
Chapter 4

Methodology II: processes with

decaying performance

Non nova, sed nova

4.1 Introduction

In the previous chapter the set-points optimisation has been illustrated by using only external

disturbances. Nevertheless, when a process is also affected by internal disturbances like fouling,

catalyst deactivation and so on, the proposed approach is still being valid. On the one hand, RTE

will react to the external disturbances as they enters to the plant. On the other hand, every time

the steady state is reached, the effect of internal disturbances is also taken into account by means

of model updating. The presence of process degradation posses, however, an additional issue:

a mandatory periodical maintenance action, which is the subject of consideration of the current

chapter.

Such problem is quite common in industrial practice. When the efficiency of equipment

decreases with running time and/or with the amount of the different materials processed, ap-

propriate measures should be taken to reestablish the initial performance level. The resulting

decision-making problem consists in determining when such actions should be carried out, thus

leading to a trade-off between the cost of the action itself (resources required, production break,

etc.) and the expected benefit it generates (productivity increase, reduction of operational costs,

etc.).

As detailed in chapter 2, many mathematical programming approaches have been proposed,

both MILP (e.g. Georgiadis et al. (1999)) and MINLP (e. g., Alle et al. (2002); Tjoa et al.

(1997) and Buzzi et al. (1984)), while little attention has been paid to the on-line management of

the discrete decisions involved in processes with decaying performance. Specifically, it is usually

ignored that the model updating module of an on-line optimisation system, or more generally, the
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Chapter 4. Methodology II: processes with decaying performance

Figure 4.1: Simplified filter press scheme

distributed control system (DCS), may provide significant information about the process degree

of performance and its variation with time.

In this chapter, a step forward to the integration of both approaches (conventional mathe-

matical programming and on-line optimisation) is presented. A simple formulation (NLP) for

the off-line planning problem is provided together with a procedure for the subsequent imple-

mentation of the discrete decisions involved (clean or not, feed assignments, etc.) in a real time

environment. The proposed methodology is an extension of the Real Time Evolution (RTE) ap-

proach for continuous processes introduced in the previous chapter. Some examples are used to

illustrate and validate the proposed approach for the planning procedure and the on line optimi-

sation.

4.2 Motivating problem: example I

Consider a classical example of semi-continuous operation: filtration at constant pressure. Such

situation is commonly found in practice when the feed is stored in a vessel located at some

height above the filter (figure 4.1). During the filtration process, the filtration rate decreases

continuously, because of the increase in the pressure drop associated to the solid accumulated

on the filtration cake. At a given moment, the filtration must be interrupted in order to clean the

filter, restoring then the initial situation. It is clear that there is a trade-off to when deciding such

action. The bigger the cycle length, the lower the non-productive fraction of the whole cycle.

However, a big cycle length decreases the average rate. Thus, it is worth knowing the instant that

maximises the filtration capacity.

The classical off-line approach for dealing with such problem consists of obtaining the aver-
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4.2. Motivating problem: example I

age capacity as a function of the time and then solving the associated maximisation problem, as

is explained next.

Preliminary calculations:

The filtration is a unit operation that can be considered as a special case of fluid flow through a

static granular (packed) bed. Because of the size of the particles is typically quite small, the flow

regime is generally laminar. Consequently, the Ergun equation can be used, omitting the terms

that correspond to the turbulent conditions:

fp
� 150

Rep
(4.1)

with:

Rep
� dpυsρ�

1 � ε � µ

fp
� h f

ε3�
1 � ε �

dp

Lυ2
s

(4.2)

since for this case h f
� ∆P, the following formula is obtained:

∆P
L

� 150

�
1 � ε � 2

ε3

µ
ρd2

p
υs (4.3)

where:

Rep: Reynolds’ number for fluid flow through packed beds.

fp: friction factor.

h f : pressure drop associated to friction losses.

∆P: pressure drop trough the filter.

L: length of the cake.

ε: cake void fraction.

µ: fluid viscosity.

dp: equivalent diameter of the particles of the cake.

υs: fluid superficial velocity.

It should be noted that since the relationship of the equation 4.1 is dimensionless, the units of

measure used in the equation 4.3 can be freely chosen while their consistency is kept.

Given that the values of the void fraction and the equivalent diameter of the particles con-

stituting the cake change according to the material, and considering besides the definition of

υs:
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υs
� volumetric f low

section
� 1

Ap

dV
dt

(4.4)

equation 4.3 can be rewritten in the simplified form:

1
Ap

dV
dt

� Kp
∆P
µL

(4.5)

According to this equation, the superficial velocity (refereed to the area of the section normal

to the flow, denoted by Ap) is directly proportional to the pressure difference between the upper

and lower sides of the cake and inversely proportional to the fluid viscosity and cake length

(depth). Since the length of the cake continuously increases during the filtration, and considering

the constant resistance of the filtration media, equation 4.5 takes the form:

1
Ap

dV
dt

� K
∆P

µ � αωV
Ap � Rm � (4.6)

where:

Ap: is the section perpendicular to the flow.

V : total volume of filtrate.

α: specific cake resistance.

ω: feed concentration, expressed as the mass of solid per unit of volume filtered.

Rm: filtration medium resistance.

