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Chapter 3

A framework for the stochastic

Delineation of Connectivity Patterns

Honoring Transmissivity, Tracer Data,

and Pumping Tests Data∗

3.1 Introduction

In the previous chapter we have provided a mathematical framework for the spatial description of

transport point-to-point connectivity. In section 2.5 we have presented a potential application of

this framework for the delineation of protection areas (i.e. capture zones) around a pumping well

used for drinking water production. Nevertheless, in its current formulation the analytical solution

is not directly applicable to real applications because it requires a large amount of information that

is usually not available and economically unfeasible in standard field campaigns.

∗ Fernandez-Garcia, D., Trinchero, P., Sanchez-Vila, X., in preparation for submission .
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Based on our previous work on point-to-point transport connectivity, in this chapter we present

a stochastic framework for the delineation of connectivity patterns using a limited and sparse num-

ber of measurements. The lack of complete knowledge of the variables involved in the problem

is overcome by treating them as regionalized variables or random functions. The methodology

allows to condition the results to three types of data measured over different scales, namely travel

times of convergent tracer tests, ta, estimates of the storage coefficient from pumping tests in-

terpreted using the Cooper-Jacob method, S est, and measurements of transmissivity point values,

T .

The ability of the methodology to properly delineate capture zones is assessed through esti-

mations (i.e. ordinary cokriging) and sequential gaussian simulations based on different sets of

measurements.

3.2 Problem Description

The objective of this paper is to obtain equally probable realizations of connectivity patterns con-

ditioned to three different types of data, namely:

• Measurements of transmissivity point values, T (xi) (i = 1, ...,Nt).

• Measurements of the estimated storage coefficient, S est(xi) (i = 1, ...,Ns), obtained from

interpreting pumping tests using the Cooper Jacob method (see section 2.2 for a detailed

explanation of the method). As observed by Meier et al. [62], this method provides esti-

mates of the transmissivity that are somehow representative of the equivalent value of the

entire aquifer (i.e., geometric mean of the transmissivity point values). On the contrary,

the estimated storage coefficient usually shows a large variability being dependent on the

location of the observation point. As explained in detail in section 2.2, this variability is a
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direct consequence of the dependence of S est on the particular connecting features existing

between the pumping well and the observation location.

• Measurements of mean travel times obtained from convergent-flow tracer tests, ta(xi) (i =

1, ...,Na) estimated as follows

ta(x) =

∫ ∞

0

tC(t; x)dt/

∫ ∞

0

C(t; x)dt (3.1)

where C(t; x) is the concentration of a solute injected in x, measured at the well at the time

t. In heterogeneous media, ta is an indicator of the transport point-to-point connectivity

between the pumping well and the injection location (see chapter 2 for further details on the

physical interpretation of this parameters).

It is worthwile to note that each data type is measured over a different scale and represents

crucial field information controlling the shape of the connectivity patterns induced by a pumping

well.

3.3 Background

We consider an infinite two-dimensional porous media under quasi-steady-state radial flow condi-

tions induced by a pumping well. Treating transmissivity as a spatially varying property through-

out the aquifer while assuming all other flow and transport parameters spatially constant, we have

demonstrated (see section 2.3) that

ta(xi) =
π(r2

i
− r2

w)bφ

Qw

exp
(
τ′i

)
(3.2)
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τ′i = −

∫ ri

0

2r

r2
i

(
Y ′i (r) − ω′i(r) + ω′i(ri)

)
dr (3.3)

ω′i(r) = −
1

π

∫

ℜ2

Y ′(x)U(x, xi(r))dx (3.4)

where ta(xi) is the mean travel time of a solute injected in xi, QW is the flow rate, rw is the

well radius, Y ′ is the fluctuation of the natural logarithm of transmissivity around an equivalent

value (Y(x) = Y0(x) + Y ′(x); Y0(x) = ln T0), ω′ is the natural logarithm of the estimated storage

coefficient divided by its true value (ω′ = ln(S est/S )), and

U(x; y) =
‖2x − y + xw‖

2 − ‖y − xw‖
2

4‖x − xw‖3‖x − y‖2
(3.5)

The subscript i denotes the position xi, and the variable r refers to the distance of a given point

from the pumping well centered at the xw location. We refer to an intermediate point located on

the line between the well and the observation point xi, using the following notation

xi(r) = xw +
r

ri

(xi − xw) (3.6)

