
Chapter 4

Towards the characterization of
general discrete-time dissipative
systems

4.1 Introduction

The aim of this chapter is to make an advance in the study of the properties of nonlinear
discrete-time dissipative and lossless systems. The existing approaches in the literature
will be used, basically, the ones based on the state-space dynamical represetation and the
use of the storage and the supply functions.

Dissipativity and losslessness properties of multiple-input multiple-output discrete-
time systems which are nonlinear in the states and the control input will be examined.

Necessary conditions for the characterization of a class of dissipative and lossless sys-
tems, regarded as

�
V � s � -dissipative and

�
V � s � -lossless systems will be given. Necessary

and sufficient conditions for a class of dissipative and lossless nonlinear discrete-time
systems will be proposed. The kind of dissipativity and losslessness treated will be
regarded as QSS (Quadratic Storage Supply) dissipativity and QSS-losslessness, respec-
tively, referring to

�
V � s � -dissipative and

�
V � s � -lossless systems whose storage (V ) and

supply (s) functions are such that V
�
f
�
x � u ��� and s

�
h
�
x � u ��� u � are quadratic in u.

Most of the conditions existing in the literature, addressed as KYP conditions, either
for dissipative, passive or lossless cases, are strictly contained in the proposed dissipativ-
ity properties.

This chapter is organized as follows. Section 4.2 explains the kind of formalization
for dissipativity to be adopted along the chapter. Section 4.3 is endeavoured to the study
of dissipativity properties, whereas Section 4.4 is devoted to the losslessness problem.
Conclusions and further research are presented in the last section.
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50 4 Towards the characterization of general discrete-time dissipative systems

4.2 Formalization of dissipativity-related concepts

There are two important representations of dynamical systems: the input-output descrip-
tion via an operator on a function space, and the state-space description.

The input-output representation requires minimal knowledge of the physical system
laws and its internal interconnections. It can be used for discrete-time and continuous-
time dynamics in the same framework and is based on functional analysis.

The state-space representation deals with the internal description of the system and
its physical behaviour and interconnections are described by means of a model which
generally takes the form of a differential or a difference equation, for the continuous-
time or the discrete-time case, respectively. As it is well known, in this description,
two different parts can be distinguished: a dynamical part, usually regarded as the state
equation, which describes the evolution of the states under the influence of the inputs,
and a memoryless part relating the output to the state and the input.

Dissipativity and passivity can be formalized from these two different points of view:
considering the input-output description of the system via an operator on a function
space or via the state-space or internal dynamical representation. The former endows
the frequency-domain characterization of dissipativity; for the discrete-time case, see for
example (Wu and Desoer, 1970) [182], (Popov, 1973) [141], (Goodwin and Sin, 1984)
[45], (Albertos, 1993) [1]. The latter interprets dissipativity by means of an energy bal-
ance equation; for the discrete-time case, see for example (Byrnes and Lin, 1994) [14],
(Sengör, 1995) [151].

In this dissertation, the state-space or internal description approach will be used.
Therefore, the basis of our results will be the definitions given in Chapter 2.

Let the system

x
�
k � 1 ��� f

�
x
�
k ��� u � k ����� x �� E� u �+! (4.1)

y
�
k �(� h

�
x
�
k ��� u � k ����� y �"& (4.2)

where f :  o
�!G#' , and h :  7
�!G#E& are smooth maps with  an open subset
of ℜn, and ! , & open subsets of ℜm. k � Z J : �_K 0 � 1 � 2 ������� M . All considerations will
be restricted to an open set of  (
"! containing

�
x � u � , having x as an isolated fixed

point of f
�
x � u � , i.e., f

�
x � u ��� x. We consider a positive definite C2 function V :  o# ℜ,

V
�
0 �9� 0, associated with the system (4.1)-(4.2) and addressed as the storage function.

A second C2 function is also considered, called the supply function, denoted by s
�
y � u � ,

with s : &/
,!1# ℜ.

Definition 4.1 A 0 2 function φ :  7
X!/# ℜ, such that φ
�@? � u � is positive (respectively,

strictly positive) for each u �N! , with φ
�
0 � 0 ��� 0 is regarded as a dissipation rate (resp.,

strict dissipation rate) function in the sense proposed in Hill and Moylan [55].

