

PERFORMANCE IMPROVEMENT

OF MULTITHREADED JAVA APPLICATIONS
EXECUTION ON MULTIPROCESSOR SYSTEMS

by

Jordi Guitart Fernández

Advisors: Jordi Torres i Viñals
Eduard Ayguadé i Parra

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR PER LA UNIVERSITAT POLITÈCNICA DE CATALUNYA

© Jordi Guitart Fernández 2005

COMPUTER ARCHITECTURE DEPARTMENT (DAC)
TECHNICAL UNIVERSITY OF CATALONIA (UPC)

Barcelona (Spain)

July 2005

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy

or other means, without permission of the author.

Dr.

President

Dr.

Secretari

Dr.

Vocal

Dr.

Vocal

Dr.

Vocal

Data de la defensa pública

Qualificació

Abstract v

ABSTRACT

The design of the Java language, which includes important aspects such as its

portability and architecture neutrality, its multithreading facilities, its familiarity (due

to its resemblance with C/C++), its robustness, its security capabilities and its

distributed nature, makes it a potentially interesting language to be used in parallel

environments such as high performance computing (HPC) environments, where

applications can benefit from the Java multithreading support for performing parallel

calculations, or e-business environments, where multithreaded Java application

servers (i.e. following the J2EE specification) can take profit of Java multithreading

facilities to handle concurrently a large number of requests.

However, the use of Java for parallel programming has to face a number of

problems that can easily offset the gain due to parallel execution. The first problem is

the large overhead incurred by the threading support available in the JVM when

threads are used to execute fine-grained work, when a large number of threads are

created to support the execution of the application or when threads closely interact

through synchronization mechanisms. The second problem is the performance

degradation occurred when these multithreaded applications are executed in

multiprogrammed parallel systems. The main issue that causes these problems is the

lack of communication between the execution environment and the applications,

which can cause these applications to make an uncoordinated use of the available

resources.

This thesis contributes with the definition of an environment to analyze and

understand the behavior of multithreaded Java applications. The main contribution of

this environment is that all levels in the execution (application, application server,

JVM and operating system) are correlated. This is very important to understand how

this kind of applications behaves when executed on environments that include servers

and virtual machines, because the origin of performance problems can reside in any of

these levels or in their interaction.

vi Abstract

In addition, and based on the understanding gathered using the proposed

analysis environment, this thesis contributes with scheduling mechanisms and policies

oriented towards the efficient execution of multithreaded Java applications on

multiprocessor systems considering the interactions and coordination between

scheduling mechanisms and policies at the different levels involved in the execution.

The basis idea consists of allowing the cooperation between the applications and the

execution environment in the resource management by establishing a bi-directional

communication path between the applications and the underlying system. On one

side, the applications request to the execution environment the amount of resources

they need. On the other side, the execution environment can be requested at any time

by the applications to inform them about their resource assignments.

This thesis proposes that applications use the information provided by the

execution environment to adapt their behavior to the amount of resources allocated to

them (self-adaptive applications). This adaptation is accomplished in this thesis for

HPC environments through the malleability of the applications, and for e-business

environments with an overload control approach that performs admission control

based on SSL connections differentiation for preventing throughput degradation and

maintaining Quality of Service (QoS).

The evaluation results demonstrate that providing resources dynamically to

self-adaptive applications on demand improves the performance of multithreaded Java

applications as in HPC environments as in e-business environments. While having

self-adaptive applications avoids performance degradation, dynamic provision of

resources allows meeting the requirements of the applications on demand and

adapting to their changing resource needs. In this way, better resource utilization is

achieved because the resources not used by some application may be distributed

among other applications.

Acknowledgements vii

ACKNOWLEDGEMENTS

It is a pleasure to thank all those people who has contributed to make this

thesis possible. I would like to especially acknowledge my Ph.D. advisors, Dr. Jordi

Torres and Dr. Eduard Ayguadé, for their guidance and support over the last years

that have made possible to accomplish this work. I am indebted with all the members

of the eDragon Research Group, especially David Carrera and Vicenç Beltran, for

their useful comments and suggestions and our valuable discussions. Special thanks

also to Dr. Jesús Labarta, Dr. Xavier Martorell, Dr. Mark Bull, José Oliver, Alex

Duran and all the people that have collaborated in some way in this work. Finally, I

would like to thank all my colleagues in the Computer Architecture Department for

these years and my family for their support and patience.

The research described in this dissertation has been supported by the Ministry

of Science and Technology of Spain and the European Union (FEDER funds) under

contracts TIC98-511, TIC2001-0995-C02-01, TIN2004-07739-C02-01 and by the

Generalitat de Catalunya under grant 2001FI 00694 UPC APTIND. I acknowledge the

European Center for Parallelism of Barcelona (CEPBA) for supplying the computing

resources for some of the experiments in this thesis.

Table of Contents ix

TABLE OF CONTENTS

Abstract.. v

Acknowledgements ... vii

Table of Contents ... ix

List of Figures... xiii

List of Tables ... xvii

Chapter 1 Introduction... 1
1.1 Introduction... 1
1.2 Contributions... 3

1.2.1 Analysis and Visualization of Multithreaded Java Applications............... 3
1.2.2 Self-Adaptive Multithreaded Java Applications.. 5
1.2.3 Resource Provisioning for Multithreaded Java Applications 9

1.3 Thesis Organization .. 12

Chapter 2 Multithreaded Java Applications .. 13
2.1 Introduction... 13
2.2 Multithreaded Java Applications in HPC Environments 15

2.2.1 Introduction.. 15
2.2.2 Java Extensions for High Performance Computing................................. 15
2.2.3 JOMP Programming Model... 16

2.2.3.1 JOMP compiler .. 16
2.2.4 HPC Experimental Environment ... 21

2.2.4.1 Java Grande Benchmarks ... 21
2.2.4.2 Hardware & software platform .. 21

2.3 Multithreaded Java Application Servers in e-Business Environments 22
2.3.1 Introduction.. 22
2.3.2 Dynamic Web Applications... 23
2.3.3 Persistent HTTP Connections .. 24
2.3.4 Hosting Platforms .. 24
2.3.5 Security in e-Business Applications .. 26

2.3.5.1 SSL protocol... 26
2.3.5.2 Java Secure Socket Extension (JSSE).. 30

2.3.6 e-Business Experimental Environment.. 30
2.3.6.1 Tomcat servlet container .. 31
2.3.6.2 Auction site benchmark (RUBiS) .. 33
2.3.6.3 Httperf .. 34
2.3.6.4 Hardware & software platform .. 34

Chapter 3 Analysis and Visualization of Multithreaded Java Applications...... 37
3.1 Introduction... 37
3.2 Instrumentation Tool: JIS ... 39

x Table of Contents

3.2.1 Instrumentation Library ... 39
3.2.2 System Level.. 40

3.2.2.1 SGI Irix platform.. 41
3.2.2.2 Linux platform.. 45

3.2.3 JVM Level ... 49
3.2.3.1 JVMPI .. 49

3.2.4 Application Server Level ... 50
3.2.5 Application Level... 51

3.2.5.1 Instrumentation of JOMP applications... 52
3.3 Visualization Tool: Paraver .. 55
3.4 Application Analysis... 57

3.4.1 Analysis of JOMP Applications... 57
3.4.2 Analysis of Multithreaded Java Application Servers............................... 60

3.4.2.1 Analysis methodology.. 60
3.4.2.2 Case study 1 ... 61
3.4.2.3 Case study 2 ... 63

3.5 Conclusions... 67

Chapter 4 Self-Adaptive Multithreaded Java Applications................................ 71
4.1 Introduction... 71
4.2 Self-Adaptive Multithreaded Java Applications in HPC Environments......... 75

4.2.1 Self-Adaptive JOMP Applications .. 75
4.3 Self-Adaptive Multithreaded Java Applications Servers in e-Business

Environments .. 75
4.3.1 Scalability Characterization of Multithreaded Java Application

Servers in Secure Environments .. 75
4.3.1.1 Scalability characterization methodology .. 75
4.3.1.2 Scalability characterization of the Tomcat server 77

4.3.2 Session-Based Adaptive Overload Control for Multithreaded Java
Application Servers in Secure Environments .. 84

4.3.2.1 SSL connections differentiation ... 84
4.3.2.2 SSL admission control ... 86
4.3.2.3 Evaluation... 87

4.4 Conclusions... 94

Chapter 5 Resource Provisioning for Multithreaded Java Applications........... 97
5.1 Introduction... 97
5.2 Resource Provisioning for Multithreaded Java Applications in HPC

Environments .. 99
5.2.1 Motivating Example... 99
5.2.2 Concurrency Level... 100
5.2.3 Java Nanos Environment (JNE)... 103

5.2.3.1 Adaptive Java applications... 103
5.2.3.2 Application/JNE interface .. 104
5.2.3.3 JNE scheduler... 104
5.2.3.4 Self-adaptive JOMP applications ... 105
5.2.3.5 Nano-threads library (NthLib) ... 106
5.2.3.6 Implementation of JNE .. 107

5.2.4 Evaluation .. 111
5.2.4.1 Single application performance.. 112
5.2.4.2 Multiprogrammed workloads... 116

Table of Contents xi

5.3 Resource Provisioning for Multithreaded Java Application Servers in
e-Business Environments.. 126

5.3.1 Dynamic Resource Provisioning.. 126
5.3.1.1 Applications/ECM communication.. 127
5.3.1.2 eDragon CPU manager (ECM) .. 128

5.3.2 Evaluation .. 129
5.4 Conclusions... 134

Chapter 6 Related Work... 139
6.1 Analysis and Visualization of Multithreaded Java Applications.................. 139
6.2 Characterization of Java Application Servers Scalability............................. 141
6.3 Overload Control and Resource Provisioning in Web Environments 142
6.4 Resource Provisioning in HPC Environments.. 145

Chapter 7 Conclusions .. 147
7.1 Conclusions... 147

7.1.1 Analysis and Visualization of Multithreaded Java Applications........... 147
7.1.2 Self-Adaptive Multithreaded Java Applications.................................... 149
7.1.3 Resource Provisioning for Multithreaded Java Applications 151

7.2 Future Work .. 153

Appendices ... 155
A. Java Grande Benchmarks.. 155

A.1 Section 1: Low Level Operations .. 155
A.2 Section 2: Kernels .. 156
A.3 Section 3: Large Scale Applications .. 158

Bibliography .. 161

List of Figures xiii

LIST OF FIGURES

Figure 2.1. Example of code transformation made by the JOMP compiler:
parallel directive ..18

Figure 2.2. Dynamic web applications architecture...23
Figure 2.3. Tomcat scalability when serving secure vs. non-secure connections........26
Figure 2.4. SSL protocol..27
Figure 2.5. SSL Handshake protocol negotiation ..28
Figure 2.6. SSL Record protocol ...29
Figure 2.7. e-Business experimental environment...31
Figure 2.8. Tomcat persistent connection pattern..32
Figure 2.9. Tomcat secure persistent connection pattern...32
Figure 3.1. Instrumentation levels considered by the performance analysis

framework ..38
Figure 3.2. State transition graph for green threads considered by the JIS

instrumentation at the system level in the SGI Irix platform...........................42
Figure 3.3. State transition graph for native threads considered by the JIS

instrumentation at the system level in the SGI Irix platform...........................43
Figure 3.4. Example of procedure wrapper ...43
Figure 3.5. Dynamic code interposition...44
Figure 3.6. State transition graph considered by the JIS instrumentation at the

system level in the Linux platform...46
Figure 3.7. Architecture of the JIS instrumentation at the system level in the

Linux platform ...48
Figure 3.8. JVMPI initialization ..50
Figure 3.9. Code injection mechanism in the HttpServlet class51
Figure 3.10. Example of code injection made by the JOMP compiler: parallel

directive..54
Figure 3.11. Source code of JOMP version of LUAppl application............................55
Figure 3.12. Sample Paraver graphical and textual visualizations56
Figure 3.13. Sample Paraver statistical calculation ...57
Figure 3.14. Paraver visualization for one iteration of the LUAppl kernel

(JOMP programming model level) ..58
Figure 3.15. Paraver visualization for one iteration of the LUAppl kernel

(JOMP programming model level + System level) ...59
Figure 3.16. System calls performed by HttpProcessors when they have

acquired a database connection..62

xiv List of Figures

Figure 3.17. File descriptors used by the system calls performed by
HttpProcessors when they have acquired a database connection.....................63

Figure 3.18. Average service time per HttpProcessor ...64
Figure 3.19. State distribution of HttpProcessors during service (in percentage)65
Figure 3.20. Database connections acquisition process...66
Figure 4.1. Tomcat scalability with different number of processors78
Figure 4.2. Average time spent by the server processing a persistent client

connection ..80
Figure 4.3. Incoming SSL connections classification depending on SSL

handshake type performed ...81
Figure 4.4. Client timeouts with different number of processors82
Figure 4.5. State of HttpProcessors when they are in the ‘SSL handshake’

phase of a connection ...83
Figure 4.6. SSL connections differentiation mechanism...86
Figure 4.7. Equivalence between new clients per second and concurrent clients88
Figure 4.8. Original Tomcat throughput with different number of processors............89
Figure 4.9. Original Tomcat response time with different number of processors90
Figure 4.10. Completed sessions by original Tomcat with different number of

processors...91
Figure 4.11. Tomcat with admission control throughput with different number

of processors...92
Figure 4.12. Tomcat with admission control response time with different

number of processors ...93
Figure 4.13. Sessions completed by Tomcat with admission control with

different number of processors...93
Figure 5.1. Paraver window showing LUAppl behavior without setting the

concurrency level ...101
Figure 5.2. Paraver window showing LUAppl behavior setting the

concurrency level ...102
Figure 5.3. Example showing the use of the JNE interface for JOMP

applications ..106
Figure 5.4. (a) Java Irix Environment (b) Java Nanos Environment107
Figure 5.5. SOR standalone speedup ...113
Figure 5.6. LUFact standalone speedup...113
Figure 5.7. Crypt standalone speedup..115
Figure 5.8. Series standalone speedup ...115
Figure 5.9. Application speedups in the 1st workload (non-overloaded

environment – malleable applications) ..116
Figure 5.10. Process migrations when running with Irix in the 1st workload

(non-overloaded environment – malleable applications)...............................117
Figure 5.11. Process migrations when running with JNE in the 1st workload

(non-overloaded environment – malleable applications)...............................117
Figure 5.12. Application speedups in the 2nd workload (overloaded

environment – malleable applications) ..119

List of Figures xv

Figure 5.13. Process migrations when running with Irix in the 2nd workload
(overloaded environment – malleable applications)120

Figure 5.14. Process migrations when running with JNE in the 2nd workload
(overloaded environment – malleable applications)120

Figure 5.15. Application speedups in the 3rd workload (non-overloaded
environment – non-malleable applications) ...122

Figure 5.16. Process migrations when running with Irix in the 3rd workload
(non-overloaded environment – non-malleable applications)........................123

Figure 5.17. Process migrations when running with JNE in the 3rd workload
(non-overloaded environment – non-malleable applications)........................123

Figure 5.18. Application speedups in the 4th workload (overloaded
environment – non-malleable applications) ...124

Figure 5.19. Process migrations when running with Irix in the 4th workload
(overloaded environment – non-malleable applications)...............................125

Figure 5.20. Process migrations when running with JNE in the 4th workload
(overloaded environment – non-malleable applications)...............................125

Figure 5.21. Original Tomcat vs. self-managed Tomcat number of allocated
processors...130

Figure 5.22. Incoming workload (top), achieved throughput (middle) and
allocated processors (bottom) of two Tomcat instances with the same
priority..131

Figure 5.23. Incoming workload (top), achieved throughput (middle) and
allocated processors (bottom) of two Tomcat instances if Tomcat 1 has
higher priority than Tomcat 2 ..133

Figure 5.24. Incoming workload (top), achieved throughput (middle) and
allocated processors (bottom) of two Tomcat instances if Tomcat 1 has
higher priority than Tomcat 2 and Tomcat 1 does not share processors
with Tomcat 2 ..134

List of Tables xvii

LIST OF TABLES

Table 2.1. CPU and database demands of RUBiS interactions33
Table 2.2. Experimental platform used to evaluate the mechanisms proposed

in e-business environments ..35
Table 3.1. Thread states considered by the JIS instrumentation at the system

level in the SGI Irix platform...41
Table 3.2. Overhead of the JIS instrumentation at the system level in the SGI

Irix platform for LUAppl ...45
Table 3.3. Thread states considered by the JIS instrumentation at the system

level in the Linux platform...46
Table 3.4. Overhead of the JIS instrumentation at the system level in the Linux

platform for LUAppl ..49
Table 3.5. Thread states considered by JOMP applications instrumentation52
Table 3.6. Overhead of the JOMP applications instrumentation for LUAppl55
Table 4.1. Number of clients that overload the server and maximum achieved

throughput before overloading...78
Table 4.2. Average server throughput when it is overloaded79
Table 5.1. LUAppl performance degradation ..100
Table 5.2. Performance degradation of each application instance in the 1st

workload vs. best standalone execution ...118
Table 5.3. Performance degradation of each application instance in the 2nd

workload vs. best standalone execution ...121
Table 5.4. Performance degradation of each application instance in the 3rd

workload vs. best standalone execution ...124
Table 5.5. Performance degradation of each application instance in the 4th

workload vs. best standalone execution ...126

Introduction 1

CHAPTER 1
INTRODUCTION

1.1 Introduction

Over the last years, Java has consolidated as an interesting language for the

network programming community. This has largely occurred as a direct consequence

of the design of the Java language. This design includes, among others, important

aspects such as the portability and architecture neutrality of Java code, and its

multithreading facilities. The latter is achieved through built-in support for threads in

the language definition. The Java library provides the Thread class definition, and

Java runtimes provide support for thread, mutual exclusion and synchronization

primitives. These characteristics, besides others like its familiarity (due to its

resemblance with C/C++), its robustness, its security capabilities and its distributed

nature also make it a potentially interesting language to be used in parallel

environments.

For instance, the Java language could be used in high performance computing

(HPC) environments, where applications can benefit from the Java multithreading

support for performing parallel calculations. In the same way, Internet applications

programmers also use Java when developing these applications. Thus, it is common to

find Internet servers following the Java 2 Platform Enterprise Edition [132] (J2EE)

specification (i.e. written in Java), as for instance Tomcat [84] and Websphere [146],

hosting current web sites. Typically, these servers are multithreaded Java applications

in charge of serving clients requesting for web content, where each client connection

is assigned to a thread that is the responsible of attending the received requests in this

connection. Thus, the servers can take profit of Java multithreading facilities to handle

concurrently a large number of requests.

However, although recent results show how the performance gap between

Java and other traditional languages is being reduced [24], and some language

extensions [23] and runtime support have been proposed [111] to ease the

2 Chapter 1

specification of Java parallel applications and make threaded execution more

efficient, the use of Java for parallel programming has still to face a number of

problems that can easily offset the gain due to parallel execution. The first problem is

the large overhead incurred by the threading support available in the JVM when

threads are used to execute fine-grained work, when a large number of threads are

created to support the execution of the application or when threads closely interact

through synchronization mechanisms. The second problem is the performance

degradation occurred when these multithreaded applications are executed in

multiprogrammed parallel systems. The main issue that causes these problems is the

lack of communication between the execution environment and the applications,

which can cause these applications to make an uncoordinated use of the available

resources.

This thesis contributes with the definition of an environment to analyze and

understand the behavior of multithreaded Java applications. The main contribution of

this environment is that all levels in the execution (application, application server,

JVM and operating system) are correlated. This is very important to understand how

this kind of applications behaves when executed on environments that include servers

and virtual machines.

In addition, and based on the understanding gathered using the proposed

analysis environment, this thesis proposes research on scheduling mechanisms and

policies oriented towards the efficient execution of multithreaded Java applications on

multiprocessor systems considering the interactions and coordination between

scheduling mechanisms and policies at different levels: application, application

server, JVM, threads library and operating system.

In order to achieve these main objectives, the thesis is divided in the following

work areas.

� Analysis and Visualization of Multithreaded Java Applications

� Self-Adaptive Multithreaded Java Applications

� Resource Provisioning for Multithreaded Java Applications

Introduction 3

1.2 Contributions

1.2.1 Analysis and Visualization of Multithreaded Java Applications

Previous experience on parallel applications has demonstrated that tuning this

kind of applications for performance is mostly responsibility of (experienced)

programmers [93]. Therefore, the performance analysis of multithreaded Java

applications can be a complex work due to this inherent difficulty of analyzing

parallel applications as well as the extra complexity added by the presence of the Java

Virtual Machine. In this scenario, performance analysis and visualization tools that

provide detailed information of multithreaded Java applications behavior are

necessary in order to help users in the process of tuning the applications on the target

parallel systems and JVM.

In the same way, the increasing load that the applications currently developed

for Internet must support, demands new performance requirements to the Java

application servers that host them. To achieve these performance requirements, fine-

grain tuning of these servers is needed, but this tuning can be a hard work due to the

large complexity of these environments (including the application server, distributed

clients, a database server, etc.). Tuning Java application servers for performance

requires also of tools that allow an in-depth analysis of application server behavior

and its interaction with the other system elements. These tools must consider all levels

involved in the execution of web applications (operating system, JVM, application

server and application) if they want to provide significant performance information to

the administrators (the origin of performance problems can reside in any of these

levels or in their interaction).

Although a number of tools have been developed to monitor and analyze the

performance of multithreaded Java applications (see Section 6.1), none of them allow

a fine-grain analysis of the applications behavior considering all levels involved in the

application execution. The main contribution in the “Analysis and Visualization of

Multithreaded Java Applications” work area of this thesis is the proposal of a

performance analysis framework to perform a complete analysis of the Java

applications behavior. This framework provides to the user detailed and correlated

information about all levels involved in the application execution, giving him the

4 Chapter 1

chance to construct his own metrics, oriented to the kind of analysis he wants to

perform.

The performance analysis framework consists of two tools: an instrumentation

tool, called JIS (Java Instrumentation Suite), and an analysis and visualization tool,

called Paraver [116]. When instrumenting a given application, JIS generates a trace in

which the information collected from all levels has been correlated and merged. The

trace reflects the activity of each thread in the application recorded in the form of a set

of predefined state transitions (that are representative of the parallel execution) and

the occurrence of some predefined events. Later, the trace can be visualized and

analyzed with Paraver (qualitatively and quantitatively) to identify the performance

bottlenecks of the application.

The instrumentation tool (JIS) is responsible of collecting detailed information

from all levels involved in the execution of Java applications. From the system level,

information about threads state and system calls (I/O, sockets, memory management

and thread management) can be obtained. Several implementations are proposed

depending on the underlying platform. A dynamic interposition mechanism that

obtains information about the supporting threads layer (i.e. Pthreads library [121])

without recompilation has been implemented for the SGI Irix platform. In the same

way, a device driver that gets information from a patched Linux kernel has been

developed for the Linux platform. JIS uses the Java Virtual Machine Profiler Interface

[143] (JVMPI) to obtain information from the JVM level. JVMPI is a common

interface designed to introduce hooks inside the JVM code in order to be notified

about some predefined Java events. At this level of analysis, the user can obtain

information about several Java abstractions like classes, objects, methods, threads and

monitors, but JIS only obtains at this level the name of the Java threads and the

operations performed on the different Java Monitors, due to the large overhead

produced when using JVMPI. Information relative to services (i.e. Java Servlets [136]

and Enterprise Java Beans [131] (EJB)), requests, connections or transactions can be

obtained from the application server level. Moreover, some extra information can be

added to the final trace file by generating user events from the application code.

Information at these levels can be inserted by hard-coding hooks to a Java Native

Interface [134] (JNI) on the server or the application source or by introducing them

Introduction 5

dynamically using Aspect programming techniques [60] without source code

recompilation.

As a special case of instrumentation at the application level, support for JOMP

applications [23] is included in JIS. JOMP includes OpenMP-like extensions to

specify parallelism in Java applications using a shared-memory programming

paradigm. This instrumentation approach provides a detailed analysis of the parallel

behavior at the JOMP programming model level. At this level, the user is faced with

parallel, work-sharing and synchronization constructs. The JOMP compiler has been

modified to inject JNI calls to the instrumentation library during the code generation

phase at specific points in the source code.

1.2.2 Self-Adaptive Multithreaded Java Applications

Multithreaded Java applications can be used in HPC environments, where

applications can benefit from the Java multithreading support for performing parallel

calculations, as well as in e-business environments, where Java application servers

can take profit of Java multithreading facilities to handle concurrently a large number

of requests.

However, the use of Java for HPC faces a number of problems that are

currently subject of research. One of them is the performance degradation when

multithreaded applications are executed in a multiprogrammed environment. The

main issue that leads to this degradation is the lack of communication between the

execution environment and the applications, which can cause these applications to

make a naive use of threads, degrading their performance. In these situations, it is

desirable that the execution environment provides information to the applications

about their allocated resources, thus allowing the applications to adapt their behavior

to the amount of resources offered by the execution environment by generating only

the amount of parallelism that can be executed with the assigned processors. This

capability of applications is known as malleability [53]. Therefore, improving the

performance of multithreaded Java applications in HPC environments can be

accomplished by designing and implementing malleable applications (i.e. self-

adaptive applications).

Achieving good performance when using Java in e-business environments is a

harder problem due to the high complexity of these environments. First, the workload

6 Chapter 1

of Internet sites is known to vary dynamically over multiple time scales, often in an

unpredictable fashion, including flash crowds. This fact and the increasing load that

Internet sites must support increase the performance demand on Java application

servers that host the sites that must face situations with a large number of concurrent

clients. Therefore, the scalability of these application servers has become a crucial

issue in order to support the maximum number of concurrent clients in these

situations.

Moreover, not all the web requests require the same computing capacity from

the server. For example, requests for static web content (i.e. HTML files and images)

are mainly I/O intensive. Requests for dynamic web content (i.e. servlets and EJB)

increase the computational demand on server, but often other resources (e.g. the

database) become the bottleneck for performance. On the other side, in e-business

applications, which are based on dynamic web content, all information that is

confidential or has market value must be carefully protected when transmitted over

the open Internet. These security capabilities between network nodes over the Internet

are traditionally provided using HTTPS [125]. With HTTPS, which is based on using

HTTP over SSL (Secure Socket Layer [56]), mutual authentication of both the sender

and receiver of messages is performed to ensure message confidentiality. Although

providing these security capabilities does not introduce a new degree of complexity in

web applications structure, it increases the computation time necessary to serve a

connection remarkably, due to the use of cryptographic techniques, becoming a CPU-

intensive workload.

Facing situations with a large number of concurrent clients and/or with a

workload that demands high computational power (as for instance secure workloads)

can lead a server to overload (i.e. the volume of requests for content at a site

temporarily exceeds the capacity for serving them and renders the site unusable).

During overload conditions, the response times may grow to unacceptable levels, and

exhaustion of resources may cause the server to behave erratically or even crash

causing denial of services. In e-commerce applications, which are heavily based on

the use of security, such server behavior could translate to sizable revenue losses. For

instance, [150] estimates that between 10 and 25% of e-commerce transactions are

aborted because of slow response times, which translates to about 1.9 billion dollars

in lost revenue. Therefore, overload prevention is a critical issue if good performance

Introduction 7

on Java application servers in e-business environments wants to be achieved.

Overload prevention tries to have a system that remains operational in the presence of

overload even when the incoming request rate is several times greater than system

capacity, and at the same time is able to serve the maximum the number of requests

during such overload, maintaining response times (i.e. Quality of Service (QoS))

within acceptable levels.

Additionally, in many web sites, especially in e-commerce, most of the

applications are session-based. A session contains temporally and logically related

request sequences from the same client. Session integrity is a critical metric in e-

commerce. For an online retailer, the higher the number of sessions completed the

higher the amount of revenue that is likely to be generated. The same statement

cannot be made about the individual request completions. Sessions that are broken or

delayed at some critical stages, like checkout and shipping, could mean loss of

revenue to the web site. Sessions have distinguishable features from individual

requests that complicate the overload control. For example, admission control on per

request basis may lead to a large number of broken or incomplete sessions when the

system is overloaded.

Application servers overload can be prevented by designing mechanisms that

allow the servers to adapt their behavior to the available resources (i.e. becoming self-

adaptive applications) limiting the number of accepted requests to those that can be

served without degrading their QoS while prioritizing important requests. However,

the design of a successful overload prevention strategy must be preceded by a

complete characterization of the application server scalability. This characterization

allows determining which factors are the bottlenecks for application server

performance that must be considered in the overload prevention strategy.

Nevertheless, characterizing application server scalability is something more

complex than measuring the application server performance with different number of

clients and determining the load that overloads the server. A complete

characterization must also supply the causes of this overload, giving to the server

administrator the chance and the information to improve the server scalability by

avoiding its overload. For this reason, this characterization requires of powerful

analysis tools that allow an in-depth analysis of the application server behavior and its

interaction with the other system elements (including distributed clients, a database

8 Chapter 1

server, etc.). As described in Section 1.2.1, these tools must support and consider all

the levels involved in the execution of web applications if they want to provide

meaningful performance information to the administrators because the origin of

performance problems can reside in any of these levels or in their interaction.

A complete scalability characterization must also consider another important

issue: the scalability relative to the resources. The analysis of the application server

behavior will assist with hints to answer the question about how would affect to the

application server scalability the addition of more resources. If the analysis reveals

that some resource is being a bottleneck for the application server performance, this

encourages the addition of new resources of this type in order to improve server

scalability. On the other side, if a resource that is not being a bottleneck for the

application server performance is upgraded, the added resources are wasted because

the scalability is not improved and the causes of server performance degradation

remain unresolved.

The first contribution of this thesis in the “Self-Adaptive Multithreaded Java

Applications” work area is a complete characterization of the scalability of Java

application servers when running secure dynamic web applications divided in two

parts. The first part consists of measuring Tomcat vertical scalability (i.e. adding more

processors) when using SSL determining the impact of adding more processors on

server overload. The second part involves a detailed analysis of the server behavior

using the performance analysis framework mentioned in Section 1.2.1, in order to

determine the causes of the server overload when running with different number of

processors.

The conclusions derived from this analysis demonstrate the convenience of

incorporating to the application server (and give hints for its implementation) an

overload control mechanism that is the second contribution of this thesis in the “Self-

Adaptive Multithreaded Java Applications” work area. The overload control

mechanism is based on SSL connections differentiation and admission control. SSL

connections differentiation is accomplished by proposing a possible extension of the

Java Secure Sockets Extension [135] (JSSE) package to distinguish SSL connections

depending on if the connection will reuse an existing SSL connection on the server or

not. This differentiation can be very useful in order to design intelligent overload

control policies on server, given the big difference existing on the computational

Introduction 9

demand of new SSL connections versus resumed SSL connections. Based on this SSL

connections differentiation, a session-based adaptive admission control mechanism

for the Tomcat application server is implemented. This mechanism allows the server

to avoid throughput degradation and response time increments occurred on server

saturation. The server differentiates full SSL connections from resumed SSL

connections limiting the acceptation of full SSL connections to the maximum number

acceptable with the available resources without overloading, while accepting all the

resumed SSL connections. Moreover, the admission control mechanism maximizes

the number of sessions completed successfully, allowing to e-commerce sites based

on SSL to increase the number of transactions completed, thus generating higher

benefit.

1.2.3 Resource Provisioning for Multithreaded Java Applications

In the way towards achieving good performance when running multithreaded

Java applications, either in HPC environments or in e-business environments, this

thesis demonstrates that having self-adaptive multithreaded Java applications can be

very useful to achieve this objective.

However, the maximum effectiveness for preventing applications performance

degradation in parallel environments is obtained when fitting the self-adaptation of

the applications to the available resources within a global strategy in which the

execution environment and the applications cooperate to manage the resources

efficiently.

For example, besides of having self-adaptive Java applications in HPC

environments, performance degradation of multithreaded Java applications in these

environments can only be avoided if overcoming the following limitations. First, the

Java runtime environment does not allow applications to have control on the number

of kernel threads where Java threads map and to suggest about the scheduling of these

kernel threads. Second, the Java runtime environment does not inform the

applications about the dynamic status of the underlying system so that the applications

cannot adapt their execution to these characteristics. Finally, the large number of

migrations of the processes allocated to an application occurred, due to scheduling

polices that do not consider multithreaded Java applications as an allocation unit.

10 Chapter 1

The same applies to Java application servers in e-business environments. In

this case, although the admission control mechanisms used to implement self-adaptive

applications in this scenario can maintain the quality of service of admitted requests

even during overloads, a significant fraction of the requests may be turned away

during extreme overloads. In such a scenario, an increase in the effective server

capacity is necessary to reduce the request drop rate. In fact, although several

techniques have been proposed to face with overload, such as admission control,

request scheduling, service differentiation, service degradation or resource

management, last work in this area has demonstrated that the most effective way to

handle overload considers a combination of these techniques [140].

For these reasons, this thesis contributes in the “Resource Provisioning for

Multithreaded Java Applications” work area with the proposal of mechanisms to

allow the cooperation between the applications and the execution environment in

order to improve the performance by managing resources efficiently in the framework

of Java applications, including the modifications that are required in the Java

execution environment to allow this cooperation. The cooperation is implemented by

establishing a bi-directional communication path between the applications and the

underlying system. On one side, the applications request to the execution environment

the number of processors they need. On the other side, the execution environment can

be requested at any time by the applications to inform them about their processor

assignments. With this information, the applications, which are self-adaptive, can

adapt their behavior to the amount of resources allocated to them.

In order to accomplish this resource provisioning strategy in HPC

environments, this thesis shows that the services supplied by the Java native

underlying threads library, in particular the services to inform the library about the

concurrency level of the application, are not enough to support the cooperation

between the applications and the execution environment, because this uni-directional

communication does not allow the application to adapt its execution to the available

resources. In order to address the problem, the thesis proposes to execute the self-

adaptive multithreaded Java applications on top of JNE (Java Nanos Environment

built around the Nano-threads environment [101]). JNE is a research platform that

provides mechanisms to establish a bi-directional communication path between the

Java applications and the execution environment, thus allowing applications to

Introduction 11

collaborate in the thread management. Running with JNE, the applications can inform

to the execution environment about their processor requirements, as well as, JNE

allows to the execution environment to answer to applications with the number of

processors assigned to them at any moment. The JNE scheduler is responsible for the

distribution of processors to applications and decides which processors are assigned to

each application taking into account data affinity issues (i.e. helping the application to

exploit data locality whenever possible). As the applications are malleable (i.e. self-

adaptive), they can adapt their behavior to the amount of resources offered by the

execution environment. The work in this area includes the adaptation of JOMP

applications in order to cooperate with the execution environment. The

implementation of the JOMP compiler and supporting runtime library has been

modified to implement the communication between the JOMP application and the

JNE. The generated code will adapt its parallelism level depending on the available

processors at a given time.

