

To further compare the IPM and IPMP formulations, Figure 8 plots the errors obtained for
velocity and pressure with both methods. Similar accuracy is obtained for the velocity field and
the main differences are present in the pressure results. Although both methods provide optimal
convergence rates, more accurate results for pressure are obtained with a coupled computation
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Figure 6. IPMP velocity vectors and pressure field for different orders of approximation: (a) velocity and
pressure with degree k=2, 256 elements, �=10 and �=1000/h2 and (b) velocity and pressure with

degree k=4, 72 elements, �=40 and �=4000/h4.

of hybrid pressures and velocities, using the IPM formulation. As commented in the previous
example in Section 5.2, the computation of pressures as a post-process of velocities with the IPMP
represents a saving in computational cost, preserving the accuracy in the velocity field, but with a
slightly worse solution for pressure.

5.3. Flow in an idealized porous medium

A fluid in an idealized porous medium is subject to a friction force proportional to the fluid velocity
u. This kind of problem is derived from the Stokes equations and it follows Darcy’s law. It is valid
for slow, viscous flow, such as groundwater flows. The problem to be solved is

−∇·r= −�u in �̂

∇·u= 0 in �̂

u= uD on �D

�n⊗u� = 0 on �

�n·r� = 0 on �
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Figure 7. IPMP convergence results with degree k=2,3,4 for velocity and degree k−1 for pressure, with
�=10,20,40 and �=1000/h2,2000/h3,4000/h4, respectively: (a) velocity 2 error; (b) velocity energy

error; and (c) pressure 2 error.
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Figure 8. Comparison of the errors obtained with IPM and IPMP, for a cubic approximation of the velocity
(left) and a quadratic interpolation of the pressure (right), with �=20 and �=2000/h3.

where � is the inverse of the local permeability of the medium (�=0 for an empty medium and
�=+∞ for a solid wall), see [21].

These equations are solved in the computational domain shown in Figure 9, consisting of a long
straight channel of height l and length L=10l. The porous domain is limited to the central part of
length 5l. The Dirichlet boundary conditions prescribe a parabolic velocity profile at the inlet and
at the outlet, and a no-slip condition for the fluid on the channel side. The porous domain is filled
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Figure 9. Computational domain. The porous domain is limited to the
central part, of length 5l and height l.
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Figure 10. Velocity vectors within the porous domain of length 5l. The grey part represents a porous
material, the white ones an empty domain.

with porous material of arbitrary value �=100 for 2.5<x<7.5 except for two regions verifying

x ∈]3.5,6.5[ and y∈]0, 13 [∪] 23 ,1[
where empty medium is assumed, see white region in Figure 10.

Details of the IPM velocity result in the porous domain are shown in Figure 10, demonstrating
the capability of the IPM formulation for the solution of these problem types. As expected, the
two empty regions divert the flow away from the center of the channel: the flow tends to go into
the empty domains, with higher velocities than the porous region.

6. CONCLUDING REMARKS

Two discontinuous Galerkin (DG) formulations with solenoidal approximation for the simulation
of incompressible flow are proposed, with application to the Stokes equation. Following the
methodology of the interior penalty method (IPM), and considering a solenoidal and irrotational
decomposition of the interpolation space, an efficient DG formulation for the computation of
velocities and hybrid pressures (pressures along the element sides) is developed. Moreover, the
introduction of a penalty parameter for the weak enforcement of continuity of the normal velocity
along element sides leads to an alternative DG formulation where the computation of velocities
and pressures is completely decoupled. This second formulation coincides with the formulation
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proposed in [13] and allows to compute the velocity field with no presence of pressure terms; the
pressure field can then be obtained as a post-process of the velocity solution.

Numerical experiments demonstrate the applicability of the proposed methods, with optimal
convergence rates under h-refinement. The effect of the penalty parameter is also analyzed: as usual
in IPM formulations, a penalty of order h−1 provides optimal results, whereas the non-consistent
penalty in the second formulation must be of order h−k , with k the degree of the approximation.
Thus, for large engineering computations this second formulation represents an important save
in the number of degrees of freedom in front of the IPM or alternative formulations, but as
usual in non-consistent penalty formulations, it may lead to ill-conditioned systems of equations.
Moreover, for the same discretization the IPM provides more accurate pressure results than the
second formulation.
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SUMMARY

An Interior Penalty Method and a Compact Discontinuous Galerkin method are proposed and
compared for the solution of the steady incompressible Navier-Stokes equations. Both compact
formulations can be easily applied using high-order piecewise divergence-free approximations, leading
to two uncoupled problems: one associated to velocity and hybrid pressure, and the other one only
concerned with the computation of pressures in the elements interior. Numerical examples compare
efficiency and accuracy of both proposed methods. Copyright c© 2007 John Wiley & Sons, Ltd.