The dissipativity definition in the discrete-time nonlinear setting given in Byrnes and
Lin [14] will be rewritten in the following way.

Definition 4.2 The system (4.1)-(4.2) with storage function V
�
x � and supply function

s
�
y � u � is said to be

�
V � s � -dissipative (resp., strictly

�
V � s � -dissipative) if there exists a
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dissipation rate (resp., strict dissipation rate) function φ such that

V
�
f
�
x � u ��� � V

�
x ��� s

�
h
�
x � u ��� u � � φ

�
x � u ����4 � x � u ���) �
,! (4.3)

Definition 4.3 The system (4.1)-(4.2) is said to be V-passive if it is
�
V � s � -dissipative with

respect to the supply rate s
�
y � u ��� yT u.

4.3 Dissipativity in the discrete-time domain

The properties that a system has to meet in order to be passive or dissipative are usually
known as the KYP conditions. The KYP conditions for passivity were originally estab-
lished in the discrete-time domain by Hitz and Anderson in (Hitz and Anderson, 1969)
[58] for the linear case as the Positive Discrete Real Lemma. As it was pointed out in
Chapter 2, the KYP lemma was first proposed for linear systems, finding the relation
between passivity and its frequency stability properties. In the sequel, when the KYP de-
nomination is used, we will refer to the conditions that any dissipative or passive system
fulfils.

In the literature, the KYP conditions have not been established in a general way for
dissipative or passive nonlinear discrete-time systems of the form (4.1)-(4.2). There exist
necessary and sufficient conditions for characterizing passive nonlinear discrete-time sys-
tems of the affine form x

�
k � 1 ��� f

�
x
�
k ����� g

�
x
�
k ��� u � k ��� y � k �9� h

�
x
�
k ����� J

�
x
�
k ��� u � k � ,

presumed the stored energy function V satisfies V
�
f
�
x �B� g

�
x � u � is quadratic in u (Byrnes

and Lin, 1993) [13]. Necessary conditions for systems of the form (4.1)-(4.2) to be pas-
sive are stated in (Lin, 1995) [86]. Moreover, the necessary and sufficient conditions
for dissipativity in the discrete-time setting appearing in (Sengör, 1995) [151], (Gök-
nar and Sengör, 1998) [44] are proposed for affine-in-control system structures as well.
For single-input multiple-output nonlinear systems which are non-affine in the control
input, the KYP conditions for passivity and losslessness are proposed in (Monaco and
Normand-Cyrot, 1997, 1999) [112, 113], where the authors phocus on systems which
can be expanded by exponential Lie series; in this dissertation, this kind of passivity and
losslessness characterization will not be used.

It must be pointed out that, in the literature, the KYP denomination is usually used for
the set of properties for a passive or a dissipative system characterization, even if they are
only necessary conditions. In this sense, the following conditions are proposed, which
are fulfilled by any nonlinear discrete-time dissipative system of the form (4.1)-(4.2).
The corresponding result for passive systems is obtained taking s � yT u.

Proposition 4.1 (Navarro-López et al., 2002) [119] Let a discrete-time system of the
form (4.1)-(4.2) be

�
V � s � -dissipative, then

V
�
f
�
x � 0 ��� � V

�
x ��8 s

�
h
�
x � 0 ��� 0 � (4.4)

∂
∂u

V
�
f
�
x � u ����� ∂

∂u2
s
�
h
�
x � u1 ��� u2 � YYYY u1 � u

u2 � u

� ∂
∂y

s
�
y � u � ∂

∂u
h
�
x � u � �

� ∂
∂u

φ
�
x � u � (4.5)

with φ a dissipation rate function.
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Proof. Inequality (4.4) directly follows from (4.3), taking u � 0. Equality (4.5) is
obtained by taking partial derivatives with respect to u in equation (4.3).

Remark 4.1 If we consider the dissipation rate function φ only depending on the state,
equation (4.5) takes the form

∂
∂u

V
�
f
�
x � u ����� ∂

∂u2
s
�
h
�
x � u1 ��� u2 � YYYY u1 � u

u2 � u

� ∂
∂y

s
�
y � u � ∂

∂u
h
�
x � u � (4.6)

where we can clearly identify two terms: a term resulting from the general form of the
supply function and a term resulting from the feed-forward presence of the input in the
output equation.