The global resource provisioning strategy is accomplished in e-business

environments using an overload control approach for self-adaptive Java application

servers running secure e-commerce applications that brings together admission

control based on SSL connections differentiation and dynamic provisioning of

platform resources in order to adapt to changing workloads avoiding the QoS

degradation. Dynamic provisioning enables additional resources to be allocated to an

application on demand to handle workload increases, while the admission control

mechanisms maintain the QoS of admitted requests by turning away excess requests

and preferentially serving preferred clients (to maximize the generated revenue) while

additional resources are being provisioned.

The overload control approach is based on a global resource manager

responsible of distributing periodically the available resources (i.e. processors) among

web applications in a hosting platform applying a given policy (which can consider e-

business indicators). This resource manager and the applications cooperate to manage

the resources using a bi-directional communication. On one side, the applications

request to the resource manager the number of processors needed to handle their

incoming load avoiding the QoS degradation. On the other side, the resource manager

can be requested at any time by the applications to inform them about their processor

assignments. With this information, the applications, which are self-adaptive, apply

12 Chapter 1

the admission control mechanism presented in Section 1.2.2 to adapt their incoming

workload to the assigned capacity by limiting the number of admitted requests

accepting only those that can be served with the allocated processors without

degrading their QoS.

1.3 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 describes

multithreaded Java applications, which are the focus of this work, distinguishing the

use of this kind of applications in HPC environments as well as e-business

environments. Chapter 3 presents the performance analysis framework that allows the

analysis and the visualization of multithreaded Java applications. Chapter 4 introduces

self-adaptive applications in order to improve the performance of multithreaded Java

applications. Chapter 5 presents the mechanisms that allow to the applications to

cooperate with the execution environment in the resource management. Chapter 6

describes the related work and finally, Chapter 7 presents the conclusions and the

future work of this thesis.

Multithreaded Java Applications 13

CHAPTER 2
MULTITHREADED JAVA APPLICATIONS

2.1 Introduction

The work performed in this thesis targets multithreaded Java applications. In

the last years, these applications have been successfully introduced in high

performance computing (HPC) environments, where Java applications can benefit

from the Java multithreading support for performing parallel calculations. Moreover,

they have also achieved a great diffusion in e-business environments based on Java

application servers that can take profit of Java multithreading facilities to handle

concurrently a large number of requests. This popularity of Java applications has

occurred as a consequence of some Java language characteristics, which can be

summarized as follows:

� Java is familiar and simple. Java builds on the familiar and useful features of

C++ while removing its complex, dangerous, and superfluous elements. The

result is a language that is safer, simpler, and easier to use.

� Java is platform independent. A Java program can be executed in any

platform without recompilation. This portability is accomplished by offering a

binary code (called 'bytecode') that is interpreted by a virtual machine.

� Java is object-oriented. Java provides all the luxuries of object-oriented

programming: class hierarchy, inheritance, encapsulation, and polymorphism-

in a context that is truly useful and efficient. Object-oriented software is

simple and favors software reuse.

� Java is safe. Java provides security on several different levels. First, the

language was designed to make it extremely difficult to execute damaging

code. The elimination of pointers is a big step in this regard. Another level of

security is the bytecode verifier. Before a Java program is run, the verifier

checks each bytecode to make sure that nothing suspicious is going on. In

14 Chapter 2

addition to these measures, Java implements a security model, known as the

"sandbox" model, that provides a very restricted environment in which to run

untrusted code obtained from the open network. In the sandbox model, local

code is trusted to have full access to vital system resources, such as the file

system, but downloaded remote code (an applet) is not trusted and can access

only the limited resources provided inside the sandbox. A security manager is

responsible of determining which resource accesses are allowed. Finally, the

Java library provides classes that allow accessing and developing

cryptographic functionality (including digital signature algorithms, message

digest algorithms, key-generation algorithms and certificates management).

� Java is extensible. Java allows the definition of native methods written in

other languages (such as C, C++, and assembly) to handle those situations

when an application cannot be written entirely in the Java programming

language.

� Java is ‘garbage collected’. Java automatically frees memory occupied by

unreferenced objects.

� Java supports parallel computing. The Java library provides the Thread

class definition, and Java runtime provides support for thread and thread

synchronization primitives (e.g. monitors).

� Java supports distributed computing. The Java library provides classes

supporting the communication of applications over the network. These classes

implement sockets (connection-oriented communications using TCP protocol),

secure sockets (sockets that transmit encrypted information), datagrams (not

connection-oriented communications using UDP protocol), URLs (references

or addresses to resources on the Internet) and Remote Methods Invocation

(RMI).

� Java technology is organized in subject areas. The Java technology

distinguishes several conceptual areas, providing different solutions for each

of these areas. For example, the Java 2 Platform Standard Edition [133] (J2SE)

provides a complete environment for applications development on desktops

and servers and for deployment in embedded environments, serving also as the

foundation for the other areas. This solution is used for developing Java

applications in HPC environments. On the other side, Java technology offers

Multithreaded Java Applications 15

also the Java 2 Platform Enterprise Edition [132] (J2EE), which defines the

standard for developing component-based multi-tier enterprise applications.

This solution is used for developing Java applications in e-business

environments.

2.2 Multithreaded Java Applications in HPC Environments

2.2.1 Introduction

Although the Java language is a potentially interesting language for parallel

scientific computing, it has to face a set of problems that must be resolved to

consolidate Java as a valid alternative to the traditional languages in HPC

environments. The first one is the large overhead incurred by the threading support

available in the JVM. Recent works [111] offer runtime support to make threaded

execution more efficient by reducing the number of creations of Java threads. The

second problem is the performance degradation occurred when multithreaded

applications are executed in multiprogrammed parallel systems, which is covered in

this thesis. Other drawbacks include the lack of support for complex numbers and

multi-dimensional arrays, which has been also addressed in previous works [26] by

proposing extensions to the Java language. Finally, the lack of suitable standards to

ease parallel programming in Java is also a concern when targeting high performance

computing, because it implies the explicit management of parallelism and

synchronization. This fact has motivated several proposals to support the specification

of parallelism in Java, which are discussed in next section.

2.2.2 Java Extensions for High Performance Computing

Most of the current proposals to support the specification of parallel

algorithms in Java reflect the alternatives that have been proposed for other languages

such as Fortran or C. For instance, there have been proposals to implement common

message-passing standards, such as PVM [58] or MPI [103], by means of Java classes

[54][87]. Other proposals [26] try to make Java a data-parallel language similar to

HPF, in which parallelism could be expressed in a more natural way. The extensions

allow the definition of data-parallel operations, non-rectangular or multi-dimensional

arrays or to allow some kind of data locality. The OpenMP standard [113] for Fortran

and C/C++ has led to the proposal of a similar paradigm in the scope of Java (JOMP

16 Chapter 2

[23]) and the automatic restructuring of Java programs for parallelism exploitation

based either on code annotations or compiler-driven analysis [20][21]. The

implementation of these extensions is done through runtime libraries and compiler

transformations in order to avoid the overhead introduced by the intensive creation of

Java Threads [23][111].

Some experiments in this thesis use JOMP applications as the benchmark to

evaluate the proposed mechanisms, as a particular case of multithreaded Java

applications in HPC environments. For this reason, next section presents an in-depth

description of JOMP applications implementation.

2.2.3 JOMP Programming Model

The JOMP programming model [23], proposed by the Edinburgh Parallel

Computing Center [52], consists in a collection of compiler directives, library routines

and environment variables based on OpenMP [113] to specify shared-memory

parallelism in Java.

The JOMP specification for Java includes parallel, work-sharing and

synchronization constructs. The parallel directive is used to specify the creation of

a team of threads that will concurrently execute the code. Work-sharing directives are

provided to allow the distribution of work among the threads in a team: for directive

to distribute iterations in a parallel loop, sections directive to parcel out a sequence

of statements and master and single directives to specify the execution by a single

thread in the team. Parallel and work-sharing constructs also allow redefining the

scope of certain variables in order to be shared, private, firstprivate,

lastprivate or reduction. Synchronization directives provide the mechanisms to

synchronize the execution of the threads in the team: barrier and critical regions.

2.2.3.1 JOMP compiler

The JOMP compiler is a Java-to-Java translator that interprets JOMP

directives and generates parallel code for the JOMP supporting runtime.

A description of JOMP compiler implementation is presented below.

Additional implementation details about the API and implementation can be found in

elsewhere [25][88]. Currently, a few parts of the specification have yet to be

implemented, such as nested parallelism and array reductions.

Multithreaded Java Applications 17

2.2.3.1.1 Basic structure

The JOMP Compiler is built around a Java 1.1 parser provided as an example

with the JavaCC [104] utility. JavaCC comes supplied with a grammar to parse a Java

1.1 program into a tree, and an UnparseVisitor class, which unparses the tree to

produce code. The bulk of the JOMP compiler is implemented in the OMPVisitor

class, which extends the UnparseVisitor class, overriding various methods that

unparse particular non-terminals. These overriding methods output modified code,

which includes calls to the supporting runtime library to implement appropriate

parallelism. Because JavaCC is itself written in Java, and outputs Java source, the

JOMP system is fully portable, requiring only a JVM installation in order to run it.

2.2.3.1.2 The parallel directive

Upon encountering a parallel directive within a method, the compiler

creates a new class. The new class has a single method go(), which takes a parameter

indicating an absolute thread identifier. For each variable declared to be private,

firstprivate or reduction, the go() method declares a local variable with the

same name and type signature. The local firstprivate variables are initialized from

the corresponding field in the containing class, while the local private variables have

the default initialization. The local reduction variables are initialized with the

appropriate default value for the reduction operator. Private objects are allocated

using the default constructor. The main body of the go() method contains the code to

be executed in parallel.

In place of the parallel construct itself, code is inserted to declare a new

instance of the compiler-created class, and to initialize the fields within it from the

appropriate variables. The OMP.doParallel() method is used to execute the go()

method of the inner class in parallel. Finally, any necessary values are copied from

class fields back into local variables.

A simple example illustrating the code transformation made by JOMP

compiler is shown in Figure 2.1. Figure 2.1.a shows the source code of a simple

program with a parallel directive. This means that all the threads in the team will

concurrently execute the code encapsulated by this directive. The directive has also a

private clause for the myid variable, informing the compiler to allocate a private

18 Chapter 2

copy of this variable for each thread (usually in the stack of the encapsulating

method).

public class Hello {
 public static void main (String argv[]) {
 int myid;
 //omp parallel private (myid)
 {
 myid = OMP.getThreadNum();
 System.out.println(“Hello from” + myid);
 }
 }
}

(a) original code

public class Hello {
 public static void main (String argv[]) {
 int myid;
 // OMP PARALLEL BLOCK BEGINS
 {
 __omp_Class0 __omp_Object0 = new __omp_Class0();
 __omp_Object0.argv = argv;
 try {
 jomp.runtime.OMP.doParallel(__omp_Object0);
 } catch(Throwable __omp_exception) {
 jomp.runtime.OMP.errorMessage();
 }
 argv = __omp_Object0.argv;
 }
 // OMP PARALLEL BLOCK ENDS
 }
}

// OMP PARALLEL REGION INNER CLASS DEFINITION BEGINS
private static class __omp_Class0 extends jomp.runtime.BusyTask {
 String [] argv;
 public void go(int __omp_me) throws Throwable {
 int myid;
 // OMP USER CODE BEGINS
 {
 myid = OMP.getThreadNum();
 System.out.println("Hello from" + myid);
 }
 // OMP USER CODE ENDS
 }
}
// OMP PARALLEL REGION INNER CLASS DEFINITION ENDS

(b) transformed code

Figure 2.1. Example of code transformation made by the JOMP compiler: parallel directive

Like is shown in Figure 2.1.b, on encountering a parallel directive, the

compiler creates a new class that extends the BusyTask class. The new class has a

go() method, containing the code inside the parallel region, and declarations of

private variables like myid. The new class contains also data members corresponding

to reduction and shared variables like argv. A new instance of the class is created,

Multithreaded Java Applications 19

and passed to the JOMP runtime library calling the doParallel() method, which

causes the go() method to be executed on each thread in the team.

2.2.3.1.3 Work-sharing directives

Upon encountering a for, sections or single directive, a new block is

created. For each variable declared to be private, firstprivate, lastprivate or

reduction, a local variable is declared and initialized if necessary. These newly

created variables are used to communicate the values of variables to the enclosing

block. In the case of the for and sections directives, it is also necessary to declare a

boolean variable to hold information about whether the current thread is the one

performing the sequentially last iteration of the loop or the sequentially last section.

Inside the newly allocated block, a second block is created. For each variable

declared to be private, firstprivate, lastprivate, or reduction, a new variable

with the same name is declared. Variables declared as reduction are initialized with

the appropriate value. private and lastprivate variables are initialized by calling

the default constructor in the case of class type variables, or left uninitialized in the

case of primitive or array type variables. firstprivate variables are initialized with

the appropriate value from the original variable. A clone() method is called to

initialize class or array type variables.

Next, the code to actually handle the appropriate work-sharing directive is

inserted. At the end of the inner block, appropriate local variables associated to

lastprivate and reduction variables are updated.

After the end of the inner block, a code to update the global copies of

lastprivate and reduction variables is inserted. Only the thread performing the

sequentially last iteration of the loop or the sequentially last section updates

lastprivate variables. The master thread of the team updates reduction variables.

Finally, the outer block is closed.

2.2.3.1.3.1 The for directive

Upon encountering a for directive, the compiler inserts code to create two

LoopData structures. One of these is initialized to contain the details of the whole

loop, while the other is used to hold details of particular chunks. The generated code

then repeatedly calls the appropriate getLoop() function for the selected schedule,

20 Chapter 2

executing the blocks it is given, until there are no more blocks. If a dynamic

scheduling strategy was used, the ticketer is then reset. Any reductions are carried

out, and if the nowait clause is not specified, the doBarrier() method is called.

If the ordered clause is specified on a for directive, then a call to

resetOrderer() method is inserted immediately prior to the loop, at which point the

value of the first iteration number is definitely known. Upon encountering an ordered

directive, the compiler inserts a call to startOrdered() before the relevant block

with the parameter being the current value of the loop counter. After the block is

inserted a call to stopOrdered(), with the parameter being the next value the loop

counter would take after its current value, during sequential execution.

2.2.3.1.3.2 The sections directive

Upon encountering a sections directive, the compiler inserts code that

repeatedly requests a ticket from the ticketer, and executes a different section

depending on the ticket number. When there are no sections left, the ticketer is

reset. If the nowait clause is not specified, the doBarrier() method is called.

2.2.3.1.3.3 The master directive

Upon encountering a master directive, the compiler inserts code to execute

the relevant block if and only if the OMP.getThreadNum()method returns 0.

2.2.3.1.3.4 The single directive

Upon encountering a single directive, the compiler inserts code to get a ticket

from the ticketer, execute the relevant block if and only if the ticket is zero, and

then reset the ticketer. If the nowait clause is not specified, the doBarrier()

method is called.

2.2.3.1.4 Synchronization directives

Upon encountering a critical directive, the compiler creates a synchronized

block, with a call to getLockByName(). Upon encountering a barrier directive, the

compiler inserts a call to the doBarrier() method.

Multithreaded Java Applications 21

2.2.4 HPC Experimental Environment

This section describes the experimental environment used in this thesis to

evaluate the proposed mechanisms when using multithreaded Java applications in

HPC environments.

2.2.4.1 Java Grande Benchmarks

The Java Grande Benchmarks [85] is suite of benchmark tests that provides

ways of measuring and comparing alternative Java execution environments in ways

that are important to Grande applications. A Grande application is one which uses

large amounts of processing, I/O, network bandwidth, or memory. They include not

only applications in science and engineering but also, for example, corporate

databases and financial simulations. These benchmarks can be found in three different

versions (sequential, multithreaded and JOMP), with three different sizes (A, B and

C). The experiments performed in this thesis use the JOMP version – size B.

The multithreaded version of the Java Grande benchmark suite is designed for

parallel execution on shared memory multiprocessors. It is composed by the following

applications:

� Section 1: Low level operations – Barrier, ForkJoin, Sync

� Section 2: Kernels – Crypt, LUFact, SOR, Series, Sparse

� Section 3: Large scale applications – MolDyn, MonteCarlo, RayTracer

The JOMP version of the Java Grande benchmark suite is an implementation

of the multithreaded version using JOMP directives. The following applications

compose this version:

� Section 2: Kernels – Crypt, LUFact, SOR, Series, Sparse

� Section 3: Large scale applications – Euler, MonteCarlo, RayTracer

A detailed description of each one of these benchmarks can be found in

Appendix A.

2.2.4.2 Hardware & software platform

The experimental platform used to conduct the evaluation of the proposed

mechanisms in HPC environments is based on the SGI Origin 2000 architecture [129]

22 Chapter 2

with 64 MIPS R10000 processors at 250 MHz running the Irix 6.5.8 operating system

and the SGI Irix JVM version Sun Java Classic 1.2.2.

All the experiments in this HPC environment have been performed in the so-

called cpusets in Irix. A cpuset consists of a set of dedicated processors in a

multiprogrammed machine. However, although a number of processors are reserved

for the applications running inside the cpuset, other resources (like the interconnection

network or the memory) are shared with the rest of applications running in the system.

This sharing can interfere the behavior of the applications running inside the cpuset

and produce noticeable performance degradation, which is difficult to quantify (and

predict), because it depends on the system load and the application characteristics (a

memory intensive application will be more interfered than an application with low

memory use). The experiments reveal that this degradation can reach 10% for

individual executions. In this case, this effect can be attenuated incrementing the

number of measurements and discarding anomalous values. But when executing the

applications as a part of a workload, observed degradation is around 20%, due to the

interferences with the other applications in the workload plus the interferences with

the rest of applications running in the system.

2.3 Multithreaded Java Application Servers in e-Business
Environments

2.3.1 Introduction

In the latter days, e-business applications are becoming commonplace in

current web sites. Some Java programming language characteristics, such as its

portability or its support for parallel and distributed computing, have encouraged

Internet applications programmers to use Java when developing these applications.

Therefore, it is common to find Internet servers written in Java hosting current web

sites. Typically, these servers are multithreaded Java applications in charge of serving

clients requesting for web content, where each client connection is assigned to a

thread that is the responsible of attending the received requests in this connection.

The logic of e-business applications is typically implemented using dynamic

web content (i.e. following J2EE specification [132]). A request asking for dynamic

web content requires some processing in the server (e.g. computation, access to a

database…) before sending the response to the client, while the server can directly

Multithreaded Java Applications 23

respond a request asking for static web content (i.e. HTML pages and images) with

the requested file. Applications containing dynamic web content can be referred as

dynamic web applications. Next section presents an overview on this kind of

applications architecture and implementation.

2.3.2 Dynamic Web Applications

Dynamic web applications are a case of multi-tier application and are mainly

composed of a Client tier and a Server tier, which in its turn uses to consist of a front-

end web server, an application server and a back-end database. Figure 2.2 shows a

simplified version of dynamic web applications architecture. The client tier is

responsible of interacting with application users and to generate requests to be

attended by the server. The server tier implements the logic of the application and is

responsible of serving user-generated requests.

Database
Server

Internet

Web Server

Servlets/JSP

Application Server

EJB

Clients

HTML

images

Figure 2.2. Dynamic web applications architecture

When the client sends to the web server an HTTP request for dynamic content,

the web server forwards the request to the application server (as understood in this

thesis, a web server only serves static content), which is the dynamic content server.

The application server executes the corresponding code, which may need to access the

database to generate the response. The application server formats and assembles the

results into an HTML page, which is returned by the web server as an HTTP response

to the client. The implementation of the application logic in the application server

may take various forms, including PHP [118], Microsoft Active Server pages [106],

Java Servlets [136] and Enterprise Java Beans (EJB) [131].

This thesis focuses on Java Servlets, but the proposed mechanisms can be

applied with the other mechanisms for generating dynamic web content, with the

24 Chapter 2

same effectiveness. A servlet is a Java class used to extend the capabilities of servers

that host applications accessed via a request-response programming model. Although

servlets can respond to any type of request, they are commonly used to extend the

applications hosted by web servers. For such applications, Java Servlet technology

defines HTTP-specific servlet classes. Servlets access the database explicitly, using

the standard JDBC interface, which is supported by all major databases. Servlets can

use all the features of Java. In particular, they can use Java built-in synchronization

mechanisms to perform locking operations.

2.3.3 Persistent HTTP Connections

As commented in the previous section, the Hypertext Transfer Protocol [55]

(HTTP) allows servers and clients to send and receive data over the Internet. HTTP is

a request and response protocol implemented over reliable TCP connections. In

HTTP, it is always the client who initiates a transaction by establishing a connection

and sending an HTTP request to the server, which processes this request and sends a

response to the client. Either the client or the server can prematurely terminate a

connection.

Prior to HTTP 1.1, whenever a client connected to a server, the connection

was closed by the server right after the requested resource was sent. However, an

Internet page can contain other resources, such as image files, applets, etc. Therefore,

when a page is requested, the client also needs to download the resources referenced

by the page. If the page and all resources it references are downloaded using different

connections, the process will be very slow. That is why HTTP 1.1 introduced

persistent connections. With a persistent connection, when a page is downloaded, the

server does not close the connection straight away. Instead, it waits for the client to

request all resources referenced by the page. This way, the page and referenced

resources can be downloaded using the same connection. This saves a lot of work and

time for the server, client and the network, considering that establishing and tearing

down HTTP connections is an expensive operation.

2.3.4 Hosting Platforms

Typically, web applications run on hosting platforms that rent their resources

to them. Applications owners pay for platform resources, and in return, the

Multithreaded Java Applications 25

applications are provided with guarantees on resource availability and quality of

service (which can be expressed in the form of a service level agreement [95][142]

(SLA)). The hosting platform is responsible of providing sufficient resources to each

application to meet its workload, or at least to satisfy the agreed QoS. Therefore, it is

desirable that resources not used by some application may be distributed among other

applications in the hosting platform.

Resource provisioning in a hosting platform can be based on either a dedicated

or a shared model [7]. In the dedicated model, some cluster nodes are dedicated to

each application and the provisioning technique must determine how many nodes to

allocate to the application. In the shared model, which is the model considered in this

thesis, node resources can be shared among multiple applications and the provisioning

technique needs to determine how to partition resources on each node among

competing applications.

Dedicated model used to be implemented as a cluster of servers where whole

servers are distributed among web applications. Shared model can be implemented

also as a cluster of servers where several applications can run in the same server, or

using a multiprocessor machine for hosting all the applications. Clusters of servers are

widely extended and are easily scalable but resource provisioning in these systems

can be complex and inefficient. For example, traditional methods to switch a server

from an underloaded to an overloaded application have entailed latencies of several

minutes or more, due to software installation and configuration overheads [10]. In the

same way, in session-based environments, transferring session state between servers

is an inefficient task. As this thesis focus on e-commerce applications, which are

typically session-based, and a dynamic provisioning mechanism able to react to

unexpected workload changes in very short time is desired, the hosting platform is

implemented using a multiprocessor machine.

Resource provisioning based on a shared model must consider an important

issue. Since platform resources are shared by all the applications, when applications

overload they can affect the performance of other applications. Consequently, a

hosting platform should provide performance isolation, that is ensure that a minimal

fraction of resources is available to serve requests from a certain application, and

given a resource distribution between applications, an application should obtain the

same performance independent of load generated by other applications.

26 Chapter 2

2.3.5 Security in e-Business Applications

In e-business applications, all information that is confidential or has market

value must be carefully protected when transmitted over the open Internet. These

security capabilities between network nodes over the Internet are traditionally

provided using HTTPS [125]. With HTTPS, which is based on using HTTP over SSL

(Secure Socket Layer [56]), mutual authentication of both the sender and receiver of

messages is performed to ensure message confidentiality.

2.3.5.1 SSL protocol

The SSL protocol provides communications privacy over the Internet. The

protocol allows client/server applications to communicate in a way that is designed to

prevent eavesdropping, tampering, or message forgery. To obtain these objectives it

uses a combination of public-key and private-key cryptography algorithm and digital

certificates (X.509).

Figure 2.3. Tomcat scalability when serving secure vs. non-secure connections

The SSL protocol does not introduce a new degree of complexity in web

applications structure because it works almost transparently on top of the socket layer.

However, SSL increases the computation time necessary to serve a connection

Multithreaded Java Applications 27

remarkably, due to the use of cryptography to achieve their objectives, becoming a

CPU-intensive workload. This increment has a noticeable impact on server

performance, which can be appreciated on Figure 2.3. This figure compares the

throughput as a function of the number of clients obtained by a given application

server when handling the same workload using secure connections versus using

normal connections. Notice that the maximum throughput obtained when using SSL

connections is 72 replies/s and the server scales only until 200 clients. On the other

side, when using normal connections the maximum throughput is considerably higher

(550 replies/s) and the server can scale until 1700 clients. Finally, notice also that

when the server is saturated, if attending normal connections, the server can maintain

the throughput if new clients arrive, but if attending SSL connections, the server

cannot maintain the throughput and the performance is degraded. The impact of using

SSL on server performance will be deeply discussed in Section 4.3.1 of this thesis.

Figure 2.4. SSL protocol

The SSL protocol fundamentally has two layers of operation: the SSL

handshake protocol and the SSL record protocol, as shown in Figure 2.4. Next

28 Chapter 2

subsection does an overview of these layers. The detailed description of the protocol

can be found in RFC 2246 [47].

2.3.5.1.1 SSL Handshake protocol

The SSL Handshake protocol facilitates authentication of servers and clients,

negotiation of the SSL session characteristics and data transfer. The server

authenticates itself to the client using public-key techniques like RSA, and then the

client and the server cooperate in the creation of symmetric keys used for rapid

encryption, decryption, and tamper detection during the session that follows.

Optionally, the handshake also allows the client to authenticate itself to the server.

This process is detailed in Figure 2.5.

Figure 2.5. SSL Handshake protocol negotiation

Two different SSL handshake types can be distinguished: The full SSL

handshake and the resumed SSL handshake. The full SSL handshake is negotiated

when a client establishes a new SSL connection with the server, and requires the

complete negotiation of the SSL handshake. This negotiation includes parts that spend

a lot of computation time to be accomplished. For example, the computational

demand of a full SSL handshake in a 1.4 GHz Xeon machine is around 175 ms.

The SSL resumed handshake is negotiated when a client establishes a new

HTTP connection with the server but using an existing SSL connection. As the SSL

Multithreaded Java Applications 29

session ID is reused, part of the SSL handshake negotiation can be avoided, reducing

considerably the computation time for performing a resumed SSL handshake. For

example, the computational demand of a resumed SSL handshake in a 1.4 GHz Xeon

machine is around 2 ms. Notice the big difference between negotiate a full SSL

handshake respect to negotiate a resumed SSL handshake (175 ms versus 2 ms).

Based on these two handshake types, two types of SSL connections can be

distinguished: the new SSL connections and the resumed SSL connections. The new

SSL connections try to establish a new SSL session and must negotiate a full SSL

handshake. The resumed SSL connections can negotiate a resumed SSL handshake

because they provide a reusable SSL session ID (they resume an existing SSL

session).

Figure 2.6. SSL Record protocol

2.3.5.1.2 SSL Record protocol

The SSL Record protocol permits the encapsulation of higher-level protocols,

such as the SSL Handshake protocol. The SSL Record Layer receives uninterpreted

data from higher layers in non-empty blocks of arbitrary size. Then the information

blocks are fragmented into plain-text records of 214 bytes or less. All records are

compressed using the compression algorithm defined in the current session state and

protected using the encryption and MAC (Message Authentication Code) algorithms

defined in the current CipherSpec. Finally encryption and MAC functions translate

30 Chapter 2

compressed units to encrypted data, ready to be sent into TCP packet. This process is

detailed in Figure 2.6.

2.3.5.2 Java Secure Socket Extension (JSSE)

The Java Secure Socket Extension [135] (JSSE) is a set of classes that enable

secure Internet communications. It implements a Java technology version of Secure

Sockets Layer [56] (SSL) and Transport Layer Security [47] (TLS) protocols.

The JSSE package provides the SSLSocket and SSLServerSocket classes,

which can be instantiated to create secure channels. The JSSE package supports the

initiation of a handshake on a SSL connection in one of three ways. Calling

startHandshake that explicitly begins handshakes, or any attempt to read or write

application data through the connection causes an implicit handshake, or a call to

getSession tries to set up a session if there is no currently valid session, and an

implicit handshake is done. After handshaking has completed, session attributes can

be accessed using the getSession method. If handshaking fails for any reason, the

SSLSocket is closed, and no further communications can be done.

Notice that the JSSE package does not support any way to consult if an

incoming SSL connection provides a reusable SSL session ID until the handshake is

fully completed. Having this information prior to handshake negotiation could be very

useful for example for servers in order to do overload control based on SSL

connections differentiation, given the big difference existing on the computational

demand of new SSL connections versus resumed SSL connections. It is important to

notice that the verification about an incoming SSL connection provides a valid SSL

session ID is already performed by the JSSE package prior handshaking in order to

negotiate a full SSL handshake or a resumed SSL handshake. Therefore, the addition

of a new interface to access this information would not involve additional cost.

2.3.6 e-Business Experimental Environment

This section describes the experimental environment used in this thesis to

evaluate the proposed mechanisms when using multithreaded Java applications in e-

business environments. The architecture of this experimental environment is shown in

Figure 2.7.

Multithreaded Java Applications 31

Database Server
MySQL

Servlets/JSP

Web + Application Server
Tomcat

RUBiS Auction Site benchmark

Client
Httperf

HTML

Figure 2.7. e-Business experimental environment

2.3.6.1 Tomcat servlet container

The experimental environment includes Tomcat [84] as the web and

application server. Tomcat is an open-source servlet container developed under the

Apache license. Its primary goal is to serve as a reference implementation of the Sun

Servlet and JSP specifications, and also to be a quality production servlet container.

Tomcat can work as a standalone server (serving both static and dynamic web

content) or as a helper for a web server (serving only dynamic web content). This

thesis uses Tomcat as a standalone server.

 Tomcat follows a connection service schema where, at a given time, one

thread (an HttpProcessor) is responsible of accepting a new incoming connection on

the server listening port and assigning to it a socket structure. From this point, this

HttpProcessor will be responsible of attending and serving the received requests

through the persistent connection established with the client, while another

HttpProcessor will continue accepting new connections. HttpProcessors are

commonly chosen from a pool of previously created threads in order to avoid thread

creation overheads. Persistent connections are a feature of HTTP 1.1 that allows

serving different requests using the same connection, as commented in Section 2.3.3.

The pattern of a persistent connection in Tomcat is shown in Figure 2.8. On

each connection, there is a distinction between the execution of several requests and

the time devoted to maintain the connection persistence (connection (no request)),

where server is maintaining opened the connection waiting for another client request.

A connection timeout is programmed to close the connection if no more requests are

received. For example, in this figure three different requests are served through the

32 Chapter 2

same connection. Notice that within every request is distinguished the service

(execution of the servlet implementing the demanded request) from the request (no

service). This is the pre and post process that Tomcat requires to invoke the servlet

that implements the demanded request.

service

request

connection

request (no service)

connection (no request)

Figure 2.8. Tomcat persistent connection pattern

Figure 2.9 shows the pattern of a secure persistent connection in Tomcat.

Notice that when using SSL the pattern of the HTTP persistent connection is

maintained, but the underlying SSL connection supporting this persistent HTTP

connection must be established previously, negotiating a SSL handshake (which can

be full or resumed depending if a SSL Session ID is reused) as shown in Figure 2.9.

For instance, if a client must establish a new HTTP connection because the server has

closed its current HTTP connection due to connection persistence timeout expiration,

as it reuses the underlying SSL connection, it negotiates a resumed SSL handshake.

service

request

connection

request (no service)

connection (no request)

SSL
handshake

Figure 2.9. Tomcat secure persistent connection pattern

Multithreaded Java Applications 33

For the experiments in this thesis, Tomcat has been configured setting the

maximum number of HttpProcessors to 100 and the connection persistence timeout to

10 seconds.

2.3.6.2 Auction site benchmark (RUBiS)

The experimental environment also includes a deployment of the RUBiS (Rice

University Bidding System) [4] benchmark servlets version on Tomcat. RUBiS

implements the core functionality of an auction site: selling, browsing and bidding.

RUBiS supplies implementations using some mechanisms for generating dynamic

web content like PHP, Servlets and several kinds of EJB.

RUBiS defines 27 interactions. Among the most important ones are browsing

items by category or region, bidding, buying or selling items and leaving comments

on other users. 5 of the 27 interactions are implemented using static HTML pages.

The remaining 22 interactions require data to be generated dynamically. Table 2.1

shows the CPU demand distinguishing the time spent on each phase of the connection

(measured in a 1.4 GHz Xeon machine) and the database demand (measured in a 2.4

GHz Xeon machine) for the RUBiS interactions used in this thesis (the read-only

interactions). Notice that interactions requesting static web content do not spend any

time in the database and CPU demand of interactions requesting dynamic web content

is considerably larger than CPU demand of interactions requesting static web content.

Table 2.1. CPU and database demands of RUBiS interactions

Service
CPU

Demand
(us)

Service
Database
Demand

(us)

Request
(no Service)

CPU
Demand (us)

Connection
(no Request)

CPU
Demand (us)

index.html
browse.html
bid_now.jpg
buy_it_now.jpg
RUBiS_logo.jpg
BrowseCategories
BrowseRegions
SearchItemsByCategory
SearchItemsByRegion
ViewItem
ViewBidHistory
ViewUserInfo

200
188
167
180

3,650
3,775
5,655
2,810
2,280
2,120
5,080

11,700

0
0
0
0
0

346
396

18,235
6,234

675
5,343
5,845

3,030 2,980

34 Chapter 2

2.3.6.3 Httperf

The client workload for the experiments was generated using a workload

generator and web performance measurement tool called Httperf [107]. This tool,

which supports both HTTP and HTTPS protocols, allows the creation of a continuous

flow of HTTP/S requests issued from one or more client machines and processed by

one server machine, whose behavior is characterized with a complete set of

performance measurements returned by Httperf. The configuration parameters of the

tool used for the experiments presented in this thesis were set to create a realistic

workload, with non-uniform reply sizes, sustaining a continuous load on the server.

One of the parameters of the tool represents the number of new clients per

second initiating an interaction with the server. Each emulated client opens a session

with the server. The session remains alive for a period of time, called session time, at

the end of which the connection is closed. Each session is a persistent HTTP/S

connection with the server. Using this connection, the client repeatedly makes a

request (the client can also pipeline some requests), parses the server response to the

request, and follows a link embedded in the response. The workload distribution

generated by Httperf was extracted from the RUBiS client emulator, which uses a

Markov model to determine which subsequent link from the response to follow.

RUBiS client emulator defines two workload mixes: a browsing mix made up of only

read-only interactions and a bidding mix that includes 15% read-write interactions.

Each emulated client waits for an amount of time, called the think time, before

initiating the next interaction. This emulates the “thinking” period of a real client who

takes a period of time before clicking on the next request. The think time is generated

from a negative exponential distribution with a mean of 7 seconds. Httperf allows also

configuring a client timeout. If this timeout is elapsed and no reply has been received

from the server, the current persistent connection with the server is discarded, and a

new emulated client is initiated. For the experiments in this thesis, Httperf has been

configured setting the client timeout value to 10 seconds.

