Chapter 3

Dissipativity-related results in
the continuous-time case

3.1 Introduction

The purpose of this chapter is to show some results obtained for the continuous-time
case relating dissipativity, feedback dissipativity and stabilization of dissipative systems.
These results will be extended for the discrete-time case in the following chapters of
this dissertation, and they are based on the existing results given in the literature for the
affine-in-the-input nonlinear continuous-time case.

The KYP properties will be proposed for a class of multiple-input multiple-output
dissipative systems. This characterization will be extended to the case of discrete-time
systems in Chapter 4.

The feedback dissipativity problem will be treated for the case of single-input single-
output non-affine nonlinear systems. As it was pointed out in Section 2.4.1, feedback
dissipativity will be based on a different definition for dissipative systems, what will be
regarded as (V,s)-dissipative systems. The main feature of this class of dissipativity is
that it is based on the establishment of an a priori storage function V.

Using the dissipativity definitions and the feedback dissipativity results, the stability
implications of a class of dissipative systems will be revisited. These conclusions will be
used to suitably extend the ESDI controller design method to the general nonlinear case.

A dissipativity-oriented form for nonlinear systems which is of the Generalized Ham-
iltonian type is also proposed. Feedback dissipative systems are shown to be easily
characterized in terms of such a form and some notes are given relating the use of this
form for stabilization purposes.

This chapter is organized as follows. Section 3.2 presents the systems to be treated
and some notes on the nomenclature used along the chapter. A characterization for a class
of dissipative systems is given in Section 3.3. Section 3.4 revisits the definitions about
dissipative systems and feedback dissipative systems, and deals with the proposal of a
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36 3 Dissipativity-related results in the continuous-time case

solution to the feedback dissipativity problem. Section 3.5, in addition to the results given
in Section 3.4, sets the stage for the extension of the ESDI controller design methodology
to the non-affine nonlinear systems case. Section 3.6 presents the extension of the ESDI
design method. Section 3.7 deals with the derivation of a Generalized Hamiltonian-type
form for nonlinear systems. Feedback dissipative systems are shown to exhibit special
features if they are written in the form proposed, and some notes on the stabilization
problem through this form are also pointed out. The conclusions and suggestions for
further research are presented in the last section.

Most of the results presented in this chapter are extracted from (Sira-Ramirez and
Navarro-Lopez, 2000) [161].

3.2 Generalities

Let a nonlinear system of the form

X = fxu), xeZ, ue? (3.1)
y = h(xu), yE¥ 3.2)

where f: XU — % and h: X X % — % are smooth mappings with f(0,0) =0,
and 2" an open subset of R", %, % open subsets of R™. The open set 2" x % is such
that contains the origin (0,0).

Along this chapter different dissipativity-related concepts will be treated. The for-
malism for dissipativity to use is the dissipativity definition given in Chapter 2 as Defini-
tion 2.4. This definition implies the use of a storage function V, a supply function s and
a dissipation function ¢. The storage function V is considered as a positive definite, C2
function, V : 2~ — R whose row gradient, with respect to x, is denoted by dV /dx, and
V(0) = 0. The supply function is another % function, with s : % x % — R. The dissi-
pation function is a ¢! function ¢ : 2° x % — R with ¢(-,u) positive for each u € %,
and ¢(0,0) = 0.

With some abuse of notation, we use Lie derivatives to briefly express time derivatives
of scalar functions of the state. Thus, for a fixed u

v

V= gf(x,u) :Lf( V(x) (3.3)

X, u)
Similarly, we write

av._ 9 [V OV [(Of\
Eialem [Ef(x,u)} = <E> _L%V(x) (G4

3.3 Towards the KYP property in the general continuous-time case

Proposition 3.1 (Sira-Ramirez and Navarro-Lépez, 2000) [161] Let a system of the form
(3.1)-(3.2) be dissipative, then

Lf(x’())v(x) < S(/’l(x,()),()) 3.5)
Ly V() = %S(h(x,u),u)—%cb(x,u) (3.6)

where ¢ is defined by equation (2.7).
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Proof. The first relation directly follows from the infinitesimal version of the defi-

nition of dissipativity (2.7). Indeed, using the fact that V = L Flx M)V(x) < s(y,u) and

letting # = 0. Relation (3.6) follows by taking partial derivatives with respect to u in
2.7).