key words: Compact Discontinuous Galerkin; Interior Penalty Method; Navier-Stokes; high-order;

solenoidal; incompressible; hybrid pressure

1. INTRODUCTION

Recently several authors have focused their attention on Discontinuous Galerkin (DG)
formulations for computational fluid dynamics [1], and in particular for incompressible flow.
Divergence-free high-order approximations are easily defined within a DG framework for
incompressible problems. Namely, a divergence-free polynomial base is considered in each
element. The divergence-free approach induces an important decrement in the number of
degrees of freedom with the corresponding reduction in computational cost. Following this
idea, in [2, 3, 4, 5, 6] Stokes equations are solved using a decomposition of the approximation
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space for the velocity field as direct sum of a solenoidal space and an irrotational space. This
allows to split the DG weak form in two uncoupled problems: the first one solves for velocities
and hybrid pressures (pressure along the mesh sides/faces) and the second one allows the
computation of pressure in the interior of the elements.

Many DG methods have recently been developed in the framework of computational
fluid dynamics, such as the Local Discontinuous Galerkin (LDG) method [7], the Compact
Discontinuous Galerkin (CDG) method [8], or the Interior Penalty Method (IPM) [6]. LDG
proposes a mixed formulation with vorticity, velocity and pressure. Lifting operators are
introduced to substitute vorticity, thus leading to a velocity-pressure formulation. LDG has
been successfully analyzed and applied to Stokes, Oseen and Navier-Stokes equations, see for
instance [7]. However, one major drawback of LDG is the loss of compactness due to the
introduction of lifting factors. That is, the LDG stencil goes beyond immediate neighbors, in
front of the usual DG stencil where degrees of freedom in one element are connected only to
those in the neighboring elements. To avoid this loss of compactness, Compact Discontinuous
Galerkin (CDG) was introduced in [8] with application to elliptic problems. CDG is very similar
to LDG but it eliminates coupling between degrees of freedom of non-neighboring elements by
means of alternative local lifting operators. Another possible compact formulation is obtained
when using an Interior Penalty Method (IPM), which was first introduced by Arnold [9] for
second-order parabolic equations. An IPM with piecewise solenoidal approximation is proposed
for the solution of incompressible Stokes equations in [6].

IPM and CDG have many points in common, both methods inducing compact formulations
and leading to symmetric and coercive bilinear forms for self-adjoint operators. Nevertheless,
one of the most remarkable differences is that the IPM formulation does not involve lifting
operators, leading to a much simpler and straight-forward implementation, with a non-
negligible reduction in computational cost. To further compare these methods, IPM and CDG
formulations are derived in this paper for the solution of the incompressible Navier-Stokes
equations. For IPM, the rationale proposed in [6] in the context of Stokes equations is extended
to Navier-Stokes equations. The CDG formulation is derived following the basis of the method
for elliptic problems presented in [8]. Both compact formulations can be easily applied using
high-order piecewise divergence-free approximations.

The contributions of this paper are presented as follows. The DG formulations for the
solution of the incompressible Navier-Stokes equations, with Dirichlet and Neumann boundary
conditions, are presented in Section 2.2 for IPM, and in Section 2.3 for CDG. Particularization
of the two weak forms with a splitting of the velocity space into solenoidal and irrotational
parts is detailed in Section 2.4. Numerical tests show the applicability of both methodologies
(IPM and CDG) and compare their accuracy in Section 3.

2. THE NAVIER-STOKES PROBLEM AND TWO ALTERNATIVE FORMULATIONS
2.1. Problem statement and definitions

Let Ω ⊂ Rnsd be an open bounded domain, with boundary ∂Ω, and nsd the number of
spatial dimensions. The strong form for the homogeneous steady incompressible Navier-Stokes
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problem can be written as:

−2∇ · (ν∇su) + ∇p + (u · ∇)u = f in Ω (1a)
∇·u = 0 in Ω (1b)

u = uD on ΓD (1c)
−pn+ 2ν(n · ∇s)u = t on ΓN (1d)

where ∂Ω = ΓD ∪ ΓN , ΓD ∩ ΓN = ∅, f ∈ L2(Ω) is a source term, u is the flux velocity
and p its pressure, ν is the kinematic viscosity, n is the exterior unit normal vector, and
∇s = 1

2 (∇ + ∇T ). In (1a), the constant density has been absorbed into the pressure.
Moreover, suppose that Ω is partitioned in nel disjoint subdomains Ωi,

Ω =
nel⋃

i=1

Ωi, Ωi ∩ Ωj = ∅ for i 6= j,

with piecewise linear boundaries ∂Ωi, which define an internal interphase Γ

Γ :=
[ nel⋃

i=1

∂Ωi

]
\∂Ω.

