ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a I'acceptacio de les seglents
condicions d'Us: La difusié6 d’'aquesta tesi per mitja del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel-lectual Gnicament per a usos privats
emmarcats en activitats d’'investigacio i docéncia. No s’autoritza la seva reproduccié amb finalitats
de lucre ni la seva difusio i posada a disposicio des d'un lloc alie al servei TDX. No s’autoritza la
presentacio del seu contingut en una finestra o marc alie a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentacio de la tesi com als seus continguts. En la utilitzacié o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptacion de las siguientes
condiciones de uso: La difusién de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual Gnicamente para usos
privados enmarcados en actividades de investigacién y docencia. No se autoriza su reproduccién
con finalidades de lucro ni su difusion y puesta a disposicidon desde un sitio ajeno al servicio TDR.
No se autoriza la presentacién de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentacion de la tesis como a sus
contenidos. En la utilizacién o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you're accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it's obliged to indicate
the name of the author

Formal Mission Specification and
Execution Mechanisms for
Unmanned Aircraft Systems

EDUARD SANTAMARIA BARNADAS

Computer Engineer

Advisers
DR. ENRIC PASTOR LLORENC
DR. CRISTINA BARRADO MUXI

Department of Computer Architecture
Technical University of Catalonia

Departament d’Arquitectura de Computadors
Universitat Polit écnica de Catalunya (UPC)

A dissertation submitted for the degree of
Doctor of Philosophy
April 2010

Formal Mission Specification and Execution Mechanisms for Unmanned Aircraft Systems

Technical University of Catalonia
April 2010

This dissertation is available on-line at the Theses and Dissertations On-line (TDX) repository, which is managed by
the Consortium of University Libraries of Catalonia (CBUC) and the Supercomputing Centre of Catalonia (CESCA),
and sponsored by the Generalitat (government) of Catalonia. The TDX repository is a member of the Networked
Digital Library of Theses and Dissertations (NDLTD) which is an international organisation dedicated to promoting the
adoption, creation, use, dissemination and preservation of electronic analogues to the traditional paper-based theses
and dissertations

http://ww.t esi senxar xa. net

This is an electronic version of the original document and has been re-edited in order to fit an A4 paper.

PhD. Thesis made in:

Department of Computer Architecture
Castelldefels School of Technology (EPSC)
Esteve Terradas, 7.

08860 Castelldefels

Catalonia (Spain)

This work is licensed under the Creative Commons Attribution-Non-commercial-No Derivative

Work 3.0 Spain License. To view a copy of this license, visit ht t p: // cr eat i veconmons. or g/

|'i censes/ by- nc- nd/ 3. 0/ es/ deed. en_GB or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

http://www.tesisenxarxa.net
http://creativecommons.org/licenses/by-nc-nd/3.0/es/deed.en_GB
http://creativecommons.org/licenses/by-nc-nd/3.0/es/deed.en_GB

A [Astrid, la Bruna i en Margal.

Contents

Listof Figures e e e e iX
Listof Tables e e e Xi
List of Publications e Xiii
Agraiments L e e e XV
RESUM . . . e e XVii
Abstract e e XiX
List of ACronyms e e XXi
CHAPTER 1 Introduction e e 1
1.1 Definition of Unmanned Aircraft System 1
1.2 UAS Potential for Civil Applications 2
1.3 Motivation for Increased Autonomy 4
1.4 Thesis Contributions e 6
1.5 ThesisOrganization e 7
CHAPTER 2 PreviousWork e e 9
2.1 COTS Autopilot Capabilities e 9
2.2 AlLookat Commercial Aviation 12
2.3 Mobile Robot Control Architectures. 17
2.4 UAS Mission Control e 18
CHAPTER 3 System Architecture 25
3.1 Architecture Overview e 25
3.2 Service-Oriented Middleware e 26
3.3 USALSErVICES v e e e 26
3.4 Conclusion. 31

CHAPTER 4 Flight Plan Specification Language 33

4.1 BaseFlightPlan e 33
4.2 Emergency FlightPlans 44
4.3 FlightPlanUpdates. e 45
44 ConcClusioN e 48
CHAPTER 5 The Flight Plan Manager Service 49
5.1 Service Description 50
52 FPMandVAS Integration 52
5.3 Implementation of the Execution Engine 54
5.4 WaypointGeneration e 57
5.5 Dynamic Flight Management 62
56 Conclusion. 65
CHAPTER 6 Flight Plan Experimental Results 67
6.1 Navaids Flight Inspection Mission 67
6.2 Inspection Procedures e 70
6.3 Simulation Environment 75
6.4 Experimental Results e 77
6.5 CoNnclusion 79
CHAPTER 7 The Mission Manager Service v i it i et e 81
7.1 The Mission Manager ServiCe v v v i i it e e e e e e 81
7.2 Statecharts 82
7.3 StateChart XML (SCXML) o 84
7.4 Algorithm for SCXML interpretation 86
7.5 Implementation of MMa Prototype 88
7.6 CoNnCluSION o e 89
CHAPTER 8 Mission Management Experimental Results 91
8.1 Hotspot Detection Mission e 91
8.2 Underlying FlightPlan 92
8.3 Refinementsofthe Mission State 94
8.4 Simulation Environment 101
8.5 Experimental Results. e 102
8.6 Conclusion. 105
CHAPTER 9 Conclusions and Further Work 107
0.1 SUMMAIY e e e e e e e e 107
9.2 Future Research 109

vi

APPENDIX A XML Schemas e 111

A.l FlightPlan XML Schema. e 111
A2 FPUpdates XML Schema e 113
APPENDIX B Specification of Navaids Inspection Mission 115
APPENDIX C Specification of Hotspot Detection Mission 119
C.1 Flight Plan Specification e 119
C.2 Hotspot Mission Main States e 121
C.3 Deferred Hotspot Analysis e 121
C.4 Immediate Hotspot Analysis 123
References 125

vii

1.1
1.2
1.3

2.1
2.2
2.3
24
25
2.6
2.7
2.8
29
2.10
211
212

3.1
3.2
3.3
34

4.1
42
4.3
44
4.5
4.6

51
52
5.3

List of Figures

Three axes of the ALFUS Framework. 4
ALFUS Executive Model. o 5
Relationship between MMa, FPM, VAS and other payload. 7
Functional Structure of an UAS Autopilot System. 10
Roll, pitch and yaw rotations about the respectiveaxes. 10
Autopilot systems from different vendors. o o000 11
RNAV versus non-RNAV navigation. 13
Comparison of two differentleg types. 15
Flight Management System. 16
Hybrid systemlayers 18
Comparison between FSM and policy representations. 19
High level mission petrinet. 20
TP Specifications with TSL tags. 21
MissionLab’s Configuration Editor. 22
Definition of a schema using ‘avoid” and "fly to” schemas. 22
USAL Architecture Global Viewo L. 27
Overview of the Flight Services category 28
Overview of the Mission and Payload Services category 29
Overview of the Awareness Servicescategory 30
A flight plan is composed of stages, legs and waypoints 36
Basicleg typesavailable. L Lo 39
Iterativeleg examples. L L L 41
Intersectionleg example. L L 42
Scanning patterns. L L 43
Applying updates to the flightplan. 47
Relationship between FPM, VAS and Flight Control System. 50
Example showing generated waypoints for a scanning pattern. 50
Flight Plan Manager States. 51

ix

54
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12
5.13
5.14

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

7.1
7.2
7.3
74
7.5
7.6
7.7

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10

Navigation messages interchanged between FPM and VAS. 52

Flight plan main classes. 54
Flight planexecution. 55
FPMmainclasses. L 56
A factory class is used to obtain leg specific waypoint generators. 57
Inputs and outputs to/from generator objects. Lo 58
Waypoint generation depending on autopilot capabilities. 59
Standard holding entry procedures. 60
Contents of waypoint queueentries. 61
Maneuvers for resuming flight ata givenpoint. 64
FPM role in managing contingencies. 65
VOR navaid at Huesca, Spain. 68
Reference Radial Flight. 71
Reference Orbital Flight. 72
Radial flightexample. 73
Approachexample. L 74
SIDexample. L 74
Flight plan organization. 75
Simulation environment. Lo 76
Aircraft and simulation parameters. o L L oL 76
Flight path of complete inspection. 77
ATCinterruption. 78
Legrepetition. 80
Relationship between MMa, FPM, VAS and other payload. 82
Hierarchical decompositionof states. 84
Orthogonal decompositionof states. 84
Statechart with main statesof amission. 85
Schematic view of the SCXML executionengine. 87
State machine example to illustrate processing order of events. 88
Internal architecture of the MMa prototype. 89
Missionmainstates.. Lo 92
Organization of the legs contained in the Mission stage of the flight plan. 93
First version the Mission state: hotspot analysis is deferred. 95
Messages interchanged when performing deferred analysis mission. 96
Second version of the Mission state: hotspots are analyzed immediately. 98
Messages interchanged when performing immediate analysis mission. 99
Simulation environment. L L L L Lo 101
Aircraft and simulation parameters. 0 0 Lo 101
Hotspot mission with deferred analysis. 103
Hotspot mission with immediate analysis. 105

1.1

4.1
42
4.3
44
4.5
4.6

51

6.1

List of Tables

UAScategories. 2
Locale settings supported values. 34
Data types for waypointelements. 36
Stagetypes 38
Parameters for basic leg types. L L L L o 41
Datatypes. 41
Supported flight planupdates. o L. 46
VAS-FPM interchanged messages during navigation states. 54
Procedures for a periodic flight inspection 70

xi

List of Publications

The list of publications resulting from this PhD. work is given in inverse chronological order as
follows:

Conference Proceedings

e SANTAMARIA, EDUARD, BARRADO, CRISTINA, & PASTOR, ENRIC. 2009 (Apr.). An event
driven approach for increasing UAS mission automation. In: Proceedings of the AIAA
Unmanned...Unlimited 2009 Conference. AIAA, Seattle, Washington (USA).

e SANTAMARIA, EDUARD, PEREZ, MARC, RAMIREZ, JORGE, BARRADO, CRISTINA, &
PASTOR, ENRIC. 2009 (Sept.). Mission formalism for UAS based navaid flight inspections.
In: Proceedings of the 9th AIAA Awviation Technology, Integration, and Operations (ATIO)
conference. AIAA, Hilton Head, South Carolina (USA).

e SANTAMARIA, EDUARD, ROYO, PABLO, BARRADO, CRISTINA, & PASTOR, ENRIC. 2009
(Aug.). An integrated mission management system for UAS civil applications. In:
Proceedings of the AIAA Guidance, Navigation, and Control 2009 Conference. AIAA, Chicago,
[linois (USA).

e SANTAMARIA, EDUARD, ROYO, PABLO, BARRADO, CRISTINA, PASTOR, ENRIC, LOPEZ,
JUAN, & PRATS, XAVIER. 2008 (Aug.). Mission aware flight planning for unmanned aerial
systems. In: Proceedings of the AIAA Guidance, Navigation, and Control 2008 Conference. AIAA,
Honolulu, Hawaii (USA).

e SANTAMARIA, EDUARD, ROYO, PABLO, LOPEZ, JUAN, BARRADO, CRISTINA, PASTOR,
ENRIC, & PRATS, XAVIER. 2007 (Oct.). Increasing UAV capabilities through autopilot
and flight plan abstraction. In: Proceedings of the 26th Digital Avionics Systems Conference.
IEEE/AIAA, Dallas, Texas (USA).

xiii

Agraiments

Thanks to the following institutions for partially funding this work: Ministerio de Educacién
(under contract CICYT TIN 2007-63927) and EUROCONTROL Experimental Centre (through its
Innovative Studies Programme).

La meva arribada a 1’Escola Politecnica Superior de Castelldefels es va produir a finals del
2004. En aquells moments, vaig comencar a coneixer els meus nous companys i a observar, amb
interés, com un petit grup iniciava una aventura en un camp totalment nou per a mi: els vehicles
aeris no tripulats. Al capdavant d’aquest grup hi havia 1’Enric Pastor. No va passar gaire temps
fins que em vaig apropar a I’Enric per expressar-li el meu desig d’incorporar-me al seu equip. La
seva resposta va ser afirmativa, i el meu primer agraiment, doncs, va per I'Enric. A I’Enric li haig
de donar les gracies per haver tingut la valentia d’embarcar-se en aquest projecte, per haver-me
permes formar-ne part, per haver-me proposat un tema de recerca interessant i estimulant i per
tot el suport que des de llavors m’ha donat.

Als voltants d’aquella época, hi va haver una altra persona que també va apostar per formar
part d’allo que s’estava gestant i que acabaria sent el grup ICARUS. Aquesta persona és la Cristina
Barrado. La Cristina ha tingut un paper clau en aquesta tesi i li haig d’agrair les moltes hores que
m’ha dedicat. Amb ella he discutit molts detalls d’aquest treball i ha estat una revisora i consellera
incansable. També li vull agrair molt especialment el seu suport, sobretot en els moments dificils,
que també n’hi ha hagut.

En Xavier Prats, en Pablo Royo i en Juan Lopez completen el grup de persones que em vaig
trobar en aquells inicis. A en Xevi, li haig d’agrair la seva part de culpa en qué un dia 1’Enric
decidis dedicar-se als vehicles aeris no tripulats. Gracies, també, per tots els coneixements que ens
has aportat des de la vessant aeronautica i que han tingut un impacte important en aquest treball.
I gracies per la plantilla i I’ajuda amb el IXIEX. En Pablo i en Juan sén els responsables de les altres
peces del puzzle del qual aquesta tesi forma part. A ells, els dono les gracies per I'excellent feina
que han realitzat.

Els darrers anys, el grup de recerca ha anat creixent amb la incorporacié de cares noves.
Una persona que mereix una mencio especial és en Marc Pérez, sempre disposat a ajudar. També
gracies a en Jorge Ramirez, per les collaboracions que hem establert en diferents moments, i a tota
la resta de gent del grup.

XV

No vull oblidar-me d’en Noel Trillo que, en el seu treball de fi de carrera, va contribuir a
la implementacié d’algunes parts del codi fent una feina excepcional. Donar gracies, també, a
I'Helena Flores pel seu cop de ma amb 1’angles.

La meva arribada a Castelldefels va significar també el comencament de la meva activitat
docent. En aquest ambit he apres molt de la ma d’en Miguel Valero i de la resta de companys.
Sén molts i no els anomenaré tots, pero a tots ells gracies. Gracies pel plaer que és treballar amb
vosaltres, per tot el que he aprés i per la comprensié i complicitat ajudant-me a poder dedicar
el maxim temps possible a tirar endavant aquesta tesi. Gracies també a 1'Eva Rodriguez, per
I'excellent companyia durant el temps que varem compartir despatx.

Gracies a tots els habituals (Dolors, Roc, Javier, Esunly, Esther, ...), i als no tan habituals, de
les tertulies de ’hora de dinar. Des dels temes més tecnics fins a les discussions més surrealistes
toti té cabuda. Llastima que, d'un temps enca, em sigui més complicat afegir-me a les escapades
al cinema o al teatre.

Vull dedicar els meus darrers agraiments a la meva familia. Als meus pares i al meu germa,
per haver fet que arribar fins aqui fos possible. Als sogres, cunyats, cunyades i les recents
incorporacions, per la seva paciencia i comprensié. Gracies a la meva dona, 1’Astrid, pel seu
suport incondicional i per compartir al meu costat tots els moments bons i no tan bons. I finalment,
gracies a la meva filla Bruna i al meu fill Margal que, sense entendre res de tot aixo, han aconseguit
que fos molt més facil.

Castelldefels, Abril de 2010
Eduard Santamaria Barnadas

Xvi

Resum

En els darrers temps estem assistint a un important creixement de l'interes en els vehicles aeris
no tripulats, en anglés Unmanned Aircraft Systems (UAS), motivat per la constatacié de la gran
quantitat de possibles aplicacions d’aquest tipus de sistemes en I'ambit civil. Aquests aparells
poden ser de gran utilitat en aplicacions mediambientals, situacions d’emergencia, operacions de
vigilancia i com a repetidors de comunicacions, entre altres. En general, sén especialment indicats
per a operacions que impliquen repetitivitat, perillositat o que s’han de portar a terme en entorns
hostils.

La majoria de solucions comercials existents utilitzen sistemes de control de vol basats en
navegacio per waypoints, és a dir, 'aparell segueix la ruta indicada per una série de punts a partir
de les seves coordenades. Aix0, quan no es tracta de sistemes que sén pilotats remotament. A més,
la capacitat de coordinar I'operativa dels sistemes embarcats amb la fase del vol és inexistent. Per
tant, les seves capacitats pel que fa a automatitzacié i autonomia sén molt limitades. Alguns
elements motivadors per avangar cap a l’assoliment de més autonomia vénen donats per les
limitacions en I'ample de banda, les limitacions en la capacitat d’atencié dels operadors humans
durant periodes perllongats, un més rapid accés a les lectures dels sensors i millor capacitat de
resposta, aixi com l’abaratiment de costos que pot comportar una reduccié en la carrega de treball
dels operadors i en I'entrenament necessari.

Altres requeriments que considerem clau per a l'exit dels UAS en I’'ambit civil sén les
possibilitats de reconfiguracié que ofereixin aixi com una limitacié en els seus costos. Amb tot,
hauriem d’obtenir plataformes assequibles capaces d’operar en diferents situacions amb poca
intervenci6 per part d’operadors humans.

Per augmentar les capacitats dels UAS i satisfer els anteriors requeriments, proposem afegir
capes de gestié del vol i de la missié per sobre dels sistemes de control de vol disponibles
comercialment. D’aquesta manera, podrem aconseguir alts nivells d’autonomia tot traient profit
de tecnologies ja existents i, en conseqiiéncia evitant la necessitat de grans inversions. La capacitat
de reconfiguraci6 del sistema s’obtindra separant I'especificacié del vol i la missi6 dels elements
encarregats de portar-ne a terme la seva execucio.

Els components de gesti6 del vol i de la missié presentats en aquesta tesi s’integren en una
més amplia arquitectura hardware/software que esta essent desenvolupada pel grup de recerca
ICARUS. Aquesta arquitectura segueix un model basat en serveis on els subsistemes de 'UAS
s’interconnecten mitjangant una infraestructura de xarxa comuna. Diferents components poden

XVil

ser inclosos o extrets de la xarxa en funcié de les necessitats de la missi6 que es vulgui dur a terme.

La primera contribucié d’aquesta tesi consisteix en un nou llenguatge per a l'especificacié
del vol que permet descriure el vol en segments. Aquests segments permeten descriure no
només el punt de desti, sin6 també la trajectoria per arribar-hi, i per tant proporcionen un
nivell d’abstraccié superior al que ofereix una sistema basat exclusivament en waypoints. Aquest
concepte s’amplia afegint-hi construccions que permeten especificar bifurcacions, comportament
repetitiu i generaci6 de trajectories complexes a partir d'un nombre de parametres reduit.

També s’ha desenvolupat el servei de gesti6 del pla de vol (Flight Plan Manager o FPM), que
es responsabilitza de la seva execucié. Com que el sistema de control de vol subjacent segueix
basant-se en waypoints, es generen, de forma automatica, punts intermitjos per tal d’ajustar el vol
a la trajectoria desitjada.

Per tal de coordinar el vol amb l'operativa de la carrega util també s’ha desenvolupat el
servei de gesti6 de la missié (Mission Manager o MMa). El gestor de la missi6é pot ajustar el
funcionament dels elements de carrega ttil d’acord amb quina sigui la fase actual del vol. De
forma analoga, té la capacitat d’actuar sobre el FPM i modificar el pla de vol segons les necessitats
de la missi6. Per especificar el comportament de 1'UAS, en lloc de dissenyar un nou llenguatge,
proposem la utilitzacié de State Chart XML, un futur estandard per I'especificacié de maquines
d’estat actualment en fase d’elaboraci6.

Finalment s’ha portat a terme la validacié dels diferents elements d’especificaci6 i execucié
mitjancant l'execucié simulada de dos missions d’exemple. La primera missi6 imita els
procediments necessaris per a la inspeccié de radio ajudes i mostra el comportament de 'UAS
durant l'execucié d’un vol complex. En aquesta missié només s’ha utilitzat el FPM. El segon
exemple combina el FPM i el MMa per dur a terme una missié que consisteix en la detecci6é de
punts calents en una area determinada després d’un hipotetic foc forestal. En aquesta simulacié
es pot veure com el MMa és capa¢ de modificar el pla de vol per tal d’adaptar la trajectoria a
les necessitats de la missi6. En particular, es vola un patré en forma de vuit sobre cadascun dels
potencials punts calents detectats dinamicament.

XViii

Abstract

Unmanned Aircraft Systems (UAS) are rapidly gaining attention due to the increasing potential
of their applications in the civil domain. UAS can provide great value performing environmental
applications, during emergency situations, as monitoring and surveillance tools, and operating as
communication relays among other uses. In general, they are specially well suited for the so-called
D-cube operations (Dirty, Dull or Dangerous).

Most current commercial solutions, if not remotely piloted, rely on waypoint based flight
control systems for their navigation and are unable to coordinate UAS flight with payload
operation. Therefore, automation capabilities and the ability for the system to operate in an
autonomous manner are very limited. Some motivators that turn autonomy into an important
requirement include limited bandwidth, limits on long-term attention spans of human operators,
faster access to sensed data, which also results in better reaction times, as well as benefits derived
from reducing operators workload and training requirements.

Other important requirements we believe are key to the success of UAS in the civil domain
are reconfigurability and cost-effectiveness. As a result, an affordable platform should be able to
operate in different application scenarios with reduced human intervention.

To increase capabilities of UAS and satisfy the aforementioned requirements, we propose
adding flight plan and mission management layers on top of a commercial-off-the-shelf flight
control system. By doing so, a high level of autonomy can be achieved while taking advantage
of available technologies and avoiding huge investments. Reconfiguration is made possible by
separating flight and mission execution from its specification.

The flight and mission management components presented in this thesis integrate into a
wider hardware/software architecture being developed by the ICARUS research group. This
architecture follows a service oriented approach where UAS subsystems are connected together
through a common networking infrastructure. Components can be added and removed from the
network in order to adapt the system to the target mission.

The first contribution of this thesis consists, then, in a flight specification language that
enables the description of the flight plan in terms of legs. Legs provide a higher level of abstraction
compared to plain waypoints since they not only specify a destination but also the trajectory
that should be followed to reach it. This leg concept is extended with additional constructs that
enable specification of alternative routes, repetition and generation of complex trajectories from a

Xix

reduced number of parameters.

A Flight Plan Manager (FPM) service has been developed that is responsible for the execution
of the flight plan. Since the underlying flight control system is still waypoint based, additional
intermediate waypoints are automatically generated to adjust the flight to the desired trajectory.

In order to coordinate UAS flight and payload operation a Mission Manager (MMa) service
has also been developed. The MMa is able to adapt payload operation according to the current
flight phase, but it can also act on the FPM and make modifications on the flight plan for a better
adaption to the mission needs. To specify UAS behavior, instead of designing a new language,
we propose using an in-development standard for the specification of state machines called State
Chart XML.

Finally, validation of the proposed specification and execution elements is carried out with
two example missions executed in a simulation environment. The first mission mimics the
procedures required for inspecting navigation aids and shows the UAS performance in a complex
flight scenario. In this mission only the FPM is involved. The second example combines operation
of the FPM with the MMa. In this case the mission consists in the detection of hot spots on a given
area after a hypothetical wildfire. This second simulation shows how the MMa is able to modify
the flight plan in order to adapt the trajectory to the mission needs. In particular, an eight pattern
is flown over each of the dynamically detected potential hot spots.

XX

ADS
ALFUS
ANSP
API
ATC
ATM
CF
CORBA
COTS
DEM
DF
DME
FA
FAA
FCS
FPM
FSM
GIS
GNSS
GPS
HA

HF
HM
ICARUS
ICAS
IF

ILS
IMU
MAREA
MMa
RF
RNAV

List

Automatic Dependent Surveillance
Autonomy Levels for Unmanned Systems
Air Navigation Service Provider
Application Programming Interface

Air Traffic Control

Air Traffic Management

Course to a Fix

Common Object Request Broker Architecture
Commercial Off-The-Shelf

Digital Elevation Model

Direct to a Fix

Distance Measuring Equipment

Fix to an Altitude

Federal Aviation Administration

Flight Control System

Flight Plan Manager

Finite State Machine

Geographic Information System

Global Navigation Satellite System
Global Positioning System

Hold /Racetrack to an Altitude

Hold /Racetrack to a Fix

Hold /Racetrack to a Manual Termination

of Acronyms

Intelligent Communications and Avionics for Robust UAS

International Civil Aviation Organization
Initial Fix

Instrument Landing System

Inertial Measurement Unit

Middleware Architecture for Remote Embedded Applications

Mission Manager
Radius to a Fix
Area Navigation

XX1

RNP
SCXML
SID
SOA
STAR
TCAS
TF
UAS
UML
USAL
VA
VAS
VHF
VM
VOR
W3C
XML
XSD

Required Navigation Performance
State Chart XML

Standard Instrument Departures
Service Oriented Architecture
Standard Instrument Arrival
Traffic Collision Avoidance System
Track to a Fix

Unmanned Aircraft System
Unified Modeling Language

UAS System Abstraction Layer
Heading to an Altitude

Virtual Autopilot System

Very High Frequency

Heading to a Manual Termination
VHF Omni-directional Range
World Wide Web Consortium
Extensible Markup Language
XML Schema Definition Language

XXii

Introduction

This chapter motivates the need for flight plan and mission specification mechanisms for
designing UAS operations, and the means to enable their execution. It also outlines the main
contributions of this thesis and presents an overview of the material contained in the following
chapters.

1.1 Definition of Unmanned Aircraft System

An Unmanned Aircraft System (UAS) is a system that has, as its central component, an aircraft
with no human pilot on-board. Since other components are also required for the unmanned
aircraft to be able to operate in a given mission scenario, the term UAS collectively refers to the
aircraft and all the other elements supporting its operation.

Typically, an UAS is composed of the following elements:

e Airframe: Or more generally, the mechanical component consisting in an airframe equipped
with propeller(s) and servos that operate the control surfaces.

e Flight Control System: A system designed to collect aerodynamic information through a
set of sensors (accelerometers, gyros, magnetometers, pressure sensors, GPS, etc.) and to
actuate on the propulsion system as well as on the control surfaces in order to automatically
direct the aircraft along its flight plan.

e Payload: Formed by the equipment required for the mission. It might include cameras,
infrared sensors, synthetic aperture radars, chemical, biological and other types of sensors.

2 Chapter 1 - Introduction

While most UAS will be used as an observation and data gathering platform, some missions
may involve acting upon the environment. Crop dusting and cloud seeding are just two
examples where UAS actually perform such kind of action.

e Communications Infrastructure: Data links that enable communication between the aircraft
and the base station. These data links will provide command and control capabilities,
payload data transmission and payload control capabilities between the unmanned aircraft
and the ground control station. Finally, they may enable communications between the
aircraft and the external world, e.g., other airspace users.

e Ground Control Station: A computer system on the ground designed to monitor and control
UAS operation. This system will include flight and payload monitoring, control consoles
and decision support tools.

e Launch and recovery system: If special means are required for the aircraft to be launched
and recovered these will also be considered part of the system.

UAS can be classified into several categories according to parameters such as weight, altitude,
range, endurance, etc. To give an idea of the wide range of existing systems Figure 1.1 partially
reproduces an UAS classification from (UVS-International, 2009).

Table 1.1: UAS categories.

Mass (kg) Range (km) [Flight Alt. (m) [Endurance (h)
7 Micro <5 <10 250 1
Mini Mini < 25-150 <10 150 - 300 <2
CR Close Range 25-150 10-30 3.000 2-4
SR Short Range 50 - 250 30-70 3.000 3-6
MR Medium Range 150 - 500 70 - 200 5.000 6-10
MRE MR Endurance 500 - 1500 > 500 8.000 10-18
LADP Low Alt. Deep Penetration | 250 - 2500 > 250 50 -9.000 05-1
LALE Low Alt. Long Endurance 15-25 > 500 3.000 > 24
MALE (| Medium Alt. Long Endur. | 1000 -1500 | > 500 5/8.000 24 -48
HALE || High Alt. Long Endur. 2500 - 5000 | > 2000 20.000 24 -48

1.2 UAS Potential for Civil Applications

Currently UAS are mostly being used for military purposes, however a wide range of applications
have been identified in the civil domain (NASA, 2006; UAVNET, 2005; RTCA, 2007). In general,
UAS are specially well suited for the so-called D-cube (Dull, Dangerous, Dirty) applications. The
D-cube terminology, which has its origins in the military but is also applicable to civil missions, is
defined in (Ingham, 2008) as follows:

e Dull refers to operations that will be too monotonous or require excessive endurance for
human occupants (e.g., orbiting above a city for 24 hours while re-broadcasting radio
information).

e Dirty refers to hazardous missions that could pose a health risk to a human crew (e.g.,
monitoring nuclear radiation).

e Dangerous refers to missions that would result in the loss of human life (e.g., deep strike
military missions where there is a high risk of hostile fire).

1.2 UAS Potential for Civil Applications 3

Previous definitions mostly cover situations where UAS can provide services that cannot be
accomplished by manned aircrafts. Another important motivator for the introduction of UAS
technology is cost. In many cases, manned aircrafts could be replaced by more lightweight
vehicles with less associated costs. (UAVNET, 2005) classifies civil UAS applications into five
categories:

e Transport, of either cargo or passengers. While passengers transportation may seem a bit
far-fetched, it should be noted that current aircrafts are already able to perform most of its
flight in auto mode.

e Scientific & Earth observation. Missions in this category include cloud seeding, geological
surveys, weather forecasting, atmospheric research, oceanographic observations, etc.

e Surveillance, including flood watch, maritime patrol, volcano monitoring, forest fire
detection, oil slick observation, law enforcement, road traffic monitoring, etc.

e Satellite complement, helping overcome some satellite limitations, such as their very
constrained orbits and short times spent over a certain area of interest. In this context UAS
can help in different ways: as more flexible and precise data collection systems, operating as
navigational aids placed at fixed positions, or offering alternative communications solutions.

e Emergencies, including search and rescue, fire fighting, catastrophe situation assessment
and disaster operations management.

As seen from previous examples, UAS can be extremely useful as an observation platform.
From an operational perspective UAS observation missions can be classified into three categories
of increasing complexity:

e Observation of a Fixed Area: A flight path that covers a certain area of interest that does not
change during the mission is given before the flight starts. Crop monitoring or disaster
damage assessment could be representative of this type of mission. Non-observation
missions such as a communications relay application or a point-to-point transport mission
would also fall into this category as long as the flight path is completely defined during
pre-flight.

e Target Discovery: The UAS system has processing capabilities and is able to recognize some
objects or behaviors from the data provided by embarked sensors. Upon target detection
the system may perform a holding pattern over the object or try to analyze it in more detail
by performing some kind of predefined maneuver. Pipeline inspection, search & rescue and
light cargo drops may fall within this category.

e Target Tracking: In this case the system is not only able to detect some target but also to
dynamically adapt its flight so that the target is followed. The target may be an specific
object, such as a suspicious vehicle, or something larger, like an active fire or an oil slick.
In the first example, the aircraft should be able to follow the moving target. In the fire or
oil slick examples the aircraft should be able to adapt its trajectory according to a varying
perimeter.

In general, the most complex missions include the simplest missions as part of its objective.
For instance, in order to track a moving object, its previous discovery is needed, which is based on
the inspection of an area. While the previous list may not be complete we believe that it captures
the essence of most UAS missions.

4 Chapter 1 - Introduction

Indepéndence

Environmental
Complexity

Figure 1.1: Three axes of the ALFUS Framework.

1.3 Motivation for Increased Autonomy

An unmanned aircraft can be remote controlled or fly autonomously based on pre-programmed
flight plans or even more complex dynamic automation systems.

According to the amount of input required from the operator, UAVs can be classified as
ground-controlled, semi-autonomous or fully autonomous (Nas, 2007; Lazarski, 2002). Ground-
controlled UAVs require constant input from the operator. However, the trend in unmanned
aviation has been towards more autonomous systems and there are very few modern UAVs
that are purely remotely piloted. The use of guidance systems is now commonplace. A semi-
autonomous UAV can be defined as one requiring ground input only during critical portions of the
flight such as take-off, landing and some mission operations. Finally, an autonomous UAV is one
where the on-board computer is in control and the operator’s task consists mainly in monitoring
its systems.

In 2003, a number of unmanned systems professionals from US government agencies
and their supporting contractors joined forces to work on the definitions and metrics for
unmanned systems autonomy levels. A working group was formed and the ALFUS Framework
(Huang ef al. ,2007) came out as an attempt to come up with a formal framework for a more
accurate categorization of autonomy levels of unmanned systems. The ALFUS Framework
identifies three axes to consider (see Figure 1.1):

e Mission Complexity (MC): Mission time constraints, level of collaboration required,
concurrence and synchronization of events and behaviors, resource management,
knowledge requirements, sensory and processing requirements, etc. are aspects to consider
when quantifying mission complexity.

e Environmental Complexity (EC): Positioning aids, GPS, markers and other elements can
facilitate navigation. Changes in the surroundings, fauna and flora, meteorology, light,
terrain and engineered structures, among others, also have an impact on the complexity
of the environment.

e Human Independence (HI): The more an unmanned system is able to sense, perceive,
analyze, communicate, plan, make decisions and act, the more independent it is.

Autonomy Level actually refers to the Human Independence axis. The other two axes
provide context on the type of missions and the environments within which the missions are
performed.

The ALFUS framework has laid out two layers of abstraction: the detailed model and the
summary/executive model. The executive model, displayed in Figure 1.2, uses a scale that ranges
from 0 to 10. At the lowest level the system is able to deal with simple missions in simple

1.3 Motivation for Increased Autonomy 5

« approaching 10
* highest comple

* mid level HI

» mid complexity, multi-
functional missions

» moderate environment

Lowest Highest

Figure 1.2: ALFUS Executive Model.

environments and requires continuous human intervention. At the highest level the system is
able to execute complex missions involving coordination of teams in a collaborative manner, with
fully real-time planning capabilities in complex dynamic environments and human interaction
approaching zero.

There are important motivators for high autonomy in unmanned systems (Huang ef al. , 2003;
Nas, 2008):

e Bandwidth is a limited resource in most circumstances and there may be situations where
communications are not available.

e Human operators have poor long-term attention spans and some UAS undertake long
endurance missions, which increases the risk of pilot error.

e On-board systems may be able to provide more effective reactions due to its faster access to
sensor data and the absence of data-link delays.

e Cost benefits derived from reducing the amount of work of the UAS operators and their
training requirements.

The aim of the work presented in this thesis is to provide a mid to high level of autonomy
to civil UAS restricting ourselves to single vehicle systems. To this end, flight plan and mission
management layers are added on top of a commercial-off-the-shelf flight control system. These
management components form part of a wider hardware/software architecture that enables the
UAS to be reconfigured for its adaptation to different mission scenarios. We believe this flexibility
to be a crucial requirement for UAS to be successful in the civil domain. Hence, we can restate our
goal as trying to achieve a high level of autonomy while keeping reconfigurability of the system
equally high.

As previously seen, the level of autonomy is deeply interrelated with environment and
mission complexity. When it comes to the use of UAS for civil missions some aspects are
considerably simplified. The environment axis becomes less of an issue as long as the system
is able to fly at a safe altitude. General availability of satellite navigation systems can also be
assumed. A critical issue, and perhaps the most important setback to proliferation of civil UAS

6 Chapter 1 - Introduction

from a technical perspective, is the lack of an effective and affordable collision avoidance system
(DeGarmo, 2004). This issue is not addressed in this thesis, where we assume sense-and-avoid
capabilities to be already available. It can also be considered a less stringent requirement if the
UAS operates in segregated airspace or with a ground operator in permanent contact with air
traffic control authorities.

With regard to the kind of missions to be performed, most times being able to scan an area
or follow a given path for taking a number of measures will suffice. It is possible that the area
of interest experiments variations during the mission. A more complex mission may involve
searching and perhaps following a moving target. Although we can certainly imagine much more
complex scenarios, we believe that a system able to perform efficiently in these general situations
can provide great value.

1.4 Thesis Contributions

A flight plan describes the path that is going to be followed by an aircraft. In the case of UAS,
when not being remotely piloted, most systems rely on a list of waypoints for the specification
of their flight plan. Each waypoint corresponds to a geographical position defined in terms of
latitude /longitude coordinates. As it will be seen, this approach has several important limitations
and we believe that it can be greatly improved.

Moreover, there is a lack of mechanisms for mission specification and execution that renders
current systems only suitable for the specific application they where designed for.

