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6.1 Introduction 

This thesis proposes a methodologic approach for Flood Hazard Mapping at two working 

scales. Firstly on a long-term scale related to events of Relative Sea-Level Rise, and secondly 

at an episodic/extreme scale related to storm events. These two scales were proposed, 

considering that they are the most representative for coastlines changes (erosion, accretion, 

flood etc). 

On the long term scale the Relative Sea-Level Rise is the most important components 

of current studies of assessment of climate change and evaluation of their effects in the 

coastal zone. The understanding of the changes in sea-level,  will help us to prevent or 

minimize damage as well as improve the response of the Ebro Delta (a low-lying coast), in 

future conditions. 

The episodic scale has an important role since the episodic or extreme events can cause 

large damage to the coastal zone and backbeach areas, particularly when poor planning or 

preparation to this kind of events has taken place. For this reason it is necessary to know 

the potential damage presented by an event of this nature. The knowledge of probability, 

the impact of the coastal storms and the associated damage can serve as a base for the 

design of strategies for the protection and management, and also set priorities and levels 

of protection. 

The establishment of working and management scales, and to know in advance the damages 

of the study area, allows us to set priorities, assess efforts to adapt to environmental changes 

and in turn minimize the damage in the economic and social component. 
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Regardless the flooding scale or source, an important input of this work was the DEM. 

Since the quality, accuracy and resolution, report directly to the final values to determine 

potential flood areas. The studio area has a low-lying profile, with a lot of small canals and 

dykes (that in a High resolution DEM can be observed in detail). This configuration can 

generate big variations on the calculation of flood-prone areas. In this case, the DEM has a 

high resolution, allowing us to obtain very detailed results, but with a high computational 

cost, so a discrete resample of the DEM was necessary, in the areas of interest in order to 

not loose accuracy.

6.2 Flooding due to Relative Sea Level Rise 

As we mentioned in chapter 5.3, the potential flood areas with a RSLR in the Ebro Delta 

have been estimated between 9916 ha for the lower scenario (35 cm), to 18,837 ha for the 

higher scenario (75 cm). This corresponds to 32% and 70% of the Delta area. 

In the development of this work, a number of assumptions and considerations (eustatic 

sea level rise, subsidence of delta plain, Bruun’s rule-like response for the beaches, and 

no response for the backbeach) were made. These assumptions allowed us to work in a 

structured and less variable environment,  but it must be take into account that these could 

cause uncertainty problems. 

The main variable in this analysis is the eustatic sea level rise, and because to the calculation 

methodology, it is also the component that shows the biggest uncertainty.

The value of SLR is obtained from mathematical models which involve a large number of 

variables and assumptions. For that reason the final value of SLR is contained within a 

range. To limit the uncertainties due to the above, we selected the values for maximum and 

minimum in the range and a mean value. Therefore, our final map of flood areas, shows the 

limits of flooding associated with the range of variation of the SLR.

The other important point that might cause problems is the one associated with the coastal 

response. Since we assumed have considered the coast as a dyke, where the beaches will 

respond based on the Bruun´s law. This consideration implies that there is enough sediment 

in the coastal area, and the coastal behavior does not vary in time. So the coast can rise in 

conjunct with sea level and maintain its role as a levee.
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Based on our results, we corroborate that the Ebro Delta is highly sensitive to changes in 

sea level as expected. Most of the flooded areas that actually are occupied by rice pads 

normally correspond to ancient coastal lagoons, canals and river courses. These areas are 

located in the lower areas of the topography of the delta. These areas identified as potential 

flood areas by RSLR, match with those established as vulnerable by Sanchez-Arcilla et al., 

(1998). 

The main flooded areas of the delta are those located in the surrounding of the bays, and 

connected by channels that normally are used to drain rice fields. In case of a SLR they could 

serve as entree channels for the water. If the channels are closed it is more feasible to stop 

the flood associated to direct communication with the sea. The variation in the flooded 

area for that action can reach up to 30%.

Sea level rise will have a strong impact on ecosystems in the Ebro Delta and could lead to 

the “drowning” of most low-elevation habitats and a further salinisation of freshwater and 

brackish habitats, resulting in a strong increase of unvegetated, shallowly flooded areas 

(Jimenez et al., 2009).It is necessary to consider that areas below the targeted water level, 

but not directly connected to the sea could be affected by other processes such as an 

increase in salt content in the soil and water. 

Based on the previous discussion we believe that the biggest losses will be attributed to the 

economic part. Because there is no plan to adapt the current form of exploitation to future 

changes in the environment. The losses due to the diminishing of agricultural growth area 

will be irreversible. On the environmental side, some habitats are lost but others that now 

have a smaller presence could increase or regain their dominance in the delta (lagoons, 

brackish areas), therefore this will not be considered a loss, but an ecological profit.

The ability to determine the flood-prone areas in a long-term, gives us the tool to prevent, 

or take the necessary actions to reduce the impact of sea level rise. 

According to Klein et al., (1999) some actions can be undertaken in coastal management 

faced to sea level rise, the first “classical” is the Total Protection (Hold the line), at all costs 

trying to keep the current use. The second would be to turn to a more sustainable approach: 

“Adaptation” that considers the gradual adaptation to the new profile of the coast. The 

third action corresponds to not taking any actions. 



Coastal Flood Hazard Mapping						       Chapter 6 . Discussion

102

In this case there are economical and ecological considerations to be taken into account 

before conduct any of the two possible actions. At first “Hold the line” represent the almost 

total change of the coast profile of the Ebro delta, for its protection and almost a total 

isolation of the delta because, as we see before, if we close the channels, the floods are 

reduced or controlled. This implies a loss of the natural function of the costal lagoons and 

therefore a drastic change in the delta area. Besides that have to be consider a pumping 

system or similar that allows the output of the water from rice fields. 

“Hold the line” for the Ebro delta area represents a strong investment in dykes and pumping 

systems that end making the delta in an artificial area dependent entirely of the artificial 

systems. The idea of Hold the Line is associated with the conservation of large areas of 

production of rice in the delta area and the way of life associated. But the rice crops will 

eventually suffer from high salt stress and the cost-benefit of maintenance using this method 

will not positive. Therefore costs of maintaining the Delta without flooding (construction of 

dykes, pumping systems, etc.) will be greater than the economic benefits of rice.

We consider that the “Adaptation” is the most plausible option to this area, trying to adjust 

and protect the delta. But not by holding the line, but by promoting the regeneration of old 

lagoons, and looking for a new sediment supply that will help the delta alleviate the natural 

subsidence. This means the loss of cropland and the increase of brackish creeks (lagoons, 

riparian buffer). But this loss, will allow long-term management and preparation of the delta 

and a gradual “Adaptation”. Also the control of channels by dams and pumps, not allowing 

the entry of water,  would be another approach. The recovery of natural areas, could lead 

to changes in which the delta is exploited, migrating from a high impact productive use to 

a low-impact use.

From an economic point of view, the losses due to rising sea levels will be big due to the 

loss of large areas of cultivation, given that the delta presents high cultivation exploitation 

which has been the main economical axis on the zone.  These losses range from 23% of the 

area, equivalent to losing an average production of 34,000 tons/year to 52% of cultivated 

area (77,000 tons/year). Unless a proper strategy for ‘Hold the line’ is implemented on the 

long term, the cost associated to maintain the Delta without flooding with a good level of 

rice production, could be excessive as this would involve the construction and maintenance 

of construction of dykes and pumping systems to maintain the flood under control.
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From an ecological point of view, we can not consider the flood areas as losses as it would 

increase the marsh area and coastal lagoons, this coupled with the decline in cultivation, 

would improve the surrounding environment. Vegetation in coastal lagoons and freshwater 

inland wetlands will be primarily influenced by increased frequency of flooding by the sea 

(due to higher salinity levels, Valdemoro et al., 2007). Of the submerged lagoon vegetations, 

freshwater types may disappear and the brackish (Ruppia-dominated) vegetation type may 

expand in coverage (Menendez et al., 2002). Coops & van Geest (200?) conclude that even 

a low rise of sea level, can result in “the drowning” of the most low-elevation habitats and 

a further salinisation of the lagoons.  So we could speak of an ecological benefit, when a 

scarce habitat in the Catalan coast would recover or increase.

It is important to note that in either case, due to the reduction in the contribution of the 

river water, the saltwater intrusion has increased. This is mainly due to the reduction of 

the water volume that supplies the delta, as the water level decreases increases the salt 

intrusion in the terrestrial area and the salt wedge at the river side. This problem in addition 

with the increased frequency of flooding by the sea could increase even more the levels of 

salinity of the soil, leading to rice farming to become economically unfeasible. 

6.3 Flooding due to Storms

In chapter 5.4 a FHM framework for coastal storms was described and potential flooding 

areas for the La Marquesa in Delta Ebro were calculated. These areas shows a variation 

between 17 ha for a 10 years of return storm, to 475 ha for a 500 year storm. It is necessary to 

take into account some consideration in the methodologies that we used in this framework. 

In this work for the statistical analysis in the determination of return times, the Response 

Based Approach was selected. We believe that this is the most objective statistical approach 

since any joint probability of events assumptions and simplifications are not made. 