Remark 4.2 The necessary conditions for passive systems of the form (4.1)-(4.2) given
in (Lin, 1995) [86] are different from the ones given in (4.4) and (4.5). In Lin’s work, the
passivity inequality is used and no dissipation rate function φ is introduced.

If functions V
�
f
�
x � u ��� and s

�
h
�
x � u ��� u � are quadratic in u, then relations (4.4)-(4.5)

yield necessary and sufficient conditions as Theorem 4.1 shows. Taking into account
these conditions, our characterization is restricted to a class of dissipative systems for
which the storage function V is such that V

�
f
�
x � u ��� is quadratic in u, as well as the

supply function s is such that s
�
h
�
x � u ��� u � is quadratic in u. Therefore, for clearness’

sake, the following definition is introduced.

Definition 4.4 A system of the form (4.1)-(4.2) is said to be QSS (Quadratic Storage Sup-
ply) dissipative if it is

�
V � s � -dissipative with a storage function V and a supply function

s such that V
�
f
�
x � u ��� and s

�
h
�
x � u ��� u � are quadratic in u.

Theorem 4.1 (Navarro-López and Fossas, 2002) [121] Let V and s be storage and sup-
ply functions such that V

�
f
�
x � u ��� and s

�
h
�
x � u ��� u � are quadratic in u. Then, a discrete-

time nonlinear system of the form (4.1)-(4.2) is QSS-dissipative with V and s, if and only
if, there exist real functions l

�
x � , m

�
x � and k

�
x � , all of appropriate dimensions such that

V
�
f
�
x � 0 ��� � V

�
x �(� s

�
h
�
x � 0 ��� 0 � � lT � x � l � x � � mT � x � m � x � (4.7)

∂V
�
z �

∂ z YYYY z P f U x l 0 V ∂ f
�
x � u �

∂u YYYY u P 0
� 2lT � x � k � x �(� ∂

∂u
s
�
h
�
x � u ��� u � YYYY u P 0

(4.8)

g ∂ f
�
x � u �

∂u h T YYYYY u P 0

∂ 2V
�
z �

∂ z2 YYYY z P f U x l 0 V ∂ f
�
x � u �

∂u YYYY u P 0
� ∂V

�
z �

∂ z YYYY z P f U x l 0 V ∂ 2 f
�
x � u �

∂u2 YYYY u P 0
�

� ∂ 2

∂u2 s
�
h
�
x � u ��� u � YYYY u P 0

�� 2kT � x � k � x � (4.9)
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Proof. (Necessity): Consider Definitions 4.2 and 4.4. If system (4.1)-(4.2) is QSS-
dissipative, there exists a positive function φ satisfying (4.3). Since V

�
f
�
x � u ��� and

s
�
h
�
x � u ��� u � are quadratic in u, the dissipation rate function φ can be written as follows

φ
�
x � u ���_� l � x ��� k

�
x � u 	 T � l � x ��� k

�
x � u 	`� mT � x � m � x �96 0 �C4 u �+! (4.10)

for some real functions m
�
x � , l
�
x � and k

�
x � . Condition (4.7) is obtained restricting (4.3)

to u � 0, and taking φ
�
x � u � as defined in (4.10). Conditions (4.8) and (4.9) follow from

the first-order derivative and the second-order derivative of (4.3) with respect to u, con-
sidering (4.10) and u � 0.

(Sufficiency): Assume there exist real functions m
�
x ��� l � x ��� k � x � which satisfy con-

ditions (4.7)-(4.9). Multiplying equality (4.8) by uT from the left and adding (4.7), it is
obtained

V
�
f
�
x � 0 ��� � V

�
x ��� uT ∂

∂u
V
�
f
�
x � u ��� YYYY u P 0

� s
�
h
�
x � 0 ��� 0 ��� uT ∂

∂u
s
�
h
�
x � u ��� u � YYYY u P 0

�� 2lT � x � k � x � u � lT � x � l � x � � mT � x � m � x �
(4.11)

