Chapter 8

Brief notes on dissipativity and
passivity implications in the
discrete-time setting

8.1 Introduction

This chapter is endeavored to motivate the use and further research of dissipative and
passive discrete-time systems exploiting their frequency-domain characteristics. Our aim
will be to answer the question what dissipativity may be for. For this purpose, some
important features and implications of the dissipativity and passivity properties in the
discrete-time setting are collected. For the linear case, an important tool will be used as a
way of illustrating the special properties that dissipative and passive systems exhibit: the
frequency-domain interpretation of passivity and dissipativity by means of the positive
realness property of a transfer function.

This chapter is out of the spirit of the preceding chapters of this dissertation, it is
thought as a results informing and collecting chapter; nevertheless, it is different from the
background review Chapter 2, since some small contributions are given and some ideas
which have not been completely exploited before are presented from another viewpoint.
Some kind of formalism will be lost in order to gain in understanding. All the implica-
tions of dissipativity and passivity given in this chapter are considered as approaches to
explore and study in a deeper way in the future.

As it was stated in Chapter 2, dissipativity and passivity implications in dynamical
continuous-time systems have been broadly studied. However, a great variety of prob-
lems concerning dissipativity and passivity in the discrete-time setting have not attracted
as significant attention as in the continuous-time domain. This is the case of the study
of the frequency-domain implications of dissipativity, the interconnection of dissipative
and passive discrete-time systems or the study of absolute stability by means of the dis-
sipativity approach in nonlinear discrete-time systems.
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142 8 Brief notes on dissipativity and passivity implications in the discrete-time setting

In this chapter, passivity preservation under feedback and parallel interconnections is
studied. Some notes on the preservation of some classes of dissipativity under feedback
and parallel interconnections are also given. Furthermore, the frequency-domain proper-
ties of dissipativity are related to some of the most important frequency-based nonlinear
feedback stability criteria in the discrete-time domain, such as Popov’s, Tsypkin’s and
the circle criteria.

The preservation of dissipativity and passivity under sampling is also treated. Some
comments about the difficulties that passivity implies in the discrete-time domain will
be remarked in order to make notice the problems involved in the discrete-time study of
dissipativity-related properties.

It must be pointed out that in the sequel, when we refer to passivity and dissipativity,
we will refer to V-passivity and (V, s)-dissipativity, respectively.

The chapter is organized as follows. Section 8.2 revisits the frequency-domain char-
acteristics of dissipative and passive systems which will be used in the sequel. Section
8.3 is devoted to the preservation of dissipativity and passivity under sampling. Section
8.4 studies the interconnection of passive discrete-time systems. Section 8.5 collects
the most important existing results in nonlinear feedback stability analysis and relates
to them the dissipativity frequency-domain properties of discrete-time systems. Two
examples are used in order to illustrate all these properties: the continuous-time and
the discrete-time models of the DC-to-DC buck converter given in Chapter 5, and the
continuous-time and the discrete-time models for a simple RC-circuit. These examples
are linear in order to use the frequency-domain characteristics of dissipativity and pas-
sivity. Conclusions and suggestions for future work are given in the last section.

8.2 Frequency-domain characteristics

The formalization of dissipativity and passivity concepts in connection with the frequency-
domain properties of dissipative and passive linear systems was presented in Chapter 2
by means of the KYP lemma. The frequency-domain interpretation of passivity for linear
systems is given by means of the positive realness property of a transfer function. Passiv-
ity is equivalent to positive realness, see for the discrete-time case (Hitz and Anderson,
1969) [58]. Dissipativity is also equivalent to the positive realness of a transfer function
see (Goodwin and Sin, 1984) [45]. Moreover, in the linear case, the connection between
dissipativity and frequency-domain stability concepts is given. In this section, the most
important results concerning these points, which will be used in the rest of the chapter,
will be shown.

Dissipativity merges the input-output behaviour features of a system and its internal
description or state-space representation. For the linear case, this is given by the KYP
lemma (see Figure 8.1) which establishes the equivalence between the state-space dis-
sipativity properties of a system and its frequency-domain characteristics by means of
positive real transfer functions.

As it has been pointed out before, the relations between passivity and dissipativity
with the positive realness property was proposed in the discrete-time setting by Hitz and
Anderson, and Goodwin and Sin, respectively. The results given in the discrete-time
setting are preceded by the relations between passivity and dissipativity with the positive
realness property in the continuous-time domain. Some important works appearing in
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Figure 8.1: Merging state-space and frequency-domain dissipativity properties.

the literature devoted to this point in the linear case are presented here. The concept of
strict positive realness is introduced as an equivalent concept to strict passivity.

The concept of positive realness is known to come from the circuit-theoretic analy-
sis, this is formalized for single-input single-output (SISO) linear systems of the form
X =Ax+ Bu,y = Cx in (Anderson, 1967) [3] where necessary and sufficient conditions
for the transfer function matrix G(s) to be strictly positive real are presented. These con-
ditions are used in (Desoer and Vidyasagar, 1975) to establish the equivalence between
output dissipativity and strict positive realness. The equivalence between strict positive
realness and output dissipativity for SISO systems of the form x = Ax+ Bu, y = Cx+ Du
is given in (Anderson, 1967) [4] from a circuit analysis viewpoint and in (Desoer and
Vidyasagar, 1975). This equivalence is given for the multiple-input multiple-output
(MIMO) case for outputs with D # 0 in (Arimoto and Naniwa, 2000) [9], see references
therein. In (Arimoto and Naniwa, 2000) [9], the equivalence between strict positive real-
ness, output dissipativity, and what is called learnability, related to the invertibility of the
system, is stood out. It must be pointed out that from the existing works in the last four
decades about positive realness, there appears to be no consensus for the definition for
strict positive realness, see for example (Wen, 1988) [177] where the frequency-domain
conditions for strict positive realness are unified for the MIMO case.

