Appendix A

Dissipativity and passivity characterization

For the reader's convenience, here statements of several fundamental dissipativity-related theorems which were referenced in this dissertation are collected.

A. 1 The nonlinear continuous-time case

Let a system of the form

$$
\begin{align*}
& \dot{x}=f(x)+g(x) u \tag{A.1}\\
& y=h(x)+J(x) u \tag{A.2}
\end{align*}
$$

where f and h are real vector functions of the state vector x, and g and J are real matrix functions of x. It is supposed that f, g, h, and J have continuous derivatives of all orders. The input u and the output y have the same dimensions, therefore, J is a square matrix.

Theorem A. 1 (Hill and Moylan, 1976) [53] System (A.1)-(A.2) is (Q, S, R)-dissipative if and only if there exist real functions of the state vector $x V, l$ and W, with V continuous and satisfying

$$
\begin{aligned}
& V(x) \geq 0, \forall x \\
& V(0)=0,
\end{aligned}
$$

such that

$$
\begin{align*}
\frac{\partial V(x)}{\partial x} f(x) & =h^{T}(x) Q h(x)-l^{T}(x) l(x) \tag{A.3}\\
\frac{1}{2} g^{T}(x)\left[\frac{\partial V(x)}{\partial x}\right]^{T} & =\hat{S}^{T}(x) h(x)-W^{T}(x) l(x) \tag{A.4}\\
\hat{R}(x) & =W^{T}(x) W(x) \tag{A.5}
\end{align*}
$$

with

$$
\begin{aligned}
& \hat{R}(x)=R+J(x) S+S^{T} J(x)+J^{T}(x) Q J(x) \\
& \hat{S}(x)=Q J(x)+S
\end{aligned}
$$

Theorem A. 2 (Moylan, 1974) [116] System (A.1)-(A.2) is passive if and only if there exist real functions of the state vector $x V, l$ and W, with V continuous and satisfying

$$
V(x) \geq 0, \forall x
$$

and

$$
V(0)=0
$$

such that

$$
\begin{align*}
\frac{\partial V(x)}{\partial x} f(x) & =-l^{T}(x) l(x) \tag{A.6}\\
\frac{1}{2} g^{T}(x)\left[\frac{\partial V(x)}{\partial x}\right]^{T} & =h(x)-W^{T}(x) l(x) \tag{A.7}\\
J(x)+J^{T}(x) & =W^{T}(x) W(x) \tag{A.8}
\end{align*}
$$

If J is a constant matrix, then W may be taken to be constant.

Consider a system of the following form,

$$
\begin{align*}
\dot{x} & =f(x, u) \tag{A.9}\\
y & =h(x, u) \tag{A.10}
\end{align*}
$$

with $x \in \mathscr{X} \subset \mathfrak{R}^{n}, u \in \mathscr{U} \subset \mathfrak{R}^{m}, y \in \mathscr{Y} \subset \mathfrak{R}^{m}$.

Proposition A. 1 (Lin, 1995) [86] Let $\Omega=\left\{x \in \mathfrak{R}^{n}: L_{f(x, 0)} V(x)=0\right\}$. Necessary conditions for (A.9)-(A.10) to be passive with a \mathscr{C}^{2} storage function V are that,
(i) $L_{f(x, 0)} V(x) \leq 0$
(ii) $L_{g_{0}} V(x)=h^{T}(x, 0), \forall x \in \Omega$
(iii) $\sum_{i=1}^{n} \frac{\partial^{2} f_{i}}{\partial u^{2}}(x, 0) \frac{\partial V}{\partial x_{i}} \leq \frac{\partial h^{T}}{\partial u}(x, 0)+\frac{\partial h}{\partial u}(x, 0), \forall x \in \Omega$
with $g_{0}(x)=\frac{\partial f}{\partial u}(x, 0)=\left[g_{1}^{0}(x), \ldots, g_{m}^{0}(x)\right] \in \mathfrak{R}^{n \times m}, g_{i}^{0}=\frac{\partial f}{\partial u_{i}}(x, 0) \in \mathfrak{R}^{n}, 1 \leq i \leq m$.

