Chapter 1

Introduction

In this chapter, the reasons for the dissipativity and passivity-related properties to be
studied in nonlinear discrete-time systems will be described. The new contributions and
main results of this dissertation will be briefly presented. Finally, the contents of this
work will be outlined.

1.1 Motivation

We are devoted to advance in the study of the behaviour of nonlinear discrete-time sys-
tems by means of its energy properties.

If we want to modify the behaviour of some system dynamics, what is usually called
“control”, it must be approximated by means of a model. The richest approximation
of reality is a nonlinear model. The representations we are interested in will be time-
depending in order to define the evolution of the system as time goes forward. These
time-depending representations may be of two kinds: the continuous-time or the discrete-
time ones. The latter appears when time is divided in intervals and the system dynamics
is only evaluated at the extremes of these intervals.

A great deal of phenomena appears when discrete-time systems are treated, some
of these phenomena are not present in the continuous-time counterpart. Although the
interest of discrete-time dynamics is important by itself, we can also bring up for consid-
eration the discrete-time dynamics obtained from continuous-time ones, in other words,
the study of discretized systems.

Most discrete-time systems are sampled-data systems obtained from continuous-time
systems by means of a sample-and-hold element. In practice, discrete-time systems ap-
pear continually in the control systems field. Computer-controlled systems are sampled-
data systems, since computers work in discrete time and therefore, they are discrete-time
systems by nature. Thus, the calculations carried out on a digital computer in order to
control a system by implementing a control algorithm result in a sampled-data system.
For such a system, the input to the system is kept constant over a certain period of time,
regarded as the sampling period. This procedure will give rise to transform the properties
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of the original system. The motivation of treating this kind of systems is of paramount
clearness.

Besides, we can claim the possibility of associating a discrete-time system to a
continuous-time system by means of the Poincaré map. The field of discrete-time sys-
tems offers fascinating ways in the dynamical systems theory progress.

There are a lot of problems broadly treated in the continuous-time case which have
not attracted as significant attention in the discrete-time domain, this is the case of the
dissipativity and passivity-related properties. The works dedicated to this field in the
discrete-time case are considerably less than the ones appearing for the continous-time
one.

There are three main problems in the study of nonlinear discrete-time systems:

1. The discretization of a nonlinear continuous-time system, searching for the
best representation. The characteristics of a discretized system will depend in
large measure on the kind of discretization made. The best discrete-time represen-
tation of a continuous-time system is the exact discretization, which is not always
possible, since the system flow is needed to be obtained. The approximated solu-
tions to the discretization problem are presented as more usual alternatives:

¢ Discrete system as the approximation of the system time-response.

* Discretization methods based upon the approximation of the derivative (multi-
step methods or single-step methods, as Euler, Heun, Taylor and Runge-Kutta
ones).

* The use of the algebraic approach:

— The use of series expansion of exponential type (Monaco and Normand-
Cyrot, 1986) [102], (Monaco and Normand-Cyrot, 1990) [108].

— Consideration of input-output models in addition to Volterra series (Mo-
naco and Normand-Cyrot, 1986) [103, 102]), (Monaco and Normand-
Cyrot, 1987) [104]).

An interesting solution to the discretization problem is given by the multirate sam-
pling technique (Grizzle and Kokotovic, 1988) [47], (Monaco and Normand-Cyrot,
1988) [107], (Monaco and Normand-Cyrot, 1990) [108], (Monaco and Normand-
Cyrot, 1991) [109], with its applications (Chelouah, 1994) [20], (Chelouah and
Petitot, 1995) [21], (Monaco and Normand-Cyrot, 1992) [110], (Georgiou et al.,
1992) [43], where the input is sampled in a faster way than the states and the
outputs. In addition, it is presented as a solution to the loss of the linearization
property under the discretization of the system.

