
Chapter 4

Tools and techniques

In this chapter, the background on the tools that are utilised in the development and

implementation of the Fault Diagnosis System (FDS), to be proposed in the next

Chapter 5, are described. First, Artificial Neural Network technology and Fuzzy Logic

systems are treated. They are key tools in the proposed FDS. Then, the Hazard and

Operability analysis, that is an important source of information for FDS development is

described. Finally, some aspects of signal processing using wavelets are commented.

This technique is used in the proposed FDS.

4.1. Artificial Neural Networks

Artificial Neural Networks (ANNs) are mathematical models that are designed and

adjusted to perform some task like pattern recognition or predictions of variables. Their

history can be traced back to the desire to model biological systems by mathematical

models. In the ANN literature, it is claimed that ANN is taught and it learns new things.

During the 20th century, the research in the area of ANNs has been growing by the

development of different ANN architectures, faster training algorithms and a large

number of applications. The applications are expanding because ANNs are good at

solving problems, not just in engineering, science and mathematics, but in medicine,

business, finance and literature as well. Their application to a wide variety of problems

in many fields makes them very attractive. Also, faster computers and faster algorithms

have made it possible to use ANNs to solve complex industrial problems that formerly

required too much computation.
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In this section, a brief review of the main concepts behind ANNs are introduced.

Detailed theoretical treatment of ANNs can be found in the specialised literature

(Freeman and Skapura, 1993; Hagan et al., 1995).

ANNs are networks consisting of simple, usually nonlinear, processing nodes which are

"inspired" by the information processing in biological nervous systems. These

processing units (see Figure 4.1) compute the product of an input vector q and a

weight matrix W plus a bias b, leading to the activation status n -Equation (4.1). The

subindex m corresponds to the node number, being S0 the number of nodes in the

layer 0, the input layer-.
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Subsequently, the activation status n is mapped to the output via an activation function

f. It can be linear or nonlinear, for example a sigmoidal function (Equation (4.2)).
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Within the large group of ANN architectures, the multilayer perceptron is the best

known example (Figure 4.2). It is composed of several layers, each of which has a

certain number of processing nodes.
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Figure 4.1. Processing node of an Artificial Neural Network
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The procedure for modifying the weights and biases of an ANN, in order to train it to

perform some task is called learning rule or training algorithm. There are many types of

ANN learning rules. They fall into three broad categories: supervised learning,

unsupervised learning and reinforcement (or graded) learning.

In supervised learning, the learning rule is provided with a set of examples (the training

set) of proper ANN behaviour:

{q1,g1},{q2,g2}, ..., {qV,gV};

where qV is an input vector to the ANN and gV is the corresponding correct (target)

output. As the inputs are applied to the ANN, the ANN's output are compared to the

targets. The learning rule is then used to adjust the weights and biases of the ANN in

order to move the ANN outputs closer to the targets. The so called backpropagation

algorithm falls in this supervised learning category.

Output layer

Input
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Hidden
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Bias
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Outputs

Figure 4.2. An example of a Multilayer Perceptron neural network

Reinforcement learning is similar to the supervised learning, except that, instead of

being provided with the correct output for each ANN input, the algorithm is only given a

grade. The grade (or score) is a measure of the ANN performance over some
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sequence of inputs. This type of learning is much less common than supervised

learning. It appears to be most suited to control system applications.

In unsupervised learning, the weights and biases are modified in response to ANN

inputs only. There are no target outputs available. At first glance this might seem to be

impractical. However, most of these algorithms perform some kind of clustering

operation. They learn to categorise the input patterns into a finite number of classes.

4.1.1. Types of Artificial Neural Networks

Backpropagation networks

The previously shown multilayer perceptron is known as feedforward backpropagation

neural network (BPN). In Figure 4.3, an example in abbreviated notation is shown. The

subindices of terms W, b, n, f and a correspond to the layer number.

