

ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tesisenxarxa.net) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX. No s’autoritza la
presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita
de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tesisenred.net) ha
sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos
privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción
con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR.
No se autoriza la presentación de su contenido en una ventana o marco ajeno a TDR (framing).
Esta reserva de derechos afecta tanto al resumen de presentación de la tesis como a sus
contenidos. En la utilización o cita de partes de la tesis es obligado indicar el nombre de la
persona autora.

WARNING. On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the TDX (www.tesisenxarxa.net) service has been authorized by the
titular of the intellectual property rights only for private uses placed in investigation and teaching
activities. Reproduction with lucrative aims is not authorized neither its spreading and availability
from a site foreign to the TDX service. Introducing its content in a window or frame foreign to the
TDX service is not authorized (framing). This rights affect to the presentation summary of the
thesis as well as to its contents. In the using or citation of parts of the thesis it’s obliged to indicate
the name of the author

Abstract

The growth experienced by the web and by the Internet over the last years has
fuelled web application servers to break into most of the existing distributed execution
environments. Web application servers take distributed applications one step forward
in their accessibility, easiness of development and standardization, by using the most
extended communication protocols and by providing rich development frameworks.

Once the initial stages of technology standardization and market penetration were
completed, the wide acceptation of application servers as an effective and efficient
platform to deploy distributed applications has brought new challenges to the application
servers market. Customers come with increasing requirements about performance,
robustness, availability and manageability; and at the same time the applications that they
want to deploy on the application servers introduce unprecedented levels of complexity
and resource demand.

Modern-day companies run a large number of applications, including transactional
web applications as well as batch processes. Many organizations rely on such a set of
heterogeneous applications to deliver critical services to their customers and partners.
For example, in financial institutions, transactional web workloads are used to trade
stocks and query indices, while computationally intensive non-interactive workloads are
used to analyze portfolios or model stock performance. Due to intrinsic differences
among these workloads, today they are typically run on separate dedicated hardware
and managed using workload specific management software. Such separation adds
to the complexity of data center management and reduces the flexibility of resource
allocation. Therefore, organizations demand management solutions that permit these
kinds of workloads to run on the same physical hardware and be managed using the
same management software. Virtualization technologies can play an important role in
this transition; running applications inside of virtual containers simplifies enormously the
complexity of management and deployment associated to a datacenter. And even more,
opens up a new scenario in which both transactional and long-running workloads can be
collocated in the same set of machines with performance isolation guarantees whereas

ii

more of the data center capacity is exploited.
Following the evolution of the application server execution environment, the factors

that determine their performance have evolved too, with new ones that have come out with
the raising complexity of the environment, while the already known ones that determined
the performance in the early stages of the application server technology remain relevant
in modern scenarios. In the old times, the performance of an application server was
mainly determined by the behavior of its local execution stack, what usually resulted
to be the source of most performance bottlenecks. Later, when the middleware became
more efficient, more load could be put on each application server instance and thus the
management of such a large number of concurrent client connections resulted to be a
new hot spot in terms of performance. Finally, when the capacity of any single node was
exceeded, the execution environments were massively clusterized to spread the load across
a very large number of application server instances, what meant that each instance was
allocated a certain amount of resources. The result of this process is that even in the most
advanced service management architecture that can be currently found, 1) understanding
the performance impact caused by the application server execution stack, 2) efficiently
managing client connections, and 3) adequately allocating resources to each application
server instance, are three incremental steps of crucial importance in order to optimize the
performance of such a complex facility. And given the size and complexity of modern
data centers, all of them should operate automatically without need of human interaction.

Following the three items described above, this thesis contributes to the performance
management of a complex application server execution environment by 1) proposing
an automatic monitoring framework that provides a performance insight in the context
of a single machine; 2) proposing and evaluating a new architectural application server
design that improves the adaptability to changing workload conditions; and 3) proposing
and evaluating an automatic resource allocation technique for clustered and virtualized
execution environments. The sum of the three techniques proposed in this thesis opens
up a new range of options to improve the performance of the system both off-line (1) and
on-line (2 and 3).

This work has been partially supported by the Ministry of Science and Technology of Spain and

the European Union (FEDER funds) under contract TIC2001-0995-C02-01, TIN2004-07739-C02-01 and

TIN2007-60625, and by the BSC-IBM collaboration agreement SoW Adaptive Systems. I acknowledge the

European Center for Parallelism of Barcelona (CEPBA) and the Barcelona Supercomputing Center (BSC)

for supplying the computing resources for some of the experiments presented in this thesis.

iii

iv

Agraïments

El 31 d’agost de 2001 a les 12:44, ara fa uns 6 anys i mig, vaig escriure un correu electrònic

al Jordi Torres per tal de mostrar-li el meu interès en un projecte de final de carrera que portava

per títol “MILLORA DEL RENDIMENT D’APLICACIONS PARAL.LELES I DISTRIBUIDES

EN JAVA”. En aquell moment no tenia molt clares les implicacions d’aquell missatge, tot i que ja

llavors afegia “(. . .) ja fa temps que em volta pel cap la possibilitat de, un cop acabada la carrera,

quedar-me a la universitat fent recerca i obtenir algun dia el doctorat (. . .)”.

Encara a principis de 2008 veig aquella llunyana data com un punt d’inflexió a la meva vida. El

doctorat toca el seu final en aquests moments, i darrera meu queden uns quants anys de formació

com a investigador. Aquella decisió significava, en aquell moment, que pretenia passar uns quants

anys més en l’entorn universitari per a complementar uns estudis superiors que no m’havien

semblat suficientment desafiants abans de tornar al mercat dur de l’empresa privada amb una

formació suficientment potent com per a fer coses d’entitat. Però el que realment va significar

aquella decisió és que vaig quedar immers en el món acadèmic, des d’on m’ensumava que les

grans coses a fer al sector industrial nacional no eren tan importants com imaginava. Aquesta

sensació em va anar allunyant cada cop més del pensament de tornar al mercat privat, i em va fer

descobrir que la recerca acadèmica també podia ser estimulant així com també m’ho va semblar la

docència. Finalment vaig descobrir que fer recerca des de la universitat, però de la mà d’empreses

privades punteres, pot combinar el millor dels dos móns exceptuant, per suposat, els salaris alts.

Com és natural, durant aquests anys m’he trobat amb molta gent, alguns m’han ajudat i d’altres

m’han dificultat la feina, conscient o inconscientment. Allò més important que he après en aquest

temps és que aquells que més m’han ajudat a millorar com a investigador són aquells que més

dificultats m’han generat durant el camí: haver de lluitar per les teves idees fa que te les miris per

tots els costats i amb ulls més crítics que si totes et venen de cara. Això no treu mèrit als que

explicitament m’han ajudat, i per això a ells els dedico aquests agraïments.

Primerament, la meva família. Els valors que em van transmetre en el seu moment és el que

més valoro de tota la meva infància, i és l’única raó per la que té sentit esforçar-se continuament

per millorar. Sempre han estat al meu costat i m’han ensenyat que donar tot el que tens per allò

que creus és el millor camí per trobar la felicitat. Es mereixen aquest reconeixement públic i molt

més!

Segonament, la Mireia. Aquesta criatura preciosa al voltant de la qual gira tota la meva vida

vi

i amb qui, tal com sempre m’agrada recordar, el dia que tinguem 32 anys ja haurem compartit el

100% del 50% de la nostra vida. Sense ella res del que he fet en els últims anys tindria massa

sentit, i espero que estar amb mi hagi donat sentit a la seva vida igualment, perquè vull seguir amb

ella per molt i molt de temps!

Tercerament, als meus directors de tesis: dos caràcters totalment diferenciats amb una bona

amistat que els uneix. El Jordi, emprenedor i hiperactiu de mena, sempre pensant en el demà

mentres deixa enrera el dia d’avui a tota pressa. I l’Eduard, més reflexiu i pensatiu, mirant el camí

que deixem enrera per a entendre el que vindrà. Gràcies a tots dos per la part que us toca.

Tots els eDragons també mereixen una menció especial, una raça especial d’investigadors

coneguts allà on anem, o no! En qualsevol cas, el millor equip de gent amb qui treballar. Tal

com va dir la Gosia un dia, els bons manager són els que es saben envoltar de la gent que millor

treballa, i els nostres ho han fet molt bé. Especialment vull mencionar el Vicenç, amb qui més

hores hem treballat colze amb colze, compartint dinars de divendres i matinades escribint articles

brillants, i amb qui, sens dubte, més cops hem arribat a raonaments absurds per a explicar resultats

incomprensibles.

També vull mencionar la Gosia Steinder i l’Ian Whalley, juntament amb la resta de gent d’IBM

Watson amb qui he treballat els últims anys. Crec que són els investigadors més brillants que he

conegut fins el moment, i són l’estímul professional més gran per a continuar fent recerca.

Finalment, a tota la gent que ha viscut com jo aquests anys. Des dels inicis de la sala CEPBA

on ens vam criar junts, fins als que compartim menjador diàriament. El Juanjo i l’Alex, els bloggers

rivals, el Xavi i el Marc, els cronistes de l’actualitat i “la razón”, el Víctor, el Norbert, el Carles, i

el Sergio, els DB’s del menjador, el Rogeli i el Raúl, amb qui vam compartir orígens, i també tots

els administradors de sistemes, juguin o no a badminton.

Especialment vull remarcar la Montse, la “roommie”, amb qui comparteixo més hores de

despatx que ningú, però que m’ha fet la vida molt fàcil durant tot aquest temps, tant a Barcelona

com a New York. També la Yolanda, una companyia tan agraïda com agradable, amb qui sempre

es pot confiar, capaç de deixar-ho tot per donar ànims a qui sigui i tota una personalitat a conèixer

i disfrutar. El Pau també ha tingut un paper important en aquest temps, company de hobbies i

musicòleg incorregible, m’ha fet conèixer tota una amalgama de móns nous.

vii

viii

Acknowledgments

On August 31st of 2001, 12:44pm, around 6 years and half ago, I wrote an e-mail to Jordi

Torres in order to show my interest in a master thesis project titled “IMPROVEMENTS IN

THE PERFORMANCE OF PARALLEL AND DISTRIBUTED JAVA APPLICATIONS”. At that

moment I didn’t know the implications of that message, even though I already added “(. . .) I’ve

been thinking for long time about the possibility of continuing in the university once graduated to

do research and to obtain a PhD at some point (. . .) ”.

At the beginning of 2008, I still see that moment as an inflection point in my life. I’m nearly

done with my PhD now, and behind me I leave a few years of research training. That decision

meant, at that moment, that I wanted to spend a couple of years in the university to extend the

formation I received during my not enough challenging master studies, before entering the industry

to carry on important projects. But what that decision really meant is that I started doing academic

research, while I suspected that industrial research in Spain had not much to offer. That feeling

pulled me away from my idea of working in the industry, and made me discover that the academic

research and teaching are exciting tasks I really enjoy. At the end of the day, I found that doing

research in the university, but in collaboration with top companies, is a good way to combine

industrial and academic research. Not to mention, the salary remains at university standards.

Obviously, over last years I met many people, some of them helped me, others not. A lesson

I learned about this is that the more people makes the things hard for you, the more you improve

as a researcher: fighting to defend your ideas makes you think more carefully about them. But it

doesn’t mean that people that did actually help me don’t deserve my public acknowledgment, so

this is for all of you that supported me over last years.

Firstly, my family. The values that I learned in my childhood are my most valuable treasure

now, and it is the main thing that makes me keep pushing to constantly improve. They have been

always supporting me and they taught me that fighting for the things what you believe is the best

way to reach happiness. They deserve this public acknowledgment and much more!

Secondly, Mireia. This precious creature what my whole life revolves around. As I like to

remind, once we’ll be 32 years old, we will have shared a 100% of the 50% of our whole life.

She’s the reason my life makes sense, as I hope her life makes sense because of me, and I want to

be with her years from now!

Thirdly, my PhD advisors: two totally different personalities that share a good friendship.

x

Jordi, entrepreneurial and hyperactive, always thinking about tomorrow while quickly forsakes

today. And Eduard, more reflexive and pensive, always looking back to plan ahead. Thank you for

your contributions.

The eDragon team also deserves my acknowledgment. A research team of proud lineage, well

known wherever we go, or maybe not! Anyway, the best possible team to work with. As Gosia

said time ago, good managers seek best researchers to be in their team. We had the best possible

ones. I want to mention Vicenç, a hard worker with who I have lunch on fridays, write brilliant

papers beyond midnight, and too often reach absurd reasonings that explain uncomprehensible

results.

Also, I want to mention Gosia Steinder and Ian Whalley, as well as the other people from IBM

Watson I’ve worked with in the last years. They’re the most brilliant researchers I’ve ever met,

and a source of professional encouragement to continue doing research. Thanks for your time and

dedication.

Finally, all my colleagues in the university. From the guys that “lived” in the CEPBA lab with

me, to the people who I have lunch with regularly. Juanjo and Alex, the rival bloggers; Xavi and

Marc, who enjoy discussing news and reading “La razón”; Victor, Norbert, Carles, and Sergio, the

DB’s of the dining room; Rogeli and Raul, they’ve been there since the very beginning; and not to

mention all the sysadmins, even if they don’t play badminton.

Specially, I want to mention Montse, my “roommie”, my official roommate that shares hours

in the office with me, and a person that makes things easy, in Barcelona as well as in New York.

Yolanda, pleasant and grateful friend, somebody to trust, always ready to encourage you. And

Pau, a great hobby mate and a music lover, he shown me an amalgam of new trends.

xi

xii

Contents

Abstract i

Agraïments v

Acknowledgments ix

Table of contents xvi

List of Figures xxi

List of Tables xxiii

1 Introduction 1
1.1 Contributions . 5

1.1.1 Automatic performance monitoring framework 5
1.1.2 Adaptive architecture for application servers 7
1.1.3 Integrated management of heterogenenous workloads 9

1.2 Thesis Organization . 11

2 Execution environments for application servers 13
2.1 Web Applications, Web containers and Application Servers 15

2.1.1 HTTP protocol . 15
2.1.2 Web contents and web applications 16
2.1.3 Java Servlets, Java Server Pages and Java 2 Enterprise Edition . . 17

2.2 Workload generators and benchmarking web applications 18
2.2.1 Benchmarking web applications 18
2.2.2 Workload generator: httperf . 19

2.3 Utility-driven resource management in virtualized environemnts 19
2.3.1 Utility functions . 20
2.3.2 Virtualization technology . 21

3 Automatic performance monitoring framework 25
3.1 Introduction . 27
3.2 Components . 29

xiv CONTENTS

3.2.1 Java Instrumentation Suite (JIS) 29
3.2.2 Paraver . 29
3.2.3 Java Automatic Code Interposition Tool (JACIT) 30

3.3 Implementation of JIS Linux-IA32 . 31
3.3.1 Operating system level . 32

3.3.1.1 Kernel module . 32
3.3.1.2 Kernel patch . 34

3.3.2 Java Virtual Machine level . 35
3.3.3 Middleware and User application levels 37
3.3.4 Merging data . 38
3.3.5 Overheads in the Linux-IA32 implementation 38

3.4 Automatic monitoring . 40
3.4.1 Monitoring high-level performance metrics 40
3.4.2 Automatic management of the monitoring infrastructure 41
3.4.3 Case study . 42

3.5 Related work . 44
3.6 Summary . 45

4 Adaptive architecture for application servers 49
4.1 Introduction . 51
4.2 Application server architectures . 53

4.2.1 Multithreaded architecture with blocking I/O 53
4.2.2 Event-driven architecture with non-blocking I/O 54

4.3 Performance characterization of secure web applications 55
4.3.1 Secure workloads . 55
4.3.2 Evaluation platform . 57
4.3.3 Scalability Characterization . 58

4.3.3.1 Exploring scalability 58
4.3.3.2 Analyzing scalability limits 60

4.4 Hybrid Architecture . 65
4.4.1 Implementation on top of Tomcat container 65
4.4.2 Performance evaluation . 67

4.4.2.1 Testing platform . 67
4.4.2.2 Static content . 68
4.4.2.3 Dynamic content . 70

4.5 Related Work . 73
4.6 Summary . 74

5 Integrated management of heterogeneous workloads 77
5.1 Introduction . 79
5.2 System architecture . 82
5.3 The placement problem . 86

5.3.1 Problem statement . 86

CONTENTS xv

5.3.2 Algorithm outline . 88
5.3.2.1 Placement change method 89
5.3.2.2 Capping application demand 90
5.3.2.3 Maximizing load distribution 90

5.4 Characterization of heterogeneous workloads 91
5.4.1 Transactional workloads . 91

5.4.1.1 Calculating application utility 91
5.4.2 Long running workloads . 93

5.4.2.1 Job characteristics . 94
5.4.2.2 Stage aggregation in a control cycle 95
5.4.2.3 Maximum achievable utility 96
5.4.2.4 Hypothetical utility 97

5.5 Prototype implementation . 104
5.5.1 VM management . 104
5.5.2 Job management . 107
5.5.3 Xen machine organization . 108

5.6 Evaluation in a simulator . 109
5.6.1 Transactional-only workloads 109

5.6.1.1 Generation of utility functions in the simulator 110
5.6.1.2 Evaluation criterion: minimum utility 110
5.6.1.3 Evaluation criterion: number of placement changes . . 112
5.6.1.4 Evaluation criterion: optimality 112

5.6.2 Long running-only workloads 115
5.6.2.1 Experiment One: Hypothetical utility 115
5.6.2.2 Experiment Two: Baseline 118
5.6.2.3 Experiment Three: Variable deadlines 120
5.6.2.4 Experiment Four: Randomized jobs 123

5.6.3 Heterogeneous workloads . 127
5.7 Evaluation in the prototype . 131

5.7.1 Transactional-only workloads 131
5.7.1.1 Baseline experiment 132
5.7.1.2 Benefits of a utility-based placement 132

5.7.2 Long running-only workloads 135
5.7.3 Heterogeneous workloads . 138

5.8 Related Work . 140
5.9 Summary . 143

6 Conclusions and future work 145
6.1 Conclusions . 147

6.1.1 Automatic performance monitoring framework 147
6.1.2 Adaptive architecture for application servers 148
6.1.3 Integrated management of heterogenenous workloads 149

6.2 Future work . 151

xvi CONTENTS

Bibliography 153

CONTENTS xvii

xviii CONTENTS

List of Figures

1.1 Summary of contributions . 5

2.1 Evolution of utility for long running jobs 21

3.1 JIS compared to other monitoring and tracing tools 28
3.2 JIS architecture . 30
3.3 JACIT screenshot . 31
3.4 JIS instrumentation process . 32
3.5 Thread states considered by JIS and intercepted functions to detect

transitions . 33
3.6 CPU intensive application overhead results 39
3.7 I/O intensive application overhead results 39
3.8 WAS Control center operation diagram for automatic system tracing . . . 42
3.9 View of the WAS Control Center GUI 43
3.10 Observed response time for a servlet of the RUBiS Benchmark 44

4.1 Operation of a multithread architecture 54
4.2 Tomcat persistent connection pattern . 55
4.3 Throughput of the original Tomcat with different numbers of processors . 56
4.4 Response time of the original Tomcat with different numbers of processors 59
4.5 Completed sessions by the original Tomcat with different numbers of

processors . 60
4.6 Average time spent by the server processing a persistent client connection 61
4.7 Incoming server connections classification depending on the SSL hand-

shake type performed . 62
4.8 Throughput of Tomcat with overload control with different numbers of

processors . 63
4.9 Completed sessions by Tomcat with overload control with different

numbers of processors . 64
4.10 Operation of the hybrid architecture . 66
4.11 Throughput comparison under an static content workload 68
4.12 Response time under an static content workload 69
4.13 Number of connections closed by the server by a timeout expiration . . . 69
4.14 Reply throughput comparison under a dynamic content workload 71

xx LIST OF FIGURES

4.15 Successfully completed session rate under a dynamic content workload . 71
4.16 Lifetime comparison for the sessions completed successfully under a

dynamic content workload . 72

5.1 Architecture of the system . 82
5.2 Real utility function that corresponds to a transactionl application 92
5.3 Evolution of maximum achievable utility for long running jobs 96
5.4 Allocation as a function of target utilities 98
5.5 Estimating ω̃m using ratiog . 100
5.6 Estimating ω̃m using ratiog and app_ratiom 101
5.7 Hypothetical utility: effect of resource competition 102
5.8 Management architecture for Xen machines. 105
5.9 Life-cycle of a Xen domain. 106
5.10 Example of utility functions . 111
5.11 Maximizing minimum utility across applications 113
5.12 Minimizing placement changes: generated workload 114
5.13 Minimizing placement changes . 114
5.14 Experiment One: Description . 117
5.15 Experiment Two: Jobs in the system and jobs placed 119
5.16 Experiment Two: Average hypothetical utility over time and actual utility

achieved at completion time . 120
5.17 Experiment Two: Algorithm execution time 121
5.18 Experiment Three: jobs in the system and jobs placed 122
5.19 Experiment Three: average hypothetical utility over time and actual utility

achieved at completion time . 122
5.20 Experiment Three: total number of virtualization operations over time . . 123
5.21 Experiment Four: Percentage of jobs that met the deadline 124
5.22 Experiment Four: Number of virtualization operations 124
5.23 Experiment Four: distribution of distance to the goal at job completion

time, for five different mean interarrival times (50s to 400s) 126
5.24 Heterogenenous workload: utility function for the transactional workload

(utility as a function of allocated CPU power) 127
5.25 Heterogenenous workload: CPU power allocated to each workload and

CPU demands to achieve maximum utility 128
5.26 Heterogenenous workload: actual relative performance for the transac-

tional workload and average calculated hypothetical relative performance
for the long-running workload . 129

5.27 Heterogenenous workload: CPU power allocated to each workload for the
three system configurations . 130

5.28 Demand . 133
5.29 Response time . 134
5.30 Utility . 135
5.31 Per node allocation . 136

LIST OF FIGURES xxi

5.32 Node utilization by long running jobs. 137
5.33 Response time for StockTrace and job placement on nodes. 139

xxii LIST OF FIGURES

List of Tables

4.1 Number of clients that overload the server and maximum throughput
achieved before overload occurs . 57

4.2 Average server’s throughput when overloaded 58

5.1 Cost of virtualization operations . 115
5.2 Properties of Experiment One . 116
5.3 Properties of Experiment Two . 119
5.4 Node properties . 131
5.5 Application properties . 132
5.6 Jobs used in experiments . 136

xxiv LIST OF TABLES

Chapter 1

Introduction

2 Introduction

3

The growth experienced by the web and by the Internet over the last years has
fueled web application servers to break into most of the existing distributed execution
environments. Web application servers take distributed applications one step forward
in their accessibility, easiness of development and standardization, by using the most
extended communication protocols and by providing rich development frameworks.

Once the initial stages of technology standardization and market penetration were
completed, the wide acceptation of application servers as an effective and efficient
platform to deploy distributed applications has brought new challenges to the application
servers market. Customers come with increasing requirements about performance,
robustness, availability and manageability; and at the same time the applications that they
want to deploy on the application servers introduce unprecedented levels of complexity
and resource demand.

The execution environment of application servers has evolved in the last years, both
in terms of complexity and size, and also the difficulty to understand and optimize their
performance. The number of APIs and features offered by the application server execution
stack has grown dramatically, easening the development of web applications but also
impacting on their performance. And the execution platform has evolved from single
machine environments, to moderately small clusters that eventually became large and
shared data centers.

In addition, modern-day companies run a large number of applications, including
transactional web applications as well as batch processes. Many organizations rely on
such a set of heterogeneous applications to deliver critical services to their customers
and partners. For example, in financial institutions, transactional web workloads are
used to trade stocks and query indices, while computationally intensive non-interactive
workloads are used to analyze portfolios or model stock performance. Due to intrinsic
differences among these workloads, today they are typically run on separate dedicated
hardware and managed using workload specific management software. Such separation
adds to the complexity of data center management and reduces the flexibility of resource
allocation. Therefore, organizations demand management solutions that permit these
kinds of workloads to run on the same physical hardware and be managed using the
same management software. Virtualization technologies can play an important role in
this transition; running applications inside of virtual containers simplifies enormously the
complexity of management and deployment associated to a datacenter. And even more,
opens up a new scenario in which both transactional and long-running workloads can be
collocated in the same set of machines with performance isolation guarantees whereas
more of the data center capacity is exploited.

4 Introduction

This new scenario puts on the table a new challenge for the researchers: the
management of complex and resource demanding applications running on large and
complex clustered execution environments. This challenge adds a new focus of attention
to the computer science: the management of the complexity of the systems, what has
become, by itself, a new research area. The answer given by the research community to
the complexity management problem is a new computing paradigm that focuses on the
introduction of autonomic functions into the complex systems: the autonomic computing.
It defines a number of characteristics that any system should meet to be able to overcome
its complexity, including the capacity to know itself, to configure and reconfigure itself,
to self-protect, to recover itself from errors and prevent new incidences and to manage its
interaction with other systems.

Following the evolution of the application server execution environment, the factors
that determine their performance have evolved too, with new ones that have come out with
the raising complexity of the environment, while the already known ones that determined
the performance in the early stages of the application server technology remain relevant
in modern scenarios. In the old times, the performance of an application server was
mainly determined by the behavior of its local execution stack, what usually resulted
to be the source of most performance bottlenecks. Later, when the middleware became
more efficient, more load could be put on each application server instance and thus the
management of such a large number of concurrent client connections resulted to be a
new hot spot in terms of performance. Finally, when the capacity of any single node was
exceeded, the execution environments were massively clusterized to spread the load across
a very large number of application server instances, what meant that each instance was
allocated a certain amount of resources. The result of this process is that even in the most
advanced service management architecture that can be currently found, 1) understanding
the performance impact caused by the application server execution stack, 2) efficiently
managing client connections, and 3) adequately allocating resources to each application
server instance, are three incremental steps of crucial importance in order to optimize the
performance of such a complex facility. And given the size and complexity of modern
data centers, all of them should operate automatically without need of human interaction.

Following the three items described above, this thesis contributes to the performance
management of a complex application server execution environment by 1) proposing
an automatic monitoring framework that provides a performance insight in the context
of a single machine; 2) proposing and evaluating a new architectural application server
design that improves the adaptability to changing workload conditions; and 3) proposing
and evaluating an automatic resource allocation technique for clustered and virtualized

1.1 Contributions 5

Autonomic Computing Level

S
c
o
p
e

Performance

characterization

Local

Execution

stack

Adaptive connection

management

Automatic resource

management

Client-server

interaction

Cluster

Performance monitoring

and system tracing

framework

Adaptive architecture

for application servers

Integrated management

of heterogenenous

workloads

+-

-

+

C
o
n

trib
u

tio
n

s

Ste
ps

Figure 1.1 Summary of contributions

execution environments. The sum of the three techniques proposed in this thesis opens
up a new range of options to improve the performance of the system both off-line (1) and
on-line (2 and 3). Figure 1.1 summarizes the main ideas presented in this thesis.

1.1 Contributions

1.1.1 Automatic performance monitoring framework

The execution stack of a complex middleware such a modern application server
involves many components and APIs that directly impact on the overall performance
offered by the server. A deep knowledge of the layers that compose the execution stack
is a key point in order to characterize the performance of an application server. But a
detailed analysis of such a complex environment can only be achieved by combining
1) the adequate tools to monitor in detail the behavior of the system over time, and 2)
the certainty that the system will be monitored at the exact moment a performance issue
comes out.

The first contribution of this thesis is the creation of an automatic deep monitoring
framework that produces extremely detailed insight on the system behavior – ranging from
the operating system level to the user application code. Java Instrumentation Suite (JIS) is
the monitoring tool developed for this thesis. Its novelty resides in the fact that it collects
information of all the levels of the execution stack of a J2EE application server at runtime,

6 Introduction

and correlates this information to produce a global view of the state and performance of
the application server. This information can be processed with the adequate analysis and
visualization tools, Paraver[38] in this particular case, to perform in-depth post-mortem
performance studies.

The monitoring framework can operate automatically, without need of human in-
teraction in the process of data acquisition, whereas it is driven by some user-defined
rules. Such a monitoring framework operates by continuously observing some high-
level performance metrics delivered by the application server, and triggering the in-depth
tracing process of the whole application server execution stack when it is observed that
some minimum user-defined performance objectives are not met. System administrators
and software developers can take especial advantage of an automatic monitoring tool such
as the one proposed in this work, especially if they run their complex systems under high-
availability requirements that force them to keep their environments up and running 24x7.
The automatization of the monitoring tool has been developed to work with Websphere
Application Server, and the resulting automatic monitoring environment has been named
WAS Control Center.

The performance monitoring framework has been applied to study the performance
of several execution environments, such as those described in [22], [44], [88], [46]
and [77]. In particular, the tool was applied to study and characterize the performance
of application servers running secure applications, what resulted a successful way to
diagnose a connection management problem present in the architectural design of most
application servers, which was successfully addressed and is now presented as the second
contribution of this thesis.

The work performed in this area has resulted in the following publications:

[23] D. Carrera, J. Guitart, J. Torres, E. Ayguadé, and J. Labarta. Complete
instrumentation requirements for performance analysis of web based technologies.
In Proceedings of the 2003 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS’03), 2003

[21] D. Carrera, D. García, J. Torres, E. Ayguadé, and J. Labarta. WAS Control
Center: An autonomic performance-triggered tracing environment for Websphere.
In Proceedings of 13th Euromicro Conference on Parallel, Distributed and Network based
Processing (PDP’05), 2005

1.1 Contributions 7

as well as resulted in the following derived work:

[44] J. Guitart, V. Beltran, D. Carrera, J. Torres and E. Ayguadé. Characterizing
Secure Dynamic Web Applications Scalability. 19th IEEE International Parallel and
Distributed Processing Symposium (IPDPS’05), April 2005

[45] J. Guitart, D. Carrera, V. Beltran, J. Torres and E. Ayguadé. Designing an
overload control strategy for secure e-commerce applications. Computer Networks
51, 15 (Oct. 2007), 4492-4510

[22] D. Carrera, J. Guitart, V. Beltran, J. Torres and E. Ayguadé. Performance Impact
of the Grid Middleware. In Engineering the Grid: Status and Perspective, American
Scientific Publishers, January 2006. ISBN: 1-58883-038-1

[88] R. Nou, F. Julià, D. Carrera, K. Hogan, J. Labarta, J. Torres. Monitoring
and analysis framework for grid middlewares. In Proceedings of 15th Euromicro
Conference on Parallel, Distributed and Network-based Processing (PDP’07), 2007

[46] J. Guitart and D. Carrera and J. Torres and E. Ayguadé and J. Labarta, Tuning
Dynamic Web Applications using Fine-Grain Analysis, Proceedings of 13th Euromicro
Conference on Parallel, Distributed and Network-based Processing (PDP’05)

1.1.2 Adaptive architecture for application servers

The piece of code that isolates the core of an application server from the network
protocols used to interact with the clients is known as the a network connector. A
connector can be created to use any existing network protocol, being the HTTP connector
the most extended version. In most application servers, the threading model used to
support concurrency in the request processing pipeline is defined within the network
connector.

Most web application servers use the well-known multithread paradigm to manage
client connections, with an ideal model for which one client is associated to a server
thread all over the client lifecycle. The main concern setting up a multithreaded network
connector is to decide an adequate number of threads to be created in order to efficiently
manage all the active clients without introducing an unnecessary overhead into the system.
Running more threads than necessary results in an extra management cost, while running
out of threads means that many incoming connections will be refused. The second most
important concern when adjusting the configuration of such a multithreaded server is to
decide how long an inactive connection will be kept alive (the keep-alive timeout). Setting
up a too high value for the keep-alive timeout may result in underutilization of the system
resources and many incoming connection requests being rejected. On the other hand, too

8 Introduction

short timeout values result in a higher number of clients being allowed to enter the system,
but at a cost of an excessive connection management overhead.

The workload to which an application server is subject is not only dynamic in terms
of intensity over time, but also in the mix of resources requested. This dynamism,
added to the inherent complexity of an application server, makes the task of adapting
the configuration of the application server to the workload conditions a hard challenge.
And it becomes even more complex if the performance and service level of the application
server is measured in terms of high level performance goals instead of low level objectives.
An alternative to the multithread architecture is an event-driven model. This model
solves some of the problems present in the multithreaded architecture but transforms the
development of the web container into a hard task.

In this work we introduce a new hybrid server architecture that exploits the best of
both the multithread and the event-driven models. With this hybrid schema, an event-
driven model is applied to manage the client connections, although a multithreaded
model is followed to process requests. This combined use of the two basic architectures
results in a more efficient connection management without an increased complexity in the
development of application server middleware. The design of such a new architecture
is motivated by a preliminary study of Tomcat’s vertical scalability when subject to
secure workloads. The results confirmed that the server can be easily overloaded if
connections are not properly managed, demonstrating the convenience of developing
advanced connection management strategies to overcome such a complicated scenario.

In summary, the second contribution of this thesis is the proposal of a new network
connector architecture that eliminates the need of setting up neither the number of threads
in the system nor the keep-alive timeout to deliver a good performance, what is achieved
because of its adaptive design. The proposed architecture makes combined use of the
multithread paradigm alongside with the best properties of an event-driven architecture
based on non-blocking input/output operations. The result is a new design of the network
connector that brings an unprecedented natural adaptability to the workload conditions
without need of manual tuning. In our work we have focused on a HTTP network
connector because this is the most extended network protocol used by application servers,
but the proposal is extensible to any existing network connector.

The work performed in this area has resulted in the following publications:

[19] D. Carrera, V. Beltran, J. Torres, E. Ayguade. A Hybrid Web Server
Architecture for e-Commerce Applications. 11th International Conference on Parallel

1.1 Contributions 9

and Distributed Systems (ICPADS’05), 2005

[20] D. Carrera, V. Beltran, J. Torres, E. Ayguade. A Hybrid Connector for Efficient
Web Servers. Special Issue on High Performance Computing in Parallel and Distributed
Systems of the International Journal of High Performance Computing and Networking
(IJHPCN). Issue 5/6 of 2007, Vol. 5. ISSN: 1740-0562. To appear.

has been motivated by the work described in:

[45] J. Guitart, D. Carrera, V. Beltran, J. Torres and E. Ayguadé. Designing an
overload control strategy for secure e-commerce applications. Computer Networks
51, 15 (Oct. 2007), 4492-4510

and has resulted in the following derived work:

[13] V. Beltran, D. Carrera, J. Torres, and E. Ayguadé. Evaluating the Scalability
of Java Event-Driven Web Servers. In 2004 International Conference on Parallel
Processing (ICPP’04), 2004

[12] V. Beltran , D. Carrera, J. Guitart, J. Torres and E. Ayguadé. A Hybrid
Web Server Architecture for Secure e-Business Web Applications. 1st International
Conference on High Performance Computing and Communications (HPCC’05), 2005
Lecture Notes in Computer Science, pp. 366-377, vol. 3726, no. 3726, September 2005.
ISSN: 0302-9743 ISBN: 978-3-540-29031-5.

[14] V. Beltran , J. Torres and E. Ayguadé. Understanding Tuning Complexity in
Multithreaded and Hybrid Web Servers. 22nd International Parallel and Distributed
Symposium (IPDPS’08), 2008

1.1.3 Integrated management of heterogenenous workloads

Modern-day companies run a large number of applications, including transactional
web applications as well as batch processes. Many organizations rely on such a
heterogeneous set of applications to deliver critical services to their customers and
partners. For example, in financial institutions, transactional web workloads are used to
trade stocks and query indices, while computationally intensive non-interactive workloads
are used to analyze portfolios or model stock performance.

The resource demand associated to transactional applications exceeded by far the
capacity of any available single machine time ago already. The extra capacity required was

10 Introduction

found by horizontally scaling-up the execution environments, and thus the most extended
execution environment for resource-demanding web applications is massively clustered
environments. At the same time, batch processes usually run in isolation conditions within
dedicated machines.