2.3.6.4 Hardware & software platform

The experimental platform used to conduct the evaluation of the mechanisms

and policies proposed in e-business environments has been summarized in Table 2.2,

specifying the sections of this thesis in which each configuration is used.

Multithreaded Java Applications 35

Table 2.2. Experimental platform used to evaluate the mechanisms proposed in e-business environments

 Section 3.4.2 Section 4.3.1 Section 4.3.2 Section 5.3

Client

RUBiS 1.4 client emulator
850 clients

Experiment time = 150 sec
Browsing mix

2 x 2-way Intel XEON 2.4 GHz,
2 GB RAM, 2.4 Linux kernel

Httperf 0.8
Client timeout = 10 s

Experiment time = 10 min
Browsing mix

2-way Intel XEON 2.4 GHz,
2 GB RAM, 2.6 Linux kernel

Httperf 0.8.5
Client timeout = 10 s

Experiment time = 10 min
Browsing mix

2-way Intel XEON 2.4 GHz,
2 GB RAM, 2.6 Linux kernel

Web + Application Server

Tomcat 4.0.6
RUBiS 1.4 Auction Site benchmark

maxProcessors = 25, connectionTimeout = 10 s
Sun JVM 1.4.2

Server JVM, -Xms, -Xmx = 512 MB
4-way Intel XEON 1.4 GHz,
2 GB RAM, 2.5 Linux kernel

Tomcat 5.0.19
RUBiS 1.4.2 Auction Site benchmark

maxProcessors = 100, connectionTimeout = 10 s
Sun JVM 1.4.2

Server JVM, -Xms, -Xmx = 1024 MB
Common RSA-3DES-SHA cipher suit (RSA key 1024 bits)

4-way Intel XEON 1.4 GHz,
2 GB RAM, 2.6 Linux kernel

Database server

MySQL v3.23.43
MM.MySQL v3.0.8 JDBC driver

2-way Intel XEON 2.4 GHz,
2 GB RAM, 2.4 Linux kernel

MySQL v4.0.18
MM.MySQL v3.0.8 JDBC driver

2-way Intel XEON 2.4 GHz,
2 GB RAM, 2.6 Linux kernel

Client - Server Ethernet 100 Mbps Ethernet 1 Gbps
Network

Server - Database Ethernet 100 Mbps Ethernet 1 Gbps

Analysis and Visualization of Multithreaded Java Applications 37

CHAPTER 3
ANALYSIS AND VISUALIZATION

OF MULTITHREADED JAVA APPLICATIONS

3.1 Introduction

Previous experience on parallel applications has demonstrated that tuning this

kind of applications for performance is mostly responsibility of (experienced)

programmers [93]. Therefore, the performance analysis of multithreaded Java

applications can be a complex work due to this inherent difficulty of analyzing

parallel applications as well as the extra complexity added by the presence of the

JVM. In this scenario, performance analysis and visualization tools that provide

detailed information of multithreaded Java applications behavior are necessary in

order to help users in the process of tuning the applications on the target parallel

systems and JVM.

In the same way, the increasing load that the applications currently developed

for Internet must support, demands new performance requirements to the Java

application servers that host them. To achieve these performance requirements, fine-

grain tuning of these servers is needed, but this tuning can be a hard work due to the

large complexity of these environments (including the application server, distributed

clients, a database server, etc.). Tuning Java application servers for performance

requires also of tools that allow an in-depth analysis of application server behavior

and its interaction with the other system elements. These tools must consider all levels

involved in the execution of web applications (operating system, JVM, application

server and application) if they want to provide significant performance information to

the administrators (the origin of performance problems can reside in any of these

levels or in their interaction).

Although a number of tools have been developed to monitor and analyze the

performance of multithreaded Java applications (see Section 6.1), none of them allow

a fine-grain analysis of the applications behavior considering all levels involved in the

38 Chapter 3

application execution. The main contribution in the “Analysis and Visualization of

Multithreaded Java Applications” work area of this thesis is the proposal of a

performance analysis framework to perform a complete analysis of the Java

applications behavior based on providing to the user detailed and correlated

information about all levels involved in the application execution, giving him the

chance to construct his own metrics, oriented to the kind of analysis he wants to

perform. The different levels considered by this performance analysis framework are

shown in Figure 3.1.

Hardware

Operating System

Java Virtual Machine

Application

Application Server

 Application Level

 Application Server Level

 JVM Level

 System Level

Figure 3.1. Instrumentation levels considered by the performance analysis framework

The performance analysis framework consists of two tools: an instrumentation

tool, called JIS (Java Instrumentation Suite), and an analysis and visualization tool,

called Paraver [116]. When instrumenting a given application, JIS generates a trace in

which the information collected from all levels has been correlated and merged. The

trace reflects the activity of each thread in the application recorded in the form of a set

of predefined state transitions (that are representative of the parallel execution) and

the occurrence of some predefined events. Later, the trace can be visualized and

analyzed with Paraver (qualitatively and quantitatively) to identify the performance

bottlenecks of the application.

Analysis and Visualization of Multithreaded Java Applications 39

3.2 Instrumentation Tool: JIS

The instrumentation tool (JIS) is responsible of collecting detailed information

from all levels involved in the execution of Java applications. JIS correlates and

merges this information in a final trace using the services provided by an

instrumentation library. The next sections describe this library and the implementation

of the different instrumentation levels considered by JIS.

3.2.1 Instrumentation Library

The proposed performance analysis framework use traces from real executions

in the parallel target architecture in order to analyze multithreaded Java applications

behavior. These traces reflect the activity of each thread in the application. This

activity is recorded in the form of a set of predefined state transitions (that are

representative of the parallel execution) and the occurrence of some predefined

events.

The generation of these traces is supported by an instrumentation library that

provides all the services required to generate traces. The library is implemented in C

and, if necessary, could be invoked from Java through the Java Native Interface (JNI)

[134]. JNI is a Java standard interface for invoking native code inside the Java code.

The instrumentation library offers the following services:

� ChangeState - Change the state of a thread.

� PushState - Store the current state of a thread in a private stack and change to

a new one.

� PopState - Change the state of a thread to the one obtained from the private

stack.

� UserEvent - Emit an event (type and associated value) for a thread.

The library also offers combined services to change the state and emit an

event: ChangeandEvent, PushandEvent and PopandEvent. Two additional services

are offered to initialize and finish the instrumentation process:

� InitLib - Initialize the library internal data structures to start a parallel trace

receiving as parameters: 1) the maximum number of threads participating in

the execution, 2) the maximum amount of memory that the library has to

40 Chapter 3

reserve for each thread buffer, and 3) the mechanism used to obtain

timestamps.

� CloseLib - Stop the tracing; this call makes the library dump to disk all

buffered data not yet dumped and write resulting sorted trace to a file.

For each action being traced, the instrumentation library internally finds the

time at which it was done. Timestamps associated to transitions and events can be

obtained using generic timing mechanisms (such as the gettimeofday system call) or

platform-specific mechanisms (for instance the high-resolution memory-mapped

clock). All this data is written to an internal buffer for each thread (i.e. there is no

need for synchronization locks or mutual exclusion inside the parallel tracing library).

The data structures used by the tracing environment are also arranged at initialization

time in order to prevent interference among threads (basically, to prevent false

sharing). The user can specify the amount of memory used for each thread buffer.

When the buffer is full, the instrumentation library automatically dumps it to disk.

When the application exits, the instrumentation library generates a trace file

joining the per-thread buffers containing the information that has been collected from

all levels. This information is then correlated and merged. This adds an extra

overhead to the whole execution time of the application that does not have any impact

in the trace.

3.2.2 System Level

The JIS instrumentation at the system level can obtain information of the

threaded execution of the application inside the operating system by providing the

threads state along time and the system calls issued (I/O, sockets, memory

management and thread management). This is the only level where the

instrumentation depends on the underlying platform. In this thesis, two

implementations of the instrumentation at the system level have been performed:

� A dynamic interposition mechanism that obtains information about the

supporting threads layer (i.e. Pthreads library [121]) without recompilation has

been implemented for the SGI Irix platform.

� A device driver that gets information from a patched Linux kernel has been

developed for the Linux platform.

Analysis and Visualization of Multithreaded Java Applications 41

3.2.2.1 SGI Irix platform

The JIS instrumentation at the system level in the SGI Irix platform can

provide information about the supporting threads layer (i.e. Pthreads library), mutual

exclusion and synchronization primitives (mutexes and conditional variables) and

system calls issued (I/O, sockets and thread management).

The information acquisition at this level is accomplished by dynamically

interposing the instrumentation code at run time using DITools [126]. This dynamic

code interposition mechanism allows JIS not to require any special compiler support

and makes unnecessary to rebuild neither the bytecode of the application nor the

executable of the JVM.

3.2.2.1.1 System level information

As commented before, JIS instrumentation at the system level provides

information about threads state. Table 3.1 summarizes the different states that JIS

instrumentation at the system level in the SGI Irix platform considers for a thread.

Table 3.1. Thread states considered by the JIS instrumentation at the system level in the SGI Irix
platform

STATE DESCRIPTION

INIT Thread is being created and initialized

READY Thread is ready for running, but there is no CPU available

RUN Thread is running

BLOCKED IN CONDVAR Thread is blocked waiting on a monitor

BLOCKED IN MUTEX Thread is blocked waiting to enter in a monitor

BLOCKED IN I/O Thread is blocked waiting for an I/O operation

STOPPED Thread has finalized

The required knowledge about the execution environment can be expressed

using a state transition graph, in which each transition is triggered by a procedure call

and/or a procedure return. Figure 3.2 and Figure 3.3 present the state transition graphs

for both execution models1 (green and native threads, respectively) supported by JIS

instrumentation at the system level in the SGI Irix platform, in which nodes represent

1 Some implementations of the JVM (e.g. SGI Irix JVM) allow Java threads to be scheduled by the
JVM itself (the so-called green threads model) or by the operating system (the so-called native threads
model). When using green threads, the operating system does not know anything about threads that are
handled by the JVM (from its the point of view, there is a single process and a single thread). In the
native threads model, threads are scheduled by the operating system that is hosting the JVM.

42 Chapter 3

states, and edges correspond to procedure calls (indicated by a + sign) or procedure

returns (indicated by a - sign) causing a state transition.

RUN

INIT

BLOCKED
IN

CONDVAR

BLOCKED
IN

MUTEX

STOPPED

READY

+ write read recv send
recvfrom sendto poll
accept close open

BLOCKED
IN
I/O

- write read recv send
recvfrom sendto poll
accept close open

+ setCurrentThread

+ queueInsert

+
qu

eu
eI

ns
er

t

+ queueInsert

+ deleteContextAndStack

+ queueWait
+ queueWait

+ sysThreadCreate

Figure 3.2. State transition graph for green threads considered by the JIS instrumentation at the system

level in the SGI Irix platform

These transition graphs are then used to derive the interposition routines used

to keep track of the state in the instrumentation backend. These routines are simple

wrappers of functions that change the thread state, emit an event and/or save thread

information in the internal structures of JIS using the services offered by the

instrumentation library described in Section 3.2.1. These wrappers can perform

instrumentation actions before (_PRE) and/or after (_POST) the call being interposed.

Figure 3.4 shows a simple example of procedure wrapper and the skeleton of the

function executed before the activation of function pthread_cond_wait.

Analysis and Visualization of Multithreaded Java Applications 43

+ write read recv send
recvfrom sendto poll
accept close open

- write read recv send
recvfrom sendto poll
accept close open

INIT

RUN
BLOCKED

IN
CONDVAR

BLOCKED
IN

MUTEX

STOPPED

+ pthread_cond_wait

- pthread_cond_wait

+ pthread_cond_timedwait

- sched_yield

- pthread_cond_timedwait

+ sched_yield

- sched_handler

READY

+ sched_handler

+ pthread_mutex_lock

BLOCKED
IN
I/O

- pthread_mutex_lock

- pthread_create

+ threadInit

+ pthread_exit

Figure 3.3. State transition graph for native threads considered by the JIS instrumentation at the

system level in the SGI Irix platform

int pthread_cond_wait_wrapper (pthread_cond_t *p, pthread_mutex_t *m) {
 pthread_cond_wait_PRE ((long)p,(long)m);
 ret = pthread_cond_wait (p,m);
 pthread_cond_wait_POST ((long)p,(long)m);
 return ret;
}

void pthread_cond_wait_PRE (long condvar_id, long mutex_id) {
 pth_id = pthread_self();
 /* find Paraver thread identifier (jth_id = 1 .. n) of pth_id */
 PushandEvent(jth_id, BLOCKED_IN_CONDVAR, EVENT_BLOCKED_IN_CONDVAR,
 condvar_id);
 /* update internal structures */
}

Figure 3.4. Example of procedure wrapper

JIS instrumentation at the system level in the SGI Irix platform complements

the information of threads state by generating events that indicate:

44 Chapter 3

� The operations related to mutual exclusion (lock, trylock, locked, unlock)

or thread synchronization on conditional variables (wait, waited, signal,

broadcast).

� The system calls performing socket operations (accept, send, recv, sendto,

recvfrom, close).

� The system calls performing I/O operations (open, read, write, close, poll).

� The system calls performing thread operations (sched_yield, sleep).

� In which kernel threads are executing the Java threads.

3.2.2.1.2 Dynamic code interposition

Dynamic linking is a feature available in many modern operating systems.

Program generation tools (compilers and linkers) support dynamic linking via the

generation of linkage tables. Linkage tables are redirection tables that allow delaying

symbol resolution to run time. At program loading time, a system component fixes

each pointer to the right location using some predefined resolution policies. Usually,

the format of the object file as well as these data structures are defined by the system

Application Binary Interface (ABI). The standardization of the ABI makes possible to

take generic approaches to dynamic interposition.

(a) (b)

Figure 3.5. Dynamic code interposition

The instrumentation methodology is based on the fact that the JVM invokes a

set of run-time services at key places in order to use threads or to synchronize them.

Analysis and Visualization of Multithreaded Java Applications 45

These services are dynamic linked with the JVM via the use of linkage tables, like is

shown in Figure 3.5.a. The interposition mechanism modifies the appropriate linkage

table entries in order to redirect references to instrumentation wrappers, as shown in

Figure 3.5.b. These wrappers track state changes and issue events by invoking

services of the instrumentation library.

3.2.2.1.3 Instrumentation overhead

The overhead of the JIS instrumentation at the system level in the SGI Irix

platform is determined using the LUAppl application, which is a LU reduction kernel

over a two-dimensional matrix of double-precision elements taken from [111]. The

results of the overhead measurement when instrumenting the LUAppl are shown in

Table 3.2. The table reports the execution time in milliseconds of the original LUAppl

with respect to the LUAppl when instrumenting its behavior, when running with 4

threads and different problem sizes. Notice that, the overhead is kept reasonably low

(below 8%) and considered acceptable taking into account the level of detail provided

by the process.

Table 3.2. Overhead of the JIS instrumentation at the system level in the SGI Irix platform for LUAppl

Matrix size Original Instrumented Overhead

128x128 2795 2996 7.19 %

256x256 17542 17975 2.47 %

512x512 109976 110857 0.80 %

3.2.2.2 Linux platform

The JIS instrumentation at the system level in the Linux platform can provide

information about the threads state and the system calls issued (I/O, sockets, memory

management and thread management). This information is directly extracted from

inside kernel using two different layers: one based in a kernel source code patch and

the other in a system device and its corresponding driver (implemented in a Linux

kernel module).

3.2.2.2.1 System level information

The different states that JIS instrumentation at the system level in the Linux

platform considers for a thread are summarized in Table 3.3. Notice that, this is not

the complete list of possible thread states on Linux. Other states are not considered

46 Chapter 3

relevant to study the behavior of multithreaded Java applications in parallel

environments.

Table 3.3. Thread states considered by the JIS instrumentation at the system level in the Linux platform

STATE DESCRIPTION

READY Thread is ready for running, but there is no CPU available

RUN Thread is running

BLOCKED Thread is blocked

Figure 3.6 shows the state transition graph supported by JIS instrumentation at

the system level in the Linux platform, in which nodes represent states, and edges

correspond to procedure calls causing a state transition. This transition graph is used

to derive the interposition routines used to keep track of the state in the

instrumentation backend. These routines are simple wrappers of functions that change

the thread state, emit an event and/or save thread information in the internal structures

of JIS using the services offered by the instrumentation library.

READY

RUN

BLOCKED

system entry

schedule ()

schedule ()

wakeup ()

system exit / exit ()

Figure 3.6. State transition graph considered by the JIS instrumentation at the system level in the Linux

platform

JIS instrumentation at the system level in the Linux platform complements the

information of threads state by generating events that indicate:

� The system calls performing I/O operations (open, close, read, write,

lseek, poll, select) with their associated entry and exit timestamps and the

size and result of the performed operations.

Analysis and Visualization of Multithreaded Java Applications 47

� The system calls performing socket operations (socket, accept, bind,

sendto, recvfrom) with their associated entry and exit timestamps and the

size and result of the performed operations.

� The system calls performing memory operations (brk, mmap, munmap,

mprotect, madvise) with their associated entry and exit timestamps and the

size and result of the performed operations.

� The system calls performing thread operations (sched_yield, nanosleep)

with their associated entry and exit timestamps and the size and result of the

performed operations.

� In which processors are executing the Java threads.

3.2.2.2.2 Kernel source code patch

Some system events cannot be extracted by any other way than inserting

hooks inside the kernel source. These special events are related to kernel threads state

and other ways of obtaining this information are not enough. For instance, Linux

offers an interesting way to extract process status on system: the proc file system.

The problem comes with the way this system interface divides the two main process

states: Runnable and Blocked. Runnable implies that a process is ready to run on a

processor, but does not give information about if it is really running or if it is waiting

for a processor to start execution. This issue makes the proc file system insufficient to

determine thread status at each moment in time. Thus, a kernel patch has to be used to

obtain information about the state of the threads of the system at each moment in

time. This information is obtained directly from the scheduler routine and notified to

an instrumentation driver.

Information from system calls is obtained by intercepting some entries of the

system call table. The global system call table is modified in order to generate

notifications to the instrumentation driver and invoke the original system call function

in order to preserve the original system behavior.

3.2.2.2.3 Instrumentation device driver

The instrumentation driver receives the notifications from the patched Linux

kernel when a thread state change is produced or an intercepted system call is

invoked. This driver requires a device that controls it. The device driver is

48 Chapter 3

implemented inside a Linux kernel module and is responsible of attending the

notifications received from the patched kernel by tracking state changes and issuing

events using the services of the instrumentation library. The device driver implements

also basic functions operable over the device and to allocate the system events buffer.

Basic implemented functions are: open, close, ioctl and mmap.

Open and close calls are used to be able to work with the device. Ioctl call is

used to control the system space instrumentation from the user space code. When the

instrumented application finishes its execution, the shared library controlling the

instrumentation can use the ioctl call to indicate to the kernel module that the

instrumentation process is concluded. Finally, the mmap call is implemented to allow

the user space instrumentation code to work transparently with the system space

buffer and be able to merge both event buffers, system and space one, into a unique

final trace. A diagram summarizing the architecture of the JIS instrumentation at the

system level in the Linux platform is shown in Figure 3.7.

Figure 3.7. Architecture of the JIS instrumentation at the system level in the Linux platform

3.2.2.2.4 Instrumentation overhead

The overhead of the JIS instrumentation at the system level in the Linux

platform is determined using the LUAppl application, which has been introduced in

Section 3.2.2.1.3. The results of the overhead measurement when instrumenting the

LUAppl are shown in Table 3.4. The table reports the execution time in milliseconds

of the original LUAppl with respect to the LUAppl when instrumenting its behavior,

Analysis and Visualization of Multithreaded Java Applications 49

when running with 4 threads and different problem sizes. Notice that, the overhead is

kept very low (below 4%), considered acceptable in order to not to affect the

conclusions extracted from applications analysis.

Table 3.4. Overhead of the JIS instrumentation at the system level in the Linux platform for LUAppl

Matrix size Original Instrumented Overhead

250x250 699 722 3.29 %

500x500 3434 3450 0.47 %

750x750 9478 9492 0.15 %

1000x1000 20662 20710 0.23 %

3.2.3 JVM Level

The JIS instrumentation at the JVM level can obtain information about JVM

internals, considering Java abstractions like classes, objects, methods, threads and

monitors. The information acquisition at the JVM level is accomplished by using the

Java Virtual Machine Profiler Interface [143] (JVMPI). JVMPI is a common interface

that can be used to obtain profiling information from the running Java application by

introducing hooks inside the JVM code in order to be notified about some predefined

Java events. Using JVMPI, there is no need to change the source of the application or

recompile it, only is necessary to include an option to the Java interpreter. However,

the use of JVMPI can result in severe overheads, because of the high notification

frequency of some JVMPI events (e.g. method entry and method exit events). For

these reason, JIS only obtains at this level the name of the Java threads and

information about the operations performed on the different Java Monitors (wait,

notify, notifyAll, contended enter, contended exit).

3.2.3.1 JVMPI

The JVMPI is based on the idea of creating a shared library that is

dynamically linked with the JVM if the user passes an instrumentation option to the

Java interpreter. This library will be notified about selected internal JVM events.

Choosing hooked events is done at JVM load time using a standard implemented

method on the library that is invoked by the JVM. This method is called JVM_OnLoad.

An example of selecting events that have to be notified in this method is shown in

Figure 3.8. In this example, the notification of waits in a monitor is enabled

50 Chapter 3

(JVMPI_EVENT_MONITOR_WAIT event). The JVM_OnLoad function also specifies the

routine that has to be called each time that a requested event is produced, in this

example the notifyEvent routine.

When a selected event is produced, this event is notified through a call to the

notifyEvent function that can determine, by parsing received parameters, what event

is taking place. Depending on this, the function will track the state changes or will

issue the necessary events using the services provided by the instrumentation library.

#include <jvmpi.h>

// global jvmpi interface pointer
static JVMPI_Interface *jvmpi_interface;

// function for handling event notification
void notifyEvent(JVMPI_Event *event) {
 switch(event->event_type) {
 ...
 case JVMPI_EVENT_MONITOR_WAIT:
 ...
 }
}

// profiler agent entry point
JNIEXPORT jint JNICALL JVM_OnLoad(JavaVM *jvm, char *options, void
*reserved) {

 // get jvmpi interface pointer
 if ((jvm->GetEnv((void **)&jvmpi_interface, JVMPI_VERSION_1)) < 0)
 {
 fprintf(stderr, "Error in obtaining jvmpi interface pointer\n");
 return JNI_ERR;
 }

 // initialize jvmpi interface
 jvmpi_interface->NotifyEvent = notifyEvent;

 // enabling class load event notification
 jvmpi_inter->EnableEvent(JVMPI_EVENT_MONITOR_WAIT, NULL);

 return JNI_OK;
}

Figure 3.8. JVMPI initialization

The JVMPI comes with the standard Java SDK from version 1.2. However,

new SDK release 1.5, has replaced JVMPI with a new profiling interface, the JVM

Tool Interface [137] (JVMTI).

3.2.4 Application Server Level

Information about the internals of the application server can be obtained at the

application server level. This information is reported using events that indicate the

Analysis and Visualization of Multithreaded Java Applications 51

begin/end of services (i.e. servlets and EJB), requests, HTTP connections, SSL

connections, database transactions, etc.

The information acquisition at this level is accomplished by injecting

instrumentation probes at specific points in the application server where events are

required to signal server relevant actions. These probes invoke the services (which

generate the events and/or state transitions) of the instrumentation library through the

Java Native Interface (JNI). The instrumentation library is dynamically linked with

the JVM and offers a common JNI interface to the Java applications. This allows the

use of the instrumentation at the application level in all platforms supporting Java.

The instrumentation probes can be directly injected in the application server

source code, if this is available. Otherwise, other techniques can be used to extract

information from the application server level when source code is not available. For

example, the Java Automatic Code Interposition Tool [57] (JACIT) allows adding

code to already compiled classes without recompilation. JACIT is based on using

Aspect programming techniques [60] to enable the work with code although source

code is not available or to extend features from a closed product.

For example, Figure 3.9 shows the code injected in the HttpServlet class in

order to obtain instrumentation information about when the services begin and end.

package javax.servlet.http;

public abstract class HttpServlet extends GenericServlet
 implements java.io.Serializable
{
 ...
 protected void service(HttpServletRequest req, HttpServletResponse resp)
 throws ServletException, IOException
 {
 bjs.UserEvent(SERVICE,BEGIN);
 ...
 doGet(req, resp);
 ...
 bjs.UserEvent(SERVICE,END);
 }
 ...
}

Figure 3.9. Code injection mechanism in the HttpServlet class

3.2.5 Application Level

JIS can provide also the user with information about the Java application level.

The information acquisition at this level is accomplished in the same way that in the

52 Chapter 3

application server level (i.e. by injecting instrumentation probes that invoke the

services of the instrumentation library using the JNI at specific points in the Java

application where events are required to signal application relevant actions). As in the

application server level instrumentation, the instrumentation at the application level

can be used in all platforms supporting Java.

3.2.5.1 Instrumentation of JOMP applications

As a special case of instrumentation at the application level, support for JOMP

applications [23] has been added to JIS. JOMP includes OpenMP-like extensions to

specify parallelism in Java applications using a shared-memory programming

paradigm. The instrumentation provides a detailed analysis of the parallel behavior at

the JOMP programming model level. At this level, the user is faced with parallel,

work-sharing and synchronization constructs.

3.2.5.1.1 JOMP programming model level information

Table 3.5 summarizes the different states that the instrumentation of JOMP

applications considers for a thread. The RUN state corresponds to the execution of

useful work, i.e. execution of work in the original source code. The IDLE state reflects

the fact that a thread is waiting (outside a parallel region) for work to be executed.

The JOMP runtime library creates threads at the first parallel region and keeps them

alive until the end of the application. In the meanwhile, they check for new work to be

executed, and if found, execute it. The OVERHEAD state shows that the thread is

executing code associated with definition and initialization of private,

lastprivate, firstprivate and reduction variables, or the determination of the

tasks to be done in a work-sharing construct. The SYNCH state refers to the situation in

which a thread is waiting for another thread to reach a specific point in the program,

or for access to a ticketer to guarantee specific ordered actions.

Table 3.5. Thread states considered by JOMP applications instrumentation

STATE DESCRIPTION

IDLE Thread is waiting for work to be executed

RUN Thread is running

OVERHEAD Thread is executing JOMP overhead

SYNCH Thread is synchronizing with other threads in the team

Analysis and Visualization of Multithreaded Java Applications 53

The instrumentation of JOMP applications can also report events that provide

additional information about the JOMP constructs being executed. Each event has two

fields associated: type and value. The type is used to indicate the entry/exit to/from a

parallel, work-sharing or synchronization construct. The value is used to relate the

event type with the source code (for instance, line number in the source code and

method name). The communication between the event types and values assigned by

the compiler and Paraver is done through a configuration file generated by the

compiler itself.

3.2.5.1.2 Code injection

The information acquisition is accomplished in the same way as explained for

the generic application level instrumentation, that is, by injecting instrumentation

probes that invoke the services (which generate the events and/or state transitions) of

the instrumentation library using the JNI at specific points in the JOMP application.

The JOMP compiler has been modified in order to inject these probes in the JOMP

application source code (where the state transitions occur and where events are

required to signal JOMP relevant actions) without user intervention during the code

generation phase.

Figure 3.10.b shows the instrumented parallel code for the simple example

shown in Figure 3.10.a. Notice that the compiler forces a state change to OVERHEAD as

soon as the master thread starts the execution of the block of code that encapsulates

the parallel construct in the main method. The previous state is stored in an internal

stack so that the master thread can restore it as soon as it finishes the execution of this

block of code. When changing to OVERHEAD state, the master thread also emits an

event with type EVENT_PARALLEL_BEGIN that indicates the beginning of the parallel

construct and with value 500 indicates that this parallel construct is found at a certain

line and method in the original source code. In the same way, when the master thread

restores its previous state, it also emits an event with type EVENT_PARALLEL_END that

indicates the end of the parallel construct and with value the same 500.

Each thread in the team executing the go() method changes to the RUN state

when it starts the execution of the user code. After executing the original user code,

each thread changes to the OVERHEAD state for managing reduction variables. Then the

54 Chapter 3

thread changes to the BLOCKED state and gets into a barrier. When all threads have

reached the barrier, they restore their previous state.

public class Hello {
 public static void main (String argv[]) {
 int myid;
 //omp parallel private (myid)
 {
 myid = OMP.getThreadNum();
 System.out.println(“Hello from” + myid);
 }
 }
}

(a) original code

public class Hello {
 public static void main (String argv[]) {
 int myid;
 bjs.InitLib(jomp.runtime.OMP.getMaxThreads());
 // OMP PARALLEL BLOCK BEGINS
 {
 bjs.PushandEvent(jomp.runtime.OMP.getThreadNum(),OVERHEAD,
 EVENT_PARALLEL_BEGIN,500);
 __omp_Class0 __omp_Object0 = new __omp_Class0();
 __omp_Object0.argv = argv;
 try {
 jomp.runtime.OMP.doParallel(__omp_Object0);
 } catch(Throwable __omp_exception) {
 jomp.runtime.OMP.errorMessage();
 }
 argv = __omp_Object0.argv;
 bjs.PopandEvent(jomp.runtime.OMP.getThreadNum(),
 EVENT_PARALLEL_END,500);
 }
 // OMP PARALLEL BLOCK ENDS
 bjs.CloseLib();
 }
}

// OMP PARALLEL REGION INNER CLASS DEFINITION BEGINS
private static class __omp_Class0 extends jomp.runtime.BusyTask {
 String [] argv;
 public void go(int __omp_me) throws Throwable {
 int myid;
 // OMP USER CODE BEGINS
 {
 bjs.PushState(jomp.runtime.OMP.getThreadNum(),RUN);
 myid = OMP.getThreadNum();
 System.out.println("Hello from" + myid);
 bjs.ChangeState(jomp.runtime.OMP.getThreadNum(),OVERHEAD);
 }
 // OMP USER CODE ENDS
 bjs.ChangeState(jomp.runtime.OMP.getThreadNum(),BLOCKED);
 jomp.runtime.OMP.doBarrier(__omp_me);
 bjs.PopState(jomp.runtime.OMP.getThreadNum());
 }
}
// OMP PARALLEL REGION INNER CLASS DEFINITION ENDS

 (b) instrumented transformed code

Figure 3.10. Example of code injection made by the JOMP compiler: parallel directive

Analysis and Visualization of Multithreaded Java Applications 55

3.2.5.1.3 Instrumentation overhead

The overhead of the instrumentation of JOMP applications is determined using

the LUJOMP application, which is a JOMP version of the LUAppl presented in

Section 3.2.2.1.3. The code of LUJOMP is shown in Figure 3.11.

for (k=0; k < SIZE; k++) {
 //omp parallel
 {
 //omp for schedule(static) nowait
 for (int i=k+1; i < SIZE; i++) {
 matrix[i][k] = matrix[i][k] / matrix[k][k];
 }
 //omp for schedule(static)
 for (int i=k+1; i <SIZE; i++) {
 for (int j=k+1; j < SIZE; j++) {
 matrix[i][j] = matrix[i][j] - matrix[i][k] * matrix[k][j];
 }
 }
 }
}

Figure 3.11. Source code of JOMP version of LUAppl application

The results of the overhead measurement when instrumenting the LUJOMP

are shown in Table 3.6. The table reports the execution time in milliseconds of the

original LUJOMP with respect to the LUJOMP when instrumenting its behavior,

when running with 4 threads and different problem sizes. Notice that the overhead is

very low (less than 3%).

Table 3.6. Overhead of the JOMP applications instrumentation for LUAppl

Matrix size Original Instrumented Overhead

128x128 1899 1949 2.63%

256x256 15842 16222 2.4%

512x512 105962 108092 2%

3.3 Visualization Tool: Paraver

Paraver [116] is a flexible trace visualization and analysis tool developed at

CEPBA [33] based on an easy-to-use Motif GUI. Paraver was developed to respond

to the need to have a qualitative global perception of the application behavior by

visual inspection and then to be able to focus on the detailed quantitative analysis of

the problems. Large amount of information useful to improve the decisions on

whether and where to invert the programming effort to optimize an application is

accessible with Paraver. Trace analysis with Paraver ranges from the visualization of

56 Chapter 3

the graphical trace representation to the calculation of multiple statistics in order to

detect performance problems. In any case, all the possible views and statistical

calculations made on a trace file can be saved as Paraver configuration files for later

reuse. It allows users to create a large amount of preset views of the trace file that can

point out some performance indexes or conflictive situations in a direct way.

The graphical views of the trace files are based on the representation of

threads, characterized by their state along time and by some punctual events. The

combination of states and events makes possible to do a detailed and intuitive

representation of an application behavior. A sample of the Paraver visualization

module can be seen in the top part of Figure 3.12. On it, threads are represented on the

vertical axis and the horizontal axis is used for the timeline. The color of each thread

along time indicates its state. The state value of each thread can be obtained directly

from the trace file or can be calculated as a function of the thread state and the event

values. Textual information related to the states and the events can also be obtained

with this view by clicking at any point in the trace, as shown in bottom part of Figure

3.12.

Figure 3.12. Sample Paraver graphical and textual visualizations

The analysis views apply statistical calculations to the trace file information

and summarize the results as a table. These calculations can be done as a function of

thread state values, punctual events and thread state values of one window in relation

to thread state values (called categories) of another window. An example of a Paraver

Analysis and Visualization of Multithreaded Java Applications 57

statistical analysis can be seen on Figure 3.13. On it, threads are represented on the

vertical axis, categories are represented on the horizontal axis and each cell of the

matrix represents the calculation result for the thread-category combination. The

statistic to be calculated is defined by the user.

Figure 3.13. Sample Paraver statistical calculation

3.4 Application Analysis

Although many examples of using the proposed analysis framework for

detecting performance bottlenecks of multithreaded Java applications will appear

across this thesis, this section presents some guidelines of the analysis that can be

performed with the analysis framework. This explanation has been structured around

the analysis of two types of multithreaded Java applications: JOMP applications and

Java application servers.

3.4.1 Analysis of JOMP Applications

The top part of Figure 3.14 shows a Paraver window displaying the behavior

of one iteration of the LUJOMP application presented in Figure 3.11. The horizontal

axis represents execution time in microseconds. The vertical axis shows the four

JOMP threads that compose the team. Each thread evolves though a set of states, each

one represented with a different color (as indicated with the legend). Flags appearing

58 Chapter 3

on top of each thread bar are used to visualize the events indicating the JOMP

constructs. For instance, all the threads start executing the body of the parallel

construct, and distribute themselves the work (OVERHEAD state, yellow color in the

visualization) as indicated by the two for work-sharing directives. After determining

the chunk of iterations, each thread executes them (RUN state, dark blue color in the

visualization). Barrier synchronization happens at the end of second work-sharing

construct (SYNCH state, red color in the visualization), which forces all the threads to

wait. Notice that the nowait clause in the first work-sharing construct omits the

implicit barrier synchronization.