Adding to the right-hand side term of (4.11) uT kT ku � uT kT ku, and using (4.9), one
yields

V
�
f
�
x � 0 ����� uT ∂

∂u
V
�
f
�
x � u ��� YYYY u P 0

� 1
2

uT ∂ 2

∂u2 V
�
f
�
x � u ��� YYYY u P 0

u � V
�
x ���� s

�
h
�
x � 0 ��� 0 ��� uT ∂

∂u
s
�
h
�
x � u ��� u � YYYY u P 0

� 1
2

uT ∂ 2

∂u2 s
�
h
�
x � u ��� u � YYYY u P 0

u � φ
�
x � u �
(4.12)

with φ
�
x � u � given in (4.10). By claiming that V

�
f
�
x � u ��� and s

�
h
�
x � u ��� u � are quadratic

in u, the second-order Taylor expansion at u � 0 of V
�
f
�
x � u ��� and s

�
h
�
x � u ��� u � can be

considered in (4.12), and (4.3) is obtained. In other words, the system is QSS-dissipative
with supply function s

�
y � u � .

Remark 4.3 As it is recommended in (Sengör, 1995) [151], a new function m
�
x � has

been considered, in comparison to the passivity conditions given in (Byrnes and Lin,
1993) [13] for nonlinear discrete-time systems affine in the control input.

Necessary and sufficient KYP conditions appeared in the literature for dissipative
multiple-input multiple-output discrete-time systems are strictly contained in Theorem
4.1, either for the linear or the nonlinear case. Passivity conditions for nonlinear discrete-
time systems which are affine in the control input appearing in (Byrnes and Lin, 1993)
[13] (see Theorem 2.4) are obtained taking s

�
y � u �[� yT u and m

�
x �[� 0. In order to

obtain dissipativity conditions for nonlinear affine in the control input systems presented
in (Sengör, 1995) [151] (see Theorem A.8), the left-hand side of equality (4.7) would be
V
�
f
�
x � � x � and in (4.8) and (4.9), z � f

�
x � � x should be considered with V

�
x ��� BT � x �u�

xTC
�
x � x, with B and C matrices of appropriate dimensions, and s

�
y � u ��� yT Qy � 2yT Su �
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uT Ru, with Q, S, R constant matrices, Q and R symmetric. For the linear case: passivity
conditions appearing in (Hitz and Anderson, 1969) [58] (see Theorem 2.2) are obtained
taking m

�
x �=� 0, V

�
x �]� 1

2 xT Px, s
�
y � u �=� yT u, and dissipativity conditions presented

in (Goodwin and Sin, 1984) [45] (see Lemma 2.1) are obtained by taking m
�
x �]� 0,

s
�
y � u �
� yT Qy � 2yT Su � uTRu, V

�
x �
� 1

2 xT Px, with P a real symmetric positive definite
matrix. As it can be seen in these results, the supply functions considered as functions
of the input and the output are affine in u. Furthermore, all these systems are also affine
in the input; this results in supply functions quadratic in the input when the variables are
the states and the input.

4.4 Losslessness in the discrete-time domain

This section deals with the properties of lossless systems in the nonlinear discrete-time
setting. Lossless systems are considered as a special case of dissipative ones. Lossless-
ness is treated independently from dissipativity due to two main reasons. On the one
hand, some differences in the proofs of the concluded properties are found. On the other
hand, lossless systems are usually studied separate from dissipative ones in the discrete-
time setting, since there are more losslessness-related studies than dissipativity-related
ones in the discrete-time domain.

Definition 4.5 The system (4.1)-(4.2) is said to be
�
V � s � -lossless if it is

�
V � s � -dissipative

with φ
�
x � u ��� 0 �O4 � x � u ���� �
,! .

Conditions (4.4) and (4.5) may be rewritten for the losslessness case in the following
way.