The interest of studying positive realness properties arises from their implications in
systems stability. Positive real systems have played a major role in stability theory. An
interesting linear control problem which has attracted broad attention is the positive real
control problem which consists in designing a controller which renders the closed-loop
transfer function positive real, see (Sun and Shim, 1994) [167] and references therein,
(Joshi and Gupta, 1996) [64] and (Safonov et al., 1987) [146] which is an interesting
tutorial paper explaining the relationships between positive real transfer functions, sector
problems and the small-gain problem. The study of the positive real control problem is
motivated because robust stability can be guaranteed provided an appropriated closed-
loop system strictly positive real (Bao et al., 1996) [10], (Kelkar and Joshi, 1998) [71];
in these last two mentioned works the positive real control problem is considered as a
passivation problem. The robust quadratic dissipative control problem, i.e., the prob-
lem of rendering an uncertain linear system (Q, S, R)-dissipative and asymptotic stable is
treated in (Xie et al., 1998) [184]. All these works are in the framework of continuous-
time systems. The discrete-time counterpart of these results is given in (de Souza and
Xie, 1992) [164], (Souza et al., 1993) [165] for the positive control problem and in (7an
et al., 1999) [170], (Tan et al., 2000) [171] for the quadratic dissipative control prob-
lem and the robust quadratic dissipative control problem, respectively. Some examples
of works which apply the frequency-domain implications of dissipativity and passivity
in the discrete-time case for control purposes are: (Colgate and Schenkel, 1994, 1997)
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[18, 17], (Tsai, 1996) [172]), (Albertos, 1993) [1], devoted to the study of passivity in
sampled-data systems, which will be further mentioned along this chapter.

In this section, the most important results, which will be used in the rest of the chap-
ter, referring the relations between passivity and dissipativity with the positive realness
property will be collected. The results given for the continuous-time case will be also
presented due to the fact that discrete-time results are derived from them.

8.2.1 The continuous-time case

Dissipativity and passivity concepts and the study of the relations between them and pos-
itive realness comes from the circuit-theoretic analogy, see for example (Zames, 1966)
[190]. The concept of positive real transfer functions is originated in the continuous-time
setting in network theory as the frequency-domain formulation of the fact that the time
integral of the energy input to a passive network must be positive, in other words, a lin-
ear time-invariant passive circuit, having positive resistance, inductance, and capacitance
values, has a positive real impedance function. Then, a MIMO continuous-time passive
system with an input and an output defined by the variables u and y, respectively, is such
that for each time interval [0, T, see (Popov, 1973) [141], (Takahashi, 1975) [169],

T
/ ¥ (1)ulr)
0

{energy storage at time T} +
+{energy dissipation in time [O,T]} —

- {initial energy storage}
> B, VT >0 (8.1)

where }/g is a positive constant (initial energy storage) which only depends on the initial
state of the system. Condition (8.1) is also regarded as hyperstability condition (Popov,
1973) [141]. Consider a MIMO LTI system, and let G(s) be the transfer function associ-
ated to the system. If (8.1) is satisfied then,

H(jo) = G*(jo)+ G" (jo) >0 (8.2)

for all real @ for which j is not a pole of an element of G(s) and H(jo) is Hermitian,
with * denoting the operation of complex conjugation, and H is Hermitian in the sense
that (HT)* = H. Relation (8.2) is one of the conditions to be satisfied for G(s) to be
a positive real transfer function, see Theorem 2.1 and (Hitz and Anderson, 1969) [58],
(Popov, 1973) [141].

For the SISO case, the positive real condition (8.2) is rewritten as
Re[G(jw)] >0 (8.3)

for all real @ for which j is not a pole of G(s).

Corollary 8.1 (Tsai, 1996) [172] If a SISO LTI continuous-time system is passive then
the following inequality holds

Re[G(s)] > 0, whenever Re(s) > 0
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Figure 8.2: Property of a SISO linear time-invariant continuous-time passive system.

In a graphical and intuitive way, this property of passive SISO LTI systems can be
illustrated, see Figure 8.2. A continuous-time passive transfer function maps points in
the right-half plane of the s-plane to the right-half plane in the Nyquist plot. The Nyquist
plot of a passive system lies on the right-half plane, which means that an infinite gain
proportional control can be introduced without destabilizing the system. In addition,
positive real transfer functions do not have poles on the right-half-s-plane and their poles
lying on Re(s) = 0 are simple with positive real residues.

Positiveness is also considered as a stability passive energetic system characteristic,
which is also regarded as hyperstability, see (Popov, 1973) [141], (Takahashi, 1975)
[169].

A .
Im(z) Discrete Im [G(e™)]
positive real
transfer function Nuauist plane
z— plane Nyquist plane

B

=5

\ R€£Z> Re|G(e™))

Unit circle

Figure 8.3: Property of a SISO linear time-invariant discrete-time passive system.
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8.2.2 The discrete-time case
8.2.2.1 The passivity case

For the discrete-time case, condition (8.1) is rewritten in the following way, which is also
called hyperstability condition (Popov, 1973) [141], (Takahashi, 1975) [169],

N
Yy (Ruk) > -5 (8.4)
k=1

For MIMO LTI systems, condition (8.4) implies that,
G* () 4+ GT(6?) >0 (8.5)

V real @ at which G(e/®) exists, in addition to have a square matrix G(z) of real-rational
functions whose elements are analytic in | z |> 1 such that the poles of the elements of
G(z) on | z |= 1 are simple and if z, = &%, @, real, is a pole of an element of G(z),
and if K is the residue matrix of G(z) at z = z,, the matrix Q = ¢ *K is nonnegative
definite Hermitian (Hitz and Anderson, 1969) [58]. These positive realness conditions
were presented in Chapter 2 in Theorem 2.2 or discrete-time KYP lemma, where they
were related to the state-space passivity conditions.

As it is known, for the SISO case, the real positiveness of the linear block G(z)
means that the real part of G(z) is positive for all z outside the unit circle in the z-plane.
This property can be easily identified via the Nyquist diagram of the associated transfer
function of the system, which is confined in the right-hand side half of the Nyquist plane.
This can be illustrated in a graphical way. A discrete-time passive transfer function can
be also seen as a map which maps points outside the unit circle to the right-half plane
of the z-Nyquist plane. This fact is illustrated in Figure 8.3. In addition, positive real
transfer functions do not have poles with modulus greater than one, and their poles lying
on |z| = 1 are simple with positive real residues. These features will be used in the sequel.