The main contributions of this thesis are:

e A new concept for specifying UAS flight operations that borrows the leg and path
terminator approach used in Area Navigation (RNAV) (FAA, 2008; EUROCONTROL, 2003)
and extends them for a better adaptation to UAS requirements. Extensions include the
addition of control structures that enable repetitive and conditional behavior, and also
parametric legs, that can be used to generate complex paths from a reduced number
of parameters. The proposed flight plan specification concept gets materialized in the
definition of an XML (Bray ef al. , 2006) based language.

e The definition of update mechanisms to modify the flight plan during flight and dynamically
adapt the trajectory to the mission needs.

e The design and implementation of the Flight Plan Manager (FPM), an embarked software
component that manages execution of the flight plan. The FPM provides a wide set of
operations that can be used by both human operators and other UAS components to control
the UAS flight. To take advantage of current off-the-shelf Flight Control Systems the
structures included in the flight plan are translated to waypoint navigation commands. In
this way, the advanced capabilities provided by the flight plan specification language get
implemented as a new layer on top of existing technologies.

e An architectural model that promotes separation of flight and mission concerns. This
separation allows a single flight plan to be reused across missions. Not enforcing the
presence of a mission control component, it also permits an incremental approach to
designing and operating an UAS.

e A reconfigurable mission management system with State Chart XML (SCXML) (W3C, 2009)
as the proposed language for specifying UAS behavior related to the mission. SCXML is a
working draft developed by the World Wide Web Consortium (W3C) and is based on Harel’s
State Charts (Harel & Politi, 1998), a widely used language for modeling complex behavior.

1.5 Thesis Organization 7

. s D)

. . \
Mission Mission Manager < z
Spec. Control FP and payload operation $ =
L J O 8
e @ D qa) §
Flight Flight Plan Manager || v g
Plan Leg based navigation 8 %
SpeC. . v 9 @
f § 11z
Virtual Autopilot System 2
—| =

Waypoint based navigation

m

Flight Control System

Figure 1.3: Relationship between MMa, FPM, VAS and other payload.

All proposed mechanisms for both specification and execution are integrated into the service
oriented architecture described in Chapter 3. Figure 1.3 shows the two services developed as a
result of this thesis work, namely the Mission Manager (MMa) and the Flight Plan Manager (FPM).
The figure also shows their interactions with the Virtual Autopilot System (VAS) and Payload
Services. The VAS provides an standardized interface for accessing the Flight Control System.
Payload Services represent all the different services involved in the execution of the mission.

As seen in Figure 1.3, the FPM receives a document that contains the flight instructions in our
proposed flight plan specification language. It then translates the flight plan description into an
internal representation and performs its execution by sending navigation commands to the VAS.
The MMa interacts with the FPM to determine which part of the flight plan is under execution
and coordinates payload operation accordingly. It also takes into account the data provided by
payload services and makes use of the update and control mechanisms provided by the FPM in
order to adapt the flight plan to the mission needs. The MMa operates in an event-driven fashion
making progress through the states of the automaton defined in an SCXML document.

1.5 Thesis Organization

Chapter 2 presents the state of the art regarding flight plan and mission specification mechanisms.
Then, in Chapter 3, a description of the system architecture that accommodates the flight plan and
mission components can be found.

Chapters 4 to 6 cover the flight plan related part of this thesis. In Chapter 4, the proposed
language for specifying UAS flight plans is presented. Chapter 4 also includes the definition of
the mechanisms to dynamically adapt the flight to the mission needs. Chapter 5 describes the
design and implementation of the Flight Plan Manager service, which is the module responsible
for carrying out the execution of the flight plan. The results related to the flight plan definition
and its execution are shown in Chapter 6.

Chapters 7 and 8 cover the mission related part. Several mission specification methods
already exist, most of them tied to a given platform. In this thesis we propose using State Chart
XML for this purpose. An overview of the language and the implementation of a proof-of-concept

8 Chapter 1 - Introduction

prototype of the Mission Manager can be found in Chapter 7. The Mission Manager is the module
that coordinates operation of the different UAS components for the achievement of the mission
goals. Chapter 8 shows the results of the combined operation of the flight plan and mission
managers.

Finally, Chapter 9 presents conclusions and future research.

A number of appendices provide additional information with regard to the flight plan
specification language and mission examples used throughout the dissertation. Appendix A
contains the definition of the XML schemas that determine the structure of flight plans and their
updates. These schemas can be used to validate syntactic correctness of flight plan and update
specifications. Appendix B contains the complete flight plan of the flight inspection mission used
in Chapter 6. Appendix C provides both the flight plan and SCXML specifications of the example
mission used in Chapter 8.

Previous \Work

This chapter covers the state of the art in the two areas that this thesis is concerned about: (1)
specification and execution of the flight plan, and (2) specification and execution of the UAS
mission, where non flight related payload operation is also taken into account.

The problem of flight plan specification for UAS systems is addressed from two perspectives.
First, in Section 2.1, the capabilities of current commercial UAS autopilots are discussed.
Afterwards, in Section 2.2, we have a look at practices in commercial aviation for specifying flight
plans in a way that suits computerized systems.

But the flight plan alone does not suffice for specifying a complete mission, where sensed
inputs and payload operation need to be considered in order to achieve the mission goals.
In Section 2.3, some fundamental concepts about autonomous mobile robot architectures are
introduced. After that, Section 2.4 presents several mission specification techniques used in
Unmanned Aircraft Systems and the broader field of Unmanned Autonomous Vehicles.

2.1 COTS Autopilot Capabilities

The main purpose of an UAS autopilot system is to control the aircraft flight with minimal
human intervention. A powerful autopilot may be able to execute all phases of a mission fully
autonomously. A less capable system may require manual take-off and landing. In the worst case,
it may only provide aircraft stabilization requiring continuous remote control.

In their survey of autopilots for small fixed-wing UAS (Chao ef al., 2007) H.Chao et al.
describe the main features of a typical off-the-shelf autopilot. In most cases, the system comprises
a GPS receiver, a micro inertial guidance system and an onboard processor (state estimator and

10 Chapter 2 - Previous Work

GPS
Receiver
: v : Throttle
State | State ! Ailerons
Sensor ! Estimator Controller \ Elevator

Measurements i Rudder

Onboard Processor

Figure 2.1: Functional Structure of an UAS Autopilot System.

Yaw

Figure 2.2: Roll, pitch and yaw rotations about the respective axes.

flight controller) as illustrated in Figure 2.1. The inertial guidance system together with the GPS
receiver provide a complete set of sensor readings like absolute aircraft position, aircraft attitude,
accelerations, pressures, etc. The onboard processor uses this data to estimate the aircraft state
and operate on the actuators that control the vehicle behavior.

Most current commercial and research autopilots focus on GPS based waypoints navigation.
The path-following control of the UAS can be separated into different layers:

1. Aninner loop on roll and pitch for attitude. These are the rotation angles about the aircraft’s
longitudinal and lateral axes respectively.

2. An outer loop on yaw and altitude for trajectory or waypoints. Yaw, which is also know
as heading, refers to the angle of rotation about the aircraft’s vertical axis. As shown in
Figure 2.2, the combination of roll, pitch and yaw determines the vehicle’s orientation.

3. Finally, one last loop controls waypoint navigation.

There is an increasing amount of autopilot manufacturers providing solutions for UAS.
Figure 2.3 displays some of the available systems, namely Procerus Technologies Kestrel
Autopilot (Procerus Technologies, 2009), MicroPilot MP2028 Series (MicroPilot, 2009), Cloud
Cap Technology Piccolo Systems (Cloud Cap Technology,2009) and UAV Navigation AP04
(UAV Navigation, 2009), but many others can easily be found. Virtually all of them, even those

2.1 COTS Autopilot Capabilities 11

(a) UAVNavigation AP04

[Vo
| /ClovdCap | e

e = reEaNSLoNT

(c) Procerus Technologies Kestrel (d) Cloud Cap Piccolo Plus

Figure 2.3: Autopilot systems from different vendors.

targeting a hobbyist audience such as Attopilot (EM Technologies Group, 2009) or Ardupilot
(Anderson, 2009), support waypoint based navigation. To control the aircraft’s trajectory, the
user specifies a list of waypoints defined in terms of their latitude/longitude coordinates and
the aircraft flies them in sequence.

These systems may differ in many aspects: performance, reliability, level of integration with
other payload, number of inputs and outputs available, and features of their corresponding
ground control stations (if there is one), among others. Nevertheless, they tend to offer similar
capabilities from a functional point of view, and waypoint navigation is definitely a common
denominator to the vast majority of them. Differences at this level can be found mainly in
their ability for automatic take-off and landing and its available modes of operation apart from
waypoint navigation and full remote control.

While providing a list of waypoints may suffice for simple observation missions, UAS have
potential for being used in more complex scenarios and we believe that providing a list of
waypoints is not the best way for describing their trajectories. An interesting example that goes
beyond that is the Paparazzi Project (Brisset ef al. , 2006; Paparazzi, 2010), that offers its own flight
plan specification language.

Paparazzi’s flight plan specification language has a rich set of primitives for commanding the
aircraft to operate in different navigation modes. These modes are used to keep a fixed attitude, to
keep a given course, to go to a given waypoint or to circle around one. It supports goto directives
and constructs that enable looping and also permits to define navigation procedures in the C
(Kernighan & Ritchie, 1978) programming language or as a combination of basic primitives. All
this elements are organized in units, called blocks, that represent each part of a mission. A small
example of a Paparazzi’s flight plan is shown in Listing 2.1.

12 Chapter 2 - Previous Work

Listing 2.1: Example of a Paparazzi flight plan.

<flight_plan alt="75" ground.alt="0" lat0="43.46223" lon0="1.27289"
max_dist_from_home="1500" name="turing complete”>
<waypoints>
<waypoint name="HOME’ x="0" y="0"/>
<waypoint name="STDBY” x="9.4" y="162.3"/>
<waypoint name="2" x="23.7" y="123.1"/>
</waypoints>

<exceptions>
<exception cond="estimator.z > 300” deroute="wait”/>
</exceptions>

<blocks>
<block name="start”>
<go wp="STDBY” />
</block>
<block>
<for from="1" to="5" var="i">
<set value="\$i#%750x*cos (RadOfDeg(30)” var="waypoints[WP2].x"/>
<set value="\$ix%750%sin (RadOfDeg(30)” var="waypoints[WP2].y"” />
<go hmode="route” wp="2"/>
<set value="\$i%750%sin (RadOfDeg(30))” var="waypoints[WP2].y"/>
<circle radius="nav._radius” until="NavCircleCount()>1" wp="2"/>
</for>
</block>
<block name="wait”>
<circle radius="nav_radius” wp="STBY"/>
</block>
</blocks>
</flight_plan>

The approach followed by the Paparazzi Project has many similarities with ours, but there
are some significant differences too. Paparazzi’s specification language tries to take full advantage
of the capabilities of a single autopilot, whereas our intend is to provide a mechanism that
can operate on a wide range of autopilot systems. Another difference relies in the source of
inspiration for the specification language. Both of them being based on XML (Bray ef al. , 2006),
many elements of the Paparazzi’s language resemble constructions that can be found in a general
purpose programming language as C. In fact, all the contents of the flight plan are compiled
into a program that is later on executed by the autopilot. In our case, we gravitate towards
specification primitives used in commercial aviation, which eventually could facilitate integration
in non-segregated airspace. Finally, having the flight plans compiled into binary code limits the
system’s ability for supporting in flight updates. Both projects also differ in the types of systems
they target, while the Paparazzi autopilot is specially well suited for small vehicles (small enough
to be man-portable), our target are bigger systems with less restrictions on computing resources.

In this section, we have seen the most common navigation capabilities of current off-the-
shelf autopilot systems and identified waypoint based navigation as being generally available. It
is our goal to provide semantically richer and more flexible specification primitives for flight plan
specification and the appropriate means for their execution. In the following chapters, we will
discuss our proposed specification language and its execution mechanism. Reliance on the Virtual
Autopilot System (see Chapter 3) will enable operation on top of existing off-the-shelf systems.
Before that, next section provides an overview of RNAV, an advanced navigation method being
used in commercial aviation.

2.2 A Look at Commercial Aviation

Previous section described the state of the art with regard to what current commercial-off-the-
shelf autopilots allow for. The purpose of this section is to explore current practices in commercial

2.2 A Look at Commercial Aviation 13

— Victor Airway Route

X VOR 1 Virtual Waypeint RNAV Route
I = RNP Area

———— ! 360deg/20nm

e T - 1 1360degiz2nm

Figure 2.4: RNAYV versus non-RNAV navigation.

aviation and see what is going on in terms of aircraft navigation in this domain. In particular, we
focus on Area Navigation (RNAV), a method of navigation that allows aircraft operation on any
desired flight path.

Navigation aids (navaids) are systems that use station-referenced radio frequencies to permit
determining the position of an aircraft. With traditional methods navigation is restricted to direct
trajectories to or from specific ground-based navaids. Area navigation (RNAV) (Airbus, 2002)
takes advantage of the increasing amount of navaids, such as VHF Omni-directional Range (VOR),
Distance Measuring Equipment (DME) and Global Navigation Satellite System (GNSS), among
others, to automatically determine the aircraft position. With RNAYV, virtual waypoints that are
not tied to specific navaids can be defined. Doing so enables the aircraft to follow any desired
flight path.

Figure 2.4 compares an RNAV procedure, displayed as a dashed line, against its non-RNAV
counterpart, displayed as a solid line connecting VOR stations. In the RNAV procedure, data
obtained from the different available navaids is combined in order to specify several virtual
waypoints along a direct track from the departure position to the destination. This trajectory
is clearly more optimal than the VOR to VOR alternative.

RNAV enables better use of the available airspace, providing benefits such as flight time
reduction, less fuel consumption, congestion reduction (less flight delays) and fewer acoustic
pollution. Although these advantages can also apply to UAS, our interest in RNAV comes from
the fact that it already provides well established means for specifying flight trajectories that we
can learn from.

2.2.1 Specification of RNAV Procedures

In commercial aviation an aircraft goes through several phases during a flight, performing a
set of procedures at each phase. Terminal area procedures, Standard Instrument Departures
(SID), Standard Instrument Arrivals (STAR) and Approach procedures have traditionally been
described in Aeronautical Information Publications using charts and associated text (see Figure
2.6). However, an aircraft navigation system must be provided with route data in a format

14 Chapter 2 - Previous Work

that can be processed by a computer. ARINC 424 Navigation System Data Base Standard
(Aeronautical Radio, Inc., 2008) is an international standard used to supply computerized
navigation systems, flight planning systems and simulators with navigation data.

In order to achieve the translation of the text and the routes depicted on charts into a code
suitable for navigation systems, the industry has developed the “Path and Termination” concept
(EUROCONTROL, 2003). Each flight phase (departure, arrival, approach ...) is divided into
smaller chunks called legs, and each leg describes the desired path to reach a termination point.
Leg types are identified by a two-letter code that describes the path (e.g., heading, course, track,
etc.) and the termination point (e.g., the path terminates at an altitude, distance, fix, etc.). Path
Terminator codes should be used to define each leg of an RNAV route from take off until the en-
route structure is joined and from the point where the aircraft leaves the en-route airway until the
end of the planned flight.

Nowadays, there are 23 different Path Terminator codes, although most navigation systems
only implement a sub-set of these. Besides, not all of them are acceptable for RNAV use
(EUROCONTROL, 2003). The leg types that can be used in RNAV procedures are listed below:

o IF - The Initial Fix defines a database fix as a point in space. It is only required to define the
beginning of a route or procedure.

e CF - Course to a Fix defines a specified course to a specific database fix. Course meaning
the intended direction of flight in the horizontal plane measured in degrees from north
(FAA, 2009).

e DF - Direct to a Fix defines an unspecified track starting from an undefined position to a
specified fix.

e FA - Fix to an Altitude defines a specified track over ground from a database fix to a specified
altitude at an unspecified position.

e VA - Heading to an Altitude termination defines a specified heading to a specific Altitude
termination at an unspecified position.

e VM - Heading to a Manual Termination defines a specified heading until a Manual
termination.

o TF - Track to a Fix Leg defines a great circle track over ground between two known databases
fixes.

e RF - Constant Radius Arc Leg defines a constant radius turn between two database fixes,
lines tangent to the arc and a center fix

e HF, HM, HA - Hold/Racetrack to a Fix define racetrack pattern or course reversals at a
specified database fix. HF is used for single circuit terminating at the fix (base turn). HM
and HA are respectively Manual and Altitude terminated.

Some of the previous leg types, the ones that have been deemed appropriate for UAS
applications, are further discussed in Chapter 4.

To give a flavor of the behavior of different leg types Figure 2.5 shows an example where
the path followed with a DF leg is compared to the one followed with a TF leg. Figure 2.5a
illustrates a situation where a DF leg is used to connect two consecutive waypoints, resulting
in the aircraft flying directly from A to B. In Figure 2.5b a TF leg is used instead and, in this
case, the aircraft intercepts the track that connects the two waypoints before reaching B. There
is a difference between the two waypoints that should also be noted. A is surrounded by a

2.2 A Look at Commercial Aviation 15

(a) Direct to a Fix

(b) Track to a Fix

Figure 2.5: Comparison of two ditferent leg types.

circumference indicating that it is a fly-over waypoint and, therefore, the aircraft must fly over
it before initiating the turn. This contrasts with the turning maneuver at B, that starts earlier
because B is a fly-by waypoint.

RNAV provides concepts that enable rich specification of flight plans, but still needs some
adaptation for supporting UAS missions. Following chapters will present our proposed flight
plan specification language and the execution mechanisms that enable its operation on top of
currently available autopilot systems.

2.2.2 Flight Management System

The Flight Management System (FMS) holds the flight plan and controls aircraft navigation, it also
allows the pilot to modify the flight plan as required in flight. The FMS is usually composed of
two parts: a computer unit and a Control Display Unit (CDU). The computer unit provides the
computing platform and various interfaces to other avionics. The CDU, which usually consists in
a small screen accompanied by a keyboard, provides the primary human/machine interface for
data entry and information display (see Figure 2.6).

The capabilities of flight management systems can vary due to the differences in
target markets. These capabilities range from simple point-to-point lateral navigators to
highly sophisticated functions such as four-dimensional trajectory prediction and performance
computations. An overview of the main functions that can be provided by a FMS follows
(Spitzer, 2007):

e Flight planning: The flight plan specifies the route the aircraft will follow. It is generally
determined on the ground, before departure, and constructed by linking data stored in
the navigation database. This data may include departure and arrival procedures, airways,
prestored company routes, fixes and crew-defined fixes. The crew can modify the flight plan
at any time, changes can also be submitted from on-ground offices via a datalink. During
preflight, other relevant information such as gross weight, fuel weight, and weather forecast

16

Chapter 2 - Previous Work

JACKSONVILLE, LORDA- AL-5570 (FAR)
A RS fo g I RNAYV (GPS) RWY 13
AptEler 30 JACKSONVILLE INTL JAX)
BoroVNAY nal auhosized below -15°C 5°F). MAISR | MISSED APPRGACH: Climb to 2000 via courss
ANA G5 or RNP-0.3 Racuired, &5 | 134 10 ZHGE WP then Ish tun vio courss 058"
AR DME/DME RNP-0.3 not authorized. T | o YEIWO WP and hold. ARINC
ATS APPCON TOWER GND CON CLNC DEL
12585 1100 3368 1183 817.7 121.0 3488 | 110.5 200.275 424

Navigation Performance

Database Database

;n‘rl"x\”’;
o Flight
Management
System

OskAl 2000 | ZHGE YEWO §
nddl‘nleh"m-n T ¢ \ @ ity ®‘\"g
< 313° CRS 134 5058 «
200033 WO LNk SINAVanly 1 ®
133 RW13
., s

S5300° 1700-="

So— T ——T = G) 2
CATEGORY A [[[c [o -~
NA

INAV/
v/ oA 460-1 423{500-1)

460-3 460-1
INAV MDA 450 433(500%) ‘ 433 (500 %) ‘ 431(5001) | RELRwy31

QL Rwys 7, 25 and 13

CIRCUNG 520-1% 490 (50014} ‘ ﬂg‘;!;g-?l Rﬁlm:?-lzgud 13-5‘1
AAGEOMALLE, RLOPIA JACKSONVILLE INTL (JAX)
s aonaraw RNAV (GPS) RWY 13

Figure 2.6: Flight Management System.

is also provided.

Navigation: Navigation is about the system’s ability to determine the current state of the
aircraft. This state usually consists in its three-dimensional position (generally WGS-84
geodetic coordinates), velocity vector, altitude rate, track angle, heading and drift angle,
wind vector, estimated position uncertainty and time. This data is obtained by combining
data from both navigation receivers and autonomous sensors. The accuracy of the
estimated position determines the aircraft’s navigation performance. A minimum Required
Navigation Performance (RNP) may be needed to operate within a defined airspace.

Guidance: Given the flight plan and the aircraft’s position, the FMS calculates the course to
follow. The guidance function is responsible for producing commands to guide the aircraft
along both the lateral and vertical profiles. The FMS typically computes roll axis, pitch axis,
and thrust axis commands to guide the aircraft.

Trajectory prediction: This function is responsible for computing the predicted four-
dimensional flight profile of the aircraft. Lateral path, fuel, time, distance, altitude and speed
are obtained for each point in the flight plan.

Performance: It provides the crew with all sorts of information to help optimize the flight
and access to aircraft’s specific performance data. A few examples include optimal speed
computations for minimizing time and fuel consumption, maximum and optimum altitudes,
thrust limits, take off speeds, etc.

To accomplish its functions the FMS interfaces with a wide array of other avionic systems,

such as navigation sensors, displays, the flight control system, the engine and fuel system and the
data link system.

2.3 Mobile Robot Control Architectures 17

2.3 Mobile Robot Control Architectures

Three elements are identified as necessary to fully specify a mission (Ulam ef al. , 2006):

1. The tasks to undertake.
2. The way to perform the tasks.

3. Any temporal constraints that may exist between the tasks or behaviors.

An example mission, used in later chapters, consists in monitoring a burned area in search
of hotspots. This mission is composed of separate tasks, such as patrolling the area or analyzing
potential hotspots. These tasks are broken down into the individual actions or behaviors that
must be undertaken to achieve them. A temporal constraint is imposed by the fact that a potential
hotspot must be found before proceeding to its analysis.

Traditionally, there have been two approaches to mobile robot control (Arkin, 1998):

Deliberative Control: The main characteristic of deliberative systems is that they rely on a
representation of the world which serves as the basis for predicting and making decisions
about subsequent actions.

Reactive Control: Pure reactive systems lack this representation and their actions arise as a direct
response to stimuli.

The main drawbacks of deliberative methods are their lower response times and that
the internal world representation may rapidly become obsolete. However, a purely reactive
system may not be capable of dealing with complex tasks. It is common practice to design
autonomous mobile robots as hybrid systems combining low-level reactive behaviors with higher
level deliberation and reasoning. Reactive control is located closest to the system actuators, and
is given highest priority. Nevertheless, deliberative control is given precedence when the reactive
component cannot handle a certain situation the mobile robot is confronted with.

As depicted in figure 2.7, hybrid systems are usually modeled as having three layers: one
deliberative, one reactive and one middle layer (Orebéck, 2004).

The Reactive Layer of a hybrid system often consists of separate behaviors running in
parallel, where each behavior has one specified task. Example behaviors are goto-goal and avoid-
obstacles. Reactive behaviors represent a tight coupling from the sensors to the actuators. In some
architectures reactive behaviors are hierarchically organized with more complex behaviors being
obtained by a combination of simpler ones.

The Deliberative Layer handles mission planning and reasoning, localization, path planning
and interaction with human operators. Tasks in this layer are allowed to be computationally
expensive and therefore take relatively long time. The skills and complexity that are needed in the
deliberative layer are highly related to the amount of autonomy one is seeking.

The middle layer, often called the Sequencer Layer, or supervisory layer, bridges the gap
between the deliberative and reactive layers. Its basic function is to rewire the reactive layer
according to a global state obtained from the deliberative layer, thus deciding which is the set
of behaviors that should be running. It should monitor the reactive layer and be informed as
progress is made.

Narayan et al. (Narayan ef al. ,2007) provide an interesting survey of different robotics
and UAS architectures confirming that a vast majority of them implement a hybrid architecture
consisting in some variation of the presented model.

18 Chapter 2 - Previous Work

~
Deliberative Layer
Human Robot Interaction Planning
- J
e] ™\
Sequencing Layer
Supervisor
AN J
) ™\
Reactive Layer
Sensor — Behavior — Actuator
AN J

Figure 2.7: Hybrid system layers

As described in Chapter 3, our UAS implements a highly distributed architecture.
Nevertheless, we can still identify components providing basic reactive behaviors, such as the
VAS, the FPM and payload related services, and higher level deliberative services such as a Long
Term Planner. The MMa sits in between enabling definition of higher level reactive behaviors and
managing its execution.

Although deliberative services will eventually be added to the system, in this thesis we focus
on providing a highly reconfigurable purely reactive control layer.

2.4 UAS Mission Control

This section presents the state of the art related to mission specification of Unmanned
Aircraft Systems and Unmanned Autonomous Vehicles in general. The selected references are
representative of different approaches for specifying the behavior of a reconfigurable systems.

Apex is a NASA Open Source Software architecture and development toolkit for creating
intelligent, autonomous agents. Apex (NASA,2009) is a variant of the three-tier type
architecture. It has been used in diverse applications, including the two UAS efforts described
in (Freed et al. , 2005). Constructing a new autonomy application with Appex involves two main
steps. The first one is integration with the controlled architecture. This step involves enabling
communications with the controlled system by means of the required protocols. Also as part of
this initial step, Apex primitives are defined. These primitives represent command outputs from
Apex to the controlled system. The second step in constructing an Apex application is to specify
desired autonomous behavior. Apex operates in a goal-driven fashion, where procedures are used
to specify how a given goal should be achieved. Both primitives and procedures are described
using Apex’s Procedure Description Language. In the example shown in Listing 2.2, a procedure
is defined to image a ground target using a high-resolution fixed-angle camera called camera-1.
Procedure subtasks, specified using the step clause, are not necessarily carried out in listed order.
Instead, they are assumed to be concurrently executable unless otherwise specified.

2.4 UAS Mission Control 19

locate
hazardous

undertake task chemical

oblig on task (LHC) do
/smc/tasks.init (LHC)

task = LHC

no comm
failure

oblig on task(Repeater) do
/smc/tasks.init (Maintain.communication)

task = repeater comm. oblig on communication_failure do

failure /smc/tasks.switchto(Maintain_.communication)

oblig on no_communication_failure do
/smc/tasks.switchto (LHC)

maintain
communication (b) Same plan in terms of policies.

(a) Plan expressed as FSM.

Figure 2.8: Comparison between FSM and policy representations.

Listing 2.2: Definition of an Apex procedure.

(procedure
(index (get hires image ?target))
(profile camera—1)
(step sl (move-to best—imaging—loc for ?target => ?loc))
(step s2 (power—up camera—1))
(step s3 (orient—camera—to ?target)
(waitfor (:and (ready camera—1)(location +self+ = ?loc))))
(step s4 (take—picture camera—1)
(waitfor (end ?s3)))
(restart—when (task—state +this—task+ = resumed))
(end—when (image—in—memory ?target))

A different approach is presented in (Asmare ef al. , 2006). In this case, a mission is specified
in terms of roles, tasks to be performed by a role and the policies for managing tasks. Roles
would be distributed among different components of an autonomous vehicles team, however the
same principles apply for a single autonomous vehicle. Policies are used to specify tasks to be
carried out by a role as well as privileges regarding access to services provided by other roles or
shared resources. Policies (Damianou ef al. ,2001) are rules governing choices in behavior. This
work focuses on two main types of policies: obligation and authorization. Obligations are event-
condition-action rules and authorization policies define what actions a subject can perform on a
target resource or service. Figure 2.8 shows how obligation policies can be used to encode the
vehicle behavior depicted in the accompanying FSM.

M. Barbier et al. opt for Petri Nets as the method of choice for UAS" mission specification.
(Barbier & Chanthery, 2004) presents an architecture consisting of (1) a set of Petri nets that
hierarchically models the vehicle behavior, (2) three software programs carrying out the decisional
tasks and (3) a supervisor managing the update of the vehicle behavior and the communication
with the decisional tasks. The software programs carrying out the decisional tasks are a planning
program that computes the optimal plan according to the mission and its constraints, a guidance
program that calculates the control commands sent towards the vehicle and a third program which
centralizes dynamic data management. Figure 2.9 displays a Petri net that models an observation
mission. The place marked in this Petri net indicates the phase in which the vehicle is or the
high level action in progress. Each phase can be broken up in an increasingly detailed way with
piloting controls located at the lowest level of this decomposition. Petri nets detail the vehicle
behavior during nominal mode and in the degraded situations.

In previous examples, a mixture of text based languages and graphical representations of

20 Chapter 2 - Previous Work

START

T saon-sart dae

f
planmung-fail fae
== GLOBAL-PLANNING

planning-end /ae

TAKE-OFF

take-off-end /ae
glob-replanming-end fae

rmisst un-prﬁa -fail fae

MISSION-PREPA
navdris-pl-fail fae W—-_missi0n-prepa-end /8¢ 1. optanning-end fae
£
NAVIMIS-PT
GUI-fail fae
- -
REPLANNING

B iy dris-pt-end fae

GUI-f2il2 fae

ope-prepa-fal fae

operation-end fag

ope-fail fae
Y
NEXT-MIS-POINT? =
replanning-fail /ze
P NO-NMP /ae
RETURMN&LANDING

N anding-end fae

Figure 2.9: High level mission petri net.

vehicle behavior have been outlined. A common theme of the following references is their use of
FSMs as the means for describing the vehicle behavior.

The WITAS project (Doherty ef al.,2004) aims at developing a prototype distributed
architecture for autonomous unmanned aerial vehicle experimentation. To this end, it implements
a software architecture, known as the Modular Task Architecture (MTA) where deliberative,
reactive and control components interact in a distributed and concurrent manner. A task is defined
as a behavior intended to achieve a goal in a limited set of circumstances and is implemented by
means of a Task Procedure (TP). TPs use CORBA to communicate with one another. In fact, a TP
is any CORBA object that implements the Witas::Task interface and adheres to some behavioral
restrictions. To facilitate its development and avoid the complexities of CORBA an XML based
Task Specification Language (TSL) is used for defining TPs.

A central component of the WITAS vehicle is the Primary Flight Control (PFC) system, which
supports several control modes: take-off, hovering, dynamic path following and reactive flight
modes for interception and tracking. Task procedures in the Deliberative /Reactive system issue
commands to the PFC system and receive aircraft (in this case, an helicopter) states and events
from it.

The TSL (Nyblom, 2003) provides some tags to declare required parameters, local variables
and CORBA objects the TP interacts with. Other tags are used to specify what actions should be
performed at several stages in the life cycle of a TP. The main element for specifying behavior is

2.4 UAS Mission Control

21

<tp name = Taskname>
<declarations>
<parameter /> <parameter >
// other declarations, e.g., local
// variables and constants
</declarations>
<services>
// CORBA server objects,

<fsm>
<state name = sname>
<action>
// Executed whenever TP
// enters this state
</action>
// State specific reactions

// to events
<reaction event = "event name”>

// event channels used, etc.
</services>
<init>
// Host code for task
// specific initialization
</init> .
<destroy> <reaction event = "event name”>
// Host code for task specific cleanup
// CORBA cleanup handled automatically </reaction>
</destroy> </state>
<start>
// Executed with call to TP start() method
// Host code plus host code macros
// Typically will perform some setup then
// a jump to FSM state
</start>
<fsm> :
// Main behavioral specification in form <reaction> ... </reaction>
// of a finite state machine </fsm>
</fsm>
</tp>

</reaction>

//More state specifications ...

// Global reactions to events
<reaction> ... </reaction>

(b) TSL tags and partial schematic for an
FSM specification.
(a) TSL tags and partial schematic for a TP specification.

Figure 2.10: TP Specifications with TSL tags.

an fsm tag that is used to encode a Finite State Machine (FSM) with the user defined states the
TP goes through while running. Figure 2.10 illustrates how TSL is used. Blank spaces within
elements should be filled with C++ or Java code. The TP specification is translated to C++ or Java
and compiled before being deployed to the vehicle.

Preceding the WITAS project, another example where FSMs are used corresponds to
(Mackenzie et al. , 1997). In this case, an entity capable of stimulus-response behavior is referred
to as an agent. The simplest agents correspond to primitive behaviors like sensors, actuators and
motors. More complex agents can be recursively constructed via assemblage. An assemblage is a
coordinated society of agents which function as a new agent. Coordination may imply temporal
sequencing (specified using Finite State Automata), cooperation (concurrency) or competition.
These relationships are defined using an architecture independent Configuration Description
Language (CDL). CDL is used to specify the instantiation and coordination of primitives. A
toolset called MissionLab is provided in order to enable the specification of the mission as a
hierarchical combination of reactive components. Figure 2.11 shows MissionLab’s Configuration
Editor, which is a graphical tool for building a mission with a set of robot behaviors. As in the
WITAS case, behavior descriptions are compiled into executable code before its deployment onto
the autonomous platform.

Finally, in (Dong & Sun, 2004; Dong efal.,2007) Dong et al. describe the design and
implementation of a behavior-based architecture for unmanned aerial vehicles. In this
architecture, a behavior is defined as a function between the sensing input and the action output.
Behaviors can be combined to define an schema, which consists in a set of arcs and nodes where
each node represents a behavior and arcs represent transitions between nodes (see Figure 2.12).
Transitions are triggered by events. Schemas can be hierarchically organized. The following
behaviors are defined: ready, move, accelerate, decelerate, lift/descend, head to, hover, track,

22 Chapter 2 - Previous Work

File Edit Layout Configure Libraries Binding telp
Start|
HoveToward
Possible_Biohazard
Tanediate
Detect) Near
Possible_Biohazard Possible_Biohazard

LookFor = e TestObject

Possible_Biohazard {Testhegat ivef Biohazard

HotDetected

Possible_Biohazard TestPositive
Exitlask /‘\

NO BIOHAZARD DETECTED -

ExitTask
TEST POSITIVE
F‘ o

Figure 2.11: MissionLab’s Configuration Editor.

obstacle avoided

avoid obstacle goto A->B

obstacle found

Figure 2.12: Definition of a schema using ‘avoid” and “fly to” schemas.

photograph, each with its own parameters. Based on these behaviors the following schemas are
defined: takeoff, land, fly to, avoid, detect, recon, shift and main. Each node in a schema may refer
to a basic behavior or to another schema. Execution of the different behaviors and schemas works
in a purely event-driven fashion.

In this section, some representative examples of mission specification techniques for
reconfigurable autonomous vehicles have been described. Some of them make use of text based
languages to specify each task, others use graphical representations (such as Petri nets or some
form of FSM) or a combination of both. In all cases, the viability of each approach has been
demonstrated using both simulated and real vehicles.

While graphical representations are easier to grasp and may facilitate the mission design, its
expressiveness is limited and they can easily become too cluttered or hide too many information
when details like conditions and messages with their corresponding parameters are thrown in. A
text based representation will accommodate these details more easily but it lacks the benefits of a

2.4 UAS Mission Control 23

visual representation.

In our system, the language for specifying behavior is State Chart XML (SCXML)
(W3C, 2009). SCXML is a working draft published by the World Wide Web Consortium, it
provides a general purpose event-driven state machine language based on Harel’s statecharts
(Harel & Politi, 1998). Two important aspects of statecharts are their ability to express hierarchy
and concurrency, thus making them appropriate for the description of complex systems.
Statecharts are part of the Unified Modeling Language (UML) (OMG, 2010; Booch et al. , 2005),
which is a widespread graphical modeling language used in industry and academia. Existing
UML tools can be used to visually design the mission and then translate the design to SCXML.
Other compelling features of SCXML are its scripting and data manipulation facilities, which can
be used to specify the vehicle behavior with a fine grain of detail. Being developed as an open
standard several implementations already exist that can be used to rapidly prototype our MMa
service. Finally, it is worth mentioning that RSML, a language based on statecharts, has been used
in the past to formalize system requirements of critical avionics systems (Heimdahl ef al. , 1998;
Thompson et al. , 1999).

System Architecture

This thesis has been developed as part of the ICARUS Group’s effort to push forward UAS
technologies for civil applications. The flight and mission management modules presented here
are part of a wider set of components organized following the architecture proposed by E.Pastor
et al. in (Pastoref al.,2007). This chapter provides an overview of the UAS architecture that
accommodates the flight and mission management modules.

3.1 Architecture Overview

The system architecture being developed by the ICARUS Group conceives a UAS as a distributed
system, where a number of software components use a common communications infrastructure
to exchange information and collaborate. We refer to this software components as services. Each
computational node can run one or more services. Communication between services follows a
publish/subscribe model and is managed by a middleware layer. There is a collection of services
that have been identified as necessary to perform a wide range of missions. These services are
standardized by what is called the UAS System Abstraction Layer (USAL).

The USAL concept can be compared to the way operating systems handle device drivers.
Computers have hardware devices used for input/output operations, each one having its own
particularities. The operating system offers an abstraction layer to access such devices in a uniform
way. Basically, it publishes an Application Program Interface (API) that provides end-users with
a standardized way to access hardware elements. The USAL makes use of the communication
primitives provided by the underlying service-oriented middleware layer.

Another goal of the USAL is to provide a set of components that can be reused across different

25

26 Chapter 3 - System Architecture

missions. The available services will cover an important part of the generic functionalities present
in many missions. Therefore, in many cases, to adapt the system to a new mission it should be
enough to reconfigure the services deployed in the UAS.

3.2 Service-Oriented Middleware

Service Oriented Architectures (SOA) are getting common in several domains. These architectures
try to increment interoperability, flexibility and extensibility of the designed system and their
individual units by using loosely coupled components. In SOA architectures, functionality is
distributed among services and made accessible through well defined protocols.