Considering the Response Based Approach we select a value that associates the runup and 

the coastal erosion which is proportional to the overtopping. Overtopping corresponds to 

the final response of the behavior in which we are interested. The only problem associated 

with this selection, is that we can not directly obtain the values of wave height and wave 

period required for internal calculations, as well as for the construction of the simulated 

storm climate. This problem was solved by associating the final values of the analysis with 

storms databases. 
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The coastal response to storms is an important part of the framework for FHM at this scale, 

so the right selection of a beach profile or how to evaluate the beach response is a basic part 

in the final results. In this work three approaches to evaluate this element of the framework 

were tested. 

We can say that including the behavior of the beach in subsequent calculations as runup and 

overtopping is basic; the use of a model of this response allows us to work more accurately. 

In our case we use the SBEACH, which does not exclude the use of newer models or more 

detailed, for instance XBEACH (Roelvink et al., 2008). In case the user has no access to a 

model, the use of an envelope of the beach can be selected alternatively. Thus give as result 

a range of possible floods, from which areas of risk associated with a range of uncertainty 

may be identified. Finally the use of an average beach profile could be proposed. Variations 

between this methodology and the first are about 3.5 times in overtopping volume and 1.8 

in flooded areas.

The results show that the uncertainty introduced in the analysis due to the use of a single 

profile to represent the entire coastal stretch should be much lower than the associated 

to the selection of the configuration profile of such. Moreover, it also has to be stressed 

that for the same conditions, the uncertainty in overtopping rates will be larger than in the 

period of exceedence for overtopping. 

The inclusion of the beach response during the event, results in an increase of overtopping 

rates. So the volume of floodwater entering the coastal plain would be significantly 

underestimated (almost 4 times). Based on the above the coastal manager could select the 

best choice inputs and know the expected variability.

It is important to consider that changes in the profile due to coastal storms do not occur 

only in the visible part of the beach. In some small storms, the major changes take place 

in the submerged part of the beach (inshore). These changes, in the inshore which may 

be considered minimal, can induce changes in the slope, which would affect the attack of 

waves and this change the range of the runup (this calculation is sensible to variation in the 

slope) and therefore cause variations in the final overtopping. 

When the flooded area was determined by the mathematical model, a principal part for 

the final results (as mentioned above in the RSLR discussion) is the selection of the grid 

resolution of the DEM. We selected a high resolution grid, to avoid hide or erase the trace 

of the large number of existing channels and small dykes in our study area. Also a very small 

time step was selected, to avoid instability problems in the mathematical model. Bates 
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(2000, 2003, and 2005), recommends the use of grids of 50 to 100 meters which allow a 

high-speed and low computational cost. Considering the type of terrain where Bates has 

worked, these resolutions are allowed, but in our case the grid size can cause changes in 

three times the flood area.

As mentioned in chapter 5.4.3, the highest affectation for floods are in the habitats such as 

croplands, dunes, lagoons and ripparian buffer. Most of those areas are located near to the 

coast.

This is a usual phenomenon, so the flood in lagoons and ripparian buffer do not produce 

long-term problems for these habitats. As these habitats can resist, or need for their natural 

cycles, a periodic flood.

The cropland is the most affected habitat by the flood given the broad extension. As an 

artificial habitat that depends entirely from man for its maintenance, the resilience which 

can provide to storms is minimal, but also the actions that can take for recovery area could 

be faster (Thus, rice producers wash the rice fields affected by overwash after the storm 

passed with a large amount of fresh water to decrease the salinity of the soil. With this, the 

land is ready again to be used for rice production, (Jimenez et al., 2009)). 

The final result is a range map of flood hazard areas for a given return time. This information 

allows management and planning for the delta area on safety levels, which depends of the 

return time considered. 

The possibility of conducting a cross between scenarios of RSLR and storms was raised, but 

because the area presents a very low-lying coast as seen in chapter 5.3, only considering 

RSLR this area was flooded for any RSLR exceeding 35 cm, so the storms would not affect 

the area. The only possible variation is that in a scenario of permanent inundation,  the 

storms can impact more inward and affect also the flooded area.

When using ecological values or ecological services, it must be considered that the values 

are related to the provision given by the environment. Only if a total loss of the habitat 

exist, could be the proposed value considered as a loss. However, this scale was used for 

measurement since we consider necessary to give a less abstract view of the damage. 



Coastal Flood Hazard Mapping						       Chapter 6 . Discussion

106

If we can account the “losses” in an economy mode, we can give weight to the potential 

damage to the environment, as well as having a way of making comparisons with other 

places. We could compare with the losses in the Ebro Delta by RSLR and say if they are very 

high compared with those given to example in the Mississippi or the Nile. On the other 

hand, if we can apply these weights to the losses by storms, this will help us to compare 

the values that are trying to preserve with the possible actions to prevent their loss (Cost-

Benefit). Also, these values give us the chance to calculate an annual average damage curve 

that indicates the potential damage expected over a year, and is also a useful mean to 

compare the damages between the different scenarios or return periods. 

The cropland is leading by a wide margin the list of economic losses. This is mainly due to 

the high intervention and reliance on the human hand and their low levels of resilience. 

Moreover, habitats in the area, being “native” are able to withstand the storms with a low 

level of damage. The losses due to flooding of the cropland could be considered as tangible 

losses, because its damage or loss is directly associated with losses in rice production. 

There is a need to emphasize that the biggest loss would occur only in the case that the 

storm impact on the coast during a period in which the rice is planted (at present, storms 

usually occur out of the rice season).  

The development of a vulnerability indicator to coastal erosion, help us to establish areas 

along the coast, where erosion due to storms will be able to remove the protection given 

by the beach. 

The loss of the beach protection can result in coastal areas that serve as entry or initiation 

of flooding in backbeach. These areas would be identified by a high or very high level of 

VuCEES.

The inclusion of variation over time within VuCEES gives us the possibility to identify areas 

that can easily lose their protection (for the erosion), and to show more changes in their 

morphology. This information helps us to select the areas that have to be taken into account 

because they can influence the long-term flooding (increase of entry points or starting areas 

of flooding, and therefore an increase in the flooded area).

Determining how the flood varies over time affected by beach erosion is not part of this 

study hence it has been recommended for future works.
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We can establish an approximate relationship between the kilometer of beaches with 

high vulnerability and the total area flooded, thereby increasing the beaches with high to 

very high vulnerability to erosion (this one given in principle by the measured storm), will 

increase the flooded area in the backbeach. When the protection of the coast is reduced 

there are more entry points for overwash, and then more area could be flooded. 
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6.4 Proposed Management on the Delta 

The Spanish Ministry of Environment aims to undertake actions to minimize flooding in the 

coastal zone of the Ebro Delta. It plans the construction of a dyke-wall along the coastal 

zone of the Alfacs Bay, which seeks to prevent or reduce the effects of climate change in 

the area. This barrier does not close completely the communication between the delta and 

bays, because the gateways and channels allow the exchange of water. The proposed dike-

wall would be locate in the shoreline delta and would be six meters wide by two meters 

high, with a pedestrian lane and a bicycle lane. 

The analysis done in this thesis help us to assess the behavior of this area under different 

scenarios and the identification of problems and responses of the coast. First we can 

understand these actions based on the statements of those in charge, as a Hold the line 

(“These works will allow us to preserve the Delta as we know it today,” Jordi Galofre in El 

Pais 2009), that allow continuation of the activities within the delta unchanged. (See also 

figure 6.1) 

In an analysis of the proposal plan, we can say that the construction of a dyke-wall cannot 

serve to prevent flooding in the crop areas surrounding the lagoons, if the channels which 

link the lagoons with the Bays (Alfacs and Fangar) remain open. The flood water does not 

come only from the Bay areas, but also from the channels connected with the sea, for that 

reason it will be advisable to have them under control or closed (figure 6.2). 

Hold the line implies to close the coast and the complete blockade of channels to ensure 

the conservation of the delta as it is known today, and stop the floods by RSLR or storm 

surge, but based on the baselines mentioned above, this is the action which would less 

recommend. 
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Figure 6.1 Dykes project for the Ebro delta. 
From  El  Pais edition of 27/07/2009
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Figure 6.2. Figure 6.2. Flooded areas in a 55cm RSLR scenario, with the dykes schematized in the 

figure above. Changes in the beaches and Trabucador, look increased due to the scale of the figure. 

Flooded areas within the delta are due to the existence of channels that connect with the bays.
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Within this line of thinking, could be recommend the construction of a dyke-wall around 

the lagoons, which allows the communication with the sea, and consequently a healthy 

ecosystem. This kind of dyke allows the coexistence of the lagoons with the cropland and 

would prevent the water to pass in these growing areas (figure 6.3). This plan could keep 

from the flood about 7000 ha of the delta. But can control the salinisation of the delta by salt 

water intrusion, and the rice farming will be eventually become economically unfeasible. 

Figure 6.3. Flooded areas in a 55cm RSLR scenario, with the dykes around the contour of the lagoons, 
and the edge of the delta, as recommended in this work. 
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For the Marquesa area, the proposed dyke would meet its goal to eliminate or reduce flood 

damages. The construction of the dyke should involve a change in the landuse, changing 

the croplands in front of the dyke for natural areas. That means no more losses associated 

to cropland in the backbeach in case of flood. The flood in the backbeach could be confined 

in a more controlled area without risk of damage. As the dyke would prevent flooding of the 

land located at the back, the losses associated with flood would be eliminated (Figure 6.4). 