8.2.2.2 The dissipativity case

The generalized version of the KYP lemma, for (Q, S, R)-dissipative discrete-time sys-
tems is given in (Goodwin and Sin, 1984) [45]. As in the passivity case, (Q,S,R)-
dissipative systems can be also identified by the positive realness of a transfer function,
see Lemma 2.1 in Chapter 2. The most useful consequences of this fact are the con-
straints on G(ei®) for SISO systems, which will be used in this chapter to analyze the
absolute stability of discrete-time systems. The characteristics of the Nyquist plot of
G(el®) for (Q,S,R)-dissipative SISO systems are presented depending on the form of
the supply function (Goodwin and Sin, 1984) [45]. Two cases are analyzed: Q being
negative and Q = 0. On the one hand, if Q < 0, the Nyquist plot of G(el®) lies inside
the circle with center S/ | Q | and radius (1/ ]| Q |)\/S?+ R| Q|. On the other hand, if
Q = 0, the Nyquist plot of G(eI®) lies to the right (if S > 0) or to the left (if S < 0) of the
vertical line Rez = —R/2S. Figures 8.4 and 8.5 show the characteristics of the Nyquist
plot of G(el®) for the four different classes of dissipativity: passivity, ISP, OSP and VSP
(see Chapter 2). € and 0 are positive constants used in Chapter 2 for the definition of ISP,
OSP and VSP.

In the next two sections, two linear SISO continuous-time systems will be consid-
ered. They are passive for an appropriate output, and consequently, their Nyquist plots
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Figure 8.4: Frequency-domain properties for dissipative discrete-time LTI systems (i) Passivity
(ii) ISP. Shaded part is allowable for G(e!?).
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Figure 8.5: Frequency-domain properties for dissipative discrete-time LTI systems (iii) OSP (iv)
VSP. Shaded part is allowable for G(€!?).

lie on the right-side half. The two examples to be considered are a RC network and
a model for the DC-to-DC buck converter analyzed in Chapter 5. The passive linear
discrete-time models obtained from the presented continuous-time models are postponed
to Section 8.3 where some discrete-time systems are obtained via the discretization of
the passive continuous-time models of the RC network and the buck converter.

8.2.3 Example 1. A simple circuit

Let the electric circuit of Figure 8.6. This system can be described by the following
ordinary differential equation,

=——(1)+ =i(r) (8.6)

Considering the energy stored in the capacitance as the system storage energy function
V, we have that,

1 2
V=20 8.7
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Taking the current i(z) as the input to the system, and the voltage v(z) as its output,
from (8.7) and claiming the definition of a passive system, system (8.6) is concluded to
be passive. This passive system will be shown to have a positive real transfer function
whose Nyquist plot lies on the right-hand side.

J |

+ |
it) C) VORPSS c R

Figure 8.6: A simple electric passive system.

The transfer function associated to the state-space representation (8.6) is the follow-
ing one,

/e 1000
1) = Y= S RE) T %100 (8.8)

obtained for C = 0.001F, R = 10Q. The Nyquist plot of (8.8) is shown in Figure 8.7.

ImiG(jw)]

Re[G(jw)]
Figure 8.7: Nyquist plot of the continuous-time model for the RC electric network.

8.2.4 Example 2. The buck converter model

Let the continuous-time normalized average model of the DC-to-DC buck converter
(5.10) with the following physical parameters: V; = 407V,L = 1mH,C = 80uF,R =
10Q2, v = 0.3535533906. The energy associated to the system given by (5.15) is used as
the storage function V. Considering the normalized current x, as the output, the system
is passive. The system is concluded not to be passive considering the normalized voltage
x, as the system output. These passivity and non-passivity properties will be illustrated
by means of the Nyquist plot of these systems. Then, two transfer functions are obtained
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from system (5.10),

_ X(s)  s4+0.3536
als) = U(s) s>+0.3536s+1 89
X5 (s) 1
. = W 8.10
Giv(s) O(s) 2 +035365+ 1 (8.10)

where G ,(s) is the transfer function representing the relation between the input # and
the output x,; G, (s) is the transfer function representing the relation between the input
it and the output x,. As it was expected, the Nyquist plot for (8.9) has the characteristics
of a positive real transfer function, whereas the one corresponding to (8.10) does not (see
Figure 8.8). In addition, all the poles of G ,(s) have real parts strictly negative, therefore
G.;(s) is a positive real transfer function.

(i) » (it)

m|(G(jw)]
;Im [G(jw)]

S

RelG(jw)] RelG(j)]

Figure 8.8: Nyquist plots for the transfers functions derived from the continuous-time state-space
normalized average model of the DC-to-DC buck converter (i) The Nyquist plot of (8.9) lies on the
right-hand side (ii) The Nyquist plot of (8.10) does not lie on the right-hand side.

8.3 Dissipativity preservation under sampling
8.3.1 Dissipativity under sampling

If a dissipative system is discretized, the discretized model is not assured to keep on
being dissipative. The preservation of dissipativity or passivity under sampling has not
been studied in a deep way. The work (de la Sen, 2000) [150] treats the problem of how
to preserve the property of positive realness through discretization. As we know, the
KYP Lemma offers the equivalence between positive realness and passivity in the linear
setting. Therefore, the mentioned work could be considered as the study of preservation
of passivity under sampling. The study of passivity of linear sampled-data systems is
also given in (Colgate and Schenkel, 1994) [18]. The work of (Kristiansen and Egeland,
2000) [78] also treats the problem of preservation of passivity, however, for systems
described by partial differential equations. A recent work which studies the preservation
of the dissipation inequality under sampling for nonlinear systems is given by (Nesic et
al., 2000) [123] and (Laila and D. Nesié¢, 2001) [79]. They also give an unified framework
for the design of nonlinear digital controllers using the emulation method, considering
static controllers (Nesic et al., 2000) [123] and dynamic controllers (Laila and D. Nesic,
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2001) [79]. Then, as it is known, in general, dissipativity and passivity are not preserved
under sampling.

A very interesting work, which can be considered as an application of the concepts
of passivity in order to stabilize a discrete-time linear system is the one presented by
(Tsai, 1996) [172]. Frequency-domain characteristics of passive systems are exploited,
and, what it is more challeging, a brief, but important comment about passivity under
sampling is given. It is concluded that there are discretization methods which do not pre-
serve passivity and there are some which do. A continuous-time system may be converted
to the discrete-time setting without compromising passivity by using the trapezoid-rule
transformation, i.e.,

_2z-1
T T
with z = ¢'T, and T the sampling period. The transformation (8.11) is also called the
bilinear transformation from consideration of its mathematical form.