Following these principles, our system is designed as a network of cooperating services.
Services implement the logic of the application and access each other by means of a middleware
layer called MAREA (Lopez et al. , 2007) that abstracts the execution environment and implements
common functionalities and communication channels. When one service needs some externally
provided functionality it asks the middleware for the required service. If there is a component
that provides the requested functionality, its location is then provided to the client, that will then
consume the service. The discovery mechanism is transparently managed by MAREA, that is
able to link producers and consumers of data that have no a priori knowledge of their physical
location. From the services point of view, the whole system, which comprises both embarked and
ground components runs on a single network. The middleware layer also handles all the transfer
chores: message addressing, data marshaling and demarshalling, delivery, flow control, retries,
etc.

In MAREA, services are offered and consumed following a publish/subscribe model that
simplifies programming of distributed applications. Any service can be a publisher, a subscriber,
or both simultaneously. There are four kinds of supported communications primitives:

e A variable is a structured, and generally short, piece of information offered by a service. This
information may be sent at regular intervals or when changes occur.

e An event is similar to a variable but the middleware guarantees the reliability of the
transmission. Events should be used to inform of occasional or important facts.

e Remote invocations operate as function calls in a non distributed environment. They represent
a classical way to model interactions between distributed components.

o File transfers are used for transmitting big chunks of data such as images, video,
configuration files, etc.

In a similar fashion to existing avionics buses, such as ARINC 429, MAREA communication
primitives identify exchanged data rather than its providers or consumers.

3.3 USAL Services

Previous sections offer a general view of the system architecture and the underlying middleware.
In this section we go through the different services that form part of the USAL (Royo ef al. , 2008),
starting with a description of the different categories they fall into. As depicted in Figure 3.1,
USAL services are organized in four different categories: Flight, Awareness, Mission and Payload
services.

3.3 USAL Services 27

UNMANNED AIRCRAFT SYSTEM SERVICES ABSTRACTION LAYER

MISSION | Mission #g:‘rg PAYLOAD
CATEGORY [Manager Planner Storage CATEGORY
- ~ Module

Digital Mission Real-time Sensor

Elevation Monitor Data Data
| Model | Processing MAREA Acquisition
- - HARDWARE

: : Virtual Strategic | | Strategic | | Awareness
Nllzcl)lr?itt]ct)r E/:gﬁglcearl Autopilot Conflict Conflict Sensors:
|] 9 System Reaction | | Detection | [TCAS-ADSB
Engine Contingency| |Flight Plan -(r:aocr:lffca;: 2;::‘32: AwaDr:tr;ess
Manager Manager ' :
: Manager Reaction Detection Fusion
FLIGHT CATEGORY AWARENESS CATEGORY

Figure 3.1: USAL Architecture Global View

o Flight Services: This is arguably the most important category. Not being able to properly
control and sustain the UAS’ flight will result in a failed mission and put both the platform
and third parties at risk. Although not exactly a service, the main element in this category is
the autopilot. There are many autopilots in the market and we want to be able to select the
best solution for each particular need. For this reason there is a service, the Virtual Autopilot
System (VAS), that manages all autopilot interaction details at one end and provides an
standardized interface to the rest of services at the other end. Among other functionalities,
the VAS supports waypoint navigation primitives. These primitives are then used by the
Flight Plan Manager in order to govern the UAS flight. Other services also included in this
category such as the Electrical Manager, the Engine Manager and the Contingency Manager
help to improve safety and reliability.

e Mission services: Mission services are those responsible for the actual execution of the
mission. The Mission Manager orchestrates operation of flight and mission related services
in order to achieve the mission goals. The MMa listens to system events and responds in a
purely reactive fashion. Services that store and analyze sensed data are also found in this
category. Planning services will also fall into this category.

o Payload services: In this category, those systems that handle operation of sensors and
actuators are found. There are many kinds of sensors that we may need to take care of: GPS,
IMU, Anemometers, visual, infra-red and radiometric cameras, chemical and temperature
sensors, radars, etc. Although there are far less actuators, some examples would consist in
flares, parachutes or loom shuttles.

o Awareness services: This category includes those services that gather information about the
environment the UAS is operating in. These services are critical for a successful integration
of UAS in non-segregated airspace. Awareness services handle interaction with cooperative
aircrafts through transponders, TCAS or ADS systems and try to detect non-cooperative
aircrafts through visual or other kinds sensors. Services in this category will also take control
and command emergency maneuvers in critical situations where an immediate response is
required.

Although the USAL is composed of a large set services, not all of them need to be present
at all times. Only those required for a given configuration/mission should be present and/or

28 Chapter 3 - System Architecture

Flight Services Category

([UAS AIr Segment h
Position o) . -
Augmentation CXML Electrical Engine
System ' FlightPlan 1 Manager || Manager

1 1

Autopilot <":

Virtual Autopilot Flight Plan Contingency
— <> Manager
Flight Flight Plan Contingency
Monitor [<&—=> Monitor Monitor
1\ J

UAS Ground Segment

Figure 3.2: Overview of the Flight Services category

activated in the UAS.

Next sections go through the main services we can found in each category. It should be
noted that the degree of development of the different services greatly varies. Early versions and
prototypes of most flight services are already available. Other services, such as the Long Term
Planner or services in the Awareness category, should be seen as needs that have been identified
but not yet addressed.

3.3.1 Flight Services

There are several goals flight services aim at. With regard to the embarked autopilot, we want
to abstract other services from its specific details and also be able to extract information from
its internal sensors. We also want to extend its capabilities and provide flight-plan definition
mechanisms that improve by large what is found in current commercial solutions. Finally, another
goal consists in monitoring operation of the power system and the UAS engine and responding
to detected contingencies. Services in the flight category (see Figure 3.2) are responsible for
providing these capabilities. A brief description of each service follows:

o The Virtual Autopilot System interacts with the selected autopilot and therefore needs to be
adapted to its peculiarities. The VAS offers a common and well-defined interface to all
services that require access to autopilot capabilities. This includes, although it is not limited
to, waypoint based navigation and access to the autopilot telemetry data.

e The Flight Plan Manager is a service designed to provide flight-plan capabilities that go
beyond simple sequences of waypoints. The FPM provides structured flight-plan phases
with built-in emergency alternatives, leg based navigation and constructs to enable forking,
repetition and generation of complex trajectories from a reduced number of parameters.

e The Engine Manager and the Electrical Manager are respectively in charge of monitoring
engine and electrical parameters and detect problems in these subsystems. Additionally,
both services are able to estimate the remaining time for performing the mission in nominal
conditions.

e The Contingency Manager collects status information from multiple sources: engine,
electrical, fuel, communications, etc. to determine if a contingency occurs and decide

3.3 USAL Services 29

Mission Services Category

(Tt T T T ° L) \
. 1 XML 1 Pavload
UAS Air Segment ' yission ayloa
L Services Category
) Long Real Time ()
Storage T Data D —
Module . L3
Planner Processiong @
\'\@ @ Video Atmosferic
: . Do Sensors
S Mission N T
Digital Elevation Manager T T
Model Air
Thermal Day/Night
I I IR Camera Camera
D i— D i—
[] []
: Mission
Monitor \ J
Model Ground
UAS Ground Segment

Figure 3.3: Overview of the Mission and Payload Services category

what type of reaction is required. The response may range from continuing operation in
a degraded mode to activating a flight termination system for the immediate finalization of
the mission.

e The Flight Monitor, Flight Plan Monitor and Contingency Monitor listed as ground segment
services provide the consoles for supervisory control of their respective embarked
counterparts.

3.3.2 Mission Services

The USAL Mission category offers a number of predefined services to implement a wide range
of missions, namely the Mission Manager, the Real-Time Data Processing, the Storage Module, the
GIS/DEM Database and Mission Monitor. Figure 3.3 shows its fundamental components as well as
their relations.

e The Mission Manager orchestrates operation of the USAL services. The behavior of the
UAS during the mission is defined by means of an XML representation of Statecharts.
During execution of the mission, the MMa listens to events coming from other services and
reactively responds according to the current state. In this way, the MMa is going to active
those services that should be running at a given time, to modify the flight plan or to change
how a given service is operating.

o The Real-Time Data Processing will be able to extract information from raw data and pass it
on to other services. It will offer image processing operations to allow the MMa and other
subscribed services to detect relevant mission events, e.g., that a potential object of interest
has been discovered.

e The Mission Monitor enables end-users to supervise the evolution of the mission and provide
support to decision makers. For example, during a wild land fire monitoring mission,
information regarding the current state of the fire would be displayed.

30 Chapter 3 - System Architecture

/ Awareness Services Category Q
: TCAS
Tactical Tactical
Conflict Conflict AR
Reaction i
Detection Awareness)
Strategic - Data Camera
< Strateglc Fusion
Conflict Conflict
. EE—
Reaction Detection)
= Radar
: Long Mission —_—
Term Category Awareness
Planner Sensors

-

Figure 3.4: Overview of the Awareness Services category

e The GIS/DEM services provide the system with information derived from digital elevation
models and other geographical information sources. A light-weight service is embarked on
the UAS platform while a more heavy-duty service is placed on the ground segment with
less restrictions on available resources. While this services has been placed in the Mission
category there is a clear overlap with Awareness.

e The Long Term Planner service is responsible for making decisions about the future trajectory
of the aircraft. This service could, for instance, compute an alternative route to solve a
conflict detected by one of the awareness services in a situation where immediate response
is not required.

e The Storage Module provides easy access to the storage medium on-board (compact flash,
hard disk, etc.). It stores the data generated by different sensors: camera, telemetry, etc. and
can also be used to save service configurations or even backups of the deployed software
components. Of course, it plays an important role in situations with limited down-link
bandwidth, keeping more information than can possibly be sent to the ground segment.

3.3.3 Payload Services

Carrying payload is the ultimate reason for having an UAS, and often times constitutes the
most expensive equipment. Payload includes cameras that operate on different spectrums, radar
sensors, atmospheric and chemical sensing devices, etc. Payload services are defined to provide a
friendly interface and control operation of these raw data acquisition sensors.

3.3.4 Awareness Services

An UAS is a highly instrumented aircraft that has no pilot on board. When performing remote
sensing missions the possibility of intercepting other aircrafts, which may operate under Visual
Flight Rules and lack the equipment to actively broadcast its position, must be considered.
Therefore, the UAS must be able to transmit enough information to keep an on ground pilot with
an adequate level of awareness or implement equivalent capabilities. Awareness services monitor
the surrounding environment and take control of flight management in conflict situations. When
such thing occurs, flight and mission services recover its role once conditions become normal.
The services in the Awareness category are shown in Figure 3.4. A brief description of each one
follows:

o The Awareness Data Fusion service is designed to collect all available data about air vehicles

3.4 Conclusion 31

surrounding our UAS plus terrain and meteorological conditions. All this information can
be obtained either by on board sensors or through an external provider.

o The Tactical/Strategic Conflict Detection services will analyze the fused information in order
to detect potential collision conflicts with objects/terrain/bad climate. Depending on the
type of conflict, different types of reaction procedures will be activated. While reaction is
executed it will keep monitoring than the conflict is really being avoided.

o The Tactical/Strategic Reaction services, will implement avoidance procedures according to
the severity of the conflict. Tactical reaction is designed in a way that it can overtake the
Flight Plan Manager in order to execute an aggressive maneuver. Once completed, the
FPM will regain control. An strategic reaction will command the FPM to slightly modify
its selected flight plan trying to avoid the conflict but at the same time retaining the original
mission.

o A set of dedicated awareness sensors will gather information relative to possibly conflicting
collaborative and non-collaborative aircrafts.

3.4 Conclusion

In this chapter, the set of services that we envision as forming part of the UAS architecture has been
presented. This information provides the background to understand the environment in which the
Flight Plan Manager and the Mission Manager will run. The architecture is characterized by being
highly distributed and very flexible. Not all services are required for the UAS to operate and they
can be added, removed or changed depending on the mission needs. There are two elements that
facilitate this high degree of flexibility: (1) a middleware layer, that abstracts services from the
networking and low level communication details, and (2) a service abstraction layer, that defines
the interfaces services must conform to.

Implementation of the architecture is a work in progress. In this dissertation we focus on the
Flight Plan Manager and the Mission Manager: two services that play a key role in governing the
UAS flight and operation of the mission payload. The following chapters address, in detail, all
their different aspects.

Flight Plan Specification Language

This chapter presents the specification language proposed to design UAS flight plans. Section 4.1
explains the structure and the different elements that can be found in a flight plan. Support for
emergency plans is discussed in Section 4.2. In Section 4.3, we show how to dynamically adapt
the flight plan to mission needs during its execution.

4.1 Base Flight Plan

Most current UAS autopilot systems rely on lists of waypoints as the mechanism for flight plan
specification and execution (Chao ef al. , 2007). This approach has several important limitations:
(1) It is difficult to specify complex trajectories and it does not support constructs such as forks or
iterations. (2) It is not flexible because small changes may imply having to deal with a considerable
amount of waypoints and (3) it is unable to adapt to mission circumstances. Besides, (4) it lacks
constructs for grouping and reusing flight plan fragments. In short, current autopilots specialize
in low level flight control and navigation is limited to very basic go to waypoint commands. We
believe that to improve current UAS operation higher level constructs, with richer semantics, and
which enable flight progress to adapt to mission circumstances must be introduced. For that
reason a new flight plan specification mechanism is proposed.

Some of the ideas that the flight plan specification language is based on come from current
practices in commercial aviation for the specification of RNAV (FAA, 2008) procedures. As
seen in Chapter 2, Area navigation (RNAV) is a method of navigation that takes advantage of
the increasing amount of navigation aids (including satellite navigation) and permits aircraft
operation on any desired flight path. RNAV procedures are composed of a series of smaller parts

33

34 Chapter 4 - Flight Plan Specification Language

called legs. To translate RNAV procedures into a code suitable for navigation systems the industry
has developed the “"Path and Termination” concept. Path Terminator codes should be used to
define each leg of an RNAV procedure. Leg types are identified by a two letter code that describes
the path (e.g., heading, course, track, etc.) and the termination point (e.g., the path terminates at
an altitude, distance, fix, etc.). Our specification mechanism makes use of the Path Terminator
concept to describe basic legs. We are interested in a subset of RNAV legs applicable to GPS
navigation. These elements are brought to the UAS field and extended with additional constructs.
New control constructs such as iterative legs and intersection legs are added and adaptability is
increased by means of parametric legs.

The flight plan is stored in an XML document that will be submitted to the UAS in order
to carry out its execution. Following sections describe the contents of the XML flight plan
specification document.

4.1.1 Flight Plan Document Structure

The root node of the XML document that contains the UAS flight plan is FlightPlan. Listing 4.1
shows the elements contained within the root element. To make XML listings more readable some
content has been replaced by ellipses.

Listing 4.1: XML flight plan document structure.
<FlightPlan xmlns="http://icarus.upc.es/schema/FlightPlan/1.1">

<Locale> ... </Locale> <!— units and separators —>

<Fixes> ... </Fixes> <!— specific named locations —>

<EmergencyPlans> ... </EmergencyPlans> <!— emergency flight plans —>

<MainFP> ... </MainFP> <!— main flight plan —>
</FlightPlan>

Locale specifies which units are used for speed, altitude and distances. It also specifies which
are the decimal and group separators. Fixes contains a list of named waypoints, i.e. specific
locations that, for some reason, are of special interest. EmergencyPlans contains a set of alternative
plans in case an emergency occurs during execution of the main flight plan. And MainFP contains
the main flight plan, that should be executed from beginning to end if no emergency occurs.
Emergency plans and the main flight plan share the same structure, which is presented in Section
4.1.4. Some details specific to emergency plans are discussed in Section 4.2.

4.1.2 Locale Settings

Locale settings specify what units are used for speeds, angles, altitudes and distances. Decimal
and group separators are also indicated. Possible values for each one of these elements are shown
in Table 4.1:

Table 4.1: Locale settings supported values.

speedUnits | angleUnits al.tltudeUm.ts decimalSeparator groupSeparator
distanceUnits
ms | m/s | deg | degrees | m | meters in principle it could be . .
- - - - as in decimalSeparator
kt knots | rad | radians | nm | nautical miles | any string, but most
7 s P plus empty
ft feet probably "." and ’,

Listing 4.2 shows an example with some possible values. The example states that all speed
values included in the flight plan are in meters/second, all altitudes and distances are in meters
and a decimal point is used as the decimal separator. An empty groupSeparator element indicates

4.1 Base Flight Plan 35

that no thousands separator is used.

Listing 4.2: Locale settings example.

<Locale>
<speedUnits>ms</speedUnits>
<angleUnits>deg</angleUnits>
<altitudeUnits>m</altitudeUnits>
<distanceUnits>m</distanceUnits>
<decimalSeparator>.</decimalSeparator>
<groupSeparator />

</Locale>

4.1.3 Fixes and Waypoints

A fix describes an specific location on the face of the earth. In commercial aviation, fixes may refer
to navigational aids, waypoints, intersections, airports, etc. In our case, they refer to locations
which, for some reason, are of special interest. As seen in listing 4.3, a fix has an identifier, a name
and a description followed by its latitude and longitude coordinates.

Listing 4.3: List of fixes specification.

<Fixes>
<Fix id="FIXID">
<name>Example fix</name>
<description>Some interesting place</description>
<coordinates>37°38"0.0"N 122°22’0.0"W«/coordinates>
</Fix>
<!— More fixes may follow —>
</Fixes>

Fixes are closely related to waypoints, which designate a geographical position defined in
terms of latitude/longitude coordinates. There are two kinds of waypoints, named waypoints
and unnamed ones. The former correspond to fixes listed at the beginning of the flight plan, the
latter are geographical positions with no association to any named location. Therefore, there are
two ways of specifying waypoints, either by providing its coordinates or indicating the name of
the fix it corresponds to. Apart from its location, a waypoint also has a type, which may be fly-by
or fly-over. For fly-by waypoints passing close enough suffices while fly-over waypoints require
passing upon them. Since changes of speed and altitude will also occur at specific waypoints,
optionally a waypoint may also contain altitude and speed data. If these values are present, they
indicate the required speed and altitude of the aircraft at that waypoint. Fixes and waypoints are
used to specify the destination of higher level leg constructs. Listing 4.4 shows an example of a
waypoint that refers to a fix. The dest element is part of a leg specification and is described in
section 4.1.6.

Listing 4.4: XML description of a waypoint.

<dest>
<fix>FIXID</ fix>
<fly —over>true</fly—over>
<altitude>300</altitude>
<speed>65</speed>
</dest>

Table 4.2 below describes the data type and optionality of each waypoint element.

4.1.4 Main Flight Plan

A flight plan specifies the path followed by the aircraft. As seen in Figure 4.1, each flight plan is
composed of a sequence of stages, such as take-off, departure procedure and others, which must

36 Chapter 4 - Flight Plan Specification Language

Table 4.2: Data types for waypoint elements.

Element Data Type Optionality

coordinates | latlon in two possible formats: Either fix or coordinates are required
dd°mm’ss.ss”N|S dd°mm’ss.ss”E|W
or two real values

fix fix id ”

fly-over bool Optional (default value is false)
altitude double Optional

speed double Optional

come in correct order. Each flight plan stage is made up of a structured collection of legs. The
leg concept is borrowed from RNAV and is used to specify the trajectory followed by the aircraft
to reach a given waypoint from the preceding one. In the simplest case this trajectory will be a
straight line.

Flight Plan

il

Stage 1 Stage 2 s Stage N

VAN

Leg 1 Leg 2 L Leg M

WP

Figure 4.1: A flight plan is composed of stages, legs and waypoints

All flights require a single main flight plan, but additional emergency plans may be present.
Emergency flight plans are partial plans, i.e. they lack some initial stages, whose purpose is to
provide alternative courses when an emergency situation occurs. Apart from the number of stages
included, the main flight plan and the emergency plans have identical structure.

All flight plans have an identifier, a name and a description (see listing 4.5). Optionally, for
the main flight plan a list of emergency plans can be specified. This provides default emergency
plans that can be superseded by emergency plans specified at stage or leg levels.

Listing 4.5: XML description of main flight plan.

<MainFP id="FPID">
<name>Name of the flight plan</name>
<description>Text describing the flight plan</description>
<!— List of stages that form the flight plan follows —>
<stages> ... </stages>
<emergency>EmergencyFP1 EmergencyFP2 ... </emergency>
</MainFP>

4.1 Base Flight Plan 37

4.1.5 Stages

Stages organize legs and constitute high-level building blocks for flight plan specification. Each
stage corresponds to a conceptually well defined flight phase. A stage groups together a collection
of legs that seek a common purpose. Stages must comply with the following rules:

e Every stage, except for the first and last stages, has a single predecessor and a single
SUCCeSSOr.

e Stages are always flown in sequential order.

e A stage may have more than one exit leg. E.g., a take off procedure may end at different
points depending on the selected take off direction.

e A stage may have more than one entry leg. E.g., a departure procedure, that follows a take-
off, can start at different positions.

e There will be a one-to-one correspondence between the final legs of a given stage and the
initial legs of the next one. Thus providing a seamless transition between stages. There are
constructs that enable the flight plan designer to provide this one-to-one correspondence if
necessary.

e Emergency flight plans are an exception to the previous rule. Since the first stage of an
emergency plan may have more than one initial leg the selected leg to enter the emergency
flight plan will be the one whose destination is closest to the current aircraft position.

e The correspondence between the exit legs of an stage and entry legs of the next stage is
determined by their position in the respective finalLegs and initialLegs lists.

o Allreachable legs must have either a next leg in the same stage or must appear in the finalLegs
list. In other words, we must make sure that the aircraft cannot reach a dead end.

Listing 4.6 shows what elements can be found inside a stage. It should be noted that we are
currently focusing on in-flight leg based navigation. Stages like Taxi, TakeOff and Land (see Table
4.3) can be seen as placeholders that will eventually contain whatever information is required by
the VAS to perform them in an automatic mode, once this capabilities become available.

Listing 4.6: XML description of flight plan stage.

<stage id="STID” type="Departure” manualOnly="false”>
<name>Name of the stage</name>
<description>Text describing the stage</description>

<legs> ... </legs> <!— Legs that belong to this stage —>

<initialLegs>LStart</initialLegs> <!— Space separated list of leg ids —>

<finalLegs>LEnd</finalLegs> <!— Space separated list of leg ids —>

<emergency> ... </emergency> <!— Emergency flight plans —>
</stage>

Each stage has an identifier, a name and an optional description. Its purpose is specified using
the type attribute. The manualOnly attribute will be set to true if automatic execution of this stage is
not possible, e.g., when taxiing. When a stage marked as such is encountered it is responsibility of
an on-ground human pilot to control the aircraft. Valid values for the type attribute can be found
in Table 4.3.

The legs element lists all the legs that are part of this stage. Additional elements are initialLegs
and finalLegs, which are white space separated lists indicating what are the sets of initial and final
legs of the stage respectively.

38 Chapter 4 - Flight Plan Specification Language

Table 4.3: Stage types

Taxi Move to or return from runway:.

TakeOff Legs in this stage will be used during a take off procedure.

Departure | These legs must be flown after taking off in order to reach
the starting point of the next stage.

EnRoute Navigate from an initial point to a destination point. It
may appear more than once: from departure to mission site,
from mission site to next mission site (if there is any) and
from mission site to landing site.

Mission Series of legs that will be flown during main mission
operations.
Arrival Legs to be flown after leaving the route and before initiating

an approach procedure.

Approach | Prepare for landing.

Land Landing operation.

Stages have an optional element indicating which emergency flight plans are to be carried
out when an emergency occurs. This emergency plans will lead to a near area where landing is
possible. If other emergency plans are specified at leg level, the latter ones will prevail.

4.1.6 Legs

A leg specifies the flight path to get to a given waypoint. In general, legs contain a destination
waypoint and a reference to the next leg. The dest element specifies which is the destination
waypoint. Next and previous legs are indicated respectively by the next and prev elements. Only
intersection legs, which mark decision points, are allowed to specify more than one next and
previous legs.

There are four different kinds of legs:

Basic legs: Specify leg primitives such as ‘Direct to a Fix’, “Track to a Fix’, etc.

Iterative legs: Allow for specifying repetitive sequences.

Intersection legs: Provide a junction point for legs which end at the same waypoint, or a
forking point where a decision on what leg to fly next can be made.

Parametric legs: Specify legs whose trajectory can be computed given the parameters of a
generating algorithm, e.g., a scan pattern.

Intersection legs differ from the rest in that they may be reached from more than one
predecessor and may lead to more than one successor. All legs may include an optional parameter
indicating what are the emergency flight plans available when a contingency occurs during the
execution of the leg.

4.1.6.1 Basic Legs

This section describes the basic legs available to the flight plan designer. They are referred to
as basic legs to differentiate them from control structures like iterative or intersection legs and

4.1 Base Flight Plan 39

parametric legs. All of them are based on already existing ones in RNAV. Its original name is
preserved. An schematic view of the different basic legs available is shown in Figure 4.2.

& ¢/¢

(a) Initial Fix (b) Track to a Fix

G G

(c) Direct to a Fix (d) Radius to a Fix

(e) Holding Pattern

Figure 4.2: Basic leg types available.

Initial Fix (IFLeg)

An Initial Fix determines an initial point. It is used in conjunction with another leg type (e.g.,
TF) to define a desired track.

Track to a Fix (TFLeg)

A Track to a Fix corresponds to a straight trajectory from waypoint to waypoint. Initial
waypoint is the destination waypoint of the previous leg. Listing 4.7 shows how a Track to a
Fix leg looks like in the XML flight plan description. The xsi:type attribute of the leg element
identifies the leg type. dest is the destination waypoint, which must be reached at the specified
speed.

Listing 4.7: XML description of Track to a Fix leg.
<leg id="L1" xsi:type="TFLeg”>

<dest>
<coordinates>41°17'38.38"N 2°4’35.82"”E</coordinates>
<fly —over>true</fly —over> <!— Fly—over waypoint —
<speed>60</speed> <!— Target speed after wp —>
</dest>
<next>L2</next> <!— Next leg id —>

</leg>

40 Chapter 4 - Flight Plan Specification Language

Direct to a Fix (DFLeg)

A Direct to a Fix is a path described by an aircraft’s track from an initial area direct to the next
waypoint, i.e. fly directly to the destination waypoint whatever the current position is.

Radius to a Fix (RFLeg)

A Radius to a Fix is defined as a constant radius circular path around a defined turn center
that terminates at a waypoint. It is characterized by its turn center and turn direction (Left or
Right).

Listing 4.8: Radius to a Fix leg.

<leg id="L2" xsi:type="RFLeg">
<dest> ... </dest>
<next>L3</next>
<center>41°17'38.38"N 2°5’27.49”E</center>
<direction>Right</direction>
</leg>

Holding Pattern

A Holding Pattern specifies a racetrack-like path. There are three kinds of holding patterns:
Hold to an Altitude (HALeg), Hold to a Fix (HFLeg) and Hold to a Condition (HCLeg). In all cases
the initial waypoint, the course (azimuth) of the holding pattern and the turn direction must be
specified. The distance between both turn centers (d1) and the diameter of the turn segments (d2)
are also needed. The three available types differ in how they are terminated. Hold to an Altitude
terminates when a given altitude is reached, therefore, the target altitude and the climb rate must
be indicated. A Hold to a Fix is used to define a holding pattern path, which terminates at the first
crossing of the hold waypoint after the holding entry procedure has been performed. The final
possible type is the Hold to a Condition (HCLeg). The holding pattern will be terminated after
a given number of iterations or when the condition result is set to 0 (regardless of the number of
iterations). Any other value will cause a repeated execution of the holding pattern.

In all cases, dest specifies the initial (and final) waypoint of the holding pattern and is located
just before the beginning of the first turn. course specifies the orientation of the holding pattern
in degrees. turnDir indicates whether the aircraft turns to the right or to the left. d1 indicates the
distance between the turning centers and must be equal or greater than 42, which is the diameter
of the turning segments.

Listing 4.9: Holding to a Fix leg.
<leg id="holding” xsi:type = “HFLeg"™

<dest> ... </dest> <!— Holding fix —>
<course>110</course> <!— Azimuth —>
<direction>Left</direction> <!— Turn direction —>
<d1>2000</d1> <!— Distance between turn centers —>
<d2>1600</d2> <!— Turn diameter —>

</leg>

Table 4.4 summarizes the required parameters for each basic leg type.

Data types for each one of the previous parameters are as shown in table 4.5:

4.1.6.2 lIterative Legs

Iterative legs are constructs that enable the UAS to exhibit repetitive behavior. An iterative leg
groups together a number of legs that will be repeatedly executed. These legs form the body of
the iterative leg. An iterative leg has a single entry (i.e. its body can be entered at a single leg),
and a single exit. These entry and exit points are identified in the flight plan using the first and

4.1 Base Flight Plan 41

Table 4.4: Parameters for basic leg types.

£ N
Bl1%|3 E : % E E § |5
SlE|E |2 8|8 |35 |8|=5(5]|¢8|5|5
IF |V &%]| -]-|-|-|-]-+ -1 -10
TF |V [& | x| -|-|-]-]1-1-1-]1-1-160
DE |V | ®|-|-|-1|-1|-]- -1 -1-160
RE |V |®|*x|VIV]-|-]-|-|-1-1-160
HAVI ¢ | X | VI-|VIVIVIVIVI-]-1]60
HE |V ¢ | *x | V] -|VIVIV]-]-]0]O]O
v/ | Required.
O | Optional.
¢ | Required except for last leg of stage.
% | Required only if within back and forth iterative leg.
Table 4.5: Data types.
Element Data type Element Data type
dest waypoint element d2 double, units as set in Locale
next leg id altitude double, ”
prev leg id climb rate double in altitude/distance
units
turn direction | enumerated (Left or Right) condition string id of condition
arc center coordinates (see waypoint) upper bound | positive integer
course double, azimuth in degrees emergency id of emergency flight plan
d1 double, units as set in Locale

last tags respectively. The number of iterations and, optionally, a condition can be specified to
determine when to leave the iterative leg. Every time the last leg is executed an iteration counter
is incremented. When the given count is reached or an specified condition is no longer satisfied
the leg will be abandoned proceeding to the next one.

Figure 4.3 shows the structure of an iterative leg. An inbound arrow represents the leg where
we come from and an outbound arrow the leg that is going to be executed after the iterative one.
Diagrams 4.3a and 4.3b only differ in whether the first and last legs are the same or not.

inbound outbound inbound
\ B1 / \ B1
B4 B2 B4 B2

B3 A/: B3

outbound
(a) Same first and last (b) Ditferent first and last

Figure 4.3: Iterative leg examples.

42 Chapter 4 - Flight Plan Specification Language

Listing 4.10 shows an XML description corresponding to 4.3a. There are attributes to specify
the leg id and an indication of its type. next contains the name of the leg to execute after this
one. The body element contains the list of all legs that form the body of the iterative leg. Since in
the example the first and last legs to be executed are the same, first and last have the same value.
upperBound indicates how many times the iterative leg will be executed. It can also be exited before
reaching this upper bound if its optional condition returns false.

Listing 4.10: XML description of an iterative leg.

<leg id="Loop” xsi:type="IterativeLeg”™>
<next>outbound</next>

<body>B1 B2 B3 B4</body> <!— Body of the loop —>

<first>Bl</first> <!— First body leg —

<last>Bl</last> <!— Last leg before exiting —>

<upperBound>5</upperBound> <!— Repeat five times —_—>

<cond>CondID</cond> <!— Condition that controls termination —>
</leg>

4.1.6.3 Intersection Legs

Intersection legs mark points where two or more different paths meet and where decisions on
what to do next can be made. All converging and diverging paths will respectively end and start
at an intersection leg. An intersection leg contains a list of next legs and a condition id that is
used to select one of them. The role of next element is to identify the default leg. If present, this
default leg will be taken unless the condition result says otherwise. If not present, the aircraft
waits performing a holding pattern until the condition outcome becomes known. The integer
value returned by the condition will be used as an index to select the next leg from the list of
specified possibilities. The use of intersection legs to specify iterative behavior is not allowed.

Figure 4.4: Intersection leg example.

Figure 4.4 illustrates a situation where two intersection legs are used. Listing 4.11 shows the
XML of the first one.

Listing 4.11: XML description of an intersection leg.

<leg id="Inter” xsi:type ="IntersectionLeg”>

<next>Altl</next> <!— Selection —

<nextList>Altl Alt2</nextList> <!-— Alternatives —>

<nextCond>CondId</nextCond> <!— Condition governing selection —>
</leg>

4.1.6.4 Parametric Legs

Previous language elements already provide a powerful mechanism for specifying complex
trajectories, but there will be situations where the specification of UAS maneuvers requires a
long list of legs, e.g., when performing an scanning pattern over a region of interest. To handle
these situations more efficiently parametric legs are introduced. With parametric legs the flight
path is automatically generated from a reduced number of inputs. If the mission goal is to
systematically explore a given area, instead of writing down the complete UAS trajectory, we
can provide the parameters that determine the geometry of the area and all the legs necessary for

4.1 Base Flight Plan 43

its exploration will be automatically generated. This approach has an important benefit: should
the area of interest change, we can easily recompute the whole UAS trajectory just by updating
some parameters.

As an example, Figure 4.5 shows some possible patterns for exploring a given area, as in 4.5a
and 4.5b, or a more specific point, as in 4.5c. In all these situations we can benefit from the use
of parametric legs. Eventually a library of different parametric legs will be available complete
enough so that a wide range of missions can be performed.

diml

| — (
) ~ U

(a) Basic scan pattern (b) Complex scan pattern

(c) Scan point pattern

Figure 4.5: Scanning patterns.

Listing 4.12 shows the XML description of the parametric leg seen in figure 4.5a. The dest,
dimensions and angle elements determine the geometry of a rectangular area. Separation indicates
the distance between each pass. The initial values given in the specification can be updated
during the flight by the UAS operator or an automated mission control service. When one of
these parameters changes the flight path will be recomputed.

Listing 4.12: XML description of a parametric leg.

<leg id="missleg” xsi:type="BasicScanLeg”>
<dest>
<coordinates>
41.5493424917977 1.77254310685181
</coordinates>
<speed>60</speed>
</dest>
<dim1>6000</dim1>
<dim2>5500</dim2>
<angle>80</angle>
<separation>800</separation>
</leg>

4.1.7 Conditions

There are several points in the flight plan where conditions can be found: namely in holding
patterns, iterative and intersection legs. For intersection legs, they are necessary in order to
determine what path to follow next. For the rest of legs they will let the Flight Plan Manager

44 Chapter 4 - Flight Plan Specification Language

(see Chapter 5) know when to leave the current leg and proceed to the next one.

From a flight plan perspective, conditions can be seen as <key, value> pairs, i.e. a string
id with an associated value. Each leg that depends on a condition contains the corresponding id
and the system will be able to obtain its associated value and act accordingly. When the value of
a condition is modified the Flight Plan Manager recomputes all affected waypoints. Changes to
the condition value may be performed by a human operator or other systems that interact with
the Flight Plan Manager service. No restrictions are put on what the conditions represent, they
could be based on elapsed flight time, on the completion of a given task, on some payload event
or parameter threshold, etc.

4.2 Emergency Flight Plans

All flights require a single main flight plan, however additional emergency flight plans may be
present. The main difference between the main flight plan and emergency plans is that while the
main plan includes the whole set of stages, emergency plans only cover the finishing stages of a
flight. The reason for not including all possible stages in an emergency plan is that they only get
executed when something goes wrong during the mission, i.e. when the aircraft is already flying.

Another important characteristic that differentiates them from the main plan is that a higher
degree of determinism is required. The inclusion of iterative and intersection legs in the main
flight plan makes the total execution time difficult to predict. To address this issue iterative legs
are not allowed inside emergency plans. Intersection legs are allowed as long as a default path is
set. If any holding patterns appear in an emergency plan their number of iterations must be set to
zero. These restrictions provide a bounded default path but still allow some degree of flexibility
for a on-ground operator to make final adjustments. In the specification of the emergency flight
plan time, estimations for the default and the more time consuming path will be provided.

As seen in Listing 4.13, the structure of an emergency flight plan is the same as in the main
flight plan. The defaultTime and maxTime attributes provide an estimation of the required time for
executing the default path and the longest one. Both values are in seconds. After a name and a
description comes the list of stages indicating how to proceed to reach the landing site of choice.
Another difference with regard to the main flight plan is that an emergency plan does not contain
emergency alternatives.

Listing 4.13: Emergency flight plan structure.

<EmergencyFP id="FPID” defaultTime="1800" maxTime="2700">
<name>Name of the flight plan</name>
<description>Text describing the flight plan</description>
<!— List of stages that form the flight plan follows —>
<stages> ... </stages>

</EmergencyFP>

Having multiple flight plans (the main one and emergency alternatives) in the same
document raises the question of what to do when one of the stages could be used in more than
one plan. In this case, it is not necessary to replicate the stage code at each occurrence within
the document. The first occurrence of the stage will contain its code and from there on it can be
referenced when needed using the targetld attribute. When doing so the intialLegs and finalLegs
lists must be restated, see Listing 4.14.

4.3 Flight Plan Updates 45

Listing 4.14: Reusing a previously defined stage.

<stage targetld="STID">
<initialLegs>entryl entry2</initialLegs>
<finalLegs>end</finalLegs>

</stage>

All rules defined in section 4.1.5 must hold in all places where the stage is used. Note
that while we really want to make sure that no dead ends can be reached this still allows us to
have unused entries to a given stage. This enables us to define some terminal operations in one
emergency plan and reuse them in another one using different entry points.