2. The effect of the discretization on the system properties. Intuitively, it can
be understood that the fact of sampling a continuous-time system will change its
initial properties, such as: stability, controllability, observability, relative-degree
property, zero dynamics characteristics, dissipativity features, and so on. We could
think about what happens in relation to dissipativity and feedback dissipativity
properties of a system when this one is discretized. This will not be the goal of
our work, on the contrary, discrete models will be studied. Anyway, we may con-
jecture that if the relative degree and the zero dynamics play an important role on
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the characterization of the passivity and the passivation properties for continuous-
time systems, then the study of the preservation under sampling of passivity and
passivation properties seems to be based upon the study of the changes in the rela-
tive degree and the stability properties of the zero dynamics, which, in general, are
not preserved under sampling. For a recent study of the relative degree and zero
dynamics under sampling see (Monaco and Normand-Cyrot, 2001) [114].

3. The study of intrinsically discrete-time systems. There are two main points of
view in the study of discrete-time systems, mainly:

e Using an algebraic basis (standing out (Aranda-Bricaire et al., 1996) [8],
(Grizzle, 1993) [48], (Fliess, 1990) [33]).

* Via a geometric approach (for instance, (Grizzle, 1985) [46], (Monaco and
Normand-Cyrot, 1984) [101], (Jakubczyk and Sontag, 1990) [60]).

In this dissertation, dissipativity and passivity will be treated from the point of view
of the third approach pointed out before. Above these approaches, two ways in treating
the study of discrete-time systems can be put forward, that is:

1. Using the existing approaches for the continuous-time case and adapting them for
the discrete-time case. This line will be followed in most of this dissertation.

2. Using mathematical tools defined in the discrete domain, in order to take the most
of the properties of discrete-time dynamics. Discrete-time systems, and mainly
nonlinear ones, have their own characteristics different from continuous-time ones,
that is the reason why different analysis tools and approaches from the ones used
for the continuous-time case are compelled to use.

We are devoted to treat discrete-time systems of the form:

x(k+1) = f(x(k),u(k)) (1.D)
y(k) = h(x(k),u(k)) (1.2)

where f: & XU - X, h: Z XU — % are smooth maps, with 2™ an open subset
of R" and %, % open subsets of R™. This is a general representation for discrete-time
systems. Using an affine structure will not necessarily simplify the problem, so it is wor-
thy to consider more general models, in addition, considering the case of a discrete-time
system coming from a continuous-time one, we can notice that an exact discretization,
generally, does not yield an affine model in the input.

This research merges the worth of deeping in the nonlinear discrete-time control field
to the worth of studying systems dynamics in terms of their energy characteristics. The
study of the behaviour of a system in terms of the energy it can store or dissipate has
an extraordinary value, since it gives a rather physical and intuitive interpretation of
problems, such as, the system stability properties or the transformation of the system to
another one, in such a way that the new system behaves as we want. The study of systems
by means of their associated energy is very appropriate in the analysis of mechanical,
electromechanical or electrical systems, among others.

This work will be centered on the study of the energy of systems in terms of their
dissipativity property and its particular case of passivity. A dissipative system is such



4 1 Introduction

a system which cannot store all the energy that has been given, that is, it dissipates
energy in some way. We are interested in the definition of a dissipative system based
on the existence of a storage function (representing the energy stored by the system),
a supply function (external energy received by the system) and a dissipation function
(representing the total energy dissipated by the system in some time interval). The idea
of stored energy can be used connected to the system stability, considering the stored
energy function as a Lyapunov-like function. In fact, dissipative systems benefit from
stability properties. A passive system with an equilibrium point at the origin, and having
a differentiable positive definite storage function, which is zero at the origin, is stable
in the sense of Lyapunov considering a zero-input to the system. Furthermore, passive
systems are weakly minimum phase systems (Byrnes et al., 1991) [12], since if the system
output is rendered zero by means of an adequate feedback, the remaining dynamics or
zero dynamics is Lyapunov stable.

Besides, dissipativity concepts will make possible to distinguish different parts or
components of the systems dynamics. Depending the stored energy of the system along
the trajectories of the system decreases, increases or remains, we will speak of the dis-
sipative, non-dissipative or invariant-energy (also called lossless) part of the system,
respectively.