The jump J·K and mean {·} operators are defined along the interface Γ using values from
the elements to the left and to the right of the interface (say, Ωi and Ωj) and are also extended
along the exterior boundary (only values in Ω are employed), namely

J⊚K =

{
⊚i +⊚j on Γ,
⊚ on ∂Ω,

and {⊚} =

{
κi ⊚i +κj⊚j on Γ,
⊚ on ∂Ω.

Usually κi = κj = 1/2 but, in general, these two scalars are only required to verify κi +κj = 1,
see for instance [10]. The major difference between the mean and the jump operator is that
the latter always involves the normal to the interface or to the domain. For instance, given
two contiguous subdomains Ωi and Ωj their exterior unit normals are denoted respectively ni

and nj (recall that ni = −nj) and along ∂Ω the exterior unit normal is denoted by n; the
jump is then

JpnK =

{
pi ni + pj nj = ni(pi − pj) on Γ
pn on ∂Ω

for scalars, see [6] for vectors or tensors.
The following discrete finite element spaces are also introduced

Vh = {v ∈ [L2(Ω)]nsd ; v|Ωi
∈ [Pk(Ωi)]nsd ∀Ωi}

Qh = {q ∈ [L2(Ω)] ; q|Ωi
∈ [Pk−1(Ωi)] ∀Ωi}

where Pk(Ωi) is the space of polynomial functions of degree at most k ≥ 1 in Ωi.
Finally, in the following equations

(·, ·) denotes the L2 scalar product in Ω, that is

(
p, q
)

=
∫

Ω

p q dΩ for scalars,
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(
u,v

)
=
∫

Ω

u ·v dΩ for vectors,

(
σ, τ

)
=
∫

Ω

σ : τ dΩ for second order tensors.

Analogously,
(·, ·)

Υ
denotes the L2 scalar product in any domain Υ ⊂ Γ ∪ ∂Ω. For instance,

(
p, q
)
Υ

=
∫

Υ

p q dΓ

for scalars.

2.2. Interior Penalty Method

Here, the Interior Penalty approach presented in [6] for the Stokes equations, is extended to
the Navier-Stokes equations. The weak form containing the nonlinear convection becomes, find
uh ∈ Vh and ph ∈ Qh such that

aIP
(
uh,v

)
+ c
(
uh;uh,v

)
+ b
(
v, ph

)
+
(
{ph}, Jn ·vK)

Γ∪ΓD
= lIP

(
v
)

∀ v ∈ Vh,

b
(
uh, q

)
+
(
{q}, Jn ·uhK

)
Γ∪ΓD

=
(
q,n ·uD

)
ΓD

∀ q ∈ Qh,
(2)

where the following forms must be defined,

aIP
(
u,v

)
:=
(
2ν∇su,∇sv

)
+ C11

(
Jn⊗ uK, Jn⊗ vK

)
Γ∪ΓD

−
(
2ν{∇su}, Jn⊗ vK

)
Γ∪ΓD

−
(
Jn⊗ uK, 2ν{∇sv}

)
Γ∪ΓD

, (3a)

lIP
(
v
)

:=
(
f ,v

)
+
(
t,v
)
ΓN

+ C11

(
uD,v

)
ΓD

−
(
n⊗ uD, 2ν∇sv

)
ΓD

, (3b)

c
(
w;u,v

)
:= −

(
(w · ∇)v,u

)
+

nel∑

i=1

∫

∂Ωi\ΓN

1
2
[
(w ·ni)(uext + u)− |w ·ni| (uext − u)

] ·vdΓ

+
∫

ΓN

(w ·n)u ·vdΓ, (4a)

and

b
(
v, p
)

:= −
∫

Ω

q ∇ ·v dΩ. (4b)

The penalty parameter, a positive scalar C11 of order O(h−1), must be large enough to ensure
coercivity of the bilinear form aIP

(·, ·), see [6]. The characteristic mesh size is denoted by
h. A standard upwind numerical flux, see for instance [11], is used for the definition of the
convective term c

(·; ·, ·). In (4a), uext denotes the exterior trace of u taken over the side/face
under consideration, that is

uext(x) = lim
ε→0+

u(x+ εni) for x ∈ ∂Ωi.
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2.3. Compact Discontinuous Galerkin formulation

This section shows the application of CDG to the solution of the Navier-Stokes equations. As
usual in CDG [8], two local lifting operators are defined on interior and Dirichlet sides/faces.
For Γe ⊂ Γ ∪ ΓD, the lifting re : [L2(Γe)]n

2
sd → Σh is defined by

∫

Ω

re(σ) : τ dΩ =
∫

Γe

σ :{τ}dΓ ∀τ ∈ Σh, (5)

where Σh = {τ ∈ [L2(Ω)]n
2
sd ; τ |Ωi

∈ [Pk(Ωi)]n
2
sd i = 1, . . . , nel}. The second lifting,

se : [L2(Γe)]nsd → Σh, is such that se(v) = 0 ∀v ∈ [L2(Γe)]nsd for Γe ⊂ ΓD, and is defined by
∫