4.2.0.1 Order of Preference

An important consideration to bear in mind when specifying emergency plans for the different
main flight plan elements is that order is relevant. When defining the list of emergency plans
available for a given leg or stage, the first emergency plan appearing in the list is considered the
preferred one. This preference may be due, for instance, to the conditions of the landing site. It
may be the case though, that after detecting a contingency situation, the available flight time is not
sufficient to follow the preferred emergency route. That’s why we allow having more than one
emergency plan and, also, why being able to estimate the required flight time for executing each
emergency plan is needed.

Emergency alternatives can be defined at flight plan, stage or leg level, but only those set at
the lower level of the hierarchy will be considered. For example, if one emergency plan is set at
stage level and another one is set for a given leg within the stage, only the latter will be taken into
account. Emergency alternatives specified at the stage level will only be considered when flying
legs that do not specify other alternatives.

4.3 Flight Plan Updates

There are two types of modifications that can be applied to the flight plan. The first type consists
in setting a new value for a given condition. This can easily be done by sending a message to the
Flight Plan Manager that contains both the condition identifier and the new value. The second
type of modification consists in using an XML document that resembles the one used to specify
the flight plan and provides a description of the desired changes. This section discusses how this
second form of updates can be used to tailor a flight plan that has already been submitted to the
Flight Plan Manager.

Table 4.6 summarizes what kind of operations, shown on the first column, can be applied to
the different flight plan elements. The rationale behind the availability of the different operations
follows:

e For consistency locale settings defined in the initial flight plan cannot be changed. All
modifications to the flight plan must follow the original settings.

e Fixes, which are points of interest relevant to the mission, can be added at any time, but they
cannot be removed nor modified. Its removal is not allowed because some other part of the
flight plan could depend on them. A fix cannot be modified because if its attributes where
to change during the mission then it really should not be a fix in the first place.

e Emergency flight plans can be added and changed. Again we do not want to delete
something that could be referenced somewhere else. While emergency plans should not

46 Chapter 4 - Flight Plan Specification Language

suffer significant changes during the mission it is certainly conceivable for the UAS operator
to want to make some adjustments.

e The main plan can be changed for a better adaptation to the ongoing mission. It is assumed
that a significant effort has been put into the planning of the mission before it is actually
started. Replacing the main plan as an afterthought is not allowed.

e There is a fixed set of stages that must be executed in sequential order (see Section 4.1.5).
It is not possible to add or remove additional stages. Stages can change as a result of
modifications occurring at leg level.

¢ Inits simplest form, a change to a leg will consist in updating some of its parameters, e.g., the
coordinates of the destination waypoint. More complex situations may involve dynamically
adding and removing legs during the mission. This could occur when, for instance, we need
to add a new region of interest to a surveillance mission or remove one that does not need
further inspection.

Table 4.6: Supported flight plan updates.

Locale Setting | Fix | Emergency Plan | Main Plan | Stage | Leg
Change - - v v Vv V4
Add - Vv i _ _ v
Delete - - - - - N4

In order to keep the flight plan consistency all changes enclosed in an update message shall
be treated as an atomic transaction that either successfully completes or is entirely discarded.
Updates do not affect the leg being flown at the time the update message is processed. If the leg
being flown happens to be inside an iterative construct then changes will apply to its forthcoming
instantiations.

Listing 4.15 shows a simple example illustrating how updates are encoded. The example
states that changes are to be applied to elements contained in the MainFP section. The only change
specified in this message is to update the destination coordinates of a leg called LegA to be found
inside MyMissionStage stage.

Listing 4.15: Example of simple update message.

<fpu:FlightPlanUpdate xmlns:fpu="http://icarus.upc.es/schema/FlightPlanUpdate/1.1"’
xmlns:fp="http://icarus .upc.es/schema/FlightPlan /1.1’
xmlns:xsi="http://mwww.w3.org/2001/XMLSchema-instance ’
xsi:schemaLocation="http://icarus.upc.es/schema/FlightPlanUpdate/1.1 ">

<Change>
<MainFP targetld="FPID">
<stages>
<stage targetld="MyMissionStage ">
<legs>
<leg targetld="LegA” xsi:type="fp:DFLeg”>
<dest>
<coordinates>41.580203095 1.7369781057</coordinates>
</dest>
</leg>
</legs>
</stage>
</stages>
</MainFP>
</Change>
</fpu:FlightPlanUpdate>

4.3 Flight Plan Updates a7

Figures 4.6a and 4.6b show how an update such as the one in Listing 4.15 affects the flight
plan. After displacing the destination waypoint both the trajectory of LegA and LegB varies.

LegB ©

LegA LegB,
dest

dest

LegA

(a) Initial situation (b) After changing destination

(c) After adding a new leg

Figure 4.6: Applying updates to the flight plan.

A more complex example is shown in Listing 4.16, where a holding pattern is inserted
between LegA and LegB. First, the new leg (Holding) is added to the flight plan with LegB as its
destination. Afterwards, LegA is changed to reflect that its next leg is no longer LegB but the new
Holding leg. Figure 4.6c graphically shows the result of adding this new leg to our example.

Listing 4.16: Update message with leg insertion.

<fpu:FlightPlanUpdate xmlns:fpu="http://icarus.upc.es/schema/FlightPlanUpdate/1.1"
xmlns:fp="http://icarus .upc.es/schema/FlightPlan/1.1"’
xmlns:xsi="http://mwww.w3.org/2001/XMLSchema—instance ’
xsi:schemaLocation="http://icarus.upc.es/schema/FlightPlanUpdate/1.1">

<Add>
<MainFP targetld="FPID">
<stages>
<stage targetld="MyMissionStage ">
<legs>
<leg id="Holding” xsi:type = “HFLeg™>
<dest>
<coordinates>41.580203095 1.7369781057</coordinates>
</dest>
<next>LegB</next>
<course>47</course>
<d1>2000</d1>
<d2>1600</d2>
</leg>
</legs>
</stage>
</stages>
</MainFP>
</Add>
<Change>
<MainFP targetld="FPID">
<stages>
<stage targetld="MyMissionStage ">
<legs>
<leg targetld="LegA">
<next>holding</next>
</leg>
</legs>
</stage>
</stages>
</MainFP>

</Change>

48 Chapter 4 - Flight Plan Specification Language

</FlightPlan>

Changes to a flight plan can have an impact on its default and maximum expected execution
times. New values for these estimations should be included in the update messages if necessary.

4.4 Conclusion

In this chapter the proposed language for specifying UAS flight plans has been detailed. There
are several aspects that have been taken into account in its design. The proposed specification
language tries to overcome the limitations that dealing with large lists of waypoints in a dynamic
environment would impose. To do so, the language relies on legs as the main unit for describing
flight plans. Supported legs are borrowed from commercial aviation practices, in particular RNAYV,
so that the resulting flight plans are expressed in terms familiar to current airspace users. For a
better adaption to UAS needs, RNAYV legs are extended in a way that allows expressing repetition
and choice. Besides that, parametric legs can be used to generate complex maneuvers from a
reduced amount of inputs. An update mechanism that enables dynamic adaption to the changing
needs of an ongoing mission is also provided. Finally, the proposed language structures the
flight plan in different stages and enables the possibility of including alternatives for emergency
situations.

As aresult, we obtain a very flexible specification mechanism that can accommodate different
use cases. Used in a conservative way, the language can be used to specify a very linear and
predictable flight path. As we make use of more of the available constructs, such as iterative legs,
intersection legs, etc. the ability to adapt to mission circumstances increases, which may have the
side effect of making the flight path less predictable. Taken to the extreme, a highly autonomous
platform could be dynamically updating the flight plan based on built-in reactive and deliberative
capabilities. Since the flight plan is organized in different stages, it is perfectly possible to be very
conservative in some of them, e.g., during terminal procedures, and very aggressive in others,
e.g., during a mission stage taking place in segregated airspace. This approach could represent a
tirst step in reconciling UAS needs and Air Traffic Management requirements.

The Flight Plan Manager Service

Previous chapter described the language used for specifying flight plans. This chapter presents the
Flight Plan Manager (FPM), which is the service responsible for their processing and execution.
The FPM forms part of a wider ecosystem of services that, together, provide the UAS with all its
capabilities. The FPM collaborates with some of those services to perform the execution of the
flight plan.

The FPM can be seen as a translator of legs to waypoints. This translation process enables leg
based navigation on systems that only support waypoint navigation, which is what most COTS
flight control systems offer today. In order to avoid dependence on a specific product, the FPM
does not directly interact with the autopilot but with an intermediate service called the Virtual
Autopilot System (VAS). The VAS handles the details of the installed autopilot while offering
an standard interface to the rest of UAS services. Figure 5.1 shows the hierarchical relationship
between the FPM, the VAS and the onboard Flight Control System.

From the VAS or autopilot perspective, the FPM can be seen as a provider of waypoints to
fly to. From a mission related services perspective, the FPM is the service to talk to in order to
control the flight progress and make it adapt to the mission needs. There are multiple possibilities
of interaction with the FPM, the primary ones being setting condition values, sending updates to
flight plan elements and triggering execution of emergency plans.

Section 5.1 provides a general description of the FPM operation and its capabilities. Next, in
Section 5.2 we discuss how this service interacts with the VAS in order to execute the flight plan.
The rest of sections found in this chapter provide details on the internal workings of the service
and how it deals with different leg types and user commands.

49

50 Chapter 5 - The Flight Plan Manager Service

Flight Control
Plan Updates Commands

4 1

Flight Plan Manager Leg based navigation

¢

Virtual Autopilot System Waypoint based navigation

‘Flight Control System

Figure 5.1: Relationship between FPM, VAS and Flight Control System.

(a) Complete maneuver (b) Turn detail

Figure 5.2: Example showing generated waypoints for a scanning pattern.

5.1 Service Description

This section describes the functionality provided by the Flight Plan Manager. As previously
stated the main purpose of the Flight Plan Manager consists in processing the submitted flight
plan and generating the sequence of waypoints to be flown by the autopilot. As an example,
Figure 5.2 shows the waypoints that would be generated for executing a scanning pattern. This
maneuver appears in the flight plan as a single leg. During its processing the FPM computes all
the waypoints necessary to execute a series of TF legs connected by RF legs. Figure 5.2b shows the
detail of a turning maneuver which, as can be seen, is approximated by a sequence of waypoints.

The waypoint generation process can be affected by other services or a UAS operator in order
to dynamically adapt the flight to the mission needs. The main requests that must be handled by
the FPM are:

e Receive and initiate execution of a flight plan.

e Receive and process updates to the initial flight plan.

5.1 Service Description 51

Emergency FP Update

VN

4 N
OnCommand
Manual StandBy
Preempted
Start
H o Resume
Auto ause Paused [
Resume Stop

Stop

- J

Figure 5.3: Flight Plan Manager States.

e Assign new values to conditions that govern selection between alternative routes.
e Skip the leg under execution, i.e. immediately start execution of the next leg.

e Jump directly to a leg located further in the flight path, therefore ignoring some intermediate
legs.

e Pause flight plan execution while performing a holding pattern.

e Switch to an standby state, which is going to happen when the UAS is under manual control
or controlled by another UAS service.

e Resume operation after a pause or once control is regained.

o Trigger execution of an emergency plan.

All these requirements result in the FPM operating in the states shown in Figure 5.3. In the
figure, boxes represent possible states, solid dots represent the default initial ones and arrows
indicate transitions between them. There are two main operational states which correspond to the
FPM either having or not having control over the flight trajectory. Auto and Paused are the two
possible substates when the FPM is on command. Being in the Auto state means that waypoints
are generated in order to make progress in the execution of the flight plan. If the FPM transitions
to the Paused state a message is sent to the VAS to command it to perform a holding pattern
while waiting for further instructions. The execution of an emergency plan does not require an
additional state. When such a situation occurs the main plan is replaced by an emergency one.
The FPM processing the different control inputs and switching between these states requires it to
interact with the VAS in order to keep both synchronized.

Apart from the navigation commands sent to the VAS, there are other kinds of messages
also generated by the FPM. Other commands related to waypoint management include the FPM
requesting the VAS to clear all sent but pending waypoints. This is necessary, for instance, when
an emergency occurs. Other types of commands will allow the FPM to change the VAS operation
mode to request special operations such as taking-off or landing.

The FPM also generates several information flows that can be exploited by other services.
This data includes the position of the aircraft in flight plan terms, i.e. what is the current stage, leg
and other leg-related information such as current iteration of an iterative leg. It also periodically
publishes what are the emergency plans available, which may depend on the stage or leg being
flown, and their estimated duration. Finally, information relative to the current operating state of
the service is also provided.

52 Chapter 5 - The Flight Plan Manager Service

:GS :MMa ‘FPM :VAS

] UploadMission
UploadFlightPlan
MissionStart
FPStart
repeats J NewWp
CurrentLeg
CurrentStage
Taxi and Take-off omitted. B‘
ChangeVasState
VasState
repeats J CurrentWp
CurrentLeg
CurrentStage
NewWp

Figure 5.4: Navigation messages interchanged between FPM and VAS.

5.2 FPM and VAS Integration

This section describes the main interactions between the FPM and the VAS, which are graphically
depicted in Figure 5.4. Table 5.1 summarizes the messages interchanged between both services to
perform UAS navigation. In Figure 5.4, GS refers to the Ground Station and MMa to the Mission
Manager, a service that is going to be described in later chapters. For the purpose of this section,
suffice it to say that the MMa is responsible for coordinating the operation of the UAS payload
with the FPM in order to meet the mission goals. Note also that an arrow targeting a given service
does not imply other services not being able to receive the message as well.

UAS operation starts by uploading the mission and flight plan definitions to the Mission
Manager and the Flight Plan Manager. Mission and payload operation will evolve according to

5.3 Implementation of the Execution Engine 53

the various phases of the flight.

o UploadMission: This function provided by the MMa is used to load a new mission into this
service.

o UploadFlightPlan: This function is used to load a new flight plan into the FPM service.

As soon as the mission starts, the Flight Plan Manager is also started. At this point, the FPM
starts generating waypoints which are progressively sent to the VAS:

e MissionStart: Starts mission execution. The SCXML execution engine embedded in the MMa
gets started. The execution engine will be driven by events occurring in the system, e.g.,
notifications that execution of a given leg has started.

e FPStart: Start waypoint generation. The flight plan is traversed and waypoints are generated
for the legs encountered in the default path. The FPM needs to receive CurrentWp
notifications in order to make progress.

e NewWp: This event feeds the VAS with the mission waypoints.

Only a limited amount of waypoints is transferred at a time from the FPM to the VAS. This
waypoint window is used to ensure that the specified number of waypoints is always available
to the VAS. Limiting the amount of waypoints helps keeping communications cost penalties low
when old waypoints need to be discarded and replaced by new ones. Such situation may occur
due to changes in the flight plan. The initial set of waypoints is immediately transferred, then
additional waypoints are sent as the old ones get flown. The VAS informs the FPM and other
services by generating an event for each flown waypoint. At the same time, the FPM informs
other services (specially the mission management services) of those legs that have been flown.
Note that there is not a one to one relationship between waypoints and legs; sometimes a leg has
a single waypoint and sometimes a large set of waypoints needs to be flown to complete a leg.

o CurrentWp: Indicates the waypoint the system is flying to. This information is offered as an
event every time the autopilot switches from one waypoint to the next.

o CurrentLeg: As new waypoints are received, the FPM checks whether the leg being flown
also changes. If that’s the case, a CurrentLeg event is generated to inform all subscribed
services.

e CurrentStage: This event works in a similar way to CurrentLeg. In this case, notifications are
generated each time the UAS starts flying a new stage.

Waypoint navigation will only start after the VAS switches to the Navigation state.

o ChangeVasState: Sets the current VAS state.

e VasState: Indicates the actual state of the VAS. State is reported each time the VAS switches
from one state to another.

The waypoint generation process keeps going until the landing phase, which is directly
implemented by the VAS.

54 Chapter 5 - The Flight Plan Manager Service

Table 5.1: VAS-FPM interchanged messages during navigation states.

Protocol i . -
Primitives Name Composition Data Type Range Unit Description
Latitude Double 0 to 27 rad. radians
Longitude Double 0 to 27 rad. radians
Event NewWp Altitude Float UAS Range meters Submit new waypoint to fly to.
Speed Float UAS Speed m/s
Fly Over Boolean N/A N/A
Identifier USAL Id N/A N/A
uint (id-ref) No range N/A
Event CurrentWp Wp Identifier uint (id_leg) No range N/A Id of current target waypoint.
uint (id_stage) No range N/A
Event ChangeVasState Target State Enumerated N/A N/A Set a new VAS State.
Fléndl(tm VasState Current State Enumerated N/A N/A Notify the current VAS State
ven!
Function UploadMission Mission SCXML N/A N/A Load mission into MMa.
Function UploadFlightPlan Flight Plan XML N/A N/A Load flight plan into FPM.
Event MissionStart N/A N/A N/A N/A Start mission execution engine.
Event FPStart N/A N/A N/A N/A Start waypoint generation engine.
Event CurrentLeg Numid ulAnt N/A N/A Execution of given leg started.
LegId String N/A N/A
Event CurrentStage Numld ulAnt N/A N/A Execution of given stage started.
Stage Id String N/A N/A
Event UpdateFlightPlan Update XML N/A N/A Modify flight plan.
L. Cond Identifier String N/A N/A Set the indicated condition to
Event SetCondition) R
Value uint No Range N/A the given value.
Event Goto Leg Id String N/A N/A Fly directly to the given leg.
Event Skip N/A None N/A N/A Fly directly to next leg.
Event ClearWps None N/A N/A N/A Clear pending waypoints.
FlightPlan Stage Leg Waypoint
* * 1 * 1 1
PaN
0..1
Fix
IFLeg TFLeg DFLeg HFLeg RFLeg lterativeLeg IntersectionLeg BasicScanLeg

Figure 5.5: Flight plan main classes.

5.3 Implementation of the Execution Engine

The flight plan submitted to the FPM is parsed and translated to a internal representation. Figure
5.5 depicts the main classes used to model the flight plan. As seen in the figure, a flight plan
has a number of stages that, in turn, contain one or more legs each. These legs can take different
forms depending on its type, but all of them have a destination waypoint that can be named or
unnamed. If it is a named one, then it is associated to a certain fix.

Flight plan objects are organized forming a tree structure whose root node represents the
complete plan (see figure 5.6). Stages are located at the second level with legs following. At this
point, some degree of recursion may be found due to iterative legs, whose children legs form the
body of the iterative structure. This representation is traversed and waypoints are generated for
the encountered legs.

There are two main classes responsible for the FPM behavior, which are the Controller and the
WpGenerator. These two main classes operate following a producer-consumer model:

5.3 Implementation of the Execution Engine

55

FP Manager Service

e

o]]

oo

Waypoints

N

Unsent Current
Wp Wp

<>

J

Figure 5.6: Flight plan execution.

Virtual
Autopilot
Service

e The WpGenerator has the producer role and generates the flight plan waypoints, which are

stored in a queue.

e The Controller is responsible for handling interactions of the FPM with other services and

managing the states shown in Figure 5.3. One interaction involves taking waypoints from

the queue of generated waypoints, therefore, acting as the consumer and sending them to
the VAS.

These two classes operate in a decoupled manner: the WpGenerator will continually generate

waypoints ahead of time until the end of the flight plan is reached, the Controller, on the other
hand, uses a configurable window size to retrieve generated waypoints and send them to the VAS.
Each time a reached notification is received, the Controller takes a new waypoint and forwards it
to the VAS, thus always ensuring that the VAS holds a minimum amount of wayoints to fly to.
The Controller also maintains its own queue to keep track of sent but unflown waypoints. The
head of this queue contains the waypoint the VAS is heading to. All requests made to the FPM
go through the Controller who will operate on the internal classes to fulfill them (update the flight
plan, modify the value of a given condition, etc).

The additional classes required by the Controller and the WpGenerator can be grouped in three

categories:

e Flight Plan Classes: These maintain the internal representation of the submitted flight plan,

including classes for parsing the XML flight plan, initialize data structures and perform
updates.

Waypoint Generation: Each leg type can have one or more classes that can be used to
generate waypoints. Having multiple ways of generating waypoints for a single leg type
makes it possible to adapt the generation process to the characteristics of the installed
autopilot.

Control information: In order to support the different types of requests, each generated
waypoint has some extra information associated to it that enables the FPM to tell which leg
this waypoint belongs to, the iteration it was generated in, etc. This control data is used to
resume waypoint generation at the right point when a change in the flight plan invalidates
waypoints that have already been generated.

Figure 5.7 provides an overview of the internal classes that form part of the FPM. The

Controller accesses the flight plan object model only when it needs to be updated and lets all

56 Chapter 5 - The Flight Plan Manager Service

Flight Plan Waypoint Generation

Controller ' WpGenerator I Waypoint '
4' V4 /4'

ControlData I

Figure 5.7: FPM main classes.

the waypoint generation process be handled by the WpGenerator. Structural representation of
the flight plan is kept apart from waypoint generation classes following a separation of concerns
principle. Finally, each generated waypoint is tagged with some control information so that it can
be properly tracked when dynamic changes to the flight plan occur.

The Controller contains a main loop that, while in the Auto state, actively takes waypoints
from the generation queue and sends them to the VAS (see Listing 5.1). If the FPM state changes
to Paused or StandBy, it stops executing and waits until the Resume command is received. If we are
switching to the Paused state, a notification is sent to the VAS, so that a holding pattern is flown

while being in that state.

Listing 5.1: Controller main loop.

while (!done)

switch(state)

{
case Auto:
if (SentWpsCount < SENT-WINDOW)
Take waypoint from the generation queue;
Send waypoint to the VAS;
break;
case Paused:
{
Command VAS to perform holding pattern;
Wait for Resume message;
break;
case StandBy:
Wait for Resume message;
}

}

All requests sent to the FPM are managed in an event-driven fashion. Since some of them,
as it would be the case for flight plan updates, may cause invalidation and re-generation of
waypoints, thread synchronization mechanisms are used to keep both the generation and sent
queues in a consistent state.

5.4 Waypoint Generation 57

WpGenerator
WpGenLegFactory WpGenLeg
~
‘\ s ~ ’ W ﬂ
\ ~ < P s 1
\ ~ R . -, 7
\ ~ i 4
\ ~ N . . 4 1
\ \/\/ II
\ P ~
\ P 4 s ~ !
\\/ Z - \j II
TFLegWpGen RFLegWpGen

Figure 5.8: A factory class is used to obtain leg specitic waypoint generators.

5.4 Waypoint Generation

This section provides details on how the waypoint generation process takes place. To this end, an
iterative algorithm traverses the flight plan object model and computes waypoints for each of the
legs encountered in the current path. A simplified view of the main loop is shown in Listing 5.2.

Listing 5.2: Generator main loop.
current_leg = Get first leg from the flight plan;

while (!done)

Get generator object for current_leg;
Compute waypoints for current_leg;
Add waypoints to the generation queue;
current_leg = Get next leg;

}

The first step in the loop body gets the object that will be used to generate waypoints for
the current leg. Waypoints may be generated differently for each leg type, however, there is also
the possibility to use different approaches for a single leg type depending on the VAS (or rather
the underlying autopilot) capabilities. Therefore, the structural description of legs is separated
from the generation algorithms used on them. There are several reasons for that: (1) First, the
internal representation of the flight plan may be used in places where waypoint generation is not
concerned. (2) By doing so, we also adhere to the single responsibility principle, so that changes
to the generation process have no impact on the description classes. (3) Finally, this enables us to
easily select one generation method between the potential alternatives.

As shown in Figure 5.8, a factory class (WpGenLegFactory) is used to obtain the waypoint
generator (WpGenLeg derived classes) that suits the current leg. For instance, if a Track to a Fix
is passed to the factory object, it will return an object able to generate waypoints for the Track to
a Fix leg type. The actual type of the returned object will also depend on the capabilities of the
autopilot. All generation classes derive from a common abstract class (WpGenLeg) and share the
same interface.

Now the actual generation of waypoints can take place. As seen in Figure 5.9, some
parameters are required to perform this computation:

58 Chapter 5 - The Flight Plan Manager Service

FP Leg
Initial postion
Course Compute R Waypoint list
Speed&Altitude —> Waypoints " Course at destination
Aircraft parameters

Figure 5.9: Inputs and outputs to/from generator objects.

Initial position is the position of the aircraft at the beginning of current_leg.

Course is the path (angle) the aircraft is following when reaching the initial position.

Speed & Altitude are the estimated values the initial position is reached at.

Aircraft parameters are the aircraft’s bank angle and a correction factor to account for the
transition time required to reach it.

Although not yet considered in the current implementation of the FPM, other parameters,
such as wind speed, should also be taken into account. As a result of the computation, a list
of waypoints is obtained together with the predicted course at the last waypoint. The list of
waypoints is added to the waypoint queue and the new course is used in the computation of
the next leg.

The described approach facilitates addition of new kinds of legs. In order to add a new leg,
for instance a parametric one, we need to do the following steps:

e Implement a new description class that derives from Leg and overrides some of its methods.
This class contains the parameters that are necessary to determine the trajectory represented
by this leg.

¢ Implement one or more classes that derive from WpGenLeg and are able to generate the list of
waypoints for the new leg type. These classes need to override some of the methods found
in WpGenLeg so that the waypoint generator can transparently pass in the aircraft’s state
and receive the list of generated waypoints. The generation algorithm can take advantage
of other leg types and create the list of waypoints of the current leg combining results from
the others. In this way complex trajectories can be generated from basic legs.

e Modify WpGenLegFactory so that each time the new leg is found it is able to return the
appropriate object for the waypoint generation process.

Our flight specification language and waypoint generation process emphasizes lateral
navigation. The way in which vertical navigation takes places will depend on the underlying
UAS autopilot. During the waypoint generation process, when multiple waypoints are generated
from a given leg and the initial altitude differs from the altitude at the destination, altitude of
intermediate waypoints will linearly be increased or decreased according to the lateral distance
between each other.

While the generation process applies to all legs, there are some aspects that are particular to
each kind of leg. These particular aspects are discussed in the following sections.

5.4 Waypoint Generation 59

(a) Fly-Over followed by Track to a Fix

I/ l\\‘l
|
NOT
/

(c) FO+TF with Fly-By/Track to a Fix capable system

Figure 5.10: Waypoint generation depending on autopilot capabilities.

5.4.1 Basic Legs

The system currently supports five types of basic legs: Initial Fix, Track to a Fix, Direct to a
Fix, Radius to a Fix and holding patterns. In some cases, waypoint generation is trivial, as
an example, generating waypoints for an Initial Fix is accomplished by just adding the fix to
the queue of generated waypoints. In other cases, waypoint generation is far more complex.
Waypoint generation for a holding pattern takes into account that different entry procedures may
need to be executed depending on the direction the aircraft comes from.

Another aspect that adds complexity to the generation process is that, while waypoint based
navigation is a common denominator of the vast majority of UAS autopilots, it is unclear what
their capabilities are with regard to their ability to stick to a given track or to perform both fly-
by and fly-over waypoints. Figure 5.10 shows an example illustrating how these restrictions
can be overcome with smart waypoint generation techniques that have into account the system
capabilities. As a direct benefit from keeping structural leg data and waypoint computation
separated in different classes, we are able to pick the generation algorithm that best suits each
situation.

In Figure 5.10a, we see what should be the trajectory for performing a Track to a Fix having a
fly-over waypoint as the initial aircraft position. Once the starting waypoint has been over-flown,
the aircraft turns right in order to intercept the track. Figures 5.10b and 5.10c respectively show
how this same trajectory can be obtained with an autopilot system that only supports Direct to a
Fix navigation and with one that only implements fly-byes. In both cases, additional waypoints
are strategically added and others removed so that the intended trajectory is achieved. In Figure
5.10b, an extra waypoint is added so that the aircraft is forced to turn twice in order to reach
the destination. In Figure 5.10b, the two fly-over waypoints at the beginning and the end of the
trajectory are replaced by two fly-by ones at different positions. The details on how to carry out
the actual computations for these and other cases can be found in (Trillo, 2009).

60 Chapter 5 - The Flight Plan Manager Service

Figure 5.11: Standard holding entry procedures.

The replacement of the first waypoint in Figure 5.10b can actually be seen as taking the
destination of the previous leg and move it further along the aircraft’s course. Therefore, the
final waypoint of a given leg may actually depend on what happens in the next leg. To handle this
situation, the generation process for a given leg is performed in two steps:

1. Generate waypoints for the current leg regardless of what happens next.

2. Every time a new leg is added to the waypoint list, check if the destination of the previous
one needs to be corrected.

When computing waypoints for an RF leg, the system will approximate the turning
maneuver with a sequence of waypoints intersecting the desired path on those systems that
support fly-over. If the system makes use of fly-by waypoints, generated waypoints will be
slightly displaced from the desired trajectory. The distance between consecutive waypoints is
directly proportional to the aircraft’s turning radius which, in turn, depends on the aircraft’s speed
and its bank angle, the latter value being a constant that characterizes the aircraft.

Holding patterns are generated by concatenation of TF and RF legs and, in that respect, are
very similar to the way parametric legs are generated. Another aspect that differentiates HF legs
from the rest of basic legs is that they require an entry procedure that depends on the angle the
aircraft comes from. Figure 5.11 shows, in dashed lines, the three different entry procedures.
Different regions around the HF leg indicate the different directions the aircraft may come from.
Below each entry procedure is explained:

e A parallel entry is executed when the holding fix is approached from sector (a). After
reaching the holding fix, the aircraft parallels the inbound course, then turns back and
returns to the holding fix to continue the hold from there.

e A teardrop procedure applies when coming from sector sector (b). In this case the aircraft
flies to the holding fix, turns into the protected area and then turns in the direction of the
holding pattern to intercept the inbound holding course.

e In a direct entry procedure, which is executed when approaching the holding fix from
anywhere in sector (c), the aircraft flies directly to the holding fix and immediately turns
to follow the holding pattern.

5.4 Waypoint Generation 61

Queue of generated waypoints:
N

try:
Wp6 | Wp5 Wp(Wp3 }sz Wpl Queue entry

Waypoint: Context:
\‘/ - parent leg - speed
p{ | -latitude - altitude 2
- longitude - ... 0

Fake ctrl waypoint (T/F)?

Figure 5.12: Contents of waypoint queue entries.

5.4.2 lterative Legs

An iterative leg is a control structure used to specify that certain parts of the flight plan should be
repeatedly executed. By itself it does not determine any kind of trajectory. It just groups together
a number of legs that may be executed several times.

Dealing with iterative legs implies that the waypoint queues will contain waypoints coming
from different instantiations of a single leg. Moreover, iterative legs can be nested so that two
given waypoints may have been created for the same iteration of an inner leg but different
iterations of an outer one and vice versa. To be able to track what iterations a given waypoint,
and its corresponding leg instantiation, belong to, all waypoints are tagged with context data. As
seen on Figure 5.12, each enqueued waypoint contains all data directly related to the waypoint,
such as parent leg, latitude, longitude, etc. plus a stack of integers. Each time a new iterative
leg is entered an integer value of zero is added on top of the stack. This value is incremented at
each iteration and popped out when no more iterations are left. In the example shown in Figure
5.12, Wp3 belongs to a leg nested within two iterative legs and has been generated during the first
iteration of the inner one and the third iteration of the outer one.

Keeping track of the context information is crucial due to the iterative nature of the generation
process. As seen on Listing 5.2, flight plan legs are taken one at a time and it does not suffice to
say what leg should waypoints be generated for. It is mandatory to know what exact iterations of
enclosing iterative legs have already been processed and which are the current ones, otherwise,
we would not be able to tell when waypoint generation for a given iterative leg has finished.

Every time an iterative leg is encountered the waypoint generator checks whether we are
starting fresh or this is an additional iteration of an ongoing iterative leg. It also checks if the
upper bound has been reached and what is the outcome of a possible associated condition. The
iterative leg does not generate any waypoints by itself. If it is determined that a new iteration
needs to be generated the first leg of its body will be returned when the main generation loop asks
for the next leg. To leave a trace of the presence of the iterative leg in the waypoint queue, a fake
waypoint is added. Therefore, also shown in Figure 5.12, all queue entries are marked as being
fake or not fake. Fake waypoints are not sent to the autopilot.

5.4.3 Intersection Legs

Like iterative legs, intersection legs are also control structures that do not determine a trajectory.
The purpose of intersection legs is to enable the possibility to choose between different alternative
paths. When an intersection leg is found only waypoints belonging to the selected path are
generated. Should the value of its governing condition change, all waypoints found in the FPM’s
queues from that point onwards will be discarded and new waypoints will be generated starting

62 Chapter 5 - The Flight Plan Manager Service

at the intersection.

Each time an intersection leg is found, a fake waypoint is added to the waypoint queue. In
this way, when its condition changes it can easily be found. Once invalid waypoints have been
discarded, the current_leg variable that appears in Listing 5.2 is set to the intersection leg. We
also take advantage of the control information associated to each waypoint to be able to properly
restart the generation process.

If the intersection leg condition has not been given a value and there is no default leg,
waypoint generation is interrupted. This may result in the VAS running out of waypoints. If
this situation happens, once all waypoints have been consumed, the FPM will command the VAS
to perform a holding pattern until new waypoints become available.

5.4.4 Parametric Legs

Parametric legs are used to generate complex paths, or paths that would otherwise require a large
number of legs, from a reduced number of input parameters. While the available number of
parametric legs is expected to steadily grow so that a wide range of mission can be supported, an
eight pattern leg and a scan leg that covers a rectangular area have already been implemented.
Both leg types are put to use in Chapter 8 to illustrate how the FPM and the MMa work together
to carry out a hotspot detection mission.

When generating waypoints for an eight pattern, TF legs and RF legs are combined to
respectively perform the straight and turning parts of the maneuver. The same approach is
followed for the rectangular area scanning pattern. In this case, prior to waypoint generation,
the area of interest that will be covered needs to be computed. Then, using TF and RF legs as
the construction elements, all passes over the area are generated with the separation distance
indicated in the definition of the leg. To improve its flexibility an additional parameter can be
used to set an arbitrary waypoint within the area of interest as the starting point of the scan
procedure. In the example shown in Chapter 8 we take advantage of this feature to be able to
stop its execution, do something else, and then come back and continue where the scanning was
interrupted.

Making use of other basic legs for generating waypoints has the added benefit that all special
processing related to overcoming autopilot limitations is transparently done.

5.5 Dynamic Flight Management

This section summarizes the most relevant details related to the implementation of flight
management features that enable more dynamic control over the flight path. Such features include
skipping legs, managing updates and executing emergency procedures.

5.5.1 Skipping Legs

The FPM supports two ways to skip parts of the flight plan: a Skip leg command to ignore the rest
of the current leg and a Goto command that skips any number of legs and directly jumps to the
indicated one. The former being just a special case of the latter, both commands are implemented
in the same way.

While, at first glance, it may seem that discarding all intermediate waypoints suffices to
implement this feature, in reality we cannot guarantee that waypoints following the destination
of the jump are still valid. A clear example of that is when jumping directly into a holding pattern,

5.5 Dynamic Flight Management 63

whose entry procedure depends on the direction the aircraft comes from.

To implement the Skip and Goto commands we first locate the destination leg in the FPM’s
queues. Once located we extract the context data that is needed for properly setting up the restart
point. A temporary DF leg is created with the Goto destination as its next one. This new leg,
together with the context information, is used to restart waypoint generation once all the pending
waypoints have been removed from the queues and from the VAS.

5.5.2 Managing Flight Plan Updates

The hardest part of a flight plan update is to actually process the update message and make
the internal representation of the flight plan reflect those changes. In the best of cases, these
updates will only modify some attributes of one or more legs without really affecting the flight
plan structure. This kind of updates are already supported for all available leg types and already
provide a powerful means to adapt the UAS path to the mission needs. Consider, for instance, a
situation where the size of an area under inspection changes, or where the position of a particular
point of interest is unknown prior to the execution of the mission.

Support for more aggressive updates that enable legs to be dynamically added and removed
from the flight plan is also planned and the form these kind of updates will take has already been
presented in Chapter 4. The main difficulty for supporting them lies in the fact that the flight plan
must be checked for consistency when changes are applied.

Once the structural representation of the flight plan reflects submitted changes, the way to
proceed with regard to the waypoint generation process is not different from what happens when
the value of a given condition is modified. If no waypoints have been generated yet for the affected
legs, or if they have already been flown, waypoint generation can continue without requiring any
special action. If there are pending waypoints in the FPM’s queues that belong to some of the legs
involved in the update, these waypoints need to be discarded, with the corresponding notification
to the VAS if they have already been sent. The generation process needs then to restart at the point
where the oldest discarded waypoint was found. Therefore, the process for restarting waypoint
generation consists in first, locating the updated leg whose waypoints are closest to the head of
the waypoint queue, and then, having identified this leg, changing current_leg in the generation
loop. Context data, that can be extracted from the waypoints in the queue, also needs to be taken
into account.

