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Abstract v 

ABSTRACT 

 

The design of the Java language, which includes important aspects such as its 

portability and architecture neutrality, its multithreading facilities, its familiarity (due 

to its resemblance with C/C++), its robustness, its security capabilities and its 

distributed nature, makes it a potentially interesting language to be used in parallel 

environments such as high performance computing (HPC) environments, where 

applications can benefit from the Java multithreading support for performing parallel 

calculations, or e-business environments, where multithreaded Java application 

servers (i.e. following the J2EE specification) can take profit of Java multithreading 

facilities to handle concurrently a large number of requests. 

However, the use of Java for parallel programming has to face a number of 

problems that can easily offset the gain due to parallel execution. The first problem is 

the large overhead incurred by the threading support available in the JVM when 

threads are used to execute fine-grained work, when a large number of threads are 

created to support the execution of the application or when threads closely interact 

through synchronization mechanisms. The second problem is the performance 

degradation occurred when these multithreaded applications are executed in 

multiprogrammed parallel systems. The main issue that causes these problems is the 

lack of communication between the execution environment and the applications, 

which can cause these applications to make an uncoordinated use of the available 

resources. 

This thesis contributes with the definition of an environment to analyze and 

understand the behavior of multithreaded Java applications. The main contribution of 

this environment is that all levels in the execution (application, application server, 

JVM and operating system) are correlated. This is very important to understand how 

this kind of applications behaves when executed on environments that include servers 

and virtual machines, because the origin of performance problems can reside in any of 

these levels or in their interaction. 
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In addition, and based on the understanding gathered using the proposed 

analysis environment, this thesis contributes with scheduling mechanisms and policies 

oriented towards the efficient execution of multithreaded Java applications on 

multiprocessor systems considering the interactions and coordination between 

scheduling mechanisms and policies at the different levels involved in the execution. 

The basis idea consists of allowing the cooperation between the applications and the 

execution environment in the resource management by establishing a bi-directional 

communication path between the applications and the underlying system. On one 

side, the applications request to the execution environment the amount of resources 

they need. On the other side, the execution environment can be requested at any time 

by the applications to inform them about their resource assignments.  

This thesis proposes that applications use the information provided by the 

execution environment to adapt their behavior to the amount of resources allocated to 

them (self-adaptive applications). This adaptation is accomplished in this thesis for 

HPC environments through the malleability of the applications, and for e-business 

environments with an overload control approach that performs admission control 

based on SSL connections differentiation for preventing throughput degradation and 

maintaining Quality of Service (QoS). 

The evaluation results demonstrate that providing resources dynamically to 

self-adaptive applications on demand improves the performance of multithreaded Java 

applications as in HPC environments as in e-business environments. While having 

self-adaptive applications avoids performance degradation, dynamic provision of 

resources allows meeting the requirements of the applications on demand and 

adapting to their changing resource needs. In this way, better resource utilization is 

achieved because the resources not used by some application may be distributed 

among other applications. 
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CHAPTER 1 
INTRODUCTION 

 

1.1 Introduction 

Over the last years, Java has consolidated as an interesting language for the 

network programming community. This has largely occurred as a direct consequence 

of the design of the Java language. This design includes, among others, important 

aspects such as the portability and architecture neutrality of Java code, and its 

multithreading facilities. The latter is achieved through built-in support for threads in 

the language definition. The Java library provides the Thread class definition, and 

Java runtimes provide support for thread, mutual exclusion and synchronization 

primitives. These characteristics, besides others like its familiarity (due to its 

resemblance with C/C++), its robustness, its security capabilities and its distributed 

nature also make it a potentially interesting language to be used in parallel 

environments. 

For instance, the Java language could be used in high performance computing 

(HPC) environments, where applications can benefit from the Java multithreading 

support for performing parallel calculations. In the same way, Internet applications 

programmers also use Java when developing these applications. Thus, it is common to 

find Internet servers following the Java 2 Platform Enterprise Edition [132] (J2EE) 

specification (i.e. written in Java), as for instance Tomcat [84] and Websphere [146], 

hosting current web sites. Typically, these servers are multithreaded Java applications 

in charge of serving clients requesting for web content, where each client connection 

is assigned to a thread that is the responsible of attending the received requests in this 

connection. Thus, the servers can take profit of Java multithreading facilities to handle 

concurrently a large number of requests. 

However, although recent results show how the performance gap between 

Java and other traditional languages is being reduced [24], and some language 

extensions [23] and runtime support have been proposed [111] to ease the 
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specification of Java parallel applications and make threaded execution more 

efficient, the use of Java for parallel programming has still to face a number of 

problems that can easily offset the gain due to parallel execution. The first problem is 

the large overhead incurred by the threading support available in the JVM when 

threads are used to execute fine-grained work, when a large number of threads are 

created to support the execution of the application or when threads closely interact 

through synchronization mechanisms. The second problem is the performance 

degradation occurred when these multithreaded applications are executed in 

multiprogrammed parallel systems. The main issue that causes these problems is the 

lack of communication between the execution environment and the applications, 

which can cause these applications to make an uncoordinated use of the available 

resources. 

This thesis contributes with the definition of an environment to analyze and 

understand the behavior of multithreaded Java applications. The main contribution of 

this environment is that all levels in the execution (application, application server, 

JVM and operating system) are correlated. This is very important to understand how 

this kind of applications behaves when executed on environments that include servers 

and virtual machines.  

In addition, and based on the understanding gathered using the proposed 

analysis environment, this thesis proposes research on scheduling mechanisms and 

policies oriented towards the efficient execution of multithreaded Java applications on 

multiprocessor systems considering the interactions and coordination between 

scheduling mechanisms and policies at different levels: application, application 

server, JVM, threads library and operating system.  

In order to achieve these main objectives, the thesis is divided in the following 

work areas. 

� Analysis and Visualization of Multithreaded Java Applications 

� Self-Adaptive Multithreaded Java Applications 

� Resource Provisioning for Multithreaded Java Applications 
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1.2 Contributions 

1.2.1 Analysis and Visualization of Multithreaded Java Applications 

Previous experience on parallel applications has demonstrated that tuning this 

kind of applications for performance is mostly responsibility of (experienced) 

programmers [93]. Therefore, the performance analysis of multithreaded Java 

applications can be a complex work due to this inherent difficulty of analyzing 

parallel applications as well as the extra complexity added by the presence of the Java 

Virtual Machine. In this scenario, performance analysis and visualization tools that 

provide detailed information of multithreaded Java applications behavior are 

necessary in order to help users in the process of tuning the applications on the target 

parallel systems and JVM. 

In the same way, the increasing load that the applications currently developed 

for Internet must support, demands new performance requirements to the Java 

application servers that host them. To achieve these performance requirements, fine-

grain tuning of these servers is needed, but this tuning can be a hard work due to the 

large complexity of these environments (including the application server, distributed 

clients, a database server, etc.). Tuning Java application servers for performance 

requires also of tools that allow an in-depth analysis of application server behavior 

and its interaction with the other system elements. These tools must consider all levels 

involved in the execution of web applications (operating system, JVM, application 

server and application) if they want to provide significant performance information to 

the administrators (the origin of performance problems can reside in any of these 

levels or in their interaction).  

Although a number of tools have been developed to monitor and analyze the 

performance of multithreaded Java applications (see Section 6.1), none of them allow 

a fine-grain analysis of the applications behavior considering all levels involved in the 

application execution. The main contribution in the “Analysis and Visualization of 

Multithreaded Java Applications” work area of this thesis is the proposal of a 

performance analysis framework to perform a complete analysis of the Java 

applications behavior. This framework provides to the user detailed and correlated 

information about all levels involved in the application execution, giving him the 
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chance to construct his own metrics, oriented to the kind of analysis he wants to 

perform.  

The performance analysis framework consists of two tools: an instrumentation 

tool, called JIS (Java Instrumentation Suite), and an analysis and visualization tool, 

called Paraver [116]. When instrumenting a given application, JIS generates a trace in 

which the information collected from all levels has been correlated and merged. The 

trace reflects the activity of each thread in the application recorded in the form of a set 

of predefined state transitions (that are representative of the parallel execution) and 

the occurrence of some predefined events. Later, the trace can be visualized and 

analyzed with Paraver (qualitatively and quantitatively) to identify the performance 

bottlenecks of the application. 

The instrumentation tool (JIS) is responsible of collecting detailed information 

from all levels involved in the execution of Java applications. From the system level, 

information about threads state and system calls (I/O, sockets, memory management 

and thread management) can be obtained. Several implementations are proposed 

depending on the underlying platform. A dynamic interposition mechanism that 

obtains information about the supporting threads layer (i.e. Pthreads library [121]) 

without recompilation has been implemented for the SGI Irix platform. In the same 

way, a device driver that gets information from a patched Linux kernel has been 

developed for the Linux platform. JIS uses the Java Virtual Machine Profiler Interface 

[143] (JVMPI) to obtain information from the JVM level. JVMPI is a common 

interface designed to introduce hooks inside the JVM code in order to be notified 

about some predefined Java events. At this level of analysis, the user can obtain 

information about several Java abstractions like classes, objects, methods, threads and 

monitors, but JIS only obtains at this level the name of the Java threads and the 

operations performed on the different Java Monitors, due to the large overhead 

produced when using JVMPI. Information relative to services (i.e. Java Servlets [136] 

and Enterprise Java Beans [131] (EJB)), requests, connections or transactions can be 

obtained from the application server level. Moreover, some extra information can be 

added to the final trace file by generating user events from the application code. 

Information at these levels can be inserted by hard-coding hooks to a Java Native 

Interface [134] (JNI) on the server or the application source or by introducing them 
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dynamically using Aspect programming techniques [60] without source code 

recompilation. 

As a special case of instrumentation at the application level, support for JOMP 

applications [23] is included in JIS. JOMP includes OpenMP-like extensions to 

specify parallelism in Java applications using a shared-memory programming 

paradigm. This instrumentation approach provides a detailed analysis of the parallel 

behavior at the JOMP programming model level. At this level, the user is faced with 

parallel, work-sharing and synchronization constructs. The JOMP compiler has been 

modified to inject JNI calls to the instrumentation library during the code generation 

phase at specific points in the source code. 

1.2.2 Self-Adaptive Multithreaded Java Applications 

Multithreaded Java applications can be used in HPC environments, where 

applications can benefit from the Java multithreading support for performing parallel 

calculations, as well as in e-business environments, where Java application servers 

can take profit of Java multithreading facilities to handle concurrently a large number 

of requests.  

However, the use of Java for HPC faces a number of problems that are 

currently subject of research. One of them is the performance degradation when 

multithreaded applications are executed in a multiprogrammed environment. The 

main issue that leads to this degradation is the lack of communication between the 

execution environment and the applications, which can cause these applications to 

make a naive use of threads, degrading their performance. In these situations, it is 

desirable that the execution environment provides information to the applications 

about their allocated resources, thus allowing the applications to adapt their behavior 

to the amount of resources offered by the execution environment by generating only 

the amount of parallelism that can be executed with the assigned processors. This 

capability of applications is known as malleability [53]. Therefore, improving the 

performance of multithreaded Java applications in HPC environments can be 

accomplished by designing and implementing malleable applications (i.e. self-

adaptive applications). 

Achieving good performance when using Java in e-business environments is a 

harder problem due to the high complexity of these environments. First, the workload 
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of Internet sites is known to vary dynamically over multiple time scales, often in an 

unpredictable fashion, including flash crowds. This fact and the increasing load that 

Internet sites must support increase the performance demand on Java application 

servers that host the sites that must face situations with a large number of concurrent 

clients. Therefore, the scalability of these application servers has become a crucial 

issue in order to support the maximum number of concurrent clients in these 

situations. 

Moreover, not all the web requests require the same computing capacity from 

the server. For example, requests for static web content (i.e. HTML files and images) 

are mainly I/O intensive. Requests for dynamic web content (i.e. servlets and EJB) 

increase the computational demand on server, but often other resources (e.g. the 

database) become the bottleneck for performance. On the other side, in e-business 

applications, which are based on dynamic web content, all information that is 

confidential or has market value must be carefully protected when transmitted over 

the open Internet. These security capabilities between network nodes over the Internet 

are traditionally provided using HTTPS [125]. With HTTPS, which is based on using 

HTTP over SSL (Secure Socket Layer [56]), mutual authentication of both the sender 

and receiver of messages is performed to ensure message confidentiality. Although 

providing these security capabilities does not introduce a new degree of complexity in 

web applications structure, it increases the computation time necessary to serve a 

connection remarkably, due to the use of cryptographic techniques, becoming a CPU-

intensive workload. 

Facing situations with a large number of concurrent clients and/or with a 

workload that demands high computational power (as for instance secure workloads) 

can lead a server to overload (i.e. the volume of requests for content at a site 

temporarily exceeds the capacity for serving them and renders the site unusable). 

During overload conditions, the response times may grow to unacceptable levels, and 

exhaustion of resources may cause the server to behave erratically or even crash 

causing denial of services. In e-commerce applications, which are heavily based on 

the use of security, such server behavior could translate to sizable revenue losses. For 

instance, [150] estimates that between 10 and 25% of e-commerce transactions are 

aborted because of slow response times, which translates to about 1.9 billion dollars 

in lost revenue. Therefore, overload prevention is a critical issue if good performance 
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on Java application servers in e-business environments wants to be achieved. 

Overload prevention tries to have a system that remains operational in the presence of 

overload even when the incoming request rate is several times greater than system 

capacity, and at the same time is able to serve the maximum the number of requests 

during such overload, maintaining response times (i.e. Quality of Service (QoS)) 

within acceptable levels.  

Additionally, in many web sites, especially in e-commerce, most of the 

applications are session-based. A session contains temporally and logically related 

request sequences from the same client. Session integrity is a critical metric in e-

commerce. For an online retailer, the higher the number of sessions completed the 

higher the amount of revenue that is likely to be generated. The same statement 

cannot be made about the individual request completions. Sessions that are broken or 

delayed at some critical stages, like checkout and shipping, could mean loss of 

revenue to the web site. Sessions have distinguishable features from individual 

requests that complicate the overload control. For example, admission control on per 

request basis may lead to a large number of broken or incomplete sessions when the 

system is overloaded. 

Application servers overload can be prevented by designing mechanisms that 

allow the servers to adapt their behavior to the available resources (i.e. becoming self-

adaptive applications) limiting the number of accepted requests to those that can be 

served without degrading their QoS while prioritizing important requests. However, 

the design of a successful overload prevention strategy must be preceded by a 

complete characterization of the application server scalability. This characterization 

allows determining which factors are the bottlenecks for application server 

performance that must be considered in the overload prevention strategy. 

Nevertheless, characterizing application server scalability is something more 

complex than measuring the application server performance with different number of 

clients and determining the load that overloads the server. A complete 

characterization must also supply the causes of this overload, giving to the server 

administrator the chance and the information to improve the server scalability by 

avoiding its overload. For this reason, this characterization requires of powerful 

analysis tools that allow an in-depth analysis of the application server behavior and its 

interaction with the other system elements (including distributed clients, a database 
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server, etc.). As described in Section 1.2.1, these tools must support and consider all 

the levels involved in the execution of web applications if they want to provide 

meaningful performance information to the administrators because the origin of 

performance problems can reside in any of these levels or in their interaction. 

A complete scalability characterization must also consider another important 

issue: the scalability relative to the resources. The analysis of the application server 

behavior will assist with hints to answer the question about how would affect to the 

application server scalability the addition of more resources. If the analysis reveals 

that some resource is being a bottleneck for the application server performance, this 

encourages the addition of new resources of this type in order to improve server 

scalability. On the other side, if a resource that is not being a bottleneck for the 

application server performance is upgraded, the added resources are wasted because 

the scalability is not improved and the causes of server performance degradation 

remain unresolved.  

The first contribution of this thesis in the “Self-Adaptive Multithreaded Java 

Applications” work area is a complete characterization of the scalability of Java 

application servers when running secure dynamic web applications divided in two 

parts. The first part consists of measuring Tomcat vertical scalability (i.e. adding more 

processors) when using SSL determining the impact of adding more processors on 

server overload. The second part involves a detailed analysis of the server behavior 

using the performance analysis framework mentioned in Section 1.2.1, in order to 

determine the causes of the server overload when running with different number of 

processors. 

The conclusions derived from this analysis demonstrate the convenience of 

incorporating to the application server (and give hints for its implementation) an 

overload control mechanism that is the second contribution of this thesis in the “Self-

Adaptive Multithreaded Java Applications” work area. The overload control 

mechanism is based on SSL connections differentiation and admission control. SSL 

connections differentiation is accomplished by proposing a possible extension of the 

Java Secure Sockets Extension [135] (JSSE) package to distinguish SSL connections 

depending on if the connection will reuse an existing SSL connection on the server or 

not. This differentiation can be very useful in order to design intelligent overload 

control policies on server, given the big difference existing on the computational 
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demand of new SSL connections versus resumed SSL connections. Based on this SSL 

connections differentiation, a session-based adaptive admission control mechanism 

for the Tomcat application server is implemented. This mechanism allows the server 

to avoid throughput degradation and response time increments occurred on server 

saturation. The server differentiates full SSL connections from resumed SSL 

connections limiting the acceptation of full SSL connections to the maximum number 

acceptable with the available resources without overloading, while accepting all the 

resumed SSL connections. Moreover, the admission control mechanism maximizes 

the number of sessions completed successfully, allowing to e-commerce sites based 

on SSL to increase the number of transactions completed, thus generating higher 

benefit. 

1.2.3 Resource Provisioning for Multithreaded Java Applications 

In the way towards achieving good performance when running multithreaded 

Java applications, either in HPC environments or in e-business environments, this 

thesis demonstrates that having self-adaptive multithreaded Java applications can be 

very useful to achieve this objective.  

However, the maximum effectiveness for preventing applications performance 

degradation in parallel environments is obtained when fitting the self-adaptation of 

the applications to the available resources within a global strategy in which the 

execution environment and the applications cooperate to manage the resources 

efficiently. 

For example, besides of having self-adaptive Java applications in HPC 

environments, performance degradation of multithreaded Java applications in these 

environments can only be avoided if overcoming the following limitations. First, the 

Java runtime environment does not allow applications to have control on the number 

of kernel threads where Java threads map and to suggest about the scheduling of these 

kernel threads. Second, the Java runtime environment does not inform the 

applications about the dynamic status of the underlying system so that the applications 

cannot adapt their execution to these characteristics. Finally, the large number of 

migrations of the processes allocated to an application occurred, due to scheduling 

polices that do not consider multithreaded Java applications as an allocation unit. 
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The same applies to Java application servers in e-business environments. In 

this case, although the admission control mechanisms used to implement self-adaptive 

applications in this scenario can maintain the quality of service of admitted requests 

even during overloads, a significant fraction of the requests may be turned away 

during extreme overloads. In such a scenario, an increase in the effective server 

capacity is necessary to reduce the request drop rate. In fact, although several 

techniques have been proposed to face with overload, such as admission control, 

request scheduling, service differentiation, service degradation or resource 

management, last work in this area has demonstrated that the most effective way to 

handle overload considers a combination of these techniques [140]. 

For these reasons, this thesis contributes in the “Resource Provisioning for 

Multithreaded Java Applications” work area with the proposal of mechanisms to 

allow the cooperation between the applications and the execution environment in 

order to improve the performance by managing resources efficiently in the framework 

of Java applications, including the modifications that are required in the Java 

execution environment to allow this cooperation. The cooperation is implemented by 

establishing a bi-directional communication path between the applications and the 

underlying system. On one side, the applications request to the execution environment 

the number of processors they need. On the other side, the execution environment can 

be requested at any time by the applications to inform them about their processor 

assignments. With this information, the applications, which are self-adaptive, can 

adapt their behavior to the amount of resources allocated to them. 

In order to accomplish this resource provisioning strategy in HPC 

environments, this thesis shows that the services supplied by the Java native 

underlying threads library, in particular the services to inform the library about the 

concurrency level of the application, are not enough to support the cooperation 

between the applications and the execution environment, because this uni-directional 

communication does not allow the application to adapt its execution to the available 

resources. In order to address the problem, the thesis proposes to execute the self-

adaptive multithreaded Java applications on top of JNE (Java Nanos Environment 

built around the Nano-threads environment [101]). JNE is a research platform that 

provides mechanisms to establish a bi-directional communication path between the 

Java applications and the execution environment, thus allowing applications to 
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collaborate in the thread management. Running with JNE, the applications can inform 

to the execution environment about their processor requirements, as well as, JNE 

allows to the execution environment to answer to applications with the number of 

processors assigned to them at any moment. The JNE scheduler is responsible for the 

distribution of processors to applications and decides which processors are assigned to 

each application taking into account data affinity issues (i.e. helping the application to 

exploit data locality whenever possible). As the applications are malleable (i.e. self-

adaptive), they can adapt their behavior to the amount of resources offered by the 

execution environment. The work in this area includes the adaptation of JOMP 

applications in order to cooperate with the execution environment. The 

implementation of the JOMP compiler and supporting runtime library has been 

modified to implement the communication between the JOMP application and the 

JNE. The generated code will adapt its parallelism level depending on the available 

processors at a given time. 

The global resource provisioning strategy is accomplished in e-business 

environments using an overload control approach for self-adaptive Java application 

servers running secure e-commerce applications that brings together admission 

control based on SSL connections differentiation and dynamic provisioning of 

platform resources in order to adapt to changing workloads avoiding the QoS 

degradation. Dynamic provisioning enables additional resources to be allocated to an 

application on demand to handle workload increases, while the admission control 

mechanisms maintain the QoS of admitted requests by turning away excess requests 

and preferentially serving preferred clients (to maximize the generated revenue) while 

additional resources are being provisioned. 

The overload control approach is based on a global resource manager 

responsible of distributing periodically the available resources (i.e. processors) among 

web applications in a hosting platform applying a given policy (which can consider e-

business indicators). This resource manager and the applications cooperate to manage 

the resources using a bi-directional communication. On one side, the applications 

request to the resource manager the number of processors needed to handle their 

incoming load avoiding the QoS degradation. On the other side, the resource manager 

can be requested at any time by the applications to inform them about their processor 

assignments. With this information, the applications, which are self-adaptive, apply 
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the admission control mechanism presented in Section 1.2.2 to adapt their incoming 

workload to the assigned capacity by limiting the number of admitted requests 

accepting only those that can be served with the allocated processors without 

degrading their QoS.  

1.3 Thesis Organization 

The rest of this thesis is organized as follows: Chapter 2 describes 

multithreaded Java applications, which are the focus of this work, distinguishing the 

use of this kind of applications in HPC environments as well as e-business 

environments. Chapter 3 presents the performance analysis framework that allows the 

analysis and the visualization of multithreaded Java applications. Chapter 4 introduces 

self-adaptive applications in order to improve the performance of multithreaded Java 

applications. Chapter 5 presents the mechanisms that allow to the applications to 

cooperate with the execution environment in the resource management. Chapter 6 

describes the related work and finally, Chapter 7 presents the conclusions and the 

future work of this thesis. 
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CHAPTER 2  
MULTITHREADED JAVA APPLICATIONS 

 

2.1 Introduction 

The work performed in this thesis targets multithreaded Java applications. In 

the last years, these applications have been successfully introduced in high 

performance computing (HPC) environments, where Java applications can benefit 

from the Java multithreading support for performing parallel calculations. Moreover, 

they have also achieved a great diffusion in e-business environments based on Java 

application servers that can take profit of Java multithreading facilities to handle 

concurrently a large number of requests. This popularity of Java applications has 

occurred as a consequence of some Java language characteristics, which can be 

summarized as follows: 

� Java is familiar and simple. Java builds on the familiar and useful features of 

C++ while removing its complex, dangerous, and superfluous elements. The 

result is a language that is safer, simpler, and easier to use. 

� Java is platform independent. A Java program can be executed in any 

platform without recompilation. This portability is accomplished by offering a 

binary code (called 'bytecode') that is interpreted by a virtual machine. 

� Java is object-oriented. Java provides all the luxuries of object-oriented 

programming: class hierarchy, inheritance, encapsulation, and polymorphism-

in a context that is truly useful and efficient. Object-oriented software is 

simple and favors software reuse. 

� Java is safe. Java provides security on several different levels. First, the 

language was designed to make it extremely difficult to execute damaging 

code. The elimination of pointers is a big step in this regard. Another level of 

security is the bytecode verifier. Before a Java program is run, the verifier 

checks each bytecode to make sure that nothing suspicious is going on. In 
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addition to these measures, Java implements a security model, known as the 

"sandbox" model, that provides a very restricted environment in which to run 

untrusted code obtained from the open network. In the sandbox model, local 

code is trusted to have full access to vital system resources, such as the file 

system, but downloaded remote code (an applet) is not trusted and can access 

only the limited resources provided inside the sandbox. A security manager is 

responsible of determining which resource accesses are allowed. Finally, the 

Java library provides classes that allow accessing and developing 

cryptographic functionality (including digital signature algorithms, message 

digest algorithms, key-generation algorithms and certificates management). 

� Java is extensible. Java allows the definition of native methods written in 

other languages (such as C, C++, and assembly) to handle those situations 

when an application cannot be written entirely in the Java programming 

language. 

� Java is ‘garbage collected’. Java automatically frees memory occupied by 

unreferenced objects. 

� Java supports parallel computing. The Java library provides the Thread 

class definition, and Java runtime provides support for thread and thread 

synchronization primitives (e.g. monitors). 

� Java supports distributed computing. The Java library provides classes 

supporting the communication of applications over the network. These classes 

implement sockets (connection-oriented communications using TCP protocol), 

secure sockets (sockets that transmit encrypted information), datagrams (not 

connection-oriented communications using UDP protocol), URLs (references 

or addresses to resources on the Internet) and Remote Methods Invocation 

(RMI). 

� Java technology is organized in subject areas. The Java technology 

distinguishes several conceptual areas, providing different solutions for each 

of these areas. For example, the Java 2 Platform Standard Edition [133] (J2SE) 

provides a complete environment for applications development on desktops 

and servers and for deployment in embedded environments, serving also as the 

foundation for the other areas. This solution is used for developing Java 

applications in HPC environments. On the other side, Java technology offers 
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also the Java 2 Platform Enterprise Edition [132] (J2EE), which defines the 

standard for developing component-based multi-tier enterprise applications. 

This solution is used for developing Java applications in e-business 

environments. 

2.2 Multithreaded Java Applications in HPC Environments 

2.2.1 Introduction 

Although the Java language is a potentially interesting language for parallel 

scientific computing, it has to face a set of problems that must be resolved to 

consolidate Java as a valid alternative to the traditional languages in HPC 

environments. The first one is the large overhead incurred by the threading support 

available in the JVM. Recent works [111] offer runtime support to make threaded 

execution more efficient by reducing the number of creations of Java threads. The 

second problem is the performance degradation occurred when multithreaded 

applications are executed in multiprogrammed parallel systems, which is covered in 

this thesis. Other drawbacks include the lack of support for complex numbers and 

multi-dimensional arrays, which has been also addressed in previous works [26] by 

proposing extensions to the Java language. Finally, the lack of suitable standards to 

ease parallel programming in Java is also a concern when targeting high performance 

computing, because it implies the explicit management of parallelism and 

synchronization. This fact has motivated several proposals to support the specification 

of parallelism in Java, which are discussed in next section. 

2.2.2 Java Extensions for High Performance Computing 

Most of the current proposals to support the specification of parallel 

algorithms in Java reflect the alternatives that have been proposed for other languages 

such as Fortran or C. For instance, there have been proposals to implement common 

message-passing standards, such as PVM [58] or MPI [103], by means of Java classes 

[54][87]. Other proposals [26] try to make Java a data-parallel language similar to 

HPF, in which parallelism could be expressed in a more natural way. The extensions 

allow the definition of data-parallel operations, non-rectangular or multi-dimensional 

arrays or to allow some kind of data locality. The OpenMP standard [113] for Fortran 

and C/C++ has led to the proposal of a similar paradigm in the scope of Java (JOMP 
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[23]) and the automatic restructuring of Java programs for parallelism exploitation 

based either on code annotations or compiler-driven analysis [20][21]. The 

implementation of these extensions is done through runtime libraries and compiler 

transformations in order to avoid the overhead introduced by the intensive creation of 

Java Threads [23][111]. 

Some experiments in this thesis use JOMP applications as the benchmark to 

evaluate the proposed mechanisms, as a particular case of multithreaded Java 

applications in HPC environments. For this reason, next section presents an in-depth 

description of JOMP applications implementation. 

2.2.3 JOMP Programming Model 

The JOMP programming model [23], proposed by the Edinburgh Parallel 

Computing Center [52], consists in a collection of compiler directives, library routines 

and environment variables based on OpenMP [113] to specify shared-memory 

parallelism in Java.  

The JOMP specification for Java includes parallel, work-sharing and 

synchronization constructs. The parallel directive is used to specify the creation of 

a team of threads that will concurrently execute the code. Work-sharing directives are 

provided to allow the distribution of work among the threads in a team: for directive 

to distribute iterations in a parallel loop, sections directive to parcel out a sequence 

of statements and master and single directives to specify the execution by a single 

thread in the team. Parallel and work-sharing constructs also allow redefining the 

scope of certain variables in order to be shared, private, firstprivate, 

lastprivate or reduction. Synchronization directives provide the mechanisms to 

synchronize the execution of the threads in the team: barrier and critical regions. 

2.2.3.1 JOMP compiler 

The JOMP compiler is a Java-to-Java translator that interprets JOMP 

directives and generates parallel code for the JOMP supporting runtime. 

A description of JOMP compiler implementation is presented below. 

