
Binary Redundancy Elimination

Author: Manel Fernández

Advisor: Roger Espasa

Thesis submitted in fulfillment of

the requirements for the degree of

Doctor en Informática

UPC

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Department of Computer Architecture

Barcelona, Spain

January 2005

c© Copyright by

Manel Fernández

2005

A mis padres y hermanos.

Y muy especialmente, a Laura.

iv

Abstract

Two of the most important performance limiters in today’s processor families comes from solv-

ing the memory wall and handling control dependencies. In order to address these issues, cache

memories and branch predictors are well-known hardware proposals that take advantage of,

among other things, exploiting both temporal memory reuse and branch correlation. In other

words, they try to exploit the dynamic redundancy existing in programs. This redundancy

comes partly from the way that programmers write source code, but also from limitations in

the compilation model of traditional compilers, which introduces unnecessary memory and

conditional branch instructions. We believe that today’s optimizing compilers should be very

aggressive in optimizing programs, and then they should be expected to optimize a significant

part of this redundancy away.

On the other hand, optimizations performed at link-time or directly applied to final pro-

gram executables have received increased attention in recent years, due to limitations in the

traditional compilation model. First, even though performing sophisticated interprocedural

analyses and transformations, traditional compilers do not have the opportunity to optimize

the program as a whole. A similar problem arises when applying profile-directed compilation

techniques: large projects will be forced to re-build every source file to take advantage of

profile information. By contrast, it would be more convenient to build the full application,

instrument it to obtain profile data and then re-optimize the final binary without recompiling

a single source file.

In this thesis we present new profile-guided compiler optimizations for eliminating the

redundancy encountered on executable programs at binary level (i.e.: binary redundancy),

even though these programs have been compiled with full optimizations using a “state-of-

the-art” commercial compiler. In particular, our Binary Redundancy Elimination (BRE)

techniques are targeted at eliminating both redundant memory operations and redundant con-

ditional branches, which are the most important ones for addressing the performance issues

that we mentioned above in today’s microprocessors. These new proposals are mainly based

on Partial Redundancy Elimination (PRE) techniques for eliminating partial redundancies in

a path-sensitive fashion. Our results show that, by applying our optimizations, we are able

to achieve a 14% execution time reduction in our benchmark suite.

v

vi ABSTRACT

In this work we also review the problem of alias analysis at the executable program level,

identifying why memory disambiguation is one of the weak points of object code modification.

We then propose several alias analyses to be applied in the context of link-time or executable

code optimizers. First, we present a must-alias analysis to recognize memory dependencies in

a path-sensitive fashion, which is used in our optimization for eliminating redundant mem-

ory operations. Next, we propose two speculative may-alias data-flow algorithms to recognize

memory independencies. These may-alias analyses are based on introducing unsafe specu-

lation at analysis time, which increases alias precision on important portions of code while

keeping the analysis reasonably cost-efficient. Our results show that our analyses prove to be

very useful for increasing memory disambiguation accuracy of binary code, which turns out

into opportunities for applying optimizations.

All our algorithms, both for the analyses and the optimizations, have been implemented

within a binary optimizer, which overcomes most of the existing limitations of traditional

source-code compilers. Therefore, our work also points out the most relevant issues of applying

our algorithms at the executable code level, since most of the high-level information available

in traditional compilers is lost.

Acknowledgments/Agradecimientos

I want to thank all the people who provided guidance, help, and support while I was working

on this thesis.

Most of all, I am indebted to my advisor Roger Espasa, for his continuous support, great

patience, and specially for let me enough freedom to do things I wanted to do the way I

thought they should be done. Without his guidance and encouragement this thesis would

have never been possible.

I would also like to thank the members of my thesis committee for the effort they put into

judging this thesis. Special mention to Professor Jordi Cortadella, for his suggestions and

helpful discussions on some ideas that significantly improved this document.

I am specially indebted to Professors Saumya Debray and Cristina Cifuentes, for the chance

to work with them, and for their kindness hosting me during my stays at the University of

Arizona and Sun Microsystems, respectively. The numerous insightful discussions with them

about different research topics have definitely contributed this thesis. My gratitude also to

Brian Lewis, Sri Nair, Greg Wright, and everyone at Sun Microsystems Laboratories. And

of course, to Emiliano Bartolomé, Malen Flaquer, and Pere Obrador, for making me feel at

home during my visits to California.

I am also specially grateful to the people at the Department of Computer Architecture.

Thanks to Professors Eduard Ayguadé, Antonio González, and Mateo Valero, for their en-

couragement in so many different situations, I would also thank to Agustin Fernández, Jordi

Garćıa, Toni Juan, Josep Lluis Larriba, and Josep Llosa, for their help and friendship along

these years. Special thanks to Xavier Vera, who carefully read a draft of this thesis and

suggested many improvements. My gratitude also to the administration, LCAC, and CEPBA

staff, for their excellent administration an technical support.

Finally, I would like to express my thanks to everyone I have not cited above but has help

me, directly or not, in the long way until this thesis has been finished.

Todo proceso sufre una gran influencia del entorno donde se elabora. Por ello, las personas

que me han rodeado en los últimos años, tanto a nivel profesional como a nivel personal, han

influido en gran medida en la elaboración de este trabajo.

vii

viii ACKNOWLEDGMENTS/AGRADECIMIENTOS

Quiero expresar mi agradecimiento a todos los que han sido mis compañeros y amigos en el

Departamento de Arquitectura de Computadores, muy especialmente a Jaume Abella, Yolanda

Becerra, Ramon Canal, Jesús Corbal, Julita Corbalán, Pepe González, Larisa Miranda, Daniel

Ortega, Maite Ortega, Jesús Sanchez, Gladys Utrera y Xavi Vera. Con ellos he compartido no

sólo un entorno de trabajo extraordinario, sino también incontables confidencias y vivencias

que no podré olvidar nunca. Todo hubiera sido mucho más dif́ıcil sin ellos.

Este trabajo no podŕıa haberse desarrollado sin una base sólida en el aspecto educativo, per-

sonal y humano. Por ello quiero agradecer a mi familia, especialmente a mis padres Domingo

y Josefa, y a mis hermanos Miguel Angel y Merche, el apoyo y cariño que siempre me han

brindado. Sin ellos nunca habŕıa llegado tan lejos.

Por último, mi más profundo agradecimiento a Laura, más de lo que aqúı podŕıa expresar

con palabras. Por su apoyo y ánimo incondicionales, y ante todo por darme la estabilidad

necesaria para acabar este trabajo. En definitiva, por todo el amor, el cariño y la alegŕıa que

he recibido de ella durante estos años.

This work has been supported by the Intel Labs Barcelona (BSSAD), the Spanish Min-

istry of Science and Technology, and the European Union (FEDER funds), under grants

PN98 46057403-1, CYCIT TIC98-0511 and TIC2001-0995-C02-01.

Contents

Abstract v

Acknowledgments/Agradecimientos vii

Contents ix

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Motivation . 2

1.1.1 Binary redundancy . 3

1.1.2 Binary optimizations . 5

1.2 Thesis overview . 7

1.2.1 Thesis objectives . 7

1.2.2 Structure of this document . 8

2 Background and related work 11

2.1 Preliminaries . 12

2.1.1 Control flow graph . 12

2.1.2 Basic blocks . 12

2.1.3 Instruction set representation . 13

2.2 Data-flow analysis . 14

2.2.1 Liveness analysis . 16

2.2.2 Use-def chains . 17

2.2.3 Alias analysis . 17

2.2.3.1 Alias analysis by instruction inspection 18

2.2.3.2 Residue-based global alias analysis 19

2.2.4 Abstract interpretation . 20

ix

x CONTENTS

2.3 Compiler optimizations . 21

2.3.1 Base optimizations . 21

2.3.1.1 Optimization of constant expressions 22

2.3.1.2 Dead/unreachable code elimination 22

2.3.1.3 Copy propagation and register renaming 23

2.3.1.4 Procedure inlining and cloning 23

2.3.1.5 Code positioning . 24

2.3.1.6 Code scheduling . 25

2.3.2 Profile-guided optimizations . 25

2.3.2.1 Types of profile information 27

2.3.2.2 Profile-guided classical optimizations 28

2.3.3 Eliminating program redundancies . 28

2.3.3.1 Partial redundancy elimination 30

2.3.3.2 Register promotion . 30

2.3.3.3 Elimination of conditional branches 31

2.4 Binary optimizers . 31

2.4.1 Advantages of performing binary optimizations 32

2.4.2 Related work . 33

3 Experimental environment 37

3.1 Target environment . 38

3.1.1 Target platform . 38

3.1.2 Compilation environment . 38

3.1.2.1 Native compilation . 40

3.1.2.2 Getting profile information . 40

3.1.3 Execution environment . 40

3.2 Experimental framework . 40

3.2.1 Binary optimization environment . 40

3.2.1.1 Optimization phases . 41

3.2.1.2 Enhancing optimizer capabilities 42

3.2.1.3 Execution threshold . 44

3.2.2 Simulation environment . 45

3.3 Benchmark suite . 46

3.3.1 SPECint95 characterization . 47

3.3.1.1 Compilation time . 48

3.3.1.2 Static characterization . 49

3.3.1.3 Dynamic characterization . 51

3.4 Methodology . 53

CONTENTS xi

4 Alias analysis 55

4.1 Introduction . 56

4.2 Path-sensitive must-alias analysis . 57

4.2.1 Alias analysis by instruction inspection 59

4.2.2 Path-sensitive memory disambiguation 60

4.2.3 Evaluation . 62

4.2.3.1 Measuring static precision . 62

4.3 Speculative may-alias analysis . 64

4.3.1 Region-based speculative alias analysis 65

4.3.1.1 Dealing with memory contents 68

4.3.1.2 Reasoning about data-flow analysis correctness 69

4.3.2 Profile-guided speculative alias analysis 69

4.3.3 Recovery-based usage of speculative alias analysis 71

4.3.4 Evaluation . 72

4.3.4.1 Measuring static precision . 73

4.3.4.2 Measuring misspeculation rate 75

4.4 Related work . 79

4.5 Conclusions . 80

5 Memory redundancy elimination 81

5.1 Introduction . 82

5.2 Dynamic memory redundancy . 83

5.2.1 Dynamic load redundancy . 83

5.2.2 Dynamic store redundancy . 84

5.3 MRE on executable code . 85

5.3.1 MRE on intermediate vs. executable code 87

5.4 Profile-guided MRE . 88

5.4.1 Eliminating close redundancy . 88

5.4.2 Eliminating distant redundancy . 89

5.5 Partial MRE . 91

5.5.1 Partial LRE . 91

5.5.2 Partial SRE . 92

5.5.3 A cost-benefit formulation for partial SRE 93

5.5.3.1 Cost analysis . 93

5.5.3.2 Benefit analysis . 95

5.5.3.3 Final cost-benefit equations . 96

5.6 More aggressive MRE techniques . 97

5.6.1 A path-sensitive formulation for partial LRE 97

xii CONTENTS

5.6.2 Eliminating dead stores . 99

5.7 Evaluation . 100

5.7.1 Reduction in number of dynamic references 101

5.7.2 MRE breakdown of static references . 102

5.7.3 Effects of procedure inlining on MRE 105

5.7.4 Compilation time . 106

5.7.5 Speed up using MRE . 107

5.7.6 Microarchitecture impact of using MRE 108

5.7.7 Effects of load latency . 109

5.8 Related work . 110

5.9 Conclusions . 111

6 Conditional branch redundancy elimination 113

6.1 Introduction . 114

6.2 Dynamic conditional branch redundancy . 115

6.2.1 Detecting branch correlation . 115

6.2.2 Measuring conditional branch redundancy 116

6.3 CBRE on executable code . 118

6.3.1 Eliminating close redundancy . 118

6.3.2 Eliminating distant redundancy . 119

6.4 Path-sensitive profile-guided CBRE . 120

6.4.1 Eliminating close redundancy . 121

6.4.2 Eliminating distant redundancy . 122

6.5 Evaluation . 123

6.5.1 Reduction in number of dynamic conditional branches 125

6.5.2 Effects of procedure inlining on CBRE 126

6.5.3 Compilation time . 128

6.5.4 CBRE impact in code growth . 128

6.5.5 Speed up using CBRE . 130

6.6 Related work . 131

6.7 Conclusions . 132

7 Conclusions and future directions 135

7.1 Introduction . 136

7.2 Lessons and observations . 136

7.3 Summary of contributions . 138

7.4 Future directions . 139

Bibliography 143

List of Figures

1.1 Example of memory and conditional branch redundancies, and its elimination. 4

2.1 Sample code where different definitions are reaching a use. 17

2.2 Techniques for may-alias disambiguation by instruction inspection. 19

2.3 Example of profile-guided optimization. 26

3.1 Effect of applying inlining in Alto compilation time. 48

3.2 Percentage of hot basic blocks for the SPECint95 programs. 50

3.3 Static distribution of instruction types for the SPECint95 programs. 51

3.4 Dynamic distribution of instruction types for the SPECint95 programs. 52

3.5 Effect of Alto optimizations in actual execution time. 53

4.1 Example of binary redundancy from an alias analysis point of view. 56

4.2 Example of memory references where general inspection fails for disambiguation. 58

4.3 Path-sensitive memory disambiguation scheme. 63

4.4 Precision of the path-sensitive must-alias memory disambiguation scheme. . . . 64

4.5 Sample code where pointer information is lost. 66

4.6 Region-based alias analysis lattice. 67

4.7 Different definitions are reaching a use, but there is a more likely executed path. 70

4.8 Reordering memory operations. 71

4.9 Speculative memory disambiguation scheme. 73

4.10 Breakdown of disambiguation queries, by path-insensitive alias analysis method. 74

4.11 Percentage of misspeculated queries for every alias analysis methods. 78

5.1 Dynamic amount of load redundancy. 84

5.2 Dynamic amount of store redundancy, and write-after-read memory dependencies. 85

5.3 Elimination of a redundant memory reference within a machine code basic block. 86

5.4 Elimination of redundant memory references within extended basic blocks. . . . 88

5.5 Elimination of (a) partially redundant load, and (b) partially redundant store. 90

5.6 Benefit analysis for partial-SRE. 96

xiii

xiv LIST OF FIGURES

5.7 Elimination of a path-sensitive redundant load. 98

5.8 Elimination of a dead store. 99

5.9 Effect of different MRE degrees in number of loads and stores at run time. . . . 101

5.10 Dynamic amount of load redundancy after complete-MRE. 102

5.11 Effect of procedure inlining on the MRE algorithms. 106

5.12 Effect of applying MRE in Alto compilation time. 107

5.13 Effect of different MRE degrees in actual execution time. 108

5.14 Effect of different MRE algorithms in number of replay-traps. 109

5.15 Effects of load latency, from 3- to 5-cycle hit latency. 110

6.1 Example of redundant conditional branch. 115

6.2 Dynamic amount of conditional branch redundancy. 117

6.3 Elimination of a redundant conditional branch within an extended basic block. 119

6.4 Elimination of a redundant conditional branch in a path-sensitive fashion. . . . 121

6.5 Effect of CBRE algorithms in number of conditional branches at run time. . . . 125

6.6 Dynamic amount of conditional branch redundancy after complete-CBRE. . . . 126

6.7 Effect of procedure inlining on the CBRE algorithms. 127

6.8 Effect of applying CBRE in Alto compilation time. 128

6.9 Effect of different CBRE algorithms in code and footprint growth. 129

6.10 Effect of different CBRE algorithms in actual execution time. 130

List of Tables

3.1 Compaq/Alpha EV6 21264 processor characteristics. 39

3.2 SPEC95 integer benchmark suite and their inputs. 46

3.3 Description of the different benchmark sets under evaluation. 48

3.4 Static characteristics of the SPEC95 integer benchmarks. 49

4.1 Description of must-alias analysis methods for memory disambiguation. 62

4.2 Description of may-alias analysis methods for memory disambiguation. 72

4.3 Percentage of queries that were misspeculated at least once. 76

4.4 Percentage of dynamic queries misspeculated. 77

5.1 Description of the different MRE algorithms under evaluation. 100

5.2 Static MRE on loads for the SPEC95 integer benchmark suite. 103

5.3 Static MRE on stores for the SPEC95 integer benchmark suite. 104

5.4 Description of the binaries obtained with/without applying MRE and inlining. 105

6.1 Description of the different CBRE algorithms under evaluation. 123

6.2 Description of the binaries obtained with/without applying CBRE and inlining. 127

xv

xvi LIST OF TABLES

Chapter 1

Introduction

In this chapter we outline the motivations behind this thesis. We first identify the memory

wall and the control dependencies as the major performance factors in today’s microprocessors.

Then, we define the concept of binary redundancy, that is, the dynamic redundancy observed in

binary programs related to these performance issues. We will see that binary redundancy opens

new opportunities for compiler optimizations, and how this redundancy removal appropriately

fits within link-time or executable code optimizers. Finally, we give a brief description of our

objectives and describe the structure of this work.

1

2 CHAPTER 1. INTRODUCTION

1.1 Motivation

Superscalar processors represent the major trend in high-performance processors in the last

several years [SS95]. These processors naturally evolve from pipelined architectures, and try

to obtain higher performance rates by simultaneously fetching and executing in parallel several

independent instructions in a single cycle. The two major performance limiters for today’s

superscalar processors are:

The memory wall Overcoming the long latencies caused by the different speed between the

processor and the memory subsystem is one of the primary issues for high-performance

computing [WM95]. To overcome this problem, the best known hardware solution relies

on the use of cache memories [Smi82]. Memory is then organized hierarchically to take

advantage of program locality1, by exploiting both spatial locality (i.e., the nearby data

to that being used is likely to be accessed in the future), and temporal reuse (i.e., the

data being used is likely to be accessed again in the future).

Unfortunately, due to Moore’s Law [Moo65], the memory wall is growing for each gen-

eration of new processors. That’s why, even for memory accesses to the first-level cache,

memory latency has grown beyond a single cycle in modern processors. As an example,

3 cycles are needed in order to access the 64Kb L1 cache in the Alpha 21264 proces-

sor [Kes99].

Control dependencies Pipelined processors introduce the problem of fetching one instruc-

tion per cycle without waiting for the previous instructions to finish [HP96]. When

such instruction is a branch, its outcome is unknown until one or more cycles after the

instruction was fetched, making the program control flow uncertain at that point and in-

troducing execution bubbles in the pipeline. This situation is even a major performance

issue in superscalar processors due to longer pipelines [SS95].

For handling control dependencies, the best known hardware proposals are based on

predicting the behavior of conditional branch instructions before the branch is actually

executed [Smi81, YP92, CG94, LCM97]. This behavior is defined by the branch target

address, and the branch direction, in case of a conditional branch. Then, the next path

is speculatively fetched the next cycle with no delay. In case of misprediction, it will be

necessary to squash the wrongly fetched instructions, possibly incurring in additional

penalties.

Even though hardware approaches have shown to be very valuable in current superscalar

processors, they are not enough to overcome the performance factors pointed out before. From

1We only address in this work the discussion of data caches, since we only want to reason about program

data. Instructions caches, for which several solutions have been proposed both in hardware [CMMP95, RBS96,

FPP97] and software [PH90, GBSC97, RLPN+99], are beyond the scope of this work.

1.1. MOTIVATION 3

our point of view, the compiler can and should help in overcoming these issues. The reason is

that, as we will show in this work (see Chapter 5 and Chapter 6), it seems that there is still

room for improvement in compiled code. Furthermore, the compiler approach is attractive

for two reasons:

1. It has a null hardware cost, since it does not require additional transistors.

2. It provides performance improvements on already existing architectures.

The disadvantage is that the compiler is blind to run-time information. However, we

believe that today’s optimizing compilers should be very aggressive in applying sophisticated

optimizations [Muc97a], in order to minimize the remaining negative impact of the above

issues in program performance.

1.1.1 Binary redundancy

As we mentioned earlier, cache memories and branch predictors try to bridge the performance

gap due to the negative impact of the memory wall and the control dependencies in current

superscalar processors. These hardware structures do take advantage of several factors: among

other things, cache memories exploit temporal memory reuse, while branch predictors exploit

branch correlation. In other words, they try to exploit the dynamic redundancy existing in

programs. In this work, we will be specifically concerned with two types of redundancy:

Memory redundancy This refers to memory instructions that access memory cells already

referenced in the past, and that, obviously, increase the temporal reuse of the program.

Conditional branch redundancy That is, conditional branches whose outcome can be

statically determined along some paths of the program at compile time.

It is straightforward to note that, unlike more general computation redundancy [MR79,

KRS94a, Muc97b, BGS98], these redundancy types are closely related to how binary pro-

grams are executed on superscalar processors, since there are hardware structures that try to

deal with them explicitly (again, cache memories and branch predictors are good examples).

For this reason, we define binary redundancy as the redundancy encountered on executable

programs at binary level, which refers to both memory and conditional branch redundancy.

In general terms, binary redundancy exposes unnecessary recomputation at program run

time of values that are already known, because they have already been computed in the

program (by some other instruction or by a prior execution of the same instruction), or

because they can be computed at compile time. As a result, binary redundancy exposes

optimization opportunities that can be potentially exploited by an optimizing compiler in

order to remove these redundancies away.

4 CHAPTER 1. INTRODUCTION

(a) if (*p > 0)

{

*q = ...

}

if (*p == 1)

{

...

}

(b) register r = *p;

if (r > 0)

{

*q = ...

}

if (r == 1)

{

...

}

(c) register r = *p;

if (r > 0)

{

*q = ...

if (r == 1)

{

...

}

}

Figure 1.1: Example of memory and conditional branch redundancies, and its elimination:

(a) original code, (b) resulting code after eliminating the redundant memory reference, and

(c) resulting code after eliminating the redundant conditional branch.

Figure 1.1 illustrates a C code example where cases of memory and conditional branch

redundancy can be observed:

• Looking at Figure 1.1a, we can see that memory location referenced by *p is redundantly

accessed in the two conditionals. To remove the redundant memory reference (i.e., the

second *p), the key idea is to reuse the first loaded value rather than load the same

value again, by keeping the value in a register while it is needed (as it can be seen in

Figure 1.1b).

• On the other hand, condition *p == 1 is known to be false when condition *p > 0

evaluates to false. In this example, it means that the outcome of the second conditional

branch can be determined sometimes, depending on the outcome of the first conditional

branch. To remove such conditional branch redundancy we need in this case to restruc-

ture the program, in order to isolate the correlated path form the non-correlated one

(as shown in Figure 1.1c).

It is important to note that for removing both memory and conditional branch redundan-

cies, neither pointer p must change between the two *p read accesses, nor pointer q must be

aliased with pointer p in the example. Therefore, in order to detect and eliminate binary re-

dundancies, the need for disambiguating memory references will make alias analysis a critical

factor [ASU86a, Muc97c, GLS01].

Binary redundancy comes partly from the way that programmers write source code, but

also from limitations in the compilation model of traditional compilers [ASU86b]. Thus, for

example, a variable may not have been kept in a register by the compiler because it was a

global, or because the compiler was unable to resolve aliasing adequately, or because there

1.1. MOTIVATION 5

were not enough free registers available. Similarly, the compiler may not have the oppor-

tunity to perform intraprocedural analyses and optimizations, thus continuously evaluating

conditional branches that could be statically determined otherwise. These constraints are

often responsible for a significant number of unnecessary memory and conditional branch

instructions in binary programs [Bod99].

In summary, binary redundancy exists even in reasonably well-written programs, but is

often hard to remove. In general, the removal of redundant instructions may speed up the

program in two ways:

1. When the redundant instruction is removed, there are fewer instructions to execute. As

a result, there is less contention for hardware resources (e.g., functional units, registers,

cache ports, etc.), which allows scheduling the remaining instructions earlier. Note that

the resource constraints restriction could be overcome with wider processors, making

this benefit of somewhat less important for future high-performance processors.

2. Because the reused value is available sooner than the recomputed one, subsequent in-

structions that need the value can be scheduled earlier. Essentially, removing an instruc-

tion breaks some paths of data dependences among instructions. When the redundancy

removal breaks the critical path of a program, it may be possible to schedule such pro-

gram in fewer machine cycles. Observe in this case that the critical path constraint

is a manifestation of the data-flow limit of the program [Wal91], and hence cannot be

overcome without program transformation, making this restriction more important for

future processors.

Note that the instruction schedule is improved regardless of whether it is created statically

(i.e., by a compiler) or dynamically (i.e., by an out-of-order processor). Binary redundancy

elimination is thus beneficial for both statically and dynamically scheduled processors.

1.1.2 Binary optimizations

Optimizations performed at link time or directly applied to final program executables have

received increased attention in recent years [SW92, RVL+97, Goo97, CGLR97, MDWdB01,

SDAL01, SDA02, LMP+04], mainly due to limitations in the traditional compilation model.

Large programs tend to be compiled using separate compilation, that is, one or a few files at

a time. Therefore, the compiler does not have the opportunity to optimize the program as

a whole, even when performing sophisticated interprocedural analyses and transformations.

Furthermore, basic knowledge about the program objects (e.g., whether a variable is stored

on the heap, stack or global area) is also lost when moving from one file or compilation unit

to the next.

6 CHAPTER 1. INTRODUCTION

Vendors have tried to overcome these limitations by compiling separate files that contain

intermediate representations rather than final object code [Wal86, Sil99]. Later, at link time,

these “fake” intermediate object files are fully compiled and optimized together with the rest

of the program units. The drawback of this approach is that it does not mix well with tra-

ditional Makefile-based software development environments. Furthermore, the implemented

analyses and optimizations are possibly limited to only code that is available for examination

at compile time. This means that code involving calls to procedures defined in separately com-

piled modules, and to dynamically dispatched “virtual functions” in object oriented languages

(in the case where the virtual function is never overridden) cannot be effectively optimized.

This is even valid for interprocedural analyses and optimizations performed by sophisticated

optimizing compilers [JNMW00, LCH+03], since the source code of programs is not always

available such as in old legacy software or library code. As a consequence, link-time or ex-

ecutable code optimizers that are based solely on the final object representation (i.e., when

the entire program is available for inspection) have the attraction of being able to work on a

full program basis and be fully integrated on a normal compile-build-test cycle.

A second reason for the recent interest in binary optimization has been the emergence of

profile-directed compilation techniques [PH90, CMCH92, CL96, GBF98, FLM+01, GMZ02].

As it has been shown in several studies [Sar89, BL96, CFE97, BMS98], the compiler can use

to great advantage the profiling information to identify new optimization opportunities that

are frequently observed during program execution but are not detected by a simple static

analysis. However, the same problem of separate compilation plagues the production use of

profile feedback. After a previous run of the program to collect profile data, large projects

will be forced to re-build every file to take advantage of profile information. Furthermore,

the profile-collection phase needs to be specially coded into the Makefile environment. By

contrast, it would be more convenient to be able to build the full application, instrument

it to obtain profile data and then re-optimize the final binary without recompiling a single

source file. This is the approach taken by Spike [CGLR97, FLM+01], for example, and is only

possible if using binary optimization techniques.

Binary optimizers overcome most of the existing limitations of traditional source-code

compilers. However, since most of the high-level information available in traditional compilers

is lost, working at executable code level has its own set of issues:

• Machine code usually has much less semantic information than source code, which makes

it much more difficult to discover control-flow or data-flow information.

• Traditional compiler analyses are usually carried out on representation of source pro-

grams in terms of high-level language constructs that often ignore “nasty” features

typically encountered in executable programs (e.g., type casts, obfuscated pointer arith-

metic, out-of-bounds array accesses, etc.), since such features result in non-standard

1.2. THESIS OVERVIEW 7

conforming programs whose behavior are not guaranteed to be preserved under com-

piler optimizations.

• Executable programs tend to be significantly larger than the original source programs

they were derived from.

In most cases, sophisticated analyses that are practical at the source level (which usually

operate on a per module or per function basis) turn out to be of limited utility at the executable

code because of their time or space requirements. When working on executable code, therefore,

it is often necessary to make tradeoffs between precision and efficiency.

1.2 Thesis overview

In this section we provide a brief description of the topics we deal with in this thesis disserta-

tion. We present the problems we are trying to solve, the approaches we take to solve them,

and the structure of this work.

1.2.1 Thesis objectives

In this thesis we present new profile-guided compiler optimizations for eliminating the binary

redundancy encountered on executable programs at binary level, even though these programs

have been compiled with full optimizations using a “state-of-the-art” commercial compiler.

Our Binary Redundancy Elimination (BRE) optimizations will be targeted at eliminating

both redundant memory operations and redundant conditional branches, which are the most

important ones for addressing the major performance issues in today’s microprocessors. The

main contributions of this work are the following:

Computing alias information We first review the problem of alias analysis at the ex-

ecutable program level, identifying why memory disambiguation is one of the weak

points of object code modification. Then, we present several alias analyses to be ap-

plied in the context of link-time or executable code optimizers. First, we propose a

must-alias analysis to recognize memory dependencies in a path-sensitive fashion (this

scheme will be used in our optimization for eliminating redundant memory operations).

Next, we present two speculative may-alias data-flow algorithms to recognize memory

independencies. These may-alias analyses are based on introducing unsafe speculation

at analysis time, which increases alias precision on important portions of code and keeps

the analysis reasonably cost-efficient. Our results will show that our analyses prove to

be very useful for increasing memory disambiguation accuracy of binary code, which

translates into additional opportunities for applying optimizations.

8 CHAPTER 1. INTRODUCTION

Eliminating memory redundancies We discuss the discovery and elimination of mem-

ory operations that are redundant and can be safely removed in order to speed up a

program, an optimization that we call Memory Redundancy Elimination (MRE). We

quantify these effects and show that a high percentage of memory references at program

run time can be considered redundant because they are accessing memory locations that

have been referenced in a near past. We then present several profile-based MRE algo-

rithms targeted at optimizing away these redundancies. These optimization algorithms

are mainly based on Partial Redundancy Elimination (PRE) techniques for eliminating

partial redundancies in a path-sensitive fashion. Our results will show that a signif-

icant amount of memory redundancy can indeed be eliminated, which translates into

important reductions in execution time.

Eliminating conditional branch redundancies Finally, we propose several optimization

techniques for detecting and eliminating redundant conditional branches on executable

code. These are branches whose outcome can be determined at compile time, and thus

they can be safely removed in order to speed up a program. We call this optimization

Conditional Branch Redundancy Elimination (CBRE). We first show that important

amounts of conditional branches in a program can be considered redundant because their

outcomes can be determined from a previous short dynamic execution frame. We also see

how important memory disambiguation is in order to catch branch redundancy. Then,

we present several CBRE algorithms targeted at optimizing away these redundancies.

Our results will show that a significant amount of redundant conditional branches can

be removed with moderate levels of code growth.

All our algorithms, both for the analyses and the optimizations, will be implemented

within a binary optimizer, which overcomes most of the existing limitations of traditional

source-code compilers. Therefore, our work also points out the most relevant issues of applying

our algorithms at the executable code level, since most of the high-level information available

in traditional compilers is lost.

1.2.2 Structure of this document

The work we present in this document is organized as follows:

• Chapter 2 introduces some terminology for program analysis and optimization we use

in this work, and also presents a brief description of the most significant related work

in this research field.

• Chapter 3 presents our research environment. We give an overview of our experimental

framework at all levels (i.e., compilation, execution and simulation), and also introduce

the benchmark suite and the methodology used for evaluation.

1.2. THESIS OVERVIEW 9

• Chapter 4 reviews the problem of alias analysis at the executable program level. We then

present several alias algorithms to be applied in the context of link-time or executable

code optimizers, that prove to be very useful for increasing memory disambiguation

accuracy of binary code.

• Chapter 5 presents our techniques addressed to eliminate redundant memory operations

on executable code. These proposals are mainly based on new applications of PRE

techniques for eliminating partial redundancies in a path-sensitive fashion.

• Chapter 6 shows our optimizations targeted at removing conditional branch redundan-

cies at binary programs. Our algorithms are even able to detect and eliminate partial

conditional branch redundancies, applying code restructuring when needed.

• Finally, Chapter 7 summarizes the main contributions of this thesis and presents the

open areas for future research.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Background and related work

In this chapter we introduce some preliminary background on compiler analyses and optimiza-

tions in general, focusing on techniques related to the work presented in this document. We

also review the state of the art on several topics: (a) profile-guided optimizations, (b) opti-

mizations targeted at eliminating redundancy, and (c) binary optimizers. In particular, we

discuss previous work closely related to what is developed in this thesis.

11

12 CHAPTER 2. BACKGROUND AND RELATED WORK

2.1 Preliminaries

We start this chapter by reviewing some basic compiler concepts related to the work presented

in this dissertation. The rest of this work is developed from first principles [ASU86c, Muc97d].

2.1.1 Control flow graph

An important part of a compiler’s internal representation relies on characterizing the control

structure of a program, by transforming it into some intermediate form more suitable for

further modifications. We define the control flow in a program as a rooted, directed graph

with a set of nodes and a set of edges connecting such nodes.

Definition 2.1.1 A directed graph G is a pair (N,E) where N is the node set and E is the

edge set such that E ⊆ N ×N . Immediate predecessor and successor of nodes are defined with

maps pred and succ, such that pred (n) = {m|(m,n) ∈ E} and succ(n) = {m|(n,m) ∈ E}.

A finite path of G is a sequence ω = n1, . . . , nk of nodes such that (ni, ni+1) ∈ E for all

1 ≤ i < k. �

We then use a Control Flow Graph (CFG) as the underlying program representation

because it is the most commonly used intermediate program representation in both production

and research compilers.

Definition 2.1.2 A control-flow graph G = (N,E, start , end) is a directed graph (N,E), in

which nodes n ∈ N represent basic blocks containing individual program statements (instruc-

tions). Edges (m,n) ∈ E represent the non-deterministic branching structure of the program.

Nodes start and end are the unique start node and end node of G; they are assumed to have

no predecessors and no successors, respectively. It is also assumed that every node n ∈ N lies

on a path ω = start , . . . , end. We also say that node m dominates n (written m dom n) if

every possible path w from start to n includes m. Similarly, node n postdominates m (written

n pdom m) if every possible path w from m to end includes n. �

The above definition is valid for representing the flow graph of both a program and a

procedure or routine. Because CFG directly exposes program’s control-flow paths, it enables

an intuitive and efficient formulation of code analysis and optimization, and thus become the

standard representation in optimizing compilers.

2.1.2 Basic blocks

As we have mentioned, nodes in a CFG are called basic blocks. A basic block is, informally, a

straight-line sequence of instructions that can be entered only at the first of them and exited

only from the last of them. The first instruction in a basic block is called a leader.

2.1. PRELIMINARIES 13

A natural extension of a basic block is known as Extended Basic Block (EBB), which is

a set of basic blocks with either (a) a single entry point but multiple exit points, or (b) a

single exit point but multiple entry points. The latter is also known as reverse extended basic

block. An EBB can be thought of as a tree of basic blocks, where the EBB root corresponds

to the single entry or exit point, respectively. Extended basic blocks are interesting in some

contexts, where analyses and transformations are more effective when done on EBBs than on

simple basic blocks.

2.1.3 Instruction set representation

For the machine code examples of this document, we assume for simplicity a canonical RISC

instruction set. We can distinguish between the following type of instructions:

• Memory is accessed only through explicit load and store instructions, which have the

form load k(rb), ra and store ra, k(rb). Memory instructions have the effect of read-

ing/writing from/to the location whose address is k+contents(rb), where k is a constant

offset and rb is the base register.

Two special registers, denoted as sp or stack pointer, and gp or global pointer, point to

the program stack and global data areas, respectively.

• For arithmetic and logic instructions we assume the form op src1, src2, dst, where op

denotes an operation, dst is a destination register, and src1 and src2 are source reg-

isters1. For instance, an add instruction computes the sum of src1 and src2 into dst.

Many other operations can be expressed in terms of this form.

• To determine control-flow information, we consider the usual set of conditional branches,

and direct and indirect unconditional branch instructions. For conditional branches,

we have the “test and branch” form bop src1, src2, which means that the branch will

be taken if the relationship between src1 and src2 holds the condition defined by the

instruction opcode.

We assume this generic machine code instruction set to be the compiler intermediate

language as well. Although this might seem to be very non-portable, this representation is in

fact very similar to the low-level intermediate representation used in many compilers [ASU86d,

Mah92, Muc97e, Mor98].

1To simplify the discussion we abuse notation and allow either src1 or src2 to be an integer constant,

denoting an immediate operand. We also allow the lack of one of the source operands so that register moves

can be modeled.

14 CHAPTER 2. BACKGROUND AND RELATED WORK

2.2 Data-flow analysis

Before actually applying code transformations, compilers perform a variety of analysis to find

out how program data is being used [BGS94]. The purpose of data-flow analysis is to provide

such information, and serve as a a bridge between the program representation and the actual

program optimization. This section describes the most important ideas of applying data-flow

analysis for understanding the behavior of a program.

Performing data-flow analysis Data-flow analysis is usually performed on a control-

flow graph. It attempts to track the flow of data through the program’s variables and to

characterize the values of variables at various points of execution. By traversing each path,

the analysis verifies the algebraic rules posed by the representation (e.g., whether a variable

has been redefined). Thus, by being a tool for summarizing global program properties, data-

flow analysis identifies patterns, which are then used to guide the program transformation

phase of a particular optimization.

There are two primary strategies for performing data-flow analysis:

1. Develop a set of equations that are applied to basic blocks, which yields a list of variables

that match some desired criteria [Muc97f]. For example, suppose we wish to compute

the set of values that are available at the exit of a given basic block B. Conventionally,

this set is name out. The equation to compute out(B) is

out(B) = gen(B) ∪ (in(B) − kill(B)) (2.1)

where gen(B) is the set of values generated inside the block B, in(B) is the set of

values that reach B from some other block, and kill(B) is the set of values that were

overwritten in B (by an assignment statement, for example). A straightforward method

for computing the data-flow information, which is also the most widely used, is to apply

Equation 2.1 iteratively until reaching a fixed point [ASU86a].

2. Perform data-flow analysis based on chains [Muc97g]. The idea is to identify where

variables are assigned a value (called a definition) and where the value is used (a use).

By connecting definitions with uses the compiler can perform a wide variety of analysis.

Thus, either uses will be connected to definitions or definitions will be connected to uses

(and even both in some cases).

In both cases, we must be certain that a data-flow analysis computes information that

does not misrepresent what the program being analyzed does, in the sense that it must not

indicate that a transformation of the code is safe to perform that, in fact, is not safe. We

must guarantee this by careful design of the analysis and by being sure that the solution

2.2. DATA-FLOW ANALYSIS 15

computed is, if not an exact representation of the program’s manipulation of its data, at least

a conservative approximation of it. However, to obtain the maximum possible benefit from

optimization, we seek to pose data-flow analyses as aggressive as we can make them. Thus,

we shall always attempt to walk the fine line between being as aggressive as possible in the

information we compute and being conservative, so as to get the greatest possible benefit

form the analyses and code transformations we perform without ever modifying program’s

semantic.

Characterizing data-flow analysis Data-flow analysis can be categorized along several

dimensions, including the following [NNH99]:

Flow direction Corresponds to the direction of information flow. Almost all the data-flow

problems are one-directional, either forward (i.e., in the direction of program execution)

or backward (i.e., opposite to the direction of program execution). Bidirectional prob-

lems require forward and backward propagation at the same time and are significantly

more complicated to formulate, understand, and solve than one-directional problems.

Fortunately, bidirectional data-flow problems are rare.

Flow sensitivity The flow-insensitive versus flow-sensitive classification indicates whether a

data-flow analysis is independent of the control flow encountered or not. This distinction

is important because it determines the computational complexity of the problem under

consideration. Flow-insensitive problems can be solved by solving subproblems and then

combining their solutions to provide a solution for the whole problem, independent of

control flow. Flow-sensitive problems, on the other hand, require the algorithm to follow

the control-flow paths through the flow graph to compute the solution.

May vs. must information It is useful to distinguish may information from must informa-

tion. The former indicates what may occur on some path through a flow graph, while

the latter indicates what must occur on all paths through the flow graph. The may vs.

must classification is important because it indicates whether a property must hold, and

hence can be counted on, or that it only may hold, and so must be allowed for but

cannot be counted on.

Intra- vs. inter-procedurality Compilers often limit their program analyses to individual

procedures. That is, they are intraprocedural, which means they are applied without

regard to the calling context in which that procedure is used or the procedures it calls.

As a result, one must generally assume that a called procedure may use or change any

variable it might be able to access, which clearly inhibits optimization opportunities. By

contrast, interprocedural approaches are ones that use the calling relationships among

16 CHAPTER 2. BACKGROUND AND RELATED WORK

a set of procedures to drive the analysis. The intra- versus inter-procedural distinction

can also be applied when reasoning about compiler optimizations.

Context-sensitivity Interprocedural data-flow analyses can be either context insensitive or

context sensitive. Context-insensitive analyses simply combine the control-flow graphs

for individual procedures into a large graph and analyze this using standard intrapro-

cedural techniques, without keeping track of which return edges correspond to which

call edges. This has the advantages of simplicity and efficiency: nothing special needs

to be done to handle interprocedural control flow, and a procedure does not have to be

re-analyzed for its various call-sites [CR82]. The problem is that such analyses can suffer

from a loss of precision because they can explore execution paths containing call/return

pairs that do not correspond to each other and therefore cannot occur in any execu-

tion of the program. Context-sensitive analyses, by contrast, avoid this problem by

maintaining information about which return edges correspond to which call sites, and

propagating information only along realizable call/return paths [EGH94]. The price

paid for this improvement in precision is an increase in the cost of the analysis.

We next discuss the most popular data-flow analysis strategies for understanding the

behavior of a program. We also give additional information on the corresponding existing

techniques for analyzing executable code.

2.2.1 Liveness analysis

Liveness analysis is a well-known technique employed by most compilers to guide optimiza-

tions based on transforming variables [ASU86a, Muc97f], such as useless code elimination (see

Section 2.3.1.2) and register allocation [Muc97h]. The analysis attempts to determine whether

a value kept in a variable or storage location may be used later on during program execution.

A variable is said to be live at a particular point in a program if there is a path to the exit

of a given block of code along which its value may be used before it is redefined. It is dead if

there is no such path. A simple backward data-flow analysis is usually performed to compute

this information at each point in a flow graph.

Liveness analysis can also be performed on executable code if we let registers take the

place of variables [SW92, Goo97]. The problem is in this case simplified by the fact that,

commonly, there is no aliasing between registers, and the number of registers for a given

processor is bounded by a constant. As a result, register liveness analysis, unlike traditional

liveness analysis which is usually intraprocedural, can be now applied interprocedurally or in

a context-sensitive fashion in order to achieve higher precision rates with a moderate increase

in the cost of analysis [Mut98]. Nevertheless, what makes the analysis difficult are anomalies

of the control-flow graph and scalability issues, which are the common problems that appear

when working at executable code level (as already mentioned in Section 1.1.2).

2.2. DATA-FLOW ANALYSIS 17

store r0, (r1)
load 16(sp), r0
 ...

I1
r1

I2

add sp, 0, r1

 ...

add sp, 8, r1

 ...

pdef

Figure 2.1: Sample code where different definitions are reaching a use. A pseudo definition is

introduced for register r1.

2.2.2 Use-def chains

Use-def chains are a sparse representation of data-flow information about variables, which

simplifies the implementation of several well-known optimizations, such as common subex-

pression elimination [ASU86a]. A ud-chain for a variable connects a use of that variable to all

the definitions that may flow to it. Abstractly, a ud-chain is a function from a variable and a

basic-block-position pair to sets of basic-block-position pairs, where every element corresponds

to each definition [Muc97f].

As far as executable code is concerned, register use-def chains is an analysis that provides,

for each use of a machine register, a pointer to its definition. The ud-chains form a directed

graph whose nodes are instructions and whose edges are use-def pointers. When there are

several definitions of a register reaching a use, as depicted in Figure 2.1, it is common to

introduce a pseudo instruction at an appropriate confluence point which also defines that

register, thereby shadowing the other definitions. This is analogous to φ functions used with

the Static Single Assignment (SSA) form [CFR+91], although pseudo insertions in this case

result in “less accurate” use-def information. All registers are enforced to be defined before

they are used by inserting pseudo instructions at all entry nodes of the graph.

2.2.3 Alias analysis

Alias analysis refers to the determination of all the storage locations that may be accessed in

two or more ways [ASU86a]. For example, a variable in a C program may have its address

computed and be assigned to or read from both by variable name and through a pointer.

Determining the range of possible aliases in program is essential for optimizing it correctly,

while minimizing the sets of aliases found is important for doing optimizations as aggressively

as possible.

18 CHAPTER 2. BACKGROUND AND RELATED WORK

At the machine code level, the problem of alias analysis or memory disambiguation is to

statically determine the relationship of every pair of memory references in a program. A

reference typically identifies a memory address and an access size. Then, for two particular

references, there are four possible answers that an alias disambiguator can return:

• They are identical, which means that both references always point to the same location.

• They are intersecting. This means that memory accessed by both references partially

overlaps.

