Chapter 7

A solution to the passivation
problem through the relative
degree and the zero dynamics
properties

7.1 Introduction

The problem of feedback passivity for a class of multiple-input multiple-output nonlin-
ear discrete-time systems affine in the control input is solved using the properties of the
relative degree and zero dynamics of the non-passive system. This is a novel solution
to such a problem in the nonlinear discrete-time setting, jointly to the results presented
in Chapter 5 of the present dissertation. It is the main contribution of this chapter and
can be considered as the extension to the passivity case of the approach given in (Byrnes
and Lin, 1994) [14] where the losslessness feedback problem is given. The passivation
methodology proposed in this chapter will be used for stabilization purposes. The passi-
fying escheme wil be applied to two examples: the nonlinear model (5.23), and the linear
discrete-time model for the DC-to-DC buck converter (5.13). For the linear example pre-
sented, the frequency-domain characteristics of the passified system will be analyzed.
Part of the results given in this chapter have been extracted from (Navarro-Lopez et al.,
2002) [120], (Navarro-Lopez and Fossas-Colet, 2002) [121].

The study of the properties of the relative degree and the zero dynamics of a passive
system has played an important role in understanding problems such as feedback passiv-
ity or the stabilization of passive systems in the continuous-time setting, see (Byrnes et
al., 1991) [12]. For discrete-time systems, the implications of dissipativity and passivity
in the relative degree and the zero dynamics have not been studied in a deep way, they
have only been studied for the losslessness case, see (Byrnes and Lin, 1994) [14] and
(Sengor, 1995) [151]; only some short notes on the literature are found for the linear case
concerning the properties of the relative degree of passive systems, see (Monaco and
Normand-Cyrot, 1999) [113] or (Byrnes and Lin, 1994) [14].
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128 7 Passivation through the relative and the zero dynamics

The characteristics of the relative degree and the zero-dynamics of passive discrete-
time systems will be also analyzed in this chapter. These properties give valuable in-
formation concerning the relation between the input and the output of the system. As
passivity property is an input-output property, the relative degree and zero dynamics of
a passive system will present distinctive features. The implications of passivity in the
relative degree of linear discrete-time systems will be established, as well as for a class
of nonlinear discrete-time systems which are affine in the control input. Notes on the
relative degree of dissipative discrete-time systems will be given. The implications of
passivity in the properties of the zero dynamics of discrete-time systems will be pre-
sented, either for the linear or the nonlinear case.

The chapter is organized as follows. Section 7.2 is devoted to the properties of
the relative degree and zero dynamics of passive nonlinear discrete-time systems. In
Section 7.2.1, the special properties that the relative degree of passive discrete-time sys-
tems, either linear or nonlinear, exhibits are shown. For the nonlinear case, nonlinear
discrete-time systems which are affine in the control input are studied. Section 7.2.2 re-
visits the properties of the zero dynamics of passive systems, whether they are linear or
nonlinear. A solution to the passivation problem for a class of nonlinear discrete-time
systems through the relative degree and the zero dynamics properties is presented in Sec-
tion 7.3. Section 7.4 shows the application of the passivation methodology proposed to
the stabilization of a nonlinear system, while Section 7.5 is devoted to a linear example.
Conclusions and suggestions for further research are given in the last section.

7.2 Implications of passivity in the relative degree and zero dynamics
of discrete-time systems

In this section, by means of using the definitions of relative degree and zero dynamics in
the discrete-time setting, the properties that the relative degree and the zero dynamics of
passive discrete-time systems exhibit will be studied.

The definitions of relative degree and zero dynamics for nonlinear discrete-time sys-
tems are given in (Monaco and Normand-Cyrot, 1987) [105], as well as, in (Nijmeijer
and van der Schaft, 1990) [124], where the concept of relative degree is also regarded as
characteristic number.

7.2.1 Passivity implications in the relative degree of a discrete-time system

Recall the definition of a (V,s)-dissipative system, Definition 4.2 and its particular case
of a V-passive system, Definition 4.3.

7.2.1.1 Relative degree of passive nonlinear discrete-time systems

In this section, the relative degree of nonlinear passive discrete-time systems which are
affine in the control input will be analyzed.