For the case of incompressible cakes, with constant pressure drop, equation 4.6 becomes (Ocon

and Tojo, 1977):

dt
dV

� a � V � b (4.7)

where:

a � αµω
A2

p∆P
(4.8)

b � a � Ve
� αµω

A2
p∆P

Ve (4.9)

In such case, the resistance offered by the filtration material is expressed as an hypothetical

layer of cake corresponding to the volume Ve of the filtrated required to form such hypothetical

layer:

Rm
� αωVe

Ap
(4.10)
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4.2. Motivating problem: example I

The computation of the constants a and b is made using experimental data, performed at

constant pressure, of the filtered volume as function of time. The integration of the ordinary

differential equation 4.7, using the condition V � 0 for t � 0 allows to obtain:

V ��� V 2
e � 2t

a
� Ve (4.11)

Filtration capacity:

The filtration capacity (C f ) is defined by the ratio of the volume to filter to the total cycle time:

C f
� V

�
ts �

ts � τm

��� V 2
e � 2ts

a � Ve

ts � τm
(4.12)

where ts and τm denote the productive and non-productive time of a cycle respectively. Thus, to

maximise the capacity:

dC f

dts ���� ts � tsopt

�
d � � V 2

e � 2ts
a � Ve

ts � τm 	
dts

���������� ts � tsopt

� 0 (4.13)

from where:

tsopt
� τm � b � 2τm

a
(4.14)

or else:

Vopt
�
� 2τm

a
(4.15)

Figure 4.2 shows the graphical interpretation of such solution, a classical method for obtain-

ing the optimal cycle length, not only for batch filtering but also many batch operations.

Numerical example:

As very simple numerical example, consider the case where a filtration is carried out at a constant

pressure in a filter press. The cake is incompressible and the numerical values for the significant

parameters are those of table 4.1. In order to obtain the optimal cycle length, equations 4.14 and

4.15 can be used, from where: topt
� 43 min and Vopt

� 114 L.
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Figure 4.2: Classical graphical solution for tsopt determination in the filtration example

Table 4.1: Data for a single filter
Parameter Value

a � 103min � L2 � 4 � 58
b � 101min � L � 1 � 13
τm � min � 30
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Figure 4.3: Typical evolution of IOF for a process with decaying performance

4.3 Off-line approach

4.3.1 Generalising the simplest case

Equations and analysis given in the previous section can be applied to many cases of common

semi-continuous (cyclic) operations, not only filtration but also others like for instance ionic ex-

change, catalyst reactions with decreasing activity and evaporation, between others (i.e. Epstein

(1979); Casado (1990); O’Donnell et al. (2001)). However, in a more general sense, the simplest

case of maintenance problem corresponds to a single process whose performance (Instantaneous

Objective Function, IOF) decreases with time. At some time ts, the operation must be finished

in order to perform some maintenance task, which re-establishes the process initial conditions.

The maintenance task consumes a known time τm and its corresponding cost is Cm (figure 4.3).

It can be seen that the lower the time ts, the higher the performance but at the expense of the cost

and time associated to the maintenance itself. Therefore, there is a trade-off in the determination

of time ts, the question being the time, tsopt that maximises the overall performance during the

whole operating cycle.

Under such situation, the mean performance (Mean Objective Function, MOF) during the

whole cycle will be given by the equation:

MOF � ts ���
� ts

0 IOF � θ � dθ � Cm

� ts � τm � (4.16)

which can be solved, in general terms, in an analytical way since the optimal maintenance time
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Figure 4.4: Graphical solution for any IOF decreasing with time

(tsopt) must satisfy:

dMOF
�
ts �

dts ���� ts � tsopt

� IOF
�
tsopt � �

tsopt � τm � � Cm ��� tsopt
0 IOF

�
θ � dθ�

tsopt � τm �
� 0 (4.17)

to obtain:

IOF
�
tsopt � � �

tsopt
0 IOF

�
θ � dθ � Cm�

tsopt � τm �
� MOF

�
tsopt � (4.18)

Therefore, using an appropriate model for IOF the optimum policy can be found (figure 4.4).

It should be noted, that tsopt corresponds to that time which makes the value of IOF
�
ts � equal to

the value of MOF
�
ts � (Buzzi et al., 1984).1

For the filtration case considered in the example I:

IOF � dV
dts

� 1
k

�
V � Ve � (4.19)

and

1In many practical situations, the maintenance action takes place when a condition related to the process safety is
meet. An example of this case would be a reaction shut down triggered when the pressure reaches a threshold level.
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Figure 4.5: Scheme for the general case considered

MOF � V
ts � τm

(4.20)

From where the equations 4.14 and 4.15 can be easily obtained by using the equation 4.17. Note

that such procedure allows to manage not only the maximum capacity case, but also any other

with economical basis which may also include the cleaning task cost.

4.3.2 The effect of different feeds and units

As has been previously explained, the operation of units with decaying performance must be

interrupted in order to perform a maintenance operation. Therefore, and aiming a smooth pro-

duction output, plant equipment is often run in parallel. Furthermore, it may be also possible to

count with several available feeds. Figure 4.5 illustrates a possible situation. Such conditions

motivate the existence of additional constraints related to the mass balance, besides possible

bounds in the processing rates.

In such context, the general problem to be considered can be stated as follows. There are

i � 1 � � � I feedstock available to produce the final product P (see figure 4.5). The total average

consumption of every feed Fmi , should be between a lower and an upper bound, Fmloi
and Fmupi

.