• They are disjoint, which means that they are never aliased, and therefore, independent.

• Unknown. That is, the disambiguator cannot determine statically the relationship be-

tween the two references.

The aliasing problem can be formulated by a combination of may-alias analysis, which

answers whether two memory references are independent, and must-alias analysis, which

checks references for memory dependencies. Performing no alias analysis conservatively leads

to the assumption that every load and store instruction is always dependent on every previous

store instruction.

While there is an extensive body of work on pointer alias analysis of various kinds [WL95,

SH97, DWM98, CH00, GLS01], these are mostly high-level analyses carried out in terms of

source language constructs that turn out to be of limited utility at the machine code level.

In fact, the problem of memory disambiguation is one of the weak points of object code

modification, because important information typically available in an ordinary compiler is

lost at executable code level, where the contents of every register is potentially an address.

2.2.3.1 Alias analysis by instruction inspection

For disambiguating references, a common technique in compile-time instruction schedulers is

alias analysis by instruction inspection [Muc97g]. Here, two memory references are considered

within an extended basic block to see if it is obvious that they point to either the same or

different memory addresses. For example, independence between instructions I1 and I2 in

Figure 2.2 can be proved if either of the following conditions hold:

• Different memory regions are referenced. For example, one of the instructions uses a

register known to point to the stack and the other uses a register known to point to the

global data area, as shown in Figure 2.2a.

• They access data at addresses k1(r1) and k2(r2), as shown in Figure 2.2b. Base registers

r1 and r2 are computed by two (possibly empty) sequences of instructions such that

2.2. DATA-FLOW ANALYSIS 19

I2
I1

 ...

I1
I2

store r0, (sp)
load (gp), r0

 ...

 ...
 ...

add r1, 8, r2
store r0, (r1)
load (r2), r0

store r0, (r1)
load (r2), r0I2
 ...

I1

add r1, 8, r2

 ...

(c)(a) (b)

Figure 2.2: Sample code with different techniques for may-alias disambiguation by instruction

inspection: (a) knowing that accesses point to different memory regions; (b) using register

copies and address arithmetic propagation; (c) general case beyond extended basic block

boundaries, using use-def chains.

r1 = c1 + contents(r0) and r2 = c2 + contents(r0), for some register r0. Both accesses

are non-aliased if both chains use the same definition of r0, and c1 + k1 and c2 + k2

do not overlap2. To detect the definition of register r0 a simple backwards data-flow

algorithm may be used.

All other memory instruction pairs are considered to be aliasing. Unfortunately, this simple

approach does not work if information about register copies and address arithmetic needs to

be propagated across extended basic block boundaries. To do so, register use-def chains are

required, as presented in Section 2.2.2. In the general case, an instruction inspection algorithm

tries to derive a symbolic description for each memory instruction and then compare these

descriptions for checking independency, as shown in Figure 2.2c.

2.2.3.2 Residue-based global alias analysis

Instruction inspection fails when several definitions are reaching a use. For example, looking

back to Figure 2.1, register r1 is defined with two possible stack values. However, possible

locations accessed at instruction I1 are disjoint with respect to the location accessed by in-

struction I2. Debray et al. [DMW98] propose an interprocedural algorithm to reason about

may-alias information of executable code. The analysis, which is implemented in the context

of a link-time optimizer, can handle complex pointer arithmetic and features usually ignored

by traditional alias analysis algorithms.

2In case that c1 + k1 = c2 + k2 the two references point to the same location, which indicates a dependency

between the two accesses.

20 CHAPTER 2. BACKGROUND AND RELATED WORK

An alias analysis will in general associate each register with a set of possible addresses

at each program point. The basic idea of the algorithm is to reason about arithmetic com-

putations modulo some pre-selected value k. A set of addresses is then represented by an

address descriptor, which is a pair 〈I, S〉, where I is the defining instruction for a machine

register r, and S is a set of mod-k residues with respect to the value computed by instruction

I. This representation can then distinguish between addresses involving distinct “small” dis-

placements (i.e., less than k) from a base register. Comparing descriptors can be reduced to

a comparison of mod-k sets, using dominator information to handle loops correctly. Since k

is fixed, S can be represented as a bit vector of length k. Their implementation corresponds

to mod-k residues with k = 64, in part determined by the fact that the set of mod-k residues

for this choice of k corresponds to a bit vector that fits exactly in one 64-bit machine word.

This means that set operations such as union, intersection, checking containment, etc., are

compactly representable and can be carried out in O(1), which is cheap enough to be practical

for the analysis of large binaries.

As far as the analysis is concerned, a data-flow system is used to propagate values through

the control-flow graph. They use a conservative operation to “merge” the information coming

along the incoming edges at vertices in the interprocedural control-flow graph [CC77]. Thus,

if the values for a register r being propagated along two incoming edges at a vertex in the

flow graph are described by address descriptors 〈I1, S1〉 and 〈I2, S2〉 respectively, and I1 6= I2,

then the information about r is generalized to the conservative value ⊥ [NNH99], denoting

a total lack of information. The essential idea behind this operation is to associate a single

descriptor with a register at each program point of interest, rather than a set of descriptors,

keeping the memory requirements of the analysis reasonable: for each basic block one address

descriptor per register is needed, corresponding to the out register set at the exit of the basic

block3. For a given choice of value k, the analysis requires RN(k + w) bits of memory for a

program with N basic blocks on a machine with R registers, where w is the number of bits

per machine word.

Amme et al. [ABZT98] present a method to detect data dependencies in assembly code by

using symbolic value propagation. However, the algorithm does not work beyond procedure

boundaries, and symbolic values are not propagated through memory when registers are saved

and restored. Although it has been applied to assembly code, it is not obvious that using the

algorithm for interprocedural whole-program analysis would scale up to problems of this size.

2.2.4 Abstract interpretation

Abstract interpretation [CC77, CC79] is a mathematical approach to statically analyze the

dynamic properties of software applications at compile time, without executing the program

3The in register set can be computed easily from the out register sets of its predecessors.

2.3. COMPILER OPTIMIZATIONS 21

itself. It may be seen as an extension of compilation techniques that enable compilers to

predict how a program will behave, before actually executing the application. Debray [Deb95]

discusses the role of abstract interpretation in low-level compiler optimizations.

In the spirit of abstract interpretation, several methods have been proposed for obtaining

dynamic program properties by using symbolic evaluation and simple algebraic rules [Rau91,

TP95, ABD+02, DLS02]. Some of these techniques have been focused on a wide vari-

ety of program optimizations based on propagating information about value ranges of vari-

ables [Pat95, SBA00, BGSW00, MRS+01, CGS04].

2.3 Compiler optimizations

After analyzing the code, the compiler can begin to transform it. The importance of compile-

time code optimizations to improve code efficiency has been recognized for many years [ASU86a,

Muc97i]. Some transformations may enable others which in turn enable the original transfor-

mation to improve the code further. The compiler designer must decide on an order in which

to apply code optimizations.

The primary objective of a traditional optimizing compiler is to reduce the number

and complexity of the instructions executed by the processor. Superscalar processors can

potentially achieve large performance improvements by exploiting Instruction Level Paral-

lelism (ILP), which refers to the ability of executing in parallel low-level machine instruc-

tions (e.g., memory loads and stores, integer adds, floating point multiplies, etc.). As a

result, the amount of ILP available to superscalar processors can be limited with conven-

tional compiler optimization techniques, which are initially designed for scalar processors.

As the amount of parallel hardware within processors continues to grow, optimizing compil-

ers will be required to also expose increasing levels of ILP to effectively utilize the parallel

hardware [MCG+92, BGS94].

In general, in doing optimizations, compilers attempt to be as aggressive as possible in

improving program code, but never at the expense of making it incorrect. To describe the

latter objective of guaranteeing that an optimization does not turn a correct program into

an incorrect one, we use the terms safe or conservative. Thus, when a program is optimized,

the optimizations must be conservative enough so that the semantics of the program remains

unchanged [BGS94].

2.3.1 Base optimizations

We next review a list of common optimizations which are widely used in optimizing compilers.

We also give additional information on the corresponding existing techniques for optimizing

executable code.

22 CHAPTER 2. BACKGROUND AND RELATED WORK

2.3.1.1 Optimization of constant expressions

Optimizing constant expressions is one of the most important optimizations that a compiler

can perform, and optimizing compilers will do so aggressively [CCKT86, WZ91, CH95]. Con-

stant propagation is a transformation that, given the assignment of a constant value c to a

variable v, replaces later uses of v with uses of c as long as intervening assignments have not

changed the contents of v. Constant folding is a companion to constant propagation; when

an expression contains a computation on values known to be constants, that computation is

performed at compile time.

Programs typically contain many constants. By propagating and folding them simulta-

neously through the program, the compiler can do a significant amount of precomputation.

More importantly, the propagation of constant values reveals many opportunities for perform-

ing other optimizations. In addition to obvious possibilities like dead code elimination (see

Section 2.3.1.2) or reducing register pressure, loop optimizations are much affected because

constants often appear in their induction ranges.

There are generally more opportunities for interprocedural constant propagation at link

time than at compile time [Mut99]. The reason is that the entire program, including all

the library routines, is available for inspection. Constants can be then propagated across

compilation unit boundaries and even source language boundaries. Furthermore, at link

time it is possible to detect and deal with architecture-specific computations that are not

visible at the intermediate code representation level typically used by compilers for most

optimizations. Muth et al. [MDWdB01] present a flow-sensitive interprocedural constant

propagation algorithm at link time that is limited to register contents, which is able to deal

with recursion, interpretation of conditionals, and propagation of constants through read-only

data sections. De Sutter et al. [dSdBdBD01] improve this algorithm in a context-sensitive

fashion. Both are able to deal with strength reduction (i.e., find a cheaper instruction to

perform the same computation) in order to compute values into registers that are known to

be constants [SW92].

2.3.1.2 Dead/unreachable code elimination

Dead code elimination removes instructions that can be proven to have no effect on the result

of a computation [ASU86a]. That is, an instruction is dead if it computes a value that is

not used (i.e., it is not live) on any executable path leading from the instruction. This is

an important optimization, not only because some programs contain dead code as originally

written, but also because many of the other optimizations create dead code. For this reason,

it is usually applied several times during an optimizing compilation. As far as optimizing

executable code is concerned, implementation of dead code elimination is often solely based

on register liveness information.

2.3. COMPILER OPTIMIZATIONS 23

Dead code elimination is often applied coupled to unreachable code elimination. A code

fragment is unreachable if there is no control-flow path to it from the rest of the program.

Code that is unreachable will never be executed, and can therefore be eliminated without

affecting the behavior of the program. Unreachable code typically arises at compile time due

to user constructs (e.g., debugging statements that are turned off by setting a flag) or as a

result of other optimizations. On executable code, it arises primarily from the propagation of

information across procedure boundaries. Implementation involves a straightforward depth-

first traversal of the control-flow graph, and can be performed as soon as the CFG of the

program has been computed.

2.3.1.3 Copy propagation and register renaming

Other optimizations may cause the same value to be copied several times. Copy propagation

propagates the original name of the value and eliminates redundant copies [ASU86a]. It can

be applied on intermediate code at any level from high to low. On the other hand, register

renaming is a similar transformation but opposite in nature: it tries to assign unique registers

to different definitions of the same register [Muc97j]. Renaming is in general applied to low-

level intermediate code, before code scheduling.

On executable code, both transformations are limited to registers, although they can be

improved by exploiting the use of the small displacement value in place of the second operand

register allowed in most of the RISC instructions [Mut99]. Copy propagation reduces register

pressure and eliminates redundant register-to-register move instructions. Thus, it tries to

reduce the number of instructions in a program. The aim of register renaming is remove

unnecessary false register dependencies so that flexibility available to code scheduling can be

increased.

2.3.1.4 Procedure inlining and cloning

Procedure inlining is an important optimization that replaces a procedure call with a copy

of the body of the called procedure, replacing each occurrence of a formal parameter with

its corresponding actual parameter [Sch77, AJ88]. Inlining removes the function call/return

costs and the overhead of argument passing. Besides, intraprocedural optimizations blocked

by the procedure call boundary can be applied straightforwardly to the combined code of

caller and callee, therefore improving their results. Another common technique for exploiting

interprocedural information is cloning: the duplication of a callee so that its body may be

specialized for the circumstances existing at a particular call site or set of call sites [CHK93].

Despite its benefits, procedure inlining may have negative effects. The primary disadvan-

tage of inlining is that it increases code size, which might hurt instruction-cache performance

by increasing instruction-cache miss rate [McF91a]. Besides, due to this code growth, the

24 CHAPTER 2. BACKGROUND AND RELATED WORK

compilation time and the memory space consumption may become intolerable because some

of the algorithms used for analysis have superlinear complexity. An alternative to inlining is

to perform interprocedural analysis [RG89], which can be applied uniformly since it does not

cause code expansion the way inlining does. However, it is difficult to model many important

analyses in an interprocedural setting, and many of the analyses degrade significantly in the

usual cases where not all program source is visible to the analyzer. And even if interprocedu-

ral analysis is performed, effective use of this information will most of the times require code

expansion, since many of the code transformations enabled by an interprocedural analysis are

impossible to safely express without some duplication of code in either the caller, the callee,

or both.

Many research and production systems have been capable of performing procedure inlining.

In most cases, they use some form of the following heuristics to select which procedure to

inline [Muc97k]:

1. The size of the procedure body (the smaller the better).

2. How many calls there are to the procedure. If there is only one call, inlining it should

almost always result in reducing execution time.

3. Whether the procedure is called frequently (e.g., inside a loop). If so, it is more likely

to provide significant opportunities for other optimizations.

4. Whether a particular call site includes one or more constant-valued parameters. In this

case, the inlined/cloned procedure body (i.e., the callee) is more likely to be optimized

than if not.

McFarling investigated the impact of procedure inlining on instruction caches [McF91a].

Chang et al. [HC89b, CMCH92] and Ayers et al. [AGS97] demonstrate impressive performance

improvement by aggressive inlining and cloning at high-level intermediate representation by

using profile feedback and cross-module analysis. When inlining is carried out on executable

programs after linking, the goal is to inline across module and library boundaries, such as in

the Alto [AK00, MDWdB01] and PLTO [SDAL01] systems. As far as addressing the negative

effects on instruction cache due to code growth is concerned, inlining is in this case more

precise than inlining at the source level, since the optimizer has an accurate estimation of

every procedure footprint and the size of the instruction cache.

2.3.1.5 Code positioning

The layout of instructions into memory is determined by the compiler [McF91b, RLPV01].

Code positioning (also known as code layout) determines not only the code page where an

instruction is found, but also both the cache line (or set in a set associative cache) it will map

2.3. COMPILER OPTIMIZATIONS 25

to, and the behavior (taken or not taken) of conditional branches depending on the placement

of their successor basic blocks. By mapping instructions appropriately in a different order,

the compiler can have a direct impact on program performance.

There is an extensive body of work on code positioning optimizations [HC89a, McF89,

PH90, TXD95, GBSC97, KK98, RLPN+99]. Ignoring minor differences between the different

proposals, the main objective in all of them is to move infrequently executed code far from the

frequently executed basic blocks (which are positioned close to each other), and straighten the

code into linear sequences so that unconditional branches are avoided and conditional branches

take the fall-through path as much as possible. As a result, a higher fraction of the instructions

fetched from the instruction cache are actually executed, thus reducing instruction-cache

conflicts. Code layout is generally applied to low-level or executable code, before applying

code scheduling.

2.3.1.6 Code scheduling

Because many processors are pipelined and expose to the user at least some aspects of the dy-

namic hardware policy for executing instructions, it is essential that code for such machines

be organized in such a way as to take best advantage of the pipeline or pipelines that are

present in a particular architecture or implementation. Code scheduling is a common tech-

nique for reordering instructions to improve performance, which is among the most important

optimizations for most programs on most machines [RF93].

Code scheduling is one of the last components of an optimizer to be executed when com-

piling a program, usually before code generation. This is the reason why there are no fun-

damental differences in performing code scheduling on intermediate or executable code. A

widely used algorithm is called list scheduling [ACD74, SP89]. The algorithm operates on each

basic block and can obtain significant improvements in code speed. The scheme has been also

generalized to scheduling across basic block boundaries [Wal92, HMC+93, MR94], by consid-

ering a tree of blocks at once, which allows to move instructions from one block to another.

Other sophisticated approaches can have large benefits for some types of programs and ar-

chitectures, such as trace scheduling [Fis81, LFK+93], balanced scheduling [KE93, LE95], and

others [RL92, EGK+94].

2.3.2 Profile-guided optimizations

Most of the early work on classical code optimizations is based upon a very simple performance

model [ASU86a], since these optimizations are defined such that their application is always

considered to have a positive impact on performance. Therefore, the focus of the research

proposed over the past decades has been on both developing aggressive analysis techniques

for uncovering as much opportunities for optimization as possible, and designing powerful

26 CHAPTER 2. BACKGROUND AND RELATED WORK

(a) if (...)

{

v = x * y;

}

if (...)

{

w = x * y;

}

(b) t = x * y;

if (...)

{

v = t;

}

if (...)

{

w = t;

}

Figure 2.3: Example of profile-guided optimization: (a) original code, (b) resulting code after

redundancy removal.

program transformations to exploit most if not all of the uncovered opportunities, in order to

speed up the execution time of programs.

While the simplicity of this conservative approach is attractive, it may fall into applying

optimizations which might have an adverse impact of performance. Effectively, even although

a static analysis algorithm may be successful in uncovering an optimization opportunity, the

transformation phase still need to determine whether or not the optimization opportunity

should be exploited. This drawback can be addressed by using a sophisticated performance

model during the application of optimizations. In particular, a cost-benefit analysis of a

program transformation can be carried out before actually applying the transformation itself.

To illustrate the above scenario, consider the example shown in Figure 2.3. The original

code contains an optimization opportunity, since the expression x * y is computed twice when

both conditionals evaluate to true. Moreover we can make this determination by statically

analyzing the program. To optimize the uncover opportunity, we may wish to transform the

code as shown in Figure 2.3b. This transformation removes the redundant evaluation of x * y

for true evaluations of the conditionals. However, if we consider the complementary execution

(i.e., false evaluations of the conditionals), we find that an evaluation of x * y is introduced

in the transformed code where none was present prior to transformation. Therefore we can

conclude that the optimization is useful only if evaluation of the first conditional to false is

less frequent than the assignment to variable w. A simple cost-benefit analysis based upon

expected execution frequencies of various statements in the program can be used to decide

whether or not the transformation should be applied4.

4While in the example both the cost and the benefit is being measured in terms of number of instructions

or execution cycles, this may not always be the case. In some situations while the benefit may be measured

in terms of anticipated reduction in the number of instructions, the cost may be measured in terms of code

growth resulting from the transformation. This is because many optimizations essentially perform some form

of code specialization, which results in code growth.

2.3. COMPILER OPTIMIZATIONS 27

Profile-guided optimizations have received increased attention in recent years [GMZ02].

Before profile-guided optimizations can be carried out, an instrumented version of the program

must be run on one or more representative inputs to collect profile data. This data is then used

by the optimizing compiler to recompile the program generating optimized code. The example

in Figure 2.3 illustrates that, by using this technique and given an adequate program’s profile

data, optimizing compilers are able to discover a broad category of optimization opportunities

that may exists during program execution, so that they can now be exploited to aggressively

optimize the program.

While this section is about static profile-guided optimization of programs, the concept of

profile-guided optimization is also used by dynamic optimizers [DGR99, BDB00, CLCG00,

MCE00, BGA03]. However, in contrast to the techniques described in this section, dynamic

profiling and optimization must be extremely light weight. These techniques are beyond the

scope of this work.

2.3.2.1 Types of profile information

Profiles provide summary information from past program runs that are used to guide pro-

gram optimization [GMZ02]. The selection of representative inputs is important, since the

optimizations are expected to be beneficial only if the profile data that is collected is relatively

insensitive across a wide range of inputs on which the program is expected to be executed.

Besides, different types of optimizations require different types of profiles. In this section we

briefly discuss such types of profiles and the optimizations they are targeted.

The usual forms of profile are based on the program’s Control Flow Trace (CFT). This

type of profiles captures a trace of the execution path taken by the program, which represents

the order in which the basic blocks in the control-flow graph are visited. By examining a CFT

we can compute the execution frequency of any given program subpath. As expected, CFTs

can be extremely large in size and therefore representations that maintain CFTs in compressed

form have been considered [Lar99, ZG01]. In practice, a number of approximations of CFT

that directly measure the execution frequencies of selected program subpaths are used. These

profiles differ in the degree of approximation involved and the cost for collecting them. The

proposed approximations of control-flow profiles include the following:

Node profiles It provides the execution of the basic blocks in the CFG [Smi91]. For some

optimizations such profiles are sufficient (e.g., making code placement decisions, as il-

lustrated in Figure 2.3b).

Edge profiles It provides the execution frequency of each edge in the CFG [BMS98]. Edge

profiles are superior to node profiles because basic block counts can be computed from

edge counts, while the reverse does not always hold.

28 CHAPTER 2. BACKGROUND AND RELATED WORK

Path profiles It provides the execution frequencies of acyclic subpaths in the CFG such that

they are acyclic and intraprocedural [BL96, BMS98]. Since a path is acyclic, it does

not ever include a loop-back edge, and since it is intraprocedural, it terminates if an

exit node of a procedure is reached. Path profiles are clearly superior to edge profiles,

because path profiles can capture correlation across multiple conditional branches while

edge profiles cannot do so.

To collect the profiles we must execute instrumented versions of the program. The instru-

mentation code that is introduced depends upon the type of profile being collected. Thus, the

overhead of collecting edge profiles is comparable to the overhead of collecting node profiles,

which is linear to the length of the program execution. However, several techniques can be

employed to reduce this overhead [Sar89]. On the other hand, collecting path profiles is more

expensive [BL96].

Other types of profile information have been used for a wide variety of profile-guided

optimizations, such as value profiles [CFE97, MWD00, Chi01] and address profiles [Con97,

CKJA98, RCT+98].

2.3.2.2 Profile-guided classical optimizations

Simple optimization algorithms typically optimize statements that are determined to be op-

timizable under all conditions through static analysis of the program. On the other hand,

more aggressive algorithms also optimize statements that are conditionally optimizable where

the optimization opportunities are discovered either through static analysis or through pro-

filing. As a consequence, often such algorithms involve replicating statements and creating

unoptimized and optimized copies of them. Depending upon the conditions that hold, appro-

priate copy of the statement is executed. The above process is also commonly referred to as

code specialization. In some optimizations, specialization leads to elimination of a copy (e.g.,

redundancy and dead code elimination) while during other optimizations specialization leads

to simpler and more efficient code (e.g., strength reduction and constant folding).

The next section will provide a brief overview of code specialization transformations for

eliminating programs redundancies. We also discuss the critical role that profiling plays in

carrying out these type of optimizations.

2.3.3 Eliminating program redundancies

In general terms, redundant operations expose unnecessary recomputations at program run

time of values that are already known, because they have already been computed in the

program or because they can be computed at compile time. As a result, these redundancies

expose optimization opportunities that can be potentially exploited by an optimizing compiler

in order to remove them away.

2.3. COMPILER OPTIMIZATIONS 29

In the long history of research and implementation of eliminating redundancies at compile

time, four main types of transformations have been identified:

Code deletion The simplest form of removing a redundant statement is code deletion: if

the value of a statement is previously computed along each incoming path, then the

statement can simply be removed. To verify that the redundancy exists along all paths,

the optimization can be restricted to basic blocks, as in common subexpression elimi-

nation [ASU86a] or value numbering [Muc97l]. For applying deletion globally (across

multiple basic blocks), data-flow analysis is applied to confirm that the value to be

removed is available along all paths.

Code motion Deletion is impossible when statement is redundant along a strict subset of all

incoming paths. Code motion is a technique that hoists the partially redundant state-

ment so that it is removed from paths on which it is redundant. Effectively, hoisting in-

troduces compensation code on non-redundant paths, changing partial redundancy into

full redundancy, which enables deleting the statement from its original position. Loop

invariant code motion is the simplest form of such motion transformation [Muc97k].

Morel and Renvoise generalized it to arbitrary control-flow graphs by formulating the

code motion problem as a bidirectional data-flow analysis [MR79], while Knoop et al.

found an unidirectional formulation by decomposing the bidirectional problem into two

unidirectional problems: availability and anticipability (also called very busy expres-

sions) [KRS94a].

Control-flow restructuring The necessary code motion may be blocked when it would

change program semantics or impair the program for certain inputs. When code motion

fails to eliminate all partial redundancies, control-flow restructuring can be applied. Re-

structuring is based on separating the optimizable paths from the unoptimizable paths,

which is accomplished by duplicating all statements along the path that needs to be

separated. A simple form of restructuring is tail duplication [HMC+93], which sepa-

rates frequently executed paths to improve scheduling by separating control-flow merge

points. Restructuring is also necessary when redundant operations are unhoistable, such

as branch instructions [MW92, MW95, BGS97].

Control speculation This form of transformation inserts computations onto paths that did

not compute them in the unoptimized program [HH97b, GBF98, LCK+98]. As a result,

some paths are optimized and some are impaired. To control the impairment, a run-time

program profile is often used.

Other kind of redundancy elimination optimizations are also built on top of one or more

of these transformations. As an example, partial dead code elimination eliminates statements

30 CHAPTER 2. BACKGROUND AND RELATED WORK

that compute a value that will not be used in the remainder of the program, by using code

motion alone [KRS94b]. Dead values that cannot be removed with code motion must be

eliminated through restructuring [BG97].

Clearly, the four types of transformation differ in their power and cost [BGS98]. Deletion

is only applicable on fully redundant operations, and hence is not suitable for partial redun-

dancies. While code motion is efficient in that it does not increase code size, it is less powerful

than restructuring, which can eliminate all redundancies but may incur in significant code

explosion. Finally, control speculation does not remove all redundancies and it impairs some

paths, but it does not introduce code duplication at all.

We next review prior work related to eliminating program redundancies by classifying it

according to the type of redundancy it tries to address. Such classification leads to a better

understanding of the underlying problems we deal in this thesis.

2.3.3.1 Partial redundancy elimination

By attempting to remove redundancies that occur only on some control-flow paths of a pro-

gram, Partial Redundancy Elimination (PRE) [MR79, KRS94a, CCK+97] subsumes various

well-known ad hoc code motion optimizations, such as common subexpression elimination

and loop invariant code motion [ASU86a]. Horspool and Ho [HH97b] described a specula-

tive formulation of PRE based on a cost-benefit of the flow graph, by using edge profiles.

This approach has been generalized to provide optimal solutions both for time [CX03] and

space [SHK04]. Gupta, Berson and Fang [GBF98] extended the general PRE algorithm by

using path profiles. Finally, Bod́ık, Gupta and Soffa [BGS98] developed a profile-driven PRE

approach using path profiles and control-flow restructuring, which is complete. However, as

they replicate regions of code when needed, some code growth also results.

The problem of path-sensitive redundancies has been described by Bod́ık and Anik [BA98,

Bod99]. They propose a new representation called Value Name Graph (VNG) to be used for

general path-sensitive optimizations. However, it is not obvious that using the VNG for

optimizing large programs would scale up to problems of this size.

2.3.3.2 Register promotion

Eliminating memory redundancies is a form of PRE, where the expressions to be considered

for removing are only memory operations. In this way, register promotion allows scalar values

to be allocated to registers for regions or their lifetime, where the compiler can prove that

there are no aliases for the value. Promotion carries out elimination of both redundant loads

and stores [CCK90]. Cooper and Lu [CL97] examined promotion over loop regions. Their

results indicate that the main benefit of promotion comes from removing store operations. Lo

et al. [LCK+98] use a variant of SSA-PRE to remove unnecessary loads and stores over any

2.4. BINARY OPTIMIZERS 31

program region. However, they do not consider the effect of spilling because they simulate with

an infinite symbolic register set before register allocation. They also counted the improvement

just by comparing the total number of load and store instructions.

Postiff, Greene and Mudge [PGM00b] presented a register promotion algorithm at link

time, although their algorithm does not make use of any PRE approach at all. They also

present numbers for large register files, but the gain in this case seems to come from several

ad hoc techniques for promoting global and constant values into a dedicated subset of the

register file. Finally, Bod́ık, Gupta and Soffa [BGS99] developed a load redundancy analysis

and designed a method for evaluating its precision by using the VNG. However, their paper

is only focused in the analysis, and they do not perform any elimination of redundant load

instructions at all.

2.3.3.3 Elimination of conditional branches

Removing conditional branch redundancies can be seen as a particular case of partial redun-

dancy elimination. However, the code motion techniques useful for PRE of assignments do

not suffice for removing conditional branches. To eliminate a conditional, control-flow graph

restructuring is usually required.

The simplest form of branch elimination is loop unrolling [Muc97j], in which instances of

back-edge branches are removed by replicating the body of the loop. More sophisticated tech-

niques examine control and data flow simultaneously to identify correlation among branches.

An algorithm for intraprocedural restructuring was first proposed by Mueller and Whal-

ley [MW95], although their technique was mostly focused on eliminating conditionals within

loops. A more general approach based upon interprocedural demand driven analysis as well

as profile-guided control-flow restructuring was given by Bod́ık, Gupta and Soffa [BGS97].

However, a lot of interprocedural redundancy they remove could be also eliminated by simply

applying constant propagation after function inlining.

2.4 Binary optimizers

A binary rewriting system transforms a binary program into a different but functionally equiva-

lent program. A binary optimizer is a binary rewriting system that modifies an object program

to improve some aspect of its behavior (e.g., execution time, code size, power consumption,

etc.) after it is compiled (see Section 1.1.2). Traditionally, it is the task of the compiler or

assembler to generate object code and it seems cumbersome to change object code once it

has been produced. Nevertheless, the number of applications where object code modification

is successfully employed grows rapidly, such as binary translation [SCK+93, HH97a, CE00,

AKS00], program profiling [LB94, SE94], or debugging/sandboxing [HJ92, WLAG93].

32 CHAPTER 2. BACKGROUND AND RELATED WORK

2.4.1 Advantages of performing binary optimizations

The optimization of a binary may occur at a very late stage during linking (i.e., link time) or

after linking (i.e., post-link time). Both approaches are quite similar: integrating optimiza-

tions within the linker will simplify parsing of the code and might give access to slightly more

information about the source program, while changing object code after linking provides a

very clean separation of responsibilities and does not require access to potentially proprietary

linker source5. In any case, performing optimizations at the object code level has the following

advantages:

Independency of the source language/compiler Working with object code makes opti-

mizations essentially compiler and language independent, similar to a common back end

coupled with several compiler front ends [ASU86b]. However, it may be necessary to

recognize certain compiler and/or language specific sequences at the object code level

and treat them specially, in order to improve the effectiveness of the optimizations.

Easy addition of optimizations to the compilation process Usually the source code

of a compiler is not available for modification, or the documentation is so poor that

adding new optimizations might be difficult. Hence, it is very popular to try out new

optimizations in a simple and well documented compiler like lcc [FH95] whose source is

publicly available. However, it is questionable whether results obtained in this way will

transfer to a production quality compiler. Applying optimizations at link time allow us

to essentially add optimizations to the best available compiler without modifying it.

Supplement optimizations not well performed by the compiler Some optimizations

cannot be easily performed at compile time, specially those ones that rely on an accurate

estimation of the number of low-level machine instructions. At link time, we can easily

obtain this type of information not available at compile time, so that optimizations can

be optimally applied.

Availability of the entire program Large programs tend to be compiled using separate

compilation, that is, one or a few files at a time. Therefore, the compiler does not have

the opportunity to optimize the program as a whole, even when performing sophisticated

interprocedural analyses and transformations. As a consequence, link-time or executable

code optimizers have the attraction of being able to work when the entire program is

available for inspection. This is even valid when source code of programs is unavailable,

such as in old legacy software or library code. Optimizing the object code appears to

be the only way to improve performance of these programs.

5For the rest of this work we will not distinguish between these two approaches.

2.4. BINARY OPTIMIZERS 33

Easy use of profile information Generating profile information by instrumenting object

code is very popular and also fairly easy (see Section 2.3.2.1). The problem is to exploit

this information in an optimizing compiler. There is an impedance mismatch between

the information provided by the object code level profiling and the source level compiler,

similar to the one found in a source level debugger. This is because the low-level profile

information needs to be back mapped to source code, which is a non-trivial problem

specially when code is highly optimized. When optimizing at the object code level, on

the contrary, this mapping is one-to-one and does not present any problems.

The cost metric that classical optimizations try to reduce is execution time, although

they often also reduce code size as a side effect. However, in recent years there has been an

increasing trend towards reducing space, since computers are being incorporated in devices

and embedded systems where the amount of memory is limited. In this case, we can reduce

code and data size by using special compression techniques [EEF+97, DEMdS00, DE02]. We

will not consider these optimization techniques in this work.

2.4.2 Related work

We next describe the most relevant projects in the area of object code modification for opti-

mizing binaries.

OM The OM optimizer is a tool that improves the performance of Unix applications on

Compaq/Alpha processors, that can also make use of profile information [SW92]. It uses

the OM’s object code modification framework, which is a library similar to EEL [LS95]

that tries to hide much of the complexity of editing object files. The framework is

dedicated to the exploration of techniques for the modification of binary machine code,

such as program instrumentation [SE94].

OM was designed as a separate pass after linking, but it relies on the linker to provide

additional information not found in the executable. Internally, it translates instruction

to a Register Transfer Language (RTL), which can be manipulated and translated back

to machine instructions. Another of the design goals for the OM optimizer was to make

it fairly light-weight. Thus, it does not perform many optimizations, and the ones it

does perform are restricted to intraprocedural optimizations that do not consume a lot

of resources, such as faster global variable access [SW94], unreachable code removal,

procedure inlining, and basic block reordering.

Etch Developed for Intel/x86 platforms running the Windows/NT operating system, Etch

is a program performance evaluation and optimization tool that allows to annotate ex-

isting binaries with arbitrary instructions (for example, to trace, or perform coverage

34 CHAPTER 2. BACKGROUND AND RELATED WORK

analysis), or to rewrite an existing binary so that it executes more efficiently [RVL+97].

To instrument a program, Etch is invoked with a Dynamic Linked Library (DLL) con-

taining the analysis code in the form of call-back functions that are invoked by Etch to

modify the executable. Those functions can in turn call the Etch interface to perform

the actual instrumentation.

Etch also provides facilities for rewriting an executable in order to improve its perfor-

mance. For example, the instrumentation phase, rather than adding new instructions,

can direct Etch to write the executable out according to a different code layout optimized

for cache behavior.

Spike This tool is an executable optimizer for Compaq/Alpha binaries originally intended

for Windows/NT applications [CGLR97, CGL97], which was later modified for Tru64

Unix applications [FLM+01]. It can handle executables and shared objects, performing

both instrumentation and optimization. The instrumentation part is a Pixie adapta-

tion which provides basic block and control-flow edge execution frequencies [Smi91],

although it is also able to use estimated counts collected with the DCPI statistical

profiler [ABD+97]. Profile data is then used to improve a variety of analyses and op-

timizations, such as register liveness analysis [Goo97], hot-cold optimizations [CL96],

and register allocation [Muc97h], as well as reorganizing executables to improve cache

locality [RBG+01].

Recently, a similar tool called Ispike has been developed for optimization of Intel/IPF

executables on the Linux operating system [LMP+04]. Besides the standard optimiza-

tions, it implements a number of key optimizations targeting memory latency, including

code layout, instruction prefetching, data layout and data prefetching. They are driven

by several types of profile information collected via the Itanium performance monitoring

hardware [ME02].

Alto Within the scope of the University of Arizona’s SOLAR project, Alto is a post-link

time optimization system for Tru64 Unix applications on Compaq/Alpha processors

[MDWdB01]. Alto implements a large number of profile-guided optimizations, (e.g.,

code layout, inlining, etc.) but also a wide variety of novel whole-program data-flow

analyses and code optimization techniques well suited for optimizing programs at link

time [Mut98, DMW98, Mut99]. As an example, it includes a novel optimization for

low-level value-based program specialization [MWD00]. Alto is the framework we have

used to implement the proposals presented in this thesis, as we will see in Section 3.2.1.

SOLAR also includes other link-time optimization systems. These optimizers are very

similar to Alto, and thus share most of its features. PLTO is targeted at optimizing In-

tel/x86 applications on Linux [SDAL01]. It includes a novel stack analysis for optimizing

2.4. BINARY OPTIMIZERS 35

parameter passing [LDAS04]. ILTO is an optimization system for Intel/IPF executa-

bles on Linux [SDA02]. In this case, the main contribution comes from the implemented

techniques for reverse engineering Itanium applications [SDA03b, SDA03a].

Squeeze This tool (and its C++ evolution, Squeeze++), is a post link-time compaction tool

based on Alto whose main goal is to devise techniques for reducing the memory foot-

print of Tru64 Unix executables for Compaq/Alpha processors [dSdBdBD01]. Besides

applying whole-program optimizations to reduce execution time of programs, Squeeze

also tries to reuse code and data on several levels of granularity to reduce program size.

In particular, code factoring refers to a variety of techniques to identify and “factor

out” repeated instructions sequences [DEMdS00, dSVdBdB03]. Squeeze++ also applies

some code reuse techniques specifically targeted at C++ language features, such as

inheritance and the use of templates [dSdBdB02].

The Squeeze team has recently developed a retargetable framework for link-time code

editing called Diablo [dBKC+03, dBdSvP04]. Diablo can be used to optimize programs

for code size or speed, to add instrumentation code or to get better understanding about

a program at the binary level.

36 CHAPTER 2. BACKGROUND AND RELATED WORK

Chapter 3

Experimental environment

This chapter presents the experimental environment on which this thesis has been developed.

We first give an overview of the target platform used for experiments, and also introduce our

experimental framework at compilation and simulation levels. We also describe the benchmark

suite and the methodology used for evaluating the benefits of our proposals.

37

38 CHAPTER 3. EXPERIMENTAL ENVIRONMENT

3.1 Target environment

This section describes the environment we choose to develop the research presented in this

thesis. We also present some of the tools employed in this work for generating the different

sets of programs that will be used for evaluation.

3.1.1 Target platform

The execution environment chosen as our target platform is an AlphaServer GS–140 run-

ning the Compaq/Tru64 UNIX operating system (version 5.1). This server is equipped with

a 525MHz Alpha EV6 21264 processor [KMW98]. The main processor characteristics can

be seen in Table 3.1. There are several reasons why we have chosen this platform as our

experimental environment:

• The Compaq/Alpha 21264 processor is a superscalar out-of-order microarchitecture that

was designed to operate at frequencies higher than other processors of its generation.

Besides, its microarchitecture specification has been published in much more detail than

chips from other vendors [KMW98, Kes99, Com99a].

• Binary optimizations are directly applied to the Instruction Set Architecture (ISA)

level. Although working at the ISA level might seem to be very non-portable, the

Compaq/Alpha processor has a very generic RISC ISA, which is in fact very similar

to the low-level intermediate representation used in many compilers [ASU86d, Mah92,

Muc97e, Mor98]. Then, the proposals presented in this work should be easily transfer-

able to other RISC architectures.

• The platform chosen is stronger than other platforms in development support. Be-

sides having different compiling and debugging tools, it provides a wide variety of tools

available for the propose of program instrumentation [Smi91, SE94], binary optimiza-

tion [MDWdB01], and performance simulation [ALE02], which are targeted to the Alpha

environment.

As a result, this platform allows us easily both implement our low-level compiler proposals

within a binary optimizer, and obtain a wide variety of measurements for evaluation.

3.1.2 Compilation environment

In this work we are interested in evaluating new compiler optimizations at the binary level.

Therefore, we need to generate an appropriate set of benchmarks so that we can measure

the effects of applying such optimizations to them. We use in this work two different sets of

programs:

3.1. TARGET ENVIRONMENT 39

Parameter Value

Instruction set 64-bit load/store RISC little-endian architecture. 32-bit instructions.

Pipeline Seven stages plus a variable number of execute stages.

Fetch width 4 instructions per cycle (128-bit packed).

L1 I-cache
64Kb, 2-way set-associative, virtually addressed cache with 64-byte line, 1-

cycle hit latency.

Branch predictor

Combined branch predictor. Local: 1K 10-bit local histories that access 1K

3-bit saturating counters. Global: 12-bit global history register that access

4K 2-bit saturating counters. Choice: a predictor that selects the local or

global predictor, with 4K 2-bit counters.

Decode/Commit width 4 instructions per cycle.

Register file
Two separate integer and floating point register files, 31 register per file.

Register renaming, 80 integer and 72 floating point physical registers.

Instruction window Up to 80 instructions in-flight.

Issue mechanism
Speculative execution. Up to 4 integer and 2 floating point instructions per

cycle. 20-entry integer and 15-entry floating point queues.

Execution units 4 integer, 2 floating point pipeline units

Load/store queue (LSQ) 32-entry load and store queues. Stores may bypass values to later loads.

L1 D-cache
64Kb, 2-way set-associative, virtually indexed, physically tagged, dual-read-

ported, write-back cache with 64-byte line, 3-cycle hit latency.

L2 unified I/D-cache

2Mb, 4-way set-associative, physically indexed cache with 128-bit bus to L1,

16 bytes to main memory, 16 cycles first chunk, 2 cycles interchunk, 12-cycle

hit latency.

Instruction TLB 128-entry fully-associative, 8Kb page, 30-cycle miss penalty.

Data TLB 128-entry fully-associative, 8Kb page, 30-cycle miss penalty.

Main memory 1Gb, 128-bit bus to L2, 80-cycle hit latency.

Table 3.1: Compaq/Alpha EV6 21264 processor characteristics.

Baseline set This set is obtained from compiling our programs on the native environment

and getting adequate profile data. Then, a binary optimizer is used to read the result-

ing binaries and their profiles, and apply profile-guided optimizations to obtain highly

optimized programs.

Optimized set The other application set involved is obtained by following the same process

for obtaining the baseline set. This time, though, we include within the binary optimizer

the particular analysis or optimization in which we are interested.

It is critical in this work to compare the effectiveness of our proposals against state-of-

the-art optimized machine code. This is the reason why sophisticated profile-guided binary

optimizations are actually applied in the baseline set, as we will see in Section 3.2.

We next describe in some depth the steps we have followed and the tools involved in the

compilation process, which defines our compilation environment.

40 CHAPTER 3. EXPERIMENTAL ENVIRONMENT

3.1.2.1 Native compilation

For generating our initial set of executable programs from source code applications, we used

the Tru64 C compiler (version 6.3) on the environment presented in Section 3.1.1. The

compiler was invoked with full optimizations and special linker options to produce statically

linked executables and to retain relocation information, as follows:

cc -O4 -arch ev6 -non shared -Wl,-r -Wl,-d -Wl,-z

We used statically linked executables since most of the object code modification tools

are not able to process non-statically linked executables with shared libraries. Furthermore,

relocation information is also needed for our post-link time processing tools. Otherwise, any

instruction must be considered the target of an indirect jump [SW92].

3.1.2.2 Getting profile information

Once we have our set of original binaries, we are also interested in obtaining adequate profile

information so that profile-guided optimizations can be applied at the binary level.

Our programs were instrumented using Pixie [Smi91], and then executed using representa-

tive inputs to obtain a basic block execution frequency profile. We will show in Section 3.2.1.2

how different types of control-flow profiles can be derived from basic block counts.

3.1.3 Execution environment

Since the proposals we present in this work will be implemented within a compiler or binary

optimizer, and they do not involve any hardware modification at all, the most interesting

measure to evaluate their effectiveness is to report actual execution times. Therefore, we run

the obtained benchmark sets on the target environment presented in Section 3.1.1, recording

in each case the smallest of seven runs of programs running in single-user mode.

3.2 Experimental framework

In this section, we describe the experimental framework used for implementing and evaluating

the ideas presented in the following chapters.

3.2.1 Binary optimization environment

The final step in our compilation chain must read the original executable programs produced

by the native linker (as described in Section 3.1.2.1) together with their corresponding profiles,

in order to apply additional analyses and profile-guided optimizations. The goal is to optimize

the programs for performance at the binary level as much as possible.

3.2. EXPERIMENTAL FRAMEWORK 41

We have chosen the Alto link-time optimizer [MDWdB01] (see Section 2.4) to perform

the optimization task at the binary code level. The resulting executable programs will be

the baseline for evaluating the proposals presented in all further chapters, since this baseline

can be considered state-of-the-art optimized machine code. Furthermore, as the Alto source

code is available for modification, this tool will also be the binary optimization tool where

our algorithms will be implemented. Therefore, the algorithms we propose in this work will

be easily integrated with the rest of optimizations carried out by Alto. This approach ensures

not only exposing benefits coming from the new optimizations themselves, but also enhancing

the effect of the rest of Alto optimizations.

3.2.1.1 Optimization phases

After reading in the executable file (containing relocation information for its objects) and

transforming it into an intermediate form, Alto optimizes a given binary in several phases.