Dissipative and passive systems are concluded to enjoy highly desirable properties,
namely, the ones referring to stability and representation properties which may simplify
the system analysis and control design. Hence, we are motivated to handle with dissipa-
tive systems, and if they are not dissipative trying to convert them into dissipative ones.
A way which comes to us in order to make this transformation is a state feedback. For
control purposes, we are accustomed to making transformations in the system structure,
for example, the linearization by state feedback or coordinate transformations, a solu-
tion giving rise to a new system representation which can hide a lot of system structural
properties. The fact of making a system dissipative or passive, known as feedback dissi-
pativity or passivation, respectively, appears to be a more natural system transformation.
The result of the feedback dissipativity process is a system which keeps on being nonlin-
ear and has interesting characteristics for controlling some of its variables. There are a lot
of examples of taking advantage of the dissipativity approach in the study of mechanical
and electro-mechanical systems. In Chapter 2, some of the most important applications
of the dissipativity-based approach will be mentioned, and along this dissertation, its
beneficial characteristics will be reviewed.

1.2 Main contributions

The contributions of this dissertation are classified into three main goals or problems to
solve, such as:

1. The characterization of dissipative systems of general form represented by the
system (1.1)-(1.2), what is regarded as Kalman-Yakubovich-Popov conditions. In
the literature, the Kalman-Yakubovich-Popov conditions have been established for
the nonlinear discrete-time case for systems affine in the control input, that is:
see (Byrnes and Lin, 1993) [13] and (Byrnes and Lin, 1994) [14] for the pas-
sivity and losslessness case, respectively, and (Sengor, 1995) [151], (Géknar and
Sengor, 1998) [44] for the dissipativity and losslessness cases. The existing condi-
tions for the dissipativity and losslessness cases are extended to a class of nonlinear
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multiple-input multiple-output dissipative and lossless discrete-time systems of the
form (1.1)-(1.2) in Chapter 4. The class of dissipativity and losslessness charac-
terized is regarded as QSS-dissipativity and QSS-losslessness, respectively.

2. The feedback dissipativity problem, and its special case of feedback passivity or
passivation problem, i.e., the transformation of a nonlinear discrete-time system of
the form (1.1)-(1.2) into a dissipative (or passive) one by means of a static-state
feedback law. This problem has not been studied in the literature in the nonlin-
ear discrete-time setting. Indeed, for the linear case, the problems of feedback
passivity and feedback (Q, S, R)-dissipativity are treated in the framework of the
positive real control problem and the (Q, S, R)-dissipative control problem, respec-
tively, in connection with H., design, see (de Souza and Xie, 1992) [164], (Souza
et al., 1993) [165] for the positive control problem and (7an et al., 1999) [170],
(Tan et al., 2000) [171] for the (Q,S,R)-dissipative control problem. Concern-
ing the nonlinear case, only the feedback losslessness problem has been solved
for affine-in-the-input systems (Byrnes and Lin, 1994) [14]. Therefore, this is the
main contribution of this dissertation. Two approaches are proposed to deal with
this problem:

(a) Solving the feedback dissipativity problem through the fundamental dis-
sipativity inequality. Chapter 5 is devoted to this goal. In this chapter,
sufficient conditions under which a class of single-input single-output non-
affine discrete-time systems are feedback dissipative are given, as well as, the
proposal of four methodologies in order to solve the feedback dissipativity
problem in such systems. The feedback losslessness problem for non-affine-
in-the-input systems is also treated, this can be also considered as a new
contribution.

(b) Solving the feedback passivity problem of a class of multiple-input multi-
ple-output affine-in-the-input discrete-time systems using the properties
of the relative degree and the zero dynamics. These results are presented
in Chapter 7 and are an extension to the passivity case of the ones given
in (Byrnes and Lin, 1994) [14] where the feedback losslessness problem is
reported. The fact of concluding the special properties of the relative degree
of passive nonlinear discrete-time systems which are affine in the control
input is also a new contribution.