5.5.3 Loosing and Regaining Navigation Control

The method for the FPM to resume navigation control when returning from the StandBy state
will depend on the circumstances that caused control to be taken away from the service. If
navigation control was taken away for performing an emergency maneuver to avoid collision
with an obstacle, it may not be a good idea to return to the position where the obstacle was found.
The situation is completely different if the obstacle was a moving object or an onground pilot
just momentarily switched to manual control to observe an area not covered by the flight plan.
The FPM will not know what really happened during the period navigation was not under its
control. For this reason, it will implement three strategies for continuing its operation. The Resume
command will contain a parameter to select which one should take place. The three possibilities
consist in:

e Fly back to the last flown waypoint before the FPM was interrupted.
e Fly back to the position where the aircraft was at the moment the interruption occurred.

¢ Fly to the waypoint the aircraft was heading to when the interruption occurred.

64 Chapter 5 - The Flight Plan Manager Service

Figure 5.13: Maneuvers for resuming flight at a given point.

Waypoint generation for a given leg depends on the previous one. We need to know what
speed, altitude and course the leg is reached at. In other words, if these parameters vary, the
actual waypoints resulting from the generation process for a given leg may also vary. This means
that, when the FPM tells the autopilot to fly to a given waypoint, the speed, altitude and course
conditions that where in place when the waypoint was generated must be reproduced. To be able
to do so, all these parameters are stored within each generated waypoint. An entry maneuver, that
may consist in a smooth turn or a more complex holding-like entry procedure, will automatically
be generated to ensure that the aircraft reaches the waypoint with the appropriate course. Figure
5.13 displays how a particular point should be reached depending on the initial aircraft position.

If none of the previous methods is satisfactory, a Goto command can always be issued in order
to resume execution at a given forthcoming leg.

5.5.4 Execution of Emergency Plans

The FPM has been designed so that there is no difference between flying the main flight plan or
an emergency alternative. Legs are treated the same way and the waypoint generation process is
the same. The only time when some special actions are required is during the transition phase.

The first step consists in determining what emergency plan needs to be executed. Although
the FPM stores, provides information, and manages emergency flight plans, it is not responsible
for deciding what emergency plan needs to be executed and when it needs to be executed. This
responsibility belongs to the Contingency Manager, that will trigger an event whose parameters
will identify the selected emergency plan.

Figure 5.14 shows how the CM obtains the flight time duration of available emergency plans
for the current flight phase. When the CM detects a hazardous situation, the MMa gets informed.
The MMa may then reconfigure payload operation, for example, in order to maximize battery life.
After that, the CM selects the emergency plan and this decision is notified to the FPM.

Once the emergency alternative is known, the entry point to the emergency alternative is
computed. This computation is based on distance and the entry point which is closest to the
current position will be selected.

At this point, the current flight plan can be replaced by the emergency one and its execution
can start. This implies discarding all waypoints that do not belong to the emergency plan in
all queues and in the VAS and, afterwards, generate a DF leg that takes the aircraft to the selected
entry point and continue from there. This last step can be performed making use of the previously
discussed Goto command.

5.6 Conclusion 65

‘MMa FPM VAS
| | | |

ETA obtained at regular T

I_ H

intervals and on demand.

EstimatedTimes PPt

HazardousContinger

SwitchOff

HazardousContinger

ClearWps

repeats J NewWp

Figure 5.14: FPM role in managing contingencies.

5.6 Conclusion

This chapter has provided the main design and implementation details of the Flight Plan Manager.
The main goal of the FPM is to extend the capabilities of UAS autopilots and enable the execution
of flight plans expressed in our specification language. It also implements the logic that enables
the flight plan to be dynamically updated and provides operations to control the UAS flight.

FPM capabilities can be compared to the flight planning functionality of a Flight Management
System (see Section 2.2.2). The FPM also plays a role in navigation, since it generates the
waypoints the aircraft must fly to, but it is responsibility of the autopilot to determine the current
UAS position and implement the guidance and lower level control loops. Other functions that a
FMS may implement include trajectory prediction and performance. It would be interesting to see
how far we can go trying to implement similar capabilities, having into account that the FPM is
intended to operate on top of a commercial autopilot, but this problem is not tackled in this thesis.

Our current implementation of the FPM should be seen as a proof-of-concept prototype. One
of the aspects that needs to be addressed in a production version is guaranteeing flyability, i.e.,
ensure that the UAS platform is able to fly the intended maneuvers considering speed, altitude,
turning radius, climb rates, etc. Another element that needs to be addressed is the inclusion of
wind effects in the waypoint generation process.

Flight Plan Experimental Results

This chapter gives the results obtained in the application of the flight plan specification and
execution methods to a hypothetical Radio Navigation Aids (navaids) flight inspection mission.
The use of UAS for this kind of application has been proposed in (Ramirez ef al. , 2009). The
experimental results have been obtained in the simulation environment described in Section 6.3.

6.1 Navaids Flight Inspection Mission

The current Air Transportation System relies on the use of Radio Navigation Aids to provide the
capability to fly, in a safe manner, with unfavorable visibility conditions. These navaids are subject
to inspections that verify the adequacy of the radio-frequency emission to the standard. While
some of these inspections could be conducted on ground, for some of the inspected magnitudes
there is a set of measurements that shall be obtained in air by means of a flight inspection. Flight
inspection has been conducted for many decades in many countries. This experience is reflected
in different standards (ICAO, 2000; FAA, 2005) which compile magnitudes, flight procedures,
criteria for accepting the inspection etc.

A requirement for the flight inspection is to minimize the impact on the rest of airspace users.
This is reflected in the interruption of some procedures if another aircraft enters into the inspection
area. Nowadays, flight inspection is being conducted with general purpose aircrafts conveniently
instrumented and with skilled personnel that perform the flight inspection on board. The ability
to interrupt and resume the inspection procedures is provided by the cabin crew.

The current approach satisfies the aviation authorities and the Air Navigation Service
Providers (ANSPs) technical and operational requirements but it is expensive. The flight

67

68 Chapter 6 - Flight Plan Experimental Results

.-rf'giwq:ﬁm_mmwﬁ -
T sty

1
-1\

“LEHC. {Ac:’i’
_.'.a“‘,"“ir‘

i

Huesca

Figure 6.1: VOR navaid at Huesca, Spain.

inspection community has proposed many improvements to reduce costs (Qvist, 2006;
Wede, 2006), e.g., by reducing the flight time of the flight inspector sitting him on ground and
providing the data through telecoms. J. Ramirez et al. propose going further and make use of
UAS (Ramirez et al. , 2009).

By removing the flight crew, the source of agility in the aircraft is also removed and this
introduces a new requirement to the flight inspection platform: The operational agility of the UAS
flight inspection platform shall be equivalent to the conventional flight inspection platform.

During the flight inspection of a navaid, different measurements of the signal must be taken.
These measurements shall be performed following procedures as detailed in ICAO doc 8071
(ICAO, 2000). The final definition of these procedures depends both on the generic procedures
for the navaid type (VOR, DME, ILS...) and on the operations supported by the system inspected
(e.g., SID or STAR of an airport).

The flight inspection is performed coordinately with the ANSP who provides navigation
services with the inspected navaid. For safety reasons, during flight inspections on small
aerodromes, the air traffic is restricted except for the flight inspection aircraft. In big airports,
where restricting traffic is extremely expensive, the flight inspection aircrafts are inserted in
normal air traffic. In both cases, the ATC of the region/aerodrome where the flight inspection
takes place is aware of the special operations required for the flight inspections and, in some cases
(e.g., in crowded airports), the ATC is replaced temporarily by an ATC specially trained for flight
inspection. The flight inspection procedures detailed in the standards require the acquisition of
some physical magnitudes in specific trajectories (e.g., an orbit around the navaid, a straight line
over the facility...). The overall set of trajectories and measurements for a specific VOR navaid is
shown in Figure 6.1. This figure shows the complexity of the simulated flight inspection mission
whose results are given in the following sections. This mission corresponds to a real facility
located in Huesca, Spain.

Each of these trajectories needs an entire set of data without errors for evaluating its adequacy
to the standards. The completeness and correctness of these sets could be altered by measurement
errors or by modifications of the trajectory imposed by ATC for solving air traffic conflicts.

There are different sources for the errors observed in the flight inspection. These errors could
be originated by the navaid itself, in which case the facility should be turned off, or by external
causes (e.g., an aircraft crossing the runway and intercepting the ILS signal), in which case the

6.1 Navaids Flight Inspection Mission 69

measurement should be repeated to verify its correctness. For economy reasons this repetition is
performed only over the segment affected by the suspected data.

The envisaged scenario for UAS integration contemplates the division of the system into two
segments: the aerial vehicle and the ground station. The ground station, dedicated to the control
of the aircraft, is different from the ATC positions dedicated to air traffic. The ground segment
shall stay in contact with ATC and issue the commands necessary for making UAS honor the ATC
orders.

During a flight inspection ATCs are aware of the kind of mission being conducted. Specially
trained ATCs are designated for the purpose and will usually minimize the impact of ATC
coordination in the flight inspection operation. Nevertheless the combination of flight inspection
and airspace integration could oblige ATC to impose some alterations on trajectories for conflict
avoidance purposes. The usual means are:

e Speed variation
e Altitude variation
e Direction variation

e Airspace temporal use denial

Usually ATC use speed and altitude variations for conflict resolution. The flight inspection
measurements remain valid with speed variations but the change in the altitude invalidates the
flight inspection data (ICAO, 2000; FAA, 2007). In crowded scenarios ATC could use direction
variation (also known as ATC vectors). In this case the flight inspection measurements are no
longer valid, as they are captured outside of the required trajectories. The trajectories shall be
flown again in order to finish the inspection mission. The denial of airspace use is extremely rare.
In this case, the mission is aborted and the flight inspection remains unfinished until the airspace
is reopened.

The previous ATC orders can be analyzed by its mission implications and the possibility of
interrupting the mission:

e Mission termination
e Mission suspension

e Repetition of one or more legs

Mission termination could be motivated by several causes. The inspected navaid being
clearly out of service is the most evident, but can also respond to ATM or civil/military
interoperability needs. If the mission is aborted, a return to home has to be performed.

Mission suspension may be required when another aircraft is allowed to enter the zone where
the inspection is conducted, creating a conflict with the flight inspection aircraft. In this case the
flight inspection is temporarily interrupted to avoid incidents in mid air until the intruder aircraft
has finished its operation. Afterwards the flight inspection operation is resumed.

Repetition of one or more legs obeys to flight inspection needs. If a measurement is suspected
to be erroneous the flight is repeated to disambiguate the origin of the error.

This alteration of the mission motivates dynamic modifications on the preflight established
mission duration that shall be controlled in order to not surpass the autonomy of the aircraft.
This unexpected nature of the different interruptions affecting flight inspection missions adds an

70 Chapter 6 - Flight Plan Experimental Results

additional interruption to be considered: the lack of fuel. Lack of fuel shall be managed as a
mission termination.

Next section describes the procedures that need to be flown during the flight inspection of
the aforementioned VOR navaid located in Huesca, Spain. This procedures are translated to the
proposed flight plan specification language and control constructs are added to cope with the
agility requirements.

6.2 Inspection Procedures

In the previous section the main aspects of the flight inspection application have been introduced.
Now, the specific procedures for the periodic flight inspection of the VOR/DME located in
Huesca, Spain are provided.

In order to fulfill the mission requirements the system must be able to:

e Fly all procedures as well as or better than conventional flight inspection systems.
e Repeat any procedure or part of it if the results are not satisfactory.

o Interrupt the pre-established flight plan according to previously exposed interruption
causes.

e Continue the flight inspection procedures where they were interrupted according to
efficiency issues.

6.2.1 Procedures for a periodic flight inspection of VOR/DME navaid at Huesca,
Spain

There are seven procedures that have to be flown in order to perform a periodic flight inspection
of a VOR/DME navaid (ICAO, 2000; FAA, 2007; NATO, 2000). These procedures can be described
in terms of three of the basic legs developed in Chapter 4: Direct to a Fix (DF), Track to a Fix (TF)
and Radius to a Fix (RF). Table 6.1 lists all periodic flight inspection procedures with indications
of the legs that are going to be used.

Reference radial and orbital procedures have to be flown at the same altitude. Due to the
terrain orography in the vicinity of Huesca airport the minimum height to fly these procedures
safely is 1410 meters.

Table 6.1: Procedures for a periodic flight inspection

Procedure number Procedure type Type of Leg used
VOR-REF-1 Reference Radial Flight TF
VOR-REF-2 Reference Radial Flight TF
VOR-ORB-1 Orbital Flight RF
VOR-ORB-2 Orbital Flight RF

VOR-RAD Radial Flight TF
VOR-APP Approaches TF, RF
VOR-SIDSTAR SID, STARS TF, DF

6.2 Inspection Procedures 71

Procedure Start | Finish AGL Height
Horitzontal Flight to Aid | 20 NM Aid 1500 ft or secure minimum height

<leg id="VOR-REF-1-A" xsi:type="fp:TFLeg">
<dest>
<coordinates>
41.818148 —0.659859
</coordinates>
: <fly —over>true</fly —over>
b i <altitude>2000</altitude>
o <speed>200</speed>
Fix </dest>
<next>VOR-REF-1-B</next>
1 </leg>
Calofatar <leg id="VOR-REF—1-B” xsi:type="fp:TFLeg”>
™ <dest>
e e <coordinates>
M e Fix 42.073333 —0.318888
5 </coordinates>
i ; <fly —over>true</fly —over>
— <altitude>2000</altitude>
- ; : <speed>200</speed>
3 s : </dest>
<next>VOR-VOID-1-A</next>
</leg>

Reference Radial Flight

i

Magnat ¢ Nota
Refeeace
Radial

Main
view

Figure 6.2: Reference Radial Flight.

The procedure order is determined by two factors. VOR-REF-1 and VOR-REF-2 have to be
flown first because they test vital parameters. The other procedures are ordered according to
efficiency. The lesser flight time the better.

6.2.1.1 Reference Radial Flight (VOR-REF-1 and VOR-REF-2)

This procedure consists in flying a VOR navaid radial at constant altitude. The main objective
of this procedure is comparing vital parameters (such as magnetic deviation) with the record
of previous inspections. It is flown twice because the VOR navaid has two transmitters due
to redundancy aspects. Both of them transmit at the same band, hence, they have to be tested
separately.

Figure 6.2 shows a table with the parameters that characterize the Radial Flight procedure.
Also in the figure, we can graphically see how this procedure is mainly defined by two waypoints
named Start Calibration Fix and Finish Calibration Fix. In order to specify this procedure two Track
to a Fix legs are used, one per each waypoint. The first TF leg places the UAS at the beginning
of the procedure. Then, the second one makes the UAS execute the procedure. The encoding of
these legs using our flight plan specification language is also shown in Figure 6.2.

6.2.1.2 Orbital Flight 360 Degrees (VOR-ORB-1 and VOR-ORB- 2)

This procedure is an orbital flight with constant radius. The center of the orbit is the navaid
position. Its main objective is to determine if the signal coverage is between the established limits.
Other parameters are also tested. For the same reasons as in the Reference Radial Flight, this
procedure also needs to be flown twice.

The Orbital procedure is characterized by the parameters shown in Figure 6.3. This procedure
is defined by three waypoints: The Calibration Start, the End of Calibration after a whole orbit, plus

72 Chapter 6 - Flight Plan Experimental Results

Procedure | Start Finish Center | AGL Height
Orbital Flight | Anywhere | Overlapping area | Aid | Same as Reference
in the orbit | between 5-20 degrees Radial
from the initial point

<leg id="VOR-VOID—2-A" xsi:type="fp:DFLeg”>
<dest>
<coordinates>
42.217328 —0.431756
</coordinates>
</dest>
<next>VOR-ORB-1-A</next>
; ; </leg>
Orbital Flight 360° <leggid=”VOR—ORB—1—A” xsi:type="fp:RFLeg”>
T Magnetic <dest>
orth <coordinates>
42.157184 —0.125393
</coordinates>
</dest>
<next>VOR-ORB-1-B</next>
<center>42.0733331 —0.318888</center>
<direction>Right</direction>
Calibration </leg>
Start: T ETesmese L0 <leg id="VOR-ORB-1-B” xsi:type="fp:RFLeg”>
<dest>
<coordinates>
41.927604 —0.210376
</coordinates>
</dest>
Plan <next>VOR-ORB-1-C</next>
View <center>42.0733331 —0.318888</center>
<direction>Right</direction>
</leg>
<leg id="VOR-ORB-1-C” xsi:type="fp:RFLeg”>

End of calibration
after a whole orbit
and overlap

</leg>
<leg id="VOR-ORB-1-D” xsi:type="fp:RFLeg”>

</leg>

Figure 6.3: Reference Orbital Flight.

a 5° to 20° overlap, and the VOR as center of the orbit. To specify this procedure the required
flight path is broken down into several Radius to a Fix legs. By doing so, we limit the extend that
needs to be flown more than once in case the procedure cannot be completed in a single pass due
to interruptions. An intermediate DF leg connects this procedure with the previous one.

6.2.1.3 Radial Flights (VOR-RAD)

In order to ensure the correct reception of VOR signal, all the VOR radials that are used to define
airways shall be tested by flying them 100 ft below the specified altitude (terminal radial) or at the
minimum secure altitude (en-route radial).

Figure 6.4 shows an airway (W-855) based on a terminal radial. This procedure is similar
to the Reference Radial Flight procedure (VOR-REF-1, VOR-REF-2). The procedure is defined by
two waypoints, one for the start point and one for the end point. First, a DF places the UAS at the
beginning of the procedure. Then, the procedure gets executed using a TE.

6.2 Inspection Procedures 73

Procedure Start Finish Height
Radial Flight | Published Aid Minimum secure
(terminal radial) | maximum range altitude
Radial Flight (en- | As published at | As published at AIP | 100 ft below
route radial) AIP published
altitude
<leg id="VOR-VOID-3-B” xsi:type="fp:TFLeg”>
<dest>
F"F‘,":!e POSSY <coordinates>
775 105 420341N 42.061388 —0.157222
"}'11‘ {}DGOQE&E </ coordinates>
/ (0] 15 <fly —over>true</fly—over>
\ 99, Q <altitude>1410</altitude>
< 21 ‘E?B”A i </dest>
W 855 :,r? <next>VOR-RAD-1-A</next>
= </leg>
4500 F‘{ ?GS <le%1 i(i:”VOR—RAD—l—A" xsi:type="fp:TFLeg">
HUESCA, <dest>
<coordinates>
EE%?%QME‘I-IQES 42.073333 —0.318888
':)'“-"?1'\] </coordinates>
'I‘_\;.I‘i'(}r'l',.ll.', <fly —over>true</fly —over>
WIS </dest>
<next>VOR-VOID—4-A</next>
</leg>

Figure 6.4: Radial flight example.

6.2.1.4 Approaches (VOR-APP)

An Instrument Approach Procedure (IAP) is a type of air navigation that allows pilots to land an
aircraft in reduced visibility or to reach visual conditions permitting a visual landing. In order to
ensure the correct reception of VOR signal in these procedures, periodic flight inspection includes
the flight of all approach procedures based in the inspected navaid.

All operations that conform an approach (see Figure 6.5) can be specified combining Track
to a Fix and Radius to a Fix leg types. Encoding of these procedures is similar to other examples
provided.

6.2.1.5 Standard Instrumental Departure (VOR-SIDSTAR)

Standard Instrument Departure (SID) routes, also known as Departure Procedures (DP) are
published flight procedures followed by aircraft on an IFR flight plan immediately after taking
off from an airport.

Figure 6.6 shows the specification for an Standard Instrumental Departure procedure. As it
can be seen, it has been specified combining Track to a Fix and DF to a Fix leg types.

A Standard Terminal Arrival Route (STAR) covers the phase of a flight that lies between the
top of descent from en-route flight and the final approach to a runway for landing. Such kind of
procedure could be specified in similar terms.

6.2.2 Flight plan structure

In the previous section different procedures for a flight inspection were presented and specified.
Since the inspection requirements demand supporting interruptions and restarts, some additional

74

Chapter 6 - Flight Plan Experimental Results

Procedure

Start

Finish

Height

Approach

As published at AIP

As published at AIP

As published at AIP

Figure 6.5: Approach example.

Procedure Start Finish Height
SID As published at AIP | As published at AIP | As published at AIP
<leg id="VOR-SID—1-A" xsi:type="fp:TFLeg"”>
<dest>
<coordinates>
42.151350 —0.439552
</coordinates>
12, <altitude>1310</altitude>
400 <speed>160</speed>
</dest>
<next>VOR-SID—1-B</next>
</leg>
<leg id="VOR-SID—1-B” xsi:type="fp:DFLeg”>
) <dest>
90‘\;,, K(,;.?:;FJE‘?‘E <coordinates>
T | g 42.071417 —0.482818
o </coordinates>
HUE1B <altitude>1410</altitude>
<speed>200</speed>
</dest>
<next>VOR-SID—1-C</next>
</leg>
<leg id="VOR-SID—1-C” xsi:type="fp:TFLeg"”>
<dest>
<coordinates>
42.073333 —0.318888
</coordinates>
</dest>
</leg>

Figure 6.6: SID example.

legs need to be added to the flight plan. In particular, iterative legs are added to group together
repeatable blocks of inspection legs. In addition to that, intersection legs are used to provide
alternative paths that lead to the execution of holding procedures. Figure 6.7 shows the resulting
organization of the flight plan.

6.3 Simulation Environment 75

Mission Procedure 1

~< ~~.
\\\\\
S

> ~.

RN
\\

= " Proc. 1 Leg 2 A s/’ Proc. 1leg3 N
A @>/'>¢>
|
1
\
\

\ Iterative Leg

N ———————

~.

1
\
\

Link Leg

Mission Procedure 2

~——

\ Iterative Leg

~.

1
\
\

Figure 6.7: Flight plan organization.

Each iterative leg contains one main path, with an inspection procedure divided into
consecutive legs, and an alternative path, with a Holding to a Condition leg. An intersection
leg at the beginning of each iterative leg allows selection between the main path, that executes the
inspection procedure, and the holding pattern. In this way the operator can switch from one to
the other.

To minimize the extend of the flight path that needs to be repeated when an interruption
occurs, the flight plan designer divides each procedure into smaller legs. Then, using the Goto
command, the operator has the ability to directly jump to the desired leg and proceed from there.

6.3 Simulation Environment

The simulation environment used for testing our flight plan specification language and its
execution engine is depicted in Figure 6.8. Boxes on top of the Network bar represent embarked
services. To perform the simulation only the Virtual Autopilot System (VAS) and the Flight
Plan Manager (FPM) are required. The aircraft behavior is simulated using the FlightGear flight
simulator (Olson, 2010), an open-source project licensed under the GNU General Public License.

Boxes below the network bar belong to the ground segment, these include a Ground Control
service to control the UAS operations and a Flight Tracking System that displays the UAS
trajectory in real time using Google Earth®.

For the purpose of the simulation, a Beechcraft B1I900D has been used. This is one of
the aircrafts available in FlightGear’s models database and is commonly used in inspection
operations. Figure 6.9 shows some of the simulation parameters. Experimentally it has been
determined that the bank angle used by this model for turning is 30 degrees. A roll factor of 14
seconds accounts for the time it takes to reach the bank angle. The simulation has been run without

76 Chapter 6 - Flight Plan Experimental Results

= | Virtual Flight
= | Autopilot Plan

System Manager
FlightGear

Network

Flight
Tracking

System ‘

Ground Control

Figure 6.8: Simulation environment.

Aircraft Beechcraft B1900D
Cruise speed 230 kt (425 km /hr)
Bank angle 30°
Roll factor 14s
Wind no wind
Fuel unlimited
Mission duration 1 h 30 m aprox.

Figure 6.9: Aircraft and simulation parameters.

wind and with unlimited fuel, so that the simulation time is not constrained by the aircraft’s
autonomy.

As discussed in Chapter 3, the VAS provides waypoint navigation capabilities and a number
of telemetry flows regarding the UAS position, attitude, autopilot status, etc. A critical feature
of the VAS is that it isolates the real autopilot from the rest of the system, thus enabling the
construction of systems that do not depend on a particular autopilot solution. Taking advantage
of this characteristic the underlying UAS autopilot can be replaced by a flight simulator.

The FPM receives a flight plan from the Ground Control station. It creates an internal
representation of the plan and uses it to dynamically generate waypoints. These waypoints feed
the VAS. When condition results or flight plan updates are received, the FPM recomputes all
affected waypoints. If invalidated waypoints have already been sent to the VAS, a message is
sent informing that they must be discarded.

The Ground Control station consists in a number of consoles that enable interaction with the
embarked services. This is the interface the UAS pilot interacts with. In practice, the human pilot
is being removed from the aircraft and placed on-ground. He/she will still interact with the ATC
authorities and remotely operate the aircraft but, since UAS maneuvers are highly automated, the
piloting will mainly consist in sending simple commands to the FPM.

6.4 Experimental Results 77

VOR-ORB-1/2

VOR-REF-1

Figure 6.10: Flight path of complete inspection.

The Flight Tracking System consists in a service that continuously listens to flight data from
the VAS and the FPM. This data is passed on to a web server. To display the mission evolution
Google Earth® is used. This virtual globe application continually queries the UAS position to
the web server and shows its position and trajectory in real time. Images obtained from Google
Earth® provide the basis for the figures used to present the simulation results.

6.4 Experimental Results

Section 6.2 discusses the different procedures required to perform our example flight inspection
and shows how these procedures are coded using the XML based specification language presented
in Chapter 4. This section shows the results obtained in the execution of the flight inspection using
our simulation environment.

The first test consists in a complete execution of the inspection procedures. The resulting
flight is displayed in Figure 6.10. Labeled arrows indicate which procedure different parts of the
flight belong to. This is a long flight plan and the simulation confirms that it was well defined and
executed.

Next examples relate to the achievement of the agility requirements of the inspection mission.
In other words, they show how the UAS is able to interrupt and later on correctly resume the flight

78 Chapter 6 - Flight Plan Experimental Results

o]
ATC Interrupt Order

tz"'ﬁt{:rra Point
VOR-RER1 N\
%

.
ek

(a) Aircraft trajectory:.

(2) Goto Comm.

I —

ATC Int.

—
——
—_—
—— —
——
—

)
—

P\ (2) First Iteration Vil
\ T e 1
i /
N @eecondveraton 7
(b) Execution steps.
Figure 6.11: ATC interruption.
inspection.

Figure 6.4 shows how the system responds to a situation where an ATC makes a request like:
“Fly to X point and hold until further notice”. The flight trajectory in Figure 6.11a is numbered to
indicate the chronological order of the different steps of the maneuver. Small downward arrows
mark some relevant points. In ”1” the UAS is initiating the flight of the VOR-REF-1 procedure
(Reference Radial Flight). At the ATC Interrupt Order arrow an interruption is requested and the
vehicle leaves its trajectory to fly the agreed holding racetrack (step ”2”). The position of this
holding procedure (Agreed HF arrow) can be planned with ATC before the mission execution or
decided in real time sending a flight plan update to the FPM. Once the ATC decides that the
inspection mission can continue, the UAS returns to the beginning of the leg that was interrupted
(step ”3”) to perform its execution and then proceed with the rest of the flight (step 74”).

Figure 6.11b shows how the behavior displayed in Figure 6.4 is supported at the flight

6.5 Conclusion 79

plan level. Solid arrows represent the actual legs being flown, dashed arrows indicate jumps
or transitions with no associated physical trajectory. The numbering appearing in the figure
corresponds to the phases of Figure 6.4. ”1” represents the leg being flown when the interrupt
request is received. Two steps need to be performed by the on-ground operator to command the
UAS to execute the holding pattern (step "2”).

1. Set a condition result so that the chosen path at the next iteration corresponds to the holding
pattern (HC).

2. Issue a Goto command to jump directly to the end of the iterative leg.

When ATC decides that the inspection can continue, the same steps are repeated but with a
different purpose (step ”3”). Now condition results are set for leaving the holding pattern and
ensure the branch containing the inspection legs is taken.

Figure 6.4 displays a situation where a leg needs to be repeated due to a deviation of the
planned trajectory. This trajectory error has been manually induced for the purpose of the
simulation. As the figure shows, initially the UAS is flying to intercept VOR-ORB-1 procedure
(step ”1”). It flies properly (step “2”) until a trajectory error occurs (step ”3”), hence measures are
not going to be correct. The leg has to be interrupted and flown again. In step "4” we see how the
UAS interrupts normal mission execution an flies back to a previous return point (step ”5”). From
there on the flight continues as planned (steps “6” and ”7”).

From the point of view of the flight plan, the structure for supporting such behavior is shown
in Figure 6.12b. The main difference with the previous case is that this time no holding procedure
is required. When the operator detects a deviation from the expected trajectory (step ”3”) it issues
a Goto command to jump directly to the end of an iterative structure (step “4”). Execution of the
iterative leg starts over and the UAS intercepts the procedure at the leg preceding the interrupted
one avoiding discontinuities in the acquired data (step ”5”).

6.5 Conclusion

In this chapter, we have seen how the proposed flight plan specification language, combined with
its execution engine, is able to cope with demanding missions like the presented example of a
flight inspection. In a mission like this, the agility of the UAS flight operations is a key factor.
The simulations show how the system can make use of dynamically set conditions and other
commands to jump to any predefined part of the flight plan. With this approach, the UAS can
execute retiring maneuvers upon request of ATC. Besides, parts of the inspection procedures can
be repeated if deemed necessary by the inspection operator.

The flight inspection mission has been carried out having into account only flight issues. This
implies that coordination of flight and payload operation must be done by an onground operator.
In the following chapters we will see how the system is extended with an additional layer whose
responsibility is to coordinate flight and mission payload. In the inspection example, we could
take advantage of this improved level of autonomy by automatically triggering repetition of part
of the flight upon detection of an error in sensor readings.

80 Chapter 6 - Flight Plan Experimental Results

-ORB-1/2 (P3/P4)

= 8
Traier_'to‘:-.y‘:Fnrced Error

LEHC IAC \\
1\5\
N

"lfeg.!i' apsat Interruption

VOR HU

(a) Aircraft trajectory.

Leg Rep. Int.
g P (4) Gcito Comm.
2 (5) v, 231 16) - *I -
N (4) Iteration /:'

o e e B S S S . o B o S e o o e o o T o B o B S e e S

(b) Execution steps.

Figure 6.12: Leg repetition.

The Mission Manager Service

In Chapter 2, some fundamental notions about autonomous mobile robot architectures have been
introduced together with a number of works that tackle mission specification and management
for autonomous vehicles.

Our system implements a distributed architecture where basic reactive behaviors are
provided by flight and payload services. On top of that, more complex behaviors can be defined
by virtue of the Mission Manager (MMa) and State Chart XML (SCXML) (W3C, 2009). The MMa is
the embarked service responsible for coordinating operation of UAS services during the mission.
SCXML is the language we propose for describing the UAS behavior during the mission.

In this chapter, we firstly introduce the MMa service and the role it plays in our UAS
architecture. Afterwards, brief overviews of statecharts, which provide the basis for SCXML, and
of SCXML itself are provided. Finally, we see how the selection of SCXML allows us to take
advantage of one of its existing implementations for building a Mission Manager prototype.

7.1 The Mission Manager Service

The goal of the MMa is to extend the UAS” autonomous capabilities by being able to execute
an specification of the UAS behavior. The specification determines how operation of embarked
services is going to be orchestrated in order to perform a given mission. The language chosen for
describing the UAS behavior is SCXML.

As shown in Figure 7.1, the MMa listens to events coming from the FPM, the VAS and
other services. When such events occur, it reactively responds operating on the FPM and
mission related services to control the execution of the mission. While Figure 7.1 emphasizes the

81

82 Chapter 7 - The Mission Manager Service

. s D)

. . -
Mission Mission Manager < z
Spec. Control FP and payload operation $ =
L J O 8
\ S e
— 4 |1EE
Flight Flight Plan Manager HNE7 R
Plan Leg based navigation 8 %
SpeC. . v 9 @

>
. ¢ L Z s
Virtual Autopilot System 2
— =
Waypoint based navigation
P ° N

Flight Control System

Figure 7.1: Relationship between MMa, FPM, VAS and other payload.

hierarchical nature of the relationship between the MMa, the FPM and the VAS, all inter-service
communications take place through a shared bus.

From a functional point of view, the MMa supports operations to receive the mission
specification, initiate its execution and perform its finalization when operation of the MMa is no
longer needed. Apart from that, the number and types of communication primitives handled by
the MMa really depend on the mission at hand and the kinds of embarked payload.

While some payload services may vary from mission to mission, the presence of the FPM and
the VAS can be taken for granted. Therefore, the MMa subscribes to position, VAS state and other
events produced by the VAS, and to leg and stage events produced by the FPM. These messages
inform the MMa about the flight progress and allows it to control payload operation in accordance.

Events coming from payload services can also affect the UAS flight, therefore the MMa has
the ability to act on the FPM setting condition values, generating Goto commands and issuing
updates that change the flight plan.

The MMa can interact with the payload services in different ways. As an example, it can
start/stop their operation. By doing so, a sensor such as a camera could be turned on only during
the period of time when it is actually needed. Other interactions may involve switching modes of
operation, e.g., change resolution or interval between snapshots, etc. Specialized mission services
need to inform the MMa when relevant events occur, some examples consist in notifying that
an element of interest has been detected or that a downlink communication channel has become
available.

7.2 Statecharts

Statecharts (Harel & Politi, 1998) can be used to model the behavior of a complex reactive system
by means of a finite number of states, transitions between those states, and actions.

o A state reflects the current configuration of the system. A pseudo-state graphically
represented as a filled dot is used to indicate the state the system is at when its execution
starts.

7.2 Statecharts 83

A transition is a relationship between two states. It indicates that a system in the first state
will enter the second state when a specified event occurs and the specified guard conditions
are satisfied.

e The events that cause a reaction are called triggers.

e A condition is a boolean expression used to specify under what circumstances a given
transition is permitted.

e Transitions can be accompanied by actions to be performed during the transition. An action
specifies an executable computation. Typical things actions are used for include firing
another event, updating some data structure and interact with the outside world. Actions
can also be executed when a state is entered or when it is exited.

Graphically, a state diagram is a collection of nodes representing states and arcs representing
transitions. Each transition has a label that comes in three parts: event [guard]/action. All three
parts are optional.

Statecharts extend traditional state machine diagrams with support for hierarchy and
orthogonality, which respectively enable modular descriptions of complex systems and provide
constructs for expressing concurrency. Statecharts are part of the Unified Modeling Language
(UML) (OMG, 2010; Booch et al.,2005), a widespread graphical modeling language used in
industry and academia.

7.2.1 Hierarchical decomposition

Highly complex behavior is difficult to describe with flat diagrams. As the number of states
increases the description of the system becomes less and less manageable. Statecharts address this
problem by providing a decomposition mechanism that enables the organization of the system
description in smaller and easier to manage modules.

Figure 7.2 illustrates the application of hierarchical decomposition. Figure 7.2a shows a
composite state s4 with two inner states s1 and s3. sI can be reached from s2 when event a occurs.
s3 can be reached from s1 when d occurs or from s2 when ¢ occurs. If the system is in state s4 and
b occurs, it will transition to s2 regardless of which of the inner s4 states it is in. In Figure 7.2b the
details of s4 are abstracted away providing a simpler view to work with. Analogously, Figure 7.2¢
shows the resulting graph when we want to concentrate on s4.

It is not mandatory that all inbound arrows of a composite state reach one of its substates. The
composite state can contain an initial pseudo-state. In addition, it can contain a history pseudo-
state to indicate that the system is able to remember what state it was in the last time the composite
state was exited.

Hierarchical decomposition is sometimes referred to as XOR decomposition. In our example,
when s4 is reached, the system must be in s1 or s3, but not in both.

7.2.2 Concurrency

Figure 7.3a illustrates another advanced feature of statecharts, namely orthogonal decomposition.
Note how a dashed line divides state Y into two separate regions. This notation indicates that
when the system is in state Y, it must be in some combination of B or C with E, F or G. This type of
decomposition is also referred to as AND decomposition, because being in a state implies being
in all of its AND components.

Figure 7.3a contains a number of situations worth mentioning. First, note that event e3
appears in both states A and D. When this event occurs, transitions from B to C and from F to

84 Chapter 7 - The Mission Manager Service

(@)

s4

(b) (©

(b)

Figure 7.3: Orthogonal decomposition of states.

G will simultaneously take place. Other events, like el only affect one of the AND components.
Finally, note the condition attached to the transition from C to B. This transition will take place
only if the system is in state G. Therefore, while orthogonal decomposition describes independent
aspects of the system, common events and guard conditions can be used to provide certain kinds
of synchronization.

The concurrency capabilities of statecharts can dramatically reduce the complexity produced
by exponential blowup found in traditional state diagrams, where all state combinations need to
be considered. This fact is illustrated in Figure 7.3b. The six states found in Figure 7.3b result from
the combination of the two states of A with the three states of B. Any increment in the number of
states of A or B could rapidly lead to a completely unmanageable description if traditional graphs
where to be used.

7.3 StateChart XML (SCXML)

SCXML is a working draft published by the World Wide Web Consortium with its latest version
released on October 2009. Although it originated as a control language for voice and multimodal
interfaces it can also be used in places where reactive control is needed. SCXML provides and XML

7.3 StateChart XML (SCXML) 85

OnGround (Departure) (EnRoute Arrival
take_off en_rout arrival <
_ N _ N

mission |en_route

Mission

on_ground

Figure 7.4: Statechart with main states of a mission.

syntax that encapsulates the semantics of Harel’s Statecharts combined with an XML syntax. In
this way statecharts, which have been defined as a graphical specification, can also be represented
as text.