]

Example 3.1 Consider the case in which f(x,u) = f(x) + g(x)u with y = h(x), s(y,u) =
y'u and ¢ only depending on x, then (3.5) and (3.6) take the form,

L. V(x)<0, L, V(x)=hl(x)=y" 3.7

f(x)()— g(x)() (x)=y (3.7

which is a well known form of the KYP conditions, see (2.31)-(2.32). For systems affine
in the control input, with y = h(x) + k(x)u, conditions (3.5)-(3.6) are obtained as

Lf(x)V(x) <0, Lg(x)V(x) = (h(x) 4+ 2k(x)u)" = (y+ k(x)u)” (3.8)

If functions V and s are considered in such a way that L £l u) V(x) and s(h(x,u),u)

are quadratic in u, then relations (3.5)-(3.6) yield necessary and sufficient conditions. In
the following theorem, conditions for a class of dissipative systems such that L £l ) V(x)

and s(h(x,u),u) are quadratic in u are given.

Theorem 3.1 Suppose there exists a € function V such that L (x, ) V(x) is quadratic

f

in u. Then, a continuous-time system of the form (3.1)-(3.2) is dissipative with a €*
supply function s(y,u) satisfying s(h(x,u),u) quadratic in u, and with storage function
V,V:Z = RY, V(0) =0, if and only if, there exist real functions I(x) and k(x), I :
X =R,k X — R, for some integer q, such that

L 1, O)V(x) = s(h(x,0),0) —IT (x)I(x) (3.9)
L, V() = %s(h(x,u),u) — 20T (x)k(x) (3.10)
du u=0 u=0
2
Ly, V() = %s(h(x, u),u) - 2kT (x)k(x) (3.11)
9u2 u=0 u=

Proof. (Necessity): If system (3.1)-(3.2) is dissipative (Definition 2.4) there exists a
function ¢ satisfying equality (2.7). Since

Lt u)

are quadratic in u, the dissipation rate function ¢ can be written as follows (as it is
proposed in (Hill and Moylan, 1976) [53]),

V(x), s(h(x,u),u)

¢ (x,u) = [1(x) + k(x)u]” [1(x) + k(x)u] >0, Yu € % (3.12)

for some real functions /(x) and k(x). Condition (3.9) is obtained from the infinitesimal
version of the dissipativity equality (2.6), i.e., restricting (2.7) to u = 0 and considering
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the derivative of V along the trajectories of system (3.1)-(3.2), and taking ¢(x,u) as
defined in (3.12). Conditions (3.10) and (3.11) follow from the first-order and the second-
order derivative of (2.7) with respect to u, considering (3.12) and u = 0.

(Sufficiency): Assume there exist real functions /(x), k(x) which satisfy conditions
(3.9)-(3.11).

Multiplying equality (3.10) by u” from the left and adding (3.9), it is obtained

d
Lf(x, O)V(x) +u” L%V(x) L = s(h(x,0),0) +u” Es(h(x,u),u) - -
20T (x)k(x)u — 17 (x)1(x) (3.13)

Adding to the right-hand side of (3.13) u” k" (x)k(x)u — u” k” (x)k(x)u and using (3.11),
one yields to

1 1, 02
W' kM (Ok(u=—=u" L , V(x)|  u+=u’ =—=s(h(x,u),u)| u (3.14)
2 2f 27 Ju? 0
du u=0 u
Then, from (3.13) and (3.14),
1
L V(x)+ul L, V(x +-ul L, V(x u=
a0V LV Lo V)
(1(2.0).0)+ " s+ 5t e
= s(h(x u' =—s(h(x,u),u —u =—5s(h(x,u),u u—
b b au b b 40 2 au2 b b 4=
—(x,u) (3.15)

with ¢ as defined in (3.12). By claiming that L ( )V(x) and s(h(x,u),u) are quadratic

S, u

in u, the second-order Taylor expansion at u = 0 of L £l u) V(x) and s(h(x,u),u) can be

considered in (3.15), and then
L p )V ) = (b)) = 9 (x,0),

which is the dissipativity equality (2.7).

Remark 3.1 Conditions (3.9)-(3.11) are a form of rewriting for a class of non-affine
in the control input dissipative systems the conditions appeared in (Hill and Moylan,
1976) [53] for (Q, R, S)-dissipativity for nonlinear systems affine in the control input (see
Theorem A.I in Appendix A). Besides, dissipativity conditions shown in Theorem 3.1
are of the same type as the ones proposed in (Lin, 1995) [86], see Proposition A.l in
Appendix A, with the difference that conditions given in (Lin, 1995) [86] are necessary
conditions for systems (3.1)-(3.2) to be passive.