We next outline the overall structure of the optimizer [MDWdB01]:

Base optimizations First, a suite of simple optimizations is carried out iteratively by Alto.

This suite includes most of the classical compiler optimizations (see Section 2.3.1), such

as constant propagation/folding, dead/unreachable code elimination, etc.

The base optimizations suite is iterated until either a fix point is reached or a maximum

iteration count is exceeded. As these optimizations are relatively cost-effective, they can

be applied several times during the optimization process without significantly increasing

total compilation time.

One-time optimizations In this phase, Alto performs optimizations that should only be

done once because either (a) the optimization may require costly analyses, or (b) re-

peating the optimization might have undesirable side effects, or (c) repeating the opti-

mization will not give any additional benefit. The most important optimization in this

phase is procedure inlining (see Section 2.3.1.4). Inlining at this level presents a good

opportunity to remove calling convention overhead that may not have been exploited

when compiling source code.

Late optimizations After all optimizations have been executed, Alto performs code posi-

tioning to improve instruction-cache usage. The approach used is a variation of the

Pettis and Hansen algorithm [PH90]. Finally, instruction scheduling is applied to im-

prove program performance.

All optimizations are supported by the corresponding needed analyses, such as those pre-

sented in Section 2.2. Finally, intermediate representation is transformed back into object

code, and then written out.

42 CHAPTER 3. EXPERIMENTAL ENVIRONMENT

3.2.1.2 Enhancing optimizer capabilities

Beyond the proposals exposed in the next chapters, we have either added or improved some

of the Alto capabilities and optimizations. The reason is that some optimizations were not

targeted at the platform presented in Section 3.1.1, but also because some capabilities and op-

timizations were not powerful enough to expose the desired redundancy existing in programs.

We next describe these modifications in some depth:

Copy propagation Eliminating register copies in Alto was limited to recognize and remove

some common patterns within basic blocks [Mut99]. However, we found that perform-

ing copy propagation beyond EBB boundaries becomes significantly important after

several transformations, such as procedure inlining and redundancy elimination (see

Chapter 5). We therefore implemented a general intraprocedural copy propagation al-

gorithm [Muc97l] as part of the Alto base optimizations.

Procedure inlining As we have shown in Section 2.3.1.4, applying procedure inlining at the

machine code level yields some important benefits. Furthermore, it gives intraprocedural

algorithms an interprocedural behavior when they are applied after inlining. However,

despite its benefits, inlining may have negative effects due to code explosion. The

technique used by Alto to mitigate this effect is to inline functions only if at least one

of the following conditions hold:

1. The callee is small enough that the calling and return sequences together are longer

than its body.

2. The call site under consideration is the only call site for the callee function.

3. The call site is hot enough (i.e., has a sufficiently high execution count), and the

estimate cache footprint of the resulting code after inlining does not exceed the

size of the instruction cache.

The first two conditions are always beneficial since there is no increase in code size. The

reason for the last condition is that inlining without attention to cache behavior can

have a significant negative impact on program performance. Therefore, there is a trade

off between reducing call overhead and increasing code growth. To address this problem,

Alto applies some heuristics based on an execution frequency profile [MDWdB01].

We have improved the current Alto inlining by sorting the inlineable functions so that

frequently call sites calling smaller functions are considered first for inlining. Besides, we

have included a bail out condition to avoid total code grow beyond a certain threshold.

More sophisticated strategies are possible [McF91a, CMCH92, AGS97], but these have

not been considered for this thesis.

3.2. EXPERIMENTAL FRAMEWORK 43

Code scheduling The instruction scheduler implemented in Alto is a slight extension of a

regular list scheduler that works on extended basic blocks [MDWdB01]. It is however

subject to the restriction that the basic blocks constituting the EBB must be consecu-

tive in the code layout, which allows instructions to move across nodes if this motion

preserves correctness of the program. As a result, they achieve an effect very similar to

trace scheduling [Fis81].

The Alto scheduler is targeted to an Alpha 21164 EV5 pipeline that does not match

with our target platform, which belongs to the next generation of Alpha processors.

However, the need for scheduling machine code for the Alpha EV6 is somehow less

important, since it is a dynamically scheduled processor [KMW98]. Thus, we have only

updated the corresponding instruction latencies from EV5 to EV6 information. We

have also implemented a previous optimization for renaming registers [Muc97j], in order

to remove unnecessary false register dependencies so that flexibility available to code

scheduling can be increased.

Profiling support Our programs were instrumented using Pixie [Smi91] to obtain execution

frequency profiles, as we have shown in Section 3.1.2.2. Furthermore, we need differ-

ent types of control-flow profiles (see Section 2.3.2.1), since some of the analyses and

optimizations we present need some form of edge frequency counts, instead of simply

basic block counts. However, the Pixie instrumentation tool only provides basic block

execution counting. Although it is widely known that block counts can be derived form

edge counts and the converse does not hold [BMS98], edges whose counts cannot be de-

termined from block counts are usually fewer than 1%. Therefore, we have implemented

in Alto a variation of the algorithm from Tamches and Miller [TM01] for deriving edge

counts from Pixie profile data.

Even though the effects of applying the optimizations and enhancements we have de-

scribed have a positive impact on program performance, the main goal has been to expose

binary redundancy as much as possible, in order to maximize the proposals presented in the

following chapters. Eliminating binary redundancy is then addressed in Alto within the two

optimization phases (see Section 3.2.1.1):

Base optimizations We include in this suite the most light weight algorithms we propose.

One-time optimizations After the one-time optimizations implemented by Alto, we apply

at this point the most expensive versions of our optimization algorithms, coupled with

the needed space- and time-intensive data-flow analyses. As we will see, the majority

of algorithms we propose in the following chapters are intraprocedural (i.e., they are

applied at procedure boundaries). However, Alto has previously applied procedure

inlining, which will give to our algorithms an interprocedural behavior.

44 CHAPTER 3. EXPERIMENTAL ENVIRONMENT

To catch any new opportunities opened up by the expensive one-time optimizations, in-

cluding the ones we will developed in this work, an additional round of base optimizations is

performed before and after the one-time optimization version of the particular algorithm we

are proposing.

3.2.1.3 Execution threshold

Some of the analyses and profile-guided optimizations applied by Alto, and also some of

the algorithms we proposed in this document, use profile information for having accurate

execution frequencies of the different parts of the program, but also for grouping program

entities into different execution sets. The reason is that, since they are expensive algorithms

in terms of compilation time and/or memory requirements, they need to be applied to only

a hot set of the program to keep these requirements under control. For example, the hot set

of basic blocks consists of the most frequently executed blocks in the program (according to

some threshold φ, as we discuss below). The notion of hot sets may also be applied to other

program entities, such as control-flow edges or programs paths.

As far as basic blocks is concerned, we need to determine the set of blocks that are executed

“sufficiently frequently”. Thus, given a value φ in the interval (0, 1], we determine the largest

execution frequency threshold N such that, by considering only those basic blocks that have

execution frequency at least N , we are able to account for at least a fraction φ of the total

number of instructions executed by the program (as indicated by its basic block execution

profile). In other words, basic blocks are sorted according to their relative execution frequency

so that a particular algorithm only considers instructions within basic blocks that have an

execution frequency larger than 1−φ. Those basic blocks are then said to be hot with respect

to the threshold φ. By using the same parameters, we can generalize hot sets to almost any

program entity. Therefore, an edge is consider to be a hot edge with respect to the threshold

φ when its execution count is at least N . Similarly, a hot path in a program is a path that

only contains hot edges.

The value N , and therefore the corresponding hot set, obviously depends on the threshold

φ. For example, given φ = 0.95, the hot basic blocks of a program consist of those that

account for at least 95% of the instructions executed at run time. On the other hand, a value

of φ = 1.0 will consider every basic block to be hot. Therefore, large φ values also cause a

large increase in optimization time and possibly memory requirements.

We have used different values of φ along the different proposals of this work, which have

been determined via empirical tuning1. However, we have observed that the final results are

not very sensitive to the final value of φ in every case.

1We provide in every chapter the different values of φ used in every case.

3.2. EXPERIMENTAL FRAMEWORK 45

3.2.2 Simulation environment

It is often the case that obtaining simple machine runs, as we do in Section 3.1.3, does not

give us detailed information about the behavior of the algorithms under evaluation. For ex-

ample, obtaining the exact number of instructions executed, the dynamic breakdowns based

on instruction types, or even detailed information about hardware events (e.g., cache misses)

is not possible from simple program runs. To perform this task, we could have used profiling

tools that obtain such information from hardware performance counters [ABD+97, Hun00].

However, these tools are often not accurate enough for our goals, since the obtained measure-

ments come not only from the measured program, but from parts of the operating system as

well. Besides, not every data can always be inferred in the collection process.

The approach we have chosen to address the above problem is microprocessor simula-

tion [MAA+02]. Simulation has been used over the past decades for enabling exploration

of design alternatives for future high-performance computers, without having the cost of ac-

tual building the whole hardware system. Furthermore, simulation usually provides more

detailed statistics collection than real hardware, thus obtaining meaningful results of program

performance on complex architectures.

While the architecture research community relies heavily on simulators [RBDH97, OG98,

SL98, LCA01, ALE02, EAB+02, HPRA02, MCE+02], the main problem of using this tech-

nique comes from the fact that simulators often are highly inaccurate due to abstraction,

specification, or modeling errors. Consequently, researchers may draw wrong conclusions

when evaluating a new proposal. The solution to this problem is to validate the performance

model against a baseline context, or even better, against real hardware [BS98]. This is not

always possible when evaluating new hardware proposals, but should be the case for new

proposals that provide no hardware modifications.

The simulator we use in this work to measure the different aspects of the proposed algo-

rithms is the sim-alpha simulator [DBK01], which faithfully models a Compaq/Alpha 21264

configuration that matches our target environment presented in Section 3.1.1. Besides, it has

been validated against a Compaq workstation obtaining less than 2% average error, which

make us feel confident about the validity of the conclusions derived from our simulation runs.

The sim-alpha simulator is based on the SimpleScalar toolset [ALE02], which provides an

infrastructure for simulation and architectural modeling. The toolset includes several sample

models suitable for a variety of common architectural analysis tasks. Thus, among other in-

cluded simulators, they provide sim-safe (a minimal instruction set emulator), sim-profile

(a dynamic program analyzer), and sim-outorder (a detailed microarchitecture timing model).

We have used the SimpleScalar simulators for collecting information that does not depend

on the processor architecture but relies somehow on the instruction set, such as measuring

number of executed instructions, number of memory references, etc.

46 CHAPTER 3. EXPERIMENTAL ENVIRONMENT

Benchmark Description Type Input Set

Profiling 50 9 Train
099.go Board game Execution 50 21 Reference

Simulation 50 10 —

Profiling dcrand.lit Train
124.m88ksim Motorola 88K simulator Execution {dcrand,dhry}.lit Reference

Simulation dcrand.lit Train

Profiling amptjp.i Train
126.gcc GNU C compiler Execution cp-decl.i Reference

Simulation gcc.i Reference

Profiling 10000 q 2231 Train
129.compress Lempel-Zip encoder/decoder Execution 14000000 e 2231 Reference

Simulation 50000 e 2231 —

Profiling boyer.lsp Train
130.li Lisp interpreter Execution {*}.lsp Reference

Simulation boyer.lsp Train

Profiling specmun.ppm Train
132.ijpeg JPEG encoder/decoder Execution vigo.ppm Reference

Simulation specmun.ppm Train

Profiling primes.in Train
134.perl Perl interpreter Execution primes.in Reference

Simulation primes.in (51 lines) Reference

Profiling persons.250 Train
147.vortex Database application Execution persons.1k Reference

Simulation persons.250 Train

Table 3.2: SPEC95 integer benchmark suite and their inputs used for profiling, execution,

and simulation.

3.3 Benchmark suite

A very important choice in this study is the set of programs to be analyzed. The SPEC95

benchmark suite was released on August 1995 by the Standard Performance Evaluation Cor-

poration (SPEC) [Rei95, DR95]. SPEC represents a worldwide standard for measuring and

comparing computer performance across different hardware platforms and optimizing compil-

ers [Wei97]. SPEC95 was developed by SPEC’s Open Systems Group (OSG), which includes

more than 30 leading computer vendors, publishers and consultants throughout the world.

The benchmarks we used for evaluating our proposals were the eight programs in the

SPECint95 benchmark set. Table 3.2 shows a brief description of these programs. We have

chosen only integer applications because, besides being widely used, these are the types of

applications that are most difficult to be optimized by a traditional optimizing compiler. This

is the reason why binary optimization tools usually obtain better results on integer programs

compared to those obtained for floating point programs.

3.3. BENCHMARK SUITE 47

The SPEC benchmarks come with a number of different input data sets:

• The test input set is a short dataset to ensure that the benchmark is working correctly.

• The train input set is often used to get profile information after program instrumenta-

tion, in order to use it as feedback data for profile-driven compiler optimizations.

• Finally, the reference input set is the official input that is used for generating the official

performance scores published on the SPEC web site.

In this work, we have used the different input sets for different purposes, as shown in

Table 3.2. The train and reference input sets are the ones we used for collecting profiles

and for reporting actual execution times, respectively (see Section 3.1.2.2 and Section 3.1.3).

When simulating benchmarks, though, the use of these input sets is either too short to give

representative results, or too long so simulation is prohibitive. There are methods described

in the literature for simulating only representative portion of the programs [KFML00, LS00,

NS01, SPC01, SPHC02]. However, the approach we followed was using variants of the SPEC

input set to keep simulation time down to a manageable value.

A more recent version of SPEC benchmarks exists under the name of SPEC2000, but we

have used SPEC95 for several reasons. First, when the work included in this document was

started, SPEC2000 was not available to the community. Thus, when this version appeared, we

thought that continuing with SPEC95 was appropriate to normalize results and understand

them better. The second reason relies on the fact SPEC95 fits better to the generation of

our target platform (see Section 3.1). Finally, the SPEC2000 generally suffers from worse

cache-miss ratio than the SPEC95 programs. As a significant part of our work focuses on

on-chip memory behavior, we thought that to use SPEC95 was more representative.

3.3.1 SPECint95 characterization

We next describe the process we follow to characterize the programs of the SPECint95 bench-

mark suite. This section will give us detailed information of the effects of our compilation

framework on program optimization, but will also show the methodology we use for the rest

of this document when evaluating the benefits of our proposals.

The process used is the following. We first compiled the SPECint95 programs in the

compilation environment described in Section 3.1.2.1. The obtained programs are considered

the baseline in this section, and we will refer to them as the Original benchmark set. These

programs were then instrumented to get profile information, and then re-optimized using

our enhanced version of Alto (see Section 3.1.2.2 and Section 3.2.1, respectively). Two new

benchmark sets were generated (i.e., Alto/Base and Alto/Inline), by running Alto with and

without applying procedure inlining with execution threshold φ = 0.75 (see Section 3.2.1.3).

48 CHAPTER 3. EXPERIMENTAL ENVIRONMENT

Benchmark set Description

Original Programs compiled with native C compiler.

Alto/Base Original binaries optimized using Alto, with profile information.

Alto/Inline
Original binaries optimized using Alto, with profile information,

including procedure inlining (φ = 0.75).

Table 3.3: Description of the different benchmark sets under evaluation.

go m88ksim gcc compress li ijpeg perl vortex GMean

Benchmark

100

120

140

160

180

200

220

C
om

pi
la

tio
n

tim
e

in
cr

ea
se

 (%
)

Alto/Inline

Figure 3.1: Effect of applying inlining in Alto compilation time, for the SPECint95 pro-

grams. The baseline is binaries after being optimized by Alto, without applying inlining (i.e.,

Alto/Inline binaries with respect to Alto/Base binaries).

The reason why we generate two additional benchmark sets is that we are specially interested

on the effects of inlining in our optimization chain. A description of the benchmark sets we

have generated is shown in Table 3.3.

3.3.1.1 Compilation time

The first data we report is the compilation time comparison of Alto when procedure inlining

either is or is not enabled (i.e., Alto/Inline binaries against Alto/Base binaries2). Figure 3.1

shows that inlining increases compilation time in less than 60% for almost all programs,

which is a very moderate growing percentage. The most interesting cases are programs ijpeg

and li. Program ijpeg had few opportunities for inlining, since most of its important call

sites invoke procedures by using indirect calls. On the contrary, program li suffers the

opposite effect: there is a high number of opportunities for inlining, and the inlined procedures

significantly increase the final program size (as we will see in the next section). As a result,

total compilation time is increased.

2The Original benchmark set is not considered here since native compilation time is significantly lower.

3.3. BENCHMARK SUITE 49

(a) SPECint95 characteristics for Original binaries

Benchmark Functions Nodes Edges Instructions

099.go 691 (1.00) 16313 (1.00) 30437 (1.00) 81154 (1.00)

124.m88ksim 609 (1.00) 11712 (1.00) 22347 (1.00) 50557 (1.00)

126.gcc 2244 (1.00) 76666 (1.00) 157190 (1.00) 323415 (1.00)

129.compress 334 (1.00) 5843 (1.00) 10583 (1.00) 22158 (1.00)

130.li 711 (1.00) 9907 (1.00) 18989 (1.00) 39293 (1.00)

132.ijpeg 742 (1.00) 12003 (1.00) 22282 (1.00) 60848 (1.00)

134.perl 713 (1.00) 23071 (1.00) 45581 (1.00) 99643 (1.00)

147.vortex 1351 (1.00) 29155 (1.00) 58907 (1.00) 137516 (1.00)

Total 7395 (1.00) 184670 (1.00) 366316 (1.00) 814584 (1.00)

(b) SPECint95 characteristics for Alto/Base binaries

Benchmark Functions Nodes Edges Instructions

099.go 602 (0.87) 14674 (0.90) 28825 (0.95) 74612 (0.92)

124.m88ksim 516 (0.85) 10317 (0.88) 20542 (0.92) 44959 (0.89)

126.gcc 2042 (0.91) 69092 (0.90) 146464 (0.93) 281908 (0.87)

129.compress 240 (0.72) 5002 (0.86) 9543 (0.90) 20607 (0.93)

130.li 602 (0.85) 8311 (0.84) 16485 (0.87) 32730 (0.83)

132.ijpeg 508 (0.68) 9459 (0.79) 18480 (0.83) 49486 (0.81)

134.perl 581 (0.81) 20190 (0.87) 41465 (0.91) 85195 (0.85)

147.vortex 962 (0.71) 24140 (0.83) 51966 (0.88) 108290 (0.79)

Total 6053 (0.82) 161185 (0.87) 333770 (0.91) 697787 (0.86)

(c) SPECint95 characteristics for Alto/Inline binaries

Benchmark Functions Nodes Edges Instructions

099.go 292 (0.42) 15511 (0.95) 30892 (1.01) 84105 (1.04)

124.m88ksim 361 (0.59) 12974 (1.11) 26097 (1.17) 60847 (1.20)

126.gcc 1492 (0.66) 73186 (0.95) 155106 (0.99) 307100 (0.95)

129.compress 162 (0.48) 6001 (1.03) 11367 (1.07) 25989 (1.17)

130.li 479 (0.67) 16721 (1.69) 33853 (1.78) 67290 (1.71)

132.ijpeg 359 (0.48) 9283 (0.77) 18369 (0.82) 49870 (0.82)

134.perl 412 (0.58) 25649 (1.11) 51607 (1.13) 111743 (1.12)

147.vortex 562 (0.41) 32030 (1.10) 69081 (1.17) 153009 (1.11)

Total 4119 (0.56) 191355 (1.04) 396372 (1.08) 859953 (1.06)

Table 3.4: Static characteristics of the SPEC95 integer benchmarks, for (a) Original,

(b) Alto/Base, and (c) Alto/Inline binaries. Fraction relative to the original binaries are

also presented in parenthesis.

3.3.1.2 Static characterization

Reporting measurements about the size of programs at different entity levels (e.g., instructions,

basic blocks, etc.) not only provides information of the static characteristics of the programs

under consideration, but also gives an estimation about the requirements needed for a compiler

to process these programs. Table 3.4 summarizes most of the SPECint95 static characteristics.

As the programs were statically compiled, the numbers include system libraries.

50 CHAPTER 3. EXPERIMENTAL ENVIRONMENT

go m88ksim gcc compress li ijpeg perl vortex Average

Benchmark

0

5

10

15

20

25
Pe

rc
en

ta
ge

 o
f h

ot
 b

as
ic

 b
lo

ck
s (

%
)

Original
Alto/Base
Alto/Inline

Figure 3.2: Percentage of hot basic blocks relative to the total number of basic blocks at

compile time, for the SPECint95 programs. Profile information is used to decide whether a

basic block is either cold or hot.

As we can see from the table, some benchmarks are relatively large. For example, program

gcc has over 300K instructions, even for the Original benchmark set. These sizes are in general

reduced when optimizations are applied, as we can see by looking at the relative fractions from

Table 3.4b. Inlining, in contrast, increases the reported numbers in almost all programs, as

shown in Table 3.4c. Hence, binary optimization algorithms must be aware of the potentially

large size of the intermediate representation, causing algorithms that work well in conventional

compilers to become not feasible because of their high time or space complexity. Furthermore,

memory locality of the algorithms and data structures significantly influences performance at

compile time.

Table 3.4 also shows some good news. As we can see from the Alto/Base binaries, op-

timizations performed by Alto seem to have a positive effect in program size, even though

compaction is not the main goal of the Alto optimizer. As a result, procedure inlining re-

ports slightly higher numbers on program size in most of the cases (see Table 3.4c), compared

against our baseline. The most significant exception is, again, program li. As we can see,

the number of static instructions increases about a 70%, which can explain the high relative

compilation time we pointed out in Figure 3.1.

The above observation about program li is confirmed by looking at Figure 3.2, where we

present the percentage of hot basic blocks relative to the total number of basic blocks in the

program, when considering an execution threshold φ of 0.95. These results provide a good

indirect estimation of Alto optimization time, since some of the optimizations are targeted

at frequent portions of code. In general, the smaller the percentage of hot blocks, the lower

the compilation time. As we can see, the percentage of hot basic blocks remains more or less

3.3. BENCHMARK SUITE 51

go m88ksim gcc compress li ijpeg perl vortex Average
Benchmark

0

20

40

60

80

100

120

140

160

180

(a
) S

ta
tic

 d
is

tr
ib

ut
io

n
of

 in
st

ru
ct

io
n

ty
pe

s

Other
UBranch
CBranch
Store
Load

Figure 3.3: Static distribution of instruction types for the SPECint95 programs. Left, middle

and right bars corresponds to Original, Alto/Base, and Alto/Inline executables, respectively.

the same after applying Alto optimizations, except for program li after applying procedure

inlining. The resulting increment in this case (from 7% to 21% increase) is produced because

inlined procedures are called from a significant number of call sites. Thus, when the callee

procedure is inlined, both the original callee and the inlined copy still remain hot. This is the

reason why Alto/Inline significantly increases compilation time for this program.

Finally, in Figure 3.3 we show the static distribution of instructions according to the in-

struction types. The important thing to note here is that conditional branches and memory

references represent around 50% of static instructions in all programs, no matter what bench-

mark set is considered. This result points out that targeting binary redundancy elimination

at these instructions may have greater benefits than do it for the rest of instruction types.

3.3.1.3 Dynamic characterization

We perform dynamic characterization of our SPECint95 benchmark sets by running all pro-

grams on top of the SimpleScalar sim-profile analyzer. This gives us a wide variety of

statistics about the behavior of our programs at run time. For this process, we used the

simulation inputs showed in Table 3.2.

The first dynamic measurements we present can be seen in Figure 3.4, which shows the

dynamic distribution of instructions broken down by instruction type. The figure can be com-

pared against the static results presented in Figure 3.3. Two points deserve to be mentioned

about these results:

52 CHAPTER 3. EXPERIMENTAL ENVIRONMENT

go m88ksim gcc compress li ijpeg perl vortex Average
Benchmark

0

10

20

30

40

50

60

70

80

90

100

(b
) D

yn
am

ic
 d

is
tr

ib
ut

io
n

of
 in

st
ru

ct
io

n
ty

pe
s (

%
)

Other
UBranch
CBranch
Store
Load

Figure 3.4: Dynamic distribution of instruction types for the SPECint95 programs, with sim-

ulation inputs from Table 3.2. Left, middle and right bars corresponds to Original, Alto/Base,

and Alto/Inline executables, respectively.

• First, the 50% percentage of conditional branches and memory references is also valid

for dynamic counts, which makes also valid our claim about targeting BRE to these

instruction types.

• Second, and more important, binaries produced by Alto without inlining applied reduce

the total number of executed instructions up to 14% in average, while when applying

procedure inlining this percentage goes up to 20%. Furthermore, as we can see in the

figure, reductions due to procedure inlining are more important on those programs where

inlining was successful and aggressively applied, such as programs m88ksim, vortex, and

specially, program li. The reason why we observe this effect is that procedure inlining

allows to remove an important amount of dynamic call/return pairs (i.e., unconditional

branches in our figure), as well as a significant percentage of load/store pairs that were

originally inserted by the compiler to fulfill the OSF1 calling convention [Com99b]. As

these load/store pairs have no sense when procedures are merged, Alto is allowed to

remove them from the binary.

Collecting both static and dynamic statistics of the benchmark sets under consideration is

certainly of interest to characterize the SPECint95 benchmark suite, but also to understand

the effectiveness of the optimizations applied by Alto. However, the final measure of interest is

to confirm whether actual execution time is reduced or not across the different benchmark sets.

3.4. METHODOLOGY 53

go m88ksim gcc compress li ijpeg perl vortex GMean

Benchmark

70

75

80

85

90

95

100
R

el
at

iv
e

ex
ec

ut
io

n
tim

e
(%

)

Alto/Base
Alto/Inline

Figure 3.5: Effect of Alto optimizations in actual execution time, for the SPECint95 bench-

marks using the input reference dataset. The baseline is Original binaries.

Figure 3.5 presents the relative execution time of the different programs and benchmark sets.

These results were recorded by following the methodology that we mentioned in Section 3.1.3.

In this case, as programs were not simulated but directly executed on the target environment,

we used the official SPEC95 reference inputs (i.e., execution inputs, as shown in Table 3.2)

From the results presented in Figure 3.5 we can see that, for the majority of the programs,

the executable optimized by Alto is considerably faster than the corresponding baseline. In

several cases, the difference in the improvements is quite significant: for example, program

vortex gets a 29% of improvement. Overall, the optimizations applied by Alto yield around

14% of execution time reduction. Note that these results are quite different in some cases

to those reported by Muth [Mut99, MDWdB01]. However, neither the target platform nor

the native compiler used are the same. Besides, we have improved some of the optimizations

implemented by Alto, as we have explained in Section 3.2.1.2.

Finally, although the effect of inlining in execution time is in general beneficial, the ob-

served mean is around 2% of reduction, with program li being the best case with a reduction

of 9%. We believe that the main reason for this small improvement comes from the fact that

implemented analysis within Alto are already intraprocedural, and that code layout is able to

mitigate much of the locality effects of inlining. Besides, the observed slowdown in programs

go and m88ksim indicate that some more fine tuning of inlining is probably necessary.

3.4 Methodology

Previous sections have presented the methodology we used for evaluating the benefits and

drawbacks of the proposals developed in this work. In order to clarify this process, we next

summarize in a list the steps we have followed:

54 CHAPTER 3. EXPERIMENTAL ENVIRONMENT

1. All SPECint95 programs were compiled with full optimizations using the vendor-supplied

C compiler on an AlphaServer GS–140 equipped with a 525MHz Alpha 21264 processor,

on the platform presented in Section 3.1. For processing later by Alto, the compiler was

also invoked with linker options to retain information and to produce statically linked

executables (see Section 3.1.2.1).

2. The programs were then instrumented using Pixie [Smi91] and executed on the SPEC95

training inputs to obtain an execution frequency profile. Both basic block and edge

counts will be later derived from this profile data, as shown in Section 3.2.1.2.

3. The programs and their corresponding profiles were then processed by Alto. The re-

sulting executable programs are the baseline benchmarks used to evaluate the proposals

presented in further chapters. That is, our baseline programs will be the fully-optimized

benchmarks after being run through Alto.

4. As Alto will also be the compiler where our proposed algorithms will be implemented

(see Section 3.2.1), a new set of benchmarks is then obtained from optimizing the orig-

inal executable programs at the binary level, but this time including the particular

optimizations in which we are interested.

5. Finally, programs will be either executed on the target platform for obtaining execution

times, or simulated on top of our simulation tools, as Section 3.1.3 and Section 3.2.2

showed, respectively. If the latter is the case, different aspects of the programs will be

measured. The results will be compared among the different benchmark sets obtained,

starting from the baseline programs.

The SPECint95 program inputs used for our simulation experiments were variants of

the official SPEC input sets, to keep simulation time down to a manageable value (see

Table 3.2) When programs were not simulated but directly executed on the target envi-

ronment, the official “reference” inputs were used. In this case, the timings are obtained

recording the smallest of seven runs of programs running in single-user mode.

By using the same methodology across all the work, we obtain consistent results that can be

compared, which makes us feel confident about the validity of our experiments. Furthermore,

our simulation results were validated by real machine runs.

Chapter 4

Alias analysis

In this chapter we review the problem of alias analysis at the executable program level, identi-

fying why memory disambiguation is one of the weak points of object code modification. Then,

we propose several alias analyses to be applied in the context of link-time or executable code

optimizers that are targeted to provide both must- and may-alias information. These analyses

prove to be very useful for increasing memory disambiguation accuracy of binary code, which

turns out into opportunities for eliminating binary redundancy.

55

56 CHAPTER 4. ALIAS ANALYSIS

if (*p > 0) // Redundancy source

{

*q = ... // Intervening store

}

if (*p == 1) // Redundant read

{

...

}

Figure 4.1: Example of binary redundancy from an alias analysis point of view.

4.1 Introduction

As we have seen in Section 2.2.3, code transformations on executable code can benefit greatly

from pointer-alias information, as already happens with the compilation of source-level pro-

grams. For instance, whole program optimizations may open up opportunities for moving

invariant memory instructions out of loops. However, alias information is key to identifying

such instructions. Instruction scheduling and common subexpression elimination are other

optimizations of limited usefulness in the absence of pointer-alias information.

As far as eliminating binary redundancy is concerned, having accurate alias information

becomes a fundamental issue for detecting binary redundancies. For example, looking back to

our old C code example presented now in Figure 4.1, in order to detect the existing memory

redundancy two different alias information types are necessary:

Must-alias First, we need to know if there is an exact dependency between the two *p

references or not1. That is, both references must point the same memory location. In

the example, this means that pointer p must not change between the two *p references.

May-alias Also, we need to prove that there is no other memory write that may be in

conflict with the memory location accessed by *p. That is, every other store must be

independent with respect such memory location. In the example, this means checking

whether pointer q may be aliased with pointer p.

Both types of alias information are in fact not only used when detecting binary redun-

dancies, but also used for any optimization involving motion of memory references, where the

relationship between pairs of memory instructions are needed. On the other hand, alias infor-

mation will also be important for detecting other types of binary redundancy besides memory

redundancy, as we will see in Chapter 6 for eliminating redundant conditional branches.

1Strictly, the dependency will not exist when both references are read accesses, such as in the example.

However, we must consider such dependency so that order of instructions is preserved, since we do not want

to change the redundancy direction.

4.2. PATH-SENSITIVE MUST-ALIAS ANALYSIS 57

While there is an extensive body of work on pointer alias analysis of various kinds [WL95,

SH97, DWM98, CH00, GLS01], these are mostly high-level analyses carried out in terms of

source language constructs. Unfortunately, such analyses turn out to be of limited utility at

the machine code level. In fact, as we have seen in Section 2.2.3, the problem of memory

disambiguation is one of the weak points of object code modification, because high-level

information available in a traditional compiler is lost. Furthermore, features such as pointer

arithmetic and out-of-bounds array accesses must be handled at this level, where the contents

of every register is potentially an address.

In this chapter we present several alias analyses to be applied in the context of link-time

or executable code optimizers. We can organize the proposed analyses in two groups:

1. First, we propose a new high-accurate must-alias analysis to recognize memory depen-

dencies in a path-sensitive fashion. The analysis is based on the idea of establishing alias

relationships for only a subset of all the possible paths between every pair of references

to disambiguate. Thus, this alias information is particularly well suited to be used for

eliminating path-sensitive redundant memory operations, as we will see in Chapter 5.

2. Next, we also propose two approaches to high-quality, low-cost, speculative may-alias

analysis to recognize memory independencies. The key idea behind these proposals is

to trade off analysis complexity against safeness. Our alias analysis incorporate in their

data-flow equations the notion of “guessing” when two memory references are most

likely independent. By being more liberal in the propagation and use of the data-flow

information, we increase alias precision on important portions of code while keeping the

analysis reasonably cost-efficient, yet the analyses may sometimes yield wrong answers2.

The alias algorithms we propose are targeted to provide either must- and may-alias in-

formation, respectively. Our results show that these algorithms prove to be very useful for

increasing memory disambiguation accuracy of binary code, which turns out into opportunities

for applying optimizations such as eliminating binary redundancy.

4.2 Path-sensitive must-alias analysis

The problem of alias analysis or memory disambiguation at the machine code level is to deter-

mine the relationship of every pair of memory references in a program. A common approach in

compile-time instruction schedulers is called disambiguation by instruction inspection, which is

a global scheme based on register use-def chains (see Section 2.2.3.1 and Section 2.2.2, respec-

tively). Register use-def chains provide, for each use of a register, a pointer to its definition.

2Of course, applying speculative optimizations on top of these speculative analyses will require recovery

code to compensate in those cases where the memory disambiguator was wrong.

58 CHAPTER 4. ALIAS ANALYSIS

 ...

 ...
load (p0),r1L1

 ...

 ...
add p0,8,p0

 ...
load (p0),r2

 ...
pdef p0

L2

Figure 4.2: Example of memory references where general inspection fails for disambiguation.

Memory disambiguation must be performed in a path-sensitive fashion.

Although this strategy is able to disambiguate a significant percentage of memory references,

it fails in the general case. Figure 4.2 shows an example where instruction inspection is not

able to expose the relationship between load instructions L1 and L2. The reason is that, as

several definitions for pointer p0 reach the use in load L2, the two loads handle potentially

different definitions for their base registers. As a result, the alias analysis we use for disam-

biguating memory references, like most analyses used in optimizing compilers, is unable to

disambiguate references in a path-sensitive way.

The problem with path-sensitive disambiguation, unfortunately, is that the compiler has

to pay the exponential price of analyzing each path separately [Bod99]. The reason why

analyzers avoid this situation is that, even in a program with no loops, there is an exponential

number of paths. To stay practical, analyzers treat paths together, summarizing their results

whenever paths meet, therefore diluting optimization opportunities.

In this section, we present a new technique for detecting exact memory dependencies

in a path-sensitive fashion, that is, to recognize path-sensitive memory dependencies. The

key to our new proposal is to extend the formulation of the general memory disambiguation

algorithm to effectively analyze each path separately. Furthermore, we apply simple but

effective heuristics to reduce the exponential cost of the algorithm and keep it under control.

The resulting alias information can then be used to guide compiler optimizations based on

detecting path-sensitive dependencies, as we will show in Chapter 5.

4.2. PATH-SENSITIVE MUST-ALIAS ANALYSIS 59

4.2.1 Alias analysis by instruction inspection

Memory disambiguation at the machine code level is usually based on a global scheme named

register use-def chains, which provides, for each use of a machine register, a pointer to its defi-

nition (see Section 2.2.2). The use-def chains are a directed graph whose nodes are instructions

and whose edges are use-def pointers.

When there are several definitions of a register reaching a use, it is common to introduce a

pseudo instruction at an appropriate place which also defines that register, thereby shadowing

the other definitions. This is analogous to φ functions used with the static single assignment

(SSA) form [Muc97f]. Therefore, for each instruction in the flow graph, the algorithm derives

a symbolic description for every one of its source registers.

Definition 4.2.1 Let r be a source register for an instruction I. A symbolic descriptor S

for register r and instruction I is a pair 〈α, c〉, where α is either an instruction or a pseudo-

instruction, and c is an integer value. Given a symbolic descriptor S = 〈α, c〉, the instruction

α is said to be the defining instruction for register r, while c is called the offset relative to the

value computed by instruction α. �

The above definition is then used for defining a new kind of descriptor for memory in-

structions, which will be used for disambiguation.

Definition 4.2.2 Let M be a memory instruction accessing the location whose address is

(r) + k, where r and (r) are the instruction base register and its content, respectively; and

k is an integer constant. A memory descriptor M is a pair 〈S, k〉, where S is the symbolic

descriptor for register r and memory instruction M . �

An instruction inspection algorithm compares memory descriptors for checking their re-

lationship (see Section 2.2.3.1). This disambiguation approach is able to deal with register

copies and address arithmetic across basic block boundaries. However, disambiguation is only

allowed under certain conditions.

Definition 4.2.3 Let M1 = 〈〈α1, c1〉, k1〉 and M2 = 〈〈α2, c2〉, k2〉 be two memory descriptors

for memory instructions M1 and M2, respectively. Then, M2 is disambiguable with respect

to M1, written M1 ≺ M2, iff (i) M1 and M2 are known to access different memory regions;

or (ii) α1 = α2 and there is an existing path leading from α1 to M2 where M1 is reached. �

From the Definition 4.2.3, at least one of the following two conditions must succeed for

allowing safe disambiguation. Condition (i) is referring to instructions that are known to

access different memory regions, such as stack and global sections. Condition (ii) is a bit

more complex:

60 CHAPTER 4. ALIAS ANALYSIS

1. Both descriptors must share the defining instruction, and

2. Instruction M1 must be “located before” instruction M2 in the flow graph.

Alias relationship is then established by checking the relation c1 +k1 = c2 +k2. Otherwise,

instructions cannot be disambiguated and they are assumed to have an unknown dependency.

Note that ≺, unlike traditional alias disambiguators, is neither reflexive nor symmetric. Be-

sides, its independency on dominator and loop information makes it valuable for executable

code, where this information is not always available.

4.2.2 Path-sensitive memory disambiguation

When general disambiguation is not possible, our instruction inspection algorithm will check

for path-sensitive disambiguation. That is, alias relationships is established for only a subset

of all the possible paths between the pair of references to disambiguate. To this end, we first

formulate the following definition:

Definition 4.2.4 Let M1 = 〈〈α1, c1〉, k1〉 and M2 = 〈〈a2, c2〉, k2〉 be two memory descriptors

for memory instructions M1 and M2 respectively, where a2 = φ(〈α2,1, c2,1〉, . . . , 〈α2,n, c2,n〉),

and n > 1. Then, a chain of symbolic descriptors ω = 〈β1, d1〉, . . . , 〈βm, dm〉, for memory

descriptors M1 and M2, is a sequence of descriptors such that (i) m > 1 and ∀i<m βi is a

pseudo-instruction, (ii) β1 = a2, d1 = c2 and βm = α1, and (iii) ∀i,j βi = βj ⇐⇒ i = j. �

The chain of symbolic descriptors ω is simply a back-sequence of use-def chains starting

from M2 to α1, where every but the last item are symbolic descriptors containing unique

pseudo-instructions. The property that we want to check is then as follows:

Definition 4.2.5 Let M1 = 〈〈α1, c1〉, k1〉 and M2 = 〈〈a2, c2〉, k2〉 be two memory descriptors

for memory instructions M1 and M2 respectively. Then, M2 is path-sensitive disambiguable

with respect to M1, written M1 ≺ps M2, iff (i) M1 ≺ M2; or (ii) there is an existing chain of

symbolic descriptors ω, for memory descriptors M1 and M2, exposing a path leading from α1

to M2 where M1 is reached. �

It is straightforward to understand that path-sensitive disambiguation defined above sub-

sumes generic disambiguation presented in Definition 4.2.3. If a ω chain exists, disambiguation

is then performed by checking the relation c1 + k1 = d1 + . . . + dm + k2. The result of this

check will determine the alias relationship between the considered pair of instructions, which

will be dependent on the path defined by all the possible ω’s for which the definition holds.

The next example will help understanding how the algorithm works.

4.2. PATH-SENSITIVE MUST-ALIAS ANALYSIS 61

Example 4.2.1 From Figure 4.2, let I0 be the instruction defining register p0, assuming

that I0 is placed before L1 in the same basic block; and let I3 be the add instruction. From

Definition 4.2.1 and Definition 4.2.2 we derive memory descriptors M1 = 〈〈I0, 0〉, 0〉 for

reference L1, and M2 = 〈〈a2, 0〉, 0〉 for reference L2, being a2 = φ(〈I0, 0〉, 〈I0, 8〉). Note that

symbolic descriptor 〈I0, 8〉 results from combining partial descriptors 〈I3, 0〉 and 〈I0, 8〉. Then,

for disambiguating L1 and L2 references, the algorithm performs the following steps:

1. First, the algorithm checks for M1 ≺ M2 (i.e., Definition 4.2.3). However, disam-

biguation is not allowed because I0 6= a2. That is, they do not share the same defining

instruction.

2. The algorithm checks then for path-sensitive disambiguation. It is straightforward to see

that M1 ≺ps M2, since ω1 = 〈a2, 0〉, 〈I0, 0〉 and ω2 = 〈a2, 0〉, 〈I0, 8〉 expose the desired

property on the left and right paths, respectively.

As a result, ω1 exposes a dependency relationship on the left path, because the result of

accumulating M2’s and ω1’s offsets is equal to M1’s offset (i.e., zero in our example). This

is not true for ω2, which exposes a memory independency on the right path. As we will see in

Chapter 5, we can conclude from the above results that L2 is path-sensitive redundant with

respect to L1, but only on its left path. �

Due to the exponential price of dealing with each path separately, the scheme for path-

sensitive disambiguation does not come without a cost, since establishing a path-sensitive

relationship is a bidirectional problem. As widely known [Muc97f], bidirectional problems

require forward and backward propagation at the same time and are significantly more com-

plicated to formulate, understand, and solve than one-directional problems. Since our current

implementation uses a backtracking algorithm, we reduce the high computational cost of the

algorithm by using a couple of simple but effective heuristics when checking for ω:

1. For every i-item of ω, where 1 < i < m, we consider only symbolic descriptors that

belong to a hot path of the program.

2. We do not allow m > K, where K is a fixed constant3.

We have observed that by using these heuristics the algorithm misses only a few oppor-

tunities for disambiguation, while compilation time does not significantly increase (as we will

show in Section 5.7.4).

3In our implementation we have used a K value of 5.

62 CHAPTER 4. ALIAS ANALYSIS

Method Description

Inspection
Corresponds to the disambiguation mechanism by instruction inspec-

tion, using path-insensitive use-def chains (Section 2.2.3.1).

InspectionPS

Corresponds to the disambiguation mechanism by instruction inspec-

tion, using path-sensitive use-def chains (Section 4.2.2).

Table 4.1: Description of must-alias analysis methods for memory disambiguation.

4.2.3 Evaluation

In this section, we describe the process we have followed for evaluating the effectiveness of the

proposed path-sensitive must-alias analysis.

We have implemented the must-alias analysis algorithms presented in Table 4.1 (and

described in the previous sections) on the Alto framework we described in Section 3.2.1. The

information reported here was then obtained after several optimization rounds carried out

by Alto, such as constant/copy propagation, dead/unreachable code elimination, inlining,

etc. To compute must-alias information for later disambiguation, an interprocedural data-

flow analysis computes the use-def chains (see Section 2.2.3.1). This is the only information

required for detecting both path-insensitive and path-sensitive must-alias information, as it

has been shown in Section 4.2. For our experiments we have used an execution threshold φ

of 0.6 (see Section 3.2.1.3).

Memory disambiguation for a particular pair of memory references is applied incrementally,

following the scheme for must-alias disambiguation presented in Figure 4.3. We can observe

that when general instruction inspection fails, disambiguation is made by checking use-def

chains in a path-sensitive fashion, as we have shown in Section 4.2.2. Note also that, as more

than one single relationship due to different paths can be obtained in this case, we are only

interested in whether such relationship could be established or not.

The benchmarks we have used for our experiments were presented in Section 3.3, and they

were generated following the methodology described in Section 3.4. For our experiments, we

have chosen the Alto/Inline binaries as a baseline4 (that is, the highest optimized binaries we

have), whose characteristics and generation procedure were described in Section 3.3.1.

4.2.3.1 Measuring static precision

We start evaluating the effectiveness of each disambiguation mechanism described in Table 4.1

by comparing their static accuracy in terms of “disambiguation queries”. A disambiguation

query is a question made to the memory disambiguator about the relationship between two

4We have not considered the effect of disabling inlining in this chapter. The reasons are that (a) we will

already observe these effects on the path-sensitive disambiguation when evaluating our proposals in Chapter 5,

and (b) as our may-alias analyses are interprocedural algorithms, they will not be very sensitive to inlining.

4.2. PATH-SENSITIVE MUST-ALIAS ANALYSIS 63

Input: Two memory instructions I1, I2.

Output: An alias relationship {dependent, independent, path-sensitive relationship, unknown}.