In an attempt to save energy and management complexity, most companies are taking
the challenge of consolidating their hardware facilities into large data centers. As a
result, workloads (both transactional and long-running) are being consolidated too. Due
to intrinsic differences among these workloads, today they are typically run on separate
dedicated hardware and managed using workload specific management software. Such
separation adds to the complexity of data center management and reduces the flexibility of
resource allocation. Therefore, organizations demand management solutions that permit
these kinds of workloads to run on the same physical hardware and be managed using the
same management software.

Virtualization technologies can play an important role in this transition, specially
in the area of deployment, update, configuration, and performance and availability
management. Many of these challenges are addressed by virtualization, which provide
a layer of separation between a hardware infrastructure and workload, and provide a
uniform set of control mechanisms for managing these workloads embedded inside virtual
containers. Virtualization technologies also enable separation between management
concerns, permitting software and configuration tasks inside virtual machines to be
done a priori. The runtime management system is only responsible for the runtime
performance and availability of virtualized workloads. In a virtualiualized data center
both transactional and long-running workloads can be collocated in the same set of
machines with performance isolation guarantees whereas more of the data center capacity
is exploited.

Two particular issues make the integrated management of heterogeneous workloads
specially challenging. First, performance goals for different workloads tend to be of
different types. For interactive workloads, goals are typically defined in terms of average
or percentile response time or throughput over a certain time interval, while performance
goals for non interactive workloads concern the performance (e.g., completion time) of
individual jobs. Second, due to the nature of their performance goals and short duration of
individual requests, interactive workloads lend themselves to automation at short control
cycles. Non-interactive workloads typically require calculation of a schedule for an
extended period of time.

The third contribution of this thesis is the proposal of a technique that allows
an integrated management of heterogenenous workloads in the context of virtualized

1.2 Thesis Organization 11

data centers, whereas it observes high-level performance goals. The technique manages
transactional workloads (and the corresponding application servers) collocated with long
running workloads whereas it achieves equalized satsifaction for both workloads. The
objective of the approach is to provide fair differentiation of performance among all
workloads in response to varying workload intensities. We use utility functions to model
the satisfaction of both long-running jobs and transactional workloads for a particular
resource allocation – the different types of workload have different characteristics, and
different performance goals, and utility functions offer a mechanism to make their
performance comparable. We run both workloads inside virtual machines, in order to
properly manage their performance, and our management also exploits the clustering
nature of transactional workloads. This the first proposal that combines an explicit
support for heterogeneous workloads in virtualized environments, using a utility-driven
scheduling mechanism with fairness goals.

The work performed in this area has resulted in the following publications:

[25] D. Carrera, M. Steinder, I. Whalley, J. Torres, E. Ayguadé. Utility-based
Placement of Dynamic Web Applications with Fairness Goals. In 11th IEEE/IFIP
Network Operations and Management Symposium (NOMS 2008), April 7-11, 2008

[24] D. Carrera, M. Steinder, I. Whalley, J. Torres, E. Ayguadé. Managing SLAs
of heterogeneous workloads using dynamic application placement. In the 7th IEEE
Symposium on High Performance Distributed Computing (HPDC 2008). An extended
version is available as Technical Report RC24469, IBM Research, Jan. 2008.

[95] M. Steinder, I. Whalley, D. Chess, D. Carrera, I. Gaweda, Server virtualization
in autonomic management of heterogeneous workloads. 10th IFIP/IEEE International
Symposium on Integrated Management (IM 2007), 2007

1.2 Thesis Organization

The rest of this thesis is organized as follows: Chapter 2 introduces some basic
concepts about web application servers and their associated technologies; about the
concepts of resource management, utility-based computing and virtualization; and about
the environment and methodology used in our experiments. Chapter 3 presents the
automatic performance monitoring and system tracing used to understand the performance

12 Introduction

of a single instance of a web application server. Chapter 4 introduces and evaluates a new
architectural design of network connector for application servers. Chapter 5 presents and
evaluates an integrated management technique for heterogeneous workloads running in
virtualized and clusterized data centers. Finally, Chapter 6 presents the conclusions and
the future work of this thesis.

Chapter 2

Execution environments for application
servers

14 Execution environments for application servers

2.1 Web Applications, Web containers and Application Servers 15

2.1 Web Applications, Web containers and Application
Servers

The World Wide Web (usually known simply as the Web) is composed by a large set of
hypertext documents accessible through a set of standard and extended network protocols,
including HTTP[41] as the application protocol, TCP[93] as the transport protocol and
IP[92] as the network protocol. The contents of the web can be classified into static and
dynamic, depending on whenever they are directly accessed by the web clients or if they
need to be preprocessed in the server before being sent to the clients.

2.1.1 HTTP protocol

The Hypertext Transfer Protocol (HTTP) is a stateless application-level protocol for
distributed, collaborative, hypermedia information systems. It is the basis for most of the
web-based technologies and applications and is one of the most extended application-level
protocols used in the Internet.

HTTP defines, in its current version 1.1, a number of operations to retrieve or send
resources from or to servers. A resource is defined using a Uniform Resource Identifier
(URI). The most usual operations to retrieve resources from a server using HTTP are GET
and POST.

In the scope of this thesis, the most interesting properties of the HTTP protocol are
those related to the way how HTTP manages the TCP connections used to communicate
the client and the server through the network. HTTP/1.1 supports two major models in the
management of TCP connections: persistent connections and non-persistent connections.
When a HTTP client, usually a browser, wants to send an operation to a HTTP server,
usually known as web servers, it has to establish a TCP connection with the server.
Once the connection is established, the HTTP request send and the corresponding
HTTP response received, the client and the server have to decide whenever the TCP
connection is going to be closed or by contrary they keep it established to facilitate future
communications. In the case they decide to keep the connection established, it is said that
they follow a persistent connection model. If they decide to close the connection after
each interaction, it is said that they follow a non-persistent connection model.

The importance of the HTTP connection model is deeply related to the properties
present in a workload composed by the aggregation of multiple client-server HTTP
interactions. As will be explained in chapter 4, the connection model can have a big
impact in the performance obtained by an HTTP server under severe load conditions.

16 Execution environments for application servers

2.1.2 Web contents and web applications

A web application is an application that can be accessed through the common
technologies that support the Web, and that is composed by a mix of static and dynamic
contents. Web applications have become extremely popular in the last years, and have
become the most significant example of distributed applications. This great success can
be explained due to the fact that the protocols they rely on are widely extended, which in
turn results in a dramatic reduction in the problems that can come out at deployment time,
as well the everytime higher familiarity of users with their web browsers.

Web contents can be basically divided depending on their nature as static or dynamic.
Static contents are those served to clients without any kind of process. HTML [113] files
are the best example of static contents: when requested, they are read from disk and sent
to clients directly and without any modification. Dynamic contents are those requiring
some process before being sent to clients. Typical dynamic contents are server scripts,
which are processed and generated results (typically formatted as a HTML page) are sent
to clients.

The development from scratch of a web application is not an easy task: the stack of
protocols involved in the operation of this kind of applications is complex and the number
of issues that should be resolved is high. For this reason, usually web applications rely on a
piece of software that isolates the application from the underlying execution environment.
This piece of software is known as middleware.

Depending on the functionalities and support a middleware for web applications offer,
it can be classified as a simple web container or as a much more complex application
server. A web container is mainly limited to deal with the network protocols that can be
used to access the web applications deployed on it. This way, the application developers
can focus their efforts on the application logic and let the web container manage the
network accessibility of the application.

Web containers proved to be a great platform for the development of many simple
web applications, but when more complex applications were to be developed, some extra
support from the underlying middleware was expected. A complex web application
comprises a large number of technical requirements, such as isolation requirements, inter-
action with back-end systems and support for asynchronous messaging, that dramatically
increase the hardness of its development. Additionally it is supposed to be concurrently
accessed by thousands of clients. As far as these requirements are present in most of
the complex web applications, their support was directly introduced in the middleware
where these applications are usually deployed on. The middleware that hosts complex web
applications and that offers a large number of facilities for the deployment and execution

2.1 Web Applications, Web containers and Application Servers 17

of such applications, is known as an Application Server.

2.1.3 Java Servlets, Java Server Pages and Java 2 Enterprise Edition

The Java [99] platform, developed by Sun Microsystems and appeared in early 1990s,
introduced an unprecedented level of portability and easiness of development to the
software development arena. The fact that it was based on the use of a virtual execution
environment, the Java Virtual Machine (JVM), made Java applications become platform-
independent.

The portability, amongst others, is one of the properties that made the Java platform
become an interesting option for the development of web applications and the corre-
sponding middleware. Applications and middleware written for the Java platform could
potentially be run in any existing hardware platform. Sun microsystems, aware of this
situation, developed a number of specifications to define a new set of standards for the
development of web applications and middleware.

The first step in the Java technologies for the development of web applications is
composed of the Java Server Pages [102] (JSP) and the Java Servlet [101] specifications.
A JSP is a HTML document with embedded pieces of Java code. This way when a JSP
document is requested, it is first the embedded Java code is pre-processed by the web
container where it is hosted and later, the HTML code and the output produced by the
execution of the Java code are sent all together to the client. The JSP technology only
supports a subset of the common Java features.

The Java Servlet technology defines an API to write simple web applications
accessible through the web protocols, and can take advantage of all the Java features.
Applications developed following the Servlets technology can easily overcome higher
levels of complexity, and introduce an unprecedented level of isolation with respect to the
network protocols used to access them.

Apache Tomcat [6] is an open-source servlet container developed under the Apache
license. Its primary goal is to serve as a reference implementation of the Sun Servlet and
JSP specifications, and also to be a quality production servlet container. Tomcat can work
as a standalone server (serving both static and dynamic web content) or as a helper for a
web server (serving only dynamic web content).

Some extremely large and complex applications require even more support from the
execution platform than what the JSP and Servlet technologies can provide. For this kind
of applications, Sun Microsystems developed a set of APIs that provide an even more rich
execution framework: the Java 2 Enterprise Edition [98] (J2EE). This development and
execution framework provides easy access to many advanced features, such as transaction

18 Execution environments for application servers

and isolation support, asynchronous messaging and database access amongst others. The
J2EE platform is widely used for the development of the most large and complex web
applications, and several vendors offer advanced products to develop and host these
applications.

Enterprise Java Beans (EJB) are more complex objects than servlets and are the basis
for porting the object components paradigm to application servers. EJBs allow developers
to implement real distributed applications based on the Web easily and rapidly. J2EE
compliant Application Servers contain Web containers and EJB containers.

2.2 Workload generators and benchmarking web appli-
cations

2.2.1 Benchmarking web applications

Three web applications have been used for benchmarking application servers in this
thesis. Surge [9] emulates an static content website. RUBiS [4] emulates a dynamic
auction website. Both of them include not only the web application but a client
emulator too. Finally, in Chapter 5 we use a synthetic micro-benchmark to emulate the
computational cost of processing dynamic content workloads.

The distributions produced by Surge (Scalable URL Reference Generator) are based
on the observation of some real web server logs, from where it was extracted a data
distribution model of the observed workload. The workload generated by Surge client
emulator follows 6 different realistic models to repeat factors such as page popularity and
file size distribution, found in real web server logs.

RUBiS (Rice University Bidding System) implements the core functionality of an
auction site: selling, browsing and bidding. RUBiS supplies implementations using some
mechanisms for generating dynamic web content like PHP, Servlets and several kinds of
EJB. RUBiS defines 27 interactions. Among the most important ones are browsing items
by category or region, bidding, buying or selling items and leaving comments on other
users. 5 of the 27 interactions are implemented using static HTML pages. The remaining
22 interactions require data to be generated dynamically. The RUBiS client emulator uses
a Markov model to determine which subsequent link from the response to follow. RUBiS
client emulator defines two workload mixes: a browsing mix made up of only read-only
interactions and a bidding mix that includes 15% read-write interactions. Each emulated
client waits for an amount of time, known as the think time, before initiating the next
interaction. This emulates the period of time a real client takes from one request to the

2.3 Utility-driven resource management in virtualized environemnts 19

next one. The think time is generated from a negative exponential distribution.

2.2.2 Workload generator: httperf

Although both Surge and RUBiS include workload generation tools, in the experi-
ments presented in Chapter 4 were carried on using a more tunable workload generator:
httperf [74]. The tool was set up to follow the emulated client behavior produced by
the workload generators included with Surge and RUBiS. This way, we could take full
advantage of the workload characteristics present in both workload emulators at the same
time that exploited the powerful characteristics of httperf.

Httperf supports both HTTP [41] and HTTPS [91] protocols, allows the creation of
a continuous flow of HTTP/S requests issued from one or more client machines and
processed by one server machine, whose behavior is characterized with a complete set of
performance measurements returned by Httperf. The configuration parameters of the tool
used for the experiments presented in this thesis were set to create a realistic workload,
with non-uniform reply sizes, sustaining a continuous load on the server. One of the
parameters of the tool represents the number of new clients per second initiating an
interaction with the server. Each emulated client opens a session with the server. The
session remains alive for a period of time, known as session time, at the end of which
the connection is closed. Each session is a persistent HTTP/S connection with the server.
Using this connection, the client repeatedly makes a request (the client can also pipeline
some requests), parses the server response to the request, and follows a link embedded in
the response. Httperf allows also configuring a client timeout. If this timeout is elapsed
and no reply has been received from the server, the current persistent connection with the
server is discarded, and a new emulated client is initiated.

2.3 Utility-driven resource management in virtualized
environemnts

Most of the existing clustered execution platforms for application servers must
perform some kind of resource management in order to improve the overall performance
of the system through the better allocation of the available resources. The resource
management activity can be performed statically as well as dynamically, in the case that
the allocation policy reacts to the changing workload conditions. The execution platforms
can be divided into dedicated hosting platforms and shared hosting platforms depending
on whenever different applications can be sharing or not the available resources. Existing

20 Execution environments for application servers

studies report considerable benefits when using dynamic resource allocation policies.

Any resource management policy has a goal, that can be described as an objective
function to maximize. Traditionally, the resource allocation decisions were made to
better exploit the available resources. A common example of this kind of goals is
the maximization of the CPU usage. It is currently usual that the performance of an
execution platform is no more measured following low-level metrics but using hihg-level
measurements. This way, for instance, the performance of an e-commerce web application
can be measured in terms of throughput (requests processed per second, what is a low-
level metric) but also in terms of service level offered to the clients. Shifting from one kind
of measurement to the other also implies that the objective for any resource management
policy is shifted to focus on the service level offered to any particular client.

2.3.1 Utility functions

Utility functions translate the satisfaction achieved by an application into a numerical
value, usually ranging from −∞ to 1. For example, an application completely satisfied
is represented with an utility value of 1, whereas an application completely unsatisfied
is represented by a utility value of −∞. The satisfaction of an application is usually
measured in relation to a performance objective, such as response time, resource
allocation or completion time, amongst others. For example, a web application that aims
to offer an average response time no higher than 200ms, will be very unsatisfied when
it is allocated resources that permit a response time no better than 600ms, and will be
completely satisfied if it is allowed to achieve an actual response time of 50ms.

Figure 2.1 shows an example of a utility function for a job that is running in a system,
and for which two different completion time goals have been defined – one is tight and
hard to achieve, whereas another one is more relaxed and easily achievable. The figure
shows an example of the possible evolution of the utility achieved by the job as a function
of the actual completion time (Figure 2.1(a)) and as a function of the speed at which the
job is running (Figure 2.1(b)). In this work, we assume that a utility value of 0 corresponds
to an application for which the actual performance exactly matches its performance goal.

The use of utility-driven strategies to manage workloads was first introduced in the
scope of real-time work schedulers to represent the fact that the value produced by such
a system when a unit of work is completed can be represented in more detail than a
simple binary value indicating whether the work met or missed its goal. In our work
we use monotonic and continuous utility functions to represent the satisfaction of both
transactional and long-running workloads, but other approaches could be adopted.

2.3 Utility-driven resource management in virtualized environemnts 21

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100000 200000 300000 400000 500000 600000

U
til

ity

Completion time (ms)

Tight completion time goal
Relaxed completion time goal

(a) As a function of completion time

-1

-0.5

 0

 0.5

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

U
til

ity

Allocation (Mhz)

Tight completion time goal
Relaxed completion time goal

(b) As a function of allocation

Figure 2.1 Evolution of utility for long running jobs

2.3.2 Virtualization technology

Virtualization is a technique for hiding physical computing resources from the entities
that use them, what usually is achieved through encapsulation. Virtual containers create
virtual execution environments that can be used to run embedded applications that use
virtual resources to make progress. Virtual containers expose a set of control knobs that
can be used to perform management operations on them. A virtual machine is a tightly
isolated software container that can run its own operating systems and applications as
if it were a physical computer. A hypervisor or virtual machine monitor (VMM) is a
virtualization platform that allows multiple operating systems to run on a host computer
at the same time. It can run on top of the physical hardware or hosted within an operating
system environment, and is in charge of enforcing physical resource allocation decisions

22 Execution environments for application servers

across virtual machines.

Virtualization is not a new concept, but only in the recent years the computing capacity
of systems has become high enough to consider it seriously in production environments.
Nowadays, dealing with the complexity of managing the deployment and execution of
applications and servers in large computing facilities is a big concern, and virtualization
has become a key player for these scenarios. Virtual machines can be created and altered
on real-time, whereas virtual appliances can be used to deploy complex applications in
virtualized environments, independently of the physical platform in which they run.

Virtual containers run guest operating systems that include privileged instructions.
Virtualization technology must deal with this issue to be able to run such a virtual machine
while keeping control on how each virtual container accesses resources. Virtualization
technologies act differently depending on the presence or not of hardware support to run
virtual machines.

If no hardware support is present, several techniques can be used to avoid privi-
leged instructions from being executed. Paravirtualization consists in offering software
interfaces through the VMM to virtual machines similarly to the interfaces offered
by the underlying hardware. This technique requires the explicit modification of the
guest operating system code to replace privileged instructions with calls to the VMM
interface. Alternatively, the privileged instructions can be replaced on-the-fly with binary
translation. If the hardware offers support for virtualization, such as Intel-VT [55] and
AMD-V [1], privileged instructions executed by guest operating systems receive a special
treatment by the hardware in collaboration with the VMM.

Most remarkable examples of virtualization technologies are Xen [10] and VMware [121],
which have strongly contributed to the popularization of the virtualization technology in
both desktop and server environments.

The most common operations that can be applied over virtual machines can be briefly
summarized, following the terminology described in [10], as:

• PAUSE When a virtual machine is paused, it does not receive any processor time,
but remains in memory.

• RESUME Resumption is the opposite of pausing—the virtual machine is once again
allocated processor time.

• SUSPEND When a virtual machine is suspended, its memory image is saved to disk,
and it is unloaded.

• RESTORE Restoration is the opposition of suspension—an image of the virtual

2.3 Utility-driven resource management in virtualized environemnts 23

machine’s memory is loaded from disk, and the virtual machine is permitted to
run again.

• MIGRATE The virtual machine is first paused, then the memory image is transferred
across the network to a target node, and the virtual machine is resumed.

• LIVE_MIGRATE A variant of migration in which the virtual machine is not paused.
Instead, the memory image is transferred over the network whilst running.

• MOVE_AND_RESTORE When a virtual machine has been suspended, and needs to
be restored on a different node, the saved memory image is moved to the target
node, and the virtu machine is then restored.

• RESOURCE_CONTROL Resource control modifies the amounts of various resources
that a virtual machine can consume. We consider CPU and memory.

While virtualization can be provided using various technologies, in the experiments
presented in Chapter 5 we use Xen as it is capable of providing the wide variety of controls
discussed above—all of these controls are most directly accessible from a special domain
on each node, labeled domain 0.

24 Execution environments for application servers

Chapter 3

Automatic performance monitoring
framework

26 Automatic performance monitoring framework

3.1 Introduction 27

3.1 Introduction

The extremely complex execution environment of application servers provides a
rich framework to develop and run web applications, but makes enormously difficult
the task of studying and improving their performance. The parameters that affect the
output level of an application server can change depending on many factors – i.e. the
workload characteristics can move a performance bottleneck from the network bandwidth
to the CPU capacity. This dynamism dramatically increases the complexity of tuning
these environments to obtain a maximum output level. It becomes specially true when
the desired throughput of an application server is not defined in terms of low level
performance goals but in terms of high level performance objectives defined in Service
Level Agreements [60].

The first contribution of this thesis is the creation of a deep monitoring framework that
produces extremely detailed insight on the system behavior – ranging from the operating
system level to the user application code. The monitoring framework is composed of
three differentiated tools that work coordinately to create a powerful performance analysis
environment. The framework components are 1) JIS [23], the instrumentation tool; 2)
Paraver [38], a powerful analysis and visualization tool; and 3) JACIT a code interposition
tool that doesn’t require source code availability. The framework is able to monitor in
real-time some high-level performance metrics of an application server, compare them to
some user-defined rules and trigger the appropriate actions if necessary. This way, JIS
is be dynamically started and stopped following high-level performance metrics without
need of human interaction, with the corresponding reduction of performance overheads,
that remain limited to the poor-performance periods that must be carefully analyzed by
system administrators.

Java Instrumentation Suite [23] (JIS) is a deep monitoring tool that produces extremely
detailed insight on the system behavior – ranging from the operating system level to the
user application code. The data collected by the monitoring tool can be later studied using
Paraver [38], a powerful analysis and visualization tool. The JACIT tool (Java Automatic
Code Interposition Tool) can be used to modify existing bytecodes of a Java application
without need of source code availability.

Figure 3.1 shows how JIS compares to other existing tools in terms of coverage
of the execution stack layers. Some tools oriented to the study of application servers,
such as Hprof [78], OptimizeIt [17] or JProbe [86], report different metrics that measure
the application server performance, collecting information through the JVM Profiler
Interface (JVMPI [112]). JVMPI exposes JVM’s state information through a Java Native
Interface [100] (JNI). As it is mostly focused on JVM data, the information that the

28 Automatic performance monitoring framework

Figure 3.1 JIS compared to other monitoring and tracing tools

JVMPI can offer is limited and therefore, the tools that mainly rely on it to collect
performance data show serious limitations in their ability to perform a fine-grain analysis
of the performance delivered by Java multithreaded applications.

The basic actions performed by a web application can be summarized as 1) read-
ing/writing contents from/to disks; 2) receiving/sending data from/to networks; and 3)
processing data coming from disks and networks. In summary, web applications mostly
consume processor, disk and network capacity. Thus, a general requirement in order to
successfuly analyze the performance of web applications is to be able to obtain detailed
information about the usage of these resources. For long time, users relied on system
utilities (such as sar, mpstat, or iostat on Linux, as proposed in [26]) to collect system
usage data that was later correlated with the information provided by the above-mentioned
tools, thus restricting the analysis possibilities. As opposed to this approach, the combined
use of JIS and Paraver offers an integrated performance analysis framework that provides
an in-depth insight in the performance of web applications.

JIS has been applied to several environments as a proof of concept. Examples can
be found in [22], [44], [88], [46] and [77]. In particular, the work described in [44]
and summarized in section 4.3 illustrates how the combined use of JIS and Paraver
allowed an in-depth characterization of a secure web middleware. This study uncovered
a connection management problem present in the architectural design of most application
servers, which was successfully addressed as discussed in in Chapter 4 and is the second
contribution of this thesis.

3.2 Components 29

3.2 Components

The three framework components 1) JIS, the instrumentation tool; 2) Paraver, the
analysis and visualization tool; and 3) JACIT a code interposition tool, are next described
in following subsections.

3.2.1 Java Instrumentation Suite (JIS)

Instrumentation is the first step in the study of an existing web application. JIS
(Java Instrumentation Suite) is the instrumentation tool developed to study Java-based
applications, covering different available platforms. The result of instrumenting an
application with JIS is a post-mortem execution trace, that can be later analyzed with
Paraver. Execution traces contain the activity of each system thread in the JVM process as
well as the occurrence of some predefined events that take place over the instrumentation
period. The execution traces produced by JIS are formatted following the Paraver tracefile
specification.

JIS differs from other analysis environments in the offered degree of detail. Most
of existing tools focus on offering detailed information about the behavior of studied
applications forgetting the interaction of these applications with underlying systems. JIS
comes to cover this lack of detail on system status when instrumenting Java applications.
Covered resources are diverse, going from thread status (in relation to CPU state) up to
the length and duration of I/O operations.

JIS was initially created to support three different execution platforms: Linux-IA32,
AIX-PowerPC and IRIX-MIPS. Particularities of each platform have been overcome on
JIS by dividing its architecture in three layers; two of them are system-independent and
the other one depends on specific system characteristics, as shown on Figure 3.2. In this
design, independent layers can be reused on different versions of the tool. This chapter
focuses on the Linux-IA32 implementation, running JDK1.3.

3.2.2 Paraver

Paraver[38] is a flexible performance visualization and analysis tool based on an easy-
to-use Motif GUI. Paraver was developed to respond to the need to have a qualitative
global perception of the application behavior by visual inspection and then to be able
to focus on the detailed quantitative analysis of the problems. Paraver provides a large
amount of information useful to improve the decisions on whether and where to invert the
programming effort to optimize an application.

30 Automatic performance monitoring framework

Figure 3.2 JIS architecture

Paraver tracefiles contain a set of records that belong to one of three different options:
state, events and communication records. State records indicate the state of system threads
over time (running, ready or blocked on JIS); event records represent punctual occurrences
of any events that may help understanding the execution tracefile, such as system calls,
and can be originated in any level of the execution stack; and communication records
represent data flows between system threads, and are used on JIS to track resource sharing
among threads as, for example, sockets being (re)used by different threads.

Trace file analysis with Paraver can be done as a manual process, viewing (with the
Paraver visualization module) the graphical trace representation and looking for some
performance problems, or using the statistical tools provided with Paraver to make an
automatized analysis of the trace. In any case, all the possible views and statistical
calculations made on a trace file can be saved as Paraver configuration files. It allows
users to create a large amount of preset views of the trace file that can point out some
performance indexes or conflictive situations in an automatic way.

The graphical views of the trace files are based on the representation of threads,
characterized by their state over time and by some punctual events. The combination
of states and events makes possible to do a detailed and intuitive representation of an
application behavior. The analysis views apply statistical calculations to the trace file
information and summarizes the results as a table. These calculations can be done as a
function of thread state values, punctual events and tread state values of one window in
relation to thread state values (known as categories) of another window.

3.2.3 Java Automatic Code Interposition Tool (JACIT)

The JACIT tool (Java Automatic Code Interposition Tool) can be used to apply
the aspect[111] programming paradigm to the modification of existing bytecodes of an

3.3 Implementation of JIS Linux-IA32 31

Figure 3.3 JACIT screenshot

application without need of source code availability.

With the JACIT tool it is possible to open a jar file from any application, choose
one of the classes contained in the jar file, select one of the methods or interfaces of the
method and decide to add some code before or after invoking it. The inserted code can
use anyone of the parameters of the Java method. Later, the code can be compiled to
test its correctness and after that, an equivalent aspect programming file is generated (if
wanted) and the needed changes are applied to the jar file to execute the added code when
required. Finally the jar file is saved and a backup jar file is also produced. Figure 3.3
shows an screenshot of the moment in which some code is interposed in the Servlet engine
initialization code of IBM’s Websphere Application Server [53] without need of source
code access.

3.3 Implementation of JIS Linux-IA32

Four levels are considered by JIS when tracing a system: 1) operating system, 2)
JVM, 3) middleware (application server) and 4) user application. Information collected
by all levels is finally correlated and merged to produce an execution trace file following
the general schema shown in Figure 3.4. The level of detail of the information produced

32 Automatic performance monitoring framework

Figure 3.4 JIS instrumentation process

by each JIS level can be dynamically configured. The responsibilities for each JIS level
as well as their development technology are discussed in following subsections. The
implementation details correspond to a Linux-IA32 kernel version 2.5.63.

3.3.1 Operating system level

Information collected from the operating system level covers threads’ state and system
calls. Thread information is obtained directly from the Linux scheduler routine and
information from syscalls (I/O, sockets, memory management, thread management) is
obtained by intercepting some entries of the syscall table. When working with Java-based
applications, collected information is limited to the JVM process, and other processes on
the system are ignored.

To perform useful application instrumentation, continuous system state information
must be offered to developers. On the Linux version of JIS, considering the open platform
characteristics of Linux systems, we decided to extract system information directly from
inside kernel. This task was divided in two layers: one based in a kernel source code
patch and the other in a system device and its corresponding driver (implemented in a
Linux Kernel Module, LKM). Both of them are described next.

3.3.1.1 Kernel module

The kernel module implements four basic functionalities of JIS:

1. Interception of system calls: This is done by modifying the global system call table

3.3 Implementation of JIS Linux-IA32 33

Figure 3.5 Thread states considered by JIS and intercepted functions to detect
transitions

in order to use a modified function instead of the original system call. After the call
is intercepted, the original system call function is invoked in order to preserve the
original system behavior. Listing 3.1 shows an example of the interception code
that corresponds to the read system call.

2. Implementation of a virtual control device: The instrumentation infrastructure can
be controlled from user space. Basic implemented functions are: open, close and
ioctl. Open and close calls are used to be able to work with the device. Ioctl call is
used to send control commands to the kernel module, such as monitoring start and
stop actions.

3. Creation of a kernel buffer: It is used to store the kernel-generated events such as
context-switches, system calls, specific driver operations and memory management,
that will be later correlated with the user space performance data. The buffer is
implemented as a circular buffer what makes possible that a half of the buffer can
be dumped to disk while the other half is being used to register new kernel events.

4. Creation of the dumping mechanism: It allows the system side of JIS to dump the
kernel buffer data to a filesystem more quickly than the buffer is filled again. This
task is specially challenging and requires the use of a kernel thread that dumps
data into the file asynchronously while the other system threads keep running and
producing kernel events. This mechanism makes extensive use of the workqueue

interface present in the Linux kernel. Listing 3.2 shows how a the kernel buffer is
dumped to the filesystem. Notice the use of a kernel thread, with no associated user
context data, and the kernel workqueue interface to manage such a critical task.
The need of the FS segment switch is due to the fact that file operations are not

34 Automatic performance monitoring framework

void e n a b l e _ r w _ s y s _ c a l l _ h o o k s (void) {
o r i g _ s y s _ r e a d = s y s _ c a l l _ t a b l e [__NR_read] ;
o r i g _ s y s _ w r i t e = s y s _ c a l l _ t a b l e [__NR_write] ;

s y s _ c a l l _ t a b l e [__NR_read] = j i s _ s y s _ r e a d ;
s y s _ c a l l _ t a b l e [__NR_write] = j i s _ s y s _ w r i t e ;

}

a s m l i n k a g e s s i z e _ t j i s _ s y s _ r e a d (unsigned i n t fd ,
char ∗ buf f ,
s i z e _ t c o u n t) {

i f (! t r a c e _ e n a b l e d)
re turn o r i g _ s y s _ r e a d (fd , bu f f , c o u n t) ;

r e g i s t e r _ s y s c a l l _ i n (c u r r e n t −>pid ,
s m p _ p r o c e s s o r _ i d () ,
JIS_IO_READ) ;

long r e s = o r i g _ s y s _ r e a d (fd , bu f f , c o u n t) ;

r e g i s t e r _ s y s c a l l _ r e s u l t (c u r r e n t −>pid ,
s m p _ p r o c e s s o r _ i d () ,
r e s , fd) ;

re turn r e s ;
}

Listing 3.1 Read system call interception and syscall table modification

intended to be invoked from inside the kernel, but as a result of a trap operation.
Similar behavior can be observed in other proposals appeared after JIS, such as the
RelayFS [126] used in recent versions of the Linux Trace Toolkit [125] (LTT).

3.3.1.2 Kernel patch

Some system events cannot be extracted by any other way than inserting hooks inside
the kernel source. These special events are related to kernel threads state and other ways of
obtaining this information are not flexible enough. For instance, Linux exposes process 1

status through the proc file system, but they are reported as being only Runnable or
Blocked. Runnable implies that a process is ready to run on a processor, but doesn’t
give information about if it is actually running or if it is still waiting for a processor to
start execution. This issue makes the proc file system insufficient to determine process

1 On Linux systems using the linuxthreads implementation of POSIX threads, talking about processes is
equivalent to talking about threads because this concrete implementation uses the Linux clone system call
to create new threads, which means that threads are, in fact, cloned processes sharing required resources.

3.3 Implementation of JIS Linux-IA32 35

s t r u c t w o r k _ s t r u c t dump_job ;

void s t a r t _ k e r n e l _ t h r e a d _ d u m p (s t r u c t d u m p _ d e s c r i p t o r ∗dd) {
PREPARE_WORK(&dump_job , k e r n e l _ t h r e a d _ d u m p , (void ∗) dd) ;
s c h e d u l e _ d e l a y e d _ w o r k (&dump_job , 0) ;

}

/ / dump_lock must be a c q u i r e d b e f o r e s t a r t i n g t h e k e r n e l t h r e a d
s t a t i c vo id k e r n e l _ t h r e a d _ d u m p (void ∗ __dump_info)
{

s t r u c t d u m p _ d e s c r i p t o r ∗ dump_info ;
dump_info = (s t r u c t d u m p _ d e s c r i p t o r ∗) __dump_info ;

o l d f s = g e t _ f s () ; s e t _ f s (KERNEL_DS) ;
i n t r e t = f−>f_op−>w r i t e (f , (char ∗) dump_info−>s r c ,

dump_info−>s i z e , &f−>f _ p o s) ;
s e t _ f s (o l d f s) ;
buf . f r e e += (dump_info−> s i z e / RECORD_SIZE) ;

s p i n _ u n l o c k (&dump_lock) ;
}

Listing 3.2 Using a kernel thread to dump the kernel buffer into a file

status continuously.
The kernel patch captures 4 different kernel events that are inserted in kernel buffer.

Captured events, and their corresponding modified kernel functions, are 1) thread creation
in the schedule function; 2) thread destruction in the exit function; 3) thread preemption in
the schedule function; and 4) thread resumption in the wakeup function. Listing 3.3 shows
the code invoked when a context switch is completed. Notice how the context switch is
registered by calling the JIS routine. Figure 3.5 shows the thread state graph considered
by JIS. Other states are not considered relevant to study the behavior of applications in
this environment, since the thread state information is complemented in JIS with events
that provide the required information to fully understand the activity of a thread.

3.3.2 Java Virtual Machine level

Java internal semantics are only visible from within the JVM, but describe elements,
such as Java threads and internal monitors, that can seriously impact the performance of
an application. Because of this, comprehensive instrumentation of Java applications must
be composed, in part, by internal JVM information. Current versions of JVM implement
a Profiler Interface called JVMPI [112], recently substituted by the JVMTI [103]. This
facility is used by JIS to include information about Java application semantics on its

36 Automatic performance monitoring framework

s t a t i c i n l i n e void f i n i s h _ t a s k _ s w i t c h (t a s k _ t ∗ p rev)
{

r u n q u e u e _ t ∗ rq = t h i s _ r q () ;
s t r u c t mm_st ruc t ∗mm = rq−>prev_mm ;

rq−>prev_mm = NULL;
f i n i s h _ a r c h _ s w i t c h (rq , p r ev) ;
i f (mm)

mmdrop (mm) ;
/ / J I S

r e g i s t e r _ s w i t c h _ o n _ j i s (prev , c u r r e n t , s m p _ p r o c e s s o r _ i d () ,
t a s k _ t i m e s l i c e (p rev)) ;

/ / ENDJIS

i f (prev−> s t a t e & (TASK_DEAD | TASK_ZOMBIE))
p u t _ t a s k _ s t r u c t (p r ev) ;

}

Listing 3.3 End of context switch event

instrumentation process. This means that a developer analyzing own applications will
be able to see system state information during execution expressed in relation to some
Java semantics defined at application development time.