3.4 Feedback dissipativity

This section is devoted to the feedback dissipativity problem for single-input single-
output continuous-time systems.
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Let y: 2 x% — % be a %" function of its arguments. A nonlinear static state
feedback control law is denoted by the expression u = y(x,v) withv € % C R.

As it was pointed out in Section 2.4.1 the notion of (V,s)-dissipativity will be intro-
duced here to treat the feedback dissipativity problem in the continuous-time setting.

Definition 3.1 Let the system (3.1)-(3.2) withm = 1. The system (3.1)-(3.2) with storage
Sfunction V and supply function s is said to be (V,s)-dissipative (resp., strictly (V,s)-
dissipative) if there exists a €' function ¢ : X x U — R such that ¢(-,u) is positive
(resp., strictly positive) for each u € % and

V(x) =s(h(x,u),u) — ¢(x,u), VY(xu) € XU (3.16)

Consider a locally regular feedback control law u = y(x,v), as it was defined in Def-
inition 2.10. By the feedback transformed system we mean the system x = f(x, y(x,v)),

which may be also denoted by x = f(x,v). We also denote by A(x,v) the function
h(x,y(x,v)) .

Definition 3.2 Consider a system of the form (3.1)-(3.2) with m = 1 and two scalar func-
tions V(x), s(y,v) considered as a storage function and a supply function, respectively.
The system is said to be feedback dissipative (resp., feedback strictly dissipative) with
the functions V and s if there exists a regular static state feedback control law of the
Sform, u = y(x,v), with v the new input, such that the feedback transformed system is
(V,s)-dissipative (resp., strictly (V,s)-dissipative).

The existence of a feedback control law, of the form u = y(x, v), for which the system
is rendered (V,s)-dissipative must be assessed from the existence of solutions, for the
control input u, of the following equation,

L uy

V(X) :s(h(x,u),v) _¢(x7u) (3.17)
The following theorem states sufficient conditions under which feedback dissipativity
is possible.

Theorem 3.2 (Sira-Ramirez and Navarro-Lépez, 2000) [161] Consider a system of the
form (3.1)-(3.2) withm = 1 and two scalar functions V(x), s(y,v) considered as a storage
function and a supply function, respectively. Let ¢(x,u) be a given €' function ¢ :
X XU — R such that ¢(-,u) is positive for each u € U . Let (xy,uy,v,) € A, with
A=Z XU XU an open set. Suppose that the following two conditions are satisfied.:

1. There exists (xy,u,Vv,) for which the equality (3.17) holds true, i.e.

L p )V

:S(h(x():”()):vo) _d’(xoa“o)a (3.18)

(x()”"o)

d 0
[Laf V(x)—Es(h(x,u),v)—kad)(x,u) #0 (3.19)

(xo,uo,vo)
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Then, there exists a unique static state feedback control law of the form, u = y(x,v)
defined in a neighbourhood of (x,,v,) and valued in a neighbourhood of u, such that

the feedback transformed system % = f(x,v), y = h(x,v) is (V,s)-dissipative.

Proof. The proof follows directly from the implicit function theorem.

Remark 3.2 The result given is local. The feedback control law which achieves dissipa-
tivity is locally valid; control u satisfies (3.17) for all (x,v) sufficiently close to (x,v,).
In the sequel, when referring the feedback dissipativity problem we will implicitly refer
to the local feedback dissipativity problem.

Remark 3.3 If condition (3.19) is satisfied for (x,,u,,v,), it also holds in a neighbour-
hood of (x,,u,v,), in other words, there exists an open neighbourhood W = % x U, x

U, containing (xy,u,,v,) such that W C X XU XU where the following assertion is
valid,

d d ~

Ly, V(x)— 5=s(h(x,u),v) + 5=0(x,u) #0, Y(x,u,v) € # (3.20)
& (xu) du du

Condition (3.20) will be regarded as the feedback dissipativity condition in the continuous-

time setting.

Definition 3.3 A system of the form (3.1)-(3.2) with m = 1 is said to be feedback passive
if it is feedback dissipative with s = yu.