(8.11)

For the dissipative case, a way of illustrating that the trapezoid-rule transformation
preserves dissipativity under sampling is the following one. Let a continuous-time sys-
tem to be (V,s)-dissipative, which means that

Vi) = Vi) < [ 5000, ue)ar, (8.12)
in particular,
(k+1)T
V(x(k+ 1)) = V(x(k)) < /k _sb(@).u()ds 8.13)

If the integral is approximated by the trapezoid rule, it is obtained,

Tls(y(k+ 1), u(k)) + s(y(k), u(k))]
2 Y

(8.14)

which gives the bilinear transformation in the linear case. Here, as usual, u is supposed
to be constant in a sampling period. The relation (8.14) will be valid depending on how
good (8.14) approximates the integral appearing in (8.13), this fact will depend on the
system treated and the form of the supply function s. In the linear case, it can be con-
cluded that passivity is preserved under sampling using the trapezoid-rule transformation.

By means of two linear examples and using their passivity frequency-domain char-
acteristics, it will be illustrated that the sampled-data model obtained from a continuous-
time model by means of the exact discretization does not preserve passivity. The dis-
cretization of a linear system obtained by the trapezoid-rule transformation will be il-
lustrated to preserve passivity. The two examples considered are the passive circuit
presented in Section 8.2.3 and the discrete-time model for the buck converter used in
Section 8.2.4.

8.3.2 Example 1. A passive circuit

Let consider the model for the electric circuit shown in Figure 8.6, corresponding to the
state-space description (8.6). The first clue which alerts us about the possible loss of
passivity through discretization is that the balance of energy may be lost under sampling.
In Figure 8.9, it is depicted that for the exact discretization of system (8.6), for which the
input is kept constant through each sampling interval, the stored energy (V = %CVQ) is
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slightly less than the stored energy in the continuous-time model. This fact suggests that
the discretized system may lose the passivity property. As it is pointed out in (Colgate
and Schenkel, 1994) [18], sampling produces a time delay and a loss of information
which may make the system lose its passivity property.

Energy for the
0.04f- continuous model

Energy for the
discretized model

Stored energy (V)
°

. I . . . . .
0 001 0.02 003 0.04 0.05 0.06 0.07 0.08
Time (sec)

Figure 8.9: Comparison of the stored energy for the continuous-time circuit and its discretized
model. The stored energy for the discretized model is slightly less than the one obtained for the
continuous-time system.

Let us obtain the exact discretization of system (8.6). Consider the current i constant
for each interval [kT, (k+1)T],Vk > 0, and T the sampling period time. Taking 7, =
0,7, =T and v(k+ 1) as the solution to the Cauchy problem in # = T having as initial
condition v(k). Then,

_ ro_
vik+1) = eR%v(k)-l-é/O eR%(T_S)BdSi(k):

eRCy(k) + R(1 — % )i(k) (8.15)

The pulse transfer function for this system with v as the output has the following form,

=T
R(1 —ex®C
Gedc(z) = 7( — ) (8.16)
7— eRC
which for C = 0.001F, R = 10, T = 0.001sec, is such that
0.9516
= .1
Ceae?) = 720 5043 ®.17)

As it is depicted in Figure 8.10, the Nyquist plot of (8.17) does not correspond to the
Nyquist plot of a positive real pulse transfer function, and consequently, the discretized
system (8.17) is not passive. In conclusion, the exact discretization of the system does
not preserve, in general, the passivity property.

On the other hand, using the trapezoid-rule transformation or bilinear transformation
(8.11), the transfer function (8.8) is converted into

10007z + 1000T
(2+1007T)z+ (100T - 2)

szc (Z) =
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which for T = 0.001 takes the form

- 0.47619(z+ 1)
e\ =70 9048

The Nyquist diagram of (8.18) lies on the right-hand side, see Figure 8.10, in addition, the
system has a fixed point x = 0 being asymptotically stable. In conclusion, the trapezoid-
rule transformation preserves positive realness through discretization, in other words, the
linear discrete-time resulting system is passive.

(8.18)

(i) (i)

Im[G(e™)
Im[G(e?)

CRGE) T Rdaee)

Figure 8.10: (i) Nyquist diagram for the exact discretization of the passive circuit (ii) Nyquist
diagram for the discretized passive circuit using the trapezoid-rule transformation.

8.3.3 Example 2. The buck converter model

The results obtained with the continuous-time buck converter model (5.10) shown to
be passive with respect to the current as the system output, are equivalent to the ones
presented for the passive RC-circuit of the previous section.

First, consider the exact discretization of the original continuous-time model (5.10)
with the physical parameters used in Section 8.2.4. The pulse transfer function ob-
tained from the state-space description (5.13) with y = x|, T = 0.3535533906 and a =
0.9406416964, b = 0.3254699438, ¢ = 0.8255706942, Y= 0.3535533906 is the follow-
ing one:

~0.34646(z—0.8813)

G _ 8.19
ea(2) 72 -1.766z+0.8825 ¢4

The system represented by (8.19) converges to its fixed point, but it is not passive, as it
is illustrated by its Nyquist plot (Figure 8.11), which is not completely in the right-hand
side.

Applying the trapezoid-rule transformation on system (8.9) the following transfer
function in z is obtained,

T (24 aT)z* 4 2aT?z+ T(aT —2)
(4+2aT +T?)22 + (2T —8)z+ (4 — 2aT + T?)’
where a = 0.3536. Considering as sampling period time T=0.3535533906, (8.20) takes
the form

(8.20)

Gp(2) =

_0.17173(z+ 1)(z— 0.8823)

G _ 8.21
b (2) 2 —1.771z+0.8857 ©20
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System (8.21) is passive (as it is shown in Figure 8.11) and converges to its fixed point.

(@) \ (i)

' i
0s /\,

Im[G(e™)]

05 o 05 1 5 2 25 3

Re[G(e”)] Rel[G(e”)]

Figure 8.11: (i) Nyquist diagram for the exact discretized model of the buck converter (ii) Nyquist
diagram for the discretized buck converter using the trapezoid-rule transformation, y = x,.

Remark 8.1 It is interesting to notice in the examples shown in this section that the
relative degree of passive continuous-time systems is one, see (8.8) and (8.9), otherwise,
the relative degree for the associated passive pulse transfer functions have relative degree
zero (as it was established in Chapter 7), see (8.18) and (8.21).

To conclude with, the discretization of a linear system by means of the trapezoid-
rule transformation preserves the passivity property of the continuous-time system, due
to the fact that the positive realness property is preserved and the stability property of
the system is also preserved under sampling (the A-stability preservation under sampling
is treated in (Tsai, 1996) [172]). In general, passivity is not preserved under exact dis-
cretization.