The training algorithm is the backpropagation one. This algorithm adopts the

Generalized Delta Rule (GDR) designed to minimise the Mean Square Error MSE:
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where V and Sn denote the number of training patterns presented to the input layer and

the number of units in the output layer, respectively, and gm
v represents the desired

value of the mth output element given the vth pattern, while am
v is the actual output of

the same element.

Given the vth pattern, the updating weight in a supervised learning algorithm follows a

general formulation:
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where wv
jm denotes the weight of the connection between the jth element of the upper

and the mth element of the lower layer, in the vth learning iteration. In GDR a weight

change ∆wv
jm in Equation (4.4) is calculated as follows:
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where η and α denote the learning rate and the coefficient of the momentum term,

respectively; Om
v is the output value of the mth element in the previous layer. The

momentum term prevents divergent oscillations. It also permits the increase of the rate

of convergence. It consists of a value, always positive, lower than 1, that multiplies the

previous weight change. In this way the changes are maintained in the same direction.

The use of this additional term is optional.

The error signal of the jth element in the vth learning iteration δj
v in Equation (4.5) is

determined as follows:

If j belongs to the output layer:
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and if j belongs to the hidden layer(s):

∑ ∑ ••+′=
m k

v
kj

v
k

v
j

v
m

v
jmj

v
j wwOwf δδ )( 0 (4.7)

where f' is the derivative of the transfer function given in Equation (4.2). In Equation

(4.7) wv
kj denotes the weight of the connection between the kth element of the upper

and the jth element of the lower layer, in the vth learning iteration.

Therefore, GDR computes an error for each element in the output and hidden layers

using Equations (4.6) and (4.7) and recursively updates the weights of all the layers

using the Equation (4.5), starting from the output layer and working backwards until the

input layer.

This basic algorithm has been improved with a heuristic modification: the adaptive

learning rate. The learning rate, η has a significant effect in the network training

performance. Normally, η has to be a small number (in the order of 0.05 and 0.25) to
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be sure that the network can be settled on a solution. A small value of η implies that

the network has to make a large number of iterations, but this is the cost for obtaining a

good solution. It is possible to increase the value of η during the learning. Making it

higher if the error goes down can accelerate the convergence because the steps to the

minimum error are larger, but the network could be crashed going far away from the

minimum value if η is too high.

A numerical optimisation technique, the Levenberg-Marquardt algorithm, that is a

variation of Newton’s method, can be used to speed up the convergence of

backpropagation method.
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Figure 4.3. Backpropagation Network

Radial basis function networks

The Radial Basis Function Networks (RBFNs) have three layers. The outputs of the

hidden layer neurons, each of which represents a basis function, are determined by the

distance between the ANN input and the “centre” of the basis function. The output layer

is linear and produces a weighted sum of outputs of the hidden layer. The neurons in

the RBFN have localized receptive fields because they only respond to inputs that are

close to their centres. This is in contrast to the standard BPN where the sigmoid

function creates a global response. The RBFN trains faster than BPNs but requires

many neurons for high dimensional input spaces.
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The training algorithm starts with no neurons in the hidden layer and they are added

until the network meets the specified mean squared error goal. The following steps are

repeated until it is obtained that goal: 1- the ANN is simulated; 2- the input vector with

the greatest error is found; 3- a neuron is added with weights equal to that vector; 4-

the linear layer weights are redesigned to minimize the error.

The MSE considered should be zero and the parameter to be optimised is the spread

of the radial basis function. The larger that spread the smoother the function

approximation will be. Too large a spread means a lot of neurons will be required to fit

a fast changing function. Too small a spread means many neurons will be required to

fit a smooth function, and the ANN may not generalize well.

Self Organising Maps

In the two previous cases the ANNs need a supervised learning. In those cases, a

learning rule is used to adjust the weight and biases of the ANN in order to move the

ANN outputs closer to the targets. Otherwise, in unsupervised learning, the weights

and biases are modified in response to ANN inputs only. Self Organising Maps (SOMs)

learn to categorize the input pattern into a finite number of classes.

Competitive networks are characterized by the fact that the neurons compete with each

other to determine which prototype pattern is most representative of the input pattern.