Example 3.2 For systems affine in the control, of the form x = f(x) + g(x)u, y = h(x),
s(y,u) = yu, and considering ¢ only depending on the state, condition (3.20) reduces to
the transversality condition (Sira-Ramirez, 1998) [159],

L V(x)#0
g(x) ( ) 7£ ’
which has the clear geometric interpretation of having a control vector field g(x) which
is locally nowhere tangent to the level sets { x | V(x) = constant }. Under the validity
of such a transversality condition, the existence of a feedback control law of the form,
u = o(x)+ B(x)v, is guaranteed. This is obtained from

L

) V(x) 4+ uL

g(x)V(x) = h(x)v—@(x) (3.21)

and, hence
Lf(x) V(x)+ ¢ (x) h(x)

u=o(x)+px)yv=— + v (3.22)

EOMR M
The closed-loop system
9V (x)/dx ¢(x) h(x)
i=(1-g() £(x) - g(x) + (%) v (23)
EOM Fe " gV
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satisfies,
v oV /ox ¢ (x) h(x)
|4 . (x) J(x) — g(x) +8(x) v
dx Lg ) V(x) Lg ) V(x) Lg %) V(x)
= h(x)v—¢(x) (3.24)

3.5 Dissipativity and stability

Dissipative systems and its particular case of passive systems present highly desirable
properties for a system, namely the ones referring to its stability, which may simplify
system analysis and control design. The immediate consequences of passivity are re-
ferred to the stability of the system evolving under no control actions applied to the
system and the nature of the stability of the zero dynamics associated to the zero value,
for an indefinite period of time, of the output function y. It can easily deduced that a
zero-input passive system with an equilibrium point at the origin and with a differen-
tiable positive definite storage function, which is zero at the origin, is stable in the sense
of Lyapunov. Furthermore, any passive system is weakly minimum phase (Byrnes et al.,
1991) [12], since if the system output is rendered zero by means of an adequate feedback,
the remaining dynamics or zero dynamics is Lyapunov stable.

In this section, the implications of dissipativity in the stability of a system of the
form (3.1)-(3.2) with m = 1 are treated. The results achieved in the previous section
concerning the feedback dissipativity problem will be used.

Stability will be studied for a class of dissipative systems whose supply function
holds the following property.

Definition 3.4 The supply function s(y,u) is said to satisfy the zero-input-output property

if

s(O,u) = 0, Yu € %
5(,0) 0, Ve & (3.25)

A nonlinear regular static state feedback control law of the form: u = y(x,v), which
achieves either (V,s)-dissipativity or strict (V,s)-dissipativity by means of static state
feedback, induces an implicit damping injection which makes the system locally sta-
ble (resp., asymptotically stable) for certain particular values of the transformed control
input. The meaning of this assertion is clarified in the following theorem.

Theorem 3.3 (Sira-Ramirez and Navarro-Lépez, 2000) [161] Let the system (3.1)-(3.2)
with m = 1 and two scalar functions V(x) and s(y,v) as a storage function and a supply
function, respectively. Let ¢(x,u) be a € function ¢ : & x % — R such that ¢(-,u) is
positive (resp., strictly positive) for each u € % . Suppose there exists a feedback control
law, u = y(x,v), which achieves (V,s)-dissipativity (resp., strict (V,s)-dissipativity) of the
Sfeedback transformed system with s satisfying (3.25). Then, the control law u = y(x,0)
renders the zero solution x = 0 of the system locally stable (resp., locally asymptotically
stable).
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Proof. Suppose that u = y(x, v) achieves (V, s)-dissipativity (the argument is the same
for strict (V, s)-dissipativity). Consider (2.7) and the time derivative of V(x),

Vo= ) = s(he ), — 0 V()

s(h(x, ¥(x,v)),v)

IA

Since V(x) is positive definite and s satisfies (3.25), and use is made of the above feed-
back control law with v = 0, then the resulting feedback transformed system is locally
stable to zero. Indeed, for v =0,

v

% et 0)) =
= s(h(x, ’)/(X,O)),O) - ¢(xa Y(Xa O)) = _¢(x7 ')/(X,O)) < 0

The result of the theorem follows.