There exist some works in the literature which exploit the preservation of passivity
under sampling and the frequency-domain passivity implications for stability purposes,
most of these works are devoted to hybrid dynamical systems applied to robotics systems,
see for example the works of Colgate and coworkers (Colgate and Schenkel, 1994, 1997)
[18, 17], (Tsai, 1996) [172]). Another interesting study of sampled-data passive systems
is given by (Albertos, 1993) [1]. The study of passivity frequency-domain properties
related to stability in sampled-data systems has been also studied, see as a recent work
(Okuyama and Takemori, 1996) [125], for more information and related works on this
topic see Section 8.5.

8.4 Passivity implications in interconnected systems

One of the most important passivity results is that a negative feedback loop consisting of
two passive systems is passive. In addition, under an additional detectability condition,
this feedback system is also stable. This result is well known for continuous-time systems
(Sepulchre et al., 1997) [152], but it has not been broadly exploited for the discrete-time
case.

Passivity and dissipativity properties have been used in the framework of intercon-
nected discrete-time systems for stability analysis purposes, see for example, (Wu and
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Desoer, 1970) [182], (Desoer and Vidyasagar, 1975) [25]. However, the study of pas-
sivity preservation under block interconnection has aroused less attention in the discrete-
time setting than in the continuous-time case (as recent works in the continuous-time
setting, (Bao et al., 1996) [10], (Kelkar and Joshi, 1998) [71]). In the seminal work
(Popov, 1973) [141], among other things, the interconnection of passive systems is stud-
ied by means of the introduction of the concept of hyperstability, that is, a closed-loop
system consisting of a linear system with a nonlinear block in the feedback path is hy-
perstable when the nonlinear block satisfies a passivity-like characteristic and the linear
block is positive real. This result is given either for the discrete-time or the continuous-
time case.

The purpose of this section is to show an alternative way in studying whether the
feedback and the parallel interconnections (given in Figure 8.12) of two discrete-time
passive systems result in a passive system. It is inspired by the continuous-time results
given in (Sepulchre et al., 1997) [152]. A linear example is used to illustrate the conclu-
sions given.

8.4.1 Feedback and parallel interconnections of passive discrete-time systems

(@) (i)

Gy vy Gl ﬁ
Go Uz Gy A

Figure 8.12: (i) Feedback interconnection (ii) Parallel interconnection.

Theorem 8.1 (Navarro-Lopez et al., 2002) [120] Consider the systems G, and G, (lin-
ear or nonlinear) to be passive. Then, the systems resulting from the feedback and the
parallel interconnections of systems G, and G, are passive.

Proof.

Let x, states of G, and x, states of G,. Taking into account the dissipativity definition
given in Chapter 2 (Definition 2.5), and particularizing it for the passivity case, i.e.,
s(y,u) = yTu, it is concluded that if G, and G, are passive, then there exist two storage
functions V, (x,) and V,(x,), such that

Vi (x (k+ 1)) = Vy(x, (k)
Vy(xy (k+ 1)) = V,(x, (k)

A new state vector is defined as x := (x|, x,), which will be the new state vector for the
interconnected systems, and a new positive definite storage function V is also considered

yiu, (8.22)

<
< Yiu, (8.23)

V(x) =V, (x)) +V,(x,) (8.24)
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For the feedback interconnection (i), one has
V(x(k+1)) = V(x(k)) <yju; +yju,

Taking into account that u, = y,, u; = r —y,, it follows that y! (r—y,) +yZy, = yIr.
Consequently,
V(x(k+1)) = V(x(k) < yin

that is, the feedback interconnected system is passive.

For the parallel interconnection, the output of the systemis y, +y, =y. If G, and G,
are passive,
yviu (8.25)
yu (8.26)

Vi (xy (k+1)) = Vy(x, (k)
V, (xy (k+ 1)) =V, (x, (k)

Adding (8.25) and (8.26), it is obtained
V(x(k+1)) = V(x(k) < (v, +3) u=y"u,

i.e., the system corresponding to the parallel interconnection is passive.

<
<

Remark 8.2 Following the same procedure, it can be easily checked that the property
of OSP for supply functions of the form (2.23) is preserved under feedback block inter-
connection. Besides, ISP for supply functions as in (2.23) is preserved under parallel
interconnection.

8.4.2 An example. Interconnection of passive linear discrete-time systems

For SISO LTI dynamics, a way of illustrating that the feedback and parallel intercon-
nections of two passive systems result in a passive system is by means of the positive
realness property of the transfer function of the interconnected resulting systems.

The corresponding transfer functions for systems (i) and (ii) given in Figure 8.12 are
the following ones

_ Yo _ G
%0 = k9 176,060 (527
Gy(z) = % =G,(2)+G,(2) (8.28)

with G ,(z) the transfer function for system (i) and G,(z) the corresponding one for
(ii). Consider the discretized normalized model of the buck converter (8.21) obtained by
means of the trapezoid-rule or bilinear transformation presented in Section 8.2.4. This
system was proved to be passive and now will be connected to itself by means of a nega-
tive feedback and a parallel interconnection. The transfer functions for the feedback and
parallel interconnections of system (8.21), respectively, take the form:
2 2
6 = — ki (z+1) (z2 a,)(z a2z2+ a,) (8.29)
(22 —a,z+as) (22 —agz+a;) (22 — a2+ a,)
ky(z+1)(z—a,)(2? — a,z+ay)
(22 —ayz+ay)?

(8.30)
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with
k, =0.16681 k, = 0.34345 a, =0.8823 a,=1.771 a, = 0.8857
a, =1.787 as = 0.8357 ag = 1.648 a; =0.9385

The Nyquist diagrams for (8.29) and (8.30) are presented in Figure 8.13. They both
correspond to positive real transfer functions or to passive systems, due to the fact that
their Nyquist diagrams lies on the right-hand side and they do not have poles with modu-
lus greater than one. Transfer functions (8.29) and (8.30) corresponds to asymptotically
stable systems to their fixed points with relative degree 0.

@ (id)

I m [G(e™)]

Im[G(e)]

1 3 4 5 6

RGE) A ReIG(e)

Figure 8.13: Nyquist plots for the feedback and parallel interconnections of the discretized nor-
malized model of the buck converter obtained by means of the trapezoid-rule transformation (i)
Nyquist plot for the feedback interconnection (ii) Nyquist plot for the parallel interconnection.