There are j � 1 � � � J parallel units available to process these feeds, whose performance for pro-

cessing every feed (Instantaneous Objective Function, IOFi � j) decreases with the operating time

(ts). Let the maintenance operations costs and duration be Cmi � j and τmi � j respectively.

Additionally, suppose that whenever there is a feed changeover, maintenance tasks take place,

and the operating parameters are set in such a way that the unit returns to operate at the best

possible conditions for the next feed. Therefore, the objective of this problem is to find the

duration of the cycles (tsi � j) for every pair feed-unit and the corresponding feed flows to be

processed (Fmi).
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Assume that the unit j operates consuming feed i at a rate Fi � j during a time tsi � j (sub-cycle

time for feed i, unit j). During that time, the Instantaneous Objective Function will be a function

of tsi � j:

IOFi � j
� f

�
tsi � j � (4.21)

Then, the corresponding Mean Objective Function (MOF) during the whole sub-cycle for every

pair feed-unit will be given by:

MOF
�
ts � � Total Bene f its � Maintenance Costs

Total Cycle Time
� � ts

0 IOF
�
θ � dθ � Cm�

ts � τm � (4.22)

Let T fi � j be the time fraction of unit j operation dedicated to the processing of feed i. Then, the

average consumption of feed i (Fmi) can be expressed as a function of T fi � j at each unit j:

Fmi � j
� ∑

j
Fi � j

tsi � j

tsi � j � τmi � j

T fi � j (4.23)

Then, a NLP formulation for this family of problems is proposed as follows:

max Z � ∑i ∑ j MOFi � j � T fi � j

tsi � j � T fi � j
(4.24)

subject to:

MOFi � j
� � tsi � j

0 IOFi � j
�
θ � dθ � Cmi � j�

tsi � j � τmi � j �
�

i � j (4.25)

Fmi
� ∑

j
Fi � j

tsi � j

tsi � j � τmi � j

T fi � j
�

i (4.26)

∑
i

T fi � j
� 1

�
j (4.27)

Fmloi � Fmi � Fmupi

�
i (4.28)

0 � T fi � j � 1
�

i � j (4.29)

tslo � tsi � j � tsup
�

i � j (4.30)

where:

MOFi � j: Mean Objective Function (monetary units/time).

IOFi � j: Instantaneous Objective Function (monetary units/time).
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Cmi � j : maintenance cost (monetary units).

τmi � j : time devoted to maintenance (time).

T fi � j: time fraction of unit j devoted to process feed i (time/time).

tsi � j: operating time for the pair feed-furnace (time), bounded by tslo and tsup.

Fi � j: feed rate of feed i to unit j during the operating time ts (flow basis).

Sub-indexes i and j refer to the feed and the unit respectively. The problem has 2 � i � j degrees

of freedom, being the corresponding decision variables the operating times (tsi � j) and the time

fractions (T fi � j), the later related directly to the average feed flows (Fmi � j ).

4.3.3 Validation benchmarks

These examples are based in the work reported by Jain and Grossmann (1998). The case studies

contemplate different feeds that are available for arriving continuously to storage tanks at a con-

stant rate, like those illustrated in figure 4.5. All feedstock are then processed sequentially in a

set of reactors (the furnaces), where as a consequence of coking, the conversion decreases with

time according to the equation:

Yi � j
� ci � j � ai � je

� bi � jtsi � j (4.31)

where a, b and c are empirical parameters.

Additionally, it is assumed that the income is directly proportional to production, and the

proportionality constant is given by the price parameter Pi � j. This parameter takes into account

the revenues obtained by selling the product and all the expenses incurred for producing it, ex-

cept the cleanup cost. Therefore, the problem consists in determining the operating policy that

maximises the profit.

The following sub-section considers a relatively simple case, with only one furnace, while

the next one considers also the possibility of feed-unit allocation. In both cases, the formulation

proposed by the mentioned authors is included as a reference, for comparison purposes.

4.3.3.1 One unit-several feeds: example II

Three different feeds (A, B, C) that are available for arriving continuously to the corresponding

storage tanks at a constant rate (figure 4.6). Specific data for the example considered are found

in table 4.2.

Jain and Grossmann (1998) have proposed a problem formulation (F1), based on the follow-

ing variables:

ti: total processing time of feed i to the furnace.

ni: number of sub-cycles of feed i in furnace during the total cycle time.
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Figure 4.6: Example II scheme

Table 4.2: Data for example II
Feed

Parameter A B C

τmi � d � 2 3 3
Fi � t � d � 1300 1000 1100
ai 0 � 20 0 � 18 0 � 19
bi � 1 � d � 0 � 10 0 � 13 0 � 09
ci 0 � 18 0 � 10 0 � 12
Pi � $ � t � 160 90 120
Cmi � $ � 100 90 80
Fmloi � t � d � 350 300 300
Fmupi � t � d � 650 300 300
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4.3. Off-line approach

Table 4.3: Example II solution (F1)
Feed

Variable A B C

ni 4 1 2
ti

�
d � 42 � 44 41 � 74 37 � 94

tsi
�
d � 10 � 61 41 � 74 18 � 97

T fi (%) 36 � 26 32 � 16 31 � 59
Fmi

�
t � d � 396 � 6 300 � 0 300 � 0

Tcycle
�
d � 139 � 1

Z
�
$ � d � 30430

Fmi : feeding rate of the feed i (denoted by Fi in the original paper).