Ω

se(v) : τ dΩ =
∫

Γe

v ·Jn · τ KdΓ ∀τ ∈ Σh,

for all interior sides Γe ⊂ Γ.
The extension of CDG to Navier-Stokes equations combines the rationale detailed in [8] for

the second-order differential operators and the one proposed in [7, 12] for the first order ones.
The CDG scheme becomes: find uh ∈ Vh and ph ∈ Qh such that

aCDG
(
uh,v

)
+ c
(
uh;uh,v

)
+ b
(
v, ph

)
+
(
{ph}, Jn ·vK)

Γ∪ΓD
= lCDG

(
v
)

∀ v ∈ Vh,

b
(
uh, q

)
+
(
{q}, Jn ·uhK

)
Γ∪ΓD

=
(
q,n ·uD

)
ΓD

∀ q ∈ Qh,
(6)

where the forms c
(·; ·, ·) and b

(·, ·) are already defined in (4), and the two new forms are

aCDG
(
u,v

)
:= aIP

(
u,v

)
−
(
2νC12 ⊗ Jn · ∇svK, Jn⊗ uK

)
Γ
−
(
2νC12 ⊗ Jn · ∇suK, Jn⊗ vK

)
Γ

+
∑

Γe⊂Γ∪ΓD

(
2ν
(
re(Jn⊗ uK) + se(C12 ·Jn⊗ uK)

)
, re(Jn⊗ vK) + se(C12 ·Jn⊗ vK)

)
(7a)

lCDG
(
v
)

:= lIP
(
v
)

+
∑

Γe⊂ΓD

(
2ν re(n⊗ v), re(n⊗ uD)

)
(7b)

being aIP
(
·, ·
)

and lIP
(
·
)

the IPM forms defined in (3). The CDG forms have two parameters,
C11 and C12. The former, C11, as in IPM, is a non-negative parameter of order O(h−1). The
latter, is an additional vector, C12 ∈ Rnsd , which is defined for each interior side/face of the
domain according to

C12 =
1
2
(Sijni + Sjinj)

where Sij ∈ {0, 1} denotes the switch associated with element Ωi on the side/face that element
Ωi shares with element Ωj . There are several possible choices of the switches, always satisfying
Sij + Sji = 1, see [8, 13] for details.

Remark 1. In CDG, C11 = 0 may be considered on Γ, see [8]. However, on the Dirichlet
boundary it must be positive, C11 > 0, to treat properly boundary conditions.

Remark 2. Lifting operators in CDG are associated to individual sides/faces, and therefore
there are no connectivities between non-neighbor elements. This is also the case for IPM, but
not for LDG, see [8], as can be seen in Figure 1. IPM and CDG never connect non-neighboring
elements, whereas LDG may connect some non-neighboring elements.
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1
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1
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3
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1 2 3 4

Figure 1. Sparsity structure of the diffusion matrix for four triangles with quadratic velocity. IPM and
CDG (◦) are both compact in the sense that they only connect neighboring triangles, whereas LDG

(◦ and •) is non-compact and connects some non-neighboring triangles (3 and 4).

Remark 3. It is worth noting that the CDG weak form can be written as the IPM weak form
plus some extra terms, mainly involving CDG lifting operators, see equations (6) and (7).
The implementation of these extra lifting terms in CDG requires computing several elemental
matrices, matrix inversions and products, for every side/face (see Appendix I.1). Thus, in
addition to the implementation effort, lifting terms represent a clearly non-negligible increase
in the computational cost relative to IPM. This is also the case for transient problems and
implies a non-negligible burden mostly for explicit time integrators. Auxiliary variables for the
liftings have to be stored and computed (solving linear systems of equations in each element)
at every time step.

2.4. DG formulations with solenoidal approximations

Following [3, 2, 4, 6], the velocity space Vh is split into direct sum of a solenoidal part and an
irrotational part Vh = Sh ⊕ Ih, where

Sh =
{
v ∈ [H1(Ω)]nsd | v|Ωi

∈ [Pk(Ωi)]nsd , ∇·v|Ωi
= 0 for i = 1, . . . , nel

}
,

Ih ⊂
{
v ∈ [H1(Ω)]nsd | v|Ωi

∈ [Pk(Ωi)]nsd , ∇×v|Ωi
= 0 for i = 1, . . . , nel

}
.