Thus, by convention, we have the following equalities,

Y ′i = Y ′(xi) ω′i = ω
′(xi) (3.7)

Y ′i (r) = Y ′ (xi(r)) ω′i(r) = ω′ (xi(r)) (3.8)
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3.4 Mathematical Development

Here, we develop a mathematical framework to carry out stochastic conditional estimation/simulation

of the natural logarithm of the mean travel time (τ = ln ta). This mean travel time is an indicator of

transport point-to-point connectivity which can be used afterwards to directly delineate the capture

zone of an abstraction well. The method aims at delineating connectivity patterns honoring not

only transmissivity data, T (xi) (i = 1, ...,Nt), but also tracer data such as ta(xi) (i = 1, ...,Na) and

pumping test data S est(xi) (i = 1, ...,Ns). The method is build upon a stochastic model of the spa-

tial dependency of the natural log of transmissivity, Y(x) = ln T (x), which is used along with our

previous theoretical development on transport connectivity [94]. We consider Y(x) to describe a

correlated random function quantified by its expectation, mY = E[Y], and the two-point covariance

function, Cyy(xi, x j) = E((Y(xi) −mY )(Y(x j) −mY )), where E( · ) denotes the expectation operator.

3.4.1 Conditional Estimation: Kriging

Kriging is a group of geostatistical techniques aimed to get the ”best” estimate (and corresponding

uncertainty) of an attribute at an unknown location from nearby observations of related attributes.

The relative contribution of each observation is based on the the spatial dependency of the at-

tributes. Here, we will consider simple/ordinary linear co-Kriging. Essentially, we want to obtain

the best unbias linear estimator of τ′
K

(x0) at a given location x0 given the values of Y , τ, and w at

some other points {Y1, ...,Yn; τ1, ..., τm; w1, ...,wl}

τ′K(x0) =

n∑

i=1

λY
i Yi +

m∑

i=1

λτi τi +

l∑

i=1

λωi ωi (3.9)

where τ′
K

(x0) is the Kriging estimator at the x0 location, τi = ln ta(xi), and ωi = ln S est(xi).
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Simple Co-Kriging

In this case, we consider that Y(x) and ω(x) = ln S est(x) are two correlated stationary random

functions with known mean, mY and mω, and covariance function. The natural log of the travel

time, τ(x) = ln ta(x), is a non-stationary random function expressed as the sum of a trend compo-

nent and a residual, τ(x) = mτ(x) + τ′(x). The residual τ′(x) is modeled as a stationary random

function. Based on this, we can directly obtain an unbias estimator of τ′ as

τ′S K(x0) =
∑

i

λY
i (Yi − mY ) +

∑

i

λτi (τi − mτ(xi)) +
∑

i

λωi (ωi − mω) (3.10)

where x0 refers to the point of estimation. Defining the random variable

Z′αi =



Y ′
i
= Yi − mY if α = Y

τ′
i
= τi − mτ(xi) if α = τ

ω′
i
= ωi − mω if α = ω

(3.11)

we write

τ′S K(x0) =
∑

α

∑

i

λαi Z′αi where E(Z′αi) = 0 (3.12)

Then, the kriging predictor is the one that minimizes the variance of the prediction error written

as

E
[
(τ′S K − τ

′)2
]
=

∑

α

∑

β

∑

i

∑

j

λαi λ
β

j
E(Z′αiZ

′
β j) − 2

∑

α

∑

i

λαi E(Z′αiτ
′
0) + E(τ′2) (3.13)
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Minimizing the prediction error,

∂E
[
(τ′

S K
− τ′)2

]

∂λα
i

= 0 ∀α = Y, τ, ω ∀i = 1, ..., n (3.14)

we arrive at the following Kriging linear system of equations

∑

β

∑

j

λ
β

j
E(Z′αiZ

′
β j) = E(Z′αiτ

′
0) ∀α = Y, τ, ω ∀i = 1, ..., n (3.15)

By substituting (3.15) into (3.13) we obtain the variance of the simple Kriging estimate

σ2
S K = E

[
(τ′S K − τ

′)2
]
= E(τ′2) −

∑

α

∑

i

λαi E(Z′αiτ
′
0) (3.16)

where

E(Z′αiZ
′
β j) =



E(Y ′
i
Y ′

j
) = Cyy(xi, x j) if α = Y , β = Y

E(Y ′
i
τ′

j
) = Cyτ(xi, x j) if α = Y , β = τ

E(Y ′
i
ω′

j
) = Cyω(xi, x j) if α = Y , β = ω

E(τ′
i
τ′

j
) = Cττ(xi, x j) if α = τ, β = τ

E(τ′
i
ω′

j
) = Cτω(xi, x j) if α = τ, β = ω

E(ω′
i
ω′

j
) = Cωω(xi, x j) if α = ω, β = ω

(3.17)

The number of pumping and tracer test data available is usually limited and largely complicates

the inference of the cross-covariance functions between the different random functions (Y ′, τ′, ω′).