Let the system,

(k1) = fx(k) + g (x(k))u(k) (7.1)
y(k) = h(x(k)) +J (x(k))u(k) (7.2)
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where f, g, h,J are smooth maps and f(x) € R", g(x) € R™™, h(x) € R™, J(x) € R™"™,
x € R, ue R™. Let (x,u) an isolated fixed point of the system. There is no loss of
generality in considering (x,u) = (0,0) and f(0) = 0, 2(0) = 0, they are considered in
the sequel.

Assume
Iy(x,u)

du x=0
u=0
Then, by the implicit function theorem, there exists u* : ¥, — % defined in a neighbour-
hood of x = 0 such that y(x,u”*) = 0, Vx € ¥, with % a neighbourhood of u = 0. The
zero dynamics of system (7.1)-(7.2) is defined by f* = f(x) + g(x)u* where (x,u*) €

Z* ={(x,u) : x € O, y(x,u) =0}

#£0 (7.3)

Lemma 7.1 (Navarro-L6pez and Fossas-Colet, 2002) [121] If the system (7.1)-(7.2) is
V-passive and its zero dynamics is such that Z* does not contain straight lines of the
SJorm {(®,A11), A € R}, with Z* as defined above, then J(x) is invertible.

Proof. Let X be such that J(X) is not invertible. Let us take %(X) such that u(X) € KerJ(X).
Since the system is V-passive

V(f(x)+gx)u) = V(x) <y'u, V(xu) (7.4)
Taking into account (7.4) and the positive definiteness of V,
—V(x) < [A(x) + J(x)u(x)])" u(x) (7.5)
If T (X)u(¥) # 0, defining
_ Au(x)V ()
Uy = hT (f)ﬁ(f) ’ (76)

and particularizing inequality (7.5) for X, u,, yields

-V(E) <-AV(X),VA eR
Thus, A7 (X)@(¥) = 0, in other words, { (¥, A% (%)), A € R} C Z*. Since this is a contra-
diction with the hypothesis, J(x) must be invertible.

Remark 7.1 Note that the invertibility of J(x) is equivalent to the fact that the system
(7.1)-(7.2) has relative degree zero.

7.2.1.2 Relative degree of passive linear discrete-time systems

For the nonlinear case, the relative degree has been established in a local way, whereas,
in the linear case, it is possible to talk about global relative degree of the system.

The basis of our analysis will be the dissipativity conditions (2.24)-(2.26) given in
Lemma 2.1 restricted to the passivity case. Let a multiple-input multiple-output linear
time-invariant (LTI) discrete-time system of the form

x(k+1) = Ax(k)+ Bu(k) (1.7)
y(k) = Cx(k)+ Du(k) (7.8)
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Remark 7.2 Note that the denomination of passivity and dissipativity in the literature
coincides with the denomination of V -passivity and (V,s)-dissipativity, respectively. The
V-passivity and (V,s)-dissipativity denomination is preferred by us.

Proposition 7.1 (Monaco and Normand-Cyrot, 1999)[113] Suppose the storage func-
tion of the formV = %xTPx, with P a positive definite and symmetric matrix. A system of
the form (7.7)-(7.8) is V-passive, if and only if, there exists P such that

ATPA—P < 0 (7.9)
B'PA = C (7.10)
B'PB—(D"+D) < 0 (7.11)

Remark 7.3 Conditions (7.9)-(7.11) are equivalent to the ones given in (Hitz and An-
derson, 1969) [58], see (2.20)-(2.22).

Proposition 7.2 [f the system (7.7)-(7.8) is V-passive, then it has relative degree zero.

Proof. Having relative degree zero is equivalent to D # 0, i.e., the output depends
directly on the input. From condition (7.11), with P a positive definite matrix, one con-
cludes that BT PB is a positive definite matrix, consequently D7 + D must be a positive
definite matrix, and therefore D # 0.

Remark 7.4 This is not the first time that the result reported in Proposition 7.2 has
appeared in the literature, this fact has also been briefly pointed out in (Byrnes and Lin,
1994) [14] or (Monaco and Normand-Cyrot, 1999) [113].