Remark 8.3 The properties of relative degree zero and passive zero dynamics shown
for linear discrete-time V -passive systems in Chapter 7 are accomplished by the passive
or positive real transfer function (8.21) and its feedback and parallel interconnections

(8.29) and (8.30).

In conclusion, the preservation of passivity under feedback and parallel interconnec-
tion has been proven for discrete-time systems. This property has been illustrated by a
linear example and its passivity frequency-domain characteristics. Some notes about the
preservation of other kinds of dissipativity, such as OSP and ISP, under block intercon-
nection have also been briefly pointed out.

8.5 Dissipativity implications in nonlinear feedback systems stability

The study of the stability of non-linear systems using frequency-based criteria is well
known for systems of the form presented in Figure 8.14: a linear system G(s) with a
single non-linear gain F'(y) in the feedback path.

This section is devoted to present the most important existing stability criteria for
this kind of systems and relate dissipativity to all these ones. Three frequency-domain
stability criteria will be studied: Popov’s, the circle and Tsypkin’s criteria. All the results
are presented for the SISO case.
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4»0 —_— G(s) y

F(y)

Figure 8.14: Linear system with a non-linear feedback.

8.5.1 Popov’s criterion

Numerous authors have been interested in the study of the stability of systems of the form
presented in Figure 8.14. Most of them looked for stability criteria based on Lyapunov’s
direct method. A Romanian mathematician Popov, established a stability criterion based
upon the frequency response of the linear part (Popov, 1973) [141]. The geometric in-
terpretation of Popov’s criterion lead to a similar criterion to the Nyquist criterion for
linear systems. The study of the asymptotic and global stability of systems of the form
presented in Figure 8.14 is also called absolute stability or Lur’e problem. The prob-
lem of absolute stability has been studied in connection to passivity and real positiveness
concepts, see (Zames, 1966) [190, 191] as a seminal work and as a recent one (Paré et
al., 2001) [136] where the stability analysis combines passivity, Lyapunov and Popov’s
stability theories.

Now, the main ideas of Popov’s criterion will be introduced in such a way they will be
able to be used in the connection between this stability method and the frequency-domain
stability implications of dissipativity. For more details see (Khalil, 1996) [76].

Theorem 8.2 (Aleixandre-Campos and Alonso-Romero) [2] The system with non-linear
feedback shown in Figure 8.14 is absolutely stable if

a) The non-linear function F satisfies

a.l. F(0)=0

a2 0< @ < b, Yy # 0 with b a positive constant.

b) There exists some constant & such that,
1
(1+ as)G(s) + 5

is a positive real transfer function.

The most interesting feature of Popov’s theorem is that it does not impose any re-
striction on the system order. Besides, it only uses the transfer function of the linear part,
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Figure 8.15: Geometric interpretation of Popov’s criterion.

and does not require the mathematic expression of the non-linear funtion, only its linear
bounds.

Popov’s criterion appears to be useful when its geometric interpretation is estab-
lished. As it has been shown, the condition on the transfer function of the linear part
requires the existence of a constant ¢, such that

1
Re | (1+@jo)G(jo) + | >0, Vw (8.31)

Popov’s theorem also establishes the residues for
1
(1+ as)G(s) + 5

in the poles with zero real part to be real and positive, G(s) not to have poles with positive
real part, and the poles on the imaginary axis to be simple. These three conditions are
easy to check over G(s) directly. It is not the case of condition (8.31). Fortunately, the
geometric interpretation for (8.31) is direct, and in addition, it gives a value for o. Let
consider the following function,

M(jo) =Re [G(jo)]+jolm [G(jw)], @ >0 (8.32)

whose polar plot for @ € [0, ) is called modified polar plot of G(jw). Condition (8.31)
sets that a straight line must exist with an arbitrarily chosen, but fixed slope through the
point (—% +30), such that the modified polar plot of G(j®) lies to the right of this line,
see Figure 8.15. The slope of this straight line, which is tangent to the polar plot M (jw),
is precisely é.

8.5.2 The circle criterion
The circle criterion, proposed in (Zames, 1966) [191] (see also (Franklin et al., 1990)

[42], (Khalil, 1996) [76]), gives a sufficient condition for the stability of a system G(s)
with a non-linear function gain F(y) in the feedback path (see Figure 8.14).
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Suppose the function F(y) to fall in a sector bounded by two straigh lines with slopes
aand b,
a<F0)
y

This situation is presented in Figure 8.16.

F(y)

/Slope b

Figure 8.16: Sector bounded non-linear function.

The sector region will determine a circular region C in the complex plane, that is,
(Tsai, 1996) [172]

C,(a,b) = {(U,V):ab <U+%+21—b>2+V2—<ﬁ—ﬁ>]§O},
Va,b+0 (8.33)
or
Cylab) = {(U,V):Ug—%},‘v’azo,b#o (8.34)
or
Cylab) = {(U,V):UZ—%},Va#O,b:O, (8.35)

where U = Re[G(jo)] and V = Im[G(jo)]. In every case, the circular region C excludes
the origin on the complex plane (U,V), i.e., 0 & C(a,b). Regions (8.33), (8.34), and
(8.35) are represented in Figures 8.17, 8.18 and 8.19. Note that when a or b are zero, the
critical disk is converted into a critical straight line.

Theorem 8.3 (Zames, 1966) [191] The system shown in Figure 8.14 is absolutely stable
if the Nyquist plot of G(jw) does not touch or intersect the circular region C.

Another way of expressing the circle criterion is by means of considering the positive
realness of a transfer function depending on G(s), a and b.

Theorem 8.4 (Aleixandre-Campos and Alonso-Romero) [2] The system shown in Fig-
ure 8.14 is absolutely stable if,
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a) a<@<b,Vy.

b) The transfer function
_ 14+bG(s)
~ 14aG(s)

is positive real.

Now, the geometric interpretation of condition b) of Theorem 8.4 will be presented.
On the complex plane (Re[G(jw)],Im[G(jw)]), the points —1 and —} are considered.
The segment between these two points is taken as the diameter of a circle C (as was
drawn in Figure 8.17). Condition Re[F (jw)] > 0, V@ can be written as follows,

e[l/b+G(ja))é

b a} >0, Yo (8.36)

IS) Ll
|
Sl

@

Figure 8.17: C,(a,b) is the shaded region, a,b # 0 (i) a,b > 0 (ii) a > 0, b < 0 (iii) a,b < 0.