Additional implementation details about the API and implementation can be found in 

elsewhere [25][88]. Currently, a few parts of the specification have yet to be 

implemented, such as nested parallelism and array reductions. 
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2.2.3.1.1 Basic structure 

The JOMP Compiler is built around a Java 1.1 parser provided as an example 

with the JavaCC [104] utility. JavaCC comes supplied with a grammar to parse a Java 

1.1 program into a tree, and an UnparseVisitor class, which unparses the tree to 

produce code. The bulk of the JOMP compiler is implemented in the OMPVisitor 

class, which extends the UnparseVisitor class, overriding various methods that 

unparse particular non-terminals. These overriding methods output modified code, 

which includes calls to the supporting runtime library to implement appropriate 

parallelism. Because JavaCC is itself written in Java, and outputs Java source, the 

JOMP system is fully portable, requiring only a JVM installation in order to run it. 

2.2.3.1.2 The parallel directive 

Upon encountering a parallel directive within a method, the compiler 

creates a new class. The new class has a single method go(), which takes a parameter 

indicating an absolute thread identifier. For each variable declared to be private, 

firstprivate or reduction, the go() method declares a local variable with the 

same name and type signature. The local firstprivate variables are initialized from 

the corresponding field in the containing class, while the local private variables have 

the default initialization. The local reduction variables are initialized with the 

appropriate default value for the reduction operator. Private objects are allocated 

using the default constructor. The main body of the go() method contains the code to 

be executed in parallel. 

In place of the parallel construct itself, code is inserted to declare a new 

instance of the compiler-created class, and to initialize the fields within it from the 

appropriate variables. The OMP.doParallel() method is used to execute the go() 

method of the inner class in parallel. Finally, any necessary values are copied from 

class fields back into local variables. 

A simple example illustrating the code transformation made by JOMP 

compiler is shown in Figure 2.1. Figure 2.1.a shows the source code of a simple 

program with a parallel directive. This means that all the threads in the team will 

concurrently execute the code encapsulated by this directive. The directive has also a 

private clause for the myid variable, informing the compiler to allocate a private 
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copy of this variable for each thread (usually in the stack of the encapsulating 

method). 

 
public class Hello { 
  public static void main (String argv[]) { 
    int myid; 
    //omp parallel private (myid) 
    { 
      myid = OMP.getThreadNum(); 
      System.out.println(“Hello from” + myid); 
    } 
  } 
} 

(a) original code 
 
public class Hello { 
  public static void main (String argv[]) { 
    int myid; 
    // OMP PARALLEL BLOCK BEGINS 
    { 
      __omp_Class0 __omp_Object0 = new __omp_Class0(); 
      __omp_Object0.argv = argv; 
      try { 
        jomp.runtime.OMP.doParallel(__omp_Object0); 
      } catch(Throwable __omp_exception) { 
        jomp.runtime.OMP.errorMessage(); 
      } 
      argv = __omp_Object0.argv; 
    } 
    // OMP PARALLEL BLOCK ENDS     
  } 
} 
 
// OMP PARALLEL REGION INNER CLASS DEFINITION BEGINS 
private static class __omp_Class0 extends jomp.runtime.BusyTask { 
  String [] argv; 
  public void go(int __omp_me) throws Throwable { 
    int myid; 
    // OMP USER CODE BEGINS 
    { 
      myid = OMP.getThreadNum(); 
      System.out.println("Hello from" + myid);     
    } 
    // OMP USER CODE ENDS 
  } 
} 
// OMP PARALLEL REGION INNER CLASS DEFINITION ENDS 
 

(b) transformed code 
 

Figure 2.1. Example of code transformation made by the JOMP compiler: parallel directive 

 

Like is shown in Figure 2.1.b, on encountering a parallel directive, the 

compiler creates a new class that extends the BusyTask class. The new class has a 

go() method, containing the code inside the parallel region, and declarations of 

private variables like myid. The new class contains also data members corresponding 

to reduction and shared variables like argv. A new instance of the class is created, 
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and passed to the JOMP runtime library calling the doParallel() method, which 

causes the go() method to be executed on each thread in the team. 

2.2.3.1.3 Work-sharing directives 

Upon encountering a for, sections or single directive, a new block is 

created. For each variable declared to be private, firstprivate, lastprivate or 

reduction, a local variable is declared and initialized if necessary. These newly 

created variables are used to communicate the values of variables to the enclosing 

block. In the case of the for and sections directives, it is also necessary to declare a 

boolean variable to hold information about whether the current thread is the one 

performing the sequentially last iteration of the loop or the sequentially last section. 

Inside the newly allocated block, a second block is created. For each variable 

declared to be private, firstprivate, lastprivate, or reduction, a new variable 

with the same name is declared. Variables declared as reduction are initialized with 

the appropriate value. private and lastprivate variables are initialized by calling 

the default constructor in the case of class type variables, or left uninitialized in the 

case of primitive or array type variables. firstprivate variables are initialized with 

the appropriate value from the original variable. A clone() method is called to 

initialize class or array type variables.  

Next, the code to actually handle the appropriate work-sharing directive is 

inserted. At the end of the inner block, appropriate local variables associated to 

lastprivate and reduction variables are updated. 

After the end of the inner block, a code to update the global copies of 

lastprivate and reduction variables is inserted. Only the thread performing the 

sequentially last iteration of the loop or the sequentially last section updates 

lastprivate variables. The master thread of the team updates reduction variables. 

Finally, the outer block is closed. 

2.2.3.1.3.1 The for directive 

Upon encountering a for directive, the compiler inserts code to create two 

LoopData structures. One of these is initialized to contain the details of the whole 

loop, while the other is used to hold details of particular chunks. The generated code 

then repeatedly calls the appropriate getLoop() function for the selected schedule, 
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executing the blocks it is given, until there are no more blocks. If a dynamic 

scheduling strategy was used, the ticketer is then reset. Any reductions are carried 

out, and if the nowait clause is not specified, the doBarrier() method is called. 

If the ordered clause is specified on a for directive, then a call to 

resetOrderer() method is inserted immediately prior to the loop, at which point the 

value of the first iteration number is definitely known. Upon encountering an ordered 

directive, the compiler inserts a call to startOrdered() before the relevant block 

with the parameter being the current value of the loop counter. After the block is 

inserted a call to stopOrdered(), with the parameter being the next value the loop 

counter would take after its current value, during sequential execution. 

2.2.3.1.3.2 The sections directive 

Upon encountering a sections directive, the compiler inserts code that 

repeatedly requests a ticket from the ticketer, and executes a different section 

depending on the ticket number. When there are no sections left, the ticketer is 

reset. If the nowait clause is not specified, the doBarrier() method is called. 

2.2.3.1.3.3 The master directive 

Upon encountering a master directive, the compiler inserts code to execute 

the relevant block if and only if the OMP.getThreadNum()method returns 0. 

2.2.3.1.3.4 The single directive 

Upon encountering a single directive, the compiler inserts code to get a ticket 

from the ticketer, execute the relevant block if and only if the ticket is zero, and 

then reset the ticketer. If the nowait clause is not specified, the doBarrier() 

method is called. 

2.2.3.1.4 Synchronization directives  

Upon encountering a critical directive, the compiler creates a synchronized 

block, with a call to getLockByName(). Upon encountering a barrier directive, the 

compiler inserts a call to the doBarrier() method. 
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2.2.4 HPC Experimental Environment 

This section describes the experimental environment used in this thesis to 

evaluate the proposed mechanisms when using multithreaded Java applications in 

HPC environments. 

2.2.4.1 Java Grande Benchmarks 

The Java Grande Benchmarks [85] is suite of benchmark tests that provides 

ways of measuring and comparing alternative Java execution environments in ways 

that are important to Grande applications. A Grande application is one which uses 

large amounts of processing, I/O, network bandwidth, or memory. They include not 

only applications in science and engineering but also, for example, corporate 

databases and financial simulations. These benchmarks can be found in three different 

versions (sequential, multithreaded and JOMP), with three different sizes (A, B and 

C). The experiments performed in this thesis use the JOMP version – size B. 

The multithreaded version of the Java Grande benchmark suite is designed for 

parallel execution on shared memory multiprocessors. It is composed by the following 

applications: 

� Section 1: Low level operations – Barrier, ForkJoin, Sync 

� Section 2: Kernels – Crypt, LUFact, SOR, Series, Sparse 

� Section 3: Large scale applications – MolDyn, MonteCarlo, RayTracer 

The JOMP version of the Java Grande benchmark suite is an implementation 

of the multithreaded version using JOMP directives. The following applications 

compose this version: 

� Section 2: Kernels – Crypt, LUFact, SOR, Series, Sparse 

� Section 3: Large scale applications – Euler, MonteCarlo, RayTracer 

A detailed description of each one of these benchmarks can be found in 

Appendix A. 

2.2.4.2 Hardware & software platform 

The experimental platform used to conduct the evaluation of the proposed 

mechanisms in HPC environments is based on the SGI Origin 2000 architecture [129] 
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with 64 MIPS R10000 processors at 250 MHz running the Irix 6.5.8 operating system 

and the SGI Irix JVM version Sun Java Classic 1.2.2.  

All the experiments in this HPC environment have been performed in the so-

called cpusets in Irix. A cpuset consists of a set of dedicated processors in a 

multiprogrammed machine. However, although a number of processors are reserved 

for the applications running inside the cpuset, other resources (like the interconnection 

network or the memory) are shared with the rest of applications running in the system. 

This sharing can interfere the behavior of the applications running inside the cpuset 

and produce noticeable performance degradation, which is difficult to quantify (and 

predict), because it depends on the system load and the application characteristics (a 

memory intensive application will be more interfered than an application with low 

memory use). The experiments reveal that this degradation can reach 10% for 

individual executions. In this case, this effect can be attenuated incrementing the 

number of measurements and discarding anomalous values. But when executing the 

applications as a part of a workload, observed degradation is around 20%, due to the 

interferences with the other applications in the workload plus the interferences with 

the rest of applications running in the system. 

2.3 Multithreaded Java Application Servers in e-Business 
Environments 

2.3.1 Introduction 

In the latter days, e-business applications are becoming commonplace in 

current web sites. Some Java programming language characteristics, such as its 

portability or its support for parallel and distributed computing, have encouraged 

Internet applications programmers to use Java when developing these applications. 

Therefore, it is common to find Internet servers written in Java hosting current web 

sites. Typically, these servers are multithreaded Java applications in charge of serving 

clients requesting for web content, where each client connection is assigned to a 

thread that is the responsible of attending the received requests in this connection. 

The logic of e-business applications is typically implemented using dynamic 

web content (i.e. following J2EE specification [132]). A request asking for dynamic 

web content requires some processing in the server (e.g. computation, access to a 

database…) before sending the response to the client, while the server can directly 
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respond a request asking for static web content (i.e. HTML pages and images) with 

the requested file. Applications containing dynamic web content can be referred as 

dynamic web applications. Next section presents an overview on this kind of 

applications architecture and implementation. 

2.3.2 Dynamic Web Applications 

Dynamic web applications are a case of multi-tier application and are mainly 

composed of a Client tier and a Server tier, which in its turn uses to consist of a front-

end web server, an application server and a back-end database. Figure 2.2 shows a 

simplified version of dynamic web applications architecture. The client tier is 

responsible of interacting with application users and to generate requests to be 

attended by the server. The server tier implements the logic of the application and is 

responsible of serving user-generated requests.  

 

Database 
Server 

Internet 

Web Server 

Servlets/JSP 

Application Server 

EJB 

Clients 

HTML 

images 

 
Figure 2.2. Dynamic web applications architecture 

 

When the client sends to the web server an HTTP request for dynamic content, 

the web server forwards the request to the application server (as understood in this 

thesis, a web server only serves static content), which is the dynamic content server. 

The application server executes the corresponding code, which may need to access the 

database to generate the response. The application server formats and assembles the 

results into an HTML page, which is returned by the web server as an HTTP response 

to the client. The implementation of the application logic in the application server 

may take various forms, including PHP [118], Microsoft Active Server pages [106], 

Java Servlets [136] and Enterprise Java Beans (EJB) [131].  

This thesis focuses on Java Servlets, but the proposed mechanisms can be 

applied with the other mechanisms for generating dynamic web content, with the 
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same effectiveness. A servlet is a Java class used to extend the capabilities of servers 

that host applications accessed via a request-response programming model. Although 

servlets can respond to any type of request, they are commonly used to extend the 

applications hosted by web servers. For such applications, Java Servlet technology 

defines HTTP-specific servlet classes. Servlets access the database explicitly, using 

the standard JDBC interface, which is supported by all major databases. Servlets can 

use all the features of Java. In particular, they can use Java built-in synchronization 

mechanisms to perform locking operations. 

2.3.3 Persistent HTTP Connections 

As commented in the previous section, the Hypertext Transfer Protocol [55] 

(HTTP) allows servers and clients to send and receive data over the Internet. HTTP is 

a request and response protocol implemented over reliable TCP connections. In 

HTTP, it is always the client who initiates a transaction by establishing a connection 

and sending an HTTP request to the server, which processes this request and sends a 

response to the client. Either the client or the server can prematurely terminate a 

connection.  

Prior to HTTP 1.1, whenever a client connected to a server, the connection 

was closed by the server right after the requested resource was sent. However, an 

Internet page can contain other resources, such as image files, applets, etc. Therefore, 

when a page is requested, the client also needs to download the resources referenced 

by the page. If the page and all resources it references are downloaded using different 

connections, the process will be very slow. That is why HTTP 1.1 introduced 

persistent connections. With a persistent connection, when a page is downloaded, the 

server does not close the connection straight away. Instead, it waits for the client to 

request all resources referenced by the page. This way, the page and referenced 

resources can be downloaded using the same connection. This saves a lot of work and 

time for the server, client and the network, considering that establishing and tearing 

down HTTP connections is an expensive operation. 

2.3.4 Hosting Platforms 

Typically, web applications run on hosting platforms that rent their resources 

to them. Applications owners pay for platform resources, and in return, the 
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applications are provided with guarantees on resource availability and quality of 

service (which can be expressed in the form of a service level agreement [95][142] 

(SLA)). The hosting platform is responsible of providing sufficient resources to each 

application to meet its workload, or at least to satisfy the agreed QoS. Therefore, it is 

desirable that resources not used by some application may be distributed among other 

applications in the hosting platform. 

Resource provisioning in a hosting platform can be based on either a dedicated 

or a shared model [7]. In the dedicated model, some cluster nodes are dedicated to 

each application and the provisioning technique must determine how many nodes to 

allocate to the application. In the shared model, which is the model considered in this 

thesis, node resources can be shared among multiple applications and the provisioning 

technique needs to determine how to partition resources on each node among 

competing applications. 

Dedicated model used to be implemented as a cluster of servers where whole 

servers are distributed among web applications. Shared model can be implemented 

also as a cluster of servers where several applications can run in the same server, or 

using a multiprocessor machine for hosting all the applications. Clusters of servers are 

widely extended and are easily scalable but resource provisioning in these systems 

can be complex and inefficient. For example, traditional methods to switch a server 

from an underloaded to an overloaded application have entailed latencies of several 

minutes or more, due to software installation and configuration overheads [10]. In the 

same way, in session-based environments, transferring session state between servers 

is an inefficient task. As this thesis focus on e-commerce applications, which are 

typically session-based, and a dynamic provisioning mechanism able to react to 

unexpected workload changes in very short time is desired, the hosting platform is 

implemented using a multiprocessor machine. 

Resource provisioning based on a shared model must consider an important 

issue. Since platform resources are shared by all the applications, when applications 

overload they can affect the performance of other applications. Consequently, a 

hosting platform should provide performance isolation, that is ensure that a minimal 

fraction of resources is available to serve requests from a certain application, and 

given a resource distribution between applications, an application should obtain the 

same performance independent of load generated by other applications. 
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2.3.5 Security in e-Business Applications 

In e-business applications, all information that is confidential or has market 

value must be carefully protected when transmitted over the open Internet. These 

security capabilities between network nodes over the Internet are traditionally 

provided using HTTPS [125]. With HTTPS, which is based on using HTTP over SSL 

(Secure Socket Layer [56]), mutual authentication of both the sender and receiver of 

messages is performed to ensure message confidentiality.  

2.3.5.1 SSL protocol 

The SSL protocol provides communications privacy over the Internet. The 

protocol allows client/server applications to communicate in a way that is designed to 

prevent eavesdropping, tampering, or message forgery. To obtain these objectives it 

uses a combination of public-key and private-key cryptography algorithm and digital 

certificates (X.509).  

 
 

Figure 2.3. Tomcat scalability when serving secure vs. non-secure connections 

 

The SSL protocol does not introduce a new degree of complexity in web 

applications structure because it works almost transparently on top of the socket layer. 

However, SSL increases the computation time necessary to serve a connection 
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remarkably, due to the use of cryptography to achieve their objectives, becoming a 

CPU-intensive workload. This increment has a noticeable impact on server 

performance, which can be appreciated on Figure 2.3. This figure compares the 

throughput as a function of the number of clients obtained by a given application 

server when handling the same workload using secure connections versus using 

normal connections. Notice that the maximum throughput obtained when using SSL 

connections is 72 replies/s and the server scales only until 200 clients. On the other 

side, when using normal connections the maximum throughput is considerably higher 

(550 replies/s) and the server can scale until 1700 clients. Finally, notice also that 

when the server is saturated, if attending normal connections, the server can maintain 

the throughput if new clients arrive, but if attending SSL connections, the server 

cannot maintain the throughput and the performance is degraded. The impact of using 

SSL on server performance will be deeply discussed in Section 4.3.1 of this thesis. 

 
Figure 2.4. SSL protocol 

 

The SSL protocol fundamentally has two layers of operation: the SSL 

handshake protocol and the SSL record protocol, as shown in Figure 2.4. Next 
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subsection does an overview of these layers. The detailed description of the protocol 

can be found in RFC 2246 [47]. 

2.3.5.1.1 SSL Handshake protocol 

The SSL Handshake protocol facilitates authentication of servers and clients, 

negotiation of the SSL session characteristics and data transfer. The server 

authenticates itself to the client using public-key techniques like RSA, and then the 

client and the server cooperate in the creation of symmetric keys used for rapid 

encryption, decryption, and tamper detection during the session that follows. 

Optionally, the handshake also allows the client to authenticate itself to the server. 

This process is detailed in Figure 2.5. 

 
Figure 2.5. SSL Handshake protocol negotiation 

 

Two different SSL handshake types can be distinguished: The full SSL 

handshake and the resumed SSL handshake. The full SSL handshake is negotiated 

when a client establishes a new SSL connection with the server, and requires the 

complete negotiation of the SSL handshake. This negotiation includes parts that spend 

a lot of computation time to be accomplished. For example, the computational 

demand of a full SSL handshake in a 1.4 GHz Xeon machine is around 175 ms. 

The SSL resumed handshake is negotiated when a client establishes a new 

HTTP connection with the server but using an existing SSL connection. As the SSL 
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session ID is reused, part of the SSL handshake negotiation can be avoided, reducing 

considerably the computation time for performing a resumed SSL handshake. For 

example, the computational demand of a resumed SSL handshake in a 1.4 GHz Xeon 

machine is around 2 ms. Notice the big difference between negotiate a full SSL 

handshake respect to negotiate a resumed SSL handshake (175 ms versus 2 ms). 

Based on these two handshake types, two types of SSL connections can be 

distinguished: the new SSL connections and the resumed SSL connections. The new 

SSL connections try to establish a new SSL session and must negotiate a full SSL 

handshake. The resumed SSL connections can negotiate a resumed SSL handshake 

because they provide a reusable SSL session ID (they resume an existing SSL 

session). 

 
Figure 2.6. SSL Record protocol 

 

2.3.5.1.2 SSL Record protocol 

The SSL Record protocol permits the encapsulation of higher-level protocols, 

such as the SSL Handshake protocol. The SSL Record Layer receives uninterpreted 

data from higher layers in non-empty blocks of arbitrary size. Then the information 

blocks are fragmented into plain-text records of 214 bytes or less. All records are 

compressed using the compression algorithm defined in the current session state and 

protected using the encryption and MAC (Message Authentication Code) algorithms 

defined in the current CipherSpec. Finally encryption and MAC functions translate 
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compressed units to encrypted data, ready to be sent into TCP packet. This process is 

detailed in Figure 2.6. 

2.3.5.2 Java Secure Socket Extension (JSSE) 

The Java Secure Socket Extension [135] (JSSE) is a set of classes that enable 

secure Internet communications. It implements a Java technology version of Secure 

Sockets Layer [56] (SSL) and Transport Layer Security [47] (TLS) protocols.  

The JSSE package provides the SSLSocket and SSLServerSocket classes, 

which can be instantiated to create secure channels. The JSSE package supports the 

initiation of a handshake on a SSL connection in one of three ways. Calling 

startHandshake that explicitly begins handshakes, or any attempt to read or write 

application data through the connection causes an implicit handshake, or a call to 

getSession tries to set up a session if there is no currently valid session, and an 

implicit handshake is done. After handshaking has completed, session attributes can 

be accessed using the getSession method. If handshaking fails for any reason, the 

SSLSocket is closed, and no further communications can be done.  

Notice that the JSSE package does not support any way to consult if an 

incoming SSL connection provides a reusable SSL session ID until the handshake is 

fully completed. Having this information prior to handshake negotiation could be very 

useful for example for servers in order to do overload control based on SSL 

connections differentiation, given the big difference existing on the computational 

demand of new SSL connections versus resumed SSL connections. It is important to 

notice that the verification about an incoming SSL connection provides a valid SSL 

session ID is already performed by the JSSE package prior handshaking in order to 

negotiate a full SSL handshake or a resumed SSL handshake. Therefore, the addition 

of a new interface to access this information would not involve additional cost. 

2.3.6 e-Business Experimental Environment 

This section describes the experimental environment used in this thesis to 

evaluate the proposed mechanisms when using multithreaded Java applications in e-

business environments. The architecture of this experimental environment is shown in 

Figure 2.7. 
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Figure 2.7. e-Business experimental environment 

 

2.3.6.1 Tomcat servlet container 

The experimental environment includes Tomcat [84] as the web and 

application server. Tomcat is an open-source servlet container developed under the 

Apache license. Its primary goal is to serve as a reference implementation of the Sun 

Servlet and JSP specifications, and also to be a quality production servlet container. 

Tomcat can work as a standalone server (serving both static and dynamic web 

content) or as a helper for a web server (serving only dynamic web content). This 

thesis uses Tomcat as a standalone server. 

 Tomcat follows a connection service schema where, at a given time, one 

thread (an HttpProcessor) is responsible of accepting a new incoming connection on 

the server listening port and assigning to it a socket structure. From this point, this 

HttpProcessor will be responsible of attending and serving the received requests 

through the persistent connection established with the client, while another 

HttpProcessor will continue accepting new connections. HttpProcessors are 

commonly chosen from a pool of previously created threads in order to avoid thread 

creation overheads. Persistent connections are a feature of HTTP 1.1 that allows 

serving different requests using the same connection, as commented in Section 2.3.3. 

The pattern of a persistent connection in Tomcat is shown in Figure 2.8. On 

each connection, there is a distinction between the execution of several requests and 

the time devoted to maintain the connection persistence (connection (no request)), 

where server is maintaining opened the connection waiting for another client request. 

A connection timeout is programmed to close the connection if no more requests are 

received. For example, in this figure three different requests are served through the 
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same connection. Notice that within every request is distinguished the service 

(execution of the servlet implementing the demanded request) from the request (no 

service). This is the pre and post process that Tomcat requires to invoke the servlet 

that implements the demanded request. 

 

service 

request 

connection 

request (no service) 

connection (no request) 

 
Figure 2.8. Tomcat persistent connection pattern 

 

Figure 2.9 shows the pattern of a secure persistent connection in Tomcat. 

Notice that when using SSL the pattern of the HTTP persistent connection is 

maintained, but the underlying SSL connection supporting this persistent HTTP 

connection must be established previously, negotiating a SSL handshake (which can 

be full or resumed depending if a SSL Session ID is reused) as shown in Figure 2.9. 

For instance, if a client must establish a new HTTP connection because the server has 

closed its current HTTP connection due to connection persistence timeout expiration, 

as it reuses the underlying SSL connection, it negotiates a resumed SSL handshake. 

 

service 
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request (no service) 
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SSL 
handshake 

 
Figure 2.9. Tomcat secure persistent connection pattern 
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For the experiments in this thesis, Tomcat has been configured setting the 

maximum number of HttpProcessors to 100 and the connection persistence timeout to 

10 seconds. 

2.3.6.2 Auction site benchmark (RUBiS) 

The experimental environment also includes a deployment of the RUBiS (Rice 

University Bidding System) [4] benchmark servlets version on Tomcat. RUBiS 

implements the core functionality of an auction site: selling, browsing and bidding. 

RUBiS supplies implementations using some mechanisms for generating dynamic 

web content like PHP, Servlets and several kinds of EJB.  

RUBiS defines 27 interactions. Among the most important ones are browsing 

items by category or region, bidding, buying or selling items and leaving comments 

on other users. 5 of the 27 interactions are implemented using static HTML pages. 

The remaining 22 interactions require data to be generated dynamically. Table 2.1 

shows the CPU demand distinguishing the time spent on each phase of the connection 

(measured in a 1.4 GHz Xeon machine) and the database demand (measured in a 2.4 

GHz Xeon machine) for the RUBiS interactions used in this thesis (the read-only 

interactions). Notice that interactions requesting static web content do not spend any 

time in the database and CPU demand of interactions requesting dynamic web content 

is considerably larger than CPU demand of interactions requesting static web content. 

Table 2.1. CPU and database demands of RUBiS interactions 

 

Service 
CPU 

Demand 
(us) 

Service 
Database 
Demand 

(us) 

Request  
(no Service) 

CPU 
Demand (us) 

Connection 
(no Request) 

CPU 
Demand (us) 

index.html 
browse.html 
bid_now.jpg 
buy_it_now.jpg 
RUBiS_logo.jpg 
BrowseCategories 
BrowseRegions 
SearchItemsByCategory 
SearchItemsByRegion 
ViewItem 
ViewBidHistory 
ViewUserInfo  

200 
188 
167 
180 

3,650 
3,775 
5,655 
2,810 
2,280 
2,120 
5,080 

11,700 

0 
0 
0 
0 
0 

346 
396 

18,235 
6,234 

675 
5,343 
5,845 

3,030 2,980 
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2.3.6.3 Httperf 

The client workload for the experiments was generated using a workload 

generator and web performance measurement tool called Httperf [107]. This tool, 

which supports both HTTP and HTTPS protocols, allows the creation of a continuous 

flow of HTTP/S requests issued from one or more client machines and processed by 

one server machine, whose behavior is characterized with a complete set of 

performance measurements returned by Httperf. The configuration parameters of the 

tool used for the experiments presented in this thesis were set to create a realistic 

workload, with non-uniform reply sizes, sustaining a continuous load on the server.  

One of the parameters of the tool represents the number of new clients per 

second initiating an interaction with the server. Each emulated client opens a session 

with the server. The session remains alive for a period of time, called session time, at 

the end of which the connection is closed. Each session is a persistent HTTP/S 

connection with the server. Using this connection, the client repeatedly makes a 

request (the client can also pipeline some requests), parses the server response to the 

request, and follows a link embedded in the response. The workload distribution 

generated by Httperf was extracted from the RUBiS client emulator, which uses a 

Markov model to determine which subsequent link from the response to follow. 

RUBiS client emulator defines two workload mixes: a browsing mix made up of only 

read-only interactions and a bidding mix that includes 15% read-write interactions. 

Each emulated client waits for an amount of time, called the think time, before 

initiating the next interaction. This emulates the “thinking” period of a real client who 

takes a period of time before clicking on the next request. The think time is generated 

from a negative exponential distribution with a mean of 7 seconds. Httperf allows also 

configuring a client timeout. If this timeout is elapsed and no reply has been received 

from the server, the current persistent connection with the server is discarded, and a 

new emulated client is initiated. For the experiments in this thesis, Httperf has been 

configured setting the client timeout value to 10 seconds.  

2.3.6.4 Hardware & software platform 

The experimental platform used to conduct the evaluation of the mechanisms 

and policies proposed in e-business environments has been summarized in Table 2.2, 

specifying the sections of this thesis in which each configuration is used. 
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Table 2.2. Experimental platform used to evaluate the mechanisms proposed in e-business environments 

 Section 3.4.2 Section 4.3.1 Section 4.3.2 Section 5.3 

Client 

RUBiS 1.4 client emulator 
850 clients 

Experiment time = 150 sec 
Browsing mix 

2 x 2-way Intel XEON 2.4 GHz, 
2 GB RAM, 2.4 Linux kernel 

Httperf 0.8 
Client timeout = 10 s 

Experiment time = 10 min 
Browsing mix 

2-way Intel XEON 2.4 GHz, 
2 GB RAM, 2.6 Linux kernel 

Httperf 0.8.5 
Client timeout = 10 s 

Experiment time = 10 min 
Browsing mix 

2-way Intel XEON 2.4 GHz, 
2 GB RAM, 2.6 Linux kernel 

Web + Application Server 

Tomcat 4.0.6 
RUBiS 1.4 Auction Site benchmark 

maxProcessors = 25, connectionTimeout = 10 s 
Sun JVM 1.4.2 

Server JVM, -Xms, -Xmx = 512 MB 
4-way Intel XEON 1.4 GHz,  
2 GB RAM, 2.5 Linux kernel 

Tomcat 5.0.19 
RUBiS 1.4.2 Auction Site benchmark 

maxProcessors = 100, connectionTimeout = 10 s 
Sun JVM 1.4.2 

Server JVM, -Xms, -Xmx = 1024 MB 
Common RSA-3DES-SHA cipher suit (RSA key 1024 bits) 

4-way Intel XEON 1.4 GHz,  
2 GB RAM, 2.6 Linux kernel 

Database server 

MySQL v3.23.43 
MM.MySQL v3.0.8 JDBC driver  

2-way Intel XEON 2.4 GHz, 
2 GB RAM, 2.4 Linux kernel 

MySQL v4.0.18 
MM.MySQL v3.0.8 JDBC driver  

2-way Intel XEON 2.4 GHz, 
2 GB RAM, 2.6 Linux kernel 

Client - Server Ethernet 100 Mbps Ethernet 1 Gbps 
Network 

Server - Database Ethernet 100 Mbps Ethernet 1 Gbps 
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CHAPTER 3 
ANALYSIS AND VISUALIZATION 

OF MULTITHREADED JAVA APPLICATIONS 

 

3.1 Introduction 

Previous experience on parallel applications has demonstrated that tuning this 

kind of applications for performance is mostly responsibility of (experienced) 

programmers [93]. Therefore, the performance analysis of multithreaded Java 

applications can be a complex work due to this inherent difficulty of analyzing 

parallel applications as well as the extra complexity added by the presence of the 

JVM. In this scenario, performance analysis and visualization tools that provide 

detailed information of multithreaded Java applications behavior are necessary in 

order to help users in the process of tuning the applications on the target parallel 

systems and JVM. 