Remark 7.5 In (Byrnes and Lin, 1994) [14], it is stated that it does not make sense to
study passivity and losslessness of discrete-time systems having outputs independent of
u. This is the case for s(y,u) = y u. Indeed, dissipative systems can have relative degree
greater than zero, that is, D can be zero. For example, considering (Q,S,R)-dissipative
systems, it can be concluded that ISP, VSP and FGS systems may have relative degree
greater than zero. See definitions for ISP, VSP and FGS systems in Chapter 2.

7.2.2 Zero dynamics properties of passive discrete-time systems under study
7.2.2.1 Zero dynamics of passive nonlinear discrete-time systems

Let a system of the form,

x(k+1) = f(x(k),uk)), xe R, ue R"™ (7.12)
y(k) = h(x(k),u(k)), y€eR" (7.13)

where f: R x R" — R” and 7 : R x R™ — R™ are smooth maps, with k € &, =
{0,1,2,...}. Let X an isolated fixed point of f(x,%), with & a constant vector, i.e.,
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f(x,u) = X. There is no loss of generality in considering (X,%) = (0,0) and 4(0,0) = 0,
from now on they both are considered.
Assume
dh(x,u)
du x=0
u=0

#£0 (7.14)

Then, by the implicit function theorem, there exists u™ : ¥, — % defined in a neighbour-
hood of x = 0 such that i(x,u*) = 0, Vx € 9, with % a neigbourhood of u = 0. The
zero dynamics of system (7.12)-(7.13) is defined by f* = f(x,u") where (x,u*) € &* =
{(x,u) s x € ¥, h(x,u) = 0}.

Definition 7.1 A system of the form (7.12)-(7.13) has a locally passive zero dynamics if
there exists a €7 positive definite function V, locally defined on the neighbourhood Y, of
x=0inR", 5.t. V(0) =0 and

V(f(x,u")) <V(x), Vxe 0, (7.15)

Theorem 7.1 (Navarro-Lopez and Fossas-Colet, 2002) [121] Suppose system (7.12)-
(7.13) satisfying (7.14) to be V-passive with a storage function V which is positive
definite, and V(0) = 0. Then, the zero dynamics of (7.12)-(7.13) locally exists at x = 0
and is passive.

Proof. By (7.14), system (7.12)-(7.13) has relative degree 0 in a neighbourhood of
x = 0 and its zero dynamics, indeed, locally exists in a neighbourhood of x = 0 in R".
As (7.12)-(7.13) is V-passive, the dissipativity relation (4.3) is met with s(y,u) = y’u.
Setting u = u* such that y = h(x,u*) = 0, one yields to f*(x). Since the zero dynamics
is restricted to 2, inequality (4.3) is converted into equation (7.15).

Remark 7.6 A passive zero dynamics is a Lyapunov stable dynamics, also referred as
weakly minimum phase dynamics, denomination proposed in (Byrnes et al., 1991) [12].

7.2.2.2 Zero dynamics of passive linear discrete-time systems

For the nonlinear case, it is necessary to talk about locally passive zero dynamics, whereas
in the linear case it is possible to conclude properties of the zero dynamics of passive
discrete-time systems in a global sense. If the system (7.7)-(7.8) is V-passive then it has
relative degree zero, and consequently, its zero dynamics takes the following form

f*(x(k)) = (A — BD'C)x(k) (7.16)
Proposition 7.3 (Navarro-Lépez et al., 2002) [120] Let a system of the form (7.7)-(7.8)

be V-passive with a storage function V = %xTPx, with P a positive definite and symmetric
matrix. Then, its zero dynamics is passive.
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Proof. Since the system (7.7)-(7.8) is assumed to be V-passive, there exists P a
positive definite and symmetric matrix satisfying equations (7.9)-(7.11). Consider V =
$xTPx. The zero dynamics of the system is given by (7.16), then V(f*(x)) — V(x) =
1xT Mx, where

M=(A-BD'C)'P(A—-BD"'C)—-P (7.17)
Thus, it is needed to prove that M is negative semi-definite. Considering condition (7.10),
M can be written as follows

M= ATPA-P)-C" [D~'+ (D] Cc+cT(D™H'B"PBD™'C (7.18)

Adding and substracting to (7.18) CT(D~"T(DT + D)D~'Cc =CT[D '+ (D" ")T]C, itis
obtained
M = ATPA-P)-CT[D'+ (D HTc+cT (DB PBD™!C -
(o HI(p" + D)D" 'c+ (DY (DT + D)D" 'C

Since, CT(D-Y)T(DT +D)D"'C=CT[D ' + (D 1)T]C, one yields to

M = A"PA-P)-CT'ID '+ Y+ D'+ (D H)C+
+c (0 YHYT'[B"PB— (D" + D)D" 'C,

and using (7.9) and (7.11), it is concluded that M is negative semi-definite.