A. 2 The nonlinear discrete-time case

Consider,

$$
\begin{align*}
x(k+1) & =f(x(k))+g(x(k)) u(k) \tag{A.11}\\
y(k) & =h(x(k))+J(x(k)) u(k) \tag{A.12}
\end{align*}
$$

where $x \in \mathfrak{R}^{n}, u \in \mathfrak{R}^{m}$, and $y \in \mathfrak{R}^{m}, f, g, h$, and J are smooth maps, all of appropriate dimensions, and $f(0)=0, h(0)=0$.

Proposition A. 2 (Lin and Byrnes, 1995) [87] Let

$$
\Omega=\left\{x \in \mathfrak{R}^{n}: V\left(f^{i+1}(x)\right)=V\left(f^{i}(x)\right), \forall i \in \mathscr{Z}_{+}\right\}
$$

for a \mathscr{C}^{2} storage function V, which is positive definite and $V(0)=0$. A system of the form (A.11)-(A.12) is passive only if

$$
\begin{align*}
V(f(x)) & \leq V(x) \forall x \in \mathfrak{R}^{n} \tag{A.13}\\
\left.\frac{\partial V}{\partial \alpha}\right|_{\alpha=f(x)} g(x) & =h^{T} \forall x \in \Omega \tag{A.14}\\
\left.g^{T}(x) \frac{\partial^{2} V}{\partial \alpha^{2}}\right|_{\alpha=f(x)} g(x) & \leq J^{T}(x)+J(x) \forall x \in \Omega \tag{A.15}
\end{align*}
$$

Let a discrete-time system of the form,

$$
\begin{align*}
x(k+1) & =f(x(k), u(k)), x \in \mathscr{X} \subset \mathfrak{R}^{n}, u \in \mathscr{U} \subset \mathfrak{R}^{m} \tag{A.16}\\
y(k) & =h(x(k), u(k)), y \in \mathscr{Y} \subset \mathfrak{R}^{m} \tag{A.17}
\end{align*}
$$

where f and h are smooth maps, and $f(0,0)=0, h(0,0)=0$.

Proposition A. 3 (Lin, 1995) [86] Let $\Omega_{d}=\left\{x \in \mathfrak{R}^{n}: V\left(f_{0}(x)\right)=V(x)\right\}$. A system of the form (A.16)-(A.17) is passive with a $\mathscr{C}^{r}(r \geq 2)$ storage function V, with $V(0)=0$ only if

$$
\begin{gather*}
\left.\frac{\partial V}{\partial \alpha}\right|_{\alpha=f_{0}(x)} g_{0}(x)=h^{T}(x, 0) \forall x \in \Omega_{d} \tag{A.18}\\
\left.g_{0}^{T}(x) \frac{\partial^{2} V}{\partial \alpha^{2}}\right|_{\alpha=f_{0}(x)} g_{0}(x) \leq \frac{\partial h}{\partial u}(x, 0)+\frac{\partial h^{T}}{\partial u}(x, 0) \forall x \in \Omega_{d}, \tag{A.19}
\end{gather*}
$$

with

$$
\begin{align*}
f_{0}(x) & =f(x, 0) \in \mathfrak{R}^{n}, \\
g_{i}^{0} & =\frac{\partial f}{\partial u_{i}}(x, 0) \in \mathfrak{R}^{n}, 1 \leq i \leq m, \\
g_{0}(x) & =\frac{\partial f}{\partial u}(x, 0)=\left[g_{1}^{0}(x), \ldots, g_{m}^{0}(x)\right] \in \mathfrak{R}^{n \times m} . \tag{A.21}
\end{align*}
$$

Definition A. 1 (Sëngor, 1995) [151] A dynamical discrete-time system is a dynamical energy system if there exists a function $s(y, u)$, called the supply rate or the power input function, such that the associated consumed energy is defined by

$$
\begin{equation*}
e\left(K, K_{0}, u, y\right)=\sum_{K_{0}}^{K-1} s(u(\tau), y(\tau)) \tag{A.22}
\end{equation*}
$$