There are, then, three possibilities:

1. a and b have the same sign. In this case, the region C or critical disk, is the interior
of the circle, therefore the Nyquist diagram for G(s) must not have any point inside
C (cases (i) and (iii) on Figure 8.17).

2. a and b have different signs. Now, C will be the outside of the circle, and, conse-
quently the Nyquist diagram of G(s) must be located on the inside of C (case (ii)
on Figure 8.17).

3. Some of the constants are zero. The critical disk is converted into a critical line
which the G(s) Nyquist plot must not cross (Figures 8.18 and 8.19).
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=

Figure 8.18: C,(a,b) is the shaded region, a = 0, # 0 (i)a=0,b> 0 (ii)a = 0, b < 0.

(i) (i)
v |4

SN L

Figure 8.19: C;(a, b) is the shaded region, b= 0,a# 0 (i) b=0,a> 0 (ii)) b=0,a < 0.

In case a and b have different signs, these two conditions are met if the Nyquist plot
of G(s) remains inside C. However, if a and b have the same sign, it is necessary to apply
the argument principle, which will establish that the Nyquist plot of G(s) must encircle
C in counterclockwise so many times as the number of unstable poles of G(s).

When a — b, the critical disk tends to a critical point, and the circle criterion “tends”
to the Nyquist criterion. It must be pointed out that the circle criterion is much more
restrictive than the Nyquist one. Besides, it can not be forgotten that the circle criterion
conditions (as the Popov’s criterion ones) are sufficient but not necessary, so if they are
not met it does not imply un-stability.

The discrete-time version of the circle criterion is presented for the case of a > 0 in
(Franklin et al., 1990) [42], and implies the same conditions presented above with the
difference that the transfer function to be analyzed in the frequency domain is G(el®T),



162 8 Brief notes on dissipativity and passivity implications in the discrete-time setting

with T the sampling period time. It can be noticed that the discretization of a transfer
function is inherited where the equivalence z = ¢*7 is considered.

8.5.3 Absolute stability in nonlinear sampled-data systems. Tsypkin’s criterion

Besides the discrete-time version of the circle criterion given in (Franklin et al., 1990)
[42], which has not been widely used and has not been given for all the cases of the
circle criterion, some of the main results concerning the study of absolute stability in
the discrete-time setting will be mentioned. These results corresponds to sampled-data
systems and they are not so numerous as the ones existing for the continuous-time case.

The absolute stability is studied in the case of sampled-data control systems, i.e., sys-
tems of the form depicted in Figure 8.20: a closed-loop system containing a linear plant,
a sampler and zero-order hold and a single-valued nonlinearity. Traditional Popov’s-type
criteria appear in the literature using function analytic methods, see (Jury and Lee, 1964)
[65, 66], (Jury and Lee, 1966) [67], (Szego, 1964) [168]. As recent works on this topic,
the works of (Haddad and Bernstein, 1994) [50] and (Okuyama and Takemori, 1996)
[125] can be underlined; the former exploits results from passivity and positive realness
theory and the latter gives a robust stability criterion derived from a norm condition in
the frequency domain. Other discrete-time absolute stability studies to point out are (Ra-
marajan and Rao, 1972) [143], (Sharma and Singh, 1981) [154] and (Hagiwara et al.,
1998) [51].

In order to analyze the stability of discrete-time systems containing a feedback non-
linearity, Tsypkin’s criterion (Tsypkin, 1962)[173] appears to be the closest analogous to
Popov’s criterion, which is most used for analyzing such systems in the continuous-time
setting. Tsypkin’s criterion is derived from the passivity formalism in terms of input-
ouput properties and from an operator viewpoint in (Wu and Desoer, 1970) [182]. A
recent Tsypkin’s-type criterion reported in the literature for MIMO systems containing
an arbitrary number of sector-bounded nonlinearities is the one given by (Kapila and
Haddad, 1996) [69] which provides a Lyapunov-kind analysis based on the KYP condi-
tions.

Now, in a schematic way, the main ideas of Tsypkin’s criterion will be revisited. Let
the system shown in Figure 8.20.

4.0 - as)

F(y)

Figure 8.20: Sampled-data control system with non-linear gain in the feedback path.

Theorem 8.5 (Tsai, 1996) [172] System shown in Figure 8.20 is said to be absolutely
stable if,
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a) The nonlinear function F satisfies
al. F(0)=0
a2. 0< @ <b,V¥y#0

b) The discrete transfer function of G(s), i.e., G*(joT), is such that

1 s
Re[G'(joT)] >~ Vo 0< @ < % (8.37)

with b a constant, g the sampling frequency, and T the sampling period time.

The geometric interpretation of condition (8.37) is illustrated in Figure 8.21.

|
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Figure 8.21: Illustration of Tsypkin’s criterion in the Nyquist plane. Shaded part is not allowable
for the Nyquist plot of G*(jwT') in order that the whole system is absolute stable.

8.5.4 Implications of dissipativity and passivity in feedback discrete-time systems
stability

The study of stability of nonlinear systems using frequency criteria instead of Lyapunov’s
direct method has been proposed for linear systems with a non-linearity in the feedback
path. These methods, mainly, Popov’s, Tsypkin’s and the circle criteria establish stability
criteria based upon the frequency response of the linear part. It is proposed (Popov, 1973)
[141] that if the transfer function corresponding to the linear block is positive real or
passive and the non-linearity satisfies a Popov-like inequality, i.e., it is a sector bounded
nonlinear function, then the resulting closed-loop system is said to be absolutely stable.

This section tries to present the valuable importance that dissipativity and passivity
concepts may have in the stability analysis of nonlinear interconnected systems. The
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most interesting and remarkable property of passivity is that in linear systems (either
discrete or continuous), the positive realness characteristic is equivalent to the passivity
property, and in addition, it presents highly interesting stability properties in the fre-
quency domain.

Since the geometric interpretation of stability criteria such as Popov’s, the circle and
Tsypkin’s ones are based on the positive realness of a transfer function, and a particular
emplacement of the Nyquist plot, dissipativity formalism can be considered to have inter-
esting relations with these stability criteria. Indeed, a passive nonlinear function has the
property of falling in sector [0, ) (Franklin et al., 1990) [42], consequently, the passivity
property increases the validity of Popov’s, the circle and Tsypkin’s criteria. If a sector
bounded non-linearity is passive, its sector boundaries are augmented in comparison to
the boundaries proposed in the mentioned stability criteria.