Proposition 4.2 (Navarro-López et al., 2002) [119] Let a discrete-time system of the
form (4.1)-(4.2) be

�
V � s � -lossless, then

V
�
f
�
x � 0 ��� � V

�
x ��� s

�
h
�
x � 0 ��� 0 � (4.13)

∂
∂u

V
�
f
�
x � u ���(� ∂

∂u2
s
�
h
�
x � u1 ��� u2 � YYYY u1 � u

u2 � u

� ∂
∂y

s
�
y � u � ∂

∂u
h
�
x � u � (4.14)

If functions V
�
f
�
x � u ��� and s

�
h
�
x � u ��� u � are quadratic in u, then equalities (4.13)-(4.14)

yield necessary and sufficient conditions as Theorem 4.2 shows. The denomination of
QSS-losslessness will be used in the same sense as QSS-dissipativity was used above.

Definition 4.6 A system of the form (4.1)-(4.2) is said to be QSS-lossless if it is
�
V � s � -

lossless with a storage function V and a supply function s such that V
�
f
�
x � u ��� and

s
�
h
�
x � u ��� u � are quadratic in u.

Theorem 4.2 (Navarro-López et al., 2002) [119] Let V and s be storage and supply
functions such that V

�
f
�
x � u ��� and s

�
h
�
x � u ��� u � are quadratic in u. Then, a system of the
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form (4.1)-(4.2) is QSS-lossless with V and s if and only if

V
�
f
�
x � 0 ��� � V

�
x �(� s

�
h
�
x � 0 ��� 0 � (4.15)

∂V
�
z �

∂ z YYYY z P f U x l 0 V ∂ f
�
x � u �

∂u YYYY u P 0
� ∂

∂u
s
�
h
�
x � u ��� u � YYYY u P 0

(4.16)

g ∂ f
�
x � u �

∂u h T YYYYY u P 0

∂ 2V
�
z �

∂ z2 YYYY z P f U x l 0 V ∂ f
�
x � u �

∂u YYYY u P 0
� ∂V

�
z �

∂ z YYYY z P f U x l 0 V ∂ 2 f
�
x � u �

∂u2 YYYY u P 0
�

� ∂ 2

∂u2 s
�
h
�
x � u ��� u � YYYY u P 0

(4.17)

Proof. The proof follows the one of Theorem 2.6 in (Byrnes and Lin, 1994) [14].

(Necessity): If system (4.1)-(4.2) is QSS-lossless with supply function s
�
y � u � , and a

storage function V :  ;# ℜ J , then

V
�
f
�
x � u ��� � V

�
x ��� s

�
h
�
x � u ��� u ���54 � x � u ���) ;
,! (4.18)

Condition (4.15) is obtained substituting u � 0 in (4.18). Conditions (4.16) and (4.17)
follow from the first-order derivative and the second-order derivative of (4.18) with re-
spect to u and taking u � 0.

(Sufficiency): Since V is a 0 2 function and V
�
f
�
x � u ��� is quadratic in u, it is con-

cluded that

V
�
f
�
x � u ����� A

�
x ��� B

�
x � u � uTC

�
x � u ��4 � x � u ���) ;
,! (4.19)

and applying Taylor’s expansion formula to V
�
f
�
x � u ��� at u � 0, one yields to

A
�
x ��� V

�
f
�
x � 0 ���

B
�
x ��� ∂V

�
f
�
x � u ���

∂u YYYY u P 0
� ∂V

�
z �

∂ z YYYY z P f U x l 0 V ∂ f
�
x � u �

∂u YYYY u P 0

C
�
x ��� 1

2
∂ 2V
�
f
�
x � u ���

∂u2 YYYY u P 0
�

� 1
2
{ g ∂ f

�
x � u �

∂u h T YYYYY u P 0

∂ 2V
�
z �

∂ z2 YYYY z P f U x l 0 V ∂ f
�
x � u �

∂u YYYY u P 0
�

� ∂V
�
z �

∂ z YYYY z P f U x l 0 V ∂ 2 f
�
x � u �

∂u2 YYYY u P 0 }
From (4.15)-(4.17), (4.19) takes the form

V
�
f
�
x � u ����� V

�
x ��� s

�
h
�
x � 0 ��� 0 ��� ∂

∂u
s
�
h
�
x � u ��� u � YYYY u P 0

u � 1
2

uT ∂ 2

∂u2 s
�
h
�
x � u ��� u � YYYY u P 0

u

(4.20)
By claiming that s

�
y � u � is quadratic in u, the second-order Taylor expansion at u � 0 of

s
�
h
�
x � u ��� u � can be considered in (4.20) and it is obtained

V
�
f
�
x � u ��� � V

�
x ��� s

�
h
�
x � u ��� u �
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Remark 4.4 Conditions (4.15)-(4.17) can be derived from the QSS-dissipativity condi-
tions (4.7)-(4.9), with φ

�
x � u ��� 0, i.e., with l

�
x ��� k

�
x ��� m

�
x ��� 0.