The JVMPI is based on the idea of creating a shared library which is loaded on
memory together with the JVM and which is notified about selected internal JVM events.
Choosing hooked events is done at JVM load time using a standard implemented method
on the library that is invoked by the JVM. Events are notified through a call to a library
function that can determine, by parsing received parameters, what JVM event is taking
place. Listing 3.4 shows an extract of the code the enables the JVMPI and sets the
event notification routine. The treatment applied to each notified event is decided by
the profiler library, but should not introduce too much overhead in order to avoid slowing
down instrumented applications in excess. Some of available events are: start and end of
garbage collecting, class load and unload, method entry and exit and thread start and end.

On JIS, only thread start and thread end events are considered by default. Importance
of these events comes from their associated information: they contain information about
the internal JVM thread name (that one defined by the developer) and allow JIS to match
Java threads with kernel threads. Both of them are very useful for developers to understand
system information when visualized. Notice that JVM implementations for Linux-IA32
use a 1:1 threading model, in which one Java thread is supported by one system thread.

Optionally, other JVM events can be chosen to be incorporated on instrumented in-
formation depending on developers’ requirements. Activation of many event notifications
can result in severe overheads like in the case of the method entry and method exit events,

3.3 Implementation of JIS Linux-IA32 37

i n c l u d e <jvmpi . h>

s t a t i c J V M P I _ I n t e r f a c e ∗ j v m p i _ i n t e r f a c e ;

JNIEXPORT j i n t JNICALL JVM_OnLoad (JavaVM ∗ jvm , char ∗ o p t i o n s , void
∗ r e s e r v e d) {

j v m p i _ i n t e r f a c e −>N o t i f y E v e n t = n o t i f y E v e n t ;

j v m p i _ i n t e r −>Enab l eEven t (JVMPI_EVENT_MONITOR_WAIT , NULL) ;

re turn JNI_OK ;
}

void n o t i f y E v e n t (JVMPI_Event ∗ e v e n t) {
sw i t ch (even t−>e v e n t _ t y p e) {

. . .
case JVMPI_EVENT_MONITOR_WAIT :
. . .

}
}

Listing 3.4 Enabling the JVMPI interface

because of their high notification frequency.

3.3.3 Middleware and User application levels

Both the middleware level and the user application level rely on the use of a system
shared library, provided with JIS, that implements a Java Native Interface [100] (JNI)
interface accessible from the Java code to inject user events in the final tracefile. Notice
that the importance of these events is that they are generated on execution time and are
automatically correlated with all the other performance data. The events can be injected
by both modifying the middleware source code (if available) or using the JACIT tool,
briefly discussed in section 3.2.3.

Information relative to services (i.e. servlets and EJBs) or transactions can be obtained
from the middleware level. With this information, system performance can be put in
relation to the middleware performance at any moment in time (i.e. servlet execution
time in relation to the percentage of running time of the kernel thread which provided the
servlet execution). An example of such a code injection is shown in Listing 3.5, where
the beginning and completion of the processing of a HTTP request are indicated with
two events in the Tomcat [6] Servlet container. This information can be used later with

38 Automatic performance monitoring framework

package j a v a x . s e r v l e t . h t t p ;

p u b l i c a b s t r a c t c l a s s H t t p S e r v l e t e x t e n d s G e n e r i c S e r v l e t
imp lemen t s j a v a . i o . S e r i a l i z a b l e

{
. . .
p r o t e c t e d void s e r v i c e (H t t p S e r v l e t R e q u e s t req ,

H t t p S e r v l e t R e s p o n s e r e s p)
th ro ws S e r v l e t E x c e p t i o n , IOExcep t ion

{
ed ragon . WebApps . UserEven t (SERVICE , BEGIN) ;
. . .
doGet (req , r e s p) ;
. . .
ed ragon . WebApps . UserEven t (SERVICE ,END) ;

}
. . .

}

Listing 3.5 Injecting user-level events

Paraver, to calculate statistics in the scope of one single servlet invocation.

Additionally, the user application code can be modified to inject events into the
tracefile too. This process is extremely helpful for the correct understanding of the real
cost and effects of any portion of the user application code.

3.3.4 Merging data

System space and user space captured events must be put together to generate the
final trace. The merging process is done either when the JVM is shut down or when it
is requested by the user. Both the user-space and the system-space buffers are regularly
dumped into files. Generated records contain an associated timestamp measured in cycles
(using the rdtscll instruction present in IA32 systems). As the timestamps in the two
buffers are consistent, data can be safely merged and sorted. Finally, the tracefile is
converted to the Paraver format to be later processed.

3.3.5 Overheads in the Linux-IA32 implementation

The instrumentation process of JIS introduces some overheads during the execution
of the application. Nevertheless, this overhead is low enough not to affect the conclusions
extracted from applications analysis. In order to measure the overhead introduced by
the tool two applications were run without instrumentation and with different levels
of instrumentation, and execution times have been studied to determine the impact of

3.3 Implementation of JIS Linux-IA32 39

Figure 3.6 CPU intensive application overhead results

Figure 3.7 I/O intensive application overhead results

instrumentation on the performance of applications.
Used applications are distinguished by their focus of study: one is CPU intensive

and the other I/O intensive. This first one is a LU decomposition code and the second
one is the core of the Tomcat [6] server used in this test to transmit data (html files) in
2Kb chunks. Tests have been repeated with different configurations of the applications,
and obtained results are presented in Figure 3.6 and Figure 3.7. Execution times
with no instrumentation, with system instrumentation only and with coordinated system
and JVMPI instrumentation are presented. Times are mean values with corresponding
standard deviations. Overheads are indicated between parentheses. As it can be seen,
low-order overheads are introduced to execution times when instrumenting applications.
Activating JVM information through the JVMPI results in an increase of overheads
respect to produced ones with only system level instrumentation. Observed overheads
can be considered acceptable in order to not to perturb the behavior of applications when
instrumenting them.

40 Automatic performance monitoring framework

3.4 Automatic monitoring

In this section we present an extension to the monitoring infrastructure that allows it to
operate automatically, without need of human interaction in the process of performance
data acquisition, whereas it is driven by some user-defined rules. Such a monitoring
framework operates by continuously observing some high-level performance metrics
delivered by the application server, and triggering the in-depth tracing process of the
whole application server’s execution stack when it is observed that some minimum
user-defined performance objectives are not met. System administrators and software
developers can take especial advantage of an automatic monitoring tool such as the
one proposed in this work, especially if they run their complex systems under high-
availability requirements that force them to keep their environments up and running 24x7.
This automatization of the monitoring tool has been developed to work with WebSphere
Application Server[53] (WAS), and the resulting autonomic monitoring environment has
been named WAS Control Center

The WAS Control Center environment is fully developed for the Java platform so it has
no system dependencies, although it relies on the architecture of WebSphere Application
Server[53] (WAS), so its use is limited to this application server. The particular platform
used for the development was WebSphere Application Server v4.0 Advanced Edition
running on a 1.3 IBM Java Virtual Machine.

3.4.1 Monitoring high-level performance metrics

Some different approaches can be taken to continuously measure the performance
of an application server. In this work we measure the performance of the WebSphere
Application Server using the Performance Monitoring Infrastructure[89] (PMI).

The Performance Monitoring Infrastructure consists in a set of libraries and packages
developed to simplify the task of collecting, processing and visualizing performance
information regarding the application server. PMI gets information from all WAS
components and makes it available to users. It offers a rich set of performance indexes of
the application server. Some examples of indexes offered by PMI are the total number of
requests to an object, response time of a web accessible object and number of concurrent
active requests. These indexes can be obtained for both individual objects (servlets and
EJBs) and the global system.

The performance data collected by the PMI is made accessible in different ways.
In particular, WebSphere has a servlet deployed on it that exposes the information
acquired by the PMI. WAS Control Center environment obtains continuous performance

3.4 Automatic monitoring 41

information from WebSphere by periodically polling the PMI Servlet. This servlet, when
accessed, queries the WAS Performance Monitoring Infrastructure to obtain performance
indexes of the application server and returns them to the client summarized in a XML
file that describes the current performance indexes for the different components of the
application server. Each time the PMI servlet is accessed, an updated version of the XML-
formatted performance report is returned.

3.4.2 Automatic management of the monitoring infrastructure

The major feature of WAS Control Center is that it is able to automatically detect poor
performance periods on the application server according to a set of performance objectives
defined by the user. Each objective is related to a PMI performance index, and can be
defined in terms of maximum value, minimum value, deviation over time and basic logic
combinations of these values. An example of such a performance objective is the response
time observed for a particular web component. When one of the performance objectives
is not met, JIS is automatically started to capture the execution trace that may contain
the root cause of the observed performance, and it keeps running until the performance
objective is met again.

WAS Control Center is composed of two main components: the Control Center and
the Monitoring Server. The Control Center collects performance data through the PMI
servet and detects anomalous performance periods. The Monitoring Server is a remote
agent for the Control Center, and runs within WebSphere. It can be used to take any
action required by the Control Center in response to a performance-triggered request, and
in particular, to control JIS locally. A general operation diagram of WAS Control Center
is shown in figure 3.8.

The Monitoring Server is integrated with Webshpere by using JACIT to modify the
startTransports() method of the ServletEngine class, a process that is shown in Figure 3.3.
Once this method is invoked, the Monitoring Server is loaded. Once the application server
instance is completely up and running, the PMI engine is started and the PMI servlet is
enabled. At this point, the Monitoring Server is ready to receive requests from the Control
Center. Requests can be manually submitted using the GUI or can be an automatically
triggered.

The Control Center Application works remotely from the application server machine
and also offers a graphical interface to remotely manage the configuration parameters
of JIS, as for example, the level of detail captured by the tool. It is composed of four
cooperative components: a GUI, an XML parser module, an application logic module and
a communication stub.

42 Automatic performance monitoring framework

Figure 3.8 WAS Control center operation diagram for automatic system tracing

The XML parser processes the information provided by the PMI Servlet. The amount
of information obtained from the PMI servlet depends on the configuration of the WAS
Control Center. So, the XML parser module not just parses the XML file but also filters
the performance data according to user preferences. As long as the structure of the XML
file is dynamic (i.e. new web components each time the PMI servlet is accessed), the XML
parser detects the new structure and modifies the GUI data accordingly. The logic module
of the Control Center contains the application logic required to make the environment
work. The periodicity in which the PMI servlet is polled is a user-configured parameter.
Each time new performance data is obtained, all the performance objectives are checked.
The GUI module offers an overall configuration interface for the entire environment.
Figure 3.9 shows an example of the Control Center GUI can be observed. According
to this example, JIS will be activated when the number of active servlets in the server
suffers a variation higher than 5% with respect to the four last observed values. The
communication stub isolates the Control Center logic from the PMI interface. New stubs
could be developed to integrate it with other Application Servers.

3.4.3 Case study

In this section we present a simple but illustrative example of use of the WAS Control
Center. We used a 4-way application server machine running WebSphere 4.0, a 2-way
database host machine running MySQL and a client machine to run the servlet-based
version of RUBiS[4]. Each one of these machines disposes of 2Gb of physical RAM. The

3.4 Automatic monitoring 43

Figure 3.9 View of the WAS Control Center GUI

database server hosted RUBiS data.

After a warm-up period, the system became stable, and the response time for the
ViewUserInfo servlet was measured, as it can be observed in figure 3.10(a). At this point,
we defined a performance objective for this servlet that was 10% higher than the actual
response time observed in normal conditions. Although the performance objective was set
only for the ViewUserInfo servlet, it could be extended to consider the whole application
server or to measure any other available performance metric.

Next step in the experiment was the introduction of some CPU-consuming processes
in the machine hosting the database server. As it was expected, the service level offered by
MySQL server started worsening with this process and in turn the response time offered
by WebSphere too, as it can be seen in figure 3.10(b). When the disturbance was removed
from the database machine, the response time came down again as expected.

At the time the response time reported by the PMI servlet for the ViewUserInfo servlet
increased and the performance objective defined for this servlet started being consistently
missed, the Control Center engine sent a request to start running JIS on the application
server machine. The request was processed by the Monitoring Server. When the response
time went back to normal values, JIS was automatically stopped and an output tracefile
generated.

44 Automatic performance monitoring framework

(a) Normal response time during a benchmark run (b) Degraded response time

Figure 3.10 Observed response time for a servlet of the RUBiS Benchmark

The study of the execution tracefile automatically generated by JIS clearly indicated
that the Servlet.Engine.Transport worker threads of WebSphere spent long periods
awaiting data to come from the sockets that connect WebSphere and MySQL, grouped
in a connection pool. In particular, threads were blocked in socket read system calls, and
the time spend there was clearly longer than the time observed in normal conditions.

Although this is a simple testing example for the environment, the experience proved
usefulness as an environment for system administrators which are in charge of "24x7"
environments to obtain valuable information about the factors that can modify the
performance of an application server.

3.5 Related work

Many tools aim to offer deep tracing of multithreaded web applications, but few
of them cover all the levels of the execution stack. Our framework represented a first
proposal that provided complete correlation of information among all the different levels
involved in the execution of an application server middleware running on top of the Java
Virtual Machine [99]. Other tools, like Jinsight [84], JaViz [59] and DejaVu [29] generate
execution traces of Java applications but none of them with the level of detail delivered by
JIS. Jinsight and DejaVu work with single instances of JVMs, while JaViz is focused on
client/server Java applications that make extensive use of RMI [105]. All these tools use
modified JVMs to collect the execution information.

Other tools such as Hprof [78], OptimizeIt [17] and JProbe [86] make extensive use of
the JVM Profiling Interface (JVMPI [112]) to collect performance information from the
JVM. All these tools are focused on offering performance insight in terms of hotspots and
bottleneck detection, memory consumption and all other kind of aggregated metrics, but

3.6 Summary 45

they don’t offer a detailed view of the execution behavior of the application. JIS collects
data in such a way that can be later visualized with a performance analysis tool such as
Paraver [38]. Using Paraver, the information collected in the trace files can be processed
to offer aggregated metrics in a similar way that the mentioned tools do, but also can be
used to make much more detailed performance analysis in some sections of the monitored
period or by-thread analysis. The data collected by hprof can also be post-processed with
tools like PerfAnal [104] and HAT [15], but these tools are clearly limited in tems of
functionalities when compared to Paraver.

In the last years, a number of new tools and monitoring frameworks have appeared
to meet the requirements of new execution environments, with special focus on the
J2EE [98] platform. These tools can be classified into the new Application Performance
Management (APM) category as they try to help in a wider environment than the tools
presented before. These tools are integrated into IDEs and guide developers all over
the production of a piece of software to meet their performance goals. Some examples
of such an environment are Quest’s APM Suite for J2EE [87], Borland’s Optimizeit
ServerTrace [18], and CA Wily Introscope[120]. The scope and objectives of these tools
are beyond those of JIS and Paraver. Still, they don’t offer the options in terms of fine-
grain analysis that JIS does, but on the other hand they offer many extended features not
covered by the combination of JIS and Paraver.

In relation to WAS Control Center, similar proposals have been previously done on the
area of distributed systems, like in [16] and in [63], but they are not focused on application
servers like ours. The concept of autonomic computing has been widely explored and
categorized by IBM, as described in [62]. There is some work published in the field
of application servers’ performance modeling, like in [49] and in [66], showing different
approaches to the complexity of the problem. Also some works face up to the performance
prediction for application servers, like in [72]. Some discussion about the creation of self-
managed systems for web or application servers can be found, working with agents like
in [35] or with other architectures, like in [73], in [109] and in [27].

3.6 Summary

In this Chapter we have summarized the first contribution of this thesis that consists in
the creation of an automatic monitoring framework specially focused on web applications.
It correlates detailed system information with high-level performance data in order to
make possible a complete performance analysis of web applications. It is able to monitor
in real-time some high-level performance metrics of an application server, compare them

46 Automatic performance monitoring framework

to some user-defined rules and trigger the appropriate actions if necessary. This way, it
can be dynamically started and stopped following high-level performance metrics without
need of human interaction.

The monitoring framework is composed of three differentiated tools that work
coordinately to create a powerful performance analysis environment. Java Instrumentation
Suite [23] (JIS) is a deep monitoring tool that produces extremely detailed insight on
the system behavior – ranging from the operating system level to the user application
code. The data collected by the monitoring tool can be later studied using Paraver [38],
a powerful analysis and visualization tool. The JACIT tool (Java Automatic Code
Interposition Tool) can be used to modify existing bytecodes of a Java application without
need of source code availability. JIS is the major component in the first contribution of
this thesis.

Four levels are considered by JIS when tracing a system: 1) operating system, 2) JVM,
3) middleware (application server) and 4) user application. Information collected by all
levels is finally correlated and merged to produce an execution trace file.

Information obtained from the operating system level covers threads’ state and system
calls. Thread information is obtained directly from the Linux scheduler routine and
information from syscalls (I/O, sockets, memory management, thread management) is
obtained by intercepting some entries of the syscall table. This task was divided in two
layers: one based in a kernel source code patch and the other in a system device and its
corresponding driver. When working with Java-based applications, collected information
is limited to the JVM process, and other processes on the system are ignored.

Java semantics are just considered inside the JVM. Because of this, comprehensive
instrumentation of Java applications must be composed, in part, by internal JVM
information. This information is used by JIS to include Java application semantics on
its instrumentation process

JIS allows the generation of events from both the middleware and the user application
levels, that are later available in the tracefiles. Notice that the importance of these
events is that they are generated on execution time and are automatically correlated
with all the other performance data. Information relative to services (i.e. servlets and
EJBs) or transactions can be obtained from the middleware level. Additionally, the user
application code can be modified to inject events into the tracefile too, what improves the
understanding of the real cost and effects of any portion of the user application code.

Finally, we have shown a how the framework can be automatized to work with
WebSphere, and how it can be used to control JIS without need of human cooperation
until the analysis step.

3.6 Summary 47

The monitoring framework has been tested in different environments, such as those
described in [22], [44], [88], [46] and [77]. In particular, the experiment described in [44]
and described later in Section 4.3, shows a successful example of how such a fine-grained
monitoring environment can provide a new insight in the performance characterization
of web applications. This particular example demonstrates how crucial a connection
management policy results in the performance delivered by an application server, what
motivated the second contribution of this thesis that is presented in the next Chapter.

The work performed in this area is described in the following publications:

[23] D. Carrera, J. Guitart, J. Torres, E. Ayguadé, and J. Labarta. Complete
instrumentation requirements for performance analysis of web based technologies.
In Proceedings of the 2003 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS’03), 2003

[21] D. Carrera, D. García, J. Torres, E. Ayguadé, and J. Labarta. WAS Control
Center: An autonomic performance-triggered tracing environment for Websphere.
In Proceedings of 13th Euromicro Conference on Parallel, Distributed and Networkbased
Processing (PDP’05), 2005

as well as resulted in the following derived work:

[44] J. Guitart, V. Beltran, D. Carrera, J. Torres and E. Ayguadé. Characterizing
Secure Dynamic Web Applications Scalability. 19th IEEE International Parallel and
Distributed Processing Symposium (IPDPS’05), April 2005.

[45] J. Guitart, D. Carrera, V. Beltran, J. Torres and E. Ayguadé. Designing an
overload control strategy for secure e-commerce applications. Computer Networks
51, 15 (Oct. 2007), 4492-4510

[22] D. Carrera, J. Guitart, V. Beltran, J. Torres and E. Ayguadé. Performance Impact
of the Grid Middleware. In Engineering the Grid: Status and Perspective, American
Scientific Publishers, January 2006. ISBN: 1-58883-038-1

[88] R. Nou, F. Julià, D. Carrera, K. Hogan, J. Labarta, J. Torres. Monitoring
and analysis framework for grid middlewares. In Proceedings of 15th Euromicro
Conference on Parallel, Distributed and Network-based Processing (PDP’07), 2007

[46] J. Guitart, D. Carrera, J. Torres, E. Ayguadé and J. Labarta. Tuning Dynamic
Web Applications using Fine-Grain Analysis. In 13th Euromicro Conference on

48 Automatic performance monitoring framework

Parallel, Distributed and Network-based Processing (PDP’05), pp. 84-91, February 2005.

Chapter 4

Adaptive architecture for application
servers

50 Adaptive architecture for application servers

4.1 Introduction 51

4.1 Introduction

Application servers are based on the well-known client/server paradigm. Usually, the
client and the server communicate using the HTTP protocol over TCP connections. The
component of an application server that is in charge of managing the communications
with the client as well as dealing with the network protocols is the web container.

In the old times, the performance of web applications was measured following low-
level performance goals only, such as replies per second. In contrast, more advanced high-
level goals are considered when measuring the performance of modern-day applications.
High-level objectives are deeply related to business metrics such as the number of
business transactions that are successfuly completed and the service level delivered for
those transactions. In terms of web applications, one business transaction is considered
to be completed when a user browsing session successfully finishes. Therefore, web
container architectures must be designed to deliver high performance in terms of high-
level performance metrics in order to be on the side of the interests of modern web
applications.

The development of web containers is always a challenging task because it implies
the creation of high performance I/O strategies. A server that is subject to a workload
of thousands of clients needs to perform really efficiently in order to to deliver an
acceptable service level. There are multiple architectural options to design a web
container, depending on the connection management model that is used. The two major
alternatives are the multithreaded model and the event-driven model. In both models, the
work to be performed by the server is divided into work assignments that are assumed each
one by a thread (a worker thread). In the multithread model, one worker thread remains
associated to a client connection until it is closed. Alternatively, in an event driven model
the worker thread is associated to a HTTP request, and each worker thread is multiplexed
among the clients that are connected to the server. In the last years the multithreaded
approach was widely used on commercial web containers.

The use of connection persistence in the HTTP protocol results in a dramatic perfor-
mance impact for highly-loaded multithreaded web containers. Persistent connections,
which means client-server connections are kept established between consecutive HTTP
requests, force worker threads to remain idle while waiting for new incoming requests
or, alternatively, to close connections and re-establish them later, with the corresponding
overhead. The former can result in underutilized systems, while the latter degrades the
service level offered by the server. The event-driven model is better suited for this kind of
scenario, multiplexing a short number of threads among a large number of connections,
without need to close them. Unfortunatelly, the multithreaded programming model leads

52 Adaptive architecture for application servers

to a very easy and natural way of programming a web container, whereas the event-driven
model makes the task of designing an efficient web container a hard challenge.

The second contribution of this thesis is the proposal of a new hybrid1 web container
design that exploits the best of both the multithread and the event-driven models, resulting
in an improved high-level performance without increasing its development complexity.
Additionally, it shows an extraordinary adaptability to the workload conditions and
reduces noticeably the need of human interaction to fine tune the web container. The
design of such a new architecture is motivated by a preliminary study of Tomcat’s vertical
scalability when subject to secure workloads. The results confirmed that the server
can be easily overloaded if connections are not properly managed, demonstrating the
convenience of developing advanced connection management strategies to overcome such
a complicated scenario. The hybrid architecture is specially well suited for commodity
solutions, in which no external load balancing nor overload protection mechanisms are
available.

1The work presented in this chapter was shared with the open source communities that maintain some
of the most popular Java web containers. Some of these projects were considering the possibility of writing
a web container with a similar architecture at that moment. At the end, many application servers such as
Apache Tomcat [6] and Glassfish [97] (on which Sun Java System Application Server [106] is based) now
support similar hybrid solutions.

4.2 Application server architectures 53

4.2 Application server architectures

4.2.1 Multithreaded architecture with blocking I/O

The multithreaded programming model leads to a very easy and natural way of
programming a web container. The association of each thread with a client connection
results in a comprehensive thread lifecycle, started with the arrival of a client connection
request and finished with the connection close. This model is especially appropriate
for short-lived client connections and with low inactivity periods, which is the scenario
created by the use of non persistent HTTP/1.0 connections. A pure multithreaded web
container architecture is generally composed by an acceptor thread and a pool of worker
threads. The acceptor thread is in charge of accepting new incoming connections, after
what each established connection is assigned to one thread of the workers pool, which
will be responsible of processing all the requests issued by the corresponding web client.
A brief operation diagram for this architecture can be seen on figure 4.1.

The introduction of connection persistence in the HTTP protocol, already in the
1.0 version of the protocol but mainly with the arrival of HTTP/1.1, resulted in a
dramatic performance impact for the existing multithreaded web containers. Persistent
connections, which means connections that are kept alive by the client between two
successive HTTP requests that in turn can be separated in time by several seconds of
inactivity (think times), cause that many server threads can be retained by clients even
when no requests are being issued and the thread keeps in idle state. The use of blocking
I/O operations on the sockets is the cause of this performance degradation scenario. The
situation can be solved increasing the number of threads available (which in turn results in
a increased contention to acquire exclusion locks) or introducing an inactivity timeout for
the established connections, that can be reduced as the server load is increased. When a
server is subject to a severe load, the effect of using a short inactivity timeout to the clients
lead to a virtual conversion of the HTTP/1.1 protocol into the older HTTP/1.0, with the
consequent loss of the performance benefits introduced by connection persistence.

In this model, the effect of closing client connections to free worker threads reduces
the probability for a client to complete a session to nearly zero. It is especially important
when the server is under overload conditions, where the inactivity timeout is dynamically
decreased to the minimum possible in order to free worker threads as quickly as possible,
which provokes that all the established connections are closed during think times. This
causes a higher competition among clients trying to establish a connection with the server.
If we extend it to the length of a user session, we obtain that the probability of finishing it
successfully under this architecture is still much lower than the probability of establishing

54 Adaptive architecture for application servers

Client 1

Web Server
Logic

Worker
Thread

Worker
Thread

Worker
Thread

Client 2

Client 2
Request

Request

Response

Response

Response

Request

Multithreaded Web Server

ThreadPool

Http/1.1 Persistent Connection

Http/1.1 Persistent Connection

Http/1.1 Persistent Connection

Figure 4.1 Operation of a multithread architecture

each one of the connections it is composed of, driving the server to obtain a really low
performance in terms of session completions. This situation can be alleviated increasing
the number of worker threads available in the server, but this measure also produces
an important increase in the internal web container contention with the corresponding
performance slowdown.

4.2.2 Event-driven architecture with non-blocking I/O

On the other hand, the event-driven architecture completely eliminates the use of
blocking I/O operations for the worker threads, reducing their idle times to the minimum
because no I/O operations are performed for a socket if no data is already available on
it to be read. With this model, maintaining a big amount of clients connected to the
server does not represent a problem because one thread will never be blocked waiting
a client request. With this, the model detaches threads from client connections, and
only associates threads to client requests, considering them as independent work units.
An example of web container based on this model is described in [83], and a general
evaluation of the architecture can be found in [13].

In an event driven architecture, one thread is in charge of accepting new incoming
connections. When the connection is accepted, the corresponding socket channel is
registered in a channel selector where another thread (the request dispatcher) will wait
for socket activity. Worker threads are only awakened when a client request is already
available in the socket. When the request is completely processed and the reply has been
successfully issued, the worker thread registers again the socket channel in the selector

4.3 Performance characterization of secure web applications 55

Figure 4.2 Tomcat persistent connection pattern

and gets free to be assigned to new received client requests. This operation model avoids
worker threads to keep blocked in socket read operations during client think times and
eliminates the need of introducing connection inactivity timeouts and their associated
problems.

A remarkable characteristic of the event-driven architectures is that the number of
active clients connected to the server is unbounded, so an admission control [28] policy
must be implemented. Additionally, as the number of worker threads can be very low (one
should be enough) the contention inside the web container can be significally reduced.

4.3 Performance characterization of secure web applica-
tions

In this section we use the monitoring framework presented in Chapter 3 to study
the scalability of Tomcat server when subject to a secure workload. The study will
demonstrate how crucial a connection management policy results in the performance
delivered by an application server. We will illustrate a connection management problem
present in the architectural design of most application servers, which was successfully
addressed and is now presented as the second contribution of this thesis.

4.3.1 Secure workloads

The SSL [36] protocol provides communications privacy over the Internet using a
combination of public-key and private-key cryptography and digital certificates (X.509).
This protocol does not introduce a new degree of complexity in web applications’
structure because it works almost transparently on top of the socket layer. However, SSL

56 Adaptive architecture for application servers

Figure 4.3 Throughput of the original Tomcat with different numbers of processors

remarkably increases the computation time necessary to serve a connection, due to the
use of cryptography to achieve its objectives. This increment has a noticeable impact on
the server’s performance, which has been evaluated in [44]. This study concludes that the
maximum throughput obtained when using SSL connections is 7 times lower than when
using normal connections. The study also notices that when the server is attending non-
secure connections and overloads, it can maintain the throughput if new clients arrive,
while if attending SSL connections, the overload of the server provokes degradation of
the throughput.

Most of the computation time required when using SSL is spent during the SSL
handshake phase, which features the negotiation between the client and the server to
establish a SSL connection. Two different SSL handshake types can be distinguished,
namely the full SSL handshake and the resumed SSL handshake. The full SSL handshake
is negotiated when a client establishes a new SSL connection with the server, and
requires the complete negotiation of the SSL handshake, including parts that need a lot
of computation time to be accomplished. We have measured the computational demand
of a full SSL handshake in a 1.4 GHz Xeon to be around 175 ms. The SSL resumed
handshake is negotiated when a client establishes a new HTTP connection with the server

4.3 Performance characterization of secure web applications 57

number of processors new clients/s throughput (replies/s)
1 2 90
2 4 155
3 6 208
4 8 256

Table 4.1 Number of clients that overload the server and maximum throughput achieved
before overload occurs

but resumes an existing SSL connection. As the SSL session ID is reused, part of the SSL
handshake negotiation can be avoided, reducing considerably the computation time for
performing a resumed SSL handshake. We have measured the computational demand of
a resumed SSL handshake in a 1.4 GHz Xeon to be around 2 ms. Note the big difference
between the time to negotiate a full SSL handshake compared to the time to negotiate a
resumed SSL handshake (175 ms vs. 2 ms).

4.3.2 Evaluation platform

We use Tomcat [6] v5.0.19 as the application server, which follows the multithread
paradigm with persistent HTTP connections. The pattern of a persistent connection in
Tomcat is shown in Figure 4.2. In this example, three different requests are served
through the same connection. The rest of the time (connection (no request)) the server
is keeping the connection open waiting for another client request. A connection timeout
is programmed to close the connection if no more requests are received. Notice that within
every request the service (execution of the servlet implementing the demanded request) is
distinguished from the request (no service). This is the pre and post process that Tomcat
requires to invoke the servlet that implements the demanded request.

We run Tomcat (with the RUBiS benchmark deployed on it) on a 4-way Intel XEON
1.4 GHz with 2 GB RAM. Tomcat makes queries to a MySQL [75] v4.0.18 database
server using the MM.MySQL v3.0.8 JDBC driver. The MySQL server runs on another
machine, which is a 2-way Intel XEON 2.4 GHz with 2 GB RAM. In addition, we have
configured a machine with a 2-way Intel XEON 2.4 GHz and 2 GB RAM to run the
workload generator (Httperf 0.8). For each experiment performed in the evaluation section
(each point in the graphs corresponds to an experiment), the Httperf tool is parametrized
with the number of new clients per second that initiate a session with the server (this value
is indicated in the horizontal axis of the graphs) and with the workload distribution that
these clients must follow (extracted from the Markov model mentioned in the previous
section). Then, Httperf emulates the execution of these clients by performing secure

58 Adaptive architecture for application servers

number of processors throughput (replies/s)
1 13
2 28
3 41
4 53

Table 4.2 Average server’s throughput when overloaded

requests to the Tomcat server during a run of 10 minutes. All the machines are connected
using a 1 Gbps Ethernet interface and run the 2.6 Linux kernel. For our experiments
we use the Sun JVM 1.4.2 for Linux, using the server JVM instead of the client JVM
and setting the initial and the maximum Java heap size to 1024 MB. All the tests are
performed with the common RSA-3DES-SHA cipher suit, using a 1024 bit RSA key.
For the experiments, we configured Tomcat by setting the maximum number of worker
threads to be 100 and the connection persistence timeout to be 10 seconds.

4.3.3 Scalability Characterization

The characterization is divided in two parts. The first part, discussed in section 4.3.3.1,
is an evaluation of the vertical scalability of the server when running with different number
of processors, determining the impact of adding more processors on server overload. The
second part, discussed in section 4.3.3.2, consists of a detailed analysis of the server
behavior using the performance analysis framework, in order to determine the causes
of the server overload when running with different number of processors.

4.3.3.1 Exploring scalability

Figure 4.3 shows the Tomcat throughput as a function of the number of new clients
per second initiating a session with the server when running with different numbers of
processors. Notice that for a given number of processors, the server’s throughput increases
linearly with respect to the input load (i.e. the server scales) until a determined number of
clients hit the server. At this point, the throughput achieves its maximum value. Table 4.1
shows the number of clients that overload the server and the maximum throughput
achieved before overloading when running with different number of processors. Notice
that, since secure workloads are CPU-intensive, running with more processors allows the
server to handle more clients before overloading, so the maximum throughput achieved
is higher. In particular, running with 2 processors increases the maximum throughput
achieved by a factor of 1.7, running with 3 processors by a factor of 2.3, and running
with 4 processors by a factor of 2.8. Notice that the achieved improvement is not

4.3 Performance characterization of secure web applications 59

Figure 4.4 Response time of the original Tomcat with different numbers of processors

linear because processors are not the only component limiting the server’s performance.
When the number of clients that overload the server has been reached, the server’s
throughput degrades until approximately 20% of the maximum achievable throughput
while the number of clients increases, as shown in Table 4.2. This table shows the average
throughput obtained when the server is overloaded when running with different numbers
of processors. Notice that, although the throughput obtained has decreased in all cases
where the server has reached an overloaded state, running with more processors improves
the throughput again. When the server is overloaded, running with 2 processors increases
the maximum achieved throughput by a factor of 2.1, running with 3 processors by a factor
of 3.1, and running with 4 processors by a factor of 4. In this case, a linear improvement
is achieved, because processors are the main component limiting the performance.

As well as degrading the server’s throughput, the server overload also affects the
server’s response time, as shown in Figure 4.4. This figure shows the server’s average
response time as a function of the number of new clients per second initiating a session
with the server when running with different numbers of processors. Notice that when
the server is overloaded the response time increases (especially when running with one
processor) as the number of clients grow.

60 Adaptive architecture for application servers

Figure 4.5 Completed sessions by the original Tomcat with different numbers of
processors

Server overload has another undesirable effect, especially in e-commerce environ-
ments where session completion is a key factor. As shown in Figure 4.5, which shows
the number of sessions completed successfully when running with different numbers of
processors, when the server is overloaded only a few sessions can finalize completely.
Consider the great revenue loss that this fact can provoke for example in an online store,
where only a few clients can finalize the acquisition of a product.

4.3.3.2 Analyzing scalability limits

The analysis methodology consists of comparing the server’s behavior when it is
overloaded with that when it is not, using the performance analysis framework described
in Chapter 3. We calculate a series of metrics representing the server’s behavior, and we
determine which of them are affected while increasing the number of clients. From these
metrics, an in-depth analysis is performed looking for the causes of their dependence on
the server load.

First of all, using the performance analysis framework, we calculate the average
time spent by the server processing a persistent client connection, distinguishing the

4.3 Performance characterization of secure web applications 61

0

500
1000

1500
2000

2500

3000
3500

4000

no yes no yes no yes no yes

1 CPU 2 CPU 3 CPU 4 CPU
overloaded?

tim
e

(m
s)

Avg service time (ms)
Avg request (no service) time (ms)
Avg connection (no request) time (ms)
Avg SSL handshake time (ms)

Figure 4.6 Average time spent by the server processing a persistent client connection

time devoted to each phase of the connection (connection phases have been described
in Section 4.3.2) when running with different numbers of processors. This information is
displayed in Figure 4.6. Notice that when the server is not overloaded, the majority of the
time spent to process a client connection is devoted to the connection (no request) phase.
During this phase the connection remains established waiting for additional requests from
the client (i.e. maintaining connection persistence) and for this reason CPU consumption
is low.