Figure  6.4.   Flood in La   Marquesa, for a 500 year return period storm,  
considering  the  dykes proposed.
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A methodological framework for Flood Hazard Mapping and Damage Assessment to 

Coastal Storms was proposed in this thesis in two working scales: A long-term scale related 

to Relative Sea-Level Rise, and an episodic/extreme scale related to storm events. The 

incorporation of coastal response to storm events in this framework is a basic part of this 

proposal. This methodological framework was applied on the Delta Ebro.

Below the main conclusions are outlined into two groups, those relating to the proposed 

methodology and those associated with their application in the study area.
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Methodological conclusions 

The morphodynamic response of the coast to storms is a basic component in the Flood 

Hazard Mapping for sandy coasts, or those in which there are no hard protections. Including 

the behavior of the beach is essential for the subsequent calculations such as runup and 

overtopping, enabling a more precise calculation of overwash volumes that can flood the 

backbeach. Taking into account this feature, the calculated flooded area could be larger 

when compared to the one obtained by using other methodologies that consider a static 

beach.

In the cases where this approach cannot be applied, it is suggested then  to use an envelope 

beach, knowing in advance that this approach give as result,  a range of potential flood 

areas. Alternatively, applying the classical methodology, consisting in the use of an average 

beach profile and considering a non response beach, is also plausible. Anyway the variations 

in the results due to the selected approach have to be taken into account, and also their 

associated uncertainty.

When working in an area such as the Ebro Delta a high resolution Digital Elevation Model 

is essential, regardless of the scale of the work. A lower-resolution Digital Elevation Model 

would hide or erase details, which could lead to variations in several orders of magnitude in 

the flood area. As an example, our study area presents a large number of small dykes and 

canals which are associated with agriculture, coupled with the extremely flat topography, 

which could be easily hidden when applying a low resolution DEM.

The use of Response Approach to define the Extreme Climate is recommended. Because its 

formulation minimizes the variations associated with the processes, and generates more 

conservative results towards safety. If an Event method (Joint Probability) is used, it is 

advisable to know the variation associated to the process within these elements, since the 

results produce significant variations.

The use of ecological services help us to evaluate the damage of the coastal flooding. 

These values allow us to give an assessment weight for further evaluation. Is necessary the 

development of the damage curves for the study area.
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Ebro Delta Conclusions 

A low-lying topography makes the Ebro delta a highly sensitive area to Sea Level Rise and 

flooding associated with coastal storms. 

In the case of a Relative Sea Level Rise, a rise of 35 cm in the sea-level can cause a flooding 

of 30% (9,916 ha) of the delta area, and in the most serious case of 75 cm, which could be 

translated in up to 70% (18,837 ha).  

Inundated areas by coastal storms (for the north area of the delta) have variations from 17 

ha for 10 years of return period storm to 475 ha for a 500-year extreme event. These zones 

are usually connected with coastal areas where the protection for the beach is very low or 

zero.  These regions are the most affected for the flood by storms but on the other hand it 

is assumed that almost all habitats (due to its location and characteristics), can deal with 

the flood without problems. 

For the two proposed scales, the habitat with major susceptibility to floods is the cropland 

(from 23% to 53% of their area on RSLR, and more than 400 ha on storm case). In the case of 

Relative Sea Level Rise scenario, this is due to their large extension along the delta whereas 

in the storm floods scenario, this is mainly due to their low resistance compared to other 

habitats, and also to its location near the coast.

The economic losses in the Ebro Delta are associated with crop fields, which may affect 

directly the local economy. Damage to the environment was not taken into account due 

to the fact that the coastal environment can have a high resilience in response to coastal 

events. Due to the lack of damage curves (as it is implemented in other countries) we can 

not make a directly linkage of economic value with the ecological loss.

‘Adaptation’ is considered the best alternative for the delta adjustment. Assuming that 

there is an absence of a contribution of sediment, which helps to alleviate subsidence and 

sea level rise, the Delta Adaptation to future changes has to admit losses in area or changes 

in land use.

There is a need to emphasize that the closing of channels that connect the delta with the 

open sea or bays, reduces significantly the flooded area (more than 30%, in some cases). 

This implies the loss of connectivity of the lagoons and consequently we consider that there 

would be changes in physical and ecological levels, which discourage this type of action.



Coastal Flood Hazard Mapping					               Chapter 7. Conclusions		

118

As a final step, we give the “How to” approach of our framework for Flood Hazard Mapping 

as a DIY (Do it yourself) one. 

• Define the origin of your flood (RSLR, storms) 

• Obtain sea level corresponding to the selected scale.

   In the case of RSLR: Relative sea level rise over time.

   In the case of storm: storm climate defined based on sea levels (swell, storm surge, tides,    

   etc)

• In the case of a storm event, determine the morphodynamic response of the beach to the

   selected events

• Calculate the water volumes that can flood your area (storm case). 

• Select a DEM with high resolution.

• Map the floods in the area with the help of GIS or numerical models

• Calculate losses and damages 

• Elaborate flood maps 

• Have a feedback of the information with the stakeholders 
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ABSTRACT

The main aim of this work is to present a methodology developed to take into account the 
intrinsic dynamic nature of coastal sedimentary areas in flood hazard mapping. It consists in 
incorporating morphodynamics into the hazard assessment and how this hazard varies with time, 
i.e. coastal response during the flood event. The methodology is applied to the Ebro delta to 
estimate the range of water volumes potentially able to inundate the hinterland during the impact 
of a storm. In addition to this, flood hazard areas due to RSLR are also delineated. 

FLOOD HAZARD MAPPING, INUNDATION, DIGITAL ELEVATION MODEL, COASTAL 
HAZARDS. 

INTRODUCTION

Flood risk management is a critical issue for public security and quality of life in coastal low-
lying areas. Due to this, most of nations have launched programmes for identifying flood prone 
areas and, following well-defined procedures produce hazard maps (e.g. DEFRA, 2001; FEMA, 
2003). This is used to define protection needs and to take decisions and it serves to facilitate 
planning and prevention efforts as well as to reduce loss of life and property. 

Flooding in coastal areas can be analysed at different time scales. At the long-term scale, coastal 
flooding should be mainly driven by sea level rise and the delineation of hazard areas is simply 
done by identifying areas connected with the sea below the targeted water level.

At the short-term scale, coastal flooding will result from the action of a transient driving agent, 
“the storm” normally defined in terms of a storm surge plus storm waves on a coastal stretch 
defined in terms of elevation. In coastal sedimentary environments, the impact of the storm will 
induce a significant coastal response that will interact with the storm in such a way that the 
intensity of the flooding could be affected (enhanced or reducing). Under these conditions, not 
only the flooding is relevant for the manager but also the storm-induced response due to its 
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intrinsic associated damage (coastal erosion hazard) and its potential synergic effect with coastal 
flooding.

The main aim of this work is to present a methodology developed to take into account the 
intrinsic dynamic nature of coastal sedimentary areas in flood hazard mapping. It consists in 
incorporating morphodynamics into the hazard assessment and how this hazard varies with time, 
i.e. coastal response during the flood event. Thus, in some cases, this morphodynamic response 
will “enhance” the susceptibility of the area, and in other cases, it should mitigate the damages, 
in comparison with fixed coastal dikes and revetments for long-term flood hazard estimations.  

Different methods for incorporating the coastal response associated to impact of storms will be 
analysed and compared by applying them to one low-lying stretch of the Catalan coast where a 
high-precision DEM exists and where the coastal morphodynamic response is well characterised.  

AREA OF STUDY 

The Ebro delta is located on the Spanish Mediterranean coast about 200 km southward of 
Barcelona. It has an approximate subaerial surface of 320 km2 and a coastline length of about 50 
km including the inner coast in the two main lagoons (Figure 1). It includes a Natural Park of 
7,802 ha giving administrative protection to the areas of highest environmental value, including 
habitats like freshwater, brackish and saline lagoons, salt marshes and coastal and small dune 
sandy areas. At the same time, it is actively exploited by means of agriculture, mainly for rice 
production (about 66% of the total subaerial surface is devoted to rice production). The 
population is about 50,000 inhabitants, including people living in the delta itself and people with 
a direct economic dependence on it.  

At the long-term scale, the Ebro delta has been identified as a highly vulnerable environment 
(e.g. Sánchez-Arcilla et al., 1998). Although pristine deltas (without any human interference) can 
cope with RSLR because the deltaic plain should be able to vertically accrete, deltas where 
human action has led to a decrease of riverine sediment supplies cannot as it is the case of the 
Ebro delta (Jiménez and Sánchez-Arcilla, 1993; Guillén and Palanques, 1998). 

Medium-term coastal processes are associated with changes at a temporal scale of several years 
and a spatial scale of several km. At this scale, most of the observed changes have been related 
with the net longshore sediment transport processes and correspond to a coastal reshaping in 
which eroding stretches are feeding accreting ones (Jiménez and Sánchez-Arcilla, 1993).  

Finally, episodic events are associated with hydrodynamic processes with a long return period, 
unknown periodicity and a spatial scale defined by the length of the coastal response. The main 
“driving” agent for these events is the presence of very energetic sea states, generally 
characterised by the coexistence of storm surges and storm waves, which in the Ebro delta coast 
usually occur due to the passage of low pressure systems off the delta inducing eastern wave 
storms (Jimenez et al. 1997). Although the entire deltaic coast is subjected to the action of such 
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events, the more vulnerable stretches are those with a narrow emerged beach and fronted by a 
“low-crested” bar or bar system. The most vulnerable areas are: (i) Illa de Buda at the central 
lobe; (ii) Trabucador beach at the Southern hemidelta and (iii) Marquesa beach at the Northern 
hemidelta (see e.g. Sánchez-Arcilla et al., 1998). 