∆ti: total feeding and cleanup time associated to feed i.

Tcycle: total cycle duration (denoted by Tc in the original paper).

Z: average profit during the total cycle.

where, the decision variables are: ti, ni and Tcycle. Since all constraints can be linearised, the

resulting MINLP problem can be solved using an NLP-based Branch and Bound (taking care

to avoid division by zero in the terms with t
n of the objective function). As shown by Jain and

Grossmann (1998), the global optimum will be found since the constraints are linear and the

objective function is pseudo-convex (pseudo-concave). The solution reported is shown in table

4.3.

This formulation has some disadvantages. Firstly, the solution is strongly dependent on arbi-

trary upper bounds used for Tcycle and ni. The reported solution corresponds to the upper bounds

of 4 for ni and 140 days for Tcycle. But, for higher values of Tcycle and ni upper bounds, the depen-

dence still continues. For instance, when the bounds for ni and Tcycle are 6 and 200 respectively,

the optimal objective function value increases to 30507, and so on.

Hence, a different formulation (F2) is used instead, in accordance with the general case:

max Z � ∑
i

MOFi � T fi (4.32)

subject to:

MOFi
� PiFi

�
citsi � ai

bi

�
1 � e � bitsi � � � Cmi�

tsi � τmi �
�

i (4.33)

Fmi
� Fi

tsi

tsi � τmi

T fi
�

i (4.34)

∑
i

T fi
� 1 (4.35)
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Table 4.4: Example II solution† (F2)
Feed

Variable A B C

tsi
�
d � 9 � 76 60 � 00 21 � 34

T fi (%) 37 � 39 31 � 50 31 � 11
Fmi

�
t � d � 403 � 5 300 � 0 300 � 0

MOFi
�
$ � d � 53109 10547 23656

Z
�
$ � d � 30549

†Starting from random initial points the same solution is reached

Fmloi � Fmi � Fmupi

�
i (4.36)

0 � T fi � 1
�

i (4.37)

tslo � tsi � tsup
�

i (4.38)

In this formulation, the decision variables are the tsi and T fi (or alternatively Fmi). Now, the

optimal solution is summarised in table 4.4.

From the results given in table 4.3 and table 4.4, the following conclusions can be drawn:

� The second formulation (F2) gives a better Z value for the same problem. The main reason

is that there is no bound related to the finite cyclic operation (Tcycle variable and associated

constraints).

� In both cases, the contribution to profit (MOF’s) obtained processing raw materials A and

C is substantially higher than processing B.

� The lower bound constraints on feeds B and C are active.

The interpretation of these results is quite straightforward. In the absence of lower bounds for

FmB and FmC the obvious solution would be to process only the feed A (i.e. the most profitable

one) with its ts satisfying the equation 4.18 (the best one) whenever the FmA upper bound allows

it. As this is not the case, tsB (i.e. the less profitable feed) is set to tsup, thus “forcing” the

required feed consumption as soon as possible. Besides, the value of tsC is such that allows

processing the minimum required feed and makes the time fraction summation equal to one.

4.3.3.2 Several units-several feeds: example III

The scenario for this case study corresponds to the general case of the previous example and has

been also excerpted from the previously mentioned work. Now, four furnaces and seven feeds

are considered. The corresponding parameters are given in table 4.5, while table 4.6 shows the

corresponding solution using F1, (Tcycle about 35 d and Z of 1 � 654 � 105 $ � d).
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Table 4.5: Data for example III
Parameter Furnace j Feed i

A B C D E F G

τmi � j

�
d � 1 2 3 3 3 1 2 3

2 3 1 2 2 2 1 1
3 1 3 1 1 2 1 2
4 2 1 3 2 2 1 1

Fi � j
�
t � d � 1 1300 1200 1100 800 1300 300 700

2 1100 1050 1000 1000 1200 400 600
3 900 800 800 1200 1000 300 850
4 1200 1000 800 700 1200 400 600

ai � j 1 0 � 30 0 � 40 0 � 35 0 � 32 0 � 29 0 � 35 0 � 31
2 0 � 32 0 � 38 0 � 33 0 � 31 0 � 28 0 � 40 0 � 34
3 0 � 31 0 � 35 0 � 36 0 � 36 0 � 29 0 � 37 0 � 31
4 0 � 31 0 � 36 0 � 35 0 � 36 0 � 28 0 � 39 0 � 32

bi � j
�
1 � d � 1 0 � 10 0 � 20 0 � 10 0 � 20 0 � 23 0 � 34 0 � 20

2 0 � 20 0 � 10 0 � 20 0 � 25 0 � 29 0 � 27 0 � 30
3 0 � 30 0 � 20 0 � 30 0 � 27 0 � 28 0 � 29 0 � 25
4 0 � 20 0 � 20 0 � 15 0 � 25 0 � 29 0 � 22 0 � 28

ci � j 1 0 � 20 0 � 18 0 � 21 0 � 20 0 � 30 0 � 26 0 � 16
2 0 � 21 0 � 19 0 � 23 0 � 25 0 � 31 0 � 27 0 � 17
3 0 � 19 0 � 18 0 � 21 0 � 23 0 � 30 0 � 25 0 � 18
4 0 � 20 0 � 19 0 � 21 0 � 24 0 � 31 0 � 26 0 � 17