Figure 3.14. Paraver visualization for one iteration of the LUAppl kernel

(JOMP programming model level)

The bottom part of Figure 3.14 shows the textual information reported by

Paraver when the user clicks on a specific point of the trace. Observe that, in addition

to timing measurements and thread state, Paraver also relates the visualization with

the original JOMP code.

The information obtained at the JOMP programming model level can be

complemented with the information at the system level, allowing the correlation of

Analysis and Visualization of Multithreaded Java Applications 59

the information at different levels in a way that cannot be accomplished with other

tools. For example, the user can obtain information about the real processor use

during the execution of JOMP constructs. In the top part of Figure 3.15, which shows

the behavior at the JOMP programming model level of the LUJOMP application, the

user can detect if a thread is in the IDLE state or in the SYNCH state, but it does not

know if that thread is in fact running on a processor or blocked elsewhere on the

system. In the bottom part of Figure 3.15, which shows the behavior at the system

level of the LUJOMP application, the user discovers that when a thread is in the IDLE

state, it is really in a loop checking for new work for be executed (RUN state) and if not

found, yielding its processor (READY state). In the same way, when a thread is in the

SYNCH state, it is really in a loop wait checking for the barrier opening (RUN state) and

if do not, yielding its processor (READY state).

Figure 3.15. Paraver visualization for one iteration of the LUAppl kernel

(JOMP programming model level + System level)

60 Chapter 3

With the correlation of the information of the JOMP programming model level

and the information of the system level, situations of monitor contention can be also

discovered. The analysis of the top part of Figure 3.15 reveals that the overhead

produced when distributing work among threads is higher than expected (OVERHEAD

state). The analysis of the information at the system level, which is shown in the

bottom part of Figure 3.15, exposes that a monitor contention situation in a JVM

internal monitor is causing this overhead (threads are blocked in BLOCKED_IN_MUTEX

state).

3.4.2 Analysis of Multithreaded Java Application Servers

This section presents two successful experiences where a detailed analysis

using the proposed performance analysis framework has allowed the detection and

correction of two performance degradation situations when executing the RUBiS

benchmark with the Tomcat application server. The two analysis experiences

demonstrate the benefit of disposing of correlated information about all the levels to

perform a fine-grain analysis of server execution.

3.4.2.1 Analysis methodology

The analysis methodology is based in the well-know scientific method. The

analysis starts when an observation that can represent a performance lost or a server

malfunction is produced when doing typical server maintenance work (for example,

when examining the server log files), or when performing a study of basic metrics

looking for anomalous values or behaviors. These observations showing low

performance or unexplained errors are the Symptom that something is going wrong in

the server, and motivate an in-depth analysis of the server behavior.

When a Symptom of a server malfunction is detected, the analysis

methodology indicates that a Hypothesis to explain this Symptom apparition have to

be suggested, and using the performance analysis framework presented in this thesis,

perform the necessary Actions to confirm or discard this Hypothesis. The result of the

Actions can confirm the Hypothesis, discard it, or detect another Symptom. The

methodology establishes to carry out the necessary Actions until the Hypothesis can

be verified or discarded. In the first case, the cause of server anomalous behavior has

Analysis and Visualization of Multithreaded Java Applications 61

been detected. In the second case, another Hypothesis must be suggested, and the

verification process based on Actions must be restarted.

3.4.2.2 Case study 1

The first case study starts from an observation made when inspecting the

Tomcat log files. Good Tomcat administrators should perform the observation of log

files periodically in order to detect possible server malfunctions. When examining the

RUBiS context log file of Tomcat, these error messages are found:

� Servlet.service() for servlet BrowseCategories threw exception

java.lang.NullPointerException at

com.mysql.jdbc.ResultSet.first(ResultSet.java:2293)

� java.sql.SQLException: Operation not allowed after ResultSet

closed

The appearance of these error messages in the log file is a Symptom that

something is going wrong, and motivates an in-depth analysis to determine the causes

of this behavior. The proposed analysis methodology establishes the suggestion of a

Hypothesis that explains the Symptom detected. Considering the messages shown

before, the Hypothesis is that the problem is related with the database access.

At this point, it is required to take the necessary Actions to verify the

Hypothesis made (using the performance analysis framework). In this case,

correctness of database access has to be verified.

The first Action to verify the Hypothesis consists of analyzing which system

calls are performed by HttpProcessors when they have acquired a database

connection. This information is displayed in Figure 3.16 (horizontal axis is time and

vertical axis identifies each thread), where each burst represents the execution of a

system call when the corresponding HttpProcessor has acquired a database

connection. As indicates the textual information in the figure, HttpProcessors get

database information using socket receive calls. This Symptom corresponds to the

expected behavior if managing correctly the database connections, thus more

information about the database access is needed to verify the Hypothesis.

Then, the next Action taken is to analyze the file descriptors used by the

system calls performed by HttpProcessors when they have acquired a database

connection. This information is displayed in Figure 3.17, where each burst indicates

62 Chapter 3

the file descriptor used by the system call performed by the corresponding

HttpProcessor when it has acquired a database connection. As indicates the textual

information in the figure, several HttpProcessors are accessing the database using the

same file descriptor (that is, using the same database connection). This is conceptually

incorrect, and should not happen. This Symptom confirms the Hypothesis about a

wrong access to database.

Figure 3.16. System calls performed by HttpProcessors when they have acquired a database

connection

At this point, it must be determined why several HttpProcessor use the same

file descriptor to access the database, so another Hypothesis that locates the problem

in the RUBiS database connection management is suggested. The Action taken to

verify this Hypothesis consists of inspecting the RUBiS servlets source code. This

inspection reveals the following bug. Each kind of RUBiS servlet declares three class

variables (ServletPrinter sp, PreparedStatement stmt and Connection conn).

These class variables are shared by all the servlet instances, and this can provoke

multiple race conditions. For example, it is possible that two HttpProcessors access

the database using the same connection conn.

Analysis and Visualization of Multithreaded Java Applications 63

Figure 3.17. File descriptors used by the system calls performed by HttpProcessors when they have

acquired a database connection

This problem can be avoided declaring these three class variables as local

variables in the doGet method of the servlet, and pass them as parameters when

needed.

3.4.2.3 Case study 2

A good practice when tuning an application server for performance is to make

periodical studies of some basic metrics that indicate the performance of the

application server. These metrics include for example the average service time per

HttpProcessor, the overall throughput, the client requests arrivals rate, etc. The result

of this basic analysis can encourage a more detailed study to determine the causes of

an anomalous value in these metrics. For example, the second case study starts from

an observation made when analyzing the average service time per HttpProcessor on

server.

Figure 3.18 shows the average service time for each HttpProcessor, calculated

using the performance analysis framework. In this figure there is one HttpProcessor

64 Chapter 3

with an average service time considerably higher than the others. This is a Symptom

of an anomalous behavior of this HttpProcessor, and motivates an in-depth analysis to

determine the causes of this behavior. First, the state distribution when the

HttpProcessors are serving requests is analyzed. Figure 3.19 shows the percentage of

time spent by the HttpProcessors on every state (run, uninterruptible blocked,

interruptible blocked, waiting in ready queue, preempted and ready). This

figure shows that the problematic HttpProcessor is most of the time in

interruptible blocked state (about 92% of time) while the other HttpProcessors

are blocked about the 65% of time.

Figure 3.18. Average service time per HttpProcessor

In order to explain this Symptom, the Hypothesis consists of assuming that the

HttpProcessor could be blocked waiting response from the database. This Hypothesis

is inferred because the database is a typical resource that can provoke long waits when

working with application servers. To verify this Hypothesis, the Action taken is to

Analysis and Visualization of Multithreaded Java Applications 65

analyze the system calls performed by HttpProcessors when serving requests. This

analysis revealed that the problematic HttpProcessor is not blocked in any system call,

which means that it is not blocked waiting response from database, but does it have at

least an open connection with the database? To answer this question, the Action taken

consists of analyzing when HttpProcessors acquire database connections. This

analysis reports that the problematic HttpProcessor blocks before acquiring any

database connection.

Figure 3.19. State distribution of HttpProcessors during service (in percentage)

With all this information it can be concluded that the first Hypothesis is

wrong, that is, the problematic HttpProcessor is not waiting response from the

database. Therefore, a new Hypothesis to explain why the problematic HttpProcessor

is blocked most of the time is needed. Considering that, as commented before, the

problematic HttpProcessor has not acquired any database connection yet, the new

Hypothesis is that this HttpProcessor could have problems acquiring the database

connection. To verify this Hypothesis, the performance analysis framework is used to

display the database connections management, which is shown in Figure 3.20. Light

66 Chapter 3

color indicates the acquisition of a database connection and dark color indicates the

wait for a free database connection. Notice that the problematic HttpProcessor

(HttpProcessor 9 in the figure) is blocked waiting for a free database connection. This

Symptom confirms the Hypothesis that there could be problems acquiring database

connections. This figure also reveals the origin of the problem on the database

connection management, because it can occur that a database connection is released,

while there are some HttpProcessors waiting for a free database connection, but they

are not notified. Notice that HttpProcessors 4 and 9 are blocked waiting for a free

database connection. When HttpProcessor 14 releases its database connection, it

notifies HttpProcessor 4 that can acquire this connection and continue its execution.

Other HttpProcessors holding a database connection release it, but none of them

notifies HttpProcessor 9.

Figure 3.20. Database connections acquisition process

Trying to explain this anomalous behavior, the Hypothesis supposes that a

wrong database connection management at RUBiS is causing the problem. In order to

verify this Hypothesis, the Action taken is to inspect the RUBiS servlets source code.

This inspection reveals a bug. By default, in RUBiS one HttpProcessor only notifies a

Analysis and Visualization of Multithreaded Java Applications 67

connection release if free database connection stack is empty. But consider the

following situation:

There are N HttpProcessors that execute the same RUBiS servlet, which has a

pool of M connections available with the database, where N is greater than M. This

means that M HttpProcessors can acquire a database connection and the rest (N – M)

HttpProcessors block waiting for a free database connection. Later, an HttpProcessor

finishes executing the servlet and releases its database connection. The HttpProcessor

puts the connection in the pool and, as the connection pool was empty, it notifies the

connection release.

Due to this notification, a second HttpProcessor wakes up and tries to get a

database connection. But before this second HttpProcessor can get the connection, a

third HttpProcessor finishes executing the servlet and releases its database connection.

The third HttpProcessor puts the connection in the pool and, as the connection pool

was not empty (the second HttpProcessor has not got the connection yet), it does not

notify the connection release. The second HttpProcessor finally acquires its database

connection and the execution continues with a free connection in the pool, but with

HttpProcessors still blocked waiting for free database connections.

This situation can be avoided if HttpProcessors notify to all HttpProcessors

when they release a database connection.

3.5 Conclusions

This chapter has described the main contribution in the “Analysis and

Visualization of Multithreaded Java Applications” work area of this thesis, which is

the proposal of a performance analysis framework to perform a complete analysis of

the Java applications behavior based on providing to the user detailed information

about all levels involved in the application execution (operating system, JVM,

application server and application), giving him the chance to construct his own

metrics, oriented to the kind of analysis he wants to perform.

The performance analysis framework consists of two tools: an instrumentation

tool, called JIS (Java Instrumentation Suite), and an analysis and visualization tool,

called Paraver. When instrumenting a given application, JIS generates a trace in

which the information collected from all levels has been correlated and merged. Later,

68 Chapter 3

the trace can be visualized and analyzed with Paraver (qualitatively and

quantitatively) to identify the performance bottlenecks of the application.

JIS provides information from all levels involved in the application execution.

From the system level, information about threads state and system calls (I/O, sockets,

memory management and thread management) can be obtained. Several

implementations have been performed depending on the underlying platform. A

dynamic interposition mechanism that obtains information about the supporting

threads layer (i.e. Pthreads library) without recompilation has been implemented for

the SGI Irix platform. In the same way, a device driver that gets information from a

patched Linux kernel has been developed for the Linux platform. JIS uses the JVMPI

to obtain information from the JVM level. At this level of analysis, the user can obtain

information about several Java abstractions like classes, objects, methods, threads and

monitors, but JIS only obtains at this level the name of the Java threads and

information from the different Java Monitors (when they are entered, exited or

contended), due to the large overhead produced when using JVMPI. Information

relative to services (i.e. servlets and EJB), requests, connections or transactions can be

obtained from the application server level. Moreover, some extra information can be

added to the final trace file by generating user events from the application code.

Information at these levels can be inserted by hard-coding JNI calls to the

instrumentation library on the server or the application source or by introducing them

dynamically using Aspect programming techniques without source code

recompilation.

As a special case of instrumentation at the application level, support for JOMP

applications has been added to JIS. JOMP includes OpenMP-like extensions to

specify parallelism in Java applications using a shared-memory programming

paradigm. This instrumentation approach has been designed to provide a detailed

analysis of the parallel behavior at the JOMP programming model level. At this level,

the user is faced with parallel, work-sharing and synchronization constructs. The

JOMP compiler has been modified to inject JNI calls to the instrumentation library

during the code generation phase at specific points in the source code.

Experience in this thesis demonstrates the benefit of disposing of correlated

information about all the levels involved in Java applications execution to perform a

fine-grain analysis of their behavior. This thesis claims that a real performance

Analysis and Visualization of Multithreaded Java Applications 69

improvement on multithreaded Java applications execution can only be achieved if

performance bottlenecks at all levels can be identified.

The research performed in this work area has resulted in the following

publications, including three international conferences, one international workshop

and two national conferences:

� J. Guitart, D. Carrera, J. Torres, E. Ayguadé and J. Labarta. Tuning Dynamic
Web Applications using Fine-Grain Analysis. 13th Euromicro Conference on
Parallel, Distributed and Network-based Processing (PDP’05), pp. 84-91,
Lugano, Switzerland. February 9-11, 2005.

� D. Carrera, J. Guitart, J. Torres, E. Ayguadé and J. Labarta. Complete

Instrumentation Requirements for Performance Analysis of Web based
Technologies. 2003 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS’03), pp. 166-175, Austin, Texas, USA.
March 6-8, 2003.

� D. Carrera, J. Guitart, J. Torres, E. Ayguadé and J. Labarta. An

Instrumentation Tool for Threaded Java Application Servers. XIII Jornadas de
Paralelismo, pp. 205-210, Lleida, Spain. September 9-11, 2002.

� J. Guitart, J. Torres, E. Ayguadé and J.M. Bull. Performance Analysis Tools

for Parallel Java Applications on Shared-memory Systems. 30th International
Conference on Supercomputing (ICPP’01), pp. 357-364, Valencia, Spain.
September 3-7, 2001.

� J. Guitart, J. Torres, E. Ayguadé, J. Oliver and J. Labarta. Instrumentation

Environment for Java Threaded Applications. XI Jornadas de Paralelismo, pp.
89-94. Granada, Spain, September 12-14, 2000.

� J. Guitart, J. Torres, E. Ayguadé, J. Oliver and J. Labarta. Java

Instrumentation Suite: Accurate Analysis of Java Threaded Applications. 2nd
Annual Workshop on Java for High Performance Computing (part of the 14th
ACM International Conference on Supercomputing ICS’00), pp. 15-25, Santa
Fe, New Mexico, USA. May 7, 2000.

Self-Adaptive Multithreaded Java Applications 71

CHAPTER 4
SELF-ADAPTIVE

MULTITHREADED JAVA APPLICATIONS

4.1 Introduction

Multithreaded Java applications can be used in HPC environments, where

applications can benefit from the Java multithreading support for performing parallel

calculations, as well as in e-business environments, where Java application servers

can take profit of Java multithreading facilities to handle concurrently a large number

of requests.

However, the use of Java for HPC faces a number of problems that are

currently subject of research. One of them is the performance degradation when

multithreaded applications are executed in a multiprogrammed environment. The

main issue that leads to this degradation is the lack of communication between the

execution environment and the applications, which can cause these applications to

make a naive use of threads, degrading their performance. In these situations, it is

desirable that the execution environment provides information to the applications

about their allocated resources, thus allowing the applications to adapt their behavior

to the amount of resources offered by the execution environment by generating only

the amount of parallelism that can be executed with the assigned processors. This

capability of applications is known as malleability [53]. Therefore, improving the

performance of multithreaded Java applications in HPC environments can be

accomplished by designing and implementing malleable applications (i.e. self-

adaptive applications).

Achieving good performance when using Java in e-business environments is a

harder problem due to the large complexity of these environments. First, the workload

of Internet sites is known to vary dynamically over multiple time scales, often in an

unpredictable fashion, including flash crowds. This fact and the increasing load that

Internet sites must support increase the performance demand on Java application

72 Chapter 4

servers that host the sites that must face situations with a large number of concurrent

clients. Therefore, the scalability of these application servers has become a crucial

issue in order to support the maximum number of concurrent clients in these

situations.

Moreover, not all the web requests require the same computing capacity from

the server. For example, requests for static web content (i.e. HTML files and images)

are mainly I/O intensive. Requests for dynamic web content (i.e. Java Servlets and

EJB) increase the computational demand on server, but often other resources (e.g. the

database) become the bottleneck for performance. On the other side, in e-business

applications, which are based on dynamic web content, all information that is

confidential or has market value must be carefully protected when transmitted over

the open Internet. Although providing these security capabilities does not introduce a

new degree of complexity in web applications structure, it increases the computation

time necessary to serve a connection remarkably, due to the use of cryptographic

techniques, becoming a CPU-intensive workload.

Facing situations with a large number of concurrent clients and/or with a

workload that demands high computational power (as for instance secure workloads)

can lead a server to overload (i.e. the volume of requests for content at a site

temporarily exceeds the capacity for serving them and renders the site unusable).

During overload conditions, the response times may grow to unacceptable levels, and

exhaustion of resources may cause the server to behave erratically or even crash

causing denial of services. In e-commerce applications, which are heavily based on

the use of security, such server behavior could translate to sizable revenue losses.

Therefore, overload prevention is a critical issue if good performance on Java

application servers in e-business environments wants to be achieved. Overload

prevention tries to have a system that remains operational in the presence of overload

even when the incoming request rate is several times greater than system capacity,

and at the same time is able to serve the maximum the number of requests during such

overload, maintaining response times (i.e. Quality of Service (QoS)) within

acceptable levels.

Additionally, in many web sites, especially in e-commerce, most of the

applications are session-based. A session contains temporally and logically related

request sequences from the same client. Session integrity is a critical metric in e-

Self-Adaptive Multithreaded Java Applications 73

commerce. For an online retailer, the higher the number of sessions completed the

higher the amount of revenue that is likely to be generated. The same statement

cannot be made about the individual request completions. Sessions that are broken or

delayed at some critical stages, like checkout and shipping, could mean loss of

revenue to the web site. Sessions have distinguishable features from individual

requests that complicate the overload control. For example, admission control on per

request basis may lead to a large number of broken or incomplete sessions when the

system is overloaded.

Application servers overload can be prevented by designing mechanisms that

allow the servers to adapt their behavior to the available resources (i.e. becoming self-

adaptive applications) limiting the number of accepted requests to those that can be

served without degrading their QoS while prioritizing important requests. However,

the design of a successful overload prevention strategy must be preceded by a

complete characterization of the application server scalability. This characterization

allows determining which factors are the bottlenecks for application server

performance that must be considered in the overload prevention strategy.

Nevertheless, characterizing application server scalability is something more

complex than measuring the application server performance with different number of

clients and determining the load that overloads the server. A complete

characterization must also supply the causes of this overload, giving to the server

administrator the chance and the information to improve the server scalability by

avoiding its overload. For this reason, this characterization requires of powerful

analysis tools that allow an in-depth analysis of the application server behavior and its

interaction with the other system elements (including distributed clients, a database

server, etc.). These tools must support and consider all the levels involved in the

execution of web applications if they want to provide meaningful performance

information to the administrators because the origin of performance problems can

reside in any of these levels or in their interaction.

A complete scalability characterization must also consider another important

issue: the scalability relative to the resources. The analysis of the application server

behavior will assist with hints to answer the question about how would affect to the

application server scalability the addition of more resources. If the analysis reveals

that some resource is being a bottleneck for the application server performance, this

74 Chapter 4

encourages the addition of new resources of this type in order to improve server

scalability. On the other side, if a resource that is not being a bottleneck for the

application server performance is upgraded, the added resources are wasted because

the scalability is not improved and the causes of server performance degradation

remain unresolved.

The first contribution of this thesis in the “Self-Adaptive Multithreaded Java

Applications” work area is a complete characterization of the scalability of Java

application servers when running secure dynamic web applications divided in two

parts. The first one consists of measuring Tomcat vertical scalability (i.e. adding more

processors) when using SSL determining the impact of adding more processors on

server overload. The second one involves a detailed analysis of the server behavior

using the performance analysis framework presented in Chapter 3, in order to

determine the causes of the server overload when running with different number of

processors.

The conclusions derived from this analysis demonstrate the convenience of

incorporating to the application server (and give hints for its implementation) an

overload control mechanism that is the second contribution of this thesis in the “Self-

Adaptive Multithreaded Java Applications” work area. The overload control

mechanism is based on SSL connections differentiation and admission control. SSL

connections differentiation is accomplished by proposing a possible extension of the

Java Secure Sockets Extension (JSSE) package to distinguish SSL connections

depending on if the connection will reuse an existing SSL connection on the server or

not. This differentiation can be very useful in order to design intelligent overload

control policies on server, given the big difference existing on the computational

demand of new SSL connections versus resumed SSL connections. Based on this SSL

connections differentiation, a session-based adaptive admission control mechanism

for the Tomcat application server is implemented. This mechanism allows the server

to avoid throughput degradation and response time increments occurred on server

saturation. The server differentiates full SSL connections from resumed SSL

connections limiting the acceptation of full SSL connections to the maximum number

acceptable with the available resources without overloading, while accepting all the

resumed SSL connections. Moreover, the admission control mechanism maximizes

the number of sessions completed successfully, allowing to e-commerce sites based

Self-Adaptive Multithreaded Java Applications 75

on SSL to increase the number of transactions completed, thus generating higher

benefit.

4.2 Self-Adaptive Multithreaded Java Applications in HPC
Environments

As commented before, self-adaptive multithreaded Java applications in HPC

environments can be obtained by designing and implementing malleable applications,

that is, applications able to adapt their behavior to the amount of resources offered by

the execution environment by generating only the amount of parallelism that can be

executed with the assigned processors. Next section describes how this capability can

be achieved for JOMP applications used in this thesis as a particular case of

multithreaded Java applications in HPC environments.

4.2.1 Self-Adaptive JOMP Applications

By default, a JOMP application executes with as many threads as indicated in

one of the arguments of the interpreter command line (-Djomp.threads).

Nevertheless, the JOMP application can change its concurrency level (the amount of

parallelism that will be generated in the next parallel region) inside any sequential

region invoking the setNumThreads() method from the JOMP runtime library.

4.3 Self-Adaptive Multithreaded Java Applications Servers in e-
Business Environments

4.3.1 Scalability Characterization of Multithreaded Java Application
Servers in Secure Environments

4.3.1.1 Scalability characterization methodology

The scalability of an application server is defined as the ability to maintain a

site availability, reliability, and performance as the amount of simultaneous web

traffic, or load, hitting the application server increases [78].

Given this definition, the scalability of an application server can be

represented measuring the performance of the application server while the load

increases. With this representation, the load that overloads the server can be detected.

An application server is overloaded when it is unable to maintain the site availability,

76 Chapter 4

reliability, and performance (i.e. the server does not scale). As derived from the

definition, when the server is overloaded, the performance is degraded (lower

throughput and higher response time) and the number of client requests refused is

increased.

At this point, two questions should appear to the reader (and of course, to the

application server administrator). First, the load that overloads the server has been

detected, but why is this load causing the server performance to degrade? In other

words, in which parts of the system (CPU, database, network, etc.) will a request be

spending most of its execution time when the server is overloaded? In order to answer

this question, this thesis proposes to analyze the application server behavior using the

performance analysis framework presented in Chapter 3, which considers all levels

involved in the application server execution, allowing a fine-grain analysis of

dynamic web applications.

Second, the application server scalability with given resources has been

measured, but how would affect to the application server scalability the addition of

more resources? This adds a new dimension to the application servers scalability: the

measurement of the scalability relative to the resources. This scalability can be done

in two different ways: vertical and horizontal.

Vertical scalability (also called scaling up) is achieved by adding capacity

(memory, processors, etc.) to an existing application server and requires few to no

changes to the architecture of the system. Vertical scalability increases the

performance (in theory) and the manageability of the system, but decreases the

reliability and availability (single failure is more likely to lead to system failure). This

thesis considers this kind of scalability relative to the resources.

Horizontal scalability (also called scaling out) is achieved by adding new

application servers to the system, increasing its complexity. Horizontal scalability

increases the reliability, the availability and the performance (depends on load

balancing), but decreases the manageability (there are more elements in the system).

The analysis of the application server behavior will assist with hints to answer

the question about how would affect to the application server scalability the addition

of more resources. If some resource is being a bottleneck for the application server

performance, this encourages the addition of new resources of this type (vertical

scaling), the measurement of the scalability with this new configuration and the

Self-Adaptive Multithreaded Java Applications 77

analysis of the application server behavior with the performance analysis framework

to determine the improvement on the server scalability and the new causes of server

overload.

On the other side, if a resource that is not being a bottleneck for the

application server performance is upgraded, it can be verified with the performance

analysis framework that scalability is not improved and the causes of server

performance degradation remain unresolved. This observation justifies why with

vertical scalability performance is improved only in theory, depending if the added

resource is a bottleneck for server performance or not. This observation also

motivates the analysis of the application server behavior in order to detect the causes

of overload before adding new resources.

4.3.1.2 Scalability characterization of the Tomcat server

This section presents the scalability characterization of Tomcat application

server when running the RUBiS benchmark using SSL. The characterization is

divided in two parts. The first part is an evaluation of the vertical scalability of the

server when running with different number of processors, determining the impact of

adding more processors on server overload (can the server support more clients before

overloading?). The second part consists of a detailed analysis of the server behavior

using the performance analysis framework, in order to determine the causes of the

server overload when running with different number of processors.

4.3.1.2.1 Vertical scalability of the Tomcat server

Figure 4.1 shows the Tomcat scalability when running with different number

of processors, representing the server throughput as a function of the number of

concurrent clients. Notice that for a given number of processors, the server throughput

increases linearly with respect to the input load (the server scales) until a determined

number of clients hit the server. At this point, the throughput achieves its maximum

value. Table 4.1 shows the number of clients that overload the server and the

maximum achieved throughput before saturating when running with one, two and four

processors. Notice that running with more processors allows the server to handle more

clients before overloading, so the maximum achieved throughput is higher.

78 Chapter 4

Figure 4.1. Tomcat scalability with different number of processors

Notice also that the same throughput can be achieved, as shown in Figure 2.3,

with a single processor when SSL is not used. This means that when using secure

connections, the computing capacity provided when adding more processors is spent

on supporting the SSL protocol.

Table 4.1. Number of clients that overload the server and maximum achieved throughput before
overloading

number of processors number of clients throughput (replies/s)

1 250 90

2 500 172

4 950 279

When the number of clients that overload the server has been achieved, the

server throughput degrades to approximately the 30% of the maximum achievable

throughput, as shown in Table 4.2. This table shows the average throughput obtained

when the server is overloaded when running with one, two and four processors.

Notice that, although the throughput obtained has been degraded in all cases when the

server has reached an overloaded state, running with more processors improves the

Self-Adaptive Multithreaded Java Applications 79

throughput (duplicating the number of processors, the throughput almost duplicates

too).

Table 4.2. Average server throughput when it is overloaded

number of processors throughput (replies/s)

1 25

2 50

4 90

4.3.1.2.2 Scalability analysis of the Tomcat server

In order to perform a detailed analysis of the server, four different loads have

been selected: 200, 400, 800 and 1400 clients, each one corresponding to one of the

zones observed in Figure 4.1. These zones group the loads with similar behavior of

the server. The analysis is conducted using the performance analysis framework

described in Chapter 3.

The analysis methodology consists of comparing the server behavior when it

is overloaded (400 clients when running with one processor, 800 clients when running

with two processors and 1400 clients when running with four processors) with when it

is not (200 clients when running with one processor, 400 clients when running with

two processors and 800 clients when running with four processors). A series of

metrics representing the server behavior are calculated, determining which of them

are affected when increasing the number of clients. From these metrics, an in-depth

analysis is performed looking for the causes of their dependence of server load.

The first metric calculated, using the performance analysis framework, is the

average time spent by the server processing a persistent client connection,

distinguishing the time devoted to each phase of the connection (persistent connection

phases have been described in Section 2.3.3) when running with different number of

processors. This information is displayed in Figure 4.2. As shown in this figure,

running with more processors decreases the average time required to process a

connection. Notice that when the server is overloaded, the average time required to

handle a connection increases considerably. Going into detail on the connection

phases, the time spent in the SSL handshake phase of the connection increases from

28 ms to 1389 ms when running with one processor, from 4 ms to 2003 ms when

running with two processors and from 4 ms to 857 ms when running with four

80 Chapter 4

processors, becoming the phase where the server spends the major part of the time

when processing a connection.

0

500

1000

1500

2000

2500

200 400 400 800 800 1400

1 CPU 2 CPU 4 CPU

#clients

tim
e

(m
s)

Avg service time (ms)
Avg request (no service) time (ms)
Avg connection (no request) time (ms)
Avg SSL handshake time (ms)

Figure 4.2. Average time spent by the server processing a persistent client connection

To determine the causes of the large increment of the time spent in the SSL

handshake phase of the connection, the next step consists of calculating the

percentage of connections that perform a resumed SSL handshake (reusing the SSL

Session ID) versus the percentage of connections that perform a full SSL handshake

when running with different number of processors. This information is shown in

Figure 4.3. Notice that when running with one processor and with 200 clients, the

97% of SSL handshakes can reuse the SSL connection, but with 400 clients, only the

27% can reuse it. The rest must negotiate the full SSL handshake, overloading the

server because it cannot supply the computational demand of these full SSL

handshakes. Remember the big difference between the computational demand of a

resumed SSL handshake (2 ms) and a full SSL handshake (175 ms). The same

situation is produced when running with two processors (the percentage of full SSL

handshakes has increased from 0.25% to 68%), and when running with four

processors (from 0.2% to 63%).

Self-Adaptive Multithreaded Java Applications 81

0

20

40

60

80

100

200 400 400 800 800 1400

1 CPU 2 CPU 4 CPU

#clients

pe
rc

en
ta

ge

Full SSL handshake Resumed SSL handshake

Figure 4.3. Incoming SSL connections classification depending on SSL handshake type performed

The analysis performed has determined that when running with any number of

processors the server overloads when most of the incoming client connections must

negotiate a full SSL handshake instead of resuming an existing SSL connection,

requiring a computing capacity that the available processors are unable to supply.

Nevertheless, why does this occur from a given number of clients? In other words,

why do incoming connections negotiate a full SSL handshake instead of a resumed

SSL handshake when attending a given number of clients? Remember that the client

has been configured with a timeout of 10 seconds. This means that if no reply is

received in this time (the server is unable to supply it because it is heavy loaded), this

client is discarded and a new one is initiated. Remember that the initiation of a new

client requires the establishment of a new SSL connection, and therefore the

negotiation of a full SSL handshake.

Therefore, if the server is loaded and it cannot handle the incoming requests

before the client timeouts expire, this provokes the arrival of a large amount of new

client connections that need the negotiation of a full SSL handshake, provoking the

server performance degradation. This asseveration is supported with the information

displayed in Figure 4.4. This figure shows the number of clients timeouts occurred

when running with different number of processors. Notice that from a given number

of clients, the number of clients timeouts increases considerably, because the server is

82 Chapter 4

unable to respond to the clients before their timeouts expires. The comparison of this

figure with Figure 4.1 reveals that this given number of clients matches with the load

that overloads the server.

Figure 4.4. Client timeouts with different number of processors

In order to evaluate the effect on server of the large amount of full SSL

handshakes, the performance analysis framework is used to calculate the state of

HttpProcessors when they are in the SSL handshake phase of the connection, which is

shown in Figure 4.5. The HttpProcessors can be running (Run state), blocked waiting

for the finalization of an input/output operation (Blocked I/O state), blocked waiting

for the synchronization with other HttpProcessors in a monitor (Blocked Synch state)

or waiting for a free processor to become available to execute (Ready state). When the

server is not overloaded, HttpProcessors spend most of their time in Run state. But

when the server is running with one processor and overloads (400 clients)

HttpProcessors spend the 47% of their time in Ready state. This fact confirms that the

server cannot handle all the incoming full SSL handshakes with only one processor.

It is expected that when the server is overloaded and running with two or four

processors, the HttpProcessors spend most part of their time of Ready state (waiting

for a free processor to execute), in the same way as when running with one processor.

Self-Adaptive Multithreaded Java Applications 83

But Figure 4.5 shows that, although the time spent on Ready state has increased when

the server is running with two processors and overloads, the HttpProcessors spend the

70% of their time in Blocked Synch state (blocked waiting for the synchronization

with other HttpProcessors in a monitor). This kind of contention can be produced due

to the saturation of the available processors on multiprocessor systems, as occurred in

this case. When running with four processors, the time spent in Ready state and

Blocked Synch state is also increased.

0

500

1000

1500

2000

2500

200 400 400 800 800 1400

1 CPU 2 CPU 4 CPU

#clients

tim
e

(m
s)

Run Blocked I/O Blocked Synch Ready

Figure 4.5. State of HttpProcessors when they are in the ‘SSL handshake’ phase of a connection

Notice that, although the cause of the server overload is the same when

running with one, two or four processors (there are not processors enough to support

demanded computation), this overload is manifested in different forms (waiting for a

processor to become available in order to execute or in a contention situation

produced by the saturation of processors).

The analysis performed allows concluding that the processor is a bottleneck

for Tomcat performance and scalability when running dynamic web applications in a

secure environment. The analysis has demonstrated that running with more processors

makes the server able to handle more clients before overloading, and even when the

server has reached an overloaded state, better throughput can be obtained if running

with more processors.

84 Chapter 4

The results of the analysis performed in this section demonstrate the

convenience of incorporating to the Tomcat server some kind of overload control

mechanism to avoid the throughput degradation produced due to the massive arrival

of new SSL connections. The server could differentiate new SSL connections from

resumed SSL connections limiting the acceptation of new SSL connections to the

maximum number acceptable without overloading, while accepting all the resumed

SSL connections to maximize the number of client sessions successfully completed.

4.3.2 Session-Based Adaptive Overload Control for Multithreaded Java
Application Servers in Secure Environments

4.3.2.1 SSL connections differentiation

As mentioned in Section 2.3.5.2, there is no way in JSSE packages to consult

if an incoming SSL connection provides a reusable SSL session ID until the

handshake is fully completed. This thesis proposes the extension of the JSSE package

to allow applications to differentiate new SSL connections from resumed SSL

connections prior the handshaking has started.

This new feature can be useful in many scenarios. For example, a connection

scheduling policy based on prioritizing the resumed SSL connections (that is, the

short connections) will result in a reduction of the average response time, as described

in previous works with static web content using the SRPT scheduling [46][80].