On the other side, when the server overloads, the average time required to handle a
connection increases considerably, mainly at the SSL handshake and the connection (no

request) phases. The proportionally greater increment occurs in the SSL handshake phase.
In particular, the time spent in this phase increases from 18 ms to 1050 ms when running
with one processor, from 7 ms to 602 ms with two processors, from 6 ms to 610 ms
with three processors and from 6 ms to 464 ms with four processors. The increment that
occurs in the connection (no request) phase is proportionally lower, but also noticeable.
In particular, the time spent in this phase has increased from 605 ms to 2711 ms when
running with one processor, from 485 ms to 1815 ms with two processors, from 515 ms
to 1134 ms with three processors and from 176 ms to 785 ms with four processors.

To determine the causes of the great increase in the time spent in the SSL handshake

phase of the connection, we calculate the percentage of connections that perform
a resumed SSL handshake (reusing the SSL Session ID) versus the percentage of
connections that perform a full SSL handshake when running with different numbers of
processors. This information is shown in Figure 4.7. Notice that when the server runs with
one processor without overloading, 97.3% of SSL handshakes reuse the SSL connection,
but when it overloads, only 32.9% reuse it. The rest negotiate a full SSL handshake,

62 Adaptive architecture for application servers

0
10
20
30
40
50
60
70
80
90

100

no yes no yes no yes no yes

1 CPU 2 CPU 3 CPU 4 CPU
overloaded?

pe
rc

en
ta

ge

Full handshake Resumed handshake

Figure 4.7 Incoming server connections classification depending on the SSL handshake
type performed

overloading the server because it cannot supply the computational demand of these full
SSL handshakes. Remember the big difference between the computational demand of a
resumed SSL handshake (2 ms) and a full SSL handshake (175 ms). The same situation
is produced when running with two processors (the percentage of full SSL handshakes
increases from 2% to 67.2%), when running with three processors (from 2.4% to 62.5%),
and when running with four processors (from 1.4% to 63.5%).

This lack of computational power also explains the increase in the time spent in
the connection (no request) phase. The connection remains open waiting for additional
requests from a given client, but when these requests arrive to the server machine, since
there is no available CPU to accept them, they must wait longer in the operating system’s
internal network structures before being accepted.

We have determined that when running with any number of processors the server
overloads when most of the incoming client connections need to negotiate a full SSL
handshake instead of resuming an existing SSL connection, requiring a computing
capacity that the available processors are unable to supply. Nevertheless, why does this
occur from a given number of clients? In other words, why do incoming connections
negotiate a full SSL handshake instead of a resumed SSL handshake when attending to a
given number of clients? Remember that we have configured the client with a timeout of
10 seconds. This means that if no reply is received in this time, the client’s connection
will be discarded. When the server is overloaded, it cannot handle the incoming requests
before the client timeouts expire. For this reason, in the long run most of the resumed
connections with the server will be discarded, and only new clients will arrive at the
server. Remember that the initiation of a new client requires the establishment of a new

4.3 Performance characterization of secure web applications 63

Figure 4.8 Throughput of Tomcat with overload control with different numbers of
processors

SSL connection, and therefore the negotiation of a full SSL handshake. Therefore, if the
server is overloaded and it cannot handle the incoming requests before the client timeouts
expire, this provokes the arrival of a great amount of new client connections that need
the negotiation of a full SSL handshake, requiring a computing capacity that the available
processors are unable to supply.

This shows that client timeouts have an important effect on the server’s performance.
One could think about raising client timeouts as the server load increases in order to avoid
the degradation of server’s performance. However, this is not an appropriate solution
for two reasons. Firstly, client timeouts cannot be modified because they are out of the
scope of the server administrator. Secondly, even if this modification were feasible, the
server will overload anyway, although this will occur when attending to a higher number
of clients. In addition, since this solution does not allow differentiating resumed SSL
connections from new ones, the prioritization of resumed connections that our approach
supports cannot be accomplished, and for this reason, the number of sessions completed
successfully will be lower, losing one of the added values of our approach.

The conclusions of this study led to a derived work, described in detail in [45] and out
of the scope of this thesis, in which an overload control mechanism was proposed in order

64 Adaptive architecture for application servers

Figure 4.9 Completed sessions by Tomcat with overload control with different numbers
of processors

to prioritize resumed connections ahead of new connections requiring a full-handshake to
be negotiated. This solution provides better performance for the connected clients, and
is specially suited for overloaded commodity scenarios. Figures 4.8 and 4.9 show the
sustained throughput delivered by the server under unmodified workload conditions in
replies per second, and user session completions respectively.

The performance characterization of secure application servers for commodity envi-
ronments shown that different strategies can be followed to improve the performance of
such an scenario, of which overload control is an example. But in more general terms it
shown that the effectiveness of the connection management performed by an application
server can result in a big overall performance impact, whenever it uses secure connections
or not.This topic is the focus of study of next section.

4.4 Hybrid Architecture 65

4.4 Hybrid Architecture

In this section we describe a new hybrid web server architecture that exploits the
best of each one of the server architectures discussed in section 4.2. With this hybrid
architecture, an event-driven model is applied to receive the incoming client requests.
When a request is received, it is serviced following a multithreaded programming model,
with the resulting simplification of the web container development associated to the
multithreading paradigm. When the request processing is completed, the event-driven
model is applied again to wait for the client to issue new requests. This architecture can
be used to decouple the management of active connections from the request processing
and servicing activity of the worker threads. With this, the web container logic
can be implemented following the multithreaded natural programming model and the
management of connections can be done with the highest possible performance, without
blocking I/O operations and reaching a maximum overlapping of the client think times
with the processing of requests. In consequence, the hybrid architecture makes a better
use of the characteristics introduced to the HTTP protocol in the 1.1 version, such
as connection persistence, with the corresponding reduction in the number of client
re-connections (and the corresponding bandwidth save). Additionally some kind of
admission control policy must be implemented in the server in order to maintain the
system in an acceptable load level, since this architecture does not benefit from the natural
overload protection present in the multithread model, intrinsically defined by the thread
pool size. A brief operation diagram for this architecture can be seen on figure 4.10.

4.4.1 Implementation on top of Tomcat container

To validate the proposed hybrid architecture we have implemented it inside of Tomcat
5.5, a widely extended web container. Tomcat 5 is built in the top of the Java platform,
which provides non blocking I/O facilities across different operating systems in its
NIO [13] (Non Blocking I/O) API. The implementation has been carried on by modifying
the HTTP connector.

In the scope of this work, two major components of Tomcat are considered: Coyote
and Catalina. Coyote is the default HTTP connector and deals with client connection,
request parsing and thread pooling. Catalina is the servlet container, and implements
most of the web container logic. The implementation of the hybrid server architecture in
Tomcat only affects Coyote.

Coyote avoids the use of a dedicated thread to accept new connections, and follows a
connection service schema in which worker threads (namely HttpProcessors) accept TCP

66 Adaptive architecture for application servers

Client 1

Web Server
Logic

Worker
Thread

Worker
Thread

Client 2

Client n

Request

Request

Response

Response

Hybrid Web Server

ThreadPool

Selector
Thread

Client 1

Active
Connections

Figure 4.10 Operation of the hybrid architecture

connections and parse and process HTTP requests. HttpProcessors are commonly chosen
from a pool of threads in order to avoid thread creation overheads. A connection timeout
is programmed to close the connection if no more requests are received in a period of
time. When a request is parsed, Coyote requires Catalina to process the request and to
send the corresponding response to the client.

The implementation of the hybrid architecture modifiesd the original Coyote threading
and I/O model. One thread is in charge of accepting and registering, through a channel
selector, new incoming connections. When a registered connection becomes active (i.e.
it has data available to read so a read operation over the socket will not be blocking),
it is dispatched by the selector thread to small pool of HttpProcessor threads. Each
HttpProcessor services only one request for each assigned active connection. The request
is read and parsed, always without blocking the thread, and it is send to Catalina who
processes the request. When the request is finished the connection is re-registered on the
selector and the thread is sent back to the pool until a new active connection is assigned
to it.

This implementation presents a major drawback when the system becomes overloaded
because in this situation the acceptor thread allows new connections to enter the server
faster than Catalina can service them, what results in a quick growth of the number of
concurrent connections, which in turn causes a severe response time degradation. In
consequence the number of client timeouts grows an the throughput decreases. To avoid
this problem we have introduced a simple but effective admission control mechanism
(similar to the backpressure technique described in [118]), that prevents the acceptor
thread from accepting new connections while all HttpProcessors are busy.

4.4 Hybrid Architecture 67

4.4.2 Performance evaluation

In our experiments we evaluate how the hybrid architecture, implemented on top of
the Tomcat container compares to the original multithread Tomcat architecture. We use
two different applications: one offering static content (Surge) and one offering dynamic
(Servlets) content (RUBiS). Notice that although the results presented in section 4.3 were
for secure workloads, the evaluation presented in this section is based on plain workloads.
The use of secure connections combined with non-blocking I/O in Java is a challengig
task by itself, and is a problem that has been addressed in the derived work described in
[12].

4.4.2.1 Testing platform

For the experiments, we configured Httperf setting the client timeout value to 10
seconds. Each individual benchmark execution had a fixed duration of 30 minutes for
the dynamic content tests and 10 minutes for the static content experiments.

We used a 4-way Intel Xeon 1.4 GHz with 2GB RAM to run the web servers and
a 2-way Intel XEON 2.4 GHz with 2 GB RAM to run the benchmark clients. For the
benchmark applications that require the use of a database server, a 2-way Intel XEON
2.4 GHz with 2 GB RAM was used to run MySQL v4.0.18, with the MM.MySQL v3.0.8
JDBC driver. All the machines were running a Linux 2.6 kernel, and were connected
through a switched Gbit network. The SDK 1.5 from Sun was used to develop and run
the web servers.

The servers were tested in two different scenarios, one to evaluate the server perfor-
mance for a static content application and another for a dynamic content environment. The
requests issued by httperf were extracted from the Surge workload generator for the static
content scenario and from the RUBiS application for the dynamic content environment.
Section 2.2.1 describes in detail these applications.

It can be stated that static content applications are usually characterized by the short
length of the user sessions as well as by the low computational cost of each request to be
serviced. In opposite, dynamic content applications tend to show long length user sessions
(an average of 300 requests per session in front of the 6 requests per session for the static
workload in ourt experiments) as well as a high computational cost associated to each
processed request (including embedded requests to external servers, such as databases).

68 Adaptive architecture for application servers

0

500

1000

1500

2000

2500

0 100 200 300 400 500 600 700 800

re
pl

ie
s/

s

Number of clients/s

Tomcat Hybrid vs Tomcat Multithreaded. Reply rate.

Hybrid
Multithreaded

Figure 4.11 Throughput comparison under an static content workload

4.4.2.2 Static content

The first performance metric evaluated for this scenario is the throughput obtained
for each architectural design, measured in replies per second. The results for both
architectures are shown in figure 4.11. It can be observed that the multithreaded
architecture obtains a slightly lower performance than the hybrid one in terms of
throughput, yet still very close. It is remarkable that the same throughput is obtained
by the hybrid architecture with a thread pool size of only 10 threads, while in the
multithreaded architecture requires 500 threads to obtain this result.

If we move from the throughput to the response time observed for each implemen-
tation, we can see that the hybrid architecture offers a clearly better result than the
multithreaded one, as it can be seen in figure 4.12. When the system is not saturated (under
a load equivalent to 300 new clients per second), the response time for the multithreaded
server is slightly better than for the hybrid design, possibly because of the overhead
introduced by the extra operations that the hybrid server must do to register the sockets in
the selector and to switch them between blocking and non-blocking mode when moving
from multithreaded to the event-driven and reverse. This effect would be dispelled in a
WAN environment, where the latencies are much higher than in the Gbit LAN used for
the experiments. When the system is saturated, beyond 300 new clients/s, the benefits
of the hybrid architecture turn up and the response time reduction with respect to the
multithreaded version of the server is of about a 50%, moving from a 300 ms average

4.4 Hybrid Architecture 69

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700 800

m
s

Number of clients/s

Tomcat Hybrid vs Tomcat Multithreaded. Response time.

Hybrid
Multithreaded

Figure 4.12 Response time under an static content workload

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1e+06

0 100 200 300 400 500 600 700 800

re
se

ts

Number of clients/s

Tomcat Hybrid vs Tomcat Multithreaded. Connection reset.

Hybrid
Multithreaded

Figure 4.13 Number of connections closed by the server by a timeout expiration

70 Adaptive architecture for application servers

response time for the multithreaded architecture to a 150 ms response time for the hybrid
design.

What is making this big difference in response time between the two architectures
is shown in figure 4.13. This figure shows the amount of connections that have been
closed by the server because of a too long client inactivity period, causing the server
timeout to expire and obligating the client to be reconnected to resume its session. As
it can be seen, while the hybrid architecture is not producing this kind of situation
(zero errors are detected by the benchmark client), a high number of errors are detected
for the multithreaded architecture. This situation can be explained by the need of the
multithreaded design to free worker threads to make them available for new incoming
connections. This causes that the client inactivity periods must be avoided by closing
the connection and requiring the client to resume its session with a new connection
establishment when necessary. In the hybrid architecture, that assigns client requests as
work units to the worker threads instead of client connections, this situation is naturally
avoided and the cost of keeping a client connection event in periods of inactivity is
equivalent to the cost of keeping the connection socket opened. The effect of this
characteristic for the hybrid architecture is that all the re-connections are eliminated.

4.4.2.3 Dynamic content

Dynamic content applications implement a higher complexity and more developed
semantics than static ones, which is usually translated into longer user sessions and
involves that the common performance metrics are partially redefined in terms of business
concepts. This means that e-commerce applications are more concerned about sales or
business transactions than about more technical metrics such as the throughput or the
response time offered by the server.

For this experiment, we consider that one of the most important metrics for an auction
website (the scenario reproduced by RUBiS, see subsection 4.4.2.1 for more details) is
the number of user sessions that are completed successfully. Each user that can complete
its navigation session represents a potential bid for an item and in consequence a higher
profit for the auction company.

Looking at figure 4.14, it can be seen that the throughput offered by both architectural
designs is very similar, although the multithreaded architecture shows a slightly better
performance when the server is saturated.

Looking at the number of sessions completed per second, in figure 4.15, it can be
seen that the amount of successfully finished sessions reached by the hybrid architecture
is clearly higher than the amount reached by the multithreaded design, especially beyond

4.4 Hybrid Architecture 71

0

200

400

600

800

1000

1200

0 5 10 15 20 25 30 35

re
pl

ie
s/

s

Number of clients/s

Tomcat Hybrid vs Tomcat Multithreaded. Reply rate.

Hybrid Tomcat

Figure 4.14 Reply throughput comparison under a dynamic content workload

0

0.5

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25 30 35

se
ss

/s

Number of clients/s

Tomcat Hybrid vs Tomcat Multithreaded. Session rate.

Hybrid Tomcat

Figure 4.15 Successfully completed session rate under a dynamic content workload

72 Adaptive architecture for application servers

0

100

200

300

400

500

600

700

800

0 5 10 15 20 25 30 35

se
co

nd
s

Number of clients/s

Hybrid vs Multithreaded. Session lifetime

Hybrid Tomcat

Figure 4.16 Lifetime comparison for the sessions completed successfully under a
dynamic content workload

saturation. As it can be observed, the multithreaded architecture tends to decrease the
number of completed sessions per second as the workload intensity is increased. This can
be explained because under a pure multithreaded design the worker threads are obligated
to close the client connections in order to be freed and rest available for new incoming
connection requests. This situation, under high loads, leads to a scenario where the
clients whose connections have been closed by the server, start experiencing problems
to be reconnected because the amount of active clients trying to establish a connection
is remarkably higher than the amount of worker threads disposed in the server. If this
is extended to the amount of connections required to complete a long user session,
characteristic of dynamic applications, the probability of being able to finish the session
successfully is reduced to near zero.

This explanation to the difference of performance between the two architectural
designs in terms of session completion is supported by the results shown in figure 4.16
that indicate that the sessions completed by the multithreaded server are significantly
shorter than the sessions completed by the hybrid server. This explains that the reply rate
for the multithreaded server can be sustained even when the session rate is remarkably
reduced because it proves that the sessions completed by the multithreaded server are
those ones with less requests (the shorter ones). Completing only short sessions means
that many active clients finishes their sessions unsuccessfully, which in turn may result
in an important amount of unsatisfied clients that have received a very poor quality of

4.5 Related Work 73

service.

4.5 Related Work

The use of event-driven architectures for web servers is an already explored area.
Flash[83] is an asymmetric multi-process event-driven web server which exploits the
creation of a set of helper processes to avoid thread-blocking in the main servicing
process. Haboob[118] is also an event-driven web server, based on the concepts of
staged event-driven servers introduced by SEDA[118]. JAWS[52] web server uses the
Proactor[51] pattern to easily construct an event-driven concurrency mechanism. In [119],
the authors propose a design framework to construct concurrent systems based on the
combination of threading and event-driven mechanisms to achieve both high throughput
and good parallelism. Some advanced topics about performance issues involving event-
driven architectures have been studied in [67], [127] and [50]. The introduction of a
non-blocking I/O API in the J2SE was preceded by the development of an extensively
used API called NBIO[117] (Non-Blocking I/O), which was used to create the standard
API NIO. In [94] the authors propose a light-weight threading model for java applications
designed to overcome the limitations found in massively multi-threaded Java applications.
None of the previously commented articles evaluate the causes of performance scalability,
with respect to the workload intensity and the number of processors, of the event-
driven architectures for Java web servers in comparison to the more commonly used
multithreaded servers.

Related with the vertical scalability covered in this chapter, some works have evaluated
this scalability on web servers or application servers. For example, [47] only consider
static web content and the evaluation is limited to a numerical study without performing
an analysis to justify the scalability results obtained. [3] and [26] provide a quantitative
analysis based on general metrics of application server execution collecting system
utilization statistics (CPU, memory, network bandwidth, etc.). These statistics may allow
the detection of some application server bottlenecks, but this coarse-grain analysis is often
not enough when dealing with more sophisticated performance problems. The influence
of security on application server scalability has been covered in some works. For example,
the performance and architectural impact of SSL on the servers in terms of various
parameters such as throughput, utilization, cache sizes and cache miss ratios has been
analyzed in [57], concluding that SSL increases computational cost of transactions by a
factor of 5-7. The impact of each individual operation of TLS protocol in the context of
web servers has been studied in [31], showing that key exchange is the slowest operation

74 Adaptive architecture for application servers

in the protocol. [43] analyzes the impact of full handshake in connection establishment
and proposes caching sessions to reduce it.

4.6 Summary

In this chapter we have presented the second contribution of this thesis: a hybrid
web container architecture that combines the best characteristics of both a multithreaded
design and an event-driven model. The proposed implementation into the Tomcat 5.5
code offers a slightly better performance than the original multithreaded Tomcat server
when it is tested for a static content application, and a remarkable performance increase
when it is compared for a dynamic content scenario, where each user session failure
can be put into relation with business revenue losses. Additionally, the natural way of
programming introduced by the multithreading paradigm can be maintained for most
of the web container code. But even more important, we have shown how the hybrid
architecture naturally adapts to dynamically changing workload conditions without need
to be reconfigured. This desired adaptability property reduces the need of human
interaction in order to keep the server properly configured.

A preliminary study, that motivated this contribution, consisted of measuring Tomcat’s
vertical scalability (i.e. adding more processors) when using SSL and analyzing the
effect of this addition on the server’s scalability. The results confirmed that, since
secure workloads are CPU-intensive, running with more processors makes the server
able to handle more clients before overloading, with the maximum achieved throughput
improvement ranging from 1.7 to 2.8 for 2 and 4 processors respectively. In addition,
even when the server has reached an overloaded state, a linear improvement on throughput
can be obtained by using more processors. The second part involved the analysis of the
causes of server overload when running with different numbers of processors by using
a performance analysis framework. The analysis revealed that the server can be easily
overloaded if connections are not properly managed, demonstrating the convenience of
developing advanced connection management strategies to overcome such a complicated
scenario.

4.6 Summary 75

The work performed in this area is described in the following publications:

[19] D. Carrera, V. Beltran, J. Torres, E. Ayguade. A Hybrid Web Server
Architecture for e-Commerce Applications. 11th International Conference on Parallel
and Distributed Systems (ICPADS’05), 2005

[20] D. Carrera, V. Beltran, J. Torres, E. Ayguade. A Hybrid Connector for Efficient
Web Servers. Special Issue on High Performance Computing in Parallel and Distributed
Systems of the International Journal of High Performance Computing and Networking
(IJHPCN). Issue 5/6 of 2007, Vol. 5. ISSN: 1740-0562

has been motivated by the work described in:

[45] J. Guitart, D. Carrera, V. Beltran, J. Torres and E. Ayguadé. Designing an
overload control strategy for secure e-commerce applications. Computer Networks
51, 15 (Oct. 2007), 4492-4510

and has resulted in the following derived work:

[13] V. Beltran, D. Carrera, J. Torres, and E. Ayguadé. Evaluating the Scalability
of Java Event-Driven Web Servers. In 2004 International Conference on Parallel
Processing (ICPP’04), 2004

[12] V. Beltran , D. Carrera, J. Guitart, J. Torres and E. Ayguadé. A Hybrid
Web Server Architecture for Secure e-Business Web Applications. 1st International
Conference on High Performance Computing and Communications (HPCC’05), 2005
Lecture Notes in Computer Science, pp. 366-377, vol. 3726, no. 3726, September 2005.
ISSN: 0302-9743 ISBN: 978-3-540-29031-5.

[14] V. Beltran , J. Torres and E. Ayguadé. Understanding Tuning Complexity in
Multithreaded and Hybrid Web Servers. 22nd International Parallel and Distributed
Symposium (IPDPS’08), 2008

76 Adaptive architecture for application servers

Chapter 5

Integrated management of
heterogeneous workloads

78 Integrated management of heterogeneous workloads

5.1 Introduction 79

5.1 Introduction

Nowadays, many organizations rely on a heterogeneous set of applications to
deliver critical services to their customers and partners. For example, in financial
institutions, transactional web workloads are used to trade stocks and query indices, while
computationally intensive non-interactive workloads are used to analyze portfolios or
model stock performance. Due to intrinsic differences among these workloads, today they
are typically run on separate dedicated hardware and managed using workload specific
management software.

A traditional approach to resource management for heterogeneous workloads is to
configure resource allocation policies that govern the division of computing power among
web and non-interactive workloads based on temporal or resource utilization conditions.
With a temporal policy, the resource reservation for web workloads varies between peak
and off-peak hours. Resource utilization policies allow non-interactive workload to be
executed when resource consumption by web workload falls below a certain threshold.
Typically, resource allocation is performed with a granularity of a full server machine,
as it is difficult to configure and enforce policies that allow server machines to be shared
among workloads. Coarse-grained resource management based on temporal or resource
utilization policies has previously been automated [7, 48].

Once server machines are assigned to either the web or the non-interactive workload,
existing resource management policies can be used to manage individual web and non-
interactive applications. In the case of web workloads, data centers use admission control,
flow control, load balancing, and application placement mechanisms, which are controlled
using a variety of policies. Due to the increasing size and heterogeneity of datacenters,
customers demand that these policies be fine grained, automatic, and dynamic. In the
case of non-interactive workloads, the techniques involve job scheduling, which may be
performed based on various existing scheduling disciplines [39].

To efficiently utilize the computing power of their datacenters, organizations demand
management solutions that permit these kinds of workloads to run on the same physical
hardware and be managed using a resource management technology to determine the
most effective allocation of resources to particular workloads. To effectively manage
heterogeneous workloads, we need a solution that combines flow control and dynamic
placement techniques with job scheduling.

Integrated automated management of heterogeneous workloads is a challenging
problem for several reasons. First, performance goals for different workloads tend to
be of different types. For interactive workloads, goals are typically defined in terms
of average or percentile response time or throughput over a certain time interval, while

80 Integrated management of heterogeneous workloads

performance goals for non-interactive workloads concern the performance of individual
jobs. Second, the time scale of management is different. Due to the nature of their
performance goals and short duration of individual requests, interactive workloads lend
themselves to automation at short control cycles. Non-interactive workloads typically
require calculation of a schedule for an extended period of time. Extending the time scale
of management requires long-term forecasting of workload intensity and job arrivals,
which is a difficult if not impossible problem to solve. Server virtualization helps us
avoid this issue by providing automation mechanisms by which resource allocation may
be continuously adjusted to the changing environment. Third, to collocate applications
on a physical resource, one must know the applications’ behavior with respect to
resource usage and be able to enforce a particular resource allocation decision. For web
applications, with the help of an L7 gateway provided by modern application server
middleware [116], one can rather easily observe workload characteristics and, taking
advantage of similarity of web requests and their large number, derive reasonably accurate
short-time predictions regarding the behavior of future requests. Non-interactive jobs
do not exhibit the same self-similarity and abundance properties, hence predicting their
behavior is much harder. Enforcing a resource allocation decision for web workloads
can also be achieved relatively easily by using flow control mechanisms [70, 81]. Server
virtualization gives us similar enforcement mechanisms for non-interactive applications.

While server virtualization allows us to better manage workloads to their respective
SLA goals, it also introduces considerable challenges in order to use it effectively. They
concern the configuration and maintenance of virtual images, infrastructure requirements
to make an effective use of the available automation mechanisms, and the development
of algorithmic techniques capable of utilizing the larger number of degrees of freedom
introduced by virtualization technologies.

In the third contribution of this thesis we address the problem of managing hetero-
geneous workloads in a virtualized data center. We consider two different workloads:
transactional applications and long running jobs. We present a technique that permits
collocation of these workload types on the same physical hardware. Our technique
dynamically modifies workload placement by leveraging control mechanisms such as
suspension and migration, and strives to optimally trade off resource allocation among
these workloads in spite of their differing characteristics and performance objectives. We
achieve this goal by using utility functions, which permit us to compare the performance
of various workloads, and which are used to drive allocation decisions. We demonstrate
that our technique maximizes heterogeneous workload performance while providing
service differentiation based on high-level performance goals. Notice that the importance

5.1 Introduction 81

of this point is that this is the first proposal that uses utility functions to make the
performance of long running workloads directly comparable to the performance of
transactional workloads, overcoming their intrinsic differences.

The system has been implemented and integrated with a commercial application
server middleware [116] that provides transparent application replication via clustering
and request routing, session and transaction state management, application server quiesce
mechanisms and takes advantage of recent advances in fields of resource usage profiling
for web applications [80] and performance modeling and overload protection [81].
Thanks of the existence of these services and their resilience to dynamic configuration
changes, we can concentrate on the problem of integrated management of heterogeneous
workloads, which implies deciding application placement and particular resource alloca-
tion dynamically, without having to explicitly address these critical issues. Our system
is capable of taking advantage of a series of virtualization features, that were already
introduced and enumerated in section 2.3.2.

82 Integrated management of heterogeneous workloads

5.2 System architecture

Job C

App B

Job D

Node 3

App B

App A

Node 2

App A

Node 1

Job Executor

Job Queue
Manager

Job Scheduler

Request
Router

Optimizer

Utility Function
Calculator

Flow Controller

Web Workload
Profiler

Job Workload
Profiler

Web Application
Placement Executor

Placement
Optimizer

Job Scheduler
Proxy

Application Placement
Controller

Job Utility
Estimator

App B

Job D

Node 3

M
on

ito
rin

g
In

fr
as

tr
uc

tu
reWeb

Requests

Jobs

Figure 5.1 Architecture of the system

Before describing the integrated management technique proposed in this thesis, we
present the environment on top of which our work relies. This environment is provided
by a state-of the art application server middleware [116], which is composed of a large
number of cooperative components. Thanks of the existence of this environment, in our
work we can concentrate on the problem of managing workloads. From the point of view
of this work, the application placement controller (APC) is the most important component
of the system. It provides the decision-making logic that affects placement of workloads.

Figure 5.1 shows a simple example of a system we consider in our work. The managed
system includes a set of heterogeneous server machines, referred to henceforth as nodes.
Web applications, which are served by application servers, are replicated across nodes
to form application server clusters. Requests to these applications arrive at an entry
router which may be either an L4 or L7 gateway that distributes requests to clustered
applications according to a load balancing mechanism. Long-running jobs are submitted
to the job scheduler, placed in its queue, and dispatched from the queue based on the
resource allocation decisions of the management system.

The system takes advantage of an overload protection mechanism that can prevent
a web application from utilizing more than the allocated amount of resources. Such

5.2 System architecture 83

overload protection may be achieved using various mechanisms including admission
control [37], flow control [70, 81], or OS scheduling techniques [71]. Server virtualization
mechanisms could also be applied to enforce resource allocation decisions on interactive
applications.

In the system considered in our work, overload protection for interactive workloads is
provided by an L7 request router which implements a flow control technique. The router
classifies incoming requests into flows depending on their target application and service
class, and places them in per-flow queues. Requests are dispatched from the queues based
on weighted-fair scheduling discipline, which observes a system-wide concurrency limit.
The concurrency limit ensures that all the flows combined do not use more than their
allocated resource share. The weights further divide the allocated resource share among
applications and flows.

Both the concurrency limit and scheduling weights are dynamically adjusted by the
flow controller in response to changing workload intensity and system configuration. The
flow controller builds a model of the system that allows it to predict the performance of
the flow for any choice of concurrency limit and weights. This model may also be used to
predict workload performance for a particular allocation of CPU power. In our work, we
use this functionality of the flow controller to come up with a utility function for each web
application, which gives a measure of application happiness with a particular allocation of
CPU power given its current workload intensity and performance goal. The flow control
technique implemented by the flow controller and request router are described in [81] and
further enhanced in [79], and will not be further discussed in our work.

Long-running jobs are submitted to the system via the job scheduler, which, unlike
traditional schedulers, does not make job execution and placement decisions. In our
system, the job scheduler only manages dependencies among jobs and performs resource
matchmaking. Once dependencies are resolved and a set of eligible nodes is determined,
jobs are submitted to the application placement controller (APC).

Each job has an associated performance goal. Currently we only support completion
time goals, but we plan to extend the system to handle other performance objectives. From
this completion time goal we derive an objective function which is a function of actual
job completion time. When job completes exactly on schedule, the value of the objective
function is zero. Otherwise, the value increases or decreases linearly depending on the
distance of completion time from the goal.

The job scheduler uses APC as an adviser to where and when a job should be executed.
When APC makes a placement decision, actions pertaining to long-running jobs are
returned to the scheduler and put into effect via its job executor component. The job

84 Integrated management of heterogeneous workloads

executor monitors job status and makes it available to APC for use in subsequent control
cycles.

From the point of view of this work, APC is the most important component of the
system. It provides the decision-making logic that affects placement of both web and
non-interactive workloads. To learn about jobs in the system and their current status,
APC interacts with the job scheduler via its job scheduler proxy. The placement optimizer

calculates the placement that maximizes the minimum utility across all applications.
In [58], we have introduced a technique that provides such dynamic placement for web
applications. It is able to allocate CPU and memory to applications based on their
CPU and memory requirements, where memory requirement of an application instance
is assumed not to depend on the intensity of workload that reaches the instance. APC
used in this system is a version of the controller presented in [58] that has been enhanced
in several ways. We modified the algorithm inputs from application CPU demand to a per-
application utility function of allocated CPU speed. Permitting resource requirements to
be represented by non-linear utility functions allows us to better deal with heterogeneous
workloads which may differ in their sensitivity to a particular resource allocation. The
attention to workload sensitivity to resource allocation is important when system is
overloaded and resource requirements of some applications cannot be satisfied in full. We
also changed the optimization objective from maximizing the total satisfied CPU demand
to maximizing the minimum utility across all applications, which focuses the algorithm
on ensuring fairness and, in particular, prevents it from starving some applications. In
addition, we have improved the heuristics used be the algorithm, which resulted in a
significant reduction of its computational complexity.

Since APC is driven by utility functions of allocated CPU demand and (for non-
interactive workloads) we are only given objective functions of achieved completion
times, we need a way to map completion time into CPU demand, and vice versa. Recall
that for web traffic we already have a similar mechanism, provided by the flow controller.
The required mapping is very hard to obtain for non-interactive workloads, because the
performance of a given job is not independent of CPU allocation to other jobs. After all,
when not all jobs can simultaneously run in the system, the completion time of a job that
is waiting in the queue for other jobs to complete before it may be started depends on
how quickly the jobs that were started ahead of it complete, hence it depends on the CPU
allocation to other jobs. In our system, we have implemented heuristics that allow us to
estimate CPU requirements for long-running jobs for a given value of utility function. We
use this estimation to obtain a set of data-points from which we extrapolate the utility
function. The utility function allows us to evaluate a placement of long-running jobs with

5.2 System architecture 85

respect to how well it is likely to satisfy their SLAs. The process of calculating the utility
function is rather involved, and due to space limitations it will not be described in our
work.

To manage web and non-interactive workloads, APC relies on the knowledge of
resource consumption by individual requests and jobs. Our system includes profilers
for both kinds of workloads. The web workload profiler, which was introduced in [80],
obtains profiles for web requests in the form of the average number of CPU cycles
consumed by requests of a given flow. The job workload profiler, which is a subject
of our ongoing research, obtains profiles for jobs in the form of the number of CPU cycles
required to complete the job, the number of threads used by the job, and the maximum
CPU speed at which the job may progress.

86 Integrated management of heterogeneous workloads

5.3 The placement problem

In this section we describe the heuristic we use to solve the placement problem, that
is, to decide where applications, either long running jobs or application server instances,
are placed in the system. In addition, it decides the load distribution, that is, the particular
resource allocation for each application.

Finding an optimal solution to the placement problem is a non-linear optimization
objective when non-linear continuos utility functions are used to represent the satisfaction
of applications. The problem is known to be NP-hard and requires the use of either non-
deterministic algorithms or heuristics to be solved. While other approaches [114] use
non-deterministic algorithms to solve a similar problem (but restricted to transactional
workloads only), we use a heuristic to find a solution.

The basic algorithm, as described in following sections, is surrounded by the
Placement control loop, which resides within the Executor in Figure 5.1. This is
designed to have the Application Placement Controller periodically inspect the system
to determine if placement changes are now required to better satisfy the changing extant
load. The period of this loop is configurable—however, this loop is interrupted when
the configuration of the system is changed, thus ensuring that the system is responsive to
administrative changes.

5.3.1 Problem statement

Each time the algorithm runs, we are given a set of nodes, N = {1, . . . , N} and a set
of applications M = {1, . . . ,M}. We use n and m to index into the sets of machines
and applications, respectively. With each machine n we associate its memory and CPU
capacities, Γn and Ωn. Both values measure only the capacity available to workload
controlled by placement controller. Capacity used by other workloads is subtracted prior
to invoking the algorithm. With each application, we associate its load independent
demand, γm that represents the amount of memory consumed by this application whenever
it is started on a machine. CPU requirements of applications are given in the generic
form of utility functions, briefly discussed in section 2.3.1. More details about the
particular utility functions for transactional and long running workloads will be provided
in sections 5.4.1 and 5.4.2 correspondingly.

We use symbol I to denote a placement matrix of applications on machines. Cell Im,n
represents the number of instances of application m on machine n. We use symbol L to
represent a load placement matrix. Cell Lm,n denotes the amount of CPU speed consumed
by all instances of application m on machine n.

5.3 The placement problem 87

We define load placement utility function U(L) = (um1(L), . . . , umM
(L)), where

applications inside the vector are ordered according to increasing umk
(L). Utility U(L) =

(um1(L), . . . , umM
(L)) is greater than utility U(L′) = (um′1(L

′), . . . , um′M (L′)) if there
exists k such that umk

(L) > um′k(L′) and for all l < k, uml
(L) = um′l(L

′). This induces a
lexicographic order of utility vectors.