For instance, a solenoidal base in a 2D triangle for an approximation of degree k = 2 is

Sh =
〈(

1
0

)
,

(
0
1

)
,

(
0
x

)
,

(
x
−y

)
,

(
y
0

)
,

(
0
x2

)
,

(
2xy
−y2

)
,

(
x2

−2xy

)
,

(
y2

0

)〉
,

(8)
and an irrotational base for k = 2 is

Ih =
〈(

x
0

)
,

(
x2

0

)
,

(
0
y2

)〉
,

see for example [3] for the construction of these basis.
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Under these circumstances, the IPM problem (2) can be split in two uncoupled problems.
The first one solves for divergence-free velocities and hybrid pressures: find uh ∈ Sh and
p̃h ∈ P h solution of

{
aIP
(
uh,v

)
+ c
(
uh;uh,v

)
+
(
p̃h, Jn ·vK)

Γ∪ΓD
= lIP

(
v
)

∀v ∈ Sh,
(
q̃, Jn ·uhK

)
Γ∪ΓD

=
(
q̃,n ·uD

)
ΓD

∀q̃ ∈ P h,
(9)

with the forms defined in (3) and (4).
The space of hybrid pressures (pressures along the sides in 2D or faces in 3D) is simply:

P h :=
{

p̃ | p̃ : Γ ∪ ΓD −→ R and p̃ = Jn ·vK for some v ∈ Sh
}

. (10)

In fact, reference [2] demonstrates that P h corresponds to piecewise polynomial pressures in
the element sides in 2D or faces in 3D.

The second problem, which requires the solution of the previous one, evaluates the “interior”
pressures: find ph ∈ Qh such that

b
(
v, ph

)
= lIP

(
v
)
− aIP

(
uh,v

)
−
(
p̃h, Jn ·vK)

Γ∪ΓD
− c
(
uh;uh,v

)
∀v ∈ Ih. (11)

It is important to note that equation (11) can be solved element by element and pressure is
its only unknown.

Analogously, using the velocity space decomposition Vh = Sh ⊕ Ih, the CDG scheme
proposed in (6) is also split in two uncoupled problems. For instance, the first problem for
CDG is: find uh ∈ Sh and p̃h ∈ P h solution of

{
aCDG

(
uh,v

)
+ c
(
uh;uh,v

)
+
(
p̃h, Jn ·vK)

Γ∪ΓD
= lCDG

(
v
)

∀v ∈ Sh,
(
q̃, Jn ·uhK

)
Γ∪ΓD

=
(
q̃,n ·uD

)
ΓD

∀q̃ ∈ P h,
(12)

with the forms defined in (7).
A major advantage of solenoidal spaces is the reduction in the number of degrees of freedom

(dof) for the DG solution. Table I and Figure 2 show the number of dof for a typical finite
element mesh corresponding to a continuous Galerkin (cG) discretization, a discontinuous
Galerkin nodal interpolation (DG), and a discontinuous Galerkin solenoidal approximation
(DGS).

2D 3D
cG 3

2k2 + 1
2k 2

3k3 + 1
2k2 + 1

3k

DG 3
2k2 + 7

2k + 2 2
3k3 + 7

2k2 + 35
6 k + 3

DGS 1
2k2 + 4k + 2 1

3k3 + 7
2k2 + 37

6 k + 3

Table I. Comparison of total number of dof, divided by the number of elements, for a typical finite
element mesh corresponding to a continuous Galerkin (cG) discretization, a discontinuous Galerkin
nodal interpolation (DG), and a discontinuous Galerkin solenoidal approximation (DGS), with order

k for velocity and k − 1 for pressure, in 2D and 3D.

Some hypothesis have been taken to obtain the formulas in Table I. For a typical kth order
continuous Galerkin finite element mesh, the number of nodes is approximated by 1

2k2nel in
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Figure 2. Comparison of the total number of dof, divided by the number of elements, for a typical finite
element mesh corresponding to a continuous Galerkin (cG) discretization, a discontinuous Galerkin
nodal interpolation (DG), and a discontinuous Galerkin solenoidal approximation (DGS), in 2D (a)

and 3D (b), with order k for velocity and k − 1 for pressure.

2D, and 1
6k3nel in 3D, where nel is the number of elements. In addition, note that for cG and

DG, the number of dof for velocities and interior pressures is contemplated, whereas for the DG
solenoidal approximation the number of dof for velocities and hybrid pressures is considered.
In this case, in order to count the dof for hybrid pressures, the number of sides in a 2D finite
element mesh is approximated by 3

2nel, and the number of faces in a 3D mesh is approximated
by 2nel.

Figure 2 shows the important reduction in dof when using a solenoidal approximation
with hybrid pressures in a DG formulation. Moreover, compared with cG, the DG solenoidal
approximation leads to less dof in 2D, and to a competitive number of dof in 3D. From the
formulas giving the number of dof in Table I other conclusions can also be derived. The
coefficient of the leading term in the dof formula is the same for cG and standard DG, and
it is greater than the corresponding coefficient for solenoidal DG. Thus, cG and standard DG
behave similarly when increasing k, whereas the growth of the number of dof of the solenoidal
DG method is much slower.