In the same way, the increasing load that the applications currently developed 

for Internet must support, demands new performance requirements to the Java 

application servers that host them. To achieve these performance requirements, fine-

grain tuning of these servers is needed, but this tuning can be a hard work due to the 

large complexity of these environments (including the application server, distributed 

clients, a database server, etc.). Tuning Java application servers for performance 

requires also of tools that allow an in-depth analysis of application server behavior 

and its interaction with the other system elements. These tools must consider all levels 

involved in the execution of web applications (operating system, JVM, application 

server and application) if they want to provide significant performance information to 

the administrators (the origin of performance problems can reside in any of these 

levels or in their interaction).  

Although a number of tools have been developed to monitor and analyze the 

performance of multithreaded Java applications (see Section 6.1), none of them allow 

a fine-grain analysis of the applications behavior considering all levels involved in the 
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application execution. The main contribution in the “Analysis and Visualization of 

Multithreaded Java Applications” work area of this thesis is the proposal of a 

performance analysis framework to perform a complete analysis of the Java 

applications behavior based on providing to the user detailed and correlated 

information about all levels involved in the application execution, giving him the 

chance to construct his own metrics, oriented to the kind of analysis he wants to 

perform. The different levels considered by this performance analysis framework are 

shown in Figure 3.1. 

Hardware

Operating System

Java Virtual Machine

Application

Application Server

   Application Level

   Application Server Level

   JVM Level

   System Level

 
Figure 3.1. Instrumentation levels considered by the performance analysis framework 

 

The performance analysis framework consists of two tools: an instrumentation 

tool, called JIS (Java Instrumentation Suite), and an analysis and visualization tool, 

called Paraver [116]. When instrumenting a given application, JIS generates a trace in 

which the information collected from all levels has been correlated and merged. The 

trace reflects the activity of each thread in the application recorded in the form of a set 

of predefined state transitions (that are representative of the parallel execution) and 

the occurrence of some predefined events. Later, the trace can be visualized and 

analyzed with Paraver (qualitatively and quantitatively) to identify the performance 

bottlenecks of the application. 
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3.2 Instrumentation Tool: JIS 

The instrumentation tool (JIS) is responsible of collecting detailed information 

from all levels involved in the execution of Java applications. JIS correlates and 

merges this information in a final trace using the services provided by an 

instrumentation library. The next sections describe this library and the implementation 

of the different instrumentation levels considered by JIS. 

3.2.1 Instrumentation Library 

The proposed performance analysis framework use traces from real executions 

in the parallel target architecture in order to analyze multithreaded Java applications 

behavior. These traces reflect the activity of each thread in the application. This 

activity is recorded in the form of a set of predefined state transitions (that are 

representative of the parallel execution) and the occurrence of some predefined 

events.  

The generation of these traces is supported by an instrumentation library that 

provides all the services required to generate traces. The library is implemented in C 

and, if necessary, could be invoked from Java through the Java Native Interface (JNI) 

[134]. JNI is a Java standard interface for invoking native code inside the Java code. 

The instrumentation library offers the following services: 

� ChangeState - Change the state of a thread. 

� PushState - Store the current state of a thread in a private stack and change to 

a new one. 

� PopState - Change the state of a thread to the one obtained from the private 

stack. 

� UserEvent - Emit an event (type and associated value) for a thread. 

The library also offers combined services to change the state and emit an 

event: ChangeandEvent, PushandEvent and PopandEvent. Two additional services 

are offered to initialize and finish the instrumentation process: 

� InitLib - Initialize the library internal data structures to start a parallel trace 

receiving as parameters: 1) the maximum number of threads participating in 

the execution, 2) the maximum amount of memory that the library has to 
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reserve for each thread buffer, and 3) the mechanism used to obtain 

timestamps. 

� CloseLib - Stop the tracing; this call makes the library dump to disk all 

buffered data not yet dumped and write resulting sorted trace to a file.  

For each action being traced, the instrumentation library internally finds the 

time at which it was done. Timestamps associated to transitions and events can be 

obtained using generic timing mechanisms (such as the gettimeofday system call) or 

platform-specific mechanisms (for instance the high-resolution memory-mapped 

clock). All this data is written to an internal buffer for each thread (i.e. there is no 

need for synchronization locks or mutual exclusion inside the parallel tracing library). 

The data structures used by the tracing environment are also arranged at initialization 

time in order to prevent interference among threads (basically, to prevent false 

sharing). The user can specify the amount of memory used for each thread buffer. 

When the buffer is full, the instrumentation library automatically dumps it to disk. 

When the application exits, the instrumentation library generates a trace file 

joining the per-thread buffers containing the information that has been collected from 

all levels. This information is then correlated and merged. This adds an extra 

overhead to the whole execution time of the application that does not have any impact 

in the trace. 

3.2.2 System Level 

The JIS instrumentation at the system level can obtain information of the 

threaded execution of the application inside the operating system by providing the 

threads state along time and the system calls issued (I/O, sockets, memory 

management and thread management). This is the only level where the 

instrumentation depends on the underlying platform. In this thesis, two 

implementations of the instrumentation at the system level have been performed: 

� A dynamic interposition mechanism that obtains information about the 

supporting threads layer (i.e. Pthreads library [121]) without recompilation has 

been implemented for the SGI Irix platform. 

� A device driver that gets information from a patched Linux kernel has been 

developed for the Linux platform. 
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3.2.2.1 SGI Irix platform 

The JIS instrumentation at the system level in the SGI Irix platform can 

provide information about the supporting threads layer (i.e. Pthreads library), mutual 

exclusion and synchronization primitives (mutexes and conditional variables) and 

system calls issued (I/O, sockets and thread management). 

The information acquisition at this level is accomplished by dynamically 

interposing the instrumentation code at run time using DITools [126]. This dynamic 

code interposition mechanism allows JIS not to require any special compiler support 

and makes unnecessary to rebuild neither the bytecode of the application nor the 

executable of the JVM. 

3.2.2.1.1 System level information 

As commented before, JIS instrumentation at the system level provides 

information about threads state. Table 3.1 summarizes the different states that JIS 

instrumentation at the system level in the SGI Irix platform considers for a thread.  

Table 3.1. Thread states considered by the JIS instrumentation at the system level in the SGI Irix 
platform 

STATE DESCRIPTION 

INIT Thread is being created and initialized 

READY Thread is ready for running, but there is no CPU available 

RUN Thread is running 

BLOCKED IN CONDVAR Thread is blocked waiting on a monitor  

BLOCKED IN MUTEX Thread is blocked waiting to enter in a monitor 

BLOCKED IN I/O Thread is blocked waiting for an I/O operation 

STOPPED Thread has finalized 

 
The required knowledge about the execution environment can be expressed 

using a state transition graph, in which each transition is triggered by a procedure call 

and/or a procedure return. Figure 3.2 and Figure 3.3 present the state transition graphs 

for both execution models1 (green and native threads, respectively) supported by JIS 

instrumentation at the system level in the SGI Irix platform, in which nodes represent 

                                                 
1 Some implementations of the JVM (e.g. SGI Irix JVM) allow Java threads to be scheduled by the 
JVM itself (the so-called green threads model) or by the operating system (the so-called native threads 
model). When using green threads, the operating system does not know anything about threads that are 
handled by the JVM (from its the point of view, there is a single process and a single thread). In the 
native threads model, threads are scheduled by the operating system that is hosting the JVM. 
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states, and edges correspond to procedure calls (indicated by a + sign) or procedure 

returns (indicated by a - sign) causing a state transition.  

RUN

INIT

BLOCKED
IN

CONDVAR

BLOCKED
IN

MUTEX

STOPPED

READY

+ write read recv send
recvfrom sendto poll
accept close open

BLOCKED
IN
I/O

- write read recv send
recvfrom sendto poll
accept close open

+ setCurrentThread

+ queueInsert

+ 
qu

eu
eI

ns
er

t

+ queueInsert

+ deleteContextAndStack

+ queueWait
+ queueWait

+ sysThreadCreate

 
Figure 3.2. State transition graph for green threads considered by the JIS instrumentation at the system 

level in the SGI Irix platform 

 

These transition graphs are then used to derive the interposition routines used 

to keep track of the state in the instrumentation backend. These routines are simple 

wrappers of functions that change the thread state, emit an event and/or save thread 

information in the internal structures of JIS using the services offered by the 

instrumentation library described in Section 3.2.1. These wrappers can perform 

instrumentation actions before (_PRE) and/or after (_POST) the call being interposed. 

Figure 3.4 shows a simple example of procedure wrapper and the skeleton of the 

function executed before the activation of function pthread_cond_wait. 
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Figure 3.3. State transition graph for native threads considered by the JIS instrumentation at the 

system level in the SGI Irix platform 

 

int pthread_cond_wait_wrapper (pthread_cond_t *p, pthread_mutex_t *m) { 
    pthread_cond_wait_PRE ((long)p,(long)m); 
    ret = pthread_cond_wait (p,m); 
    pthread_cond_wait_POST ((long)p,(long)m); 
    return ret; 
} 
 
void pthread_cond_wait_PRE (long condvar_id, long mutex_id) { 
  pth_id = pthread_self(); 
  /* find Paraver thread identifier (jth_id = 1 .. n) of pth_id */ 
  PushandEvent(jth_id, BLOCKED_IN_CONDVAR, EVENT_BLOCKED_IN_CONDVAR,  
               condvar_id); 
  /* update internal structures */ 
} 
 

Figure 3.4. Example of procedure wrapper 

 

JIS instrumentation at the system level in the SGI Irix platform complements 

the information of threads state by generating events that indicate: 
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� The operations related to mutual exclusion (lock, trylock, locked, unlock) 

or thread synchronization on conditional variables (wait, waited, signal, 

broadcast). 

� The system calls performing socket operations (accept, send, recv, sendto, 

recvfrom, close). 

� The system calls performing I/O operations (open, read, write, close, poll). 

� The system calls performing thread operations (sched_yield, sleep). 

� In which kernel threads are executing the Java threads. 

3.2.2.1.2 Dynamic code interposition 

Dynamic linking is a feature available in many modern operating systems. 

Program generation tools (compilers and linkers) support dynamic linking via the 

generation of linkage tables. Linkage tables are redirection tables that allow delaying 

symbol resolution to run time. At program loading time, a system component fixes 

each pointer to the right location using some predefined resolution policies. Usually, 

the format of the object file as well as these data structures are defined by the system 

Application Binary Interface (ABI). The standardization of the ABI makes possible to 

take generic approaches to dynamic interposition.  

 
(a)                                                                (b) 

Figure 3.5. Dynamic code interposition 

 

The instrumentation methodology is based on the fact that the JVM invokes a 

set of run-time services at key places in order to use threads or to synchronize them. 
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These services are dynamic linked with the JVM via the use of linkage tables, like is 

shown in Figure 3.5.a. The interposition mechanism modifies the appropriate linkage 

table entries in order to redirect references to instrumentation wrappers, as shown in 

Figure 3.5.b. These wrappers track state changes and issue events by invoking 

services of the instrumentation library.  

3.2.2.1.3 Instrumentation overhead 

The overhead of the JIS instrumentation at the system level in the SGI Irix 

platform is determined using the LUAppl application, which is a LU reduction kernel 

over a two-dimensional matrix of double-precision elements taken from [111]. The 

results of the overhead measurement when instrumenting the LUAppl are shown in 

Table 3.2. The table reports the execution time in milliseconds of the original LUAppl 

with respect to the LUAppl when instrumenting its behavior, when running with 4 

threads and different problem sizes. Notice that, the overhead is kept reasonably low 

(below 8%) and considered acceptable taking into account the level of detail provided 

by the process. 

Table 3.2. Overhead of the JIS instrumentation at the system level in the SGI Irix platform for LUAppl 

Matrix size Original Instrumented Overhead 

128x128 2795 2996 7.19 % 

256x256 17542 17975 2.47 % 

512x512 109976 110857 0.80 % 

3.2.2.2 Linux platform 

The JIS instrumentation at the system level in the Linux platform can provide 

information about the threads state and the system calls issued (I/O, sockets, memory 

management and thread management). This information is directly extracted from 

inside kernel using two different layers: one based in a kernel source code patch and 

the other in a system device and its corresponding driver (implemented in a Linux 

kernel module). 

3.2.2.2.1 System level information 

The different states that JIS instrumentation at the system level in the Linux 

platform considers for a thread are summarized in Table 3.3. Notice that, this is not 

the complete list of possible thread states on Linux. Other states are not considered 



46 Chapter 3 

relevant to study the behavior of multithreaded Java applications in parallel 

environments. 

Table 3.3. Thread states considered by the JIS instrumentation at the system level in the Linux platform 

STATE DESCRIPTION 

READY Thread is ready for running, but there is no CPU available 

RUN Thread is running 

BLOCKED Thread is blocked 

  
Figure 3.6 shows the state transition graph supported by JIS instrumentation at 

the system level in the Linux platform, in which nodes represent states, and edges 

correspond to procedure calls causing a state transition. This transition graph is used 

to derive the interposition routines used to keep track of the state in the 

instrumentation backend. These routines are simple wrappers of functions that change 

the thread state, emit an event and/or save thread information in the internal structures 

of JIS using the services offered by the instrumentation library. 

READY

RUN

BLOCKED

system entry

schedule ()

schedule ()

wakeup ()

system exit / exit ()

 
Figure 3.6. State transition graph considered by the JIS instrumentation at the system level in the Linux 

platform 

 

JIS instrumentation at the system level in the Linux platform complements the 

information of threads state by generating events that indicate: 

� The system calls performing I/O operations (open, close, read, write, 

lseek, poll, select) with their associated entry and exit timestamps and the 

size and result of the performed operations. 
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� The system calls performing socket operations (socket, accept, bind, 

sendto, recvfrom) with their associated entry and exit timestamps and the 

size and result of the performed operations. 

� The system calls performing memory operations (brk, mmap, munmap, 

mprotect, madvise) with their associated entry and exit timestamps and the 

size and result of the performed operations. 

� The system calls performing thread operations (sched_yield, nanosleep) 

with their associated entry and exit timestamps and the size and result of the 

performed operations. 

� In which processors are executing the Java threads. 

3.2.2.2.2 Kernel source code patch 

Some system events cannot be extracted by any other way than inserting 

hooks inside the kernel source. These special events are related to kernel threads state 

and other ways of obtaining this information are not enough. For instance, Linux 

offers an interesting way to extract process status on system: the proc file system. 

The problem comes with the way this system interface divides the two main process 

states: Runnable and Blocked. Runnable implies that a process is ready to run on a 

processor, but does not give information about if it is really running or if it is waiting 

for a processor to start execution. This issue makes the proc file system insufficient to 

determine thread status at each moment in time. Thus, a kernel patch has to be used to 

obtain information about the state of the threads of the system at each moment in 

time. This information is obtained directly from the scheduler routine and notified to 

an instrumentation driver. 

Information from system calls is obtained by intercepting some entries of the 

system call table. The global system call table is modified in order to generate 

notifications to the instrumentation driver and invoke the original system call function 

in order to preserve the original system behavior. 

3.2.2.2.3 Instrumentation device driver 

The instrumentation driver receives the notifications from the patched Linux 

kernel when a thread state change is produced or an intercepted system call is 

invoked. This driver requires a device that controls it. The device driver is 
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implemented inside a Linux kernel module and is responsible of attending the 

notifications received from the patched kernel by tracking state changes and issuing 

events using the services of the instrumentation library. The device driver implements 

also basic functions operable over the device and to allocate the system events buffer. 

Basic implemented functions are: open, close, ioctl and mmap. 

Open and close calls are used to be able to work with the device. Ioctl call is 

used to control the system space instrumentation from the user space code. When the 

instrumented application finishes its execution, the shared library controlling the 

instrumentation can use the ioctl call to indicate to the kernel module that the 

instrumentation process is concluded. Finally, the mmap call is implemented to allow 

the user space instrumentation code to work transparently with the system space 

buffer and be able to merge both event buffers, system and space one, into a unique 

final trace. A diagram summarizing the architecture of the JIS instrumentation at the 

system level in the Linux platform is shown in Figure 3.7. 

 

Figure 3.7. Architecture of the JIS instrumentation at the system level in the Linux platform 

 

3.2.2.2.4 Instrumentation overhead 

The overhead of the JIS instrumentation at the system level in the Linux 

platform is determined using the LUAppl application, which has been introduced in 

Section 3.2.2.1.3. The results of the overhead measurement when instrumenting the 

LUAppl are shown in Table 3.4. The table reports the execution time in milliseconds 

of the original LUAppl with respect to the LUAppl when instrumenting its behavior, 
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when running with 4 threads and different problem sizes. Notice that, the overhead is 

kept very low (below 4%), considered acceptable in order to not to affect the 

conclusions extracted from applications analysis. 

Table 3.4. Overhead of the JIS instrumentation at the system level in the Linux platform for LUAppl 

Matrix size Original Instrumented Overhead 

250x250 699 722 3.29 % 

500x500 3434 3450 0.47 % 

750x750 9478 9492 0.15 % 

1000x1000 20662 20710 0.23 % 

3.2.3 JVM Level 

The JIS instrumentation at the JVM level can obtain information about JVM 

internals, considering Java abstractions like classes, objects, methods, threads and 

monitors. The information acquisition at the JVM level is accomplished by using the 

Java Virtual Machine Profiler Interface [143] (JVMPI). JVMPI is a common interface 

that can be used to obtain profiling information from the running Java application by 

introducing hooks inside the JVM code in order to be notified about some predefined 

Java events. Using JVMPI, there is no need to change the source of the application or 

recompile it, only is necessary to include an option to the Java interpreter. However, 

the use of JVMPI can result in severe overheads, because of the high notification 

frequency of some JVMPI events (e.g. method entry and method exit events). For 

these reason, JIS only obtains at this level the name of the Java threads and 

information about the operations performed on the different Java Monitors (wait, 

notify, notifyAll, contended enter, contended exit). 

3.2.3.1 JVMPI 

The JVMPI is based on the idea of creating a shared library that is 

dynamically linked with the JVM if the user passes an instrumentation option to the 

Java interpreter. This library will be notified about selected internal JVM events. 

Choosing hooked events is done at JVM load time using a standard implemented 

method on the library that is invoked by the JVM. This method is called JVM_OnLoad. 

An example of selecting events that have to be notified in this method is shown in 

Figure 3.8. In this example, the notification of waits in a monitor is enabled 
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(JVMPI_EVENT_MONITOR_WAIT event). The JVM_OnLoad function also specifies the 

routine that has to be called each time that a requested event is produced, in this 

example the notifyEvent routine.  

When a selected event is produced, this event is notified through a call to the 

notifyEvent function that can determine, by parsing received parameters, what event 

is taking place. Depending on this, the function will track the state changes or will 

issue the necessary events using the services provided by the instrumentation library. 

 
#include <jvmpi.h> 
 
// global jvmpi interface pointer 
static JVMPI_Interface *jvmpi_interface; 
 
// function for handling event notification 
void notifyEvent(JVMPI_Event *event) { 
  switch(event->event_type) { 
    ... 
    case JVMPI_EVENT_MONITOR_WAIT: 
    ... 
  }                        
} 
 
// profiler agent entry point 
JNIEXPORT jint JNICALL JVM_OnLoad(JavaVM *jvm, char *options, void 
*reserved) { 
    
    // get jvmpi interface pointer 
    if ((jvm->GetEnv((void **)&jvmpi_interface, JVMPI_VERSION_1)) < 0)  
    { 
      fprintf(stderr, "Error in obtaining jvmpi interface pointer\n"); 
      return JNI_ERR; 
    }  
     
    // initialize jvmpi interface 
    jvmpi_interface->NotifyEvent = notifyEvent; 
 
    // enabling class load event notification 
    jvmpi_inter->EnableEvent(JVMPI_EVENT_MONITOR_WAIT, NULL); 
 
    return JNI_OK; 
} 
 

Figure 3.8. JVMPI initialization 

 

The JVMPI comes with the standard Java SDK from version 1.2. However, 

new SDK release 1.5, has replaced JVMPI with a new profiling interface, the JVM 

Tool Interface [137] (JVMTI). 

3.2.4 Application Server Level 

Information about the internals of the application server can be obtained at the 

application server level. This information is reported using events that indicate the 
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begin/end of services (i.e. servlets and EJB), requests, HTTP connections, SSL 

connections, database transactions, etc. 

The information acquisition at this level is accomplished by injecting 

instrumentation probes at specific points in the application server where events are 

required to signal server relevant actions. These probes invoke the services (which 

generate the events and/or state transitions) of the instrumentation library through the 

Java Native Interface (JNI). The instrumentation library is dynamically linked with 

the JVM and offers a common JNI interface to the Java applications. This allows the 

use of the instrumentation at the application level in all platforms supporting Java. 

The instrumentation probes can be directly injected in the application server 

source code, if this is available. Otherwise, other techniques can be used to extract 

information from the application server level when source code is not available. For 

example, the Java Automatic Code Interposition Tool [57] (JACIT) allows adding 

code to already compiled classes without recompilation. JACIT is based on using 

Aspect programming techniques [60] to enable the work with code although source 

code is not available or to extend features from a closed product. 

For example, Figure 3.9 shows the code injected in the HttpServlet class in 

order to obtain instrumentation information about when the services begin and end. 

 
package javax.servlet.http; 
 
public abstract class HttpServlet extends GenericServlet 
    implements java.io.Serializable 
{ 
  ... 
  protected void service(HttpServletRequest req, HttpServletResponse resp) 
        throws ServletException, IOException 
  { 
    bjs.UserEvent(SERVICE,BEGIN); 
    ... 
    doGet(req, resp); 
    ... 
    bjs.UserEvent(SERVICE,END); 
  } 
  ... 
} 
 

Figure 3.9. Code injection mechanism in the HttpServlet class 

 

3.2.5 Application Level 

JIS can provide also the user with information about the Java application level. 

The information acquisition at this level is accomplished in the same way that in the 



52 Chapter 3 

application server level (i.e. by injecting instrumentation probes that invoke the 

services of the instrumentation library using the JNI at specific points in the Java 

application where events are required to signal application relevant actions). As in the 

application server level instrumentation, the instrumentation at the application level 

can be used in all platforms supporting Java. 

3.2.5.1 Instrumentation of JOMP applications 

As a special case of instrumentation at the application level, support for JOMP 

applications [23] has been added to JIS. JOMP includes OpenMP-like extensions to 

specify parallelism in Java applications using a shared-memory programming 

paradigm. The instrumentation provides a detailed analysis of the parallel behavior at 

the JOMP programming model level. At this level, the user is faced with parallel, 

work-sharing and synchronization constructs.  

3.2.5.1.1 JOMP programming model level information 

Table 3.5 summarizes the different states that the instrumentation of JOMP 

applications considers for a thread. The RUN state corresponds to the execution of 

useful work, i.e. execution of work in the original source code. The IDLE state reflects 

the fact that a thread is waiting (outside a parallel region) for work to be executed. 

The JOMP runtime library creates threads at the first parallel region and keeps them 

alive until the end of the application. In the meanwhile, they check for new work to be 

executed, and if found, execute it. The OVERHEAD state shows that the thread is 

executing code associated with definition and initialization of private, 

lastprivate, firstprivate and reduction variables, or the determination of the 

tasks to be done in a work-sharing construct. The SYNCH state refers to the situation in 

which a thread is waiting for another thread to reach a specific point in the program, 

or for access to a ticketer to guarantee specific ordered actions. 

Table 3.5. Thread states considered by JOMP applications instrumentation 

STATE  DESCRIPTION 

IDLE Thread is waiting for work to be executed 

RUN Thread is running 

OVERHEAD Thread is executing JOMP overhead  

SYNCH Thread is synchronizing with other threads in the team 
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The instrumentation of JOMP applications can also report events that provide 

additional information about the JOMP constructs being executed. Each event has two 

fields associated: type and value. The type is used to indicate the entry/exit to/from a 

parallel, work-sharing or synchronization construct. The value is used to relate the 

event type with the source code (for instance, line number in the source code and 

method name). The communication between the event types and values assigned by 

the compiler and Paraver is done through a configuration file generated by the 

compiler itself. 

3.2.5.1.2 Code injection 

The information acquisition is accomplished in the same way as explained for 

the generic application level instrumentation, that is, by injecting instrumentation 

probes that invoke the services (which generate the events and/or state transitions) of 

the instrumentation library using the JNI at specific points in the JOMP application. 

The JOMP compiler has been modified in order to inject these probes in the JOMP 

application source code (where the state transitions occur and where events are 

required to signal JOMP relevant actions) without user intervention during the code 

generation phase. 

Figure 3.10.b shows the instrumented parallel code for the simple example 

shown in Figure 3.10.a. Notice that the compiler forces a state change to OVERHEAD as 

soon as the master thread starts the execution of the block of code that encapsulates 

the parallel construct in the main method. The previous state is stored in an internal 

stack so that the master thread can restore it as soon as it finishes the execution of this 

block of code. When changing to OVERHEAD state, the master thread also emits an 

event with type EVENT_PARALLEL_BEGIN that indicates the beginning of the parallel 

construct and with value 500 indicates that this parallel construct is found at a certain 

line and method in the original source code. In the same way, when the master thread 

restores its previous state, it also emits an event with type EVENT_PARALLEL_END that 

indicates the end of the parallel construct and with value the same 500. 

Each thread in the team executing the go() method changes to the RUN state 

when it starts the execution of the user code. After executing the original user code, 

each thread changes to the OVERHEAD state for managing reduction variables. Then the 
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thread changes to the BLOCKED state and gets into a barrier. When all threads have 

reached the barrier, they restore their previous state. 

 
public class Hello { 
  public static void main (String argv[]) { 
    int myid; 
    //omp parallel private (myid) 
    { 
      myid = OMP.getThreadNum(); 
      System.out.println(“Hello from” + myid); 
    } 
  } 
} 

(a) original code 
 
public class Hello { 
  public static void main (String argv[]) { 
    int myid; 
    bjs.InitLib(jomp.runtime.OMP.getMaxThreads());  
    // OMP PARALLEL BLOCK BEGINS 
    { 
      bjs.PushandEvent(jomp.runtime.OMP.getThreadNum(),OVERHEAD,  
                       EVENT_PARALLEL_BEGIN,500); 
      __omp_Class0 __omp_Object0 = new __omp_Class0(); 
      __omp_Object0.argv = argv; 
      try { 
        jomp.runtime.OMP.doParallel(__omp_Object0); 
      } catch(Throwable __omp_exception) { 
        jomp.runtime.OMP.errorMessage(); 
      } 
      argv = __omp_Object0.argv; 
      bjs.PopandEvent(jomp.runtime.OMP.getThreadNum(), 
                      EVENT_PARALLEL_END,500); 
    } 
    // OMP PARALLEL BLOCK ENDS 
    bjs.CloseLib(); 
  } 
} 
 
// OMP PARALLEL REGION INNER CLASS DEFINITION BEGINS 
private static class __omp_Class0 extends jomp.runtime.BusyTask { 
  String [] argv; 
  public void go(int __omp_me) throws Throwable { 
    int myid; 
    // OMP USER CODE BEGINS 
    { 
      bjs.PushState(jomp.runtime.OMP.getThreadNum(),RUN); 
      myid = OMP.getThreadNum(); 
      System.out.println("Hello from" + myid); 
      bjs.ChangeState(jomp.runtime.OMP.getThreadNum(),OVERHEAD); 
    } 
    // OMP USER CODE ENDS 
    bjs.ChangeState(jomp.runtime.OMP.getThreadNum(),BLOCKED); 
    jomp.runtime.OMP.doBarrier(__omp_me); 
    bjs.PopState(jomp.runtime.OMP.getThreadNum()); 
  } 
} 
// OMP PARALLEL REGION INNER CLASS DEFINITION ENDS 
 

 (b) instrumented transformed code 
 

Figure 3.10. Example of code injection made by the JOMP compiler: parallel directive 
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3.2.5.1.3 Instrumentation overhead 

The overhead of the instrumentation of JOMP applications is determined using 

the LUJOMP application, which is a JOMP version of the LUAppl presented in 

Section 3.2.2.1.3. The code of LUJOMP is shown in Figure 3.11. 

 
for (k=0; k < SIZE; k++) { 
    //omp parallel 
    { 
        //omp for schedule(static) nowait 
        for (int i=k+1; i < SIZE; i++) { 
            matrix[i][k] = matrix[i][k] / matrix[k][k]; 
        } 
        //omp for schedule(static) 
        for (int i=k+1; i <SIZE; i++) { 
            for (int j=k+1; j < SIZE; j++) { 
                matrix[i][j] = matrix[i][j] - matrix[i][k] * matrix[k][j]; 
            } 
        } 
    } 
} 

Figure 3.11. Source code of JOMP version of LUAppl application 

 

The results of the overhead measurement when instrumenting the LUJOMP 

are shown in Table 3.6. The table reports the execution time in milliseconds of the 

original LUJOMP with respect to the LUJOMP when instrumenting its behavior, 

when running with 4 threads and different problem sizes. Notice that the overhead is 

very low (less than 3%). 