Method:

if ud-chains(I1, I2,path-insensitive) 6= unknown then

return ud-chains(I1, I2,path-insensitive);

elsif ud-chains(I1, I2,path-sensitive) 6= unknown then

return path-sensitive relationship;

else

return unknown;

endif

End Method

Figure 4.3: Path-sensitive memory disambiguation scheme, for a pair of memory instructions.

memory instructions. Thus, the returned value for the path-sensitive disambiguator defined

in Figure 4.3 can be dependent, independent, path-sensitive relationship or unknown. We are

not really interested in discovering the exact type of relationship (i.e., dependency or inde-

pendency), but rather in whether the analysis returned an answer different than “unknown”.

We consider that a given alias analysis “is better” if it returns less “unknown” responses.

Since our different alias analyses are not being driven by any particular optimization, we

have generated a representative set of queries by using the following algorithm. First, we

consider every load/store instruction within the hot basic blocks of every function5. Then,

for every candidate, we start looking back over all (both cold and hot) paths for load/store

instructions that reach the candidate. For each load/store instruction found and its candidate,

a query is made to the corresponding disambiguator. We believe this scheme faithfully mimics

the typical behavior of many compiler optimizations, which will only generate queries about

pairs of instructions that are connected by an existing path.

For evaluating the precision of our path-sensitive must-alias disambiguation method (i.e.,

InspectionPS , see Table 4.1) we applied the disambiguation scheme presented in Figure 4.3 to

our set of queries. The result is presented in Figure 4.4, which shows the relative percentage

of queries successfully resolved by the InspectionPS method6. The baseline is in this case the

percentage of queries resolved by the pure Inspection scheme, that is, without considering

path-sensitive information at all.

From the results presented in Figure 4.4, we can see that our proposed scheme for path-

sensitive disambiguation is able to increase must-alias precision up to 150% in geometric mean

with respect to the path-insensitive baseline. In particular, precision increases for almost

every benchmark in more than 25%, with some better cases of around 2x for programs go

5We choose instructions only from the hot path because we are only interested in measuring the precision

of critical instructions in a program.
6A particular query is successfully resolved if its result is different than “unknown”.

64 CHAPTER 4. ALIAS ANALYSIS

go m88ksim gcc compress li ijpeg perl vortex GMean

Benchmark

100

125

150

175

200

225

250
Pa

th
-s

en
si

tiv
e

di
sa

m
bi

gu
at

ed
 q

ue
ri

es
 (%

)

Full set
Hot set

Figure 4.4: Precision of the path-sensitive must-alias memory disambiguation scheme,

with respect to the path-insensitive must-alias disambiguation method as a baseline (i.e.,

InspectionPS vs. Inspection). The left bar considers the full set of queries, while the right bar

restricts the set to those queries where both components are instructions from hot paths.

and vortex. As we will see in Chapter 5, this rise is significant enough for considering the

detection and elimination of further path-sensitive memory redundancies.

4.3 Speculative may-alias analysis

Typically, complexity of data-flow analyses has been a compromise between cost and precision

(see, for example, [ASU86a, Muc97c, BA98, DGS97, RRL99]). Thus, the higher the precision

desired, the harder to keep the algorithm space and time feasible. For high-level compilation,

compiler writers have tended to use sophisticated analysis at the expense of increased resource

usage. However, given that statically-linked executable programs tend to be significantly

larger than the corresponding source level entities, traditional analyses applied to machine

code level are of limited usefulness, because either the cost is too high or the precision is not

accurate enough.

The key idea behind this proposal is to introduce a new variable in the game: safeness.

Breaking the strong constraint of safeness, a data-flow analysis may reach a high level of

precision at low cost, by paying the price of not always being correct. In other words, the

data-flow analysis becomes speculative, or unsafe. As far as we know, this is the first attempt

to systematically introduce unsafe speculations into data-flow analysis algorithms.

In the following sections we introduce two interprocedural data-flow algorithms that in-

crease may-alias analysis accuracy of binary code by using speculation. The two algorithms

are orthogonal and, thus, can be applied independently or coupled together.

4.3. SPECULATIVE MAY-ALIAS ANALYSIS 65

• The first algorithm tries to disambiguate memory references by classifying them into

separate memory regions (e.g., heap, stack and global) and unsafely assumes that when-

ever an arithmetic operation is performed on a pointer, the pointer will not change its

pointed-to memory region.

• The second algorithm uses profile information and unsafely assumes that memory in-

structions on hot paths are not aliased to memory references on cold paths.

By making these speculative assumptions, we obtain more precise information in the com-

mon case, yet the analysis results are not always correct. This means that any optimization

performed by using these speculative analyses will be speculative as well, and some type

of check-and-recovery mechanism must be provided. We will extend this discussion in Sec-

tion 4.3.3, although speculative optimizations and recovery mechanisms are beyond the scope

of this work.

4.3.1 Region-based speculative alias analysis

In Section 2.2.3.2 we presented an interprocedural algorithm proposed by Debray et al.

[DMW98] for reasoning about may-alias information of executable code, which is able to

to expose memory independencies. Residue-based alias analysis overcomes some of the limita-

tions of disambiguating references by instruction inspection. (see Section 2.2.3 for an overview

of the most common techniques). However, this algorithm fails in several situations, leading

to an undesirable loss in precision:

• First, by using mod-k residues, the algorithm is clearly oriented to “fine grain” disam-

biguation, but it is unable to effectively catch “coarse grain” alias relationships (e.g.,

whether two references point to different memory regions).

• Second, in order to keep the algorithm space and time feasible, they apply a conser-

vative widening operation that causes information to be lost when joining definitions

of the same register from different control-flow paths. This is specially negative for

pointer arguments at the entry node of functions with multiple call sites, since the

context-insensitive nature of the algorithm leads to a massive application of the widen-

ing operation.

• Furthermore, the algorithm does not keep track of memory contents, which causes in-

formation to be lost when registers are saved/restored.

Figure 4.5 shows a situation where the residue-based analysis presented in Section 2.2.3.2

is not accurate enough. As it can be seen, the value of register r1 is defined by a load

instruction. Therefore, the analysis in unable to propagate information through the uses of

66 CHAPTER 4. ALIAS ANALYSIS

store r0, (r1)
load (sp), r0I2
 ...

I1
add gp, r1, r1
load (sp), r1

 ...

Figure 4.5: Sample code where pointer information is lost because a component of the use-def

chain of r1 is defined by a load operation.

r1. Yet, it is very unlikely that register r1 at instruction I1 points to regions other than the

global data area because the value loaded from memory was operated previously with the

pointer-to-global gp register. Thus, the safeness of the residue-based alias analysis is missing

a very likely opportunity of disambiguating the two memory references7. To overcome this

drawback, our first proposal is to propagate which memory regions a register may point to,

instead of being worried about symbolic descriptors based on instructions which may define

that register.

Definition 4.3.1 A region descriptor α
p
r for a register r at program point p is a subset of

the finite set of values {G, S,H}, denoting all possible memory regions (i.e., global, stack and

heap, respectively) pointed by register r at program point p. �

For a particular region descriptor, a value of ∅ denotes that register is not used as a pointer

to any memory region, and is written as >; while a value of {G, S,H} denotes a total lack of

information, and is written as ⊥. This information will be then propagated using a general

data-flow iterative algorithm, over the lattice presented in Figure 4.6. The input values, for

every register r at every program point p, are initialized as follows:

αp
r =











{G} if r = gp (global pointer)

{S} if r = sp (stack pointer)

> otherwise

The value {H}, which denotes a pointer to the heap memory area, is assigned to the

destination register of the system call break, at such program point. System call break is used

by Unix-based operating systems for heap management, through the allocation/deallocation

library functions malloc and free.

7Note that this loss of precision would also happen if the descriptor of r1 had been mapped to ⊥ due to the

application of a widening operation at the basic block entry.

4.3. SPECULATIVE MAY-ALIAS ANALYSIS 67

{G} {H}

{G,H}{G,S} {S,H}

= {G,S,H}

=

{S}

Figure 4.6: Region-based alias analysis lattice, representing the possible set of regions that

can be assigned to a region descriptor.

When propagating information through the control-flow graph, the effect of instructions

on its corresponding destination register may vary. For example, a load instruction sets the

descriptor of its destination register to the value ⊥, since no information about the contents

of memory cells is kept in the algorithm. Other additional instructions, such as conditional

and unconditional jumps, have the only effect of determining the control-flow graph of the

program. Therefore, they are not considered explicitly in the context of our alias analysis. We

also ignore operations on floating point registers, assuming that such operations will not be

used for address computation. For the rest of instructions, the general behavior is as follows:

Definition 4.3.2 Let opp ri, rj, rk be an instruction at program point p, with source registers

ri, rj and destination register rk. Let α
p
i and β

p
j be the region descriptors for registers ri and

rj, respectively. Then, the region descriptor γ
p+1
k for register rk at program point p+ 1, is set

to α
p
i • β

p
j , defining the • operator as:

α
p
i • β

p
j =











α
p
i if α

p
i 6= > ∧ β

p
j = ⊥

β
p
j if β

p
j 6= >∧ α

p
i = ⊥

α
p
i ∪ β

p
j otherwise

�

In the case that a source operand is a constant instead of a register, the corresponding

region descriptor is assumed to be >. Note that a region descriptor with a value different than

> being operated with a value of ⊥ will propagate the non-> descriptor to the instruction

destination register. Strictly, it is unsafe to make such an assumption, although the opposite

rarely occurs. Furthermore, propagating the non-> description in this way may carry some

problems out in terms of correctness of the analysis. We will discuss later these issues, in

Section 4.3.1.2.

68 CHAPTER 4. ALIAS ANALYSIS

If a node of the control-flow graph has more than one predecessor, the information stem-

ming from these predecessors must be integrated. In data-flow frameworks, joining paths in

the flow graph is implemented by the union operator.

Definition 4.3.3 Let α
p
r and β

p
r be region descriptors for register r at program point p, coming

from two different predecessors. Then, the join operation 5 is defined as:

αp
r 5 βp

r =

{

⊥ if α
p
r = ⊥ ∨ β

p
r = ⊥

α
p
r ∪ β

p
r otherwise

�

Note that region-based join operation differs from residue-based approach in that “widen-

ing” does not need to be applied. In this case, a simple union between region descriptors is

performed, which avoids loosing all the information at that program point. Therefore, join of

paths in this case is not so conservative.

The region-based alias analysis presented here is complementary to any points-to alias

scheme, and may be coupled to it, or may be computed separately. As far as the analysis

implementation is concerned, not only the three mentioned regions need to be considered

(i.e., global, stack and heap), but whatever other set of N memory regions, such as uninitial-

ized/initialized global data, different stack frames, etc. The only constraint is that considered

regions need to be disjoint. A region descriptor may be then represented as a K-bit vector,

where every bit denotes one of the considered memory regions. The resulting analysis requires

only KRN bits of memory for a program with N basic blocks on a machine with R registers.

4.3.1.1 Dealing with memory contents

Much of the loss in precision of the residue and region-based analysis approaches comes from

the fact that both algorithms do not keep track of the contents of memory when registers are

saved/restored. For example, looking back to Figure 4.5, the region-based alias analysis would

set the region descriptor of register r1 to ⊥, loosing all the information kept in the source

register of a possible previous store instruction to the same location. The obvious solution

would be to propagate values (i.e., residue-based, region-based, or whatever other symbolic

descriptors) through memory cells. However, such an analysis implies a high increase in

memory requirements.

Since our proposal is to reduce cost in exchange for increased precision, even when this may

carry unsafe results, a cheap alternative would be to assume that result of a load operation

will not point to memory regions. That is, its region descriptor will be mapped to >. This is

true for a high number of loads in a program, since values loaded from memory are frequently

not used as memory pointers. However, such assumption may fall into increasingly unsafe

results. Therefore, this heuristic should be used carefully.

4.3. SPECULATIVE MAY-ALIAS ANALYSIS 69

4.3.1.2 Reasoning about data-flow analysis correctness

When propagating region descriptors through instructions in Definition 4.3.2, we noted that

non-> region descriptors are propagated in those situations where a value of ⊥ appears as the

other region descriptor to be operated. This operation is the very essence of the speculative

behavior of the region-based alias analysis. However, such behavior expose a couple of issues

that need to be mentioned:

1. Strictly, it is unsafe to make such an assumption, although the opposite rarely occurs.

For instance, a C code sequence might produce from a pointer to the global data area,

a pointer to the program stack, but it is uncommon for many programs to generate

these types of accesses. We did not found such scenarios in our benchmark suite, but

operating system kernels and tools, as well as virtual machines are programs where

this situation might happen. Certainly, our proposed analysis could be run as a safe

analysis on user-demand by some compiler command line option, like actual production

compilers do on several unsafe optimizations.

2. Propagating the non-> descriptor as described yields an incorrect lattice because the ⊥

element does not attract the rest of the possible region descriptors. Hence, the iterative

solving algorithms might not converge in all situations [Muc97f, NNH99]. To avoid this

non-convergence to happen, we only allow a maximum number C of iterations, where

C is a fixed constant8. As a result, the algorithm might produce incorrect results for

some region descriptors, although this inaccuracy is somehow less important since the

analysis is already unsafe by itself.

In our benchmark suite, however, we did not found such scenario either. Actually, most

of the times the algorithm is able to converge in a few iterations. We believe this is

because, in general, it is very uncommon to reach a ⊥ value by simply joining the

different regions from incoming predecessors at the entry of nodes.

4.3.2 Profile-guided speculative alias analysis

When trying to keep the residue-based alias analysis algorithm space and time feasible, the

conservative widening operation does not join definitions of the same register from different

control-flow paths in a set. For this reason, when computing the meet of the incoming infor-

mation at the entry of the basic block, the information associated with the register is widened

to ⊥. That is, all the information is lost. An example of this can be seen in Figure 4.7,

where register r1 is defined from two different instructions. In the example, region-based alias

analysis does not solve the problem either, since joining regions also fails in this case. This

turns out to lead to an undesirable loss in precision in a number of situations.

8In our implementation we have used a C value of 6.

70 CHAPTER 4. ALIAS ANALYSIS

store r0, (r1)
I2

 ...

I1

 ...

add gp, 0, r1

 ...

add sp, 0, r1

load (sp), r0

Hot path

Figure 4.7: Sample code where different definitions are reaching a use, but there is a more

likely executed path.

The preceding situation also occurs on pointer arguments at the entry node of functions,

due to the context-insensitive formulation of the analysis. A possible solution would be to use

a context-sensitive interprocedural approach. However, the defining instructions for a register

are generally different at different call sites to a function, which means that the callee will

have to be analyzed separately for each such call site. Given that statically-linked executable

programs tend to be significantly larger than the corresponding source level entities, this

indicates that the cost of a traditional context-sensitive analysis is likely to be quite high.

For our second speculative alias analysis proposal we choose, instead, to use a profile-

guided analysis. The basic idea is to propagate alias information only for important paths,

ignoring those paths whose information will cause loss of precision in the most common cases.

As a result, the application of inaccurate join operations to ⊥ will be drastically reduced. For

instance, looking back to Figure 4.7, we can see that the most likely definition of register r1 is

the one from register gp. We could then easily determine by a single inspection that accesses

at instructions I1 and I2 are likely to be disjoint. More formally:

Definition 4.3.4 Let α
p,1
r , . . . , α

p,n
r and β

p,1
r , . . . , β

p,m
r be the set of symbolic descriptors for

register r at program point p, coming from predecessors 1, . . . , n and 1, . . . ,m connected to p

by hot and cold edges, respectively; and let 5 be a join operator, the new join operation 5spec

is defined as:

5spec

(

αp,1
r , . . . , αp,n

r , βp,1
r , . . . , βp,m

r

)

= 5
(

αp,1
r , . . . , αp,n

r

)

�

That is, the algorithm only takes into account the information coming from hot edges

of the control-flow graph. Note that the result of this new meet operation is speculative in

nature, because we simply “ignore” some possible (although infrequent) paths in the analysis.

4.3. SPECULATIVE MAY-ALIAS ANALYSIS 71

I1

 ...

 ...

store r3, (r1)
load (r2), r4I2
use r4

 ...

use r4
load (r2), r4

store r3, (r1)I1
beq r1, r2

I2’

load (r2), r4
use r4

I2

 ...

 ...

use r0
load (r2), r0

store r3, (r1)I1

I2’

use r4

bne r0, r4
load (r2), r4I2

 ...

(a) (b) (c)

True
True

False False

Figure 4.8: Reordering memory operations [MM97]: (a) original sample sequence; recovery-

based reordering by using (b) interference test, (c) coherence test.

This will give more precise information in the common case, but the result of the analysis will

not always be correct.

This simple speculative data-flow scheme is general enough to be applied on top of any

traditional data-flow analysis algorithm, not necessarily related to neither pointer aliasing

nor machine code level. In particular, this proposal is orthogonal to the one described in

Section 4.3.1. On the other hand, the cost of a speculative data-flow technique does not

change with respect to the non-speculative safe version which it is based on. However, the

intuition indicates that by using profile information to avoid analyzing unimportant paths,

significant reductions in the space and time requirements for the analysis can be achieved.

4.3.3 Recovery-based usage of speculative alias analysis

The proposals presented in this section increase the precision of the may-alias analysis by

providing more reliable information in the common case, at low cost. However, the speculative

nature of our schemes causes the analysis results to be not always correct. This means that

any optimization performed using this speculative analysis will be speculative as well.

Speculative optimizations [HSS94, GCM+94, MM97, GBF98, PGM00a] have been widely

used in the compiler world for reducing the overall execution time of programs. The key

idea behind speculation is breaking the original program sequence by executing a (possibly

unsafe) “better” reordering of instructions, corresponding to the most likely execution paths.

Since the new executed sequence may be unsafe, some type of check-and-recovery mechanism

must be provided for validating/undoing such assumptions at run time. In this mechanism,

“checking” must be cheap enough and “recovery” should be invoked infrequently, in order

72 CHAPTER 4. ALIAS ANALYSIS

Method Description

Residue

Disambiguation based on instruction inspection and residue-based anal-

ysis (Section 2.2.3.1 and Section 2.2.3.2, respectively). This is the only

method that provides safe disambiguation information.

Region
Corresponds to the application of the speculative region-based alias

analysis (Section 4.3.1).

PGResidue Profile-guided speculative residue-based alias analysis (Section 4.3.2).

PGRegion

The profile-guided speculative technique is applied to the also specula-

tive region-based method (Section 4.3.2).

PGRegion+

Corresponds to the previous analysis method, but contents of memory

cells are assumed to not be used as memory pointers (Section 4.3.1.1).

Table 4.2: Description of may-alias analysis methods for memory disambiguation.

to not incur into unnecessary penalties. Discussion of speculative optimizations as well as

check-and-recovery mechanisms are, however, beyond of the scope of this work.

In general, speculative alias analysis is particularly well suited to be used in combination

with speculative optimizations based on reordering memory operations [HSS94, GCM+94,

MM97, BCC+00, PGM00a]. An example of such optimizations can be seen in Figure 4.8,

where different techniques are used for executing load I2 before the preceding store I1. By

using a new disambiguation state of “likely independent” (see Section 4.3.4), our speculative

disambiguator not only provides information about which instructions are likely to be moved,

but also which ones are not recommended to be involved in code motion.

4.3.4 Evaluation

In this section, we describe the process we have followed for evaluating the effectiveness of the

may-alias analyses proposed in this chapter.

We have implemented the proposed may-alias analysis algorithms, which are presented in

Table 4.2, on the same framework we used in Section 4.2.3. As a result, we have obtained a

high-quality, low-cost, combined speculative may-alias analysis algorithm for executable code,

which uses the following scheme for computing may-alias information:

Phase 1 An interprocedural data-flow analysis computes the use-def chains (see Section 2.2.3.1).

This phase is the only one required for detecting must-alias information (Section 4.2).

Phase 2 The algorithm performs an interprocedural data-flow analysis computing residue-

based information (Section 2.2.3.2).

Phase 3 So far, our algorithm has only computed safe alias information, since the analyses

we have applied are not speculative at all. Thus, coupled with Phase 2 (i.e., at the

4.3. SPECULATIVE MAY-ALIAS ANALYSIS 73

Input: Two memory instructions I1, I2.

Output: An alias relationship {dependent, independent, likely independent, unknown}.

Method:

if ud-chains(I1, I2,path-insensitive) 6= unknown then

return ud-chains(I1, I2path-insensitive);

elsif alias analysis(I1, I2,safe) 6= unknown then

return alias analysis(I1, I2,safe);

elsif alias analysis(I1, I2,unsafe) 6= unknown then

return likely independent;

else

return unknown;

endif

End Method

Figure 4.9: Speculative memory disambiguation scheme, for a pair of memory instructions.

same time), we apply the data-flow equations that compute region-based information

(Section 4.3.1), which produce preliminary unsafe aliasing data.

Phase 4 Finally, phases 2 and 3 are recomputed (i.e., residue-based and region-based anal-

yses) as speculative profile-guided schemes (Section 4.3.2). Additionally, region-based

analysis may now assume that contents of memory cells will not be used as memory

pointers (i.e., corresponding descriptors are mapped to >; see Section 4.3.1.1). The

resulting data and the one computed in Phase 3 make up the unsafe alias information.

We have also used the same execution threshold (i.e., φ = 0.6), and the same Alto/Inline

binaries as our baseline benchmark set. Memory disambiguation for a particular pair of mem-

ory references is then applied incrementally, by looking up the alias information computed

for every one of the given phases. Although the above algorithm computes all the neces-

sary alias information, no matter what type of alias data we were interested in, we are only

interested in evaluating path-insensitive information. Thus, the corresponding speculative

disambiguator is presented in Figure 4.9. Note that a new relationship is used for those pairs

of references which are likely to be disjoint. As we advanced in Section 4.3.3, this new status

of “likely independent” gives the choice of conscious speculation to any following speculative

optimization.

4.3.4.1 Measuring static precision

As we did in Section 4.2.3.1, we start evaluating the effectiveness of each may-alias analysis

described in Table 4.2 by comparing their static accuracy in terms of disambiguation queries.

In this case, the value returned by the speculative disambiguator presented in Figure 4.9

74 CHAPTER 4. ALIAS ANALYSIS

go m88ksim gcc compress li ijpeg perl vortex Average
Benchmark

0

10

20

30

40

50

60

70

80

90

100

Pe
rc

en
ta

ge
 o

f d
is

sa
m

bi
gu

at
io

n
qu

er
ie

s,
by

 m
et

ho
d

(f
ul

l v
s.

ho
t s

et
)

Unknown
U/ PG(Region+)
U/ PG(Region)
U/ PG(Residue)
U/ Region
S/ Residue

Figure 4.10: Breakdown of disambiguation queries, by path-insensitive alias analysis method.

The left bar considers the full set of queries, while the right bar restricts the set to those

queries where both components are instructions from hot paths. The S/ and U/ prefixes

denote safe and unsafe analysis, respectively.

will be dependent, independent, likely independent or unknown. We are not really interested

in discovering the exact type of relationship (i.e., dependency or independency), but rather

in whether the analysis returned an answer different than “unknown”. We use the same

algorithm presented in Section 4.2.3.1 to generate our set of queries for disambiguation.

For each benchmark, Figure 4.10 presents the percentage of queries successfully resolved

by each of the path-insensitive alias analysis presented in Table 4.2, taking into account that

the analyses are applied incrementally. For instance, the region-based analysis is not invoked

if the residue-based analysis has already successfully resolved the query. To goal is in this

case to measure the precision achieved by every one of our speculative may-alias analyses. In

the figure, the left bar presents the relative contribution of each analysis to the resolution of

our given full set of queries, while the right bar presents the same results restricting the set

of queries to those where both components are instructions from hot paths. From the results

shown in Figure 4.10, four main conclusions can be drawn:

1. Speculative alias analysis is quite beneficial: aliasing precision increases to 83% in av-

erage (74% considering only hot path references), from a baseline precision around 16%

4.3. SPECULATIVE MAY-ALIAS ANALYSIS 75

corresponding to the non-speculative schemes. Some cases such as gcc or compress

achieve up to 95% of precision. Of course, this spectacular reduction in the number of

“unknown” responses will only translate into positive opportunities for optimization if

the number of misspeculations (errors made by our analysis) is sufficiently low. The

misspeculation rate for each analysis is discussed in the next section.

2. Profiling information proves very useful to increase the accuracy of both the non-

speculative residue-based analysis and the speculative region-based analysis. Indeed, the

profile-guided analyses almost double the total accuracy achieved by these same meth-

ods without using profile information (50% accuracy in front of 26%). An interesting

exception is go, where the profile-guided schemes do not significantly increase precision.

The reason is that, in go, almost every execution path is a hot path. Therefore, profile

data is not helping to reduce the number of paths to be considered. In general, we note

that region-based and profile-guided analysis are orthogonal, and the combination of

both schemes achieves more precision than any of them applied separately.

3. The PGRegion+ (i.e., the heuristic based on the assumption that memory cells will not be

used as memory pointers) achieves a high level of precision. This is not very surprising,

since our benchmark programs make heavy use of pointers which are naturally stored

in memory, while the other alias analyses conservatively assume the worst scenario by

setting the descriptor of the corresponding destination registers to ⊥. For example,

program perl, which makes heavy use of dynamically linked lists, jumps to a 94% of

accuracy from a 53% achieved by the previous analyses. As a result there are many

load instructions that indeed read from memory a value that is later used as a pointer,

but they are assumed independent by the PGRegion+ scheme. As we will see in Sec-

tion 4.3.4.2, although this disambiguation method is extremely aggressive in assuming

independence, is also right most of the time.

4. Finally, comparing results for the full set of queries (left bars) versus query results for

the hot path only (right bars), it is clear that accuracy for the profile-guided schemes is

slightly lower on the hot path. This was expected since profile-guided schemes simply

return “likely independent” on those queries where there is an instruction that belongs

to a cold path, thus increasing accuracy on the full set of queries.

4.3.4.2 Measuring misspeculation rate

As mentioned in the previous sections, speculating at analysis time will open opportunities

for speculative optimizations, which will only be profitable if our guesses are mostly correct.

Otherwise, the cost of the particular recovery scheme implemented by the optimization will

76 CHAPTER 4. ALIAS ANALYSIS

Static misspeculation rate (%)

Benchmark Region PGResidue PGRegion PGRegion+ Always

099.go 0.00 13.54 13.09 8.97 10.20
124.m88ksim 0.00 0.97 1.49 0.80 2.10
126.gcc 0.00 1.84 1.96 1.58 2.16
129.compress 0.00 1.49 2.07 1.86 2.67
130.li 0.00 1.25 1.14 0.65 1.20
132.ijpeg 0.00 1.02 1.03 1.36 1.93
134.perl 0.00 1.18 2.53 0.91 1.13
147.vortex 0.00 0.23 0.64 2.17 4.44

Geometric Mean 0.00 1.37 1.87 1.57 2.48

Table 4.3: Percentage of queries that were misspeculated at least once, relative to the total

number of sometime-executed queries.

offset the benefits of our speculative alias analysis. This section presents data on the number

of times that each speculative disambiguator produces a wrong answer.

Measuring misspeculation is not an easy task, since misspeculation rate must be measured

at run time and depends on the program input data9. The process we used is as follows. When

running the speculative alias disambiguator in our link-time optimizer, the compiler generates

a file including every query whose answer is “likely independent”10. Then, we modified the

sim-profile simulator of the SimpleScalar 3.0 toolset [BA97] to read this file at start time

and build a hash table with all queries. Every time that a load/store instruction is reached, the

hash table is checked to see if the instruction is a component of a query (or queries). If this is

the case, we then check if the other member of the query pair has been executed in the past (in

dynamic instruction order). If so, we compare their effective addresses, which were stored also

in the hash table when each member of the pair was executed. If the effective addresses overlap,

we have a misspeculation and we increase the misspeculation counter for that particular query.

In any case, the total execution counter for the query is also incremented. Care must be taken

to ensure that as we revisit a given instruction, we do not increment the counters if the other

member of the query pair has not been previously executed also. At the end of the simulation

run, we have for each query the number of times it was dynamically executed and the number

of times it was misspeculated.

From this procedure we obtain two sets of results, presented in Table 4.3 and Table 4.4.

First, Table 4.3 shows the number of queries that were misspeculated at least once, presented

as a percentage of the total number of queries that were sometime executed. However, to

get a complete picture of the cost of misspeculation, we need to know how many times a

9For our experiments, we used our benchmark suite with the simulation inputs presented in Table 3.2.
10We chose only queries where both components are hot instructions, since the rest of possible queries will

be rarely executed at run time.

4.3. SPECULATIVE MAY-ALIAS ANALYSIS 77

Dynamic misspeculation rate (%)

Benchmark Region PGResidue PGRegion PGRegion+ Always

099.go 0.00 1.60 0.98 0.70 1.14
124.m88ksim 0.00 0.02 0.92 0.32 8.42
126.gcc 0.00 2.32 1.80 1.02 1.93
129.compress 0.00 0.20 3.05 2.48 2.73
130.li 0.00 0.46 0.82 0.75 1.01
132.ijpeg 0.00 0.73 0.96 2.36 3.21
134.perl 0.00 0.81 1.66 0.70 1.49
147.vortex 0.00 0.04 0.15 1.99 2.21

Geometric Mean 0.00 0.34 1.00 1.04 2.20

Table 4.4: Percentage of dynamic queries misspeculated, relative to the total number of

dynamic queries.

misspeculated pair of instructions was executed to know the number of times that the as-

sociated recovery scheme would have been invoked. Table 4.4 presents this second set of

data, showing the total number of misspeculations, presented as a percentage over the total

number of dynamically executed queries. The last column in both tables corresponds to an

“aggressive disambiguation” approach assuming that “unknown” query responses will be al-

ways handled as if they were “likely independent”. This will give a measure of whether the

proposed speculative alias analysis methods are useful for speculative optimizations.

From the results presented in the above tables, we can highlight several interesting points:

• Region-based analysis, despite being unsafe, is extremely accurate, to the point that

we did not find a single misspeculation across all benchmarks. This result encourage

the claim we made in Section 4.3.1.2 about using this analysis as a safe analysis on

user-demand, like actual production compilers do on several unsafe optimizations.

• The other speculative analysis are fairly accurate too, with a static misspeculation rate

typically below 2%. Measured in terms of dynamic misspeculation rates, as Table 4.4

shows, the situation is even more favorable. For example, for program go, even though

more than 8% of the static queries were misspeculated, their weight over the total

number of executed queries is much lower, typically below 2%.

• We mentioned in Section 4.3.4.1 that PGRegion+ is based in a risky assumption about

memory cells not being used as memory pointers. However, the results show that,

although being very aggressive in assuming independence, this scheme is right most of

the time. How can be PGRegion+ so accurate? The key insight is that pointers are

hardly ever aliased to other pointers in a program. Again, a good example is program

perl, which makes heavy use of dynamically linked lists whose elements are hardly ever

aliased to each other.

78 CHAPTER 4. ALIAS ANALYSIS

Region PG(Residue) PG(Region) PG(Region+) Always

Speculative analysis method

0.0

0.5

1.0

1.5

2.0

2.5

M
is

sp
ec

ul
at

ed
 q

ue
ri

es
 (%

)

Static
Dynamic

0 1 10 100

Total number of queries (log, %)

0.0

0.5

1.0

1.5

2.0

2.5

M
is

sp
ec

ul
at

ed
 q

ue
ri

es
 (%

)

Region
PG(Residue)
PG(Region)
PG(Region+)
All

Figure 4.11: Percentage of misspeculated queries for every alias analysis methods, with respect

to (a) number of speculated queries for every method, and (b) total number of possible

speculated queries (this one also shows the percentage of queries covered for every method).

• Finally, when looking at the “always speculative” approach, the data shows that mis-

speculation rate doubles the rate obtained using our most aggressive speculative method

(i.e., PGRegion+; a geometric mean rate of 2.2% in front of 1.04%). This fact is encour-

aging, hinting that even for those optimizations with high-cost recovery techniques, our

speculative alias analysis might prove very useful given its high accuracy.

For the percentages presented in the above tables, it’s important to note that the total

number of static/dynamic queries for every analysis method (i.e., columns) is different in

every case, and depends on the number of queries for what such particular disambiguation

method returned the known “likely independent” answer. As a result, we are comparing

relative percentages which are obtained considering different “base” numbers. The reason

is that we are interesting in measuring the relative misspeculation of every disambiguation

method due to only those answers given by such method in any case. Figure 4.11a shows in

a graph the geometric means of these percentages, which were already presented in Table 4.3

and Table 4.4.

A different way of showing the misspeculation rate of our proposed analyses is shown

in Figure 4.11b. In this case, we present in the x-axis the percentage of the total possible

number of speculated queries (i.e., obtained from the Always scheme) covered for every alias

analysis method, while the y-axis shows the misspeculation rate relative to such total number

of queries. We can see that coverage of the earlier disambiguation methods is quite low,

which turns out that speculation in these cases is somehow conservative. However, we can

see for example that dynamic misspeculation rate of the PGRegion+ is only about 0.6%, with

a coverage of 60% of queries. This means that the remaining 40% of dynamic queries is

responsible of the remaining 1.5% misspeculation rate, which give us a definitive measure of

confidence about the accuracy of our disambiguation schemes.

4.4. RELATED WORK 79

4.4 Related work

While there is an extensive body of work on pointer alias analysis of various kinds [WL95,

SH97, DWM98, CH00, GLS01], these are mostly high-level analyses carried out in terms

of source language constructs that turn out to be of limited utility at the machine code

level. In fact, to the best of our knowledge, alias analysis carried out by existing object code

modification systems is often limited to fairly simple local analysis.

Amme et al. [ABZT98] present a general method to detect data dependencies in assembly

code by using symbolic value propagation. They are able to provide both must- and may-alias

data, which allows deriving memory dependencies, but this information is only provided in a

path-insensitive fashion. Besides, the algorithm does not work beyond procedure boundaries,

and symbolic values are not propagated through memory when registers are saved/restored.

Although it has been applied to assembly code, it is not obvious that using the algorithm for

interprocedural whole-program analysis would scale up to problems of this size.

Our work is based on the work of Debray et al. [DMW98], that has been described in

Section 2.2.3.2. They propose a flow-sensitive, context-insensitive interprocedural may-alias

analysis algorithm designed in the context of a link-time optimizer, that attempts to deal

with features of real executable programs. However, the algorithm fails in several situations,

which turns out to lead to an undesirable loss in precision. First, it is clearly oriented to “fine

grain” disambiguation, but it is unable to effectively catch “coarse grain” alias relationships

as we do in Section 4.3.1. Second, for keeping the algorithm space and time feasible, they

apply a conservative widening operation that maps to ⊥ definitions of the same register from

different control-flow paths. Finally, they do not keep track of the contents of memory when

registers are saved/restored. Every one of these drawbacks have been somehow addressed in

this work, although we have use a combination of speculative unsafe schemes to succeed.

There is a considerably body of work on interprocedural data-flow analyses design to

analyze only part, but not all, of a program (see, for example, [AL98, BA98, DGS97, RRL99]),

although only some of them use profile information to guide their decisions. This profile

information is, however, widely used when performing optimizations [PH90, CMCH92, CL96,

GBF98]. On the other hand, while speculation has been commonly used in the compiler world

for optimizing programs [HSS94, GCM+94, MM97, GBF98, PGM00a], as far as we know, this

is the first attempt to introduce unsafe speculations into a data-flow analysis algorithm.

Finally, different alternatives for collecting profile information in order to detect memory

independences have been proposed [Con97, CFE97, RCT+98], but the cost of the instrumen-

tation process is usually high, and not general enough. By contrast, our approach allows to

discover “important” memory independencies just using simple basic block counts easy to

collect by simple basic block instrumentation.

80 CHAPTER 4. ALIAS ANALYSIS

4.5 Conclusions

Code transformations on executable code can benefit greatly from pointer alias information.

However, the problem of memory disambiguation is one of the weak points of object code

modification, because important high-level information typically available in a traditional

compiler is lost at executable code level. Besides, existing alias analyses turn out to be of

limited utility at the machine code level, because either they do not consider typical issues of

binary code, or their application is too expensive to be practical for analyzing large binaries.

This chapter has presented several approaches for high-quality alias analysis to be applied

in the context of link-time or executable code optimizers. First, we propose a new high-

accurate must-alias analysis to recognize memory dependencies in a path-sensitive fashion.

The analysis is based on the idea of establishing alias relationships for only a subset of all

the possible paths between every pair of references to disambiguate. Our results have shown

that by using this technique we are able to increase alias precision up to 150% over a path-

insensitive baseline scheme. Thus, this alias information is particularly well suited to be used

for eliminating path-sensitive redundant memory operations, as we will see in Chapter 5.

We also have presented two approaches for high-quality, low-cost, speculative may-alias

analysis to recognize memory independencies. The key idea behind our two proposals is to

trade off analysis complexity against safeness. Thus, we presented a region-based alias analysis

that disambiguates memory references by classifying them into separate memory regions (e.g.,

heap, stack and global) and assumes that whenever an arithmetic operation is performed on

a pointer, the pointer will not change its pointed-to memory region. On the other hand,

a second speculative proposal uses profile information and assumes that instructions on hot

paths are not aliased to memory references in cold paths. These assumptions, although

unsafe, yield significant increases in disambiguation accuracy to over 80%, while the run-

time misspeculation rate is below 2%. Although it has been commonly used for optimizing

programs, speculation has been only introduced so far in the compiler world at analysis time

by means of a set of rules and heuristics. As far as we know, the work presented in this

chapter is the first attempt to systematically introduce unsafe speculations into data-flow

analysis algorithms.

The alias algorithms we have presented are targeted to provide both must- and may-alias

information. Our results show that these algorithms prove to be very useful for increas-

ing memory disambiguation accuracy of binary code, which turns out into opportunities for

applying optimizations such as eliminating binary redundancy.

Chapter 5

Memory redundancy elimination

In this chapter we reason about the first source of binary redundancy targeted in this thesis:

we discuss the discovery and elimination of redundant memory operations in the context of a

link-time optimizer, an optimization that we call Memory Redundancy Elimination (MRE).

We first motivate this work by measuring a potential upper bound on how much memory

redundancy is present in executable programs. Then, we present a set of sophisticated profile-

based MRE algorithms targeted at optimizing away these redundancies. Finally, we provide

some experimental results, including accurate measurements at the processor-core level, which

demonstrate that MRE yields significant performance improvements when applied at executable

code level.

81

82 CHAPTER 5. MEMORY REDUNDANCY ELIMINATION

5.1 Introduction

Without comparison, caches are the best hardware approach to address the memory bottle-

neck [Smi82]. As we pointed out in Section 1.1.1, one of the reasons why caches are effective

is because they reuse recent memory accesses. That is, they exploit the dynamic memory

redundancy existing in programs. In the ideal case, the compiler can also benefit from these

reuse opportunities by promoting repeatedly accessed memory locations to registers (see Sec-

tion 2.3.3.2). There are several reasons that explain why this is an important optimization:

• Memory operations are expensive to execute in parallel, because they require multiple

ports to the hardware cache [Smi82]. In comparison, an access to the register file is a

much cheaper operation.

• Most compiler transformations break up their optimization scope when detecting mem-

ory accesses. Meanwhile, eliminating memory instructions enables other optimizations,

thus decreasing the dynamic operation count and instruction schedules.

• There are many redundant memory operations at run time, as our experiments will

show, and many of them can be removed.

Memory redundancy comes partly from the way that programmers write source code.

However, as we advanced in Section 1.1.1, a significant number of redundant memory ref-

erences appear in the final executable file due to limitations in the compilation model of

traditional compilers. Thus, for example, a variable may not have been kept in a register by

the compiler because it was a global, or maybe the compiler was unable to resolve aliasing

adequately, or because there were not enough free registers available.

To address the above issues, we propose in this chapter an optimization to be applied

in the context of binary or link-time optimizers. We discuss the discovery and elimination

of memory operations that are redundant and can be safely removed in order to speed up a

program, an optimization that we call Memory Redundancy Elimination (MRE). First, we

quantify how much memory redundancy is present in executable programs, and show that a

high percentage of memory references can be considered redundant because they are accessing

memory locations that have been referenced in the near past. Then, we present several profile-

based MRE algorithms targeted at optimizing away these redundancies:

• A basic MRE algorithm for extended basic blocks.

• A general MRE algorithm that works over regions of arbitrary control-flow complexity,

for removing either fully or partially redundant loads and stores.

5.2. DYNAMIC MEMORY REDUNDANCY 83

• A new technique for eliminating redundant loads in a path-sensitive fashion, since the

above optimization algorithms are mainly based on path-insensitive PRE techniques

that causes many MRE opportunities to be lost.

• A simple set of heuristics for removing dead stores.

We also provide some experimental results in order to measure the effectiveness of the MRE

algorithms under study. Our results show that a significant amount of memory redundancy

can indeed be eliminated, which translates into important reductions in execution time.

5.2 Dynamic memory redundancy

Before presenting our algorithms for removing memory redundancy, we motivate our work

by measuring a potential upper bound on how many memory instructions could be removed

from a program. To achieve this goal, we run on top of the SimpleScalar sim-profile simu-

lator our baseline benchmark set with the corresponding simulation inputs (see Section 3.2.2

and Section 3.3, respectively) to capture every dynamic memory reference. Dynamic mem-

ory redundancy is then measured by recording the most recent n memory references into a

redundancy window. This window is a simple FIFO queue, where new references coming into

it displace the oldest memory reference stored in the window. We next present the observed

results for dynamic load and store redundancy.

5.2.1 Dynamic load redundancy

As far as load redundancy is concerned, our goal is to measure how often a load is re-loading

data that has already been either loaded or stored in the near past, and also to quantify the

typical distance (in memory instructions) between re-loads of the same data item. A dynamic

instance of a load is then redundant if its effective address matches the address of any prior

load or store that still remains in the redundancy window.

The results of our experiments are shown in Figure 5.1a, where we present data for our

original benchmark set and for various redundancy window sizes. Clearly, a lot of redundancy

exists even in these highly optimized binaries1. As an example, the graph shows that, for

program vortex, almost 75% of all load references were to memory locations that had been

referenced by at least one of the most recent 256 memory instructions. That is, almost 75%

of all load references were to memory locations that had been either loaded or stored recently.

In general, almost 50% of all loads are re-loading a data item that was read/written less than

100 memory instructions ago. Considering that in these streams around 1/3 of instructions

1As we mentioned in Section 3.3, programs were compiled with full optimizations using the Compaq/Alpha

C compiler. Similar levels of redundancy have been observed using other compilers, like GNU gcc.

84 CHAPTER 5. MEMORY REDUNDANCY ELIMINATION

2 4 8 16 32 64 128 256 512 1024

(a) Redundancy window size (entries)

0

25

50

75

100

D
yn

am
ic

 lo
ad

 r
ed

un
da

nc
y

(%
)

0 1 2 3 4 5 6 7 8 9 10

(b) Percentage of static loads (up to 10%)

0

25

50

75

100

D
yn

am
ic

 lo
ad

 r
ed

un
da

nc
y

(%
)

go
m88ksim
gcc
compress
li
ijpeg
perl
vortex
Average

Figure 5.1: Dynamic amount of load redundancy vs.: (a) redundancy window size (X-axis is

logarithmic), and (b) percentage of static loads for a 1024-entry redundancy window (X-axis

is only drawn up to 10%).

are memory references, it means that 50% of all loads are re-loading data that was already

accessed or stored less than 300 instructions ago. Today’s optimizing compilers are clearly

able to deal with regions larger than these sizes and, thus, should be expected to optimize all

this redundancy away.

Figure 5.1b shows the redundancy observed for each program by accumulating the contri-

bution of every static load (sorted by decreasing redundancy), under a redundancy window

size of 1024 entries. The results show that more than 75% of the dynamic load redundancy

observed is caused by less than 8% of the load references. This fact is encouraging, hinting

that MRE techniques might have a great impact if they were able to remove some of the most

redundant load references.

5.2.2 Dynamic store redundancy

A dynamic instance of a store is considered redundant only if (a) its effective address matches

the address of a new store while it still remains in the redundancy window, and (b) there

is no load instruction between them accessing the same location. Figure 5.2a shows the

dynamic store redundancy exposed by every program in our benchmark suite, as was done in

Figure 5.1a when measuring dynamic load redundancy.

The first thing to observe is that, unlike load references, most store instructions are not

redundant at all, which is consistent to observations made by Zhang [Zha02]. Even considering

a big redundancy window of 1024 entries, the experiment shows that, except for programs

perl and vortex, only around 12% of store redundancy is observed. This can be explained

looking at the results presented in Figure 5.2b, which shows the dynamic write-after-read

(WAR) memory dependency rate (that is, when a store matches the address of a previous

load in the redundancy window with no other matching store between them). As we can

5.3. MRE ON EXECUTABLE CODE 85

2 4 8 16 32 64 128 256 512 1024

Redundancy window size (entries)

0

10

20

30

40

(a
) D

yn
am

ic
 st

or
e

re
du

nd
an

cy
 (%

) go
m88ksim
gcc
compress
li
ijpeg
perl
vortex
Average

2 4 8 16 32 64 128 256 512 1024

Redundancy window size (entries)

0

25

50

75

100

(b
) D

yn
am

ic
 W

A
R

 m
em

or
y

de
pe

nd
en

cy
 (%

)
Figure 5.2: Dynamic amount of (a) store redundancy, and (b) write-after-read memory de-

pendencies, vs. redundancy window size (X-axis is logarithmic).

observe, around 75% of the store references are writing to a memory location previously read

by a load without any intervening store instruction involved. Consequently, even considering

such a big window, there are fewer opportunities for removing redundant stores.