Given an instance placement, all controllers in the system try to find the best possible
load distribution. Hence, utility of instance placement is U(I) = maxL U(L), where load
distribution defined by any considered L does not overload CPU capacity of any node and
for any application m and node n, Lm,n is not greater than the amount of CPU demand
that may actually be satisfied using Im,n.

We define current placement Iold, for which each cell Iold

m,n represents the number
of instances of application m that are currently placed on machine n. Notice we want
to calculate a new placement I that may differ from current placement Iold. Each
application to be stopped or started as a result of a new proposed placement, namely a
placement change, results in an overload for the system, and is something to be avoided if
possible. To measure the number of placement changes given the current placement and
a suggested new placement, we define the distance δ between two placement matrices I1,
with applicationsM1 and nodes N1, and I2, with applicationsM2 and nodes N2, as:

δ(I1, I2) =
∑

m∈M1
⋃
M2,n∈N1

⋃
N2

|I1
m,n − I2

m,n| (5.1)

The objective of placement controller is to find I and L that maximize U(I). In
addition, the algorithm tries to minimize the number of placement changes, which are
time-consuming and CPU-intensive. Remember that a lexicographic order is defined for
utility vectors, and that U(I) = maxL U(L).

The objective function for the placement problem can more formally be defined as
finding I, subject to the constraints defined later in this section, such that:

maxU(I) (5.2)

min δ(I, Iold

) (5.3)

Considering the form taken by the utility function, our problem formulation is an
extension of max min criterion and differs from it by explicitly stating that after max min

objective can no longer be improved (because the lowest utility application cannot be
allocated any more resources), the system should continue improving the utility of other
applications.

88 Integrated management of heterogeneous workloads

The placement constraints considered by the algorithm can be summarized as:

1. The sum of the memory consumed by instances of all applications on a node may
not exceed the memory capacity of this node.

2. For each application and each node, there may exist a limit on the amount of
throughput (and hence CPU demand) that may be served by a single instance of the
application. A limit of this type exists if an application has some internal bottleneck
or scalability problem. For such applications, it may be beneficial to start more than
one instance on the same node.

3. To satisfy high-availability requirement, with each application one may associate
the minimum and maximum limits on the number of nodes where application
is placed. Similarly, one can configure the minimum and maximum number of
instances that should be started for an application.

4. A user may flag some application instances as pinned, which means that they
cannot be stopped by the controller. Pinning instances is useful when an application
includes some singleton components that run in only one instance in the application
cluster and may be costly or impossible to migrate to other instances.

5. A placement of an application in manual mode cannot be changed.

6. For each application a user may configure a set of nodes where the application may
be execute. The controller may not start an instance of the application on a node
that is not included in this list.

7. A user may configure collocation constraints for any pair of applications.

5.3.2 Algorithm outline

The placement algorithm proceeds in three phases: demand capping, placement
calculation, and maximizing load distribution. Placement change phase is where actual
placement optimization is done, and the most important part of the algorithm in the
scope of this thesis. Based on a prior study focusing on the placement problem with
a linear optimization objective [108], we identified several heuristics that are applicable
also in the placement problem with non-linear optimization objective. Demand capping
constraints the amount of CPU capacity that may be allocated to an application, which
is used by placement calculation. The phase of maximizing load distribution takes
placement obtained by placement calculation phase and calculates the best corresponding
load distribution.

5.3 The placement problem 89

5.3.2.1 Placement change method

The placement change phase is executed several times, each time being referred to as
a ‘round’. Each round first calculates the load distribution that maximizes the utility of
the initial placement. It then invokes the placement change method, which makes a single
new placement suggestion based on the provided initial placement. In the first round, the
initial placement is the current placement. In subsequent rounds, the initial placement is
the placement calculated in the previous round. Additionally, in the first round, the method
may be invoked multiple times with various additional instance pinning constraints. For
example, in one invocation, all instances are pinned (thus only new instances may be
started). In another invocation, all instances that receive load are pinned. We perform
up to 10 rounds. We break out of the round loop earlier if no improvement in placement
utility is observed at the end of a round.

The placement change method iterates over nodes in a so called outer loop. For each
node, we invoke an intermediate loop, which iterates over all instances placed on this
node and attempts to remove them one by one, thus generating a set of configurations
whose cardinality is linear in the number of instances placed on the node. For each such
configuration, an inner loop is invoked, which iterates over all applications whose satisfied
demand is less than the limit calculated in the capping phase, attempting to place new
instances on the node as permitted by the constraints.

For each application and for each node we calculate utility-of-stopping as the
application utility that would be obtained if this instance alone was stopped. For each node
we obtain its utility-of-stopping as the maximum utility-of-stopping among all application
currently hosted on it. In the outer loop we order nodes according to the decreasing
utility of stopping. Nodes with sufficient memory to host one more instance of some
unsatisfied application have a utility-of-stopping equal to 1. Among nodes with equal
utility-of-stopping we select the one that has the most CPU capacity available, which
helps us maximize placement utility without making unnecessary changes. It is also used
in a shortcut: node iteration can stop once a node is reached whose utility-of-stopping is
less than or equal to the lowest utility of an unsatisfied application.

In the intermediate loop, we visit instances in decreasing order of utility-of-stopping.
We break out of the loop when the utility-of-stopping becomes lower than or equal to the
lowest utility of an unsatisfied application.

In the inner loop, we visit application in the increasing order of their utility in the
current placement. While the placement change method calculates a load distribution
matrix along with the placement matrix, due to the heuristic nature of algorithm, it does
not necessarily find the best load distribution for the calculated placement. This step is

90 Integrated management of heterogeneous workloads

solved in the external maximizing load distribution method described in 5.3.2.3.

5.3.2.2 Capping application demand

At the beginning of the placement algorithms we cap the demand of each application
to a value that corresponds to a maximizing load distribution in a perfect placement, which
is a placement that is not constrained by memory, minimum and maximum constraints,
and collocation constraints. In other words, we try to calculate an upper bound on the
achievable placement utility. In the main method of the algorithm, we observe this
capping while deciding which applications are unsatisfied and how much CPU capacity
should be allocated to an application instance. This aids the heuristic of the inner
loop, which otherwise allocates the maximum available CPU power to an application
instance it creates. Since the algorithm is driven by non-decreasing utility function over
a continuous range, without some upper bound, the inner loop would always allocate
the entire available CPU power of a box to a single application without giving other
applications a chance to use the node. This would result in coarse and unfair allocation
of resources, and possibly in starving some applications. When capping is given, we can
constrain the CPU allocation to any application to what we believe it could obtain in an
optimal, unconstrained placement. Naturally, it is possible that no other application will
be able to use the node, which seems to result in wasted node capacity. However, this
under-allocation will be fixed by the maximizing load distribution phase, which will give
the unallocated capacity of a node back to the previously capped application.

To calculate the capping limits, we solve the maximizing load distribution problem
by providing a complete placement as input, where complete placement includes the
maximum number of instances of each application on every node as long as allocation
restrictions are not violated.

5.3.2.3 Maximizing load distribution

To find a maximizing load distribution we need to solve a non-linear optimization
problem maxL U(L) subject to linear constraints, which were outlined before. We
use standard approximation techniques (see [33, 2]) to solve this optimization problem
achieving an approximation that is within a configurable ∆U of the optimum.

5.4 Characterization of heterogeneous workloads 91

5.4 Characterization of heterogeneous workloads

In this section we describe the workload characterization that is required by the
proposed placement algorithm to produce optimized placements. We use a different
workload characterization technique for transactional and long running workloads.
Transactional workloads usually show short duration of individual requests and their
actual performance can be continuously compared to their performance goals. Long
running workloads tipically require calculation of a long-term schedule to evaluate their
performance. In addition, transactional workloads usually present similarity properties
that allows performance forecasting, while these properties have not been observed for
long running workloads.

First, we describe how we calculate the utility of transactional applications. This is
mostly done by the flow controller provided by the application server middleware and
previously described in section 5.2. Later describe how we characterize the performance
of long running applications. We need a mechanism to calculate their actual utility, but
even most important, we need a performance model that allows reliable performance
prediction. The proposed technique does not need to calculate an optimal schedule of
the jobs. Such a study, considering a system that is also subject to varying transactional
workload, would be unfeasible. To our knowledge, this is the first proposal that uses
utility functions to make the performance of long runnnig workloads directly comparable
to the performance of transactinal workloads, overcoming their intrisic differences.

5.4.1 Transactional workloads

5.4.1.1 Calculating application utility

We assume that in the system described in section 5.1, a user can associate a response
time goal, τf and an importance level, if with each application. The importance level is
an integer value which is greater than or equal to 1 and controls the system behavior when
the response time goal cannot be met.

Based on the observed response time for an application, tf we evaluate the system
performance with respect to the application satisfaction using utility function uf , which
is defined as follows.

uf (tf) =

{
τf−tf
τf

if tf ≤ τf
τf−tf
if τf

otherwise
(5.4)

The importance level decides the slope of the utility function degradation when the

92 Integrated management of heterogeneous workloads

response time exceeds its goal. For less important applications (those with a lower
importance level value) the utility function degrades slower with the increasing distance
between the response time and its goal.

For the purpose of resource allocation we need to formulate the utility function as
a function of allocated CPU capacity, ωf , that is uf (ωf) = uf (tf (ωf)). Hence, we
need to be able to express response time as a function of allocated CPU capacity. The
flow controller [79] component of the application server middleware (see figure 5.1 in
section 5.2 for more details) performs this calculation. Although this process is out of the
scope of this work, some details about this process are provided below for the reader’s
interest.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

U
til

ity

CPU allocation

Figure 5.2 Real utility function that corresponds to a transactionl application

It is mathematically easier to express the opposite relationship: the amount of CPU
power needed to achieve a particular utility. For a value of the utility function u∗f ,
its corresponding response time is expressed as tf (u∗f), which is defined by inversing
Eq. 5.4. Given client population Cf and client think time Tf , we can obtain the throughput
corresponding to u∗f as follows.

λf (u
∗
f) =

Cf
tf (u∗f) + Tf

(5.5)

In a clustered environment such as proposed in section 5.2, it is supposed that requests

5.4 Characterization of heterogeneous workloads 93

can reach the system through different request routers. Requests targetting the same
application, that belong to the same traffic class and that arrive through the same request
router are considered to be a request flow. Given the average number of CPU cycles
consumed by each request of a particular flow, αf , the amount of CPU power needed to
achieve u∗f can be found by multiplying αf and λf (u∗f).

ωf (u
∗
f) = αfλf (u

∗
f) =

αfCf
tf (u∗f) + Tf

=


αfCf

τf (1−u∗f)+Tf
if u∗f > 0

αfCf

τf (1−ifu∗f)+Tf
otherwise

(5.6)

Assuming that the flow controller equalizes the utility among flows belonging to the
same application, as it is the case with the controller described in [79] and assumed in this
work, the CPU requirement of an application can be now expressed as a function of the
utility for this application, u∗m, as a sum over all application flows.

ωm(u∗m) =
∑
f

ωf (u
∗
m) (5.7)

To obtain um(ωm), ωm(u∗m) can be sampled for various values of u∗m and from the
obtained datapoints, um(ωm) can be extrapolated. Figure 5.2 shows an example of a
utility function that corresponds to a transactionl application as it is generated by the flow
controller discussed in [79], and provided to the placement algorithm.

5.4.2 Long running workloads

In this section, we focus on applying our placement technique to manage long-running
jobs. We start by making an observation that long-running jobs cannot be treated as
individual management entities for the purpose of performance management as their
completion times are not independent. For example, if jobs that are currently running
complete faster, this permits jobs currently in the queue (not running) to complete faster
as well. Thus, performance predictions for long-running jobs must be done in relation
other other long-running jobs.

Another challenge is to provide performance predictions with respect to job comple-
tion time on a control cycle which may be much lower than job execution time. Typically,
such a prediction would require us to calculate an optimal schedule for the jobs. To trade
off resources among transactional and long-running workloads we would have to evaluate
a number of such schedules calculated over a number of possible divisions of resources
among the two kinds of workloads. The number of combinations would be exponential in
the number of machines in the cluster.

94 Integrated management of heterogeneous workloads

We avoid this complexity by proposing an approximate technique, which is presented
in this section.

5.4.2.1 Job characteristics

With each job m that is submitted to run, we associate the following information.

Resource usage profile. A resource usage profile describes resource requirements of a
job and is given at job submission time. In an actual system, the profile is estimated based
on historical data analysis. Each job m is a sequence of Nm stages, s1, . . . , sNm , where
each stage sk is described by the following parameters.

• The amount of CPU cycles consumed in this stage, αk,m

• The maximum speed with which the stage may run, ωmax
k,m . A CPU allocation higher

by ωmax
k,m would not be consumed in this stage.

• The minimum speed with which the stage must run, whenever it runs, ωmin
k,m. An

allocation lower than ωmin
k,m would not permit a correct execution of the stage.

• Memory requirement γk,m

Performance objectives. An SLA objective for a job is expressed in terms of its desired
completion time, τm, which is clock time when the job must have completed. Clearly, τm
should be greater than job desired start time, τ start

m , which itself is greater than or equal to
the time when the job was submitted. A difference between the completion time goal and
the desired start time, τm − τ start

m is called a relative goal.

We are also given a utility function that maps actual job completion time tm to a
measure of satisfaction from achieving it, um(tm). Many utility function forms may be
used. In our implementation, we use the following form.

um(tm) =
τm − tm
τm − τ start

m

(5.8)

Runtime state. At runtime, for each job we monitor and estimate the following
properties.

• Current status, which may be either running, not-started, suspended, or paused.

• CPU time consumed thus far, α∗m

5.4 Characterization of heterogeneous workloads 95

5.4.2.2 Stage aggregation in a control cycle

We now focus on reasoning that the APC must apply in order to decide which jobs
should be scheduled for execution, on which physical resources they should execute, and
how much CPU power they should be allocated. We presume that the APC operates with
a control cycle of duration T . Thus, when making decisions at time tnow, the APC must
consider job progress between time tnow and time tnow + T .

Depending on stage duration and the value of T , one or more stages can be executed
in a control cycle. Since resource allocation will not change for the duration of the control
cycle, the resource allocation must be such so as to accommodate all stages that will
execute in this cycle.

Considering this, in addition to the job characteristics introduced in section 5.4.2.1,
we must now define some additional parameters.

First, we define the cumulative work that a job must complete, αcD,m =
∑D,m

i=1 αi,m.
Since α∗m cycles have already been completed, the remaining work to complete D stages
is αcrD,m = max(0, αcD,m − α∗m). The remaining work to complete the entire job is simply
αcrNm,m

. At tnow, the job must have already completedDdone
m stages which may be obtained

by taking Ddone
m = maxD α

c
D,m ≤ α∗m. For each job stage, we can now obtain the work

remaining in this stage, which is given as follows:

αrD,m =


0 if D ≤ Ddone

m

αcD,m − α∗m if D = Ddone
m + 1

αD,m otherwise

(5.9)

Let us assume that in each state a job is allocated the maximum usable speed. Then,
the time remaining to complete stage D is trD,m =

αr
D,m

ωmax
D,m

. In time T , the job cannot

progress to complete more than Dlast
m stages where Dlast

m is the maximum D such that∑D
i=Ddone

m +1 t
r
i,m ≤ T .

We can now make a conservative assumption, that throughout the cycle that starts at
tnow and lasts for time T , the job will require the minimum CPU speed, maximum CPU
speed, and memory of ωmin

m , ωreq
m , and γm, respectively, which are defined as follows.

ωmin
m = max

Ddone
m +1≤i≤Dlast

m

ωmin
i (5.10)

ωreq
m = max

Ddone
m +1≤i≤Dlast

m

ωmax
i (5.11)

γm = max
Ddone

m +1≤i≤Dlast
m

γi (5.12)

96 Integrated management of heterogeneous workloads

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

Τstart
m

+1xT
+2xT

+3xT
+4xT

+5xT
+6xT

+7xT
+8xT

+9xT

5000 7500 10000 12500 15000 17500 20000 22500 25000

-1

-0.5

 0

 0.5

 1

Utility

Max allocation allowed (Mhz)

Current time

ωreq
m (Mhz)

Utility

Figure 5.3 Evolution of maximum achievable utility for long running jobs

5.4.2.3 Maximum achievable utility

There is an inherent upper bound to the utility that a job may achieve considering
its progress thus far. When progressing with the maximum possible speed, a job will
complete in time tbest

m =
∑D

i=Ddone
m

tri,m thus its completion time will be tnow + tbest
m . The

maximum utility that the job can achieve given its progress thus far is umaxm = um(tnow +

tbest
m).

At any time, a job may be either running with the maximum speed, running with less
than the maximum speed, or stopped or suspended (not running).

In general, in each control cycle in which the CPU allocation of a job is less than
the maximum it can use, the value of maximum achievable utility decreases linearly. We
illustrate this property with the following example.

Consider a single stage job and suppose that its amount of work and an SLA goal is
such that the job can achieve the utility of 0.8 when executing with speed 16,000 MHz.
In Figure 5.3, we show the evolution of the maximum achievable utility over 10 control
cycles. We presume that the system cannot allocate more than 16,000 MHz to the job and
vary the job maximum speed, ωreqm (plotted on the X axis). When ωreqm < 16000, umaxm is
lower than 0.8, and it decreases as ωreqm decreases, but it stays constant over time (plotted
on the Y axis), as the system is always able to allocate ωreqm . When ωreqm > 16000, then
umaxm may be higher than 0.8, as the job may complete its work faster. However, since the
system is not able to provide this much CPU power, and the job only executes with the
speed of 16,000 MHz, umaxm decreases over time.

The maximum achievable utility is used to order long-running jobs in the queue. When
allocating resources to long-running workload, the APC will first consider jobs with a

5.4 Characterization of heterogeneous workloads 97

lower maximum achievable utility.

5.4.2.4 Hypothetical utility

To calculate job placement, we need to define a utility function which the APC can use
to evaluate its placement decisions. While the actual utility achieved by a job can only be
calculated at completion time, the algorithm needs a mechanism to predict (at each control
cycle) the utility that each job in the system will achieve given a particular allocation. And
this is still true even for jobs that are not yet started, for which the expected completion
time is still undefined. To help answer questions that APC is asking of the utility function
for each application we introduce the concept of hypothetical utility.

Estimating application utility given aggregate CPU allocation Suppose that we deal
with a system in which all jobs can be placed simultaneously and in which the available
CPU power may be arbitrarily finely allocated among the jobs. We require a function that
maps the system’s CPU power to the utility function achievable by jobs when placed on
it.

Let us consider job m. Based on its properties, we can estimate the completion time
needed to achieve utility u, tm(u) = τm − u(τm − τ start

m). From this number, we can
calculate the average speed with which the job must proceed over its remaining lifetime
to achieve u, which is given as follows.

ωm(u) =
αcrNm,m

tm(u)− tnow

(5.13)

To achieve the utility of u for all jobs, the aggregate allocation to long-running
workload must be ωg =

∑
m ωm(u). To create the utility function, we sample ωm(u)

for various values of u and interpolate values that fall between the sampling points.

Let u1 = −∞, u2, . . . , uR = 1, where R is a small constant, be a set of sampling
points (target utilities from now on). We define matrices W and V as follows:

Wi,m =

{
ωm(ui) if ui < umax

m

ωm(umax
m) otherwise

(5.14)

Vi,m =

{
ui if ui < umax

m

umax
m otherwise

(5.15)

Cells Wi,m and Vi,m contain the average speed with which application m should
execute starting from tnow to achieve utility ui and value ui, respectively, if it is possible
for applicationm to achieve utility ui. If utility ui is not achievable by applicaionm, these

98 Integrated management of heterogeneous workloads

 0

 2000

 4000

 6000

 8000

 10000

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

A
llo

ca
tio

n
(M

hz
)

Target utility

Aggregated

Application 1

Application 2

A BC D

Figure 5.4 Allocation as a function of target utilities as used to estimate application
utility given aggregate CPU allocation (used to fill vectors V and W). Notice that the
maximum achievable utility for some jobs may be lower than the target utility (i.e. target
utilities beyond point A for application 1, and beyond point B for application 2). Cells
of vectors W and V for application 1 that correspond to target utilities beyond point A
are filled with values 6000 and 0.14 (maximum achievable utility of 0.14 for allocation
6000Mhz). In the case of application 2 for target utilities beyond point B, vector cells are
filled with values 3000 and 0.44

cells instead contain the average speed with which the application should execute starting
from tnow to achieve its maximum achievable utility, and the value of the maximum utility,
respectively.

For a given ωg, there exist two values k and k + 1 such that:

∑
m

Wk,m ≤ ωg ≤
∑
m

Wk+1,m (5.16)

Allocating a CPU power of ωg to the group will result in having a utility um for each
application m in the group in the range:

Vk,m ≤ um ≤ Vk+1,m (5.17)

That corresponds to a hypothetical CPU allocation in the range:

Wk,m ≤ ωm ≤ Wk+1,m (5.18)

5.4 Characterization of heterogeneous workloads 99

Figure 5.4 shows, for two different applications, the allocation required to achieve a
range of target utilities, as well as the aggregated demand for the group. Vectors V and
W can be constructed by sampling some of the points shown in this figure. Note that, for
utilities above the maximum achievable utility for a particular application (points A and
B), we take the allocation that corresponds to that maximum achievable utility.

Interpolating um and ωm given ωg. At some point the algorithm needs to know the
utility that each application will achieve (um) if it decides to allocate a CPU power of
ωg to the group. We must find values ωm and um for each application m such that
equations 5.16, 5.17, and 5.18 are satisfied, while also satisfying

∑
m ωm = ωg. As

finding a solution for this final requirement implies solving a system of linear equations,
which is too costly to perform in an online placement algorithm, we use an approximation
based on the interpolation of value ωm from cells Wk,m and Wk+1,m, where k and k + 1

follow equation 5.16, and deriving um from ωm. Notice from equations 5.14 and 5.15 that
the value of a cell Vi,m does not necessarily corresponds to the target utility ui, and thus a
cell Wi,m does not necessarily correspond to ωm(ui).

To interpolate ωm, we first consider the case for which cells Wk,m and Wk+1,m

correspond to the allocations required to make application m achieve utilities uk and
uk+1 correspondingly, i.e., the case for which the calculation of those cells was not
constrained by the maximum achievable speed for application m. In this situation, ωm
can be interpolated by calculating first a value ratiog that corresponds to the position of
ωg relative to the distance between

∑
mWk,m and

∑
mWk+1,m. We define ratiog as:

ratiog =
ωg −

∑
mWk,m∑

mWk+1,m −
∑

mWk,m

(5.19)

Once ratiog is calculated, we can interpolate ωm as (Wk+1,m−Wk,m)∗ratiog+Wk,m.

Figure 5.5 shows an example of this interpolation. We consider an scenario similar to
that shown in Figure 5.4 in the region indicated by point C. For simplicity, we consider
vectors V and W to be filled with values obtained from functions x3 for job 1, x2 for
job 2 and x3 + x2 for the aggregated values. We are given a group allocation ωg = 150

and utility sampling points 2 and 8; and we need to interpolate values ω̃job1 and ω̃job2 that
satisfy equation 5.18 and that are as similar as possible. We have the following available
data: W2,job1 = 8, W2,job2 = 4, and so

∑
mW2,m = 12; and W8,job1 = 512, W8,job2 = 64,

and so
∑

mW8,m = 576. We calculate ratiog to be (150− 12)/(576− 12) = 0.24. With
this value we esttimate ω̃job1 = 131 and ω̃job2 = 18. The corresponding utilities for these
job allocations are 4.2 for job 1 and 5.08 for job 2. Obviously, solving the linear system of
equations would have produced a more precise solution at a much higher computational

100 Integrated management of heterogeneous workloads

Wk+1,job1

Wk+1,job2

Σm Wk,m

Σm Wk+1,m

Wk,job1

Wk,job2

ωg

ωjob2
~

ωjob1
~

Actual

allocation

Figure 5.5 Estimating ω̃m using ratiog

cost.

This technique works well when all applications are unconstrained (they have not
reached their maximum speed). Notice that the region around pointD in Figure 5.4 shows
a different scenario, in which application 1 is running at maximum speed. In this situation,
interpolating ω̃job1 and ω̃job2 requires some additional effort. Figure 5.6 shows an scenario
similar to that indicated by point D in Figure 5.4. We proceed analogously as we did
before, with the only difference that 1) we consider the function for application 1 to be
min(1000, x3) and obviously the aggregated function becomesmin(1000, x3)+x2; and 2)
we are given a group allocation ωg = 1180 and utility sampling points 5 and 30;. We have
the following available data: W5,job1 = 25, W5,job2 = 125, and so

∑
mW5,m = 150; and

W30,job1 = 1000 (constrained), W30,job2 = 900, and so
∑

mW30,m = 1900. We calculate
ratiog to be (1180− 150)/(1900− 150) = 0.58. With this value we estimate ω̃job1 = 640

and ω̃job2 = 540. This time the corresponding utilities for these job allocations are 8.6

for job 1 and 23.0 for job 2. As it can be observed, ω̃job1 and ω̃job2 satisfy equation
5.18, but they are far from each other. This is caused by the fact that application 1 is
contributing differently to the aggregate function in the range of utilities 5 - 30, and under
these circumstances ratiog is not accurate enough for our purpose of equalizing utilities
if possible.

To overcome this problem we define app_ratiom as:

5.4 Characterization of heterogeneous workloads 101

Wk+1,job1

Wk+1,job2

Σm Wk,m

Σm Wk+1,m

Wk,job1

Wk,job2

ωg

ωjob1
~

ωjob2
~

Using ratiog only

Using ratiog only

ωjob2
~

Using ratiog and

app_ratiom

ωjob1
~

Using ratiog and

app_ratiom

Actual
allocation

Figure 5.6 Estimating ω̃m using ratiog and app_ratiom

app_ratiom =

∑
m Wk+1,m∑

m Wk,m

Wk+1,m

Wk,m

(5.20)

Notice that app_ratiom observes how the difference between cells Wk,m and Wk+1,m

is related to the overall system allocation that corresponds to
∑

mWk,m and
∑

mWk,m.
In the case that both Wk,m and Wk+1,m are constrained by the maximum achievable speed
for application m, then we have that app_ratiom = 0.

We now define:

ratiom =

{
ratiog Wi,m = ui,m, i = k, k + 1

ratiog ∗ app_ratiom otherwise
(5.21)

and interpolate the allocation ω̃m that corresponds to application m given ωg as
(Wk+1,m −Wk,m) ∗ app_ratiom +Wk,m.

Looking again to the example proposed in Figure 5.6, we get appratiojob1 =

(1900/150)/(1000 − 125) = 1.65 and appratiojob2 = (1900/150)/(900 − 25) = 0.33.
With these values, as well as the previously calculated ratiog, we can calculate values
ω̃job1 = 974 and ω̃job2 = 195, that still satisfy equation 5.18 but are closer in terms of
utility. This technique has proven to work as expected for our input functions.

Once ω̃m is correctly estimated, we can easily estimate the expected utility of

102 Integrated management of heterogeneous workloads

application m that belongs to group g as:

ũm(ωg) =

{
−∞ if ωg = 0

um(tnow +
αcr

Nm,m

ω̃m(ωg)
) otherwise

(5.22)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 100000 200000 300000 400000 500000 600000

A
llo

ca
tio

n
(M

hz
)

Current time (ms)

2 jobs with different time completion goals

Aggregated
Stopped job (relaxed deadline)

Running job (tight deadline)

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 100000 200000 300000 400000 500000 600000

A
llo

ca
tio

n
(M

hz
)

Current time (ms)

2 jobs with identical time completion goals

Aggregated
Stopped job
Running job

Figure 5.7 Hypothetical utility: effect of resource competition on the required
allocation to obtain utility -0.1. Only one job can be placed (running) while the other is stopped.
When both jobs have identical characteristics and same deadline (upper chart), the hypothetical
utility for both jobs can be equalized over time by hypothetically allocating more CPU power to the
job that is stopped to compensate the time it is stopped, resulting in a constant aggregate allocation.
When both jobs are different (lower chart), their hypothetical utility still can be equalized but the
aggregate allocation is not constant

Evolution of hypothetical utility over time. The hypothetical utility function assumes
all jobs can be placed at once, which is usually not the case. This means that real
placements differ from what is assumed by the hypothetical utility. In this case, when
after time T the hypothetical utility is calculated again it may have a different form
than the utility calculated at time tnow. Figure 5.7 illustrates two scenarios in which
two applications compete for resources (only one of the applications can be placed at
a time). In the upper chart, both applications have the same characteristics (maximum
speed, importance level, submission time and completion time goal). In the upper chart,
each application has different characteristics. The charts show how much CPU must be
allocated to each application according to the calculated hypothetical utility as well as
the aggregated allocation (ωm1 + ωm2) necessary to achieve the utility of −0.1. Notice
that when both applications have identical characteristics, the evolution of the required
allocation for both applications to get the same hypothetical utility is complementary:
the application that is placed and running presents a decreasing demand to get the

5.4 Characterization of heterogeneous workloads 103

same utility while the application that is stopped presents an increasing demand. The
aggregated allocation keeps constant. In the second chart, where applications present
different characteristics, the evolution of the allocation required by each applications
differ. When the application placed has a tighter completion time goal, its requested
allocation decreases more quickly than the demand for the other application increases.
In this case, the aggregated required allocation for both applications to obtain identical
hypothetical utility decreases slightly over time as the more constrained job progresses in
execution.

Evaluating placement decisions Let P be a given placement. Let ωm be the amount
of CPU power allocated to application m in placement P . For jobs that are not placed,
ωm = 0.

To calculate utility of application m given placement P that is calculated at time tnow

for a control cycle that lasts time T , we calculate a hypothetical utility function at time
tnow + T . For each job, we increase its α∗ by the amount of work that will be done over
T with allocation ωm. We use this obtained hypothetical utility to extrapolate um from
matrices W and V for ωg =

∑
m ωm.

Thus, we use the knowledge of placement in the next cycle to predict job progress over
its duration, and use hypothetical function to predict job performance in the following
cycles. We also assume that the total allocation to long-running workload in the following
cycles will be the same as in the next cycle. This assumption helps us balance long-
running work execution over time.

104 Integrated management of heterogeneous workloads

5.5 Prototype implementation

In this section we present the details of the implementation of a prototype system that
is able to explicitly manage heterogeneous workloads. The system takes full advantage of
virtualization technology (Xen [10] in our case) to enforce resource allocation decisions
made by the Application Placmenet Controller (APC). The prototype was build by
extending the state-of-the-art application server middleware presented in section 5.2.
Thus, in following sections we present the details of the integration of virtualization
technology into that middleware.

First, we discuss how our system makes use of virtualization technologies to manage
heterogeneous workloads. Recall from subsection 5.2 that, to manage web workloads, our
system relies on an entry gateway that provides flow control for web requests. The entry
gateway provides a type of high-level virtualization for web requests by dividing CPU
capacity of managed nodes among competing flows. Together with an overload protection
mechanism, the entry gateway facilitates performance isolation for web applications.
Such virtualization technology exists in some application server middleware systems, of
which WebSphere Extended Deployment [116] is the example most familiar to us.

Server virtualization could also be used to provide performance isolation for web
applications. This would come with a memory overhead caused by additional copies of
the OS that would have to be present on the node. Hence, we believe that middeware
virtualization technology is a better choice for managing the performance of web
workloads.

Since middeware virtualization technology can only work for applications whose
request-flow it can control, a lower level mechanism must be used to provide performance
isolation for other types of applications. As outlined in the previous subsection, server
virtualization provides us with powerful mechanisms to control resource allocation of
non-web applications.

Several server virtualization technologies have been developed thus far [76] and
they all could be used by our system, although possibly with a limited set automation
mechanisms. Our implementation makes use of Xen [10], and takes full advantage of the
virtualization operations enumerated in section 2.3.2.

5.5.1 VM management

To manage VMs inside a physical Xen-enabled node, we have implemented a
component, called the machine agent (Figure 5.8), which resides in domain 0 so as to have
access to the Xen domain controls. The machine agent provides a Java-based interface

5.5 Prototype implementation 105

Domain 1

Node
Agent

Domain K

Image
Management

Configuration
Management

Virtual to Physical
Resource Mapper

Repository

Command
Executor

Machine Agent

Domain 0

Domain 1

Node
Agent

VM ID
Repository

App A

Domain 2 Job C

Node 1

Machine
Agent Domain 0

Domain 1

Node
Agent

VM ID
Repository

App B

Node 2

App A

Domain K

Domain 1

Node
Agent

VM ID
Repository

App B

Node 3

Domain 2 Job D

Machine
Agent Domain 0

Application Placement
Controller

Job Executor

Job Queue
Manager

Job Scheduler

Figure 5.8 Management architecture for Xen machines.

to create and configure a VM image for a new domain, copy files from domain 0 to
another domain, start a process in another domain, and to control the mapping of physical
resources to virtual resources. During its life-cycle, a domain can transition between
various states in accordance with the transitions shown in Figure 5.9.

We use Xen to provide on-line automation for resource management, hence we want
to make management actions light-weight and efficient. This consideration concerns
the process of creating virtual images, which may be quite time consuming. We avoid
substantial delays, which would otherwise be incurred each time we intend to start a job,
by pre-creating a set of images for use during runtime. The dispensing of these pre-
created images is performed by the image management subsystem. Images once used to
run a process are scrubbed of that process data and may be reused by future processes.
In our small-scale testing thus far, we found it sufficient to pre-create a small number of
images, however, we plan to extend the image management subsystem to dynamically
extend the pool of available images, if needed.

Inside a created image, we can create new processes. This is done by populating the
image with the files necessary to run that new process. In our system, we assume that the
files required for of all processes that may run on the node are placed in its domain 0 in
advance. Hence, we only need to copy them from domain 0 to the created image. Clearly,
there are mechanisms that would allow us to transfer files from an external repository to

106 Integrated management of heterogeneous workloads

NONEXISTANT

create

migrate from
another node

create
process

run
process

resource
control

CREATED BOOTING

PAUSED RUNNING

SUSPENDED

destroy

start

stop resume

suspend

pause

restore

started

Figure 5.9 Life-cycle of a Xen domain.

a node where the process is intended to run, but we have not used them in our prototype.

Before it may be booted, an image must be provided with configuration files to set
up its devices and networking. This functionality is encapsulated by the configuration

management subsystem. To assign an IP address and DNS name, a DHCP server can be
used, although in our system we have implemented a simpler, more restrictive, module
that selects configuration settings from a pool of available values.

An image, once configured, may then be booted. Once in the running state, it may
be suspended or paused. New processes may be created and run inside it. An image that
is either running or paused may also be resource controlled. Migration may be used to
transfer the image to another node. Since at the time of writing this dissertation we do not
have the shared storage infrastructure required to use migration, we have implemented a
suspend-move-and-restore mechanism by which the domain is suspended on one machine,
the checkpoint and image files are copied to another node, and the domain is restored on
the new host node. This is obviously quite inefficient mechanism, which nevertheless
allows us to study the benefits of migration.

Xen provides resource control mechanisms to manage memory and CPU usage by
its domains. We set memory for a domain based on configured or profiled memory
requirements. We set CPU allocation for a domain based on the decisions of APC, which
result from its optimization technique. The CPU allocation to a domain may be lower that
the amount of CPU power actually required by a process running inside a domain. Both
memory and CPU allocations to a domain may change while the domain is running based

5.5 Prototype implementation 107

on changing process requirements and decisions of APC.