3.6 The energy shaping plus damping injection method

A fundamental control problem is that of stabilization of the system trajectories around a
desired equilibrium. To this purpose, the ESDI control design methodology has been de-
veloped on the basis of modifying the stored energy of the system, to take into account the
desired equilibrium, and the addition, through state or output feedback, of the required
dissipation in order to enhance the dissipation structure of the underlying stabilization
error system. As it was pointed out in Section 2.5.2 there exist two main approaches in
treating the ESDI methodology.

In this section, the approach for the ESDI methodology given for nonlinear continu-
ous-time systems which are affine in the control input in (Sira-Ramirez, 1998) [159]
is extended to the case of non-affine nonlinear systems of the form (3.1)-(3.2). This
stabilization approach will make use of the feedback dissipativity solution given in Sec-
tion 3.4, and the stability comments concluded in Section 3.5.

Theorem 3.4 (Sira-Ramirez and Navarro-Lépez, 2000) [161] Let the system (3.1)-(3.2)
with m = 1 be a nonlinear system which may be rendered (V,s)-dissipative with the
Sunctions V(x) and s(y,v) considered as a storage function and a supply function, re-
spectively, by means of a regular nonlinear static state feedback control law of the form
u=7y(x,v), with s satisfying (3.25), i.e., let y(x,v) = U be the regular static state feedback
control representing a state dependent solution, parameterized by v, of the equality

g—‘; (x,u) = s(h(x,u),v) — ¢(x,u) (3.26)

Then, the error vector e = x — &, with & defined as

IV (e)

del

&= flxu) = flx—E.7(x—&,0) +R(x— &)

] (3.27)
e=x—¢&
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with R(e) being an n x n positive semi-definite matrix, such that

v v
%R(fz) % +0(e,u) >0 (3.28)

foreachu € %, is locally asymptotically stable fo zero. Moreover, the asymptotic stabil-
ity result holds even if R(e) is such that,

) +¢(e,u) >0 (3.29)

for each u € %, and

{1 B rerem=0po e R0 T =0 f =10 @30)

Proof. Consider the modified stored energy function V(x — &). The time derivative
of the modified energy function is given by

_ (e

V-8 =5 [ £e) = €] (3:31)

According to the dynamics assigned to the auxiliary variable &, it follows that the
time derivative of the function V (e) takes the following form

V(e) = 7 |:f(ea 'J/(e,O)) _R(e) a;/e(Te):| =

= 4 e pte.0)) - P2 i 21 <

< - [oterte0)+ TR 5| <o 6.3

del

The main result of the theorem follows from fundamental results of Lyapunov stability
theory.

To prove the second part of the theorem, consider the set,

{ ceR"|V(e) = a‘gi‘?) [ Fle,(e,0)) = R(e) a‘;ie)] —0 } (3.33)

This set clearly coincides with the set,

{ e€R" | a‘;ie) fle,y(e,0)) = ag?ﬂ@%}

The left hand side of the last equality, according to the Theorem 3.3, is a negative func-
tion, while, from the definition of R(e), the right hand side is a positive function of e. The
equality can only be valid over the set of values of e where both expressions are zero.
This implies that the set is given by

{ e €R| agie)f(e,y(e,O)) =0 }n{ e €R"| a‘;ie)le(e)%/, =0 } (3.34)
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It follows, according to the assumption in the theorem, that the invariance set, { e | V(e) =
0 }, is constituted just by the singleton represented by { ¢ € R" | ¢ =0 }. The asymp-
totic stability to zero of the trajectories of the error, e(r) = x(t) — £(¢), follows as a
consequence of LaSalle’s invariance theorem.

3.7 A dissipativity-oriented form for nonlinear systems

It will be shown that, under very mild conditions, nonlinear systems enjoy a form which
is of Generalized Hamiltonian-type form treated extensively in (Crouch and van der
Schaft, 1987) [23]. This form will present special features for dissipative systems, and
besides it will be used for stabilization purposes.

Theorem 3.5 (Sira-Ramirez and Navarro-Lopez, 2000) [161] Let the following condi-
tion be satisfied over all (x,u) in the open set X X U,

Ly V(x) #0 (3.35)

du

Then, the system (3.1)-(3.2) with m = 1 can be written in the form,

§ = )+ SCru)] 2

5 V= h(x,u) (3.36)

with
J,u) +JT (x,u) =0, S(x,u) = ST (x,u), V(x,u) € X xU

Proof. Consider the following string of equalities

X = f(xvu) =

df(x,u) | dV/ox df(x,u) | dV/dx
o)+ S5 {L;V(x)f(x’u)}_ e {L;V(x)f(x’u)}:

du du

_ df(xu) [ JV/ox df(x,u) | dV/dx

= T Ly, V() flru+=27 L%V(x)f(x’u)
_ m [ e 2L Ta(;“’ YOI g, u)} e
du
L9 g; ) Li‘f/‘//?j) £ ) (3.37)
du
On the other hand, the term
| Mo | - b (25 ] 2
% %
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can be decomposed as the sum of two further terms; one containing a symmetric matrix
and a second one having a skew-symmetric matrix.