Figure 1. The Ebro delta. 

Main data used in this study consisted in a DEM of the Ebro delta build from topography 
obtained with an airborne scanning lidar by the Institut Cartogràfic de Catalunya. In addition to 
this, a set of coastal profiles taken along the delta during a period of four years were used to 
characterize beach profile temporal variability. Finally, data to characterize storm action were 
obtained by a directional wave buoy off the Ebro delta at 50 m depth. 

EVALUATION OF INUNDATED AREAS 

Two different inundation scenarios are considered in this analysis. The first scenario is given by 
a steady increase in the water level. This should correspond to flooding due to relative sea level 
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rise and it will verify for a water level surged with respect to the actual one with time enough to 
inundate all the areas directly connected to the sea below that level. Within this scenario we have 
to consider that sandy coastlines exposed to wave action will response following a Bruun’s rule-
like response, i.e. the will move upwards and landwards following sea level. As a consequence 
of this, if the main barrier protecting the hinterland is given by the beach, its elevation will be the 
same with respect to the mean water level although it will be landward of the actual position 
after sea level rise. This will only occur in dynamically active (sandy rich) areas where no fixed 
inner boundaries (seawall, levees, etc) do exist.

The second scenario is given by the inundation produced by the temporary increase of the water 
level during the impact of a storm. Here, the water level will vary with time because it will be 
controlled by the storm surge plus the induced wave run-up during the storm duration. Thus, to 
estimate the induced coastal inundation a different approach must be followed. In this case, first 
we evaluate the water discharge above the beach during the storm duration. After that, the so-
estimated “flooding” water volume has to be distributed in the hinterland taking into account the 
actual topography and considering existing barriers (levees, roads, etc.).  

INUNDATION DUE TO RSLR 

As it was previously mentioned, processes acting at the long-term scale will mainly affect to the 
deltaic dynamics in the vertical dimension, i.e. the relative elevation of the deltaic body with 
respect to the sea level. This has very important implications for a low-lying coastal 
environment, especially in a scenario of rising sea level because the only way to avoid direct 
inundation by the sea is the vertical accretion of the deltaic plain. 

Due to the absence of sediment supplies to the deltaic plain, no vertical accretion is taking place 
and, as a consequence, RSLR (due to the combined action of subsidence and eustatic sea level 
rise) will increase the probability of flooding of low-lying areas, specially those directly 
connected to the sea or where a “passive” coastal fringe exists. In the Ebro delta, “passive” 
stretches are the inner coasts in the two main lagoons where no energetic driving agents are 
acting nor there is any significant sand stock (and the available one has a large percentage in 
very fine sediment). 

To give an idea of the potential vulnerability of the Ebro delta to RSLR, figure 2 shows the 
hazard areas to inundation for two scenarios, 0.25 m and 0.50 m. The areas potentially able to be 
inundated for such levels were estimated taking into account the role of hinterland structures -
such as levees, dikes and roads- in preventing flooding in impounded areas. Areas below the 
targeted water levels but not directly connected to the sea have not been considered as hazard 
zones. In some cases, some of these areas could be classified as potentially vulnerable to 
inundation if we include the response to storms, specially in those cases where the coast has been 
previously breached. 
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Thus, the flood hazard area to a RSLR of 0.25 m has been estimated in 6,600 ha, that increases 
up to 14000 ha for a RSLR of 0.5 m. These two scenarios correspond to approximately 21 % and 
44 % of the deltaic surface. This only includes areas to be inundated because they are directly 
connected to the sea. Other deltaic areas below targeted water level but not directly connected to 
the sae will be affected by other processes such as an increase in salt content in the soil and 
water.

Figure 2. Flood hazard areas (blue)  to RSLR of 0.25 m (left) and 0.5 m (right) at the Ebro delta. 

INUNDATION DURING STORMS 

As it was previously mentioned, during the impact of a storm in low-lying coastal areas, the 
hinterland will be inundated if water level during storm exceeds the elevation of the beach or 
dune crest protecting it. To properly evaluate the inundation under this scenario we have to 
consider that the system will respond to storm action in such a way that not only water level will 
change during the storm but also the beach morphology. 

The induced change in beach morphology, i.e. beach lowering (decrease in the beach or dune 
height) and profile flattening (decrease in the beach slope) will affect the magnitude of the 
inundation in opposite terms when they are separately considered (see e.g. Jiménez et al., 2006). 
Thus, beach lowering will tend to increase the water discharge towards the hinterland because 
for a given water level the lowering of the beach/dune height will increase the freeboard. On the 
other hand, profile flattening will tend to reduce inundation because for given wave 
characteristics during the induced run-up will decrease due to the decrease in beach slope. The 
dominant effect (inundation increase or decrease) will depend on the type and magnitude of 
beach changes during the storm. 
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To take into account these effects on the potential inundation we consider three different 
approaches:

no beach response, 
known beach variability, 
simulation of storm-induced beach profile response. 

The first approach is the simplest one and the coastal inundation due to the impact of a storm is 
calculated by using the existing pre-storm beach morphology. In the most usual case, the used 
beach morphology does not necessarily correspond to real pre-storm conditions but should 
correspond to the existing one (whenever they have been obtained). Once the beach morphology 
is fixed, wave run-up is estimated and added to the storm surge (if any) to define the maximum 
total water level during the storm. From this, the water discharge is calculated for the period 
during which water level exceeds the beach/dune height. 

The second approach introduces part of the natural beach variability. It can be used only when 
information about past beach morphology changes in the area do exist. First, for each profile or 
location along the coast, the envelope of changes at seasonal/yearly scale is obtained. From this, 
minimum and maximum beach elevations and associated local beach slope changes are obtained. 
These values are finally used to calculate the range of induced runups (determined by the slope 
changes) and water discharges towards the hinterland (determined by water levels and beach 
heights). As a consequence, the final result following this approach should be a range of 
potential discharges instead of a unique value as in the previous case. This approach is useful 
when we do not know the actual pre-storm topography but we have older beach data. 
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Figure 3. Beach profile envelope showing the temporal variability in a 4 years-period in  
the Marquesa beach. 
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As an example, Figure 3 shows the observed variability in one profile in the Marquesa beach 
(see location in Figure 1) during a period of four years. The beach height obtained from data 
varies between 0.7 m and 1.5 m without considering breaching events during storms and, this 
means that the estimated freeboard during a given storm could vary up to 0.8 m only due to the 
“natural variability of the profile”. This difference will have important consequences in the 
estimation of the volume of water flooding the hinterland during the storm duration as well as in 
the frequency of inundation. Figure 4 shows the return period associated to the wave-induced 
inundation (given by the exceedence of the beach level by the wave run-up) for beach profile 
shown in figure 3 for the case of considering as the pre-storm beach the maximum or the mean 
recorded profiles. As it can be seen, for the same wave climate, the inundation return period can 
vary between 8.5 and 2.5 years depending on the used pre-storm conditions.   
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Figure 4. Estimated variability in wave-induced inundation return period for maximum (red line) and 
mean (blue line) beach profiles in the Marquesa beach (Figure 3). 

Finally, the third approach consists in simulate the beach profile response during the storm and to 
update the induced run-up and water discharge following calculated changes in beach slope and 
height. This has been done using the Sbeach model to simulate storm-induced beach profile 
changes (Larson and Kraus, 1989; Wise et al., 1996). As an example, figure 5 shows the 
simulated changes for a profile in La Marquesa beach, where a significant lowering of the beach 
is observed. However, beach slope during the storm did not change too much to affect wave run-
up. The consequences of taking into consideration these changes can be seen in figure 6. Thus, 
when the induced beach changes during the storm are incorporated, the time period during which 
the beach is overwashed increased and, as a consequence, the volume of water discharging in the 
hinterland also significantly increases.
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Figure 5. Simulated beach profile changes under storm impact in the Marquesa beach.
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Figure 6. Periods with water level exceeding local beach elevation during a storm for fixed (left) and 
evolving (right) beach profiles.

To analyse the importance of storm-induced inundation, the three methodologies were applied to 
calculate the flooding induced by the largest recorded storm (November 2001) along the 
Marquesa beach (Figure 7). Results are summarised in Table 1 where the estimated water flow 
towards the hinterland has been calculated by estimating the induced wave runup during the 
storm by using the Stockdon et al. (2006) formula and the overtopping rates (water volumes 
towards the hinterland) are calculated following the method proposed by Fema (2005). 
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Figure 7. Overwash deposits along the Marquesa beach after the storm of November 2001. 

Table 1. Calculated overtopping rates during the storm of November 2001 along the Marquesa beach 
(peak: at the storm peak, mean: storm-averaged, int: integrated during the storm duration). 