It is worth mentioning that an additional reduction in the number of dof can be achieved
introducing a non-consistent penalty parameter, to weakly enforce continuity of normal
velocities along element sides/faces. Following the rationale in [6], alternative DG formulations
can be derived, where the computation of velocity and pressure is completely decoupled, with
an apparent reduction in computational cost. Nevertheless, as usual in non-consistent penalty
formulations, it may lead to ill-conditioned systems of equations, see [6] for details.

3. NUMERICAL EXAMPLES

IPM and CDG with solenoidal approximation are compared for the steady incompressible
Navier-Stokes equations in this section. In all examples, a structured mesh of triangles is used,
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with interpolation of order k and k − 1 for velocity and pressure respectively.

3.1. Condition number of the diffusion matrix

The influence of the C11 parameter on the condition number of the diffusion matrix — the
discretization of the bilinear form aCDG

(·, ·) for CDG or aIP
(·, ·) for IPM — is studied next.

Figure 3 shows the evolution of the condition number for a regular structured mesh with
h = 1/8 and degree k = 4.
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Figure 3. Structured mesh for h = 1/8 and dependency of the condition number of the diffusion
matrix on the stabilization parameter C11, for CDG and IPM, with a fourth order approximation of

the velocity (k = 4).

For C11 ≥ 40h−1, i.e for C11 large enough to ensure coercivity of the IPM bilinear form,
similar condition numbers are obtained with both methods. Figure 3 also shows that CDG
(and it would also be the case for LDG) allows to choose a value of C11 as small as wanted,
see [8]. Nevertheless, the condition number is rather constant for small value of C11, and the
minimum value of the condition number is more or less the same for CDG and for IPM. Thus,
the flexibility of CDG for the choice of C11 does not imply any advantage in front of IPM for
the conditioning of the matrix.

3.2. Driven cavity example

A standard benchmark test for the Navier-Stokes equations is now considered. A plane flow of
an isothermal fluid in a lid-driven cavity is modelled in a 2D square domain Ω =]0, 1[×]0, 1[,
with zero body force and one moving wall. A continuous velocity

u =





(10x, 0)T for 0 ≤ x ≤ 0.1
(1, 0)T for 0.1 ≤ x ≤ 0.9
(10− 10x, 0)T for 0.9 ≤ x ≤ 1

is imposed on the exterior upper boundary {y = 1}, and a zero velocity u = (0, 0)T is enforced
on the three other sides.

Figure 4 shows the velocity streamlines, which fit to the expected solution. The main vortex
moves toward the center of the cavity for increasing Reynolds number, both CDG and IPM
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Figure 4. Velocity streamlines for CDG (left) and IPM (right), for Re = 1 (a) and Re = 400 (b),
k = 2, h = 0.0667, C11 = 10h−1.
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Figure 5. Velocity profiles at the vertical centerline for CDG and IPM, for Re = 1 (a) and Re = 400
(b), k = 2, h = 0.0667, C11 = 10h−1.
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giving very similar results. To further compare them, velocity profiles at the vertical centerline
are shown in Figure 5 for Re = 1, 400. First, it can be noticed that as the Reynolds number
increases, the boundary layers are more obvious and the variations in the velocity are sharper.
Second, results for CDG and IPM are again almost identical. To compare more precisely the
accuracy of both methods, an analytical example is taken in the next section.

3.3. Analytical example

An example with analytical solution is considered next. The steady incompressible Navier-
Stokes equations are solved in a 2D square domain Ω =]0, 1[×]0, 1[ with Dirichlet boundary
conditions on three sides, and Neumann boundary condition on the fourth side {x = 0}. A
body force

f =




−4ν(−1 + 2y)(y2 − 6xy2 + 6x2y2 − y + 6xy − 6x2y + 3x2 − 6x3 + 3x4)
+1− 2x + 4x3y2(2y2 − 2y + 1)(y − 1)2(−1 + 2x)(x− 1)3

4ν(−1 + 2x)(x2 − 6x2y + 6x2y2 − x + 6xy − 6xy2 + 3y2 − 6y3 + 3y4)
+4x2y3(−1 + 2y)(y − 1)3(2x2 − 2x + 1)(x− 1)2




is imposed in order to have the polynomial exact solution

u =

(
x2(1− x)2(2y − 6y2 + 4y3)

−y2(1− y)2(2x− 6x2 + 4x3)

)
,

p = x(1− x).

Fourth order approximation for velocity and cubic approximation for pressure (i.e. k = 4) are
considered.