Table 3.6. Overhead of the JOMP applications instrumentation for LUAppl 

Matrix size Original Instrumented Overhead 

128x128 1899 1949 2.63% 

256x256 15842 16222 2.4% 

512x512 105962 108092 2% 

3.3 Visualization Tool: Paraver 

Paraver [116] is a flexible trace visualization and analysis tool developed at 

CEPBA [33] based on an easy-to-use Motif GUI. Paraver was developed to respond 

to the need to have a qualitative global perception of the application behavior by 

visual inspection and then to be able to focus on the detailed quantitative analysis of 

the problems. Large amount of information useful to improve the decisions on 

whether and where to invert the programming effort to optimize an application is 

accessible with Paraver. Trace analysis with Paraver ranges from the visualization of 
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the graphical trace representation to the calculation of multiple statistics in order to 

detect performance problems. In any case, all the possible views and statistical 

calculations made on a trace file can be saved as Paraver configuration files for later 

reuse. It allows users to create a large amount of preset views of the trace file that can 

point out some performance indexes or conflictive situations in a direct way. 

The graphical views of the trace files are based on the representation of 

threads, characterized by their state along time and by some punctual events. The 

combination of states and events makes possible to do a detailed and intuitive 

representation of an application behavior. A sample of the Paraver visualization 

module can be seen in the top part of Figure 3.12. On it, threads are represented on the 

vertical axis and the horizontal axis is used for the timeline. The color of each thread 

along time indicates its state. The state value of each thread can be obtained directly 

from the trace file or can be calculated as a function of the thread state and the event 

values. Textual information related to the states and the events can also be obtained 

with this view by clicking at any point in the trace, as shown in bottom part of Figure 

3.12. 

 
Figure 3.12. Sample Paraver graphical and textual visualizations 

 

The analysis views apply statistical calculations to the trace file information 

and summarize the results as a table. These calculations can be done as a function of 

thread state values, punctual events and thread state values of one window in relation 

to thread state values (called categories) of another window. An example of a Paraver 
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statistical analysis can be seen on Figure 3.13. On it, threads are represented on the 

vertical axis, categories are represented on the horizontal axis and each cell of the 

matrix represents the calculation result for the thread-category combination. The 

statistic to be calculated is defined by the user. 

 
Figure 3.13. Sample Paraver statistical calculation 

 

3.4 Application Analysis 

Although many examples of using the proposed analysis framework for 

detecting performance bottlenecks of multithreaded Java applications will appear 

across this thesis, this section presents some guidelines of the analysis that can be 

performed with the analysis framework. This explanation has been structured around 

the analysis of two types of multithreaded Java applications: JOMP applications and 

Java application servers. 

3.4.1 Analysis of JOMP Applications 

The top part of Figure 3.14 shows a Paraver window displaying the behavior 

of one iteration of the LUJOMP application presented in Figure 3.11. The horizontal 

axis represents execution time in microseconds. The vertical axis shows the four 

JOMP threads that compose the team. Each thread evolves though a set of states, each 

one represented with a different color (as indicated with the legend). Flags appearing 
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on top of each thread bar are used to visualize the events indicating the JOMP 

constructs. For instance, all the threads start executing the body of the parallel 

construct, and distribute themselves the work (OVERHEAD state, yellow color in the 

visualization) as indicated by the two for work-sharing directives. After determining 

the chunk of iterations, each thread executes them (RUN state, dark blue color in the 

visualization). Barrier synchronization happens at the end of second work-sharing 

construct (SYNCH state, red color in the visualization), which forces all the threads to 

wait. Notice that the nowait clause in the first work-sharing construct omits the 

implicit barrier synchronization. 

 
Figure 3.14. Paraver visualization for one iteration of the LUAppl kernel 

(JOMP programming model level) 

 

The bottom part of Figure 3.14 shows the textual information reported by 

Paraver when the user clicks on a specific point of the trace. Observe that, in addition 

to timing measurements and thread state, Paraver also relates the visualization with 

the original JOMP code. 

The information obtained at the JOMP programming model level can be 

complemented with the information at the system level, allowing the correlation of 
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the information at different levels in a way that cannot be accomplished with other 

tools. For example, the user can obtain information about the real processor use 

during the execution of JOMP constructs. In the top part of Figure 3.15, which shows 

the behavior at the JOMP programming model level of the LUJOMP application, the 

user can detect if a thread is in the IDLE state or in the SYNCH state, but it does not 

know if that thread is in fact running on a processor or blocked elsewhere on the 

system. In the bottom part of Figure 3.15, which shows the behavior at the system 

level of the LUJOMP application, the user discovers that when a thread is in the IDLE 

state, it is really in a loop checking for new work for be executed (RUN state) and if not 

found, yielding its processor (READY state). In the same way, when a thread is in the 

SYNCH state, it is really in a loop wait checking for the barrier opening (RUN state) and 

if do not, yielding its processor (READY state).  

                                                                      
Figure 3.15. Paraver visualization for one iteration of the LUAppl kernel 

(JOMP programming model level + System level) 
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With the correlation of the information of the JOMP programming model level 

and the information of the system level, situations of monitor contention can be also 

discovered. The analysis of the top part of Figure 3.15 reveals that the overhead 

produced when distributing work among threads is higher than expected (OVERHEAD 

state). The analysis of the information at the system level, which is shown in the 

bottom part of Figure 3.15, exposes that a monitor contention situation in a JVM 

internal monitor is causing this overhead (threads are blocked in BLOCKED_IN_MUTEX 

state). 

3.4.2 Analysis of Multithreaded Java Application Servers 

This section presents two successful experiences where a detailed analysis 

using the proposed performance analysis framework has allowed the detection and 

correction of two performance degradation situations when executing the RUBiS 

benchmark with the Tomcat application server. The two analysis experiences 

demonstrate the benefit of disposing of correlated information about all the levels to 

perform a fine-grain analysis of server execution. 

3.4.2.1 Analysis methodology 

The analysis methodology is based in the well-know scientific method. The 

analysis starts when an observation that can represent a performance lost or a server 

malfunction is produced when doing typical server maintenance work (for example, 

when examining the server log files), or when performing a study of basic metrics 

looking for anomalous values or behaviors. These observations showing low 

performance or unexplained errors are the Symptom that something is going wrong in 

the server, and motivate an in-depth analysis of the server behavior. 

When a Symptom of a server malfunction is detected, the analysis 

methodology indicates that a Hypothesis to explain this Symptom apparition have to 

be suggested, and using the performance analysis framework presented in this thesis, 

perform the necessary Actions to confirm or discard this Hypothesis. The result of the 

Actions can confirm the Hypothesis, discard it, or detect another Symptom. The 

methodology establishes to carry out the necessary Actions until the Hypothesis can 

be verified or discarded. In the first case, the cause of server anomalous behavior has 
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been detected. In the second case, another Hypothesis must be suggested, and the 

verification process based on Actions must be restarted. 

3.4.2.2 Case study 1 

The first case study starts from an observation made when inspecting the 

Tomcat log files. Good Tomcat administrators should perform the observation of log 

files periodically in order to detect possible server malfunctions. When examining the 

RUBiS context log file of Tomcat, these error messages are found: 

� Servlet.service() for servlet BrowseCategories threw exception 

java.lang.NullPointerException at 

com.mysql.jdbc.ResultSet.first(ResultSet.java:2293) 

� java.sql.SQLException: Operation not allowed after ResultSet 

closed 

The appearance of these error messages in the log file is a Symptom that 

something is going wrong, and motivates an in-depth analysis to determine the causes 

of this behavior. The proposed analysis methodology establishes the suggestion of a 

Hypothesis that explains the Symptom detected. Considering the messages shown 

before, the Hypothesis is that the problem is related with the database access. 

At this point, it is required to take the necessary Actions to verify the 

Hypothesis made (using the performance analysis framework). In this case, 

correctness of database access has to be verified.  

The first Action to verify the Hypothesis consists of analyzing which system 

calls are performed by HttpProcessors when they have acquired a database 

connection. This information is displayed in Figure 3.16 (horizontal axis is time and 

vertical axis identifies each thread), where each burst represents the execution of a 

system call when the corresponding HttpProcessor has acquired a database 

connection. As indicates the textual information in the figure, HttpProcessors get 

database information using socket receive calls. This Symptom corresponds to the 

expected behavior if managing correctly the database connections, thus more 

information about the database access is needed to verify the Hypothesis. 

Then, the next Action taken is to analyze the file descriptors used by the 

system calls performed by HttpProcessors when they have acquired a database 

connection. This information is displayed in Figure 3.17, where each burst indicates 
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the file descriptor used by the system call performed by the corresponding 

HttpProcessor when it has acquired a database connection. As indicates the textual 

information in the figure, several HttpProcessors are accessing the database using the 

same file descriptor (that is, using the same database connection). This is conceptually 

incorrect, and should not happen. This Symptom confirms the Hypothesis about a 

wrong access to database. 

 
Figure 3.16. System calls performed by HttpProcessors when they have acquired a database 

connection 

 

At this point, it must be determined why several HttpProcessor use the same 

file descriptor to access the database, so another Hypothesis that locates the problem 

in the RUBiS database connection management is suggested. The Action taken to 

verify this Hypothesis consists of inspecting the RUBiS servlets source code. This 

inspection reveals the following bug. Each kind of RUBiS servlet declares three class 

variables (ServletPrinter sp, PreparedStatement stmt and Connection conn). 

These class variables are shared by all the servlet instances, and this can provoke 

multiple race conditions. For example, it is possible that two HttpProcessors access 

the database using the same connection conn. 
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Figure 3.17. File descriptors used by the system calls performed by HttpProcessors when they have 

acquired a database connection 

 

This problem can be avoided declaring these three class variables as local 

variables in the doGet method of the servlet, and pass them as parameters when 

needed. 

3.4.2.3 Case study 2 

A good practice when tuning an application server for performance is to make 

periodical studies of some basic metrics that indicate the performance of the 

application server. These metrics include for example the average service time per 

HttpProcessor, the overall throughput, the client requests arrivals rate, etc. The result 

of this basic analysis can encourage a more detailed study to determine the causes of 

an anomalous value in these metrics. For example, the second case study starts from 

an observation made when analyzing the average service time per HttpProcessor on 

server. 

Figure 3.18 shows the average service time for each HttpProcessor, calculated 

using the performance analysis framework. In this figure there is one HttpProcessor 
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with an average service time considerably higher than the others. This is a Symptom 

of an anomalous behavior of this HttpProcessor, and motivates an in-depth analysis to 

determine the causes of this behavior. First, the state distribution when the 

HttpProcessors are serving requests is analyzed. Figure 3.19 shows the percentage of 

time spent by the HttpProcessors on every state (run, uninterruptible blocked, 

interruptible blocked, waiting in ready queue, preempted and ready). This 

figure shows that the problematic HttpProcessor is most of the time in 

interruptible blocked state (about 92% of time) while the other HttpProcessors 

are blocked about the 65% of time.  

 
Figure 3.18. Average service time per HttpProcessor 

 

In order to explain this Symptom, the Hypothesis consists of assuming that the 

HttpProcessor could be blocked waiting response from the database. This Hypothesis 

is inferred because the database is a typical resource that can provoke long waits when 

working with application servers. To verify this Hypothesis, the Action taken is to 
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analyze the system calls performed by HttpProcessors when serving requests. This 

analysis revealed that the problematic HttpProcessor is not blocked in any system call, 

which means that it is not blocked waiting response from database, but does it have at 

least an open connection with the database? To answer this question, the Action taken 

consists of analyzing when HttpProcessors acquire database connections. This 

analysis reports that the problematic HttpProcessor blocks before acquiring any 

database connection. 

 
Figure 3.19. State distribution of HttpProcessors during service (in percentage) 

 

With all this information it can be concluded that the first Hypothesis is 

wrong, that is, the problematic HttpProcessor is not waiting response from the 

database. Therefore, a new Hypothesis to explain why the problematic HttpProcessor 

is blocked most of the time is needed. Considering that, as commented before, the 

problematic HttpProcessor has not acquired any database connection yet, the new 

Hypothesis is that this HttpProcessor could have problems acquiring the database 

connection. To verify this Hypothesis, the performance analysis framework is used to 

display the database connections management, which is shown in Figure 3.20. Light 
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color indicates the acquisition of a database connection and dark color indicates the 

wait for a free database connection. Notice that the problematic HttpProcessor 

(HttpProcessor 9 in the figure) is blocked waiting for a free database connection. This 

Symptom confirms the Hypothesis that there could be problems acquiring database 

connections. This figure also reveals the origin of the problem on the database 

connection management, because it can occur that a database connection is released, 

while there are some HttpProcessors waiting for a free database connection, but they 

are not notified. Notice that HttpProcessors 4 and 9 are blocked waiting for a free 

database connection. When HttpProcessor 14 releases its database connection, it 

notifies HttpProcessor 4 that can acquire this connection and continue its execution. 

Other HttpProcessors holding a database connection release it, but none of them 

notifies HttpProcessor 9.  

 
Figure 3.20. Database connections acquisition process 

 

Trying to explain this anomalous behavior, the Hypothesis supposes that a 

wrong database connection management at RUBiS is causing the problem. In order to 

verify this Hypothesis, the Action taken is to inspect the RUBiS servlets source code. 

This inspection reveals a bug. By default, in RUBiS one HttpProcessor only notifies a 
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connection release if free database connection stack is empty. But consider the 

following situation: 

There are N HttpProcessors that execute the same RUBiS servlet, which has a 

pool of M connections available with the database, where N is greater than M. This 

means that M HttpProcessors can acquire a database connection and the rest (N – M) 

HttpProcessors block waiting for a free database connection. Later, an HttpProcessor 

finishes executing the servlet and releases its database connection. The HttpProcessor 

puts the connection in the pool and, as the connection pool was empty, it notifies the 

connection release. 

Due to this notification, a second HttpProcessor wakes up and tries to get a 

database connection. But before this second HttpProcessor can get the connection, a 

third HttpProcessor finishes executing the servlet and releases its database connection. 

The third HttpProcessor puts the connection in the pool and, as the connection pool 

was not empty (the second HttpProcessor has not got the connection yet), it does not 

notify the connection release. The second HttpProcessor finally acquires its database 

connection and the execution continues with a free connection in the pool, but with 

HttpProcessors still blocked waiting for free database connections. 

This situation can be avoided if HttpProcessors notify to all HttpProcessors 

when they release a database connection. 

3.5 Conclusions 

This chapter has described the main contribution in the “Analysis and 

Visualization of Multithreaded Java Applications” work area of this thesis, which is 

the proposal of a performance analysis framework to perform a complete analysis of 

the Java applications behavior based on providing to the user detailed information 

about all levels involved in the application execution (operating system, JVM, 

application server and application), giving him the chance to construct his own 

metrics, oriented to the kind of analysis he wants to perform.  

The performance analysis framework consists of two tools: an instrumentation 

tool, called JIS (Java Instrumentation Suite), and an analysis and visualization tool, 

called Paraver. When instrumenting a given application, JIS generates a trace in 

which the information collected from all levels has been correlated and merged. Later, 
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the trace can be visualized and analyzed with Paraver (qualitatively and 

quantitatively) to identify the performance bottlenecks of the application. 

JIS provides information from all levels involved in the application execution. 

From the system level, information about threads state and system calls (I/O, sockets, 

memory management and thread management) can be obtained. Several 

implementations have been performed depending on the underlying platform. A 

dynamic interposition mechanism that obtains information about the supporting 

threads layer (i.e. Pthreads library) without recompilation has been implemented for 

the SGI Irix platform. In the same way, a device driver that gets information from a 

patched Linux kernel has been developed for the Linux platform. JIS uses the JVMPI 

to obtain information from the JVM level. At this level of analysis, the user can obtain 

information about several Java abstractions like classes, objects, methods, threads and 

monitors, but JIS only obtains at this level the name of the Java threads and 

information from the different Java Monitors (when they are entered, exited or 

contended), due to the large overhead produced when using JVMPI. Information 

relative to services (i.e. servlets and EJB), requests, connections or transactions can be 

obtained from the application server level. Moreover, some extra information can be 

added to the final trace file by generating user events from the application code. 

Information at these levels can be inserted by hard-coding JNI calls to the 

instrumentation library on the server or the application source or by introducing them 

dynamically using Aspect programming techniques without source code 

recompilation. 

As a special case of instrumentation at the application level, support for JOMP 

applications has been added to JIS. JOMP includes OpenMP-like extensions to 

specify parallelism in Java applications using a shared-memory programming 

paradigm. This instrumentation approach has been designed to provide a detailed 

analysis of the parallel behavior at the JOMP programming model level. At this level, 

the user is faced with parallel, work-sharing and synchronization constructs. The 

JOMP compiler has been modified to inject JNI calls to the instrumentation library 

during the code generation phase at specific points in the source code. 

Experience in this thesis demonstrates the benefit of disposing of correlated 

information about all the levels involved in Java applications execution to perform a 

fine-grain analysis of their behavior. This thesis claims that a real performance 
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improvement on multithreaded Java applications execution can only be achieved if 

performance bottlenecks at all levels can be identified. 

The research performed in this work area has resulted in the following 

publications, including three international conferences, one international workshop 

and two national conferences: 

� J. Guitart, D. Carrera, J. Torres, E. Ayguadé and J. Labarta. Tuning Dynamic 
Web Applications using Fine-Grain Analysis. 13th Euromicro Conference on 
Parallel, Distributed and Network-based Processing (PDP’05), pp. 84-91, 
Lugano, Switzerland. February 9-11, 2005.  

 
� D. Carrera, J. Guitart, J. Torres, E. Ayguadé and J. Labarta. Complete 

Instrumentation Requirements for Performance Analysis of Web based 
Technologies. 2003 IEEE International Symposium on Performance Analysis 
of Systems and Software (ISPASS’03), pp. 166-175, Austin, Texas, USA. 
March 6-8, 2003.  

 
� D. Carrera, J. Guitart, J. Torres, E. Ayguadé and J. Labarta. An 

Instrumentation Tool for Threaded Java Application Servers. XIII Jornadas de 
Paralelismo, pp. 205-210, Lleida, Spain. September 9-11, 2002. 

 
� J. Guitart, J. Torres, E. Ayguadé and J.M. Bull. Performance Analysis Tools 

for Parallel Java Applications on Shared-memory Systems. 30th International 
Conference on Supercomputing (ICPP’01), pp. 357-364, Valencia, Spain. 
September 3-7, 2001. 

 
� J. Guitart, J. Torres, E. Ayguadé, J. Oliver and J. Labarta. Instrumentation 

Environment for Java Threaded Applications. XI Jornadas de Paralelismo, pp. 
89-94. Granada, Spain, September 12-14, 2000. 

 
� J. Guitart, J. Torres, E. Ayguadé, J. Oliver and J. Labarta. Java 

Instrumentation Suite: Accurate Analysis of Java Threaded Applications. 2nd 
Annual Workshop on Java for High Performance Computing (part of the 14th 
ACM International Conference on Supercomputing ICS’00), pp. 15-25, Santa 
Fe, New Mexico, USA. May 7, 2000.  
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CHAPTER 4 
SELF-ADAPTIVE 

MULTITHREADED JAVA APPLICATIONS 

 

4.1 Introduction 

Multithreaded Java applications can be used in HPC environments, where 

applications can benefit from the Java multithreading support for performing parallel 

calculations, as well as in e-business environments, where Java application servers 

can take profit of Java multithreading facilities to handle concurrently a large number 

of requests.  

However, the use of Java for HPC faces a number of problems that are 

currently subject of research. One of them is the performance degradation when 

multithreaded applications are executed in a multiprogrammed environment. The 

main issue that leads to this degradation is the lack of communication between the 

execution environment and the applications, which can cause these applications to 

make a naive use of threads, degrading their performance. In these situations, it is 

desirable that the execution environment provides information to the applications 

about their allocated resources, thus allowing the applications to adapt their behavior 

to the amount of resources offered by the execution environment by generating only 

the amount of parallelism that can be executed with the assigned processors. This 

capability of applications is known as malleability [53]. Therefore, improving the 

performance of multithreaded Java applications in HPC environments can be 

accomplished by designing and implementing malleable applications (i.e. self-

adaptive applications). 

Achieving good performance when using Java in e-business environments is a 

harder problem due to the large complexity of these environments. First, the workload 

of Internet sites is known to vary dynamically over multiple time scales, often in an 

unpredictable fashion, including flash crowds. This fact and the increasing load that 

Internet sites must support increase the performance demand on Java application 
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servers that host the sites that must face situations with a large number of concurrent 

clients. Therefore, the scalability of these application servers has become a crucial 

issue in order to support the maximum number of concurrent clients in these 

situations. 

Moreover, not all the web requests require the same computing capacity from 

the server. For example, requests for static web content (i.e. HTML files and images) 

are mainly I/O intensive. Requests for dynamic web content (i.e. Java Servlets and 

EJB) increase the computational demand on server, but often other resources (e.g. the 

database) become the bottleneck for performance. On the other side, in e-business 

applications, which are based on dynamic web content, all information that is 

confidential or has market value must be carefully protected when transmitted over 

the open Internet. Although providing these security capabilities does not introduce a 

new degree of complexity in web applications structure, it increases the computation 

time necessary to serve a connection remarkably, due to the use of cryptographic 

techniques, becoming a CPU-intensive workload. 

Facing situations with a large number of concurrent clients and/or with a 

workload that demands high computational power (as for instance secure workloads) 

can lead a server to overload (i.e. the volume of requests for content at a site 

temporarily exceeds the capacity for serving them and renders the site unusable). 

During overload conditions, the response times may grow to unacceptable levels, and 

exhaustion of resources may cause the server to behave erratically or even crash 

causing denial of services. In e-commerce applications, which are heavily based on 

the use of security, such server behavior could translate to sizable revenue losses. 

Therefore, overload prevention is a critical issue if good performance on Java 

application servers in e-business environments wants to be achieved. Overload 

prevention tries to have a system that remains operational in the presence of overload 

even when the incoming request rate is several times greater than system capacity, 

and at the same time is able to serve the maximum the number of requests during such 

overload, maintaining response times (i.e. Quality of Service (QoS)) within 

acceptable levels.  

Additionally, in many web sites, especially in e-commerce, most of the 

applications are session-based. A session contains temporally and logically related 

request sequences from the same client. Session integrity is a critical metric in e-



Self-Adaptive Multithreaded Java Applications 73 

 

commerce. For an online retailer, the higher the number of sessions completed the 

higher the amount of revenue that is likely to be generated. The same statement 

cannot be made about the individual request completions. Sessions that are broken or 

delayed at some critical stages, like checkout and shipping, could mean loss of 

revenue to the web site. Sessions have distinguishable features from individual 

requests that complicate the overload control. For example, admission control on per 

request basis may lead to a large number of broken or incomplete sessions when the 

system is overloaded. 

Application servers overload can be prevented by designing mechanisms that 

allow the servers to adapt their behavior to the available resources (i.e. becoming self-

adaptive applications) limiting the number of accepted requests to those that can be 

served without degrading their QoS while prioritizing important requests. However, 

the design of a successful overload prevention strategy must be preceded by a 

complete characterization of the application server scalability. This characterization 

allows determining which factors are the bottlenecks for application server 

performance that must be considered in the overload prevention strategy. 

Nevertheless, characterizing application server scalability is something more 

complex than measuring the application server performance with different number of 

clients and determining the load that overloads the server. A complete 

characterization must also supply the causes of this overload, giving to the server 

administrator the chance and the information to improve the server scalability by 

avoiding its overload. For this reason, this characterization requires of powerful 

analysis tools that allow an in-depth analysis of the application server behavior and its 

interaction with the other system elements (including distributed clients, a database 

server, etc.). These tools must support and consider all the levels involved in the 

execution of web applications if they want to provide meaningful performance 

information to the administrators because the origin of performance problems can 

reside in any of these levels or in their interaction. 

A complete scalability characterization must also consider another important 

issue: the scalability relative to the resources. The analysis of the application server 

behavior will assist with hints to answer the question about how would affect to the 

application server scalability the addition of more resources. If the analysis reveals 

that some resource is being a bottleneck for the application server performance, this 
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encourages the addition of new resources of this type in order to improve server 

scalability. On the other side, if a resource that is not being a bottleneck for the 

application server performance is upgraded, the added resources are wasted because 

the scalability is not improved and the causes of server performance degradation 

remain unresolved. 

The first contribution of this thesis in the “Self-Adaptive Multithreaded Java 

Applications” work area is a complete characterization of the scalability of Java 

application servers when running secure dynamic web applications divided in two 

parts. The first one consists of measuring Tomcat vertical scalability (i.e. adding more 

processors) when using SSL determining the impact of adding more processors on 

server overload. The second one involves a detailed analysis of the server behavior 

using the performance analysis framework presented in Chapter 3, in order to 

determine the causes of the server overload when running with different number of 

processors.  

The conclusions derived from this analysis demonstrate the convenience of 

incorporating to the application server (and give hints for its implementation) an 

overload control mechanism that is the second contribution of this thesis in the “Self-

Adaptive Multithreaded Java Applications” work area. The overload control 

mechanism is based on SSL connections differentiation and admission control. SSL 

connections differentiation is accomplished by proposing a possible extension of the 

Java Secure Sockets Extension (JSSE) package to distinguish SSL connections 

depending on if the connection will reuse an existing SSL connection on the server or 

not. This differentiation can be very useful in order to design intelligent overload 

control policies on server, given the big difference existing on the computational 

demand of new SSL connections versus resumed SSL connections. Based on this SSL 

connections differentiation, a session-based adaptive admission control mechanism 

for the Tomcat application server is implemented. This mechanism allows the server 

to avoid throughput degradation and response time increments occurred on server 

saturation. The server differentiates full SSL connections from resumed SSL 

connections limiting the acceptation of full SSL connections to the maximum number 

acceptable with the available resources without overloading, while accepting all the 

resumed SSL connections. Moreover, the admission control mechanism maximizes 

the number of sessions completed successfully, allowing to e-commerce sites based 
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on SSL to increase the number of transactions completed, thus generating higher 

benefit. 

4.2 Self-Adaptive Multithreaded Java Applications in HPC 
Environments 

As commented before, self-adaptive multithreaded Java applications in HPC 

environments can be obtained by designing and implementing malleable applications, 

that is, applications able to adapt their behavior to the amount of resources offered by 

the execution environment by generating only the amount of parallelism that can be 

executed with the assigned processors. Next section describes how this capability can 

be achieved for JOMP applications used in this thesis as a particular case of 

multithreaded Java applications in HPC environments. 

4.2.1 Self-Adaptive JOMP Applications 

By default, a JOMP application executes with as many threads as indicated in 

one of the arguments of the interpreter command line (-Djomp.threads). 

Nevertheless, the JOMP application can change its concurrency level (the amount of 

parallelism that will be generated in the next parallel region) inside any sequential 

region invoking the setNumThreads() method from the JOMP runtime library.  

4.3 Self-Adaptive Multithreaded Java Applications Servers in e-
Business Environments 

4.3.1 Scalability Characterization of Multithreaded Java Application 
Servers in Secure Environments 

4.3.1.1 Scalability characterization methodology 

The scalability of an application server is defined as the ability to maintain a 

site availability, reliability, and performance as the amount of simultaneous web 

traffic, or load, hitting the application server increases [78]. 

Given this definition, the scalability of an application server can be 

represented measuring the performance of the application server while the load 

increases. With this representation, the load that overloads the server can be detected. 

An application server is overloaded when it is unable to maintain the site availability, 



76 Chapter 4 

reliability, and performance (i.e. the server does not scale). As derived from the 

definition, when the server is overloaded, the performance is degraded (lower 

throughput and higher response time) and the number of client requests refused is 

increased. 

At this point, two questions should appear to the reader (and of course, to the 

application server administrator). First, the load that overloads the server has been 

detected, but why is this load causing the server performance to degrade? In other 

words, in which parts of the system (CPU, database, network, etc.) will a request be 

spending most of its execution time when the server is overloaded? In order to answer 

this question, this thesis proposes to analyze the application server behavior using the 

performance analysis framework presented in Chapter 3, which considers all levels 

involved in the application server execution, allowing a fine-grain analysis of 

dynamic web applications. 

Second, the application server scalability with given resources has been 

measured, but how would affect to the application server scalability the addition of 

more resources? This adds a new dimension to the application servers scalability: the 

measurement of the scalability relative to the resources. This scalability can be done 

in two different ways: vertical and horizontal.  

Vertical scalability (also called scaling up) is achieved by adding capacity 

(memory, processors, etc.) to an existing application server and requires few to no 

changes to the architecture of the system. Vertical scalability increases the 

performance (in theory) and the manageability of the system, but decreases the 

reliability and availability (single failure is more likely to lead to system failure). This 

thesis considers this kind of scalability relative to the resources. 

Horizontal scalability (also called scaling out) is achieved by adding new 

application servers to the system, increasing its complexity. Horizontal scalability 

increases the reliability, the availability and the performance (depends on load 

balancing), but decreases the manageability (there are more elements in the system). 