As an example, consider the statechart depicted in Figure 7.4. The diagram shows the main
states an UAS goes through to perform a certain mission. When the system starts it will enter the
OnGround state. Changes of state occur as a result of the UAS making progress in the execution of
the flight plan. When notification that the UAS is taking off is received the transition to Departure
takes place. The system remains in this state until the en_route event is received. From the EnRoute
state two different destinations can be reached: Mission and Arrival. The UAS stays in the Mission
state while the main mission operations take place. Afterwards, it goes back to the EnRoute state.
Finally, the Arrival state encompasses all arrival and landing procedures specified in the flight
plan. Once on ground the system goes back to the initial state. This is a very simple state diagram
with none of the statecharts” advanced features. More complex examples can be found in Chapter
8 where this statechart is revisited and refined in order to fully specify a hotspot detection mission.

Listing 7.1 provides the corresponding SCXML representation of the state diagram displayed
in Figure 7.4. The SCXML document starts with the XML declaration. It defines the XML version
(1.0) and the character encoding being used (UTF-8). The next line contains the root element of the
document, in our example stating that this is an SCXML document. The three attributes found in
the root element respectively specify the default namespace of child elements, the SCXML version
and the initial state. The state tag is used to declare states, each one of them is given a unique id.
Inside each stage, transitions with origin at that state can be found. Note that most transitions
are triggered by an event called current_stage. This event is issued by the Flight Plan Manager
to indicate that execution of a new stage has started. To determine what is the current stage,
—eventdata is checked. The target attribute specifies what state a given transition leads to. Note that
this differs from the simplified view of Figure 7.4, because most of the events present there really
translate to a current_stage event plus a condition. It is also worth noting the src attribute in the
Mission state, whose value is the name of a file containing a submachine that refines this state.

Listing 7.1: SCXML encoding of UAS mission state diagram.

<?xml version="1.0" encoding="UTF-8"?>
<scxml xmlns="http://mwww.w3.org/2005/07/scxml” version="1.0"” initialstate="OnGround”>

<state id="OnGround”>
<transition event="current_stage” cond="_eventdata=="takeoff " target="TakeOff”/>
</state>

86 Chapter 7 - The Mission Manager Service

<state id="Departure”>
<transition event="current_stage” cond="_eventdata=="goroute’” target="EnRoute”/>
</state>

<state id="EnRoute”>

<transition event="current_stage” cond="_eventdata=='mission’” target="Mission”/>
<transition event="current_stage” cond="_eventdata=="arrival " target="Landing”/>
</state>

<state id="Mission” src="MissionStateA .xml”>

<transition event="current_stage” cond="_eventdata=="retroute '’ target="EnRoute”/>
<transition event="terminate” target="EnRoute” />
</state>

<state id="Arrival”>
<transition event="on_ground” target="OnGround” />
</state>

</scxml>

SCXML is composed of different modules, each one providing a set of tags and its semantics,
that define logical units of functionality. This organization provides more flexibility since it
allows applications to select the features they want to support. These are the modules SCXML
is organized into:

e Core Module: contains the elements that define the basic Harel state machine. It provides
elements to specify states, transitions and some executable content. Executable content
consists of actions that are performed as part of taking transitions and entering and
leaving states. This module includes, among others, XML tags such as <scxml>, <state>,
<transition>, <parallel>, <initial>, <final>, <onentry>, <onexit>, etc.

e External Communications Module: adds the capability of sending and receiving events from
external entities, as well as invoking external services. Tags included in this module are
<send>, <cancel>, <invoke> and <finalize>.

e Data Module: implements the capability of storing, reading and modifying a set of data
that is internal to the state machine. This module provides the tags <datamodel>, <data>,
<assign>, <validate> and <param> along with a number of system variables.

e Script Module: adds scripting capabilities to the state machine. A single tag called <script>
is provided.

e Anchor Module: is intended to provide ‘go back” or 'redo” functionality that is useful in
some applications. <anchor> is the only tag provided by this module.

Specific details regarding each one of these modules can be found in (W3C, 2009). An
interesting feature of SCXML is that it can be extended with custom actions, meaning that new
user defined tags can be added as executable content.

7.4 Algorithm for SCXML interpretation

This section provides a simplified view of the normative algorithm that accompanies the SCXML
specification draft. As shown in Figure 7.5 the SCXML execution engine operates on four main
data structures:

e The External Events Queue receives and stores all external events that reach the statechart.

7.4 Algorithm for SCXML interpretation 87

Current Configuration

{}

Datamodel

External Events Queue

~ X ——
Execgtlon ;
Internal Events Queue Engine

Figure 7.5: Schematic view of the SCXML execution engine.

e The Internal Events Queue receives and stores internal events.
o Current Configuration maintains the state or list of states the statechart is in.

e Datamodel is used to store data.

The execution engine follows a step-by-step execution model. All external events go through
the external events queue. The execution engine’s main loop takes one external event at a time
and performs its execution in a run to completion fashion, which means that all pending events
will wait until execution of the current one has finalized. This is referred to as a macrostep.

The actual execution of the event is performed in so-called microsteps. During a microstep
all transitions enabled by an external event are processed. This involves:

1. Execute content for all abandoned states that have actions to be run on exit.
2. For each enabled transition run its executable content.

3. Run executable content that needs to be executed when entering target states and update the
statecharts’s configuration.

During the microstep execution, the datamodel may have been modified as a result of
running executable content. Also internal events may have been raised. These events are stored in
the internal events queue and are processed in a subsequent microstep execution. A macrostep is
completed when the internal queue becomes empty. At that point another event from the external
queue will be processed.

As an example, consider the state machine of Figure 7.6, suppose that events el and e2 are in
the external queue and that the current configuration is {A}, meaning that the state machine is in
state A. When processing e1, during the transition to B, an internal event e3 will be raised, which
gets stored in the internal queue. Since all events in the internal queue must be processed before
executing the next macrostep, the system is guaranteed to transition to state D. This happens even
though e2 was already in the external event queue when e3 was generated.

The execution algorithm makes use of priorities based on document order to prevent
ambiguous situations. An SCXML statechart that does not invoke any external event processor
must always react with the same behavior to a given sequence of input events.

88 Chapter 7 - The Mission Manager Service

Figure 7.6: State machine example to illustrate processing order of events.

7.5 Implementation of MMa Prototype

A big advantage of using a representation which may eventually become an standard, as is the
case for SCXML, is that we can benefit from already existing tools. There are at least three open
source projects that implement a generic event-driven SCXML based execution environment:
a C++ version that integrates with Nokia’s Qt framework (Nokia, 2010), a Java version being
developed as part of the Apache Commons project (The Apache Software Foundation, 2010) and
a Python version from independent developers (Lager, 2010) which seems to be the less mature of
the three.

Figure 7.7 shows a diagram of the main classes participating in the implementation of the
MMa. In our prototype Commons SCXML is used as the execution engine that lies at the core of
the service. Some additional classes wrap around the SCXML engine and handle communications
with other services.

We now proceed to describe the responsibilities of each class starting with those that are
provided by Commons SCXML :

o SCXMLExecutor: implements the execution algorithm described in section 7.4.

e SCXML: holds the internal representation of the SCXML mission specification once it has
been parsed.

o JexIContext: is the place where SCXML datamodels are stored. The MMa service can access
the data that the SCXML engine operates with through context objects. JexIContext is a
particular implementation of Context fitted to the JexI language.

o JexIEvaluator: all expressions present in the SCXML document need to adhere to a certain
language syntax. Jexl is one such language and Jex/Evaluator is the class used to evaluate
expressions written in Jexl.

o EventDispatcher: provides the interface definitions that any of its implementations must
honor. If an EventDispatcher object is passed to the SCXMLExecutor, it will be called every
time the execution engine generates an external event. Therefore it can be used to bridge the
execution engine with the runtime environment.

o TriggerEvent: represents an external event that can be passed to the SCXMLExecutor.

The rest of classes that appear in Figure 7.7 are not directly provided by Commons SCXML.
They are brand new classes or classes that implement an existing interface, whose function is to
bridge the SCXML execution engine with the rest of the system. A brief description of each one
follows:

7.6 Conclusion 89

K Evaluator Context \
Commons

SCXML o o
1 1
1 1
1
JexlEvaluator I JexIContext EventDispatcher I
1
'ﬁl I
VAN
1
1
SCXMLExecutor 1
1
Current. C(er)vﬁgmauun
SCXML I/ Dispatcher
I\ /
TriggerEvent I MissionManager I CommsManager
- - — - -
N | |
| | |

\ Wrapper Classes /

Figure 7.7: Internal architecture of the MMa prototype.

o MissionManager: is the class that performs all initializations and starts execution of the
SCXML engine. It also receives and processes inbound messages. Messages that need to
be passed on to the SCXML engine are translated to a suitable representation and forwarded
in the form of a TriggerEvent object.

o CommsManager: is the class that manages network communications. The MissionManager
subscribes to this class in order to receive notification of incoming messages. The Dispatcher
uses this class to send outbound events.

o Dispatcher: implements an EventDispatcher. It gets called by the execution engine when an
external event is generated.

The SCXML specification allows implementations to support multiple expression languages
to enable using SCXML documents in varying environments. Commons SCXML currently
provides support for Commons JEXL and Commons EL (JSP 2.0 EL). While these are similar
languages the latter focuses on web development and follows the JSP specification. An advantage
of Jexl is its better support for calling methods on Java objects.

7.6 Conclusion

Previous sections have presented our proof-of-concept MMa prototype, but additional work needs
to be done in order to turn this prototype into a first class service. As previously stated, the

920 Chapter 7 - The Mission Manager Service

MMa implements a wrapper around the SCXML execution engine that enables communications
with the runtime environment. Since the MMa operates in the context of a flexible system where
interacting components may vary, the messages being interchanged with these components can
also vary.

In its current form, every new message the MMa needs to receive requires the MissionManager
class to be updated in order to implement its processing and translation to a friendly form for
the SCXML engine. The dispatcher also needs to be updated for every new outbound message.
In future iterations, the MMa should be rearchitected to provide a plugin based system where
incremental additions could be done without changing previously existing code.

The system communications infrastructure that enables interaction between embarked
services follows a publish /subscribe model. It would not make sense for the MMa to try to publish
and subscribe to everything. Apart from the aforementioned plug-in capabilities, the MMa should
also be able to analyze the SCXML mission, extract the events that are actually used during the
mission and publish/subscribe only to them.

Nevertheless, the current implementation is operational and can be used to validate the
proposed approach to mission management. This validation is done by means of a simulated
hotspot detection mission as explained in the next chapter.

Mission Management Experimental
Results

In this chapter, we provide the results of a hypothetical hotspot detection mission. The mission
consists in flying above the area burned by a wild fire once it has been suppressed. The goal of
the mission is to detect remaining hotspots which could revive the fire. Automation of this type
of mission can be highly beneficial as it would permit minimizing the resources allocated to this
task. As a result, costs would be reduced and valuable resources could be moved to other sites.

8.1 Hotspot Detection Mission

To perform the hotspot detection mission, the burned area will be scanned following a lawnmower
pattern. During the scan, imagery is taken that is then processed in order to detect potential
hotspots. To determine whether a potential hotspot represents a real threat, each one of them is
further analyzed by flying an eight pattern over it.

To carry out this mission, we need camera and sensor related services for inspecting the
ground surface, data processing services to analyze the acquired data, storage services, etc. We
assume that all these are available.

To exemplify the flexibility provided by separating the specification of the mission from its
execution the hotspot detection mission is performed in two ways, both using the same flight
plan. In the first case, it is assumed that some time is required to process the recorded imagery.
Therefore, there is a delay from the point in time when an image is taken to the moment when it
is determined that it contains a potential hotspot. The strategy for performing the mission, in this

91

92 Chapter 8 - Mission Management Experimental Results

OnGround (Departure) (EnRoute Arrival
take_off en_rout arrival <
_ —/ _ N

mission |en_route

Mission

on_ground

Figure 8.1: Mission main states.

case, consists in executing the full scan first and, afterwards, visit each one of the potential hotpots.
In the second case, we assume that more capable embarked services are able to detect potential
hotspots immediately. Taking advantage of them, the UAS will fly the eight pattern upon hotspot
detection and then resume the scanning of the area, thus exhibiting more advanced flight control
capabilities.

The overall mission plan, which includes the main states the UAS goes through to complete
the mission, is shown in Figure 8.1. Unsurprisingly, an almost direct mapping between flight plan
stages and mission states can be established. The diagram provides a simplified scheme that will
suffice for the purpose of the demonstration. This statechart is common to both versions of our
example mission. The differences between the two versions appear when the Mission state gets
refined. These refinements are explained in Section 8.3.

8.2 Underlying Flight Plan

The underlying flight plan is common to both versions of the mission. Figure 8.2 illustrates what
legs belong to the Mission stage of the flight plan and how they are organized. The Mission stage
is executed during the Mission state of the statechart of Figure 8.1. During the Mission stage the
UAS can either perform an scan of the area (scanArea leg), an eight pattern (scanPoint leg) or a
holding pattern (hold leg). Which leg is selected depends on the condition of an intersection leg
called patternSelect. If the result of the condition is 0 scanArea is selected, scanPoint is selected if its
value is 1 and the holding pattern if it is 2. The three alternatives converge at another intersection
leg called join. Finally an iterative leg called loop is used to enable the UAS to alternate between
the different options. The different SCXML descriptions of the Mission state will result in the
MMa communicating and interacting with the FPM in different ways to achieve the two behaviors
previously described.

The complete encoding of the Mission stage using our XML specification language is
provided in Listing 8.1.

Listing 8.1: XML encoding of the Mission stage of the flight plan.

<stage id="mission” type="Mission”>
<name>Scan area mission</name>
<description>A scan over the designated area is performed</description>
<legs>
<leg id="loop” xsi:type="fp:IterativeLeg”™>

8.2 Underlying Flight Plan

93

scanArea

=

scanPoint

g

hold

(D)

loop

Figure 8.2: Organization of the legs contained in the Mission stage of the flight plan.

<body>
patternSelect scanArea scanPoint hold join
</body>
<first>patternSelect</first>
<last>join</last>
<upperBound>15</upperBound>
</leg>
<leg id="patternSelect”
xsi:type="fp:IntersectionLeg”>
<next>scanArea</next> <!— default value —>
<nextCond>selection</nextCond>
<nextList>scanArea scanPoint hold</nextList>
</leg>
<leg id="scanArea” xsi:type="fp:BasicScanLeg”>
<dest>
<coordinates>
41.5493424917977 1.77254310685181
</coordinates>
<speed>60</speed>
</dest>
<next>join</next>
<dim1>6000</dim1>
<dim2>5500</dim2>
<angle>80</angle>
</leg>
<leg id="scanPoint” xsi:type="fp:ScanPointLeg”>
<dest>
<coordinates>
41.56947331267459 1.717810982215079
</coordinates>
<fly —over>true</fly—over>
<speed>40</speed>
</dest>
<next>join</next>
<course>135</course>
<d1>1000</d1>
<d2>450</d2>
</leg>
<leg id="hold” xsi:type="fp:HFLeg">
<dest>
<coordinates>
41.55523585866938 1.777892046315137
</coordinates>
<speed>40</speed>
</dest>
<next>join</next>
<course>45</course>
<direction>Right</direction>

94 Chapter 8 - Mission Management Experimental Results

<d1>1000</d1>
<d2>450</d2>
</leg>
<leg id="join” xsi:type="fp:IntersectionLeg” />
</legs>
<initialLegs>loop</initialLegs>
<finalLegs>loop</finalLegs>
</stage>

8.3 Refinements of the Mission State

This section describes how, taking advantage of the hierarchical decomposition supported by
statecharts, the Mission state can be refined in different ways to implement a deferred and an
immediate analysis strategy.

8.3.1 Deferred Hotspot Analysis

In this section we discuss the so-called Deferred Hotspot Analysis version of our example mission.
In this version we assume that some time is required for analyzing the collected samples and
decide that a given location should be analyzed in more detail. The expected behavior is to fully
scan a rectangular area first, and visit each one of the potential hotspots afterwards.

Figure 8.3 shows the statechart that refines the Mission state. The substates the Mission
state is decomposed into are distributed between two parallel regions. A dashed line in
the figure separates both regions. When the Mission state is reached two parallel substates
are simultaneously entered: HotSpotsCounter, which is used to keep track of the number of
encountered potential hotspots, and ScanArea, which systematically sweeps the area of interest.
There are a number of actions which are not reflected in the statechart but are coded in the SCXML
document. We are going to discuss what is going on during the Mission state first, and show an
example of some of the involved SCXML code afterwards.

The operation of the HotSpotsCounter state is as follows: each time a hotspot event is delivered
a counter is incremented by one. When this happens we are certain that there is at least one
potential hotspot that needs to be visited. Therefore, during the HotSpotsCounter’s self-transition
we also set the coordinates of the scanPoint leg to the first non-visited potential hotspot and modify
the selection condition in patternSelect so that scanPoint is picked.

In the parallel region found at the bottom of Figure 8.3 there are three states which directly
map to the corresponding flight plan legs. The ScanArea is the state the system remains in when the
scanArea leg is executed and the same relationship is established between the Hold and ScanPoint
states and their leg counterparts. Transitions between states are triggered by the FPM making
progress. If we are in the ScanArea state and, at some point, the scanPoint leg starts its execution
the FPM will notify the MMa and this will trigger a transition from the ScanArea state to the
ScanPoint state. To adapt the flight plan to the mission needs we follow theses steps:

1. First, upon entering a state, we set the result of the selection condition to control which leg
is going to be flown next. This can be thought of as setting a default next leg.

2. Then, if some event is received while in the current state that requires the next leg decision to
be reconsidered, we make use of the transition triggered by the event to make the necessary
updates to the flight plan and change the result of the selection condition.

For example, when entering ScanArea we set the selection condition to 2, meaning that hold is
going to be our default leg. This behavior is shown in Figure 8.4 and is done just after activating

8.3 Refinements of the Mission State 95

/ hotspot \

. ; GOtSpotsCou ntg

)

scan_point
scan point ScanPoint]

ScanArea
k J scan k
scan_area 4 Hold scan_point
hold hold

N J/

Figure 8.3: First version the Mission state: hotspot analysis is deferred.

the payload services required during the Mission state. If there is a hotspot that needs to be
explored the HotSpotsCounter self-transition is triggered and the following actions, also shown
in Figure 8.4, are performed:

1. The scanPoint leg is updated with the coordinates of the first unvisited potential hotspot.

2. The result of the selection condition in patternSelect is set to 1 to select scanPoint as next leg.

When the scanArea leg ends, if no hotspots have been detected, the system will enter the Hold
state. Otherwise, execution of the scanPoint leg will start and we will transition to the ScanPoint
state. Note that, again, the first thing we do when entering the ScanPoint state is to prepare the
flight plan so that the FPM knows what to do when the current leg finishes. In this state, the
selection of the default leg depends on the number of remaining unvisited hotspots. The system
will remain in the ScanPoint state until all potential hotspots have been visited. Once all hotspots
have been visited, the system will enter the Hold state. When in the Hold state, if a scan event is
received, the flight plan will be updated so that the whole scanning process is started over. If no
further scanning is required, the system can abandon the mission area and follow the returning
route. At this point, services required only during the Mission state can be shut off.

To give an idea of how this behavior is translated to an SCXML document, Listing 8.2
shows the encoding of the ScanPoint state. The different assign operations included in this listing
operate against the data elements defined as shown in Listing 8.4 (discussed below). The first
thing done on entering this state is incrementing the number of visited hotspots to reflect the
current execution of the scanPoint leg. Next we set the default next leg. If there are unvisited
hotspots we are going to set scanPoint as the next leg. This requires the scanPoint target to be
set. We rely on an external object (an object provided by the MMa but not directly contained
in the document) to store and access the detected potential hotspots. With this data an update
message is composed that gets sent to the FPM. Because our system relies on a subscription based
communications infrastructure managed by a middleware layer called MAREA, we set target and

96 Chapter 8 - Mission Management Experimental Results

:MMa :FPM :Sensors :Processing :GS

——
EnRoute)

CurrentStage(mission)

] SwitchOn J_

SwitchOn
SetCondition(selection,2)
HotSpot*

UpdateFlightPlan

Mission.ScanArea)

Once for each

SetCondition(selection,1) detected hotspot.

CurrentLeg(scanPoint)

- Prepare for visiting

Mission.ScanPoint) UpdateFlightPlan _---117 next hotspot.

SetCondition(selection, 1)

No more hotspots
CurrentLeg(scanPoint)

pending.
SetCondition(selection,g), -7
CurrentLeg(hold)
— Done
Mission.Hold)
Goto(retroute)

CurrentStage(retroute)

SwitchOff

SwitchOff

1
|
EnRoute) |

T T

Figure 8.4: Messages interchanged when performing deferred analysis mission.

targettype attributes of the send action respectively to container and x-marea. This is a convention
used to indicate that the middleware container the MMa runs inside will be used to deliver the
message to all subscribers by means of the protocols defined by MAREA. The selection condition
of patternSelect is not updated because it already points to the scanPoint leg. The else branch is
taken when there are no pending hotspots. In this case we set hold as the default next leg.

Listing 8.2: SCXML encoding of ScanPoint state.

8.3 Refinements of the Mission State 97

<state id="ScanPoint”>

<onentry>
<!— Increment the number of visited hotspots —>
<assign name="visit_hs_count” expr="visit_hs_count + 1”7 />
<!— Selection of next leg depends on the number of pending hotspots —>
<if cond="visit_hs_count 1t detect_hs_count”>
<!— Set scanPoint target to first non—visited potential hotspot —>

<assign name="lat”
expr="HotSpotList[visit_hs_count]. getLatitude (). toString ()” />
<assign name="lon”
expr="HotSpotList[visit_hs_count]. getLongitude (). toString ()" />
<assign name="coordinates” expr="lat.concat(’ ’).concat(lon)” />
<assign
xmlns:fpu="http://icarus .upc.es/schema/FlightPlanUpdate/1.1"’
location="Data(scanPointUpdate ,
“fpu:FlightPlanUpdate /Change/MainFP/stages /stage/legs/leg/dest/coordinates ")”
expr="coordinates” />
<!— Send message to fpm —>

<send target="'container’” targettype="'x—marea’” event="'update_.cmd’”
namelist="scanPointUpdate” />
<!— Set scanPoint as next leg —>
<assign name="selection” expr="1" />
<send target="'container’” targettype="'x—marea’” event="'set_condition"”
namelist="selection” />
<else/>
<!— Set hold as the default next leg —>
<assign name="selection” expr="2" />
<send target="'container’” targettype="'x—marea’” event="'set_condition"”
namelist="selection” />
</if>
</onentry>
<transition
event="current_leg” cond="_eventdata=="hold’” target="Hold” />
<transition
event="current_leg” cond="_eventdata=="scanPoint’” target="ScanPoint” />
</state>

Listings 8.3 and 8.4 show the data elements used in the previous SCXML code. Listing 8.3
contains the data elements that are global to the SCXML document and, therefore, can be accessed
from anywhere within it. selection holds the current value of the condition used in patternSelect
leg. detect_hs_count and visit_hs_count respectively store the number of detected potential hotspots
and the number of visited ones.

Listing 8.3: Global data elements for managing leg selection.

<datamodel>
<data id="selection” expr="0" />
<!— Detected HotSpots Counter —>
<data id="detect_hs_count” expr="0" />
<!— Visited HotSpots Counter —>
<data id="visit_hs_count” expr="0" />
</datamodel>

Listing 8.4 contains data elements that are local to the ScanPoint state (not included in Listing
8.2 for brevity). Some of them are just temporary variables that do not maintain any kind of
state information. The scanPointUpdate data element is of special interest because it provides an
skeleton of the XML code sent for updating the flight plan. This data element is accessed using the
Data() function, a proper value is set to the coordinates field and the result is sent as a parameter of
an upd_cmd message.

Listing 8.4: Data elements used in scanPoint leg updates.

<datamodel>
<!— Update message for scan point —>
<data id="scanPointUpdate”
xmlns:fpu="http://icarus .upc.es/schema/FlightPlanUpdate/1.1"’
xmlns:fp="http://icarus .upc.es/schema/FlightPlan/1.1"’
xmlns:xsi="http://mwww.w3.org/2001/XMLSchema-instance ">

98 Chapter 8 - Mission Management Experimental Results

Hold hold ScanArea scan point ScanPoint

scan area scan area

scan
hotspot

Figure 8.5: Second version of the Mission state: hotspots are analyzed immediately.

"o

<fpu:FlightPlanUpdate xmlns="">
<Change>
<MainFP targetld="HotSpotPlan">
<stages>
<stage targetld="mission”>
<legs>
<leg targetId="scanPoint” xsi:type="fp:ScanPointLeg”>
<dest>
<coordinates />
</dest>
</leg>
</legs>
</stage>
</stages>
</MainFP>

</Change>

</fpu:FlightPlanUpdate>
</data>
<!— Auxiliary variables —>
<data id="lat” expr="" />
<data id="lon” expr="" />
<data id="coordinates” expr="" />

</datamodel>

8.3.2 Immediate Hotspot Analysis

In the Immediate Hotspot Analysis implementation of the mission we assume that a potential
hotspot can be detected as soon as it is approached. When such detection takes place, we expect
the system to change its trajectory and perform an eight pattern over the point of interest. After
that, the UAS should resume the scan of the area where it was left.

In this case the Mission state is refined as shown in Figure 8.5. The Mission state is
decomposed into three different substates, all three of them having a direct mapping to the three
legs implementing the different flight patterns.

The initial state is ScanArea. When it is entered the UAS is performing a scan over the
rectangular area of interest. We follow the same philosophy as in the previous case. The first
thing we do on entering a state is setting a default next leg by changing the selection condition of
patternSelect. As shown in Figure 8.6, on entering ScanArea the selection condition is set to 2 (hold).
This means that, when the current leg finishes, the next leg to be flown will be the holding pattern.
There are three transitions with origin at ScanArea which need to be considered:

e hotspot: A potential hotspot has been detected. Instead of directly jumping to the ScanPoint
state, we update the flight plan and wait for the eight pattern to start its execution. During
this transition the MMa does the following (see Figure 8.6):

1. Update the scanPoint leg with the coordinates of the potential hotspot that must be

8.3 Refinements of the Mission State 99

‘MMa :FPM :Sensors :Processing :GS I

CurrentStage(mission)

ERE | |
— SwitchOn o
Mission.ScanArea) |
SwitchOn i

SetCondition(selection,2)

S~ HotSpot

UpdateFlightPlan
If nothing happens,

SetCondition(selection,1) next leg is hold.

GoTo(scanPoint) =~
Select ScanPoint as

next leg.

CurrentLeg(scanPoint)

— SetCondition(selection,0)

Mission.ScanPoint)

Select ScanArea as
CurrentLeg(scanArea) next leg.

Mission.ScanArea J SetCondition(selection,2)

CurrentLeg(hold)

Mission.Hold)
Goto(retroute)

CurrentStage(enroute)

Done

SwitchOff

SwitchOff

| N
EnRoute | |

T T

Figure 8.6: Messages interchanged when performing immediate analysis mission.

analyzed.
2. Set the result of the selection condition to 1, i.e. select scanPoint as the next leg.

3. Send a command to the FPM to skip the rest of the current scan and directly jump to
the scanPoint. The response event generated by the FPM will trigger the transition to

100 Chapter 8 - Mission Management Experimental Results

the ScanPoint state.

4. Update the startAt parameter of the scanArea leg with the position where it has been
interrupted so that later on it can be resumed from there.

e scan_point: This transition does not require any special action.

e hold: If nothing happened during the scan, the flight will continue with a holding pattern.
During this transition the flight plan is updated to ensure that if a new scan is necessary it
will start from the beginning of the area of interest.

When the ScanPoint state is entered we set scanArea as the default next leg. When done
with the eight pattern the UAS resumes the scanning of the area and seamlessly transitions to the
ScanArea state.

Listing 8.5 shows the different actions taking place in the ScanArea state. Aircraft position
data, is provided by the MMa. The location of a potential hotspot comes as a parameter of the
corresponding event and is accessed using _eventdata.

Listing 8.5: SCXML encoding of ScanArea state.

<state id="ScanArea”>
<onentry>
<!— When done go to hold state —>
<assign name="selection” expr="2" />
<send target="'container’” targettype="'x—marea’"”
event=""set_condition ’” namelist="selection” />
</onentry>

o o

7

<transition event="hotspot”>
<!— Get current position —>
<assign name="lat” expr="Position.getLatitude (). toString ()” />
<assign name="lon” expr="Position.getLongitude (). toString ()” />

<assign name="startAtCoords” expr="lat.concat(’ ’).concat(lon)” />
<!— (1) Update scanPoint leg with hotspot position data —>
<log expr=""HotSpot location: ' + _eventdata[’coordinates "]”/>

<log expr="'HotSpot course: " + _eventdata[’course’]”/>

<assign xmlns:fpu="http://icarus.upc.es/schema/FlightPlanUpdate/1.1"’
location="Data(scanPointUpdate ,
“fpu:FlightPlanUpdate /Change/MainFP/stages /stage/legs/leg/dest/coordinates ")”
expr="_eventdata[’ coordinates "]” />

<!— Send message to fpm —>

<send target="'container’” targettype="'x—marea’”
event=""update.cmd’” namelist="scanPointUpdate” />

<!— (2) Select scanPoint as next leg —>

<assign name="selection” expr="1" />

<send target="'container’” targettype="'x—marea’"”
event=""set_condition ’” namelist="selection” />

o o

7

<!— (3) Jump to scanPoint leg —>

<assign name="goto_dest” expr="’'scanPoint’” />

<send target="'container’” targettype="'x—marea’"”
event=""goto_leg '’ namelist="goto_dest” />

s o

<!— (4) Update startAt parameter of scan so that
flight is resumed where it was left —>

<assign xmlns:fpu="http://icarus.upc.es/schema/FlightPlanUpdate/1.1"’
location="Data(scanUpdate,
“fpu:FlightPlanUpdate /Change/MainFP/stages /stage/legs/leg/startAt ")”
expr="startAtCoords” />

<!— Send message to fpm —>

<send target="'container’” targettype="'x—marea’”
event=""update.cmd’” namelist="scanUpdate” />

</transition>

<transition event="current_leg” cond="_eventdata=="hold’” target="Hold">
<!— Update startAt parameter so that scan starts over from the beginning —>

8.4 Simulation Environment 101

| Virtual Flight Mission
- Autopilot Plan
| Manager

System Manager
FlightGear " " "
[Network]
Flight -
Tracking
System '

Ground Control

Figure 8.7: Simulation environment.

Aircraft Piper J3 Cub
Cruise speed 65kt (120 km /h)
Bank angle 20°
Roll factor 3s
Wind no wind
Fuel unlimited
Mission duration 1 h aprox.

Figure 8.8: Aircraft and simulation parameters.

<assign xmlns:fpu="http://icarus.upc.es/schema/FlightPlanUpdate/1.1"’
location="Data(scanUpdate,
“fpu:FlightPlanUpdate /Change/MainFP/stages /stage/legs/leg/startAt ")”

expr="""" />

<!— Send message to fpm —>

<send target="'container’” targettype="'x—marea’”
event=""update_.cmd’” namelist="scanUpdate” />

</transition>

<transition event="current_leg” cond="_eventdata=="scanPoint’”
target="ScanPoint” />
</state>

8.4 Simulation Environment

As shown in Figure 8.7, the simulation environment from Section 6.3 is now extended with the
addition of the Mission Manager (MMa) service. Again, boxes above the network bar represent
embarked components, while boxes below the network bar belong to the ground segment.

102 Chapter 8 - Mission Management Experimental Results

FlightGear’s aircraft model used in this simulation is a Piper J3 Cub (see Figure 8.8).
Experimentally it has been determined that the bank angle used by this model for turning is 20
degrees. A roll factor of 3 seconds accounts for the time it takes to reach the bank angle. The
simulation has been run without wind and with unlimited fuel.

The Virtual Autopilot System (VAS), which amongst other features provides waypoint
navigation capabilities, and the Flight Plan Manager (FPM), that interacts with the VAS to control
the UAS flight, have been extensively discussed in previous chapters. Next to these services the
MMa is added. A prototype has been implemented that reads in the SCXML based specification
of the mission and makes use of Commons SCXML for its execution.

To perform the example mission, the MMa needs to interact with both payload and flight
services. In our simulation the focus is placed on the interactions between the MMa and the FPM.
The main event that the UAS needs to execute the mission is the notification that a new potential
hotspot has been detected. For the time being this event is generated by the MMa prototype at
certain prefixed locations. Apart from that, the MMa listens to the aircraft position generated by
the VAS and to events informing about the flight progress from the FPM.

We assume the existence of the necessary payload to take images, analyze them and decide
whether further inspection of a given point is required. The same mechanics that enable the MMa
to communicate with the VAS and the FPM apply to any other service.

For a better comparison of the deferred and immediate analysis versions of the mission the
same locations are used for potential hotspots. The MMa stores the hotspots” data and feeds the
engine with the hotspot events according to the mission assumptions. This approach also satisfies
the storage capabilities required to implement deferred analysis, since we need not only to know
the amount of detected hotspots but also their positions.

As before, the Ground Control station provides different consoles to interact with the
embarked services. In the example shown in this chapter the UAS is able to autonomously
complete the mission, but real missions are going to be more complex and we expect one or more
human operators to continuously supervise the operations of the UAS and intervene if necessary.

The Flight Tracking System operates as described in Section 6.3 and enables us to follow UAS
operations in real time using Google Earth®.

8.5 Experimental Results

The proposed approach for increasing UAS mission automation has been tested using our
hypothetical mission and the simulation environment just described. Simulations for both
immediate and deferred analysis situations have been executed with three potential hotspots at
tixed positions. In both cases, the FPM has been initialized with the flight plan described in Section
8.2.

Figure 8.9a shows the trajectory of the aircraft when detection of potential hotspots is not
immediate. Bonfire icons along the trajectory indicate the position where the potential hotspots are
located. Exclamation mark icons indicate the point in time when each one of the potential hotspots
is detected. The different numbers represent relevant events occurring during the execution of
the mission. The same numbers are also used in Figure 8.9b, which shows the statechart of the
mission, to indicate what transitions are taking place and in what order.

Below, each of the events shown in Figures 8.9a and 8.9b is briefly discussed.

1. At this point, execution of the scanArea leg is initiated and, as a direct consequence, the
statechart transitions to the corresponding ScanArea state. In this simulation, hotspots are

8.5 Experimental Results

103

(a) Aircraft trajectory.

hotspot

2, 3, 6 \

gotSpotsCou nta

o>

1

ScanArea

)

scan point®, 7

scan point 4 ScanPoint]

N

J

sCan_area

scan

-

hold

Hold

N

scan point

hold 8

(b) State transitions.

Figure 8.9: Hotspot mission with deferred analysis.

104 Chapter 8 - Mission Management Experimental Results

only visited once the scan has finished. During this time, the statechart remains in the
ScanArea state.

2. A little while after overflying the first hotspot, an image processing service realizes that
that point should be analyzed. The Mission Manager is notified and this triggers a self-
transition on the HotSpotsCounter state. During this transition the number of detected
potential hotspots is incremented and the corresponding messages are sent to the flight plan
to initiate execution of the scanPoint leg when the end of the burned area is reached.

3. The second hotspot is detected. Again a self-transition on the HotSpotsCounter state is
triggered. The number of potential hotspots is increased, but the first one remains as the
destination of the scanPoint leg.

4. The end of the scanArea leg has been reached and execution of the scanPoint leg starts. This
will take us to the first hotspot. The statechart transitions from the ScanArea state to the
ScanPoint state. During this transition the number of visited hotspots is incremented and the
scanPoint leg is updated with the coordinates of the second hotspot. These change does not
affect the execution of the current instance.

5. An eight pattern has been flown over the first hotspot and now we head for the next one.
This triggers a self-transition on the ScanPoint state. Since at this time this is the last point
to visit, the condition in patternSelect is changed to perform the holding pattern once the
execution of the current leg finishes.

6. A new potential hotspot is detected. A last self-transition on HotSpotsCounter state is
triggered. The flight plan is updated so that the new hotspot is visited next.

7. The second and last self-transition on the ScanPoint state is triggered. During the transition
the number of visited hotspots is increased. Since the number of detected hotspots is equal
to the number of visited ones, the flight plan is updated to execute the holding pattern.

8. With the execution of the holding pattern, the statechart transitions to the Hold state, where
it will remain waiting for further events.

The results of the simulation with immediate potential hotspot detection are shown in Figure
8.10a. As in the previous case, some icons and numbers are overlaid on top of the picture to
illustrate what is going on. Figure 8.10b shows the statechart using in this mission. Numbers
appearing in both figures indicate events taking place.

Events shown in Figures 8.10a and 8.10b are treated as follows:

1. At this point execution of the scanArea leg starts and the statechart transitions to the ScanArea
state.

2. A potential hotspot has been detected. This triggers a self transition to the ScanArea state
where the MMa prepares the execution of the eight pattern. This preparation consists in
updating the scanArea leg, so that the scan can later be resumed from the current position,
updating the scanPoint leg with the coordinates of the potential hotspot and, finally, sending
a command to the FPM in order to start execution of the scanPoint leg.

3. This event is raised when the execution of the scanPoint leg starts. The statechart transitions
to the ScanPoint state. On entering this state, scanArea is selected in the flight plan as the next

leg.