This competition can be combined with associative learning rules to produce powerful

SOMs. In Figure 4.4, a scheme of a SOM is shown. A parameter to be optimised in this

kind of networks is the number of nodes of the feature map.
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Figure 4.4. An example of a self organizing map with 25 active nodes
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Probabilistic Neural Networks

Probabilistic Neural Networks (PNNs) are a kind of RBFN suitable for classification

problems. The first layer has RBFN neurons and the second layer has competitive

neurons (Wasserman, 1993).

4.1.2. Auto-associative neural network architecture and training

The Autoassociative Artificial Neural Network (AANN) is a BPN. It will be described

separately due to its importance for performing NLPCA.

The AANN is composed of an input layer, three hidden layers and an output layer

equal in dimension to the inputs (Figure 4.5). The first of the hidden layers is called the

“mapping layer”. The transfer functions of the nodes are sigmoidals. The second

hidden layer is called the bottleneck layer. The transfer function in the nodes can be

linear. Its dimension is required to be the smallest in the network. The third hidden

layer is called the “demapping layer”. The model transfer functions are usually

sigmoidals. The bottleneck forces an internal encoding and compression of the inputs,

with a subsequent decoding or decompression after the bottleneck to the network

outputs. The mapping/demapping process represents a nonlinear generalization of

PCA. The loss of information involved in this two stage process is measured by the

sum of squares difference between inputs and outputs summed over the training set:
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where V is the number of training set data, S0 the number of input nodes (equal to the

number of output nodes), Y is the matrix of the training set of inputs and Y’ the

respective matrix of neural network output.

Supervised training with Equation (4.8) as the objective is equivalent to train a

backpropagation network to produce the identity mapping.

To prevent overfitting, the following inequality limiting the number of adjustable network

parameters to a small fraction of the number of data points has been observed

(Kramer, 1992).
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where Ml is the number of nodes in the first hidden layer, Md is the number of nodes in

the third hidden layer, and db the number of nodes in the bottleneck layer.
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Figure 4.5. Autoassociative Neural Network

4.2. Fuzzy Logic

The concept of Fuzzy Logic (FL) has been introduced by Zadeh in 1965 as a way of

characterising non probabilistic uncertainties. A FL system is unique in that it is able to

simultaneously handle numerical and linguistic knowledge. It is a nonlinear mapping of

an input data vector into a scalar output. Fuzzy set theory and FL establish the

specifics of the nonlinear mapping. A large number of applications of FL have

performed during the 20th century. They include control applications, scheduling and

optimisation and signal analysis for training and interpretation.

In this section a brief summary of the basic aspects of fuzzy logic is shown. Detailed

treatment can be found in the specialised literature (Mendel, 1995).
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4.2.1. Definitions

If X is a collection of objects denoted generically by x, then a fuzzy set A in X is defined

as a set of ordered pairs:

( )( ){ }XxxxA A ∈= |,µ (4.10)

µA(x) is called the membership function (MF for short) of x in A. The MF maps each

element of X to a continuous membership value (or membership grade) between 0 and

1. Figure 4.6 shows an example of a fuzzy set with continuous X. Let X be the set of

possible flowrates in a specific pipe, where the normal operating condition is a value of

2 m3/hr. Then the fuzzy set A = "Normal flowrate" may be expressed using Equation

(4.10) where, for example:
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Figure 4.6. Example of a fuzzy set. MF on a continuous X = "Flowrates of a specific

pipe", where the fuzzy set is "normal flowrate"

A fuzzy if-then rule assumes the form:

If x is A then z is C

where A and C are linguistic values defined by fuzzy sets on universes of discourse X

and Z, respectively. For example: "if temperature is high then pressure is high". Often

“x is A” is called the antecedent while “z is C” is called the consequent.
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Other examples of fuzzy if-then rules are more complex because they include the

logical operators AND, OR and NOT:

If x is A1 AND y is B1 then z is C1

If x is A2 OR y is B2 then z is C2

If x is NOT A3 then z is C3

where the subindex of A, B and C indicates different linguistic values defined by fuzzy

sets on universes of discourses X, Y and Z, respectively.