CPU allocation to domains may be controlled in Xen using three mechanisms. First,
the number of virtual CPUs (vCPUs) can be selected for any VM. Second, vCPUs may
be mapped to physical CPUs. By ‘pinning’ vCPUs of a domain to different physical
CPUs we can improve the performance of the domain. Finally, CPU time slices may
be configured for each domain. When all vCPUs of a domain are mapped to different
physical CPUs, allocation of 50 out of 100 time slices to the domain implies that each
vCPU of the domain wil receive 50% of the physical CPU to which it is mapped. Xen
also permits borrowing, by which CPU slices allocated to a domain that does not need
them can instead be used by other domains.

In a default configuration provided by Xen, each domain receives the same number of
vCPUs as there are physical CPUs on a machine. Each of those vCPUs will be mapped to
a different physical CPU and receives 0 time slices with CPU borrowing turned on. In the
process of managing the system, we modify this allocation inside the virtual-to-physical

resource mapper. When a domain is first started, we allow Xen to create the default
number of vCPUs and map them to different physical CPUs. We only set the number of
time slices to obtain the CPU allocation requested by placement controller. While domain
is running, we observe its actual CPU usage. If it turns out that the domain is not able to
utilize all vCPUs it has been given, we can conclude that the job is not multi-threaded.
Hence, to receive its allocated CPU share, its vCPUs must be appropriately reduced and
remapped. The virtual-to-physical resource mapper must attempt to find a mapping that
provides the domain with the required amount of CPU power spread across the number of
vCPUs that the job in the domain can use—clearly, this is not always possible.

All the VM actions provided by the machine agent are asynchronous JMX calls
followed by JMX notifications.

5.5.2 Job management

To hide the usage of VMs from a user, we have implemented a higher-layer of
abstraction, embedded inside the node agent, which provides the job management
functionality. It provides operations to start, pause, resume, suspend, restore, and resource
control a job. To implement these operations, the node agent interacts with the machine
agent in domain 0 using its VM management interfaces. When a job is first started, the
node agent creates (or obtains a pre-created) image in which to run the job. It records
the mapping between the job ID and VM ID. Then it asks the machine agent to copy
corresponding process binaries to the new image and to boot the image. Once domain is
running, the job is started inside it.

108 Integrated management of heterogeneous workloads

Observe that we always place a job in its own domain. This gives us performance
isolation among jobs such that we can control their individual resource usage, but it comes
at the expense of added memory overhead. We plan to extend our system such that it
allows collocation of multiple jobs inside a single domain based on some policies.

The node agent process is placed in domain 1, which is the domain we use for all web
applications. There are two reasons for placing the node agent in a separate domain than
domain 0. First, our application server middleware already provides a node agent process
with all required management support, thus adding new functionality is a matter of a
simple plugin. Second, domain 0 is intended to remain small and light-weight. Hence,
we avoid using it to run functionality that does not directly invoke VM management tools.
Like the machine agent, the node agent exposes its API using JMX.

5.5.3 Xen machine organization

In Figure 5.8 we show the organization of a Xen-enabled server machine we use in
our system. We always run at least two domains, domain 0 with the machine agent,
and domain 1 with the node agent and all web applications. Since resource control for
web applications is provided by request router and flow controller, such collocation of
web applications does not affect our ability to provide performance isolation for them.
Domains for jobs are created and started on-demand.

5.6 Evaluation in a simulator 109

5.6 Evaluation in a simulator

In this section we use a simulator for the environment presented in section 5.2 to
evaluate the proposed technique in several different scenarios. The behavior of simulator
has been validated against the prototype system described in section 5.5. The simulator
has been also used to prepare the experiments described in section 5.7, and that were later
run in the real system.

We use the simulator to run large scale systems (comprising hundreds of nodes
and applications) to demonstrate the effectiveness of our technique as well as evaluate
under which circumstances making utility-driven placement decisions makes significant
difference compared to other techniques. With our experiments we demonstrate the
benefits of using our techniques to make placement decisions under certain circumstances,
where state-of-the-art techniques can incur severe unfairness in terms of application
performance.

The evaluation is done in three parts. First, a system subject to transactional-only
workloads is studied in section 5.6.1. Later, we present some more experiments involving
long-running only workloads in section 5.6.2. And finally we present an experiment
in which long running jobs and transactional applications are mixed to produce a
heterogeneous workload in section 5.6.3.

5.6.1 Transactional-only workloads

In this section, we evaluate the effectiveness of our placement algorithm when subject
to a number of different workload conditions and when managing a large number of
nodes and applications. For each application we generate a realistic and randomized
workload across 300 placement control cycles, which results in a varying CPU demand.
The memory demand is uniform across applications for each simulation run.

We focus our study on three different evaluation criteria for the algorithm: evaluation
of the algorithm’s ability to achieve its objectives (maximization of the minimum utility
across applications and minimization of placement changes), evaluation of the sensitivity
of the algorithm to the different parameters present in the placement problem, and
evaluation of the quality of the placement decisions made by the algorithm. At each
step we compare our algorithm with a state-of-the-art dynamic application placement
algorithm, described in [58], that differs with respect to our approach in that it tries to
maximize the satisfied demand in the system instead of equalizing application satisfaction.

110 Integrated management of heterogeneous workloads

5.6.1.1 Generation of utility functions in the simulator

In the real system implementation, utility functions for transactional applications
are generated online by the Flow Controller (as discussed in section 5.2). The shape
of the utility functions generated by the Flow Controller is derived from the observed
workload conditions as well as from the characterization of the workload properties
for each application, such as the CPU allocation required to process particular requests
present in the workload. The maximum utility value that can be reach by an application,
is calculated from its performance goal and from the observed performance at each control
cycle. Notice that the maximum utility value is bounded to 1 (when service time is zero)
and is directly constrained by the minimum response time achievable, which in turn is
defined by the resource-dependent fraction of the response time. In actuality, the service
time is never equal to zero, and the maximum utility always less than 1. Figure 5.10(a)
shows an example of two utility functions generated by the Flow Controller, both with
a maximum utility of 0.52. One reaches its maximum utility value when 4800Mhz are
allocated for it and the other requires 36200Mhz to reach the maximum utility point.

To provide utility functions for the simulation, we have implemented a utility function
generator that produces a realistic curve whose shape is controlled by maximum utility
value and CPU allocation required to reach this maximum point. Figure 5.10(b) shows
a utility function as generated by the simulation environment. Notice that it is directly
comparable to the utility functions produced by the Flow Controller (shown in figure
5.10(a)) in the real system. In our simulations, a new maximum CPU allocation is
generated for each application at each control cycle and the corresponding utility function
updated. These utility functions are directly fed into the utility-based algorithm.

To provide application demand values for the demand-based algorithm, we need to
emulate the behavior of Flow Controller, which in the demand-based system, calculates
the optimal load distribution across applications based on utility functions. This problem
is analogous to the problem of capping application demand described in section 5.3 and
we use the same technique to solve it. We use the same utility functions as in the utility-
based technique.

5.6.1.2 Evaluation criterion: minimum utility

First, we evaluate the capability of the algorithm to maximize the minimum utility
across applications. We simulate a slighlty overloaded system, composed of 100 nodes
and 20 applications. A system is overloaded if the total amount of demand needed to
maximize the utility of all applications is greater than the total CPU capacity of the
system. Each application, on average, requires an allocation equivalent to 5.5 nodes to

5.6 Evaluation in a simulator 111

be fully satisfied. Given this scenario, we run three simulations, each producing the
same per-application CPU demand, but using different application memory demands each
time. In the first simulation, we use applications that require little memory, resulting in
a configuration where up to 6 application instances can be placed on the same node. For
the second simulation, we use medium applications, resulting in a configuration where 2
instances at maximum can be placed on the same node. Finally, in our third simulation
we simulate applications large enough to ensure that only one instance can be placed on
each node. Increasing the memory demand of the application instances also increases
the hardness of the problem. The summary of the results obtained in this experiment
is shown in Figure 5.11, where our algorithm is referred to as ‘Utility-based’ and the
algorithm described in [58] is referred to as ‘Demand-based’. The utility values shown
in the figure correspond to the lowest utility observed across applications at each control
cycle.

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

U
til

ity

CPU allocation

TRN_APPL_00000000
TRN_APPL_00000001

(a) Flow Controller generated utility function

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0 5000 10000 15000 20000 25000 30000 35000 40000

U
til

ity

CPU allocation

TRN_APPL_00000000
TRN_APPL_00000001

(b) Simulated utility function

Figure 5.10 Example of utility functions

This experiment shows that our utility-driven algorithm consistently achieves an
overall minimum utility higher than the value obtained by the demand-based algorithm.
In particular, the harder the problem input becomes, the bigger the difference between
the two algorithms is. The results obtained for this experiment also indicate that
our algorithm has low sensitivity to the problem hardness, shown by the fact that the
minimum utility achieved across applications is very similar given three different memory
fragmentation scenarios. Notice here that the minimum utility across applications is a
direct representation of the QoS obtained by the applications, and that maximizing the
minimum utility is a guarantee of fairness in terms of application satisfaction. These
results confirm that our utility-driven algorithm is achieving its primary objective of
maximizing the minimum utility across applications in a wide range of workload and
system configurations.

112 Integrated management of heterogeneous workloads

5.6.1.3 Evaluation criterion: number of placement changes

In our second experiment we evaluate the capability of our algorithm to minimize the
number of placement changes over time. A placement change incurs a significant cost
in terms of resources and time and it is thus desirable that placement algorithm keep the
number of placement changes to a minimum. Such changes should occur only when the
benefit that they introduce in terms of utility improvement and fairness is significant.
For this experiment, we compare our utility-driven algorithm with the demand-based
placement algorithm described in [58], when subjected to a particularly hard scenario.
We simulate a system composed of 100 nodes and 200 applications. Each application
instance requires half of the memory capacity of a node to be placed, so we can place
a only 200 instances. With respect to the CPU demands, we consider three different
scenarios: first, when no overload is present in the system; second, when overload is only
present in some stages of the test; and third, when the system is always overloaded.

Figure 5.13 shows that the minimum utility achieved by the utility-driven algorithm is
slightly worse than the obtained by the demand-driven algorithm when the system is not
overloaded or only partially overloaded, but clearly better when the system is completely
overloaded. This is because our algorithm is driven by utilities, while the demand-based
algorithm tries to maximize the satisfied demand for all applications. This tight scenario
forces the demand-based algorithm to make many placement changes because the severe
memory constraints make the problem challenging. Our algorithm, instead, decides
that because the utility improvement from making any changes is so low, no changes
should be made after the initial placement. Notice that, at some points, the demand-
based algorithm makes up to 400 placement changes, which means that it is effectively
stopping all instances and starting them in different places, chasing a better one-to-one
combination of applications sharing nodes that helps it to improve the overall satisfied
demand. In addition, the average utility charts demonstrate that although the minimum
utility achieved by our algorithm is lower than the result obtained for the demand-based
algorithm, the average utility value achieved across applications is very close for the two
algorithms. These results confirm that our utility-driven algorithm is achieving its second
objective of minimizing placement changes even in hard placement problems.

5.6.1.4 Evaluation criterion: optimality

Ideally, we would like to compare our technique to an optimal, even if very complex,
algorithm. Unfortunately, implementing such an algorithm is extremely difficult, and
the execution is extremely slow, preventing us from running any useful experiments.
Therefore, we implemented a heuristic algorithm which ignores all but CPU and memory

5.6 Evaluation in a simulator 113

0x100
2x105
4x105
6x105
8x105
1x106

M
hz

Aggregated CPU demand

System capacity

-2
-1.5

-1
-0.5

 0
 0.5

 1

U
til

ity

Small applications

-2
-1.5

-1
-0.5

 0
 0.5

 1

U
til

ity

Medium applications

-2
-1.5

-1
-0.5

 0
 0.5

 1

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

U
til

ity

Time(s)

Large applications

Demand-based Utility-based

Figure 5.11 Maximizing minimum utility across applications

capacity constraints, and does not aim to minimize the number of placement changes.
Consequently, we can design a heuristic that achieves a better result in terms of
maximizing the minumum utility.

The heuristic proceeds incrementally following a utility-driven criteria: starting from
an empty placement, a new instance is given to the application with the lowest actual
satisfaction; once the application instance is placed, the actual utilities are recalculated,
and a new application is picked from a set of eliglible applications with lowest actual
utility and placed in a randomly selected node with enough free memory available to host
an instance of that application; the process is repeated iteratively until no more instances
can be placed.

We compare this heuristic with our algorithm in 13 different scenarios, including
those described in Figures 5.11 and 5.13. The selected scenarios represented a wide
representation of the possible configurations. The results obtained after these tests is that
the minimum utility achieved by our algorithm is, in average, in the range of the 95% to
the 110% of the minimum utility achieved by the heuristic discussed above.

114 Integrated management of heterogeneous workloads

0x100

2x105

4x105

6x105

8x105

1x106

1x106

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

M
hz

Time (s)

Aggregated CPU demand

System capacity

-2

-1.5

-1

-0.5

 0

 0.5

 1

U
til

ity

Demand-based

Minimum utility

Utility-based

Minimum utility

-2

-1.5

-1

-0.5

 0

 0.5

 1

U
til

ity

Average utility Average utility

 0

 100

 200

 300

 400

 500

0 10000 20000 30000 40000 50000

#c
ha

ng
es

Time (s)

Placement changes

0 10000 20000 30000 40000 50000

Time (s)

Placement changes

Figure 5.12 Minimizing placement changes: generated workload0x100

2x105

4x105

6x105

8x105

1x106

1x106

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

M
hz

Time (s)

Aggregated CPU demand

System capacity

-2

-1.5

-1

-0.5

 0

 0.5

 1

U
til

ity

Demand-based

Minimum utility

Utility-based

Minimum utility

-2

-1.5

-1

-0.5

 0

 0.5

 1

U
til

ity

Average utility Average utility

 0

 100

 200

 300

 400

 500

0 10000 20000 30000 40000 50000

#c
ha

ng
es

Time (s)

Placement changes

0 10000 20000 30000 40000 50000

Time (s)

Placement changes

Figure 5.13 Minimizing placement changes. The solid, dashed, and dotted lines
represent non-overloaded, partially overloaded, and overloaded scenarios, respectively.
In the overloaded system test, the minimum and average utility achieved by the demand-
based algorithm is below the range of the chart and the corresponding curve is not shown
in the figure.

5.6 Evaluation in a simulator 115

5.6.2 Long running-only workloads

In this subsection we present 4 experiments performed using the simulator. The
focus of the experiments is to show how our technique allows an explicit and integrated
management of heterogeneous workloads (exposed in section 5.6.3), but still performs
well when managing only long running job workloads.

In Experiment One, we illustrate using a simple example how the hyphothetical utility
discussed in subsection 5.4.2.4 guides the algorithm. In Experiment Two, we simulate
a 25 node cluster to which a large number of identical jobs with identical deadline
factors are submitted. In Experiment Three, we modify Experiment Two by randomly
selecting (from three options) the deadline factor of each submitted job. Finally, in
Experiment Four, we modify Experiment Two by randomly selecting (from three options)
the execution time, maximum speed, and deadline factor for each submitted job. We then
compare our algorithm against both FCFS and EDF.

Operation Cost
Start VM 3.6s
Suspend VM Memory demand * 0.0353s
Resume VM Memory demand * 0.0333s
Live Migrate VM Memory demand * 0.0132s

Table 5.1 Cost of virtualization operations

For the purpose of easily controlling the tightness of SLA goals, we introduce a
relative goal factor which is define as a ratio of the relative goal of the job to its execution
time at the maximum speed, τm−τ

start
m

tbest
m

.

In all experiments, except for one (Experiment Four), the cost of virtualization
operations (start, suspend, resume, migrate and move_and_resume) are considered. These
costs were modelled using performance data obtained on our test systems running one of
the most widely encountered virtualization products for Intel-compatible systems. These
models show simple linear relationships between the VM memory footprint and the cost
of the operation, as it can be seen in Table 5.1. Notice that the boot time observed for all
our virtual machines was constant.

5.6.2.1 Experiment One: Hypothetical utility

In this experiment we illustrate how hypothetical utility (see section 5.4.2.4) guides
our algorithm to make placement decisions. We use three jobs, J1, J2, and J3 with
properties shown in Table 5.2. We also use a single node with resource capacities shown

116 Integrated management of heterogeneous workloads

in Table 5.2. The memory characteristics of the jobs and the node mean that the node
can host only two jobs at a time. J1 can completely consume the node’s CPU capacity,
whereas J2 and J3, at maximum speed, can each consume only half of the node’s CPU
capacity.

We execute two scenarios, S1 and S2,which differ in the setting of the completion
time factor for J2, which in turn affects the completion time goal for J2, as illustrated in
Table 5.2. Note that J3 has a completion time factor of 1, which means that in order to
meet its goal it must be started immediately after submission and that it must extecute
with the maximum speed throughout its life.

To improve the clarity of mathematical calculations, we also use an unrealistic control
cycle T = 1s.

Node Memory CPU speed
Capacity 2,000MB 1,000MHz

Job characteristics J1 J2 J3
Start time [s] 0 1 2
Maximum speed [MHz] 1,000 500 500
Memory requirement [MB] 750 750 750
Work [Mcycles] 4,000 2,000 4,000
Minimum execution time [s] 4 4 8
Scenario 1
Relative goal factor 5 4 1
Relative goal [s] 20 16 8
Completion time goal [s] 20 17 10
Scenario 2
Relative goal factor 5 3 1
Relative goal [s] 20 12 8
Completion time goal [s] 20 13 10

Table 5.2 Properties of Experiment One

Figure 5.14 show cycle-by-cycle executions of the algorithm for S1 and S2, re-
spectively. Rectangular boxes show the outstanding work, αm − α∗m, work done, α∗m,
value of hypothetical utility and corresponding CPU allocation for each job and various
considered placement alternatives in subsequent control cycles. In most cycles in S1,
only one placement is considered as the algorithm efficiently prunes the search space.
Two alternative placements are considered in cycles 2 and 3. In cycle 2, we consider a
placement, P1, that halves CPU allocation to J1 and starts J2 and a placement, P2, that
leaves J1 running at full speed without starting J2. The same placement alternatives, P1

5.6 Evaluation in a simulator 117

P
la

c
e

m
e
n

t:

J
1

 -
1

0
0
0

3
0
0

0
1
0
0

0

0
.8

1
0
0

0

J
2

 a
rriv

e
s

P
la

c
e

m
e
n

t:
J
1

 -
1

0
0
0

2
0
0

0
2
0
0

0
0
.7

5
0
0

2
0
0

0
00
.7

5
0
0

2
5
0

0
1
5
0

0

0
.7

6
1
2

1
5
0

0
5
0
0

0
.7

3
8
7

P
la

c
e

m
e
n

t:

J
1

 –
5

0
0

J
2

 –
5

0
0

J
1

 a
rriv

e
s

P
la

c
e

m
e
n

t:
J
1

 -
1

0
0
0

3
0
0

0
1
0
0

0

0
.8

1
0
0

0

J
2

 a
rriv

e
s

P
la

c
e

m
e
n

t:
J
1

 -
1

0
0
0

2
0
0

0
2
0
0

0
0
.7

0
5
0
0

2
0
0

0
0

0
.6

0
5
0
0

2
5
0

0
1
5
0

0
0
.6

5

5
1
6

1
5
0

0
5
0
0

0
.6

5
4
8
3

P
la

c
e

m
e
n

t:

J
1

 –
5

0
0

J
2

 –
5

0
0

J
1

 a
rriv

e
s

S
c
e
n
a
rio

 1

P
la

c
e

m
e
n

t:
J
1

 –
5

0
0

J
2

 –
5

0
0

P
la

c
e

m
e
n

t:

J
2

 –
5

0
0

J
3

 –
5

0
0

J
3

 a
rriv

e
s

2
5
0

0
1
5
0

0
0
.5

0

2
3
1

1
5
0

0
5
0
0

0
.5

0

2
6
8

4
0
0

0
0

-0
.1

5
5
0
0

2
0
0

0
2
0
0

0
0
.4

5
2
6
6

1
5
0

0
5
0
0

0
.4

5
2
3
3

3
5
0

0
5
0
0

0
5
0
0

P
la

c
e

m
e
n

t:

J
1

 –
5

0
0

J
2

 –
5

0
0

P
la

c
e

m
e
n

t:

J
1

 –
5

0
0

J
3

 –
5

0
0

2
0
0

0
2
0
0

0
0
.4

2
1
7

1
5
0

0
5
0
0

0
.4

2
8
2

3
5
0

0
5
0
0

0

5
0
0

2
5
0

0
1
5
0

0
0
.4

5

2
9
5

1
0
0

0
1
0
0

0
0
.4

5

2
0
4

3
5
0

0
5
0
0

0

5
0
0

2
5
0

0
1
5
0

0
0
.3

5

2
4
5

1
5
0

0
5
0
0

0
.3

5

2
5
4

4
0
0

0
0

-0
.1

5

5
0
0

P
la

c
e

m
e
n

t:

J
2

 –
5

0
0

J
3

 –
5

0
0

S
c
e
n
a
rio

 2

C
o

n
tro

l

C
y
c

le
 1

C
o

n
tro

l

C
y
c

le
 2

C
o

n
tro

l

C
y
c

le
 3

C
o

n
tro

l

C
y
c

le
 1

C
o

n
tro

l

C
y
c

le
 2

C
o

n
tro

l

C
y
c

le
 3

J
3

 a
rriv

e
s

Figure 5.14 Experiment One: Description

118 Integrated management of heterogeneous workloads

and P2, are considered in cycle 2 of S2. In S1, these two placements have the same
hypothetical utility of 0.7 for both jobs. Since P1 and P2 hve equal utilities, the algorithm
opts to not make any changes and selects P2. In S2, due to the tighter completion time
goal for J2, P2 has hypothetical utilities of 0.7 and 0.6 for J1 and J2 respectively, while
P1 results in hypothetical utilities of 0.65 for both J1 and J2. Clearly, P1 is a better choice
for S2.

The difference in hypothetical utilities of J2 in control cycle 2 between the two
scenarios can be explained by looking at the maximum achievable utility of J2. If J2 is not
started in cycle 2, and hence is started in cycle 3 or later, its earliest possible completion
time is 19. In S1, this results in maximum achievable utility of 0.69 (= (16 − 5)/16),
whereas in S2, it is only 0.58 (= (12− 5)/12).

5.6.2.2 Experiment Two: Baseline

In this experiment, we examine the basic correctness of our algorithm by stressing it
with a sequence of identical jobs, i.e., jobs with the same profiles and SLA goals. When
jobs are identical, in the best scheduling strategy no placement changes (suspend, resume,
migrate) should happen. This is the best possible behaviour in this case, as no benefit to
job completion times (when looked on as a vector) would be gained by interrupting the
execution of a currently placed job in order to place another job.

We consider a system of 25 nodes, each of which has four processors with properties
shown in Table 5.3. To the system we submit 800 identical jobs with properties shown
in Table 5.3. Jobs are submitted to the system using an exponential inter-arrival time
distribution with an average inter-arrival time of 260s. This arrival rate is sufficient to
cause queuing at some points during the experiment. The control cycle length is 600 s.

Observe that each job’s maximum speed permits it to use a single processor, and so
four jobs could run at full speed on a single node. However, the memory characteristics
of the system mean that only three jobs will fit on a node at once. Consequently, no more
than 75 jobs can run concurrently in the system. Each job, running at maximum speed,
takes 17,600s to complete. The relative goal factor for each job is 2.7, resulting in a
completion time goal of 47,520s (2.7 ∗ 17, 600), which is measured from the submission
time.

The maximum achievable utility for a job described in Table 5.3 is 0.63. This utility
will be achieved for a job that is started immediately upon submission and runs at full
speed for 17,600s. In that case, the job will complete 29,920s before its completion time
goal and thus will need a 37% of the time between the submission time and the completion
time goal to complete. This utility is an upper bound for the job, and will be decreased if

5.6 Evaluation in a simulator 119

Nodes Memory CPU Speed
Capacity 16,000MB 4x 3,900MHz

Job characteristics Job
Maximum speed [MHz] 3,900 (1 CPU)
Memory requirement [MB] 4,320
Work [Mcycles] 68,640,000
Minimum execution time [s] 17,600
Relative goal factor 2.7
Relative goal [s] 47,520

Table 5.3 Properties of Experiment Two

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

#j
ob

s

Time (s)

Jobs in the system
Placed jobs

Figure 5.15 Experiment Two: Jobs in the system and jobs placed

queuing occurs.

Figure 5.15 shows the number of jobs in the system (already submitted), and the
number of jobs that are placed at each moment in time. Note that the number of placed
jobs never exceeds 75. In Figure 5.16, we show the average hypothetical utility over
time as well as the actual utility achieved by jobs at completion time. When no jobs are
queued, the hypothetical utility is 0.63 and it decreases as more jobs are delayed in the
queue. Notice how the the utility achieved by jobs at completion time follows the shape
of the hypothetical utility. As expected, there is a delay before the changes observed for
the hypotethical are noticeable in the actual utility of completing jobs, caused by the fact
that the hypothetical utility is predicting the actual utility that jobs will obtain at the time

120 Integrated management of heterogeneous workloads

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

U
til

ity

Time (s)

Avg hypothetical utility
Utility at completion time

Figure 5.16 Experiment Two: Average hypothetical utility over time and actual utility
achieved at completion time

they complete. The algorithm does not elect to suspend or migrate any jobs during this
experiment, hence we do not include a figure showing the number of placement changes
done by the algorithm. Finally, Figure 5.17 shows the execution time for the algorithm at
each control cycle when running on a 3.2GHz Intel Xeon node. It can be observed that
when all submitted jobs can be placed concurrently, the algorithm is able to take internal
shortcuts, resulting in a significant reduction in execution time. In normal conditions, the
algorithm produces a placement for this system in about 1.5s.

5.6.2.3 Experiment Three: Variable deadlines

In this experiment, we modify the conditions of Experiment Two (section 5.6.2.2) by
introducing three different relative goal factors. For each job, a relative goal factor is
randomly chosen from three different possibilities – 1.9 (with a probability of 30%), 2.5
(with a probability of 40%), and 10 (with a probability of 40%). All jobs have the same
execution characteristics as in Experiment Two.

Mixing jobs with different relative goal factors introduces a new range of options for
improvement for managing the workload. Jobs with more relaxed goals can be suspended
to permit newly submitted jobs with tighter goals to be started in their place. However,
the longer a job with a relaxed goal is suspended, the more difficult its goal becomes to
satisfy, making it comparable to a newly submitted job with a tight goal. section 5.4.2.4
discusses in detail how the hypothetical utility guides the algorithm in the prediction of

5.6 Evaluation in a simulator 121

 0

 500

 1000

 1500

 2000

 2500

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

T
im

e
(m

s)

Time (s)

Execution time

Figure 5.17 Experiment Two: Algorithm execution time

the achievable satisfaction for a job even when that job is currently not running.

Figure 5.18 shows the number of jobs in the system (already submitted), and the
number of jobs that are placed at each moment in time. As in Experiment Two, we
can never start more than 75 jobs simultaneously, owing to the memory constraints.
Figure 5.19 shows the average hypothetical utility at each control cycle as well as the
actual utility achieved by jobs at completion time, and the maximum achievable utility
for jobs with relative goal factors 1.9, 2.5 and 10. Remember that all jobs have identical
characteristics so their maximum achievable utility at the time they are submitted is the
same for all jobs with the same relative goal factor. Note that the average hypothetical
utility is no longer less than or equal to 0.63, as was the case in Experiment Two, as
different deadline factors change the maximum achievable utility. However, the average
hypothetical utility is still governed by the number of jobs in the system, and (in particular)
the number of submitted jobs that are not currently placed (the job queue). The actual
utility obtained by jobs at completion time is close to the maximum achievable utilities
calculated for each relative goal factor. Our technique aims to equalize the utility at
completion time for all jobs in the system, but in this scenario the presence of three
different relative goal factors prevents it from achieving it – jobs with relative goal
factor of 10 can achieve higher utility than the jobs with relative goal factor 1.9 without
interfering. But notice that when the hypothetical utility decreases because some queueing
is happening, less resources are allocated to the jobs with relative goal factor 10 in order to

122 Integrated management of heterogeneous workloads

 0

 20

 40

 60

 80

 100

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

#j
ob

s

Time (s)

Jobs in the system
Placed jobs

Figure 5.18 Experiment Three: jobs in the system and jobs placed

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

U
til

ity

Time (s)

Umax
 RGF
 1.9

Umax
 RGF
 2.5

Umax
 RGF
 10.0

Avg hypothetical utility

Figure 5.19 Experiment Three: average hypothetical utility over time and actual utility
achieved at completion time

5.6 Evaluation in a simulator 123

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

#j
ob

s

Time (s)

Suspend
Migrate

Figure 5.20 Experiment Three: total number of virtualization operations over time

maintain as high as possible the utility achieved by jobs with tighter relative goal factors
at completion time. This fact can be observed short after times 40,000s and 100,000s –
the algorithm decides to sacrifice the utility of jobs with relative goal factor 10 to keep
jobs with relative goal factors 2.5 and 10 close to their maximum achievable utility values.
Even the number of jobs with relaxed relative goal factor completing is reduced at some
of these periods, allowing other jobs to be run instead.

Figure 5.20 shows that the algorithm elects to both suspend and migrate jobs during
the course of this experiment. While the load on the system is the same in this experiment
and the previous one, in this case the multiple deadline factors mean that making
placement changes after a job has been started is a useful way to improve the utility of the
system (as can be seen by comparing Figures 5.16 and 5.19).

5.6.2.4 Experiment Four: Randomized jobs

In this section, we simulate the system exercised with jobs of various profiles and
SLA goals. The relative goal factors for jobs are randomly varied among values 1.3, 2.5,
and 4 with probabilities 10%, 30%, and 60%, respectively. The job minimum execution
times and maximum speeds are also randomly chosen from three possibilities – 9,000s
at 3,900MHz, 17,600s at 1,560MHz, and 600s at 2,340MHz which are selected with
probabilities 10%, 40%, and 50%, respectively.

We compare our algorithm (referred to as APC) with simple, effective, and well-
known scheduling algorithms: Earliest Deadline First (EDF) and First-Come, First-

124 Integrated management of heterogeneous workloads

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

70,00%

80,00%

90,00%

100,00%

400 350 300 250 200 150 100 50

Job interrarrival time (s)

%
 o

f j
ob

s

FCFS EDF APC

Figure 5.21 Experiment Four: Percentage of jobs that met the deadline

0,00

200,00

400,00

600,00

800,00

1000,00

1200,00

1400,00

400 350 300 250 200 150 100 50

Job interrarrival time (s)

pl

ac
em

en
t c

ha
ng

es

FCFS EDF APC

Figure 5.22 Experiment Four: Number of jobs migrated, suspended, and
moved_and_resumed

5.6 Evaluation in a simulator 125

Served (FCFS). Note that while EDF is a preemptive scheduling algorithm, FCFS does
not preempt jobs. In both cases, a first-fit strategy was followed to place the jobs.

In this experiment, we use eight different inter-arrival times, ranging in increments
of 50s from 50s to 400s, and continue to submit jobs until 800 have completed. The
experiment is repeated for the three mentioned algorithms: our algorithm (APC), EDF,
and FCFS.

Figure 5.21 shows the percentage of jobs that met their completion time goal. There is
no significant difference between the algorithms when inter-arrival times are greater than
100s – this is expected, as the system is underloaded in this configuration. However, with
an inter-arrival period of 100s or less, FCFS starts struggling to make even 50% of the
jobs meet their goals. EDF and APC have a significantly higher, and comparable, ratio of
jobs that met their goals. At a 50s inter-arrival time, the goal satisfaction rate for FCFS
has dropped to 40%, and the goal satisfaction rate is actually higher for EDF than for
APC.

Figure 5.22 shows the penalty for EDF’s higher on-time completion rate at low inter-
arrival times – EDF makes considerably more placement changes than does the APC once
the inter-arrival time is 150s or less. Recall that FCFS is non-preemptive, and so makes
no changes. Note that in this experiment, we did not consider the cost of the various types
of placement changes – this does not change the conclusions, as our technique is making
many fewer changes that EDF under heavy load. This figure, coupled with Figure 5.21,
shows our algorithm’s ability to making few changes to the system whilst still achieving
a high on-time rate.

Figure 5.23 shows the distribution of distance to the deadline at job completion time
for the three different relative goal factors (1.3, 2.5 and 4.0). We show these results for
inter-arrival times of 400, 300, 200, 100, and 50 seconds, in Figure 5.23 (a), (b), (c),
(d), and (e), respectively. Points with distance to the goal greater than zero, indicate jobs
that completed before their goal. Observe that for inter-arrival times of 200s or greater, all
three algorithms are capable of making the majority of jobs meet their goal, and the points
for each algorithm are concentrated – for each algorithm and each relative goal factor, the
distance points form three clusters, one for each job length.

However, as the inter-arrival time becomes 100s or less, the algorithms produce
different distributions of distance to the goal. In particular, observe that for APC the data
points are closer together than for EDF (this is most easily observed for the relative goal
factor of 1.3). This illustrates that APC outperforms EDF in equalizing the satisfaction of
all jobs in the system.

126 Integrated management of heterogeneous workloads

-80000

-60000

-40000

-20000

 0

 20000

 40000

 60000

APC EDF

1.3X

FCFS APC EDF

2.5X

FCFS APC EDF

4.0X

FCFS

D
is

ta
nc

e
to

 th
e

de
ad

lin
e

(s
)

1.3X 2.5X 4.0X

(a) 400s

-80000

-60000

-40000

-20000

 0

 20000

 40000

 60000

APC EDF

1.3X

FCFS APC EDF

2.5X

FCFS APC EDF

4.0X

FCFS

D
is

ta
nc

e
to

 th
e

de
ad

lin
e

(s
)

1.3X 2.5X 4.0X

(b) 300s

-80000

-60000

-40000

-20000

 0

 20000

 40000

 60000

APC EDF

1.3X

FCFS APC EDF

2.5X

FCFS APC EDF

4.0X

FCFS

D
is

ta
nc

e
to

 th
e

de
ad

lin
e

(s
)

1.3X 2.5X 4.0X

(c) 200s

-80000

-60000

-40000

-20000

 0

 20000

 40000

 60000

APC EDF

1.3X

FCFS APC EDF

2.5X

FCFS APC EDF

4.0X

FCFS

D
is

ta
nc

e
to

 th
e

de
ad

lin
e

(s
)

1.3X 2.5X 4.0X

(d) 100s

-80000

-60000

-40000

-20000

 0

 20000

 40000

 60000

APC EDF

1.3X

FCFS APC EDF

2.5X

FCFS APC EDF

4.0X

FCFS

D
is

ta
nc

e
to

 th
e

de
ad

lin
e

(s
)

1.3X 2.5X 4.0X

(e) 50s

Figure 5.23 Experiment Four: distribution of distance to the goal at job completion
time, for five different mean interarrival times (50s to 400s)

5.6 Evaluation in a simulator 127

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0 20000 40000 60000 80000 100000 120000 140000

U
til

ity

Allocation (Mhz)

Figure 5.24 Heterogenenous workload: utility function for the transactional workload
(utility as a function of allocated CPU power)

5.6.3 Heterogeneous workloads

In this experiment, we examine the behavior of our algorithm in a system pre-
sented with heterogeneous workloads. We demonstrate how our integrated management
technique is applicable to combined management of transactional and long-running
workloads. The experiment will show how our algorithm allocates resources to both
workloads in a way that equalizes their satisfaction in terms of distance between
their performance and performance goals. We compare our dynamic resource sharing
technique to a static approach in which resources are not shared, and are pre-allocated to
one type of work. This static approach is widely used today to run mixed workloads in
datacenters.