5.3 MRE on executable code

The simplest examples of Memory Redundancy Elimination (MRE) are shown in Figure 5.3.

First, let’s consider the case of eliminating a redundant load in Figure 5.3a, which we call Load

Redundancy Elimination (LRE). Suppose that an instruction L1 loads a value into register r1

from memory location pointed by register p1. Furthermore, this load is followed after some

instructions by another instruction L2 within the same basic block, which loads a value into

register r2 from location pointed by register p2. If it can be proven that p1 and p2 point to the

same location, and that this location is not modified between these two instructions, then L2

is redundant with respect to L1. Note that redundancy would be also present if instruction

L1 was a store operation.

Once a redundant load has been identified, we may try to eliminate it by bypassing the

value from the first load to the redundant one. Bypassing the value is accomplished by

inserting a couple of move operations that use a new available register r0, which may or may

not be the same as r1 or r2 depending on register lifetimes. The expectation is that, after

running the LRE optimization, a copy propagator is also run to eliminate as many register

moves introduced by LRE as possible.

The case of eliminating a redundant store, also called Store Redundancy Elimination

(SRE), is shown if Figure 5.3b. In this case, an instruction S1 that stores a value into

location pointed by register p1 is followed by another instruction S2 within the same basic

block that stores another value into location pointed by register p2. If, as before, it can be

86 CHAPTER 5. MEMORY REDUNDANCY ELIMINATION

L2

 ...

 ...

 ...

 ...

 ...

 ...

load (p1),r1

load (p2),r2

load (p1),r1
move r1 ,r0

move r0 ,r2
−−−−−−−−−−−−−load (p2),r2

L1

L2

(a)

L1 −−−−−−−−−−−−−

 ...

 ...

 ...
store r1,(p1)

store r2,(p2)

(b)

S1

S2

Figure 5.3: Elimination of a redundant memory reference within a machine code basic block:

(a) Load Redundancy Elimination (LRE), and (b) Store Redundancy Elimination (SRE).

proved that both locations pointed by p1 and p2 are the same, and this location is not loaded

between these two references, then S1 can be safely removed because it is redundant with

respect to S2. Unlike LRE, there is no need for bypassing values, since eliminating S1 does

not alter the program semantics.

Although these are the most simple cases of MRE, they already introduce the three fun-

damental problems that this optimization has to deal with:

Alias analysis The first problem is to decide if any load/load or store/load (store/store)

pair is really accessing the same memory location or not, and also to prove that there

is no other store (load) between them that may be in conflict with the memory location

accessed by the redundant load (store). In our example in Figure 5.3, this amounts to

proving that registers p1 and p2 do indeed point to the same memory location. Although

there is an extensive work on pointer alias analysis (see Section 2.2.3), these are mostly

high-level analyses carried out in terms of source language constructs that turn out to

be of limited utility at the machine code level.

Register liveness analysis When applying LRE, the second problem is to find an available

register to bypass the value from the redundancy source to the redundant instruction.

This is not an easy task, due to the limited number of machine registers and also due

to the constraints imposed by the calling convention. Register liveness analysis (see

Section 2.2.1) is a technique that computes which registers are alive at every point in

the code. On executable code, control-flow reconstruction is key to improve the accuracy

of the liveness analyzer. Otherwise, the analysis becomes too conservative to be useful.

Cost-benefit analysis Finally, also for LRE, the example at Figure 5.3a shows that elim-

inating the load does not come without a cost. In fact, we have inserted two “move”

instructions in the optimized code in the hope that (a) they can be removed by a copy

5.3. MRE ON EXECUTABLE CODE 87

propagator and (b) even if they are not, their cost will be lower than that of the orig-

inal redundant load. Of course, the cost can be reduced if we can use register r1 as

the bypassing register. This, however, will require that r1 is not overwritten between

instructions L1 and L2. In any case, LRE on executable code requires of a careful cost-

benefit analysis, as Section 5.4 will discuss. If the cost-benefit analysis is too optimistic,

performance degradation may result.

Alias and register liveness analysis are well-known data-flow problems already described

in the literature [ASU86a, Muc97f]. From now on, we assume that both of them have been

computed before applying MRE optimizations. The more accurate these analyses are, the

more opportunities appear for MRE. A significant number of opportunities may be lost if the

alias analyzer is not able to decide whether two references are in conflict. Also, discovered

LRE opportunities are lost if the register liveness analyzer is not able to find an available

register to effectively bypass the redundant value.

5.3.1 MRE on intermediate vs. executable code

It is interesting to point out the differences between performing MRE on intermediate code,

as done by most compilers, and on executable code. Although the process is similar in both

cases, some issues must be managed in a different way.

First, most compilers will perform LRE by taking a new “pseudo-virtual” register from

the infinite virtual register pool to bypass the value between the redundant pair. Interestingly,

it may happen that at a later stage, when the register allocator runs, the compiler re-inserts

the redundancy due to lack of machine registers. Performing LRE on executable code does

not suffer from this problem, since estimating the costs and benefits of inserting and removing

instructions is rather more accurate than when working on an intermediate representation.

However, our proposed optimization must deal with the limitations of a small register file.

Working on executable code also has the added difficulty that, in general, no information

on the original program variables is available. As a result, not only alias information becomes

imprecise, but also signal handling and volatile variables may pose correctness problems when

applying MRE. A common solution is to disable this or other link-time optimizations via com-

piler switches, when optimizing programs that contain such constructs. However, a preferable

solution for users would be that compilers insert information about volatiles into the ex-

ecutable program, so that a link-time optimizer could use this information to only avoid

applying MRE on such variables.

Finally, as we pointed out in the previous section, LRE on executable code requires of

a careful cost-benefit analysis, since we assume that the cost of inserting move instructions

will be lower than that of the original redundant load. If this cost-benefit analysis is too

optimistic, performance degradation may result.

88 CHAPTER 5. MEMORY REDUNDANCY ELIMINATION

Hot

 ...

 ...

 ...

 ...

L1 load (p1),r1
move r1 ,r0

L2
move r0 ,r2
−−−−−−−−−−−−−load (p2),r2

BB2

BB1

Path

(a)

 ...

 ...
store r2,(p2)

(b)

 ...

−−−−−−−−−−−−−store r1,(p1)
 ...

BB1

BB2

S1

S2

Figure 5.4: Elimination of redundant memory references within extended basic blocks applying

(a) LRE, and (b) SRE. LRE should be applied coupled to a cost-benefit analysis.

5.4 Profile-guided MRE

Information about the program execution behavior can be very useful in optimizing programs

(see Section 2.3.2). The key idea is to be aware of profile information to guide MRE. Profile

information consists of a frequency for each basic block and a probability for each branch in

the program. We next outline the algorithms used and present their associate cost-benefit

equations, which use the basic block frequency information gathered in a profile run to choose

the candidates for removal.

5.4.1 Eliminating close redundancy

The results presented in Section 5.2 show that between 20% and 40% of the load redundancy

(up to 8% of the store redundancy) detected can be captured using a redundancy window of

just 16 entries. This indicates that the first source of redundancy that we should target our

optimization at is located within small groups of basic blocks.

We have already seen the easiest forms of MRE in the example given in Section 5.3, where

we look for redundancy within a basic block. A natural extension of this scheme is to perform

MRE on an Extended Basic Block (EBB), as they were defined in Section 2.1. In particular,

LRE will be performed on EBBs, while reverse EBBs will be used for applying SRE. The

implementation is in this case straight-forward by performing a linear search to the EBB

root, as shown in Figure 5.4.

When applying LRE in Figure 5.4a for every load in the EBB, we search bottom-up for

other loads or stores that may be a source of redundancy. If we can prove that registers

p1 and p2 point to the same memory location and that no intervening store has modified

5.4. PROFILE-GUIDED MRE 89

said location2, then it is safe to remove L2 and bypass the value from r1 to r2. Similarly,

for applying SRE in Figure 5.4b, a top-down search through the reverse EBB is performed

for every store, looking for other stores writing the same location with no intervening loads

between them. If this is the case, the considered store S1 can be eliminated safely.

As already discussed in Section 5.3, introducing a move instruction on LRE increases

the cost of executing basic block BB1. What if, as in Figure 5.4a, the hot path does not

flow through BB2? In this case, a move instruction has been inserted in the common path,

although the bypassed value will be most often discarded. There is no benefit in applying

LRE to L2 in this scenario and we might risk lowering performance. The lesson to learn

is that it is not always beneficial to remove a redundant load, and it is necessary to apply

LRE carefully. We need to compute as precisely as possible the benefit (B) and cost (C) of

applying the optimization for each particular load. The equations we use are as follows:

B = lat load ×BB freq
2

C = latmove × (BB freq
1 + BB freq

2) (5.1)

LRE ⇔ C < B

The use of a less-than comparison as opposed to a less-or-equal comparison in the trade-off

between cost and benefit is deliberate, since it avoids unnecessary code motion. As it can be

seen, both benefit B and cost C computations consider the latency of the involved instructions

weighted by their execution frequencies. Note that C is pessimistic, as it includes both move

instructions, even though they might be later removed by the copy propagation phase. Our

current implementation checks first whether either the source of redundancy register or the

final destination register (i.e., r1 and r2 in our example, respectively) can be chosen to bypass

the redundant value, avoiding some of the move insertions and keeping the cost more realistic.

5.4.2 Eliminating distant redundancy

The MRE approaches described in the previous section were targeted at exploiting close

redundancy. However, looking back to Figure 5.1a and Figure 5.2a, there is still a lot of

redundancy that can be caught if we could explore larger distances between instructions. Of

course, in order to catch this redundancy, we need to apply MRE to regions of code that expand

beyond an EBB and which, therefore, may contain complicated control-flow structures.

The major difference with the previous section is that when working on a candidate ref-

erence (load or store) to be removed, we need to examine all the possible control-flow paths

that may reach the candidate in order to decide whether it is truly redundant or not. Besides,

2If an intervening store can be proved to write to the same location, then it becomes itself the source of

redundancy and the algorithm works the same way. The problem is when an intervening store has an unknown

address. In such case, bypassing is not safe and redundancy elimination can not proceed.

90 CHAPTER 5. MEMORY REDUNDANCY ELIMINATION

 ...

 ...

 ...
S1

L1 load (p0),r1

store r1 ,(p0)

 ...

 ...

 ...

 ...

 ...

 ...

L1

S1

move r0 ,r1

move r1 ,r0

load (p0),r0

store r1 ,(p0)

load (p0),r1

 ...

L2

(b)(a)

 ...

 ...

 ...

 ...

L1

S1

move r0 ,r1

move r1 ,r0

load (p0),r0L2

load (p0),r1
−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−

store r1 ,(p0)−−−−−−−−−−−−−−−−

 ...
S2 store r0 ,(p0)

Figure 5.5: Elimination of (a) partially redundant load, and (b) partially redundant store.

Removing the redundant references requires inserting instances on less-frequent paths, in order

to make the candidates fully redundant.

this redundancy will come usually from severals points, or redundancy sources. Two different

situations may arise:

Full redundancy The candidate is redundant with respect to all the control-flow paths that

reach it. As always, all intervening stores for LRE and loads for SRE must have known

addresses that do not alias with the candidate. We call full-MRE the optimization tar-

geted to remove this type of redundancies. Removal in this case is a safe transformation,

because there is always at least a static source of redundancy for every candidate.

Partial redundancy The candidate is redundant on some paths, but not all, that reach it.

Actually, a high percentage of dynamic redundancy comes from candidates that are

redundant only on some control-flow paths. For example, in Figure 5.5 instruction L1

is redundant on the loop-back edge with the store S1, but it is not on the entry point

of the loop (suppose that neither register p0 nor location pointed by p0 are changing

in the loop). This usually happens on loop invariant variables, but similar situations

arise frequently even without considering loops [PGM00b]. We call these candidates

partially redundant references, and they must be removed by inserting a copy of the

instructions on the control-flow paths where they are not available, thus making them

fully redundant. In the example, this means that copies of the load and the store must

be inserted in both loop pre-header and loop post-tail, respectively. We call partial-MRE

the optimization targeted to remove partially redundant references.

5.5. PARTIAL MRE 91

Partial-MRE involves insertion of new instructions. As these insertions are usually done

beyond EBB boundaries, the inserted instructions become speculative. In general, it is

safe to perform speculation for instructions that cannot cause exceptions, but this is not

the case for speculative memory operations. When speculating references, the optimizer

must be careful not to introduce side-effects into a program that did not exhibit them

before. However, as our approach is based on standard PRE methods, correctness is

warranted since new insertions are always anticipable at the given insertion points3.

Partial-MRE conceptually subsumes the behavior of full-MRE, since the only difference

relies on whether insertion of new memory references is allowed or not. Thus, both situations

can be addressed by using the same algorithm, simply discarding partial redundancies in the

case were we are only interested in removing fully redundant references. Note, however, that

as both optimizations are constrained by limited resources (e.g., register availability, cost-

benefit analysis, etc.), the number of “strict” full redundancies removed may be different in

every case.

5.5 Partial MRE

We next present in some depth the details and issues to be addressed when applying both

partial-LRE and partial-SRE optimizations, which have been implemented into two separate

algorithms. Furthermore, as these optimizations are expensive in terms of compilation time,

they should be applied carefully: either (a) no more than once for every candidate, or (b)

several times for the most important candidates (i.e., those candidates located in the most

frequently executed paths of the program).

5.5.1 Partial LRE

For the implementation of LRE targeted at distant redundancies we have followed the ap-

proach described by Horspool and Ho [HH97b]. They proposed a general profile driven PRE

algorithm based upon edge profiles. The main idea is to insert copies on less frequently exe-

cuted paths in favor of more frequently executed paths, as was shown in Figure 5.5. We have

adapted their algorithm to only consider redundant load operations.

Once a candidate load has been discovered by the algorithm, we apply our cost-benefit

analysis (i.e., Equations 5.1) described in Section 5.4.1. However, we have to extend the

cost equation C to account for the insertion of (a) every move instruction on each of the

redundancy paths, in order to bypass the source value(s), and (b) the new load operations

3Insertion of an expression e at program point p is allowed only if all control-flow paths emanating from p

evaluate e before any operands of e is redefined. The expression e is said to be anticipable at point p [HH97b].

92 CHAPTER 5. MEMORY REDUNDANCY ELIMINATION

that make the candidate load become fully redundant, as shown below:

Cbypass = latmove ×
(

BB freq
red +

∑n
i=1 BB freq

srci

)

Cinsert = lat load ×
∑m

i=1 EDG freq
i (5.2)

C = Cbypass + Cinsert

where n is the number of partial redundancies and m the number of load insertions needed.

Note that there is no need to consider move operations at new insertion points, since the

loads inserted will set the appropriate register. Again, this cost is a pessimistic upper bound,

since an appropriate choice of bypass registers may avoid some of the move instructions. As

already discussed in the previous section, the load will maintain its “candidate” status only

if the benefits of removing it out-weights the computed cost.

When the removal of a candidate load has been considered beneficial, our algorithm starts

looking for the best available register to bypass the source value(s). First of all, we start

checking whether the destination register can be used to bypass the value from all source paths

and all insertion points. If the destination register can not be used, the basic blocks that are

the source of the redundancy are sorted according to their execution frequency. Now, we start

with the most executed basic block and check whether we can use the source redundancy

register to bypass the value on all the other paths and all insertion points. We iterate for

every source basic block until such register is found. If after this process no register is found,

then we simply look for any free register that might be used on all paths simultaneously. Note

that this would match the pessimistic cost analysis outlined above. If still no register is found,

then the redundant load can not be removed.

As far as the insertion points are concerned, the algorithm needs to be able to “materialize”

pointers corresponding to the location redundantly accessed. This means that we need to

extend the above algorithm for checking register availability not only for bypassing redundant

values, but for computing target addresses as well. To this end, our algorithm follows a simple

heuristic that allows pointer materialization by adding an offset from a base register, which

must be alive at some point in the program for every considered insertion point. In general,

materializing pointers is easy for global and stack references, but some opportunities for load

removal may be lost when the algorithm fails to materialize a pointer.

5.5.2 Partial SRE

Our algorithm for elimination of redundant stores is also based in Horspool and Ho’s approach.

However, a new formulation of this method is needed for dealing with stores4. While partial-

4Actually, our definition of redundant store is known in the literature as dead store, which means that we

need to develop a partial dead store elimination algorithm. We use a different name in this case to distinguish

between this type of redundancy and the one we will introduce in Section 5.6.2.

5.5. PARTIAL MRE 93

LRE requires forward availability and insertion of loads as late as possible, a partial-SRE

algorithm will require backward anticipability and insertion of stores as early as possible.

The resulting analysis is next fully described in Section 5.5.3.

Unlike the local approach introduced in Section 5.4.1 for removing stores, the insertion

of new store operations will require to bypass, from the redundancy point, the value to be

written in memory. To this end, we used a similar algorithm as the one described for the

partial-LRE case. The same approach is also used for materializing effective addresses of the

new inserted store operations.

5.5.3 A cost-benefit formulation for partial SRE

In this section we describe the formulation for partial store redundancy elimination that we

advanced in Section 5.5.2, which is based on the Horspool and Ho’s approach for general

partial redundancy elimination [HH97b]. We assume that complete information regarding the

execution frequency of every edge in the flow graph is available. The goal is to minimize the

number of times a store instruction is executed (which is the cost measure) given this profile

information. The analysis has three phases:

1. Determining the lowest cost of making a store fully redundant at various program points

throughout the flow graph, and recording how to achieve such lowest cost.

2. Checking each basic block which contains an instance of the given store instruction, and

determining the net benefit achieved if that instruction were to be removed. This phase

provides as a result: (a) a set of basic blocks containing store operations that should be

deleted, and (b) a set of edges where new instances of the store should be inserted.

3. Finally, checking for register availability in order to compute the final cost of removing

the store instruction, which will be done only if still yields some benefit.

In order to simplify these analyses, we consider occurrences of a store s to a particular

memory location in a flow graph.

5.5.3.1 Cost analysis

In the fist phase we want to determine (a) the lowest cost (measured as the number of dynamic

evaluations) of making s fully redundant at a program point p, and (b) how that lowest cost

can be achieved. Making s fully redundant may require performing insertions of s, either at

point p itself or in the paths that follow from p5. This set of insertions is then known as the

cost set. The initial conditions on which our analysis is based are as follows:

5We will consider insertions of s along flow graph edges only, because this is more general than allowing

insertions only in basic blocks. Later, a simple optimization will merge the resulting fake basic blocks.

94 CHAPTER 5. MEMORY REDUNDANCY ELIMINATION

• Let TRANSP i be true iff basic block i is transparent to store s (i.e., basic block i does

not contain any potential read to location pointed by s).

• Let ANTIC i be true iff store s is locally anticipable on entry to basic block i (i.e., basic

block i contains an instance of store s that is not previously read).

• Let AVAILi be true iff store s is locally available on exit from basic block i (i.e., basic

block i contains an instance of store s that is not subsequently read).

• Let cost : S 7→ N be a function that maps a cost set to its numeric cost, measured as

the number of evaluations of the store s that must be added to the flow graph. Let also

FREQ ij be the execution frequency of edge (i, j). Then function cost is defined as:

cost(S) =

{

∞ if S = ⊥
∑

(i,j)∈S FREQ ij otherwise
(5.3)

Note that a special cost set denoted as ⊥ is required, which is an upper bound on all

cost estimates. It represents a complete lack of information about a solution.

We wish to determine the following cost sets associated with basic blocks in the flow graph:

• Let Cin i be the cost set on entry to basic block i. A solution cost(Cin i) for this set can

be interpreted as the minimum cost of making a store instruction s fully anticipable on

entry to block i.

• Let Cout i be the cost set on exit from basic block i. The meaning of this set is analogous

to the Cin i set.

These sets are then related by using a conventional system of data-flow equations. The

equation for Cin i is as follows:

Cin i =











Cout i if TRANSP i • ANTIC i

∅ if ANTIC i

⊥ otherwise

(5.4)

The first case of the equation says that if basic block i is transparent to store s and does

not contain a locally anticipable instance of s, then we can make s anticipable on entry to

block i by making it anticipable on all outgoing edges from i. However, if block i contains an

instance of s that is anticipable on its entry, then Cin i will be an empty set, which explains

the second case. This is because no insertions of s are needed to make s fully anticipable at

this program point. Finally, the third case means that no insertions anywhere could make s

anticipable at this point.

5.5. PARTIAL MRE 95

The equation needed for Cout i is the following:

Cout i =

{

⊥ if i is the exit node
⋃

j∈succ(i) cij otherwise
(5.5)

where cij is defined as:

cij =

{

{(i, j)} if FREQ ij ≤ cost(Cinj)

Cinj otherwise
(5.6)

The main part of the equation for Cout i says that store s can be made fully anticipable on

exit from basic block i if we pay the price of making it anticipable on each outgoing edge from

i. The lowest cost of making it anticipable on an edge (i, j) is either the least cost of making

s anticipable at entry to block j (i.e., the solution for Cin j) or it is the cost of inserting s

on the edge (i, j). The use of a less-or-equal comparison in the definition of cij , as opposed

to a less-than comparison is deliberate, since it encourages insertions to occur at the earliest

possible point and will therefore avoid unnecessary code motion.

An iterative approach for solving the above data-flow system is guaranteed to converge

to a fix point. If we start by initializing all the Cin and Cout sets to empty, except for the

Cout set of the exit node which should be initialized to ⊥, then the total cost of the sets

(as measured by the cost function) can only grow monotonically while the iteration proceeds.

The sets themselves can both increase and decrease in cardinality, but the computed cost for

a set can never decrease. Since there is an upper bound for each cost set and because the

number of possibilities for an increment in cost is finite, convergence in a finite number of

steps is assured.

5.5.3.2 Benefit analysis

The above section only gives the cost sets, both at entry and exit, associated to every basic

block in the flow graph. The goal now is to obtain (a) a set of blocks that contain redundant

instances of the considered store s, and (b) a set of edges where new instances of store s need

to be inserted.

If a basic block i contains an instance of store s that is not subsequently read (i.e.,

AVAILi = true), then store s is a candidate for elimination. In this is the case, we have:

• The benefit to be derived from eliminating s from i would be FREQ i (i.e., the frequency

of execution of basic block i).

• The set Cout i, as said before, represents the cost of making s fully redundant at exit

from basic block i.

96 CHAPTER 5. MEMORY REDUNDANCY ELIMINATION

Input:

G = (N, E) # control-flow graph

{Cout i | i ∈ N} # set of cost sets

{FREQ
i
| i ∈ N} # set of execution frequencies

{AVAILi | i ∈ N} # set of availabilities (boolean)

Output:

Insert ⊂ E # set of insertion edges

Redund ⊂ N # set of redundancies (blocks)

Method:

Cand := {i | i ∈ N ∧ AVAILi = true}

Insert := ∅

Redund := ∅

while ∃i ∈ N | FREQ
i
> cost(Cout i − Insert) do

Insert := Insert ∪ Cout i

Redund := Redund ∪ {i}

Cand := Cand − {i}

end while

End Method

Figure 5.6: Benefit analysis for partial-SRE.

If we found that this execution frequency is greater than cost(Cout i), we would speed up

the program by inserting s on all edges in the set Cout i and deleting s from i. Note that

there may be another block j where FREQ j ≤ cost(Cout j), but Cout j contains some edges

in common with Cout i. If we have already decided to insert s on the edges in Cout i then the

additional cost of making s fully redundant at exit from block j may be less than FREQ j .

We apply the above algorithm, which is presented in Figure 5.6, to find as many oppor-

tunities as possible where instances of s can be profitably eliminated. A complete version of

this analysis would be combinatorial in nature, which results in having exponential running

time. This simple analysis will find quickly the major code motion opportunities in the flow

graph.

5.5.3.3 Final cost-benefit equations

The last step of the analysis will check the benefit of removing every instance of store s

considering register availability and cost (measured by execution latency) of instructions.

First, we compute the benefit of removal as follows:

B = lat store × BB freq
red (5.7)

As we can see, the benefit will depend on the latency of the store to be removed weighted

by its execution frequency. Usually, store instructions are assumed to have no latency, since

5.6. MORE AGGRESSIVE MRE TECHNIQUES 97

they have no true dependencies with the following non-memory instructions. However, we

assume in this analysis that the cost of executing a store is greater than the cost of executing

a move operation (which is used for bypassing the value to be stored to the program points

of new insertions). We make such assumption in order to exploit hidden benefits of removing

stores, such as exposing dead code for elimination. The cost is then as follows:

C = latmove × BB freq
red + lat store ×

m
∑

i=1

EDG freq
i (5.8)

The cost C will consider the cost of bypassing values (i.e., adding moves) and the cost

of new insertion (i.e., adding stores). Bypassing the value to be stored needs of a previous

analysis for computing register availability, followed by a phase for choosing the best register

to be used as value container (see Section 5.5.1). This cost is a pessimistic upper bound,

since the algorithm would avoid some of the move instructions. However, if the algorithm for

choosing available registers fails, some opportunities for store removal may be lost.

Finally, after we compute the above equations, we apply SRE only if the benefit of elimi-

nating the store instruction is greater than its cost:

SRE ⇔ C < B (5.9)

The use of a less-than comparison in the definition instead of a less-or-equal is deliberate,

since it tries to avoid unnecessary code motion.

5.6 More aggressive MRE techniques

Although the strategies seen so far are able to catch a high percentage of memory redundancy,

they still fail in some cases. In this section we extend our redundancy elimination approaches

with a couple of additional techniques, so that a much higher percentage of binary redundancy

can be detected and eliminated.

5.6.1 A path-sensitive formulation for partial LRE

Figure 5.7 shows an example where, even considering partially redundant loads, our algo-

rithms are not able to find out the existing redundancy between load instructions L1 and L2.

The reason is that the default alias analysis we use for disambiguating memory references

(see Section 2.2.3), like most analyses used in optimizing compilers, is unable to recognize

memory dependencies in a path-sensitive way. We call path-sensitive redundancy the type of

redundancy that exists only along some (but not all) execution paths leading to the redundant

instruction. Clearly, a lot of redundancy is path sensitive.

To remove path-sensitive redundancy, unfortunately, the optimizer has to pay the expo-

nential price of optimizing each path separately. The reason why analyzers avoid this situation

98 CHAPTER 5. MEMORY REDUNDANCY ELIMINATION

move r1 ,r0
L1

 ...

 ...

move r0 ,r2

load (p0),r1

load (p0),r2L2

 ...

 ...
load (p0),r0
add p0,8,p0

 ...

 ...

−−−−−−−−−−−−−

 ...

 ...
load (p0),r1L1

 ...

 ...
load (p0),r2L2

 ...

 ...
add p0,8,p0

Figure 5.7: Elimination of a path-sensitive redundant load. A path-sensitive memory disam-

biguation mechanism is needed to detect the existing redundancy.

is that there is an exponential number of paths, even in a program with no loops [Bod99].

This is the reason why analyzers treat paths together, summarizing their results whenever

paths meet, therefore diluting optimization opportunities. Unfortunately, paths explode ex-

ponentially not only in analysis, but also in program transformation, when we want to exploit

the optimizable paths. As an example, another solution to enable optimization in Figure 5.7

might be to physically separate the considered paths via code duplication, but this duplication

may also cause an exponential code growth, thus lowering performance.

Previous research (see Section 5.8) showed that existing MRE techniques are mainly based

on path-insensitive information, which causes many MRE opportunities to be lost. In this

section, we present a new technique for eliminating memory redundancies in a path-sensitive

fashion. The key to our new proposal is to extend the alias analysis we proposed in Sec-

tion 4.2.2 to recognize path-sensitive memory redundancies, and then use this information to

guide a more accurate MRE algorithm. We will use path-sensitive information only when

applying partial-LRE, since expectations are higher for load redundancy.

The final step consists in adapting our implementation of partial-LRE, which was presented

in Section 5.5.1, by modifying the original Horspool and Ho’s equations [HH97b] in order to

deal with the path-sensitive disambiguation we presented in Chapter 4. Actually, the only

change is related to the cost of making the candidate available on edge (i, j) of the flow graph:

cij =











{(i, j)} if AVPATH ij (∗)

{(i, j)} if FREQ ij ≤ cost(Cout i)

Cout i otherwise

(5.10)

5.6. MORE AGGRESSIVE MRE TECHNIQUES 99

 ...

 ...

 ...
L0

S0 store r0,(p0)−−−−−−−−−−−−−

load r0,(p0)

Figure 5.8: Elimination of a dead store.

From the new (∗) case, a new insertion in edge (i, j) is now required if the candidate load

is not available on such edge. The new availability on edge property (i.e., AVPATH ij) results

form the application of path-sensitive disambiguation as presented in Definition 4.2.5 (see

Section 4.2.2 in Chapter 4).

To the best of our knowledge, only Bod́ık and Anik [BA98, Bod99] described the problem

of optimizing path-sensitive redundancies by using a new representation called Value Name

Graph (VNG). However, it is not obvious that using the VNG for optimizing executable code

would scale up to problems of this size. As far as we know, the scheme for path-sensitive

disambiguation developed here is the first attempt of exposing path-sensitive memory redun-

dancies by simply extending the memory disambiguation algorithm as we did in Section 4.2.2.

5.6.2 Eliminating dead stores

Dead code elimination (see Section 2.3.1.2) removes instructions that can be proven to have

no effect on the result of a computation [ASU86a]. This is an important optimization, not

only because some programs contain dead code as originally written, but also because many

of the other optimizations create dead code. For this reason, it is usually applied several times

during an optimizing compilation.

As far as optimizing executable code is concerned, implementation of dead code elimi-

nation is often solely based on register liveness information, due to the fact that memory

disambiguation is one of the weak points of object code modification (as we already discussed

in Chapter 4). As a result, neither traditional dead code removal nor MRE approaches seen so

far will detect useless store instructions writing into a memory cell the same value previously

read from the same location, which has not been modified in the meantime. An example of

dead store and its elimination is shown in Figure 5.8.

Dead store elimination (DSE) may be an important optimization at executable code level

because other optimizations produce a lot of dead stores [Muc97m]. As an example, proce-

dure inlining exposes useless stack management (specially store instructions), which can be

eliminated. Combining MRE and dead code removal may also produce load/store pairs as

100 CHAPTER 5. MEMORY REDUNDANCY ELIMINATION

MRE Distance Description Sections

Basic Short LRE and SRE within EBBs 5.4.1

Full Full-LRE, Full-SRE 5.4.2

Partial Long Partial-LRE, Partial-SRE 5.5.1, 5.5.2

Complete Path-sensitive LRE, Partial-SRE, DSE 5.6.1, 5.5.2, 5.6.2

Table 5.1: Description of the different MRE algorithms under evaluation.

shown in Figure 5.8. Even without such optimizations, the potential number of dead stores is

interesting enough, as we already showed in Figure 5.1b, although the percentages presented

did not distinguish between dead stores and “normal” computation.

Our approach for eliminating dead stores is based on simple heuristics by using use-def

chains. We first look for store instructions (a) having a load operation as the definition

instruction for its source register, and (b) no other store between them may be in conflict

with the considered memory location. In such a case, the store may be safely removed. We

also employ a basic liveness analysis for stack locations to eliminate useless stores to the stack.

5.7 Evaluation

In this section, we describe the process we have followed for evaluating the effectiveness of the

MRE techniques proposed in this chapter.

We have implemented the MRE approaches presented in Table 5.1 (and described in the

previous sections) on the Alto framework we described in Section 3.2.1. The algorithms have

been integrated with the rest of optimizations carried out by Alto, such as constant/copy

propagation, dead/unreachable code elimination, inlining, etc. This approach ensures not

only maximizing the benefits coming from MRE itself, but also enhancing the effect of the

rest of Alto optimizations.

The MRE integration has been performed within the optimization scheme presented in

Section 3.2.1.1, by following the next guidelines:

• We include into the base optimizations the short-distance MRE on extended basic blocks

(i.e., basic-MRE, see Table 5.1). The reason is that, since computing the data-flow

equations and performing the redundancy searches for an EBB is relatively cost-effective,

it can be applied several times during the optimization process.

• Within the one-time optimizations, we apply one of the long-distance MRE algorithms

(see Table 5.1): (a) full-MRE, (b) partial-MRE, both performing LRE and SRE sep-

arately; or (c) complete-MRE. These are expensive optimizations and, therefore, we

perform them only once. Since the formulation of our algorithms is intraprocedural,

5.7. EVALUATION 101

go m88ksim gcc compress li ijpeg perl vortex GMean

Benchmark

60

65

70

75

80

85

90

95

100

(a
) D

yn
am

ic
 n

um
be

r
of

 lo
ad

s (
%

)

go m88ksim gcc compress li ijpeg perl vortex GMean

Benchmark

60

65

70

75

80

85

90

95

100

(b
) D

yn
am

ic
 n

um
be

r
of

 st
or

es
 (%

)

Basic
Full
Partial
Complete

Figure 5.9: Effect of different MRE degrees in number of loads and stores at run time. The

baseline (i.e., 100%) is Alto/Inline binaries without any MRE at all.

procedure inlining is previously performed by default so that our MRE proposals can

have an interprocedural behavior.

To maximize the benefits of the different long-distance MRE optimizations, we apply

the analysis phase of MRE to every function and keep a “per-function” list of all the

candidates for removal sorted by net benefit. These benefits are recomputed every time

that a candidate is removed, thus sorting the rest of candidates again. Then, the “most

redundant” references are the ones that we try to remove first, when the chance of

finding available registers inside the function is higher. Finally, to keep the running

time of the corresponding MRE algorithm under control we use a φ value of 0.75 (see

Section 3.2.1.3). The idea is to apply MRE only to the “hot references” in the program.

The benchmarks we have used for our experiments were presented in Section 3.3, and they

were generated following the methodology described in Section 3.4. For our experiments, we

have chosen the Alto/Inline binaries as a baseline (that is, the most optimized binaries we

have), whose characteristics and generation procedure were described in Section 3.3.1.

5.7.1 Reduction in number of dynamic references

We start evaluating the effectiveness of the MRE algorithms under study by comparing the

number of dynamic loads and stores executed with respect to the program baseline. To

get these results, we ran our benchmark suite using the corresponding simulation inputs

(see Table 3.2 in Section 3.3) on top of the sim-profile simulator of the SimpleScalar

toolset [ALE02].

The two graphs in Figure 5.9 present the reduction in number of dynamic loads and stores

respectively for each benchmark. As it can be seen, all programs do show improvements typ-

ically around 5–20% for loads and 1–5% for stores, with some better cases such as m88ksim

102 CHAPTER 5. MEMORY REDUNDANCY ELIMINATION

2 4 8 16 32 64 128 256 512 1024

(a) Redundancy window size (entries)

0

25

50

75

100

D
yn

am
ic

 lo
ad

 r
ed

un
da

nc
y

(%
)

go
m88ksim
gcc
compress
li
ijpeg
perl
vortex
Average

0 1 2 3 4 5 6 7 8 9 10

(b) Percentage of static loads (up to 10%)

0

25

50

75

100

D
yn

am
ic

 lo
ad

 r
ed

un
da

nc
y

(%
)

Figure 5.10: Dynamic amount of load redundancy after complete-MRE: (a) vs. redundancy

window size, and (b) vs. percentage of static loads, for a 1024-entry redundancy window.

and compress. Figure 5.9a also shows that working only on EBBs is not enough to catch the

load redundancy we presented in Section 5.2 (except maybe for perl and vortex), while tar-

geting LRE to catch distant redundancy yields significant improvements for every benchmark.

On the other hand, the results in Figure 5.9b show that reduction in dynamic stores is only

important when DSE is applied, due to the fact that store redundancy is much lower than

load redundancy, as we showed in Section 5.2. Program m88ksim is, however, an interesting

exception. The reason is that, as LRE is performing so well removing redundant loads, a high

percentage of stores become now redundant. This fact indicates that removing loads is crucial

for removing stores, since it exposes “hidden” store redundancy.

The results we have obtained are consistent with those observed in Tables 2 and 3 in Lo

et al. [LCK+98], although we achieve rather less benefits on load removal. We believe there

are two main reasons for that: (a) we do not have the advantage of high-quality alias analysis

as they do, and (b) we are working on final machine code while they were measuring reduction

in dynamic loads before register allocation and code generation.

Finally, Figure 5.10 presents two graphs showing the percentage of load redundancy re-

maining after applying complete-MRE6, which can be compared to the results presented in

Figure 5.1. As we can see, MRE achieves around a 20% reduction in dynamic load redundancy,

both varying the redundancy window and considering the percentage of static loads.

5.7.2 MRE breakdown of static references

In order to better understand the above results, it is worth looking at the internals of our

algorithms. Table 5.2 and Table 5.3 break down the opportunities for load and store removal

respectively, for each of the MRE algorithms under evaluation. For each algorithm, three

classes are presented: Can, Ben and Rem. Class “Can” indicates the number of loads/stores

6Results for store redundancy are not presented, since reduction levels are not significant in this case.

5.7. EVALUATION 103

Benchmark Brk Basic Full Partial Complete

Can 547 (1.00) 712 (1.30) 798 (1.46) 1043 (1.91)

099.go Ben 457 (1.00) 587 (1.28) 610 (1.33) 823 (1.80)

Rem 448 (1.00) 540 (1.21) 562 (1.25) 781 (1.74)

Can 606 (1.00) 731 (1.21) 814 (1.34) 870 (1.44)

124.m88ksim Ben 517 (1.00) 621 (1.20) 677 (1.31) 732 (1.42)

Rem 499 (1.00) 603 (1.21) 659 (1.32) 714 (1.43)

Can 2802 (1.00) 2868 (1.02) 3040 (1.08) 3446 (1.23)

126.gcc Ben 1893 (1.00) 1952 (1.03) 2029 (1.07) 2365 (1.25)

Rem 1840 (1.00) 1897 (1.03) 1974 (1.07) 2310 (1.26)

Can 268 (1.00) 291 (1.09) 332 (1.24) 344 (1.28)

129.compress Ben 226 (1.00) 247 (1.09) 291 (1.29) 302 (1.34)

Rem 217 (1.00) 238 (1.10) 273 (1.26) 284 (1.31)

Can 1192 (1.00) 1219 (1.02) 1783 (1.50) 2310 (1.94)

130.li Ben 672 (1.00) 811 (1.21) 1279 (1.90) 1721 (2.56)

Rem 654 (1.00) 793 (1.21) 1261 (1.93) 1703 (2.60)

Can 434 (1.00) 446 (1.03) 484 (1.12) 568 (1.31)

132.ijpeg Ben 388 (1.00) 400 (1.03) 431 (1.11) 512 (1.32)

Rem 379 (1.00) 388 (1.02) 419 (1.11) 474 (1.25)

Can 1451 (1.00) 1471 (1.01) 1521 (1.05) 1550 (1.07)

134.perl Ben 1259 (1.00) 1276 (1.01) 1313 (1.04) 1337 (1.06)

Rem 1230 (1.00) 1247 (1.01) 1284 (1.04) 1308 (1.06)

Can 1992 (1.00) 1998 (1.00) 2252 (1.13) 2336 (1.17)

147.vortex Ben 1857 (1.00) 1863 (1.00) 2105 (1.13) 2184 (1.18)

Rem 1818 (1.00) 1824 (1.00) 2066 (1.14) 2145 (1.18)

Can 9292 (1.00) 9736 (1.05) 11024 (1.19) 12467 (1.34)

Total Ben 7269 (1.00) 7757 (1.07) 8735 (1.20) 9976 (1.37)

Rem 7085 (1.00) 7530 (1.06) 8498 (1.20) 9719 (1.37)

Table 5.2: Static MRE on loads for our benchmark suite. Categories stand for Can: number of

candidates, Ben: opportunities after applying cost-benefit analysis, and Rem: loads actually

removed. Relative numbers with respect to basic-MRE are also presented in parenthesis.

considered by the algorithm as candidates for removal. Note that this number is computed

after memory disambiguation has determined that there are no conflicting aliases which pre-

vent MRE. The second class, “Ben”, are the number of candidates remaining after applying

our cost-benefit analyses. For example, the large drop in Table 5.2 for gcc indicates that the

costs of removing those loads out-weight the expected benefits. Finally, class “Rem” indicates

the number of static loads/stores actually removed. The differences between class “Ben” and

“Rem” are attributed to the lack of registers when bypassing the candidate values. The table

also presents relative numbers with respect to basic-MRE (i.e., the first column), to give an

numeric estimator of the improvement of every MRE algorithm.

As we can see, the lack of registers is directly responsible for only a minority of the “lost

opportunities”, thus suggesting that register pressure is far from being the main problem in

applying MRE. The effect is even greater in Table 5.3 because register availability is less

104 CHAPTER 5. MEMORY REDUNDANCY ELIMINATION

Benchmark Brk Basic Full Partial Complete

Can 27 (1.00) 28 (1.04) 40 (1.48) 389 (14.41)

099.go Ben 27 (1.00) 28 (1.04) 40 (1.48) 389 (14.41)

Rem 27 (1.00) 28 (1.04) 40 (1.48) 389 (14.41)

Can 74 (1.00) 89 (1.20) 110 (1.49) 197 (2.66)

124.m88ksim Ben 74 (1.00) 89 (1.20) 110 (1.49) 197 (2.66)

Rem 74 (1.00) 89 (1.20) 110 (1.49) 197 (2.66)

Can 42 (1.00) 44 (1.05) 46 (1.10) 531 (12.64)

126.gcc Ben 42 (1.00) 44 (1.05) 46 (1.10) 531 (12.64)

Rem 42 (1.00) 44 (1.05) 46 (1.10) 531 (12.64)

Can 5 (1.00) 5 (1.00) 9 (1.80) 51 (10.20)

129.compress Ben 5 (1.00) 5 (1.00) 9 (1.80) 51 (10.20)

Rem 5 (1.00) 5 (1.00) 9 (1.80) 51 (10.20)

Can 74 (1.00) 91 (1.23) 134 (1.81) 238 (3.22)

130.li Ben 74 (1.00) 91 (1.23) 107 (1.45) 211 (2.85)

Rem 74 (1.00) 91 (1.23) 107 (1.45) 211 (2.85)

Can 20 (1.00) 20 (1.00) 23 (1.15) 109 (5.45)

132.ijpeg Ben 20 (1.00) 20 (1.00) 23 (1.15) 109 (5.45)

Rem 20 (1.00) 20 (1.00) 23 (1.15) 109 (5.45)

Can 56 (1.00) 56 (1.00) 56 (1.00) 266 (4.75)

134.perl Ben 56 (1.00) 56 (1.00) 56 (1.00) 266 (4.75)

Rem 56 (1.00) 56 (1.00) 56 (1.00) 266 (4.75)

Can 77 (1.00) 78 (1.01) 89 (1.16) 237 (3.08)

147.vortex Ben 77 (1.00) 78 (1.01) 89 (1.16) 237 (3.08)

Rem 77 (1.00) 78 (1.01) 89 (1.16) 237 (3.08)

Can 375 (1.00) 411 (1.10) 507 (1.35) 2018 (5.38)

Total Ben 375 (1.00) 411 (1.10) 480 (1.28) 1991 (5.31)

Rem 375 (1.00) 411 (1.10) 480 (1.28) 1991 (5.31)

Table 5.3: Static MRE on stores for our benchmark suite. Categories stand for Can: number of

candidates, Ben: opportunities after applying cost-benefit analysis, and Rem: stores actually

removed. Relative numbers with respect to basic-MRE are also presented in parenthesis.

important when eliminating store instructions. This is the reason why there is no drop for

stores on class “Rem”. As far as load instructions are concerned, the largest drop corresponds

to class “Ben”, where our cost-benefit analysis discards many opportunities for load removal

due to several reasons. First, as we note in Section 5.4.1, not every redundant load is profitable

for removal. Besides, as the short-distance LRE is carried out several times in the process,

some of these non-profitable loads that do not change its cost-benefit status are repeatedly

counted. Another reason relies on the fact that, since our cost equations are conservative, they

always assume that move instructions will be inserted when needed, regardless of whether a

later copy propagator will be able to remove them or not.

In general, Table 5.2 and Table 5.3 show that every MRE algorithm is important when

removing loads, while for store instructions the opportunities come from removing dead stores.