The approximated analytical solution of S est (Equation 2.3) and ta (Equation 2.26) allow us to

overcome this problem by expressing all the cross-covariance functions in terms of the known
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covariance function of the natural log of transmissivity, CYY (xi, x j),

Cyω(xi, x j) = −
1

π

∫

ℜ2

U(x; x j)C
yy(xi, x) dx (3.18)

Cyτ(xi, x j) = −Cyω(xi, x j) −

∫ ri

0

2r

r2
i

(
Cyy(xi, x j(r)) −Cyω(xi, x j(r))

)
dr (3.19)

Cωω(xi, x j) =
1

π2

∫

ℜ2

∫

ℜ2

U(x′; xi)U(x′′; x j)C
yy(x′, x′′) dx′ dx′′ (3.20)

Cττ(xi, x j) = Cωω(xi, x j) +

∫ ri

0

2r

r2
i

Cyω(xi(r), x j)dr −

∫ ri

0

2r

r2
i

Cωω(xi(r), x j) dr

+

∫ r j

0

2r

r2
j

Cωy(xi, x j(r)) dr −

∫ r j

0

2r

r2
j

Cωω(xi, x j(r)) dr +

∫ ri

0

∫ r j

0

4r′r′′

r2
i
r2

j

(
Cyy(xi(r

′), x j(r
′′))

−Cyω(xi(r
′), x j(r

′′)) −Cωy(xi(r
′), x j(r

′′)) +Cωω(xi(r
′), x j(r

′′))

)
dr′dr′′ (3.21)

Cτω(xi, x j) =
1

π

∫ ri

0

∫

ℜ2

2r

r2
i

U(x; x j)

(
Cyy(xi(r), x) −Cωy(xi(r), x)

)
dx dr

+
1

π

∫

ℜ2

U(x; x j)C
ωy(xi, x) dx (3.22)
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Ordinary Co-Kriging

Here, the covariance function of Y(x) is known but the mean, mY , is uncertain. Let us consider the

problem of getting the best unbias linear estimator of the random function P(x) given observations

of the random functions Y(x) and Q(x), defined as

P(x) = −

∫ ri

0

2r

r2
i

[Yi(r) − Qi(r) + Qi(ri)] dr (3.23)

Qi(r) = −
1

π

∫

ℜ2

Y(x)U(x, xi(r))dx (3.24)

Then, the kriging estimator of P(x0), being x0 an arbitrary location, is expressed as

POK(x0) =
∑

i

λY
i Yi +

∑

i

λP
i Pi +

∑

i

λ
Q

i
Qi (3.25)

By the definition of P(x) and Q(x) we have

E(P) = mP = −mY E(Q) = mQ = −2mY (3.26)

Defining the random variable

Xαi =



Yi if α = Y

Pi if α = P

Qi if α = Q

(3.27)

the kriging estimator is written as
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POK(x0) =
∑

α

∑

i

λαi Xαi (3.28)

the co-Kriging system is obtain requiring the unbias condition while minimizing the variance

of the estimator error. The unbias constraint gives

∑

α

mα

∑

i

(
λαi

)
= mP (3.29)

The expectation of the error involved is

σ2
OK = E

[
(POK − P)2

]
=

∑

α

∑

β

∑

i

∑

j

λαi λ
β

j
E(XαiXβ j) − 2

∑

α

∑

i

λαi E(XαiP) + E(P2) (3.30)

Expressing this in terms of the deviations from the mean, X′
α(x) = Xα(x) − mα, and using