Q peak (m3/m/s) Q mean (m3/m/s) Q int (m3/m) Profile 31 
Method 1 
No response 0.199 0.005 127.14
Method 2 
Known 0.034 (min prof) 0.109 (min prof) 280.04 (min prof) 
Beach variability 0.199 (max prof) 0.005 (max prof) 127.14 (max prof) 
Method 3 
Simulated response 0.34 0.0109 280.052

Q peak (m3/m/s) Q mean (m3/m/s) Q int (m3/m) Profile 33 
Method 1 
No response 0.005 0.00037 9.38
Method 2 
Known 0.01 (min prof) 0.00092 (min prof) 23.7 (min prof) 
Beach variability 0.05(max prof) 0.00035 (max prof) 8.99 (max prof) 
Method 3 
Simulated response 0.005 0.00035 8.99

It has to be stressed that results showed in table 1 are affected not only by the variability 
introduced by considering the response of a given stretch to the storm but also by the spatial 
variability in the response along the coast. Integrated water volumes have been calculated by 
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estimating the beach freeboard variation during the storm (due to changes in wave conditions and 
beach elevation, when applicable) and applying it to the 2 % of the time because run-up 
estimates are R2%. These water volumes will mainly inundate the areas closest to the shoreline 
and constrained by levees or roads delineating the outer row of rice fields. 

As it can be seen in table 1 the aplication of the different methods result in overtopping rates 
varing in one order of magnitude. When integrated during the storm duration this results in water 
volumes that can vary abot 40%. Moreover when this is applied to different areas (profile 31 and 
33 in table 1 are separated about 3 km.) they are able to cath the spatial  variability in the 
response to storms and associated inundation 
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Flood hazard mapping for coastal storms in the Delta Ebro

D. Alvarado-Aguilar & J.A. Jiménez
Laboratori d’Enginyeria Marítima, ETSECCPB, Universitat Politécnica de Catalunya, Barcelona, Spain

ABSTRACT: Flood hazard mapping is a critical issue in coastal low-lying areas due to its intrinsic sensitivity 
to the impact of extreme storms. The estimation of the beach response during the event is a key point, not only 
to calculate the induced erosion, but to properly evaluate flood hazard areas since the magnitude of the flooding 
can be affected by a morphodynamic feedback. Here, we present a methodology to delimit the uncertainty in 
flood hazard mapping associated to natural beach morphodynamics. This methodology has been tested in the 
Ebro delta coast for the impact of a storm with a Tr of about 100 years. Results showed that the selection of a 
given initial beach profile, from the different recorded ones, can result in variations of durations of overtop-
ping events of about 300%, which area amplified for overtopping rates. Along the study area, the uncertainty 
introduced due to the use of a single representative profile for the entire coast is much lower than the associated 
to the selection of the beach profile shape. Finally, when the beach evolution during the storm is included, the 
volume of floodwater entering the coastal plain is significantly larger than for any of the tested static scenarios. 
This means that any flood hazard mapping in sedimentary coastal environments without including the beach 
response will significantly underestimate the hazard area. 

1 INTRODUCTION

Flooding in coastal areas will result from the combi-
nation of a driving agent, the storm, normally defined 
in terms of a water level -storm surge plus wave 
induced runup- acting on a receptor, the coast, which 
is mainly defined in terms of elevation. However, in 
sedimentary environments, the impact of the storm 
will produce a significant morphodynamic response 
that will interact with the storm and should affect the 
intensity of the flooding (enhancing or reducing). 

When this is applied to low-lying areas, as deltaic 
coasts are, the estimation of this interaction is crucial 
due to the expected magnitude of the induced impacts 
in these environments. Thus, these areas are charac-
terized by a very low relief, and consequently easily 
to be flooded, and “protected” from the sea by sandy 
beaches and barriers which freely respond to storm 
action and, in consequence, easily to be modified.

A review of the potential factors influencing the 
response of low-lying coasts to storms can be seen 
in Morton (2002). Although the number of factors 
is relatively large, a conclusion of such study is that 
the most important variables controlling the coastal 
response are the difference in elevation between the 
water level during the storm and the beach/barrier/ 
dune crest and the duration of the flooding. This is 

common in most of studies of the response of low-
lying coasts to extreme storms and, in fact, Sallenger 
(2000) proposed a hazard scale for barrier islands (that 
can be considered a paradigm of sensitive low-lying 
coasts) based in the ratio of run-up to barrier height. 
This has also been included in most of the existing 
studies in overwash and breaching under storms (e.g. 
Larson et al., 2005; Donnelly et al., 2006; Jiménez 
et al., 2006).

During these events, main induced changes in 
the beach profile morphology –without considering 
the retreat itself- can be simplified in terms of low-
ering (decrease in the beach height) and flattening 
(decrease in the beach slope). These two morphologi-
cal changes will induce a morphodynamic feedback 
with acting processes. As an example, the magnitude 
of the induced inundation should be affected in oppo-
site terms when they are separately considered (see 
e.g. Jiménez et al., 2006). On the one hand, beach 
lowering will tend to increase the water discharge 
towards the hinterland because for a given water level 
the lowering of the beach/dune height will increase 
the freeboard. On the other hand, the profile flatten-
ing will tend to reduce inundation because for a given 
set of wave characteristics, the induced run-up will 
decrease due to the decrease in the beach slope. The 
resulting effect (inundation increase or decrease) will 
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depend on the type and magnitude of beach changes 
during the storm.

With these antecedents, it is clear that the estima-
tion of the beach morphodynamic response during the 
storm is a key point not only to calculate the induced 
erosion, but to properly evaluate flood hazard areas.

This is especially relevant in non-protected coasts 
where the main barrier to flooding is the beach itself 
which can hardly be considered as a rigid boundary. 
Thus, if we are going to predict the flood hazard area in 
a costal stretch associated to the impact of a given storm, 
one of the key points we have to face off is to select 
which should be the pre-storm coastal morphology. 
Moreover, once we have solved this question, the next 
question is what will happen during the event. 

Within this context, the main aim of this paper is 
to analyze the influence of the inclusion of the natural 
variability of beach morphology in coastal flood hazard 
mapping in non-protected areas. First we present the 
developed methodology to bound the uncertainty in the 
extension of the flooded area induced by the definition 
of the beach, which should be the element protecting 
the hinterland from floodwaters. Second, the method-
ology is applied to map flood hazard areas in the Ebro 
delta under the impact of extreme coastal storm.

2 METHODOLOGY

The methodology used in this work is outlined in 
figure 1. 

2.1 Forcing

The first step consists in the estimation of a total 
water level at the shoreline. This is done by using the 
response-method approach, which is based directly 
on measured or simulated water levels and waves as 
they occurred in nature and, the water level of inter-
est (associated to a given probability or return period) 
is directly calculated from a probability distribution 
of total water levels. This method is specially recom-
mended when variables determining the flood level 
are partially correlated, i.e. when surge and large 
waves are uncoupled and, for areas where wave height 
and periods during storms (both will determine the 
wave run-up) are poorly correlated (see e.g. Divoky 
and McDougal, 2006; Fassardi, 2006).

Since our analysis is done in a coast without any 
protection but natural beaches, the run-up model 
proposed by Stockdon et al (2006) has been selected. 
This was due to the fact that this formula was derived 
by using run-up data obtained in field and large scale 
experiments in beaches. The run-up (R2%) is calculated 
for each beach profile scenario (according to each 
beach profile definition method, see below), with dif-
ferences in run-up magnitude being controlled by the 

use of a different beach slope since wave conditions 
are the same in all the cases. Obtained values are then 
added to simultaneous water level data (ζm) to build 
the total water level time series (ζt).

Total water level data are then fitted to an extreme 
distribution to estimate the water level associated to 
given probabilities or return periods.

Once the target total water level has been esti-
mated, the following step is to calculate overtopping 
rates (Q) for those cases where the run-up exceeds the 
beach/barrier crest. This will determine the volume of 
floodwater penetrating to the hinterland and, in conse-
quence, determining the extension of the flood hazard 
area. The overtopping volume has been calculated fol-
lowing the method used by Fema (2003) to estimate the 
inundation in low-lying coasts. In essence the method 
estimates the mean overtopping rate for smooth slopes 
based on the former works of Owen (1980).

2.2 Beach configuration

A critical issue to map coastal areas prone to be inun-
dated during storms is how to properly characterize 
the beach configuration. Beach configuration takes 
part in the process by controlling the magnitude of 
the run-up (via beach slope) and, by controlling the 
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Figure 1. Outline of used methodology for coastal flood 
hazard mapping.
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overtopping (via beach/dune crest height). Thus, in 
contrary to the quasi-static case of dikes, beaches 
are continuously reacting to coastal dynamics and, 
especially during the impact of storms, they are sig-
nificantly modified. This means that to properly map 
coastal flood hazard areas beach dynamics have to be 
incorporated to the analysis.

In this work, we have tested three different 
approaches to define the beach configuration during 
the storm impact on the inundation of the hinterland 
already outlined in Alvarado and Jiménez (2007). 

The first approach uses a fixed beach profile. This 
should be equivalent to the case in which the only data 
available should be a pre-storm coastal configuration 
(taken at any moment and not necessarily just before 
the impact). This beach morphology is used through-
out the analysis and this means that run-up will be 
controlled by the corresponding beach slope and the 
overtopping by the beach/dune crest which are main-
tained fixed during the storm duration. This type of 
the approach is equivalent to consider the beach as 
fixed protecting structure.