Moreover, prioritizing the resumed SSL connections will increase the probability for a

client to complete a session, maximizing the number of sessions completed

successfully. The importance of this metric in e-commerce environments has been

already commented. Remember that the higher the number of sessions completed the

higher the amount of revenue that is likely to be generated. In addition, a server could

limit the number of new SSL connections that it accepts, in order to avoid throughput

degradation produced if server overloads.

In order to evaluate the advantages of being able to differentiate new SSL

connections from resumed SSL connections and the convenience of adding this

functionality to the standard JSSE package, this thesis includes the implementation of

an experimental mechanism that allows this differentiation prior to the handshake

negotiation. Performed measurements denote that this mechanism does not suppose

significant additional cost. The mechanism works at system level and it is based on

Self-Adaptive Multithreaded Java Applications 85

examining the contents of the first TCP segment received on the server after the

connection establishment.

After a new connection is established between the server and a client, the SSL

protocol starts a handshake negotiation. The protocol begins with the client sending a

SSL ClientHello message (see the RFC 2246 for more details) to the server. This

message can include a SSL session ID from a previous connection if the SSL session

wants to be reused. This message is sent in the first TCP segment that the client sends

to the server. The implemented mechanism checks the value of this SSL message field

to decide if the connection is a resumed SSL connection or a new one instead.

The mechanism operation begins when the Tomcat server accepts a new

incoming connection, and a socket structure is created to represent the connection in

the operating system as well as in the JVM. After establishing the connection but

prior to the handshake negotiation, the Tomcat server requests to the mechanism the

classification of this SSL connection, using a JNI native library that is loaded into the

JVM process. The library translates the Java request into a new native system call

implemented in the Linux kernel using a Linux kernel module.

The implementation of the system call calculates a hash function from the

parameters provided by the Tomcat server (local and remote IP address and TCP port)

which produces a socket hash code that makes possible to find the socket inside of a

connection established socket hash table. When the system struct sock that

represents the socket is located and in consequence all the received TCP segments for

that socket after the connection establishment, the first one of the TCP segments is

interpreted as a SSL ClientHello message. If this message contains a SSL session ID

with value 0, it can be concluded that the connection tries to establish a new SSL

session. If a non-zero SSL session ID is found instead, the connection tries to resume

a previous SSL session. The value of this SSL message field is returned by the system

call to the JNI native library that, in turn, returns it to the Tomcat server. With this

result, the server can decide, for instance, to apply an admission control algorithm in

order to decide if the connection should be accepted or rejected. A brief diagram of

the mechanism operation described above can be found in Figure 4.6.

86 Chapter 4

Figure 4.6. SSL connections differentiation mechanism

4.3.2.2 SSL admission control

In order to prevent server overload in secure environments, this thesis

proposes to incorporate to the Tomcat server a session-oriented adaptive mechanism

that performs admission control based on SSL connections differentiation. This

mechanism has been developed with two objectives. First, to prioritize the acceptation

of client connections that resume an existing SSL session, in order to maximize the

number of sessions successfully completed. Second, to limit the massive arrival of

new SSL connections to the maximum number acceptable by the server before

overloading, depending on the available resources.

To prioritize the resumed SSL connections, the admission control mechanism

accepts all the connections that supply a valid SSL session ID. The required

verification to differentiate resumed SSL connections from new SSL connections is

performed with the mechanism described in Section 4.3.2.1.

To avoid the server throughput degradation and maintain acceptable response

times, the admission control mechanism must to avoid the server overload. By

keeping the maximum amount of load just below the system capacity, overload is

prevented and peak throughput is achieved. For servers running secure web

applications, the system capacity depends on the available processors, as it has been

demonstrated in Section 4.3.1, due to the large computational demand of this kind of

applications. Therefore, if the server can use more processors, it can accept more SSL

connections without overloading.

Self-Adaptive Multithreaded Java Applications 87

The admission control mechanism calculates periodically, introducing an

adaptive behavior, the maximum number of new SSL connections that can be

accepted without overloading the server. This maximum depends on the available

processors for the server and the computational demand required by the accepted

resumed SSL connections. The calculation of this demand is based on the number of

accepted resumed SSL connections and the typical computational demand of one of

these connections.

After calculating the computational demand required by the accepted resumed

SSL connections and with information relative to the available processors for the

server, the admission control mechanism can calculate the remaining computational

capacity for attending new SSL connections. The admission control mechanism will

only accept the maximum number of new SSL connections that do not overload the

server (they can be served with the available computational capacity). The rest of new

SSL connections arriving at the server will be refused.

Notice that if the number of resumed SSL connections increases, the server

has to decrease the number of new SSL connections it accepts, in order to avoid

server overload with the available processors and vice versa, if the number of resumed

SSL connections decreases, the server can increase the number of new SSL

connections that it accepts.

Notice that this constitutes an interesting starting point to develop autonomic

computing strategies on the server in a bi-directional fashion. First, the server can

restrict the number of new SSL connections it accepts to adapt its behavior to the

available resources (i.e. processors) in order to prevent server overload. Second, the

server can inform about its resource requirements to a global manager (which will

distribute all the available resources among the existing servers following a given

policy) depending on the rate of incoming connections (new SSL connections and

resumed SSL connections) requesting for service.

4.3.2.3 Evaluation

This section presents the evaluation results when comparing the performance

of the Tomcat server with the overload control mechanism with respect to the original

Tomcat. These results are obtained using a slightly different methodology with

respect to Section 4.3.1. This section calculated server scalability by measuring the

88 Chapter 4

server throughput as a function of the number of concurrent clients. The number of

concurrent clients that a server can handle without overloading is an important

reference in current web sites, because if a site is able to support more concurrent

clients, more benefit is likely to be generated for the site.

Figure 4.7. Equivalence between new clients per second and concurrent clients

However, the scalability characterization has revealed that when the server

overloads, a small increment in the number of concurrent clients produces great

throughput degradation. This effect can be explained with the information in Figure

4.7. This figure shows the number of new clients per second initiating a session with

the server as a function on the number of concurrent clients. Notice that, when the

number of concurrent clients that overloads the server has been achieved, the number

of new clients per second initiating a session with the server increases exponentially.

As these new clients must negotiate a full SSL handshake, this causes the server

throughput degradation.

In order to avoid this behavior, and make the overload process of the server

more progressive, the performance measurements of the server for the experiments in

this section are relative to the number of new clients per second initiating a session

with the server instead of being relative to the number of concurrent clients.

Self-Adaptive Multithreaded Java Applications 89

Measuring in this way makes easier to analyze the server behavior when overloads

and the proposal and implementation of overload control mechanisms.

4.3.2.3.1 Original Tomcat server

Figure 4.8 shows the Tomcat throughput as a function of the number of new

clients per second initiating a session with the server when running with different

number of processors. Notice that for a given number of processors, the server

throughput increases linearly with respect to the input load (the server scales) until a

determined number of clients hit the server. At this point, the throughput achieves its

maximum value. Notice that running with more processors allows the server to handle

more clients before overloading, so the maximum achieved throughput is higher.

When the number of clients that overload the server has been achieved, the server

throughput degrades until approximately the 20% of the maximum achievable

throughput while the number of clients increases.

Figure 4.8. Original Tomcat throughput with different number of processors

As well as degrading the server throughput, the server overload also affects to

the server response time, as shown in Figure 4.8. This figure shows the server average

response time as a function of the number of new clients per second initiating a

90 Chapter 4

session with the server when running with different number of processors. Notice that

when the server is overloaded the response time increases (especially when running

with one processor) while the number of clients increases.

Figure 4.9. Original Tomcat response time with different number of processors

Server overload has another undesirable effect, especially in e-commerce

environments where session completion is a key factor. As shown in Figure 4.10,

which shows the number of sessions completed successfully when running with

different number of processors, only a few sessions can finalize completely when the

server is overloaded. Consider the large revenue lost that this fact can provoke for

example in an online store, where only a few clients can finalize the acquisition of a

product.

The cause of this large performance degradation on server overload has been

analyzed in Section 4.3.1.2.2. This section concludes that the server throughput

degrades when most of the incoming client connections must negotiate a full SSL

handshake instead of resuming an existing SSL connection, requiring a computing

capacity that the available processors are unable to supply. This circumstance is

produced when the server is overloaded and it cannot handle the incoming requests

Self-Adaptive Multithreaded Java Applications 91

before the client timeouts expire. In this case, clients with expired timeouts are

discarded and new ones are initiated, provoking the arrival of a large amount of new

client connections that negotiate of a full SSL handshake, provoking server

performance degradation.

Figure 4.10. Completed sessions by original Tomcat with different number of processors

Considering the described behavior, it makes sense to apply an admission

control mechanism in order to improve server performance in the following way.

First, to filter the massive arrival of client connections that need to negotiate a full

SSL handshake that will overload the server, avoiding the server throughput

degradation and maintaining a good quality of service (good response time) for

already connected clients. Second, to prioritize the acceptation of client connections

that resume an existing SSL session, in order to maximize the number of sessions

successfully completed.

4.3.2.3.2 Self-adaptive Tomcat server

Figure 4.11 shows the Tomcat throughput as a function of the number of new

clients per second initiating a session with the server when running with different

number of processors. Notice that for a given number of processors, the server

92 Chapter 4

throughput increases linearly with respect to the input load (the server scales) until a

determined number of clients hit the server. At this point, the throughput achieves its

maximum value. Until this point, the server with admission control behaves in the

same way than the original server. However, when the number of clients that would

overload the server has been achieved, the admission control mechanism can avoid

the throughput degradation, maintaining it in the maximum achievable throughput, as

shown in Figure 4.11. Notice that running with more processors allows the server to

handle more clients, so the maximum achieved throughput is higher.

Figure 4.11. Tomcat with admission control throughput with different number of processors

The admission control mechanism on Tomcat allows also maintaining the

response time in levels that guarantee a good quality of service to the clients, even

when the number of clients that would overload the server has been achieved, as

shown in Figure 4.12. This figure shows the server average response time as a

function of the number of new clients per second initiating a session with the server

when running with different number of processors.

Finally, the admission control mechanism has also a beneficial effect for

session-based clients. As shown in Figure 4.13, which shows the number of sessions

finalized successfully when running with different number of processors, the number

Self-Adaptive Multithreaded Java Applications 93

of sessions that can finalize completely does not decrease, even when the number of

clients that would overload the server has been achieved.

Figure 4.12. Tomcat with admission control response time with different number of processors

Figure 4.13. Sessions completed by Tomcat with admission control with different number of processors

94 Chapter 4

4.4 Conclusions

The “Self-Adaptive Multithreaded Java Applications” work area described in

this chapter, demonstrate the benefit of implementing self-adaptive multithreaded

Java applications in order to achieve good performance as in HPC environments as in

e-business environments. Self-adaptive applications are those applications that can

adapt their behavior to the amount of resources allocated to them.

This chapter has presented two contributions towards achieving self-adaptive

applications. The first contribution is a complete characterization of the scalability of

Java application servers when executing secure dynamic web applications. This

characterization is divided in two parts:

The first part has consisted of measuring Tomcat vertical scalability (i.e.

adding more processors) when using SSL and analyzing the effect of this addition on

server scalability. The results have confirmed that running with more processors

makes the server able to handle more clients before overloading and even when the

server has reached an overloaded state, better throughput can be obtained if running

with more processors. The second part has involved an analysis of the causes of

server overload when running with different number of processors using the

performance analysis framework proposed in Chapter 3 of this thesis. The analysis

has revealed that the processor is a bottleneck for Tomcat performance on secure

environments (the massive arrival of new SSL connections demands a computational

power that the system is unable to supply and the performance is degraded) and could

make sense to upgrade the system adding more processors to improve the server

scalability. The analysis results also have demonstrated the convenience of

incorporating to the Tomcat server some kind of overload control mechanism to avoid

the throughput degradation produced due to the massive arrival of new SSL

connections that the analysis has detected.

Based on the conclusions extracted from this analysis, the second contribution

is the implementation of a session-based adaptive overload control mechanism based

on SSL connections differentiation and admission control. SSL connections

differentiation has been accomplished using a possible extension of the JSSE package

in order to allow distinguishing resumed SSL connections (that reuse an existing SSL

session on server) from new SSL connections. This feature has been used to

implement a session-based adaptive admission control mechanism that has been

Self-Adaptive Multithreaded Java Applications 95

incorporated to the Tomcat server. This admission control mechanism differentiates

new SSL connections from resumed SSL connections limiting the acceptation of new

SSL connections to the maximum number acceptable with the available resources

without overloading the server, while accepting all the resumed SSL connections in

order to maximize the number of sessions completed successfully, allowing to e-

commerce sites based on SSL to increase the number of transactions completed.

The experimental results demonstrate that the proposed mechanism prevents

the overload of Java application servers in secure environments. It maintains response

time in levels that guarantee good QoS and avoids completely throughput degradation

(throughput degrades until approximately the 20% of the maximum achievable

throughput when server overloads), while maximizes the number of sessions

completed successfully (which is a very important metric on e-commerce

environments). These results confirm that security must be considered as an important

issue that can heavily affect the scalability and performance of Java application

servers.

However, although the admission control mechanisms maintain the QoS of

admitted requests even during overloads, a significant fraction of the requests may be

turned away during extreme overloads. In such a scenario, an increase in the effective

application server capacity is necessary to reduce the request drop rate. This can be

accomplished by allowing the cooperation of the application servers with the

execution environment in the resource management. In this way, when the application

server is overloaded, it can request additional resources to the execution environment,

which decides the resources distribution among application servers in the system

using policies that can include business indicators. At this point, the application server

can use the admission control mechanism developed in this thesis to adapt its

incoming workload to the assigned capacity. The description of this cooperation for

resource provisioning is presented in Chapter 5.

The research performed in this work area has resulted in the following

publications, including two international conferences and one national conference:

� J. Guitart, D. Carrera, V. Beltran, J. Torres and E. Ayguadé. Session-Based
Adaptive Overload Control for Secure Dynamic Web Applications. 34th
International Conference on Supercomputing (ICPP’05), pp. 341-349, Oslo,
Norway. June 14-17, 2005.

96 Chapter 4

� J. Guitart, V. Beltran, D. Carrera, J. Torres and E. Ayguadé. Characterizing
Secure Dynamic Web Applications Scalability. 19th International Parallel and
Distributed Symposium (IPDPS’05), Denver, Colorado, USA. April 4-8, 2005.

� V. Beltran, J. Guitart, D. Carrera, J. Torres, E. Ayguadé and J. Labarta.

Performance Impact of Using SSL on Dynamic Web Applications. XV
Jornadas de Paralelismo, pp. 471-476, Almeria, Spain. September 15-17,
2004.

Resource Provisioning for Multithreaded Java Applications 97

CHAPTER 5
RESOURCE PROVISIONING

FOR MULTITHREADED JAVA APPLICATIONS

5.1 Introduction

In the way towards achieving good performance when running multithreaded

Java applications either in HPC environments or in e-business environments, this

thesis has demonstrated in Chapter 4 that having self-adaptive multithreaded Java

applications can be very useful to achieve this objective.

However, the maximum effectiveness for preventing applications performance

degradation in parallel environments is obtained when fitting the self-adaptation of

the applications to the available resources within a global strategy in which the

execution environment and the applications cooperate to manage the resources

efficiently.

For example, besides of having self-adaptive Java applications in HPC

environments, performance degradation of multithreaded Java applications in these

environments can only be avoided if overcoming the following limitations. First, the

Java runtime environment does not allow applications to have control on the number

of kernel threads where Java threads map and to suggest about the scheduling of these

kernel threads. Second, the Java runtime environment does not inform the

applications about the dynamic status of the underlying system so that the self-

adaptive applications cannot adapt their execution to these characteristics. Finally, the

large number of migrations of the processes allocated to an application occurred, due

to scheduling polices that do not consider multithreaded Java applications as an

allocation unit.

The same applies to Java application servers in e-business environments. In

this case, although the admission control mechanisms used to implement self-adaptive

applications in this scenario can maintain the quality of service of admitted requests

even during overloads, a significant fraction of the requests may be turned away

98 Chapter 5

during extreme overloads. In such a scenario, an increase in the effective server

capacity is necessary to reduce the request drop rate. In fact, although several

techniques have been proposed to face with overload, such as admission control,

request scheduling, service differentiation, service degradation or resource

management, last work in this area has demonstrated that the most effective way to

handle overload considers a combination of these techniques [140].

For these reasons, this thesis contributes in the “Resource Provisioning for

Multithreaded Java Applications” work area with the proposal of mechanisms to

allow the cooperation between the applications and the execution environment in

order to improve the performance by managing resources efficiently in the framework

of Java applications, including the modifications that are required in the Java

execution environment to allow this cooperation. The cooperation is implemented by

establishing a bi-directional communication path between the applications and the

underlying system. On one side, the applications request to the execution environment

the number of processors they need. On the other side, the execution environment can

be requested at any time by the applications to inform them about their processor

assignments. With this information, the applications, which are self-adaptive, can

adapt their behavior to the amount of resources allocated to them.

In order to accomplish this resource provisioning strategy in HPC

environments, this thesis shows that the services supplied by the Java native

underlying threads library, in particular the services to inform the library about the

concurrency level of the application, are not enough to support the cooperation

between the applications and the execution environment, because this uni-directional

communication does not allow the application to adapt its execution to the available

resources. In order to address the problem, the thesis proposes to execute the self-

adaptive multithreaded Java applications on top of JNE (Java Nanos Environment

built around the Nano-threads environment [101]). JNE is a research platform that

provides mechanisms to establish a bi-directional communication path between the

Java applications and the execution environment, thus allowing applications to

collaborate in the thread management.

In e-business environments, the resource provisioning strategy is

accomplished using an overload control approach for self-adaptive Java application

servers running secure e-commerce applications that brings together admission

Resource Provisioning for Multithreaded Java Applications 99

control based on SSL connections differentiation and dynamic provisioning of

platform resources in order to adapt to changing workloads avoiding the QoS

degradation. Dynamic provisioning enables additional resources to be allocated to an

application on demand to handle workload increases, while the admission control

mechanisms maintain the QoS of admitted requests by turning away excess requests

and preferentially serving preferred clients (to maximize the generated revenue) while

additional resources are being provisioned.

The overload control approach is based on a global resource manager

responsible of distributing periodically the available resources (i.e. processors) among

web applications in a hosting platform applying a given policy (which can consider e-

business indicators). This resource manager and the applications cooperate to manage

the resources using a bi-directional communication. On one side, the applications

request to the resource manager the number of processors needed to handle their

incoming load avoiding the QoS degradation. On the other side, the resource manager

can be requested at any time by the applications to inform them about their processor

assignments. With this information, the applications, which are self-adaptive, apply

the admission control mechanism described in Chapter 4 to adapt their incoming

workload to the assigned capacity by limiting the number of admitted requests

accepting only those that can be served with the allocated processors without

degrading their QoS.

5.2 Resource Provisioning for Multithreaded Java Applications in
HPC Environments

5.2.1 Motivating Example

In order to demonstrate the performance degradation of multithreaded Java

applications when running in multiprogrammed HPC environments, this section

presents a simple experiment based on LUAppl, a LU reduction kernel over a two-

dimensional matrix of double-precision elements taken from [111] that uses a matrix

of 1000x1000 elements. The experiment consists of a set of executions of LUAppl

running with different number of Java threads and active kernel threads (with a

processor assigned to them). Table 5.1 shows the average execution time on a SGI

Origin 2000 architecture [129] with MIPS R10000 processors at 250 MHz running

SGI Irix JVM version Sun Java Classic 1.2.2. The first and second rows show that

100 Chapter 5

when the number of Java threads matches the number of active kernel threads, the

application benefits from running with more threads. However, if the number of

active kernel threads provided to support the execution does not match, as shown in

the third row, the performance is degraded. In this case the execution environment

(mainly the resource manager in the kernel) is providing only three active kernel

threads, probably because either there are no more processors available to satisfy the

application requirements, or the execution environment is unable to determine the

concurrency level of the application. In the first case, this situation results in an

execution time worse than the one achieved if the application would have known that

only three processors were available and would have adapted its behavior to simply

generate three Java threads (like in the first row). In the second case, this situation

results in an execution time worse than the one achieved if the execution environment

would have known the concurrency level of the application and would have provided

four active kernel threads (like in the second row).

Table 5.1. LUAppl performance degradation

Java threads Active kernel threads Execution time (in seconds)

3 3 39.7

4 4 34.3

4 3 44.1

This thesis considers two different ways of approaching the problem in the

Java context. The first one simply uses one of the services supplied by the Java native

underlying threads library to inform the library about the concurrency level of the

application. In the second one, Java applications are executed on top of JNE (Java

Nanos Environment built around the Nano-threads environment [101]). JNE provides

the mechanisms to establish a bi-directional communication path between the

application and the underlying system.

5.2.2 Concurrency Level

The experimental environment is based on the SGI Irix JVM, which like many

others (Linux, Solaris, Alpha, IBM, etc.) implements the native threads model using

the Pthreads [121] library. Thus, one Java thread maps directly into one pthread, and

Resource Provisioning for Multithreaded Java Applications 101

the Pthreads library is responsible for scheduling these pthreads over the kernel

threads offered by the operating system.

Version Sun Java Classic 1.2.2 of SGI Irix JVM does not inform the

underlying threads layer about the desired concurrency level of the application. By

default, the threads library adjusts the level of concurrency itself as the application

runs using metrics that include the number of user context switches and CPU

bandwidth. In order to provide the library with a more accurate hint about the

concurrency level of the application, the programmer could invoke, at appropriate

points in the application, the pthread_setconcurrency(level) service of the

Pthreads library. The argument level is used by Pthreads to compute the ideal

number of kernel threads required to schedule the available Java threads.

Figure 5.1. Paraver window showing LUAppl behavior without setting the concurrency level

Previous experimentation has revealed that informing to the threads library

about the concurrency level of the application may have an important incidence on

performance. The experimented improvements range from 23% to 58% when

executing applications that create threads with a short lifetime. Threads are so short

that the threads library is unable to estimate the concurrency level of the application

and provide it with the appropriate number of kernel threads. This effect can be

appreciated in Figure 5.1, which shows a Paraver window displaying the execution of

a LUAppl that creates four Java threads but does not set the concurrency level. Notice

that, although four threads are created, only two threads provide parallelism. When a

hint of the concurrency level is provided by the application, the underlying threads

102 Chapter 5

library is capable of immediately providing the necessary kernel threads as shown in

Figure 5.2.

Figure 5.2. Paraver window showing LUAppl behavior setting the concurrency level

For those parallel Java applications that create threads with a long lifetime,

such as the Java Grande benchmarks used in this thesis, informing about the

concurrency level has less impact on performance. For this kind of applications, the

threads library has time enough to estimate and adjust the number of kernel threads

required during the thread lifetime. However, the time required to estimate the

concurrency level of the application is not negligible and may approach the order of

hundreds of milliseconds (even a few seconds depending of the application).

Therefore, providing this hint is beneficial in any case.

In summary, this approach only solves one of the problems when running

multithreaded Java applications in multiprogrammed HPC environments.

Applications can inform to the execution environment about their processor

requirements. However, other problems remain open. For instance, this approach does

not allow applications to decide about the scheduling of kernel threads. Besides, the

execution environment cannot inform each application about the number of

processors actually assigned to it. As a consequence, applications cannot react and

adapt their behavior to the decisions taken by the underlying system. If informed,

applications would be able to restrict themselves in terms of parallelism generation,

thus avoiding unnecessary overheads, balancing executions and exploiting available

resources.

Resource Provisioning for Multithreaded Java Applications 103

Newer versions of the SGI Irix JVM (from Sun Java 1.3) incorporate this

approach and set the concurrency level to the maximum number of processors

available in the system, obtaining performance gains similar to the ones obtained with

the concurrency level approach (having also the same problems).

5.2.3 Java Nanos Environment (JNE)

The Java Nanos Environment (JNE) is a research platform that provides

additional mechanisms to improve the communication between multithreaded Java

applications and the underlying execution environment, thus allowing applications to

collaborate in the thread management. JNE is able to solve many of the drawbacks

appeared when running multithreaded Java applications in multiprogrammed HPC

environments. First, JNE allows to the applications to have control on how Java

threads maps onto kernel threads, specifying the number of processors on which the

application wants to run at any moment. Second, JNE allows to the applications to

decide about the scheduling of kernel threads, specifying one of the policies supplied

by JNE. Third, JNE allows to the applications to inform to the execution environment

about their processor requirements, as well as, JNE allows to the execution

environment to answer to the applications with the number of processors assigned to

them at any moment. Finally, JNE reduces the number of migrations of the processes

allocated to an application, by using scheduling polices that consider multithreaded

Java applications as an allocation unit.

5.2.3.1 Adaptive Java applications

The first issue considered in JNE is the capability of Java applications to adapt

their behavior to the amount of resources offered by the execution environment

(malleability [53]). The process is dynamic and implies three important aspects:

� First, the application should be able to request and release processors at any

time. This requires from the execution environment an interface to set the

number of processors the application wants to run.

� Second, the amount of parallelism that the application will generate (at a given

moment) is limited by both the number of processors assigned to the

application and by the amount of work pending to be executed. The execution

104 Chapter 5

environment has to provide an interface to allow the application to check the

number of processors available just before spawning parallelism.

� And third, the application should be able to react to processor preemptions and

allocations resulting from the operating system allocation decisions. This

requires mechanisms that allow the application, once informed, to recover

from possible processor preemptions.

5.2.3.2 Application/JNE interface

Each Java application executing on the JNE shares information with the

execution environment. The information includes the number of processors on which

the application wants to run at any moment and the number of processors currently

allocated by the execution environment to the application.

The interface between the applications and the JNE is implemented with a

Java class called jne, which contains the following two Java methods for calling,

through the Java Native Interface (JNI), the JNE services for requesting and

consulting processors:

� cpus_current(): consult the current number of processors allocated to the

invoking application.

� cpus_request(num): request to the execution environment num processors.

5.2.3.3 JNE scheduler

The JNE scheduler is based on the Nanos RM mentioned in Section 6.4. It is

responsible for the distribution of processors to applications. At any time, there is a

current active scheduling policy that is applied to all applications running in the

system. The scheduler observes application demands, estimates the load of the

machine, and finally distributes processors accordingly. The scheduler also decides

which processors are assigned to each application taking into account data affinity

issues (i.e. helping the application to exploit data locality whenever possible).

JNE offers a set of scheduling policies, including batch, round robin,

equipartition and others than combine space- and time-sharing. The evaluation in this

thesis uses Dynamic Space Sharing (DSS) [119][120]. In DSS, each application

receives a number of processors that is proportional to its request and inversely

Resource Provisioning for Multithreaded Java Applications 105

proportional to the total workload of the system, expressed as the sum of processor

requests of all jobs in the system.

The JNE scheduler is implemented as a user-level process that wakes up

periodically at a fixed time quantum, examines the current requests of the applications

and distributes processors, applying a scheduling policy. With this configuration,

direct modification of the native kernel is not required to show the usefulness of the

proposed environment.

5.2.3.4 Self-adaptive JOMP applications

This thesis uses JOMP applications as the benchmark to evaluate the proposed

mechanisms, as a particular case of multithreaded Java applications in HPC

environments. In order to obtain self-adaptive JOMP applications, the implementation

of the JOMP compiler and supporting runtime library has been modified to implement

the communication between the application and JNE.

The JOMP runtime library has been modified so that, when an application

starts, it requests as many processors for this application as indicated in one of the

arguments of the interpreter command line (-Djomp.threads). This request is made

using the cpus_request() method available in the JNE interface.

After that, every time the application has to spawn parallelism (i.e. at the

beginning of each parallel region) the compiler injects a call to cpus_current()

method from the JNE interface to check the number of processors currently allocated

to the application. With this information, the application generates work for as many

threads as processors available to run. This process can be appreciated in Figure 5.3.b,

which shows the code generated by the JOMP compiler for the simple example shown

in Figure 5.3.a highlighting the utilization of the JNE interface services.

The user can change the concurrency level of the application (to be used in the

next parallel region) inside any sequential region invoking the setNumThreads()

method from the JOMP runtime library. In this case, in order to inform the execution

environment about the new processor requirements of the application, the JOMP

compiler will replace this invocation with one to the cpus_request() method from

the JNE interface.

106 Chapter 5

public class Hello {
 public static void main (String argv[]) {
 int myid;
 //omp parallel private (myid)
 {
 myid = OMP.getThreadNum();
 System.out.println(“Hello from” + myid);
 }
 }
}

(a) original code

public class Hello {
 public static void main (String argv[]) {
 int myid;
 // OMP PARALLEL BLOCK BEGINS
 jomp.runtime.OMP.setNumThreads(jne.cpus_current());
 {
 __omp_Class0 __omp_Object0 = new __omp_Class0();
 __omp_Object0.argv = argv;
 try {
 jomp.runtime.OMP.doParallel(__omp_Object0);
 } catch(Throwable __omp_exception) {
 jomp.runtime.OMP.errorMessage();
 }
 argv = __omp_Object0.argv;
 }
 // OMP PARALLEL BLOCK ENDS
 }
}

// OMP PARALLEL REGION INNER CLASS DEFINITION BEGINS
private static class __omp_Class0 extends jomp.runtime.BusyTask {
 String [] argv;
 public void go(int __omp_me) throws Throwable {
 int myid;
 // OMP USER CODE BEGINS
 {
 myid = OMP.getThreadNum();
 System.out.println("Hello from" + myid);
 }
 // OMP USER CODE ENDS
 }
}
// OMP PARALLEL REGION INNER CLASS DEFINITION ENDS

(b) transformed code

Figure 5.3. Example showing the use of the JNE interface for JOMP applications

5.2.3.5 Nano-threads library (NthLib)

The Nano-threads Library [101] (NthLib) is a user level threads package

specially designed for supporting parallel applications. The role of NthLib is two fold.

On one hand, NthLib provides the user level execution environment in which

applications execute. On the other hand, NthLib cooperates with the execution

environment by interchanging significant fine grain information on accurate machine

state and resource utilization, throughout the execution of the parallel application.

Resource Provisioning for Multithreaded Java Applications 107

NthLib provides the following services:

� Thread management services: nth_create (create nano-thread), nth_exit

(finalize nano-thread), nth_wait (block nano-thread) and nth_yield (yield

virtual processor to another nano-thread).

� Generic queue management services: nth_queue_init (initialize queue),

nth_enqueue/nth_dequeue (enqueue/dequeue nano-thread on/from queue).

� Ready queue management services: nth_to_rq (enqueue nano-thread on

global ready queue) and nth_to_lrq (enqueue nano-thread on local ready

queue).

� Mutual exclusion services: spin_init (initialize spin), spin_lock (lock spin)

and spin_unlock (unlock spin).

5.2.3.6 Implementation of JNE

As commented before, the JVM implementation of SGI Irix implements the

native threads model using the Pthreads library (Figure 5.4.a). In order to implement

the mechanisms described in Section 5.2.3, the Pthreads library has been replaced

with the NthLib library. This replacement technique makes JNE portable to all

platforms where NthLib is available. In order to avoid modifications of the JVM, the

Pthreads library interface is maintained but the library methods have been rewritten

using the services provided by NthLib (Figure 5.4.b).

��������

�

��	�
���

��
��

��� �

��������

��	�
����

���
����
�

��	���

��
��

��� �

(a) (b)
Figure 5.4. (a) Java Irix Environment

(b) Java Nanos Environment

108 Chapter 5

5.2.3.6.1 NthLib implementation basics

Each virtual processor (i.e. kernel thread) has an idle thread that runs when

there is not useful work for execute. This idle thread is responsible of looking for new

work to execute, by accessing to the local ready queue of this virtual processor, and if

no work is found, accessing to global ready queue. This idle thread also executes

periodically a function for dequeuing from the queues of alarms all the elapsed alarms

(see pthread_cond_timedwait function implementation). Finally, the idle threads

also collaborate with the JNE scheduler for managing the processor preemptions.

NthLib services are implemented using the functions provided by the Quick

Threads package [92].

5.2.3.6.2 Pthread creation and destruction

� int pthread_create (pthread_t *thread, const pthread_attr_t *attr,

 void *(*start)(void *), void *arg)

This function creates a new pthread. As one pthread maps on one nano-thread,

this function creates one nano-thread using the nth_create service of NthLib. The

function initializes all the information from this pthread (state, identifier, signal

queue, signal mask, pthread keys, attributes, etc). All this pthread private data is

stored in the user data area of the nano-thread associated with this pthread. Finally,

this function adds the nano-thread to the global ready queue using the nth_to_rq

service of NthLib.

� void pthread_exit (void *retval)

This function destroys the invoking pthread using the nth_exit service of

NthLib.

5.2.3.6.3 Pthread mutex implementation

Each mutex has associated a counter, a spin lock and a queue where nano-

threads block waiting for accessing this mutex. The spin lock is operated using the

mutual exclusion services provided by NthLib and the queue is operated with the

generic queue management services provided by NthLib.

� int pthread_mutex_lock (pthread_mutex_t *mutex)

The nano-thread executing this function acquires the spin lock and checks the

counter associated to the mutex. If the counter is greater than zero, the nano-thread

Resource Provisioning for Multithreaded Java Applications 109

unlocks the spin, adds itself to the queue of this mutex and then blocks executing the

nth_wait service of NthLib. The nano-thread remains blocked in this function until a

pthread_mutex_unlock is performed on to this mutex. When this occurs, the nano-

thread continues its execution by returning from the nth_wait function, and repeats

the previous process until the counter associated to the mutex is zero. In this case, the

nano-thread increments by one the counter, unlocks the spin and returns.

� int pthread_mutex_trylock (pthread_mutex_t *mutex)

The nano-thread executing this function acquires the spin lock and checks the

counter associated to the mutex. If the counter is greater than zero, the nano-thread

unlocks the spin, and returns indicating that the mutex is busy. If the counter

associated to the mutex is zero, the nano-thread increments by one the counter,

unlocks the spin and returns.

� int pthread_mutex_unlock (pthread_mutex_t *mutex)

The nano-thread executing this function acquires the spin lock, decrements

counter associated to the mutex by one and then checks if it is zero. If this occurs, it

dequeues the first nano-thread waiting in the queue of this mutex and adds it to the

global ready queue using the nth_to_rq service of NthLib.

5.2.3.6.4 Pthread conditional variables implementation

Each conditional variable has a queue where nano-threads block waiting for a

notification in the conditional variable. This queue is operated with the generic queue

management services provided by NthLib.

� int pthread_cond_signal (pthread_cond_t *cond)

This function dequeues the first nano-thread waiting in the queue of this

conditional variable and adds it to the global ready queue using the nth_to_rq

service of NthLib.

� int pthread_cond_broadcast (pthread_cond_t *cond)

This function dequeues all the nano-threads waiting in the queue of this

conditional variable and adds them to the global ready queue using the nth_to_rq

service of NthLib.