Then, the zero dynamics of a V-passive LTI discrete-time system is Lyapunov stable
or as it has been defined, it is passive.

7.3 A solution to the passivation problem

The passivation problem will be studied for a class of nonlinear discrete-time systems
linear in the input of the form (7.1)-(7.2).

Consider Definition 4.4 of QSS-dissipativity given in Chapter 4. The following defi-
nition is introduced as a particular case of Definition 4.4.

Definition 7.2 A system of the form (7.1)-(7.2) is said to be QS (Quadratic Storage)
passive if it is V-passive with a storage function V such that V (f (x) + g(x)u) is quadratic
inu.

This chapter is devoted to render a system of the form (7.1)-(7.2) OS-passive. The
characterization for QS-passive systems to use will be the restriction of QSS-dissipativity
conditions (4.7)-(4.9) to s(y,u) = y"u and the dynamics (7.1)-(7.2). Then, conditions
(4.7)-(4.9) take the following form.

Theorem 7.2 (Byrnes and Lin, 1993) [13] Let V be a storage function such that V (f(x,u))
is quadratic in u. Then, a discrete-time nonlinear system of the form (7.1)-(7.2) is
OS-passive with V, if and only if, there exist real functions l(x), m(x) and k(x), all of
appropriate dimensions such that
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V(f(x)=V(x) = =T (x)(x) —m" (x)m(x) (7.19)
V() T T
x)+ 21" (x)k(x) =h" (x (7.20)
T, 80Tk =T
2
() 2 avogx) o g(x) = JT +J(x) — 267 (0)k(x) (7.21)
]

Remark 7.7 The denomination of QS-passivity has been introduced in this dissertation.
1t is considered to be appropriated to use in Theorem 7.2.

Let o(x) and B(x) be smooth functions, with ¢(0) = 0 and B(x) invertible Vx. A
nonlinear static state feedback control law is denoted by

u=o(x)+px)w (7.22)

Theorem 7.3 (Navarro-Lépez and Fossas-Colet, 2002) [121] Suppose h(0) = 0, and
there exists a € storage function V, which is positive definite, V(0) = 0 and V (f(x) +
g(x)u) is quadratic in u, Vf, Vg. Then, system (7.1)-(7.2) is locally feedback equivalent
to a QS-passive system with V as storage function if and only if (7.1)-(7.2) has locally
relative degree 0 and its zero dynamics is locally passive in a neighbourhood Z of x = 0.

Proof. (Necessity): Assume that there is a static state control law of the form (7.22)
which renders the system (7.1)-(7.2) QS-passive system in a neighbourhood of x = 0.
Then the feedback transformed system

xk+1) = J(x(k) +2x(k)wk)
y(k) = h(x(k) + T (x(k))w(k)

is locally QS-passive, with f(x) = f(x) + g(x)a(x), g(x) = g(x)B(x), h(x) = h(x) +
J(x)a(x), J(x) = J(x)B(x). Therefore, the feedback transformed system has locally
relative degree zero and passive zero dynamics, see Theorem 7.1, Lemma 7.1 and Re-
mark 7.1. Consequently, the system (7.1)-(7.2) has locally relative degree zero and

passive zero dynamics.