We extend Experiment Two presented in section 5.6.2 by adding transactional
workload to the system, and compare three different system configurations subject to
the same mixed workload. In the first configuration we use our technique to perform
dynamic application placement with resource sharing between transactional and long-
running workloads. In the second and third configurations we consider a system that
has been partitioned into two groups of machines, each group dedicated to either the
transactional or the long-running workload. In both configurations, we use a First-Come
First-Served (FCFS) to place jobs—FCFS was chosen because it is a widely adopted
policy in commercial job schedulers. Notice that creating static system partitions is a
common practice in many datacenters. In the second configuration, we dedicate 9 nodes
to the transactional workload (9 nodes offer enough CPU power to fully satisfy this
workload), and 16 nodes to the long-running workload. In the third configuration, we

128 Integrated management of heterogeneous workloads

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 10000 20000 30000 40000 50000 60000 70000

D
em

an
d

(M
hz

)

Time (s)

Transactional demand

Long running demand

 Satisfied
 transactional demand

 Satisfied
 long running demand

Figure 5.25 Heterogenenous workload: CPU power allocated to each workload and
CPU demands to achieve maximum utility

dedicate 6 nodes to the transactional application and 19 to the long-running workload.

To simplify the experiment, the transactional workload is handled by a single
application, and is kept constant throughout. Note that the long-running workload is
exactly the same as that presented in Section 5.6.2.2. The memory demand of a single
instance of the transactional application was set to a sufficiently low value that one
instance could be placed on each node alongside the three long-running instances that
fit on each node in Experiment One. This was done to ensure that the two different
types of workload compete only for CPU resources (notice from Experiment One that a
maximum of 3 long-running instances can be placed in the same node because of memory
constraints).

Figure 5.24 shows the utility function used for the transactional workload. It shows
how much CPU power must be allocated to this application for it to achieve a certain
level of utility. The utility of transactional workloads is calculated as described in
subsection 5.4.1. A utility of zero means that the actual response time exactly meets
the response time goal: lower utility values indicate that the response time is greater than
the goal (the requests are being serviced too slowly), and higher utility values indicate
that the response time is less than the goal (the requests are being serviced quickly). The
maximum achievable utility is around 0.66 in this case, at an approximate allocation of
130,000MHz. Allocating CPU power in excess of 130,000MHz to this application will
not further increase its satisfaction: that is, it will not decrease the response time. This is
normal behaviour for transactional applications – the response time cannot be reduced to

5.6 Evaluation in a simulator 129

 0

 0.2

 0.4

 0.6

 0.8

 1

10000 20000 30000 40000 50000 60000

R
el

at
iv

e
P

er
fo

rm
an

ce

Bold line - Transactional (TX) workload Thin line - Long running (LR) workload

Time (s)

APC - dynamic resource sharing

10000 20000 30000 40000 50000 60000

TX 9 nodes, LR 16 nodes
TX 6 nodes, LR 19 nodes

Figure 5.26 Heterogenenous workload: actual relative performance for the transactional
workload and average calculated hypothetical relative performance for the long-running
workload

zero by continually increasing the CPU power assigned.

The experiment starts with a system subject to the constant transactional workload
used throughout, in addition to a small (insignificant) number of long-running jobs already
placed. In this state, the transactional application gets as much CPU power as it can
consume, as there is little or no contention with long-running jobs. As more long-running
jobs are submitted, following the workload properties described in subsection 5.6.2.2, the
hypothetical utility for those long-running jobs starts to decrease as the system becomes
increasingly crowded. As soon as the hypothetical utility calculated for the long-running
jobs becomes lower that the utility observed for the transactional workload (that is to
say, no more resources can be allocated to the long-running workload without taking
CPU power away from the transactional workload), our algorithm starts to reduce the
allocation for the transactional workload and give that CPU power instead to the long-
running workload, until the utility each achieves is equalized. At the end of the experiment
the job submission rate is slightly decreased, what results in more CPU power being
returned to the transactional workload again.

Figure 5.25 shows the utility for both of the workloads during the experiment. The
utility for both workloads is continuously adjusted by dynamically allocating resources
over time. Figure 5.25 shows the particular allocation at each moment of the experiment,
as well as the CPU demand that would make each workload achieve its maximum utility.
Notice how, as it was pursued, our technique makes an uneven distribution of resources
in terms of CPU capacity, but it results in an even level of utility across the workloads.

Comparing these results with the results obtained for the static system configurations,
shown in figures 5.26 and 5.26, reveal that the overall performance they deliver is
lower than the performance observed for our dynamic resource sharing technique, and

130 Integrated management of heterogeneous workloads

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

10000 20000 30000 40000 50000 60000

A
llo

ca
tio

n
(M

hz
)

Bold line - Transactional (TX) workload Thin line - Long running (LR) workload

Time (s)

APC - dynamic resource sharing

10000 20000 30000 40000 50000 60000

TX 9 nodes, LR 16 nodes
TX 6 nodes, LR 19 nodes

Figure 5.27 Heterogenenous workload: CPU power allocated to each workload for the
three system configurations

the performance of both static and dynamic approaches is only comparable when the
size of each machines partition exactly matches the resource allocation decided by
our technique. Notice that when 9 nodes are dedicated to the transactional workload
(offering more than the CPU power required to fully satisfy it), the utility achieved
by the transactional workload is, as expected, 0.66—the maximum achievable. In this
configuration, while transactional workload obtains good performance, long-running jobs
struggle to meet their completion time goals, as shown by the low achieved utility values.
When only 6 nodes are dedicated to the transactional workload, the utility that it achieves
is consistently lower than that achieved with our dynamic resource sharing technique,
while the performance benefits observed for the long-running jobs are not obvious when
compared to the results obtained with our technique. Recall also that utility represents
the relative distance to the goal achieved by each particular workload—distance to the
response time goal for the transactional application and distance to the completion time
goal for long-running jobs. Thus, utility is a direct measurement of the performance
obtained by each workload.

5.7 Evaluation in the prototype 131

5.7 Evaluation in the prototype

In this section we show three different experiments that stress the system prototype
described in section 5.5. The experiments are here presented following the same order
used for the simulation experiments. First, the system subject is to transactional-
only workloads in section 5.7.1. Later, we present another experiment involving long-
running only workloads in section 5.7.2. And finally we present an experiment in which
long running jobs and transactional applications are mixed to produce a heterogeneous
workload in section 5.7.3.

5.7.1 Transactional-only workloads

We deploy three applications, A1, A2, and A3 in a system composed of four
homogeneous nodes. Applications are identical with respect to their per-request CPU
requirements and their each request involves the same amount of computation interleaved
with sleep time that simulates applications backend activity. We configure only one flow
in each application, thereby making an application the smallest unit of management for the
purpose of this experiment. Neither allocation restrictions nor collocation restrictions are
defined, but placements are still subject to resource constraints, such as available memory
of the nodes.

Property Node 1 Node 2 Node 3 Node 4
Effective total CPU capacity[MHz] 3800 3800 3800 3800
Effective Memory capacity[MB] 2500 2500 2500 2500

Table 5.4 Node properties

We run the experiments on a cluster of IBM xSeries 335 servers, each containing 2
2.4GHz Intel Xeon processors with hyperthreading enabled. All the servers are connected
through a switched gigagbit Ethernet network and run Linux 2.6.

The properties for the nodes and applications used in our experiments are shown in
tables 5.4 and 5.5, respectively. Each node is able to support roughly 38 concurrent
sessions of either application at a time, before overload protection becomes necessary.
The base service time of each application is about 240 ms, which makes the response
time goal for A3 rather aggressive. Also, notice that A1 and A2 use 40% of the memory
capacity of a node each, while A3 uses 75%. Hence, A1 and A2 can both fit on a node, but
neither of them can be placed together with A3. We configure such memory requirements
by configuring a corresponding maxHeapSize value on application server JVM.

132 Integrated management of heterogeneous workloads

Property Application 1 Application 2 Application 3
Memory demand[MB] 1200 1200 1800
Response time goal [ms] 1200 1200 350
Importance 50 50 50

Table 5.5 Application properties

5.7.1.1 Baseline experiment

Before experimenting with placement algorithm we baseline the system to observe the
amount of CPU demand imposed by each application. We set all applications in manual
mode, thus preventing any placement changes. We also configure memory requirements
of applications such that all applications can be placed together on a node. Then we start
an instance of each application on every node.

We choose total workload intensity so as not to overload the system. Then we vary
the number of client sessions for applications within this limit.

Figure 5.28 shows the amount of CPU demand imposed on the system throughout the
experiment. After a warm-up period, we start 95, 10, and 35 client sessions for A1, A2,
A3, respectively (point A in Figure 5.28). This setting gives us a total number of client
sessions of 140, which is slightly below the total that may be satisfied by our four-node
system, 152. At point B, we increase the number of client sessions for A3 by 10 and
correspondingly decrease the number of session for A1 by 10. At point D, we further
increase the load for A3 by 20 clients and decrease load for A1 by the same amount.
Finally, at point E, we further increase load for A3 by 19 clients, and correspondingly
decrease the load for A1. Since throughout the experiment the system is never overloaded,
the CPU usage observed across all nodes for each application gives us the CPU demand
of this application.

5.7.1.2 Benefits of a utility-based placement

In the second experiment, we enable dynamic placement of applications and configure
the applications as specified in Table 5.5. We configure initial placement such that A1 and
A2 are both placed on three nodes, and A3 occupies one node. We run the same workload
scenario as in the baseline experiment.

Figures 5.29 and 5.30 show observed response time for applications and their corre-
sponding utility value. Figure 5.31 shows CPU capacity allocated to each application.

In phase A-B of the experiment, workload distribution is such that with the existing
placement, all application CPU demands are satisfied and response time goals are met.

5.7 Evaluation in the prototype 133

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000

D
em

an
d

(M
hz

) Application 1

A B C D E F

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000

D
em

an
d

(M
hz

) Application 2

A B C D E F

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000

D
em

an
d

(M
hz

)

Time (s)

Application 3

A B C D E F

Figure 5.28 Demand

Utility values of applications are different as a result of them having different goals.

When workload changes at point B, A3 cannot be satisfied by a single node on which
it is running. Its response time increases and it starts to violate the goal. At the same time,
A1 experiences very good performance relative to its goal. At this point, it is reasonable
to consider making a placement change that would remove A1 and A2 from one node
and give this node to A3. The decision is made at point C. There is a rather long delay
between the time workload has changed to the time placement changes. This time is used
bue the controllers to accumulate enough statistics to build performance models for the
new workload conditions. After the change is executed, within 2-3 minutes, response time
for A1 returns to normal, while response time for A1 and A2 increases. Given the high
goal for the latter applications, their utility is very moderately affected by this change.

At point D, we further increase load for A3 and decrease it for A1. We end up in well
balanced state where all applications have almost identical performance.

At point E, we change the load again. We experience a similar change in performance
as at point B. This time placement decision is done earlier, at point F. However, due
to imprecise models, the decision is quickly reversed back, and remade again in the
consecutive cycles of placement algorithm. This is clearly the evidence of instability,
which in real deployments of our controller is avoided by introducing a stabilization delay
after each placement change. In this experiment, we have not exercised this stabilization

134 Integrated management of heterogeneous workloads

 0

 100

 200

 300

 400

 500

 600
R

es
po

ns
e

tim
e

(m
s) Application 1

Baseline response time

A B C D E F

 0

 100

 200

 300

 400

 500

 600

R
es

po
ns

e
tim

e
(m

s) Application 2

Baseline response time

A B C D E F

 0

 100

 200

 300

 400

 500

 600

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000

R
es

po
ns

e
tim

e
(m

s)

Time (s)

Application 3

Response time target

Baseline response time

A B C D E F

Figure 5.29 Response time

interval. In the final placement, A3 is allocated three nodes, and A1 and A2 share a single
node. After the last placement change is completed, the response time for all applications
is within the configured goal.

Let us examine the demand values obtained in the baseline experiment (Figure 5.28)
and consider what demand-based algorithm would do when presented with these inputs.

In phase A-B, the demand of all applications can clearly be satisfied using the initial
placement, hence no changes would happen.

In phase B-D, the demand of A3 cannot be satisfied by a single node. The demand-
based algorithm should now look at the offered demand of the applications, which is about
1.05 nodes (4000MHz) for A3 and 2.23 nodes (8500MHz) for A1 and A2 combined.
Clearly, when 4 nodes are available, satisfied demand is maximized (at 3.23 nodes) with
the current placement, even though in the current placement A3 is missing the goal.

In phase D-E, the demand of A3 is 1.58 nodes (6000MHz) and the total for A1 and
A2 is 1.82 nodes (7000MHz). At this time, the demand-based algorithm transfers a node
from A1 and A2 to A3.

In the last phase of the test, the load for A3 is 2.1 nodes (8000MHz) and for A1 and
A2 it is 1.31 nodes (5000MHz). Again, to maximize satisfied demand, it is better to leave
placement unchanged, as this will result in satisfied demand of 3.31 nodes as opposed to

5.7 Evaluation in the prototype 135

-1

-0.5

 0

 0.5

 1

U
til

ity

Application 1

A B C D E F

-1

-0.5

 0

 0.5

 1

U
til

ity

Application 2

A B C D E F

-1

-0.5

 0

 0.5

 1

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000

U
til

ity

Time (s)

Application 3

A B C D E F

Figure 5.30 Utility

3.1 nodes if a change happened. Clearly, from the performance perspective, this is not the
right decision.

5.7.2 Long running-only workloads

In this experiment we show the usefulness of server virtualization technology in
the management of non-interactive workloads. We run a testcase that involves only
long-running jobs shown in Table 5.6. In particular, we use BLAST [11], Lucene [5],
ImageMagick [54] and POV-Ray [85] as representative applications for bioinformatics,
document indexing, image processing and 3D rendering scenarios respectively. BLAST
(Basic Local Alignment Search Tool) is a set of similarity search programs designed
to explore all of the available sequence databases for protein or DNA queries. Apache
Lucene is a high-performance, full-featured, open-source text search engine library
written entirely in Java. In our experiments, we have run the example indexing application
provided with the Lucene library to index a large set of files previously deployed in
the filesystem. POV-ray (Persistence of Vision Raytracer) is a high-quality free tool for
creating three-dimensional graphics. ImageMagick is a software suite to create, edit, and
compose bitmap images.

The placement of jobs on nodes over time is shown in Figure 5.32.

136 Integrated management of heterogeneous workloads

N
od

e
ut

ili
za

tio
n

(%
)

Application 1

Node 4

Node 3

Node 2

Node 1

A B C D E F

N
od

e
ut

ili
za

tio
n

(%
)

Application 2

Node 4

Node 3

Node 2

Node 1

A B C D E F

0 250 500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000

N
od

e
ut

ili
za

tio
n

(%
)

Time (s)

Application 3

Node 4

Node 3

Node 2

Node 1

A B C D E F

100

0
100

0
100

0
100

0

100

0
100

0
100

0
100

0

100

0
100

0
100

0
100

0

Figure 5.31 Per node allocation

JOB1 JOB2 JOB3 JOB4 JOB5 JOB6
Job Type BLAST ImageMagick POV-Ray BLAST Lucene BLAST
Exec. time[min] 15 127 40 8 69 30
Class Bronze Platinum Platinum Platinum Gold Platinum
Max. speed [CPUs] 2 1 1 2 0.6 2
Memory [MB] 550 750 250 550 350 550

Table 5.6 Jobs used in experiments

We experiment with our system on a cluster of two physical machines, xd018 and
xd020, each with two 3GHz CPUs and 2GB memory. We used the XenSource-provided
Xen 3.0.2 packages for RedHat Enterprise Linux 4.

We start the testcase by submitting JOB1 (A), which is started on xd020 and takes its
entire CPU power. Soon after JOB1 is submitted, we submit JOB2 and JOB3 (B), which
both get started on xd018 and each of them is allocated one CPU on the machine. Ten
minutes later, we submit JOB4 (C), which has a very strict completion time requirement.
In order to meet this requirement, APC decides to suspend JOB1 and start JOB4 in its
place. Note that if JOB1 was allowed to complete before JOB4 is allowed to start, JOB4
would wait 5 min in the queue, hence it would complete no earlier than 13 min after
its submission time, which would exceed its goal. Instead, JOB4 is started as soon

5.7 Evaluation in the prototype 137

as it arrives and completes within 10 min, which is within its goal. While JOB4 is
running, we submit JOB5 (D). However, JOB5 belongs to a lower class than any job
currently running, and therefore is placed in the queue. When JOB4 completes, JOB5
is started on xd020. Since JOB5 consumes only 1 CPU, APC also resumes JOB1 and
allocates it the remaining CPU. However, to avoid Xen stability problems in the presence
of resource control mechanisms, we supress the resource control action, and resolving
CPU contention is delegated to Xen hypervisor.

 0

 2785

 5570

xd
02

0
C

P
U

J1 J4

J1

J5 J6

A B C D E

 0

 2785

 5570

0 600 1200 1800 2400 3000 3600 4200 4800 5400 6000

xd
01

8
C

P
U

Time (s)

J2

J3 J5

Figure 5.32 Node utilization by long running jobs.

In the next phase of the experiment, we demonstrate the use of migration. We wait
until the completion of JOB1 and JOB3, and then we submit JOB6 (E). When JOB6
arrives, JOB2 and JOB5 each consume 1 CPU on xd018 and xd020 respectively. Since
JOB6 requires 2 CPUs, APC may either (1) make it wait in the queue, (2) suspend JOB2 or
JOB5, (3) collocate and resource control JOB6 with either JOB2 or JOB5, or (4) migrate
either JOB2 or JOB5. Options (1)-(3) would result in wasted capacity on one or both
machines. Moreover, options (1) and (3) would result in having platinum class job receive
proportionately less CPU power than JOB5, whose service class is gold. This would
clearly not be the optimal decision. Hence, APC decides (E) to move JOB4 to xd018

(which it will now share with JOB5) and start JOB6 on the now-empty xd020.

Even though this experiment shows that APC correctly uses migration when machine

138 Integrated management of heterogeneous workloads

fragmentation makes it difficult to place new jobs, it also demonstrates a limitation of our
optimization technique, which is currently oblivious to the cost of performing automation
actions. Although in this experiment, 15 min is an acceptable price to pay for migrating a
job, it is easy to imagine a scenario where this would not be the case.

5.7.3 Heterogeneous workloads

In this experiment, we use a single micro-benchmark web application that performs
some CPU intensive calculation interleaved with sleep times, which simulate backend
database access or I/O operations. We also use a set of non-interactive applications, which
consists of well known CPU-intensive benchmarks, and which was already described in
section 5.7.2.

In the experiments, we submit six different jobs, whose properties are shown in
Table 5.6. We achieve differentiation of execution time by choosing different parameters,
or by batching multiple invocations of the same application. All used applications except
BLAST are single-threaded, hence they can only use one CPU. In addition, Lucene is I/O
intensive, hence it cannot utilize a full speed of a CPU. We assign jobs to three service
classes. Completion time goal for each job is defines relative to its profiled execution time
and is equal to 1.5, 3, and 10 for platinum, gold, and silver class, respectively.

We experiment with our system on a cluster of two physical machines, xd018 and
xd020, each with two 3GHz CPUs and 2GB memory. We used the XenSource-provided
Xen 3.0.2 packages for RedHat Enterprise Linux 4.

While testing our system, we determined that the resource control actions of our
version of Xen are rather brittle and cause various internal failures across the entire Xen
machine. Therefore, in our experiments, we have supressed resource control actions in
the machine agent code.

We deploy StockTrade (a web-based transactional test application) in domain 1 on two
machines xd018 and xd020. We vary load to StockTrade using a workload generator
that allows us to control the number of client sessions that reach an application. Initially,
we start 55 sesstions and observe that with this load, response time of StockTrade requests
is about 380ms and approaches response time goal of 500ms, as shown in Figure 5.33.
At this load intensity, StockTrade consumes about 5/6 of CPU power available on both
machines. Then we submit JOB5 (A). Recall from Table 5.6 that JOB5 is associated with
platinum service class and therefore has completion time goal equal to 1.5 to its expected
execution time. After a delay caused by the duration placement control cycle (B) and
domain starting time, JOB5 is started (C) in domain 2 on xd020 and, in the absence
of any resource control mechanism, allocates it the entire requested CPU speed, which

5.7 Evaluation in the prototype 139

is equivalent to 0.6 CPU. As a result of decreased CPU power allocaton to domain 1,
on xd020, the response time for StockTrade increases to 480ms, but it stays below the
goal. A few minutes after submitting JOB 5, we submit JOB1 (D), whose service class
is bronze. JOB1 has a very relaxed completion time goal but it is very CPU demanding.
Starting it now would take 2CPUs from the current StockTrade allocation.

 0

 20

 40

 60

C
lie

nt
 c

ou
nt

A B C D E F G

 0

 200

 400

 600

R
es

po
ns

e
an

d
qu

eu
e

tim
es

Response time target

 0

 2785

 5570

xd
02

0

 0

 2785

 5570

0 120 240 360 480 600 720 840 960 1080 1200 1320 1440 1560 1680 1800

xd
01

8

Time (s)

Figure 5.33 Response time for StockTrace and job placement on nodes.

At 800s since the begining of the experiment, we reduce load to StockTrade to 25
concurrent client sessions. When CPU usage of StockTrade reduces to about 50% of each
machine, the placement controller decides (E) to start JOB1 (F) on xd018. After 1000s,
we increase the number of client sessions back to 55, placement controller suspends JOB1
(G). Typically, JOB1 will later be resumed when any of the following conditions occur:
(1) JOB5 completes, (2) load to StockTrade is reduced, or (3) JOB1 gets close enough
to its target completion time so as to necessitate its resumption, even at the expense of
worsened performance for StockTrade. However, the occurrence of the third condition
indicates that the system is under-provisioned, hence SLA violation may not be avoided.
This simple experiment demonstrates that with the use of server virtualization, our system
is able to balance resource usage between web and non-interactive workloads.

140 Integrated management of heterogeneous workloads

5.8 Related Work

In this Chapter we present a technique that allows the management to high-level goals
of collocated long-running and transactional workloads in virtualized environments. We
use utility functions to model the satisfaction of both long-running jobs and transactional
workloads for a particular resource allocation – the different types of workload have
different characteristics, and different performance goals, and utility functions offer a
mechanism to make their performance comparable. We run both workloads inside virtual
machines, in order to properly manage their performance, and our management also
exploits the clustering nature of transactional workloads.

Both the use of utility functions for workload management, and managing clusters of
virtual machines, are areas already studied in the literature, but our approach is the first
one that combines them to successfully manage heterogeneous workloads with fairness
goals.

Heterogeneous workloads The explicit management of heterogeneous workloads was
previously studied in [96], in which a number of CPU shares were manually allocated to
run mixed workloads on a large multiprocessor system. This was a static approach, and
did not run workloads within virtual machines. Virtuoso [71] describes an OS scheduling
technique, VSched, for heterogeneous workload VMs. VSched enforces compute rate
and interactivity goals for both non-interactive and interactive workloads (including web
workloads), and provides soft real-time guarantees for VMs hosted on a single physical
machine. VSched could be used as a component of our system for providing resource-
control automation mechanisms within a machine, but our approach is broader as it
addresses resource allocation for heterogeneous workloads across a cluster of physical
machines. Our work could also be compared to numerous prior publications on job
scheduling [39]. With this contribution we do not claim to advance the field of job
scheduling. Nevertheless, we show that virtualization technology offers important control
mechanisms that can be used to facilitate more effective scheduling of jobs and should be
considered in future job scheduling techniques.

Utility-driven workload management The use of utility-driven strategies to manage
workloads was first introduced in the scope of real-time work schedulers to represent the
fact that the value produced by such a system when a unit of work is completed can be
represented in more detail than a simple binary value indicating whether the work met
its or missed its goal. In [56], the completion time of a work unit is assigned a value

5.8 Related Work 141

to the system that can be represented as a function of time. Other work in the field of
utility-driven management include memory- [40] and energy-aware [123] utility-driven
scheduling, are summarized in [90] with special focus on real-time embedded systems.
In [8], the authors present a utility-driven scheduling mechanism that aims to maximize
the aggregated system utility. In contrast, our technique does not focus on real-time
systems, but on any general system for which performance goals can be expressed as
utility functions. In addition, we introduce the notion of fairness into our application-
centric management technique – our objective is not to maximize the system utility, but
instead to at least maximize the lowest utility across long-running jobs and transactional
applications present in the system.

Outside of the realm of the real-time systems, the authors of [34] focus on a utility-
guided scheduling mechanism driven by data management criteria, since this is the main
concern for many data-intensive HPC scientific applications. In our work we focus on
CPU-bound heterogeneous environments, but our technique could be extended to observe
data management criteria by expanding the semantics of our utility functions.

In our work we consider monotonic and continuous utility functions to represent
the satisfaction of both transactional and long-running workloads, but other approaches
have been studied in the literature. In [69], the authors discuss the best shape for the
utility functions (extending the work presented in [68]). The authors of [30] use user-
defined utility functions to represent the value of resources, and their market-based batch
scheduler is driven by these utility functions to allocate resources.

Management of clusters of Virtual Machines There is also some previous work in
the area of managing workloads in virtual machines. Management of clusters of virtual
machines is addressed in [42] and [32]. The authors of [42] address the problem of
deploying a cluster of virtual machines with given resource configurations across a set
of physical machines. Czajkowski et al. [32] define an API for a Java VM that permits a
developer to define resource allocation policies. In [128] and [82], a two-level control loop
is proposed to make resource allocation decisions within a single physical machine, but
does not address integrated management of a collection of physical machines. The authors
of [115] study the overhead of a dynamic allocation scheme that relies on virtualization
as opposed to static resource allocation. Their evaluation covers CPU-intensive jobs as
well as transactional workloads, but does not consider mixed environments. Neither of
these techniques provides a technology to dynamically adjust allocation based on SLA
objectives in the presence of resource contention.

VMware DRS [122] provides technology to automatically adjust the amount of

142 Integrated management of heterogeneous workloads

physical resources available to VMs based on defined policies. This is a achieved using
live-migration automation mechanism provided by VMotion. VMware DRS adopts a
VM-centric view of the system: policies and priorities are configured on a VM-level.
A approach similar to VMware DRS is proposed in [64], which proposes a dynamic
adaptation technique based on rearranging VMs so as to minimize the number of physical
machines used. The application awareness is limited to configuring physical machine
utilization thresholds based on off-line analysis of application performance as a function
of machine utilization. Runtime requirements of VMs are taken as a given and there is no
explicit mechanism to tune resource consumption by any given VM.

Unlike [122] and [64], our system takes an application-centric approach—the virtual
machine is considered only as a container in which an application is deployed. Using
knowledge of application workload and performance goals, we can utilize a more versatile
set of automation mechanisms than [122] and [64]. We can vary the number of VMs over
which a clustered application is provided, suspend a VM for a long-running job, and
decide how much resource a VM should be allowed to consume. In addition, our system
is able to utilize various kinds of virtualization for various applications. For example, for
web workloads, we chose to use virtualization technology provided by application server
middleware technology.

The adaptation problem for virtual environments has also been studied in [107].
The problem there is to place virtual machines interconnected using virtual networks
on physical servers interconnected using a wide area network. Given the nature of the
network, the primary concern in this problem is to allocate network bandwidth for virtual
networks. VMs may be migrated, but their resource allocation is taken as a given. Our
problem deals with datacenter environments, in which network bandwidth is of lesser
concern, and our solution considers VM placement as well as resource allocation.

Application placement problem Placement problems in general (either in the presence
of virtualization technologies or not) have also been studied in the optimization literature,
frequently using techniques including bin packing, multiple knapsack problems, and
multi-dimensional knapsack problems [61]. The optimization problem that we consider
presents a non-linear optimization objective while previous approaches [58, 65] to similar
problems address only linear optimization objectives. In [114], the authors evaluate a
similar problem to that addressed in our work (but restricted to transactional applications),
and use a simulated annealing optimization algorithm. Their optimization strategy aims
to maximize the overall system utility while we focus on first maximizing the lowest
utility across applications, which increases fairness and prevents starvation, as was shown

5.9 Summary 143

in [25]. In [124], a fuzzy logic controller is implemented to make dynamic resource
management decisions. This approach is not application-centric – it focuses instead
on global throughput – and considers only transactional applications. The algorithm
proposed in [110] allows applications to share physical machines, but does not change
the number of instances of an application, does not minimize placement changes, and
considers a single bottleneck resource.

5.9 Summary

In this Chapter we have summarized the third contribution of this thesis that consists in
a technique that allows an integrated management of heterogeneous workloads, composed
of transactional applications and long running jobs, dynamically placing the workloads
in such a way that equalizes their satisfaction. We use utility functions to make the
satisfaction and performance of both workloads comparable. It is based on a utility-driven
application placement algorithm to achieve equalized satisfaction across applications.
Additionally it minimizes the number of placement changes necessary to achieve its goals.

The system has been implemented and integrated with a commercial application server
middleware, what provides the support for executing placement decisions. Our system is
driven by high-level application goals and takes into accout the application satisfaction
with how well the goals are met. We have demonstrated, both using a real-system
and a simulator, that this approach improves satisfaction fairness across applications
compared to existing state-of-the-art solutions. We have also demonstrated that the system
consistently achieves its goals independently of the workload conditions and the system
configuration. It has been demonstrated that it not only performs well in presence of
heterogeneous workloads but it also shows consistent performance in presence only of
long running jobs as compared to other well-knonw scheduling algorithms.

The system introduces several novel features. First, it allows heterogeneous workloads
to be collocated on any server machine, thus reducing the granularity of resource
allocation. Second, our approach uses high-level performance goals (as opposed to lower-
level resource requirements) to drive resource allocation. Third, our technique exploits a
range of new automation mechanisms that will also benefit a system with a homogeneous,
particularly non-interactive, workload by allowing more effective scheduling of jobs.

144 Integrated management of heterogeneous workloads

The work performed in this area has resulted in the following publications:

[25] D. Carrera, M. Steinder, I. Whalley, J. Torres, E. Ayguadé. Utility-based
Placement of Dynamic Web Applications with Fairness Goals. In 11th IEEE/IFIP
Network Operations and Management Symposium (NOMS 2008), April 7-11, 2008

[24] D. Carrera, M. Steinder, I. Whalley, J. Torres, E. Ayguadé. Managing SLAs
of heterogeneous workloads using dynamic application placement. In the 7th IEEE
Symposium on High Performance Distributed Computing (HPDC 2008). An extended
version is available as Technical Report RC24469, IBM Research, Jan. 2008.

[95] M. Steinder, I. Whalley, D. Chess, D. Carrera, I. Gaweda, Server virtualization
in autonomic management of heterogeneous workloads. 10th IFIP/IEEE International
Symposium on Integrated Management (IM 2007), 2007

Chapter 6

Conclusions and future work

146 Conclusions and future work

6.1 Conclusions 147

6.1 Conclusions

In this thesis we presented three complementary steps toward the creation of adaptive
execution environments for application servers, with incremental value in terms of
performance benefits, and also increasing level of automation. First we presented a
highly-detailed automatic performance monitoring framework that makes possible a deep
understanding of the behavior of the complex execution stack created by an application
server middleware. The tool can be automatically driven by high-level performance
metrics in order to trace the system without need of human interaction when the delivered
performance doesn’t meet some user-defined thresholds. Secondly, the use of the
monitoring framework to analyze secure web applications uncovered a potential focus
of improvement in the architecture of application servers. We proposed and evaluated
a new architectural design for application servers that improves the efficiency of the
intensive connection management performed by such a middleware resulting in a best
performance in terms high-level objectives whereas the adaptability of the application
server to the workload conditions is increased by reducing the need of human interaction
to keep the server properly configured. Finally, we proposed and evaluated an automatic
resource allocation technique for heterogeneous workloads that takes full advantage of
the virtualization technology to enforce resource allocation decisions. The technique
uses utility functions to make the performance of both transactional and long-running
workloads explicitly comparable. We have proven that our technique achieves its
performance objectives whereas it fairly satisfies all applications. Next we summarize
in more detail the work presented in this thesis.

6.1.1 Automatic performance monitoring framework

The first contribution of this thesis consists in the creation of an automatic monitoring
framework specially focused on web applications. Our proposal correlates detailed system
information with high-level performance data in order to make possible a complete
performance analysis of web applications.

The monitoring framework is composed of three differentiated tools that work
coordinately to create a powerful performance analysis environment. Java Instrumentation
Suite [23] (JIS) is a deep monitoring tool that produces extremely detailed insight on
the system behavior – ranging from the operating system level to the user application
code. The data collected by the monitoring tool can be later studied using Paraver [38],
a powerful analysis and visualization tool. The JACIT tool (Java Automatic Code
Interposition Tool) can be used to modify existing bytecodes of a Java application without

148 Conclusions and future work

need of source code availability. JIS is the major component in the first contribution of
this thesis.

Four levels are considered by JIS when tracing a system: 1) operating system, 2) JVM,
3) middleware (application server) and 4) user application. Information collected by all
levels is finally correlated and merged to produce an execution trace file.

Information obtained from the operating system level covers threads’ state and system
calls. Thread information is obtained directly from the Linux scheduler routine and
information from syscalls (I/O, sockets, memory management, thread management) is
obtained by intercepting some entries of the syscall table. This task was divided in two
layers: one based in a kernel source code patch and the other in a system device and its
corresponding driver. When working with Java-based applications, collected information
is limited to the JVM process, and other processes on the system are ignored.

Java semantics are just considered inside the JVM. Because of this, comprehensive
instrumentation of Java applications must be composed, in part, by internal JVM
information. This information is used by JIS to include Java application semantics on
its instrumentation process

JIS allows the generation of events from both the middleware and the user application
levels, that are later available in the tracefiles. Notice that the importance of these
events is that they are generated on execution time and are automatically correlated
with all the other performance data. Information relative to services (i.e. servlets and
EJBs) or transactions can be obtained from the middleware level. Additionally, the user
application code can be modified to inject events into the tracefile too, what improves the
understanding of the real cost and effects of any portion of the user application code.

Finally, we have shown a performance-driven environment for WebSphere that can be
used to control the fine-grain monitoring framework, what has been proved to be enough
to have a "24x7" deeply traced server without need of human cooperation until the analysis
step.

6.1.2 Adaptive architecture for application servers

The second contribution of this thesis consists in a hybrid web container architecture
that combines the best characteristics of both a multithreaded design and an event-driven
model. The proposed implementation into the Tomcat 5.5 code offers a slightly better
performance than the original multithreaded Tomcat server when it is tested for a static
content application, and a remarkable performance increase when it is compared for a
dynamic content scenario, where each user session failure can be put into relation with
business revenue losses. Additionally, the natural way of programming introduced by the

6.1 Conclusions 149

multithreading paradigm can be maintained for most of the web container code. But
even more important, we have shown how the hybrid architecture naturally adapts to
dynamically changing workload conditions without need to be reconfigured. This desired
adaptability property reduces the need of human interaction in order to keep the server
properly configured.

A preliminary study, that motivated this contribution, consisted of measuring Tomcat’s
vertical scalability (i.e. adding more processors) when using SSL and analyzing the
effect of this addition on the server’s scalability. The results confirmed that, since
secure workloads are CPU-intensive, running with more processors makes the server
able to handle more clients before overloading, with the maximum achieved throughput
improvement ranging from 1.7 to 2.8 for 2 and 4 processors respectively. In addition,
even when the server has reached an overloaded state, a linear improvement on throughput
can be obtained by using more processors. The second part involved the analysis of the
causes of server overload when running with different numbers of processors by using
a performance analysis framework. The analysis revealed that the server can be easily
overloaded if connections are not properly managed, demonstrating the convenience of
developing advanced connection management strategies to overcome such a complicated
scenario.

6.1.3 Integrated management of heterogenenous workloads

The third contribution of this thesis consists in a technique that allows an integrated
management of heterogeneous workloads, composed of transactional applications and
long running jobs, dynamically placing the workloads in such a way that equalizes their
satisfaction. We use utility functions to make the satisfaction and performance of both
workloads comparable. It is based on a utility-driven application placement algorithm to
achieve equalized satisfaction across applications. Additionally it minimizes the number
of placement changes necessary to achieve its goals.