3. The dissipativity-based stabilization problem. In other words, the use of dis-
sipativity and feedback dissipativity properties for control purposes. Chapter 6
deals with this problem. In this chapter, the feedback dissipativity results achieved
in Chapter 5 are used. The consequences of feedback dissipativity properties
in systems stability are shown. The main contribution is the extension of the
Energy Shaping and Damping Injection methodology, proposed and used in the
continuous-time setting, to the case of single-input single-output systems of the
form (1.1)-(1.2), in addition to the application of the new feedback dissipativity
techniques proposed in Chapter 5 for stabilization purposes. The passivity-based
stabilization approaches existing in the nonlinear discrete-time domain given by
two main approaches, that is, Byrnes and Lin’s work (Lin and Byrnes, 1995)
[87, 891, (Lin, 1996) [91] and Sengor’s work (Sengor, 1995) [151] will not be
used, since the Energy Shaping and Damping Injection approach appears to be
more appropriate in order to be combined with our feedback dissipativity results.
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In all the mentioned results, the state-space or internal description representation of
systems is used. Besides, passivity and feedback passivity have been treated as special
cases of dissipativity and feedback dissipativity, respectively, with the exclusion of the
results given in Chapter 7. Another kind of approach and spirit is given in Chapter 8§;
the frequency-domain properties of passivity and dissipativity are used to give light to
some problems not broadly treated in the literature, such as: passivity preservation under
feedback and parallel interconnections, some notes on dissipativity and passivity under
sampling, and the study of the relations between dissipativity and some of the most im-
portant frequency-based feedback stability criteria in the discrete-time domain, namely:
Tsypkin’s, Popov’s and the circle criteria.

The results given for the feedback dissipativity and the dissipativity-based stabiliza-
tion problems are applied to two examples. One of these examples is the discrete-time
model of the DC-to-DC buck converter. The stabilization of the DC-to-DC buck con-
verter by means of the dissipativity-based discrete-time techniques proposed can be also
considered as a contribution of this dissertation.

On the other hand, the fact of treating general discrete-time systems has allowed us to
extend some dissipativity-related definitions for the case of general single-input single-
output continuous-time systems of the form

x(t) J(x(2),u(r))
y() = h(x(t),u(t))

Chapter 3 collects these results. The main contributions of this chapter are the following
ones:

1. The proposal of the feedback dissipativity problem as an extension to the nonlinear
non-affine case of the feedback passivity problem given in (Sira-Ramirez, 1998)
[159] for nonlinear systems which are affine in the control input.

2. The use of the feedback dissipativity results in order to extend the Energy Shaping
and Damping Injection controller design method to the case of non-affine nonlin-
ear systems.

1.3 Outline

The present dissertation is divided into the following chapters.

To begin with, a revision of the work preceding ours will be made in Chapter 2, not
only the nonlinear discrete-time case, but also the linear and the continuous-time cases.
Three main parts will be considered in this chapter, corresponding to the three main goals
of this dissertation, that is:

1. Characterization of dissipative systems.

2. The feedback dissipativity problem.

3. Dissipativity-based stabilization and control.

Some dissipativity-related results achieved in the continuous-time case for non-affine-
in-the-input nonlinear systems are given in Chapter 3. A set of necessary and sufficient
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conditions fulfilled for a class of multiple-input multiple-output dissipative systems are
proposed. The feedback dissipativity problem is treated for a class of single-input single-
output dissipative systems. Besides, some stability implications are derived for dissipa-
tive systems with special supply functions. These stability conclusions, in addition to
the feedback dissipativity results, are used in order to extend the Energy Shaping and
Damping Injection controller design methodology to the case of non-affine nonlinear
systems. Finally, a Generalized Hamiltonian-type form for nonlinear systems is derived;
and feedback dissipative systems, i.e., systems which can be rendered dissipative, are
shown to exhibit special features and stabilization properties if they are written in the
form proposed.

Chapter 4 is devoted to the proposal of the Kalman-Yakubovich-Popov conditions for
a class of multiple-input multiple-output discrete-time systems of the form (1.1)-(1.2).
Either the dissipativity or the losslessness case is treated. A new class of dissipative
systems is introduced, what is regarded as QSS-dissipative systems, i.e., dissipative sys-
tems whose storage (V) and supply (s) functions satisfy V(f(x,u)) and s(h(x,u),u) are
quadratic in u. QSS-dissipativity characterization will be used to solve the passivation
problem in nonlinear discrete-time systems affine in the control input in Chapter 7.