(Sufficiency): It will be shown that if system (7.1)-(7.2) has locally relative degree O
and passive zero dynamics, it is feedback equivalent to a QS-passive system, i.e., there
exists a control u = o(x) + B(x)w, such that the feedback system x(k+ 1) = f(x(k)) +
g(x(k))w(k) fulfils

V(F(x) +3x)w) = V(x) < (h(x) +T(x)w)"w
Since the system relative degree is zero, J(x) is invertible in a neighbourhood 2" of

x =0, then
7710 = (gt

—1
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is well defined Vx € Z". It is chosen
u(k) = u* (k) +J~ 1 (x)v(k) (7.23)

with u* such that y(x,u*) = 0, i.e., u* = —J~'(x)h(x). System (7.1)-(7.2) with (7.23)
yields to

x(k+1) = f(x(k)) + " (x(k))v(k),
y(k) = v(x(k)), (7.24)

where f*(x) = f(x) — g(x)J~!(x)h(x) represents the zero dynamics of the original system
and g*(x) = g(x)J~!(x). Now, a new input control and a new output are defined

y(k) = v(k) := h(x(k)) +J (x(k))w(k) (7.25)
Then, the new system dynamics is given by

x(k+1) = f1(x(k) + g (x(k)h(x(k)) + & (x(k))J (x)w(k)
y(k) = h(x(k) +T(x)w(k) (7.26)

1 ,r d*V
28 92

h(x) = —7(x)<(?9—‘zl

It is defined,

~I

—

=
|

1
g (x)) (7.27)
=f*(x)

T
g (X)> (7.28)
=f*(x)

System (7.26) with (7.27) and (7.28) will be shown to be QS-passive with a €2 stor-
age function V. Since V(f*(x) + g*(x)u) is quadratic in u, using the Taylor expansion
formula, it follows that

V(£ (x)+ g (0hx) = V(f*(x))+aa—‘z/ _f*()g*(x)ﬁ(x)+
11 g, 0V
+§h (g (x) Fr

g @)h(x)  (7.29)
=f*(x)

Substracting V(x) in both sides of (7.29) and considering that the zero dynamics of (7.1)-
(7.2) is locally passive,

VU@ WD) V) = = [ +R] T [+ K] -
— o m@+ 2| ) +

=f*(x)
T, 0%V
(X)g (x)a—zz

1— -
S 8 ()
=f*(x)

(7.30)

Differentiating both sides of (7.30) with respect to A(x), and multiplying the result by

J(x), in addition to use (7.27) and (7.28), the passivity condition (7.20) for system (7.26)
follows, that is

%—V @I =R W) -2 [T+ WK (9] kT (7.3D)
% le=p* ()" ()
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Taking the second-order derivative with respect to /(x) in both sides of (7.30) and mul-

tiplying both sides of the result from the left by J ’ (x) and from the right by J(x), using
(7.27) and supposing J(x) to be symmetric, one yields to

2
[ @7 20 [ 0T@] =T () +T(x) = 27" (K (k)T (x)
a=f*+g*h

which is the passivity condition (7.21) for system (7.26). For the passivity conditions

of system (7.26), the equivalent of function /(x) is /(x) + k(x)Ah(x), and the equivalent of
function k(x) is k(x)J(x).

Besides, using (7.27) and (7.28) on (7.29)

V4 WRW) = VW) -F (T07) ) 5T () =
= V(W)

Taking into account that the original system has passive zero dynamics, i.e., V(f*(x)) <
V(x), it can be written

V(' () = V() = [100) + kRG] [166) +k(0)()] = m" (x)m(x)

then,

V(' () + & () = V(x) = = [1) + k()R] [10x) + k)R(x)] = m” (x)m(x)

which is the passivity condition (7.19) for the system (7.26). In conclusion, system (7.1)-
(7.2) with the passifying control law (7.25) is QS-passive.

Remark 7.8 The passifying control proposed above is the same that the control which
renders a system lossless in (Byrnes and Lin, 1994) [14].

Summing up, the proposed passifying control scheme has the following form, with u
as passifying control and w as the new control input to the system:

u(x,v) = w(x)+J ' x)v
u'(x) = —=J __1 (x)h(x)
vix,w) = y=h(x)+J(x)w
T
W = -Iw (% g*<x>>
=f*(x)
- 1 ,r 9%V “ 1
o) = <5g W 52 e’ OC))
g0 = g

fr@) = fx) =g (x)h(x) (7.32)
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7.4 A nonlinear example

Let the system (5.23) with a modified output,

x,(k+1) = [x](k) +x3(k) + u(k)] cos[x, (k)]
X(k+1) = [xf(k) +x3(k) +u(k)] sinfx, (k)]
y(k) = (k) + x5 (k)] + I [x(k)Ju(k) (7.33)