The analysis of the application server behavior will assist with hints to answer 

the question about how would affect to the application server scalability the addition 

of more resources. If some resource is being a bottleneck for the application server 

performance, this encourages the addition of new resources of this type (vertical 

scaling), the measurement of the scalability with this new configuration and the 
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analysis of the application server behavior with the performance analysis framework 

to determine the improvement on the server scalability and the new causes of server 

overload. 

On the other side, if a resource that is not being a bottleneck for the 

application server performance is upgraded, it can be verified with the performance 

analysis framework that scalability is not improved and the causes of server 

performance degradation remain unresolved. This observation justifies why with 

vertical scalability performance is improved only in theory, depending if the added 

resource is a bottleneck for server performance or not. This observation also 

motivates the analysis of the application server behavior in order to detect the causes 

of overload before adding new resources. 

4.3.1.2 Scalability characterization of the Tomcat server 

This section presents the scalability characterization of Tomcat application 

server when running the RUBiS benchmark using SSL. The characterization is 

divided in two parts. The first part is an evaluation of the vertical scalability of the 

server when running with different number of processors, determining the impact of 

adding more processors on server overload (can the server support more clients before 

overloading?). The second part consists of a detailed analysis of the server behavior 

using the performance analysis framework, in order to determine the causes of the 

server overload when running with different number of processors. 

4.3.1.2.1 Vertical scalability of the Tomcat server 

Figure 4.1 shows the Tomcat scalability when running with different number 

of processors, representing the server throughput as a function of the number of 

concurrent clients. Notice that for a given number of processors, the server throughput 

increases linearly with respect to the input load (the server scales) until a determined 

number of clients hit the server. At this point, the throughput achieves its maximum 

value. Table 4.1 shows the number of clients that overload the server and the 

maximum achieved throughput before saturating when running with one, two and four 

processors. Notice that running with more processors allows the server to handle more 

clients before overloading, so the maximum achieved throughput is higher.  
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Figure 4.1. Tomcat scalability with different number of processors 

 

Notice also that the same throughput can be achieved, as shown in Figure 2.3, 

with a single processor when SSL is not used. This means that when using secure 

connections, the computing capacity provided when adding more processors is spent 

on supporting the SSL protocol. 

Table 4.1. Number of clients that overload the server and maximum achieved throughput before 
overloading 

number of processors number of clients throughput (replies/s) 

1 250 90 

2 500 172 

4 950 279 

 
When the number of clients that overload the server has been achieved, the 

server throughput degrades to approximately the 30% of the maximum achievable 

throughput, as shown in Table 4.2. This table shows the average throughput obtained 

when the server is overloaded when running with one, two and four processors. 

Notice that, although the throughput obtained has been degraded in all cases when the 

server has reached an overloaded state, running with more processors improves the 
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throughput (duplicating the number of processors, the throughput almost duplicates 

too). 

Table 4.2. Average server throughput when it is overloaded 

number of processors throughput (replies/s) 

1 25 

2 50 

4 90 

  
4.3.1.2.2 Scalability analysis of the Tomcat server 

In order to perform a detailed analysis of the server, four different loads have 

been selected: 200, 400, 800 and 1400 clients, each one corresponding to one of the 

zones observed in Figure 4.1. These zones group the loads with similar behavior of 

the server. The analysis is conducted using the performance analysis framework 

described in Chapter 3. 

The analysis methodology consists of comparing the server behavior when it 

is overloaded (400 clients when running with one processor, 800 clients when running 

with two processors and 1400 clients when running with four processors) with when it 

is not (200 clients when running with one processor, 400 clients when running with 

two processors and 800 clients when running with four processors). A series of 

metrics representing the server behavior are calculated, determining which of them 

are affected when increasing the number of clients. From these metrics, an in-depth 

analysis is performed looking for the causes of their dependence of server load. 

The first metric calculated, using the performance analysis framework, is the 

average time spent by the server processing a persistent client connection, 

distinguishing the time devoted to each phase of the connection (persistent connection 

phases have been described in Section 2.3.3) when running with different number of 

processors. This information is displayed in Figure 4.2. As shown in this figure, 

running with more processors decreases the average time required to process a 

connection. Notice that when the server is overloaded, the average time required to 

handle a connection increases considerably. Going into detail on the connection 

phases, the time spent in the SSL handshake phase of the connection increases from 

28 ms to 1389 ms when running with one processor, from 4 ms to 2003 ms when 

running with two processors and from 4 ms to 857 ms when running with four 
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processors, becoming the phase where the server spends the major part of the time 

when processing a connection. 
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Figure 4.2. Average time spent by the server processing a persistent client connection 

 

To determine the causes of the large increment of the time spent in the SSL 

handshake phase of the connection, the next step consists of calculating the 

percentage of connections that perform a resumed SSL handshake (reusing the SSL 

Session ID) versus the percentage of connections that perform a full SSL handshake 

when running with different number of processors. This information is shown in 

Figure 4.3. Notice that when running with one processor and with 200 clients, the 

97% of SSL handshakes can reuse the SSL connection, but with 400 clients, only the 

27% can reuse it. The rest must negotiate the full SSL handshake, overloading the 

server because it cannot supply the computational demand of these full SSL 

handshakes. Remember the big difference between the computational demand of a 

resumed SSL handshake (2 ms) and a full SSL handshake (175 ms). The same 

situation is produced when running with two processors (the percentage of full SSL 

handshakes has increased from 0.25% to 68%), and when running with four 

processors (from 0.2% to 63%). 
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Figure 4.3. Incoming SSL connections classification depending on SSL handshake type performed 

 

The analysis performed has determined that when running with any number of 

processors the server overloads when most of the incoming client connections must 

negotiate a full SSL handshake instead of resuming an existing SSL connection, 

requiring a computing capacity that the available processors are unable to supply. 

Nevertheless, why does this occur from a given number of clients? In other words, 

why do incoming connections negotiate a full SSL handshake instead of a resumed 

SSL handshake when attending a given number of clients? Remember that the client 

has been configured with a timeout of 10 seconds. This means that if no reply is 

received in this time (the server is unable to supply it because it is heavy loaded), this 

client is discarded and a new one is initiated. Remember that the initiation of a new 

client requires the establishment of a new SSL connection, and therefore the 

negotiation of a full SSL handshake. 

Therefore, if the server is loaded and it cannot handle the incoming requests 

before the client timeouts expire, this provokes the arrival of a large amount of new 

client connections that need the negotiation of a full SSL handshake, provoking the 

server performance degradation. This asseveration is supported with the information 

displayed in Figure 4.4. This figure shows the number of clients timeouts occurred 

when running with different number of processors. Notice that from a given number 

of clients, the number of clients timeouts increases considerably, because the server is 
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unable to respond to the clients before their timeouts expires. The comparison of this 

figure with Figure 4.1 reveals that this given number of clients matches with the load 

that overloads the server. 

 
Figure 4.4. Client timeouts with different number of processors 

 

In order to evaluate the effect on server of the large amount of full SSL 

handshakes, the performance analysis framework is used to calculate the state of 

HttpProcessors when they are in the SSL handshake phase of the connection, which is 

shown in Figure 4.5. The HttpProcessors can be running (Run state), blocked waiting 

for the finalization of an input/output operation (Blocked I/O state), blocked waiting 

for the synchronization with other HttpProcessors in a monitor (Blocked Synch state) 

or waiting for a free processor to become available to execute (Ready state). When the 

server is not overloaded, HttpProcessors spend most of their time in Run state. But 

when the server is running with one processor and overloads (400 clients) 

HttpProcessors spend the 47% of their time in Ready state. This fact confirms that the 

server cannot handle all the incoming full SSL handshakes with only one processor. 

It is expected that when the server is overloaded and running with two or four 

processors, the HttpProcessors spend most part of their time of Ready state (waiting 

for a free processor to execute), in the same way as when running with one processor. 
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But Figure 4.5 shows that, although the time spent on Ready state has increased when 

the server is running with two processors and overloads, the HttpProcessors spend the 

70% of their time in Blocked Synch state (blocked waiting for the synchronization 

with other HttpProcessors in a monitor). This kind of contention can be produced due 

to the saturation of the available processors on multiprocessor systems, as occurred in 

this case. When running with four processors, the time spent in Ready state and 

Blocked Synch state is also increased. 
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Figure 4.5. State of HttpProcessors when they are in the ‘SSL handshake’ phase of a connection 

 

Notice that, although the cause of the server overload is the same when 

running with one, two or four processors (there are not processors enough to support 

demanded computation), this overload is manifested in different forms (waiting for a 

processor to become available in order to execute or in a contention situation 

produced by the saturation of processors). 

The analysis performed allows concluding that the processor is a bottleneck 

for Tomcat performance and scalability when running dynamic web applications in a 

secure environment. The analysis has demonstrated that running with more processors 

makes the server able to handle more clients before overloading, and even when the 

server has reached an overloaded state, better throughput can be obtained if running 

with more processors.  
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The results of the analysis performed in this section demonstrate the 

convenience of incorporating to the Tomcat server some kind of overload control 

mechanism to avoid the throughput degradation produced due to the massive arrival 

of new SSL connections. The server could differentiate new SSL connections from 

resumed SSL connections limiting the acceptation of new SSL connections to the 

maximum number acceptable without overloading, while accepting all the resumed 

SSL connections to maximize the number of client sessions successfully completed. 

4.3.2 Session-Based Adaptive Overload Control for Multithreaded Java 
Application Servers in Secure Environments 

4.3.2.1 SSL connections differentiation 

As mentioned in Section 2.3.5.2, there is no way in JSSE packages to consult 

if an incoming SSL connection provides a reusable SSL session ID until the 

handshake is fully completed. This thesis proposes the extension of the JSSE package 

to allow applications to differentiate new SSL connections from resumed SSL 

connections prior the handshaking has started. 

This new feature can be useful in many scenarios. For example, a connection 

scheduling policy based on prioritizing the resumed SSL connections (that is, the 

short connections) will result in a reduction of the average response time, as described 

in previous works with static web content using the SRPT scheduling [46][80]. 

Moreover, prioritizing the resumed SSL connections will increase the probability for a 

client to complete a session, maximizing the number of sessions completed 

successfully. The importance of this metric in e-commerce environments has been 

already commented. Remember that the higher the number of sessions completed the 

higher the amount of revenue that is likely to be generated. In addition, a server could 

limit the number of new SSL connections that it accepts, in order to avoid throughput 

degradation produced if server overloads. 

In order to evaluate the advantages of being able to differentiate new SSL 

connections from resumed SSL connections and the convenience of adding this 

functionality to the standard JSSE package, this thesis includes the implementation of 

an experimental mechanism that allows this differentiation prior to the handshake 

negotiation. Performed measurements denote that this mechanism does not suppose 

significant additional cost. The mechanism works at system level and it is based on 
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examining the contents of the first TCP segment received on the server after the 

connection establishment.  

After a new connection is established between the server and a client, the SSL 

protocol starts a handshake negotiation. The protocol begins with the client sending a 

SSL ClientHello message (see the RFC 2246 for more details) to the server. This 

message can include a SSL session ID from a previous connection if the SSL session 

wants to be reused. This message is sent in the first TCP segment that the client sends 

to the server. The implemented mechanism checks the value of this SSL message field 

to decide if the connection is a resumed SSL connection or a new one instead. 

The mechanism operation begins when the Tomcat server accepts a new 

incoming connection, and a socket structure is created to represent the connection in 

the operating system as well as in the JVM. After establishing the connection but 

prior to the handshake negotiation, the Tomcat server requests to the mechanism the 

classification of this SSL connection, using a JNI native library that is loaded into the 

JVM process. The library translates the Java request into a new native system call 

implemented in the Linux kernel using a Linux kernel module.  

The implementation of the system call calculates a hash function from the 

parameters provided by the Tomcat server (local and remote IP address and TCP port) 

which produces a socket hash code that makes possible to find the socket inside of a 

connection established socket hash table. When the system struct sock that 

represents the socket is located and in consequence all the received TCP segments for 

that socket after the connection establishment, the first one of the TCP segments is 

interpreted as a SSL ClientHello message. If this message contains a SSL session ID 

with value 0, it can be concluded that the connection tries to establish a new SSL 

session. If a non-zero SSL session ID is found instead, the connection tries to resume 

a previous SSL session. The value of this SSL message field is returned by the system 

call to the JNI native library that, in turn, returns it to the Tomcat server. With this 

result, the server can decide, for instance, to apply an admission control algorithm in 

order to decide if the connection should be accepted or rejected. A brief diagram of 

the mechanism operation described above can be found in Figure 4.6. 
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Figure 4.6. SSL connections differentiation mechanism 

 

4.3.2.2 SSL admission control 

In order to prevent server overload in secure environments, this thesis 

proposes to incorporate to the Tomcat server a session-oriented adaptive mechanism 

that performs admission control based on SSL connections differentiation. This 

mechanism has been developed with two objectives. First, to prioritize the acceptation 

of client connections that resume an existing SSL session, in order to maximize the 

number of sessions successfully completed. Second, to limit the massive arrival of 

new SSL connections to the maximum number acceptable by the server before 

overloading, depending on the available resources. 

To prioritize the resumed SSL connections, the admission control mechanism 

accepts all the connections that supply a valid SSL session ID. The required 

verification to differentiate resumed SSL connections from new SSL connections is 

performed with the mechanism described in Section 4.3.2.1. 

To avoid the server throughput degradation and maintain acceptable response 

times, the admission control mechanism must to avoid the server overload. By 

keeping the maximum amount of load just below the system capacity, overload is 

prevented and peak throughput is achieved. For servers running secure web 

applications, the system capacity depends on the available processors, as it has been 

demonstrated in Section 4.3.1, due to the large computational demand of this kind of 

applications. Therefore, if the server can use more processors, it can accept more SSL 

connections without overloading.  
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The admission control mechanism calculates periodically, introducing an 

adaptive behavior, the maximum number of new SSL connections that can be 

accepted without overloading the server. This maximum depends on the available 

processors for the server and the computational demand required by the accepted 

resumed SSL connections. The calculation of this demand is based on the number of 

accepted resumed SSL connections and the typical computational demand of one of 

these connections.  

After calculating the computational demand required by the accepted resumed 

SSL connections and with information relative to the available processors for the 

server, the admission control mechanism can calculate the remaining computational 

capacity for attending new SSL connections. The admission control mechanism will 

only accept the maximum number of new SSL connections that do not overload the 

server (they can be served with the available computational capacity). The rest of new 

SSL connections arriving at the server will be refused. 

Notice that if the number of resumed SSL connections increases, the server 

has to decrease the number of new SSL connections it accepts, in order to avoid 

server overload with the available processors and vice versa, if the number of resumed 

SSL connections decreases, the server can increase the number of new SSL 

connections that it accepts. 

Notice that this constitutes an interesting starting point to develop autonomic 

computing strategies on the server in a bi-directional fashion. First, the server can 

restrict the number of new SSL connections it accepts to adapt its behavior to the 

available resources (i.e. processors) in order to prevent server overload. Second, the 

server can inform about its resource requirements to a global manager (which will 

distribute all the available resources among the existing servers following a given 

policy) depending on the rate of incoming connections (new SSL connections and 

resumed SSL connections) requesting for service. 

4.3.2.3 Evaluation 

This section presents the evaluation results when comparing the performance 

of the Tomcat server with the overload control mechanism with respect to the original 

Tomcat. These results are obtained using a slightly different methodology with 

respect to Section 4.3.1. This section calculated server scalability by measuring the 
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server throughput as a function of the number of concurrent clients. The number of 

concurrent clients that a server can handle without overloading is an important 

reference in current web sites, because if a site is able to support more concurrent 

clients, more benefit is likely to be generated for the site.  

 
Figure 4.7. Equivalence between new clients per second and concurrent clients 

 

However, the scalability characterization has revealed that when the server 

overloads, a small increment in the number of concurrent clients produces great 

throughput degradation. This effect can be explained with the information in Figure 

4.7. This figure shows the number of new clients per second initiating a session with 

the server as a function on the number of concurrent clients. Notice that, when the 

number of concurrent clients that overloads the server has been achieved, the number 

of new clients per second initiating a session with the server increases exponentially. 

As these new clients must negotiate a full SSL handshake, this causes the server 

throughput degradation. 

In order to avoid this behavior, and make the overload process of the server 

more progressive, the performance measurements of the server for the experiments in 

this section are relative to the number of new clients per second initiating a session 

with the server instead of being relative to the number of concurrent clients. 
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Measuring in this way makes easier to analyze the server behavior when overloads 

and the proposal and implementation of overload control mechanisms. 

4.3.2.3.1 Original Tomcat server 

Figure 4.8 shows the Tomcat throughput as a function of the number of new 

clients per second initiating a session with the server when running with different 

number of processors. Notice that for a given number of processors, the server 

throughput increases linearly with respect to the input load (the server scales) until a 

determined number of clients hit the server. At this point, the throughput achieves its 

maximum value. Notice that running with more processors allows the server to handle 

more clients before overloading, so the maximum achieved throughput is higher. 

When the number of clients that overload the server has been achieved, the server 

throughput degrades until approximately the 20% of the maximum achievable 

throughput while the number of clients increases.  

 

 
Figure 4.8. Original Tomcat throughput with different number of processors 

 

As well as degrading the server throughput, the server overload also affects to 

the server response time, as shown in Figure 4.8. This figure shows the server average 

response time as a function of the number of new clients per second initiating a 
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session with the server when running with different number of processors. Notice that 

when the server is overloaded the response time increases (especially when running 

with one processor) while the number of clients increases. 

 

 
Figure 4.9. Original Tomcat response time with different number of processors 

 

Server overload has another undesirable effect, especially in e-commerce 

environments where session completion is a key factor. As shown in Figure 4.10, 

which shows the number of sessions completed successfully when running with 

different number of processors, only a few sessions can finalize completely when the 

server is overloaded. Consider the large revenue lost that this fact can provoke for 

example in an online store, where only a few clients can finalize the acquisition of a 

product. 

The cause of this large performance degradation on server overload has been 

analyzed in Section 4.3.1.2.2. This section concludes that the server throughput 

degrades when most of the incoming client connections must negotiate a full SSL 

handshake instead of resuming an existing SSL connection, requiring a computing 

capacity that the available processors are unable to supply. This circumstance is 

produced when the server is overloaded and it cannot handle the incoming requests 
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before the client timeouts expire. In this case, clients with expired timeouts are 

discarded and new ones are initiated, provoking the arrival of a large amount of new 

client connections that negotiate of a full SSL handshake, provoking server 

performance degradation. 

 

 
Figure 4.10. Completed sessions by original Tomcat with different number of processors 

 

Considering the described behavior, it makes sense to apply an admission 

control mechanism in order to improve server performance in the following way. 

First, to filter the massive arrival of client connections that need to negotiate a full 

SSL handshake that will overload the server, avoiding the server throughput 

degradation and maintaining a good quality of service (good response time) for 

already connected clients. Second, to prioritize the acceptation of client connections 

that resume an existing SSL session, in order to maximize the number of sessions 

successfully completed. 

4.3.2.3.2 Self-adaptive Tomcat server 

Figure 4.11 shows the Tomcat throughput as a function of the number of new 

clients per second initiating a session with the server when running with different 

number of processors. Notice that for a given number of processors, the server 
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throughput increases linearly with respect to the input load (the server scales) until a 

determined number of clients hit the server. At this point, the throughput achieves its 

maximum value. Until this point, the server with admission control behaves in the 

same way than the original server. However, when the number of clients that would 

overload the server has been achieved, the admission control mechanism can avoid 

the throughput degradation, maintaining it in the maximum achievable throughput, as 

shown in Figure 4.11. Notice that running with more processors allows the server to 

handle more clients, so the maximum achieved throughput is higher. 

 
Figure 4.11. Tomcat with admission control throughput with different number of processors 

 

The admission control mechanism on Tomcat allows also maintaining the 

response time in levels that guarantee a good quality of service to the clients, even 

when the number of clients that would overload the server has been achieved, as 

shown in Figure 4.12. This figure shows the server average response time as a 

function of the number of new clients per second initiating a session with the server 

when running with different number of processors.  

Finally, the admission control mechanism has also a beneficial effect for 

session-based clients. As shown in Figure 4.13, which shows the number of sessions 

finalized successfully when running with different number of processors, the number 
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of sessions that can finalize completely does not decrease, even when the number of 

clients that would overload the server has been achieved. 

 
Figure 4.12. Tomcat with admission control response time with different number of processors 

 
Figure 4.13. Sessions completed by Tomcat with admission control with different number of processors 
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4.4 Conclusions 

The “Self-Adaptive Multithreaded Java Applications” work area described in 

this chapter, demonstrate the benefit of implementing self-adaptive multithreaded 

Java applications in order to achieve good performance as in HPC environments as in 

e-business environments. Self-adaptive applications are those applications that can 

adapt their behavior to the amount of resources allocated to them.  

This chapter has presented two contributions towards achieving self-adaptive 

applications. The first contribution is a complete characterization of the scalability of 

Java application servers when executing secure dynamic web applications. This 

characterization is divided in two parts: 

The first part has consisted of measuring Tomcat vertical scalability (i.e. 

adding more processors) when using SSL and analyzing the effect of this addition on 

server scalability. The results have confirmed that running with more processors 

makes the server able to handle more clients before overloading and even when the 

server has reached an overloaded state, better throughput can be obtained if running 

with more processors. The second part has involved an analysis of the causes of 

server overload when running with different number of processors using the 

performance analysis framework proposed in Chapter 3 of this thesis. The analysis 

has revealed that the processor is a bottleneck for Tomcat performance on secure 

environments (the massive arrival of new SSL connections demands a computational 

power that the system is unable to supply and the performance is degraded) and could 

make sense to upgrade the system adding more processors to improve the server 

scalability. The analysis results also have demonstrated the convenience of 

incorporating to the Tomcat server some kind of overload control mechanism to avoid 

the throughput degradation produced due to the massive arrival of new SSL 

connections that the analysis has detected.  

Based on the conclusions extracted from this analysis, the second contribution 

is the implementation of a session-based adaptive overload control mechanism based 

on SSL connections differentiation and admission control. SSL connections 

differentiation has been accomplished using a possible extension of the JSSE package 

in order to allow distinguishing resumed SSL connections (that reuse an existing SSL 

session on server) from new SSL connections. This feature has been used to 

implement a session-based adaptive admission control mechanism that has been 
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incorporated to the Tomcat server. This admission control mechanism differentiates 

new SSL connections from resumed SSL connections limiting the acceptation of new 

SSL connections to the maximum number acceptable with the available resources 

without overloading the server, while accepting all the resumed SSL connections in 

order to maximize the number of sessions completed successfully, allowing to e-

commerce sites based on SSL to increase the number of transactions completed.  

The experimental results demonstrate that the proposed mechanism prevents 

the overload of Java application servers in secure environments. It maintains response 

time in levels that guarantee good QoS and avoids completely throughput degradation 

(throughput degrades until approximately the 20% of the maximum achievable 

throughput when server overloads), while maximizes the number of sessions 

completed successfully (which is a very important metric on e-commerce 

environments). These results confirm that security must be considered as an important 

issue that can heavily affect the scalability and performance of Java application 

servers. 

However, although the admission control mechanisms maintain the QoS of 

admitted requests even during overloads, a significant fraction of the requests may be 

turned away during extreme overloads. In such a scenario, an increase in the effective 

application server capacity is necessary to reduce the request drop rate. This can be 

accomplished by allowing the cooperation of the application servers with the 

execution environment in the resource management. In this way, when the application 

server is overloaded, it can request additional resources to the execution environment, 

which decides the resources distribution among application servers in the system 

using policies that can include business indicators. At this point, the application server 

can use the admission control mechanism developed in this thesis to adapt its 

incoming workload to the assigned capacity. The description of this cooperation for 

resource provisioning is presented in Chapter 5. 

The research performed in this work area has resulted in the following 

publications, including two international conferences and one national conference: 

� J. Guitart, D. Carrera, V. Beltran, J. Torres and E. Ayguadé. Session-Based 
Adaptive Overload Control for Secure Dynamic Web Applications. 34th 
International Conference on Supercomputing (ICPP’05), pp. 341-349, Oslo, 
Norway. June 14-17, 2005.  
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� J. Guitart, V. Beltran, D. Carrera, J. Torres and E. Ayguadé. Characterizing 
Secure Dynamic Web Applications Scalability. 19th International Parallel and 
Distributed Symposium (IPDPS’05), Denver, Colorado, USA. April 4-8, 2005.  

 
� V. Beltran, J. Guitart, D. Carrera, J. Torres, E. Ayguadé and J. Labarta. 

Performance Impact of Using SSL on Dynamic Web Applications. XV 
Jornadas de Paralelismo, pp. 471-476, Almeria, Spain. September 15-17, 
2004. 
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CHAPTER 5 
RESOURCE PROVISIONING 

FOR MULTITHREADED JAVA APPLICATIONS  

 

5.1 Introduction 

In the way towards achieving good performance when running multithreaded 

Java applications either in HPC environments or in e-business environments, this 

thesis has demonstrated in Chapter 4 that having self-adaptive multithreaded Java 

applications can be very useful to achieve this objective.  

However, the maximum effectiveness for preventing applications performance 

degradation in parallel environments is obtained when fitting the self-adaptation of 

the applications to the available resources within a global strategy in which the 

execution environment and the applications cooperate to manage the resources 

efficiently. 

For example, besides of having self-adaptive Java applications in HPC 

environments, performance degradation of multithreaded Java applications in these 

environments can only be avoided if overcoming the following limitations. First, the 

Java runtime environment does not allow applications to have control on the number 

of kernel threads where Java threads map and to suggest about the scheduling of these 

kernel threads. Second, the Java runtime environment does not inform the 

applications about the dynamic status of the underlying system so that the self-

adaptive applications cannot adapt their execution to these characteristics. Finally, the 

large number of migrations of the processes allocated to an application occurred, due 

to scheduling polices that do not consider multithreaded Java applications as an 

allocation unit. 

The same applies to Java application servers in e-business environments. In 

this case, although the admission control mechanisms used to implement self-adaptive 

applications in this scenario can maintain the quality of service of admitted requests 

even during overloads, a significant fraction of the requests may be turned away 



98 Chapter 5 

during extreme overloads. In such a scenario, an increase in the effective server 

capacity is necessary to reduce the request drop rate. In fact, although several 

techniques have been proposed to face with overload, such as admission control, 

request scheduling, service differentiation, service degradation or resource 

management, last work in this area has demonstrated that the most effective way to 

handle overload considers a combination of these techniques [140]. 

For these reasons, this thesis contributes in the “Resource Provisioning for 

Multithreaded Java Applications” work area with the proposal of mechanisms to 

allow the cooperation between the applications and the execution environment in 

order to improve the performance by managing resources efficiently in the framework 

of Java applications, including the modifications that are required in the Java 

execution environment to allow this cooperation. The cooperation is implemented by 

establishing a bi-directional communication path between the applications and the 

underlying system. On one side, the applications request to the execution environment 

the number of processors they need. On the other side, the execution environment can 

be requested at any time by the applications to inform them about their processor 

assignments. With this information, the applications, which are self-adaptive, can 

adapt their behavior to the amount of resources allocated to them. 

In order to accomplish this resource provisioning strategy in HPC 

environments, this thesis shows that the services supplied by the Java native 

underlying threads library, in particular the services to inform the library about the 

concurrency level of the application, are not enough to support the cooperation 

between the applications and the execution environment, because this uni-directional 

communication does not allow the application to adapt its execution to the available 

resources. In order to address the problem, the thesis proposes to execute the self-

adaptive multithreaded Java applications on top of JNE (Java Nanos Environment 

built around the Nano-threads environment [101]). JNE is a research platform that 

provides mechanisms to establish a bi-directional communication path between the 

Java applications and the execution environment, thus allowing applications to 

collaborate in the thread management. 

In e-business environments, the resource provisioning strategy is 

accomplished using an overload control approach for self-adaptive Java application 

servers running secure e-commerce applications that brings together admission 
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control based on SSL connections differentiation and dynamic provisioning of 

platform resources in order to adapt to changing workloads avoiding the QoS 

degradation. Dynamic provisioning enables additional resources to be allocated to an 

application on demand to handle workload increases, while the admission control 

mechanisms maintain the QoS of admitted requests by turning away excess requests 

and preferentially serving preferred clients (to maximize the generated revenue) while 

additional resources are being provisioned. 

The overload control approach is based on a global resource manager 

responsible of distributing periodically the available resources (i.e. processors) among 

web applications in a hosting platform applying a given policy (which can consider e-

business indicators). This resource manager and the applications cooperate to manage 

the resources using a bi-directional communication. On one side, the applications 

request to the resource manager the number of processors needed to handle their 

incoming load avoiding the QoS degradation. On the other side, the resource manager 

can be requested at any time by the applications to inform them about their processor 

assignments. With this information, the applications, which are self-adaptive, apply 

the admission control mechanism described in Chapter 4 to adapt their incoming 

workload to the assigned capacity by limiting the number of admitted requests 

accepting only those that can be served with the allocated processors without 

degrading their QoS.  

5.2 Resource Provisioning for Multithreaded Java Applications in 
HPC Environments 

5.2.1 Motivating Example 

In order to demonstrate the performance degradation of multithreaded Java 

applications when running in multiprogrammed HPC environments, this section 

presents a simple experiment based on LUAppl, a LU reduction kernel over a two-

dimensional matrix of double-precision elements taken from [111] that uses a matrix 

of 1000x1000 elements. The experiment consists of a set of executions of LUAppl 

running with different number of Java threads and active kernel threads (with a 

processor assigned to them). Table 5.1 shows the average execution time on a SGI 

Origin 2000 architecture [129] with MIPS R10000 processors at 250 MHz running 

SGI Irix JVM version Sun Java Classic 1.2.2. The first and second rows show that 
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when the number of Java threads matches the number of active kernel threads, the 

application benefits from running with more threads. However, if the number of 

active kernel threads provided to support the execution does not match, as shown in 

the third row, the performance is degraded. In this case the execution environment 

(mainly the resource manager in the kernel) is providing only three active kernel 

threads, probably because either there are no more processors available to satisfy the 

application requirements, or the execution environment is unable to determine the 

concurrency level of the application. In the first case, this situation results in an 

execution time worse than the one achieved if the application would have known that 

only three processors were available and would have adapted its behavior to simply 

generate three Java threads (like in the first row). In the second case, this situation 

results in an execution time worse than the one achieved if the execution environment 

would have known the concurrency level of the application and would have provided 

four active kernel threads (like in the second row). 