(3.29), this is reduced to

σ2
OK = E

[
(POK − P)2

]
=

∑

α

∑

β

∑

i

∑

j

λαi λ
β

j
E(X′

αiX
′
β j) − 2

∑

α

∑

i

λαi E(X′
αiP

′
0) + E(P′2) (3.31)

where
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E(X′
αiX

′
β j) =



E(Y ′
i
Y ′

j
) = Cyy(xi, x j) if α = Y , β = Y

E(Y ′
i
P′

j
) = Cyτ(xi, x j) if α = Y , β = P

E(Y ′
i
Q′

j
) = Cyω(xi, x j) if α = Y , β = Q

E(P′
i
P′

j
) = Cττ(xi, x j) if α = P, β = P

E(P′
i
Q′

j
) = Cτω(xi, x j) if α = P, β = Q

E(Q′
i
Q′

j
) = Cωω(xi, x j) if α = Q, β = Q

(3.32)

The minimization of the variance of σ2
OK

under the unbias constraint (3.29) results in a linear

system of equations involving one ”Lagrangian” parameter, µ,

∑

β

∑

j

λ
β

j
E(X′

αiX
′
β j) − µ mα = E(X′

αiτ
′
0) ∀α = Y, τ, ω ∀i = 1, ..., n

∑

α

∑

i

λαi mα = mP (3.33)

Being consistent with the fact that ordinary kriging system is analogous to re-estimate the

mean, m̂Y , within a search neighborhood moving with the estimation location, x0, as used in

simple kriging. We can estimate τ′
OK

(x0) after solving this system of linear equations simply as

τ′OK(x0) = POK + m̂Y = m̂Y +
∑

i

λY
i Yi

+
∑

i

λP
i

(
τi − E(τ) − m̂Y

)
+

∑

i

λωi
(
ωi − E(ω) − 2m̂Y

)
(3.34)

where m̂Y is the local mean estimated as
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m̂Y ≈
1

N

N∑

i

Yi (3.35)

N being the number of data within the search neighborhood, and we have used the relationship

Q(xi) = ω
′(xi) + 2mY = ω(xi) − E(ω) − 2mY (3.36)

P(xi) = τ
′(xi) + mY = τ(xi) − E(τ) − mY (3.37)

the expected value of τ and ω, can be approximated as

E(τ) � ln
π(r2

i
− r2

w)bφ

Qw

(3.38)

E(ω) � ln S (3.39)

The minimized estimation variance of τ′
OK

(x0) can then be written as

σ2
OK = E(τ′2) − µ mY −

∑

α

∑

i

E(τ′αiP
′
0) (3.40)

3.4.2 Conditional Stochastic Simulation

Here, we generate alternative, equally probable, realizations of τ′ while honoring data values

(Y, τ, ω) at different locations. Each realization is denoted with the superscript index m, τ(m). For

simplicity, we will only consider the sequential gaussian simulation approach. This approach
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consists in drawing sequentially the value of a variable (τ) from its conditional pdf (probability

density function). The attribute τ is consider to be a multiGaussian random variable and thereby its

cdf follows a Gaussian distribution. The mean and variance of the distribution is derived from the

previous cokriging system with the only consideration that the conditioning needs to include not

only all available data values of the attributes (Y, τ, ω) but also the previously simulated τ values.

3.5 Numerical assessment of the method

In the previous chapter we have assessed the robustness of the analytical solution of φest/φ =

exp(τ′) by comparing the analytical results with numerical simulations carried out in a given syn-

thetic aquifer. In particular, we found that the relative contribution of the hydraulic response (S est)

to transport connectivity (τ′) is minor and if neglected causes only a slight overestimation of low

connectivity patterns. This means that the simplified analytical solution (Equation 2.27) gives a

conservative estimate of travel times for risk assessment exercises. For this reason and to avoid

the burden of a large number of space integrals involved in the Kriging linear system, in this sec-

tion we have only evaluated the methodology when conditioning only to measurements of point

transmissivity and tracer test data (i.e. mean arrival time).

3.5.1 Numerical approach

We assess the performance of our methodology using a synthetic aquifer where only a limited

number of measurements of T (x) and ta(x) is available. The scenarios considered are the following

• Scenario A: 16 equally spaced measurements of local transmissivity (T (x)) are known.

• Scenario B: 16 equally spaced measurements of local transmissivity (T (x)) and 16 measure-

ments of travel time (ta(x)) are known. Each measurement of travel time refers to a solute

injected in one of the sixteen location where the transmissivity has been sampled.
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• Scenario C: 100 equally spaced measurements of local transmissivity (T (x)).