The second approach introduces some informa-
tion on the natural beach variability. In essence in this 
approach the beach is characterized by an envelope of 
the possible configurations instead of a single value. 
It can only be used when information about past 
beach morphologies are available. Thus, for each rep-
resentative transect along the coast, the morphology 
is represented by the envelope of all the existing data 
(ideally covering a period of several climatic periods 
and, thus, showing the natural changes in the beach 
morphology to wave action). This will permit to esti-
mate all the relevant variables (run-up and overtop-
ping) for the different configurations—bounded by 
the maximum and minimum profiles –. This should 
be equivalent to add some kind of confidence band to 
the calculated floodwater and, in consequence, to the 
potentially flooded surface.

Figure 2 shows an example of beach profile enve-
lope used in this study obtained from 4 years of beach 
profile data where a significant variation in the beach 
configuration is observed. 

The third approach to describe the beach morphol-
ogy consists in simulating the beach profile response 
during the storm action recovering all the intermedi-
ate configurations from the pre-storm situation to the 
post-storm one. These intermediate configurations 
will permit to update the wave-induced run-up and 
overtopping rates according to the time-dependent 
beach slope and crest height. 

Beach profile evolution during the storm has been 
calculated by using the SBEACH model (Larson and 
Kraus, 1989; Wise et al., 1996). This model has been 
previously used to simulate the dune lowering before 
the inundation of the hinterland during the impact of 
extreme storms (see e.g. Cañizares and Irish, 2008). 

The model is applied to selected profiles taken a 
long the outer coast of the Ebro delta and, it is assumed 
that they are representative of the coastal response 
along a given stretch (alongshore uniform stretches).

The model simulates the beach profile response 
due to storm wave action by assuming sediment trans-
port is due to cross-shore processes only.  

An example of the application of the model to 
simulate beach profile changes is shown in figure 3. 
As it can be seen, if the beach evolution during the 
storm is incorporated, there is a significant difference 
in beach morphology –a decrease in beach height of 
about 1 m-. If this knowledge is incorporated to the 
flood mapping, results significantly vary with respect 
to those obtained for the initial configuration. 

2.3 Inundation

Finally, once water levels and beach configurations 
are known, the last step is to determine which part of 
the coastal plain is flooded. 

To calculate the potential flood zone we used the 
LISFLOOD-FP inundation model (Bates and de Roo, 
2000). This is a raster grid based model that has been 
successfully employed to simulate the inundation in 
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Figure 2. Envelope of beach profiles taken during a 4 years 
period in the Northern part of the Ebro delta.
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fluvial and coastal areas (see e.g. Bates and De Roo, 
2000; Bates et al., 2005). The model predicts water 
depths in each grid cell at each time step, and hence 
can simulate the dynamic propagation of flood waves 
over fluvial, coastal and estuarine floodplains. In our 
analysis we specify the data input as a time series of 
water flow at the shoreline bordering the deltaic plain 
(calculated through the overtopping rates). 

3 AREA OF STUDY AND DATA

The Ebro delta is located in the Spanish Mediterra-
nean coast about 200 km southward of Barcelona. 
It has an approximate sub-aerial surface of 320 km2 
and a coastline length of about 50 km excluding the 
inner coast in the two semi-enclosed bays (Figure 4). 
It is microtidal environment with astronomical tidal 
range of about 25 cm although storm surges clearly 
exceeding such magnitude are not infrequent in the 
area (Jiménez et al., 1997).  As many other deltas, it is 
an ecologically rich environment, with areas of high-
est interest habitats being composed by freshwater, 
brackish and saline lagoons, salt marshes and coastal 
and small dune sandy areas. At the same time, it is 
actively exploited by means of agriculture; mainly for 
rice production (about 66% of the total sub-aerial sur-
face is devoted to rice production).

This is a very low-lying area with a maximum 
elevation above the MSL of about 4 m. Table 1 shows 
the percentage of the delta surface below given ele-
vations. These data clearly show that the system is 
potentially highly vulnerable to floods since about 
49% is below an elevation of +0.5 m.    

These figures were calculated from a DEM of the 
Ebro delta derived from LIDAR data obtained by the 
Institut Cartogràfic de Catalunya. The data used in 
this study has a spatial resolution of 1 m and a verti-
cal accuracy of 15 cm acquired the year 2004. 

To simulate the inundation of the delta at a reason-
able computational cost, the DEM was aggregated to 
10 m resolution. This size was selected after testing the 
effects of the cell size in masking the effects of the pres-
ence of canals and small dikes separating rice pads.

In addition to this, a database of beach profiles was 
also available. It is composed by a series of profiles 
taken during 4 years at a spatial interval of 1–1.5 km 
along the coast. Although beach profiles were not 
taken simultaneously to the DEM, they can be used 
to characterize the beach profile temporal variabil-
ity along the coast. Moreover, since the deltaic plain 
dynamics is much slower than beach dynamics (and 
especially in this case because it is highly regulated 
by human action) both datasets were integrated to get 
a “dynamic boundary” of the Ebro delta. Thus, the 
DEM is used to characterize all the elevations along 
the deltaic surface and the beach profiles are used to 

estimate the flooding of the area as it is described in 
the methodology.

Finally, to characterize the forcing, different data 
sets have been used: (i) a 17 years long wave time 
series recorded by a directional wave buoy at 50 m 
depth off Cap Tortosa since 1990; (ii) a 43 years (1958–
2001) long time series of hindcasted wave conditions 

Table 1. Distribution of deltaic surface per elevations.

Elevation
 Surface

(m ab MSL) (ha) (%)

<0.5 16,296 49.09
0.5–1.0 7,539 22.71
1.0–2.0 5,968 17.98
2.0–3.0 2,495 7.52
3.0–4.0 754 2.27
>4.0 141 0.42

Figure 4. The Ebro delta. The rectangle indicates the area 
for flood hazard mapping and points indicate profile loca-
tions (see figure 9).
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Figure 5. Wave conditions during the target storm recorded 
by a wave buoy off the Ebro delta (adapted from Jiménez 
et al., 2005).
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obtained within the framework of the Hipocas project 
(Guedes Soares et al., 2002). 

The selected event to test the described methodol-
ogy was the one associated to a return period of about 
100 years. This was selected because it is extreme 
enough to produce a significant flooding on the one 
hand and, because we have a detailed record of a 
storm of such characteristics on the other hand. This 
storm was recorded in November 2001 (figure 5) and 
produced a significant erosion and inundation along 
the Ebro delta coast (see Jiménez et al. 2005; 2008). 

4 RESULTS AND DISCUSSION 

4.1 Scenarios for the analysis 

Here, we have restricted the analysis to the simula-
tion of flooding of the northern part of the Ebro delta, 
which is one of the most sensitive areas to the impact 
of storms and that “frequently” experiences tempo-
rary inundation of the deltaic plain (Jiménez et al, 
2005; 2008). Also, since the main objective of the 
paper is to test the methodology, we have spatially 
restricted the analysis to reduce the computational 
cost and we have concentrated in an area where we 
observed significant overwash during the simulated 
storm (Jiménez et al. 2005, 2008) (see figure 6).

Along this coastal stretch we have information on 
the natural variability of four representative beach 
profiles. The available data cover the evolution of 
these four profiles (named as 31 to 34 from south to 
north, see locations in figure 4) during four years dur-
ing which a “significant storm (return period of about 
10 years) impacted the coast.    

The first task was to obtain for each beach profile 
three representative states: mean, maximum and mini-
mum. These states will be hereinafter called as profile 
scenarios and they have been obtained by statistical 
analysis of all the existing data for each profile. Thus, 

the mean corresponds to a simple averaging of all 
the existing data of a given profile; the maximum is 
a hypothetical configuration given by the upper limit 
of the envelope of all the data of the corresponding 
profile and minimum is the hypothetical configura-
tion given by the lower limit of the envelope. These 
three scenarios will be used to test the influence of 
the beach morphology on the different parameters 
controlling flooding. 

4.2 Floodwater

Once we have the different scenarios defined in terms 
of beach profile configurations, first we estimate the 
variation in the period of beach overtopping during 
the storm due to the definition of pre-storm beach 
morphology. Table 2 shows the obtained exceedence 
times along the coast defined as the storm time period 
during which the total water level (here limited to the 
wave run-up, R2%) exceeded the beach height. 

The first aspect to be highlighted is that, for all 
locations along the coast (specified by profile names), 
there is a very significant variation in the duration of 
overtopping conditions.

Thus, by measuring the differences in overtopping 
conditions in terms of a pseudo-coefficient of varia-
tion ([Tmax-Tmin]100/Tmean), we find that the uncer-
tainty introduced in the flood analysis (only referred 
to the duration of overtopping conditions) should vary 
from a minimum value of 117% (profile 33) up to 
maximum of 395% (profile 31). Taking into account 
that this time duration is a critical issue to calculate 
the total volume of water entering to the hinterland, it 
is evident the impact that the proper selection of the 
pre-storm profile will have in the final results.

These calculated variations are strongly depend-
ent on the natural profile variability, decreasing in 
importance for low- response coasts. However, low-
lying sandy coasts, as the one studied here, are highly 
dynamic environments and, in consequence, although 
obtained values are strictly valid for analyzed condi-
tions; they can be used as an order-of-magnitude of 
the expected variations. 

Figure 6. Northern part of the Ebro delta coast (La Marquesa 
beach) just after the impact of the storm of November, 2001.

Table 2. Periods of effective beach overtopping (R2% > 
beach height) for the different profile scenarios along the 
Northern part of the Ebro delta coast.