Pi � j
�
$ � t � 1 123 105 110 123 105 110 120

2 114 132 129 114 132 129 113
3 110 122 120 110 122 120 117
4 120 125 129 115 115 128 115

Cmi � j

�
$ � 1 100 90 80 75 90 93 78

2 80 85 75 90 94 78 70
3 90 90 90 85 93 92 75
4 80 90 85 80 92 85 72

Fmloi

�
t � d � 300 400 300 500 500 100 600

Fmupi

�
t � d � 600 700 600 800 800 400 900
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Table 4.6: Example III solution (F1)
Feed (i) Fmi

�
t � d � Profit (%)‡ Furnace ( j) ni � j ti � j

�
d �

A 353 10.32 1 1 9.55
B 700 26.62 2 4 23.55
C 300 8.69 1 1 9.57
D 500 14.28 3 3 14.70
E 800 24.97 1 2 9.07

2 1 5.65
4 1 8.13

F 100 3.34 4 1 8.84
G 600 11.77 3 1 15.62

4 2 13.18
Tcycle

�
d � 35.42

Z
�
$ � d � 165400

‡Profit is expressed as percentage of Z

Table 4.7: Example III solution (F2)
Feed (i) Fmi

�
t � d � Profit (%)

�

Furnace ( j) tsi � j
�
d � T fi � j (%)

A 389 19.3 1 8.71 36.78
B 700 13.4 2 5.25 79.38
C 300 8.8 1 12.87 15.06

2 8.15 20.63
D 500 14.9 3 4.48 50.96
E 800 28.9 1 4.79 48.16

4 7.96 29.40
F 100 3.1 4 7.51 28.33
G 600 11.6 3 20.00 49.04

4 6.79 42.27
Z

�
$ � d � 166500

�

Profit is expressed as percentage of Z

On the other hand, the proposed formulation, F2, has been used to obtain the results of

table 4.4. It is worth noting that given the non-linearity of the problem, it has been solved

from 200 random (uniformly distributed) initial points. It takes about 0.2 seconds to solve every

problem.2The histogram of figure 4.7 shows the relative frequency of the local optima objective

function values, which are expressed as percentage of the best one. It can be seen that most of

the optima found fall in a favourable region. In fact, using the binomial probability distribution

function, one may verify that the probability of reaching the best solution is 99.99% starting only

from 10 independent initial points. Table 4.7 summarises the results of the best solution (using

tsup equal to 20 days).

By comparing the solution reached (table 4.7) with that obtained using F1 (table 4.6), the

following considerations can be drawn:

2In a AMD-K7 processor with 128 Mb RAM at 600 MHz, using CONOPT2 solver in the GAMS environment (Brooke
et al., 1998; Drud, 1992). About 2 seconds in an spreadsheet environment using an implementation of GRG2 (Fylstra
et al., 1998).
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Figure 4.7: Histogram of the different solutions obtained using F2 for the Example III

� The objective function value obtained using the proposed formulation F2 is higher. That

can be explained because in the proposed formulation the cyclic operation corresponds to

every furnace rather than to the whole system.

� The computation time is substantially reduced because there are no integer variables to

compute in the proposed formulation.

Additionally, it should be mentioned that the lower bounds for feeds C, D, F and G, and the

upper bounds for B and E, and tsup for G-3 are the active constraints. Besides, note that tsA1

corresponds to that obtained using equation 4.18.

4.4 On-line approach

During the process design stage, IOF
�
t � is usually expressed as a function of operating condi-

tions, and it is embedded in the remaining equations that describe the process. For example,

catalyst activity is commonly expressed as an additional kinetic expression. This expression can

be included with others describing the reactor operation, and therefore the solution of the whole

system of differential equations allows the computation of the corresponding IOF
�
t � .

For the sake of simplicity, the previous examples models have assumed simple empirical

relationships which allowed a direct IOF
�
t � calculation (e. g. parameters a, b and c) rather than

by solving a complex set of differential equations. However, for some complex situations found

in practice the use of such empirical models may fail. Regarding this issue, Schulz et al. (2000)
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have shown the effects using more refined models (including recycle streams) on the planning

decisions made at an existing ethylene plant.

Thus, in a general sense, there are two main reasons for disagreement between modelling

results and the actual values obtained in plant:

The plant-model mismatch: that may lead to “bad” values of the model parameters (i.e. a,

b and c). This behaviour might be caused, for instance, by unexpected disturbances, in-

adequate model updating procedure and frequency, and so on. Furthermore, it could be

actually originated by some strong structural model error.

Variability in the model parameters: since model parameter values are commonly determined

by statistical techniques, and they are just averaged values. Therefore, the instantaneous

plant behaviour will be different from run to run (cycle to cycle). Such variability mag-

nitude is approximately given by the degree of deviation observed during the parameter

adjustment stage.

Hence, the results of applying mathematical programming approaches will vary according to the

implementation methodology, because the previous factors will have more or less influence on

the global behaviour. Therefore, an alternative approach is desirable for finding tsopt and T fopt

on-line.