Fuzzy reasoning, also known as approximate reasoning, is an inference procedure

used to derive conclusions from a set of if-then rules and one or more conditions.

The logical operations AND, OR and NOT are applied to the membership functions

instead of the input values directly. There are at least two different concepts to express

them, namely:

The max-min notation

Fuzzy AND: [ ])(),(min)( 111 yxz BAC µµµ = (4.12)

Fuzzy OR: [ ])(),(max)( 222 yxz BAC µµµ = (4.13)

Fuzzy NOT: )(1)( 33 xz AC µµ −= (4.14)

The prod-sum notation

Fuzzy AND: )()()( 111 yxz BAC µµµ •= (4.15)

Fuzzy OR: )()(1)( 222 yxz BAC µµµ •−= (4.16)

Fuzzy NOT: )(1)( 33 xz AC µµ −= (4.17)

The interpretation of multiple rules is usually taken as the union of the fuzzy relations

corresponding to the fuzzy rules. For instance, given the following rules:

Rule 1: if x is A1 AND y is B1 then z is C1

Rule 2: if x is A2 AND y is B2 then z is C2 ;
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the fuzzy reasoning shown in Figure 4.7 can be employed, using the min-max

composition, to derive the resulting output fuzzy set C'. In this case, the consequent

(conclusion) is: z is C'.
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Figure 4.7. Fuzzy reasoning for multiple rules with multiple antecedents

4.2.2. Fuzzy logic systems

A fuzzy inference system  or Fuzzy Logic System (FLS) is a computing framework

based on the concepts of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. The

basic structure of a fuzzy inference system consists of three conceptual components: a

rule base, which contains a selection of fuzzy rules, a database, which defines the

membership functions used in the fuzzy rules, and a reasoning mechanism, which

performs the inference procedure upon the rules and a given condition to derive a

reasonable output or conclusion.

Figure 4.8 depicts a FLS that is widely used in fuzzy logic controllers and signal

processing applications. The FLS maps crisp inputs to crisp outputs. It contains four

components: rules, fuzzifier, inference engine, and defuzzifier. Once the rules have

been established, a FLS can be viewed as a mapping from inputs to outputs. Rules can

be provided by experts or can be extracted from numerical data and they are

expressed as a collection of IF-THEN statements. The fuzzifier maps crisp numbers

into fuzzy sets. The inference engine handles the way in which rules are combined and

maps fuzzy sets into fuzzy sets. In many applications, crisp numbers must be obtained

at the output of a FLS. The defuzzifier maps outputs fuzzy sets into crisp numbers.
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Figure 4.8. Fuzzy Logic System scheme

The defuzzification can be performed with some of the following methods:

• Maximum: the fuzzy set C' is examined and the value of z for which µC'(z) is a

maximum is chosen as the output value (z'mx).

• Mean of maximum: the fuzzy set C' is examined and the values of z for which

µC'(z) is the maximum is first determined. The mean of these values is computed

as the output (z'mn).

• Centroid: the centre of gravity is determined:

∫
∫ •

=
dzz

dzzz
z

C

C

)(

)(

'

'

µ

µ
(4.18)

chosen as its output value (z'ct).

• Height: let 
rl

z  denote the centre of gravity of the fuzzy set C'r (which is associated

with the activated of rule rl). This defuzzifier first evaluates µC'r(z) at 
rl

z  and then

computes the output of the FLS as:
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where Rl is the total number of rules.

The defuzzification methods applied to the example shown in Figure 4.7 are

summarised in Figure 4.9.
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In summary, a FLS performs the following succesive steps:

• Fuzzification of crisp values;

• Inference using a rule-base in which the logical operations are performed on the

membership functions, using either Equations (4.12), (4.13) and (4.14), or

Equations (4.15), (4.16) and (4.17), and aggregation;

• Defuzzification to obtain crisp outputs, using for example one of the methods

shown, Equations (4.18) or (4.19).
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Figure 4.9. Defuzzification methods (z'mx: maximum, z'mn: mean of maximum, z'ct:

centroid, z'ht: height) applied to the example shown in Figure 4.7.