 Max Min Mean
Profile (hours) (hours) (hours)

31 10 160 38
32 29 114 69
33 29 111 70
34 29 160 100
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Finally, with respect to the spatial variations along 
the studied coastal stretch, obtained results show 
a relatively low variability. Thus, obtained coef-
ficients of variation for each scenario range from a 
minimum value of 20.1% for the worst scenario (pro-
files defined with the minimum shape) to 39.2 % for 
the safest one (profiles defined with the maximum 
shape). This should indicate that the morphological 
consequences of coastal dynamics on beach configu-
ration are relatively alongshore uniform, especially 
when high energetic events (those determining the 
minimum profile scenario) are considered.

Moreover, these results should also indicate that 
the uncertainty introduced in the analysis due to the 
use of a single profile to represent the entire coastal 
stretch should be much lower than the associated to 
the selection of the configuration of such profile.

Once the duration of overtopping events was deter-
mined, the next step was to compare the magnitude 
of such events. Table 3 and figure 7 show calculated 
mean overtopping rates (averaged during the duration 
of the storm) for each profile scenario.

Obtained results show a similar behavior to the 
calculated for the overtopping periods. Thus, when 
different profile scenarios are compared, a large vari-

ability is again detected, with the pseudo coefficient 
of variation ranging from a minimum value of 115% 
(profile 33) to a maximum of 1,355% (profile 31). 
This huge increase in the variation for profile 31 is 
due to the dependence of the overtopping formula on 
the beach height (freeboard). Because the worst sce-
nario (minimum configuration) for profile 31 corre-
sponds to a really eroded and low profile, overtopping 
rates dramatically increase.

This should indicate that the above estimated uncer-
tainty for the overtopping period could be amplified 
when converted to volume of floodwaters.

When mean overtopping rates are compared along 
the coast for a given scenario, they also show a simi-
lar behavior than the observed for overtopping peri-
ods, i.e. a much lower variability than the observed 
as a function of the profile configuration. Thus, cal-
culated coefficients of variation are of the same order 
of magnitude with a minimum value of 33.31% to a 
maximum one of 78.86%. Again, there is an increase 
for the worst scenario (minimum profile) due to the 
already mentioned sensitivity of the overtopping for-
mula to beach height.

In practical terms, these results show that, simi-
larly to the case of overtopping periods, the uncer-
tainty introduced in the analysis due to the use of a 
single representative profile for the entire coast will 
be much lower than the associated to the selection of 
the beach profile shape. Moreover, it has also to be 
stressed than for the same conditions, the uncertainty 
in overtopping rates will be larger than in the period 
of exceedence for overtopping.  

Once we have determined the range of variation 
for the different scenarios, a remaining question is 
what beach morphology must be used throughout in 
the flooding analysis?

Although previous results serve to delimit the 
uncertainty of the analysis, it is clear that whatever 
the selected beach configuration should be, it will 
change during the event. 

As a final test, we have evaluated the previous 
two variables (period of exceedence for overtop-
ping and overtopping rates) for one location along 
the coast (profile 32) including the simulated beach 
response during the event (table 4). In addition to the 
mean overtopping rates (averaged during the event), 
we have included also the peak discharge during the 
event. 

As it can be seen and as it was expected, the inclu-
sion of the beach evolution during the event results 
in an increase of overtopping rates. The magnitude 
of the calculated increase is about 1.7 times the cal-
culated for the previously defined as the worst sce-
nario (minimum configuration). This means that 
even selecting the worst scenario for static-oriented 
(fixed beach profile) flood hazard mapping in low-
lying coasts, the volume of floodwater entering the 

Table 3. Mean overtopping rates (averaged along the storm 
duration) estimated for the three beach profile configura-
tions in the Northern part of the Ebro delta coast.

 Max Min Mean
 Q Q Q
Profile (10−3 m3/m/s) (10−3 m3/m/s) (10−3 m3/m/s)

31 0.292 14.356 1.038
32 0.733 3.947 1.978
33 0.853 2.918 1.796
34 0.811 5.345 2.506
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beach profiles
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Figure 7. Mean overtopping rates (averaged along the 
storm duration) estimated for the three beach profile con-
figurations in the Northern part of the Ebro delta coast.
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coastal plain would be significantly underestimated. 
This is illustrated in figure 8 through the comparison 
of the run-up during the storm (assuming beach slope 
changes are small enough to modify it) with the beach 
height for the static approach (a given profile main-
tained fixed throughout the analysis) and the dynamic 
one (simulated beach evolution).

4.3 Inundation

Once floodwater at the shoreline was estimated for the 
different scenarios, the remaining step was to deline-
ate the part of the deltaic plain prone to be flooded 
during the event.

The first practical task was to extend along the 
coast the calculations done for representative pro-
files. To do this and according to the existing informa-
tion, we have assumed the existence of an alongshore 
uniformity in morphology and response. Thus, each 
profile is considered to be representative of a coastal 
stretch of about 1 km. With this assumption, the total 
floodwater entering the hinterland across the beach 
will be the overtopping rates estimated for a given 
profile extended along the corresponding stretch. 
Although there are morphological evidences of 
alongshore uniform response of the study area under 

the impact of extreme storms (Jiménez et al., 2008), 
this introduces some uncertainty in the final exten-
sion of the flooded area. This is inherent to coastal 
flood analysis in sedimentary environments (coasts 
naturally protected by natural beaches/barriers) since 
(accurate) morphodynamic modeling of overwash 
and breaching processes is still an open question 
(e.g. Kraus and Hayashi, 2005; Tuan et al., 2008; 
Cañizares and Irish, 2008).

These spatially-integrated overtopping rates need 
to be also time-integrated over the duration of the 
storm. When the main source to induce flooding is the 
wave-induced run-up, there is some uncertainty about 
how to extend this pulsating process during a large 
period. Since the main objective of this paper is to 
analyze the effects of the morphodynamic interaction 
in relative terms we have just extended the overtop-
ping rates to a total duration of 10 hours. The result-
ing integrated water flow was introduced as boundary 
conditions in LISFLOOD-FP in 100 seaward edge 
cells (1 km along the delta coastline).

The potentially flooded areas for each scenario are 
shown in figure 9 whereas the corresponding calcu-
lated flooded surface can be seen in table 4.

The first aspect to be highlighted is that when a 
static approach is followed, i.e. the beach is repre-
sented by a constant profile throughout the duration 
of the event, very significant differences are found. 
Thus, the estimated inundated area with a protecting 
beach represented by the mean profile (figure 9a) 
is 78 ha. However, when the beach is represented by 
the “extreme profiles”, i.e. the recorded minimum 
and maximum profiles, this surface will vary 
between 110 ha and 36 ha respectively (figures 9c 
and 9b). 

These calculated values stress on the one hand 
the influence of the pre-existing morphology on the 
extension of the area to be inundated and, on the other 
hand, the influence of the selection of the initial con-
figuration. This last point is especially critical since 
in most of the occasions the use of a “just-in-time” 
pre-storm morphology is just a matter of (very good) 
luck. The normal situation should be to have a given 
beach morphology taken in any moment that will not 
necessarily reflect the real beach morphology sub-
jected to the impact of the storm.

With respect to the topography plain –data included 
in the DEM-, this issue is not too relevant provided 
major features controlling the extension of the flood 
have not changed (e.g. canals network, dikes, etc.). 

The range of calculated values should serve to 
estimate the uncertainty in the calculations associ-
ated to the selection of the pre-storm morphology. In 
this case, where we were fortunate enough to have a 
collection of beach profiles representing their natu-
ral variability, the flood hazard area for the target 
storm is delineated not as a single surface but as an 
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Figure 8. Run-up vs beach elevation during the target 
storm for static and dynamic beach configurations.

Table 4. Calculated overtopping rates during the storm of 
November 2001 along the Marquesa beach for the different 
scenarios (peak: at the storm peak; mean: storm-averaged; 
Flooded area: after 10 hours of continuous overtopping).

 Q peak Q mean Flooded
Profile scenario (10−3 m3/m/s) (10−3 m3/m/s) area (ha)

Mean 16.811 1.978 78
Maximum 6.653 0.073 36
Minimum 32.717 3.947 110
Evolving
 Beach response 55.736 7.403 155
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Figure 9. Delineation of flood hazard areas in the northern part of the Ebro delta as a function of the definition of the beach 
morphology.
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area with a confidence band, i.e. an “average” value 
given by figure 9a that could vary between a mini-
mum value given by figure 9b and a maximum one 
given by figure 9c. The decision on what surface has 
to be selected would depend on the purposes of the 
analysis and in the level of “safety” to be imposed. 
As an example, if we want to be in the conserva-
tive side, the situation associated to the minimum 
beach profile (maximum affected surface) should be 
selected.

Even including this “statistical beach evolu-
tion”, the extension of the flood has been calcu-
lated assuming the beach is not modified during the 
storm impact. When this response is incorporated as 
described in section 2, the surface of the flood hazard 
area increases up to 155 ha (figure 9d and table 4). If 
the previous calculated values showed the importance 
of the proper selection of the pre-storm morphol-
ogy, this result stresses the importance of including 
the morphodynamic feedback in coastal flood hazard 
mapping.  In this case, the inclusion of the coastal 
response during the vent determined a significant 
increase in the volume of water entering to the deltaic 
plain and, in consequence, the potentially affected 
surface also increased with respect to the previous 
calculated worst scenario. 