Fortunately, there is another way to evaluate IOF
�
t � . A common expression for IOF is in

terms of profit, measured as the value of products less the raw material and operation costs.

When adequate sensors are available (Sánchez and Bagajewicz, 2000), the components of this

expression can be computed. For instance, the production quantity and quality, raw materials and

utility consumption are usually available from the Distributed Control System (DCS), and Plant

Information Systems, and therefore the IOF can be calculated on-line by incorporating the corre-

sponding economic parameters (prices, cost factors, etc.). In this context, an alternative approach

for on-line optimal maintenance management is proposed, based also on plant data rather than

only on the decaying performance model. Basically, the on-line optimisation problem consists

of a set of very simple questions formulated periodically, and is addressed to the identification of

eventual incremental improvements.

In fact, it is essentially the same idea introduced in the previous chapter for the on-line opti-

misation of continuous processes. However, the variant introduced takes fully advantage of the

monotonically changing behaviour by implicitly embedding the process model into the on-line

decision-making technique. The proposed on-line strategy is next introduced using the examples

given in section 4.3 (page 77).

4.4.1 Simplest case: example I

Assume that:

� The information needed to compute IOF at every time interval k is available on-line.
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� The function IOF
�
k � is strictly decreasing with time.

Under such circumstances, it is known (figure 4.4 in page 78) that there exists a unique optimal

time interval kopt for performing the corresponding maintenance task. According to that, instead

of solving the corresponding optimisation problem, one can solve a simpler one by answering

the following question at every period k: Should one stop for maintenance at this period or at the

next one?

The answer can be obtained just by comparing MOF
�
k � and MOF

�
k � 1 � , at every interval k.

Naturally, if MOF
�
k � � MOF

�
k � 1 � it is better to wait. Otherwise, when MOF

�
k ��� MOF

�
k �

1 � then it is better to stop at period k (see figure 4.4). It can be observed that this is equivalent to

compute:

MOF
�
k � 1 � � MOF

�
k � � 0 (4.39)

which is the discrete form of the equation 4.17, and hence provides the optimal solution.

This statement may hold, even when Cm and τm are available as a function of the operating

time instead of constant values. An interesting extension of the proposed strategy for continu-

ously obtaining a good estimation of the maintenance time from on-line data is detailed in the

appendix C (page 193).

In order to illustrate the application of this technique, consider example I, where the off-line

optimal solution for the available data (table 4.1) corresponds to tsopt
� 30 min. Regarding the

first hypothesis, note that for this example the IOF can be readily obtained from on-line flow

measurements. On the other hand, the second hypothesis is somehow intrinsic to the problem

(because if IOF does not decrease with time, the problem does not exist).

Then, in order to apply the proposed strategy, it is assumed, for the sake of simplicity that both

plant-model mismatch and variability from cycle to cycle can be emulated using the following

equation:

pπ
� pπnom � � 1 � σ � INVNS

�
rand � � ξ � (4.40)

where:

pπnom : nominal parameter value.

pπ: parameter value used in the model (changing for every sub-cycle).

σ: standard deviation for nominal parameter value (to emulate variability).

ξ: relative error in the nominal parameter value (to emulate plant-model mismatch).

rand: uniformly distributed random number.

INVNS: inverse of the normal standard cumulative distribution.
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Figure 4.8: Strict implementation of off-line results

For this problem, pπ refers to the empirical parameters a and b. In such conditions, the strict

implementation of the off-line result over a dynamic simulation (where the values of σ and ξ
are pre-specified) will lead to the results shown in figure 4.8.3 It can be seen, that fixing ts, a

frequency distribution of MOF values is obtained, where cleaning tasks are carried out when

IOF �� MOF .

However, under the same conditions of plant-model mismatch and variability, when tsopt is

determined on line according to the proposed RTE strategy much better performance is achieved,

as is shown in figure 4.9. Note that the on-line determination of the optimality condition (i.e

IOF
�
tsopt � � MOF

�
tsopt � , according to equation 4.18) may not necessarily lead to the same

tsopt value obtained off-line.

Figure 4.10 shows the resulting distribution of the on-line tsopt obtained for ξ � � 10 % and

σ � 10 %, where the off-line value is included as a reference. Again, like in the previous case, a

frequency distribution for MOF is obtained.

With the aim of obtain an approximate measure of the potential benefits of implementing the

proposed on-line approach, a Monte Carlo simulation for different values of ξ and σ is performed

(equation 4.40). The difference between the performances (expected value for MOF) of both

approaches is used as comparative index, leading to the results shown in figure 4.11. As expected,

the on-line determination of tsopt always enhances the process performance and the higher the

plant-model mismatch (or variability), the higher the improvement. For this particular example,

the approximate improvement is about 2500 liters/year in terms of filter capacity (for σ � 20 %

and ξ � 10%). Considering that usually such kind of equipment is run in parallel, among several

3tsopt is fixed in this case, but Vopt could be fixed instead.
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Figure 4.9: On-line determination of cycle lengths
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Figure 4.11: Example I. Improvement reached applying RTE over different plant-model mis-
match and variability conditions

ones, the on-line determination of cleaning tasks may be economically compensated.