Table 5.1. LUAppl performance degradation 

Java threads Active kernel threads Execution time (in seconds) 

3 3 39.7 

4 4 34.3 

4 3 44.1 

 
This thesis considers two different ways of approaching the problem in the 

Java context. The first one simply uses one of the services supplied by the Java native 

underlying threads library to inform the library about the concurrency level of the 

application. In the second one, Java applications are executed on top of JNE (Java 

Nanos Environment built around the Nano-threads environment [101]). JNE provides 

the mechanisms to establish a bi-directional communication path between the 

application and the underlying system. 

5.2.2 Concurrency Level 

The experimental environment is based on the SGI Irix JVM, which like many 

others (Linux, Solaris, Alpha, IBM, etc.) implements the native threads model using 

the Pthreads [121] library. Thus, one Java thread maps directly into one pthread, and 
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the Pthreads library is responsible for scheduling these pthreads over the kernel 

threads offered by the operating system.  

Version Sun Java Classic 1.2.2 of SGI Irix JVM does not inform the 

underlying threads layer about the desired concurrency level of the application. By 

default, the threads library adjusts the level of concurrency itself as the application 

runs using metrics that include the number of user context switches and CPU 

bandwidth. In order to provide the library with a more accurate hint about the 

concurrency level of the application, the programmer could invoke, at appropriate 

points in the application, the pthread_setconcurrency(level) service of the 

Pthreads library. The argument level is used by Pthreads to compute the ideal 

number of kernel threads required to schedule the available Java threads. 

 
Figure 5.1. Paraver window showing LUAppl behavior without setting the concurrency level 

 

Previous experimentation has revealed that informing to the threads library 

about the concurrency level of the application may have an important incidence on 

performance. The experimented improvements range from 23% to 58% when 

executing applications that create threads with a short lifetime. Threads are so short 

that the threads library is unable to estimate the concurrency level of the application 

and provide it with the appropriate number of kernel threads. This effect can be 

appreciated in Figure 5.1, which shows a Paraver window displaying the execution of 

a LUAppl that creates four Java threads but does not set the concurrency level. Notice 

that, although four threads are created, only two threads provide parallelism. When a 

hint of the concurrency level is provided by the application, the underlying threads 
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library is capable of immediately providing the necessary kernel threads as shown in 

Figure 5.2. 

 
Figure 5.2. Paraver window showing LUAppl behavior setting the concurrency level 

 

For those parallel Java applications that create threads with a long lifetime, 

such as the Java Grande benchmarks used in this thesis, informing about the 

concurrency level has less impact on performance. For this kind of applications, the 

threads library has time enough to estimate and adjust the number of kernel threads 

required during the thread lifetime. However, the time required to estimate the 

concurrency level of the application is not negligible and may approach the order of 

hundreds of milliseconds (even a few seconds depending of the application). 

Therefore, providing this hint is beneficial in any case. 

In summary, this approach only solves one of the problems when running 

multithreaded Java applications in multiprogrammed HPC environments. 

Applications can inform to the execution environment about their processor 

requirements. However, other problems remain open. For instance, this approach does 

not allow applications to decide about the scheduling of kernel threads. Besides, the 

execution environment cannot inform each application about the number of 

processors actually assigned to it. As a consequence, applications cannot react and 

adapt their behavior to the decisions taken by the underlying system. If informed, 

applications would be able to restrict themselves in terms of parallelism generation, 

thus avoiding unnecessary overheads, balancing executions and exploiting available 

resources. 
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Newer versions of the SGI Irix JVM (from Sun Java 1.3) incorporate this 

approach and set the concurrency level to the maximum number of processors 

available in the system, obtaining performance gains similar to the ones obtained with 

the concurrency level approach (having also the same problems). 

5.2.3 Java Nanos Environment (JNE) 

The Java Nanos Environment (JNE) is a research platform that provides 

additional mechanisms to improve the communication between multithreaded Java 

applications and the underlying execution environment, thus allowing applications to 

collaborate in the thread management. JNE is able to solve many of the drawbacks 

appeared when running multithreaded Java applications in multiprogrammed HPC 

environments. First, JNE allows to the applications to have control on how Java 

threads maps onto kernel threads, specifying the number of processors on which the 

application wants to run at any moment. Second, JNE allows to the applications to 

decide about the scheduling of kernel threads, specifying one of the policies supplied 

by JNE. Third, JNE allows to the applications to inform to the execution environment 

about their processor requirements, as well as, JNE allows to the execution 

environment to answer to the applications with the number of processors assigned to 

them at any moment. Finally, JNE reduces the number of migrations of the processes 

allocated to an application, by using scheduling polices that consider multithreaded 

Java applications as an allocation unit. 

5.2.3.1 Adaptive Java applications 

The first issue considered in JNE is the capability of Java applications to adapt 

their behavior to the amount of resources offered by the execution environment 

(malleability [53]). The process is dynamic and implies three important aspects:  

� First, the application should be able to request and release processors at any 

time. This requires from the execution environment an interface to set the 

number of processors the application wants to run. 

� Second, the amount of parallelism that the application will generate (at a given 

moment) is limited by both the number of processors assigned to the 

application and by the amount of work pending to be executed. The execution 
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environment has to provide an interface to allow the application to check the 

number of processors available just before spawning parallelism. 

� And third, the application should be able to react to processor preemptions and 

allocations resulting from the operating system allocation decisions. This 

requires mechanisms that allow the application, once informed, to recover 

from possible processor preemptions.  

5.2.3.2 Application/JNE interface 

Each Java application executing on the JNE shares information with the 

execution environment. The information includes the number of processors on which 

the application wants to run at any moment and the number of processors currently 

allocated by the execution environment to the application.  

The interface between the applications and the JNE is implemented with a 

Java class called jne, which contains the following two Java methods for calling, 

through the Java Native Interface (JNI), the JNE services for requesting and 

consulting processors: 

� cpus_current(): consult the current number of processors allocated to the 

invoking application. 

� cpus_request(num): request to the execution environment num processors. 

5.2.3.3 JNE scheduler 

The JNE scheduler is based on the Nanos RM mentioned in Section 6.4. It is 

responsible for the distribution of processors to applications. At any time, there is a 

current active scheduling policy that is applied to all applications running in the 

system. The scheduler observes application demands, estimates the load of the 

machine, and finally distributes processors accordingly. The scheduler also decides 

which processors are assigned to each application taking into account data affinity 

issues (i.e. helping the application to exploit data locality whenever possible). 

JNE offers a set of scheduling policies, including batch, round robin, 

equipartition and others than combine space- and time-sharing. The evaluation in this 

thesis uses Dynamic Space Sharing (DSS) [119][120]. In DSS, each application 

receives a number of processors that is proportional to its request and inversely 
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proportional to the total workload of the system, expressed as the sum of processor 

requests of all jobs in the system.  

The JNE scheduler is implemented as a user-level process that wakes up 

periodically at a fixed time quantum, examines the current requests of the applications 

and distributes processors, applying a scheduling policy. With this configuration, 

direct modification of the native kernel is not required to show the usefulness of the 

proposed environment. 

5.2.3.4 Self-adaptive JOMP applications 

This thesis uses JOMP applications as the benchmark to evaluate the proposed 

mechanisms, as a particular case of multithreaded Java applications in HPC 

environments. In order to obtain self-adaptive JOMP applications, the implementation 

of the JOMP compiler and supporting runtime library has been modified to implement 

the communication between the application and JNE. 

The JOMP runtime library has been modified so that, when an application 

starts, it requests as many processors for this application as indicated in one of the 

arguments of the interpreter command line (-Djomp.threads). This request is made 

using the cpus_request() method available in the JNE interface.  

After that, every time the application has to spawn parallelism (i.e. at the 

beginning of each parallel region) the compiler injects a call to cpus_current() 

method from the JNE interface to check the number of processors currently allocated 

to the application. With this information, the application generates work for as many 

threads as processors available to run. This process can be appreciated in Figure 5.3.b, 

which shows the code generated by the JOMP compiler for the simple example shown 

in Figure 5.3.a highlighting the utilization of the JNE interface services. 

The user can change the concurrency level of the application (to be used in the 

next parallel region) inside any sequential region invoking the setNumThreads() 

method from the JOMP runtime library. In this case, in order to inform the execution 

environment about the new processor requirements of the application, the JOMP 

compiler will replace this invocation with one to the cpus_request() method from 

the JNE interface.  
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public class Hello { 
  public static void main (String argv[]) { 
    int myid; 
    //omp parallel private (myid) 
    { 
      myid = OMP.getThreadNum(); 
      System.out.println(“Hello from” + myid); 
    } 
  } 
} 

(a) original code 
 
public class Hello { 
  public static void main (String argv[]) { 
    int myid; 
    // OMP PARALLEL BLOCK BEGINS 
    jomp.runtime.OMP.setNumThreads(jne.cpus_current()); 
    { 
      __omp_Class0 __omp_Object0 = new __omp_Class0(); 
      __omp_Object0.argv = argv; 
      try { 
        jomp.runtime.OMP.doParallel(__omp_Object0); 
      } catch(Throwable __omp_exception) { 
        jomp.runtime.OMP.errorMessage(); 
      } 
      argv = __omp_Object0.argv; 
    } 
    // OMP PARALLEL BLOCK ENDS     
  } 
} 
 
// OMP PARALLEL REGION INNER CLASS DEFINITION BEGINS 
private static class __omp_Class0 extends jomp.runtime.BusyTask { 
  String [] argv; 
  public void go(int __omp_me) throws Throwable { 
    int myid; 
    // OMP USER CODE BEGINS 
    { 
      myid = OMP.getThreadNum(); 
      System.out.println("Hello from" + myid);     
    } 
    // OMP USER CODE ENDS 
  } 
} 
// OMP PARALLEL REGION INNER CLASS DEFINITION ENDS 
 

(b) transformed code 
 

Figure 5.3. Example showing the use of the JNE interface for JOMP applications 

 

5.2.3.5 Nano-threads library (NthLib) 

The Nano-threads Library [101] (NthLib) is a user level threads package 

specially designed for supporting parallel applications. The role of NthLib is two fold. 

On one hand, NthLib provides the user level execution environment in which 

applications execute. On the other hand, NthLib cooperates with the execution 

environment by interchanging significant fine grain information on accurate machine 

state and resource utilization, throughout the execution of the parallel application.  
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NthLib provides the following services: 

� Thread management services: nth_create (create nano-thread), nth_exit 

(finalize nano-thread), nth_wait (block nano-thread) and nth_yield (yield 

virtual processor to another nano-thread). 

� Generic queue management services: nth_queue_init (initialize queue), 

nth_enqueue/nth_dequeue (enqueue/dequeue nano-thread on/from queue). 

� Ready queue management services: nth_to_rq (enqueue nano-thread on 

global ready queue) and nth_to_lrq (enqueue nano-thread on local ready 

queue). 

� Mutual exclusion services: spin_init (initialize spin), spin_lock (lock spin) 

and spin_unlock (unlock spin).  

5.2.3.6 Implementation of JNE 

As commented before, the JVM implementation of SGI Irix implements the 

native threads model using the Pthreads library (Figure 5.4.a). In order to implement 

the mechanisms described in Section 5.2.3, the Pthreads library has been replaced 

with the NthLib library. This replacement technique makes JNE portable to all 

platforms where NthLib is available. In order to avoid modifications of the JVM, the 

Pthreads library interface is maintained but the library methods have been rewritten 

using the services provided by NthLib (Figure 5.4.b). 
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(a)                                        (b) 
Figure 5.4. (a) Java Irix Environment 

(b) Java Nanos Environment 
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5.2.3.6.1 NthLib implementation basics 

Each virtual processor (i.e. kernel thread) has an idle thread that runs when 

there is not useful work for execute. This idle thread is responsible of looking for new 

work to execute, by accessing to the local ready queue of this virtual processor, and if 

no work is found, accessing to global ready queue. This idle thread also executes 

periodically a function for dequeuing from the queues of alarms all the elapsed alarms 

(see pthread_cond_timedwait function implementation). Finally, the idle threads 

also collaborate with the JNE scheduler for managing the processor preemptions. 

NthLib services are implemented using the functions provided by the Quick 

Threads package [92]. 

5.2.3.6.2 Pthread creation and destruction 

� int pthread_create (pthread_t *thread, const pthread_attr_t *attr, 

                    void *(*start)(void *), void *arg) 

This function creates a new pthread. As one pthread maps on one nano-thread, 

this function creates one nano-thread using the nth_create service of NthLib. The 

function initializes all the information from this pthread (state, identifier, signal 

queue, signal mask, pthread keys, attributes, etc). All this pthread private data is 

stored in the user data area of the nano-thread associated with this pthread. Finally, 

this function adds the nano-thread to the global ready queue using the nth_to_rq 

service of NthLib. 

� void pthread_exit (void *retval) 

This function destroys the invoking pthread using the nth_exit service of 

NthLib.  

5.2.3.6.3 Pthread mutex implementation 

Each mutex has associated a counter, a spin lock and a queue where nano-

threads block waiting for accessing this mutex. The spin lock is operated using the 

mutual exclusion services provided by NthLib and the queue is operated with the 

generic queue management services provided by NthLib. 

� int pthread_mutex_lock (pthread_mutex_t *mutex) 

The nano-thread executing this function acquires the spin lock and checks the 

counter associated to the mutex. If the counter is greater than zero, the nano-thread 
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unlocks the spin, adds itself to the queue of this mutex and then blocks executing the 

nth_wait service of NthLib. The nano-thread remains blocked in this function until a 

pthread_mutex_unlock is performed on to this mutex. When this occurs, the nano-

thread continues its execution by returning from the nth_wait function, and repeats 

the previous process until the counter associated to the mutex is zero. In this case, the 

nano-thread increments by one the counter, unlocks the spin and returns. 

� int pthread_mutex_trylock (pthread_mutex_t *mutex) 

The nano-thread executing this function acquires the spin lock and checks the 

counter associated to the mutex. If the counter is greater than zero, the nano-thread 

unlocks the spin, and returns indicating that the mutex is busy. If the counter 

associated to the mutex is zero, the nano-thread increments by one the counter, 

unlocks the spin and returns. 

� int pthread_mutex_unlock (pthread_mutex_t *mutex) 

The nano-thread executing this function acquires the spin lock, decrements 

counter associated to the mutex by one and then checks if it is zero. If this occurs, it 

dequeues the first nano-thread waiting in the queue of this mutex and adds it to the 

global ready queue using the nth_to_rq service of NthLib. 

5.2.3.6.4 Pthread conditional variables implementation 

Each conditional variable has a queue where nano-threads block waiting for a 

notification in the conditional variable. This queue is operated with the generic queue 

management services provided by NthLib. 

� int pthread_cond_signal (pthread_cond_t *cond) 

This function dequeues the first nano-thread waiting in the queue of this 

conditional variable and adds it to the global ready queue using the nth_to_rq 

service of NthLib. 

� int pthread_cond_broadcast (pthread_cond_t *cond) 

This function dequeues all the nano-threads waiting in the queue of this 

conditional variable and adds them to the global ready queue using the nth_to_rq 

service of NthLib. 
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� int pthread_cond_wait (pthread_cond_t *cond, pthread_mutex_t *mutex) 

The nano-thread executing this function adds itself to the queue of this 

conditional variable, releases the mutex associated to this conditional variable and 

then blocks executing the nth_wait service of NthLib. The nano-thread remains 

blocked in this function until a notification is sent to this conditional variable. When 

this occurs, the nano-thread continues its execution by returning from the nth_wait 

function, reacquires the mutex associated to this conditional variable and returns. 

� int pthread_cond_timedwait (pthread_cond_t *cond, pthread_mutex_t 

                               *mutex, const struct timespec *abstime) 

This function requires the implementation of temporization. Each virtual 

processor has associated a timer and a queue of pending alarms to be generated using 

this timer. This queue is ordered depending on the absolute time in which each alarm 

must be generated. The services to operate on this queue have been implemented 

following the same semantics that the generic queue management services provided 

by NthLib. At any time, the timer is counting the time left to generate the first alarm 

of the queue of alarms. When the timer is elapsed, the timer handler reprograms the 

timer with the next alarm in the queue of alarms, and indicates (setting a global 

variable) that there are elapsed alarms in the queue of alarms. 

When a nano-thread executes the pthread_cond_timedwait function, it adds 

a new pending alarm to the queue of alarms of the current virtual processor and 

reprograms the timer is the added alarm must be generated before the alarm that is 

currently programmed in the timer. Then the nano-thread adds itself to the queue of 

this conditional variable, releases the mutex associated to this conditional variable and 

then blocks executing the nth_wait service of NthLib. The nano-thread remains 

blocked in this function until a notification is sent to this conditional variable or the 

programmed alarm is generated. When this occurs, the nano-thread continues its 

execution by returning from the nth_wait function, reacquires the mutex associated 

to this conditional variable and returns. 

The idle thread on each virtual processor executes periodically a function that, 

when the global variable indicates that there are elapsed alarms at any queue of 

alarms, is responsible of eliminate these alarms from the queue, dequeue the nano-

threads that programmed these alarms from the queue of the conditional variable and 

add them to the global ready queue using the nth_to_rq service of NthLib. 
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5.2.3.6.5 Pthread signals implementation 

Each pthread has a queue of pending signals. The services to operate on this 

queue have been implemented following the same semantics that the generic queue 

management services provided by NthLib. 

Every time that a pthread enters the system (by invoking a pthreads library 

service) or returns to user level after being blocked within the system, it checks its 

signals queue looking for pending signals to be processed. Each signal in this queue is 

sent to the pthread using the kill system call. 

� int pthread_kill (pthread_t thread, int sig) 

The nano-thread executing this function finds the nano-thread with the pthread 

identifier passed as parameter. If this nano-thread is running and the signal is not 

masked, the signal is sent using the kill system call. Otherwise, a new signal is 

queued in the pending signals queue of the pthread associated to this nano-thread. If 

the nano-thread was blocked in a conditional variable or in a mutex, it is removed 

from the queue and added to the global ready queue using the nth_to_rq service of 

NthLib.  

5.2.4 Evaluation 

This section presents the main conclusions drawn from the experimentation 

with JNE using the Java Grande Benchmarks described in Section 2.2.4.1.  

Although JNE has been developed to improve performance of malleable 

applications (that is, applications able to adapt their behavior to the amount of 

resources offered by the execution environment), it is desirable that JNE supports the 

efficient execution of non-malleable applications too, which are common (and often it 

is not easy convert them to malleable). For example, in the JOMP version of the Java 

Grande Benchmarks, only SOR, LUFact and Euler are malleable. Crypt, Series, 

MonteCarlo and RayTracer are not malleable because they only have one parallel 

region and, as commented in Section 5.2.3.4, adaptability is achieved at the beginning 

of each parallel region. Sparse is not malleable because the concurrency level of the 

application is used as size in some data structures, making impossible to change 

dynamically this value without modifying the application. 
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This evaluation includes experiments with malleable applications based on 

SOR and LUFact and experiments with non-malleable applications based on Crypt 

and Series.  

5.2.4.1 Single application performance  

In the first set of experiments, an individual instance of SOR, LUFact, Crypt 

and Series is executed inside a cpuset, in its sequential version and its JOMP version 

with different concurrency levels (between 1 and 16 threads). This experiment intends 

to evaluate the impact on performance of the Pthreads library replacement by the 

NthLib, and analyze the scalability of each application. 

The speedup obtained for SOR, LUFact, Crypt and Series running with 

different concurrency levels with respect to the sequential version is plotted in Figure 

5.5, Figure 5.6, Figure 5.7 and Figure 5.8, respectively. For each experiment, 10 

executions have been performed. The first series (labeled IRIX) corresponds to the 

execution on the native Irix system. The second series (labeled IRIX+SETC) 

corresponds to the execution on the native Irix system when the application informs to 

the Pthreads library about its concurrency level (using the mechanism described in 

Section 5.2.2). The third series (labeled JNE–CPUM) corresponds to the execution 

time on top of the JNE with the JNE scheduler not active. And the fourth series 

(labeled JNE+CPUM) corresponds to the execution time on top of the JNE with the 

JNE scheduler active.  

From the analysis of the speedup figures of malleable applications (SOR and 

LUFact, Figure 5.5 and Figure 5.6, respectively) four important conclusions can be 

derived. First, the performance obtained running with IRIX is very low, due to the 

large number of process migrations occurred. For example, for LUFact with 

concurrency level of 8 threads the system performs 9.6 process migrations per second 

on average. An important part of these process migrations are produced when 

application invokes the yield() method. The Pthreads library does not try to exploit 

any data affinity in this point, and relies on the underlying operating system to 

perform the yield operation. This increases the process migrations and reduces data 

affinity. This problem acquires special relevance in JOMP applications (especially 

when they have several parallel regions), which frequently use the yield() method 

(when threads look for new work to be executed or when threads wait for a barrier to 
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be opened), like many others runtimes do, to implement a polite scheduling that 

allows others threads to execute when there is not useful work to do. 
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Figure 5.5. SOR standalone speedup 
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Figure 5.6. LUFact standalone speedup 

 

The second conclusion is that, as it has been advanced in Section 5.2.2, 

improvements on performance when running with IRIX+SETC are not very high, 

because the JOMP runtime creates threads at user level with a long lifetime. However, 

the large number of migrations performed by Irix is still the main cause of the bad 

behavior. 
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The third conclusion is that running with JNE–CPUM provides noticeable 

performance improvements that can be explained as follows. NthLib tries to exploit 

data affinity itself at nano-thread level. When a thread invokes the nth_yield() 

method, it yields its kernel thread to another nano-thread and enqueues itself in the 

local ready queue of this kernel thread. In this way, data affinity at nano-thread level 

is improved and the yield operation is accomplished avoiding unnecessary operating 

system intervention, reducing the number of process migrations (1.4 process 

migrations per second on average when executing LUFact with concurrency level of 8 

threads). 

Notice that JNE–CPUM does not bind kernel threads to processors in the 

cpuset. This explains the anomalous behavior observed for 6 and 12 threads. In both 

cases, the application is executed in a cpuset larger than the number of processors 

required (cpuset of 8 processors and cpuset of 16 processors, respectively). This 

means that there are free processors, and as kernel threads are not bound with 

processors, migrations are incremented (11.6 migrations per second on average when 

executing SOR with concurrency level of 12 threads).  

The last conclusion of this set of experiments is that running with 

JNE+CPUM improves the performance even more. In addition to all the advantages 

of the JNE–CPUM approach, the JNE scheduler strengthens data affinity at kernel 

thread level by binding kernel threads to the processors assigned to the application. 

This binding totally eliminates process migrations. 

The low scalability achieved in these applications can be explained because 

SOR and LUFact have one parallel region repeated several times inside a time step 

loop. This means that work generation and thread synchronization are done several 

times, both facts producing considerable overhead. Besides, threads reuse data at 

every parallel region, so process migrations can heavily affect performance because 

data affinity is lost. 

On the other side, the analysis of speedup figures of non-malleable 

applications (Crypt and Series, Figure 5.7 and Figure 5.8, respectively) reveals that all 

the approaches evaluated obtain similar performance, achieving good scalability 

(nearly linear). Only when running with IRIX the speedups obtained are a little bit 

worse because the execution environment (Pthreads library in this case) needs some 

time to estimate the concurrency level of the application, how it has been explained in 
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Section 5.2.2. Notice that, if the execution environment is informed about this 

concurrency level, as it is done in the other approaches, performance is improved. 
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Figure 5.7. Crypt standalone speedup 
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Figure 5.8. Series standalone speedup 

 

The high scalability achieved in these applications can be explained because 

Crypt and Series have only one parallel region. This means that work generation and 

thread synchronization are done only once, minimizing the overhead produced. 

Besides, threads do not reuse data, so process migrations are not critical for 

performance. 
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5.2.4.2 Multiprogrammed workloads 

5.2.4.2.1 Malleable applications 

For the second set of experiments, a workload composed of an instance of 

LUFact with concurrency level of 2 threads, an instance of SOR with concurrency 

level of 4 threads, an instance of LUFact with concurrency level of 4 threads and an 

instance of SOR with concurrency level of 6 threads has been defined. These 

applications instances are simultaneously started inside a cpuset with 16 processors, 

and they are continuously restarted until one of them is repeated 10 times. Notice that 

the system is not overloaded (i.e. the number of processors in the cpuset is greater or 

equal than the maximum load). This experiment intends to evaluate the performance 

of JOMP malleable applications in a non-overloaded multiprogrammed environment. 
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Figure 5.9. Application speedups in the 1st workload 
(non-overloaded environment – malleable applications) 

 

Figure 5.9 draws the speedup obtained for each application instance in the 

workload relative to the sequential version. The first and second series have the same 

meaning as in the first set of experiments. The third series (labeled JNE not mall) 

corresponds to the execution time on top of the JNE with the JNE scheduler active 

using a DSS scheduling policy, assuming that applications do not use the JNE 

interface to adapt themselves to the available resources (they behave as non-malleable 

applications). And the fourth series (labeled JNE mall) corresponds to the execution 
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time on top of the JNE when applications use the JNE interface to adapt themselves to 

the available resources. 

Since the system is not overloaded, each application instance should be able to 

run with as many processors as requested. Therefore, the speedup should be the same 

as if executed alone in the cpuset. However, speedup figures are worse than one could 

expect.  

 
Figure 5.10. Process migrations when running with Irix in the 1st workload 

(non-overloaded environment – malleable applications) 

 
Figure 5.11. Process migrations when running with JNE in the 1st workload 

(non-overloaded environment – malleable applications) 

 



118 Chapter 5 

First, when executing with IRIX, the speedup achieved is very low. This is 

caused by the continuous process migrations that reduce considerably the data reuse. 

In this experiment, these process migrations have been quantified in 13 migrations per 

second on average. These process migrations can be appreciated in Figure 5.10, which 

shows a Paraver window in which each color represents the execution of an 

application instance. Second, running with IRIX+SETC improves the speedup 

achieved (because of the effect commented in Section 5.2.2). However, the same 

scheduling problems of IRIX are not solved. 

Third, notice that important improvements are obtained when running with 

JNE. This is caused by two factors: the inherent benefits of using JNE demonstrated 

in Section 5.2.4.1, and the action of the JNE scheduler in a multiprogrammed 

workload. In this case, the JNE scheduler binds kernel threads to processors, avoiding 

unnecessary process migrations and allowing more data reuse. In addition to this, the 

use of equitable policies like DSS makes possible that all applications instances in the 

workload get resources, avoiding application starvation or very unbalanced 

executions. This behavior can be appreciated in Figure 5.11. 

Considering the observed behavior, the only question is why application 

instances running with JNE in the workload do not achieve the speedup of their 

counterparts running alone. The answer to this question is the interference produced 

when running in cpusets as mentioned in Section 2.2.4.2.  

Finally, notice that in a non-overloaded system it is not important if 

applications are malleable, because there are enough resources to satisfy all the 

requests. Therefore, it is not necessary that applications adapt themselves. 

Table 5.2. Performance degradation of each application instance in the 1st workload vs. best 
standalone execution 

Application IRIX IRIX + SETC JNE not mall  JNE mall 

LUFact 2 JTh 0.70 0.85 0.77 0.82 

SOR 4 JTh 0.59 0.67 0.77 0.83 

LUFact 4 JTh 0.62 0.71 0.93 0.95 

SOR 6 JTh 0.53 0.64 0.81 0.74 

 
These conclusions are consolidated in Table 5.2, which summarizes the 

observed performance degradation for each application instance in this workload with 

respect to best standalone execution. Performance degradation is calculated dividing 
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the best application standalone execution time by the average execution time of an 

application instance in a workload. 

For the third set of experiments, a workload composed of an instance of 

LUFact with concurrency level of 4 threads, an instance of SOR with concurrency 

level of 8 threads, an instance of LUFact with concurrency level of 8 threads and an 

instance of SOR with concurrency level of 12 threads has been defined. These 

applications instances are simultaneously started on a cpuset with 16 processors, and 

they are continuously restarted until one of them is repeated 10 times. Notice that, the 

maximum load is 32, which is higher than the number of processors available in the 

cpuset, so the system is overloaded. This experiment intends to evaluate the 

performance of JOMP malleable applications when running in an overloaded 

multiprogrammed environment. 
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Figure 5.12. Application speedups in the 2nd workload 
(overloaded environment – malleable applications) 

 

Figure 5.12 draws the speedup for each application instance in the workload 

relative to the sequential version. All the series have the same meaning as in the 

previous workload. Since the system is overloaded, each application instance receives 

fewer processors than requested (as many processors as assigned by the DSS policy in 

the JNE scheduler). Therefore, the speedup should be the same as if executed alone in 

the cpuset with the number of processors allocated by the JNE scheduler. 
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Figure 5.13. Process migrations when running with Irix in the 2nd workload 

(overloaded environment – malleable applications) 

 
Figure 5.14. Process migrations when running with JNE in the 2nd workload 

(overloaded environment – malleable applications) 

 

All the conclusions exposed for the first workload are valid also in this case. 