4. When execution of the eight pattern ends, the FPM seamlessly starts executing the scanArea
leg, but this time starting from the position where it was interrupted.

8.6 Conclusion 105

(a) Aircraft trajectory:.

1
11 3, 6, _9
Hold hold ScanArea scan_point ScanPoint
scan_area scan_area
]\ 4, 7, 10
=can hotspot
2,5, 8

(b) State transitions.

Figure 8.10: Hotspot mission with immediate analysis.

Events 5,6,7 and 8,9,10 operate in exactly the same fashion as described for events 2,3,4. The
only remaining event is number 11, which is a notification that execution of the holding pattern
has started. When this event is received, the scanArea leg is updated so that if executed again it
starts over from the beginning of the area of interest.

8.6 Conclusion

In this chapter, we have seen how by means of using a mission specification separate from its
execution engine we are provisioning the UAS with a high level of both flexibility and autonomy.

106 Chapter 8 - Mission Management Experimental Results

SCXML has been used as the language for specifying the UAS behavior. Using SCXML the
semantics of statecharts are combined with a data model and a scripting language that, put
together, provide a very capable method for specifying autonomous behavior.

The performed simulation already reveals the need to complement the reactive execution
engine with deliberative capabilities. In particular, the deferred hotspot analysis mission could
benefit from a planning service able to generate an optimal traversal of the potential hotspots.

Conclusions and Further Work

In recent years, Unmanned Aircraft Systems have been getting much attention. The realization
of its potential benefits in the civil domain is fueling many research and development efforts.
As a result, a significant number of platforms and autopilot systems are making its way into the
market. In the vast majority of cases, the capabilities of the autopilots for these systems are limited
to waypoint based navigation, with little support for complex dynamic flight plans. Besides, there
is a lack of integration between the aircraft’s navigation and payload operation. The main goal
of this doctoral thesis is to overcome these limitations and provide a more capable platform, with
better support for complex flight plans and an increased level of autonomy. To do so, we propose
extending current systems with reconfigurable flight and mission management layers. These new
layers provide higher level abstractions for navigation control and enable embarked payload to
operate accordingly to the current flight phase and mission needs.

In this chapter, the contents of the thesis are summarized highlighting its main contributions.
Afterwards, different aspects that should be studied in more detail as well as some directions for
future research are outlined.

9.1 Summary

The main aspects covered in this PhD thesis are:

e A new concept for the specification of UAS flight plans that organizes the flight plan
into different phases and makes use of legs as the main unit for its construction. The
language design takes into account the current state of the art in UAS systems and
commercial aviation. As seen in Chapter 2 navigation primitives of current autopilots for

107

108

Chapter 9 - Conclusions and Further Work

unmanned vehicles are very simple and not very suitable for specifying complex missions.
More advanced navigation systems, such as RNAYV, can be found in commercial aviation.
Nonetheless, RNAV has been designed with cargo and passengers transportation in mind
and does not take into account the specific needs of the wide variety of UAS missions. Our
proposed language borrows the leg concept from RNAV and extends it to accommodate
iterative and conditional control constructs as well as other constructs, as the so-called
parametric legs, that enable a simplified description of complex maneuvers. By reusing
RNAV concepts we build on top of a solid base. In the long run, this choice could
have the additional advantage of facilitating UAS integration in controlled airspace, since
flight plans for both manned and unmanned systems would be specified in similar terms.
The specification language is based on XML, a wide-spread technology that facilitates
development of domain specific languages in a form that is both human readable and easy to
process. An schema of the language has been developed in XSD, an XML schema definition
language that can be used to guarantee syntactic correction of XML documents.

The mechanisms for updating the flight plan and dynamically adapt the trajectory to the
mission needs have also been defined. Ultilization of iterative and conditional constructs
already provides a level of dynamic adaptation that may suffice for some missions.
However, in many cases, a more aggressive approach will be needed. For this reason the
description of the UAS flight plan can be updated during mission time to better fit the
mission needs. The commands for doing so also make use of XML in order to specify what
needs to be changed. The possible content of these update messages is described in Chapter
4. The update mechanism enables not only changing leg parameters, such as the destination
waypoint, but also adding or removing legs.

Following the design explained in Chapter 5, a service called Flight Plan Manager has been
implemented. The FPM is able to process and execute flight plans specified in our proposed
language. To enable the service to operate with currently available autopilot systems, the
flight plan primitives are dynamically translated to waypoints. The FPM is isolated from the
specific details of each autopilot by virtue of the Virtual Autopilot System, which provides a
standardized interface and handles the interaction with the installed autopilot. The VAS
is one of the key services of the UAS architecture that the FPM integrates with. This
architecture has been described in Chapter 3.

The feasibility of the proposed approach for UAS flight plan management has been
demonstrated by means of a simulated mission consisting in the flight inspection of Radio
Navigation Aids. An experimental environment has been set up using FlightGear Flight
Simulator to simulate the aircraft operation and Google Earth® for real time visualization
of the mission evolution. This kind of mission will usually take place in controlled airspace.
The simulation not only shows how the FPM is able to execute the mission with a high level
of automation but also hints at possible ways of interaction between Air Traffic Controllers
and the UAS operators. In particular, the UAS flight plan is divided into repeatable parts,
with each one having a holding pattern assigned to it, whose location will have been
agreed upon prior to the start of the mission. An ATC in continuous contact with the UAS
operator may notify an interruption of the inspection at any time. The UAS operator will
then command the UAS to fly the holding pattern assigned to its current procedures. As
mentioned earlier, expressing the flight plan in ways ATCs are used to can facilitate UAS
integration into controlled airspace.

To integrate flight and payload operation, the Mission Manager service is added on top of
the flight plan management capabilities. On the one hand, this mission management layer
issues commands to mission related payload in order to adapt its operation to the current
flight phase. On the other hand, it communicates with the FPM so that the UAS flight adapts

9.2 Future Research 109

to the mission needs. To enable support for a wide range of missions the specification of the
UAS behavior is separated from the mechanisms used for its execution. In this way, the
service responsible for mission execution becomes a general execution engine that carries
out the submitted behavior specification. An aspect that differentiates our proposal from
existing alternatives is the definition of the UAS flight and its mission related behavior into
two separate documents. This approach enables a flight plan to be reused across different
missions or even to operate without automated mission control. After a review of the state of
the art on this topic, we propose SCXML as the language of choice for the task of specifying
the UAS behavior. SCXML is a working draft from the World Wide Web Consortium (W3C)
that provides a generic state-machine based execution environment based on Harel State
Charts. In Chapter 7, an overview of the language features has been provided.

e As a proof of concept, a prototype of the Mission Manager has been developed. The
implementation of the MMa is described in Chapter 7. The decision to use a future open
standard has allowed us to take advantage of already existing tools such as Commons
SCXML, an open source library that provides the SCXML execution engine. The MMa
implements a wrapper around this library and integrates it into the distributed architecture
described in Chapter 3.

e Finally, in Chapter 8 the MMa has been put to test in the context of a simulated hotspot
detection mission. The mission has been carried out in two ways according to two different
assumptions: (1) that our sensors and data processing services need some time to detect a
potential hotspot and (2) that they are able to immediately detect a potential hotspot. This
has lead to two different specifications of the UAS behavior where inspection of each hotspot
is respectively done once the complete area under inspection has been scanned or at the
very moment the hotspot is detected. In both cases, the same flight plan is used and only
the mission specification differs. By performing the mission in these two different ways,
the effectiveness of the proposed approach to provide a highly flexible and autonomous
platform has been demonstrated.

9.2 Future Research

This section outlines several possible extensions of the work presented in this thesis.

A critical aspect that has not yet been addressed is how to guarantee flyability of all requested
maneuvers. All flight plan procedures should be validated taking into account the aircraft
performances and other factors such as weather conditions. This validation process could be
performed on-ground before starting the mission, but changes to the flight plan can occur during
flight time and strategies are needed for detecting non-flyable maneuvers and respond to such
situation.

Another aspect not related to the aircraft capabilities that also requires validation of the flight
plan consists in ensuring that no obstacles will be encountered. While this can easily be done
during pre-flight for terrain and known fixed obstacles, again the ability of changing the flight
plan during its execution forces us not only to be able to do this validation in a very efficient way
during flight time, but also to come up with a rapid response to conflict situations.

The work presented in this dissertation enables the UAS to reactively respond to internal
and external events while following pre-defined flight and mission plans. While we believe that
this approach already results in a very capable platform the system could greatly benefit from the
addition of deliberative capabilities. Flight planning capabilities could be used in the example
mission of Chapter 8 to optimize the trajectory for visiting each one of the potential hotspots. In
the example, when hotspot analysis is deferred, potential hotspots are visited in first in first out

110 Chapter 9 - Conclusions and Further Work

order, which clearly may not be the most efficient way for doing so.

Another area that needs to be explored relates to facilitating the task of flight plan and
mission design. In this work, a new language has been developed for specifying flight plans and
SCXML has been proposed for specifying UAS behavior. Encoding a complete mission using both
languages is not trivial and additional research efforts should target at providing tools to facilitate
this task. Many missions are similar in concept, for instance disaster damage assessment, search
and rescue operations, crop monitoring and terrain mapping all involve a systematic observation
of a given area as part of the mission. While each mission will have its own particularities, we
believe that common patterns could be extracted and be used to provide means for designing a
new mission by configuring different parameters of existing templates.

Along the lines of facilitating UAS mission design and operation, tools need to be developed
for human operators to interact with the system. These tools should facilitate pre-flight tasks,
enable supervision and control of the UAS during mission time and provide informative
representations of what is going on to support decision making.

From a broader perspective, one of the most challenging problems faced by UAS, which
involves both technical and non-technical issues, is their integration into non-segregated airspace.
One of the contributions of this thesis has been the development of a flight plan specification
language that can be used to describe the UAS flight path in ways that mimic current practices
in commercial aviation. We believe that increasing convergence between the way manned and
unmanned aircrafts operate will increase opportunities for these systems to share airspace. In that
regard, the move that both the US (Cox et al. , 2009) and European (EUROCONTROL, 2009) Air
Traffic Management Systems (ATMs) are experiencing towards new concepts of operation, which
involve more reliance on digital communication infrastructures and automation, provides a great
opportunity to research and define how, in the next years, UAS integration into controlled airspace
should take place.

XML Schemas

This appendix provides complete listings of XML schema definition documents for flight plan and

flight plan updates. These documents can be used to validate syntactic correction of flight plans
and their updates.

A.1 Flight Plan XML Schema

Listing A.1 provides complete specification of all valid elements and types that can be found in a
flight plan specification.

LlStlng A.l: thht plan XSD. </xsd:complexType>

</xsd:element>
<xsd:element name="Fixes” maxOccurs="1">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Fix” type="tns:FixType”
maxOccurs="unbounded” minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="EmergencyPlans ">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="EmergencyFP”
type="tns:FlightPlanType”
maxQOccurs="unbounded” minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="MainFP” type="tns:FlightPlanType”/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:complexType name="FixType”>
<xsd:sequence>
<xsd:element name="name” type="xsd:string”/>

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema”
targetNamespace="http://icarus.upc.es/schema/FlightPlan /1.1"”
xmlns:tns="http://icarus.upc.es/schema/FlightPlan /1.1"
elementFormDefault="unqualified ">
<xsd:element name="FlightPlan ">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Locale”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="speedUnits”
type="tns:SpeedUnitsEnum” />
<xsd:element name="angleUnits”
type="tns:AngleUnitsEnum” />
<xsd:element name="altitudeUnits”
type="tns:LengthUnitsEnum” />
<xsd:element name="distanceUnits”
type="tns:LengthUnitsEnum” />
<xsd:element name="decimalSeparator”
type="xsd:string " />
<xsd:element name="groupSeparator”
type="xsd:string " />
</xsd:sequence>

111

112

Appendix A - XML Schemas

<xsd:element name="description” type="xsd:string”/>
<xsd:element name="coordinates”
type="xsd:string” minOccurs="1"/>
</xsd:sequence>
<xsd:attribute name="id” type="tns:FixID”/>
</xsd:complexType>
<xsd:complexType name="StageType”>
<xsd:sequence>
<xsd:element name="name” type="xsd:string”
minOccurs="0"/>
<xsd:element name="description” type="xsd:string”
minOccurs="0"/>
<xsd:element name="legs” minOccurs="0">
<xsd:complexType>
<xsd:sequence maxOccurs="unbounded”>
<xsd:element name="leg” type="tns:LegType”
minOccurs="1"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="initialLegs” type="tns:LegIDREFS”
minOccurs="0"/>
<xsd:element name="finalLegs” type="tns:LegIDREFS”
minOccurs="0"/>
<xsd:element name="emergency” type="tns:FPIDREFS”
minOccurs="0"/>
<xsd:element name="groups” minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="group”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="name”
type="xsd:string " />
<xsd:element name="description”
type="xsd:string” minOccurs="0"/>
<xsd:element name="legList”
type="tns:LegIDREFS” minOccurs="0"/>
<xsd:element name="groupList”
type="tns:GroupIDREFS” minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="id”
type="tns:GroupID” />
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="targetld” type="xsd:string”
use="optional " />
<xsd:attribute name="id” type="tns:StagelD”
use="optional " />
<xsd:attribute name="type” type="tns:StageEnumType”/>
<xsd:attribute name="manualOnly” type="xsd:boolean”/>
</xsd:complexType>
<xsd:complexType name="LegType”>
<xsd:sequence>
<xsd:element name="dest” type="tns:WaypointType”
minOccurs="0"/>
<xsd:element name="next” type="tns:LegIDREF”
minOccurs="0"/>
<xsd:element name="prev” type="tns:LegIDREF”
minOccurs="0"/>
<xsd:element name="emergency” type="tns:FPIDREF”
minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="targetld” type="xsd:string”
use="optional " />
<xsd:attribute name="id” type="tns:LegID”
use="optional " />
</xsd:complexType>
<xsd:complexType name="WaypointType”>
<xsd:sequence>
<xsd:choice>
<xsd:element name="fix” type="tns:FixIDREE”
nillable="true” minOccurs="0"/>
<xsd:element name="coordinates” type="xsd:string”
minOccurs="0" />
</xsd:choice>
<xsd:element name="fly—over” type="xsd:boolean”
minOccurs="0"/>
<xsd:element name="altitude” type="xsd:float”
minOccurs="0"/>
<xsd:element name="speed” type="xsd:float”
minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
<xsd:simpleType name="LegID">
<xsd:restriction base="xsd:ID"/>
</xsd:simpleType>
<xsd:simpleType name="LegIDREF” id="LegID">
<xsd:restriction base="xsd:IDREF”/>
</xsd:simpleType>
<xsd:simpleType name="FixID">
<xsd:restriction base="xsd:ID” />
</xsd:simpleType>
<xsd:simpleType name="FixIDREF” id="FixID">
<xsd:restriction base="xsd:IDREF” />

</xsd:simpleType>
<xsd:simpleType name="StageEnumType”>

<xsd:restriction ba
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration
<xsd:enumeration

se="xsd:string ">
value="Taxi” />
value="TakeOff” />
value="Departure” />
value="Route” />
value="Mission” />
value="Arrival” />
value="Approach” />

<xsd:enumeration value="Land” />
</xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="FlightPlanType ">
<xsd:sequence>
<xsd:element name="name” type="xsd:string”
minOccurs="0"/>
<xsd:element name="description” type="xsd:string”
minOccurs="0"/>
<xsd:element name="stages” maxOccurs="1">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="stage”
type="tns:StageType”
maxQOccurs="unbounded” />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="emergency”
type="tns:FPIDREFS” minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="targetld” type="xsd:string”
use="optional " />
<xsd:attribute name="id” type="tns:FPID”
use="optional” />
<xsd:attribute name="defaultTime” type="xsd:long”/>
<xsd:attribute name="maxTime” type="xsd:long”/>
</xsd:complexType>
<xsd:simpleType name="FPID">
<xsd:restriction base="xsd:ID”/>
</xsd:simpleType>
<xsd:simpleType name="FPIDREF">
<xsd:restriction base="xsd:IDREF” />
</xsd:simpleType>
<xsd:simpleType name="DirectionEnumType ">
<xsd:restriction base="xsd:string ">
<xsd:enumeration value="N">
</xsd:enumeration>
<xsd:enumeration value="S">
</xsd:enumeration>
<xsd:enumeration value="E">
</xsd:enumeration>
<xsd:enumeration value="W">
</xsd:enumeration>
</xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="IFLeg">
<xsd:complexContent>
<xsd:extension base="tns:LegType”>
<xsd:sequence />
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="RFLeg">
<xsd:complexContent>
<xsd:extension base="tns:LegType”>
<xsd:sequence>
<xsd:element name="center” type="xsd:string”/>
<xsd:element name="direction”
type="tns:TurnDirectionEnum” />
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:simpleType name="TurnDirectionEnum ">
<xsd:restriction base="xsd:string ">
<xsd:enumeration value="Left” />
<xsd:enumeration value="Right”/>
</xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="TFLeg">
<xsd:complexContent>
<xsd:extension base="tns:LegType”>
<xsd:sequence />
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="IterativeLeg ">
<xsd:complexContent>
<xsd:extension base="tns:LegType”™>
<xsd:sequence>
<xsd:element name="body” type="tns:LegIDREFS”/>
<xsd:element name="first” type="tns:LegIDREF”/>
<xsd:element name="last” type="tns:LegIDREF”/>
<xsd:element name="upperBound” type="xsd:int”
minOccurs="0"/>
<xsd:element name="cond” type="xsd:string”
minOccurs="0"/>
</xsd:sequence>

A.2 FP Updates XML Schema

113

</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:simpleType name="SpeedUnitsEnum ">
<xsd:restriction base="xsd:string ">
<xsd:enumeration value="ms">
</xsd:enumeration>
<xsd:enumeration value="kt”>
</xsd:enumeration>
</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="AngleUnitsEnum ">
<xsd:restriction base="xsd:string ">
<xsd:enumeration value="deg”>
</xsd:enumeration>
<xsd:enumeration value="rad”>
</xsd:enumeration>
</xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="LengthUnitsEnum ">
<xsd:restriction base="xsd:string ">
<xsd:enumeration value="m">
</xsd:enumeration>
<xsd:enumeration value="nm"”>
</xsd:enumeration>
</xsd:restriction>
</xsd:simpleType>
<xsd:complexType name="IntersectionLeg”>
<xsd:complexContent>
<xsd:extension base="tns:LegType”>
<xsd:sequence>
<xsd:element name="nextCond” type="xsd:string”
minOccurs="0" />
<xsd:element name="nextList” type="tns:LegIDREFS”
minOccurs="0" />
<xsd:element name="prevCond” type="xsd:string”
minOccurs="0" />
<xsd:element name="prevList” type="tns:LegIDREFS”
minOccurs="0" />
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:simpleType name="StagelD ">
<xsd:restriction base="xsd:ID” />
</xsd:simpleType>
<xsd:complexType name="HFLeg">
<xsd:complexContent>
<xsd:extension base="tns:LegType”>
<xsd:sequence>
<xsd:element name="course” type="xsd:double”
minOccurs="0" />
<xsd:element name="direction”
type="tns:TurnDirectionEnum” minOccurs="0"/>
<xsd:element name="d1” type="xsd:double”
minOccurs="0" />
<xsd:element name="d2” type="xsd:double”
minOccurs="0" />
<xsd:element name="upperBound” type="xsd:int”
minOccurs="0" />
<xsd:element name="cond” type="xsd:string”
minOccurs="0" />
<xsd:element name="altitude” type="xsd:double”
minOccurs="0" />
<xsd:element name="climbRate” type="xsd:double”
minOccurs="0" />
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="BasicScanLeg”>

A.2 FP Updates XML Schema

<xsd:complexContent>
<xsd:extension base="tns:LegType”>
<xsd:sequence>
<xsd:element name="startAt” type="xsd:string”
minOccurs="0"/>
<xsd:element name="dim1” type="xsd:double”
minOccurs="0"/>
<xsd:element name="dim2” type="xsd:double”
minOccurs="0"/>
<xsd:element name="angle” type="xsd:double”
minOccurs="0"/>
<xsd:element name="separation” type="xsd:double”
minOccurs="0"/>
<xsd:element name="turndirection”
type="tns:TurnDirectionEnum” minOccurs="0"/>
<xsd:element name="d1” type="xsd:double”
minOccurs="0"/>
<xsd:element name="d2” type="xsd:double”
minOccurs="0"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:simpleType name="LegIDREFS">
<xsd:restriction base="xsd:IDREFS” />
</xsd:simpleType>
<xsd:attribute name="syntax” type="xsd:string”/>
<xsd:complexType name="RwyFixType”>
<xsd:complexContent>
<xsd:extension base="tns:FixType”>
<xsd:sequence>
<xsd:element name="altitude” type="xsd:double”/>
<xsd:element name="heading” type="xsd:double”/>
<xsd:element name="length” type="xsd:double”/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:simpleType name="GroupID">
<xsd:restriction base="xsd:ID”/>
</xsd:simpleType>
<xsd:simpleType name="GroupIDREFS">
<xsd:restriction base="xsd:IDREFS” />
</xsd:simpleType>
<xsd:complexType name="DFLeg">
<xsd:complexContent>
<xsd:extension base="tns:LegType”>
<xsd:sequence />
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:complexType name="ScanPointLeg ">
<xsd:complexContent>
<xsd:extension base="tns:LegType”>
<xsd:sequence>
<xsd:element name="course” type="xsd:double”
minOccurs="0"/>
<xsd:element name="d1l” type="xsd:double”
minOccurs="0"/>
<xsd:element name="d2” type="xsd:double”
minOccurs="0"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
<xsd:simpleType name="FPIDREFS">
<xsd:restriction base="tns:FPIDREF”
xmlns:tns="http://icarus.upc.es/schema/FlightPlan /1.1"/>
</xsd:simpleType>
</xsd:schema>

All flight plan updates must conform to the schema definition provided in Listing A.2. This
specification imports and reuses elements from the flight plan schema.

Listing A.2: Flight plan updates XSD.

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema”
xmlns:fps="http://icarus.upc.es/schema/FlightPlan /1.1”

targetNamespace="http://icarus.upc.es/schema/FlightPlanUpdate /1.1”
xmlns:tns="http://icarus.upc.es/schema/FlightPlanUpdate /1.1”

elementFormDefault="unqualified ">

<xsd:import namespace="http://icarus.upc.es/schema/FlightPlan /1.1”

schemaLocation="FlightPlan —1.1.xsd” />

<xsd:element name="FlightPlanUpdate”>
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Add”
minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Fixes”
minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Fix”
type="fps:FixType”

114

Appendix A - XML Schemas

maxOccurs="unbounded” />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="EmergencyPlans”
minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="EmergencyFp”
type="fps:FlightPlanType”
maxQOccurs="unbounded” />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="MainFP”
type="fps:FlightPlanType”
minOccurs="0" />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="Change”
minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="EmergencyPlans”
minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="EmergencyFp”
type="fps:FlightPlanType”
maxQOccurs="unbounded” />
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:element name="MainFP”
type="fps:FlightPlanType”
minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="Delete”
minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="EmergencyPlans”
minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="EmergencyFp”
type="fps:FlightPlanType”
maxOccurs="unbounded” />
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="MainFP”
type="fps:FlightPlanType”
minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Specification of Navaids Inspection
Mission

Listing B.1 provides the specification of the flight plan for the navaid flight inspection mission. In
this flight plan all inspection procedures are broken down into small legs. All this legs are put
together inside an iterative construct so that we can always go back and repeat part of the flight.
Smaller legs provide finer grain control over parts that should be repeated. In this mission we
only make use of the Flight Plan Manager, the Mission Manager is not involved, therefore, only
the flight plan specification is needed.

Listing B.1: XML flight plan. <EmergencyPlans />
<?xml version="1.0" encoding="UTF-8"7> <!— Main flight plan —>
. <MainFP id="VOR-HUE">
<fp:F11ghtPl,an)) , <name>A periodic inspetion of VORHUE</name>
xmlns:fp="http://icarus.upc.es/schema/FlightPlan /1.1 <description>A periodic inspection of VORHUE/description>
xmlns:xsi="http://www.w3.org/2001/XMLSchema—instance ’ <stages>
xsi:schemalLocation="file:///FlightPlan —1.1.xsd "> <stage id="taxi” manualOnly="true” type="Taxi”/>
<!-— Locale settings —> <stage id="takeoff” manualOnly="true” type="TakeOff”/>
<Locale>
<speedUnits>kt</speedUnits> <stage id="depart” type="Departure”™>
<altitudeUnits>m</altitudeUnits> <name>Departure Procedure</name>
<distanceUnits>m</distanceUnits> <description>Go to route start</description>
<decimalSeparator>.</decimalSeparator> <legs>
<groupSeparator/> <leg id="departl” xsi:type="fp:TFLeg">
</Locale> <dest>
)) <coordinates>41.6785 —0.9677</coordinates>
<!— List of fixes —> <altitude>1000</altitude>
<Fixes> <speed>160</speed>
<Fix id="LEHCI2R” xsi:type="fp:RwyFixType > </dest>
<name>Huesca—Pirineos LEHC 12R Runway</name> </leg>
<description>Runway 12 Huesca Airport</description> </legs>
<coordinates>42.0809 —0.3273</coordinates> <initialLegs>departl</initialLegs>
<altitude>539</altitude> <finalLegs>departl</finalLegs>
<heading>124</heading> </stage>
<length>2100</length>
<(Fix> <stage id="goroute” type="Route”>
</Fixes> <name>To Mission Route</name>

<description>Go to mission area</description>
<!— List of emergency flight plans —>

115

116

Appendix B - Specification of Navaids Inspection Mission

<legs>
<leg id="VOR-VOID-0-A" xsi:type="fp:TFLeg ">
<dest>
<coordinates>41.7992 —0.6844</coordinates>
<fly—over>true</fly —over>
<altitude>2000</altitude>
<speed>160</speed>
</dest>
</leg>
</legs>
<initialLegs>VOR-VOID—-0-A</initialLegs>
<finalLegs>VOR-VOID-0-A</finalLegs>
</stage>

<stage id="mission” type="Mission”>
<name>Mission</name>
<description>Perform mission</description>
<legs>
<leg id="Loop” xsi:type="fp:IterativeLeg”>
<body>
Cond
Holding
VOR-REF—1-A
VOR-REF—1-B
VOR-VOID—-1-A
VOR-VOID—1-B
VOR-VOID—-1-C
VOR-REF—2-A
VOR-REF—2-B
VOR-VOID—2-A
VOR-ORB360R10—1-A
VOR-ORB360R10—1-B
VOR-ORB360R10—1-C
VOR-ORB360R10—1-D
VOR-ORB360R10—2—-A
VOR-ORB360R10—2—-B
VOR-ORB360R10—2—-C
VOR-ORB360R10—2-D
VOR-VOID—-3-A
VOR-VOID—-3-B
VORRAD-1-A
VOR-APP—1-A
VOR-APP—1-B
VOR-APP—1-C
VOR-APP—1-D
VOR-SIDSTAR—1-A
VOR-SIDSTAR—1-B
VOR-SIDSTAR—1-C
Join
</body>
<first>Cond</first>
<last>Join</last>
<upperBound>1</upperBound>
<cond>Breaklteration</cond>
</leg>
<leg id="Cond” xsi:type="fp:IntersectionLeg ">
<next>VORREF—1-A</next>
<nextCond>Holding</nextCond>
<nextList>VOR-REF—1-A Holding</nextList>
</leg>
<leg id="Holding” xsi:type="fp:HFLeg">
<dest>
<coordinates>41.8089 —0.5276</coordinates>
<altitude>2000</altitude>
<speed>160</speed>
</dest>
<next>Join</next>
<course>30</course>
<direction>Right</direction>
<d1>5000</d1>
<d2>3000</d2>
<upperBound>5</upperBound>
<cond>BreakHolding</cond>
</leg>
<leg id="VOR-REF-1-A" xsi:type="fp:TFLeg">
<dest>
<coordinates>41.8181 —0.6599</coordinates>
<fly—over>true</fly —over>
<altitude>2000</altitude>

<speed>200</speed>
</dest>
<next>VOR-REF—1-B</next>
</leg>
<leg id="VOR-REF-1-B” xsi:type="fp:TFLeg"”>
<dest>

<coordinates>42.0733 —0.3189</coordinates>
<fly—over>true</fly —over>
<altitude>2000</altitude>
<speed>200</speed>
</dest>
<next>VOR-VOID—1-A</next>
</leg>
<leg id="VOR-VOID-1-A" xsi:type="fp:DFLeg”>
<dest>
<coordinates>42.0924 —0.2932</coordinates>
<altitude>2000</altitude>
<speed>160</speed>
</dest>
<next>VOR-VOID—1-B</next>

</leg>
<leg id="VOR-VOID—1-B” xsi:type="fp:DFLeg"™>
<dest>
<coordinates>42.0776 —0.2553</coordinates>
<fly —over>true</fly —over>
<altitude>2000</altitude>
<speed>160</speed>
</dest>
<next>VOR-VOID—-1-C</next>
</leg>
<leg id="VOR-VOID—1-C” xsi:type="fp:TFLeg ">
<dest>
<coordinates>42.0580 —0.2794</coordinates>
<fly—over>true</fly —over>
<altitude>2000</altitude>
<speed>160</speed>
</dest>
<next>VOR-REF—2-A</next>
</leg>
<leg id="VOR-REF—2-A" xsi:type="fp:TFLeg"™>
<dest>
<coordinates>42.0733 —0.3189</coordinates>
<fly —over>true</fly —over>
<altitude>2000</altitude>
<speed>200</speed>
</dest>
<next>VOR-REF—2-B</next>
</leg>
<leg id="VOR-REF-2-B” xsi:type="fp:TFLeg"™>
<dest>
<coordinates>42.2821 —0.6684</coordinates>
<fly—over>true</fly —over>
<altitude>2000</altitude>
<speed>200</speed>
</dest>
<next>VOR-VOID—2-A</next>
</leg>
<leg id="VOR-VOID—2-A" xsi:type="fp:DFLeg"™>
<dest>
<coordinates>42.2173 —0.4318</coordinates>
<altitude>1470</altitude>
<speed>200</speed>
</dest>
<next>VOR-ORB360R10—1-A</next>
</leg>
<leg id="VOR-ORB360R10—1-A" xsi:type="fp:RFLeg">
<dest>
<coordinates>42.1572 —0.1254</coordinates>
<altitude>2000</altitude>
<speed>200</speed>
</dest>
<next>VOR-ORB360R10—1-B</next>
<center>42.0733 —0.3189%</center>
<direction>Right</direction>
</leg>
<leg id="VOR-ORB360R10—1-B” xsi:type="fp:RFLeg">
<dest>
<coordinates>41.9276 —0.2104</coordinates>
<altitude>2000</altitude>
<speed>200</speed>
</dest>
<next>VOR-ORB360R10—1-C</next>
<center>42.0733 —0.3189%/center>
<direction>Right</direction>
</leg>
<leg id="VOR-ORB360R10—1-C” xsi:type="fp:RFLeg"”>
<dest>
<coordinates>41.9891 —0.5119</coordinates>
<altitude>2000</altitude>
<speed>200</speed>
</dest>
<next>VOR-ORB360R10—1-D</next>
<center>42.0733 —0.3189</center>
<direction>Right</direction>
</leg>
<leg id="VOR-ORB360R10—1-D" xsi:type="fp:RFLeg”>
<dest>
<coordinates>42.2235 —0.4162</coordinates>
<altitude>2000</altitude>
<speed>200</speed>
</dest>
<next>VOR-ORB360R10—2—-A</next>
<center>42.0733 —0.3189%/center>
<direction>Right</direction>
</leg>
<leg id="VOR-ORB360R10—2-A" xsi:type="fp:RFLeg">
<dest>
<coordinates>42.1572 —0.1254</coordinates>
<altitude>2000</altitude>
<speed>200</speed>
</dest>
<next>VOR-ORB360R10—2-B</next>
<center>42.0733 —0.3189</center>
<direction>Right</direction>
</leg>
<leg id="VOR-ORB360R10—2-B” xsi:type="fp:RFLeg">
<dest>
<coordinates>41.9276 —0.2104</coordinates>
<altitude>2000</altitude>

117

<speed>200</speed>
</dest>
<next>VOR-ORB360R10—2-C</next>
<center>42.0733 —0.3189</center>
<direction>Right</direction>
</leg>
<leg id="VOR-ORB360R10—2-C” xsi:type="fp:RFLeg">
<dest>
<coordinates>41.9891 —0.5119</coordinates>
<altitude>2000</altitude>
<speed>200</speed>
</dest>
<next>VOR-ORB360R10—2-D</next>
<center>42.0733 —0.3189%/center>
<direction>Right</direction>
</leg>
<leg id="VOR-ORB360R10—2-D" xsi:type="fp:RFLeg">
<dest>
<coordinates>42.2379 —0.3543</coordinates>
<altitude>2000</altitude>
<speed>200</speed>
</dest>
<next>VOR-VOID—3-A</next>
<center>42.0733 —0.3189%/center>
<direction>Right</direction>
</leg>
<leg id="VOR-VOID-3-A" xsi:type="fp:DFLeg”>
<dest>
<coordinates>42.0498 0.0125</coordinates>
</dest>
<next>VOR-VOID—3-B</next>
</leg>
<leg id="VOR-VOID-3-B” xsi:type="fp:TFLeg ">
<dest>
<coordinates>42.0614 —0.1572</coordinates>
<fly—over>true</fly —over>
<altitude>1410</altitude>
<speed>160</speed>
</dest>
<next>VORRAD-1-A</next>
</leg>
<leg id="VORRAD-1-A" xsi:type="fp:TFLeg"”>
<dest>
<coordinates>42.0733 —0.3189</coordinates>
<fly—over>true</fly —over>
</dest>
<next>VOR-VOID—4-A</next>
</leg>
<leg id="VOR-VOID—4-A" xsi:type="fp:DFLeg”>
<dest>
<coordinates>42.0799 —0.4470</coordinates>
<altitude>1486</altitude>
<speed>160</speed>
</dest>
<next>VOR-VOID—4-B</next>
</leg>
<leg id="VOR-VOID—4-B” xsi:type="fp:DFLeg”>
<dest>
<coordinates>42.1336 —0.4056</coordinates>
</dest>
<next>VOR-VOID—4-C</next>
</leg>
<leg id="VOR-VOID—4-C" xsi:type="fp:TFLeg">
<dest>
<coordinates>42.0733 —0.3189</coordinates>
<fly—over>true</fly —over>
</dest>
<next>VOR-APP—1-A</next>
</leg>
<leg id="VOR-APP—1-A” xsi:type="fp:TFLeg">
<dest>
<coordinates>41.9478 —0.1718</coordinates>
<fly—over>true</fly —over>
<altitude>1189</altitude>
<speed>200</speed>
</dest>
<next>VOR-APP—1-B</next>
</leg>
<leg id="VOR-APP-1-B” xsi:type="fp:RFLeg”>
<dest>
<coordinates>41.9878 —0.1270</coordinates>
<altitude>1158</altitude>
<speed>160</speed>
</dest>
<next>VOR-APP—1-C</next>
<center>41.9652 —0.1451</center>
<direction>Left</direction>
</leg>
<leg id="VOR-APP—1-C” xsi:type="fp:TFLeg">
<dest>
<coordinates>42.0306 —0.2229</coordinates>
<fly—over>true</fly —over>
<altitude>975</altitude>
<speed>140</speed>
</dest>
<next>VOR-APP—1-D</next>
</leg>
<leg id="VOR-APP-1-D” xsi:type="fp:TFLeg"”>
<dest>

<coordinates>42.0733 —0.3189</coordinates>
<fly —over>true</fly —over>
<altitude>1036</altitude>
<speed>140</speed>
</dest>
<next>VOR-SIDSTAR—1-A</next>
</leg>
<leg id="VOR-SIDSTAR—I-A" xsi:type="fp:TFLeg">
<dest>
<coordinates>42.1514 —0.4396</coordinates>
<altitude>1310</altitude>
<speed>160</speed>
</dest>
<next>VOR-SIDSTAR—1-B</next>
</leg>
<leg id="VOR-SIDSTAR—1-B” xsi:type="fp:DFLeg">
<dest>
<coordinates>42.0714 —0.4828</coordinates>
<altitude>1410</altitude>
<speed>200</speed>
</dest>
<next>VOR-SIDSTAR—1-C</next>
</leg>
<leg id="VOR-SIDSTAR—1-C” xsi:type="fp:TFLeg">
<dest>
<coordinates>42.0733 —0.3189</coordinates>
</dest>
<next>Join</next>
</leg>
<leg id="Join” xsi:type="fp:IntersectionLeg”/>
</legs>
<initialLegs>Loop</initialLegs>
<finalLegs>Loop</finalLegs>
</stage>

<stage id="retroute” type="Route”>
<name>Return Route</name>
<description>Return from mission area</description>
<legs>
<leg id="VOR-FINISH—1-A" xsi:type="fp:TFLeg">
<dest>
<coordinates>41.9478 —0.1718/coordinates>
<fly—over>true</fly —over>
<altitude>1189</altitude>
<speed>200</speed>
</dest>
</leg>
</legs>
<initialLegs>VOR-FINISH—1-A</initialLegs>
<finalLegs>VOR-FINISH-1-A</finalLegs>
</stage>

<stage id="arrival” type="Arrival”>
<name>Arrival stage</name>
<description></description>
<legs>
<leg id="VOR-ARR-1-A" xsi:type="fp:RFLeg"™>
<dest>
<coordinates>41.9878 —0.1270</coordinates>
<altitude>1158</altitude>
<speed>160</speed>
</dest>
<center>41.9652 —0.1451</center>
<direction>Left</direction>
</leg>
</legs>
<initialLegs>VOR-ARR-1-A</initialLegs>
<finalLegs>VOR-ARR-1-A</finalLegs>
</stage>

<stage id="approach” type="Approach”>
<name>Approach</name>
<description></description>
<legs>
<leg id="VOR-APP-A" xsi:type="fp:TFLeg">
<dest>
<coordinates>42.0306 —0.2229</coordinates>
<fly—over>true</fly —over>
<altitude>975</altitude>
<speed>140</speed>
</dest>
<next>VOR-APP-B</next>
</leg>
<leg id="VOR-APP-B” xsi:type="fp:TFLeg">
<dest>
<coordinates>42.0733 —0.3189</coordinates>
<fly —over>true</fly —over>
<altitude>1036</altitude>
<speed>140</speed>
</dest>
</leg>
</legs>
<initialLegs>VOR-APP-A</initialLegs>
<finalLegs>VOR-APP-B</finalLegs>
</stage>

<stage id="land” manualOnly="true” type="Land”/>

<stage id="taxi2” manualOnly="true” type="Taxi”/>

118 Appendix B - Specification of Navaids Inspection Mission

</stages> </fp:FlightPlan>
</MainFP>

Specification of Hotspot Detection

Mission

This appendix provides complete listings of flight plan and mission specifications used in the

simulation of the hotspot detection mission.