In (Goodwin and Sin, 1984) [45], the generalized KYP or Discrete Positive Real
Lemma is proposed for (Q, S, R)-dissipative discrete-time linear systems, see Lemma 2.1
in Chapter 2. In addition, the characteristics of the Nyquist plot of G(¢i®) for single-input
single-output (Q, S, R)-dissipative linear systems are presented depending on the form of
the supply function. These characteristics depending on the value of matrices Q, R and S
were presented in Section 8.2.2.2.

From the characteristics of the Nyquist plot of G(¢i®), the frequency-domain dissi-
pativity properties could be considered as the generalization of the stability conditions of
the mentioned criteria for the discrete-time setting.

Tsypkin’s criterion for nonlinear sampled-data systems establishes that the closed-
loop system consisting of a linear transfer function with a nonlinear function in the
feedback path is absolutely stable if the nonlinear function falls in a sector bounded
by two straight lines with slopes 0 and b, and the Nyquist plot of the discrete transfer
function lies to the right of the vertical line Rez = —1/b (Tsai, 1996) [172], see Fig-
ure 8.21. Considering (Q, S, R)-dissipative systems, it is easy to check that the geometric
interpretation of the Tsypkin’s criterion in the framework of the frequency domain is a
special case of (Q, S, R)-dissipativity with Q =0,S =1/2,R=1/b.

The circle criterion gives a sufficient condition for the absolutely stability of a linear
system with a nonlinear function gain in the feedback path wich falls in a sector bounded
by two straight lines with slopes a and b. This class of system will be absolutely stable if
the Nyquist plot of the transfer function associated to the linear block does not intersect
aregion C defined by the points (—1/a+0j) and (—1/b+j0). In case a,b # 0 the region
C will be a circle. On the other hand, if a = 0,b # 0 or b = 0,a # 0, the critical disk
is converted into a critical line which the Nyquist plot must not cross, see Figures 8.17,
8.18, 8.19.

The discrete-time version of the circle criterion is obtained from the continuous-time
result for the case of a > 0, and using z = €/*7 , with T the sampling period, see (Franklin
et al., 1990) [42]. Considering the frequency-domain characteristics of dissipativity,
the conditions that the linear block of the nonlinear system under consideration must
accomplish can be seen as different classes of dissipativity. For example, the case of
having a = 0,b # 0 corresponds to the (Q,S,R)-dissipativity case considering Q = 0,
S =1/2, R =1/b where the Nyquist plot of the transfer function corresponding to the
linear part lies to the right of the vertical line Rez = —1/b. The case of having5=0,a # 0



8.6 Conclusions and future work 165

corresponds to the (Q, S, R)-dissipativity case with Q =0, S = —1/2, R = —I/a where
the Nyquist plot of the transfer function corresponding to the linear part lies to the left of
the vertical line Rez = —1/a. When the critical region corresponds to the interior or the
outside of the circle determined by the points (—1/a+ 0j) and (—1/b+ 0j), the stability
conditions proposed by the circle criterion may also be obtained from the dissipativity
frequency-domain properties, considering supply functions of the form (2.23) with O
negative.

From the dissipativity characterization in the frequency domain, an extension of the
Popov’s stability criterion to the discrete-time setting may be obtained, however, a more
complicated analysis than the one made for Tsypkin’s and circle criteria is required, we
think that another kind of supply functions different to (2.23) should be proposed for this
purpose.

8.6 Conclusions and future work

Some implications of dissipativity and passivity properties for the discrete-time case have
been presented, mainly: the preservation of passivity under feedback and parallel inter-
connections, and the study of the preservation of passivity under sampling; some notes on
the preservation of dissipativity under sampling have also been pointed out. Dissipativity
characterization in the frequency domain has been used to illustrate the preservation of
passivity under feedback and parallel interconnections and under sampling by means of
linear examples. The frequency-domain characteristics of dissipative systems have also
been used to present dissipativity as an interesting tool for the study of systems stability
in the discrete-time setting, and it can be considered as a way for obtaining frequency-
based stability criteria types, such as: Tsypkin’s, the circle and Popov’s criteria, for
discrete-time systems.

The most important conclusions given in this chapter are the following ones. In
general, passivity is not preserved under sampling. For the linear case, the discretiza-
tion of a system by means of the trapezoid rule preserves the passivity property of the
continuous-time system. In addition, passivity is preserved under feedback and paral-
lel interconnections. Some notes about the preservation of other kinds of dissipativity,
such as OSP and ISP, under block interconnection have also been pointed out. Finally,
dissipativity is seen as an alternative to study nonlinear feedback systems stability.

The contribution of this chapter is the way of using passivity and dissipativity. The
existing frequency-domain characterization of passivity and (Q, S, R)-dissipativity has
been used to illustrate dissipativity consequences in systems properties. The properties
studied in this chapter have not been treated broadly in the literature for the discrete-time
case, indeed, the proposals made in Section 8.5.4, related to the fact of using dissipativity
to study the frequency-domain stability properties of nonlinear discrete-time systems
have not attracted significant attention in the literature.

There are a lot of interesting problems to point out as further research. First of all, it
will be interesting to define what a positive real discrete-time system is in the nonlinear
setting. Second, a deeper analysis of the preservation of passivity and dissipativity under
sampling for nonlinear systems is needed. Referring the study of dissipativity under
block interconnection, it must be underlined that we have heuristic results which illustrate
that some kinds of dissipativity are preserved under block interconnections, however, we
have not proven it in a formal way yet. So, it would be interesting to study dissipativity
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preservation under block interconnection. Finally, it would be interesting to derive in a
formal way Popov’s and the circle criteria from the dissipativity formalism. This fact
implies to explore the frequency-domain characteristics of other kinds of dissipativity
different to passivity and (Q, S, R)-dissipativity.

All the attracting characteristics of passive and dissipative systems can be exploited in
the discrete-time setting jointly other controls, such us, adaptive control, robust control,
iterative learning control, or in order to solve the tracking control problem using the
equivalence between invertibility, output dissipativity and positive realness, (Arimoto
and Naniwa, 2000) [9].

This chapter has shown some of the interesting properties that dissipative and passive
systems exhibit, they motivate the transformation of a system which is not dissipative or
passive into a dissipative or passive one.