4.4.2 One unit-several feeds: example II

For the second example, the off-line solution offers significant information that also gives an op-

portunity for on-line optimisation. Specifically, the flow assignments resulting from the off-line

optimisation (model) correspond to a “first stage” decision. Once implemented such decision,

the optimal operating times (tsi) can be determined as the information from the plant becomes

available. Originally in this example, there were six degrees of freedom (three T f ’s and three

ts’s). Assuming that the three Fm’s are identified using the off-line solution, there only remain

three decision variables. In addition, tsB is the maximum allowed and the equation 4.35 forces

the material balance to be satisfied, so that only one degree of freedom remains. This degree

of freedom corresponds to tsA variable, which can be determined on-line using the procedure

explained in the previous section.

However, it is important to mention that the tsA variability obtained by its on-line determi-

nation will change the corresponding T fA. Therefore, in order to insure that the implemented

solution satisfies the mass balance, tsC needs to be also recalculated from cycle to cycle, accord-

ing to (from equation 4.35):
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Figure 4.12: Example II. Use of RTE for on-line optimisation (tsup
� 30 d)

T fC � 1 � T fA � T fB

tsC
� τmC FmloC�

FCT fC � FmloC �
(4.41)

where T fA is obtained from T fA
� tsA � τmA

tsA

FmA
FA

(from equation 4.34), and tsA is updated (and

damped) from cycle to cycle.

In order to select the feed to be next provided to the furnace after the cleaning is finished,

a simple selection rule can be used (just choosing the material having the highest inventory

level) and thus the T fi decision variables are automatically implemented. Figure 4.12 shows the

application of the explained strategy over a dynamic model.

Additionally, the benefits of the proposed approach when plant-model mismatch and vari-

ability are present have been approximated as in example I by means of a long-term Monte Carlo

simulation. In this case, the parameters a, b, and c were changed using the equation 4.40. The

results are given in the graphics of figure 4.13.

The influence of the variability σ is more significant than that for the error ξ, as it could be

expected, because the variability is the main motivation for on-line optimisation systems. Charts

of the type of figure 4.13 are very useful for the economic evaluation of a RTE system project,

given that by properly approximating the variability and the plant-model mismatch one is able to

estimate the benefits of such on-line optimisation system.
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Figure 4.13: Example II. Improvement reached applying RTE

4.4.3 Several units-several feeds: example III

The application of similar concepts also permits the on-line approach to this problem, and the

larger number of variables and constraints allows generalising the previous concepts. The origi-

nal formulation has T fi � j’s and tsi � j’s as decision variables, which means 56 degrees of freedom.

However, the consideration of the flow assignments and results from the off-line optimisation,

implies 48 additional equations:

Fmi
� ∑

j
Fi � j

tsi � j

tsi � j � τmi � j

T fi � j
�

i (4.42)

T fi � j
� 0 � tsi � j

� 0
� �

i � j ���

������������� ������������

�
A � 2 � ;

�
A � 3 � ;

�
A � 4 � ;�

B � 1 � ;
�
B � 3 � ;�

C � 3 � ;
�
C � 4 � ;�

D � 1 � ;
�
D;2 � ;

�
D � 4 � ;�

E � 2 � ;
�
E � 3 � ;�

F � 1 � ;
�
F � 2 � ;

�
F � 3 ��

G � 1 � ;
�
G � 2 �

� ������������
�����������	

(4.43)

∑
i

T fi � j
� 1

�
j (4.44)
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tsi � j
� tsup

�
i � j � ��� �

G � 3 � � (4.45)

which means that the remaining degrees of freedom are 8. After some algebraic manipulation

(Lee et al., 1966) all the dependent variables (T fi � j’s and tsG4) can be expressed as a function

(mostly using the mass balances) of an independent set of tsi � j’s variables: tsA1,tsB2,tsC1,tsC2

,tsD3,tsE1, tsE4 and tsF4. In addition, in that resulting reduced space, the optimum point must

satisfy:

∂Z
∂tsm � n

� 0
� �

m � n ���

����������� ����������

�
A � 1 � ;�
B � 2 � ;�
C � 1 � ;

�
C � 2 � ;�

D � 3 � ;�
E � 1 � ;

�
E � 4 � ;�

F � 4 �

� ����������
���������	

(4.46)

what can be rewritten in the form:

∂ � MOFm � n
�
tsm � n � T fm � n

�
tsm � n � �

∂tsm � n

�

� �

����� ���� ∑
i �� m

j �� n

MOFi � j
∂T fi � j

�
tsm � n �

∂tsm � n � ∑
i �� m

j �� n

∂MOFi � j
�
tsm � n �

∂tsm � n
T fi � j

� ����
���	

� �
m � n ���

����������� ����������

�
A � 1 � ;�
B � 2 � ;�
C � 1 � ;

�
C � 2 � ;�

D � 3 � ;�
E � 1 � ;

�
E � 4 � ;�

F � 4 �

� ����������
���������	

(4.47)

where:

tsi � j
� tsopti � j

� �
i � j � �� �

m � n � (4.48)

This set of equations completes the system for the on-line solution.

Therefore, when feeding the furnace n with the feed m, the on-line measurement of IOFm � n

allows obtaining MOFm � n continuously. Besides T fm � n is determined from tsm � n using the mass

balances. That allows computing the LHS (equation 4.47) as a function of tsm � n’s on-line.