4.2.3. Types of Fuzzy logic systems

Among the different FLSs, the most commonly used are the following (Jang and Sun,

1995):

• Mamdami Fuzzy model: the crisp inputs are fuzzified according to a set of

membership functions. The fuzzy AND and OR operators in the if-then rules are

inferred using min-max or product max compositions, or other variations. The fuzzy

set obtained is defuzzified to a crisp value using a strategy like the centroid or the

mean of maximum.

• Sugeno Fuzzy model: it was proposed to develop a systematic approach to

generating fuzzy rules from a given input-output data set. A typical fuzzy rule in a

Sugeno fuzzy model has the form: "if x is A and y is B then z=f(x,y)", where A and B
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are fuzzy sets in the antecedent, while z=f(x,y) is a crisp function in the consequent.

Usually f(x,y) is a polynomial in the input variables x and y, but it can be any

function as long as it can appropriately describe the output of the system within the

fuzzy region specified by the antecedent of the rule. When f(x,y) is a first-order

polynomial, the resulting FLS is called a first-order Sugeno fuzzy model. In this

case, each rule has a crisp output, the overall output is obtained via weighed

average and thus the time consuming procedure of defuzzification is avoided.

• Tsukamoto Fuzzy model: the consequent of each fuzzy if-then rule is represented

by a fuzzy set with monotonical membership functions. As a result, the inferred

output of each rule is defined as a crisp value induced by the rule's firing strength.

The overall output is taken as the weighted average at each rule's output. It avoids

the time consuming process of defuzzification.

4.3. Hazard and Operability analysis

In this section, Hazard and Operability (HAZOP) analysis is described. Extending

HAZOP analysis to fault diagnosis characterisation provides a more "down to the earth"

approach for implementing an operator support system (Wennersten et al., 1996).

Hence, it is an important source of information for the development of a FDS.

First, an introduction summarising the available techniques to identify potential

accidents in the industry is presented. Then, the choice of the HAZOP technique is

highlighted. Finally, a step by step description of the HAZOP analysis implementation is

done.

4.3.1. Introduction

There are many techniques to identify potential accidents in the industry. Industrialised

countries have standards that describe them. For example, in Spain, the references

are: "Notas técnicas de prevención" (Technical Notes of Prevention) edited by Instituto

Nacional de Seguridad e Higiene en el Trabajo (National Institute of Safety and

Hygiene at Work) and "Guías técnicas" (Technical Guidelines) edited by Dirección

General de Protección Civil (General Direction of Civil Protection).

There are qualitative and semi-quantitative methods for the identification of potential

accidents in the industry (Casal et. al, 1999). Qualitative methods include safety

reviews, historical analysis of accidents, Preliminary Hazard Analysis (PHA), checklists,
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What if ...?, Hazard and Operability (HAZOP) analysis and Failure Modes and Effect

Analysis (FMEA). Semi-quantitative methods include Fire and Explosion Index -DOW-

(F&EI), Fault trees, Mond index, Substance Hazard Index (SHI), Material Hazard Index

(MHI) and Event trees.

Some of the mentioned methods gives a first approximation of the potential hazards

(safety reviews, PHA, checklists, F&EI). Other methods give a more detailed vision

(HAZOP, What if ... ?, FMEA). Finally, the fault trees and the event trees give an

elevated level of detail on situations of extreme gravity.

There are five limitations inherent to all the identification techniques:

• Exhaustive study: it is impossible to verify all the deviations that can occur.

• Reproducibility of the results: the same study carried out by different specialists

can give different results.

• The fact that the conclusions are inextricable: the amount of documentation

generated by the study and the lack of important details that can only be

materialised by verbal communications in the work sessions, makes the

analysis relatively difficult to understand.

• Importance of the experience: all the mentioned techniques are based on the

acquired experience and the creativity of the analyst.