The system has been implemented and integrated with a commercial application server
middleware, what provides the support for executing placement decisions. Our system is
driven by high-level application goals and takes into account the application satisfaction
with how well the goals are met. We have demonstrated, both using a real-system
experiment and a simulation, that this approach improves satisfaction fairness across
applications compared to existing state-of-the-art solutions. We have also demonstrated
that the system consistently achieves its goals independently of the workload conditions
and the system configuration. It has been demonstrated that it not only performs well in
presence of heterogeneous workloads but it also shows consistent performance in presence

150 Conclusions and future work

only of long running jobs as compared to other well-known scheduling algorithms.
The system introduces several novel features. First, it allows heterogeneous workloads

to be collocated on any server machine, thus reducing the granularity of resource
allocation. Second, our approach uses high-level performance goals (as opposed to lower-
level resource requirements) to drive resource allocation. Third, our technique exploits a
range of new automation mechanisms that will also benefit a system with a homogeneous,
particularly non-interactive, workload by allowing more effective scheduling of jobs.

We believe that using server virtualization for automatic performance management is
an exciting research problem. It requires novel resource allocation algorithms capable
of reasoning of many new automation mechanisms and many different levels at which
virtualization may be provided. It also requires techniques to deploy and manage virtual
images and to model multi-level relationships among resources. We must also consider
multiple resources that may be virtualized.

6.2 Future work 151

6.2 Future work

The work performed in this thesis opens several interesting ways that can be explored
as a future work.

• Traditionally, long running workload management techniques rely on good work
profilers and accurate user estimates to make the job. Unfortunately, user estimates
tend to be inaccurate and, in turn, unreliable to perform optimal job scheduling.
Work profiling provides a good source of information for the management of jobs,
but needs stable execution environments for work profiles to be usable in the future.
Virtualized environments are all but unstable as far as virtual containers can be
dynamically altered, with modified resource allocations. Performing work profiling
in virtualized environments is a challenging task that implies not only the creation
of accurate work profiles but also complex models that define in what proportion
resources must be provisioned to one particular job in order for it to make significant
progress.

• The use of a hybrid architecture to manage client connections improves the
adaptability of the server to varying workloads but also eliminates the intrinsic
overload protection mechanism that is present in the multithread model. In a
multithreaded server, no more connections than existing worker threads can be
established but an event-driven or hybrid model can accept a number of client
connections that is far larger than what can be processed with reasonable good
performance. In the context of load-balanced clustered deployments, protecting
against overload conditions is not a must since load balancers should take care of
such a situation. But in the scope of commodity solutions for which the hybrid
architecture can introduce important benefits, introducing some kind of overload
control mechanism could be crucial. Control theory could be a key player for this
subject.

• Companies are now focusing more than ever on the need to improve energy
efficiency. In addition to the cost of energy, a new challenge for them is the
increasing social pressure to reduce their carbon footprint. Commercial power
consumption is a major factor in rising atmospheric CO2 levels and data center
equipment is stressing the power and cooling infrastructure to a level that implies
that data center emissions are increasing faster than any other carbon emission.
Dynamic workload management can be adapted to meet not only performance goals
but energy efficiency goals too.

152 Conclusions and future work

• Some particular types of long running applications can present very specific
characteristics such as parallel execution requirements and multi-tier dependencies.
In the work presented in this thesis, support for this kind of requirements is only
provided implicitly. An explicit support of such a set of execution properties
could be really beneficial in some heterogeneous execution environments that could
combine commercial batch workloads with scientific and distributed jobs, alongside
with transactional applications.

Bibliography

[1] Advanced Micro Devices (AMD). AMD Virtualization (AMD-V) technology

http://www.amd.com/virtualization. 2.3.2

[2] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms,

and Applications. Prentice Hall, February 1993. 5.3.2.3

[3] C. Amza, A. Chanda, E. Cecchet, A. Cox, S. Elnikety, R. Gil, J. Marguerite,
K. Rajamani, and W. Zwaenepoel. Specification and implementation of dynamic
web site benchmarks. In Fifth Annual IEEE International Workshop on Workload

Characterization (WWC-5), 2002. 4.5

[4] C. Amza, A. Chanda, A. Cox, S. Elnikety, R. Gil, K. Rajamani, W. Zwaenepoel,
E. Cecchet, and J. Marguerite. Specification and implementation of dynamic
web site benchmarks. Workload Characterization, 2002. WWC-5. 2002 IEEE

International Workshop on, pages 3–13, 25 Nov. 2002. 2.2.1, 3.4.3

[5] Apache Software Foundation. Apache Lucene

http://lucene.apache.org/. 5.7.2

[6] Apache Software Foundation. Apache Tomcat

http://tomcat.apache.org. 2.1.3, 3.3.3, 3.3.5, 1, 4.3.2

[7] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt, M. Kalantar, S. Krishnakumar,
D. Pazel, J. Pershing, and B. Rochwerger. Oceano-sla based management of a
computing utility. Integrated Network Management Proceedings, 2001 IEEE/IFIP

International Symposium on, pages 855–868, 2001. 5.1

[8] U. Balli and J. S. Anderson. Utility accrual real-time scheduling under variable
cost functions. IEEE Trans. Comput., 56(3):385–401, 2007. 5.8

[9] P. Barford and M. Crovella. Generating representative web workloads for network
and server performance evaluation. In Measurement and Modeling of Computer

Systems, pages 151–160, 1998. 2.2.1

154 BIBLIOGRAPHY

[10] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield. Xen and the art of virtualization. In SOSP ’03:

Proceedings of the nineteenth ACM symposium on Operating systems principles,
pages 164–177, New York, NY, USA, 2003. ACM. 2.3.2, 5.5

[11] Basic Local Alignment Search Tool (BLAST). The National Center for

Biotechnology Information (NCBI)

http://www.ncbi.nlm.nih.gov/blast. 5.7.2

[12] V. Beltran, D. Carrera, J. Guitart, J. Torres, and E. Ayguadé. A hybrid web server
architecture for secure e-business web applications. In Proceedings of the 1st

International Conference on High Performance Computing and Communications

(HPCC’05), 2005. 1.1.2, 4.4.2, 4.6

[13] V. Beltran, D. Carrera, J. Torres, and E. Ayguadé. Evaluating the scalability of java
event-driven web servers. In 2004 International Conference on Parallel Processing

(ICPP’04), pages 134–142, 2004. 1.1.2, 4.2.2, 4.4.1, 4.6

[14] V. Beltran, J. Torres, and E. Ayguade. Understanding tuning complexity in
multithreaded and hybrid web servers. In 22nd International Parallel and

Distributed Symposium (IPDPS’08), 2008. 1.1.2, 4.6

[15] Bill Foote. Heap Analysis Tool (HAT).

https://hat.dev.java.net/. 3.5

[16] K. Birman, R. van Renesse, and W. Vogels. Navigating in the storm: using
astrolabe for distributed self-configuration, monitoring and adaptation. Autonomic

Computing Workshop, 2003, pages 4–13, 25 June 2003. 3.5

[17] Borland Software Corporation. OptimizeIt Enterprise Suite.

http://techpubs.borland.com/optimizeit/index.html. 3.1, 3.5

[18] Borland Software Corporation. OptimizeIt Server Trace.

http://www.borland.com.tr/tr/products/servertrace_alm/index.html. 3.5

[19] D. Carrera, V. Beltran, J. Torres, and E. Ayguade. A hybrid web server architecture
for e-commerce applications. In Proceedings of the 11th International Conference

on Parallel and Distributed Systems (ICPADS’05), 2005. 1.1.2, 4.6

[20] D. Carrera, V. Beltran, J. Torres, and E. Ayguade. A hybrid connector for
efficient web servers. nternational Journal of High Performance Computing and

Networking (IJHPCN), 5(5/6), 2007. 1.1.2, 4.6

BIBLIOGRAPHY 155

[21] D. Carrera, D. García, J. Torres, E. Ayguadé, and J. Labarta. Was control center:
An autonomic performance-triggered tracing environment for websphere. In
Proceedings of 13th Euromicro Conference on Parallel, Distributed and Network-

based Processing (PDP’05), 2005. 1.1.1, 3.6

[22] D. Carrera, J. Guitart, V. Beltran, J. Torres, and E. Ayguadé. Performance Impact of

the Grid Middleware, chapter Engineering the Grid: status and perspectives, pages
571–585. American Scientific Publishers, 2006. 1.1.1, 3.1, 3.6

[23] D. Carrera, J. Guitart, J. Torres, E. Ayguadé, and J. Labarta. Complete
instrumentation requirements for performance analysis of web based technologies.
In Proceedings of the 2003 IEEE International Symposium on Performance

Analysis of Systems and Software (ISPASS), 2003. 1.1.1, 3.1, 3.6, 6.1.1

[24] D. Carrera, M. Steinder, I. Whalley, J. Torres, and E. Ayguadé. Managing SLAs
of heterogeneous workloads using dynamic application placement. In 7th IEEE

Symposium on High Performance Distributed Computing (HPDC 2008), Boston,
MA, 2008. An extended version is available as Technical Report RC24469, IBM
Research, Jan. 2008. 1.1.3, 5.9

[25] D. Carrera, M. Steinder, I. Whalley, J. Torres, and E. Ayguadé. Utility-based
placement of dynamic web applications with fairness goals. In 11th IEEE/IFIP

Network Operations and Management Symposium (NOMS 2008), Salvador Bahia,
Brazil, 2008. 1.1.3, 5.8, 5.9

[26] E. Cecchet, J. Marguerite, and W. Zwaenepoel. Performance and scalability of ejb
applications. SIGPLAN Not., 37(11):246–261, 2002. 3.1, 4.5

[27] H. Chan and B. Arnold. A policy based system to incorporate self-managing
behaviors in applications. In OOPSLA ’03: Companion of the 18th annual ACM

SIGPLAN conference on Object-oriented programming, systems, languages, and

applications, pages 94–95, New York, NY, USA, 2003. ACM. 3.5

[28] H. Chen and P. Mohapatra. Session-based overload control in qos-aware web
servers. INFOCOM 2002. Twenty-First Annual Joint Conference of the IEEE

Computer and Communications Societies. Proceedings. IEEE, 2:516–524 vol.2,
2002. 4.2.2

[29] J.-D. Choi and H. Srinivasan. Deterministic replay of java multithreaded
applications. In SPDT ’98: Proceedings of the SIGMETRICS symposium on

156 BIBLIOGRAPHY

Parallel and distributed tools, pages 48–59, New York, NY, USA, 1998. ACM.
3.5

[30] B. N. Chun and D. E. Culler. User-centric performance analysis of market-
based cluster batch schedulers. In CCGRID ’02: Proceedings of the 2nd

IEEE/ACM International Symposium on Cluster Computing and the Grid, page 30,
Washington, DC, USA, 2002. IEEE Computer Society. 5.8

[31] C. Coarfa, P. Druschel, and D. S. Wallach. Performance analysis of tls web servers.
ACM Trans. Comput. Syst., 24(1):39–69, 2006. 4.5

[32] G. Czajkowski, M. Wegiel, L. Daynes, K. Palacz, M. Jordan, G. Skinner, and
C. Bryce. Resource management for clusters of virtual machines. In CCGRID ’05:

Proceedings of the Fifth IEEE International Symposium on Cluster Computing and

the Grid (CCGrid’05) - Volume 1, pages 382–389, Washington, DC, USA, 2005.
IEEE Computer Society. 5.8

[33] G. Dantzig. Linear Programming and Extensions. Princeton University Press,
August 1998. 5.3.2.3

[34] D. M. David Vengerov, Lykomidis Mastroleon and N. Bambos. Adaptive data-
aware utility-based scheduling in resource-constrained systems. Sun Technical
Report TR-2007-164, Sun Microsystems, April 2007. 5.8

[35] Y. Diao, J. L. Hellerstein, S. Parekh, and J. P. Bigus. Managing web server
performance with autotune agents. IBM Systems Journal, 42(1):136–149, 2003.
3.5

[36] T. Dierks and C. Allen. The TLS protocol version 1.0. RFC 2246, Internet
Engineering Task Force, Jan. 1999. 4.3.1

[37] S. Elnikety, E. Nahum, J. Tracey, and W. Zwaenepoel. A method for transparent
admission control and request scheduling in e-commerce web sites. In WWW ’04:

Proceedings of the 13th international conference on World Wide Web, pages 276–
286, New York, NY, USA, 2004. ACM. 5.2

[38] European Center for Parallelism of Barcelona (CEPBA). Paraver

http://www.cepba.upc.es/paraver/. 1.1.1, 3.1, 3.2.2, 3.5, 3.6, 6.1.1

[39] D. Feitelson, L. Rudolph, and U. Schwiegelshohn. Parallel job scheduling – a status
report. In 10th Workshop on Job Scheduling Strategies for Parallel Processing,
pages 1–16, 2004. 5.1, 5.8

BIBLIOGRAPHY 157

[40] S. Feizabadi and G. Back. Automatic memory management in utility
accrual scheduling environments. In ISORC ’06: Proceedings of the Ninth

IEEE International Symposium on Object and Component-Oriented Real-Time

Distributed Computing (ISORC’06), pages 11–19, Washington, DC, USA, 2006.
IEEE Computer Society. 5.8

[41] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-
Lee. Rfc 2616, Hypertext Transfer Protocol – HTTP/1.1, 1999. 2.1, 2.2.2

[42] I. Foster, T. Freeman, K. Keahy, D. Scheftner, B. Sotomayer, and X. Zhang. Virtual
clusters for grid communities. In CCGRID ’06: Proceedings of the Sixth IEEE

International Symposium on Cluster Computing and the Grid (CCGRID’06), pages
513–520, Washington, DC, USA, 2006. IEEE Computer Society. 5.8

[43] A. Goldberg, R. Buff, and A. Schmitt. Secure web server performance
dramatically improved by caching ssl session keys. In Workshop on Internet Server

Performance, held in conjunction with SIGMETRICS’98, 1998. 4.5

[44] J. Guitart, V. Beltran, D. Carrera, J. Torres, and E. Ayguadé. Characterizing
secure dynamic web applications scalability. In 19th International Parallel and

Distributed Symposium (IPDPS’05), 2005. 1.1.1, 3.1, 3.6, 4.3.1

[45] J. Guitart, D. Carrera, V. Beltran, J. Torres, and E. Ayguadé. Designing an
overload control strategy for secure e-commerce applications. Comput. Networks,
51(15):4492–4510, 2007. 1.1.1, 1.1.2, 3.6, 4.3.3.2, 4.6

[46] J. Guitart, D. Carrera, J. Torres, E. Ayguadé, and J. Labarta. Tuning dynamic
web applications using fine-grain analysis. In Proceedings of 13th Euromicro

Conference on Parallel, Distributed and Network-based Processing (PDP’05),
2005. 1.1.1, 3.1, 3.6

[47] I. F. Haddad. Open-source web servers: performance on carrier-class linux
platform. Linux Journal, 2001(91):1, 2001. 4.5

[48] Y. Hamadi. Continuous resources allocation in internet data centers. Cluster

Computing and the Grid, 2005. CCGrid 2005. IEEE International Symposium on,
1:566–573 Vol. 1, 9-12 May 2005. 5.1

[49] J. Hardwick, E. Papaefstathiou, and D. Guimbellot. Modeling the performance
of e-commerce sites. In Proceedings of the 27th International Conference of the

Computer Measurement Group, 2001. 3.5

158 BIBLIOGRAPHY

[50] S. Harizopoulos and A. Ailamaki. Affinity scheduling in staged server
architectures. Technical Report CMU-CS-02-113, Carnegie Mellon University,
2002. 4.5

[51] J. Hu, I. Pyarali, and D. Schmidt. Applying the proactor pattern to high-
performance web servers. In Proceedings of the 10th International Conference

on Parallel and Distributed Computing and Systems. IASTED, October 1998. 4.5

[52] J. Hu and D. Schmidt. Domain-Specific Application Frameworks: Frameworks

Experience by Industry. John Wiley & Sons, Inc., 2000. 4.5

[53] IBM Corporation. WebSphere Application Server

http://www.ibm.com/websphere. 3.2.3, 3.4

[54] ImageMagick (TM). ImageMagick

http://www.imagemagick.org. 5.7.2

[55] Intel. Intel Virtualization Technology

http://www.intel.com/technology/platform-technology/virtualization. 2.3.2

[56] E. D. Jensen, C. D. Locke, and H. Tokuda. A time-driven scheduling model for
real-time operating systems. In IEEE Real-Time Systems Symposium, pages 112–
122, 1985. 5.8

[57] K. Kant and R. Iyer. Architectural impact of secure socket layer on internet
servers. In ICCD ’00: Proceedings of the 2000 IEEE International Conference on

Computer Design, page 7, Washington, DC, USA, 2000. IEEE Computer Society.
4.5

[58] A. Karve, T. Kimbrel, G. Pacifici, M. Spreitzer, M. Steinder, M. Sviridenko, and
A. Tantawi. Dynamic placement for clustered web applications. In WWW ’06:

Proceedings of the 15th international conference on World Wide Web, pages 595–
604, New York, NY, USA, 2006. ACM. 5.2, 5.6.1, 5.6.1.2, 5.6.1.3, 5.8

[59] I. H. Kazi, D. P. Jose, B. Ben-Hamida, C. J. Hescott, C. Kwok, J. A. Konstan,
D. J. Lilja, and P.-C. Yew. Javiz: a client/server java profiling tool. IBM Syst. J.,
39(1):96–117, 2000. 3.5

[60] A. Keller and H. Ludwig. The wsla framework: Specifying and monitoring service
level agreements for web services. J. Netw. Syst. Manage., 11(1):57–81, 2003. 3.1

BIBLIOGRAPHY 159

[61] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, Berlin,
Germany, 2004. 5.8

[62] J. O. Kephart and D. M. Chess. The vision of autonomic computing. Computer,
36(1):41–50, 2003. 3.5

[63] D. J. Kerbyson, J. S. Harper, E. Papaefstathiou, D. V. Wilcox, and G. R. Nudd. Use
of performance technology for the management of distributed systems. In Euro-

Par ’00: Proceedings from the 6th International Euro-Par Conference on Parallel

Processing, pages 149–159, London, UK, 2000. Springer-Verlag. 3.5

[64] G. Khanna, K. Beaty, G. Kar, and A. Kochut. Application performance
management in virtualized server environments. Network Operations and

Management Symposium, 2006. NOMS 2006. 10th IEEE/IFIP, pages 373–381, 0-0
0. 5.8

[65] T. Kimbrel, M. Steinder, M. Sviridenko, and A. Tantawi. Dynamic application
placement under service and memory constraints. In International Workshop on

Efficient and Experimental Algorithms, Santorini Island, Greece, May 2005. 5.8

[66] S. Kounev and A. Buchmann. Performance modelling of distributed e-business
applications using queuing petri nets. In ISPASS ’03: Proceedings of the 2003

IEEE International Symposium on Performance Analysis of Systems and Software,
pages 143–155, Washington, DC, USA, 2003. IEEE Computer Society. 3.5

[67] J. R. Larus and M. Parkes. Using cohort scheduling to enhance server performance
(extended abstract). In LCTES/OM, pages 182–187, 2001. 4.5

[68] C. B. Lee and A. Snavely. On the user-scheduler dialogue: Studies of user-
provided runtime estimates and utility functions. Int. J. High Perform. Comput.

Appl., 20(4):495–506, 2006. 5.8

[69] C. B. Lee and A. E. Snavely. Precise and realistic utility functions for user-
centric performance analysis of schedulers. In HPDC ’07: Proceedings of the

16th international symposium on High performance distributed computing, pages
107–116, New York, NY, USA, 2007. ACM. 5.8

[70] C. Li, G. Peng, K. Gopalan, and T. Chiueh. Performance guarantees for cluster-
based internet services. Cluster Computing and the Grid, 2003. Proceedings.

CCGrid 2003. 3rd IEEE/ACM International Symposium on, pages 276–283, 12-
15 May 2003. 5.1, 5.2

160 BIBLIOGRAPHY

[71] B. Lin and P. A. Dinda. Vsched: Mixing batch and interactive virtual machines
using periodic real-time scheduling. In SC ’05: Proceedings of the 2005

ACM/IEEE conference on Supercomputing, page 8, Washington, DC, USA, 2005.
IEEE Computer Society. 5.2, 5.8

[72] Y. Liu, I. Gorton, A. Liu, N. Jiang, and S. Chen. Designing a test suite
for empirically-based middleware performance prediction. In CRPIT ’02:

Proceedings of the Fortieth International Conference on Tools Pacific, pages 123–
130, Darlinghurst, Australia, Australia, 2002. Australian Computer Society, Inc.
3.5

[73] A. Mos and J. Murphy. Performance management in component-oriented systems
using a model driven architecture" approach. In EDOC ’02: Proceedings of

the Sixth International ENTERPRISE DISTRIBUTED OBJECT COMPUTING

Conference (EDOC’02), page 227, Washington, DC, USA, 2002. IEEE Computer
Society. 3.5

[74] D. Mosberger and T. Jin. httperf: A tool for measuring web server performance. In
First Workshop on Internet Server Performance, pages 59—67. ACM, June 1998.
2.2.2

[75] MySQL AB. MySQL Server

http://www.mysql.com/. 4.3.2

[76] S. Nanda and T. Chiueh. A survey of virtualization technologies. Technical Report
TR-179, Stony Brook University, Feb. 2005. 5.5

[77] R. Nou, J. Guitart, D. Carrera, and J. Torres. Experiences with simulations - a
light and fast model for secure web applications. In ICPADS ’06: Proceedings

of the 12th International Conference on Parallel and Distributed Systems, pages
177–186, Washington, DC, USA, 2006. IEEE Computer Society. 1.1.1, 3.1, 3.6

[78] K. O’Hair. HPROF: A Heap/CPU Profiling Tool in J2SE 5.0.

http://java.sun.com/developer/technicalArticles/Programming/HPROF.html. 3.1,
3.5

[79] G. Pacifici, W. Segmuller, M. Spreitzer, M. Steinder, A. Tantawi, and A. Youssef.
Managing the response time for multi-tiered web applications. Technical Report
RC 23651, IBM, 2005. 5.2, 5.4.1.1, 5.4.1.1, 5.4.1.1

BIBLIOGRAPHY 161

[80] G. Pacifici, W. Segmuller, M. Spreitzer, and A. Tantawi. Dynamic estimation of
cpu demand of web traffic. In valuetools ’06: Proceedings of the 1st international

conference on Performance evaluation methodolgies and tools, page 26, New York,
NY, USA, 2006. ACM. 5.1, 5.2

[81] G. Pacifici, M. Spreitzer, A. Tantawi, and A. Youssef. Performance management
for cluster-based web services. Selected Areas in Communications, IEEE Journal

on, 23(12):2333–2343, Dec. 2005. 5.1, 5.2

[82] P. Padala, K. G. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Merchant,
and K. Salem. Adaptive control of virtualized resources in utility computing
environments. In EuroSys ’07: Proceedings of the ACM SIGOPS/EuroSys

European Conference on Computer Systems 2007, pages 289–302, New York, NY,
USA, 2007. ACM. 5.8

[83] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An efficient and portable Web
server. In Proceedings of the USENIX 1999 Annual Technical Conference, 1999.
4.2.2, 4.5

[84] W. D. Pauw and J. M. Vlissides. Visualizing object-oriented programs with jinsight.
In ECOOP ’98: Workshop ion on Object-Oriented Technology, pages 541–542,
London, UK, 1998. Springer-Verlag. 3.5

[85] Persistence of Vision Pty. Ltd. Persistence of Vision (TM) Raytracer

http://www.povray.org. 5.7.2

[86] Quest Software. JProbe

http://www.quest.com/jprobe/. 3.1, 3.5

[87] Quest Software. Performance Management Suite for Java and Portals.
http://www.quest.com/performance-management/. 3.5

[88] R. Nou, F. Julià, D. Carrera, K. Hogan, J. Labarta, J. Torres. Monitoring and
analysis framework for grid middlewares. In Proceedings of 15th Euromicro

Conference on Parallel, Distributed and Network-based Processing (PDP’07).

An extended version is available as Technical Report UPC-DAC-RR-2006-33,

Computer Architecture Department. Technical University of Catalonia (UPC).

Spain. 2006., 2007. 1.1.1, 3.1, 3.6

162 BIBLIOGRAPHY

[89] S. Rangaswamy, R. Willenborg, and W. Qiao. Writing a Performance

Monitoring Tool Using WebSphere Application Server’s Performance Monitoring

Infrastructure API. 3.4.1

[90] B. Ravindran, E. D. Jensen, and P. Li. On recent advances in time/utility function
real-time scheduling and resource management. In ISORC ’05: Proceedings

of the Eighth IEEE International Symposium on Object-Oriented Real-Time

Distributed Computing (ISORC’05), pages 55–60, Washington, DC, USA, 2005.
IEEE Computer Society. 5.8

[91] E. Rescorla. Rfc 2818, HTTP Over TLS, 1999. 2.2.2

[92] RFC791. Internet protocol, September 1981. DARPA Internet Program Protocol
Specification. 2.1

[93] RFC793. Transmission control protocol, September 1981. DARPA Internet
Program Protocol Specification. 2.1

[94] S. Srinivasan. A thread of one’s own. In Workshop on New Horizons in Compilers,
2006. 4.5

[95] M. Steinder, I. Whalley, D. Carrera, I. Gaweda, and D. Chess. Server virtualization
in autonomic management of heterogeneous workloads. In 10th IEEE/IFIP

Symposium on Integrated Management (IM 2007), Munich, Germany, 2007. 1.1.3,
5.9

[96] Sun Microsystems. Behavior of mixed workloads consolidated using Solaris
Resource Manager software. Technical report, Sun Microsystems, May 2005. 5.8

[97] Sun Microsystems, Inc. GlassFish

http://glassfish.java.net. 1

[98] Sun Microsystems, Inc. Java 2 Platform, Enterprise Edition (J2EE)

http://java.sun.com/j2ee. 2.1.3, 3.5

[99] Sun Microsystems, Inc. Java 2 Platform, Standard Edition (J2SE).

http://java.sun.com/j2se. 2.1.3, 3.5

[100] Sun Microsystems, Inc. Java Native Interface.

http://java.sun.com/j2se/1.4.2/docs/guide/jni. 3.1, 3.3.3

BIBLIOGRAPHY 163

[101] Sun Microsystems, Inc. Java Servlets technology.

http://java.sun.com/products/servlet. 2.1.3

[102] Sun Microsystems, Inc. JavaServer Pages Technology.

http://java.sun.com/products/jsp. 2.1.3

[103] Sun Microsystems, Inc. JVM Tool Interface (JVM TI).

http://java.sun.com/j2se/1.5.0/docs/guide/jvmti. 3.3.2

[104] Sun Microsystems, Inc. PerfAnal: A Performance Analysis Tool.

http://java.sun.com/developer/technicalArticles/Programming/perfanal/. 3.5

[105] Sun Microsystems, Inc. Remote Method Invocation (RMI) Home.
http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp. 3.5

[106] Sun Microsystems, Inc. Sun Java System Application Server 9.1

http://sun.com/appserver . 1

[107] A. Sundararaj, M. Sanghi, J. Lange, and P. Dinda. Hardness of approximation and
greedy algorithms for the adaptation problem in virtual environments. Autonomic

Computing, 2006. ICAC ’06. IEEE International Conference on, pages 291–292,
13-16 June 2006. 5.8

[108] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici. A scalable application
placement controller for enterprise data centers. In WWW ’07: Proceedings of

the 16th international conference on World Wide Web, pages 331–340, New York,
NY, USA, 2007. ACM. 5.3.2

[109] M. Trofin. A self-optimizing application server design for enterprise java
beans applications. In OOPSLA ’03: Companion of the 18th annual ACM

SIGPLAN conference on Object-oriented programming, systems, languages, and

applications, pages 396–397, New York, NY, USA, 2003. ACM Press. 3.5

[110] B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource overbooking and application
profiling in shared hosting platforms. In Proc. Fifth Symposium on Operating

Systems Design and Implementation, Boston, MA, Dec. 2002. 5.8

[111] J. Viega and J. Voas. Can aspect-oriented programming lead to more reliable
software? IEEE Softw., 17(6):19–21, 2000. 3.2.3

[112] D. Viswanathan and S. Liang. Java virtual machine profiler interface. IBM Systems

Journal, 39(1):82–95, 2000. 3.1, 3.3.2, 3.5

164 BIBLIOGRAPHY

[113] W3C - The World Wide Web Consortium. Html 4.01 specification, 1999. 2.1.2

[114] X. Wang, D. Lan, G. Wang, X. Fang, M. Ye, Y. Chen, and Q. Wang. Appliance-
based autonomic provisioning framework for virtualized outsourcing data center.
In ICAC ’07: Proceedings of the Fourth International Conference on Autonomic

Computing, page 29, Washington, DC, USA, 2007. IEEE Computer Society. 5.3,
5.8

[115] Z. Wang, X. Zhu, P. Padala, and S. Singhal. Capacity and performance
overhead in dynamic resource allocation to virtual containers. Integrated Network

Management, 2007. IM ’07. 10th IFIP/IEEE International Symposium on, pages
149–158, May 21 2007-Yearly 25 2007. 5.8

[116] WebSphere Extended Deployment
http://www.ibm.com/software/webservers/appserv/extend/. 5.1, 5.2, 5.5

[117] M. Welsh. NBIO: Nonblocking I/O for Java

http://www.eecs.harvard.edu/ mdw/proj/java-nbio. 4.5

[118] M. Welsh, D. E. Culler, and E. A. Brewer. SEDA: An architecture for well-
conditioned, scalable internet services. In Symposium on Operating Systems

Principles, pages 230–243, 2001. 4.4.1, 4.5

[119] M. Welsh, S. Gribble, E. Brewer, and D. Culler. A design framework for highly
concurrent systems. Technical Report UCB/CSD-00-1108, UC Berkeley, April
2000. 4.5

[120] Wily Technology CA. CA Wily Introscope.

http://www.wilytech.com/solutions/products/Introscope.html. 3.5

[121] WMware.
http://www.vmware.com/. 2.3.2

[122] WMware. VMware DRS

http://www.vmware.com/products/vi/vc/drs.html. 5.8

[123] H. Wu, B. Ravindran, E. D. Jensen, and P. Li. Energy-efficient, utility accrual
scheduling under resource constraints for mobile embedded systems. Trans. on

Embedded Computing Sys., 5(3):513–542, 2006. 5.8

BIBLIOGRAPHY 165

[124] J. Xu, M. Zhao, J. Fortes, R. Carpenter, and M. Yousif. On the use of fuzzy
modeling in virtualized data center management. Autonomic Computing, 2007.

ICAC ’07. Fourth International Conference on, pages 25–25, 11-15 June 2007. 5.8

[125] K. Yaghmour and M. Dagenais. System administration: The linux trace toolkit.
Linux J., page 22, 2000. 4

[126] T. Zanussi, K. Yaghmour, R. Wisniewski, R. Moore, and M. Degenais. relayfs:
An efficient unified approach for transmitting data from kernel to user space. In
Ottawa Linux Symposium, 2003. 4

[127] N. Zeldovich, A. Yip, F. Dabek, R. Morris, D. Mazières, and F. Kaashoek.
Multiprocessor support for event-driven programs. In Proceedings of the 2003

USENIX Annual Technical Conference (USENIX ’03), San Antonio, Texas, June
2003. 4.5

[128] X. Zhu, Z. Wang, and S. Singhal. Utility-driven workload management using
nested control design. American Control Conference, 2006, pages 6 pp.–, 14-16
June 2006. 5.8

166 BIBLIOGRAPHY

	Abstract
	Agraïments
	Acknowledgments
	Sin título
	Table of contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Contributions
	1.1.1 Automatic performance monitoring framework
	1.1.2 Adaptive architecture for application servers
	1.1.3 Integrated management of heterogenenous workloads

	1.2 Thesis Organization

	2 Execution environments for application servers
	2.1 Web Applications, Web containers and Application Servers
	2.1.1 HTTP protocol
	2.1.2 Web contents and web applications
	2.1.3 Java Servlets, Java Server Pages and Java 2 Enterprise Edition

	2.2 Workload generators and benchmarking web applications
	2.2.1 Benchmarking web applications
	2.2.2 Workload generator: httperf

	2.3 Utility-driven resource management in virtualized environemnts
	2.3.1 Utility functions
	2.3.2 Virtualization technology

	3 Automatic performance monitoring framework
	3.1 Introduction
	3.2 Components
	3.2.1 Java Instrumentation Suite (JIS)
	3.2.2 Paraver
	3.2.3 Java Automatic Code Interposition Tool (JACIT)

	3.3 Implementation of JIS Linux-IA32
	3.3.1 Operating system level
	3.3.1.1 Kernel module
	3.3.1.2 Kernel patch

	3.3.2 Java Virtual Machine level
	3.3.3 Middleware and User application levels
	3.3.4 Merging data
	3.3.5 Overheads in the Linux-IA32 implementation

	3.4 Automatic monitoring
	3.4.1 Monitoring high-level performance metrics
	3.4.2 Automatic management of the monitoring infrastructure
	3.4.3 Case study

	3.5 Related work
	3.6 Summary

	4 Adaptive architecture for application servers
	4.1 Introduction
	4.2 Application server architectures
	4.2.1 Multithreaded architecture with blocking I/O
	4.2.2 Event-driven architecture with non-blocking I/O

	4.3 Performance characterization of secure web applications
	4.3.1 Secure workloads
	4.3.2 Evaluation platform
	4.3.3 Scalability Characterization
	4.3.3.1 Exploring scalability
	4.3.3.2 Analyzing scalability limits

	4.4 Hybrid Architecture
	4.4.1 Implementation on top of Tomcat container
	4.4.2 Performance evaluation
	4.4.2.1 Testing platform
	4.4.2.2 Static content
	4.4.2.3 Dynamic content

	4.5 Related Work
	4.6 Summary

	5 Integrated management of heterogeneous workloads
	5.1 Introduction
	5.2 System architecture
	5.3 The placement problem
	5.3.1 Problem statement
	5.3.2 Algorithm outline
	5.3.2.1 Placement change method
	5.3.2.2 Capping application demand
	5.3.2.3 Maximizing load distribution

	5.4 Characterization of heterogeneous workloads
	5.4.1 Transactional workloads
	5.4.1.1 Calculating application utility

	5.4.2 Long running workloads
	5.4.2.1 Job characteristics
	5.4.2.2 Stage aggregation in a control cycle
	5.4.2.3 Maximum achievable utility
	5.4.2.4 Hypothetical utility

	5.5 Prototype implementation
	5.5.1 VM management
	5.5.2 Job management
	5.5.3 Xen machine organization

	5.6 Evaluation in a simulator
	5.6.1 Transactional-only workloads
	5.6.1.1 Generation of utility functions in the simulator
	5.6.1.2 Evaluation criterion: minimum utility
	5.6.1.3 Evaluation criterion: number of placement changes
	5.6.1.4 Evaluation criterion: optimality

	5.6.2 Long running-only workloads
	5.6.2.1 Experiment One: Hypothetical utility
	5.6.2.2 Experiment Two: Baseline
	5.6.2.3 Experiment Three: Variable deadlines
	5.6.2.4 Experiment Four: Randomized jobs

	5.6.3 Heterogeneous workloads

	5.7 Evaluation in the prototype
	5.7.1 Transactional-only workloads
	5.7.1.1 Baseline experiment
	5.7.1.2 Benefits of a utility-based placement

	5.7.2 Long running-only workloads
	5.7.3 Heterogeneous workloads

	5.8 Related Work
	5.9 Summary

	6 Conclusions and future work
	6.1 Conclusions
	6.1.1 Automatic performance monitoring framework
	6.1.2 Adaptive architecture for application servers
	6.1.3 Integrated management of heterogenenous workloads

	6.2 Future work

	Bibliography