110 Chapter 5

� int pthread_cond_wait (pthread_cond_t *cond, pthread_mutex_t *mutex)

The nano-thread executing this function adds itself to the queue of this

conditional variable, releases the mutex associated to this conditional variable and

then blocks executing the nth_wait service of NthLib. The nano-thread remains

blocked in this function until a notification is sent to this conditional variable. When

this occurs, the nano-thread continues its execution by returning from the nth_wait

function, reacquires the mutex associated to this conditional variable and returns.

� int pthread_cond_timedwait (pthread_cond_t *cond, pthread_mutex_t

 *mutex, const struct timespec *abstime)

This function requires the implementation of temporization. Each virtual

processor has associated a timer and a queue of pending alarms to be generated using

this timer. This queue is ordered depending on the absolute time in which each alarm

must be generated. The services to operate on this queue have been implemented

following the same semantics that the generic queue management services provided

by NthLib. At any time, the timer is counting the time left to generate the first alarm

of the queue of alarms. When the timer is elapsed, the timer handler reprograms the

timer with the next alarm in the queue of alarms, and indicates (setting a global

variable) that there are elapsed alarms in the queue of alarms.

When a nano-thread executes the pthread_cond_timedwait function, it adds

a new pending alarm to the queue of alarms of the current virtual processor and

reprograms the timer is the added alarm must be generated before the alarm that is

currently programmed in the timer. Then the nano-thread adds itself to the queue of

this conditional variable, releases the mutex associated to this conditional variable and

then blocks executing the nth_wait service of NthLib. The nano-thread remains

blocked in this function until a notification is sent to this conditional variable or the

programmed alarm is generated. When this occurs, the nano-thread continues its

execution by returning from the nth_wait function, reacquires the mutex associated

to this conditional variable and returns.

The idle thread on each virtual processor executes periodically a function that,

when the global variable indicates that there are elapsed alarms at any queue of

alarms, is responsible of eliminate these alarms from the queue, dequeue the nano-

threads that programmed these alarms from the queue of the conditional variable and

add them to the global ready queue using the nth_to_rq service of NthLib.

Resource Provisioning for Multithreaded Java Applications 111

5.2.3.6.5 Pthread signals implementation

Each pthread has a queue of pending signals. The services to operate on this

queue have been implemented following the same semantics that the generic queue

management services provided by NthLib.

Every time that a pthread enters the system (by invoking a pthreads library

service) or returns to user level after being blocked within the system, it checks its

signals queue looking for pending signals to be processed. Each signal in this queue is

sent to the pthread using the kill system call.

� int pthread_kill (pthread_t thread, int sig)

The nano-thread executing this function finds the nano-thread with the pthread

identifier passed as parameter. If this nano-thread is running and the signal is not

masked, the signal is sent using the kill system call. Otherwise, a new signal is

queued in the pending signals queue of the pthread associated to this nano-thread. If

the nano-thread was blocked in a conditional variable or in a mutex, it is removed

from the queue and added to the global ready queue using the nth_to_rq service of

NthLib.

5.2.4 Evaluation

This section presents the main conclusions drawn from the experimentation

with JNE using the Java Grande Benchmarks described in Section 2.2.4.1.

Although JNE has been developed to improve performance of malleable

applications (that is, applications able to adapt their behavior to the amount of

resources offered by the execution environment), it is desirable that JNE supports the

efficient execution of non-malleable applications too, which are common (and often it

is not easy convert them to malleable). For example, in the JOMP version of the Java

Grande Benchmarks, only SOR, LUFact and Euler are malleable. Crypt, Series,

MonteCarlo and RayTracer are not malleable because they only have one parallel

region and, as commented in Section 5.2.3.4, adaptability is achieved at the beginning

of each parallel region. Sparse is not malleable because the concurrency level of the

application is used as size in some data structures, making impossible to change

dynamically this value without modifying the application.

112 Chapter 5

This evaluation includes experiments with malleable applications based on

SOR and LUFact and experiments with non-malleable applications based on Crypt

and Series.

5.2.4.1 Single application performance

In the first set of experiments, an individual instance of SOR, LUFact, Crypt

and Series is executed inside a cpuset, in its sequential version and its JOMP version

with different concurrency levels (between 1 and 16 threads). This experiment intends

to evaluate the impact on performance of the Pthreads library replacement by the

NthLib, and analyze the scalability of each application.

The speedup obtained for SOR, LUFact, Crypt and Series running with

different concurrency levels with respect to the sequential version is plotted in Figure

5.5, Figure 5.6, Figure 5.7 and Figure 5.8, respectively. For each experiment, 10

executions have been performed. The first series (labeled IRIX) corresponds to the

execution on the native Irix system. The second series (labeled IRIX+SETC)

corresponds to the execution on the native Irix system when the application informs to

the Pthreads library about its concurrency level (using the mechanism described in

Section 5.2.2). The third series (labeled JNE–CPUM) corresponds to the execution

time on top of the JNE with the JNE scheduler not active. And the fourth series

(labeled JNE+CPUM) corresponds to the execution time on top of the JNE with the

JNE scheduler active.

From the analysis of the speedup figures of malleable applications (SOR and

LUFact, Figure 5.5 and Figure 5.6, respectively) four important conclusions can be

derived. First, the performance obtained running with IRIX is very low, due to the

large number of process migrations occurred. For example, for LUFact with

concurrency level of 8 threads the system performs 9.6 process migrations per second

on average. An important part of these process migrations are produced when

application invokes the yield() method. The Pthreads library does not try to exploit

any data affinity in this point, and relies on the underlying operating system to

perform the yield operation. This increases the process migrations and reduces data

affinity. This problem acquires special relevance in JOMP applications (especially

when they have several parallel regions), which frequently use the yield() method

(when threads look for new work to be executed or when threads wait for a barrier to

Resource Provisioning for Multithreaded Java Applications 113

be opened), like many others runtimes do, to implement a polite scheduling that

allows others threads to execute when there is not useful work to do.

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

Seq 1 2 4 6 8 12 16

Threads

S
pe

ed
up

IRIX IRIX + SETC JNE - CPUM JNE + CPUM

Figure 5.5. SOR standalone speedup

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

Seq 1 2 4 6 8 12 16

Threads

S
pe

ed
up

IRIX IRIX + SETC JNE - CPUM JNE + CPUM

Figure 5.6. LUFact standalone speedup

The second conclusion is that, as it has been advanced in Section 5.2.2,

improvements on performance when running with IRIX+SETC are not very high,

because the JOMP runtime creates threads at user level with a long lifetime. However,

the large number of migrations performed by Irix is still the main cause of the bad

behavior.

114 Chapter 5

The third conclusion is that running with JNE–CPUM provides noticeable

performance improvements that can be explained as follows. NthLib tries to exploit

data affinity itself at nano-thread level. When a thread invokes the nth_yield()

method, it yields its kernel thread to another nano-thread and enqueues itself in the

local ready queue of this kernel thread. In this way, data affinity at nano-thread level

is improved and the yield operation is accomplished avoiding unnecessary operating

system intervention, reducing the number of process migrations (1.4 process

migrations per second on average when executing LUFact with concurrency level of 8

threads).

Notice that JNE–CPUM does not bind kernel threads to processors in the

cpuset. This explains the anomalous behavior observed for 6 and 12 threads. In both

cases, the application is executed in a cpuset larger than the number of processors

required (cpuset of 8 processors and cpuset of 16 processors, respectively). This

means that there are free processors, and as kernel threads are not bound with

processors, migrations are incremented (11.6 migrations per second on average when

executing SOR with concurrency level of 12 threads).

The last conclusion of this set of experiments is that running with

JNE+CPUM improves the performance even more. In addition to all the advantages

of the JNE–CPUM approach, the JNE scheduler strengthens data affinity at kernel

thread level by binding kernel threads to the processors assigned to the application.

This binding totally eliminates process migrations.

The low scalability achieved in these applications can be explained because

SOR and LUFact have one parallel region repeated several times inside a time step

loop. This means that work generation and thread synchronization are done several

times, both facts producing considerable overhead. Besides, threads reuse data at

every parallel region, so process migrations can heavily affect performance because

data affinity is lost.

On the other side, the analysis of speedup figures of non-malleable

applications (Crypt and Series, Figure 5.7 and Figure 5.8, respectively) reveals that all

the approaches evaluated obtain similar performance, achieving good scalability

(nearly linear). Only when running with IRIX the speedups obtained are a little bit

worse because the execution environment (Pthreads library in this case) needs some

time to estimate the concurrency level of the application, how it has been explained in

Resource Provisioning for Multithreaded Java Applications 115

Section 5.2.2. Notice that, if the execution environment is informed about this

concurrency level, as it is done in the other approaches, performance is improved.

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

Seq 1 2 4 6 8 12 16

Threads

S
pe

ed
up

IRIX IRIX + SETC JNE - CPUM JNE + CPUM

Figure 5.7. Crypt standalone speedup

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

Seq 1 2 4 6 8 12 16

Threads

S
pe

ed
up

IRIX IRIX + SETC JNE - CPUM JNE + CPUM

Figure 5.8. Series standalone speedup

The high scalability achieved in these applications can be explained because

Crypt and Series have only one parallel region. This means that work generation and

thread synchronization are done only once, minimizing the overhead produced.

Besides, threads do not reuse data, so process migrations are not critical for

performance.

116 Chapter 5

5.2.4.2 Multiprogrammed workloads

5.2.4.2.1 Malleable applications

For the second set of experiments, a workload composed of an instance of

LUFact with concurrency level of 2 threads, an instance of SOR with concurrency

level of 4 threads, an instance of LUFact with concurrency level of 4 threads and an

instance of SOR with concurrency level of 6 threads has been defined. These

applications instances are simultaneously started inside a cpuset with 16 processors,

and they are continuously restarted until one of them is repeated 10 times. Notice that

the system is not overloaded (i.e. the number of processors in the cpuset is greater or

equal than the maximum load). This experiment intends to evaluate the performance

of JOMP malleable applications in a non-overloaded multiprogrammed environment.

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

4,50

LUFact - 2 JTh SOR - 4 JTh LUFact - 4 JTh SOR - 6 JTh

Application

S
pe

ed
up

IRIX IRIX + SETC JNE not mall JNE mall

Figure 5.9. Application speedups in the 1st workload
(non-overloaded environment – malleable applications)

Figure 5.9 draws the speedup obtained for each application instance in the

workload relative to the sequential version. The first and second series have the same

meaning as in the first set of experiments. The third series (labeled JNE not mall)

corresponds to the execution time on top of the JNE with the JNE scheduler active

using a DSS scheduling policy, assuming that applications do not use the JNE

interface to adapt themselves to the available resources (they behave as non-malleable

applications). And the fourth series (labeled JNE mall) corresponds to the execution

Resource Provisioning for Multithreaded Java Applications 117

time on top of the JNE when applications use the JNE interface to adapt themselves to

the available resources.

Since the system is not overloaded, each application instance should be able to

run with as many processors as requested. Therefore, the speedup should be the same

as if executed alone in the cpuset. However, speedup figures are worse than one could

expect.

Figure 5.10. Process migrations when running with Irix in the 1st workload

(non-overloaded environment – malleable applications)

Figure 5.11. Process migrations when running with JNE in the 1st workload

(non-overloaded environment – malleable applications)

118 Chapter 5

First, when executing with IRIX, the speedup achieved is very low. This is

caused by the continuous process migrations that reduce considerably the data reuse.

In this experiment, these process migrations have been quantified in 13 migrations per

second on average. These process migrations can be appreciated in Figure 5.10, which

shows a Paraver window in which each color represents the execution of an

application instance. Second, running with IRIX+SETC improves the speedup

achieved (because of the effect commented in Section 5.2.2). However, the same

scheduling problems of IRIX are not solved.

Third, notice that important improvements are obtained when running with

JNE. This is caused by two factors: the inherent benefits of using JNE demonstrated

in Section 5.2.4.1, and the action of the JNE scheduler in a multiprogrammed

workload. In this case, the JNE scheduler binds kernel threads to processors, avoiding

unnecessary process migrations and allowing more data reuse. In addition to this, the

use of equitable policies like DSS makes possible that all applications instances in the

workload get resources, avoiding application starvation or very unbalanced

executions. This behavior can be appreciated in Figure 5.11.

Considering the observed behavior, the only question is why application

instances running with JNE in the workload do not achieve the speedup of their

counterparts running alone. The answer to this question is the interference produced

when running in cpusets as mentioned in Section 2.2.4.2.

Finally, notice that in a non-overloaded system it is not important if

applications are malleable, because there are enough resources to satisfy all the

requests. Therefore, it is not necessary that applications adapt themselves.

Table 5.2. Performance degradation of each application instance in the 1st workload vs. best
standalone execution

Application IRIX IRIX + SETC JNE not mall JNE mall

LUFact 2 JTh 0.70 0.85 0.77 0.82

SOR 4 JTh 0.59 0.67 0.77 0.83

LUFact 4 JTh 0.62 0.71 0.93 0.95

SOR 6 JTh 0.53 0.64 0.81 0.74

These conclusions are consolidated in Table 5.2, which summarizes the

observed performance degradation for each application instance in this workload with

respect to best standalone execution. Performance degradation is calculated dividing

Resource Provisioning for Multithreaded Java Applications 119

the best application standalone execution time by the average execution time of an

application instance in a workload.

For the third set of experiments, a workload composed of an instance of

LUFact with concurrency level of 4 threads, an instance of SOR with concurrency

level of 8 threads, an instance of LUFact with concurrency level of 8 threads and an

instance of SOR with concurrency level of 12 threads has been defined. These

applications instances are simultaneously started on a cpuset with 16 processors, and

they are continuously restarted until one of them is repeated 10 times. Notice that, the

maximum load is 32, which is higher than the number of processors available in the

cpuset, so the system is overloaded. This experiment intends to evaluate the

performance of JOMP malleable applications when running in an overloaded

multiprogrammed environment.

0,00

0,50

1,00

1,50

2,00

2,50

3,00

3,50

4,00

LUFact - 4 JTh SOR - 8 JTh LUFact - 8 JTh SOR - 12 JTh

Application

S
pe

ed
up

IRIX IRIX + SETC JNE not mall JNE mall

Figure 5.12. Application speedups in the 2nd workload
(overloaded environment – malleable applications)

Figure 5.12 draws the speedup for each application instance in the workload

relative to the sequential version. All the series have the same meaning as in the

previous workload. Since the system is overloaded, each application instance receives

fewer processors than requested (as many processors as assigned by the DSS policy in

the JNE scheduler). Therefore, the speedup should be the same as if executed alone in

the cpuset with the number of processors allocated by the JNE scheduler.

120 Chapter 5

Figure 5.13. Process migrations when running with Irix in the 2nd workload

(overloaded environment – malleable applications)

Figure 5.14. Process migrations when running with JNE in the 2nd workload

(overloaded environment – malleable applications)

All the conclusions exposed for the first workload are valid also in this case.

In addition, some considerations must to be taken into account. First, the continuous

process migrations when executing with IRIX have been incremented even more (43.9

process migrations per second on average), as shown in Figure 5.13. In addition to

this, notice that the Irix scheduling causes a noticeable unbalanced execution (benefits

some applications and damages others). For example, in this case LUFact with

Resource Provisioning for Multithreaded Java Applications 121

concurrency level of 4 threads is receiving proportionally more resources than the

other application instances. For this reason, its performance degradation is lower.

When running with JNE, the action of the JNE scheduler in an overloaded

multiprogrammed workload is even more important. A rational use of the resources

allows the reduction of processor migrations (0.9 process migrations per second on

average) allowing better locality exploitation and a balanced execution of all the

application instances of the workload, as shown in Figure 5.14. Like in the first

workload, the interference produced when running in cpusets causes application

instances not to achieve the expected speedup. Besides, other factors as processor

preemptions overhead or the processor distribution algorithm itself, can influence the

speedup obtained.

Notice that, in an overloaded system it is very important if applications are

malleable, because there are not enough resources to satisfy all the requests.

Malleability reduces the number of Java threads created by the application thus

reducing the overheads incurred in the parallel execution and management of threads.

Figure 5.12 shows that the speedup achieved with JNE mall approaches the speedup

of using half the number of threads (as assigned by the DSS policy in this scenario).

Table 5.3. Performance degradation of each application instance in the 2nd workload vs. best
standalone execution

Application IRIX IRIX + SETC JNE not mall JNE mall

LUFact 4 JTh 0.30 0.37 0.40 0.38

SOR 8 JTh 0.19 0.17 0.40 0.57

LUFact 8 JTh 0.08 0.08 0.34 0.66

SOR 12 JTh 0.08 0.07 0.25 0.43

Table 5.3 summarizes the observed performance degradation for each

application instance in the second workload with respect to best standalone execution.

Notice that the results confirm the benefit obtained when running multiprogrammed

workloads with JNE, and the convenience of using malleable applications able to

adapt themselves to the available resources.

5.2.4.2.2 Non-malleable applications

For the fourth set of experiments, a workload composed of an instance of

Series with concurrency level of 2 threads, an instance of Crypt with concurrency

122 Chapter 5

level of 4 threads, an instance of Series with concurrency level of 4 threads and an

instance of Crypt with concurrency level of 6 threads has been defined. These

applications instances are simultaneously started inside a cpuset with 16 processors,

and they are continuously restarted until one of them is repeated 10 times. This

experiment intends to evaluate the performance of JOMP non-malleable applications

in a non-overloaded multiprogrammed environment.

Notice that with non-malleable applications, the adaptation to the available

resources is done only once, at the beginning of the only parallel region, and

maintained during the entire region. This fact can lead to have unused processors if

the application receives more processors while it is executing inside the parallel

region, because at this point the application cannot generate new parallelism to run at

these processors. In order to avoid this situation, non-malleable applications use the

JNE interface to adapt their concurrency level to the double of the available resources

(JNE mall in Figure 5.15 and Figure 5.18).

0,00

1,00

2,00

3,00

4,00

5,00

6,00

Series - 2 JTh Crypt - 4 JTh Series - 4 JTh Crypt - 6 JTh

Application

S
pe

ed
up

IRIX IRIX + SETC JNE not mall JNE mall

Figure 5.15. Application speedups in the 3rd workload
(non-overloaded environment – non-malleable applications)

Figure 5.15 draws the speedup for each application instance in the workload

relative to the sequential version. Instead of JNE mall, all the series have the same

meaning as in the previous workload. Since the system is not overloaded, each

application instance should be able to run with as many processors as requested.

Resource Provisioning for Multithreaded Java Applications 123

Therefore, the speedup should be the same as if executed alone in the cpuset. The

results obtained verify this theory.

Figure 5.16. Process migrations when running with Irix in the 3rd workload

(non-overloaded environment – non-malleable applications)

Figure 5.17. Process migrations when running with JNE in the 3rd workload

(non-overloaded environment – non-malleable applications)

Notice that, as commented in Section 5.2.4.1, in this kind of applications

process migrations (which can be appreciated in Figure 5.16 when running with Irix

and in Figure 5.17 when running with JNE) are not critical for performance (when

124 Chapter 5

running with IRIX+SETC 6.4 migrations per second on average have been measured

without detecting any performance degradation).

Table 5.4. Performance degradation of each application instance in the 3rd workload vs. best
standalone execution

Application IRIX IRIX + SETC JNE not mall JNE mall

Series 2 JTh 0.78 0.97 0.93 0.93

Crypt 4 JTh 0.74 0.97 0.90 0.99

Series 4 JTh 0.62 0.95 0.98 0.99

Crypt 6 JTh 0.79 0.94 0.98 0.99

This experiment confirms that in a non-overloaded system it is not important if

applications adapt their behavior to the available resources, because there are enough

resources to satisfy all the requests. These conclusions are consolidated in Table 5.4,

which summarizes the observed performance degradation for each application

instance in the third workload with respect to best standalone execution.

0,00

1,00

2,00

3,00

4,00

5,00

6,00

Series - 4 JTh Crypt - 8 JTh Series - 8 JTh Crypt - 12 JTh

Application

S
pe

ed
up

IRIX IRIX + SETC JNE not mall JNE mall

Figure 5.18. Application speedups in the 4th workload
(overloaded environment – non-malleable applications)

For the last set of experiments, a workload composed of an instance of Series

with concurrency level of 4 threads, an instance of Crypt with concurrency level of 8

threads, an instance of Series with concurrency level of 8 threads and an instance of

Crypt with concurrency level of 12 threads has been defined. These applications

instances are simultaneously started on a cpuset with 16 processors (the system is

Resource Provisioning for Multithreaded Java Applications 125

overloaded), and they are continuously restarted until one of them is repeated 10

times. This experiment intends to evaluate the performance of JOMP non-malleable

applications when running in an overloaded multiprogrammed environment.

Figure 5.19. Process migrations when running with Irix in the 4th workload

(overloaded environment – non-malleable applications)

Figure 5.20. Process migrations when running with JNE in the 4th workload

(overloaded environment – non-malleable applications)

Figure 5.18 draws the speedup for each application instance in the workload

relative to the sequential version. All the series have the same meaning as in the

previous workload. Since the system is overloaded, each application instance will

126 Chapter 5

receive fewer processors than requested (as many processors as assigned by DSS

policy in the JNE scheduler). Therefore, the speedup should be the same as if

executed alone in the cpuset with the number of processors allocated by the JNE

scheduler. The results obtained in this workload verify this theory and confirm that

performance obtained when running with JNE and generating as parallelism as the

double of the resources assigned (JNE mall) is comparable to the one obtained when

running with the original system. The execution of the different application instances

can be appreciated in Figure 5.19 when running with Irix and in Figure 5.20 when

running with JNE.

Finally, notice the performance degradation produced when running with JNE

not mall, because the applications do not adapt to the available resources (they may

have unused processors if the number of threads created is not multiple of the number

of processors assigned to them). Table 5.5 shows the performance degradation of each

application instance in the fourth workload with respect to best standalone execution.

Table 5.5. Performance degradation of each application instance in the 4th workload vs. best
standalone execution

Application IRIX IRIX + SETC JNE not mall JNE mall

Series 4 JTh 0.60 0.63 0.49 0.49

Crypt 8 JTh 0.61 0.65 0.47 0.61

Series 8 JTh 0.49 0.47 0.50 0.49

Crypt 12 JTh 0.43 0.41 0.33 0.44

5.3 Resource Provisioning for Multithreaded Java Application
Servers in e-Business Environments

5.3.1 Dynamic Resource Provisioning

Due to the great variability of the workloads of web applications (including

unexpected flash crowds), it is difficult to estimate application resource requirements

in advance, and hence provisioning resources to web applications in a hosting

platform is problematic. Static allocation of resources can result in significant

performance degradation when loads exceed capacity if under-provisioning has been

performed, while over-provisioning resources based on worst-case workload

estimation can result in poor resource utilization.

Resource Provisioning for Multithreaded Java Applications 127

Recent studies have shown the considerable benefits of dynamically reallocate

resources among hosted applications based on the variations in their workloads

instead of over-provisioning resources in a hosting platform [7][35][36]. The goal is

to meet the application requirements on demand and adapt to their changing resource

needs. In this way, better resource utilization by extracting multiplexing gains can be

achieved and the system can react to unexpected workload increases.

This thesis proposes a dynamic resource provisioning mechanism based on a

global processor manager, called eDragon CPU Manager (ECM), responsible of

distributing periodically the available processors among applications in a hosting

platform applying a given policy. The ECM cooperates with the applications to

manage efficiently the processors using a bi-directional communication. On one side,

the applications request periodically to the ECM the number of processors needed to

handle their incoming load avoiding the QoS degradation. On the other side, the ECM

can be requested at any time by the applications to inform them about their processor

assignments. With this information, the applications can apply an admission control

mechanism to limit the number of admitted requests accepting only those that can be

served with the allocated processors without degrading their QoS (see Section 4.3.2).

5.3.1.1 Applications/ECM communication

The communication between the ECM and the applications is implemented

using a shared memory region. The shared information includes the number of

processors on which the application wants to run at any moment and the number of

processors currently allocated by the ECM to the application. In order to manipulate

this information, an interface between the applications and the ECM has been defined.

This interface contains the following two Java methods accessible through the Java

Native Interface (JNI):

� cpusAssigned(): consult the current number of processors allocated to the

invoking application.

� cpusRequested(num): request to the execution environment num processors.

In order to be self-managed, applications must be able to determine the

number of processors they need to handle their incoming workload avoiding QoS

degradation. This thesis achieves this capability by adding an internal manager within

the server that runs the web application. This manager continuously monitors the

128 Chapter 5

number of incoming connections by performing online measurements distinguishing

new SSL connections from resumed SSL connections. Based on the number of

incoming new SSL connections, the number of incoming resumed SSL connections

and the estimated computing demand of each kind of connection, the manager

periodically calculates the number of processors needed to handle these connections

maintaining their QoS and informs to the ECM using the cpusRequested method.

5.3.1.2 eDragon CPU manager (ECM)

The eDragon CPU Manager (ECM) is responsible for the distribution of

processors among applications in the hosting platform. The ECM processes all the

applications requests and distributes processors according to a given policy.

Traditionally, resource allocation policies have considered conventional performance

metrics such as response time, throughput and availability. However, the metrics that

are of utmost importance to the management of an e-commerce site are revenue and

profits and should be incorporated when designing policies [102].

The ECM can be configured to implement different policies, depending on the

hosting platform needs, considering conventional performance metrics as well as

incorporating e-business indicators. As an example, this thesis includes the

implementation of a policy that considers customers of different priority classes (such

as Gold, Silver or Bronze). The priority class indicates a customer domain’s priority

in relation to other customer domains. It is expected that high priority customers will

receive preferential service respect low priority customers. In the policy, each

application receives a number of processors (Assigi) that is proportional to its request

(Reqi) pondered depending of the application priority class (Prioi) and inversely

proportional to the total workload of the system (� Prioj * Reqj), expressed as the sum

of requests of all applications in the system. The complete equation is as follows:

Assigi = Round[(Prioi * Reqi * nCPU) / � Prioj * Reqj]

As commented is Section 2.3.4, performance isolation of web applications is a

concern in hosting platforms where applications share resources, because when an

application overloads it can affect the performance of other applications.

Consequently, it is a responsibility of the hosting platform to provide performance

isolation. The ECM considers this issue when allocating processors to the

applications. The ECM not only decides how many processors to assign to each

Resource Provisioning for Multithreaded Java Applications 129

application, but decides also which processors to assign to each application. In order

to accomplish this, the ECM configures the CPU affinity mask of each application

(using the Linux sched_setaffinity function) so that the application can run only in

their assigned processors, and no other application can run in these processors,

guarantying in this way performance isolation.

It is also desirable that ECM maximizes resource utilization in the hosting

platform. In order to accomplish this, the ECM can decide under certain conditions

that two applications share a given processor, trying to minimize impact on

performance isolation. Current ECM implementation will decide to share a processor

from application A to application B if the processor distribution policy has assigned to

application A all the processors it requested and the number of processors assigned to

application B is lower than the number it requested. Notice that, in this situation, it is

possible that a fraction of a processor allocated to application A is not used, for

example, if application A determines that it needs 2.5 processors, its processor request

will be 3, thus a 0.5 processor may be not used.

The ECM has another feature very valuable in hosting platforms that earn

money from applications depending on their resource usage. In these situations,

hosting platforms need to know exactly how many resources have been used by each

application. The ECM can easily provide this information, because it performs a

complete accounting of all the resource allocations decided.

5.3.2 Evaluation

This section presents the evaluation results for the overload control approach

including dynamic resource provisioning proposed in this thesis. The evaluation is

divided in two parts. First, the accuracy of the mechanism for estimating the processor

requirements of the application server is evaluated by comparing the execution of a

single self-adaptive instance of the Tomcat server with this mechanism incorporated

(self-managed Tomcat server) with respect to the original Tomcat. Second, the

proposal combining dynamic resource provisioning and admission control is

evaluated by running several experiments with two self-adaptive Tomcat instances in

a multiprocessor hosting platform with the ECM.

Figure 5.21 shows the number of processors allocated to Tomcat comparing

the original Tomcat server with respect to the self-managed Tomcat server. When

130 Chapter 5

running the original Tomcat, the hosting platform must perform static processor

provisioning because it has no information about its processor requirements. If

maximum application performance wants to be achieved, the hosting platform must

allocate the maximum number of processors (four in this case) to the server.

However, this provokes poor processor utilization when the original Tomcat requires

fewer processors. On the other side, self-managed Tomcat is able to calculate

accurately its processor requirements and communicate them to the hosting platform,

which can allocate to the server only the required processors, as shown in Figure 5.21,

avoiding processor under-utilization but ensuring performance.

Figure 5.21. Original Tomcat vs. self-managed Tomcat number of allocated processors

The first multiprogrammed experiment consists of two Tomcat instances with

the same priority running in a 4-way hosting platform. Each Tomcat instance has

variable input load along time, which is shown in the top part of Figure 5.22. Input

load distribution has been chosen in order to represent the different processor

requirement combinations when running two Tomcat instances in a hosting platform.

For example, between 0s and 1200s and between 2400s and 3000s the hosting

platform can satisfy the processor requirements of the two Tomcat instances; this

means that the hosting platform is not overloaded. In the other areas, the two Tomcat

Resource Provisioning for Multithreaded Java Applications 131

instances requirements exceed the number of processors of the hosting platform, thus

the hosting platform is overloaded. In this case, some policy for processor distribution

between the applications is required.

Figure 5.22. Incoming workload (top), achieved throughput (middle) and allocated processors

(bottom) of two Tomcat instances with the same priority

As well as the input load along time, Figure 5.22 also shows the processors

allocation for each Tomcat instance (bottom part) and the throughput achieved with

these processors allocations (middle part), presenting this information in a way that

eases the correlation of the different metrics. Notice that, when the hosting platform is

not overloaded, the two Tomcat instances receive all the processors they have

requested, obtaining the corresponding throughput. When the hosting platform is

overloaded, as the two instances have the same priority, the ECM distributes the

available processors depending only on each Tomcat requirements, which depend on

each Tomcat input load. Therefore, the Tomcat instance with higher input load (that

is, with more processor requirements) is receiving more processors and hence

achieving higher throughput. For example, between 1800s and 2400s, 5 new clients

per second arrive to Tomcat 1 while to Tomcat 2 arrives only 1 new client per second.

In this case, input load from Tomcat 1 is higher than input load from Tomcat 2, thus

132 Chapter 5

Tomcat 1 will receive more processors than Tomcat 2. In particular, Tomcat 1

receives 3.5 processors on average (achieving a throughput around 260 replies/s)

while Tomcat 2 receives only 0.5 processors on average (achieving a throughput

around 50 replies/s). Notice that a processor is shared between Tomcat 1 and Tomcat

2. In the same way, between 3600s and 4200s, 5 new clients per second arrive to

Tomcat 2 while to Tomcat 1 arrive only 3 new clients per second. In this case, input

load from Tomcat 2 is higher than input load from Tomcat 1, thus Tomcat 2 will

receive more processors than Tomcat 1. In particular, Tomcat 2 receives 3 processors

on average (achieving a throughput around 230 replies/s) while Tomcat 1 receives

only 1 processor on average (achieving a throughput around 50 replies/s). Finally,

when the input load is the same for Tomcat 1 and Tomcat 2 (for instance between

4200s and 4800s), the two instances receive the same number of processors (two in

this case), obtaining the same throughput (around 150 replies/s). In any case, as

demonstrated in Chapter 4, the overload control mechanism ensures that although the

number of required processors is not supplied, the QoS of admitted requests is

maintained.

The second multiprogrammed experiment has the same configuration that the

previous one but, in this case, Tomcat 1 has higher priority than Tomcat 2 (2 versus

1). As the two instances have different priority, the ECM distributes the available

processors depending on each Tomcat requirements and on its priority, following the

equation presented in Section 5.3.1.2. Figure 5.23 shows the results obtained for this

experiment presenting these results in the same way as Figure 5.22. Notice that now

between 1800s and 2400s, processors allocated to Tomcat 1 have increased,

oscillating between 3.5 and 4 on average while processors allocated to Tomcat 2 have

decreased, oscillating between 0 and 0.5 on average, because as well as having higher

input load, Tomcat 1 has also higher priority than Tomcat 2. In the same way,

between 3600s and 4200s, processors allocated to Tomcat 2 have decreased,

oscillating between 2 and 2.5 on average while processors allocated to Tomcat 1 have

increased, oscillating between 1.5 and 2 on average, because although Tomcat 2 has

higher input load, Tomcat 1 has higher priority than Tomcat 2. Finally, between 4200s

and 4800s, although the input load is the same for Tomcat 1 and Tomcat 2, Tomcat 1

receives now more processors than Tomcat 2 (3 versus 1), because Tomcat 1 has

Resource Provisioning for Multithreaded Java Applications 133

higher priority than Tomcat 2. With this processor allocation, Tomcat 1 obtains higher

throughput than Tomcat 2 (around 230 replies/s versus 100 replies/s).

Figure 5.23. Incoming workload (top), achieved throughput (middle) and allocated processors

(bottom) of two Tomcat instances if Tomcat 1 has higher priority than Tomcat 2

The last multiprogrammed experiment has the same configuration that in the

previous one, but with a slightly different behavior of the ECM in order to benefit the

execution of high priority applications. In this experiment, a processor can be only

shared from low priority applications to high priority applications, but not on the other

side. Figure 5.24 shows the results obtained for this experiment presenting these

results in the same way as Figure 5.22. As shown in this figure, between 1800s and

2400s, processors allocated to Tomcat 1 have increased to almost 4 on average while

processors allocated to Tomcat 2 are now nearly 0, because Tomcat 1 has higher

priority than Tomcat 2 and does not share processors. In the same way, between

3600s and 4200s, processors allocated to Tomcat 2 have decreased to 1 on average

while processors allocated to Tomcat 1 have increased to 3 on average, because

although Tomcat 2 has higher input load, Tomcat 1 has higher priority than Tomcat 2

and does not share processors. With this processor allocation, Tomcat 1 obtains now

higher throughput than in the previous experiment (around 200 replies/s versus 130

134 Chapter 5

replies/s) while Tomcat 2 achieves now lower throughput (around 100 replies/s versus

200 replies/s).

Figure 5.24. Incoming workload (top), achieved throughput (middle) and allocated processors

(bottom) of two Tomcat instances if Tomcat 1 has higher priority than Tomcat 2 and Tomcat 1 does not
share processors with Tomcat 2

5.4 Conclusions

The “Resource Provisioning for Multithreaded Java Applications” work area

described in this chapter shows how, in addition to implement self-adaptive

applications that can adapt their behavior depending on the available resources, the

cooperation between the applications and the execution environment in order to

manage efficiently the resources improves the performance of multithreaded Java

applications on multiprogrammed shared-memory multiprocessors.

This thesis proposes the implementation of this cooperation based on

establishing a bi-directional communication path between the applications and the

underlying system. On one side, the applications request to the execution environment

the number of processors they need. On the other side, the execution environment can

be requested at any time by the applications to inform them about their processor

Resource Provisioning for Multithreaded Java Applications 135

assignments. With this information, the applications, which are self-adaptive, can

adapt their behavior to the assigned resources as described in Chapter 4.