The feedback dissipativity problem for single-input single-output systems of the form
(1.1)-(1.2) is treated in Chapter 5. In this chapter, the definitions and formalization of the
feedback dissipativity problem are given. First of all, sufficient conditions under which a
class of non-affine discrete-time systems can be rendered dissipative are derived. Then,
four feedback dissipativity methodologies are proposed. They are based on the estab-
lishment of the input u which satisfies the fundamental dissipativity inequality. The first
method proposes an implicit solution for this problem. The second one uses the speed-
gradient algorithm in its discrete-time version. The last two methods are of approximate
type. In these last two cases, dissipativity is conceived as a “perturbation” of the storage
energy invariance or the system losslessness situations. For these feedback dissipativity
methodologies, the errors of the approximation are bounded, and sufficient conditions
under which the approximation made is valid are given. The four feedback dissipativity
methods are illustrated by means of two examples: a discrete-time model of the DC-
to-DC buck converter proposed in this chapter, and an academic nonlinear discrete-time
system. For the examples, the feedback passivity problem is treated. The validity of the
passifying control and the admissible values for the constants appearing in the passifying
scheme are analyzed for each example.

The problem of using dissipativity and feedback dissipativity properties proposed in
Chapter 5 for stabilization purposes is dealt with in Chapter 6. In this chapter, some dis-
sipativity stability-related results will be formalized. Sufficient conditions under which
a class of single-input single-output feedback dissipative systems of the form (1.1)-
(1.2) can be stabilizable are given, in addition to, the extension of the Energy Shaping
and Damping Injection methodology to the case of a class of dissipative single-input
single-output nonlinear discrete-time systems of the form (1.1)-(1.2). The four feedback
dissipativity methods proposed in Chapter 5 are used in the Energy Shaping and Damp-
ing Injection scheme in order to stabilize two systems orbits around a desired fixed point.
The systems treated are the two examples presented in Chapter 5.

An alternative to the passivation problem given in Chapter 5 is proposed in Chapter 7.
Here, the feedback passivity problem for a class of multiple-input multiple-output non-
linear discrete-time systems affine in the control input is solved using the properties of
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the relative degree and zero dynamics of the non-passive system. For this aim, the special
properties that the relative degree and zero dynamics of passive discrete-time systems, ei-
ther linear or nonlinear, exhibit are shown. The passivation methodology proposed in this
chapter is used for stabilization purposes; it is applied to the stabilization around the sys-
tem fixed point of the nonlinear example proposed in Chapter 5. The feedback passivity
scheme is used to passify the DC-to-DC buck converter example, the frequency-domain
properties of the passified system are analyzed.

A different chapter in spirit to the rest of the chapters of this dissertation is Chapter 8.
This chapter is conceived as a results collecting one in which some kind of formalism
is lost. Chapter 8 differs from Chapter 2 due to the fact that it gives some small con-
tributions. Some implications of dissipativity and passivity in the discrete-time setting
are collected, and the frequency-domain properties of dissipativity and passivity are used
in order to illustrate such special characteristics that dissipative and passive systems ex-
hibit. The properties studied are, mainly: the preservation of passivity under parallel and
feedback interconnections, the study of the preservation of passivity and dissipativity un-
der sampling, and the use of the frequency-domain implications of dissipative systems
in order to study nonlinear feedback systems absolute stability in the discrete-time do-
main. All the implications of dissipativity and passivity presented in this chapter can be
considered as approaches to explore and study in a deeper way in the future.

The conclusions and suggestions for further research are emplaced in Chapter 9. In
this chapter, the conclusions and comments for future work given in each chapter are
collected, in addition to give some research lines initiated which have not been closed
yet.

After Chapter 9, the Appendix and the Bibliography are presented. In the Appendix,
some of the most important dissipativity and passivity characterizations appeared in the
literature for the continuous-time and discrete-time cases are given.