In this section, the feedback passivity methodology presented in Section 7.3 will be
applied to system (7.33) in order to stabilize it to the system fixed point (0,0). The
passifying control scheme given in (7.32) is then used. The control which renders the
output of the system (7.33) to zero is,

' (x) = =J7 N (x) (] +x3) (7.34)

Control u* substituted in (7.33) gives the zero dynamics of the system,

G+ = 0) = {0 +300 =770 [0 + 0] fcosi (4]
Nk+1) = f(x(k) = {X?(k) +5(k) = I~ () [x7 () + x5 (k)] } sin[x, (k)]
(i) 1 (i1)
0.6 R=09
05 ’ 05f
0s %
5 03 g 0
0.2 \
05
0.1 R=03
0
1 —
0.1
2 4 6 8 10 2 8 10
Number of iterations Number of iterations
0.3 (ii2) 0.7 (i)
R=03
0.6
0.2 j: 0o o /
01 04
= N R=09
0 . 0.3
0.2
0.1 j
3 R=03 01
0.2 0
8 10 2 4 6 8 10
Number of |terat|ons Number of iterations

Figure 7.1: Stabilized system response for (7.33) with initial conditions x, = (0.01, -7 for
R=0.3and R=0.9 (i) x| (ii) x, (iii) output y (iv) storage energy function V.

It is chosen J(x) = > with R a constant such that R € (0, 1). Considering

N
x%+x%7R
V = %(x% +x%), as storage function, the system is not passive, in fact, with u = 0 the
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origin is unstable. However, the system can be rendered V-passive by means of a static
state feedback control law of the form (7.23), see Theorem 7.3, due to the fact that J(x)
is invertible and the zero dynamics of system (7.33) is passive. Therefore, the passifying
control scheme proposed (7.32) is applied to (7.33), obtaining,

ulrw) = —J7H @) (F +3) + I @) () +T()w] =
= J_l(x)(x%—kx%)—Z(x%—}—x%)—|—2](x)w

cw = (o))

sin(xy)
7 =[5 (5 0)e] =2re
W) =~ 33— W03 4]
) = {0 g - w0 +3)] |

In the passified system, it is chosen w(k) = —y(k), as it is proposed in (Lin and
Byrnes, 1995) [87]; this control locally asymptotically stabilizes a V-passive discrete-
time system. In this case, w(k) = — [J(x(k)) + 1] “"(x(k)). The passified system re-
sponse is shown in Figures 7.1 and 7.2 for two different values of the constant R: R = 0.3,
R =0.9. The greater R is the more oscillating the system response is. As it can be appre-
ciated, the states and the output are stabilized to the origin x = (0,0)7,y = 0.

04 T T T T T 0
R=09
o
02 / R=03
IR S o
0
0.05]
0.2 \ S o
S
ot R=03 005
0.
06
015
08 R=09
02}
! 2 3 4 5 6 7 8 9 10 70251 2 3 4 5 6 7 8 9 10
Number of iterations Number of iterations

Figure 7.2: Stabilized system response for (7.33) with x, = (0.01, —1)T for R=0.3and R = 0.9
(i) passifying control u (ii) stabilizing control w.

7.5 A linear example. Frequency-domain interpretation

In this section, the passifying control scheme (7.32) will be restricted to the LTI case,
i.e., to systems of the form (7.7)-(7.8), and it will be applied to the passivation of the
DC-to-DC buck converter. Passivity conditions (7.9)-(7.11) which have been obtained
for a storage function of the form V = %xTPx, with P a positive symmetric matrix will
be taken into account. The passifying control scheme proposed applied to the linear
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time-invariant case takes the following form,

u(x,w) = w'(x)+D " [h(x)+Tw]
u'(x) = —D7'Cx
ffx) = (A—BD'O)x
g* — BDfl
J = 2D(BTPR)"'DT
h(x) = —2D(BTPB) 'BTP(A—BD 'C)x (7.35)
() (i)
<] gt
& g
P;e [G(ej“)j Re|G(e™)]

Figure 7.3: (i) Nyquist plot of the discrete non-passive buck converter (ii) Nyquist plot for the
passified discrete-time buck converter.