This thesis contributes with the implementation of the cooperation between the

execution environment and the applications for manage the resources as in HPC

environments as in e-business environments. The implementation for HPC

environments considers two different scenarios. In the first one, the application is able

to inform the execution environment about its concurrency level using a service

provided by the underlying thread library. As shown in the experimental results, the

effect on performance of this communication is low when executing applications that

create threads with a long lifetime. In the second scenario, in addition to this

communication path, the execution environment is also able to inform the application

about the resource provisioning decisions. As the application is malleable (i.e. self-

adaptive), it is able to react to these decisions by changing the degree of parallelism

that it is actually exploited from the application.

The experimental results show a noticeable impact on the final performance

for malleable applications. Improvements avoiding performance degradation in non-

overloaded multiprogrammed environments range from 7% to 31% when malleable

applications do not adapt to the assigned processors, and from 12% to 33% otherwise.

On multiprogrammed overloaded environments, improvements range from 10% to

26% when malleable applications do not adapt to the assigned processors, and from

8% to 58% otherwise. Notice that, in an overloaded system it is very important if

applications are malleable, because there are not enough resources to satisfy all the

requests. Although this scenario is based on malleable applications, this chapter has

demonstrated that is also possible to maintain the efficiency of non-malleable

applications. The performance degradation for this kind of applications is almost the

same when running with Irix or with JNE.

The implementation of the cooperation between the execution environment

and the applications for manage efficiently the resources in e-business environments

uses an overload control approach for self-adaptive Java application servers running

secure e-commerce applications that brings together admission control based on SSL

connections differentiation and dynamic provisioning of platform resources in order

to adapt to changing workloads avoiding the QoS degradation.

136 Chapter 5

The overload control approach is based on a global resource manager

responsible of distributing periodically the available processors among web

applications following a determined policy. The resource manager can be configured

to implement different policies, considering traditional indicators (i.e. response time)

as well as e-business indicators (i.e. customer’s priority). The resource manager and

the applications cooperate to manage the resources using a bi-directional

communication. On one side, the applications request to the resource manager the

number of processors needed to handle their incoming load without QoS degradation.

On the other side, the resource manager can be requested at any time by the

applications to inform them about their processor assignments. With this information,

the applications can apply the admission control mechanism described in Chapter 4

that limits the number of admitted requests so they can be served with the allocated

processors without degrading their QoS.

The experimental results demonstrate the benefit of combining dynamic

resource provisioning and admission control to prevent overload of Java application

servers in secure environments. Dynamic resource provisioning allows meeting the

requirements of the application servers on demand and adapting to their changing

resource needs. In this way, better resource utilization by extracting multiplexing

gains can be achieved (resources not used by some application may be distributed

among other applications) and the system can react to unexpected workload increases.

On the other side, admission control based on SSL differentiation allows maintaining

the response times in levels that guarantee good QoS and avoiding server throughput

degradation (throughput degrades until approximately the 20% of the maximum

achievable throughput when server overloads), while maximizing the number of

sessions completed successfully.

The research performed in this work area has resulted in the following

publications, including one journal, two international conferences (one submitted but

not yet accepted) and one international workshop:

� J. Guitart, D. Carrera, V. Beltran, J. Torres and E. Ayguadé. Dynamic
Resource Provisioning for Self-Managed QoS-Aware Secure e-Commerce
Applications in SMP Hosting Platforms. To be submitted to the 20th
International Parallel and Distributed Symposium (IPDPS’06), Rhodes Island,
Greece. April 26-29, 2006.

Resource Provisioning for Multithreaded Java Applications 137

� J. Guitart, X. Martorell, J. Torres and E. Ayguadé. Application/Kernel
Cooperation Towards the Efficient Execution of Shared-memory Parallel Java
Codes. 17th International Parallel and Distributed Symposium (IPDPS’03),
Nice, France. April 22-26, 2003.

� J. Guitart, X. Martorell, J. Torres and E. Ayguadé. Efficient Execution of

Parallel Java Applications. 3rd Annual Workshop on Java for High
Performance Computing (part of the 15th ACM International Conference on
Supercomputing ICS’01), pp. 31-35, Sorrento, Italy. June 17, 2001.

� J. Oliver, E. Ayguadé, N. Navarro, J. Guitart and J. Torres. Strategies for

Efficient Exploitation of Loop-level Parallelism in Java. Concurrency and
Computation: Practice and Experience (Java Grande 2000 Special Issue),
Vol.13 (8-9), pp. 663-680. ISSN 1532-0634, July 2001.

Related Work 139

CHAPTER 6
RELATED WORK

6.1 Analysis and Visualization of Multithreaded Java Applications

Although a number of tools have been developed to monitor and analyze the

performance of Java applications, only some of them target multithreaded Java

applications, and none of them allow a fine-grain analysis of the applications behavior

considering all levels involved in the application execution. Different approaches are

used to carry on the instrumentation process. Paradyn [152] is a non-trace based tool

that considers Java multithreaded applications and allows users to insert and remove

instrumentation probes during program execution by dynamically relocating the code

and adding pre and post instrumentation code. Jinsight [117], JaViz [91] and DejaVu

[42] work with traces generated by an instrumented JVM. Jinsight and DejaVu allow

the instrumentation of multithreaded Java applications while JaViz allows the

instrumentation of client/server Java applications that use RMI. Other works allow the

analysis of multithreaded Java applications by instrumenting the Java source code

[16], thus requiring the recompilation of the application.

There is another set of proposals, such as Hprof (which is shipped with the

standard Java SDK), TAU [127] and OptimizeIt [114], which offer maximum

portability by using the Java Virtual Machine Profiler Interface [143] (JVMPI).

JVMPI is an interface that profilers can use to obtain profiling information generated

from de JVM. This means that all standard JVM is really an instrumented JVM that

generates profiling information that can be captured using the JVMPI. With Hprof, all

the information generated by the JVMPI can be accessed, directly or using some post-

processing tool as PerfAnal [105] or Heap Analysis Tool [81] (HAT). OptimizeIt can

be integrated with popular J2EE application servers. TAU allows the analysis of

parallel Java applications based on MPI using visualizers as Racy and Vampir [115].

However, all these JVMPI-based tools suffer of large overheads due to the use of

JVMPI.

140 Chapter 6

Related work includes also other tools for the analysis and visualization of

multithreaded applications, but these tools do not consider Java applications. For

example, Sun Workshop Thread Event Analyzer [151] is based on the post-mortem

analysis of traces obtained through shared libraries interposition; Socrates [145]

allows the post-mortem analysis of traces obtained by instrumenting the application

source code; Tmon [86] is a trace-based tool that obtains the profiling information by

instrumenting the user threads library; and finally Gthread [153] is a trace-based tool

that adds instrumentation information using macros that replace Pthreads library calls.

Finally, a number of tools have been developed specifically, or consider in any

way the analysis of web applications performance. Some of these tools are, for

instance, Wily Technology Solutions for Enterprise Java Application Management

(Introscope) [149], Quest Software Solutions for Java/J2EE (JProbe, Performasure)

[123] and Empirix Solutions for Web Application Performance (e-TEST, OneSight)

[51].

All the tools commented report different metrics that measure and breakdown,

in some way, the application performance. However, none of them enables a fine-

grain analysis of the multithreaded execution and the scheduling issues involved in

the execution of the threads that come from the Java application. This analysis

requires different kind of information, which must be acquired at several levels, from

the application to the system level.

Some tools focus the analysis on the application level (and the application

server level, if applicable), neglecting the interaction with the system. Other tools

incorporate the analysis of the system activity to their monitoring solution, but

summarize this analysis giving general metrics (as CPU utilization or JVM memory

usage) providing only a quantitative analysis of the server execution. Summarizing,

existing tools base their analysis on calculating general metrics that intend to

represent the system status. Although this information can be useful for the detection

of some problems, it is often not sufficiently fine grained and lacks of flexibility. For

this reason, this thesis proposes an analysis environment to perform a complete

analysis of the applications behavior based on providing to the user detailed and

correlated information about all levels involved in the application execution, giving

him the chance to construct his own metrics, oriented to the kind of analysis he wants

to perform.

Related Work 141

6.2 Characterization of Java Application Servers Scalability

Application server scalability constitutes an important issue to support the

increasing number of users of secure dynamic web sites. Although this thesis focuses

on maintaining server scalability when running in secure environments adding more

resources (vertical scaling), the large computational demand of SSL protocol can be

handled using other approaches.

Major J2EE vendors such as BEA [17] or IBM [5][41] use clustering

(horizontal scaling) to achieve scalability and high availability. Several studies

evaluating server scalability using clustering have been performed [5][77], but none

of them considers security issues.

Scalability can be also achieved delegating the security issues on a web server

(e.g. Apache web server [9]) while the application server only processes dynamic web

requests. In this case, the computational demand will be transferred to the web server,

which can be optimized for SSL management.

It is also possible to add new specialized hardware for processing SSL

requests [108], reducing the processor demand, but increasing the cost of the system.

Related with the vertical scalability covered in this thesis, some works have

evaluated this scalability on web servers or application servers. For example, [18] and

[79] only consider static web content, and in [8][18][79][98] the evaluation is limited

to a numerical study without performing an analysis to justify the scalability results

obtained. Besides, none of these works evaluates the effect of security on application

server scalability.

Other works try to improve application server scalability by tuning some

server parameters and/or JVM options and/or operating system properties. For

example, Tomcat scalability while tuning some parameters, including different JVM

implementations, JVM flags and XML implementations has been studied in [96]. In

the same way, the application server scalability using different mechanisms for

generating dynamic web content has been evaluated in [32]. However, none of these

works considers any kind of scalability relative to resources (neither vertical nor

horizontal), neither the influence of security on the application server scalability.

Certain kind of analysis has been performed in some works. For example, [4]

and [32] provide a quantitative analysis based on general metrics of the application

142 Chapter 6

server execution collecting system utilization statistics (CPU, memory, network

bandwidth, etc.). These statistics may allow the detection of some application server

bottlenecks, but this coarse-grain analysis is often not enough when dealing with more

sophisticated performance problems.

The influence of security on application server scalability has been covered in

some works. For example, the performance and architectural impact of SSL on the

servers in terms of various parameters such as throughput, utilization, cache sizes and

cache miss ratios has been analyzed in [90], concluding that SSL increases

computational cost of transactions by a factor of 5-7. The impact of each individual

operation of TLS protocol in the context of web servers has been studied in [43],

showing that key exchange is the slowest operation in the protocol. [59] analyzes the

impact of full handshake in connection establishment and proposes caching sessions

to reduce it.

Security for Web Services can be also provided with SSL, but other proposals

as WS-Security [83], which uses industry standards like XML Encryption and XML

Signature, have been made. Coupled with WS-SecureConversation, the advantage

WS-Security has over SSL over HTTP is twofold: first, it works independently of the

underlying transport protocol and second, it provides security mechanisms that

operate in end-to-end scenarios (across trust boundaries) as opposed to point-to-point

scenarios (i.e. SSL). Anyway, WS-Security requires also a large computational

demand to support the encryption mechanisms, making most of the conclusions

obtained in this thesis valid in Web Services environments too.

This thesis intends to achieve a complete characterization of dynamic web

applications using SSL vertical scalability determining the causes of server overload

performing a detailed analysis of application server behavior considering all levels

involved in the execution of dynamic web applications.

6.3 Overload Control and Resource Provisioning in Web
Environments

The effect of overload on web applications has been covered in several works,

applying different perspectives in order to prevent these effects. These different

approaches can be resumed on request scheduling, admission control, service

Related Work 143

differentiation, service degradation, resource management and almost any

combination of them.

Request scheduling refers to the order in which concurrent requests should be

served. Typically, servers have been left this ordination to the operating system. But,

as it is well know from queuing theory that shortest remaining processing time first

(SRPT) scheduling minimizes queuing time (and therefore the average response

time), some proposals [46][80] implement policies based on this algorithm to

prioritize the service of short static content requests in front of long requests. This

prioritized scheduling in web servers has been proven effective in providing

significantly better response time to high priority requests at relatively low cost to

lower priority requests. Although scheduling can improve response times, under

extreme overloads other mechanisms become indispensable. Anyway, better

scheduling can always be complementary to any other mechanism.

Admission control is based on reducing the amount of work the server accepts

when it is faced with overload. Service differentiation is based on differentiating

classes of customers so that response times of preferred clients do not suffer in the

presence of overload. Admission control and service differentiation have been

combined in some works to prevent server overload. For example, [144] presents

three kernel-based mechanisms that include restricting incoming SYN packets to

control TCP connection rate, prioritized listen queue and HTTP header-based

classification providing service differentiation. ACES [38] attempts to limit the

number of admitted requests based on estimated service times, allowing also service

prioritization. The evaluation of this approach is done based only on simulation. Other

works have considered dynamic web content. An adaptive approach to overload

control in the context of the SEDA [148] Web server is described in [147]. SEDA

decomposes services into multiple stages, each one of which can perform admission

control based on monitoring the response time through the stage. The evaluation

includes dynamic content in the form of a web-based email service. In [50], the

authors present an admission control mechanism for e-commerce sites that externally

observes execution costs of requests, distinguishing different requests types. Yaksha

[89] implements a self-tuning proportional integral controller for admission control in

multi-tier e-commerce applications using a single queue model.

144 Chapter 6

Service degradation is based on avoiding refusing clients as a response to

overload but reducing the service offered to clients [1][37][140][147], for example in

the form on providing smaller content (e.g. lower resolution images).

Recent studies [7][35][36] have reported the considerable benefit of

dynamically adjusting resource allocations to handle variable workloads. This premise

has motivated the proposal of several techniques to dynamically provision resources

to applications in on demand hosting platforms. Depending on the mechanism used to

decide the resource allocations, these proposals can be classified on: control theoretic

approaches with a feedback element [2], open-loop approaches based on queuing

models to achieve resource guarantees [34][48][97] and observation-based approaches

that use runtime measurements to compute the relationship between resources and

QoS goal [122]. Control theory solutions require training the system at different

operating points to determine the control parameters for a given workload. Queuing

models are useful for steady state analysis but do not handle transients accurately.

Observation-based approaches are most suited for handling varying workloads and

non-linear behaviors. Depending on the hosting platform architecture considered,

resource management in a single machine has been covered in [12], proposing

resource containers as an operating system abstraction that embodies a resource. The

problem of provisioning resources in cluster architectures has been addressed in

[10][124] by allocating entire machines (dedicated model) and in [34][122][141] by

sharing node resources among multiple applications (shared model).

Cataclysm [140] performs overload control bringing together admission

control, adaptive service degradation and dynamic provisioning of platform resources,

demonstrating that the most effective way to handle overload must consider the

combination of techniques. In this aspect, this work is similar to the proposal in this

thesis.

On most of the prior work, overload control is performed on per request basis,

which may not be adequate for many session-based applications, such as e-commerce

applications. A session-based admission control scheme has been reported in [40].

This approach allows sessions to run to completion even under overload, denying all

access when the server load exceeds a predefined threshold. Another approach to

session-based admission control based on the characterization of a commercial web

Related Work 145

server log, which discriminates the scheduling of requests based on the probability of

completion of the session that the requests belong to, is presented in [39].

The overload control mechanism proposed in this thesis combines important

aspects that previous work has considered in isolation or simply has ignored. First, it

considers dynamic web content instead of simpler static web content. Second, it

focuses on session-based applications considering the particularities of these

applications when performing admission control. Third, it combines several

techniques as admission control, service differentiation and dynamic resource

provisioning that have been demonstrated to be useful to prevent overload [140]

instead of considering each technique in isolation. Fourth, this mechanism is fully

adaptive to the available resources and to the number of connections in the server

instead of using predefined thresholds. Fifth, the resource provisioning mechanism

incorporates e-business indicators instead of only considering conventional

performance metrics such as response time and throughput. Finally, it considers

overload control on secure web applications while none of the above works has

covered this issue.

6.4 Resource Provisioning in HPC Environments

Experience on real systems shows that with contemporary kernel schedulers,

parallel applications suffer from performance degradation when executed in an open

multiprogrammed environment. As a consequence, intervention from the system

administrator is usually required, in order to guarantee a minimum quality of service

with respect to the resources allocated to each parallel application (CPU time,

memory etc.). Although the use of sophisticated queuing systems and system

administration policies (HP-UX Workload Manager [130], IBM AIX WLM [82],

Solaris RM [138], IRIX Miser Batch Processing System [128], etc.) may improve the

execution conditions for parallel applications, the use of hard limits for the execution

of parallel jobs with queuing systems may jeopardize global system performance in

terms of utilization and fairness.

Even with convenient queuing systems and system administrator’s policies,

application and system performance may still suffer because users are only able to

provide very coarse descriptions of the resource requirements of their jobs (number of

processors, CPU time, etc.). Fine grain events that happen at execution time

146 Chapter 6

(spawning parallelism, sequential code, synchronizations, etc.), which are very

important for performance, can only be handled at the level of the runtime system,

through an efficient cooperation interface with the operating system. This scenario

assumes applications that are able to adapt their behavior to the amount of resources

allocated to them. This information is obtained by establishing a dialog with the

execution environment.

Several proposals of cooperation between the execution environment and the

applications appear in the related work, but none of them consider multithreaded Java

applications. For example, Process Control [139] proposes to share a counter of

running processes, but the concurrency level of an application is inferred by the

execution environment instead of being specified by the application. Process Control,

Scheduler Activations [6] and First-Class Threads [99] use signals or upcalls to

inform the user level about preemptions.

The Nanos RM [100] (NRM) is an application-oriented resource manager, i.e.

the unit of resource allocation and management is the parallel application. Other

resource managers, such as the Solaris RM or the AIX WLM, work at workload or

user granularity. Having parallel applications as units for resource management

allows the application of performance-driven policies [45] that take into account the

characteristics of these applications (e.g. speedup or efficiency in the use of

resources). The NRM takes decisions at the same level than the kernel does. This

means that it does not only allocate processors to a particular application, but also it

performs the mapping between kernel threads and processors and controls the initial

memory placement. This is an issue that is important to consider in the Java

environment using the native threads model (several kernel threads in contraposition

to the green threads model that just uses one kernel thread for all the Java threads in

the application).

The Jikes RVM [3] implements a different thread model. It provides virtual

processors in the Java runtime system to execute the Java threads. Usually, there are

more Java threads than virtual processors. Each virtual processor is scheduled onto a

pthread. This means that, as the other threads models do, Jikes relies on the Pthreads

library for scheduling the pthreads over the kernel threads offered by the operating

system, suffering the same performance degradation problems for parallel Java

applications. Therefore, Jikes can also benefit of the solutions proposed in this thesis.

Conclusions 147

CHAPTER 7
CONCLUSIONS

7.1 Conclusions

This thesis has contributed in the resolution of the performance problems

faced when using the Java language in parallel environments (from HPC

environments to e-business environments). The contributions have included the

definition of an environment to analyze and understand the behavior of multithreaded

Java applications. The main contribution of this environment is that all levels in the

execution (application, application server, JVM and operating system) are correlated.

This is very important to understand how this kind of applications behaves when

executed on execution environments that include servers and virtual machines. In

addition, and based on the understanding gathered using the proposed analysis

environment, this thesis has performed research on scheduling mechanisms and

policies oriented towards the efficient execution of multithreaded Java applications on

multiprocessor systems considering the interactions and coordination between

scheduling mechanisms and policies at different levels: application, application

server, JVM, threads library and operating system.

In order to achieve these main objectives, the thesis has been divided in the

following work areas.

� Analysis and Visualization of Multithreaded Java Applications

� Self-Adaptive Multithreaded Java Applications

� Resource Provisioning for Multithreaded Java Applications

7.1.1 Analysis and Visualization of Multithreaded Java Applications

The “Analysis and Visualization of Multithreaded Java Applications” work

area claims that a real performance improvement on multithreaded Java applications

must be preceded by a fine-grain analysis of applications behavior, considering all

148 Chapter 7

levels involved in the applications execution, in order to detect the bottlenecks for

performance.

Therefore, the main contribution in this work area has been the proposal of a

performance analysis framework to perform a complete analysis of the Java

applications behavior based on providing to the user detailed information about all

levels involved in the application execution, giving him the chance to construct his

own metrics, oriented to the kind of analysis he wants to perform.

The proposed performance analysis framework consists of two tools: an

instrumentation tool, called JIS (Java Instrumentation Suite), and an analysis and

visualization tool, called Paraver. When instrumenting a given application, JIS

generates a trace in which the information collected from all levels has been

correlated and merged. Later, the trace can be visualized and analyzed with Paraver

(qualitatively and quantitatively) to identify the performance bottlenecks of the

application.

JIS provides information from all levels involved in the application execution.

From the system level, information about threads state and system calls (I/O, sockets,

memory management and thread management) can be obtained. Several

implementations have been performed depending on the underlying platform. A

dynamic interposition mechanism that obtains information about the supporting

threads layer (i.e. Pthreads library) without recompilation has been implemented for

the SGI Irix platform. In the same way, a device driver that gets information from a

patched Linux kernel has been developed for the Linux platform. JIS uses the JVMPI

to obtain information from the JVM level. At this level of analysis, the user can obtain

information about several Java abstractions like classes, objects, methods, threads and

monitors, but JIS only obtains at this level the name of the Java threads and

information from the different Java Monitors (when they are entered, exited or

contended), due to the large overhead produced when using JVMPI. Information

relative to services (i.e. servlets and EJB), requests, connections or transactions can be

obtained from the application server level. Moreover, some extra information can be

added to the final trace file by generating user events from the application code.

Information at these levels can be inserted by hard-coding JNI calls to the

instrumentation library on the server or the application source or by introducing them

Conclusions 149

dynamically using Aspect programming techniques without source code

recompilation.

As a special case of instrumentation at the application level, support for JOMP

applications has been added to JIS. JOMP includes OpenMP-like extensions to

specify parallelism in Java applications using a shared-memory programming

paradigm. This instrumentation approach has been designed to provide a detailed

analysis of the parallel behavior at the JOMP programming model level. At this level,

the user is faced with parallel, work-sharing and synchronization constructs. The

JOMP compiler has been modified to inject JNI calls to the instrumentation library

during the code generation phase at specific points in the source code.

The experience in this work area has demonstrated the benefit of disposing of

correlated information about all the levels involved in Java applications execution to

perform a fine-grain analysis of their behavior. This thesis claims that a real

performance improvement on multithreaded Java applications execution can only be

achieved if the performance bottlenecks at all levels can be identified.

7.1.2 Self-Adaptive Multithreaded Java Applications

The “Self-Adaptive Multithreaded Java Applications” work area has

demonstrated the benefit of implementing self-adaptive multithreaded Java

applications in order to achieve good performance when using Java in parallel

environments. Self-adaptive applications are those applications that can adapt their

behavior to the amount of resources allocated to them.

This thesis has presented two contributions in this work area towards

achieving self-adaptive applications and has demonstrated the performance

improvement obtained when having this kind of applications. The first contribution in

this work area has been a complete characterization of the scalability of Java

application servers when executing secure dynamic web applications. This

characterization is divided in two parts:

The first part has consisted of measuring Tomcat vertical scalability (i.e.

adding more processors) when using SSL and analyzing the effect of this addition on

server scalability. The results have confirmed that running with more processors

makes the server able to handle more clients before overloading and even when the

server has reached an overloaded state, better throughput can be obtained if running

150 Chapter 7

with more processors. The second part has involved an analysis of the causes of

server overload when running with different number of processors using the

performance analysis framework proposed in Chapter 3 of this thesis. The analysis

has revealed that the processor is a bottleneck for Tomcat performance on secure

environments (the massive arrival of new SSL connections demands a computational

power that the system is unable to supply and the performance is degraded) and could

make sense to upgrade the system adding more processors to improve the server

scalability. The analysis results also have demonstrated the convenience of

incorporating to the Tomcat server some kind of overload control mechanism to avoid

the throughput degradation produced due to the massive arrival of new SSL

connections that the analysis has detected.

Based on the conclusions extracted from this analysis, the second contribution

has been the implementation of a session-based adaptive overload control mechanism

based on SSL connections differentiation and admission control. SSL connections

differentiation has been accomplished using a possible extension of the JSSE package

in order to allow distinguishing resumed SSL connections (that reuse an existing SSL

session on server) from new SSL connections. This feature has been used to

implement a session-based adaptive admission control mechanism that has been

incorporated to the Tomcat server. This admission control mechanism differentiates

new SSL connections from resumed SSL connections limiting the acceptation of new

SSL connections to the maximum number acceptable with the available resources

without overloading the server, while accepting all the resumed SSL connections in

order to maximize the number of sessions completed successfully, allowing to e-

commerce sites based on SSL to increase the number of transactions completed.

The experimental results demonstrate that the proposed mechanism prevents

the overload of Java application servers in secure environments. It maintains response

time in levels that guarantee good QoS and avoids completely throughput degradation

(throughput degrades until approximately the 20% of the maximum achievable

throughput when server overloads), while maximizes the number of sessions

completed successfully (which is a very important metric on e-commerce

environments). These results confirm that security must be considered as an important

issue that can heavily affect the scalability and performance of Java application

servers.

Conclusions 151

7.1.3 Resource Provisioning for Multithreaded Java Applications

The “Resource Provisioning for Multithreaded Java Applications” work area

has shown how, in addition to implement self-adaptive applications that can adapt

their behavior depending on the available resources, the cooperation between the

applications and the execution environment in order to manage efficiently the

resources improves the performance of multithreaded Java applications on

multiprogrammed shared-memory multiprocessors.

This thesis has proposed the implementation of this cooperation based on

establishing a bi-directional communication path between the applications and the

underlying system. On one side, the applications request to the execution environment

the number of processors they need. On the other side, the execution environment can

be requested at any time by the applications to inform them about their processor

assignments. With this information, the applications, which are self-adaptive, can

adapt their behavior to the amount of resources allocated to them as described in

Chapter 4.

This thesis has contributed with the implementation of the cooperation

between the execution environment and the applications for manage the resources as

in HPC environments as in e-business environments. The implementation for HPC

environments considers two different scenarios. In the first one, the application is able

to inform the execution environment about its concurrency level using a service

provided by the underlying thread library. As shown in the experimental results, the

effect on performance of this communication is low when executing applications that

create threads with a long lifetime. In the second scenario, in addition to this

communication path, the execution environment is also able to inform the application

about the resource provisioning decisions. As the application is malleable (i.e. self-

adaptive), it is able to react to these decisions by changing the degree of parallelism

that it is actually exploited from the application.

The experimental results show a noticeable impact on the final performance

for malleable applications. Improvements avoiding performance degradation in non-

overloaded multiprogrammed environments range from 7% to 31% when malleable

applications do not adapt to the assigned processors, and from 12% to 33% otherwise.

On multiprogrammed overloaded environments, improvements range from 10% to

26% when malleable applications do not adapt to the assigned processors, and from

152 Chapter 7

8% to 58% otherwise. Notice that, in an overloaded system it is very important if

applications are malleable, because there are not enough resources to satisfy all the

requests. Although this scenario is based on malleable applications, this chapter has

demonstrated that is also possible to maintain the efficiency of non-malleable

applications. The performance degradation for this kind of applications is almost the

same when running with Irix or with JNE.

The implementation of the cooperation between the execution environment

and the applications for manage efficiently the resources in e-business environments

has used an overload control approach for self-adaptive Java application servers

running secure e-commerce applications that brings together admission control based

on SSL connections differentiation and dynamic provisioning of platform resources in

order to adapt to changing workloads avoiding the QoS degradation.

The overload control approach is based on a global resource manager

responsible of distributing periodically the available processors among web

applications following a determined policy. The resource manager can be configured

to implement different policies, considering traditional indicators (i.e. response time)

as well as e-business indicators (i.e. customer’s priority). The resource manager and

the applications cooperate to manage the resources using a bi-directional

communication. On one side, the applications request to the resource manager the

number of processors needed to handle their incoming load without QoS degradation.

On the other side, the resource manager can be requested at any time by the

applications to inform them about their processor assignments. With this information,

the applications can apply the admission control mechanism described in Chapter 4

that limits the number of admitted requests so they can be served with the allocated

processors without degrading their QoS.

The experimental results have demonstrated the benefit of combining dynamic

resource provisioning and admission control to prevent overload of Java application

servers in secure environments. On one side, dynamic resource provisioning allows

meeting the requirements of the application servers on demand and adapting to their

changing resource needs. In this way, better resource utilization by extracting

multiplexing gains can be achieved (resources not used by some application may be

distributed among other applications) and the system can react to unexpected

workload increases. On the other side, admission control based on SSL differentiation

Conclusions 153

allows maintaining the response times in levels that guarantee good QoS and avoiding

server throughput degradation (throughput degrades until approximately the 20% of

the maximum achievable throughput when server overloads), while maximizing the

number of sessions completed successfully.

The work performed in this thesis has resulted in several publications that

support the quality of the contributions, including one journal, seven international

conferences (one submitted but not yet accepted), two international workshops, three

national conferences and ten technical reports.

7.2 Future Work

The work performed in this thesis opens several interesting ways that can be

explored as a future work.

� This thesis has focused on self-adaptive application servers, i.e. servers that

adapt their behavior to the amount of resources allocated by the system by

limiting the incoming workload. However, in the way towards full “autonomic

computing” it is desirable that these servers are also able to self-configure

themselves, that is adjust dynamically some configuration parameters (e.g. the

thread pool size) depending on the server workload and the system conditions

in order to achieve the maximum performance and exploit efficiently the

resources. These self-configuring capabilities can be achieved in the Tomcat

server by using the JMX Proxy Servlet, which is a lightweight proxy that

allows dynamically getting and setting the Tomcat internal configuration

parameters.

� This thesis has considered e-business environments based on a single

multiprocessor machine. However, today is common to find hosting platforms

based on clusters of machines, each one running one o more applications.

Future work may consider the extension of the proposed mechanisms to these

architectures. In this scenario, the provisioning technique must determine how

many nodes to allocate to each application and decide how to partition

resources on each node among competing applications (if the node has been

decided to be shared) depending on each application workload. A load

balancer will be also necessary to distribute the incoming client requests into

the different nodes. The load balancer will assign a client request to a node

154 Chapter 7

chosen from the nodes assigned to the application the request belongs to,

trying to balance the workload that the different nodes assigned to this

application must face.

� The J2EE specification defines several types of components to create web

applications, comprising Java Servlets (as considered in this thesis), Java

Server Pages (JSP) and Enterprise Java Beans (EJB). The EJB are business

components intended for the creation of complex and widely distributed web

applications. These objectives are achieved at the cost of introducing a much

higher level of complexity in the J2EE container. This additional complexity

offers a great opportunity to propose new resource management mechanisms

and policies, adapted to some of the especial requirements of an EJB

container: EJB pools and caches, and persistence and transaction managers.

The management strategies applied to an EJB container should cooperate with

the system resource management techniques proposed in this thesis.

� Resource provisioning proposed in this thesis has focused on processors

management, because the work is oriented towards secure e-business

workloads, which are CPU-intensive. Of course, other kind of workloads will

need an efficient management of other resources (for instance, network or

database) to achieve good performance. The cooperation between the

applications and the execution environment proposed in this thesis can be

extended to consider these resources.

� This thesis has demonstrated the benefit of considering e-business indicators

when designing policies for provisioning resources to the servers, using as an

example a simple indicator: the customer’s priority. Future work may consider

the implementation of more sophisticated policies using other e-business

indicators of great interest for the e-commerce sites, such as the revenue

generated. For instance, a policy could prioritize those requests belonging to

sessions that are about to complete (for example, about to purchase a product),

because those requests are likely to generate more revenue for the site.

Appendices 155

APPENDICES

A. Java Grande Benchmarks

A.1 Section 1: Low Level Operations

� ForkJoin

This benchmark measures the time spent creating and joining threads.

Performance is measured in fork-join operations per second.

� Barrier

This measures the performance of barrier synchronization. Performance is

measured in barrier operations per second. Two types of barriers have been

implemented. The first of these uses a shared counter. When a thread calls the barrier

routine the counter is incremented. The thread then calls the wait() method. When

the final thread enters the barrier, the counter is incremented and notifyAll() called,

signaling all the other threads. The second of these is a static 4-way tournament

barrier. This is a lock-free barrier, whose correctness cannot be formally guaranteed

under the current, somewhat ambiguous, specification of the Java memory model.

However, we have observed no such problems in practice. This barrier is used where

barrier synchronization is required in Sections 2 and 3 of the suite.

� Sync

This benchmark measures the performance of synchronized methods and

synchronized blocks. Performance is measured in synchronizations per second. The

Method benchmark in the serial suite measures the performance of synchronized

methods on a single thread. Here we measure the performance on multiple threads,

where there is guaranteed to be contention for the object locks.

156 Appendices

A.2 Section 2: Kernels

� Crypt: IDEA encryption

Crypt performs IDEA (International Data Encryption Algorithm) encryption

and decryption on an array of N bytes. Performance units are bytes per second. It is

bit/byte operation intensive. This algorithm involves two principle loops, whose

iterations are independent and are divided between the threads in a block fashion.

Size N

A 3,000,000

B 20,000,000

C 50,000,000

� LUFact: LU factorization

Solves an N x N linear system using LU factorization followed by a triangular

solve. This is a Java version of the well-known Linpack benchmark. Performance

units are Mflops per second. It is memory and floating point intensive. The

factorization is the only part of the computation performed that is parallelized: the

remainder is computed in serial. Iterations of the double loop over the trailing block

of the matrix are independent and the work is divided between the threads in a block

fashion. Barrier synchronization is required before and after the parallel loop.

Size N

A 500

B 1,000

C 2,000

� SOR: Successive over-relaxation

The SOR benchmark performs 100 iterations of successive over-relaxation on

an N x N grid. The performance reported is in iterations per second. This benchmark

involves an outer loop over iterations and two inner loops, each looping over the grid.

In order to update elements of the principle array during each iteration, neighboring

elements of the array are required, including elements previously updated. Hence this

benchmark is, in this form, inherently serial. To allow parallelization to be carried out

the algorithm has been modified to use a “red-black” ordering mechanism. This

Appendices 157

allows the loop over array rows to be parallelized, hence the outer loop over elements

has been distributed between threads in a block manner. Only nearest neighbor

synchronization is required, rather than a full barrier.

Size N

A 1,000

B 1,500

C 2,000

� Series: Fourier coefficient analysis

This benchmark computes the first N Fourier coefficients of the function f(x)

= (x+1)^x on the interval 0,2. Performance units are coefficients per second. This

benchmark heavily exercises transcendental and trigonometric functions. The most

time consuming component of the benchmark is the loop over the Fourier

coefficients. Each iteration of the loop is independent of every other loop and the

work may be distributed simply between the threads. The work of this loop is divided

evenly between the threads in a block fashion, with each thread responsible for

updating the elements of its own block.

Size N

A 10,000

B 100,000

C 1,000,000

� Sparse: Sparse matrix multiplication

This uses an unstructured sparse matrix stored in compressed-row format with

a prescribed sparsity structure. This kernel exercises indirection addressing and non-

regular memory references. An N x N sparse matrix is used for 200 iterations. The

principle computation involves an outer loop over iterations and an inner loop over

the size of the principal arrays. The simplest parallelization mechanism is to divide

the loop over the array length between threads. Parallelizing this loop creates the

potential for more than one thread to up-date the same element of the result vector. To

avoid this the non zero elements are sorted by their row value. The loop has then been

parallelized by dividing the iterations into blocks, which are approximately equal, but

adjusted to ensure that no row is access by more than one thread.