1 d d
|: fé);,u)fT(x’u):‘ a_; —

B 1 Of () r o OfT (xu)
- 2Lafv(x){[ g T =50 }+

du

9f(x, af7 (x, oV
| 257 ) - e 220 28 (.38)

Combining this last expression with those in (3.37), one obtains,

. _ 1 8fT(x,u) af(xvu) T
YT, [f(x’“) dw ou f(x’“)}ﬁ+

du
A7 () | A1)

| . v
L, vl [f () =5 g (x’“)} Fr
u

av

= [J(xvu) + S(xa u)] W

(3.39)

therefore, one has

T X, U X, U
J(xu) = m[f(x,u)afa(u, )_8f§u, )fT(x,u)]

du
1 af" (xu) | 9f(x,u)
2L, V() [f )=+ 5,

du

S(x,u) T (x, u):| (3.40)

Remark 3.4 J(x,u) is an n X n-skew-symmetric matrix and J(x,u) gTVT represents the

energy conservative part of the system. The term S(x,u) gTVT groups the dissipative and
non-dissipative terms for the system dynamics. For stability purposes, we would like to
convert the terms appearing in S(x,u) aaTVT into dissipative ones for some energy function,
which may be different from the initial one V.

According to the last theorem, any nonlinear system for which the condition (3.35) is
satisfied, can be written in the above form. If the system is feedback dissipative (respec-
tively, feedback strictly dissipative) with s satisfying the zero-input-output property, one
can more specifically characterize the resulting closed-loop matrix, S(x, y(x,v)) = S(x,v),
as a symmetric negative semi-definite (respectively, negative definite) matrix. This is the

topic of the next theorem where we also denote J(x, ¥(x,v)) as J(x,v).

Theorem 3.6 Let the system (3.1)-(3.2) with m = 1. Let x = f(x,v), y = h(x,v) be a
system which has been rendered (V,s)-dissipative (resp., strictly (V,s)-dissipative) by
means of a regular static state feedback with s satisfying (3.25). Suppose that the follow-
ing condition is satisfied

L, V(x)#0 (3.41)

HY
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Then, there exists a neighbourhood W= XU CW=2%xU where the feedback

transformed system can be written as

x=[J(x,v) +S(x,v)] 387‘/7 (3.42)
with
Tee,v)+7 (x,v) =0, S(x,v) =5 (x,v) <0, (resp., <0) (3.43)

Proof. The fact that the feedback transformed system can be written in the Generalized
Hamiltonian-type form follows from the assumption (3.41) and from the result of the
previous Theorem 3.5. To prove the fact that S(x,v) is negative semi-definite or nega-
tive definite, consider the time derivative of the storage function V(x), and assume, for
simplicity, that the feedback transformed system is (V,s)-dissipative (the argument is the
same when the feedback transformed system is strictly (V,s)-dissipative),

) aV — oV oV —
vV = WS(X’V)X = ﬁf(xav) =

s(h(x; Y(x,v)),v) = @ (x, 7(x,v)) (3.44)

Letting v = 0 and considering (3.25), one has

oV = Vv
ﬁs(xao)g

=—¢(x,00<0 Vx € & (3.45)
Therefore, there exists a neighborhood U of the origin in %, and an open subset, 2
of &, i.e. an open neighborhood # = & x % C W = Z x %, where the following

assertion is valid,

aV — av —~
ﬁS(x,v)g <0 V(x,v) € # (3.46)

Dynamics (3.36) for a feedback dissipative system can be used for stabilization pur-
poses by means of the ESDI methodology as it was proposed in Section 3.6. Here, a note
on this topic will be given. The ESDI will be based on the proposal of an auxiliary dy-
namics based on the new expression for the system which has been rendered dissipative,
using matrices J and S as the ones proposed above.