In addition, some considerations must to be taken into account. First, the continuous 

process migrations when executing with IRIX have been incremented even more (43.9 

process migrations per second on average), as shown in Figure 5.13. In addition to 

this, notice that the Irix scheduling causes a noticeable unbalanced execution (benefits 

some applications and damages others). For example, in this case LUFact with 
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concurrency level of 4 threads is receiving proportionally more resources than the 

other application instances. For this reason, its performance degradation is lower. 

When running with JNE, the action of the JNE scheduler in an overloaded 

multiprogrammed workload is even more important. A rational use of the resources 

allows the reduction of processor migrations (0.9 process migrations per second on 

average) allowing better locality exploitation and a balanced execution of all the 

application instances of the workload, as shown in Figure 5.14. Like in the first 

workload, the interference produced when running in cpusets causes application 

instances not to achieve the expected speedup. Besides, other factors as processor 

preemptions overhead or the processor distribution algorithm itself, can influence the 

speedup obtained. 

Notice that, in an overloaded system it is very important if applications are 

malleable, because there are not enough resources to satisfy all the requests. 

Malleability reduces the number of Java threads created by the application thus 

reducing the overheads incurred in the parallel execution and management of threads. 

Figure 5.12 shows that the speedup achieved with JNE mall approaches the speedup 

of using half the number of threads (as assigned by the DSS policy in this scenario). 

Table 5.3. Performance degradation of each application instance in the 2nd workload vs. best 
standalone execution 

Application IRIX IRIX + SETC JNE not mall JNE mall 

LUFact 4 JTh 0.30 0.37 0.40 0.38 

SOR 8 JTh 0.19 0.17 0.40 0.57 

LUFact 8 JTh 0.08 0.08 0.34 0.66 

SOR 12 JTh 0.08 0.07 0.25 0.43 

 
Table 5.3 summarizes the observed performance degradation for each 

application instance in the second workload with respect to best standalone execution. 

Notice that the results confirm the benefit obtained when running multiprogrammed 

workloads with JNE, and the convenience of using malleable applications able to 

adapt themselves to the available resources. 

5.2.4.2.2 Non-malleable applications  

For the fourth set of experiments, a workload composed of an instance of 

Series with concurrency level of 2 threads, an instance of Crypt with concurrency 
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level of 4 threads, an instance of Series with concurrency level of 4 threads and an 

instance of Crypt with concurrency level of 6 threads has been defined. These 

applications instances are simultaneously started inside a cpuset with 16 processors, 

and they are continuously restarted until one of them is repeated 10 times. This 

experiment intends to evaluate the performance of JOMP non-malleable applications 

in a non-overloaded multiprogrammed environment. 

Notice that with non-malleable applications, the adaptation to the available 

resources is done only once, at the beginning of the only parallel region, and 

maintained during the entire region. This fact can lead to have unused processors if 

the application receives more processors while it is executing inside the parallel 

region, because at this point the application cannot generate new parallelism to run at 

these processors. In order to avoid this situation, non-malleable applications use the 

JNE interface to adapt their concurrency level to the double of the available resources 

(JNE mall in Figure 5.15 and Figure 5.18). 
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Figure 5.15. Application speedups in the 3rd workload 
(non-overloaded environment – non-malleable applications) 

 

Figure 5.15 draws the speedup for each application instance in the workload 

relative to the sequential version. Instead of JNE mall, all the series have the same 

meaning as in the previous workload. Since the system is not overloaded, each 

application instance should be able to run with as many processors as requested. 
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Therefore, the speedup should be the same as if executed alone in the cpuset. The 

results obtained verify this theory. 

 
Figure 5.16. Process migrations when running with Irix in the 3rd workload 

(non-overloaded environment – non-malleable applications) 

 
Figure 5.17. Process migrations when running with JNE in the 3rd workload 

(non-overloaded environment – non-malleable applications) 

 

Notice that, as commented in Section 5.2.4.1, in this kind of applications 

process migrations (which can be appreciated in Figure 5.16 when running with Irix 

and in Figure 5.17 when running with JNE) are not critical for performance (when 
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running with IRIX+SETC 6.4 migrations per second on average have been measured 

without detecting any performance degradation). 

Table 5.4. Performance degradation of each application instance in the 3rd workload vs. best 
standalone execution 

Application IRIX IRIX + SETC JNE not mall JNE mall 

Series 2 JTh 0.78 0.97 0.93 0.93 

Crypt 4 JTh 0.74 0.97 0.90 0.99 

Series 4 JTh 0.62 0.95 0.98 0.99 

Crypt 6 JTh 0.79 0.94 0.98 0.99 

 
This experiment confirms that in a non-overloaded system it is not important if 

applications adapt their behavior to the available resources, because there are enough 

resources to satisfy all the requests. These conclusions are consolidated in Table 5.4, 

which summarizes the observed performance degradation for each application 

instance in the third workload with respect to best standalone execution. 
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Figure 5.18. Application speedups in the 4th workload 
(overloaded environment – non-malleable applications) 

 

For the last set of experiments, a workload composed of an instance of Series 

with concurrency level of 4 threads, an instance of Crypt with concurrency level of 8 

threads, an instance of Series with concurrency level of 8 threads and an instance of 

Crypt with concurrency level of 12 threads has been defined. These applications 

instances are simultaneously started on a cpuset with 16 processors (the system is 
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overloaded), and they are continuously restarted until one of them is repeated 10 

times. This experiment intends to evaluate the performance of JOMP non-malleable 

applications when running in an overloaded multiprogrammed environment. 

 
Figure 5.19. Process migrations when running with Irix in the 4th workload 

(overloaded environment – non-malleable applications) 

 
Figure 5.20. Process migrations when running with JNE in the 4th workload 

(overloaded environment – non-malleable applications) 

 

Figure 5.18 draws the speedup for each application instance in the workload 

relative to the sequential version. All the series have the same meaning as in the 

previous workload. Since the system is overloaded, each application instance will 
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receive fewer processors than requested (as many processors as assigned by DSS 

policy in the JNE scheduler). Therefore, the speedup should be the same as if 

executed alone in the cpuset with the number of processors allocated by the JNE 

scheduler. The results obtained in this workload verify this theory and confirm that 

performance obtained when running with JNE and generating as parallelism as the 

double of the resources assigned (JNE mall) is comparable to the one obtained when 

running with the original system. The execution of the different application instances 

can be appreciated in Figure 5.19 when running with Irix and in Figure 5.20 when 

running with JNE. 

Finally, notice the performance degradation produced when running with JNE 

not mall, because the applications do not adapt to the available resources (they may 

have unused processors if the number of threads created is not multiple of the number 

of processors assigned to them). Table 5.5 shows the performance degradation of each 

application instance in the fourth workload with respect to best standalone execution. 

Table 5.5. Performance degradation of each application instance in the 4th workload vs. best 
standalone execution 

Application IRIX IRIX + SETC JNE not mall JNE mall 

Series 4 JTh 0.60 0.63 0.49 0.49 

Crypt 8 JTh 0.61 0.65 0.47 0.61 

Series 8 JTh 0.49 0.47 0.50 0.49 

Crypt 12 JTh 0.43 0.41 0.33 0.44 

 

5.3 Resource Provisioning for Multithreaded Java Application 
Servers in e-Business Environments 

5.3.1  Dynamic Resource Provisioning 

Due to the great variability of the workloads of web applications (including 

unexpected flash crowds), it is difficult to estimate application resource requirements 

in advance, and hence provisioning resources to web applications in a hosting 

platform is problematic. Static allocation of resources can result in significant 

performance degradation when loads exceed capacity if under-provisioning has been 

performed, while over-provisioning resources based on worst-case workload 

estimation can result in poor resource utilization. 
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Recent studies have shown the considerable benefits of dynamically reallocate 

resources among hosted applications based on the variations in their workloads 

instead of over-provisioning resources in a hosting platform [7][35][36]. The goal is 

to meet the application requirements on demand and adapt to their changing resource 

needs. In this way, better resource utilization by extracting multiplexing gains can be 

achieved and the system can react to unexpected workload increases. 

This thesis proposes a dynamic resource provisioning mechanism based on a 

global processor manager, called eDragon CPU Manager (ECM), responsible of 

distributing periodically the available processors among applications in a hosting 

platform applying a given policy. The ECM cooperates with the applications to 

manage efficiently the processors using a bi-directional communication. On one side, 

the applications request periodically to the ECM the number of processors needed to 

handle their incoming load avoiding the QoS degradation. On the other side, the ECM 

can be requested at any time by the applications to inform them about their processor 

assignments. With this information, the applications can apply an admission control 

mechanism to limit the number of admitted requests accepting only those that can be 

served with the allocated processors without degrading their QoS (see Section 4.3.2).  

5.3.1.1 Applications/ECM communication 

The communication between the ECM and the applications is implemented 

using a shared memory region. The shared information includes the number of 

processors on which the application wants to run at any moment and the number of 

processors currently allocated by the ECM to the application. In order to manipulate 

this information, an interface between the applications and the ECM has been defined. 

This interface contains the following two Java methods accessible through the Java 

Native Interface (JNI): 

� cpusAssigned(): consult the current number of processors allocated to the 

invoking application. 

� cpusRequested(num): request to the execution environment num processors. 

In order to be self-managed, applications must be able to determine the 

number of processors they need to handle their incoming workload avoiding QoS 

degradation. This thesis achieves this capability by adding an internal manager within 

the server that runs the web application. This manager continuously monitors the 
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number of incoming connections by performing online measurements distinguishing 

new SSL connections from resumed SSL connections. Based on the number of 

incoming new SSL connections, the number of incoming resumed SSL connections 

and the estimated computing demand of each kind of connection, the manager 

periodically calculates the number of processors needed to handle these connections 

maintaining their QoS and informs to the ECM using the cpusRequested method. 

5.3.1.2 eDragon CPU manager (ECM) 

The eDragon CPU Manager (ECM) is responsible for the distribution of 

processors among applications in the hosting platform. The ECM processes all the 

applications requests and distributes processors according to a given policy. 

Traditionally, resource allocation policies have considered conventional performance 

metrics such as response time, throughput and availability. However, the metrics that 

are of utmost importance to the management of an e-commerce site are revenue and 

profits and should be incorporated when designing policies [102].  

The ECM can be configured to implement different policies, depending on the 

hosting platform needs, considering conventional performance metrics as well as 

incorporating e-business indicators. As an example, this thesis includes the 

implementation of a policy that considers customers of different priority classes (such 

as Gold, Silver or Bronze). The priority class indicates a customer domain’s priority 

in relation to other customer domains. It is expected that high priority customers will 

receive preferential service respect low priority customers. In the policy, each 

application receives a number of processors (Assigi) that is proportional to its request 

(Reqi) pondered depending of the application priority class (Prioi) and inversely 

proportional to the total workload of the system (� Prioj * Reqj), expressed as the sum 

of requests of all applications in the system. The complete equation is as follows: 

Assigi = Round[(Prioi * Reqi * nCPU) / � Prioj * Reqj] 

As commented is Section 2.3.4, performance isolation of web applications is a 

concern in hosting platforms where applications share resources, because when an 

application overloads it can affect the performance of other applications. 

Consequently, it is a responsibility of the hosting platform to provide performance 

isolation. The ECM considers this issue when allocating processors to the 

applications. The ECM not only decides how many processors to assign to each 
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application, but decides also which processors to assign to each application. In order 

to accomplish this, the ECM configures the CPU affinity mask of each application 

(using the Linux sched_setaffinity function) so that the application can run only in 

their assigned processors, and no other application can run in these processors, 

guarantying in this way performance isolation. 

It is also desirable that ECM maximizes resource utilization in the hosting 

platform. In order to accomplish this, the ECM can decide under certain conditions 

that two applications share a given processor, trying to minimize impact on 

performance isolation. Current ECM implementation will decide to share a processor 

from application A to application B if the processor distribution policy has assigned to 

application A all the processors it requested and the number of processors assigned to 

application B is lower than the number it requested. Notice that, in this situation, it is 

possible that a fraction of a processor allocated to application A is not used, for 

example, if application A determines that it needs 2.5 processors, its processor request 

will be 3, thus a 0.5 processor may be not used. 

The ECM has another feature very valuable in hosting platforms that earn 

money from applications depending on their resource usage. In these situations, 

hosting platforms need to know exactly how many resources have been used by each 

application. The ECM can easily provide this information, because it performs a 

complete accounting of all the resource allocations decided. 

5.3.2  Evaluation 

This section presents the evaluation results for the overload control approach 

including dynamic resource provisioning proposed in this thesis. The evaluation is 

divided in two parts. First, the accuracy of the mechanism for estimating the processor 

requirements of the application server is evaluated by comparing the execution of a 

single self-adaptive instance of the Tomcat server with this mechanism incorporated 

(self-managed Tomcat server) with respect to the original Tomcat. Second, the 

proposal combining dynamic resource provisioning and admission control is 

evaluated by running several experiments with two self-adaptive Tomcat instances in 

a multiprocessor hosting platform with the ECM. 

Figure 5.21 shows the number of processors allocated to Tomcat comparing 

the original Tomcat server with respect to the self-managed Tomcat server. When 
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running the original Tomcat, the hosting platform must perform static processor 

provisioning because it has no information about its processor requirements. If 

maximum application performance wants to be achieved, the hosting platform must 

allocate the maximum number of processors (four in this case) to the server. 

However, this provokes poor processor utilization when the original Tomcat requires 

fewer processors. On the other side, self-managed Tomcat is able to calculate 

accurately its processor requirements and communicate them to the hosting platform, 

which can allocate to the server only the required processors, as shown in Figure 5.21, 

avoiding processor under-utilization but ensuring performance. 

 
Figure 5.21. Original Tomcat vs. self-managed Tomcat number of allocated processors 

 

The first multiprogrammed experiment consists of two Tomcat instances with 

the same priority running in a 4-way hosting platform. Each Tomcat instance has 

variable input load along time, which is shown in the top part of Figure 5.22. Input 

load distribution has been chosen in order to represent the different processor 

requirement combinations when running two Tomcat instances in a hosting platform. 

For example, between 0s and 1200s and between 2400s and 3000s the hosting 

platform can satisfy the processor requirements of the two Tomcat instances; this 

means that the hosting platform is not overloaded. In the other areas, the two Tomcat 
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instances requirements exceed the number of processors of the hosting platform, thus 

the hosting platform is overloaded. In this case, some policy for processor distribution 

between the applications is required. 

 
Figure 5.22. Incoming workload (top), achieved throughput (middle) and allocated processors 

(bottom) of two Tomcat instances with the same priority 

 

As well as the input load along time, Figure 5.22 also shows the processors 

allocation for each Tomcat instance (bottom part) and the throughput achieved with 

these processors allocations (middle part), presenting this information in a way that 

eases the correlation of the different metrics. Notice that, when the hosting platform is 

not overloaded, the two Tomcat instances receive all the processors they have 

requested, obtaining the corresponding throughput. When the hosting platform is 

overloaded, as the two instances have the same priority, the ECM distributes the 

available processors depending only on each Tomcat requirements, which depend on 

each Tomcat input load. Therefore, the Tomcat instance with higher input load (that 

is, with more processor requirements) is receiving more processors and hence 

achieving higher throughput. For example, between 1800s and 2400s, 5 new clients 

per second arrive to Tomcat 1 while to Tomcat 2 arrives only 1 new client per second. 

In this case, input load from Tomcat 1 is higher than input load from Tomcat 2, thus 
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Tomcat 1 will receive more processors than Tomcat 2. In particular, Tomcat 1 

receives 3.5 processors on average (achieving a throughput around 260 replies/s) 

while Tomcat 2 receives only 0.5 processors on average (achieving a throughput 

around 50 replies/s). Notice that a processor is shared between Tomcat 1 and Tomcat 

2. In the same way, between 3600s and 4200s, 5 new clients per second arrive to 

Tomcat 2 while to Tomcat 1 arrive only 3 new clients per second. In this case, input 

load from Tomcat 2 is higher than input load from Tomcat 1, thus Tomcat 2 will 

receive more processors than Tomcat 1. In particular, Tomcat 2 receives 3 processors 

on average (achieving a throughput around 230 replies/s) while Tomcat 1 receives 

only 1 processor on average (achieving a throughput around 50 replies/s). Finally, 

when the input load is the same for Tomcat 1 and Tomcat 2 (for instance between 

4200s and 4800s), the two instances receive the same number of processors (two in 

this case), obtaining the same throughput (around 150 replies/s). In any case, as 

demonstrated in Chapter 4, the overload control mechanism ensures that although the 

number of required processors is not supplied, the QoS of admitted requests is 

maintained. 

The second multiprogrammed experiment has the same configuration that the 

previous one but, in this case, Tomcat 1 has higher priority than Tomcat 2 (2 versus 

1). As the two instances have different priority, the ECM distributes the available 

processors depending on each Tomcat requirements and on its priority, following the 

equation presented in Section 5.3.1.2. Figure 5.23 shows the results obtained for this 

experiment presenting these results in the same way as Figure 5.22. Notice that now 

between 1800s and 2400s, processors allocated to Tomcat 1 have increased, 

oscillating between 3.5 and 4 on average while processors allocated to Tomcat 2 have 

decreased, oscillating between 0 and 0.5 on average, because as well as having higher 

input load, Tomcat 1 has also higher priority than Tomcat 2. In the same way, 

between 3600s and 4200s, processors allocated to Tomcat 2 have decreased, 

oscillating between 2 and 2.5 on average while processors allocated to Tomcat 1 have 

increased, oscillating between 1.5 and 2 on average, because although Tomcat 2 has 

higher input load, Tomcat 1 has higher priority than Tomcat 2. Finally, between 4200s 

and 4800s, although the input load is the same for Tomcat 1 and Tomcat 2, Tomcat 1 

receives now more processors than Tomcat 2 (3 versus 1), because Tomcat 1 has 
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higher priority than Tomcat 2. With this processor allocation, Tomcat 1 obtains higher 

throughput than Tomcat 2 (around 230 replies/s versus 100 replies/s). 

 
Figure 5.23. Incoming workload (top), achieved throughput (middle) and allocated processors 

(bottom) of two Tomcat instances if Tomcat 1 has higher priority than Tomcat 2 

 

The last multiprogrammed experiment has the same configuration that in the 

previous one, but with a slightly different behavior of the ECM in order to benefit the 

execution of high priority applications. In this experiment, a processor can be only 

shared from low priority applications to high priority applications, but not on the other 

side. Figure 5.24 shows the results obtained for this experiment presenting these 

results in the same way as Figure 5.22. As shown in this figure, between 1800s and 

2400s, processors allocated to Tomcat 1 have increased to almost 4 on average while 

processors allocated to Tomcat 2 are now nearly 0, because Tomcat 1 has higher 

priority than Tomcat 2 and does not share processors. In the same way, between 

3600s and 4200s, processors allocated to Tomcat 2 have decreased to 1 on average 

while processors allocated to Tomcat 1 have increased to 3 on average, because 

although Tomcat 2 has higher input load, Tomcat 1 has higher priority than Tomcat 2 

and does not share processors. With this processor allocation, Tomcat 1 obtains now 

higher throughput than in the previous experiment (around 200 replies/s versus 130 
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replies/s) while Tomcat 2 achieves now lower throughput (around 100 replies/s versus 

200 replies/s). 

 
Figure 5.24. Incoming workload (top), achieved throughput (middle) and allocated processors 

(bottom) of two Tomcat instances if Tomcat 1 has higher priority than Tomcat 2 and Tomcat 1 does not 
share processors with Tomcat 2 

 

5.4 Conclusions 

The “Resource Provisioning for Multithreaded Java Applications” work area 

described in this chapter shows how, in addition to implement self-adaptive 

applications that can adapt their behavior depending on the available resources, the 

cooperation between the applications and the execution environment in order to 

manage efficiently the resources improves the performance of multithreaded Java 

applications on multiprogrammed shared-memory multiprocessors.  

This thesis proposes the implementation of this cooperation based on 

establishing a bi-directional communication path between the applications and the 

underlying system. On one side, the applications request to the execution environment 

the number of processors they need. On the other side, the execution environment can 

be requested at any time by the applications to inform them about their processor 
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assignments. With this information, the applications, which are self-adaptive, can 

adapt their behavior to the assigned resources as described in Chapter 4. 

This thesis contributes with the implementation of the cooperation between the 

execution environment and the applications for manage the resources as in HPC 

environments as in e-business environments. The implementation for HPC 

environments considers two different scenarios. In the first one, the application is able 

to inform the execution environment about its concurrency level using a service 

provided by the underlying thread library. As shown in the experimental results, the 

effect on performance of this communication is low when executing applications that 

create threads with a long lifetime. In the second scenario, in addition to this 

communication path, the execution environment is also able to inform the application 

about the resource provisioning decisions. As the application is malleable (i.e. self-

adaptive), it is able to react to these decisions by changing the degree of parallelism 

that it is actually exploited from the application.  

The experimental results show a noticeable impact on the final performance 

for malleable applications. Improvements avoiding performance degradation in non-

overloaded multiprogrammed environments range from 7% to 31% when malleable 

applications do not adapt to the assigned processors, and from 12% to 33% otherwise. 

On multiprogrammed overloaded environments, improvements range from 10% to 

26% when malleable applications do not adapt to the assigned processors, and from 

8% to 58% otherwise. Notice that, in an overloaded system it is very important if 

applications are malleable, because there are not enough resources to satisfy all the 

requests. Although this scenario is based on malleable applications, this chapter has 

demonstrated that is also possible to maintain the efficiency of non-malleable 

applications. The performance degradation for this kind of applications is almost the 

same when running with Irix or with JNE. 

The implementation of the cooperation between the execution environment 

and the applications for manage efficiently the resources in e-business environments 

uses an overload control approach for self-adaptive Java application servers running 

secure e-commerce applications that brings together admission control based on SSL 

connections differentiation and dynamic provisioning of platform resources in order 

to adapt to changing workloads avoiding the QoS degradation.  
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The overload control approach is based on a global resource manager 

responsible of distributing periodically the available processors among web 

applications following a determined policy. The resource manager can be configured 

to implement different policies, considering traditional indicators (i.e. response time) 

as well as e-business indicators (i.e. customer’s priority). The resource manager and 

the applications cooperate to manage the resources using a bi-directional 

communication. On one side, the applications request to the resource manager the 

number of processors needed to handle their incoming load without QoS degradation. 

On the other side, the resource manager can be requested at any time by the 

applications to inform them about their processor assignments. With this information, 

the applications can apply the admission control mechanism described in Chapter 4 

that limits the number of admitted requests so they can be served with the allocated 

processors without degrading their QoS.  

The experimental results demonstrate the benefit of combining dynamic 

resource provisioning and admission control to prevent overload of Java application 

servers in secure environments. Dynamic resource provisioning allows meeting the 

requirements of the application servers on demand and adapting to their changing 

resource needs. In this way, better resource utilization by extracting multiplexing 

gains can be achieved (resources not used by some application may be distributed 

among other applications) and the system can react to unexpected workload increases. 

On the other side, admission control based on SSL differentiation allows maintaining 

the response times in levels that guarantee good QoS and avoiding server throughput 

degradation (throughput degrades until approximately the 20% of the maximum 

achievable throughput when server overloads), while maximizing the number of 

sessions completed successfully. 

The research performed in this work area has resulted in the following 

publications, including one journal, two international conferences (one submitted but 

not yet accepted) and one international workshop: 

� J. Guitart, D. Carrera, V. Beltran, J. Torres and E. Ayguadé. Dynamic 
Resource Provisioning for Self-Managed QoS-Aware Secure e-Commerce 
Applications in SMP Hosting Platforms. To be submitted to the 20th 
International Parallel and Distributed Symposium (IPDPS’06), Rhodes Island, 
Greece. April 26-29, 2006. 

  



Resource Provisioning for Multithreaded Java Applications 137 

 

� J. Guitart, X. Martorell, J. Torres and E. Ayguadé. Application/Kernel 
Cooperation Towards the Efficient Execution of Shared-memory Parallel Java 
Codes. 17th International Parallel and Distributed Symposium (IPDPS’03), 
Nice, France. April 22-26, 2003.  

 
� J. Guitart, X. Martorell, J. Torres and E. Ayguadé. Efficient Execution of 

Parallel Java Applications. 3rd Annual Workshop on Java for High 
Performance Computing (part of the 15th ACM International Conference on 
Supercomputing ICS’01), pp. 31-35, Sorrento, Italy. June 17, 2001. 

 
� J. Oliver, E. Ayguadé, N. Navarro, J. Guitart and J. Torres. Strategies for 

Efficient Exploitation of Loop-level Parallelism in Java. Concurrency and 
Computation: Practice and Experience (Java Grande 2000 Special Issue), 
Vol.13 (8-9), pp. 663-680. ISSN 1532-0634, July 2001. 
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CHAPTER 6 
RELATED WORK 

 

6.1 Analysis and Visualization of Multithreaded Java Applications 

Although a number of tools have been developed to monitor and analyze the 

performance of Java applications, only some of them target multithreaded Java 

applications, and none of them allow a fine-grain analysis of the applications behavior 

considering all levels involved in the application execution. Different approaches are 

used to carry on the instrumentation process. Paradyn [152] is a non-trace based tool 

that considers Java multithreaded applications and allows users to insert and remove 

instrumentation probes during program execution by dynamically relocating the code 

and adding pre and post instrumentation code. Jinsight [117], JaViz [91] and DejaVu 

[42] work with traces generated by an instrumented JVM. Jinsight and DejaVu allow 

the instrumentation of multithreaded Java applications while JaViz allows the 

instrumentation of client/server Java applications that use RMI. Other works allow the 

analysis of multithreaded Java applications by instrumenting the Java source code 

[16], thus requiring the recompilation of the application.  

There is another set of proposals, such as Hprof (which is shipped with the 

standard Java SDK), TAU [127] and OptimizeIt [114], which offer maximum 

portability by using the Java Virtual Machine Profiler Interface [143] (JVMPI). 

JVMPI is an interface that profilers can use to obtain profiling information generated 

from de JVM. This means that all standard JVM is really an instrumented JVM that 

generates profiling information that can be captured using the JVMPI. With Hprof, all 

the information generated by the JVMPI can be accessed, directly or using some post-

processing tool as PerfAnal [105] or Heap Analysis Tool [81] (HAT). OptimizeIt can 

be integrated with popular J2EE application servers. TAU allows the analysis of 

parallel Java applications based on MPI using visualizers as Racy and Vampir [115]. 

However, all these JVMPI-based tools suffer of large overheads due to the use of 

JVMPI. 
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Related work includes also other tools for the analysis and visualization of 

multithreaded applications, but these tools do not consider Java applications. For 

example, Sun Workshop Thread Event Analyzer [151] is based on the post-mortem 

analysis of traces obtained through shared libraries interposition; Socrates [145] 

allows the post-mortem analysis of traces obtained by instrumenting the application 

source code; Tmon [86] is a trace-based tool that obtains the profiling information by 

instrumenting the user threads library; and finally Gthread [153] is a trace-based tool 

that adds instrumentation information using macros that replace Pthreads library calls. 

Finally, a number of tools have been developed specifically, or consider in any 

way the analysis of web applications performance. Some of these tools are, for 

instance, Wily Technology Solutions for Enterprise Java Application Management 

(Introscope) [149], Quest Software Solutions for Java/J2EE (JProbe, Performasure) 

[123] and Empirix Solutions for Web Application Performance (e-TEST, OneSight) 

[51]. 

All the tools commented report different metrics that measure and breakdown, 

in some way, the application performance. However, none of them enables a fine-

grain analysis of the multithreaded execution and the scheduling issues involved in 

the execution of the threads that come from the Java application. This analysis 

requires different kind of information, which must be acquired at several levels, from 

the application to the system level. 

Some tools focus the analysis on the application level (and the application 

server level, if applicable), neglecting the interaction with the system. Other tools 

incorporate the analysis of the system activity to their monitoring solution, but 

summarize this analysis giving general metrics (as CPU utilization or JVM memory 

usage) providing only a quantitative analysis of the server execution. Summarizing, 

existing tools base their analysis on calculating general metrics that intend to 

represent the system status. Although this information can be useful for the detection 

of some problems, it is often not sufficiently fine grained and lacks of flexibility. For 

this reason, this thesis proposes an analysis environment to perform a complete 

analysis of the applications behavior based on providing to the user detailed and 

correlated information about all levels involved in the application execution, giving 

him the chance to construct his own metrics, oriented to the kind of analysis he wants 

to perform. 
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6.2 Characterization of Java Application Servers Scalability 

Application server scalability constitutes an important issue to support the 

increasing number of users of secure dynamic web sites. Although this thesis focuses 

on maintaining server scalability when running in secure environments adding more 

resources (vertical scaling), the large computational demand of SSL protocol can be 

handled using other approaches.  

Major J2EE vendors such as BEA [17] or IBM [5][41] use clustering 

(horizontal scaling) to achieve scalability and high availability. Several studies 

evaluating server scalability using clustering have been performed [5][77], but none 

of them considers security issues. 

Scalability can be also achieved delegating the security issues on a web server 

(e.g. Apache web server [9]) while the application server only processes dynamic web 

requests. In this case, the computational demand will be transferred to the web server, 

which can be optimized for SSL management.  

It is also possible to add new specialized hardware for processing SSL 

requests [108], reducing the processor demand, but increasing the cost of the system. 

Related with the vertical scalability covered in this thesis, some works have 

evaluated this scalability on web servers or application servers. For example, [18] and 

[79] only consider static web content, and in [8][18][79][98] the evaluation is limited 

to a numerical study without performing an analysis to justify the scalability results 

obtained. Besides, none of these works evaluates the effect of security on application 

server scalability. 