158 Appendices

Size N

A 50,000

B 100,000

C 500,000

A.3 Section 3: Large Scale Applications

� MonteCarlo: Monte Carlo simulation

A financial simulation, using Monte Carlo techniques to price products

derived from the price of an underlying asset. The code generates N sample time

series with the same mean and fluctuation as a series of historical data. Performance is

measured in samples per second. The principle loop over number of Monte Carlo runs

can be easily parallelized by dividing the work in a block fashion.

Size N

A 2,000

B 60,000

� RayTracer: 3D ray tracer

This benchmark measures the performance of a 3D raytracer. The scene

rendered contains 64 spheres, and is rendered at a resolution of N x N pixels. The

performance is measured in pixels per second. The outermost loop (over rows of

pixels) has been parallelized using a cyclic distribution for load balance. Since the

scene data is fairly small, a copy of the scene is created for each thread. This allows

optimizations in the serial code, principally the use of class variables for temporary

storage, to be carried over to the parallel version.

Size N

A 150

B 500

� Euler: Computational fluid dynamics

The Euler benchmark solves the time-dependent Euler equations for flow in a

channel with a "bump" on one of the walls. A structured, irregular, N x 4N mesh is

employed, and the solution method is a finite volume scheme using a fourth order

Appendices 159

Runge-Kutta method with both second and fourth order damping. The solution is

iterated for 200 timesteps. Performance is reported in units of timesteps per second.

Size N

A 64

B 96

� MolDyn: Molecular dynamics simulation

MolDyn is an N-body code modeling particles interacting under a Lennard-

Jones potential in a cubic spatial volume with periodic boundary conditions.

Performance is reported in interactions per second. The number of particles is give by

N. The original Fortran 77 code was written by Dieter Heerman, Institut für

Theoretische Physik, Germany and converted to Java by Lorna Smith, EPCC. The

computationally intense component of the benchmark is the force calculation, which

calculates the force on a particle in a pair wise manner. This involves an outer loop

over all particles in the system and an inner loop ranging from the current particle

number to the total number of particles. The outer loop has been parallelized by

dividing the range of the iterations of the outer loop between the threads, in a cyclic

manner to avoid load imbalance. A copy of the data structure containing the force

updates is created on each thread. Each thread accumulates force updates in its own

copy. Once the force calculation is complete, these arrays are reduced to a single total

force for each particle.

Size N

A 2,048

B 8,788

Bibliography 161

BIBLIOGRAPHY

[1] T. Abdelzaher and N. Bhatti. Web Content Adaptation to Improve Server Overload
Behavior. Computer Networks, Vol. 31 (11-16), pp. 1563-1577. May 1999.

[2] T. Abdelzaher, K. Shin and N. Bhatti. Performance Guarantees for Web Server
End-Systems: A Control-Theoretical Approach. IEEE Transactions on Parallel and
Distributed Systems Vol. 13 (1), pp. 80-96. January 2002.

[3] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.D. Choi, A.
Cocchi, S. J. Fink, D. Grove, M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M.
F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E.
Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeño Virtual
Machine. IBM System Journal, Vol. 39 (1), 2000, pp. 211-238.

[4] C. Amza, E. Cecchet, A. Chanda, A. Cox, S. Elnikety, R. Gil, J. Marguerite, K.
Rajamani and W. Zwaenepoel. Specification and Implementation of Dynamic Web
Site Benchmarks. IEEE 5th Annual Workshop on Workload Characterization
(WWC-5), Austin, Texas, USA. November 25, 2002.

[5] Y. An, T. K. T. Lau and P. Shum. A Scalability Study for WebSphere Application
Server and DB2. IBM white paper. January 2002.
http://www-
106.ibm.com/developerworks/db2/library/techarticle/0202an/0202an.pdf

[6] T. Anderson, B. Bershad, E. Lazowska and H. Levy. Scheduler Activations:
Effective Kernel Support for the User-Level Management of Parallelism. 13th
ACM Symposium on Operating System Principles (SOSP’91), pp. 95-109, Pacific
Grove, California, USA. October 13-16, 1991.

[7] A. Andrzejak, M. Arlitt, and J. Rolia. Bounding the Resource Savings of Utility
Computing Models. Technical Report HPL-2002-339, HP Labs. December 2002.

[8] S. Anne, A. Dickson, D. Eaton, J. Guizan and R. Maiolini. JBoss 3.2.1 vs.
WebSphere 5.0.2 Trade3 Benchmark. SMP Scaling: Comparison report. SWG
Competitive Technology Lab. October 2003.
http://www.werner.be/blog/resources/werner/JBoss_3.2.1_vs_WAS_5.0.2.pdf

[9] Apache HTTP Server Project
http://httpd.apache.org/

[10] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, S. Krishnakumar, D. Pazel, J.
Pershing, and B. Rochwerger. Oceano - SLA-based Management of a Computing
Utility. IFIP/IEEE Symposium on Integrated Network Management (IM 2001), pp.
855-868, Seattle, Washington, USA. May 14-18, 2001.

[11] AutoTune web site
http://www.research.ibm.com/PM/

[12] G. Banga, P. Druschel and J. C. Mogul. Resource Containers: A New Facility for
Resource Management in Server Systems. 3rd Symposium on Operating Systems
Design and Implementation (OSDI’99), pp. 45-58, New Orleans, Louisiana, USA.
February 22-25, 1999.

[13] Barcelona eDragon Research Group
http://www.cepba.upc.es/eDragon

162 Bibliography

[14] P. Barford and M. Crovella. Generating Representative Web Workloads for
Network and Server Performance Evaluation. ACM SIGMETRICS’98, pp. 151-
160, Madison, Wisconsin, USA. June 24-26, 1998.

[15] J. Bartolomé and J. Guitart. A Survey on Java Profiling Tools. Research Report
number: UPC-DAC-2001-13 / UPC-CEPBA-2001-10, April 2001.

[16] A. Bechini and C.A. Prete. Instrumentation of Concurrent Java Applications for
Program Behavior Investigation. 1st Annual Workshop on Java for High
Performance Computing (part of the 13th ACM International Conference on
Supercomputing ICS'99), pp. 21-29, Rhodes, Greece. June 20, 1999.

[17] BEA Systems, Inc. Achieving Scalability and High Availability for E-Business.
BEA white paper. March 2003.
http://dev2dev.bea.com/products/wlserver81/whitepapers/WLS_81_Clustering.jsp

[18] V. Beltran, D. Carrera, J. Torres and E. Ayguade. Evaluating the Scalability of
Java Event-Driven Web Servers. 2004 International Conference on Parallel
Processing (ICPP’04), pp. 134-142, Montreal, Canada. August 15-18, 2004.

[19] V. Beltran, J. Guitart, D. Carrera, J. Torres, E. Ayguadé and J. Labarta.
Performance Impact of Using SSL on Dynamic Web Applications. XV Jornadas
de Paralelismo, pp. 471-476, Almeria, Spain. September 15-17, 2004.

[20] A.J.C. Bik and D.B. Gannon. Automatically Exploiting Implicit Parallelism in
Java. Concurrency: Practice and Experience, Vol. 9 (6), pp.579-619. June 1997.

[21] A.J.C. Bik and D.B. Gannon. Javar: A Prototype Java Restructuring Compiler.
UICS Technical Report TR487, July 1997.

[22] J.M. Bull. Measuring Synchronization and Scheduling Overheads in OpenMP. 1st
European Workshop on OpenMP (EWOMP’99), pp. 99-105, Lund, Sweden.
September 30 - October 1, 1999.

[23] J.M. Bull and M.E. Kambites. JOMP - an OpenMP-like Interface for Java. 2000
ACM Java Grande Conference, pp. 45-53, San Francisco, California, USA. June 3-
5, 2000.

[24] J.M. Bull, L.A. Smith, L. Pottage and R. Freeman. Benchmarking Java against C
and Fortran for Scientific Applications. ACM Java Grande/ISCOPE 2001
Conference, pp. 97-105, Stanford, California, USA. June 2-4, 2001.

[25] J.M. Bull, M.D. Westhead, M.E. Kambites and J.Obdrvzalek. Towards OpenMP
for Java. 2nd European Workshop on OpenMP (EWOMP’00), pp. 98-105,
Edimburgh, UK. September 14-15, 2000.

[26] B. Carpenter, G. Zhang, G. Fox, X. Li and Y. Wen. HPJava: Data Parallel
Extensions to Java. Concurrency: Practice and Experience, Vol. 10 (11-13), pp.
873-877. September 1998.

[27] D. Carrera, J. Guitart, J. Bartolome, J. Torres and E. Ayguadé. JIS-JVMPI per
Linux IA32: Instrumentació d'aplicacions Java en un entorn Linux. Research
Report number: UPC-DAC-2002-36 / UPC-CEPBA-2002-13, July 2002.

[28] D. Carrera, J. Guitart, V. Beltran, J. Torres and E. Ayguadé. Performance Impact
of the Grid Middleware. In Engineering the Grid: Status and Perspective,
American Scientific Publishers, May 2005.

[29] D. Carrera, J. Guitart, J. Torres, E. Ayguadé and J. Labarta. An Instrumentation
Tool for Threaded Java Application Servers. XIII Jornadas de Paralelismo, pp.
205-210, Lleida, Spain. September 9-11, 2002.

[30] D. Carrera, J. Guitart, J. Torres, E. Ayguadé and J. Labarta. Complete
Instrumentation Requirements for Performance Analysis of Web based
Technologies. 2003 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS’03), pp. 166-175, Austin, Texas, USA. March 6-8,
2003.

Bibliography 163

[31] D. Carrera, J. Guitart, J. Torres, E. Ayguadé and J. Labarta. An Instrumentation
Environment for Java Application Servers. Research Report number: UPC-DAC-
2002-55 / UPC-CEPBA-2002-20, December 2002.

[32] E. Cecchet, J. Marguerite and W. Zwaenepoel. Performance and Scalability of EJB
Applications. 17th ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA’02), pp. 246-261. Seattle,
Washington, USA. November 4-8, 2002

[33] CEPBA web site
http://www.cepba.upc.edu/

[34] A. Chandra, W. Gong and P. Shenoy. Dynamic Resource Allocation for Shared
Data Centers Using Online Measurements. 11th International Workshop on
Quality of Service (IWQoS 2003), pp. 381-400, Berkeley, California, USA. June
2-4, 2003.

[35] A. Chandra, P. Goyal and P. Shenoy. Quantifying the Benefits of Resource
Multiplexing in On-Demand Data Centers. 1st Workshop on Algorithms and
Architectures for Self-Managing Systems (Self-Manage 2003), San Diego,
California, USA. June 11, 2003.

[36] A. Chandra and P. Shenoy. Effectiveness of Dynamic Resource Allocation for
Handling Internet Flash Crowds. Technical Report TR03-37, Department of
Computer Science, University of Massachusetts, USA. November 2003.

[37] S. Chandra, C. Ellis and A. Vahdat. Differentiated Multimedia Web Services using
Quality Aware Transcoding. IEEE INFOCOM 2000, pp. 961-969, Tel-Aviv,
Israel. March 26-30, 2000.

[38] X. Chen, H. Chen and P. Mohapatra. ACES: An Efficient Admission Control
Scheme for QoS-Aware Web Servers. Computer Communications, Vol. 26 (14),
pp. 1581-1593. September 2003.

[39] H. Chen and P. Mohapatra. Overload Control in QoS-aware Web Servers.
Computer Networks, Vol. 42 (1), pp. 119-133. May 2003.

[40] L. Cherkasova and P. Phaal. Session-Based Admission Control: A Mechanism for
Peak Load Management of Commercial Web Sites. IEEE Transactions on
Computers, Vol. 51 (6), pp. 669-685. June 2002.

[41] W. Chiu. Design for Scalability. IBM white paper. September 2001. http://www-
106.ibm.com/developerworks/websphere/library/techarticles/hvws/scalability.html

[42] J.D. Choi and H. Srinivasan. Deterministic Replay of Java Multithreaded
Applications. ACM SIGMETRICS Symposium on Parallel and Distributed Tools,
pp. 48-59, Welches, Oregon, USA. August 3-4, 1998.

[43] C. Coarfa, P. Druschel, and D. Wallach. Performance Analysis of TLS Web
Servers. 9th Network and Distributed System Security Symposium (NDSS’02),
San Diego, California, USA. February 6-8, 2002.

[44] J. Corbalan and J. Labarta. Improving Processor Allocation through Run-Time
Measured Efficiency. 15th International Parallel and Distributed Processing
Symposium (IPDPS’01), pp. 74-80, San Francisco, California, USA. April 23-27,
2001.

[45] J. Corbalan, X. Martorell and J. Labarta. Performance-Driven Processor
Allocation. 4th Operating System Design and Implementation (OSDI’00), pp. 59-
73, San Diego, California, USA. October 22-25, 2000.

[46] M. Crovella, R. Frangioso and M. Harchol-Balter. Connection Scheduling in Web
Servers. 2nd Symposium on Internet Technologies and Systems (USITS’99),
Boulder, Colorado, USA. October 11-14, 1999.

[47] T. Dierks and C. Allen. The TLS Protocol, Version 1.0. RFC 2246. January 1999.

164 Bibliography

[48] R. Doyle, J. Chase, O. Asad, W. Jin and Amin Vahdat. Model-Based Resource
Provisioning in a Web Service Utility. 4th Symposium on Internet Technologies
and Systems (USITS’03), Seattle, Washington, USA. March 26-28, 2003.

[49] eLiza web site
http://www-1.ibm.com/servers/eserver/introducing/eliza/

[50] S. Elnikety, E. Nahum, J. Tracey and W. Zwaenepoel. A Method for Transparent
Admission Control and Request Scheduling in E-Commerce Web Sites. 13th
International Conference on World Wide Web (WWW’04), pp. 276-286, New
York, New York, USA. May 17-22, 2004.

[51] Empirix Solutions for Web Application Performance
http://www.empirix.com

[52] EPCC web site
http://www.epcc.ed.ac.uk/

[53] D. Feitelson. A Survey of Scheduling in Multiprogrammed Parallel Systems.
Research Report RC 19790, IBM Watson Research Center. October 1994.

[54] A. Ferrari. JPVM: Network Parallel Computing in Java. 1998 ACM Workshop on
Java for High-Performance Network Computing, Palo Alto, California, USA.
February 28 - March 1, 1998.

[55] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach and T. Berners-
Lee. Hypertext Transfer Protocol -- HTTP/1.1. RFC 2616. June 1999.

[56] A. O. Freier, P. Karlton, and C. Kocher. The SSL Protocol, Version 3.0. November
1996.

[57] D. Garcia, D. Carrera, E. Ayguadé and J. Torres. Eines per a la Monitorització i el
Traceig de Servidors d’Aplicacions J2EE. Research Report number: UPC-CEPBA-
2004-3, March 2004.

[58] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek and V. Sunderam.
PVM: Parallel Virtual Machine A Users’ Guide and Tutorial for Networked
Parallel Computing. MIT Press, 1994.

[59] A. Goldberg, R. Buff and A. Schmitt. Secure Web Server Performance
Dramatically Improved by Caching SSL Session Keys. Workshop on Internet
Server Performance (WISP’98) (in conjunction with SIGMETRICS’98), Madison,
Wisconsin, USA. June 23, 1998.

[60] W. Grosso. Aspect-Oriented Programming and AspectJ. Dr. Dobbs Journal.
August 2002.

[61] J. Guitart, V. Beltran, D. Carrera, J. Torres and E. Ayguadé. Characterizing Secure
Dynamic Web Applications Scalability. 19th International Parallel and Distributed
Symposium (IPDPS’05), Denver, Colorado, USA. April 4-8, 2005.

[62] J. Guitart, D. Carrera, V. Beltran, J. Torres and E. Ayguadé. Dynamic Resource
Provisioning for Self-Managed QoS-Aware Secure e-Commerce Applications in
SMP Hosting Platforms. To be submitted to the 20th International Parallel and
Distributed Symposium (IPDPS’06), Rhodes Island, Greece. April 26-29, 2006.

[63] J. Guitart, D. Carrera, V. Beltran, J. Torres and E. Ayguadé. Session-Based
Adaptive Overload Control for Secure Dynamic Web Applications. 34th
International Conference on Supercomputing (ICPP’05), pp. 341-349, Oslo,
Norway. June 14-17, 2005.

[64] J. Guitart, D. Carrera, V. Beltran, J. Torres and E. Ayguadé. Session-Based
Adaptive Overload Control for Dynamic Web Applications in Secure
Environments. Research Report number: UPC-DAC-RR-2005-14, March 2005.

[65] J. Guitart, D. Carrera, J. Torres, E. Ayguadé and J. Labarta. Tuning Dynamic Web
Applications using Fine-Grain Analysis. 13th Euromicro Conference on Parallel,

Bibliography 165

Distributed and Network-based Processing (PDP’05), pp. 84-91, Lugano,
Switzerland. February 9-11, 2005.

[66] J. Guitart, D. Carrera, J. Torres, E. Ayguadé and J. Labarta. Successful
Experiences Tuning Dynamic Web Applications using Fine-Grain Analysis.
Research Report number: UPC-DAC-2004-3 / UPC-CEPBA-2004-2, January
2004.

[67] J. Guitart, X. Martorell, J. Torres and E. Ayguadé. Application/Kernel Cooperation
Towards the Efficient Execution of Shared-memory Parallel Java Codes. 17th
International Parallel and Distributed Symposium (IPDPS'03), Nice, France. April
22-26, 2003.

[68] J. Guitart, X. Martorell, J. Torres and E. Ayguadé. Improving the Performance of
Shared-memory Parallel Java Codes Using Application/Kernel Cooperation.
Research Report number: UPC-DAC-2003-1 / UPC-CEPBA-2003-1, January
2003.

[69] J. Guitart, X. Martorell, J. Torres and E. Ayguadé. Efficient Execution of Parallel
Java Applications. 3rd Annual Workshop on Java for High Performance
Computing (part of the 15th ACM International Conference on Supercomputing
ICS'01), pp. 31-35, Sorrento, Italy. June 17, 2001.

[70] J. Guitart, X. Martorell, J. Torres and E. Ayguadé. Improving Java Multithreading
Facilities: the Java Nanos Environment. Research Report number: UPC-DAC-
2001-8 / UPC-CEPBA-2001-8, March 2001.

[71] J. Guitart, J. Torres, E. Ayguadé and J.M. Bull. Performance Analysis Tools for
Parallel Java Applications on Shared-memory Systems. 30th International
Conference on Supercomputing (ICPP’01), pp. 357-364, Valencia, Spain.
September 3-7, 2001.

[72] J. Guitart, J. Torres, E. Ayguadé and J. M. Bull. Performance Analysis of Parallel
Java Applications on Shared-memory Systems. Research Report number: UPC-
DAC-2001-01 / UPC-CEPBA-2001-1, January 2001.

[73] J. Guitart, J. Torres, E. Ayguadé, J. Oliver and J. Labarta. Instrumentation
Environment for Java Threaded Applications. XI Jornadas de Paralelismo, pp. 89-
94. Granada, Spain, September 12-14, 2000.

[74] J. Guitart, J. Torres, E. Ayguadé, J. Oliver and J. Labarta. Java Instrumentation
Suite: Accurate Analysis of Java Threaded Applications. 2nd Annual Workshop on
Java for High Performance Computing (part of the 14th ACM International
Conference on Supercomputing ICS’00), pp. 15-25, Santa Fe, New Mexico, USA.
May 7, 2000.

[75] J. Guitart, J. Torres, E. Ayguadé, J. Oliver and J. Labarta. Last Results using the
Java Instrumentation Suite. Research Report number: UPC-DAC-2000-56 / UPC-
CEPBA-2000-25, September 2000.

[76] J. Guitart, J. Torres, E. Ayguadé, J. Oliver and J. Labarta. Preliminary Experiences
using the Java Instrumentation Suite. Research Report number: UPC-DAC-2000-
25 / UPC-CEPBA-2000-12, April 2000.

[77] I. Haddad and G. Butler. Experimental Studies of Scalability in Clustered Web
System. Workshop on Communication Architecture for Clusters (CAC’04) (in
conjunction with International Parallel and Distributed Processing Symposium
(IPDPS’04)), Santa Fe, New Mexico, USA. April 26, 2004.

[78] I. Haddad. Scalability Issues and Clustered Web Servers. Technical Report.
Concordia University. August 13, 2000.

[79] I. Haddad. Open-Source Web Servers: Performance on Carrier-Class Linux
Platform. Linux Journal, Volume 2001, Issue 91, page 1. November 2001.

166 Bibliography

[80] M. Harchol-Balter, B. Schroeder, N. Bansal and M. Agrawal. Size-based
Scheduling to Improve Web Performance. ACM Transactions on Computer
Systems (TOCS), Vol. 21 (2), pp. 207-233. May 2003.

[81] HAT: Heap Analysis Tool
https://hat.dev.java.net/

[82] IBM Corporation. AIX V4.3.3 Workload Manager. Technical Reference. February
2000.

[83] IBM Corporation, Microsoft Corporation and VeriSign Inc. Web Services Security
(WS-Security) Specification. Version 1.0.05. April 2002.
http://www-106.ibm.com/developerworks/webservices/library/ws-secure/

[84] Jakarta Tomcat Servlet Container
http://jakarta.apache.org/tomcat

[85] Java Grande Forum Benchmarks Suite
http://www.epcc.ed.ac.uk/computing/research_activities/java_grande/

[86] M. Ji, E. Felten and K. Li. Performance Measurements for Multithreaded
Programs. ACM SIGMETRICS Performance Evaluation Review, Vol. 26 (1), pp.
161-170. June 1998.

[87] G. Judd, M. Clement, Q. Snell and V. Getov. Design Issues for Efficient
Implementation of MPI in Java. 1999 ACM Java Grande Conference, pp. 58-65,
San Francisco, California, USA. June 12-14, 1999.

[88] M.E. Kambites. Java OpenMP: Demonstration Implementation of a Compiler for a
Subset of OpenMP for Java. EPCC Techical Report EPCC-SS99-05, September
1999. http://www.epcc.ed.ac.uk/ssp/1999/ProjectSummary/kambites.html

[89] A. Kamra, V. Misra and E. Nahum. Yaksha: A Controller for Managing the
Performance of 3-Tiered Websites. 12th International Workshop on Quality of
Service (IWQoS 2004), Montreal, Canada. June 7-9, 2004.

[90] K. Kant, R. Iyer, and P. Mohapatra. Architectural Impact of Secure Socket Layer
on Internet Servers. 2000 IEEE International Conference on Computer Design
(ICCD’00), pp. 7-14, Austin, Texas, USA. September 17-20, 2000.

[91] I . H. Kazi, D. P. Jose, B. Ben-Hamida, C. J. Hescott, C. Kwok, J. A. Konstan, D.
J. Lilja and P.C. Yew. JaViz: A Client/Server Java Profiling Tool. IBM Systems
Journal, Vol. 39 (1), 2000, pp. 96-117.

[92] D. Keppel. Tools and Techniques for Building Fast Portable Threads Packages.
Technical Report UWCSE 93-05-06, University of Washington, 1993.

[93] R. Klemm. Practical Guideline for Boosting Java Server Performance. 1999 ACM
Java Grande Conference, pp. 25-34, San Francisco, California, USA. June 12-14,
1999.

[94] S. Kounev and A. Buchmann. Performance Modeling and Evaluation of Large-
Scale J2EE Applications. 29th International Conference of the Computer
Measurement Group (CMG) on Resource Management and Performance
Evaluation of Enterprise Computing Systems (CMG-2003), Dallas, Texas, USA.
December 7-12, 2003.

[95] L. Lewis. Managing Business and Service Networks, Kluwer Academic
Publishers, 2001.

[96] P. Lin. So You Want High Performance (Tomcat Performance). September 2003.
http://jakarta.apache.org/tomcat/articles/performance.pdf

[97] Z. Liu, M. Squillante and J. Wolf. On Maximizing Service-Level-Agreement
Profits. 3rd ACM Conference on Electronic Commerce (EC 2001), pp. 213-223,
Tampa, Florida, USA. October 14-17, 2001.

Bibliography 167

[98] M. Malzacher and T. Kochie. Using a Web application server to provide flexible
and scalable e-business solutions. IBM white paper. April 2002. http://www-
900.ibm.com/cn/software/websphere/products/download/whitepapers/performance
_40.pdf

[99] B. Marsh, M. Scott, T. LeBlanc and E. Markatos. First-Class User-Level Threads.
13th ACM Symposium on Operating System Principles (SOSP’91), pp. 110-121,
Pacific Grove, California, USA. October 13-16, 1991.

[100] X. Martorell, J. Corbalan, D.S. Nikolopoulos, N. Navarro, E.D. Polychronopoulos,
T.S. Papatheodorou and J. Labarta. A Tool to Schedule Parallel Applications on
Multiprocessors: the NANOS CPU Manager. 6th Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP 2000) (in conjunction with the 14th IEEE
International Parallel and Distributed Processing Symposium (IPDPS 2000)), pp.
55-69, Cancun, Mexico. May 2000.

[101] X. Martorell, J. Labarta, N. Navarro and E. Ayguadé. A Library Implementation of
the Nano Threads Programming Model. 2nd EuroPar Conference, pp. 644-649,
Lyon, France. August 26-29, 1996.

[102] D. Menasce, V. Almeida, R. Fonseca and M. Mendes. Business-Oriented Resource
Management Policies for e-Commerce Servers. Performance Evaluation, Vol. 42
(2-3), pp. 223-239. September 2000.

[103] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard.
Technical Report UT-CS-94-230, 1994.

[104] Metamata Inc. JavaCC: The Java Parser Generator
http://www.metamata.com/JavaCC

[105] N. Meyers. PerfAnal: A Performance Analysis Tool
http://developer.java.sun.com/developer/technicalArticles/Programming/perfanal/

[106] Microsoft Active Server Pages
http://www.asp.net

[107] D. Mosberger and T. Jin. httperf: A Tool for Measuring Web Server Performance.
Workshop on Internet Server Performance (WISP’98) (in conjunction with
SIGMETRICS’98), pp. 59-67. Madison, Wisconsin, USA. June 23, 1998.

[108] R. Mraz. SecureBlue: An Architecture for a High Volume SSL Internet Server.
17th Annual Computer Security Applications Conference (ACSAC’01), New
Orleans, Louisiana, USA. December 10-14, 2001.

[109] MySQL
http://www.mysql.com

[110] Nanos web site
http://www.cepba.upc.es/nanos/

[111] J. Oliver, E. Ayguadé and N. Navarro. Towards an Efficient Exploitation of Loop-
level Parallelism in Java. 2000 ACM Java Grande Conference, pp. 9-15, San
Francisco, California, USA. June 3-5, 2000.

[112] J. Oliver, E. Ayguadé, N. Navarro, J. Guitart, and J. Torres. Strategies for Efficient
Exploitation of Loop-level Parallelism in Java. Concurrency and Computation:
Practice and Experience (Java Grande 2000 Special Issue), Vol.13 (8-9), pp. 663-
680. ISSN 1532-0634, July 2001.

[113] OpenMP web site
http://www.openmp.org/

[114] OptimizeIt Enterprise Suite
http://www.borland.com/optimizeit/

[115] Pallas GmbH. Vampir - Visualization and Analysis of MPI Resources. 1998.
http://www.pallas.de/e/products/

168 Bibliography

[116] Paraver
http://www.cepba.upc.es/paraver

[117] W. Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. M. Vlissides and J. Yang:
Visualizing the Execution of Java Programs. International Seminar on Software
Visualization 2001, pp. 151-162, Dagstuhl Castle, Germany. May 20-25, 2001

[118] PHP Hypertext Preprocessor
http://www.php.net

[119] E.D. Polychronopoulos, X. Martorell, D. Nikolopoulos, J. Labarta, T. S.
Papatheodorou and N. Navarro. Kernel-level Scheduling for the Nano-Threads
Programming Model. 12th ACM International Conference on Supercomputing
(ICS’98), pp. 337-344, Melbourne, Australia. July 13-17, 1998.

[120] E.D. Polychronopoulos, D.S. Nikolopoulos, T.S. Papatheodorou, X. Martorell, J.
Labarta and N. Navarro. An Efficient Kernel-Level Scheduling Methodology for
Multiprogrammed Shared Memory Multiprocessors. 12th International Conference
on Parallel and Distributed Computing Systems (PDCS’99), pp. 148-155, Fort
Lauderdale, Florida, USA. August 18-20, 1999.

[121] POSIX Threads. IEEE POSIX 1003.1c Standard, 1995.
[122] P. Pradhan, R. Tewari, S. Sahu, A. Chandra and P. Shenoy. An Observation-based

Approach Towards Self-Managing Web Servers. 10th International Workshop on
Quality of Service (IWQoS 2002), pp. 13-22, Miami Beach, Florida, USA. May
15-17, 2002.

[123] Quest Software Solutions for Java/J2EE
http://www.quest.com/

[124] S. Ranjan, J. Rolia, H. Fu and E. Knightly. QoS-Driven Server Migration for
Internet Data Centers. 10th International Workshop on Quality of Service (IWQoS
2002), pp. 3-12, Miami Beach, Florida, USA. May 15-17, 2002.

[125] E. Rescorla. HTTP over TLS. RFC 2818. May 2000.
[126] A. Serra, N. Navarro and T. Cortés. DITools: Application-level Support for

Dynamic Extension and Flexible Composition. USENIX Annual 2000 Technical
Conference, pp. 225-238, San Diego, California, USA. June 18-23, 2000.

[127] S. Shende and A. Malony. Performance Tools for Parallel Java Environments. 2nd
Annual Workshop on Java for High Performance Computing (part of the 14th
ACM International Conference on Supercomputing ICS’00), pp. 3-13, Santa Fe,
New Mexico, USA. May 7, 2000.

[128] Silicon Graphics Inc. IRIX Admin: Resource Administration. Document number
007-3700-005, http://techpubs.sgi.com. 2000.

[129] Silicon Graphics Inc. Origin200 and Origin2000 Technical Report. 1996.
[130] I. Subramanian, C. McCarthy and M. Murphy. Meeting Performance Goals with

the HP-UX Workload Manager. 1st Workshop on Industrial Experiences with
Systems Software (WIESS 2000), pp. 79-80, San Diego, California, USA. October
22, 2000.

[131] Sun Microsystems. Enterprise Java Beans Technology (EJB)
http://java.sun.com/products/ejb

[132] Sun Microsystems. Java 2 Platform, Enterprise Edition (J2EE)
http://java.sun.com/j2ee

[133] Sun Microsystems. Java 2 Platform, Standard Edition (J2SE)
http://java.sun.com/j2se

[134] Sun Microsystems. Java Native Interface (JNI)
http://java.sun.com/products/jdk/1.4.2/docs/guide/jni/index.html

Bibliography 169

[135] Sun Microsystems. Java Secure Socket Extension (JSSE)
http://java.sun.com/products/jsse

[136] Sun Microsystems. Java Servlets Technology
http://java.sun.com/products/servlet

[137] Sun Microsystems. JVM Tool Interface (JVMTI)
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/index.html

[138] Sun Microsystems. Solaris Resource Manager[tm] 1.0: Controlling System
Resources Effectively. 2000. http://www.sun.com/software/white-papers/wp-srm/

[139] A. Tucker and A. Gupta. Process Control and Scheduling Issues for
Multiprogrammed Shared Memory Multiprocessors, 12th ACM Symposium on
Operating System Principles (SOSP’89), pp. 159-166, Litchfield Park, Arizona,
USA. December 3-6, 1989.

[140] B. Urgaonkar and P. Shenoy. Cataclysm: Handling Extreme Overloads in Internet
Services. Technical Report TR03-40, Department of Computer Science, University
of Massachusetts, USA. November 2004.

[141] B. Urgaonkar, P. Shenoy and T. Roscoe. Resource Overbooking and Application
Profiling in Shared Hosting Platforms. 5th Symposium on Operating Systems
Design and Implementation (OSDI’02), Boston, Massachusetts, USA. December
9-11, 2002.

[142] D. Verma. Supporting Service Level Agreements on IP Networks, Macmillan
Technical Publishing, 1999.

[143] D. Viswanathan and S. Liang. Java Virtual Machine Profiler Interface. IBM
Systems Journal, Vol. 39 (1), 2000, pp. 82-95.

[144] T. Voigt, R. Tewari, D. Freimuth and A. Mehra. Kernel Mechanisms for Service
Differentiation in Overloaded Web Servers. 2001 USENIX Annual Technical
Conference, pp. 189-202, Boston, Massachusetts, USA. June 25-30, 2001.

[145] A. Voss. Instrumentation and Measurement of Multithreaded Applications. Thesis.
Institut fuer Mathematische Maschinen und Datenverarbeittmg, Universitaet
Erlangen-Nuemberg. January 1997.

[146] Websphere web site
http://www-3.ibm.com/software/info1/websphere/index.jsp

[147] M. Welsh and D. Culler. Adaptive Overload Control for Busy Internet Servers. 4th
Symposium on Internet Technologies and Systems (USITS’03), Seattle,
Washington, USA. March 26-28, 2003.

[148] M. Welsh, D. Culler and E. Brewer. SEDA: An Architecture for Well-
Conditioned, Scalable Internet Services. 18th Symposium on Operating Systems
Principles (SOSP’01), pp. 230-243, Banff, Canada. October 21-24, 2001.

[149] Wily Technology Solutions for Enterprise Java Application Management
http://www.wilytech.com/solutions/index.html

[150] T. Wilson. E-Biz Bucks Lost under SSL Strain. Internet Week Online. May 20,
1999. http://www.internetwk.com/lead/lead052099.htm

[151] P. Wu and P. Narayan. Multithreaded Performance Analysis with Sun WorkShop
Thread Event Analyzer. Authoring and Development Tools, Sunsoft, Technical
White Paper. April 1998.

[152] Z. Xu, B. Miller and O. Naim. Dynamic Instrumentation of Threaded Applications.
1999 ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPoPP’99), pp. 49-59, Atlanta, Georgia, USA. May 4-6, 1999.

[153] Q. Zhao and J. Stasko. Visualizing the Execution of Threads-based Parallel
Programs. Technical Report GIT-GVU-95-01, Georgia Institute of Technology,
Atlanta, Georgia, USA. January 1995.

	TITLE
	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1. INTRODUCTION
	CHAPTER 2. MULTITHREADED JAVA APPLICATIONS
	CHAPTER 3. ANALYSIS AND VISUALIZATION OF MULTITHREADED JAVA APPLICATIONS
	CHAPTER 4. SELF-ADAPTIVE MULTITHREADED JAVA APPLICATIONS
	CHAPTER 5. RESOURCE PROVISIONING FOR MULTITHREADED JAVA APPLICATIONS
	CHAPTER 6. RELATED WORK
	CHAPTER 7. CONCLUSIONS
	APPENDICES
	BIBLIOGRAPHY