Definition A. 2 (Sëngor, 1995) [151] ψ is a gradient-like function if and only if there exists $B: \mathscr{X} \rightarrow \mathfrak{R}^{n}$ and $C: \mathscr{X} \rightarrow \mathfrak{R}^{n \times n}$, such that

$$
\psi(\hat{x})-\psi(x) \equiv B(x)^{T}(\hat{x}-x)+(\hat{x}-x)^{T} C(x)(\hat{x}-x), \forall \hat{x}, x \in \mathscr{X}
$$

Theorem A. 3 (Sëngor, 1995) [151] Consider the system (A.16)-(A.17) and the function (A.22). Then a gradient-like function $\psi: \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{+}$is a conservative potential function for the given system if and only if

$$
B(x)^{T}[f(x, u)-x]+[f(x, u)-x]^{T} C(x)[f(x, u)-x]=s(u, y(x, u)), \forall(x, u) \in \mathscr{X} \times \mathscr{U}
$$

Theorem A. 4 (Sëngor, 1995) [151] Consider the system (A.16)-(A.17) and the function (A.22). Then a gradient-like function $\psi: \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{+}$is an internal energy function for the given system if and only if

$$
B(x)^{T}[f(x, u)-x]+[f(x, u)-x]^{T} C(x)[f(x, u)-x] \leq s(u, y(x, u)), \forall(x, u) \in \mathscr{X} \times \mathscr{U}
$$

Theorem A. 5 (Sëngor, 1995) [151] Every dynamical energy system with a conservative potential function is lossless.

Theorem A. 6 (Sëngor, 1995) [151] A system is dissipative if and only if there exists an internal energy function.

Theorem A. 7 (Sëngor, 1995) [151] A gradient-like function $\psi: \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{+}$is a conservative potential energy for the system (A.11)-(A.12) with $s=y^{T} Q y+2 y^{T} S u+u^{T} R u$ if and only if

$$
\begin{align*}
B(x)^{T}[f(x)-x]+[f(x)-x]^{T} C(x)[f(x)-x] & =h^{T}(x) Q h(x) \tag{A.23}\\
g^{T}(x)\left\{B(x)+\left[C^{T}(x)+C(x)\right][f(x)-x]\right\} & =2[Q J(x)+S]^{T} h(x) \\
R+J^{T}(x) S+S^{T} J(x)+J^{T}(x) Q J(x)-g(x)^{T} C(x) g(x) & =0 \tag{A.24}
\end{align*}
$$

Theorem A. 8 (Sëngor, 1995) [151] A gradient-like function $\psi: \mathfrak{R}^{n} \rightarrow \mathfrak{R}^{+}$is an internal energy function for the system (A.11)-(A.12) with $s=y^{T} Q y+2 y^{T} S u+u^{T} R u$ if and only if there exist real functions l, m, W, all of appropriate dimensions, satisfying $\forall x \in \mathscr{X}$

$$
\begin{align*}
B(x)^{T}[f(x)-x]+[f(x)-x]^{T} C(x)[f(x)-x] & =\hat{Q}-l^{T}(x) l(x)-m^{T}(x) m(x) \tag{A.26}\\
g^{T}(x)\left\{B(x)+\left[C^{T}(x)+C(x)\right][f(x)-x]\right\} & =\hat{S}-2 W^{T}(x) l(x) \tag{A.27}\\
\hat{R}-g^{T}(x) C(x) g(x) & =W^{T}(x) W(x) \tag{A.28}
\end{align*}
$$

with

$$
\begin{aligned}
\hat{Q} & =h^{T}(x) Q h(x) \\
\hat{S} & =2[Q J(x)+S]^{T} h(x) \\
\hat{R} & =R+J^{T}(x) S+S^{T} J(x)+J^{T}(x) Q J(x)
\end{aligned}
$$