The conclusion to be drawn is that, probably, we should focus future work on improving the

5.7. EVALUATION 105

Category Description Sections

Base no MRE, no inlining (i.e., Alto/Base) 3.3.1

Inline no MRE, inlining (i.e., Alto/Inline) 3.3.1

noInline Complete-MRE, no inlining 5.7.3

noInline’ Complete-MRE, no inlining (without calling overhead) 5.7.3

Complete Complete-MRE, inlining 5.7

Table 5.4: Description of the binaries obtained with/without applying MRE and inlining.

The baseline will be Inline binaries (i.e., Alto/Inline binaries without any MRE at all).

number of candidates that our MRE algorithm targets (i.e., the “Can” class), to fully obtain

the potential of the MRE optimizations.

5.7.3 Effects of procedure inlining on MRE

Since the formulation of our MRE algorithms is intraprocedural, procedure inlining is previ-

ously performed by default so that our MRE proposals can have an interprocedural behavior

and obtain benefit from it. However, it would be interesting to measure how procedure in-

lining will affect our analyses and MRE optimizations in “hiding” memory redundancy to

be discovered and eliminated. This does not only include interprocedural redundancy, but

also intraprocedural redundancy discovered after obtaining interprocedural information (e.g.,

when two function arguments are pointers which point to exactly the same location).

Table 5.4 presents the different benchmark sets we use for evaluating the effect of inlin-

ing on MRE, which is done by measuring the reduction in number of dynamic loads and

stores presented in the two graphs of Figure 5.11, respectively. These binaries result from en-

abling/disabling MRE and procedure inlining in Alto when optimizing our benchmark suite.

The Base and Inline categories correspond to the Alto/Base and Alto/Inline sets we already

evaluated in Section 3.3.1. Actually, data in Figure 5.11 for these sets was already presented

in Figure 3.4. Category noInline means that complete-MRE is performed with no previous

procedure inlining at all. However, as we will explain next, inlining by itself is able to re-

move some loads and stores, which makes difficult to compare references between programs

with and without inlining. Therefore, we introduce the noInline’ category, which is the same

as noInline, but we manually subtract from the final number of loads and stores those that

were removed thanks to inlining in the baseline programs, without any MRE at all. We

perform such “trick” since it would be very unfair to compare removed references across dif-

ferent baselines. Finally, the Complete category corresponds to the complete-MRE already

presented in Figure 5.9 (including procedure inlining), which has been added to the figure

just for comparison purposes7.

7To be consistent with previous sections, we maintain the Alto/Inline binaries as the baseline in Figure 5.11.

106 CHAPTER 5. MEMORY REDUNDANCY ELIMINATION

go m88ksim gcc compress li ijpeg perl vortex GMean

Benchmark

60

70

80

90

100

110

120

(a
) D

yn
am

ic
 n

um
be

r
of

 lo
ad

s (
%

)

go m88ksim gcc compress li ijpeg perl vortex GMean

Benchmark

60

70

80

90

100

110

120

(b
) D

yn
am

ic
 n

um
be

r
of

 st
or

es
 (%

)

Basic
noInline
noInline’
Complete

Figure 5.11: Effect of procedure inlining on the MRE algorithms, measured as number of

loads and stores at run time. The baseline is Alto/Inline binaries without any MRE at all.

From the results presented in Figure 5.11 we can observe first that programs on the Base

benchmark set execute more loads and stores than the Inline baseline (i.e., relative numbers

are higher than 100%). The reason is that, when inlining is applied, a significant percentage

of calling convention overhead can be removed, which includes saving temporary registers in

the procedure stack frame. As a result, Alto/Inline binaries already include some form of

useless load and store elimination. The fact that this removal (i.e., elimination of unnecessary

references due to calling convention overhead when applying inlining) is already included as a

baseline in all our experiments makes our results even more valuable (i.e., the ones presented

in Figure 5.9). A second thing to note is that noInline binaries achieve in general better load

reductions than the inlined baseline programs. However, they are really far away from the

reductions obtained when applying complete-MRE, although this distance is reduced when

considering the “estimated” noInline’ programs. This result seems to indicate that there

exists a significant amount of interprocedural memory redundancy in these programs, which

points us out that either procedure inlining or an intraprocedural MRE formulation is needed

for eliminating redundant references.

5.7.4 Compilation time

Related to how procedure inlining affects MRE, we can see in Figure 5.12 the relative compi-

lation time of Alto when applying the MRE algorithms as presented in Table 5.1, with respect

to our baseline. We also include in the figure the data corresponding to the application of

complete-MRE without any procedure inlining at all. First, Figure 5.12 shows that global

MRE schemes do not come without a cost, specially on those programs where inlining was

widely applied and the percentage of hot basic blocks is significant. In general, procedure

inlining dramatically increases MRE compilation time, while for the non-inlined binaries (i.e.,

the right bars) the compile-time overhead of MRE is more moderate. Another interesting ob-

5.7. EVALUATION 107

go m88ksim gcc compress li ijpeg perl vortex GMean

Benchmark

0

100

200

300

400

500

600

700
C

om
pi

la
tio

n
tim

e
in

cr
ea

se
 (%

)

Basic
Full
Partial
Complete
noInline

Figure 5.12: Effect of applying MRE in Alto compilation time, for the SPECint95 programs.

The baseline is Alto/Inline binaries without any MRE at all.

servation is that, even though the path-sensitive disambiguation included in complete-MRE

seemed to be very costly (see Section 4.2.2), the used heuristics prove to be very effective in

not increasing compilation time too much with respect the partial-MRE algorithm.

5.7.5 Speed up using MRE

Counting the number of removed references is certainly of interest to understand the effec-

tiveness of each algorithm. However, the final measure of interest is whether execution time

is reduced or not. Figure 5.13 presents the relative execution time of our benchmark suite

after the different MRE algorithms, using the execution inputs (see Table 3.2 in Section 3.3).

These results were recorded by running the benchmark suite in our target platform, as we

described in Section 3.1.3.

From the results presented in Figure 5.13 we can see that, of course, since memory ref-

erences are only a fraction of all instructions executed in a program, reduction in execution

time is smaller than the corresponding reduction in number of dynamic references. Thus,

looking at the geometric mean, the 18% (8%) reduction in dynamic loads (stores) observed in

Figure 5.9 only translates into a 10% reduction in execution time. Overall, however, the ob-

served decrease for all programs shows that (a) we have removed some references that indeed

were on the program’s critical path and, therefore, contributed heavily to final execution time,

and (b) other optimizations carried out by the optimizer do take advantage of the memory

instructions removed, thus resulting in more efficient code.

By looking at every benchmark, we can see that MRE yields important reductions for the

majority of the programs, while for programs gcc and ijpeg the obtained reductions were

relatively modest. Nevertheless, the cost in compilation time on these cases was not very

108 CHAPTER 5. MEMORY REDUNDANCY ELIMINATION

go m88ksim gcc compress li ijpeg perl vortex GMean

Benchmark

70

75

80

85

90

95

100
R

el
at

iv
e

ex
ec

ut
io

n
tim

e
(%

)

Basic
Full
Partial
Complete

Figure 5.13: Effect of different MRE degrees in actual execution time. The baseline is

Alto/Inline binaries without any MRE at all.

high either. Finally, note that every MRE algorithm seems to be important for reducing the

final execution time, and that choosing which MRE method has greatest benefits is strongly

dependent on which benchmark it is being applied.

5.7.6 Microarchitecture impact of using MRE

It would be interesting to get an accurate measure of the differences at the processor-core

level of applying the MRE algorithms. To this end, we have simulated our benchmark suite

on the sim-alpha simulator we introduced in Section 3.2.2 [DBK01], using the corresponding

simulation inputs (see Table 3.2 in Section 3.3). This out-of-order simulator faithfully mod-

els a Compaq/Alpha 21264 configuration that matches our target environment presented in

Section 3.1.1.

Three interesting points can be pointed out by analyzing the low-level internal statistics

produced by the simulator:

• Figure 5.14 presents the dynamic reduction in number of replay traps for each benchmark

with respect to the original baseline8. As we can observe, the number of replay traps

is drastically reduced (up to 70%), which heavily contributes to reduce final execution

time. However, there are few cases where replay traps are introduced, being program

perl after applying partial-MRE the worst case. We believe this is the reason why this

program showed a small slowdown in Figure 5.13.

8A memory replay trap occurs in the Alpha 21264 when a load is found to have issued to memory out of

order with respect to an older memory operation that overlaps [Com99b]. If this is the case, the instruction is

aborted (along with all newer instructions) and restarted from the fetch stage of the pipeline.

5.7. EVALUATION 109

go m88ksim gcc compress li ijpeg perl vortex GMean

Benchmark

0

10

20

30

40

50

60

70

80

90

100
D

yn
am

ic
 n

um
be

r
of

 r
ep

la
y

tr
ap

s (
%

)

Basic
Full
Partial
Complete

Figure 5.14: Effect of different MRE algorithms in number of replay-traps. The baseline is

Alto/Inline binaries without any MRE at all.

• Second, miss-ratio at L1 data-cache was slightly higher when applying MRE, due to

the fact that, as we are removing memory redundancies, less “hit” memory accesses

are requested to the memory hierarchy. Difference, nonetheless, is under 1% for all

programs.

• Another difference is in the number of instructions per cycle (IPC) reached when ap-

plying MRE, which was also slightly higher. The reason for this effect is that MRE is

breaking memory dependencies by turning them into register dependencies, which are

easier solved by the hardware, and thus increase IPC.

Finally, the relative execution times we obtained from these simulations, which will be

also presented in next section, are quite consistent with the results presented in Figure 5.13.

Small differences are attributed to simulation inaccuracy, as shown in [BS98].

5.7.7 Effects of load latency

Another interesting measure to gauge the importance of the MRE transformation is to see

what will happen in the future, as L1-cache latency continues to increase. Current CPUs

are typically at a 2-cycle or 3-cycle load latency and the trend is towards hyper-pipelining

and, therefore, longer latencies. In this section we re-simulated all the benchmarks on the

simulator we used in the previous section, changing the L1-cache latency from its value of

3 cycles up to 4 and 5 cycles. Furthermore, for each experiment we also re-compiled every

benchmark, since all our cost-benefit analyses are dependent on the latency of the loads. At

larger latencies, it is more likely that the cost-benefit equations tend to favor the substitution

of a load by one or more “move” instructions.

110 CHAPTER 5. MEMORY REDUNDANCY ELIMINATION

go m88ksim gcc compress li ijpeg perl vortex GMean

Benchmark

70

80

90

100

110

120

130
R

el
at

iv
e

si
m

ul
at

ed
 c

yc
le

s (
%

)

5-cycle
4-cycle
3-cycle

Figure 5.15: Effects of load latency, from 3- to 5-cycle hit latency. The left bars correspond to

Alto/Inline binaries without any MRE at all, being the baseline the 3-cycle latency execution.

The right bars correspond to binaries obtained after applying complete-MRE.

The results can be seen in Figure 5.15, where we present data for different latencies

with/without applying complete-MRE in our benchmark suite. The baseline is Alto/Inline

binaries without any MRE at all, considering a 3-cycle latency for loads. The first thing to

observe is that, as we mentioned in the previous section, relative execution times obtained from

these simulations for the 3-cycle latency is quite consistent. Another obvious observation is

that the longer the latency the worse the execution time of all programs. However, as latency

increases, the importance of performing MRE also grows. Consider, for example, the cases

of m88ksim and compress. After applying complete-MRE, the execution time at a 5-cycle

latency is even better than the original execution time using a 3-cycle latency. In general, our

results show that if we apply MRE, we can increase the latency of the data cache in one cycle

without any performance degradation at all.

5.8 Related work

While a number of systems have been described for optimization of executable code (see

Section 2.4), to the best of our knowledge, any elimination of redundant memory operations

carried out by these systems is limited to fairly simple removal.

Memory redundancy elimination can be seen as a particular case of Partial Redundancy

Elimination (PRE), where the expressions to be considered for removing are only memory

operations. PRE [MR79, KRS94a, CCK+97] is a well-known scalar optimization that sub-

sumes various ad hoc code motion optimizations (such as common subexpression elimination

and loop invariant code motion) by attempting to remove redundancies that occur only on

5.9. CONCLUSIONS 111

some control-flow paths of a program. Horspool and Ho [HH97b] described a speculative for-

mulation of PRE based on a cost-benefit of the flow graph, by using edge profiles (our current

implementation of distant MRE optimizations is based on their equations). This approach

has been generalized to provide optimal solutions both for time [CX03] and space [SHK04].

Gupta, Berson and Fang [GBF98] extended this PRE algorithm by using path profiles. Fi-

nally, Bod́ık, Gupta and Soffa [BGS98] developed a profile driven PRE approach using path

profiles and control-flow restructuring, which is complete. However, as they replicate regions

of code when needed, some code growth also results.

Register Promotion allows scalar values to be allocated to registers for regions or their

lifetime, where the compiler can prove that there are no aliases for the value. Promotion carries

out elimination of both redundant loads and stores [CCK90]. Cooper and Lu [CL97] examined

promotion over loop regions. Their results indicate that the main benefit of promotion comes

from removing store operations. Lo et al. [LCK+98] use a variant of SSA-PRE to remove

unnecessary loads and stores over any program region. However, they do not consider the

effect of spilling because they simulate with an infinite symbolic register set before register

allocation. Both works only counted the improvement compared to the total number memory

instructions. Postiff, Greene and Mudge [PGM00b] presented a register promotion algorithm

at link time, although their algorithm does not use any PRE approach at all. They also

present numbers for long register files, but the gain in this case comes from several ad hoc

techniques for promoting globals and constants into a dedicated subset of the register file.

The problem of path-sensitive redundancies has been described by Bod́ık and Anik [BA98,

Bod99]. They propose a new representation called Value Name Graph (VNG) to be used for

general path-sensitive optimizations. However, it is not obvious that using the VNG for

optimizing large programs would scale up to problems of this size. By using the VNG, Bod́ık,

Gupta and Soffa [BGS99] developed a load redundancy analysis and design a method for

evaluating its precision, although their paper is only focused in the analysis and they do not

perform any elimination of redundant loads at all.

5.9 Conclusions

In this chapter we have shown that, even although the compiler may have optimized a pro-

gram aggressively, a significant number of redundant memory references appear in the final

executable file. This memory redundancy does not only appear due to how programmers write

source code, but also due to limitations in the compilation model of traditional compilers. To

address these issues, we have presented a set of different algorithms to be applied in the

context of binary or link-time optimizers, which are targeted to discover memory operations

that are redundant and can be safely removed in order to speed up a program. We call this

optimization Memory Redundancy Elimination (MRE).

112 CHAPTER 5. MEMORY REDUNDANCY ELIMINATION

First, we have quantify how much memory redundancy is present in executable programs,

and shown that around 75% of load references (10% of store references) can be considered

redundant because they access memory locations that have already been referenced within a

short dynamic distance (less than 256 references away in our dynamic window experiments).

Then, we presented several profile-based MRE algorithms targeted at optimizing away these

redundancies:

• The first MRE algorithm is targeted at catching short-distance redundancy at a very

low compile-time cost, by looking at redundancy within extended basic blocks. this

algorithm is able to remove less than 4% of all loads (1% of all stores) and, therefore,

yields reductions below 3% in execution time. The results seem to indicate that an

extended basic block is too small of a region to catch the redundancy measured in our

redundancy experiments.

• The second algorithm presented, MRE for removing fully/partially redundant references

over regions of arbitrary control-flow complexity, yields an average reduction of a 15%

in dynamic loads (6% in dynamic stores). This results in a reduction over the baseline

of 8% in execution time, although its application may increase significantly compilation

time on those programs where procedure inlining has been aggressively applied.

• Finally, complete-MRE (the third algorithm discussed) couples the application of a new

technique for eliminating redundant loads in a path-sensitive fashion, with a simple

set of heuristics for removing dead stores. This combination performs a small increase

in the number of dynamic references removed (18% for loads, 8% for stores). Despite

this small increase, complete-MRE does detect some of the critical references and thus

reduces execution time up to a 10%. Besides, it carries almost no optimization-time

overhead with respect to a partial-MRE solution.

We have provided exhaustive experimental results in order to measure the effectiveness of

the MRE algorithms under study. Thus, we ran the resulting optimized programs on top of

a cycle-by-cycle simulator to give accurate measurements of the impact of applying MRE at

the processor-core level. We also tested our optimizations assuming different cache latencies,

and showed that, if latencies continue to grow, the load redundancy elimination will become

more important. Overall, our results show that a significant amount of memory redundancy

can indeed be eliminated, which translates into important reductions in execution time.

Chapter 6

Conditional branch redundancy

elimination

In this chapter we continue revisiting the problem of redundancy in binary programs, by rea-

soning about the other big source of binary redundancy. We discuss this time the discovery

and elimination of redundant conditional branches in the context of a link-time optimizer, an

optimization that we call Conditional Branch Redundancy Elimination (CBRE). First, we

motivate this work by measuring a potential upper bound on how much conditional branch

redundancy is present in executable programs. We then propose several CBRE algorithms tar-

geted at optimizing away these redundancies. Finally, we provide experimental results showing

the effects of applying CBRE, including accurate measurements of the impact in code growth.

113

114 CHAPTER 6. CONDITIONAL BRANCH REDUNDANCY ELIMINATION

6.1 Introduction

Branch predictors [Smi81, YP92, CG94, LCM97] are the best known hardware proposals for

handling the problem of control dependencies in today’s superscalar processors. As we pointed

out in Section 1.1.1, one of the reasons why branch predictors are effective is because they ex-

ploit the dynamic correlation among branches. That is, they exploit the dynamic conditional

branch redundancy existing in programs. Furthermore, recent research in branch predic-

tion [Kra94, Pat95, YGS95, SLM96] and elimination of conditional branches [MW95, BGS97]

has reported the existence of significant amounts of such branch correlation, presenting op-

portunities for optimizations when these branches are found to be statically correlated or

redundant. A conditional branch is redundant along a path if the branch outcome can be de-

termined along that path at compile time, from prior statements or branch outcomes [Bod99].

Figure 6.1 illustrates a C code example of redundant conditional branch, since condition

x == 1 is known to be false when condition x > 0 evaluates false. The branch can be then

safely removed by an appropriate program transformation.

Unnecessary conditional branches appear in a binary due to a variety of reasons: the

compiler may not have the opportunity to perform intraprocedural constant propagation, thus

executing branches on values that will be constant for sure; or maybe a branch is continuously

evaluated from a value loaded from memory because the compiler was unable to resolve aliasing

adequately. The elimination of these branches produces important benefits that explain why

this can be an important optimization, such as improving hardware branch prediction or

enhancing instruction scheduling and software pipelining.

We propose in this chapter an optimization to be applied in the context of binary or link-

time optimizers. We discuss the discovery and elimination of redundant conditional branches,

an optimization that we call Conditional Branch Redundancy Elimination (CBRE). First, we

quantify how much conditional branch redundancy is present in executable programs at run

time, and show that a high percentage of conditional branches can be considered redundant

because their outcomes can be determined from a previous small dynamic instruction stream.

We also discuss how important memory disambiguation is in order to catch conditional branch

redundancy. Then, we present several CBRE algorithms targeted at optimizing away these

redundancies:

• A basic CBRE algorithm limited to extended basic blocks.

• A general algorithm that works over regions of arbitrary control-flow complexity, typi-

cally over functions.

• A profile-guided extension of the above algorithms targeted at eliminating redundant

conditional branches in a path-sensitive fashion, where control-flow graph restructuring

is required.

6.2. DYNAMIC CONDITIONAL BRANCH REDUNDANCY 115

// x ∈ (−∞,+∞)
if (x > 0) // c1 : x > 0 ?

{

...

}
// xc1 ∈ [1,+∞), xc1

∈ (−∞, 0]
if (x == 1) // c2 : x = 1?

{

...

}

Figure 6.1: Example of redundant conditional branch, with value ranges of involved variables.

We also provide some experimental results in order to evaluate the effectiveness of the

CBRE algorithms under study, including accurate measurements of the impact in code growth.

Our results show that an important amount of conditional branch redundancy can indeed be

eliminated, which translates into sensitive reductions in execution time.

6.2 Dynamic conditional branch redundancy

Before presenting our algorithms for removing redundant conditional branches, we motivate

our work by measuring a potential upper bound on how much conditional branch redundancy

could be removed from a program. To this end, we first introduce the analysis used for

detecting conditional branch correlation.

6.2.1 Detecting branch correlation

Figure 6.1 illustrates a C code example of redundant conditional branch, since condition

c2 (i.e., x == 1) is known to be false when condition c1 (i.e., x > 0) evaluates false. In

this example we can easily identify a source of correlation from branch c1 to c2, but branch

correlation may also come from constant assignments, register copies, common subexpressions,

etc. Therefore, we need some form of symbolic-back substitution to capture branch correlation

by propagating information about value ranges [Pat95, SBA00, BGSW00, MRS+01, CGS04],

as Figure 6.1 shows.

To perform such task, we use a Value Range Propagation (VRP) algorithm which is a

simplified version of the analysis presented by Patterson [Pat95]. In our implementation,

which is targeted at the executable code level, value ranges are defined by numeric lower and

upper bounds, a data type, and some modifiers for the given range (e.g., complement, stride,

etc.), but they could have been also symbolic in nature. Range operations include common

computation needed for propagating ranges, such as union, intersection, subset, etc. The idea

116 CHAPTER 6. CONDITIONAL BRANCH REDUNDANCY ELIMINATION

is to statically “build” the computation tree of the given branch (i.e., the branch that we

want to remove) and every previous branch within the EBB. The computation tree or slice

is built by using a scheme based on register use-def chains (see Section 2.2.2) that provide,

for each use of a register, a pointer to its definition. Then, value ranges are propagated

back and forth for every involved register, so that only the relevant data-flow information is

computed [ABD+02, DLS02]. Correlation can be determined by simply consulting whether

the final range of the branch source register is subsumed by the branch condition.

Figure 6.1 also illustrates how this algorithm works. Initially, value range of variable x

is undetermined, which is denoted by the range (−∞,+∞). Since variable x in involved

in condition c1, its value range before condition c2 is promoted to one of the value ranges

presented in the figure (i.e., either xc1 or xc1), depending on whether condition c1 succeeds.

It is straightforward to see that condition c2 is known to be false when condition c1 evaluates

false, since condition c2 is never accomplished when value range xc1
holds. This analysis based

on values ranges is general enough to be used for detecting both dynamic (i.e., at analysis

time) and static (i.e., at compile time) branch correlation.

6.2.2 Measuring conditional branch redundancy

In this section we measure a potential upper bound on how much conditional branch re-

dundancy is present in a program. To achieve this goal, we run on top of the SimpleScalar

sim-profile simulator our original benchmark set with the corresponding simulation inputs

(see Section 3.2.2 and Section 3.3, respectively) to capture every dynamic conditional branch

instruction. Dynamic conditional branch redundancy is then measured by recording the most

recent n conditional branches into a redundancy window. This window is a simple FIFO queue,

where new branches coming into it displace the oldest ones stored in the window. Our goal is

to measure how often the outcome of a conditional branch is already known at compile time,

based on the previous dynamic information “stored” in the redundancy window, and also to

quantify the typical distance (in conditional branch instructions) between such redundancies.

A dynamic instance of a conditional branch is considered redundant if its outcome can be

determined from the correlation information that still remains in the redundancy window. If

this is the case, the branch is said to have dynamic correlation from its prior instruction stream,

including the outcome of other branches. Our analysis for discovering branch correlation uses

the Value Range Propagation (VRP) algorithm we presented in Section 6.2.1. The idea is

to dynamically “build” the computation tree or slice of every branch in the window, then

propagating value ranges back and forth for the output of every instruction within the slice1.

1The ideal analysis would be to have a non-linear system S of n inequations (i.e., the computation slice

of every conditional branch in the window). Then, for every incoming branch, S should be solved in order to

verify whether the system subsumes the condition of the incoming branch. Unfortunately, solving non-linear

inequation systems is an infeasible problem in practice.

6.2. DYNAMIC CONDITIONAL BRANCH REDUNDANCY 117

2 4 8 16 32 64 128 256

Redundancy window size (entries)

0

2

4

6

8

10

(a
) D

yn
am

ic
 C

B
R

 (n
o

di
sa

m
b.

, %
) go

m88ksim
gcc
compress
li
ijpeg
perl
vortex
Average

2 4 8 16 32 64 128 256

Redundancy window size (entries)

0

10

20

30

40

50

(b
) D

yn
am

ic
 C

B
R

 (p
er

fe
ct

 d
is

am
b.

, %
)

Figure 6.2: Dynamic amount of conditional branch redundancy, assuming: (a) no memory

disambiguation, and (b) perfect memory disambiguation (X-axis is logarithmic).

The results of our experiments are shown in Figure 6.2, where we present data for our

original benchmark set and for various redundancy window sizes2. We present these results

in two different graphs:

• Figure 6.2a corresponds to the redundancy observed assuming no dynamic memory

disambiguation mechanism at all. This means that every value loaded from memory has

no previous information associated to it, even if this information would happened to

be available in the redundancy window. This situation might occur, for example, when

the same value was loaded from memory and evaluated by a conditional branch in the

near past. Under this assumption, only around 5% of conditional branches are found

to be redundant, which points out that any effort in eliminating redundant conditional

branches will expose very low benefits.

• On the other side, Figure 6.2b shows the redundancy observed when assuming a perfect

dynamic memory disambiguation mechanism. In this case, values loaded from memory

do carry range information if this information still remains in the redundancy window3.

Clearly, except for program compress, a significant amount of redundancy exists even in

these highly optimized binaries. As an example, the graph shows that, for program go,

23% of all conditional branches can be considered redundant because their outcomes can

be derived by looking at a small dynamic instruction stream of only 256 entries. That is,

23% of all dynamic conditional branches have dynamic correlation and, therefore, should

be candidates to be optimized away by the compiler. Program vortex is also another

interesting example. In this program, almost 50% of all dynamic conditional branches

2As we mentioned in Section 3.3, programs were compiled with full optimizations using the Compaq/Alpha

C compiler. Similar levels of redundancy have been observed using other compilers, like GNU gcc.
3There is an exception to this rule. The value range information associated to memory locations is reset on

every system call that is known to modify the user memory.

118 CHAPTER 6. CONDITIONAL BRANCH REDUNDANCY ELIMINATION

are redundant. We found that more than 30% of redundancy comes from loading and

evaluating a variable called Status in functions ChkGetChunk and MemGetWord, by using

a pointer which is an input argument of these functions. Since variable Status almost

never changes, all related branches are considered dynamically redundant.

In general, around 20% of all conditional branches are found to be redundant by looking

at the instruction stream within the most recent 256 conditional branches. Today’s

optimizing compilers [Muc97a] are able to deal with regions larger than this size and,

thus, should be expected to optimize all this redundancy away.

It’s also interesting to note that, unlike the case of load redundancy, but similarly to the

store redundancy results (see Section 5.2.1 and Section 5.2.2, respectively), the obtained level

of conditional branch redundancy mostly depends on the program that is being measured.

6.3 CBRE on executable code

As we have already defined in Section 6.1, a conditional branch has static correlation along a

path if its outcome can be determined along the path at compile time from prior statements

or branch outcomes. Such conditional branch is then said to be redundant along the corre-

lated path, and can be removed in order to speed up a program. We call this optimization

Conditional Branch Redundancy Elimination (CBRE).

Recent research in branch prediction [Kra94, Pat95, YGS95, SLM96] and elimination of

conditional branches [MW95, BGS97], as well as the results presented in the previous section,

have reported the existence of significant amounts of conditional branch correlation, presenting

opportunities for CBRE. We next outline the algorithms used for applying CBRE in the most

simple cases, when no control-flow restructuring is needed for removing conditional branches.

6.3.1 Eliminating close redundancy

The results presented in Figure 6.2b show that around 10% of the conditional branch redun-

dancy detected can be captured by using a redundancy window of just 8 entries. This indicates

that the first source of redundancy that we should focus our optimization on is located within

small groups of basic blocks.

The simplest example of CBRE is shown in Figure 6.3, where we look for short-distance

redundancy within an Extended Basic Block (EBB). From the figure, a conditional branch B1

is taken if the contents of register r1 is zero. Furthermore, this branch is followed after some

instructions by another conditional branch B2 within the same EBB, whose branch condition

is subsumed by previous branch B1. In the example, this means that contents of register

r1 is known to be greater or equal than zero, since it was determined to be zero in B1. If

register r1 is not modified between both instructions, we can say that B2 is redundant. Once

6.3. CBRE ON EXECUTABLE CODE 119

B1 beq r1, 0

 ...

false true

B1 beq r1, 0

 ...

false true

bge r1, 0

 ...

B2

false true

bge r1, 0

 ...

B2 −−−−−−−−−−

Figure 6.3: Elimination of a redundant conditional branch within an extended basic block.

a redundant conditional branch has been identified, we can eliminate it by simply removing

both the redundant branch and the edge for the infeasible path. The expectation is that,

after running CBRE, some basic blocks can be merged, and also some others can be removed

since they become unreachable.

Although this is the most simple case of CBRE, it already introduces the most important

issues that this optimization has to deal with:

1. In the above example we have identified a source of correlation from branch B1, but

correlation may also come from constant assignments, register copies, common subex-

pressions, etc. Our analysis for discovering branch correlation uses the Value Range

Propagation (VRP) algorithm we presented in Section 6.2.1.

2. In Section 6.2 we pointed out how important memory disambiguation is in order to catch

branch redundancy. We could have formulated our CBRE algorithms to explicitly deal

with disambiguation of memory references, but it would have increased the complexity

of this formulation unnecessarily. On the contrary, we partially address this issue in

our implementation by applying before CBRE the MRE optimizations we presented

in Chapter 5. As a result, some of the information propagated by CBRE is not lost

anymore when loading data on redundant loads, since most of these unnecessary reloads

have been eliminated by MRE.

6.3.2 Eliminating distant redundancy

The CBRE approach described in the previous section was targeted at exploiting close redun-

dancy. However, looking back to Figure 6.2, there is still a significant amount of redundancy

that can be caught if we could explore larger distances between instructions. Of course, in

order to catch this distant redundancy, we need to apply CBRE to regions of code that expand

beyond an EBB and which, therefore, may contain complicated control-flow structures.

120 CHAPTER 6. CONDITIONAL BRANCH REDUNDANCY ELIMINATION

The major difference with the previous section is that when working on a candidate branch

to be removed, we need to examine all possible control-flow paths that may reach the candi-

date, in order to decide whether it is truly redundant or not. The algorithm for long-distance

CBRE proceeds then as follows:

1. First, an initialization phase computes the slice of every branch in a function. Corre-

sponding range information is then initialized for every value within the branch slices.

These values include both output of instructions and summary information at join of

paths in the function.

2. Next, an iterative data-flow analysis propagates value ranges back and forth, similarly to

the technique used for short-distance CBRE, until a fixed point is reached. Although our

algorithm is flow sensitive, the analysis treats paths together whenever paths meet, by

summarizing value ranges applying the join operator (in our case, the union of ranges).

3. Finally, every conditional branch in the function is analyzed for correlation, by simply

consulting whether the final range of the branch source register is subsumed by the

condition. In such a case, both the branch and the edge for the subsumed path can be

eliminated.

Unlike other traditional data-flow algorithms, such as constant propagation, loops need

to be handled explicitly when propagating value ranges. To this end, we use the approach

proposed by Patterson [Pat95], which identifies φ-functions where one or more of the use-def

chains are back edges (as identified by a depth first traversal of the flow graph). Value ranges

for these loop carried expressions will be derived by following simple heuristics, and then

marked so that their ranges are not re-evaluated at all.

The above CBRE scheme is applied for every function in the program. The algorithm is

quite efficient, since it performs intraprocedural CBRE for all the branches within a function at

a time. Besides, because our analysis is restricted to discovering useful information on relevant

ranges, we are able to achieve polynomial analysis time in practice [ABD+02, DLS02].

6.4 Path-sensitive profile-guided CBRE

Information about the program execution behavior can be very useful in optimizing programs

(see Section 2.3.2). Our proposal is to be aware of profile information to guide CBRE. Profile

data consists of a frequency for each basic block and a probability for each branch in the

program. We next outline how the algorithms presented in Section 6.3 have been adapted for

using information gathered in a profile run to (a) choose the candidates for removal, and (b)

remove conditional branch redundancies in a path-sensitive fashion.

6.4. PATH-SENSITIVE PROFILE-GUIDED CBRE 121

move 0, r1

 ...

beq r1, 0

 ...

B1

false true

 ...

B1

move 0, r1

 ...

false true

 ...

 ...

beq r1, 0

 ...

beq r1, 0−−−−−−−−−−−−

Figure 6.4: Elimination of a redundant conditional branch in a path-sensitive fashion across

extended basic blocks. Control-flow restructuring is needed, by applying code replication.

6.4.1 Eliminating close redundancy

CBRE can be seen as a particular case of partial redundancy elimination (PRE). However,

the code motion techniques useful for PRE of assignments [KRS94a, CCK+97] do not suffice

for removing conditional branches in the general case. We can see an example in Figure 6.4.

Branch instruction B1 has static correlation from its right predecessor path (i.e., the one that

contains the “move” instruction), but not from the left one. Due to this “partial redundancy”,

the algorithms presented in Section 6.3 are not able to remove this particular type of branch

redundancy. To eliminate the conditional, unlike techniques used for general PRE, control-

flow graph restructuring is required in order to separate the correlated path from the rest of

the paths. Thus, the path is isolated by applying code replication, so that the conditional on

this path can become fully redundant and be then removed. The example in Figure 6.4 also

shows how this transformation works.

We have adapted the algorithm targeted to catch short-distance redundancy presented in

Section 6.3.1 to deal with profile information and path-sensitive redundancy across extended

basic blocks. First, to keep the final code growth due to code restructuring under control,

we apply CBRE only to “hot branches” in the program. Then, and most importantly, every

incoming edge reaching the EBB root of the considered branch is analyzed separately (actually,

we only analyze the “hot edges”, for the same reason). As each one of these incoming edges

identifies a new EBB, our path-sensitive short-distance CBRE performs the same analysis

presented in Section 6.3.1, but now “merging” both EBBs as if they were a single one (we use

the same heuristic presented in Section 6.3.2 for handling loops). When static correlation is

detected on some of these paths, we replicate the code from the original EBB root down to

the considered branch, just as the example in Figure 6.4 shows.

122 CHAPTER 6. CONDITIONAL BRANCH REDUNDANCY ELIMINATION

This optimization should be performed after a single pass of short-distance CBRE, to

remove as many fully redundant branches as possible without the need to replicate code.

Also, as code restructuring will insert a significant number of unconditional branches, it

would be interesting to run path-sensitive CBRE coupled to an optimization for removing

unconditional branches [MW92].

6.4.2 Eliminating distant redundancy

To remove path-sensitive redundancy, unfortunately, the optimizer has to pay the exponential

price of optimizing each path separately. The reason why analyzers avoid this situation is that

there is an exponential number of paths, even in a program with no loops [Bod99]. To stay

practical, analyzers (such as the one we presented in Section 6.3.2) treat paths together by

summarizing their results whenever paths meet, therefore diluting optimization opportunities

that could be exploited otherwise.

As we have seen in the above section, to eliminate branch redundancies we have to separate

the correlated paths from the rest of the paths via code duplication. The key to our proposal

is to extend the analysis presented in Section 6.3.2 so that isolated paths can be handled

separately during analysis time. With this ability, the loss of information that occurs when

“merging” value ranges at control-flow joins is avoided, thus increasing the accuracy of the

analysis. Then, when a redundancy is detected, code can be effectively duplicated in order to

remove such redundancy.

Unlike the approach presented in Section 6.3.2, the path-sensitive CBRE presented here

will analyze every considered branch in isolation. The algorithm proceeds as follows:

1. First, we apply the analysis presented in Section 6.3.2 to the initial slice of the candidate

branch. The initial slice will only consider the existing path between the EBB root

down to the conditional branch. When correlation is detected for a given path, the

algorithm marks such path for later duplication. Otherwise, correlation analysis is

applied recursively for the resulting slices after adding every incoming edge separately

(similarly as we did in the above section), until either (a) the entry point of the function

is reached, or (b) value ranges do not depend on φ-functions beyond the current slice.

2. Then, for all the marked paths within a function, we “merge” paths in order to only

duplicate the necessary code when later removing branch redundancies. Path merging

will create new paths resulting from “matching” and “fusing” common subpaths, then

eliminating the original subsumed paths for duplication.

3. Finally, we perform code duplication on the resulting paths. Corresponding conditional

branches on these cloned paths can be removed, since they are now fully redundant.

6.5. EVALUATION 123

CBRE Description Section

MRE Complete-MRE Chapter 5

Local CBRE within EBBs 6.3.1

Global Long distance CBRE 6.3.2

Complete Path-sensitive local-CBRE 6.4.1

Path-sensitive global-CBRE 6.4.2

Table 6.1: Description of the different CBRE algorithms under evaluation.

As we did for short-distance CBRE, this optimization will be applied after a phase of

long-distance CBRE, so that fully redundant branches can be previously removed.

Due to the exponential price of dealing with each path separately, the above scheme for

path-sensitive CBRE does not come without a cost. Since our current implementation uses a

backtracking algorithm, we use a couple of simple but effective heuristics in order to reduce

the high computational cost of the algorithm:

1. We only apply CBRE to the most important branches (that is, those branches located

in the most frequently executed paths of the program).

2. For every considered incoming edge when looking for path-sensitive branch correlation

(a) we consider only hot edges (i.e., those ones located in the hot path of the function),

and (b) we do not allow the analysis to follow more than K incoming edges, where K

is a fixed constant. In our implementation we have used a K value of 10.

We have observed that by using these heuristics the algorithm misses only a few opportu-

nities for detecting redundancies, while the compilation time does not significantly increase.

6.5 Evaluation

In this section, we describe the process we have followed for evaluating the effectiveness of the

CBRE techniques proposed in this chapter.

The CBRE techniques presented in previous sections are general enough to be implemented

into a production compiler. However, to take advantage of the benefits of optimizing at

the binary level (see Section 1.1.2), we have implemented the proposed CBRE approaches

presented in Table 6.1 on the Alto framework we described in Section 3.2.1. The algorithms

have been integrated with the rest of optimizations carried out by Alto, such as constant/copy

propagation, dead/unreachable code elimination, inlining, etc. This approach ensures not only

exposing benefits coming from CBRE itself, but also enhancing the effect of the rest of Alto

optimizations.

124 CHAPTER 6. CONDITIONAL BRANCH REDUNDANCY ELIMINATION

The integration of the CBRE algorithms has been performed within the optimization

scheme presented in Section 3.2.1.1, by following the next guidelines:

• First, we apply complete-MRE (see Chapter 5 and Table 6.1) as a basic form of CBRE,

since we are interested in measuring the effects of MRE itself in removing conditional

branch redundancy. Besides, MRE will have the effect of maximizing the number of

CBRE opportunities by removing memory dependencies, which is a similar effect than

letting CBRE explicitly deal with memory disambiguation (see Section 6.3.1).

• We include into the base optimizations the short-distance CBRE within extended basic

blocks (i.e., local-CBRE, see Table 6.1). The reason is that, since computing the value

ranges and performing the redundancy searches for an EBB is relatively cost-effective,

it can be applied several times during the optimization process.

• Within the one-time optimizations, we perform only once the long-distance CBRE al-

gorithm (i.e., global-CBRE, see Table 6.1). This is not an expensive optimization by

itself, but it comes after performing some space- and time-intensive data-flow analyses.

Since the formulation of our algorithms is intraprocedural, procedure inlining is previ-

ously performed by default so that our CBRE proposals can have an interprocedural

behavior. Besides, unlike other techniques [BGS97], this approach ensures that branch

redundancy which is discovered by simply applying constant propagation after inlining

is already removed away from the baseline, before evaluating our CBRE methods.

• The local- and global-CBRE optimizations can be also applied in a path-sensitive fashion

(i.e., complete-CBRE, see Table 6.1). To keep the running time of the corresponding

CBRE algorithm under control we use a φ value of 0.75 (see Section 3.2.1.3). The idea

is to apply CBRE only to the “hot branches” in the program, but also to decide which

paths are hot (see Section 6.4), and be aware of excessive code growth due to code

duplication.

Since complete-CBRE tends to insert a lot of unconditional branches that might increase

branch misprediction, we also include in the base transformations a profile-guided op-

timization for replicating basic block tails in order to remove unconditional branches,

which is a simplified version of the one proposed by Mueller and Whalley [MW92].

The benchmarks we have used for our experiments were presented in Section 3.3, and they

were generated following the methodology described in Section 3.4. For our experiments, we

have chosen the Alto/Inline binaries as a baseline (that is, the most optimized binaries we

have), whose characteristics and generation procedure were described in Section 3.3.1.

6.5. EVALUATION 125

go m88ksim gcc compress li ijpeg perl vortex GMean

Benchmark

84

86

88

90

92

94

96

98

100
D

yn
am

ic
 n

um
be

r
of

 c
on

d.
 b

ra
nc

he
s (

%
)

MRE
Local
Global
Complete

Figure 6.5: Effect of different CBRE algorithms in number of conditional branches at run

time. The baseline is Alto/Inline binaries without any CBRE at all.

6.5.1 Reduction in number of dynamic conditional branches

We start evaluating the effectiveness of the CBRE algorithms under study by comparing

the number of dynamic conditional branches executed with respect to the program base-

line. To get these results, we ran our benchmark suite using the corresponding simulation

inputs (see Table 3.2 in Section 3.3) on top the sim-profile simulator of the SimpleScalar

toolset [ALE02].

Figure 6.5 presents the reduction in number of dynamic conditional branches for every

benchmark. As it can be seen, all programs do show improvements typically around 1–5%,

with program vortex being the best case (up to a 15% reduction). Programs compress and

perl are the worst cases, mainly due to the fact that they were the programs with lower

levels of short-distance redundancy (as we saw in Figure 6.2). We can also observe that

MRE in isolation is able to achieve a 2% reduction in number of conditional branches, even

without considering any explicit conditional branch removal algorithm. This result points

out how important memory disambiguation is in order to catch branch redundancy. Also,

both local- and global-CBRE only yield an additional 1% reduction, proving that control-

flow graph restructuring becomes necessary to effectively increase the number of conditional

branches removed. This assumption is confirmed by looking the results for complete-CBRE,

that achieves more than a 2% additional reduction.

Our results are consistent with those observed by Bod́ık, Gupta and Soffa [BGS97], al-

though we can see that we achieve less benefits. We believe the reason is that they catch a

lot of interprocedural redundancy that could be also discovered by simply applying constant

propagation after function inlining. Since this is what we do in our baseline, we found that

this type of redundancy has already been optimized away before applying CBRE.

126 CHAPTER 6. CONDITIONAL BRANCH REDUNDANCY ELIMINATION

2 4 8 16 32 64 128 256

Redundancy window size (entries)

0

2

4

6

8

10

(a
) D

yn
am

ic
 C

B
R

 (n
o

di
sa

m
b.

, %
) go

m88ksim
gcc
compress
li
ijpeg
perl
vortex
Average

2 4 8 16 32 64 128 256

Redundancy window size (entries)

0

10

20

30

40

50

(b
) D

yn
am

ic
 C

B
R

 (p
er

fe
ct

 d
is

am
b.

, %
)

Figure 6.6: Dynamic amount of conditional branch redundancy after complete-CBRE applied,

assuming: (a) no memory disambiguation, and (b) perfect memory disambiguation. (X-axis

is logarithmic).

Finally, Figure 6.6 presents two graphs showing the percentage of conditional branch

redundancy remaining after applying complete-CBRE, which can be compared to the results

presented in Figure 6.2 (see Section 6.2). As we can see, CBRE achieves around 3% and 5%

reduction in conditional branch redundancy, assuming (a) no memory disambiguation, and

(b) perfect memory disambiguation, respectively.

6.5.2 Effects of procedure inlining on CBRE

Since the formulation of our CBRE algorithms is intraprocedural, procedure inlining is per-

formed by default so that our CBRE proposals can have an interprocedural behavior and

get benefit from that. However, it would be interesting to measure how avoiding procedure

inlining will affect CBRE in “hiding” conditional branch redundancy to be discovered and

eliminated. This does not only include interprocedural redundancy, but also intraprocedural

redundancy discovered after obtaining interprocedural value range information.

Table 6.2 presents the different benchmark sets we use for evaluating the effect of inlin-

ing on CBRE, which is done by measuring the reduction in number of dynamic conditional

branches presented in Figure 6.7. These binaries result from enabling/disabling CBRE and

procedure inlining in Alto when optimizing our benchmark suite. The Base and Inline cate-

gories correspond to the Alto/Base and Alto/Inline sets we already evaluated in Section 3.3.1.

Actually, data in Figure 6.7 for these sets was already presented in Figure 3.44. Category

noInline means that complete-CBRE is performed with no previous procedure inlining at

all. However, as we will explain next, inlining by itself is able to remove some conditional

branches, which makes it difficult to make comparisons between programs with/without inlin-

ing. Therefore, we consider the noInline’ category be the same as noInline, but we subtract

4To be consistent with previous sections, we maintain the Alto/Inline binaries as the baseline in Figure 6.7.