The influence of C11 on the accuracy of CDG is analyzed. Figure 6 shows the results for
velocity, hybrid pressure and interior pressure L2-errors with hC11 = 1, 10, 40 and C∗11 = 0,
which denotes C11 = 0 on interior faces and C11 = h−1 on the Dirichlet boundary, see Remark
1. Optimal convergence is obtained in all cases, with similar accuracy, though larger values
C11 = 10h−1 or C11 = 40h−1 give slightly worse results for velocity and hybrid pressure errors,
but slightly better results for pressure error.

CDG and IPM are compared from an accuracy point of view in Figure 7. C11 = 40h−1 is
considered for both methods. Note that, as seen in Figure 6, C11 = 40h−1 provides accurate
results for CDG, and it is also close to the minimum value that ensures coercivity of the IPM
bilinear form. With this selection of C11, similar results are obtained: both methods reach
optimal convergence rates for velocity and hybrid pressure, with similar accuracy.

4. CONCLUSIONS

An IPM and a CDG formulation for solving the steady incompressible Navier-Stokes equations
are proposed. Both methods can be easily applied using high-order piecewise divergence-free
approximations, leading to two uncoupled problems: one for velocities and hybrid pressures,
and one for an element-by-element computation of pressure in the interior of the elements.

Although both formulations are derived from different rationales, CDG can be written as
the IPM formulation plus some extra terms, some of them related to lifting operators. These
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Figure 6. Comparison of L2-errors obtained with CDG for different values of C11, for a fourth order
approximation of the velocity and a cubic interpolation of hybrid and interior pressures.

extra terms allow more flexibility in the choice of the C11 parameter, which can even be set
as C11 = 0 for all internal sides/faces in CDG, whereas it has to be taken big enough in the
whole domain to ensure coercivity of the bilinear form of IPM.

Though the bilinear form of CDG introduces more terms, the stencil is the same in both
methods, and both formulations present the major advantage –relative to LDG for example–
that they are compact formulations: degrees of freedom of one element are only connected to
those of immediate neighbors.

Numerical experiments reveal that IPM and CDG present similar results for the condition
number of the diffusion matrix, and for the accuracy of the numerical solution, both reaching
optimal convergence rates for velocity and pressure.

Thus, the main differences between both methods are that CDG is less sensitive to the
selection of the penalty parameter (tuning of C11 is almost eliminated), but it has the major
disadvantage of the implementation and computation of the lifting operators. That is, IPM
leads to a simpler and straight-forward implementation, avoiding the extra computational cost
associated to CDG or LDG liftings.
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Figure 7. Comparison of L2-errors obtained with CDG and IPM, for a fourth order approximation of
the velocity and a cubic interpolation of hybrid and interior pressures, with C11 = 40h−1.

APPENDIX

I.1. Implementation of lifting operators

CDG introduces the concept of lifting operators, whose implementation is not trivial. As an
example, the discretization of the lifting product

∫
Ω

re(Jn ⊗ uK) : re(Jn ⊗ vK)dΩ in (7a) is
commented next.

In the following, solenoidal vector functions are discretized in each element Ωk (for k =
1, . . . , nel) with a solenoidal vector basis φk

i (see section 2.4) as

v =
nbf∑

i=1

φk
i vk

i in Ωk

with some scalar coefficients vk
i , where nbf is the number of basis functions in each element.

The solenoidal discrete space in Ωk is denoted as S(Ωk) :=< φk
i >nbf

i=1. The corresponding
space of tensor functions is ∇sS(Ωk), and therefore, a tensor τ ∈ ∇sS(Ωk) will be

expressed as τ =
ntf∑

i=1

ψk
i τ

k
i in Ωk, with constant vectors τ k

i ∈ R, ψk
i ∈ ∇sS(Ωk) and
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ntf = dim
{∇sS(Ωk)

}
. For instance, for k = 2 a solenoidal basis is detailed in (8) and a

tensor basis of ∇sS(Ωk) is
〈(

0 1
2

1
2 0

)
,

(
1 0
0 −1

)
,

(
0 x
x 0

)
,

(
2y x
x −2y

)
,

(
2x −y
−y −2x

)
,

(
0 y
y 0

)〉
.

Moreover, for every side Γe, or face in 3D, ℓ(e, 1) and ℓ(e, 2) respectively denote the numbers
of the first element (left element) and the second element (right element) sharing the side.
Figure 8 shows an example where side Γ13 is shared by elements Ω37 and Ω22, thus for this
side ℓ(13, 1) = 37 and ℓ(13, 2) = 22.

Ω
37

Ω
22

Γ
13

n37

n22

Figure 8. Elements Ω37 and Ω22 share face Γ13; n37 and n22 are respectively exterior unit normals to
Ω37 and Ω22.