Theorem 3.7 Let the system (3.1)-(3.2) withm = 1. Let x = f(x,v), y = h(x,v) a system
which has been rendered (V,s)-dissipative (resp., strictly (V,s)-dissipative) by means of
a regular static state feedback with s satisfying (3.25) and is written in the following form
in a neighbourhood W=ZXU CW=2xU

= [T v) +5(xv)] ;)TVT y=h(x,v) (3:47)

with

J(x,v) +7T(x, v) =0, S(x,v) = 5" (x,v), Y(x,v) € #, (3.48)
where S is a negative semi-definite matrix. Suppose the storage function'V be of the form
V = xT Px, with P a positive definite matrix.
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Then, the error vector e = x — &, with £ defined as

- V()

& = ) + 50 555 sy

deT

+R(x—¢)

, (3.49)
e=x—&
with R(e) being an n X n positive definite matrix, is locally asymptotically stable fo zero.

Proof. Consider the modified stored energy function V (x — &). The time derivative of
the modified energy function along the trajectories of (3.47) is given by

Ve-g)= 2

- - v :

[7(x,v) +5(x, )] ) _g (3.50)
e=x—¢& dx"
Taking into account the dynamics assigned to the auxiliary variable & (3.49), it follows
from (3.50) that the time derivative of the function V (e) is

. _dV(e) [ = - aV(x) dV(&) aV(e) | _
Vie) = S {[J(x,v)—l—S(x,v)] [ T oEt } —R(e) 30T }—
aV(e) aV(e)

[J(x,v) +S(x,v) — R(e)] (3.51)

deT

de

Inan opensubset # = 2 x % of & x U, S(x,v) is negative semi-definite, then

Vie) = % [7(x,v)+§(x,v) —R(e)] a;/e(f) <
. _ax;ie) R(e) 8(;/6(;) <0

The main result follows from fundamental results of Lyapunov stability.

3.8 Conclusions and future work

In this chapter, some dissipativity-related results have been obtained for continuous-time
nonlinear systems which are non-affine in the control input.

A set of necessary and sufficient conditions fulfilled for a class of multiple-input
multiple-output dissipative nonlinear systems which are non-affine in the control input
have been proposed. The characterization is restricted to systems for which the derivative
of the storage function V along the trajectories of the system and the supply function s
are quadratic in u. These conditions can be considered a form of rewriting for the non-
affine case the conditions appeared in (Hill and Moylan, 1976) [53] given for (Q,R,S)-
dissipativity for nonlinear systems affine in the control input.

The feedback dissipativity problem has also been treated for a class of single-input
single-output dissipative systems regarded as (V,s)-dissipative systems. The control
which achieves feedback dissipativity is obtained as the solution of the fundamental dis-
sipativity equality, and is locally valid. This proposal can be considered as an extension to
the nonlinear non-affine case of the feedback passivity problem given in (Sira-Ramirez,
1998) [159] for nonlinear systems which are affine in the control input.
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Some stability implications have been derived for dissipative systems with supply
functions having the property of what has been regarded as zero-input-output property.
These stability conclusions in addition to the feedback dissipativity results have been
used in order to extend the ESDI controller design methodology to the case of non-affine
nonlinear systems. Besides, under mild conditions, a form of writing dissipative systems
has been clearly found indicating the conservative, the dissipation, the de-stabilizing
and the external energy acquisition terms. This form points to an interesting “energy
managing structure”, which drives the state velocity in terms of contributions of stored
energy gradient projections. This way of writing dissipative systems is quite helpful in
nonlinear feedback controller design tasks, as it was shown in Section 3.7, where the
(J,S)-form for dissipative systems is used for stabilization purposes through the ESDI
control design methodology.

The results here obtained can be extended, with some technical difficulties, to the case
of general multivariable nonlinear systems. We have obtained some preliminary results
for the multivariable case. They concern to the proposal of a dissipativity form as the one
proposed in Section 3.7 using Lyapunov vector functions in order to solve the feedback
dissipativity problem and to stabilize the system by means of the ESDI approach. These
results are considered to be out of the interest of this dissertation, however, they will be
revisited in the Conclusions chapter of this dissertation (Chapter 9).

The conclusions obtained in this chapter referring dissipativity, feedback dissipativity
and stability implications for dissipative systems, as well as the ESDI approach will be
extended to the discrete-time case in Chapters 4, 5 and 6, respectively.