• Confidence level generated by the study: the subjectivity introduced in the

valoration of the results can generate certain scepticism with respect to the

study results.

In spite of the mentioned limitations, the experience shows that an adequate risk

management allows to reduce the number of accidents significantly and the magnitude

of the consequences are reduced.

4.3.2. The choice of the HAZOP analysis

In most industrialised countries, standards require to perform hazard analysis on a

regular basis. HAZOP is the most widely used and recognised as the preferred

approach in the chemical process industry. It is typically performed by a team of

experts having specialised knowledge and expertise in the design, operation and

maintenance of the plant.

HAZOP is also one of the most powerful hazard identification methods available and
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has been well described in the literature. The imagination of a selected team is used to

perturb a model of the system being studied by using a methodical procedure to

identify potential accidents.

The system is studied one element at a time, in a "Top Down" fashion. The design

intention of each element is defined and then questioned using "Guide-words" to

produce deviations from the intention. The causes, consequences and safeguards for

each deviation are then discussed and recorded. Some approaches to automate

HAZOP analysis have been reported (Vaidhyanathan and Venkatasubramanian, 1996).

They have as disadvantage the generation of a large number of irrelevant causes and

consequences.

Figure 4.10 shows the logic diagram of HAZOP of a continuous process (Gillett, 1997).

In the case of batch processes the HAZOP analysis examines every stage of the batch

process sequence (Figure 4.11).
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Node

Parameter
Select a guideword
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intention; Identify any 
Hazardous Events o 
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Are there any more Guideword for this Parameter?
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Figure 4.10. Logic diagram of a HAZOP analysis of continuous process
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Table 4.1. HAZOP Guidewords

Guideword Example of a Typical Deviation

No (not or none) No flow in pipe

No reactant in vessel

More of Higher temperature

Higher level

Less of Lower velocity

Lower bulk density

More than (or as well as) Two phase flow

Contamination

Less than (or part of) Reduced concentration

Missing component

Reverse (the complete opposite of the intent) Valve closes instead of opening

Heat rather than cool

Other than (a different intent) Nonroutine operations

Maintenance, cleaning, sampling, etc.

Sooner/later than More/less time

Operation out of sequence

4.3.3. HAZOP analysis for continuous processes

Since the procedure for continuous systems is simpler than that for batch systems, it

will be described first.

i) Study the system model and subdivide it into its key elements (Nodes).

ii) Select an element (Node) for study and state the design intention of the element

(Node). The design intention defines the processes or activities involved in the element

and the boundary for examination. The intention will include details of the process

parameters that can be changed in the element. Typical parameters stated in the

intention are flow, temperature, pressure, level, and time.

iii) Select a parameter for study and apply the guidewords to the intention relating to

the parameter selected and identify any deviations from the intent. Table 4.1 lists

guidewords and gives brief examples of each.

iv) For each deviation identified, study the causes, effects and safeguards provided.

v) Decide whether the deviation requires a design change or corrective action and
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record the decision and allocate the action to a team member for completion by an

agreed-on review date.

vi) Once all of the guidewords have been applied to the parameter selected, select the

next parameter.

vii) Repeat steps iii-vi until all of the parameters have been studied for the selected

system element.

viii) Select the next element (Node) for study and repeat steps iii-vii until all of the

system elements (Nodes) have been studied.

4.3.4. HAZOP for batch processes

The detailed hazard study examines every step of the batch process sequence. For

each stage, the equipment used is studied element by element for each equipment

state that may exist: "Active", "Inactive", or any other state. The parameters for each

equipment state are then studied using guidewords. The detailed HAZOP analysis of a

batch process must be used wisely as it can be incredibly time-consuming. A simplified

logic diagram of the process is shown in Figure 4.11 and it is summarised as follows:

i) Select the first stage on the Activity Diagram or Operating Procedure.

ii) Select a system element in the stage (for example, an item of equipment and its

associated connections to the system).

iii) Select the node in the equipment item (for example, part of the equipment item such

as a valve or a filter).