In CDG, lifting terms are implemented with a loop in sides (faces in 3D). Thus, let us
consider a side Γe = Ωℓ(e,1) ∩ Ωℓ(e,2). The lifting operator associated to side Γe, re, is zero
outside Ωℓ(e,1) ∪Ωℓ(e,2). Thus, the lifting term appearing in the bilinear form can be expressed
as a sum of integrals in Ωℓ(e,1) and Ωℓ(e,2),

∫

Ω

re(Jn⊗ uK) : re(Jn⊗ vK)dΩ

=
∫

Ωℓ(e,1)

re(Jn⊗ uK) : re(Jn⊗ vK)dΩ +
∫

Ωℓ(e,2)

re(Jn⊗ uK) : re(Jn⊗ vK)dΩ,

requiring the computation of re only in Ωℓ(e,1) and Ωℓ(e,2). In fact, given the discontinuous
nature of the test functions τ in (5), the lifting can be computed separately in each one of the
two elements. For instance, taking test functions τ with support in Ωℓ(e,1), first equation in
(5) is particularized as

∫

Ωℓ(e,1)

re(Jn⊗ uK) : τ dΩ =
1
2

∫

Γe

Jn⊗ uK : τdΓ ∀τ ∈ ∇sS(Ωℓ(e,1)), (13)

which can be interpreted as a formula for computing the lifting in the first element, i.e re|Ωℓ(e,1) .
Discretization of (13) leads to the matrix equation

MΩℓ(e,1) re,1
u = Se

11 uℓ(e,1) + Se
21 uℓ(e,2) (14)

where uℓ(e,1) and uℓ(e,2) are vectors containing the coefficients of the interpolation of u in
Ωℓ(e,1) and Ωℓ(e,2) respectively, re,1

u is a vector containing the coefficients corresponding to the
lifting of Jn⊗ uK in the first element, that is

re(Jn⊗ uK) =
ntf∑

i=1

ψ
ℓ(e,1)
i (re,1

u )i in Ωℓ(e,1),
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and MΩk (for k = 1, . . . , nel) and Se
αβ (for α, β = 1, 2) are block matrices given by

[MΩk ]ij =
∫

Ωk

ψk
i :ψk

j dΩ, for i, j = 1 . . . ntf

[Se
αβ ]ij =

1
2

∫

Γe

ψ
ℓ(e,β)
i :(nℓ(e,α) ⊗ φℓ(e,α)

j ) dΓ, for i = 1 . . . ntf and j = 1 . . . nbf.

For illustration purposes, note that for the example in Figure 8, exterior normal vectors
appearing in the definition of Se

αβ are nℓ(e,1) = n37 and nℓ(e,2) = n22, that is, exterior
unit normals to Ω37 and Ω22 respectively.

Analogously, the lifting in Ωℓ(e,2) is determined by

MΩℓ(e,2) re,2
u = Se

12 uℓ(e,1) + Se
22 uℓ(e,2),

where re,2
u is the vector containing the coefficients corresponding to the lifting re(Jn⊗ uK) in

Ωℓ(e,2).
Now, using the discretization of the lifting (14), the contribution of the first element Ωℓ(e,1)

to the lifting product appearing in the CDG weak form corresponds to
∫

Ωℓ(e,1)

re(Jn⊗ vK) : re(Jn⊗ uK) dΩ = (re,1
v )T MΩℓ(e,1)re,1

u

=
(
Se

11 vℓ(e,1) + Se
21 vℓ(e,2)

)T

(MΩℓ(e,1))−1
(
Se

11 uℓ(e,1) + Se
21 uℓ(e,2)

)
.

Finally, following the same derivation for the second element, and summing the contribution
of both elements, the lifting product appearing in the CDG weak form for the e-th side Γe

corresponds to
∫

Ω

re(Jn⊗ vK) : re(Jn⊗ uK) dΩ =(vℓ(e,1))T Ke
11u

ℓ(e,1) + (vℓ(e,1))T Ke
12u

ℓ(e,2)

+(vℓ(e,2))T Ke
22u

ℓ(e,2) + (vℓ(e,2))T (Ke
12)

T uℓ(e,1)

with matrices given by

Ke
αβ = (Se

α1)
T (MΩℓ(e,1))−1Se

β1 + (Se
α2)

T (MΩℓ(e,2))−1Se
β2

for α, β = 1, 2.
Thus, implementing a lifting term implies computing three matrices for each face Γe, to

be assembled in rows and columns corresponding to elements sharing this face, i.e elements
(matrix blocks) with indexes ℓ(e, 1) and ℓ(e, 2).

Note that computing these matrices involves several elemental matrices, matrix inversions
and products, with a clearly non-negligible increase in computational cost. Moreover, for
transient problems solved with explicit time integrators, implementing the lifting also
represents an important increase in computational cost: auxiliary variables for liftings have
to be stored and computed (solving linear systems of equations in each element) at every time
step.
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