Other works try to improve application server scalability by tuning some 

server parameters and/or JVM options and/or operating system properties. For 

example, Tomcat scalability while tuning some parameters, including different JVM 

implementations, JVM flags and XML implementations has been studied in [96]. In 

the same way, the application server scalability using different mechanisms for 

generating dynamic web content has been evaluated in [32]. However, none of these 

works considers any kind of scalability relative to resources (neither vertical nor 

horizontal), neither the influence of security on the application server scalability. 

Certain kind of analysis has been performed in some works. For example, [4] 

and [32] provide a quantitative analysis based on general metrics of the application 
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server execution collecting system utilization statistics (CPU, memory, network 

bandwidth, etc.). These statistics may allow the detection of some application server 

bottlenecks, but this coarse-grain analysis is often not enough when dealing with more 

sophisticated performance problems. 

The influence of security on application server scalability has been covered in 

some works. For example, the performance and architectural impact of SSL on the 

servers in terms of various parameters such as throughput, utilization, cache sizes and 

cache miss ratios has been analyzed in [90], concluding that SSL increases 

computational cost of transactions by a factor of 5-7. The impact of each individual 

operation of TLS protocol in the context of web servers has been studied in [43], 

showing that key exchange is the slowest operation in the protocol. [59] analyzes the 

impact of full handshake in connection establishment and proposes caching sessions 

to reduce it. 

Security for Web Services can be also provided with SSL, but other proposals 

as WS-Security [83], which uses industry standards like XML Encryption and XML 

Signature, have been made. Coupled with WS-SecureConversation, the advantage 

WS-Security has over SSL over HTTP is twofold: first, it works independently of the 

underlying transport protocol and second, it provides security mechanisms that 

operate in end-to-end scenarios (across trust boundaries) as opposed to point-to-point 

scenarios (i.e. SSL). Anyway, WS-Security requires also a large computational 

demand to support the encryption mechanisms, making most of the conclusions 

obtained in this thesis valid in Web Services environments too.  

This thesis intends to achieve a complete characterization of dynamic web 

applications using SSL vertical scalability determining the causes of server overload 

performing a detailed analysis of application server behavior considering all levels 

involved in the execution of dynamic web applications. 

6.3 Overload Control and Resource Provisioning in Web 
Environments 

The effect of overload on web applications has been covered in several works, 

applying different perspectives in order to prevent these effects. These different 

approaches can be resumed on request scheduling, admission control, service 



Related Work 143 

 

differentiation, service degradation, resource management and almost any 

combination of them. 

Request scheduling refers to the order in which concurrent requests should be 

served. Typically, servers have been left this ordination to the operating system. But, 

as it is well know from queuing theory that shortest remaining processing time first 

(SRPT) scheduling minimizes queuing time (and therefore the average response 

time), some proposals [46][80] implement policies based on this algorithm to 

prioritize the service of short static content requests in front of long requests. This 

prioritized scheduling in web servers has been proven effective in providing 

significantly better response time to high priority requests at relatively low cost to 

lower priority requests. Although scheduling can improve response times, under 

extreme overloads other mechanisms become indispensable. Anyway, better 

scheduling can always be complementary to any other mechanism. 

Admission control is based on reducing the amount of work the server accepts 

when it is faced with overload. Service differentiation is based on differentiating 

classes of customers so that response times of preferred clients do not suffer in the 

presence of overload. Admission control and service differentiation have been 

combined in some works to prevent server overload. For example, [144] presents 

three kernel-based mechanisms that include restricting incoming SYN packets to 

control TCP connection rate, prioritized listen queue and HTTP header-based 

classification providing service differentiation. ACES [38] attempts to limit the 

number of admitted requests based on estimated service times, allowing also service 

prioritization. The evaluation of this approach is done based only on simulation. Other 

works have considered dynamic web content. An adaptive approach to overload 

control in the context of the SEDA [148] Web server is described in [147]. SEDA 

decomposes services into multiple stages, each one of which can perform admission 

control based on monitoring the response time through the stage. The evaluation 

includes dynamic content in the form of a web-based email service. In [50], the 

authors present an admission control mechanism for e-commerce sites that externally 

observes execution costs of requests, distinguishing different requests types. Yaksha 

[89] implements a self-tuning proportional integral controller for admission control in 

multi-tier e-commerce applications using a single queue model. 
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Service degradation is based on avoiding refusing clients as a response to 

overload but reducing the service offered to clients [1][37][140][147], for example in 

the form on providing smaller content (e.g. lower resolution images). 

Recent studies [7][35][36] have reported the considerable benefit of 

dynamically adjusting resource allocations to handle variable workloads. This premise 

has motivated the proposal of several techniques to dynamically provision resources 

to applications in on demand hosting platforms. Depending on the mechanism used to 

decide the resource allocations, these proposals can be classified on: control theoretic 

approaches with a feedback element [2], open-loop approaches based on queuing 

models to achieve resource guarantees [34][48][97] and observation-based approaches 

that use runtime measurements to compute the relationship between resources and 

QoS goal [122]. Control theory solutions require training the system at different 

operating points to determine the control parameters for a given workload. Queuing 

models are useful for steady state analysis but do not handle transients accurately. 

Observation-based approaches are most suited for handling varying workloads and 

non-linear behaviors. Depending on the hosting platform architecture considered, 

resource management in a single machine has been covered in [12], proposing 

resource containers as an operating system abstraction that embodies a resource. The 

problem of provisioning resources in cluster architectures has been addressed in 

[10][124] by allocating entire machines (dedicated model) and in [34][122][141] by 

sharing node resources among multiple applications (shared model). 

Cataclysm [140] performs overload control bringing together admission 

control, adaptive service degradation and dynamic provisioning of platform resources, 

demonstrating that the most effective way to handle overload must consider the 

combination of techniques. In this aspect, this work is similar to the proposal in this 

thesis. 

On most of the prior work, overload control is performed on per request basis, 

which may not be adequate for many session-based applications, such as e-commerce 

applications. A session-based admission control scheme has been reported in [40]. 

This approach allows sessions to run to completion even under overload, denying all 

access when the server load exceeds a predefined threshold. Another approach to 

session-based admission control based on the characterization of a commercial web 
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server log, which discriminates the scheduling of requests based on the probability of 

completion of the session that the requests belong to, is presented in [39]. 

The overload control mechanism proposed in this thesis combines important 

aspects that previous work has considered in isolation or simply has ignored. First, it 

considers dynamic web content instead of simpler static web content. Second, it 

focuses on session-based applications considering the particularities of these 

applications when performing admission control. Third, it combines several 

techniques as admission control, service differentiation and dynamic resource 

provisioning that have been demonstrated to be useful to prevent overload [140] 

instead of considering each technique in isolation. Fourth, this mechanism is fully 

adaptive to the available resources and to the number of connections in the server 

instead of using predefined thresholds. Fifth, the resource provisioning mechanism 

incorporates e-business indicators instead of only considering conventional 

performance metrics such as response time and throughput. Finally, it considers 

overload control on secure web applications while none of the above works has 

covered this issue. 

6.4 Resource Provisioning in HPC Environments 

Experience on real systems shows that with contemporary kernel schedulers, 

parallel applications suffer from performance degradation when executed in an open 

multiprogrammed environment. As a consequence, intervention from the system 

administrator is usually required, in order to guarantee a minimum quality of service 

with respect to the resources allocated to each parallel application (CPU time, 

memory etc.). Although the use of sophisticated queuing systems and system 

administration policies (HP-UX Workload Manager [130], IBM AIX WLM [82], 

Solaris RM [138], IRIX Miser Batch Processing System [128], etc.) may improve the 

execution conditions for parallel applications, the use of hard limits for the execution 

of parallel jobs with queuing systems may jeopardize global system performance in 

terms of utilization and fairness. 

Even with convenient queuing systems and system administrator’s policies, 

application and system performance may still suffer because users are only able to 

provide very coarse descriptions of the resource requirements of their jobs (number of 

processors, CPU time, etc.). Fine grain events that happen at execution time 
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(spawning parallelism, sequential code, synchronizations, etc.), which are very 

important for performance, can only be handled at the level of the runtime system, 

through an efficient cooperation interface with the operating system. This scenario 

assumes applications that are able to adapt their behavior to the amount of resources 

allocated to them. This information is obtained by establishing a dialog with the 

execution environment. 

Several proposals of cooperation between the execution environment and the 

applications appear in the related work, but none of them consider multithreaded Java 

applications. For example, Process Control [139] proposes to share a counter of 

running processes, but the concurrency level of an application is inferred by the 

execution environment instead of being specified by the application. Process Control, 

Scheduler Activations [6] and First-Class Threads [99] use signals or upcalls to 

inform the user level about preemptions. 

The Nanos RM [100] (NRM) is an application-oriented resource manager, i.e. 

the unit of resource allocation and management is the parallel application. Other 

resource managers, such as the Solaris RM or the AIX WLM, work at workload or 

user granularity. Having parallel applications as units for resource management 

allows the application of performance-driven policies [45] that take into account the 

characteristics of these applications (e.g. speedup or efficiency in the use of 

resources). The NRM takes decisions at the same level than the kernel does. This 

means that it does not only allocate processors to a particular application, but also it 

performs the mapping between kernel threads and processors and controls the initial 

memory placement. This is an issue that is important to consider in the Java 

environment using the native threads model (several kernel threads in contraposition 

to the green threads model that just uses one kernel thread for all the Java threads in 

the application).  

The Jikes RVM [3] implements a different thread model. It provides virtual 

processors in the Java runtime system to execute the Java threads. Usually, there are 

more Java threads than virtual processors. Each virtual processor is scheduled onto a 

pthread. This means that, as the other threads models do, Jikes relies on the Pthreads 

library for scheduling the pthreads over the kernel threads offered by the operating 

system, suffering the same performance degradation problems for parallel Java 

applications. Therefore, Jikes can also benefit of the solutions proposed in this thesis. 
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CHAPTER 7 
CONCLUSIONS 

 

7.1 Conclusions 

This thesis has contributed in the resolution of the performance problems 

faced when using the Java language in parallel environments (from HPC 

environments to e-business environments). The contributions have included the 

definition of an environment to analyze and understand the behavior of multithreaded 

Java applications. The main contribution of this environment is that all levels in the 

execution (application, application server, JVM and operating system) are correlated. 

This is very important to understand how this kind of applications behaves when 

executed on execution environments that include servers and virtual machines. In 

addition, and based on the understanding gathered using the proposed analysis 

environment, this thesis has performed research on scheduling mechanisms and 

policies oriented towards the efficient execution of multithreaded Java applications on 

multiprocessor systems considering the interactions and coordination between 

scheduling mechanisms and policies at different levels: application, application 

server, JVM, threads library and operating system.  

In order to achieve these main objectives, the thesis has been divided in the 

following work areas. 

� Analysis and Visualization of Multithreaded Java Applications 

� Self-Adaptive Multithreaded Java Applications 

� Resource Provisioning for Multithreaded Java Applications 

7.1.1 Analysis and Visualization of Multithreaded Java Applications 

The “Analysis and Visualization of Multithreaded Java Applications” work 

area claims that a real performance improvement on multithreaded Java applications 

must be preceded by a fine-grain analysis of applications behavior, considering all 
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levels involved in the applications execution, in order to detect the bottlenecks for 

performance. 

Therefore, the main contribution in this work area has been the proposal of a 

performance analysis framework to perform a complete analysis of the Java 

applications behavior based on providing to the user detailed information about all 

levels involved in the application execution, giving him the chance to construct his 

own metrics, oriented to the kind of analysis he wants to perform.  

The proposed performance analysis framework consists of two tools: an 

instrumentation tool, called JIS (Java Instrumentation Suite), and an analysis and 

visualization tool, called Paraver. When instrumenting a given application, JIS 

generates a trace in which the information collected from all levels has been 

correlated and merged. Later, the trace can be visualized and analyzed with Paraver 

(qualitatively and quantitatively) to identify the performance bottlenecks of the 

application. 

JIS provides information from all levels involved in the application execution. 

From the system level, information about threads state and system calls (I/O, sockets, 

memory management and thread management) can be obtained. Several 

implementations have been performed depending on the underlying platform. A 

dynamic interposition mechanism that obtains information about the supporting 

threads layer (i.e. Pthreads library) without recompilation has been implemented for 

the SGI Irix platform. In the same way, a device driver that gets information from a 

patched Linux kernel has been developed for the Linux platform. JIS uses the JVMPI 

to obtain information from the JVM level. At this level of analysis, the user can obtain 

information about several Java abstractions like classes, objects, methods, threads and 

monitors, but JIS only obtains at this level the name of the Java threads and 

information from the different Java Monitors (when they are entered, exited or 

contended), due to the large overhead produced when using JVMPI. Information 

relative to services (i.e. servlets and EJB), requests, connections or transactions can be 

obtained from the application server level. Moreover, some extra information can be 

added to the final trace file by generating user events from the application code. 

Information at these levels can be inserted by hard-coding JNI calls to the 

instrumentation library on the server or the application source or by introducing them 
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dynamically using Aspect programming techniques without source code 

recompilation. 

As a special case of instrumentation at the application level, support for JOMP 

applications has been added to JIS. JOMP includes OpenMP-like extensions to 

specify parallelism in Java applications using a shared-memory programming 

paradigm. This instrumentation approach has been designed to provide a detailed 

analysis of the parallel behavior at the JOMP programming model level. At this level, 

the user is faced with parallel, work-sharing and synchronization constructs. The 

JOMP compiler has been modified to inject JNI calls to the instrumentation library 

during the code generation phase at specific points in the source code. 

The experience in this work area has demonstrated the benefit of disposing of 

correlated information about all the levels involved in Java applications execution to 

perform a fine-grain analysis of their behavior. This thesis claims that a real 

performance improvement on multithreaded Java applications execution can only be 

achieved if the performance bottlenecks at all levels can be identified. 

7.1.2 Self-Adaptive Multithreaded Java Applications 

The “Self-Adaptive Multithreaded Java Applications” work area has 

demonstrated the benefit of implementing self-adaptive multithreaded Java 

applications in order to achieve good performance when using Java in parallel 

environments. Self-adaptive applications are those applications that can adapt their 

behavior to the amount of resources allocated to them.  

This thesis has presented two contributions in this work area towards 

achieving self-adaptive applications and has demonstrated the performance 

improvement obtained when having this kind of applications. The first contribution in 

this work area has been a complete characterization of the scalability of Java 

application servers when executing secure dynamic web applications. This 

characterization is divided in two parts: 

The first part has consisted of measuring Tomcat vertical scalability (i.e. 

adding more processors) when using SSL and analyzing the effect of this addition on 

server scalability. The results have confirmed that running with more processors 

makes the server able to handle more clients before overloading and even when the 

server has reached an overloaded state, better throughput can be obtained if running 



150 Chapter 7 

with more processors. The second part has involved an analysis of the causes of 

server overload when running with different number of processors using the 

performance analysis framework proposed in Chapter 3 of this thesis. The analysis 

has revealed that the processor is a bottleneck for Tomcat performance on secure 

environments (the massive arrival of new SSL connections demands a computational 

power that the system is unable to supply and the performance is degraded) and could 

make sense to upgrade the system adding more processors to improve the server 

scalability. The analysis results also have demonstrated the convenience of 

incorporating to the Tomcat server some kind of overload control mechanism to avoid 

the throughput degradation produced due to the massive arrival of new SSL 

connections that the analysis has detected.  

Based on the conclusions extracted from this analysis, the second contribution 

has been the implementation of a session-based adaptive overload control mechanism 

based on SSL connections differentiation and admission control. SSL connections 

differentiation has been accomplished using a possible extension of the JSSE package 

in order to allow distinguishing resumed SSL connections (that reuse an existing SSL 

session on server) from new SSL connections. This feature has been used to 

implement a session-based adaptive admission control mechanism that has been 

incorporated to the Tomcat server. This admission control mechanism differentiates 

new SSL connections from resumed SSL connections limiting the acceptation of new 

SSL connections to the maximum number acceptable with the available resources 

without overloading the server, while accepting all the resumed SSL connections in 

order to maximize the number of sessions completed successfully, allowing to e-

commerce sites based on SSL to increase the number of transactions completed. 

The experimental results demonstrate that the proposed mechanism prevents 

the overload of Java application servers in secure environments. It maintains response 

time in levels that guarantee good QoS and avoids completely throughput degradation 

(throughput degrades until approximately the 20% of the maximum achievable 

throughput when server overloads), while maximizes the number of sessions 

completed successfully (which is a very important metric on e-commerce 

environments). These results confirm that security must be considered as an important 

issue that can heavily affect the scalability and performance of Java application 

servers. 
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7.1.3 Resource Provisioning for Multithreaded Java Applications 

The “Resource Provisioning for Multithreaded Java Applications” work area 

has shown how, in addition to implement self-adaptive applications that can adapt 

their behavior depending on the available resources, the cooperation between the 

applications and the execution environment in order to manage efficiently the 

resources improves the performance of multithreaded Java applications on 

multiprogrammed shared-memory multiprocessors.  

This thesis has proposed the implementation of this cooperation based on 

establishing a bi-directional communication path between the applications and the 

underlying system. On one side, the applications request to the execution environment 

the number of processors they need. On the other side, the execution environment can 

be requested at any time by the applications to inform them about their processor 

assignments. With this information, the applications, which are self-adaptive, can 

adapt their behavior to the amount of resources allocated to them as described in 

Chapter 4. 

This thesis has contributed with the implementation of the cooperation 

between the execution environment and the applications for manage the resources as 

in HPC environments as in e-business environments. The implementation for HPC 

environments considers two different scenarios. In the first one, the application is able 

to inform the execution environment about its concurrency level using a service 

provided by the underlying thread library. As shown in the experimental results, the 

effect on performance of this communication is low when executing applications that 

create threads with a long lifetime. In the second scenario, in addition to this 

communication path, the execution environment is also able to inform the application 

about the resource provisioning decisions. As the application is malleable (i.e. self-

adaptive), it is able to react to these decisions by changing the degree of parallelism 

that it is actually exploited from the application.  

The experimental results show a noticeable impact on the final performance 

for malleable applications. Improvements avoiding performance degradation in non-

overloaded multiprogrammed environments range from 7% to 31% when malleable 

applications do not adapt to the assigned processors, and from 12% to 33% otherwise. 

On multiprogrammed overloaded environments, improvements range from 10% to 

26% when malleable applications do not adapt to the assigned processors, and from 
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8% to 58% otherwise. Notice that, in an overloaded system it is very important if 

applications are malleable, because there are not enough resources to satisfy all the 

requests. Although this scenario is based on malleable applications, this chapter has 

demonstrated that is also possible to maintain the efficiency of non-malleable 

applications. The performance degradation for this kind of applications is almost the 

same when running with Irix or with JNE. 

The implementation of the cooperation between the execution environment 

and the applications for manage efficiently the resources in e-business environments 

has used an overload control approach for self-adaptive Java application servers 

running secure e-commerce applications that brings together admission control based 

on SSL connections differentiation and dynamic provisioning of platform resources in 

order to adapt to changing workloads avoiding the QoS degradation.  

The overload control approach is based on a global resource manager 

responsible of distributing periodically the available processors among web 

applications following a determined policy. The resource manager can be configured 

to implement different policies, considering traditional indicators (i.e. response time) 

as well as e-business indicators (i.e. customer’s priority). The resource manager and 

the applications cooperate to manage the resources using a bi-directional 

communication. On one side, the applications request to the resource manager the 

number of processors needed to handle their incoming load without QoS degradation. 

On the other side, the resource manager can be requested at any time by the 

applications to inform them about their processor assignments. With this information, 

the applications can apply the admission control mechanism described in Chapter 4 

that limits the number of admitted requests so they can be served with the allocated 

processors without degrading their QoS.  

The experimental results have demonstrated the benefit of combining dynamic 

resource provisioning and admission control to prevent overload of Java application 

servers in secure environments. On one side, dynamic resource provisioning allows 

meeting the requirements of the application servers on demand and adapting to their 

changing resource needs. In this way, better resource utilization by extracting 

multiplexing gains can be achieved (resources not used by some application may be 

distributed among other applications) and the system can react to unexpected 

workload increases. On the other side, admission control based on SSL differentiation 
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allows maintaining the response times in levels that guarantee good QoS and avoiding 

server throughput degradation (throughput degrades until approximately the 20% of 

the maximum achievable throughput when server overloads), while maximizing the 

number of sessions completed successfully. 

The work performed in this thesis has resulted in several publications that 

support the quality of the contributions, including one journal, seven international 

conferences (one submitted but not yet accepted), two international workshops, three 

national conferences and ten technical reports. 

7.2 Future Work 

The work performed in this thesis opens several interesting ways that can be 

explored as a future work. 

� This thesis has focused on self-adaptive application servers, i.e. servers that 

adapt their behavior to the amount of resources allocated by the system by 

limiting the incoming workload. However, in the way towards full “autonomic 

computing” it is desirable that these servers are also able to self-configure 

themselves, that is adjust dynamically some configuration parameters (e.g. the 

thread pool size) depending on the server workload and the system conditions 

in order to achieve the maximum performance and exploit efficiently the 

resources. These self-configuring capabilities can be achieved in the Tomcat 

server by using the JMX Proxy Servlet, which is a lightweight proxy that 

allows dynamically getting and setting the Tomcat internal configuration 

parameters. 

� This thesis has considered e-business environments based on a single 

multiprocessor machine. However, today is common to find hosting platforms 

based on clusters of machines, each one running one o more applications. 

Future work may consider the extension of the proposed mechanisms to these 

architectures. In this scenario, the provisioning technique must determine how 

many nodes to allocate to each application and decide how to partition 

resources on each node among competing applications (if the node has been 

decided to be shared) depending on each application workload. A load 

balancer will be also necessary to distribute the incoming client requests into 

the different nodes. The load balancer will assign a client request to a node 
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chosen from the nodes assigned to the application the request belongs to, 

trying to balance the workload that the different nodes assigned to this 

application must face. 

� The J2EE specification defines several types of components to create web 

applications, comprising Java Servlets (as considered in this thesis), Java 

Server Pages (JSP) and Enterprise Java Beans (EJB). The EJB are business 

components intended for the creation of complex and widely distributed web 

applications. These objectives are achieved at the cost of introducing a much 

higher level of complexity in the J2EE container. This additional complexity 

offers a great opportunity to propose new resource management mechanisms 

and policies, adapted to some of the especial requirements of an EJB 

container: EJB pools and caches, and persistence and transaction managers. 

The management strategies applied to an EJB container should cooperate with 

the system resource management techniques proposed in this thesis. 

� Resource provisioning proposed in this thesis has focused on processors 

management, because the work is oriented towards secure e-business 

workloads, which are CPU-intensive. Of course, other kind of workloads will 

need an efficient management of other resources (for instance, network or 

database) to achieve good performance. The cooperation between the 

applications and the execution environment proposed in this thesis can be 

extended to consider these resources. 

� This thesis has demonstrated the benefit of considering e-business indicators 

when designing policies for provisioning resources to the servers, using as an 

example a simple indicator: the customer’s priority. Future work may consider 

the implementation of more sophisticated policies using other e-business 

indicators of great interest for the e-commerce sites, such as the revenue 

generated. For instance, a policy could prioritize those requests belonging to 

sessions that are about to complete (for example, about to purchase a product), 

because those requests are likely to generate more revenue for the site. 
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APPENDICES 

 

A. Java Grande Benchmarks 

A.1 Section 1: Low Level Operations 

� ForkJoin 

This benchmark measures the time spent creating and joining threads. 

Performance is measured in fork-join operations per second.  

� Barrier 

This measures the performance of barrier synchronization. Performance is 

measured in barrier operations per second. Two types of barriers have been 

implemented. The first of these uses a shared counter. When a thread calls the barrier 

routine the counter is incremented. The thread then calls the wait() method. When 

the final thread enters the barrier, the counter is incremented and notifyAll() called, 

signaling all the other threads. The second of these is a static 4-way tournament 

barrier. This is a lock-free barrier, whose correctness cannot be formally guaranteed 

under the current, somewhat ambiguous, specification of the Java memory model. 

However, we have observed no such problems in practice. This barrier is used where 

barrier synchronization is required in Sections 2 and 3 of the suite.  

� Sync 

This benchmark measures the performance of synchronized methods and 

synchronized blocks. Performance is measured in synchronizations per second. The 

Method benchmark in the serial suite measures the performance of synchronized 

methods on a single thread. Here we measure the performance on multiple threads, 

where there is guaranteed to be contention for the object locks. 



156 Appendices 

A.2 Section 2: Kernels 

� Crypt: IDEA encryption 

Crypt performs IDEA (International Data Encryption Algorithm) encryption 

and decryption on an array of N bytes. Performance units are bytes per second. It is 

bit/byte operation intensive. This algorithm involves two principle loops, whose 

iterations are independent and are divided between the threads in a block fashion.  

Size N

A 3,000,000

B 20,000,000

C 50,000,000

� LUFact: LU factorization 

Solves an N x N linear system using LU factorization followed by a triangular 

solve. This is a Java version of the well-known Linpack benchmark. Performance 

units are Mflops per second. It is memory and floating point intensive. The 

factorization is the only part of the computation performed that is parallelized: the 

remainder is computed in serial. Iterations of the double loop over the trailing block 

of the matrix are independent and the work is divided between the threads in a block 

fashion. Barrier synchronization is required before and after the parallel loop.  

Size N

A 500

B 1,000

C 2,000

� SOR: Successive over-relaxation 

The SOR benchmark performs 100 iterations of successive over-relaxation on 

an N x N grid. The performance reported is in iterations per second. This benchmark 

involves an outer loop over iterations and two inner loops, each looping over the grid. 

In order to update elements of the principle array during each iteration, neighboring 

elements of the array are required, including elements previously updated. Hence this 

benchmark is, in this form, inherently serial. To allow parallelization to be carried out 

the algorithm has been modified to use a “red-black” ordering mechanism. This 
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allows the loop over array rows to be parallelized, hence the outer loop over elements 

has been distributed between threads in a block manner. Only nearest neighbor 

synchronization is required, rather than a full barrier.  

Size N

A 1,000

B 1,500

C 2,000

� Series: Fourier coefficient analysis 

This benchmark computes the first N Fourier coefficients of the function f(x) 

= (x+1)^x on the interval 0,2. Performance units are coefficients per second. This 

benchmark heavily exercises transcendental and trigonometric functions. The most 

time consuming component of the benchmark is the loop over the Fourier 

coefficients. Each iteration of the loop is independent of every other loop and the 

work may be distributed simply between the threads. The work of this loop is divided 

evenly between the threads in a block fashion, with each thread responsible for 

updating the elements of its own block. 

Size N

A 10,000

B 100,000

C 1,000,000

� Sparse: Sparse matrix multiplication 

This uses an unstructured sparse matrix stored in compressed-row format with 

a prescribed sparsity structure. This kernel exercises indirection addressing and non-

regular memory references. An N x N sparse matrix is used for 200 iterations. The 

principle computation involves an outer loop over iterations and an inner loop over 

the size of the principal arrays. The simplest parallelization mechanism is to divide 

the loop over the array length between threads. Parallelizing this loop creates the 

potential for more than one thread to up-date the same element of the result vector. To 

avoid this the non zero elements are sorted by their row value. The loop has then been 

parallelized by dividing the iterations into blocks, which are approximately equal, but 

adjusted to ensure that no row is access by more than one thread.  
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Size N

A 50,000

B 100,000

C 500,000

A.3 Section 3: Large Scale Applications 

� MonteCarlo: Monte Carlo simulation 

A financial simulation, using Monte Carlo techniques to price products 

derived from the price of an underlying asset. The code generates N sample time 

series with the same mean and fluctuation as a series of historical data. Performance is 

measured in samples per second. The principle loop over number of Monte Carlo runs 

can be easily parallelized by dividing the work in a block fashion.  

Size N

A 2,000

B 60,000

� RayTracer: 3D ray tracer 

This benchmark measures the performance of a 3D raytracer. The scene 

rendered contains 64 spheres, and is rendered at a resolution of N x N pixels. The 

performance is measured in pixels per second. The outermost loop (over rows of 

pixels) has been parallelized using a cyclic distribution for load balance. Since the 

scene data is fairly small, a copy of the scene is created for each thread. This allows 

optimizations in the serial code, principally the use of class variables for temporary 

storage, to be carried over to the parallel version.  

Size N

A 150

B 500

� Euler: Computational fluid dynamics 

The Euler benchmark solves the time-dependent Euler equations for flow in a 

channel with a "bump" on one of the walls. A structured, irregular, N x 4N mesh is 

employed, and the solution method is a finite volume scheme using a fourth order 
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Runge-Kutta method with both second and fourth order damping. The solution is 

iterated for 200 timesteps. Performance is reported in units of timesteps per second.  

Size N

A 64

B 96

� MolDyn: Molecular dynamics simulation 

MolDyn is an N-body code modeling particles interacting under a Lennard-

Jones potential in a cubic spatial volume with periodic boundary conditions. 

Performance is reported in interactions per second. The number of particles is give by 

N. The original Fortran 77 code was written by Dieter Heerman, Institut für 

Theoretische Physik, Germany and converted to Java by Lorna Smith, EPCC. The 

computationally intense component of the benchmark is the force calculation, which 

calculates the force on a particle in a pair wise manner. This involves an outer loop 

over all particles in the system and an inner loop ranging from the current particle 

number to the total number of particles. The outer loop has been parallelized by 

dividing the range of the iterations of the outer loop between the threads, in a cyclic 

manner to avoid load imbalance. A copy of the data structure containing the force 

updates is created on each thread. Each thread accumulates force updates in its own 

copy. Once the force calculation is complete, these arrays are reduced to a single total 

force for each particle.  

Size N

A 2,048

B 8,788
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