iv) Select a state for the equipment node (active, inactive, or other state).

v) Select a parameter for the equipment node state chosen (temperature, pressure,

level, etc.).

vi) Apply guidewords to the intention for the parameter at this state/node/system

element/step. For each deviation identified, study the causes, effects, and safeguards

provided. It is important to identify effects on the total system and the operating

sequence. Decide whether the deviation requires a design or operating procedure

change. Record the decision and allocate the action to a team member or completion

by an agreed-on review date.

vii) Repeat steps v and vi for all parameters involved in the node/state chosen. Mark

the node to indicate that it has been studied and move to the next node.
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viii) Repeat steps iv-vii for all node states.

ix) Repeat steps iii-viii for all nodes.

x) Repeat steps ii-ix for all system elements.

xi) Repeat steps i-x for all batch process stages.

Select a System Element

Step

Are there any more Elements for this Stage?

Element

Node
Select a State

Are there any more States for this Node?

State
Select a parameter

Parameter Select a guideword
Apply the
guideword

Are there any more Guidewords?

Select a Node

YES

Are there any more Parameters for this state?

NO

NO

Select a Stage

YES

Are there any more Nodes for this Element? YES

Are there any more Stages? YESNO

END

NO

YES

Figure 4.11. Logic diagram of HAZOP for batch processes

4.4. Signal processing using wavelets

Measured data from most processes contain contributions at multiple scales due to the

occurrence of events with different localisation in time and frequency. Also, variables

are usually measured at different rates or contain segments of missing data.

Most existing methods (Fourier transform, linear filters) represent the data in terms of

basis functions at a fixed resolution or scale in time and frequency (as a weighted sum

of a set of basis functions). In practice, it is rare for measured data to contain

contributions at a single scale. Representation of the measurements in terms of basis
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functions at a single scale will not permit efficient feature extraction or noise removal

from a typical process signal. Noise removal by eliminating the high frequency

contribution by Fourier transform will distort the localised features by excessive

smoothing, since their high frequency components will also be removed.

Multiscale methods are ideally suited for the analysis and modelling of such multiscale

data. The development of wavelets has resulted in several novel techniques for

improved data analysis and empirical modelling. These methods exploit the multiscale

representation of wavelet basis functions and their ability to compress deterministic

features in a small number of large coefficients, and to approximately decorrelate a

wide variety of stochastic processes.

Wavelets are a family of basis functions whose time-frequency localisation or scale is

not the same in the entire time-frequency domain. Thus, wavelets possess multiscale

character and are able to adjust their scale to the nature of the signal features.

The term wavelet refers to sets of functions of the form given by Equation (4.20):







 −

Ψ•=Ψ
−

dl
tlx

dlxdltl
2/1

)( (4.20)

They are formed by the dilations which are controlled by the positive real number dl,

and translations which are controlled by the real number tl, of a single function ψ (x)

often named the mother wavelet. Visually, the mother wavelet appears as a local

oscillation. The dilation parameter dl controls the width and rate of this local oscillation

and intuitively can be thought of controlling the frequency of ψdltl(x). The translation

parameter tl simply moves the wavelet throughout the domain.

If the dilation and the translation parameters dl and tl are chosen such that dl=2J and

tl=k2J , where j and k are integers, then there exist wavelets ψ(x) such that the set of

functions given by Equation (4.20) constitute an orthonormal basis of the space of

functions or signals which have finite energy (Daubechies, 1992), and as above, the

two parameters, j and k can be varied for analysis of local features of a given function.

These two degrees of freedom, j and k, give one the ability to resolve features at a

variety of scales by adjusting j and at any location by adjusting k.

Wavelet transform can be categorised into continuous and discrete. Continuous

wavelet transform implies that the scaling and translation parameters dl and tl change

continuously. However, calculating wavelet coefficients for every possible scale can
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represent a considerable effort and result in a vast amount of data. Therefore discrete

parameter wavelet transform is often used.