5 CONCLUSIONS

This paper has presented an analysis of the influence 
of the definition of the beach morphology on flood 
hazard mapping in sedimentary coastal environments. 
To do this, a methodology to delimit the uncertainty 
associated to the beach natural dynamic variability 
was introduced.

Results showed that the selection of a given initial 
beach profile from the ones recorded during 4 years, 
can result in durations of overtopping events varying 
more than 300%. Regarding overtopping rates, the 
estimated variation is even larger due to dependence 
of their magnitude on the freeboard, i.e. the uncer-
tainty is amplified for the volume of floodwaters (we 
found a peak variation of 1,355%).

With regards to the spatial variability, results 
showed (for the study area) that the uncertainty intro-
duced in the analysis due to the use of a single rep-
resentative profile for the entire coast is much lower 
than the associated to the selection of the beach pro-
file shape. 

When the beach evolution during the storm is 
included, the volume of floodwater entering the 
coastal plain is significantly larger than for any of 
the tested static scenarios. This means that any flood 
hazard mapping in sedimentary coastal environments 
without including the beach response will signifi-
cantly underestimate the hazard area. Thus, for the 

tested case, the extension of the flood hazard area will 
vary between 36 ha and 110 ha for the static case and, 
will increase up to 155 ha when considering beach 
erosion during the storm.
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EVALUATION OF THE RISK AND VULNERABILITY
TO FLOODS IN THE COASTAL ZONE

Dagoberto Alvarado-Aguilar, José A. Jiménez, Agustín Sanchéz-Arcilla.

Laboratori d’Enginyeria Maritima, ETSECCPB, Universitat Politècnica de Catalunya. C Jordi Girona 1-3, Ed. D-1, 08034,

Barcelona, Spain. dagoberto.alvarado@upc.edu

Flood Hazard mapping is a worldwide need for all the nations with low-lying areas subjected to the impact of flood events.

Flood management agencies usually have to build and maintain coastal and flood defences and associated infrastructures

such as barriers and gates to protect the hinterland. Due to this, most of nations have launched programmes for identifying

flood prone areas and, in the best of the cases they have also defined procedures to be followed to produce hazard maps in

order to define protection needs and to take decisions. However, there is not a standard approach and, in fact, many countries

have not implemented any specific programme. Due to this lack of harmonization, the EC is preparing a new directive on the

assessment and management of floods where flood risk mapping is one of the main tools to be developed.

The main aim of this work is to develop and test a general methodology to evaluate the vulnerability of low-lyins coastal areas

to floods of marine origin. One of the main improvements of this work with respect to the existing ones is the inclusion of the

dynamic behaviour of the coastal fringe. Figure 1 shows an outline of the methodology to be developed.

Flooded Units

Impact
&

Vulnerability

Evaluation of socioeconomic and
environmental impacts. Evaluation of
the system vulnerability to the analysed
event.

Receptor Definition Definition of coastal zone in terms of
physical, natural and socioeconomic
characteristics. The result of this phase
is the generation of coastal units to be
used in the analysis

Forcing Description Description of the forcing agents. It
includes definition of wave induced
water level variations, storm-surge and
RSRL.

Definition of maximum height in each
unit given by existing protection
measures.

Evaluation of coastal response to
forcing agents to include changes in
flooding occurrence due to changes in
coastal morphology

Response of the
System

Determination of flooded units

Special thanks for grant to the
Marie Curie Actions Programme

ECO-IMAGINE Thematic Conference: “BUILDING COASTAL KNOWLEDGE AND GI”
Cork (IE), 13th–17th June 2006

University College Cork
Coastal And Marine Resources Centre

This work was partially done in the framework of the FLOODSite project,
funded by the European Commission under Contract No. GOCE-CT-2004-5005420

Affected
Socio-economics

Values

Affected Natural
Values

Overall Affected Values

Vulnerability

Coastal
Defenses

Waves
Tides

Storm Surge
RSLR

Coastal Response
Type & Magnitude

Coastal Units

DEM

Management
Units

Natural Values

Socio-economic
Values



Coastal Flood Hazard Mapping							               9.Annexes	

171

EVALUATION OF RISK AND VULNERABILITY
 TO FLOODS IN THE COASTAL ZONE

Flood Hazard mapping is a worldwide need for all the nations with low-lying areas subjected to the impact of flood events. Flood management 
agencies usually have to build and maintain coastal and flood defences and associated infrastructures such as barriers and gates to protect 
the hinterland. Due to this, most nations have launched programmes for identifying flood prone areas and, in the best case they have also 
defined procedures to be followed to produce hazard maps in order to define protection needs and to make decisions. However, there is not a 
standard approach and, in fact, many countries have not implemented any specific programme. Due to this lack of harmonization, the EC is 
preparing a new directive on the assessment and management of floods where flood risk mapping is one of the main tools needed to 
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Objetive

The main aim of this work is to develop and test a general methodology to evaluate the vulnerability of low-lying coastal areas to floods of 
marine origin.
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This work was partially done in the framework of the Floodsite Proyect funded by the 
European Commision under contract No. GOCE-CT-2004-500542
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This part of the work is the identification and characterisation of risk 
sources causing adverse effects (flooding) in the coastal zone, and the 
probability of occurrence. 

The working variable is the total water level at shoreline. This is the sum of 
two main components, mean water level (tide +storm surge) and wave 
induced water level.

This step is to make the  quantitative or semi-
quantitative estimate of the risk and 
vulnerability, including attendant uncertainties, 
and severity of adverse events in a given 
population under defined exposure conditions 
based on hazard identification, hazard 
characterisation and exposure assessment
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In this part of the work the emphasis is to put 
on the evaluation of the physical consequences 
of the coastal storm, i.e. erosion and flooding. 

The first step is to evaluate the flooding 
probability of the area taking into account the 
existing morphology. Although this is a static 
approach is posible to introduce some kind of 
dynamics by including the existing knowledge 
in local coastal response (e.g. observed 
variability in beach profiles protecting the 
hinterland).

The second step should be to evaluate the 
beach response to the selected storm and to 
estimate the inundation of the area after 
considering the beach modification(Beach 
lowering & flatening & coastal retreat). This 
part will be included by parametric modelling of 
involved processes.

Return periods of the Return periods of the ocurrenceocurrence of of 
overtopping beach in the overtopping beach in the MarquesaMarquesa area area 

due to coastal storms                                     due to coastal storms                                     
[ without including profile response][ without including profile response]

Landuse in the Ebro Delta
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Flooding in coastal areas results from the combination of a driving agent, the 
storm, acting on a receptor, the coast. In sedimentary environments, the 
induced (significant) morphodynamic response will interact with the storm in 
such a way that the intensity of the flooding could be affected (enhanced or 
reduced). 

The resulting effect (inundation increase or decrease) will depend on the type 
and magnitude of beach changes during the storm. So the estimation of the 
beach morphodynamic response during the storm is a key point not only to 
calculate the induced erosion, but to properly evaluate flood hazard areas.

Objetive

Propose a methodology to analyze the influence of the inclusion of the beach 
morphology response in coastal flood hazard mapping (in non-protected 
areas). 

Flood Hazard Mapping

Methodology
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Beach Response:  by simulating the beach 
profile evolution during the storm (SBEACH 
model). The beach response during the storm is 
used to update the floodwater  in selected time 
steps.

Beach Envelope: it introduces the natural 
beach variability  by  considering an envelope 
of all the existing beach profile data. This 
should permit to add some kind of confidence 
band to the calculated floodwater.

Fixed Beach: The beach is considered as a 
fixed protecting structure, without any 
morphodynamic response.

Introducing the coastal morphodynamics

Ebro Delta

Surface: 320 km2  Coastline: 50 km %Surface <+0.5 m = 50%

Calculated overtopping rates 
during the storm of November 
2001 along the Marquesa beach 
for different scenarios (peak: at 
the storm peak; mean: 
storm-averaged; Flooded area: 
after 10 hours of continuous 
overtopping).

Profile           Q peak           Q mean        Flooded
scenario   (10-3m-3/m/s)   (10-3m-3/m/s)     Area (ha)

Mean       16.811    1.978    78

Maximum      6.653    0.073    36
Minimum  32.717   3.947    110

 Evolving  55.736   7.403    155
Beach response

Once the floodwater was estimated for the different scenarios, the 
delineation of flood hazard areas is done by distributing the water throught 
the deltaic plain according existing topography.

The inclusion of the beach evolution results in an increase of overtopping 
rates (about 1.7 times).This means that if the morphodynamic response is 
neglected the volume of floodwater entering to the coastal plain could be 
significantly underestimated. 

Further reading: D. Alvarado-Aguilar & J. A. Jimenez (2008). Flood Hazard Mapping for Coastal Storms in the Delta Ebro. Proc. FloodRisk 2008

Maximum beach profile     

Minimum beach profile     

Mean beach profile     

 Evolving beach profile     

A methodology to bound the uncertainly in flood hazard mapping in coastal 
sedimentary environments is proposed.

The selection of an initial beach profile can result in changes in the duration 
of overtopping events more than 300%.  The use of a single representative 
profile for the entire coast induce less uncertainty than the associated to the 
selection of the beach profile shape.  The volume of floodwater that enters to 
the coastal plain is significantly larger if we take into account the beach 
evolution, in comparison to the static scenarios.
 
Any flood hazard mapping in sedimentary coastal enviroments without 
including the beach response will significantly underestimate the flood 
hazard area.

Conclusions
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