Necessary and sufficient conditions existing in the literature for lossless multiple-
input multiple-output discrete-time systems of the form

x
�
k � 1 ��� f

�
x
�
k ����� g

�
x
�
k ��� u � k �

y
�
k �(� h

�
x
�
k ����� J

�
x
�
k ��� u � k �

are strictly contained in Theorem 4.2. For example, conditions appearing in (Byrnes
and Lin, 1994) [14](see Theorem 2.3) are obtained taking s

�
y � u ��� yT u. Losslessness

conditions presented in (Sengör, 1995) [151] (see Theorem A.7) are obtained considering
the left-hand side of equality (4.15) as V

�
f
�
x � � x � and in (4.16) and (4.17) z � f

�
x � �

x with V � BT � x ��� xTC
�
x � x, where B and C are matrices of appropriate dimensions,

and s
�
y � u �9� yT Qy � 2yT Su � uT Ru, where Q � R � S are constant matrices of appropriate

dimensions, and Q � R are symmetric.

Remark 4.5 In (Byrnes and Lin, 1994) [14], it is stated that it is not possible to study
passivity and losslessness of discrete-time systems having outputs independent of u. No-
tice that for general supply functions, lossless systems can have outputs independent of
the input. This is also pointed out in (Sengör, 1995) [151]. We delay for now a more
complete discussion of this point.

4.5 Conclusions and future work

Some properties of multiple-input multiple-output nonlinear discrete-time dissipative
and lossless systems have been treated. On the one hand, necessary conditions for the
characterization of what is regarded as

�
V � s � -dissipative and

�
V � s � -lossless systems have

been proposed. On the other hand, necessary and sufficient conditions for a class of
dissipative and lossless nonlinear systems have been given, actually, the dissipative and
lossless systems treated are those whose storage and supply functions satisfy V

�
f
�
x � u ���

and s
�
h
�
x � u ��� u � are quadratic in u. This class of dissipativity and losslessness has been

regarded as QSS-dissipativity and QSS-losslessness, respectively. QSS-dissipativity con-
ditions will be used to solve the passivation problem in nonlinear discrete-time systems
affine in the control input in Chapter 7.

The results obtained are compared with the ones already existing in the literature for
the dissipative, passive and lossless cases. The results presented in this chapter follow
the idea of the already existing characterizations of dissipative, passive and lossless sys-
tems. Our contribution is the extension of the established dissipativity-related properties
to multiple-input multiple-output nonlinear discrete-time systems which are non-affine
in the control input, i.e., systems of the form x

�
k � 1 �9� f

�
x
�
k ��� u � k ��� , with associated

outputs y
�
k ��� h

�
x
�
k ��� u � k ��� for a class of dissipativity called QSS-dissipativity. The con-

ditions contributed gather all the existing KYP conditions in the discrete-time setting,
with the exclusion of the ones presented in (Monaco and Normand-Cyrot, 1997, 1999)
[112, 113].
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New ways of treating dissipativity concepts are needed to be explored. Concern-
ing the results presented here, it is desirable to give dissipativity conditions without the
restriction of V

�
f
�
x � u ��� and s

�
h
�
x � u ��� u � to be quadratic in u.

The domains of the states and the inputs in most control systems are compact sets.
Thus, from the Stone-Weierstrass Theorem, functions V

�
f
�
x � u ��� and s

�
h
�
x � u ��� u � can be

uniformly approximated by polynomials. The work presented here covers a first step
in this direction since we have considered QSS-dissipative, respectively QSS-lossless,
systems, in which V

�
f
�
x � u ��� and s

�
h
�
x � u ��� u � have been approximated by polynomials of

second order in u. A way of extending our results may be by means of the use of higher
order polynomial approximations and studying the conditions that dissipative systems
must fulfil with this kind of storage and supply functions.