Now, the control scheme (7.35) will be applied to the exact discretization of the buck
converter with sampling period 7' = 0.3535533906 presented in Chapter 5 as (5.13),
considering the outputy = x, +iand V = %xPxT, with

(1)

and n a positive constant depending on the physical parameters of the system. The model
to consider takes the form (7.7)-(7.8), where

B a —b _ (—a+1)y+b
A = <b ¢ ) B o= [ —by—c+1 }
CcC = (0,1) D = 1
The constants of the model are

a=0.9406416964, b = 0.3254699438, ¢ = 0.8255706942, y = 0.3535533906

The corresponding transfer function of the above state-space representation takes the

following form,
_ Z2—1.707z+0.9394

22— 1766274 0.8825

which corresponds to a non-passive system, as its Nyquist diagram shows, see Figure 7.3.
Although the original system is not V-passive, it can be rendered V -passive by means of
a static state feedback law & = u given in (7.35), due to the fact that:

G(2) (7.36)
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1. System (7.36) has relative degree zero.

2. The zero dynamics of (7.36), which takes the form

e e (09406 —0.6719
J'(x)=(A-BD C)"—<o.3255 07662 )

is passive since all the eigenvalues of A, = (A — BD~!C) have modulus less than
one.

Then, the control scheme (7.35) is applied to (5.13), and the following system is obtained,

x(k+1) = Apx(k)+B,w(k)
yk) = Cpx(k)+Dpwlk), (1.37)
with
A = —0.9953 0.3785 B = 0.4232
P —0.0062 0.9462 ro 0.0725
C, =  (~5.5879,3.032) D, = 12215

The associated transfer function of the state-space representation (7.37) takes the form,

_ 1.22122—-2.085z+ 1.147
P 7240.049157 — 0.9394 °

(7.38)

which is a positive real transfer function, as its Nyquist diagram illustrates, see Figure 7.3.

7.6 Conclusions and future work

In this chapter, the properties of the relative degree and the zero dynamics of a class of
V-passive systems have been related to its feedback passivity property, and a passivation
methodology has been proposed for a class of multiple-input multiple-output nonlinear
discrete-time systems affine in the control input. The class of systems for which feedback
passivity has been solved are regarded as QS-passive systems, i.e., V-passive systems for
which V(f(x) + g(x)u) is quadratic in u. The passivation methodology proposed have
been validated by means of several examples. Furthermore, the relative degree and the
zero dynamics of V-passive discrete-time systems have been revisited. Notes on the
relative degree of dissipative discrete-time systems have also been given.

The contribution of this chapter is to solve the feedback passivity problem for a class
of nonlinear discrete-time systems which, as far as we know, has not been solved for
the nonlinear discrete-time case in the literature before. The nonlinear discrete-time
systems treated are those which are linear in the control input and for which V (x(k+ 1))
is quadratic in u. The results here presented are an extension to the passivity case of
the ones given in (Byrnes and Lin, 1994) [14] where the losslessness feedback problem
is reported. It is also a contribution, concluding the properties of the relative degree
of V-passive nonlinear discrete-time systems affine in the control input. The way of
proving the properties of the zero dynamics of V-passive linear and nonlinear discrete-
time systems is a contribution, as well.

There is a great variety of feedback passivity-related problems remaining unsolved
in the discrete-time setting. New ways of treating dissipativity and passivity concepts are
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needed to be explored. Concerning the results presented here, it is desirable to study the
feedback passivity problem without the restriction of V(x(k+ 1)) to be quadratic in u.
In order to compass this goal, it is necessary to propose new dissipativity and passivity
characterizations. This may lead to extend the feedback passivity method proposed to
systems which are non-affine in the control input.

The passivation approach given presents several problems. First, non-minimum phase
systems can not be passified via this method, a solution would be finding a fictitious out-
put for which the system has a Lyapunov stable zero dynamics. Indeed, the system is
made V-passive with respect to a new transformed output. This output can be considered
as a fictitious output, without meaning, but used for the passivation or the stabilization of
the system.

Feedback dissipativity would be interesting to be solved from the viewpoint of using
the relative degree and the zero dynamics properties of the system. The solution of the
feedback dissipativity problem will allow to study systems whose output does not depend
on the input. For this purpose, a complete analysis of the relative degree and the zero
dynamics of dissipative systems would be required, or proposing new approaches to treat
dissipativity-related concepts.