We consider the same transmissivity field as used by Sanchez-Vila et al. [83] and reproduced

in Figure 2.5a. The numerical setup of the flow and transport numerical simulations is explained in

detail in section 2.4. We consider that groundwater flow is mainly driven by pumping from an ab-

straction well. Thus, we neglect those flow fluxes induced by a natural gradient. For each scenario

we attempt to reproduce the real connectivity patterns using conditional estimation (i.e. Krig-

ing) and carrying out 300 conditional simulations (i.e. sequential Gaussian simulations). Since

we assume that the mean of the log-transmissivity field, mY , is unknown, in both approaches the

estimation/simulations are carried out by solving the ordinary cokriging linear system (Equation

3.34 and 3.40). The covariance function of Y(x) is modelled using an isotropic spherical semivari-

ogram with unit variance and range of 20 m. The results of the conditional estimation/simulations

of each scenario are then used to assess the performance of this geostatistical framework for the

delineation of capture zones. Following the definition of capture zone provided in section 2.5, a

given estimated/simulated point, i, belongs to the protected area if:

t∗a(xi) =
πr2

i
bφ

Qω
exp(τ′∗(xi)) ≤ 50day (3.41)

where the asterisk refers to the estimated/simulated value of τ′.

3.5.2 Results and discussion

For illustrative purposes, in Figure 3.1 we compare the real connectivity patterns obtained numer-

ically (see section 2.4 for details) with those obtained from an estimation and a single simulation

for scenario C. It is worthwhile to note that in this specific scenario both the estimation and the

given simulation are able to identify the three zones highly connected. The tendency of the krig-

ing estimator to produce globally smooth surfaces is reflected in the results while the connectivity

patterns obtained using sequential simulation are sharper.
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-1.0

0.0

1.0

(a) (b) (c)

Figure 3.1: (a) Real connectivity patterns (τ′) and connectivity patterns estimated/simulated using

(b) ordinary cokriging and (c) sequential gaussian simulation (realization 200) for scenario C.

Figure 3.2 shows the isoprobability contour lines of the capture zone for the three scenarios,

obtained from the set of 300 sequential gaussian simulations. It is interesting to note that in sce-

nario A, where only a limited number (16) of T measurements is available, the mean shape of

the capture zone tends to the circular capture zone given by an equivalent homogeneous T field

(i.e. circular capture zone) (Figure 3.2 a). Also, the results show a high variance, with the 0.05

isoline covering a large part of the domain. When a few tracer test data are included (Scenario

B) the distance between the isolines diminishes and the mean shape of the simulated capture zone

approximates to the real shape (Figure 3.2 b). This is confirmed by Figure 3.3 that shows a com-

parison of the results for both scenarios. From this figure we can see that the incorporation of

the tracer data constrains the simulated ta (i.e. τ′) to values that are closer to the real ones, thus

reducing the uncertainty in the delineation of the capture zone. When the number of T measure-

ments available increases by an order of magnitude (Scenario C) the accuracy of the method also

increases dramatically (Figure 3.2 c) and a good agreement is observed between the mean shape

and the real perimeter of the capture zone. Nevertheless those parts of the protection perimeter that

correspond to highly connected zones still show a high uncertainty, probably because of the the

lack of tracer test data in Scenario C. As expected, the protection perimeter delineated using the

kriging estimation is close to the mean perimeter (isoline 0.5) identified using the 300 conditional

simulations.
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Figure 3.2: Capture zone probability maps. The isoprobability contours are computed using the

300 gaussian sequential simulations for (a) scenario A, (b) scenario B and (c) scenario C. The

capture zone estimated using ordinary cokriging (blue line), the real shape of the capture zone (red

line) and the capture zone associated to the equivalent homogeneous field (T = TG = 1m2/day)

(green line) are also shown.

To assess the performance of this geostatistical framework for the delineation of capture zones,

we define two error norms (i.e. performance indexes) that compare the forecasted protection area,

C f ore, with the real capture zone, Creal. The first index refers to the relative size of the protection

area that is not identified by the estimation/simulation, defined as

emiss =
Amiss

Amiss + A f ore

(3.42)
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Figure 3.3: Capture zone probability maps for scenario A (gray lines) and scenario B (red lines).