C.1 Flight Plan Specification

Listing C.1 provides the specification of the flight plan for carrying out the hotspot detection
mission. The same flight plan is used in the two strategies used for performing the mission.

Listing C.1: XML flight plan specification.

<?xml version="1.0" encoding="UTF-8"7>

<fp:FlightPlan
xmlns:fp="http://icarus.upc.es/schema/FlightPlan /1.1’
xmlns:xsi="http://mwww.w3.org/2001/XMLSchema—instance ’
xsi:schemalLocation="file:FlightPlan —1.1.xsd ">

<!— Locale settings —>

<Locale>
<speedUnits>kt</speedUnits>
<altitudeUnits>m</altitudeUnits>
<distanceUnits>m</distanceUnits>
<decimalSeparator>.</decimalSeparator>
<groupSeparator />

</Locale>

<!— List of fixes —>
<Fixes>
<Fix id="LEIG17” xsi:type="fp:RwyFixType”>
<name>Igualada—Odena LEIG 17 Runway</name>
<description>
Runway 17 of Igualada—Odena airport
</description>

119

<coordinates>
41.58680712601129 1.651446229162748
</coordinates>
<altitude>331</altitude>
<heading>170</heading>
<length>780</length>
</Fix>
<Fix id="LEIG35” xsi:type="fp:RwyFixType”>
<name>Igualada—Odena LEIG 35 Runway</name>
<description>
Runway 35 of Igualada—Odena airport
</description>
<coordinates>
41.58098991505337 1.654476003345295
</coordinates>
<altitude>321</altitude>
<heading>310</heading>
<length>780</length>
</Fix>
</Fixes>

<!— List of emergency flight plans —>
<EmergencyPlans />

<!— Main flight plan —>

120 Appendix C - Specification of Hotspot Detection Mission

<MainFP id="HotSpotPlan"> <fly —over>true</fly —over>
<name>Hot Spot Mission Flight Plan</name> <speed>40</speed>
<description> </dest>
Perform hot spot mission <next>join</next>
</description> <course>135</course>
<stages> <d1>1000</d1>
<!— Taxi to runway —> <d2>450</d2>
<stage id="taxi” manualOnly="true” type="Taxi”/> </leg>
<leg id="hold” xsi:type="fp:HFLeg">
<!— Take Off from rwy LEIG17 —> <dest>
<stage id="takeoff” manualOnly="true” type="TakeOff”/> <coordinates>
41.55523585866938 1.777892046315137
<!— Depart stage —> </coordinates>
<stage id="depart” type="Departure”> <speed>40</speed>
<name>Departure Procedure</name> </dest>
<description> <next>join</next>
Go to route start <course>45</course>
</description> <direction>Right</direction>
<legs> <d1>1000</d1>
<leg id="departLeg” xsi:type="fp:TFLeg"> <d2>450</d2>
<dest> </leg>
<coordinates> <leg id="join” xsi:type="fp:IntersectionLeg” />
41.57952426103741 1.670437018720817 </legs>
</coordinates> <initialLegs>missloop</initialLegs>
<altitude>550</altitude> <finalLegs>missloop</finalLegs>
<speed>70</speed> </stage>
</dest>
</leg> <!— Return from mission area route —>
</legs> <stage id="retroute” type="Route”>
<initialLegs>departLeg</initialLegs> <name>Return Route</name>
<finalLegs>departLeg</finalLegs> <description>Return from mission</description>
</stage> <legs>
<leg id="retleg” xsi:type="fp:TFLeg">
<!— Go to mission area —> <dest>
<stage id="goroute” type="Route”> <coordinates>
<name>To Mission Route</name> 41.56510942654809 1.686081825185838
<description>Go to mission area</description> </coordinates>
<legs> <speed>70</speed>
<leg id="rleg” xsi:type="fp:TFLeg"> </dest>
<dest> </leg>
<coordinates> </legs>
41.58472121226085 1.684652022474151 <initialLegs>retleg</initialLegs>
</coordinates> <finalLegs>retleg</finalLegs>
<altitude>800</altitude> </stage>
</dest>
</leg> <!— Arrival stage —>
</legs> <stage id="arrival” type="Arrival”>
<initialLegs>rleg</initialLegs> <name>Arrival stage</name>
<finalLegs>rleg</finalLegs> <description />
</stage> <legs>
<leg id="arrileg” xsi:type="fp:TFLeg”>
<!— Perform mission —> <dest>
<stage id="mission” type="Mission”> <coordinates>
<name>Scan area mission</name> 41.5748709413011 1.667392541543762
<description>Scan over the area</description> </coordinates>
<legs> </dest>
<leg id="missloop” xsi:type="fp:IterativeLeg”™> </leg>
<body> </legs>
patternSelect scanArea scanPoint hold join <initialLegs>arrileg</initialLegs>
</body> <finalLegs>arrileg</finalLegs>
<first>patternSelect</first> </stage>
<last>join</last>
<upperBound>15</upperBound> <!— Approach stage —>
</leg> <stage id="approach” type="Approach”>
<leg id="patternSelect” <name>Approach</name>
xsi:type="fp:IntersectionLeg "> <description />
<next>scanArea</next> <!-— default value > <legs>
<nextCond>selection</nextCond> <leg id="appr” xsi:type="fp:TFLeg">
<nextList>scanArea scanPoint hold</nextList> <dest>
</leg> <coordinates>
<leg id="scanArea” xsi:type="fp:BasicScanLeg”™> 41.57813348412295 1.656011088093122
<dest> </coordinates>
<coordinates> <altitude>50</altitude>
41.5493424917977 1.77254310685181 <speed>15</speed>
</coordinates> </dest>
<speed>60</speed> </leg>
</dest> </legs>
<next>join</next> <initialLegs>appr</initialLegs>
<dim1>6000</dim1> <finalLegs>appr</finalLegs>
<dim2>5500</dim2> </stage>
<angle>80</angle>
<separation>800</separation> <!— Landing stage —>
</leg> <stage id="land” manualOnly="true” type="Land”/>
<leg id="scanPoint” xsi:type="fp:ScanPointLeg”>
<dest> <stage id="taxi2” manualOnly="true” type="Taxi”/>
<coordinates> </stages>
41.56947331267459 1.717810982215079 </MainFP>

</coordinates> </fp:FlightPlan>

C.2 Hotspot Mission Main States 121

C.2 Hotspot Mission Main States

Listing C.2 defines the main states of the mission in SCXML. The src attribute in the Mission state
is used to select the file that contains the specification of all the mission details.

Listing C.2: SCXML main states specification.

<?xml version="1.0" encoding="UTF-8"7>

<t—
Definition of UAS behavior for HotSpot mission.

—

<scxml xmlns="http://mwww.w3.0rg/2005/07/scxml” version="1.0"
initialstate="OnGround”>

<state id="OnGround”>
<transition event="current_stage” cond="_eventdata=="takeoff '” target="TakeOff” />
</state>

<state id="TakeOff”>
<transition event="current_stage” cond="_eventdata=='"goroute’” target="EnRoute” />

</state>
<state id="EnRoute”>
<transition event="current.stage” cond=".eventdata=="mission’” target="Mission” />
<transition event="current.stage” cond=".eventdata=="arrival ’” target="Landing” />
</state>
<state id="Mission” src="MissionStateA .xml">
<transition event="current.stage” cond="_.eventdata=="retroute '’ target="EnRoute” />
</state>

<state id="Landing”>
<transition event="on_ground” target="OnGround” />
</state>

</scxml>

C.3 Deferred Hotspot Analysis

Listing C.3 specifies the behavior of the UAS during the mission state when applying a deferred
hotspot analysis strategy. Two parallel states are respectively in charge of counting the number
of potential hotspots and managing the UAS flight. Several datamodel elements are used to hold
variables and templates of the update messages that will be sent to the FPM. This data is accessed
in various expressions and modified using the assign SCXML element. Send is used to notify the
MMa service, that hosts the execution engine, that an outbound event has occurred.

Listing C.3: SCXML deferred analysis specification.

<?xml version="1.0" encoding="UTF-8"7?>

<!—
Definition of UAS behavior for HotSpot mission.

—>

<scxml xmlns="http://mww.w3.0rg/2005/07/scxml” version="1.0"
initialstate="HotSpotProcessing”>

<datamodel>
<data id="selection” expr="0" />
<!— Detected HotSpots Counter —>
<data id="detect_-hs_count” expr="0" />
<!— Visited HotSpots Counter —>
<data id="visit_hs_count” expr="0" />
</datamodel>

<parallel id="HotSpotProcessing”>

<!— Keep track of the number of potential hotspots —>
<state id="HotSpotsCounter”>
<datamodel>
<data id="scanPointUpdate”
xmlns:fpu="http://icarus.upc.es/schema/FlightPlanUpdate /1.1 "
xmlns:fp="http://icarus.upc.es/schema/FlightPlan /1.1’
xmlns:xsi="http://mww.w3.org/2001/XMLSchema—instance ">
<fpu:FlightPlanUpdate xmlns="">
<Change>
<MainFP targetld="HotSpotPlan”>
<stages>
<stage targetld="mission”>
<legs>
<leg targetld="scanPoint” xsi:type="fp:ScanPointLeg”>
<dest>
<coordinates />
</dest>
</leg>

122 Appendix C - Specification of Hotspot Detection Mission

</legs>
</stage>
</stages>
</MainFP>
</Change>
</fpu:FlightPlanUpdate>
</data>
<!— Auxiliary variables —>
<data id="lat” expr="" />
<data id="lon” expr="" />
<data id="coordinates” expr="" />
</datamodel>

<transition event="hotspot”>
<assign name="detect.hs_count” expr="detect.hs_count + 1”7 />
<log expr="'Number of detected hot spots:’ + detect-hs.count” />

<!— Set scanPoint target to first non—visited potential hotspot —>

<assign name="lat” expr="HotSpotList[visit-hs_count]. getLatitude (). toString ()" />

<assign name="lon” expr="HotSpotList[visit-hs_count]. getLongitude (). toString ()” />

<assign name="coordinates” expr="lat.concat(’ ’).concat(lon)” />

<log expr="'HotSpot location: ' + coordinates”/>

<assign
xmlns:fpu="http://icarus.upc.es/schema/FlightPlanUpdate /1.1’
location="Data(scanPointUpdate ,
"fpu:FlightPlanUpdate/Change/MainFP/stages/stage/legs/leg/dest/coordinates ’)”
expr="coordinates” />

<!— Send message to fpms —>
<send target="'container’” targettype="'x—marea’” event="'update.cmd’” namelist="scanPointUpdate” />
<!— Set scanPoint as next leg —>
<assign name="selection” expr="1" />
<send target="'container’” targettype="'x—marea’” event="’set.condition’” namelist="selection” />
</transition>
</state>
<!— Perform mission —>
<state id="HotSpotAnalysis” >
<initial>
<transition target="ScanArea”/>
</initial>
<!— During the mission stage, the UAS will be in one of the following states:
Hold: Don’t know what to do, just wait.
Scan Area: Scan the area of interest.
Scan Point: Take closer look at a potential hot spot. —>
<state id="ScanArea”>
<!~ Scan area —>
<onentry>

<!~ When done go to hold state —>

<assign name="selection” expr="2" />

<send target="'container targettype=""x—marea’”
</onentry>

event=""set_condition’” namelist="selection” />

<transition event="current.leg” cond="_eventdata=="hold’” target="Hold” />
<transition event="current-leg” cond="_-eventdata=="scanPoint’” target="ScanPoint” />
</state>

<state id="Hold">
<transition event="current_leg” cond="_eventdata=="scanPoint’” target="ScanPoint” />
<transition event="scan” target="ScanArea” />

</state>

<!—— Take closer look at hot spot —>
<state id="ScanPoint”>
<datamodel>
<!—— Update message for scan point —>
<data id="scanPointUpdate”
xmlns:fpu="http://icarus . upc.es/schema/FlightPlanUpdate/1.1"
xmlns:fp="http://icarus.upc.es/schema/FlightPlan/1.1"
xmlns:xsi="http: //www.w3.0rg /2001/XMLSchema—instance >
<fpu:FlightPlanUpdate xmlns="">
<Change>
<MainFP targetld="HotSpotPlan">
<stages>
<stage targetld="mission”>
<legs>
<leg targetld="scanPoint” xsi:type="fp:ScanPointLeg">
<dest>
<coordinates />
</dest>
</leg>
</legs>
</stage>
</stages>
</MainFP>
</Change>
</fpu:FlightPlanUpdate >
</data>
<!—— Auxiliary variables —>
<data id="lat” expr="" />
<data id="lon” expr="" />
<data id="coordinates” expr="" />
</datamodel>

<onentry>
<assign name="visit_hs_count” expr="visit_hs_count + 1”7 />
<if cond="visit_hs_count It detect.hs_count”>
<!—— Set scanPoint target to first non—visited potential hotspot —>
<assign name="lat” expr="HotSpotList[visit.hs_count].getLatitude (). toString()” />

C.4 Immediate Hotspot Analysis 123

<assign name="lon” expr="HotSpotList[visit-hs_count].getLongitude (). toString ()" />

<assign name="coordinates” expr="lat.concat(’ ").concat(lon)” />
<log expr=""HotSpot location: ' + coordinates”/>
<assign

xmlns:fpu="http://icarus .upc.es/schema/FlightPlanUpdate/1.1"
location="Data(scanPointUpdate ,
‘fpu:FlightPlanUpdate /Change/MainFP/stages /stage/legs /leg/dest /coordinates’)”
expr="coordinates” />
<!—— Send message to fpms —>
<send target="'container’” targettype="'x—marea’"
<!—— Set scanPoint as next leg —>
<assign name="selection” expr="1" />
<send target="'container’” targettype="'x—marea’"
<else/>
<!~— When done go to hold —>
<assign name="selection” expr="2" />
<send target="'container’” targettype="'x—marea’” event=
</if>
</onentry>

g

event=""update_.cmd’” namelist="scanPointUpdate” />

, " g

event=""set_condition’” namelist="selection” />

set_condition’” namelist="selection” />

<transition event="current.leg” cond="_eventdata=="hold’” target="Hold” />
<transition event="current-leg” cond="_-eventdata=="scanPoint’” target="ScanPoint” />
</state>

</state>
</parallel>
</scxml>

C.4 Immediate Hotspot Analysis

Listing C.4 specifies the behavior of the UAS during the mission state when applying an
immediate hotspot analysis strategy.

Listing C.4: SCXML immediate analysis specification.

<?xml version="1.0" encoding="UTF-8"7>

<!—
Definition of UAS behavior for HotSpot mission.

—>

<scxml xmlns="http://www.w3.0rg/2005/07/scxml” version="1.0"
initialstate="ScanArea”>

<datamodel>
<!— What to do during mission stage:
0: Scan Area
1: Scan Point
2: Hold —>
<data id="selection” expr="0" />
<!— Goto leg destination —>
<data id="goto_dest” expr="""" />
</datamodel>

<!— During the mission stage, the UAS will be in one of the following states:
Hold: Don’t know what to do, just wait.
Scan Area: Scan the area of interest.
Scan Point: Take closer look at a potential hot spot. —>

<state id="ScanArea”>
<datamodel>

<data id="lat” expr="""" />

<data id="lon” expr="""" />

<data id="startAtCoords” expr="""" />

<!—— Update message for scan area —>

<data id="scanUpdate”
xmlns:fpu="http://icarus .upc.es/schema/FlightPlanUpdate/1.1"
xmlns:fp="http://icarus .upc.es/schema/FlightPlan/1.1"
xmlns:xsi="http: //uwww.w3.org/2001/XMLSchema—instance ">
<fpu:FlightPlanUpdate xmlns="">

<Change>
<MainFP targetld="HotSpotPlan”>
<stages>
<stage targetld="mission”>
<legs>
<leg targetld="scanArea” xsi:type="fp:BasicScanLeg”>
<startAt/>
</leg>
</legs>
</stage>
</stages>
</MainFP>
</Change>
</fpu:FlightPlanUpdate >
</data>

<!—— Update message for scan point —>
<data id="scanPointUpdate”
xmlns:fpu="http://icarus .upc.es/schema/FlightPlanUpdate/1.1"
xmlns:fp="http://icarus.upc.es/schema/FlightPlan/1.1"
xmlns:xsi="http: //uwww.w3.org/2001/XMLSchema—instance ">
<fpu:FlightPlanUpdate xmlns="">
<Change>

124 Appendix C - Specification of Hotspot Detection Mission

<MainFP targetld="HotSpotPlan”>
<stages>
<stage targetld="mission”>
<legs>
<leg targetld="scanPoint” xsi:type="fp:ScanPointLeg">
<dest>
<coordinates />
</dest>
<course/>
</leg>
</legs>
</stage>
</stages>
</MainFP>
</Change>
</fpu:FlightPlanUpdate >
</data>
</datamodel>

<onentry>

<!—— When done go to hold state —>

<assign name="selection” expr="2" />

<send target="'container’” targettype="'x—marea’” event=
</onentry>

set_condition’” namelist="selection” />

<transition event="hotspot”>
<!—— Get current position —>
<assign name="lat” expr="Position.getLatitude (). toString()” />
<assign name="lon” expr="Position.getLongitude (). toString ()" />
<assign name="startAtCoords” expr="lat.concat(’ ’).concat(lon)” />

<!—— (1) Update scanPoint leg with hotspot position data —>

<log expr="'HotSpot location: ' + _eventdata[’coordinates’]”/>

<log expr=""HotSpot course: " + _eventdata[course’]"/>

<assign xmlns:fpu="http://icarus.upc.es/schema/FlightPlanUpdate/1.1"
location="Data (scanPointUpdate , ’fpu:FlightPlanUpdate /Change/MainFP/stages/stage/legs/leg/dest/coordinates’)”
expr="_eventdata[coordinates’]” />

<assign xmlns:fpu="http://icarus.upc.es/schema/FlightPlanUpdate/1.1"
location="Data(scanPointUpdate , ’fpu:FlightPlanUpdate /Change/MainFP/stages/stage/legs/leg/course’)”
expr="_eventdata[course’]” />

<!—— Send message to fpms —>

o ” "

<send target="'container targettype=""x—marea’” event=""update_.cmd’” namelist="scanPointUpdate” />
<!=— (2) Jump to scanPoint leg >

<assign name="selection” expr="1" />

<send target="'container’” targettype="'x—marea’” event="'set_condition’” namelist="selection” />
<assign name="goto_dest” expr="'scanPoint’” />

<send target="'container’” targettype="'x—marea’” event="'goto_leg’” namelist="goto_dest” />

<!—— (8) Update startAt parameter of scan so that flight is resumed where it was left —>
<assign xmlns:fpu="http://icarus.upc.es/schema/FlightPlanUpdate/1.1"
location="Data(scanUpdate, ’'fpu:FlightPlanUpdate /Change/MainFP/stages/stage/legs/leg/startAt’)”
expr="startAtCoords” />
<!—— Send message to fpms —>
<send target="'container’” targettype="'x—marea’” event=
</transition>

update_cmd’” namelist="scanUpdate” />

<transition event="current.-leg” cond="_-eventdata=="hold’” target="Hold">
<!—— Update startAt parameter so that scan starts over from the beginning —>
<assign xmlns:fpu="http://icarus.upc.es/schema/FlightPlanUpdate/1.1"
location="Data(scanUpdate , ’fpu:FlightPlanUpdate /Change/MainFP/stages/stage/legs/leg/startAt’)”
expr="""" />
<!—— Send message to fpms —>
<send target=""container’” targettype="'x—marea’
</transition >

” "

event=""update.cmd’” namelist="scanUpdate” />

<transition event="current_leg” cond="_eventdata=="scanPoint’” target="ScanPoint” />
</state>

<state id="ScanPoint”>
<onentry>
<!—— When done go to scan state —>
<assign name="selection” expr="0" />
<send target="'container’” targettype="'x—marea’” event=
</onentry>

set_condition’” namelist="selection” />

’

<transition event="current.leg” cond="_eventdata=="scanArea’”
</state>

target="ScanArea” />

<state id="Hold">
<!—— Wait until commanded to perform scan or terminate mission —>
<transition event="scan” target="Hold">
<assign name="selection” expr="0" />

" o ” " 2

<send target="'container targettype=""x—marea’” event="'set_condition namelist="selection” />
<assign name="goto-dest” expr="'scanArea’” />
<send target="'container’'” targettype="'x—marea’” event="'goto-leg’” namelist="goto-dest” />
</transition>
<transition event="terminate” target="Hold">
<assign name="goto-dest” expr=""retleg’'” />
<send target="'container’'” targettype="'x—marea’” event="'goto-leg’” namelist="goto-dest” />

</transition >

’

<transition event="current.leg” cond="_eventdata=="scanArea’”
</state>

target="ScanArea” />

</scxml>

References

AERONAUTICAL RADIO, INC. 2008. 424-19 navigation systems data base. 14

AIRBUS. 2002 (April). Getting to grips with modern navigation. Flight Operations Support & Line Assistance.
13

ANDERSON, CHRIS. 2009. DIY Drones Ardupilot. http://diydrones.com profil es/bl ogs/
ar dupi | ot - mai n- page. Last visited: November 2009. 11

ARKIN, R.C. 1998. Behavior based robotics. The MIT Press. 17

ASMARE, E., DuLAY, N., KiM, H., LUPU, E., & SLOMAN, M. 2006. Management architecture and mission
specification for unmanned autonomous vehicles. In: 1st seas dtc technical conference. 19

BARBIER, MAGALI, & CHANTHERY, ELODIE. 2004. Autonomous mission management for unmanned aerial
vehicles. Aerospace science and technology, 8(4), 359 — 368. 19

BoocCH, GRADY, RUMBAUGH, JAMES, & JACOBSON, IVAR. 2005. Unified modeling language user guide, the
(2nd edition) (the addison-wesley object technology series). Addison-Wesley Professional. 23, 83

BRAY, TiM, PAOLI, JEAN, SPERBERG-MCQUEEN, C. M., MALER, EVE, COIS YERGEAU, FRAN, & COWAN,
JOHN. 2006 (August). Extensible markup language (XML) 1.1 (second edition). World Wide Web
Consortium (W3C). htt p: / / www. w3. org/ TR/ xm 11/. 6,12

BRISSET, PASCAL, DROUIN, ANTOINE, GORRAZ, MICHEL, HUARD, PIERRE-SELIM, & TYLER, JEREMY.
2006 (November). The paparazzi solution. MAV2006. 11

CHAO, HAIYANG, CAO, YONGCAN, & CHEN, YANGQUAN. 2007. Autopilots for small fixed-wing
unmanned air vehicles: A survey. Pages 3144-3149 of: International conference on mechatronics and
automation (icma). Harbin, China: IEEE. 9, 33

CLouD CAP TECHNOLOGY. 2009. Piccolo family of autopilots. http://wmw cl oudcapt ech. com
pi ccol o_system sht m Last visited: November 2009. 10

CoX, VICTORIA, ROMANOWSKI, MICHAEL, MOHLER, GISELE, TEDFORD, ANN, & WHITLEY, PAMELA.
2009 (October). FAA's NextGen implementation plan. NextGen Integration and Implementation Office,
FAA. 110

DAMIANOU, N., DULAY, N., LUPU, E., & SLOMAN, M. 2001. The ponder policy specification language.
In: SPRINGER (ed), Policies for distributed systems and networks: International workshop, policy 2001.
proceedings. 19

DEGARMO, MATTHEW T. 2004. Issues concerning integration of unmanned aerial vehicles in civil airspace. Tech.
rept. The MITRE Corporation. 6

125

http://diydrones.com/profiles/blogs/ardupilot-main-page
http://diydrones.com/profiles/blogs/ardupilot-main-page
http://www.w3.org/TR/xml11/
http://www.cloudcaptech.com/piccolo_system.shtm
http://www.cloudcaptech.com/piccolo_system.shtm

126 REFERENCES

DOHERTY, P.,, HASLUM, P., HEINTZ, F., MERZ, T., NYBLOM, P., PERSSON, T., & WINGMAN, B. 2004. A
distributed architecture for autonomous unmanned aerial vehicle experimentation. In: Proceedings of
the 7th international symposium on distributed autonomous systems. 20

DONG, MIAOBO, & SUN, ZENGQI. 2004 (Sept.). A behavior-based architecture for unmanned aerial
vehicles. Pages 149-155 of: Proceedings of the 2004 ieee international symposium on intelligent control. 21

DONG, M1AOBO, CHEN, BEN M., CAI, GUOWEI, & PENG, KEMAO. 2007. Development of a real-time
onboard and ground station software system for a uav helicopter. Journal of aerospace computing,
information, and communication, 4, 933-955. 21

EM TECHNOLOGIES GROUP. 2009. Attopilot. http://attopil ot.conf. Last visited: November 2009.
11

EUROCONTROL. 2003. Guidance material for the design of terminal procedures for area navigation. European
Organisation for the Safety of Air Navigation. 6, 14

EUROCONTROL. 2009 (March). Air traffic management master plan. European Organisation for the Safety
of Air Navigation. 110

FAA. 2005 (October). United states standard flight inspection manual. Departments of the Army, the Navy,
and the Air Force and the Federal Aviation Administration. 67

FAA. 2007 (November). Aviation system standards. flight inspetion operations group. flight inspetion handbook. ti
8200.52. Federal Aviation Administration. U.S. Department of Transportation. 69, 70

FAA. 2008 (February). Aeronautical information manual, official guide to basic flight information and atc
procedures. Federal Aviation Administration. U.S. Department of Transportation. 6, 33

FAA.2009. Pilot/controller glossary. U.S. Federal Aviation Administration. 14

FREED, M., BONASSO, P., DALAL, K.M., FITZGERALD, W., & HARRIS, R. 2005. An architecture for
intelligent management of aerial observation missions. In: Proceedings of american institute of aeronautics
and astronautics "infotech@aerospace” technical conference. 18

HAREL, D., & POLITI, M. 1998. Modeling reactive systems with statecharts: The statemate approach. McGraw-
Hill. 6,23, 82

HEIMDAHL, M.P.E., LEVESON, N.G., & REESE,]J.D. 1998. Experiences from specifying the tcas ii
requirements using rsml. Digital avionics systems conference, 1998. proceedings., 17th dasc. the aiaa/ieee/sae,
1(Oct-7 Nov), C43/1-C43/8 vol.1. 23

HUANG, H.M., MESSINA, E., & ALBUS, J. 2003. Autonomy level specification for intelligent autonomous
vehicles: Interim progress report. In: Proceedings of the 2003 performance metrics for intelligent systems
(permis) workshop. 5

HUANG, HUI-MIN, MESSINA, ELENA, & ALBUS, JAMES. 2007. Autonomy levels for unmanned systems (alfus)
framework. Tech. rept. National Institute of Standards and Technology. 4

ICAO. 2000. Manual on testing of radio navigation aids, doc. 8071. 4th edition edn. 67, 68, 69, 70

INGHAM, L.A. 2008. Considerations for a roadmap for the operation of unmanned aerial vehicles (uav) in south
african airspace. Ph.D. thesis, Universiteit Stellenbosch University. 2

KERNIGHAN, BRIAN W., & RITCHIE, DENNIS M. 1978. The c programming language. Prentice-Hall. 11

LAGER, TORBJORN. 2010. pyscxml - an SCXML implementation in Python. ht t p: / / code. googl e. com p/
pyscxm /. Last visited: February 2010. 88

LAZARSKI, ANTHONY J. 2002. Legal implications of the unmanned combat aerial vehicle. Aerospace power
journal, 16:2, 74-83. 4

LoPEz, J., Royo, P.,, PASTOR, E., BARRADO, C., & SANTAMARIA, E. 2007 (Nov.). A middleware
architecture for unmanned aircraft avionics. In: Acm/ifip/useunix 8th int. middleware conference. 26

MACKENZIE, D.C., ARKIN, R.C., & CAMERON, J. 1997. Multiagent mission specification and execution.
Autonomous robots, 4, 29-52. 21

MICROPILOT. 2009. Mp2028 series autopilots. http://ww. nicropilot.con
product s- np2028- aut opi | ot s. ht m Last visited: November 2009. 10

http://attopilot.com/
http://code.google.com/p/pyscxml/
http://code.google.com/p/pyscxml/
http://www.micropilot.com/products-mp2028-autopilots.htm
http://www.micropilot.com/products-mp2028-autopilots.htm

REFERENCES 127

NARAYAN, PRITESH P., WU, PAUL P.Y., CAMPBELL, DUNCAN A., & WALKER, RODNEY A. 2007. An
intelligent control architecture for unmanned aerial systems (uas) in the national airspace system (nas).
Pages 1-11 of: Proceedings 2nd international unmanned air vehicle systems conference. 17

NaAS, MICHAEL. 2007. Pilots by proxy: Legal issues raised by the development of unmanned aerial vehicles. Tech.
rept. UATAR (Unmanned Aircraft Technology Applications Research). 4

NAS, MICHAEL. 2008. The changing face of the interface: An overview of uas control issues & controller certification.
Tech. rept. UATAR (Unmanned Aircraft Technology Applications Research). 5

NASA. 2006 (August). Earth observations and the role of UAVs: A capabilities assessment. version 1.1. NASA’s
Civil UAV Assessment Team. 2

NASA.2009. Apex. http://ti.arc. nasa. gov/ proj ect s/ apex/ . Last visited: January 2009. 18

NATO. 2000 (April). Flight testing of radio navigation systems (les essais en vol des systes de radionavigation).
NATO Research and Technology Organisation. 70

NOKIA. 2010. SCXML Support for the Qt State Machine Framework. ht t p: / /1 abs. trol | t ech. com page/
Proj ect s/ xm / scxm . Last visited: February 2010. 88

NYBLOM, PER. 2003. A language translator for robotic task procedure specifications. M.Phil. thesis, Linkopings
universitet. 20

OLSON, CURTIS L. 2010. FlightGear Flight Simulator. ht t p: / / www. f | i ght gear . or g. Last visited: April
2010. 75

OMG. 2010. Introduction to OMG’s unified modeling language (UML). Object Management Group (OMG).
Last visited: February 2010. 23, 83

OREBACK, ANDERS. 2004. A component framework for autonomous mobile robots. Ph.D. thesis, KTH Numerisk
analys och datalogi. 17

PAPARAZZI. 2010. The paparazzi project. http://waw. recherche. enac. fr/paparazzi/wi Kki/
i ndex. php/ Mai n_Page. Last visited: April 2010. 11

PAsTOR, E., LOPEZ, J., & ROYO, P. 2007. UAV payload and mission control hardware/software
architecture. leee aerospace and electronic systems magazine, 22(6). 25

PROCERUS TECHNOLOGIES. 2009. Kestrel — autopilot. htt p://ww. procerusuav. conf
product sKestrel Aut opi | ot . php. Last visited: November 2009. 10

QvIsT, IAN. 2006. Remote flight inspection of enroute facilities. In: 14th ifis (int’l flight inspection symposium).
68

RAMIREZ, JORGE, BARRADO, CRISTINA, & PASTOR, ENRIC. 2009. A proposal for using uas in radio
navigation aids flight inspection. In: 47th aiaa aerospace sciences meeting. 67, 68

Royo, P., LOPEZ, J., PASTOR, E., & BARRADO, C. 2008. Service abstraction layer for UAV flexible
application development. In: 46th aiaa aerospace sciences meeting and exhibit. Reno, Nevada: AIAA.
26

RTCA. 2007 (March). DO-304: Guidance material and considerations for unmanned aircraft systems. 2
SPITZER, CARY R. 2007. Digital avionics handbook: elements, software and functions. CRC Press. 15

THE APACHE SOFTWARE FOUNDATION. 2010. Apache Commons SCXML. http://comons. apache.
org/ scxm /. Last visited: February 2010. 88

THOMPSON, JEFFREY M., HEIMDAHL, MATS P. E., & MILLER, STEVEN P. 1999. Specification-based
prototyping for embedded systems. Chap. Specification-Based Prototyping for Embedded Systems, pages
163-179 of: Software engineering - esec/fse '99. Springer Berlin / Heidelberg. 23

TRILLO, NOEL. 2009. Rnav guidance system design for unmanned aerial vehicles. M.Phil. thesis, Castelldefels
School of Technology (EPSC). 59

UAV NAVIGATION. 2009. AP04. http://ww. uavnavi gati on.conf uavprod/ uavprod_01. ht m
Last visited: November 2009. 10

UAVNET. 2005. Eu civil uav roadmap. ht t p: / / www. uavnet .. com 2, 3

http://ti.arc.nasa.gov/projects/apex/
http://labs.trolltech.com/page/Projects/xml/scxml
http://labs.trolltech.com/page/Projects/xml/scxml
http://www.flightgear.org
http://www.recherche.enac.fr/paparazzi/wiki/index.php/Main_Page
http://www.recherche.enac.fr/paparazzi/wiki/index.php/Main_Page
http://www.procerusuav.com/productsKestrelAutopilot.php
http://www.procerusuav.com/productsKestrelAutopilot.php
http://commons.apache.org/scxml/
http://commons.apache.org/scxml/
http://www.uavnavigation.com/uavprod/uavprod_01.htm
http://www.uavnet.com

128 REFERENCES

ULawm, P, ENDO, Y., WAGNER, A., & ARKIN, R. 2006. Integrated mission specification and task allocation for
robot teams - part 1: Design and implementation. Tech. rept. College of Computing, Georgia Institute of
Technology. 17

UVS-INTERNATIONAL. 2009. 2009/2010 uas yearbook - uas: The global perspective. Blyenburgh & Co. 2

W3C. 2009 (October). State Chart XML (SCXML) state machine notation for control abstraction (W3C Working
Draft). World Wide Web Consortium (W3C). htt p: / / www. w3. or g/ TR/ scxm /. 6,23, 81, 86

WEDE, THOMAS. 2006. The future of the flight inspection world, a cristall ball look into changes ahead,
based on current trends and development. In: 14th ifis (int’l flight inspection symposium). 68

http://www.w3.org/TR/scxml/

	Contents
	List of Figures
	List of Figures
	List of Tables
	List of Tables
	Preface
	List of Publications
	Agraïments
	Resum
	Abstract
	List of Acronyms

	Introduction
	Definition of Unmanned Aircraft System
	UAS Potential for Civil Applications
	Motivation for Increased Autonomy
	Thesis Contributions
	Thesis Organization

	Previous Work
	COTS Autopilot Capabilities
	A Look at Commercial Aviation
	Mobile Robot Control Architectures
	UAS Mission Control

	System Architecture
	Architecture Overview
	Service-Oriented Middleware
	USAL Services
	Conclusion

	Flight Plan Specification Language
	Base Flight Plan
	Emergency Flight Plans
	Flight Plan Updates
	Conclusion

	The Flight Plan Manager Service
	Service Description
	FPM and VAS Integration
	Implementation of the Execution Engine
	Waypoint Generation
	Dynamic Flight Management
	Conclusion

	Flight Plan Experimental Results
	Navaids Flight Inspection Mission
	Inspection Procedures
	Simulation Environment
	Experimental Results
	Conclusion

	The Mission Manager Service
	The Mission Manager Service
	Statecharts
	StateChart XML (SCXML)
	Algorithm for SCXML interpretation
	Implementation of MMa Prototype
	Conclusion

	Mission Management Experimental Results
	Hotspot Detection Mission
	Underlying Flight Plan
	Refinements of the Mission State
	Simulation Environment
	Experimental Results
	Conclusion

	Conclusions and Further Work
	Summary
	Future Research

	XML Schemas
	Flight Plan XML Schema
	FP Updates XML Schema

	Specification of Navaids Inspection Mission
	Specification of Hotspot Detection Mission
	Flight Plan Specification
	Hotspot Mission Main States
	Deferred Hotspot Analysis
	Immediate Hotspot Analysis

	References