For many signals, the low frequency content is the most important part. The high

frequency content, on the other hand provides flavour and nuance. In wavelet analysis

the low frequency content is called the approximation and the high frequency content is

called the detail parts. It is not necessary to preserve all the outputs from the filters.

The decomposition can be iterated, with successive approximations being decomposed

in turn, so that one signal is broken into many lower-resolution components. Figure

4.12 shows a scheme of an example of the multiresolution procedure. In this example,

four steps and four scales are considered. In the first scale, the original signal is split

into approximation Ap1 and Detail D1. The detail D1 is supposed to be mainly the

noise components of the original signal. Ap1 is further decomposed into approximation

Ap2 and detail D2, Ap2, to Ap3 and D3 and Ap3 to Ap4 and D4. The signal could be

reconstructed with the corresponding approximation plus the details. Figure 4.13 shows

the signals resulting from the multiresolution procedure shown in Figure 4.12, using

Daubechies-6 wavelet.

H1
Signal

Ap1

D1

D2

D3

D4

Ap5

Di: Detail of the ith decomposition
Api: Approximation on ith decomposition
H0: low pass filter
H1: high pass filter

H1

H1

H1

H0

H0

H0

H0 H1

H0

D5

Ap2

Ap3

Ap4

Figure 4.12. Multiresolution analysis
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To perform on-line wavelet multiscale filtering a window of dyadic length is used. As

new samples are collected the window is translated so that the most recent sample is

at dyadic location for at least one translated window.
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Figure 4.13. Wavelet decomposition using Daubechies-6 wavelet
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4.5. Conclusions

Basic concepts of the tools and techniques utilised in the development of the FDS, that

will be proposed and explained in the next Chapter 5, have been summarised.

A brief revision of the ANN and FLS technologies has been presented. Detailed

treatment can be found in the specialised literature.

HAZOP analysis, a powerful technique to identify potential accidents in the process

industry, has been described because it is an important source of information for the

development of the FDS.

Finally, wavelet multiscale filtering, an useful signal pre-processing technique for

extracting features from process measurements has been briefly explained.



Tools and Techniques 57

Acronyms

AANN Autoassociative Artificial Neural Network
ANN Artificial Neural Network
BPN Backpropagation Artificial Neural Network
F&EI Fire and Explosion Index
FDS Fault Diagnosis System
FL Fuzzy Logic
FLS Fuzzy Logic System
FMEA Failures Modes and Effect Analysis
GDR Generalized Delta Rule
HAZOP Hazard and Operability study
MF Membership function
MHI Material Hazard Index
MSE Mean Square Error
NLPCA Nonlinear Principal Component Analysis
PCA Principal Component Analysis
PHA Preliminary Hazard Analysis
PNN Probabilistic Artificial Neural Network
RB Rule Based
RBFN Radial Basis Function Neural Network
SOM Self Organizing Map
SPE Squared Prediction Error

Notation

a ANN output vector
Api Approximation on the ith decomposition
b ANN bias vector
db Number of nodes in the bottleneck layer of an AANN
Di Detail of the ith wavelet decomposition
dl Dilation parameter of a wavelet
f Function
g Target vector for ANN training
H0 Low pass filter
H1 High pass filter
l Index for layers in an ANN
m Index for nodes in a layer in an ANN
Md Number of nodes in the demapping layer of an AANN
Ml Number of nodes in the mapping layer of an AANN
n Activation status of a node in an ANN
N Total number of nodes in a layer of an ANN
q ANN input vector
rl Index for rules
Rl Total number of rules in a FLS
Si Total number of nodes of the ith layer of an ANN
Sn Total number of nodes of the output layer of an ANN
tl Translation parameter of a wavelet
v Index for training patterns
V Total number of training patterns for an ANN
W ANN weight matrix
z'ct Output of the centroid defuzzification method
z'ht Output of the height defuzzification method
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z'mn Output of the mean of maximum defuzzification method
z'mx Output of the maximum defuzzification method

Greek symbols

α Momentum term in the GDR
δ Error signal in the GDR
η Learning rate for GDR
µ Membership function
ψ Mother wavelet function