The real shape of the capture zone (green line) is also shown.

and the second is related to the relative size of the forecasted area that is unnecessarily pro-

tected,

eover =
Aover

Aover + A f ore

(3.43)

where Amiss [m2] is the area of the real capture zone that is not identified by the forecast, i.e.,

the area of Creal\C f ore, A f ore [m2] is the area of the real capture zone that is correctly predicted,

i.e., Creal ∩ C f ore, and Aover [m2] is the size of the forecasted area that is unnecessarily protected,

i.e., C f ore\Creal. In other words, emiss is the percentage of the real capture zone that has not been
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identified, whereas eover is the percentage of the forecast that is unnecessarily protected.
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Figure 3.4: Conditional cumulative density function, ccdf, of (a) emiss (Equation 3.42) and (b) eover

(Equation 3.43) for the set of 300 conditional simulations of the three scenarios.
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Figure 3.4 (a) and (b) show the conditional cumulative density function, (ccdf, of emiss and

eover for the set of 300 conditional simulations of each scenario. From figure 3.4 (a) we see that

scenarios A and B display a large number of simulations where the percentage of the real capture

zone not identified by the forecast is relatively small. This behavior is visually appreciated in

figure 3.4 (b) where we see that both scenarios, in particular scenario A, have a large number of

simulations where the forecast largely overestimates the real size of the protection area. In other

words, when a limited number of measurements is available, the protected area is highly uncertain

and thus many forecasted capture zones largely overestimates the real shape of the protected area.

The incorporation of tracer test data improves the forecasts by reducing their uncertainty and thus

reducing the percentage of the forecast that is unnecessarily protected. This is even more evident

in Scenario C, altough it must be noticed that in this case the improvement of emiss is limited. The

explanation lies in the intrinsic bias of the simplified analytical solution (Equation 2.27) already

shown in section 2.5.

3.6 Summary and Conclusions

We have developed a geostatistical framework to delineate transport connectivity patterns honor-

ing a limited number of data measured over different scales, namely mean travel times of con-

vergent tracer tests, ta, estimates of the storage coefficient from pumping tests interpreted using

the Cooper-Jacob method, S est, and measurements of transmissivity point values, T . Although the

methodology allows to condition the results to the three above-mentioned variables, so far we have

only assessed its behavior when conditioning to travel time, ta, and transmissivity point values, T .

We decided to neglect the information provided by S est to avoid the burden of a large number of

space integrals involved in the cokriging linear system. This assumption has been extensively as-

sessed in section 2.4 where we showed that the simple analytical solution (Equation 2.27), which

does not account for S est, tends to overestimate the low connectivity patterns. In other words, this

assumption is conservative from a risk assessment point of view.
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Our work leads to the following key conclusions:

1. The limitation of a standard cokriging approach in this kind of application lies in the limited

number of measurements usually available. This makes it difficult to infer the covariance

function between the variables involved in the problem. Our approach allows to overcome

this limitation through the incorporation of the analytical solution of ta (Equation 2.26) and

S est (Equation 2.3).

2. Different scenarios, with different number of T and ta measurements available, have been

assessed. A simple visual inspection of the cokriging estimation and of one conditional

simulation for scenario C shows the ability of both methodologies to identify the three zone

highly connected. The connectivity patterns delineated using cokriging are smooth due to

the well known tendency of this estimator to generate globally smooth surfaces.

3. The ability of the methodology to properly address a standard risk assessment exercise (i.e.

delineation of the 50 days travel time capture zone) has been evaluated. When only a limited

number of T measurements is available, the isoprobability contour lines of the capture zone,

calculated from the 300 conditional simulations, show a high uncertainty with the mean

shape of the capture zone that approximates to that of an equivalent homogeneous medium

(i.e. circular capture zone). The incorporation of travel time data reduces the distance

between the isolines and constrains the simulated results to values of ta (i.e. τ′) closer to

the real ones, thus reducing the uncertainty associated to the simulations. When a large

number of T measurements is available, the uncertainty in the delineation of the capture

zone decreases dramatically and the mean shape of the protection perimeter shows a good

agreement with the real one.

4. The performance of each single simulation for each scenario has been evaluated by defining

two error norms. The first, emiss, is related to the percentage of the real capture zone that has

not been identified and the second, eover, is a function of the percentage of the forecast that
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is unnecessarily protected. The conditional cumulative density functions, (ccdf), of emiss

and eover show that when a limited number of T measurements is available, the simulated

capture zones tend to overestimate the real protection area due to the high uncertainty in

the results. The incorporation of tracer test data constrains the simulations to values closer

to the real ones, thus reducing the number of simulations where the capture zone is largely

overestimated. The reduction of the overestimation is even more evident when a large num-

ber of T measurements is available, altough the improvement of emiss is limited due to the

intrinsic bias of the simplified analytical solution.