On the other hand, the RHS is a function of tsm � n that can be easily evaluated numerically. All

MOFi � j’s are obtained from the historical optimal values (using as initial value the off-line result)

and the T fi � j’s values (for i � j �� m � n) are computed from the mass balances equations using also

the historical tsopti � j
’s values.

Figure 4.14 shows the evolution of the Zi values along time (different tsm � n) where the plant
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Figure 4.14: Example III. On-line determination of tsopt

was not stopped in order to clearly illustrate the Zi profiles and how the optimum values may

be identified on-line. It should be noted, that special care must be taken given that commonly,

for lower tsi � j values, values for some dependent variables (T fi � j and the remaining tsi � j
� �

i � j � ��
�
m � n � ) become negative and hence correspond to infeasible solutions.

Regarding the on-line implementation of T fi � j variables, the reasoning presented in the pre-

vious example holds. However, the contribution of every feed to every furnace needs to be

considered. One way to easily do this is by splitting the real inventory into “pseudo-inventories”

for every furnace. The split fractions (S fi � j) for this computation are based on the additional

terms in equations 4.26:

Fmi � j
� ∑

j
Fi � j

tsi � j

tsi � j � τmi � j

T fi � j
� ∑

j
S fi � jFmi

�
i (4.49)

Using for its evaluation the actual values obtained for tsopti � j
and performing a normalisation pe-

riodically to ensure that:

∑
j

S fi � j
� 1

�
i (4.50)
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The procedure presented is quite general, and its application to the previous example (exam-

ple II) produces similar results to those obtained in the previous section. However, it is important

to notice that, in the case of example III, the improvement reached using an on-line optimisation

is not much relevant. This is not surprising, since the solution reached is mainly given by the

satisfaction of mass balance constraints (lower an upper bounds in Fmi’s) which does not leave

enough margin for the on-line manipulation of the tsm � n’s variables.

4.5 Conclusions

The work introduced in this chapter represents a step forward towards the integration of classi-

cal mathematical formulations for the maintenance planning of processes with decaying perfor-

mance and the on-line optimisation technology. A way for the off-line calculation of a main-

tenance plan and a methodology for the on-line implementation of such planed decisions in a

co-ordinated way have been presented. The main advantages of the proposed approach are its

simplicity and robustness, which makes it attractive for industrial application in process plants

provided with information systems.

Moreover, the proposed NLP formulation includes general performance relationships and

mass balances, which allows its use over a wide range of applications. The variables involved

have a clear physical meaning, and the computation times required are indeed affordable. What

is more important is the fact that the solutions are easy to implement, and even more, they can be

further used for performing on-line optimisation. Otherwise, the proposed procedure for on-line

optimisation is quite simple, robust and reduces the effects of plant model mismatch and vari-

ability. The RTE strategy has proved to obtain good solutions by using properly the information

coming from the plant and answering simple questions on line, rather than performing successive

formal optimisation, which has been the commonly used strategy. The on-line procedure seems

to be especially worthwhile in cases with highly decreasing performance rates and where the

off-line optimal solution is not strongly dictated by the constraints.

4.6 A short comment about the simultaneous implementation

of both RTE methodologies

The previous chapter has introduced a methodology conceived as a strategy for reaching and

keeping a hypothetical moving optimal operation point. This is achieved by a proper periodical

modification of the set-points, which constitute a set of continuous variables. It has been de-

signed with the aim of dealing particularly with the continuous arrival of external disturbances.

Nevertheless, as previously argued, the fact that the models are updated during the steady state

operation allows as well pursuing, with a lower rate, possible internal changes. Fortunately,

the rate of change for internal disturbances is in general terms lower, in order of magnitude, as

compared with the external disturbances changes.
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Figure 4.15: Set-points optimisation for the Williams-Ottto reactor under the simultaneous influ-
ence of internal and external disturbances

In addition, this chapter has introduced another methodology conceived for the on-line opti-

misation of process with decaying performance. It takes advantage of the a priori knowledge of

the disturbance trend and the fact that at some instant the operation must be interrupted in order

to restore the initial performance. The question that naturally arises is if both methodologies are

suitable for being applied simultaneously over the same process.

Consider for illustration purposes the Williams-Otto reactor benchmark, when now, the main

reaction is a catalytic one. Furthermore, assume that as a consequence of poisoning, the cata-

lyst’s activity continuously decreases. Such situation clearly corresponds to an internal distur-

bance. In addition, during its operation, and as has been considered in previous analysis, another

disturbance (external) is present: the feed flow of the A reactant. If under such context, the

methodology introduced in chapter 3 is applied, the set-points of Fb and Tr will track the drifting

optimum, as is shown in figure 4.15. In the figure, only the points corresponding to the steady

state (actually pseudo steady states) are displayed.

It can be seen in the chart at the bottom, the corresponding evolution of IOF , which results

decreasing with time. There is no reason for not implementing, in a parallel way, the method-

ology of the current chapter. Indeed, if the cost associated to the catalyst regeneration and the

required non-productive time are properly specified (Cm and τm), and besides, there are mecha-

nisms for evaluating IOF on-line, the procedure of section 4.4 (page 87) can be readily applied.

Indeed, 4.16 shows the optimal operation time when arbitrary values of Cm and τm are supposed.
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ence of internal and external disturbances
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