6.5. EVALUATION 127

Category Description Sections

Base no CBRE, no inlining (i.e., Alto/Base) 3.3.1

Inline no CBRE, inlining (i.e., Alto/Inline) 3.3.1

noInline Complete-CBRE, no inlining 6.5.2

noInline’ Complete-CBRE, no inlining 6.5.2

Complete Complete-CBRE, inlining 6.5

Table 6.2: Description of the binaries obtained with/without applying CBRE and inlining.

The baseline will be Inline binaries (i.e., Alto/Inline binaries without any CBRE at all.)

go m88ksim gcc compress li ijpeg perl vortex GMean

Benchmark

80

85

90

95

100

105

(a
) D

yn
am

ic
 n

um
be

r
of

 c
on

d.
 b

ra
nc

he
s (

%
)

Base
noInline
noInline’
Complete

Figure 6.7: Effect of procedure inlining on CBRE, measured as number of conditional branches

at run time. The baseline is Alto/Inline binaries without any CBRE at all.

from the final number of conditional branches those that where removed thanks to inlining in

the baseline programs, without any CBRE at all. We perform such “trick” since it would be

very unfair to compare removed branches across different baselines. Finally, Complete cate-

gory corresponds to the complete-CBRE already presented in Figure 6.5 (inlining included),

and it has been added to the figure just for comparison purposes.

From the results presented in Figure 6.7 we can observe first that programs on the Base

benchmark set execute more conditional branches than the baseline (i.e., relative numbers are

higher than 100%). The reason is that, when inlining is applied, some conditional branches

can now be removed by simply propagating constants. As a result, Alto/Inline binaries

already include some form of conditional branch elimination. The fact that this removal

(i.e., elimination of unnecessary conditional branches thanks to the application of constant

propagation after applying inlining) is already included as a baseline in all our experiments

makes our results even more valuable (i.e., the ones presented in Figure 6.5). A second thing

to note is that noInline binaries achieve better conditional branch reductions than the inlined

128 CHAPTER 6. CONDITIONAL BRANCH REDUNDANCY ELIMINATION

go m88ksim gcc compress li ijpeg perl vortex GMean

Benchmark

0

100

200

300

400

500

600

700

800

900

1000
C

om
pi

la
tio

n
tim

e
in

cr
ea

se
 (%

)

MRE
Local
Global
Complete
noInline

Figure 6.8: Effect of applying CBRE in Alto compilation time, for the SPECint95 programs.

The baseline is Alto/Inline binaries without any CBRE at all.

baseline programs. Not only that, but these results are comparable for some programs to those

obtained when applying complete-CBRE, and this distance is even reduced when considering

the “estimated” noInline’ programs. This result seems to indicate that, unlike redundant

memory references in Section 5.7.3, either these programs do not contain significant amounts

of redundant conditional branches across functions, or our algorithms are not powerful enough

to discover this interprocedural redundancy.

6.5.3 Compilation time

Related to how procedure inlining affects CBRE, we can see in Figure 6.8 the relative com-

pilation time of Alto when applying the CBRE algorithms as presented in Table 6.1, with

respect to our baseline. We also include in the figure the data corresponding to the applica-

tion of complete-CBRE without any procedure inlining at all. First, Figure 6.8 shows that

global CBRE schemes come with an important cost on those programs where inlining was

widely applied and the percentage of hot basic blocks is significant. In general, procedure in-

lining dramatically increases CBRE compilation time, while for the non-inlined binaries (i.e.,

the right bars) the compile-time overhead of CBRE is very moderate. Another interesting

observation is that, even although the path-sensitive approach included in complete-CBRE

seemed to be very costly (see Section 6.4), the heuristics used prove to be very effective in

not increasing compilation time too much with respect the global-CBRE algorithm.

6.5.4 CBRE impact in code growth

Except for complete-CBRE, the rest of CBRE algorithms perform branch removal by actually

eliminating both branch instructions and corresponding infeasible paths. This effect comes

6.5. EVALUATION 129

go m88ksim gcc compress li ijpeg perl vortex GMean

Benchmark

96

98

100

102

104

106

108

110

(a
) S

ta
tic

 c
od

e
gr

ow
th

 (%
)

MRE
Local
Global
Complete

go m88ksim gcc compress li ijpeg perl vortex GMean

Benchmark

96

98

100

102

104

106

108

110

(b
) D

yn
am

ic
 fo

ot
pr

in
t g

ro
w

th
 (%

)
Figure 6.9: Effect of different CBRE algorithms in (a) static code growth, and (b) dynamic

footprint growth. The baseline is optimized binaries without any CBRE at all.

with a reduction in code size, which is often beneficial for improving instruction-cache per-

formance. Complete-CBRE, however, replicates code to eliminate conditionals by creating

separate paths. Since our approach is based on profile information, we do not estimate the

amount of duplicated code before applying complete-CBRE to a particular branch. This is

because we always assume that the benefits of removing a conditional branch will outperform

the possible penalty of code duplication. In order to verify that this is a right assumption,

this section presents experimental data about the effects of CBRE in code growth,

Figure 6.9a presents the static code growth (i.e., program size) for each benchmark with

respect to the original baseline. First, as we expected, every CBRE algorithm except complete-

CBRE reduces code size: around 1% in average, with program perl being the best case (up

to 2%). As far as complete-CBRE is concerned, we can observe that code size is only in-

creased around a 2%, which is a very moderate growing percentage. The worst cases are

programs compress (up to 4%), and specially li (up to 10%), which is the program where

complete-CBRE found a higher percentage of static opportunities for conditional branch re-

moval requiring code duplication.

Code growth is a good measure to evaluate the behavior of complete-CBRE. However, this

measure in isolation is not significant for anticipating capacity problems at the instruction

cache. A more accurate measure is shown in Figure 6.9b, where we present the dynamic

footprint of resulting images after applying CBRE. What this figure shows is the growing

percentage of actual executed code, which might actually increase instruction-cache misses

since it corresponds to real executed instructions at run time. Thus, from Figure 6.9b we

can see that programs compress and ijpeg are the ones increasing their instruction-cache

capacity requirements. Whether these requirements incur into performance degradation will

also depend on other instruction-cache factors (e.g., locality, final footprint size, etc.). Overall,

however, final footprint growth is lower than 2%.

130 CHAPTER 6. CONDITIONAL BRANCH REDUNDANCY ELIMINATION

go m88ksim gcc compress li ijpeg perl vortex GMean

Benchmark

60

65

70

75

80

85

90

95

100
R

el
at

iv
e

ex
ec

ut
io

n
tim

e
(%

)

MRE
Local
Global
Complete

Figure 6.10: Effect of different CBRE algorithms in actual execution time. The baseline is

optimized binaries without any CBRE at all.

6.5.5 Speed up using CBRE

Counting the number of removed conditional branches or measuring the static code growth

is certainly of interest to understand the effectiveness of every CBRE algorithm. However, a

definitive measure of interest is whether execution time is reduced or not. Figure 6.10 presents

the relative execution time of our benchmark suite after the different CBRE algorithms, using

the execution inputs (see Table 3.2 in Section 3.3). These results were recorded by running

the benchmark suite in our target platform, as we described in Section 3.1.3.

From the results presented in Figure 6.10 we can first observe that the most significant

reduction in execution time stands for MRE (up to a geometric mean of almost 10%). As

we noted in Section 5.7.5, this reduction is mainly due to benefits coming from eliminating

redundant memory operations. As far as CBRE is concerned, the local- and global-CBRE

approaches only achieve together an additional 2% reduction, being program m88ksim the best

case. This program and vortex are mostly responsible for the additional 1–2% reduction yield

by complete-CBRE. Overall, however, the decrease in execution time we observe shows that

(a) we have removed some conditional branches that indeed were on the program’s critical

path and, therefore, contributed to overall execution time, and (b) other optimizations carried

out by our binary optimizer do take advantage of CBRE, thus resulting in more efficient code.

It is interesting to note that after applying complete-CBRE, programs li and perl re-

sult in some performance degradation, while reduction in program ijpeg is lower than we

could expect by looking at the corresponding reduction in dynamic conditional branches in

Figure 6.5. In order to explain these effects and also to get an accurate measure of the dif-

ferences at the processor-core level of applying the CBRE algorithms, we have simulated our

benchmark suite on the sim-alpha simulator we introduced in Section 3.2.2 [DBK01], using

6.6. RELATED WORK 131

the corresponding simulation inputs (see Table 3.2 in Section 3.3). This out-of-order simulator

faithfully models a Compaq/Alpha 21264 configuration that matches our target environment

presented in Section 3.1.1.

Two interesting points can be pointed out by analyzing the low-level internal statistics

produced by the simulator:

• First, branch misprediction rate was slightly higher when applying CBRE (difference,

nonetheless, is under 1% in all benchmarks). This is due to the fact that we are remov-

ing correlated conditional branches that were mostly well predicted by the hardware.

Thus, less “hit” accesses are requested to the branch predictor, which limits CBRE for

achieving better speedups.

• On the other side, the miss-ratio of the L1 instruction cache was also slightly higher

when applying complete-CBRE, due to the resulting code growth when the flow graph is

restructured (although less than 2% in all benchmarks). Since cache-conscious procedure

inlining has already been applied as a baseline (see Section 3.2.1.2), the resulting code

footprint for these programs already “fills” the instruction cache in some way. Therefore,

even small code growths may hurt the final program performance. We believe this is

the actual reason why some programs showed a small slowdown in Figure 6.10.

Finally, the relative execution times we obtained from these simulations are quite consis-

tent with the results presented in Figure 6.10. Small differences are attributed to simulation

inaccuracy, as shown in [BS98].

6.6 Related work

While a number of systems have been described for optimization of executable code (see

Section 2.4), to the best of our knowledge, any elimination of redundant conditional branches

carried out by these systems is limited to fairly simple removal.

Partial Redundancy Elimination (PRE) [MR79, KRS94a, CCK+97, HH97b, GBF98, BGS98,

CX03, SHK04] is a well-known scalar optimization that subsumes various ad hoc code motion

optimizations (such as common subexpression elimination and loop invariant code motion)

by attempting to remove redundancies that occur only on some control-flow paths of a pro-

gram. CBRE can be seen as a particular case of PRE. However, the code motion techniques

useful for PRE of assignments do not suffice for removing conditional branches. To eliminate

a conditional, control-flow graph restructuring is usually required.

The simplest form of branch elimination is loop unrolling [Muc97j], in which instances of

back-edge branches are removed by replicating the body of the loop. More sophisticated tech-

niques examine control and data flow simultaneously to identify correlation among branches.

132 CHAPTER 6. CONDITIONAL BRANCH REDUNDANCY ELIMINATION

An algorithm for intraprocedural restructuring was first proposed by Mueller and Whal-

ley [MW95], although their technique was mostly focused on eliminating conditionals within

loops. A more general approach based upon interprocedural demand driven analysis as well

as profile-guided control-flow restructuring was given by Bod́ık, Gupta and Soffa [BGS97].

However, a lot of interprocedural redundancy they remove could be also eliminated by sim-

ply applying constant propagation after function inlining. Mueller and Whalley [MW92] also

investigated avoiding unconditional jumps by code replication.

In the spirit of abstract interpretation [CC77, CC79] (see Section 2.2.4), several methods

have been proposed for obtaining dynamic program properties by using symbolic evaluation

and simple algebraic rules [Rau91, TP95, ABD+02, DLS02]. Some of these techniques have

been focused on a wide variety of program optimizations based on propagating information

about value ranges of variables [Pat95, SBA00, BGSW00, MRS+01, CGS04]. In particular,

Patterson [Pat95] developed a technique for improving static branch prediction by propagating

information about value ranges of variables through a program. The approach we used for

discovering conditional branch correlation is a simplified version of his value range propagation

algorithm.

6.7 Conclusions

In this chapter we have shown that, even although the compiler may have optimized a pro-

gram aggressively, a significant number of redundant conditional branches appear in the final

executable file. This conditional branch redundancy does not only appear due to how program-

mers write source code, but also due to limitations in the compilation model of traditional

compilers. To address these issues, we have presented a set of different algorithms to be

applied in the context of binary or link-time optimizers, which are targeted to discover condi-

tional branches that are redundant and can be safely removed in order to speed up a program.

We call this optimization Conditional Branch Redundancy Elimination (CBRE).

First, we have quantified how much conditional branch redundancy is present in executable

programs, and shown that around 20% of conditional branches can be considered redundant

from the compiler’s point of view because their outcomes can be determined from a previous

small dynamic execution frame. We also showed how important memory disambiguation is

in order to catch branch redundancy (up to 2% of dynamic conditional branches can be elim-

inated even without considering any explicit conditional branch removal algorithm). Then,

we presented several CBRE algorithms targeted at optimizing away these redundancies:

• The first algorithm (i.e., local-CBRE) is targeted at catching short-distance redundancy

within extended basic blocks, while a more general approach (i.e., global-CBRE) works

over regions of arbitrary control-flow complexity. Both techniques only achieved small

6.7. CONCLUSIONS 133

reductions, proving that control-flow graph restructuring becomes necessary to effec-

tively increase the number of conditional branches that can be removed.

• Finally, complete-CBRE extend the above algorithms in a path-sensitive fashion by

using program profiles, for identifying partial correlations and performing the necessary

code replication to remove branches. This results in a geometric mean reduction of

around 2% in both dynamic conditional branches and execution time.

Overall, the observed reductions in execution time show that other optimizations carried

out by the binary optimizer do take advantage of CBRE, thus resulting in more efficient code.

We have provided exhaustive experimental results in order to measure the effectiveness of

the CBRE algorithms under study, such as accurate measurements of the impact of applying

CBRE in code and dynamic footprint growth. Although the final growth is very moderate

in both cases, it is responsible of a slightly increase in L1 instruction-cache miss-ratio. We

believe this is the reason why, at the end of the day, some programs showed a small slowdown.

134 CHAPTER 6. CONDITIONAL BRANCH REDUNDANCY ELIMINATION

Chapter 7

Conclusions and future directions

In this final chapter we summarize what have been the main contributions of this thesis, and

present the final conclusions of the results obtained in the previous chapters. We also present

some future lines of work opened up by our proposals.

135

136 CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS

7.1 Introduction

Optimizations targeted at eliminating redundancy are the backbone of compiler techniques

for improving program’s behavior [Bod99]. As a unifying paradigm, these optimizations ex-

pose unnecessary recomputations at program run time of values that are already known,

because they have already been computed in the program or because they can be computed

at compile time. These recomputations are specially important for memory and conditional

branch instructions on binary programs, as proven by the fact that today’s microprocessors

contain specialized hardware to partially exploit the existing binary redundancy for this type

of instructions.

Binary redundancy comes partly from the way that programmers write source code, but

also from limitations in the compilation model of traditional compilers, which introduces

unnecessary memory and conditional branch instructions. Effectively, our observations when

measuring dynamic redundancy in Section 5.2 and Section 6.2 suggest that today’s optimizing

compilers miss numerous redundancy-based optimization opportunities, even in highly opti-

mized programs. Not only that, but also our experiments show that, for most instructions, the

source of their redundancy comes only from some although frequent execution paths. Because

not all executions of a redundancy are optimizable, this partial or path-sensitive redundan-

cies are beyond conventional optimizers. Thus, conservative analyzers fail to expose it, and

inflexible transformations fail to remove it.

The above facts lead to the increased attention that binary optimizations applied at link

time or directly to final program executables have received in recent years. As a result, binary

optimizers overcome most of the existing limitations of traditional source-code compilers,

since they can easily optimize the program as a whole or even apply straightforwardly profile-

directed compilation techniques without being forced to re-build every source file. However,

working at the executable code level turns up some relevant issues that need to be addressed,

since most of the high-level information available in traditional compilers is lost.

7.2 Lessons and observations

We next highlight in this section the most important observations made during the develop-

ment of this thesis.

Programs contain redundancy As we have seen in Section 1.1.1, redundant operations

expose unnecessary recomputations at program run time of values that are already

known because they have somehow already been computed in the past. This redundancy

appears not only because it is introduced by programmers when writing source code, but

also due to limitations in the compilation model of traditional compilers. As a result,

7.2. LESSONS AND OBSERVATIONS 137

these redundancies expose optimization opportunities that can be potentially exploited

by an optimizing compiler in order to remove them away.

Among the large variety of redundant instructions, we have discussed the two most

important classes existing in binary programs: memory and conditional branch redun-

dancy. We have then measured in Chapter 5 and Chapter 6 that, even considering a

redundancy window of just 256 entries, around 75% of load references, 10% of store ref-

erences, and 20% of conditional branches are potentially redundant, which proves that

significant amounts of binary redundancy exists even in highly optimized programs.

Binary optimizations yield significant benefits As we have seen in Section 1.1.2 and

Section 2.4, applying low-level optimizations at a very late stage or even at post-link

time may carry significant improvements in the behavior of the optimized programs. The

reason is that binary optimizers overcome most of the existing limitations of traditional

source-code compilers, exploiting new opportunities for program optimization as we have

shown in Section 3.3.1, where our framework yields around 14% reduction in execution

time. However, we have also seen that some relevant issues appear when working at the

executable code level, since most of the high-level information available in traditional

compilers is lost.

Low-level alias analysis is difficult While there is an extensive body of work on pointer

alias analysis of various kinds, they are mostly high-level analyses carried out in terms

of source language constructs. Unfortunately, such analyses turn out to be of limited

utility at the machine code level. In fact, as we have seen in Section 2.2.3, the problem of

memory disambiguation is one of the weak points of object code modification, because

high-level information available in a traditional compiler is lost. Our results have shown

that only a 15% of the disambiguation queries can be successfully resolved at compile

time. Proposing sophisticated low-level alias analyses become then necessary, since

features such as pointer arithmetic and out-of-bounds array accesses must be handled

at this level, where the contents of every register is potentially an address.

Binary redundancy can be eliminated Taking advantage of the binary optimization tech-

nology, but also addressing its corresponding issues, we have developed in Chapter 5 and

Chapter 6 profile-guided optimizations targeted at eliminating memory and conditional

branch redundancies. As a result, a significant amount of binary redundancy can indeed

be eliminated, which translates into an important 14% execution time reduction in our

benchmark suite.

Path-sensitivity is important To effectively perform sophisticated analyses and optimiza-

tions, it is important in most cases to consider path-sensitive information. As our ex-

periments have shown, a significant number of optimization opportunities cannot be

138 CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS

exploited by just considering standard data-flow techniques. On the contrary, per-

forming program analyses and transformations in a path-sensitive manner may expose

significant benefits, even when using simple profiling schemes (see Section 3.2.1.2).

Perhaps the most important observation we have extracted out of this research is that,

even considering the existing hardware structures targeted at exploiting binary redundancy,

eliminating this redundancy at a very late compilation stage has always a positive impact in

the behavior of the optimized programs.

7.3 Summary of contributions

In this thesis we have presented new profile-guided compiler optimizations for eliminating the

existing redundancy encountered on executable programs at binary level. Our Binary Re-

dundancy Elimination (BRE) techniques are targeted at eliminating both redundant memory

operations and redundant conditional branches, which are the most important ones for ad-

dressing the major performance issues in today’s microprocessors. Particular emphasis was

placed on implementing our proposals within a binary optimizer, which overcomes most of the

existing limitations of traditional source-code compilers. However, since most of the high-level

information is lost when optimizing binaries, we have also pointed out the most relevant issues

of applying our algorithms at the executable code level.

Within this scenario, the most important contributions of our work roughly correspond to

the different chapters of this document, which we consider to be the following:

Computing alias information We have first reviewed in Chapter 4 the problem of alias

analysis at the executable program level, identifying why memory disambiguation is

one of the weak points of object code modification. Then, we presented several alias

analyses to be applied in the context of link-time or executable code optimizers. First,

we have proposed a must-alias analysis to recognize memory dependencies in a path-

sensitive fashion, which increases alias accuracy a 50% over a path-insensitive scheme.

Then we introduced two speculative may-alias data-flow algorithms to recognize memory

independencies. These may-alias analyses are based on introducing unsafe speculation

at analysis time, which increases alias precision on important portions of code and keeps

the analysis reasonably cost-efficient. Our results have shown that our analyses prove

to be very useful for increasing memory disambiguation accuracy of binary code, up to

83% in average, which turns out into opportunities for applying optimizations.

Eliminating memory redundancies We have discussed in Chapter 5 the discovery and

elimination of memory operations that are redundant and can be safely removed in or-

der to speed up a program, an optimization that we call Memory Redundancy Elimina-

tion (MRE). Quantifying these effects we have shown that a high percentage of memory

7.4. FUTURE DIRECTIONS 139

references at program run time can be considered redundant because they are accessing

memory locations that have been referenced in a near past. Then, we presented several

profile-based MRE algorithms targeted at optimizing away these redundancies, which

are based on PRE techniques for eliminating partial redundancies in a path-sensitive

fashion. Our results have shown that a significant amount of memory redundancy can

indeed be eliminated, up to 18% of load redundancy and 8% of store redundancy, which

translates into an important 10% reduction in execution time.

Eliminating conditional branch redundancies Finally, in Chapter 6 we have proposed

different optimizations for detecting an eliminating redundant conditional branches on

executable code. These are branches whose outcome can be determined at compile

time, and thus they can be safely removed in order to speed up a program, We call this

optimization Conditional Branch Redundancy Elimination (CBRE). We then presented

several CBRE algorithms targeted at optimizing away these redundancies, based on

the observation that important amounts of conditional branches in a program can be

considered redundant because their outcomes can be determined from a previous short

dynamic execution frame. The key ideas of our proposed CBRE algorithms result from

combining control-flow restructuring and profile information. We also pointed out how

important memory disambiguation is in order to catch branch redundancy. Our results

have shown that a around a 5% of conditional branches can be removed with moderate

levels of code growth.

From the above contributions and the work presented in this dissertation, we have pro-

duced several technical reports [FED01a, FE02a, FE03, FE04a] and publications [FED01b,

FE02b, FED03, FE04c, FE04b].

7.4 Future directions

The research described in this dissertation suggest several avenues for future work. The most

obvious of these future directions would explore extensions to our proposals.

Extend our proposed alias analyses We mentioned in Section 4.2 that our current im-

plementation of path-sensitive memory disambiguation uses a backtracking algorithm.

However, we should provide a data-flow formulation of the analysis so that the problem

of path-sensitive disambiguation can be more straightforward established by using an

systematic iterative algorithm.

It would be also interesting to implement the speculative alias analyses we developed

in Section 4.3, within a production compiler [BCC+00] containing speculative opti-

mizations based on reordering memory operations [HSS94, GCM+94, MM97, BCC+00,

140 CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS

PGM00a]. Besides solving the possible problems of adapting our speculative analy-

ses, the idea would be to test whether they are beneficial in performing decisions for

speculative optimization opportunities.

Consider additional MRE techniques We have seen in Chapter 5 that our MRE tech-

niques were able to remove a significant percentage of memory redundancy. However,

a lot of redundancy still remains in our programs after applying MRE. For instance,

redundant sequential array accesses will be neither recognized nor removed by using

our schemes. It would be interesting to consider using other techniques for removing

memory redundancy, such as scalar replacement [CCK90], to fully obtain the potential

of the MRE optimizations.

Improve CBRE optimizations The value range propagation (VRP) algorithm we pre-

sented in Section 6.2.1 for detecting branch correlation is a simplified version of a VRP

framework proposed by Patterson [Pat95]. We observed that, even although our current

VRP is able to discover an important number of static correlation among branches,

this number is not significant enough to fully discover the existing branch redundancy.

We should consider instead either a better VRP framework in order to propagate more

accurate value ranges [Pat95, SBA00, BGSW00, MRS+01], or even a more general frame-

works based on abstract interpretation (see Section 2.2.4).

We have also seen in Chapter 6 that our CBRE optimizations do not suffer from excessive

code growth due to code duplication. However, the more CBRE opportunities discovered

and eliminated, the more critical code growth will be. It would be then convenient to

propose code-growth conscious CBRE techniques, to keep the final code growth due to

code restructuring under control.

We consider the above proposals for future work to be the next step of further research

in the area of binary redundancy. Furthermore, we next discuss several proposals leading

towards the BRE goals, that might be a step ahead of future work.

Explore additional alias analyses We have seen in this dissertation that having accurate

aliasing information is key to effectively detect and eliminate binary redundancy, even

although performing good-quality alias analysis is one of the weak points of optimizing

binary code. Therefore, we think that proposals presented in Chapter 4 are not enough

and we should further consider exploring better alias analysis algorithms to fully obtain

the potential of the BRE optimizations. For example, promoting pointer aliasing infor-

mation from the high-level stages of the compiler down to the executable code optimizer

would significantly improve alias accuracy.

7.4. FUTURE DIRECTIONS 141

Consider new path-sensitive mechanisms In previous chapters we have seen that, given

the inevitable exponential cost, the imperative for path-sensitive analysis and optimiza-

tion is to exploit individual program paths only as far as it is practical. We have solved

this problem by applying simple heuristics to reduce the exponential cost of the path-

sensitive algorithms. However, we think that it would be interesting to consider more so-

phisticated path-based optimization models [BA98, Bod99] and profiles [BL96, BMS98],

in order to reduce the cost and boost the benefits of removing binary redundancy. Fur-

thermore, it would also be interesting to extend our BRE algorithms beyond procedure

boundaries, obtaining interprocedural BRE optimizations.

The promising results presented in this thesis show that significant potential exists for

eliminating binary redundancy. Future processors should perhaps combine hardware predic-

tion, which identifies dynamic redundancy, with compiler analyses and/or transformations at

run time, so that total program execution time can be reduced.

142 CHAPTER 7. CONCLUSIONS AND FUTURE DIRECTIONS

Bibliography

[ABD+97] Jennifer M. Anderson, Lance M. Berc, Jeffrey Dean, Sanjay Ghemawat,

Monika R. Henzinger, Shun-Tak A. Leung, Richard L. Sites, Mark T. Van-

devoorde, Carl A. Waldspurger, and William E. Weihl. Continous profiling:

Where have all the cycles gone? ACM Transactions on Computer Systems,

15(4):357–390, November 1997. 2.4.2, 3.2.2

[ABD+02] Stephen Adams, Thomas Ball, Manuvir Das, Sorin Lerner, Sriram K. Raja-

mani, Mark Seigle, and Westley Weimer. Speeding up dataflow analysis using

flow-insensitive pointer analysis. Lecture Notes in Computer Science, 2477:230–

246, 2002. 2.2.4, 6.2.1, 6.3.2, 6.6

[ABZT98] Wolfram Amme, Peter Braun, Eberhard Zehendner, and François Thomasset.

Data dependence analysis of assembly code. In Proceedings of the 1998 In-

ternational Conference on Parallel Architectures and Compilation Techniques,

pages 340–347, Paris, France, October 12–18 1998. 2.2.3.2, 4.4

[ACD74] T. L. Adam, K. M. Chandy, and J.R. Dickson. A comparison of list schedules

for parallel processing systems. Communications of the ACM, 17(12):685–690,

December 1974. 2.3.1.6

[AGS97] Andrew Ayers, Robert Gottlieb, and Richard Schooler. Aggressive inlining. In

Proceedings of the ACM SIGPLAN 1997 Conference on Programming Language

Design and Implementation, pages 134–145, Las Vegas, Nevada, June 16–18

1997. 2.3.1.4, 3.2.1.2

[AJ88] R. Allen and S. Johnson. Compiling C for vectorization, parallelization, and

inline expansion. In Proceedings of the ACM SIGPLAN 1988 Conference on

Programming Language Design and Implementation, pages 241–249, Atlanta,

Georgia, June 20–24 1988. 2.3.1.4

[AK00] Hakan Aydin and David R. Kaeli. Using cache line coloring to perform aggres-

sive procedure inlining. In Proceedings of the 4th Workshop on Interaction be-

143

144 BIBLIOGRAPHY

tween Compilers and Computer Architectures, Toulouse, France, January 2000.

2.3.1.4

[AKS00] Erik R. Altman, David R. Kaeli, and Yaron Sheffer. Welcome to the opportu-

nities of binary translation. Computer, 33(3):40–45, March 2000. 2.4

[AL98] Glenn Ammons and James R. Larus. Improving data-flow analysis with path

profiles. In Proceedings of the ACM SIGPLAN 1998 Conference on Program-

ming Language Design and Implementation, pages 72–84, Montreal, Canada,

June 17–19 1998. 4.4

[ALE02] Todd Austin, Eric Larson, and Dan Ernst. SimpleScalar: An infrastructure

for computer system modeling. Computer, 35(2):59–67, February 2002. 3.1.1,

3.2.2, 5.7.1, 6.5.1

[ASU86a] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers principles, tech-

niques, and tools, Chapter 10: Code Optimization, pages 585–722. In [ASU86c],

1986. 1.1.1, 1, 2.2.1, 2.2.2, 2.2.3, 2.3, 2.3.1.2, 2.3.1.3, 2.3.2, 2.3.3, 2.3.3.1, 4.3,

5.3, 5.6.2

[ASU86b] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers principles,

techniques, and tools, Chapter 1: Introduction to Compiling, pages 1–24. In

[ASU86c], 1986. 1.1.1, 2.4.1

[ASU86c] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers principles, tech-

niques, and tools. Addison-Wesley, Reading, MA, 1986. 2.1, 7.4

[ASU86d] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers principles, tech-

niques, and tools, Chapter 8: Intermediate Code Generation, pages 463–512.

In [ASU86c], 1986. 2.1.3, 3.1.1

[BA97] Doug Burger and Todd M. Austin. The SimpleScalar tool set, version 2.0.

Technical Report CS-TR-97-1342, Computer Sciences Department, University

of Wisconsin-Madison, 1997. 4.3.4.2

[BA98] Rastislav Bod́ık and Sadun Anik. Path-sensitive value-flow analysis. In Pro-

ceedings of the 25th ACM SIGACT-SIGPLAN symposium on Principles of

Programming Languages, pages 237–251, San Diego, California, January 19–21

1998. 2.3.3.1, 4.3, 4.4, 5.6.1, 5.8, 7.4

[BCC+00] Jay Bharadwaj, William Y. Chen, Weihaw Chuang, Gerolf Hoflehner, Kishore

Menezes, Kalyan Muthukumar, and Jim Pierce. The Intel IA-64 compiler code

generator. IEEE Micro, 20(5):44–53, September/October 2000. 4.3.3, 7.4

BIBLIOGRAPHY 145

[BDB00] Vasanth Bala, Evelyn Duesterwald, and Sanjeev Banerjia. Dynamo: A trans-

parent dynamic optimization system. In Proceedings of the ACM SIGPLAN

2000 Conference on Programming Language Design and Implementation, pages

1–12, Vancouver, Canada, June 18–21 2000. 2.3.2

[BG97] Rastislav Bod́ık and Rajiv Gupta. Partial dead code elimination using slicing

transformations. In Proceedings of the ACM SIGPLAN 1997 Conference on

Programming Language Design and Implementation, pages 159–170, Las Vegas,

Nevada, June 16–18 1997. 2.3.3

[BGA03] Derek Bruening, Timothy Garnett, and Saman Amarasinghe. An infrastruc-

ture for adaptive dynamic optimization. In Proceedings of the 2003 Interna-

tional Symposium on Code Generation and Optimization, pages 265–275, San

Francisco, California, March 23–26 2003. 2.3.2

[BGS94] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler transforma-

tions for high-performance computing. ACM Computing Surveys, 26(4):345–

420, December 1994. 2.2, 2.3

[BGS97] Rastislav Bod́ık, Rajiv Gupta, and Mary Lou Soffa. Interprocedural conditonal

branch elimination. In Proceedings of the ACM SIGPLAN 1997 Conference on

Programming Language Design and Implementation, pages 146–158, Las Vegas,

Nevada, June 16–18 1997. 2.3.3, 2.3.3.3, 6.1, 6.3, 6.5, 6.5.1, 6.6

[BGS98] Rastislav Bod́ık, Rajiv Gupta, and Mary Lou Soffa. Complete removal of

redundant expressions. In Proceedings of the ACM SIGPLAN 1998 Conference

on Programming Language Design and Implementation, pages 1–14, Montreal,

Canada, June 17–19 1998. 1.1.1, 2.3.3, 2.3.3.1, 5.8, 6.6

[BGS99] Rastislav Bod́ık, Rajiv Gupta, and Mary Lou Soffa. Load-reuse analysis: De-

sign and evaluation. In Proceedings of the ACM SIGPLAN 1999 Conference

on Programming Language Design and Implementation, pages 64–76, Atlanta,

Georgia, May 1–4 1999. 2.3.3.2, 5.8

[BGSW00] Mihai Budiu, Seth Goldstein, M. Sakr, and K. Walker. BitValue inference:

Detecting and exploiting narrow bitwidth computations. In Proceedings of the

6th International EuroPAR Conference. Springer-Verlag, August 2000. 2.2.4,

6.2.1, 6.6, 7.4

[BL96] Thomas Ball and James R. Larus. Efficient path profiling. In Proceedings of

the 29th Annual IEEE/ACM International Symposium on Microarchitecture,

pages 46–57, Paris, France, December 2–4 1996. 1.1.2, 2.3.2.1, 7.4

146 BIBLIOGRAPHY

[BMS98] Thomas Ball, Peter Mataga, and Mooly Sagiv. Edge profiling versus path

profiling: The showdown. In Proceedings of the 25th ACM SIGACT-SIGPLAN

symposium on Principles of Programming Languages, pages 46–57, San Diego,

California, January 19–21 1998. 1.1.2, 2.3.2.1, 3.2.1.2, 7.4

[Bod99] Rastislav Bod́ık. Path-Sensitive, Value-Flow Optimizations of Programs. PhD

thesis, Department of Computer Science, University of Pittsburgh, 1999. 1.1.1,

2.3.3.1, 4.2, 5.6.1, 5.6.1, 5.8, 6.1, 6.4.2, 7.1, 7.4

[BS98] Bryan Black and John Paul Shen. Calibration of microprocessor performance

models. Computer, 31(5):41–49, May 1998. 3.2.2, 5.7.6, 6.5.5

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model

for static analysis of programs by construction or approximation of fixpoints.

In Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on Principles

of Programming Languages, pages 238–252, Los Angeles, California, January

17–19 1977. 2.2.3.2, 2.2.4, 6.6

[CC79] P. Cousot and R. Cousot. Semantic design of program analysis frameworks. In

Proceedings of the 6th ACM SIGACT-SIGPLAN symposium on Principles of

Programming Languages, pages 269–282, San Antonio, Texas, January 29–31

1979. 2.2.4, 6.6

[CCK90] David Callahan, Steve Carr, and Ken Kennedy. Improving register allocation

for subscripted variables. In Proceedings of the ACM SIGPLAN 1990 Con-

ference on Programming Language Design and Implementation, pages 53–65,

White Plains, NY, June 1990. 2.3.3.2, 5.8, 7.4

[CCK+97] Fred Chow, Sun Chan, Robert Kennedy, Shin-Ming Liu, Raymond Lo, and

Peng Tu. A new algorithm for partial redundancy elimination based on SSA

form. In Proceedings of the ACM SIGPLAN 1997 Conference on Programming

Language Design and Implementation, pages 273–286, Las Vegas, Nevada, June

16–18 1997. 2.3.3.1, 5.8, 6.4.1, 6.6

[CCKT86] David Callahan, Keith D. Cooper, Ken Kennedy, and Linda Torczon. Interpro-

cedural constant propagation. In Proceedings of the 1986 SIGPLAN Symposium

on Compiler Construction, pages 152–161, Palo Alto, California, July 25–27

1986. 2.3.1.1

[CE00] Cristina Cifuentes and Mike Van Emmerik. UQBT: Adaptable binary transla-

tion at low cost. Computer, 33(3):60–66, March 2000. 2.4

BIBLIOGRAPHY 147

[CFE97] B. Calder, P. Feller, and A. Eustace. Value profiling. In Proceedings of the

30th Annual IEEE/ACM International Symposium on Microarchitecture, pages

259–269, Research Triangle Park, North Carolina, December 1–3 1997. 1.1.2,

2.3.2.1, 4.4

[CFR+91] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark K. Wegman, and F. Ken-

neth Zadeck. Efficiently computing static single assignment form and control

dependence graph. ACM Transactions on Programming Languages and Sys-

tems, 13(4):452–490, October 1991. 2.2.2

[CG94] Brad Calder and Dirk Grunwald. Fast and accurate instruction fetch and

branch prediction. In Proceedings of the 21st Annual International Symposium

on Computer Architecture, pages 2–11, Chicago, Illinois, April 18–21 1994. 1.1,

6.1

[CGL97] Robert Cohn, David W. Goodwin, and P. Geoffrey Lowney. Optimizing Alpha

executables on Windows/NT with Spike. Digital Technical Journal, 9(4):3–20,

1997. 2.4.2

[CGLR97] Robert Cohn, David W. Goodwin, P. Geoffrey Lowney, and Norman Ru-

bin. Spike: An optimizer for Alpha/NT executables. In Proceedings of the

USENIX Windows/NT Workshop, pages 17–23, Seattle, Washington, August

11–13 1997. 1.1.2, 2.4.2

[CGS04] Ramon Canal, Antonio González, and James E. Smith. Software-controlled

operand-gating. In Proceedings of the 2004 International Symposium on Code

Generation and Optimization, pages 125–136, San Jose, California, March 20–

24 2004. 2.2.4, 6.2.1, 6.6

[CH95] Paul Carini and Michael Hind. Flow-sensitive interprocedural constant prop-

agation. In Proceedings of the ACM SIGPLAN 1995 Conference on Program-

ming Language Design and Implementation, pages 46–56, La Jolla, California,

June 18–21 1995. 2.3.1.1

[CH00] Ben-Chung Cheng and Wen-Mei W. Hwu. Modular interprocedural pointer

analysis using access paths: Design, implementation, and evaluation. In Pro-

ceedings of the ACM SIGPLAN 2000 Conference on Programming Language

Design and Implementation, pages 57–69, Vancouver, Canada, June 18–21

2000. 2.2.3, 4.1, 4.4

[Chi01] T. M. Chilimbi. Efficient representations and abstractions for quantifying and

exploiting data reference locality. In Proceedings of the ACM SIGPLAN 2001

148 BIBLIOGRAPHY

Conference on Programming Language Design and Implementation, pages 191–

202, Snowbird, Utah, June 20–22 2001. 2.3.2.1

[CHK93] K. D. Cooper, M. W. Hall, and K. Kennedy. A methodology for procedure

cloning. Computer Languages, 19(2):105–117, February 1993. 2.3.1.4

[CKJA98] Brad Calder, C. Krintz, S. John, and T. Austin. Cache-conscious data place-

ment. In Proceedings of the Eight International Conference on Architectural

Support for Programming Languages and Operating Systems, pages 139–149,

San Jose, California, October 2–7 1998. 2.3.2.1

[CL96] Robert Cohn and P. Geoffrey Lowney. Hot cold optimization of large Win-

dows/NT applications. In Proceedings of the 29th Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, pages 80–89, Paris, France, December

2–4 1996. 1.1.2, 2.4.2, 4.4

[CL97] Keith Cooper and John Lu. Register promotion in C programs. In Proceedings

of the ACM SIGPLAN 1997 Conference on Programming Language Design and

Implementation, pages 308–319, Las Vegas, Nevada, June 16–18 1997. 2.3.3.2,

5.8

[CLCG00] Wen-Ke Chen, Sorin Lerner, Ronnie Chaiken, and David Gillies. Mojo: A

dynamic optimization system. In Proceedings of the 3rd Workshop on Feedback-

Directed and Dynamic Optimization, Monterey, California, December 2000.

2.3.2

[CMCH92] Pohua P. Chang, Scott A. Mahlke, William Y. Chen, and Wen-Mei W. Hwu.

Profile-guided automatic inline expansion for C programs. Software Practice

and Experience, 22(5):349–369, May 1992. 1.1.2, 2.3.1.4, 3.2.1.2, 4.4

[CMMP95] T. Conte, K. Menezes, P. Mills, and B. Patell. Optimization of instruction fetch

mechanism for high issue rates. In Proceedings of the 22nd Annual International

Symposium on Computer Architecture, pages 333–344, S. Margherita Ligure,

Italy, June 22–24 1995. 1

[Com99a] Compaq Computer Corporation. Alpha 21264 Microprocessor Hardware Ref-

erence Manual. Number EC-RJ66A-TE. 1999. 3.1.1

[Com99b] Compaq Computer Corporation. Compiler writer’s guide for the Alpha 21264.

Number EC-RJ66B-TE. 1999. 3.3.1.3, 8

BIBLIOGRAPHY 149

[Con97] Daniel A. Connors. Memory profiling for directing data speculative optimiza-

tions and scheduling. Master’s thesis, Department of Electrical and Computer

Engineering, University of Illinois, May 1997. 2.3.2.1, 4.4

[CR82] A. L. Chow and A. Rudnick. The design of a data-flow analyzer. In Proceedings

of the 1982 SIGPLAN Symposium on Compiler Construction, pages 106–119,

Boston, Massachusetts, June 23–25 1982. 2.2

[CX03] Q. Cai and J. Xue. Optimal and efficient speculation-based partial redundancy

elimination. In Proceedings of the 2003 International Symposium on Code

Generation and Optimization, pages 91–102, San Francisco, California, March

23–26 2003. 2.3.3.1, 5.8, 6.6

[dBdSvP04] Bruno de Bus, Bjorn de Sutter, and Ludo van Put. Link-time optimization

of ARM binaries. In Proceedings of the 2004 ACM SIGPLAN Conference

on Languages, Compilers, and Tools for Embedded Systems, pages 211–220,

Washington, D. C., June 11–13 2004. 2.4.2

[DBK01] Rajagopalan Desikan, Doug Burger, and Stephen Keckler. Measuring experi-

mental error in microprocessor simulation. In Proceedings of the 28th Annual

International Symposium on Computer Architecture, pages 266–277, Göteborg,

Sweden, June 30–July 4 2001. 3.2.2, 5.7.6, 6.5.5

[dBKC+03] Bruno de Bus, Daniel Kaestner, Dominique Chanet, Ludo van Put, and Bjorn

de Sutter. Post-pass compactation techniques. Communications of the ACM,

46(8):41–46, August 2003. 2.4.2

[DE02] Saumya K. Debray and William Evans. Profile-guided code compression. In

Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language

Design and Implementation, pages 95–105, Berlin, Germany, June 17–19 2002.

2.4.1

[Deb95] Saumya K. Debray. Abstract interpretation and low level code optimization. In

Proceedings of the 1995 ACM SIGPLAN Symposium on Partial Evaluation and

Semantics-Based Program Manipulation, pages 111–121, La Jolla, California,

June 21–23 1995. 2.2.4

[DEMdS00] Saumya K. Debray, William Evans, Robert Muth, and Bjorn de Sutter. Com-

piler techniques for code compaction. ACM Transactions on Programming

Languages and Systems, 22(2):378–415, March 2000. 2.4.1, 2.4.2

150 BIBLIOGRAPHY

[DGR99] Dean Deaver, Rick Gorton, and Norm Rubin. Wiggins/Redstone: An on-line

program specializer. In Hot Chips 11, Stanford, California, August 15–17 1999.

2.3.2

[DGS97] Evelyn Duesterwald, Rajiv Gupta, and Mary Lou Soffa. A practical framework

for demand-driven interprocedural data-flow analysis. ACM Transactions on

Programming Languages and Systems, 19(6):992–1030, November 1997. 4.3,

4.4

[DLS02] Manuvir Das, Sorin Lerner, and Mark Seigle. ESP: Path-sensitive program

verification in polynomial time. In Proceedings of the ACM SIGPLAN 2002

Conference on Programming Language Design and Implementation, pages 57–

68, Berlin, Germany, June 17–19 2002. 2.2.4, 6.2.1, 6.3.2, 6.6

[DMW98] Saumya K. Debray, Robert Muth, and Matthew Weippert. Alias analysis of ex-

ecutable code. In Proceedings of the 25th ACM SIGACT-SIGPLAN symposium

on Principles of Programming Languages, pages 12–24, San Diego, California,

January 19–21 1998. 2.2.3.2, 2.4.2, 4.3.1, 4.4

[DR95] Kayvalia Dixit and Jeff Reilly. SPEC95 questions and answers. SPEC Newslet-

ter, 7(3), September 1995. 3.3

[dSdBdB02] Bjorn de Sutter, Bruno de Bus, and Koen de Bosschere. Sifting out the mud:

Low level C++ code reuse. In Proceedings of the 2002 ACM SIGPLAN Confer-

ence on Object-Oriented Programming, Systems, Languages, and Applications,

pages 275–291, Seattle, Washington, November 4–8 2002. 2.4.2

[dSdBdBD01] Bjorn de Sutter, Bruno de Bus, Koen de Bosschere, and Saumya K. Debray.

Combining global code and data compaction. In Proceedings of the 2001 ACM

SIGPLAN Workshop on Languages, Compilers, and Tools for Embedded Sys-

tems, pages 29–38, Snowbird, Utah, June 2001. 2.3.1.1, 2.4.2

[dSVdBdB03] Bjorn de Sutter, Hans Vandierendonck, Bruno de Bus, and Koen de Bosschere.

On the side-effects of code abstraction. In Proceedings of the 2003 ACM SIG-

PLAN Conference on Languages, Compilers, and Tools for Embedded Systems,

pages 244–253, San Diego, California, June 11–13 2003. 2.4.2

[DWM98] Amer Diwan, Kathryn S. WcKinley, and J. Eliot B. Moss. Type-based alias

analysis. In Proceedings of the ACM SIGPLAN 1998 Conference on Program-

ming Language Design and Implementation, pages 106–117, Montreal, Canada,

June 17–19 1998. 2.2.3, 4.1, 4.4

BIBLIOGRAPHY 151

[EAB+02] Joel Emer, Pritpal Ahuja, Eric Borch, Artur Klauser, Chi-Keung Luk, Sri-

latha Manne, Shubhendu S. Mukherjee, Harish Patil, Steven Wallace, Nathan

Binkert, Roger Espasa, and Toni Juan. ASim: A performance model frame-

work. Computer, 35(2):68–76, February 2002. 3.2.2

[EEF+97] Jens Ernst, William Evans, Christopher W. Fraser, Todd A. Proebsting, and

Steven Lucco. Code compression. In Proceedings of the ACM SIGPLAN 1997

Conference on Programming Language Design and Implementation, pages 358–

365, Las Vegas, Nevada, June 16–18 1997. 2.4.1

[EGH94] M. Emami, R. Ghiya, and L. J. Hendren. Context-sensitive interprocedu-

ral analysis in the presence of function pointers. In Proceedings of the ACM

SIGPLAN 1994 Conference on Programming Language Design and Implemen-

tation, pages 242–256, Orlando, Florida, June 20–24 1994. 2.2

[EGK+94] Kemal Ebcioglu, Randy Groves, Ki-Chang Kim, Gabriel Silberman, and Isaac

Ziv. VLIW compilation techniques in a superscalar environment. In Proceedings

of the ACM SIGPLAN 1994 Conference on Programming Language Design and

Implementation, pages 36–48, Orlando, Florida, June 20–24 1994. 2.3.1.6

[FE02a] Manel Fernández and Roger Espasa. Speculative alias analysis for executable

code. Technical Report UPC-DAC-2002-27, Computer Architecture Depart-

ment, Universitat Politècnica de Catalunya, Barcelona, Spain, 2002. 7.3

[FE02b] Manel Fernández and Roger Espasa. Speculative alias analysis for executable

code. In Proceedings of the 2002 International Conference on Parallel Archi-

tectures and Compilation Techniques, pages 222–231, Charlottesville, Virginia,

September 22–25 2002. 7.3

[FE03] Manel Fernández and Roger Espasa. A combined algorithm for memory re-

dundancy elimination on executable code. Technical Report UPC-DAC-2001-

38, Computer Architecture Department, Universitat Politècnica de Catalunya,

Barcelona, Spain, 2003. 7.3

[FE04a] Manel Fernández and Roger Espasa. Link-time optimization techniques

for eliminating conditional branch redundancies. Technical Report UPC-

DAC-2004-1, Computer Architecture Department, Universitat Politècnica de

Catalunya, Barcelona, Spain, 2004. 7.3

[FE04b] Manel Fernández and Roger Espasa. Link-time optimization techniques for

eliminating conditional branch redundancies. In Proceedings of the 8th Work-

152 BIBLIOGRAPHY

shop on Interaction between Compilers and Computer Architectures, Madrid,

Spain, February 2004. 7.3

[FE04c] Manel Fernández and Roger Espasa. Link-time path-sensitive memory re-

dundancy elimination. In Proceedings of the 10th International Symposium

on High-Performance Computer Architecture, pages 300–310, Madrid, Spain,

February 14–18 2004. 7.3

[FED01a] Manel Fernández, Roger Espasa, and Saumya K. Debray. Load redundancy

elimination on executable code. Technical Report UPC-DAC-2001-3, Computer

Architecture Department, Universitat Politècnica de Catalunya, Barcelona,

Spain, 2001. 7.3

[FED01b] Manel Fernández, Roger Espasa, and Saumya K. Debray. Load redundancy

elimination on executable code. In Proceedings of the 7th International Eu-

roPAR Conference, pages 221–229. Springer-Verlag, August 2001. 7.3

[FED03] Manel Fernández, Roger Espasa, and Saumya K. Debray. Load redundancy

elimination on executable code. Concurrency and Computation: Practice and

Experience, 15(10):979–997, August 2003. 7.3

[FH95] Chris W. Fraser and David R. Hanson. A Retargetable C Compiler: Design

and Implementation. Benjamin-Cummings, Redwood City, CA, 1995. 2.4.1

[Fis81] Joseph A. Fisher. Trace scheduling: A technique for global microcode com-

pactation. IEEE Transactions on Computers, C-30(7):478–490, July 1981.

2.3.1.6, 3.2.1.2

[FLM+01] Richard Flower, Chi-Keung Luk, Robert Muth, Harish Patil, John Shakshober,

Robert Cohn, and P. Geoffrey Lowney. Kernel optimizations and prefetch

with the Spike executable optimizer. In Proceedings of the 4th Workshop on

Feedback-Directed and Dynamic Optimization, Austin, Texas, December 2001.

1.1.2, 2.4.2

[FPP97] Daniel Holmes Friendly, Sanjay Jeram Patel, and Yale N. Patt. Alternative

fetch and issue techniques from the trace cache mechanism. In Proceedings of

the 30th Annual IEEE/ACM International Symposium on Microarchitecture,

pages 159–169, Research Triangle Park, North Carolina, December 1–3 1997.

1

[GBF98] Rajiv Gupta, David A. Berson, and Jesse Z. Fang. Path profile guided partial

redundancy elimination using speculation. In Proceedings of the 1998 Interna-

BIBLIOGRAPHY 153

tional Conference on Computer Languages, pages 230–239, Chicago, Illinois,

May 14–16 1998. 1.1.2, 2.3.3, 2.3.3.1, 4.3.3, 4.4, 5.8, 6.6

[GBSC97] Nikolas Gloy, Trevor Blackwell, Michael D. Smith, and Brad Calder. Procedure

placement using temporal ordering information. In Proceedings of the 30th

Annual IEEE/ACM International Symposium on Microarchitecture, pages 303–

313, Research Triangle Park, North Carolina, December 1–3 1997. 1, 2.3.1.5

[GCM+94] David M. Gallagher, William Y. Chen, Scott A. Mahlke, John C. Gyllenhaal,

and Wen-Mei W. Hwu. Dynamic memory disambiguation using the memory

conflict buffer. In Proceedings of the Sixth International Conference on Ar-

chitectural Support for Programming Languages and Operating Systems, pages

183–193, San Jose, California, October 5–7 1994. 4.3.3, 4.4, 7.4

[GLS01] Rakesh Ghiya, Daniel Lavery, and David Sehr. On the importance of points-

to analysis and other memory disambiguation methods for C programs. In

Proceedings of the ACM SIGPLAN 2001 Conference on Programming Language

Design and Implementation, pages 47–58, Snowbird, Utah, June 20–22 2001.

1.1.1, 2.2.3, 4.1, 4.4

[GMZ02] Rajiv Gupta, Eduard Mehofer, and Youtao Zhang. The Compiler Design Hand-

book: Optimizations and Machine Code Generation, Chapter 4: Profile Guided

Compiler Optimizations, pages 143–174. CRC Press, September 2002. 1.1.2,

2.3.2, 2.3.2.1

[Goo97] David W. Goodwin. Interprocedural dataflow analysis in an executable opti-

mizer. In Proceedings of the ACM SIGPLAN 1997 Conference on Programming

Language Design and Implementation, pages 122–133, Las Vegas, Nevada, June

16–18 1997. 1.1.2, 2.2.1, 2.4.2

[HC89a] Wen-Mei W. Hwu and Pohua P. Chang. Achieving high instruction cache per-

formance with an optimizing compiler. In Proceedings of the 16th Annual In-

ternational Symposium on Computer Architecture, pages 242–251, Jerusalem,

Israel, May 19–21 1989. 2.3.1.5

[HC89b] Wen-Mei W. Hwu and Pohua P. Chang. Inline function expansion for compil-

ing C programs. In Proceedings of the ACM SIGPLAN 1989 Conference on

Programming Language Design and Implementation, pages 246–255, Portland,

Oregon, June 19–23 1989. 2.3.1.4

[HH97a] R. J. Hookway and M. A. Herdeg. Digital FX!32: Combining emulation and

binary translation. Digital Technical Journal, 9(1):3–12, 1997. 2.4

154 BIBLIOGRAPHY

[HH97b] R. Nigel Horspool and H. C. Ho. Partial redundancy elimination driven by

a cost-benefit analysis. In 8th Israeli Conference on Computer System and

Software Engineering, pages 111–118, Herzliya, Israel, 1997. 2.3.3, 2.3.3.1,

5.5.1, 3, 5.5.3, 5.6.1, 5.8, 6.6

[HJ92] Reed Hastings and Bob Joyce. Purify: Fast detection of memory leaks and ac-

cess errors. In Proceedings of the USENIX Conference, pages 125–136, January

1992. 2.4

[HMC+93] Wen-Mei W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter,

R. A. Bringmann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G.

Holm, and D. M. Lavery. The superblock: An effective technique for VLIW

and superscalar compilation. The Journal of Supercomputing, 7(1-2):229–248,

May 1993. 2.3.1.6, 2.3.3

[HP96] John L. Hennessy and David A. Patterson. Computer Architecture A Quan-

titative Approach. Morgan Kaufmann Publishers, San Francisco, California,

second edition, 1996. 1.1

[HPRA02] Christopher J. Hughes, Vijay S. Pai, Parthasarathy Ranganathan, and

Sarita V. Adve. RSim: Simulating shared-memory multiprocessors with ILP

processors. Computer, 35(2):40–49, February 2002. 3.2.2

[HSS94] Andrew S. Huang, Gert Slavenburg, and John Paul Shen. Speculative disam-

biguation: A compilation technique for dynamic memory disambiguation. In

Proceedings of the 21st Annual International Symposium on Computer Archi-

tecture, pages 200–210, Chicago, Illinois, April 18–21 1994. 4.3.3, 4.4, 7.4

[Hun00] Robert Hundt. HP Caliper: A framework for performance analysis tools. IEEE

Concurrency, 8(4):64–71, October 2000. 3.2.2

[JNMW00] Roy Dz-Ching Ju, Kevin Nomura, Uma Mahadevan, and Le-Chun Wu. A

unified compiler framework for control and data speculation. In Proceedings of

the 2000 International Conference on Parallel Architectures and Compilation

Techniques, pages 157–168, Philadelphia, Pennsylvania, October 15–19 2000.

1.1.2

[KE93] Danial R. Kerns and Susan J. Eggers. Balanced scheduling: Instruction

scheduling when memory latency is uncertain. In Proceedings of the ACM

SIGPLAN 1993 Conference on Programming Language Design and Implemen-

tation, pages 278–289, Albuquerque, New Mexico, June 21–25 1993. 2.3.1.6

BIBLIOGRAPHY 155

[Kes99] Richard E. Kessler. The Alpha 21264 microprocessor. IEEE Micro, 19(2):24–

36, April 1999. 1.1, 3.1.1

[KFML00] AJ KleinOsowski, John Flynn, Nancy Meares, and David J. Lilja. Adapting

the SPEC 2000 benchmark suite for simulation-based computer architecture re-

search. In Workload characterization of emerging computer applications, pages

83–100, Austin, Texas, September 16 2000. 3.3

[KK98] John Kalamatianos and David R. Kaeli. Temporal-based procedure reorder-

ing for improved instruction cache performance. In Proceedings of the 4th

International Symposium on High-Performance Computer Architecture, pages

244–253, Las Vegas, Nevada, January 31–February 4 1998. 2.3.1.5

[KMW98] Richard E. Kessler, E. McLelland, and D. Webb. The Alpha 21264 microproces-

sor architecture. In Proceedings of the International Conference on Computer

Design, pages 90–105, October 1998. 3.1.1, 3.2.1.2

[Kra94] Andreas Krall. Improving semi-static branch prediction by code replication. In

Proceedings of the ACM SIGPLAN 1994 Conference on Programming Language

Design and Implementation, pages 97–106, Orlando, Florida, June 20–24 1994.

6.1, 6.3

[KRS94a] Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Optimal code motion:

Theory and practice. ACM Transactions on Programming Languages and Sys-

tems, 16(4):1117–1155, July 1994. 1.1.1, 2.3.3, 2.3.3.1, 5.8, 6.4.1, 6.6

[KRS94b] Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Partial dead code elimina-

tion. In Proceedings of the ACM SIGPLAN 1994 Conference on Programming

Language Design and Implementation, pages 147–158, Orlando, Florida, June

20–24 1994. 2.3.3

[Lar99] James R. Larus. Whole program paths. In Proceedings of the ACM SIGPLAN

1999 Conference on Programming Language Design and Implementation, pages

259–269, Atlanta, Georgia, May 1–4 1999. 2.3.2.1

[LB94] James R. Larus and Thomas Ball. Rewriting executable files to measure pro-

gram behavior. Software Practice and Experience, 24(2):197–218, February

1994. 2.4

[LCA01] Eric Larson, Saugata Chatterjee, and Todd Austin. MASE: A novel infrastruc-

ture for detailed microarchitectural modeling. In Proceedings of the 2001 IEEE

International Symposium on Performance Analysis of Systems and Software,

pages 1–9, Tucson, Arizona, April 4–6 2001. 3.2.2

156 BIBLIOGRAPHY

[LCH+03] Jin Lin, Tong Chen, Wei-Chung Hsu, Pen-Chung Yew, Roy Dz-Ching Ju, Tin-

Fook Ngai, and Sun Chan. A compiler framework for speculative analysis

and optimizations. In Proceedings of the ACM SIGPLAN 2003 Conference

on Programming Language Design and Implementation, pages 289–299, San

Diego, California, June 9–11 2003. 1.1.2

[LCK+98] Raymond Lo, Fred Chow, Robert Kennedy, Shin-Ming Liu, and Peng Tu. Reg-

ister promotion by sparse partial redundancy elimination of loads and stores.

In Proceedings of the ACM SIGPLAN 1998 Conference on Programming Lan-

guage Design and Implementation, pages 26–37, Montreal, Canada, June 17–19

1998. 2.3.3, 2.3.3.2, 5.7.1, 5.8

[LCM97] Chih-Chieh Lee, I-Cheng K. Chen, and Trevor N. Mudge. The bi-mode branch

predictor. In Proceedings of the 30th Annual IEEE/ACM International Sym-

posium on Microarchitecture, pages 4–13, Research Triangle Park, North Car-

olina, December 1–3 1997. 1.1, 6.1

[LDAS04] Cullen Linn, Saumya K. Debray, Gregory Andrews, and Benjamin Schwarz.

Stack analysis of x86 executables. Technical Report TR04-16, Department of

Computer Science, University of Arizona, 2004. 2.4.2

[LE95] Jack L. Lo and Susan J. Eggers. Improving balanced scheduling with com-

piler optimizations that increase instruction-level parallelism. In Proceedings

of the ACM SIGPLAN 1995 Conference on Programming Language Design and

Implementation, pages 151–162, La Jolla, California, June 18–21 1995. 2.3.1.6

[LFK+93] P. Geoffrey Lowney, Stefan M. Freudenberger, Thomas J. Karzes, W. D. Licht-

enstein, Robert P. Nix, John S. O’Donnell, and John C. Ruttenberg. The multi-

flow trace scheduling compiler. The Journal of Supercomputing, 7(1-2):51–142,

May 1993. 2.3.1.6

[LMP+04] Chi-Keung Luk, R. Muth, H. Patil, R. Cohn, and P. Geoffrey Lowney. Ispike:

A post-link optimizer for the Intel Itanium architecture. In Proceedings of the

2004 International Symposium on Code Generation and Optimization, pages

15–26, San Jose, California, March 20–24 2004. 1.1.2, 2.4.2

[LS95] James R. Larus and Eric Schnarr. EEL: Machine-independent executable edit-

ing. In Proceedings of the ACM SIGPLAN 1995 Conference on Programming

Language Design and Implementation, pages 291–300, La Jolla, California,

June 18–21 1995. 2.4.2

BIBLIOGRAPHY 157

[LS00] Thierry Lafage and Andre Seznec. Choosing representative slices of program

execution for microarchitecture simulations: A preliminary application to the

data stream. In Workload characterization of emerging computer applications,

pages 145–163, Austin, Texas, September 16 2000. 3.3

[MAA+02] Shubhendu S. Mukherjee, Sarita V. Adve, Todd Austin, Joel Emer, and Pe-

ter S. Magnusson. Performance simulation tools. Computer, 35(2):38–39,

February 2002. 3.2.2

[Mah92] Scott Alan Mahlke. Design and implementation of a portable global code op-

timizer. Master’s thesis, Department of Electrical and Computer Engineering,

University of Illinois, December 1992. 2.1.3, 3.1.1

[MCE00] Markus Mock, Craig Chambers, and Susan J. Eggers. Calpa: A tool for au-

tomating selective dynamic compilation. In Proceedings of the 33rd Annual

IEEE/ACM International Symposium on Microarchitecture, pages 291–302,

Monterey, California, December 10–13 2000. 2.3.2

[MCE+02] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Fors-

gren, Gustav Hallberg, Johan Hogberg, Fredrik Larsson, Andreas Moestedt,

and Bengt Werner. SimICS: A full system simulation platform. Computer,

35(2):50–58, February 2002. 3.2.2

[McF89] Scott McFarling. Program optimization for instruction caches. In Proceed-

ings of the Third International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems, pages 183–191, Boston, Mas-

sachusetts, April 3–6 1989. 2.3.1.5

[McF91a] Scott McFarling. Procedure merging with instruction caches. In Proceedings of

the ACM SIGPLAN 1991 Conference on Programming Language Design and

Implementation, pages 71–79, Toronto, Canada, June 24–28 1991. 2.3.1.4,

2.3.1.4, 3.2.1.2

[McF91b] Scott McFarling. Program Analysis and Optimization for Machines with In-

struction Cache. PhD thesis, Computer Systems Laboratory, Stanford Univer-

sity, 1991. 2.3.1.5

[MCG+92] Scott A. Mahlke, William Y. Chen, John C. Gyllenhaal, Wen-Mei W. Hwu,

Pohua P. Chang, and Tokuzo Kiyohara. Compiler code transformations

for superscalar-based high-performance systems. In Proceedings of the 1992

ACM/IEEE Conference on Supercomputing, pages 808–817, Minneapolis, Min-

nesota, November 16–20 1992. 2.3

158 BIBLIOGRAPHY

[MDWdB01] Robert Muth, Saumya K. Debray, Scott Watterson, and Koen de Bosschere.

Alto: A link-time optimizer for the Compaq Alpha. Software Practice and

Experience, 31(6):67–101, January 2001. 1.1.2, 2.3.1.1, 2.3.1.4, 2.4.2, 3.1.1,

3.2.1, 3.2.1.1, 3.2.1.2, 3.3.1.3

[ME02] D. Mosberger and S. Eranian. IA-64 Linux Kernel Design and Implementation,

Chapter 9.3: Kernel Support for Performance Monitoring. Hewlett-Packard,

2002. 2.4.2

[MM97] Mayan Moudgill and Jaime H. Moreno. Run-time detection and recovery from

incorrectly reordered memory operations. Technical Report RC-20857, IBM

Research Report, May 1997. 4.8, 4.3.3, 4.4, 7.4

[Moo65] G. Moore. Cramming more components onto integrated circuits. Electronics,

98(9), April 1965. 1.1

[Mor98] Robert Morgan. Building an Optimizing Compiler. Digital Press, 1998. 2.1.3,

3.1.1

[MR79] E. Morel and C. Renvoise. Global optimization by suppression of partial re-

dundancies. Communications of the ACM, 22(2):96–103, February 1979. 1.1.1,

2.3.3, 2.3.3.1, 5.8, 6.6

[MR94] Uma Mahadevan and Sridhar Ramakrishnan. Instruction scheduling over re-

gions: A framework for scheduling across basic blocks. In Proceedings of the

1994 SIGPLAN Symposium on Compiler Construction, pages 419–434, Edin-

burgh, Scotland, June 23–25 1994. 2.3.1.6

[MRS+01] S. Mahlke, R. Ravindran, M. Schlansker, R. Schreiber, and T. Sherwood.

Bitwidth cognizant architecture synthesis of custom hardware accelerators.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-

tems, 20(11):1355–1371, November 2001. 2.2.4, 6.2.1, 6.6, 7.4

[Muc97a] Steven S. Muchnick. Advanced Compiler Design and Implementation, Chapter

21: Case Studies of Compilers and Future Trends, pages 705–746. In [Muc97d],

1997. 1.1, 6.2.2

[Muc97b] Steven S. Muchnick. Advanced Compiler Design and Implementation, Chapter

13: Redundancy Elimination, pages 377–424. In [Muc97d], 1997. 1.1.1

[Muc97c] Steven S. Muchnick. Advanced Compiler Design and Implementation, Chapter

10: Alias Analysis, pages 293–318. In [Muc97d], 1997. 1.1.1, 4.3

BIBLIOGRAPHY 159

[Muc97d] Steven S. Muchnick. Advanced Compiler Design and Implementation. Morgan

Kaufman, San Francisco, 1997. 2.1, 7.4

[Muc97e] Steven S. Muchnick. Advanced Compiler Design and Implementation, Chapter

4: Intermediate Representations, pages 67–104. In [Muc97d], 1997. 2.1.3, 3.1.1

[Muc97f] Steven S. Muchnick. Advanced Compiler Design and Implementation, Chapter

8: Data-Flow Analysis, pages 217–266. In [Muc97d], 1997. 1, 2.2.1, 2.2.2,

4.2.1, 4.2.2, 2, 5.3

[Muc97g] Steven S. Muchnick. Advanced Compiler Design and Implementation, Chapter

9: Dependence Analysis and Dependence Graph, pages 267–292. In [Muc97d],

1997. 2, 2.2.3.1

[Muc97h] Steven S. Muchnick. Advanced Compiler Design and Implementation, Chapter

16: Register Allocation, pages 481–530. In [Muc97d], 1997. 2.2.1, 2.4.2

[Muc97i] Steven S. Muchnick. Advanced Compiler Design and Implementation, Chapter

1: Introduction to Advanced Topics, pages 1–18. In [Muc97d], 1997. 2.3

[Muc97j] Steven S. Muchnick. Advanced Compiler Design and Implementation, Chapter

17: Code Scheduling, pages 531–578. In [Muc97d], 1997. 2.3.1.3, 2.3.3.3,

3.2.1.2, 6.6

[Muc97k] Steven S. Muchnick. Advanced Compiler Design and Implementation, Chapter

14: Loop Optimizations, pages 425–460. In [Muc97d], 1997. 2.3.1.4, 2.3.3

[Muc97l] Steven S. Muchnick. Advanced Compiler Design and Implementation, Chapter

12: Early Optimizations, pages 329–376. In [Muc97d], 1997. 2.3.3, 3.2.1.2

[Muc97m] Steven S. Muchnick. Advanced Compiler Design and Implementation, Chapter

18: Control-Flow and Low-Level Optimizations, pages 579–606. In [Muc97d],

1997. 5.6.2

[Mut98] Robert Muth. Register liveness analysis of executable code. Technical Report

TR98-16, Department of Computer Science, University of Arizona, 1998. 2.2.1,

2.4.2

[Mut99] Robert Muth. Alto: A Platform for Object Code Modification. PhD thesis,

Department of Computer Science, University of Arizona, 1999. 2.3.1.1, 2.3.1.3,

2.4.2, 3.2.1.2, 3.3.1.3

160 BIBLIOGRAPHY

[MW92] Frank Mueller and David B. Whalley. Avoiding unconditional jumps by code

replication. In Proceedings of the ACM SIGPLAN 1992 Conference on Pro-

gramming Language Design and Implementation, pages 332–330, San Fran-

cisco, California, June 15–19 1992. 2.3.3, 6.4.1, 6.5, 6.6

[MW95] Frank Mueller and David B. Whalley. Avoiding conditional branches by code

replication. In Proceedings of the ACM SIGPLAN 1995 Conference on Pro-

gramming Language Design and Implementation, pages 56–66, La Jolla, Cali-

fornia, June 18–21 1995. 2.3.3, 2.3.3.3, 6.1, 6.3, 6.6

[MWD00] Robert Muth, Scott A. Watterson, and Saumya K. Debray. Code specialization

based on value profiling. In Proceedings of the 7th International Symposium

on Static Analysis, pages 340–359, Santa Barbara, California, June 29–July 1

2000. 2.3.2.1, 2.4.2

[NNH99] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program

Analysis. Springer-Verlag, New York NY, 1999. 2.2, 2.2.3.2, 2

[NS01] Sebastien Nussbaum and James E. Smith. Modeling superscalar processors via

statistical simulation. In Proceedings of the 2001 International Conference on

Parallel Architectures and Compilation Techniques, pages 15–24, Barcelona,

Spain, September 8–12 2001. 3.3

[OG98] Soner Onder and Rajiv Gupta. Automatic generation of microarchitecture

simulators. In Proceedings of the 1998 International Conference on Computer

Languages, pages 80–89, Chicago, Illinois, May 14–16 1998. 3.2.2

[Pat95] Jason R. C. Patterson. Accurate static branch prediction by value range prop-

agation. In Proceedings of the ACM SIGPLAN 1995 Conference on Program-

ming Language Design and Implementation, pages 67–78, La Jolla, California,

June 18–21 1995. 2.2.4, 6.1, 6.2.1, 6.3, 6.3.2, 6.6, 7.4

[PGM00a] M. A. Postiff, D. A. Greene, and T. N. Mudge. The store-load address table and

speculative register promotion. In Proceedings of the 33rd Annual IEEE/ACM

International Symposium on Microarchitecture, pages 235–244, Monterey, Cal-

ifornia, December 10–13 2000. 4.3.3, 4.4, 7.4

[PGM00b] Matthew Postiff, David Greene, and Trevor Mudge. The need for large register

files in integer codes. Technical Report CSE-TR-434-00, EECS/CSE University

of Michigan, 2000. 2.3.3.2, 5.4.2, 5.8

BIBLIOGRAPHY 161

[PH90] Karl Pettis and Robert C. Hansen. Profile guided code positioning. In Pro-

ceedings of the ACM SIGPLAN 1990 Conference on Programming Language

Design and Implementation, pages 16–27, White Plains, NY, June 1990. 1,

1.1.2, 2.3.1.5, 3.2.1.1, 4.4

[Rau91] B. R. Rau. Data-flow and dependence analysis for instruction level parallelism.

In Proceedings of the 4th International Workshop on Language and Compilers

for Parallel Computing, Lecture Notes in Computer Science, pages 236–250.

Springer-Verlag, 1991. 2.2.4, 6.6

[RBDH97] Mendel Rosenblum, Edouard Bugnion, Scott Devine, and Stephen A. Her-

rod. Using the SimOS machine simulator to study complex computer systems.

ACM Transactions on Modeling and Computer Simulation, 7(1):78–103, Jan-

uary 1997. 3.2.2

[RBG+01] Alex Ramı́rez, Luiz Barroso, Kourosh Gharachorloo, Robert Cohn, Josep L.

Larriba-Pey, P. Geoffrey Lowney, and Mateo Valero. Code layout optimiza-

tions for transaction processing workloads. In Proceedings of the 28th Annual

International Symposium on Computer Architecture, pages 155–164, Göteborg,

Sweden, June 30–July 4 2001. 2.4.2

[RBS96] Eric Rotenberg, Steve Bennett, and James E. Smith. Trace cache: A low

latency approach to high bandwidth instruction fetching. In Proceedings of

the 29th Annual IEEE/ACM International Symposium on Microarchitecture,

pages 24–34, Paris, France, December 2–4 1996. 1

[RCT+98] G. Reinman, B. Calder, D. Tullsen, G. Tyson, and T. Austin. Profile guided

load marking for memory renaming. Technical Report UCSD-CS98-593, Uni-

versity of California, San Diego, 1998. 2.3.2.1, 4.4

[Rei95] Jeff Reilly. SPEC describes SPEC95 products and benchmarks. SPEC Newslet-

ter, 7(3), September 1995. 3.3

[RF93] B. R. Rau and Joseph A. Fisher. Instruction-level parallel processing: History,

overview and perspective. The Journal of Supercomputing, 7(1-2):9–50, May

1993. 2.3.1.6

[RG89] S. Richardson and M. Ganapathi. Interprocedural analysis versus procedure in-

tegration. Information Processing Letters, 32(3):137–142, August 1989. 2.3.1.4

[RL92] Anne Rogers and Kai Li. Software support for speculative loads. In Proceedings

of the Fifth International Conference on Architectural Support for Program-

162 BIBLIOGRAPHY

ming Languages and Operating Systems, pages 38–50, Boston, Massachusetts,

October 12–15 1992. 2.3.1.6

[RLPN+99] Alex Ramı́rez, Josep L. Larriba-Pey, Carlos Navarro, Josep Torrellas, and Ma-

teo Valero. Software trace cache. In Proceedings of the 1999 International

Conference on Supercomputing, pages 119–126, Rhodes, Greece, June 20–25

1999. 1, 2.3.1.5

[RLPV01] Alex Ramı́rez, Josep L. Larriba-Pey, and Mateo Valero. Instruction fetch archi-

tectures and code layout optimizations. Proceedings of the IEEE, 89(11):1588–

1609, November 2001. 2.3.1.5

[RRL99] Atanas Rountev, Barbara G. Ryder, and William Landi. Data-flow analysis of

program fragments. In Proceedings of the 7th European Engineering Conference

held jointly with the 7th ACM SIGSOFT International Symposium on Foun-

dations of Software Engineering, pages 235–252, Toulouse, France, September

6–10 1999. 4.3, 4.4

[RVL+97] Ted Romer, Geoff Voelker, Dennis Lee, Alec Wolman, Wayne Wong, Hank

Levy, Brian Bershad, and J. Bradley Chen. Instrumentation and optimiza-

tion of Win32/Intel executables using Etch. In Proceedings of the USENIX

Windows/NT Workshop, pages 1–7, Seattle, Washington, August 11–13 1997.

1.1.2, 2.4.2

[Sar89] V. Sarkar. Determining average program execution times and their variance. In

Proceedings of the ACM SIGPLAN 1989 Conference on Programming Language

Design and Implementation, pages 298–312, Portland, Oregon, June 19–23

1989. 1.1.2, 2.3.2.1

[SBA00] Mark Stephenson, Jonathan Babb, and Saman Amarasinghe. Bitwidth analysis

with application to silicon compilation. In Proceedings of the ACM SIGPLAN

2000 Conference on Programming Language Design and Implementation, pages

108–120, Vancouver, Canada, June 18–21 2000. 2.2.4, 6.2.1, 6.6, 7.4

[Sch77] R. W. Scheifler. An analysis of inline substitution for a structured program-

ming language. Communications of the ACM, 20(9):647–654, September 1977.

2.3.1.4

[SCK+93] Richard L. Sites, Anton Chernoff, Matthew B. Kirk, Maurice P. Marks, and

Scott Robinson. Binary translation. Communications of the ACM, 36(2):69–81,

February 1993. 2.4

BIBLIOGRAPHY 163

[SDA02] Noah Snavely, Saumya K. Debray, and Gregory Andrews. Predicate analysis

and if-conversion in an Itanium link-time optimizer. In Proceedings of the 2nd

Workshop on Explicitly Parallel Instruction Computing (EPIC) Architectures

and Compiler Techniques, November 2002. 1.1.2, 2.4.2

[SDA03a] Noah Snavely, Saumya K. Debray, and Gregory Andrews. Unscheduling, un-

predication, unspeculation: Reverse engineering Itanium executables. In Pro-

ceedings of the IEEE International Conference on Automated Software Engi-

neering, pages 4–13, November 2003. 2.4.2

[SDA03b] Noah Snavely, Saumya K. Debray, and Gregory Andrews. Unspeculation. In

Proceedings of the IEEE International Conference on Automated Software En-

gineering, pages 205–214, October 2003. 2.4.2

[SDAL01] Benjamin Schwarz, Saumya K. Debray, Gregory Andrews, and Matthew Legen-

dre. PLTO: A link-time optimizer for the Intel IA-32 architecture. In Proceed-

ings of the 3rd Workshop on Binary Translation, Barcelona, Spain, October

2001. 1.1.2, 2.3.1.4, 2.4.2

[SE94] Amitabh Srivastava and Alan Eustace. ATOM: A system for building cus-

tomized program analysis tools. In Proceedings of the ACM SIGPLAN 1994

Conference on Programming Language Design and Implementation, pages 196–

205, Orlando, Florida, June 20–24 1994. 2.4, 2.4.2, 3.1.1

[SH97] Marc Shapiro and Susan Horwitz. Fast and accurate flow-insensitive points-

to analysis. In Proceedings of the 24th ACM SIGACT-SIGPLAN symposium

on Principles of Programming Languages, pages 1–14, Paris, France, January

15–17 1997. 2.2.3, 4.1, 4.4

[SHK04] Bernhard Scholz, Nigel Horspool, and Jens Knoop. Optimizing for space and

time usage with speculative partial redundancy elimination. In Proceedings

of the 2004 ACM SIGPLAN Conference on Languages, Compilers, and Tools

for Embedded Systems, pages 221–230, Washington, D. C., June 11–13 2004.

2.3.3.1, 5.8, 6.6

[Sil99] Silicon Graphics, Inc. MIPSpro Compiling and Performance Tunning Guide.

Number 007-2360-008. Mountain View, CA, 1999. 1.1.2

[SL98] Eric Schnarr and James. R. Larus. Fast out-of-order processor simulation using

memoization. In Proceedings of the Eight International Conference on Archi-

tectural Support for Programming Languages and Operating Systems, pages

283–294, San Jose, California, October 2–7 1998. 3.2.2

164 BIBLIOGRAPHY

[SLM96] Stuart Sechrest, Chih-Chieh Lee, and Trevor Mudge. Correlation and aliasing

in dynamic branch predictors. In Proceedings of the 23rd Annual International

Symposium on Computer Architecture, pages 22–32, Philadelphia, Pennsylva-

nia, May 22–24 1996. 6.1, 6.3

[Smi81] J. E. Smith. A study of branch prediction strategies. In Proceedings of the 8th

Annual International Symposium on Computer Architecture, pages 135–148,

Minneapolis, Minnesota, May 12–14 1981. 1.1, 6.1

[Smi82] Alan Jay Smith. Cache memories. ACM Computing Surveys, 14(3):473–530,

September 1982. 1.1, 5.1

[Smi91] Michael D. Smith. Tracing with Pixie. Technical Report CSL-TR-91-497,

Computer Systems Laboratory, Stanford University, 1991. 2.3.2.1, 2.4.2, 3.1.1,

3.1.2.2, 3.2.1.2, 2

[SP89] J. J. Shieh and C. A. Papachristou. On reordering instruction streams for

pipelined processors. In Proceedings of the 22th Annual IEEE/ACM Interna-

tional Symposium on Microarchitecture, pages 199–206, Dublin, Ireland, Au-

gust 14–16 1989. 2.3.1.6

[SPC01] Timothy Sherwood, Erez Perelman, and Brad Calder. Basic block distribution

analysis to find periodic behavior and simulation points in applications. In

Proceedings of the 2001 International Conference on Parallel Architectures and

Compilation Techniques, pages 3–14, Barcelona, Spain, September 8–12 2001.

3.3

[SPHC02] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Auto-

matically characterizing large scale program behavior. In Proceedings of the

10th International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, pages 45–57, San Jose, California, October 5–9

2002. 3.3

[SS95] J. E. Smith and G. S. Sohi. The microarchitecture of superscalar processors.

Proceedings of the IEEE, 83(12), December 1995. 1.1

[SW92] Amitabh Srivastava and David W. Wall. A practical system for intermodule

code optimization at link-time. Journal of Programming Languages, 1(1):1–18,

December 1992. 1.1.2, 2.2.1, 2.3.1.1, 2.4.2, 3.1.2.1

[SW94] Amitabh Srivastava and David W. Wall. Link-time optimization of address

calculation on a 64-bit architecture. In Proceedings of the ACM SIGPLAN

BIBLIOGRAPHY 165

1994 Conference on Programming Language Design and Implementation, pages

49–60, Orlando, Florida, June 20–24 1994. 2.4.2

[TM01] Arial Tamches and Barton P. Miller. Dynamic kernel code optimization. In

Proceedings of the 3rd Workshop on Binary Translation, Barcelona, Spain,

October 2001. 3.2.1.2

[TP95] P. Tu and D. Padua. Gated SSA-based demand-driven symbolic analysis for

parallelizing compilers. In Proceedings of the 1995 International Conference on

Supercomputing, pages 414–423, Barcelona, Spain, July 3–7 1995. 2.2.4, 6.6

[TXD95] Josep Torellas, Chun Xia, and Russell Daigle. Optimizing instruction cache

performance for operating system intensive workloads. In Proceedings of the 1st

International Symposium on High-Performance Computer Architecture, pages

360–369, Raleigh, North Carolina, January 22–25 1995. 2.3.1.5

[Wal86] David W. Wall. Global register allocation at link time. In Proceedings of the

1986 SIGPLAN Symposium on Compiler Construction, pages 264–275, Palo

Alto, California, July 25–27 1986. 1.1.2

[Wal91] David W. Wall. Limits of instruction-level parallelism. In Proceedings of the

Fourth International Conference on Architectural Support for Programming

Languages and Operating Systems, pages 176–188, Santa Clara, California,

April 8–11 1991. 2

[Wal92] David R. Wallace. Cross-block scheduling using the extended dependence

graph. In Proceedings of the 1992 International Conference on Supercomputing,

pages 72–81, Washington, D. C., July 19–24 1992. 2.3.1.6

[Wei97] Reinhold Weicker. On the use of SPEC benchmarks in computer architecture

research. Computer Architecture News, 25(1):19–22, March 1997. 3.3

[WL95] Robert P. Wilson and Monica S. Lam. Efficient context-sensitive pointer anal-

ysis for C programs. In Proceedings of the ACM SIGPLAN 1995 Conference

on Programming Language Design and Implementation, pages 1–12, La Jolla,

California, June 18–21 1995. 2.2.3, 4.1, 4.4

[WLAG93] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham.

Efficient software-based fault isolation. In Proceedings of the 14th ACM Sym-

posium on Operating Systems Principles, pages 203–216, Asheville, North Car-

olina, December 5–8 1993. 2.4

166 BIBLIOGRAPHY

[WM95] W. A. Wulf and Sally A. McKee. Hitting the memory wall: Implications of the

obvious. Computer Architecture News, 23(1):20–24, March 1995. 1.1

[WZ91] Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with condi-

tional branches. ACM Transactions on Programming Languages and Systems,

13(2):181–210, April 1991. 2.3.1.1

[YGS95] Cliff Young, Nicolas Gloy, and Michael D. Smith. A comparative analysis

of schemes for correlated branch prediction. In Proceedings of the 22nd An-

nual International Symposium on Computer Architecture, pages 276–286, S.

Margherita Ligure, Italy, June 22–24 1995. 6.1, 6.3

[YP92] Tse-Yu Yeh and Yale Patt. Alternative implementations of two-level adaptive

branch prediction. In Proceedings of the 19th Annual International Symposium

on Computer Architecture, pages 124–134, Queensland, Australia, May 19–21

1992. 1.1, 6.1

[ZG01] Youtao Zhang and Rajiv Gupta. Timestamped whole program path representa-

tion. In Proceedings of the ACM SIGPLAN 2001 Conference on Programming

Language Design and Implementation, pages 180–190, Snowbird, Utah, June

20–22 2001. 2.3.2.1

[Zha02] Youtao Zhang. The Design and Implementation of Compression Techniques

for Profile Guided Compilation. PhD thesis, Department of Computer Science,

University of Texas, 2002. 5.2.2

	Abstract
	Acknowledgments/Agradecimientos
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.1.1 Binary redundancy
	1.1.2 Binary optimizations

	1.2 Thesis overview
	1.2.1 Thesis objectives
	1.2.2 Structure of this document

	2 Background and related work
	2.1 Preliminaries
	2.1.1 Control flow graph
	2.1.2 Basic blocks
	2.1.3 Instruction set representation

	2.2 Data-flow analysis
	2.2.1 Liveness analysis
	2.2.2 Use-def chains
	2.2.3 Alias analysis
	2.2.3.1 Alias analysis by instruction inspection
	2.2.3.2 Residue-based global alias analysis

	2.2.4 Abstract interpretation

	2.3 Compiler optimizations
	2.3.1 Base optimizations
	2.3.1.1 Optimization of constant expressions
	2.3.1.2 Dead/unreachable code elimination
	2.3.1.3 Copy propagation and register renaming
	2.3.1.4 Procedure inlining and cloning
	2.3.1.5 Code positioning
	2.3.1.6 Code scheduling

	2.3.2 Profile-guided optimizations
	2.3.2.1 Types of profile information
	2.3.2.2 Profile-guided classical optimizations

	2.3.3 Eliminating program redundancies
	2.3.3.1 Partial redundancy elimination
	2.3.3.2 Register promotion
	2.3.3.3 Elimination of conditional branches

	2.4 Binary optimizers
	2.4.1 Advantages of performing binary optimizations
	2.4.2 Related work

	3 Experimental environment
	3.1 Target environment
	3.1.1 Target platform
	3.1.2 Compilation environment
	3.1.2.1 Native compilation
	3.1.2.2 Getting profile information

	3.1.3 Execution environment

	3.2 Experimental framework
	3.2.1 Binary optimization environment
	3.2.1.1 Optimization phases
	3.2.1.2 Enhancing optimizer capabilities
	3.2.1.3 Execution threshold

	3.2.2 Simulation environment

	3.3 Benchmark suite
	3.3.1 SPECint95 characterization
	3.3.1.1 Compilation time
	3.3.1.2 Static characterization
	3.3.1.3 Dynamic characterization

	3.4 Methodology

	4 Alias analysis
	4.1 Introduction
	4.2 Path-sensitive must-alias analysis
	4.2.1 Alias analysis by instruction inspection
	4.2.2 Path-sensitive memory disambiguation
	4.2.3 Evaluation
	4.2.3.1 Measuring static precision

	4.3 Speculative may-alias analysis
	4.3.1 Region-based speculative alias analysis
	4.3.1.1 Dealing with memory contents
	4.3.1.2 Reasoning about data-flow analysis correctness

	4.3.2 Profile-guided speculative alias analysis
	4.3.3 Recovery-based usage of speculative alias analysis
	4.3.4 Evaluation
	4.3.4.1 Measuring static precision
	4.3.4.2 Measuring misspeculation rate

	4.4 Related work
	4.5 Conclusions

	5 Memory redundancy elimination
	5.1 Introduction
	5.2 Dynamic memory redundancy
	5.2.1 Dynamic load redundancy
	5.2.2 Dynamic store redundancy

	5.3 MRE on executable code
	5.3.1 MRE on intermediate vs. executable code

	5.4 Profile-guided MRE
	5.4.1 Eliminating close redundancy
	5.4.2 Eliminating distant redundancy

	5.5 Partial MRE
	5.5.1 Partial LRE
	5.5.2 Partial SRE
	5.5.3 A cost-benefit formulation for partial SRE
	5.5.3.1 Cost analysis
	5.5.3.2 Benefit analysis
	5.5.3.3 Final cost-benefit equations

	5.6 More aggressive MRE techniques
	5.6.1 A path-sensitive formulation for partial LRE
	5.6.2 Eliminating dead stores

	5.7 Evaluation
	5.7.1 Reduction in number of dynamic references
	5.7.2 MRE breakdown of static references
	5.7.3 Effects of procedure inlining on MRE
	5.7.4 Compilation time
	5.7.5 Speed up using MRE
	5.7.6 Microarchitecture impact of using MRE
	5.7.7 Effects of load latency

	5.8 Related work
	5.9 Conclusions

	6 Conditional branch redundancy elimination
	6.1 Introduction
	6.2 Dynamic conditional branch redundancy
	6.2.1 Detecting branch correlation
	6.2.2 Measuring conditional branch redundancy

	6.3 CBRE on executable code
	6.3.1 Eliminating close redundancy
	6.3.2 Eliminating distant redundancy

	6.4 Path-sensitive profile-guided CBRE
	6.4.1 Eliminating close redundancy
	6.4.2 Eliminating distant redundancy

	6.5 Evaluation
	6.5.1 Reduction in number of dynamic conditional branches
	6.5.2 Effects of procedure inlining on CBRE
	6.5.3 Compilation time
	6.5.4 CBRE impact in code growth
	6.5.5 Speed up using CBRE

	6.6 Related work
	6.7 Conclusions

	7 Conclusions and future directions
	7.1 Introduction
	7.2 Lessons and observations
	7.3 Summary of contributions
	7.4 Future directions

	Bibliography

